INTRODUÇÃO

O mapeamento de determinada região é uma atividade que demanda diversos procedimentos de campo e escritório, com variadas tecnologias disponíveis, que visa à representação gráfica da região em um documento cartográfico, utilizando para isso um sistema de projeção cartográfica, num referencial geodésico, adotado por um País ou por um conjunto de Países.

A resolução dos instrumentos utilizados na obtenção das informações de campo na cartografia, juntamente com as diversas metodologias, evoluíram grandemente com o passar do tempo. Atualmente pode-se medir distâncias horizontais, por exemplo, com precisão da ordem do milímetro, utilizando os medidores eletrônicos de distância (MED), havendo uma melhora significativa na qualidade e na produtividade dos trabalhos de campo. Tecnologia bem presente na cartografia atual, o posicionamento por satélites, permite ao usuário a determinação das coordenadas geométricas tridimensionais (X, Y e Z) de pontos no terreno com erro posicional da ordem do milímetro.

Atualmente quando se planeja o mapeamento de extensas regiões da superfície terrestre, fica inviável a utilização dos clássicos métodos de levantamento topográfico, por serem lentos e de custo elevado. Com a invenção da fotografia (Século XIX) e mais tarde do avião (1913), rapidamente se percebeu o enorme potencial dessas tecnologias para as ciências cartográficas, na coleta de dados espaciais necessários para a construção de um documento cartográfico. Com a realização de estudos voltados à obtenção de medidas confiáveis a partir de fotografias, nasce a fotogrametria. A aerofotogrametria foi a área da fotogrametria que mais se desenvolveu. Essa metodologia consiste na utilização de um avião para a obtenção de um conjunto de fotografias de uma determinada região. Realizando um sobrevoo com uma câmara métrica, são obtidas rapidamente as fotografias necessárias, seguindo algumas recomendações técnicas. As características básicas das fotografias que irão compor o bloco, é que sejam tomadas verticalmente, de forma que o eixo ótico do sistema de lentes da câmara esteja perpendicular ao terreno. Entre as fotografias terá que haver uma sobreposição longitudinal de 60%, para que seja possível a visualização tridimensional do relevo do terreno utilizando instrumentos específicos. Na realização do levantamento aerofotogramétrico, além das fotografias é necessário a determinação das coordenadas dos pontos de controle no espaço-objeto, medidos com o posicionamento global por satélites, que serão utilizados na realização da orientação exterior.

Na era da fotogrametria analógica (1901-1950) foi desenvolvido o equipamento denominado de restituidor, que reduziu significativamente a quantidade dos cálculos necessários exigidos nos trabalhos fotogramétricos. Este instrumento possibilita a visão tridimensional de um par de fotografias, denominado modelo estereoscópico, para a extração e a representação tridimensional das feições naturais e artificiais do terreno em uma carta topográfica. Permite também o traçado analógico das curvas de nível. Na década de 40 com a invenção do computador, os cálculos fotogramétricos passaram a serem executados computacionalmente, graças aos estudos do Dr. Helmut Schmidt. As soluções analógicas foram substituídas pelas analíticas, surgindo então a fotogrametria analítica (1951-1990). Com o aumento da capacidade de processamento dos computadores, nasce na década de 90 a fotogrametria digital (1990-hoje). O processamento se dá de maneira semelhante a fotogrametria analítica. Permite que sejam obtidos outros produtos, como: carta digital, ortoimagens, ortofotos, modelos numéricos de elevação, lista de coordenadas e etc. O objetivo da fotogrametria digital é o mapeamento automático das feições do terreno, sendo o atual estado da arte o mapeamento semi-automático. A fotogrametria digital utiliza a imagem digital como fonte primária de dados.

A idéia da concepção de um software livre de fotogrametria digital, surgiu no Instituto Militar de Engenharia - IME em 2002. Uma das motivações para esta iniciativa foi o fato das soluções comerciais de fotogrametria digital apresentarem um alto custo, tornando inviável sua aquisição por algumas instituições de ensino superior que ministram a disciplina de fotogrametria. Desde 2004, está sendo desenvolvido no laboratório de fotogrametria do Departamento de Engenharia Cartográfica da Universidade do Estado do Rio de Janeiro, a estação fotogramétrica digital educacional livre, denominada de E-FOTO, que tem como objetivo principal o ensino da fotogrametria digital para os alunos dos cursos de Mestrado em Engenharia Cartográfica, além de possibilitar aos mais variados públicos o acesso a essa tecnologia.

O projeto E-FOTO baseia-se em dois pilares: auto-aprendizagem e gratuidade. Na página do software na web (www.efoto.eng.uerj.br), o interessado pode fazer o download dos módulos que compõem o software e ter acesso a todo suporte necessário para sua utilização/aprendizado, através dos tutoriais dos módulos disponíveis. Em julho de 2011 foi disponibilizado na página do projeto na internet a versão integrada 1.0beta do E-FOTO, que permite a criação de um projeto de mapeamento aerofotogramétrico de uma área de interesse.

Para a criação do projeto no E-FOTO, basta o certificado de calibração da câmara, as imagens digitais da região e as coordenadas dos pontos de controle no espaço-objeto.

Esta dissertação tem o objetivo geral de avaliar a qualidade dos cálculos fotogramétricos efetuados pela solução integrada do E-FOTO versão 1.0beta. Como objetivos específicos listam-se os seguintes:

- Comparar as metodologias utilizadas na determinação dos parâmetros das orientações interior e exterior obtidos no E-FOTO e no LPS, sem a inclusão de parâmetros relativos as distorções das lentes da câmara fotogramétrica;

 Verificar se a diferença entre os parâmetros das orientações interior e exterior obtidos no E-FOTO sem os parâmetros adicionais e no LPS considerando os parâmetros adicionais é significativa;

- Comparar as metodologias na determinação dos parâmetros das orientações interior e exterior obtidas no E-FOTO e no LPS sem autocalibração;

- Verificar se a diferença entre os parâmetros das orientações interior e exterior obtidas no E-FOTO e no LPS com a autocalibração é significativa;

Verificar se as medidas fotogramétricas realizadas no módulo estereoplotter versão
 1.64 do E-FOTO podem ser consideradas equivalentes as realizadas com tecnologia de posicionamento por satélite;

 Verificar se as metodologias na determinação das coordenadas no espaço-objeto (E, N e H) dos pontos de verificação no módulo estereoplotter versão 1.64 do E-FOTO e no LPS são equivalentes;

- Avaliar a qualidade dos resultados obtidos segundo o Padrão de Exatidão Cartográfica - PEC (Brasil, 1984).

Supõe-se que este trabalho traga como benefício adicional a geração de um conjunto de dados, para a execução de um projeto de mapeamento aerofotogramétrico que poderá ser utilizado em aulas práticas da disciplina de fotogrametria digital em cursos de graduação em Engenharia de Agrimensura e Cartográfica, tanto no Brasil quanto no exterior.

Na realização dos experimentos foram utilizados dois blocos de fotografias de regiões distintas do planeta. Um bloco de fotografias digitais do ano de 2005 sobre o município de Seropédica, Rio de Janeiro, Brasil; Digitalizadas com resolução geométrica de 1.200 dpi e resolução radiométrica de 8 bits, acompanhadas do certificado de calibração da câmara, que foram cedidos pelo IBGE. Um bloco de fotografias digitais do ano de 1953 sobre a região de Santiago de Compostela na Espanha, digitalizadas com resolução geométrica de 1.200 dpi e resolução radiométrica de 8 bits, sem certificado de calibração, que foram cedidas pelo

Departamento de Agricultura e Engenharia Florestal da Universidade de Santiago de Compostela.

A presente dissertação de mestrado está organizada, além desta introdução, da seguinte maneira: Fundamentação teórica, onde são abordados os assuntos relevantes para o desenvolvimento deste trabalho; Materiais e Métodos, onde são apresentadas as áreas de estudo, assim como as etapas de criação de um projeto de mapeamento aerofotogramétrico na versão integrada do E-FOTO 1.0β, realização das orientações interior e exterior, medição dos pontos de verificação no módulo estereoplotter; Resultados obtidos e Discussões, são apresentados os resultados encontrados referente aos experimentos realizados para a determinação da qualidade dos cálculos fotogramétricos da versão integrada do E-FOTO, tomando como referência os cálculos realizados no software comercial Leica Photogrammetry Suite 2010, na obtenção dos pontos de verificação, comparação das coordenadas medidas no módulo estereoplotter versão 1.64 do E-FOTO com as determinadas com tecnologia de posicionamento por satélites e a qualidade dos resultados obtidos com o E-FOTO, segundo o padrão de exatidão cartográfica relativo aos dois projetos, a fim de classificar o documento cartográfico possível de ser obtido e Conclusão.

1 **FUNDAMENTAÇÃO TEÓRICA**

1.1 Fotogrametria e suas fases

Com o advento da fotografia no século XIX, graças aos trabalhos pioneiros de Nicéphore Niépce em 1826 e Louis-Jacques Daguerre em 1840 (Coelho e Brito, 2007), as ciências cartográficas foram uma das áreas do conhecimento científico que mais se beneficiou com tal invenção. O princípio da câmara escura, permanece até os dias de hoje, mas seus componentes foram a cada dia sendo aprimoradas. O processo fotográfico passou a ser mais eficaz, devido à incorporação de diversos componentes ao sistema, como: um sistema de lentes, filme fotossensível com maior "rapidez" e resolução, obturador, diafragma e magazine. A figura 1.1 apresenta o esquema de uma câmara fotogramétrica analógica e suas partes constituintes.

Figura 1.1 - Esquema de uma câmara fotogramétrica. Fonte: Garcia e Marchetti (1986).

As câmaras passaram a ter alta resolução geométrica com implementação de um sistema de coordenadas fotogramétrico, que permite a extração de medidas com alto grau de precisão. Este sistema é composto por um grupo de marcas denominadas de marcas fiduciais, que se posicionam nos cantos do quadro da fotografia ou medianos aos seus lados (figura 1.2). Ao fotografar o terreno elas são gravadas no negativo fotográfico, de maneira que, após o processo de revelação do negativo será possível visualizá-las numa cópia em papel ou em diapositivo. Na figura 1.2 destaca-se a representação das marcas fiduciais no quadro da fotografia.

Figura 1.2 - Quadro de uma fotografia aérea com as marcas fiduciais e o sistema de coordenadas fotogramétrico. Fonte: Wolf e Dewitt (2000).

O sistema de obtenção de uma fotografia é o passivo pois, necessita de uma fonte de luz externa, que interage com os objetos no terreno. Parte da luz incidente é refletida pelos objetos, de maneira a sensibilizar o filme ou a matriz de CCD no plano focal interior da câmara. Com os estudos relacionados ao espectro eletromagnético (Figura 1.3) o domínio dos filmes fotossensíveis foi ampliado, aumentando a resolução espectral das fotografias (filme colorido). Para algumas aplicações específicas podem ser usados filmes sensíveis à faixa do infravermelho próximo. Na figura 1.3 a representação do espetro eletromagnético, em destaque os comprimentos de onda na faixa do visível.

Figura 1.3 - Espectro eletromagnético, com destaque para faixa do visível. Fonte: www6.ufrgs.br/engcart/PDASR/rem.html

A palavra fotogrametria tem origem em três radicais gregos: *photon* (luz), *graphos* (escrita) e *metron* (medições). Segundo Lillesand e Kiefer (2000), pode ser definida como a "ciência e tecnologia de se obterem medições e outros produtos geometricamente confiáveis a partir de fotografias". Conforme a *International Society Phtogrammetry and Remote Sensing*

(ISPRS), "fotogrametria e sensoriamento remoto é a arte, ciência e tecnologia de se obter informação confiável de imagens de sensores imageadores e outros, sobre a Terra e seu meio ambiente e outros objetos físicos e processos, através de gravação, medição, análise e representação".

A fotogrametria quanto à estação de tomada das fotografias pode ser classificada em: fotogrametria terrestre, aérea e orbital.

Na fotogrametria terrestre ou a curta distância, o eixo ótico do sistema de lentes da câmara fotográfica está paralelo ao plano do terreno (Wolf e Dewitt, 2000). O principal instrumento na obtenção dos dados de campo é o fototeodolito. Atualmente tem aplicações bem específicas, por exemplo, na recuperação de obras arquitetônicas. A figura 1.4(a) a imagem de um fototeodolito e na figura 1.4(b) uma fotografia tomada com tal equipamento.

1.4 (a)

1.4 (b)

Figura 1.4 - Fototeodolido utilizado em fotogrametria terrestre (a) e fotografia terrestre (b). Fonte: Wolf e Dewitt (2000).

Na fotogrametria aérea é utilizada tradicionalmente uma câmara métrica de grande formato (23x23cm). O eixo ótico do sistema de lentes é perpendicular ao terreno. Em consequência, as inclinações da aeronave durante o voo não devem exceder a 3 graus (IBGE, 1999) para que uma fotografia possa ser considerada como vertical. Segundo Andrade (2003) as câmaras aerofotogramétricas possuem alta rigidez geométrica. Na figura 1.5 observa-se uma câmara aérea analógica da marca Zeiss modelo RMK TOP 15.

Figura 1.5 - Câmara aérea analógica Zeiss RMK TOP 15. Fonte: Wolf e Dewitt (2000).

Na aerofotogrametria uma das principais características na obtenção das fotografias é a utilização de filmes "velozes", pelo fato de o sensor estar em movimento. Assim, evita-se que alguns problemas indesejáveis, tal como o arrastamento da imagem ocorram. A aerofotogrametria foi a área da fotogrametria que mais se desenvolveu técnica e cientificamente. No mapeamento aerofotogramétrico as fotografias devem ser tomadas em uma linha de voo, cuja orientação seja definida no planejamento da cobertura aerofotogramétrica. Conforme Andrade (2003) o projeto de cobertura aerofotogramétrica deve estabelecer informações sobre: Câmara; Aeronave e sua autonomia de voo; Altura e altitude de voo, de acordo com a escala; número de aerofotos em cada faixa; número de faixas; tipo de filme; tempo de exposição; abertura do diafragma; Filtro; Intervalo de tempo entre duas exposições e elementos para a navegação (projeto da cobertura fotográfica). O voo dever ser realizado a uma altura de voo constante e obrigatoriamente deverá ocorrer a superposição longitudinal (figura 1.6) de cerca de 60% entre duas fotografias sucessivas na linha de voo e superposição lateral de 30% entre faixas de voo adjacentes, para que nenhuma área deixe de ser fotografada (IBGE, 1999). Graças à superposição longitudinal é possível a visualização estereoscópica indireta de um par de fotografias ao longo da linha de voo. Na figura 1.6 (a) observa-se a representação do recobrimento longitudinal e a visualização da superposição longitudinal entre duas fotografias que formam um par estereoscópico (figura 1.6 b). Na figura 1.7 observa-se uma representação esquemática do recobrimento lateral. Com o aumento da resolução espacial dos sensores imageadores a bordo dos satélites artificiais, as imagens orbitais puderam ser utilizadas na fotogrametria.

Figura 1.6 - Recobrimento longitudinal (a) e a visualização da superposição longitudinal (b) entre fotografias subsequentes. Fonte: IBGE (1999).

Figura 1.7 - Recobrimento lateral. Fonte: IBGE (1999).

Historicamente a fotogrametria pode ser dividida quanto à obtenção dos dados e a evolução da metodologia de processamento fotogramétrico em três fases: fotogrametria analógica, analítica e digital.

Na fotogrametria analógica é utilizado o equipamento denominado restituidor ópticomecânico. Segundo Tavares e Fagundes (1991), a restituição é a representação gráfica ou numérica do terreno e consiste para sua realização em duas etapas na fotogrametria analógica: orientação interior e exterior. A orientação interior é a reconstituição do feixe perspectivo central de cada fotograma. A orientação exterior por sua vez divide-se em: orientação relativa, que é a formação do modelo espacial semelhante ao terreno fotografado e a absoluta é a determinação das dimensões e da posição do modelo espacial para torná-lo homotético direto ao terreno fotografado. A figura 1.8 apresenta um restituidor analógico da marca Zeiss.

Figura 1.8 - Restituidor analógico ZEISS, modelo Planicart, com mesa traçadora. Fonte: http://topengenharia.blogspot.com/

Na década 40 com a invenção do computador, os cálculos substituem as soluções analógicas, graças aos trabalhos do Dr. Helmut Schmidt que estabeleceu as bases da fotogrametria analítica, incluindo o tratamento matricial, as soluções por mínimos quadrados, a solução simultânea utilizando múltiplas imagens e uma análise completa da propagação de erros (Coelho e Brito, 2007). Em 1957 o finlandês Uuno (Uki) Vilho Helava apresentou os princípios do restituidor analítico, que utilizava servomecanismos para a medição das marcas fiduciais. Os primeiros restituidores analíticos foram apresentados no congresso da ISP em 1976, surgindo a fotogrametria analítica.

Com o aumento da capacidade de cálculo dos computadores, surge na década de 90 a fotogrametria digital. Segundo Coelho e Brito (2007) a fotogrametria digital tem como objetivo principal a reconstrução *automática* do espaço tridimensional (espaço-objeto), a partir de imagens bidimensionais (espaço-imagem). Uma das principais inovações da fotogrametria digital é o uso de fotografias digitais (imagem) como fonte primária de dados, obtidas por câmaras digitais ou pela digitalização dos diapositivos (positivo) em scanners fotogramétricos com alta resolução geométrica e radiométrica. O atual estado arte da fotogrametria digital é o mapeamento semi-automático. A formulação desenvolvida na época da fotogrametria analítica, juntamente com as equações de colinearidade, o ajustamento

paramétrico por mínimos quadrados e o surgimento da programação, foi possível a implementação dos algoritmos de cálculo fotogramétrico, possibilitando o desenvolvimento de aplicativos para fotogrametria. As estações fotogramétricas digitais (EFD), incorporaram o fluxo do trabalho de um mapeamento aerofotogramétrico em uma única estação de trabalho. Como na fotogrametria analítica a saída dos dados é digital, permitindo diversas possibilidades de produtos, como: ortoimagem, ortofoto, modelo numérico de elevação, lista de coordenadas, etc. Abaixo as Equações de colinearidade, utilizadas na fotogrametria digital (Equações 1 e 2).

$$\xi = \xi_0 - f \frac{r_{11}(X - X_0) + r_{21}(Y - Y_0) + r_{31}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$
(1)

$$\eta = \eta_0 - f \frac{r_{12}(X - X_0) + r_{22}(Y - Y_0) + r_{32}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$
(2)

onde:

ζеη	- coordenadas fotogramétricas no espaço-imagem;
$\xi_0 { m e} \eta_0$	- coordenadas fotogramétricas do centro de perspectiva (CP) no espaço-

imagem;

f	- distância focal calibrada (certificado de calibração);
<i>r_{mn}</i>	- parâmetros de atitude do sensor;
X e Y	- coordenadas dos pontos de controle no espaço-objeto;
$X_0 e Y_0$	- coordenadas do centro de perspectiva (CP) no espaço-objeto.

A tabela 1.1 apresenta um resumo da evolução tecnológica da fotogrametria (Coelho e Brito, 2007).

Fotogrametria	Entrada	Processamento	Saída
			Analógica (scribes
	Fotografia analógica	Analógico	ou <i>fotolitos</i>) no
Analógica			passado ou digital
	(em filme)	(óptico-mecânico)	(CAD, por exemplo)
			no presente
			Analógica (scribes
	Fotografia analógica	Analítico	ou <i>fotolitos</i>) no
Analítica			passado ou digital
	(em filme)	(computacional)	(CAD, por exemplo)
			no presente

Tabela 1.1 - Evolução tecnológica da fotogrametria. Fonte: Coelho e Brito (2007).

Fotogrametria	Entrada	Processamento	Saída
Digital	Imagem digital (obtida de câmara digital, por exemplo) ou digitalizada (foto analógica submetida a um <i>scanner</i>)	Analítico (óptico-mecânico)	Digital

Cont. Tabela 1.1.

1.2 Imagem digital e suas resoluções

A radiação eletromagnética (REM) é o meio pelo qual a informação é transferida do objeto ao sensor (Novo, 2008). No sistema passivo de imageamento, a fonte primária de radiação para a obtenção das fotografias é o Sol. A energia incidente pode ser: absorvida, transmitida e refletida pelos objetos na superfície do terreno. A energia refletida de forma difusa é a que mais interessa para obtenção das fotografias. Os sensores são os sistemas responsáveis pela conversão da energia proveniente dos objetos em um registro na forma de imagem (NOVO, 2008).

A representação da imagem digital poder ser de dois tipos: vetorial e matricial.

Na representação vetorial consideram três elementos gráficos: ponto, linha e área (polígono). Os pontos ou elementos pontuais abrangem todas as entidades que podem ser posicionadas por um único par de coordenadas X e Y. As linhas são um conjunto de pontos conectados e as áreas ou polígonos são representados pela lista de linhas que a compõe (Assad e Sano, 1998). Este tipo de imagem pode ser obtida através da mesa digitalizadora, onde o operador coleta os pontos que irão representar os objetos.

Na representação matricial, o espaço é representado como uma matriz P(m,n) composta de *m* colunas e *n* linhas (Assad e Sano, 1998). Segundo Silveira (2005), uma imagem é dita matricial quando toda a informação do espaço em questão é armazenada sob a forma de uma matriz, composta por células quadradas, chamadas de *pixels* (picture elements), onde cada célula possui uma cor, que é definida por um número inteiro e positivo.

Segundo Gonzales e Woods (2000), imagem digital é a função bidimensional de intensidade da luz f(x,y), onde x e y denotam as coordenadas espaciais e o valor de f em qualquer ponto (x, y) é proporcional ao brilho (ou *níveis de cinza*) da imagem naquele ponto. Conforme Coelho e Brito (2007) cada pixel possui somente uma coloração sólida, definida por um número digital. Na figura 1.9 a representação de uma imagem digital e sua forma matricial.

Imagem Digital	Co	Ma rresp	atriz onde	ente
	Γο	15	31	47 -
	63	79	95	111
	127	143	159	175
	191	207	223	255

Figura 1.9 - Imagem digital e sua forma matricial. Fonte: Silveira (2005).

A imagem digital na fotogrametria digital pode ser obtida de duas formas; através de câmaras digitais ou pela digitalização matricial das fotografias analógicas em scanner fotogramétrico. Nas câmaras digitais o filme analógico sensível a determinado comprimento de onda da faixa do espectro eletromagnético, em geral na faixa do visível (filme pancromático) para a maioria dos trabalhos de aerofotogrametria, é substituído por uma matriz de CCD (charge coupled device). O CCD é um dispositivo de digitalização interno, que transforma a energia luminosa em energia elétrica. Quanto maior a quantidade de energia que chega ao sensor, maior é a corrente gerada nele, resultando maior nível de cinza no pixel correspondente. A imagem digital pode ser transferida diretamente para o computador ou para algum dispositivo de armazenamento. Na figura 1.10 a imagem de uma câmara fotogramétrica digital.

Figura 1.10 - DMC (Digital Mapping Câmera) construída pela Z/I Imaging. Fonte: www.eepublishers.co.za/.../upload/Integraph.jpg

Os scanners fotogramétricos segundo Shenck (1999), convertem documentos impressos (forma analógica) para o meio digital e podem ser de dois tipos: os de cilindro ou

tambor e os planos (*flatbed*). Os mais utilizados são os planos. Conforme o MANUAL OF PHOTOGRAMMETRY (1980), um scanner para ser considerado fotogramétrico, deve apresentar os seguintes requisitos:

a) permitir a digitalização de documentos transparentes com dimensões mínimas de 23 x 23 cm;

b) ter uma precisão geométrica (Erro médio quadrático) menor do que 4 - 5 µm;

c) possuir boa performance radiométrica e espectral, com resolução radiométrica mínima de 8 bits por canal (vermelho, verde e azul);

d) ter uma boa resolução espacial mínima 15 µm e

e) ser equipado com sistemas computacionais que permitam a introdução de parâmetros para a digitalização, calibrações e possíveis funções fotogramétricas.

Na figura 1.11 destaca-se a imagem de um scanner fotogramétrico.

Figura 1.11 - Scanner fotogramétrico. Fonte: <u>www.vingeo.com/scaner.html</u>.

Segundo NOVO (2008) a resolução espacial do sensor, representa a menor feição passível de detecção pelo instrumento e depende do *campo de visada* do sensor (*Field of View*) e do *campo de visada instantâneo* do inglês "Instantaneous Field of View" (IFOV). O IFOV é o ângulo de visibilidade instantânea do sensor e determina a área da superfície terrestre que é "vista" por ele. Com o IFOV pode-se calcular a resolução espacial da imagem a partir da Equação 3:

$$\mathbf{D} = \mathbf{H}\boldsymbol{\beta} \tag{3}$$

onde:

D = diâmetro do elemento de amostragem no terreno (em metros);

H = altura da plataforma (em metros);

 β = IFOV (em radianos).

De Acordo com NOVO (2008), um dos componentes importantes na definição da resolução espacial de um sensor é o poder de resolução do sistema óptico, que é um indicador da menor distância entre dois pontos de igual intensidade luminosa em que possam ser identificados como distintos.

Na imagem digital a resolução espacial está diretamente relacionada ao "tamanho do pixel" (Coelho e Brito, 2007). Quanto menor o tamanho do pixel maior será a capacidade de discernir objetos na imagem, ou seja, maior será a resolução espacial. O fato do aumento da resolução espacial (discretização), irá fazer com que ocorra o aumento significativo do tamanho do arquivo digital, tornando a imagem muito "pesada" e de difícil manipulação. Isto é um grande problema que o fotogrametrista deve solucionar. Para expressar a resolução espacial utiliza-se o termo dpi (*dots per inch*), isto é, pontos por polegada.

Segundo Novo (2008) a resolução radiométrica de uma imagem digital é expressa em termos do número de dígitos binários, ou "bits" necessários para representar todo o intervalo de variação do sinal num computador. Conforme Gonzales e Woods (2000) a resolução radiométrica consiste na discretização do brilho de um conjunto de objetos do terreno em uma matriz de pixels. Cada pixel terá uma cor sólida associada que, na verdade, é uma combinação de tons dos diversos objetos. Quanto maior a resolução radiométrica (quantização) da imagem maior a capacidade desta discernir a variação de tons no terreno. Para representar a resolução radiométrica no sistema binário, a quantidade de tons está relacionada a uma potência de 2. Por exemplo, uma imagem pancromática de 8 bits/pixel ($2^8 = 256$ níveis de cinza) terá uma resolução radiométrica maior que uma imagem de 4 bits/pixel ($2^4 = 16$ níveis de cinza).

A resolução espectral de acordo com Novo (2008) é uma medida da largura das faixas espectrais e da sensibilidade do sistema sensor em distinguir entre dois níveis de intensidade do sinal de retorno. Por exemplo, um sistema sensor que opera na faixa de 0,4 a 0,5 μ m tem uma resolução espectral maior que um sensor que opera na faixa 0,4 a 0,6 μ m. As fotografias (digital e analógica) são obtidas na faixa do visível do espectro eletromagnético (0,4 a 0,7 μ m). Os filmes geralmente utilizados na fotogrametria são os seguintes: pancromático (faixa do visível), infravermelho, colorido e falsa cor. O filme colorido possui resolução espectral maior que são as cores primárias: Azul (0,4 a 0,5 μ m), verde (0,5 a 0,6 μ m) e vermelho (0,6 a 0,7 μ m).

A resolução temporal é o intervalo de tempo necessário para a revisita do sensor a mesma região. Quanto menor esse tempo, maior a resolução temporal. Possui maior importância para o sensoriamento remoto, não sendo muito considerada na aerofotogrametria.

1.3 Métodos de visão estereoscópica

As fotografias são imagens bidimensionais (2D). Para que seja possível a visão tridimensional das feições nelas contidas, é necessário utilizar alguma técnica ou instrumento que permita a visão tridimensional (3D) artificial de um modelo estereoscópico. Nas estações fotogramétricas digitais, a visão estereoscópica artificial pode ser obtida de quatro formas: separação espacial, anaglifo, separação radiométrica e separação temporal.

1.3.1 Separação espacial

O método consiste em montar um estereoscópio de espelhos na frente da tela e editar cada imagem (esquerda e direita), em metade da tela. As duas imagens que integram um modelo são exibidas simultaneamente no monitor (ou monitores). Este método tem a desvantagem de que a divisão do monitor reduz a área observável do modelo; uma solução para este método é o uso de dois monitores, um para cada imagem, aumentando assim a área observável. Na figura 1.12 a imagem de um sistema de visualização 3D por separação espacial.

Figura 1.12 - Sistema da visualização 3D por separação espacial. Fonte: DVP.

O estereoscópio é um instrumento ótico binocular empregado como meio para se obter visão estereoscópica a partir de duas imagens planas propriamente orientadas. Por meio deste instrumento elimina-se a dificuldade de focalizar os olhos à distância finita com os eixos visuais quase paralelos entre si. Consiste de uma base fixa de 130 mm de altura e lentes separadas de 65 a 70 mm, distância correspondente à distância interpupilar média do ser humano. O *estereoscópio de reflexão* ou *de espelhos* (Figura 1.13), consiste fundamentalmente de dois espelhos inclinados 45° em relação ao plano horizontal das

fotografias, de dois prismas de 45° ou de dois outros espelhos menores e de duas lentes para acomodar a vista ao infinito (RICCI e PETRI, 1965).

As duas fotografias do par estereoscópico a ser examinado, são colocadas no plano focal de duas lentes; através destas lentes, as fotografias são vistas separadamente pelos dois olhos, que se acham, assim, nas mesmas condições de quando, na visão normal, observam um objeto distante, isto é, com os cristalinos acomodados ao infinito e com os eixos visuais praticamente paralelos entre si; em outras palavras, a função essencial do estereoscópio é, portanto, a de permitir ao observador manter os eixos visuais paralelos entre si, sem causar, com isto, desconforto e sem que seja requerido qualquer esforço do observador (RICCI e PETRI, 1965). Na figura 1.13 a imagem de um estereoscópio de espelhos.

Figura 1.13 - Estereoscópio de espelhos. Fonte: www.topus.com.br/topus/produtos/

1.3.2 Anaglifo

O Anaglifo é um método de visão estereoscópica, onde as fotografias são sobrepostas no monitor em cores distintas complementares. A partir do uso de um óculos cujas lentes sejam idênticas às cores das imagens correspondentes pode ser percebida a terceira dimensão.

Uma imagem colorida possui componentes de cor vermelha, verde e azul são chamadas de cores primárias. A combinação destes componentes de cores gera todas as cores conhecidas na natureza. Uma imagem em tons de cinza, popularmente conhecida como em "preto e branco", possui um equilíbrio de intensidade entre os componentes de cor (SILVEIRA, 2005).

Conforme explica Silveira (2005) a técnica do anaglifo consiste em passar um filtro em cada imagem que forma o modelo estereoscópico. A imagem do olho esquerdo sofre, por exemplo, a seguinte transformação: Ie(R,G,B)_Ie(R,0,0), onde somente a informação da componente de cor vermelha é mantida, anulando-se as demais. Por consequência, a imagem do olho direito sofre a seguinte transformação: Id(R,G,B)_Id(0,G,B). Por final, as imagens devem ser sobrepostas, formando uma imagem final (Re,Gd,Bd). Utilizando um óculos com

filtro de cor específica, deixa passar certas componentes de cor e bloqueia-se as demais. O filtro vermelho, por exemplo, permite que somente as componentes de cor primária vermelha o atravessem. Para completar as demais cores, o outro filtro deverá ser de cor ciano, uma mistura de verde com azul, ou seja, as cores primárias restantes. Normalmente, os óculos são construídos com filtro vermelho para o olho esquerdo e ciano para o olho direito (Figura 1.14).

Figura 1.14 - Composição da visão tridimensional pelo método do anaglifo e o óculos utilizado. Fonte: Silveira (2005).

1.3.3 Separação radiométrica

Segundo Silveira (2005), este método utiliza a luz polarizada para separar as imagens da esquerda e direita. O sistema de polarização não altera as cores, porém há uma certa perda de luminosidade. É utilizado tanto em projeção de cinema 3D como em monitores de computador mediante telas de polarização alternativa. Hoje em dia é o sistema mais econômico para uma qualidade de imagem aceitável. A figura 1.15 apresenta o óculos utilizado para o sistema de polarização passiva.

Figura 1.15 - Óculos para o sistema de polarização passiva. Fonte: Silveira (2005).

1.3.4 Separação temporal

Neste sistema as imagens esquerda e direita são apresentadas em sequência e alternadamente, em sincronia com um óculos dotado com obturadores de cristal líquido (denominados LCS, *Liquid Crystal Shutter glasses* ou LCD, *Liquid Crystal Display glasses*), de forma que cada olho veja somente sua imagem correspondente. A uma frequência elevada, a troca de imagens é imperceptível (SILVEIRA, 2005). A figura 1.16 apresenta o óculos utilizado no sistema de polarização ativa.

Figura 1.16 - Óculos para o sistema de polarização ativa. Fonte: Silveira (2005).

1.4 Estação fotogramétrica digital

Uma estação fotogramétrica digital (EFD) segundo Schenk (1999) é composta basicamente de três módulos: entrada dos dados, processamento e saída dos dados. Conforme COELHO e BRITO (2007, p.24) uma estação fotogramétrica digital é formada pelos seguintes componentes:

- monitor(es) de vídeo;

- dispositivo de visão estereoscópica;
- óculos, monitores especiais, etc;
- CPU gráfica ou placa de vídeo especial;

- CPU geral;

- periféricos de entrada/saída: teclado, mouse, scanner, mesa digitalizadora, plotter e/ou impressora;

- dispositivo de medição estereoscópica: TrackBall, topo-mouse, etc;

 módulos de software dedicado às operações fotogramétricas, tais como: orientação interior, orientação relativa e orientação absoluta, ou orientação exterior (relativa e absoluta, simultaneamente), fototriangulação (medição e cálculo), restituição, retificação e reamostragem de imagens, extração de modelos digitais de terreno, geração de ortoimagens, integração com sistemas de informação geográfica, etc.

A figura 1.17 apresenta uma estação fotogramétrica digital ImageStation (à esquerda), um kit emulador de E. F. D. (no centro) e um restituidor analítico Planicomp (à direita).

Figura 1.17 - Da esquerda para a direita: estação fotogramétrica digital ImageStation, kit SSK e restituidor analítico Planicomp. Fonte: <u>http://www.ziimaging.com</u>.

1.5 **Projeto E-FOTO**

O ensino da fotogrametria nas instituições de ensino superior que possuem a disciplina em sua grade curricular, não está fundamentado apenas em conceitos teóricos, mas também em práticas de laboratório, onde os conhecimentos são consolidados. Para isso é necessário que haja equipamentos e software disponível que possibilite a execução de tais práticas, seja na fotogrametria analógica, analítica ou digital. Esses equipamentos demandam um alto investimento. Na estação fotogramétrica digital, o software é o que possui o maior custo.

Com o desenvolvimento da computação as soluções para a fotogrametria se tornaram cada vez mais compactas, de maneira que todo fluxo de trabalho ou apenas parte dele, pudesse ser executado em um único equipamento, denominado de estação de trabalho ou e. f. d.

O projeto de uma estação fotogramétrica digital educacional livre idealizado no Instituto Militar de Engenharia em 2002. Atualmente está sendo desenvolvido no laboratório de fotogrametria do departamento de engenharia cartográfica da Universidade do Estado do Rio de Janeiro.

Segundo Coelho e Brito (2003), a abordagem educacional é expressa por dois pilares básicos: gratuidade (liberdade) e auto-aprendizagem. Entre as várias licenças que se

enquadram os software livre foi escolhida a GNU GPL (GNU *General Public License*) para os programas e a GNU FDL (GNU *Free Documentation License*) para os textos. Para o desenvolvimento dos algoritmos fotogramétricos foi escolhida a linguagem C⁺⁺. O autoaprendizado se dá em três níveis. No nível 1 se enquadram os usuários que apenas desejam realizar alguma tarefa fotogramétrica. No nível 2 além de aprender, o usuário quer entender o funcionamento dos módulos. Para isso conta com um *e-book* em fotogrametria digital, que cobre todos os temas principais da fotogrametria. No nível 3 com o conhecimento adquirido nos níveis 1 e 2, o usuário mais interessado pode participar ativamente do projeto, melhorando o código, enviando sugestões e desenvolvendo novos módulos e textos. É um projeto interdisciplinar que agrega diversas áreas do conhecimento científico: modelagem matemática, Geodésia, Fotogrametria e Engenharia de Software.

A estação fotogramétrica digital educacional livre E-FOTO é constituída pelos seguintes módulos: retificação de imagens, normalização de imagens, orientação interior, orientação exterior, fototriangulação, MNE e orto-retificação e estereoplotter. Estão disponíveis na página do software na internet os tutoriais de uso de cada módulo.

Lançada em 15 de julho de 2011 a versão integrada do E - FOTO está disponível na página do software. Essa versão possibilita ao usuário a criação de um projeto de mapeamento aerofotogramétrico digital, sendo necessário: as imagens digitais, o certificado de calibração da câmara e as coordenadas dos pontos de controle no espaço-objeto (terreno).

O E-FOTO é o único software livre de fotogrametria digital disponível. Desde a colocação da página do E-FOTO no ar já foram 268651 visitas (setembro/2011), com média mensal de 843 visitas nos doze últimos meses.

1.6 Classificação da Carta Topográfica no Brasil

No Brasil a avaliação da exatidão de uma carta topográfica é função exclusiva do erro planimétrico e altimétrico que a mesma possui, levando em consideração sua escala e equidistância entre as curvas de nível. De acordo com o Decreto nº 89.817 de 20 de junho de 1984, as cartas topográficas são classificadas segundo o Padrão de Exatidão Cartográfica que é um indicador estatístico de dispersão, relativo a 90% de probabilidade. Isto quer dizer que noventa por cento dos pontos planimétricos e de pontos isolados de altitude, obtidos por interpolação entre curvas de nível, quando testados em campo, não poderão apresentar erro superior ao Padrão de Exatidão Cartográfica planimétrico e altimétrico.

A probabilidade de 90% corresponde a 1,6449 vezes o Erro Padrão - Padrão de Exatidão Cartográfica (PEC) = 1,6449xEP. O Erro Padrão isolado num trabalho cartográfico, não pode ultrapassar a 60,8% do Padrão de Exatidão Cartográfica (sendo equivalentes Erro Padrão, Desvio Padrão e Erro Médio Quadrático). Na tabela 02, está resumido a classificação das cartas topográficas, segundo o erro planimétrico e altimétrico obtido.

Classe	PEC-Planimétrico	PEC-Altimétrico
A	0,5 mm na escala da carta, sendo 0,3 mm na escala da carta o erro padrão.	1/2 da equidistância entre as curvas de nível, sendo 1/3 da equidistância o erro padrão.
В	0,8 mm na escala da carta, sendo 0,5 mm na escala da carta o erro padrão.	3/5 da equidistância entre as curvas de nível, sendo 2/5 da equidistância o erro padrão.
С	1,0 mm na escala da carta, sendo 0,6 mm na escala da carta o erro padrão.	3/4 da equidistância entre as curvas de nível, sendo 1/2 da equidistância o erro padrão.

Tabela 1.2 - Classificação da Carta Topográfica, segundo o PEC. Fonte: Decreto nº 89.817 de 20 de junho de 1984.

Segundo o artigo 10, do Decreto supracitado, fica obrigatória a indicação da Classe da Carta no rodapé da folha, ficando o produtor responsável pela fidelidade da classificação. Caso os documentos cartográficos produzidos não sejam enquadrados em nenhuma classe, fica obrigatória a indicação no rodapé da folha o Erro Padrão verificado no processo de elaboração.

Neste capítulo foram apresentados os assuntos relevantes para o desenvolvimento desta dissertação.

2 MATERIAIS E MÉTODOS

2.1 Áreas de estudo

No desenvolvimento deste trabalho utilizou-se duas áreas de estudo pertencente a regiões distintas do globo terrestre. A primeira situa-se no Brasil e a segunda na Europa.

A primeira região (figura 2.1) possui aproximadamente 272,3 km² de área e está contida no retângulo delimitado pelas seguintes coordenadas geográficas: canto superior esquerdo 22° 40' 33" de latitude Sul e 43° 47' 12" de longitude Oeste; canto superior direito22° 40' 31" de latitude Sul e 43° 38' 32" de longitude Oeste; canto inferior direito 22° 49' 31" de latitude Sul e 43° 38' 20" de longitude Oeste e canto inferior esquerdo 22° 49' 33" de latitude Sul e 43° 47' 12" de longitude Oeste e canto inferior direito 22° 49' 33" de latitude Sul e 43° 38' 20" de longitude Oeste e canto inferior esquerdo 22° 49' 33" de latitude Sul e 43° 47' 28" de longitude Oeste (Fonte: Google Earth).

Figura 2.1 - Croqui da primeira área de estudo (Fonte: Google Earth).

A área está situada no município de Seropédica - RJ, que fica aproximadamente 65,0 km do centro do Rio de Janeiro. Na referida área o relevo é predominantemente plano, mas existe uma parte na região noroeste onde se localiza a Serra das Araras. A área de estudo é cortada por quatro rodovias, ou seja: RJ-127, RJ-099, BR-116 (Rodovia Presidente Dutra) e a BR 465 (Antiga estrada Rio-São Paulo). Existe também na área o Campus da Universidade Federal Rural do Rio de Janeiro, a Embrapa e a Pesagro.

A segunda região (figura 2.2) está situada na cidade de Santiago de Compostela na Espanha, aproximadamente 387,5 km a noroeste da cidade de Madri. Possui uma área em torno de 150,0 km² e está contida no retângulo delimitado pelas seguintes coordenadas geográficas: canto superior esquerdo 43° 18' de latitude Norte e 7° 25' de longitude Oeste; canto superior direito 43° 18' de latitude Norte e 7° 13' de longitude Oeste; canto inferior direito 43° 12' de latitude Norte e 7° 13' de longitude Oeste e canto inferior esquerdo 43° 12' de latitude Norte e 7° 13' de longitude Oeste (Fonte: Google Earth). As fotografias da região de Santiago de Compostela, utilizadas neste trabalho são de maio de 1953, fato que dificultou significativamente a escolha dos pontos de controle a serem medidos no terreno, devido às mudanças na paisagem.

Figura 2.2 - Croqui da segunda área de estudo. Fonte: Google Earth.

2.2 Materiais Utilizados

Para a realização do projeto RURAL de mapeamento aerofotogramétrico digital foi necessário o certificado de calibração da câmara fotogramétrica, as fotografias aéreas da área do projeto e as coordenadas dos pontos de controle bem distribuídos no terreno. O certificado de calibração, as fotografias digitais, assim como as coordenadas de alguns pontos de controle, utilizados no projeto RURAL, foram cedidos pelo Instituto Brasileiro de Geografia e Estatística (IBGE).

No projeto Santiago de Compostela foi utilizada uma câmara padrão, por não possuir certificado de calibração. As fotografias digitais foram cedidas pelo Departamento de Agricultura e Engenharia Florestal da Universidade de Santiago de Compostela.

2.2.1 Certificado de calibração

O certificado de calibração da câmara aerofotogramétrica atesta que a mesma passou por um processo de calibração, antes da obtenção das fotografias, indicando a qualidade dos parâmetros a serem utilizados no fluxo de trabalho. As informações encontradas no certificado de calibração, basicamente são as seguintes: Distância focal calibrada (mm), coordenadas do ponto principal ($x_0 e y_0$) em milímetros e as coordenadas das marcas fiduciais no sistema fotogramétrico (mm); Além dos coeficientes de distorção radial simétrica e descentrada das lentes. O certificado de calibração da câmara fotogramétrica utilizada no projeto RURAL é apresentado no Anexo "A" à esta dissertação.

No projeto Santiago de Compostela foi utilizada uma câmera padrão, pelo fato de não se possuir o certificado de calibração da câmara, já que a cobertura aérea data de 1953.

2.2.2 Fotografias aéreas

Foram utilizadas fotografias aéreas (Anexo B) na escala aproximada de 1:30.000. Para serem processadas no software E-FOTO foram digitalizadas com resolução espacial de 1.200 dpi e resolução radiométrica de 8 bits. Estas fotografias são provenientes da cobertura aérea executada pela empresa BASE Aerofotogrametria e Projetos S/A em 2005.

Para a realização deste trabalho utilizou-se um bloco de 12 fotografias distribuídas em 3 faixas de voo com 4 fotografias cada. Na figura 2.3 é apresentado o mosaico de fotografias do projeto RURAL.

Figura 2.3 - Mosaico de fotografias do projeto RURAL.

No projeto Santiago de Compostela foi utilizado um bloco de fotografias aéreas (Anexo C) antigas (1953), com escala aproximada de 1:30.000, digitalizadas com resolução espacial de 1.200 dpi e radiométrica de 8 bits. O bloco é composto por um total de 6 fotografias distribuídas em duas linhas de voo com 3 fotografias cada. Na figura 2.4 é apresentado o mosaico de fotografias do projeto Santiago de Compostela.

Figura 2.4 - Mosaico de fotografias do projeto Santiago de Compostela.

2.2.3 Pontos de controle

Os pontos de controle foram previamente escolhidos sobre as fotografias analógicas (papel), que também serviram para o apoio no trabalho de campo. Após a escolha dos pontos, foram realizadas duas campanhas utilizando a tecnologia de posicionamento geodésico por satélites para a medição dos pontos de controle. A primeira campanha foi realizada no período de 22 a 24/01/2010 e a segunda nos dias 15 e 22/02/2011.

As medições foram feitas com um receptor GNSS RTK da marca Topcon de dupla frequência (L1+L2) integrado (receptor, antena, rádio, bateria e carregador), com 40 canais universais, capaz de rastrear sinais de satélites GPS e GLONASS (figura 2.5). Possui uma precisão horizontal de $\pm(3mm + 0.5 \text{ ppm x D})$ e vertical de $\pm(5mm + 0.5 \text{ ppm x D})$, sendo D o comprimento do vetor.

Figura 2.5 - GNSS RTK Topcon (a) e acessários (tripé e bastão) (b).

Utilizou-se o software Topcon Tools v.7.5.1 para o processamento dos dados GNSS e o MAPGEO 2010 para a determinação da ondulação geoidal. As coordenadas UTM dos pontos de controle e de verificação medidos encontram-se no Apêndice L.

Para a realização das orientações interior e exterior e para as medições dos pontos fotogramétricos, foi utilizada a versão integrada do software livre de fotogrametria digital E-FOTO e o estereoplotter versão 1.64.

As coordenadas dos pontos de controle e de verificação no espaço-objeto a serem utilizados no projeto Santiago de Compostela, foram previamente selecionados nas fotografias digitais, enviadas para Santiago de Compostela e medidas pelos técnicos do Departamento de Agricultura e Engenharia Florestal da Universidade de Santiago de Compostela (Anexo F).

2.3 Metodologia

2.3.1 Determinação dos pontos de controle

Para a obtenção das coordenadas planas UTM (E, N e H) dos pontos de controle do Projeto RURAL no Sistema de Referencia Geocêntrico para as Américas (SIRGAS 2000), foi realizado o rastreio no modo estático-rápido, com intervalo de gravação de 5 segundos. O tempo mínimo de permanência para a medição dos pontos de controle foi de 10 minutos. O transporte de coordenadas foi feito através do irradiamento geodésico.

No irradiamento geodésico utilizou-se como Base a Estação Geodésica 93819 (IBGE-2006), de coordenadas planas UTM (E=634.823,454 m, N=7.480.702,048 m e H=22,92 m), que se localiza na viga do prédio do I.T. - Instituto de Tecnologia, sobre a sala do Laboratório de Topografia e Geodésia no Campus da Universidade Federal Rural do Rio de Janeiro em Seropédica-RJ.

Para a determinação da altitude ortométrica (H) dos pontos de controle e de verificação, foi feita a calibração da altura geoidal obtida no MAPGEO 2010.

A calibração consistiu na utilização da altitude ortométrica do pilar SAT 93640, obtida a partir da Referência de Nível (RN) nº 1017-F, cuja altitude ortométrica é igual a 31,7105 m. Esta RN está localizada na soleira de mármore a direita da porta principal do Prédio Central (P1) da UFRRJ. Para o transporte da RN foi executado o nivelamento geométrico por técnicos do IBGE em agosto de 2007, obtendo-se a altitude ortométrica (H) de 21,7686 m. A altitude geométrica (h) do pilar é de 16,32 m. Para o cálculo da ondulação geoidal no pilar foi utilizada a fórmula da ondulação geoidal (N = h - H), encontrando-se o valor de -5,45 m. Sabendo que a ondulação geoidal obtida pelo MAPGEO 2010 é -5,54 m, determinou-se um fator de correção (calibração) de -0,09 m, a ser aplicada nas ondulações geoidais dos pontos de controle e de verificação. Por exemplo, um ponto que tenha a ondulação geoidal (MAPGEO 2010) de -5,49 m, após a correção passa a ter -5,40 m = -5,49 m - (-0,09 m).

Como mencionado na seção 2.2.3 as coordenadas dos pontos de controle e verificação do Projeto Santiago de Compostela, foram medidos pelos técnicos da Universidade de Santiago de Compostela.

2.4 Criação do projeto de mapeamento aerofotogramétrico no E-FOTO

Para a realização de um projeto de mapeamento aerofotogramétrico digital, algumas informações são importantes para o fluxo do trabalho. É necessário o Certificado de calibração da câmara aérea, indicando a calibração da câmara antes da tomada das fotografias. Encontra-se no certificado de calibração as seguintes informações: distância focal calibrada, as coordenadas do centro de perspectiva (CP) e das marcas fiduciais, no sistema fotogramétrico de coordenadas (mm) e os coeficientes de distorção das lentes (simétrica e descentrada). As imagens digitais da área do projeto e as coordenadas tridimensionais dos pontos de controle no referencial de terreno (espaço-objeto).

A seguir serão apresentadas as etapas necessárias para a criação de um projeto de mapeamento aerofotogramétrico digital na versão integrada do E-FOTO versão 1.0beta.

Inicialmente o projeto terá que ser criado no E-FOTO, para que seja feita a entrada dos dados. No *menu* principal clicar com o botão esquerdo do mouse em *Project* e no menu suspenso clicar em *New*. Irá abrir uma caixa de diálogo para que o usuário possa nomear o

projeto e indicar o "local" onde o mesmo será salvo. Caso já exista um projeto criado, para abri-lo basta clicar em *Load file* e buscar o projeto desejado na pasta onde foi salvo. Na figura 2.6 destaca a tela inicial da versão integrada o E-FOTO versão 1.0beta.

Figura 2.6 - Tela de abertura da versão integrada do E-FOTO (Gerenciador de projeto). Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

Após a criação do projeto, o usuário deverá começar a introduzir os dados nos seus respectivos campos: *Project Header*, *Terrain*, *Sensor*, *Flight*, *Images* e *Points*.

Clicando com o botão esquerdo do mouse em *Project Header* e em seguida *Edit*, o usuário terá acesso aos campos a serem preenchidos com as informações que julgar importantes. Logo após o seu preenchimento é necessário clicar em *Save*, para que as informações sejam salvas, em um arquivo XML com extensão *.epp* "efoto photogrammetric project". Nestes campos o usuário poderá cadastrar as seguintes informações: clicando dentro do campo *Name*, colocar o nome do técnico que criou o projeto. Em *Description*, fazer algum comentário que julgar importante, além de cadastrar o proprietário, objetivo e o contexto do projeto. Em *Metadata*, ficará informado o local onde as informações estarão sendo salvas (*File path*) e em *File name* o nome do projeto em uso. É importante ressaltar que ficará gravado também a data e a hora que o projeto foi criado e a data e hora da última modificação. Na figura 2.7 a tela das informações gerais do projeto de mapeamento aerofotogramétrico.

Project Header
Name
Oviner Goale Context Metadata
File path C: Program Files/e foto
File name Tesn-opp
Creation date 03/01/2011 19:27:30
Modification date 03/01/2011 19:27:30

Figura 2.7 - Informação geral do projeto. Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

Em *Terrain* o usuário ao clicar em *Edit* poderá entrar com informações básicas relativa ao terreno, como: altitude máxima, média e mínima da região de trabalho, que poderá ser obtida a partir da carta topográfica da região, caso esta possua; além de poder selecionar o referencial geodésico (SIRGAS 2000, SAD 69 ou WGS 84), o sistema de coordenadas plano UTM, sendo assim deve-se informar o fuso UTM que a área pertence. Informar as coordenadas geográficas do centro da área. Em seguida clicar em Ok para salvar as informações. Na figura 2.8 a tela de cadastro das informações referentes ao terreno da região do projeto.

Itheader Terrain Max Altsude 0,000 m GAS Woode4 + Min Altsude 0,000 m UTM Fuse 0 0 Wick Area Center Coordnates Latsude 0 0 1 1 Latsude 0 9 Maules 0 1
Aser Ph A get5 tis Min Althude 0,000 m GPS WGGB4 v Min Althude 0,000 m GPS UTH v Mean Althude 0,000 m UTH Fuse 0 © - Work Kres Center Coordnates Lathude Degrees 0 Meu/les 0 Seconds 0,00 Southern Henrighter: v
Conglude Degrees 0 Minutes 0 Seconds 0,00 West of Greenwich *

Figura 2.8 - Informações sobre o terreno (altitude, sistema de coordenadas, referencial geodésico e coordenadas do centro da área do projeto). Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

Como destacado inicialmente, há necessidade do certificado de calibração da câmara para a criação de um projeto de mapeamento aerofotogramétrico, sendo obrigatório introduzir as informações do sensor constantes do mesmo. Clicando em *Sensor* e em seguida *Edit*, serão digitadas as informações contidas no certificado de calibração, como: distância focal calibrada, as coordenadas do centro de perspectiva e das marcas fiduciais e os coeficientes de distorção das lentes, com seus respectivos desvios-padrão. É necessário informar a identificação do sensor, o tipo de plataforma, a geometria e a faixa do espectro eletromagnético que foram obtidas as imagens. Após a entrada dos dados contidos no certificado de calibração, clica-se em "Ok" para salvar as informações. A figura 2.9 apresenta a tela para entrada das informações do sensor, obtidas no certificado de calibração.

Open Project: Tece.epp		
roject Header errain	Sensor	
encor (gR4 nages Sints	Senser 24 Description Type Platform acriad Geometry Fisme Detector film Energy Source minural Canes Calibration Cestificate: Number Dispatch 01,01/2000 Expiration 01,01/2000 Standard Deviation Fist Available	
	Calibrated Focal Distance (mm) 1,000 StDev Tret Available Distance Cetificents	
	Radial Symmetric Standard Deviations Inst Available	
	ko 0.0000000e+00 StDev Not Available	
	ka 0,00000000e+00 StDev filot Available	
	k2 0,0000000e+00 StDev Not Available	
	k3 0,00000000e+00 StDev Not Available	
	Decontered	

Figura 2.9 - Informações sobre o sensor, obtidas no certificado de calibração da câmara fotogramétrica. Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

Seleciona-se *Flight* e em seguida *Edit*, onde deverão ser introduzidas as informações técnicas relativas ao voo, tais como: A identificação do voo, a empresa que o realizou, a data de execução, altura do voo, a escala aproximada das fotografias e as sobreposições longitudinal e lateral, expressas em porcentagem. Em seguida deve-se clicar em "Ok" para salvar as informações. Na figura 2.10 observa-se a tela para o cadastro das informações relevantes sobre o voo.

efoto[Project Manager]		
oject Execute Help		
Open Project: Tese.epp		
Project Header Terrain	Flight	
Sensor	Flight Information	
Images	Flight 1d	
Points	Producer's Name	
	- Description	
12 C		
-		
	Date of Ficht Execution 01/01/2000	
	Plight Parameters	
	Flight Height (m)	
	Nominal Scale 1:10000	
	Longitudnal Overlap (%) 60.00	
	Transversal Overlap (%) 20,00	
	64	
	LUN,	

Figura 2.10 - Informações gerais sobre o voo, escala aproximada das fotografias e sobreposição longitudinal e lateral. Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

Para inserir as imagens que serão utilizadas no projeto, basta selecionar *Images* e, em seguida, em *New* e selecionar *Select Image*. O usuário poderá buscar a imagem de interesse e incorporá-la ao projeto. Em *File Path*, será mostrado o endereço da imagem. Em *Image Id*, o nome do arquivo que pode ser editado. É indicado automaticamente o tamanho da imagem em pixel (Colunas e Linhas). O usuário também necessita digitar a resolução espacial das imagens em dpi. A figura 2.11 apresenta a tela para o cadastro das imagens utilizadas no projeto.

Figura 2.11 - Informações sobre as imagens que compõem o bloco de fotografias utilizadas no projeto. Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

Na finalização da entrada dos dados será necessário cadastrar os pontos de controle que serão utilizados no módulo de orientação exterior de cada imagem. Esses pontos podem ser cadastrados diferentemente em três classes: controle, verificação ou fotogramétrico. Clicando em *Point* e em seguida em *New*, serão digitadas as coordenadas tridimensionais (E, N e H) dos pontos de controle, de verificação ou fotogramétricos, conforme sua classe e a fotografia à que pertence. O nome do ponto pode ser editado. Poderá ser feito algum comentário sobre o ponto. A Figura 2.12 apresenta a tela para entrada dos pontos de apoio de campo.

Figura 2.12 - Entrada dos pontos de controle, verificação ou fotogramétrico. Fonte: Tutorial do submódulo de gerenciamento de projetos fotogramétricos da versão integrada do E-FOTO (versão educacional).

2.5 Realização da orientação interior

A orientação interior constitui-se no cálculo dos parâmetros de transformação entre o sistema de coordenadas de imagem digital (linha e coluna do *pixel*) e o sistema fotográfico (COELHO e BRITO, 2007).

Para a realização da orientação interior é necessário abrir a versão integrada do E-FOTO, clicar em *Project* e, em seguida em, *Load file* e abrir o arquivo de extensão .epp. Para abrir o módulo de orientação interior, basta clicar com o botão esquerdo do mouse em *Execute*, no menu principal e, em seguida, clicar em *Interior Orientation*. Será aberta uma caixa de diálogo com o título de *Select your image*, que permite ao usuário selecionar a fotografia que deseja realizar a orientação interior. A fotografia selecionada será aberta na tela do computador para que o usuário possa medir as coordenadas das marcas fiduciais no sistema de coordenadas do espaço-imagem (linha e coluna). No rodapé da tela do módulo de orientação interior, são apresentadas as coordenadas das marcas fiduciais no sistema de coordenadas fotogramétrico (x e y), obtidas a partir do certificado de calibração. Quando da medição das marcas fiduciais, aparecerão suas respectivas coordenadas no espaço-imagem ao lado das coordenadas fotogramétricas. Após a medição das marcas fiduciais o usuário tem que clicar no menu principal em *Execute* e em seguida clicar em *Interior orientation* ou clicar no forme \blacksquare . Do ajustamento por mínimos quadrados, através do modelo paramétrico, são obtidos os parâmetros de transformação necessários (a0, a1, a2, b0, b1 e b2). Em *Interior*

Orientation Report, são fornecidos os parâmetros da orientação interior e também a qualidade dos resultados obtidos no ajustamento. Foi realizada a orientação interior para as 12 imagens que compõem o bloco do projeto RURAL e para as 6 imagens do projeto Santiago de Compostela. Na figura 2.13 observa-se a tela do módulo de orientação interior de uma das fotografias do bloco, destacando os parâmetros da orientação interior obtidos. Para mais informações sobre a utilização do módulo de orientação interior, basta acessar a página do software na internet (www.e-foto.eng.uerj.br).

Figura 2.13 - Módulo de orientação interior, em destaque a fotografia utilizada, o vetor dos parâmetros ajustados (Xa) e as coordenadas das marcas fiduciais obtidas no certificado de calibração(x e y) e as coordenadas no espaço-imagem medidas (linha e coluna). Fonte: Tutorial do submódulo de orientação interior do software livre E-FOTO.

2.6 Realização da orientação exterior

A orientação exterior consiste em orientar cada uma das imagens em relação ao sistema de coordenadas do espaço-objeto (Coelho e Brito, 2007). Para isso são necessários três pontos não colineares de coordenadas tridimensionais no sistema de coordenadas do espaço-objeto. Através da equação de colinearidade as coordenadas no espaço-objeto do Centro de Perspectiva (X0, Y0 e Z0) e os ângulos de atitude do sensor (ω , φ e k) são determinados. Para a realização da orientação exterior na versão integrada do E-FOTO, é necessário clicar com o botão esquerdo do mouse em *Execute*, no *menu principal*, e clicar em *Spatial resection*. Será aberta uma caixa de diálogo com o título de *Select your image*, que permite o usuário selecionar a fotografia para a qual deseja realizar a orientação exterior. Vale

a pena lembrar que para executar a orientação exterior, os parâmetros da orientação interior devem ser previamente conhecidos. A fotografia selecionada será aberta na tela do computador para que o usuário possa medir as coordenadas dos pontos de controle no sistema de coordenadas do espaço-imagem (linha e coluna). A medida que as medições forem sendo feitas, aparecerá na planilha que se encontra no rodapé da tela, além das coordenadas dos pontos de controle no sistema de coordenadas do espaço-objeto (E, N e H), as coordenadas do espaço-imagem (linha e coluna) e as coordenadas fotogramétricas (x e y). Após a medição dos pontos de controle na imagen, para realização da orientação exterior o usuário tem que clicar no ícone 🚊, para indicação direção da linha de voo. No menu principal clicar em *Execute* e em seguida clicar Spatial resection ou clicar no ícone ², para a realização da ressecção espacial. Como é um método iterativo, o usuário terá que especificar o número de iterações e a precisão dos parâmetros a serem obtidos. Foi utilizado o padrão para o número máximo de iterações (10) e para a precisão na obtenção dos parâmetros (0,0001). Como é um processo iterativo o software, inicialmente arbitra os parâmetros iniciais obtidos na orientação exterior (X00, Y00, Z00, ω0, φ0 e k0) e em seguida executa a ressecção espacial. Os parâmetros da orientação exterior serão calculados (X0, Y0, Z0, ω, φ e k) pelo ajustamento paramétrico por mínimos quadrados, sendo então reintroduzidos no modelo matemático e nova ressecção espacial é realizada. O processo é repetido até que haja a convergência do modelo. Em Exterior Orientation Report, são fornecidos os parâmetros da orientação exterior e também a qualidade dos resultados obtidos no ajustamento (matriz variância e covariância). Foi realizada a orientação exterior para as 12 imagens que compõem o bloco do projeto RURAL e para as 6 fotografias do projeto Santiago de Compostela. Na figura 2.14 observa-se a tela do módulo da orientação exterior executado para uma as fotografias que compõem o bloco, com indicação da direção do voo e em destaque os parâmetros da orientação exterior obtidos. Para mais informações sobre a utilização do módulo de orientação exterior, basta acessar a página do software na internet (www.e-foto.eng.uerj.br).

Figura 2.14 - Módulo de orientação exterior, em destaque a fotografia utilizada, o vetor dos parâmetros ajustados (Xa) e os pontos de controle medidos, com suas coordenadas no espaçoobjeto e no espaço-imagem. Fonte: Tutorial de orientação exterior por ressecção espacial no software livre E-FOTO.

2.7 Utilização do módulo estereoplotter

As medidas fotogramétricas foram realizadas no módulo estereoplotter versão 1.64 do E-FOTO. Para o uso deste módulo é necessário que sejam realizadas as orientações interior e exterior a priori. As coordenadas tridimensionais (E, N e H) dos pontos fotogramétricos, no espaço-objeto, são obtidas por intersecção espacial, efetuando-se a medição dos pontos homólogos no espaço-imagem, nas duas fotografias que formam o modelo estereoscópico. Na figura 2.15 vê-se a tela principal do módulo estereoplotter do E-FOTO.

Figura 2.15 - Tela principal do módulo estereoplotter do E-FOTO. Fonte: Tutorial de estereoplotter do software livre E-FOTO.

No *menu* principal da versão integrada do E-FOTO o usuário deve clicar em *Execute* e, em seguida, em "*Export Estereo File*". Uma caixa de diálogo será aberta, solicitando que seja selecionada a fotografia da esquerda (*Select Left image*) do par estereoscópico, em seguida, seleciona-se a fotografia da direita (*Select Right image*). O usuário terá que salvar o arquivo que contém entre outras coisas os parâmetros da orientação interior e exterior para as duas fotografias do par estereoscópico e salvá-lo no endereço desejado.

Para que as medidas fotogramétricas sejam feitas, no módulo estereoplotter necessitase que as fotografias do par estereoscópico sejam abertas. Para isto o usuário deve selecionar as fotografias, clicando em *Open Left*, para abrir a fotografia da esquerda e *Open Right*, para abrir a fotografia da direita. Em seguida deve-se clicar em *Image Data* e em *Load*, para abrir o arquivo criado no módulo de gerenciamento do projeto, para ser usado no módulo estereoploter. A figura 2.16 apresenta o módulo estereoplotter sendo utilizado, com as duas fotografias que formam o modelo estereoscópico em tela e o arquivo de dados do estereopar a ser trabalhado.

octed .					
n Left Open Right	Stereopair Data	And a second			
4 1 10 1	Interior Orientation				
Data Center Ings		Left Image:			
04	x+ -116.5726097812138	* 0.02098544077990042	. column + 3.458665628128184e-005	. Ine	States States
	y= 117.4429745764734	+ -3.457087026714877e-005	. column + -0.0209847604013536	line	- 1º
Honor Anaglyph		Right Image:	10 mil		and the second
orde	x= -118.056968710003	• 0.02098608023646726	. column + 3.718585524394719e 005	. Ine	
A	y= 117.4233192646633	+ -3.716990175818065e-005	. column + 0.02096475270795453	line	1000
ove About	Edenor Orientation				
		Left image:			1000
Zoon 10+	Xo 633682.517168291	Yo 7483604.506997125	Zo 4809.300384476403	Meters	
Lack Z	Ph -0.01522265438731215	Omega 0.002801786397669586	Kappa -0.01247413185517073	Radans	the second
NO PTOELINY	in the second se	Right Image:			CORPORE NO.
	Xo 636461.0909025575	Yo 7483564.040618313	Zo 4787,495602332045	Meters	1000
Add new feature	PN 0.02331508304010003	Omega 0.01826147786308748	Карра 0.03318986044434519	Radians	12
d R N Ben R	Camera				
elect E. Legend	Focal Length:	Right Mean Height.	Scale		and the second second
D None	152.749	mm 4582	m 1 / 30000		and the second second
ion. None		Center: xp 0.075	mm ye 0.0690000000000000000000000000000000000	m	State of Lot of
st Pt. X Res Pt	- Extra Information				100
	Photobase.	Arbase.	Ground Mean Attude		1000
2.11 3000	92.63844774857301	mm 2778.668389213426	m Calculate 35.312	n	Sec. 20
Stor Fiepost 80 2000	Load Save		Ok		C 70

Figura 2.16 - Visualização do módulo estereoploter do E-FOTO, juntamente com as duas fotografias a serem trabalhadas, destacando o arquivo de dados criado no módulo de gerenciamento de projetos. Fonte: Tutorial de estereoplotter do software livre E-FOTO.

A medição fotogramétrica no módulo estereoplotter pode ser realizada de duas formas: por separação espacial ou anaglifo.

A separação espacial consiste na divisão da tela do monitor de vídeo em duas partes, sendo as fotografias projetadas à esquerda e à direita do usuário. Utilizando-se um estereoscópico de espelhos é possível obter a visão tridimensional, eliminando-se manualmente a paralaxe em y. Mesmo sem a visão tridimensional do modelo, as medidas poderão ser feitas da seguinte maneira, colocar a marca flutuante sobre o ponto de interesse na fotografia da esquerda e também no sobre o ponto homólogo na fotografia da direita. As fotografias poderão movidas através do comando *move*, para maior precisão na medida. Após os respectivos ajustes, as coordenadas tridimensionais no referencial espaço-objeto serão mostradas para aquele ponto. Na figura 2.17 pode-se observar as duas fotografias que compõem o modelo estereoscópico, para a visualização tridimensional com o estereoscópio de espelhos.

Figura 2.17 - Visualização tridimensional por separação espacial do modelo estereoscópico no módulo estereoplotter. Fonte: Tutorial de estereoplotter do software livre E-FOTO.

O método do anaglifo consiste na separação espectral das fotografias que formam o modelo, conforme discutido na seção 1.3.2. As imagens serão projetadas na tela do monitor em cores complementares. As mais usadas são o vermelho para a fotografia da esquerda e o ciano para a fotografia da direita. Para a visão estereoscópica é necessário um óculos anglifo, com filtros correspondentes as cores das respectivas imagens (filtro vermelho para o olho esquerdo e ciano para o direito). Além disso as imagens terão que ser sobrepostas, movendo-as de modo a ajustá-las, até que a visão tridimensional ocorra. Com a marca flutuante posicionada sobre o ponto de interesse e utilizando o *Scroll* do mouse, a marca terá que tangenciar o ponto a ser medido. Assim serão obtidas fotogrametricamente as coordenadas tridimensionais do ponto no sistema de coordenadas do espaço-objeto. A figura 2.18 apresenta a visão tridimensional do modelo estereoscópico no método anaglifo.

Figura 2.18 - Visualização tridimensional por anaglifo do modelo estereoscópico no módulo estereoplotter. Fonte: Tutorial de estereoplotter do software livre E-FOTO.

No projeto RURAL, foram medidos fotogrametricamente as coordenadas de 30 pontos distribuídos em 9 modelos estereocópicos. No projeto Santiago de Compostela foram medidos fotogrametricamente as coordenadas de 17 pontos distribuídos em 4 modelos estereocópicos. Para mais informações sobre a utilização do módulo estereoploter, basta acessar a página do software na internet (www.e-foto.eng.uerj.br).

2.8 Fluxograma de atividades no E-FOTO

O desenvolvimento deste trabalho foi realizado de acordo com as atividades descritas no fluxograma da figura 2.19 para os projetos RURAL e Santiago de Compostela. O trabalho foi realizado paralelamente ao desenvolvimento do software. Foi utilizada a versão 1.0β, que ainda não realiza a fototriangulação, razão pela qual foi executada a ressecção espacial (módulo de orientação exterior) para cada imagem individualmente.

Figura 2.19 - Fluxograma de atividades desenvolvidas no E-FOTO.

2.9 Avaliação da influência dos parâmetros adicionais na determinação dos parâmetros da orientação interior e exterior na versão integrada do E-FOTO.

O processamento no E-FOTO consistiu na determinação dos parâmetros da orientação interior e exterior, sem levar em consideração os parâmetros relativos as distorções das lentes da câmara fotogramétrica. Em seguida os mesmos dados obtidos no E-FOTO, foram inseridos no software LPS 2010, obtendo-se os parâmetros das orientações interior e exeterior, a fim de verificar se as metodologias na determinação dos parâmetros das orientações interior e exterior e exterior são equivalentes.

No software LPS 2010 foram introduzidos os parâmetros adicionais que constam no certificado de calibração (Anexo A) e determinados os parâmetros da orientação interior e exterior que foram comparados com os parâmetros obtidos com o E-FOTO, sem a utilização dos parâmetros adicionais, a fim de verificar se a diferença na determinação dos parâmetros das orientações interior e exterior entre os dois softawares é significativa.

2.10 Avaliação da influência da autocalibração na versão integrada do E-FOTO

Inicialmente foram determinados os parâmetros das orientações interior e exterior no software LPS e E - FOTO, sem realizar a autocalibração. Em seguida fez-se a autocalibração no software LPS. Com os parâmetros determinados pelo LPS 2010 os mesmos foram introduzidos no E-FOTO, obtendo-se os parâmetros das orientações interior e exterior, a fim de verificar se as metodologias utilizadas pelos softwares na determinação dos parâmetros das orientações interior e exterior das orientações interior e exterior é significativa.

2.11 Classificação da carta topográfica possível de ser produzida com as medidas fotogramétricas realizadas no módulo estereoplotter do E-FOTO segundo o PEC e a verificação se as medidas no E-FOTO são equivalentes ao sistema de posicionamento por satélite.

Em função das diferenças das coordenadas tridimensionais dos pontos de verificação obtidas no módulo estereoplotter versão 1.64 do E-FOTO e as obtidas com o sistema de posicionamento por satélites, será possível avaliar a qualidade dos resultados das medições fotogramétricas realizadas no E-FOTO segundo o Padrão de Exatidão Cartográfica - PEC. Foi também verificado se as medidas realizadas no módulo estereoplotter versão 1.64 do E-FOTO são equivalentes as realizadas com o sistema de posicionamento por satélites.

2.12 Análise estatística

Os resultados dos experimentos realizados neste trabalho foram analisados segundo o método de inferência estatística pelo teste de hipóteses *t* de Student com nível de significância de 5%. As hipóteses testadas foram:

Hipótese nula (H₀) \rightarrow $H_0: \mu = 0$ Hipótese alternativa (H₁) \rightarrow $H_1: \mu \neq 0$

Condição para passar no teste $t_x < t_{(n-1,1-\alpha/2)}$

$$t_x = \left| \frac{\overline{d} - \mu}{S_{\overline{d}}} \right| < t_{(n-1,1-\alpha/2)} \tag{4}$$

Onde:

t_x	- valor de <i>t</i> calculado;
\overline{d}	- média das diferenças dos parâmetros nos dois softwares;
μ	- média populacional das diferenças;
$S_{\overline{d}}$	- erro padrão da média das diferenças;
n	- número de diferenças dos parâmetros testados;
α	- nível de significância.

O erro padrão da média é calculado pela fórmula abaixo.

$$S_{\overline{d}} = \frac{\sigma}{\sqrt{n}} \tag{5}$$

Onde:

 σ - desvio padrão;

n - tamanho da amostra.

Neste capítulo foram apresentadas as duas áreas de estudo, com suas respectivas particularidades; todo o material e as informações necessárias para a criação e gerenciamento de um projeto de mapeamento aerofotogramétrico digital na versão integrada do E-FOTO, assim como uma breve descrição da utilização dos módulos de orientação interior e exterior e do módulo estereoplotter versão 1.64.

3 RESULTADOS OBTIDOS E DISCUSSÕES

A seguir serão apresentados os resultados dos experimentos realizados utilizando as duas áreas de estudo. Inicialmente serão apresentados os resultados e as discussões relativas ao Projeto RURAL e em seguida os resultados e as discussões relativas ao Projeto Santiago de Compostela.

3.1 **Projeto RURAL**

3.1.1 <u>Comparação das metodologias utilizadas na determinação dos parâmetros da</u> <u>orientação interior pelo E-FOTO e o software LPS, sem a inclusão dos parâmetros relativos às</u> <u>distorções das lentes da câmara fotogramétrica</u>.

O processamento fotogramétrico consistiu inicialmente na realização da orientação interior de cada uma das imagens digitais que compõem o bloco de fotografias do Projeto RURAL. A orientação interior na fotogrametria digital consiste no cálculo dos parâmetros de transformação entre o sistema de coordenadas do espaço-imagem (linha e coluna) e o sistema fotogramétrico analógico ($\xi \in \eta$). Nas Tabelas 3.1, 3.2 e 3.3, estão os valores das coordenadas das marcas fiduciais em milímetros, obtidas no certificado de calibração da câmara e suas respectivas medidas no espaço-imagem, realizadas no módulo de orientação interior da versão integrada do E-FOTO.

Tabela 3.1 - Coordenadas das marcas fiduciais em milímetros (certificado de calibração) e coordenadas das marcas fiduciais medidas no módulo de orientação interior da versão integrada do E-FOTO, para as fotografias 1809, 1810, 1811 e 1812.

	integre		<u>211010, puiu us lotografius 100, 1010, 1011 e 1012.</u>									
	Coorder	1adas das		Coordenadas das marcas fiduciais no espaço-imagem								
Marca Fiducial	marcas fiduciais no sistema		Foto 1809		Foto	1810	Foto 1811		Foto 1812			
	fotogra	fotogramétrico		_								
	x (mm)	y (mm)	coluna	linha	coluna	linha	coluna	linha	coluna	linha		
1	113,019	0,051	10974	5573	10958	5568	10978	5573	10975	5546		
2	-112,996	-0,055	200	5616	186	5611	206	5609	201	5593		
3	0,072	112,995	5572	207	5557	203	5580	204	5570	182		
4	-0,043	-112,995	5604	10981	5588	10974	5606	10976	5607	10955		
5	113,054	113,057	10959	186	10942	183	10965	187	10957	159		
6	-113,041	-113,049	218	11003	203	10997	220	10995	220	10979		
7	-112,947	112,952	184	228	170	224	193	222	182	205		
8	112,964	-112,939	10992	10959	10974	10953	10992	10958	10993	10932		

Tabela 3.2 - Coordenadas das marcas fiduciais em milímetros (certificado de calibração) e coordenadas das marcas fiduciais medidas no módulo de orientação interior da versão integrada do E-FOTO, para as fotografias 1852, 1853, 1854 e 1855.

	Coorder	nadas da		Coordenadas das marcas fiduciais no espaço-imagem								
Marca	marcas fie	duciais no										
Fiducial	sistema		Foto	Foto 1852		Foto 1853		Foto 1854		Foto 1855		
	fotogramétrico											
	x (mm)	y (mm)	coluna	Linha	coluna	linha	coluna	Linha	coluna	Linha		
1	113,019	0,051	10970	5576	10991	5569	10950	5576	11021	5573		
2	-112,996	-0,055	200	5600	221	5592	180	5599	251	5598		
3	0,072	112,995	5579	204	5599	197	5558	204	5629	202		
4	-0,043	-112,995	5591	10972	5611	10965	5570	10972	5642	10970		
5	113,054	113,057	10963	190	10984	184	10943	190	11013	188		
6	-113,041	-113,049	208	10984	228	10976	187	10983	259	10982		
7	-112,947	112,952	194	215	215	207	173	214	244	213		
8	112,964	-112,939	10977	10961	10996	10954	10956	10961	11028	10959		

Tabela 3.3 - Coordenadas das marcas fiduciais em milímetros (certificado de calibração) e coordenadas das marcas fiduciais medidas no módulo de orientação interior da versão integrada do E-FOTO, para as fotografias 1866, 1867, 1868 e 1869.

	Coorder	nadas da		Coordenadas das marcas fiduciais no espaço-imagem								
Marca	marcas fie	marcas fiduciais no							Foto 1869			
Fiducial	sistema		Foto	1866	Foto	1867	Foto 1868					
Tuuciai	fotogramétrico											
	x (mm)	y (mm)	coluna	linha	coluna	linha	coluna	linha	coluna	linha		
1	113,019	0,051	10986	5607	10989	5614	10988	5609	11013	5613		
2	-112,996	-0,055	211	5633	215	5639	213	5633	239	5638		
3	0,072	112,995	5590	233	5594	240	5594	233	5617	239		
4	-0,043	-112,995	5606	11007	5608	11013	5607	11007	5634	11011		
5	113,054	113,057	10979	220	10982	228	10982	221	11005	226		
6	-113,041	-113,049	219	11020	223	11026	221	11019	247	11025		
7	-112,947	112,952	202	246	208	253	206	246	230	253		
8	112,964	-112,939	10995	10996	10997	11003	10995	10997	11021	10999		

Na realização da orientação interior no E-FOTO sem parâmetros adicionais, obteve-se os parâmetros da orientação interior para cada fotografia do bloco. Na tabela 3.4 estão os parâmetros da orientação interior (a0, a1, a2, b0, b1 e b2). A matriz variância covariância dos parâmetros ajustados encontra-se no apêndice A.

Tabela 3.4 - Parâmetros da orientação interior obtidos com o E-FOTO, para cada fotografia do Projeto RURAL.

Foto	a0 (mm)	a1 (mm)	a2 (mm)	b0 (mm)	b1 (mm)	b2 (mm)
1866	-117,1769	0,020973	-0,000041	118,1007	-0,000039	-0,020974
1867	-117,2901	0,020977	-0,000038	118,2426	-0,000037	-0,020976
1868	-117,2642	0,020975	-0,000036	118,0943	-0,000036	-0,020975
1869	-117,7627	0,020976	-0,000042	118,2448	-0,000040	-0,020979

Foto	a0 (mm)	a1 (mm)	a2 (mm)	b0 (mm)	b1 (mm)	b2 (mm)
1852	-117,0054	0,020986	-0,000035	117,4624	-0,000037	-0,020985
1853	-117,4478	0,020987	-0,000033	117,3001	-0,000034	-0,020985
1854	-116,5726	0,020985	-0,000034	117,4430	-0,000034	-0,020985
1855	-118,0570	0,020986	-0,000037	117,4233	-0,000037	-0,020985
1809	-116,7906	0,020976	-0,000073	117,7509	-0,000073	-0,020976
1810	-116,5029	0,020981	-0,000071	117,6706	-0,000073	-0,020981
1811	-116,9826	0,020981	-0,000061	117,6214	-0,000060	-0,020979
1812	-116,7576	0,020977	-0,000081	117,2682	-0,000081	-0,020977

Cont. Tabela 3.4.

A fim de verificar se as metodologias utilizadas para a obtenção dos parâmetros da orientação interior determinada pelo E-FOTO é equivalente aos parâmetros obtidos em um software comercial, introduziram-se as medidas das marcas fiduciais no espaço-imagem obtidas no módulo de orientação interior do E-FOTO, para processamento no software comercial Leica Photogrammetry Suite (LPS) 2010. Na tabela 3.5 estão listados os parâmetros da orientação interior determinados com o software LPS. O relatório do processamento dos dados com o software LPS encontra-se no apêndice C.

Tabela 3.5 - Parâmetros da orientação interior obtidos com o LPS, sem a inclusão dos parâmetros adicionais das lentes, para cada fotografia que compõem o Projeto RURAL.

Foto	a0 (mm)	a1 (mm)	a2 (mm)	b0 (mm)	b1 (mm)	b2 (mm)
1866	-117,1769	0,020973	-0,000041	118,1007	-0,000039	-0,020974
1867	-117,2901	0,020977	-0,000038	118,2426	-0,000037	-0,020976
1868	-117,2642	0,020975	-0,000036	118,0943	-0,000036	-0,020975
1869	-117,7627	0,020976	-0,000042	118,2448	-0,000040	-0,020979
1852	-117,0054	0,020986	-0,000035	117,4624	-0,000037	-0,020985
1853	-117,4478	0,020987	-0,000033	117,3001	-0,000034	-0,020985
1854	-116,5726	0,020985	-0,000035	117,4430	-0,000035	-0,020985
1855	-118,0570	0,020986	-0,000037	117,4233	-0,000037	-0,020985
1809	-116,7906	0,020976	-0,000073	117,7509	-0,000073	-0,020975
1810	-116,5029	0,020981	-0,000072	117,6706	-0,000073	-0,020981
1811	-116,9826	0,020981	-0,000061	117,6214	-0,000060	-0,020979
1812	-116,7576	0,020977	-0,000081	117,2682	-0,000081	-0,020977

Os resultados dos parâmetros da orientação interior obtidos nos dois softwares foram analisados estatisticamente, utilizando-se o método de inferência estatística pelo teste de hipóteses t de Student. Deseja-se avaliar se as metodologias utilizadas pelo E-FOTO e LPS,

são equivalentes na obtenção de cada parâmetro da orientação interior sem parâmetros adicionais com 5% de significância. As hipóteses testadas foram:

Observa-se na tabela 3.6 que as metodologias para a obtenção de cada parâmetro da orientação interior com E-FOTO e o software LPS, são equivalentes com 5% de significância, por que o *t* calculado para cada parâmetro nas 12 fotografias é menor que o *t* tabelado.

	$\Delta a0 (mm)$	$\Delta a1 (mm)$	$\Delta a2 (mm)$	$\Delta b0 (mm)$	Δ b1 (mm)	Δ b2 (mm)				
\overline{d}	0,0000	0,000000	0,000000	0,0000	0,000000	0,000000				
$S\overline{d}$	0,0000	0,000000	0,000000	0,0000	0,000000	0,000000				
t_x	0	0	0	0	0	0				
	$t_{(n-1,1-\alpha/2)} = 2,201$									

Tabela 3.6 - Resultado do teste *t* de Student.

3.1.2 <u>Comparação das metodologias utilizadas na determinação dos parâmetros da</u> <u>orientação exterior pelo E-FOTO e o software LPS, sem à inclusão dos parâmetros relativos</u> <u>as distorções das lentes da câmara fotogramétrica.</u>

Uma vez obtidos os parâmetros da orientação interior e conhecendo as coordenadas no espaço-objeto dos pontos de controle, foi possível determinar os parâmetros da orientação exterior, a saber: as coordenadas no espaço-objeto do centro de perspectiva da câmara (X0, Y0 e Z0) e os ângulos de atitude do sensor (ω , φ e K), no momento da tomada da fotografia. Segundo Coelho e Brito (2007) o algoritmo da ressecção espacial serve para obter, para cada imagem individualmente, os valores dos parâmetros da orientação exterior mencionados acima. Para isto, é necessário conhecer as coordenadas no espaço-objeto de pelo menos três pontos de controle não colineares no terreno. As coordenadas dos pontos de controle medidas no espaço-imagem no módulo da orientação exterior do E-FOTO para cada fotografia estão contidas nas tabelas 3.7 a 3.18.

Tabela 3.7 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia 1866

	1000.									
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
GPS530	638650,362	7486197,352	22.269	9225	9378	75,914	-78,957			
Campinho II	634090,310	7485298,262	38.488	2205	10325	-71,355	-98,545			
GPS523	638183.229	7490901.907	24.072	8837	1979	68,081	76,247			
GPS19	635481,744	7491316,514	42,606	4614	1223	-20,457	92,268			
Número de iterações $= 4$										

			1867.							
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
GPS03	630455,728	7486620,760	44,768	1030	8228	-95,994	-54,388			
GPS19	635481,744	7491316,514	42,606	8944	1220	70,282	92,319			
GPS21	631466,858	7489068,956	49,234	2574	4624	-63,470	21,152			
GPS16	636143,795	7485497,959	25,787	9518	10309	81,979	-98,355			
	Número de iteracões = 4									

Tabela 3.8 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

Tabela 3.9 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

	1808.										
Id	E (m)	N (m)	H (m)	Col	lin	ξ (mm)	η (mm)				
Campinho II	634090,310	7485298,262	38.488	10400	10613	100.495	-104.886				
GPS13	629239,791	7491228,797	50,182	3409	1213	-45.803	92.529				
GPS02	629092,552	7485065,309	56,091	2898	10507	-56.855	-102.394				
GPS20	633857,897	7489912,511	40,520	10541	3553	103.706	43.192				
Número de iterações $= 4$											

Tabela 3.10 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

	1869.									
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
GPS529	626767,750	7486437,962	194,600	3738	8865	-39,722	-67,884			
GPS13	629239,791	7491228,797	50,182	7633	1403	42,291	88,503			
GPS12	625065,146	7489910,402	56,857	1216	3506	-92,401	44,643			
GPS03	630455,728	7486620,76	44,768	9434	8581	79,770	-62,156			
	Número de iterações $= 4$									

Tabela 3.11 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

	1632.									
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
GPS529	626767,750	7486437,962	194,600	3195	1354	-50,002	88,932			
GPS02	629092,552	7485065,309	56,091	6809	3582	25,762	42,046			
GPS03	630455,728	7486620,76	44,768	8822	1280	68,088	90,279			
GPS05	631573,860	7480355,13	21,384	10590	10723	104,859	-107,943			
GPS30	625601,475	7480648,467	65,464	1373	10488	-88,561	-102,675			
	Número de iterações = 4									

Tabela 3.12 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia 1853

	1655.										
Id	E (m)	N (m)	H (m)	col	Lin	ξ (mm)	η (mm)				
Base	633722,046	7481231,353	18,567	9381	9080	79,126	-73,565				
Campinho II	634090,310	7485298,262	38.488	9900	3064	90,218	52,664				

Cont. Tabela 3.12.

Id	E (m)	N (m)	H (m)	col	Lin	ξ (mm)	η (mm)
GPS538	628206.101	7481051.629	48.409	954	9628	-97,746	-84,779
GPS03	630455,728	7486620,76	44,768	4481	961	-23,438	96,981
Número de iterações $= 4$							

Tabela 3.13 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia 1854

	1034.								
Id	E (m)	N (m)	H (m)	col	Lin	ξ (mm)	η (mm)		
GPS539	636991,419	7480831,347	27,915	10444	9655	102,265	-85,525		
GPS03	630455,728	7486620,76	44,768	349	959	-85,525	-85,525		
GPS05	631573,860	7480355,13	21,384	2262	10584	-69,469	-104,737		
GPS17	637026,462	7486310,769	26,110	10394	1425	-104,737	-104,737		
	Número de iterações = 3								

Tabela 3.14 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

	1055.										
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)				
GPS530	638650.362	7486197.352	22.269	8605	1665	62,466	82,163				
GPS539	636991.419	7480831.347	27.915	6432	9905	16,557	-90,669				
Base	633722,046	7481231,353	18,567	1318	9514	-90,751	-82,274				
Campinho II	634090,310	7485298,262	38.488	1721	3179	-82,058	50,648				
Número de iterações = 4											

Tabela 3.15 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia 1809.

			100/.							
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
Base	633722,046	7481231,353	18,567	1901	1666	-77,037	82,666			
GPS07	639064,330	7476283,989	11,967	9883	9342	89,829	-78,928			
GPS08	634150,260	7476049,542	9,847	2466	9452	-65,758	-80,690			
Incra	637152,308	7480640,629	19,555	7105	2616	32,052	62,357			
	Número de iterações = 4									

Tabela 3.16 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

	1810.								
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)		
GPS551	635568,747	7476391,596	8,695	8702	8973	65,434	-71,223		
GPS06	632121,299	7481147,889	23,038	3675	1511	-39,504	85,700		
Geladeira	636354,209	7481216,372	16,784	10397	1522	101,531	84,980		
GPS33	629827,519	7476385,233	7,168	240	8596	-112,082	-62,696		
	Número de iterações = 4								

	1811.								
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)		
Base	633722,046	7481231,353	18,567	10577	1631	104,831	82,770		
GPS538	628206.101	7481051.629	48,409	1928	1846	-76,644	78,777		
GPS08	634150,260	7476049,542	9,847	10838	9686	109,814	-86,234		
GPS10	627400,784	7475677,759	10,851	808	9811	-100,630	-88,256		
	Número de iterações $= 4$								

Tabela 3.17 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

Tabela 3.18 - Identificação dos pontos de controle e respectivas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (coluna e linha) e analógica (mm), para fotografia

	1812.									
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
GPS538	628206,101	7481051,629	48,409	6035	2172	9.660	71.220			
GPS10	627400,784	7475677,759	10,851	4620	10287	-20.681	-98.891			
GPS27	629916,984	7478697,539	17,594	8559	5855	62.306	-6.240			
GPS30	625601,475	7480648,467	65,464	2035	2711	-74.290	60.236			
	Número de iterações $= 4$									

Na tabela 3.19 estão os parâmetros da orientação exterior obtidos no módulo de orientação exterior da versão integrada do E-FOTO sem parâmetros adicionais. A matriz variância covariância dos parâmetros da orientação exterior está contida no apêndice "B".

Foto	X0 (m)	Y0 (m)	H0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)				
1809	636318,303	7478780,141	4807,744	-0,0191	0,0246	0,0227				
1810	633549,394	7478824,349	4779,186	-0,0525	0,0277	0,0366				
1811	630792,674	7478871,266	4797,326	-0,0421	0,0324	0,0257				
1812	628043,275	7478901,748	4811,364	-0,0131	0,0161	0,0285				
1852	628164,578	7483660,649	4800,470	0,0188	-0,0243	-0,0008				
1853	630940,359	7483608,272	4811,711	0,0006	-0,0487	-0,0028				
1854	633682,517	7483604,507	4809,300	-0,0028	-0,0192	-0,0125				
1855	636461,091	7483564,041	4787,496	0,0183	-0,0233	-0,0332				
1866	636393,735	7488607,815	4743,809	-0,0187	0,0363	0,0419				
1867	633632,425	7488649,352	4775,493	-0,0356	0,0336	0,0362				
1868	630891,240	7488646,781	4804,656	-0,0398	0,0250	0,0468				
1869	628106,656	7488658,129	4794,980	-0,0265	0,0289	0,0070				

Tabela 3.19 - Parâmetros da orientação exterior para cada fotografia do Projeto Rural, sem à inclusão dos parâmetros adicionais obtidos com o E-FOTO.

As coordenadas dos pontos de controle no espaço-imagem medidas no módulo de orientação exterior do E-FOTO para cada fotografia, tabelas 3.7 a 3.18, foram introduzidas no LPS para a realização da fototriangulação, obtendo-se os parâmetros da orientação exterior.

Na tabela 3.20 estão os parâmetros da orientação exterior obtidos com o LPS. O relatório dos resultados do processamento com o LPS está apresentado no apêndice C.

Foto	X0 (m)	Y0 (m)	H0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)
1809	636318,304	7478780,142	4807,745	-0,0191	0,0246	0,0227
1810	633549,394	7478824,349	4779,186	-0,0525	0,0277	0,0366
1811	630792,674	7478871,266	4797,326	-0,0421	0,0324	0,0257
1812	628043,276	7478901,749	4811,364	-0,0131	0,0161	0,0285
1852	628164,578	7483660,650	4800,470	0,0188	-0,0243	-0,0008
1853	630940,359	7483608,272	4811,711	0,0006	-0,0487	-0,0028
1854	633682,517	7483604,507	4809,300	-0,0028	-0,0192	-0,0125
1855	636461,091	7483564,041	4787,496	0,0183	-0,0233	-0,0332
1866	636393,736	7488607,815	4743,809	-0,0187	0,0363	0,0419
1867	633632,425	7488649,353	4775,493	-0,0356	0,0336	0,0362
1868	630891,241	7488646,781	4804,656	-0,0398	0,025	0,0468
1869	628106,656	7488658,129	4794,980	-0,0265	0,0289	0,007

Tabela 3.20 - Parâmetros da orientação exterior para cada fotografia do Projeto Rural, sem à inclusão dos parâmetros adicionais obtidos com o LPS.

Conclui-se (tabela 3.21) que as metodologias para a obtenção de cada parâmetro da orientação exterior sem parâmetros adicionais pelo E-FOTO e pelo LPS são equivalentes com nível de significância de 5%.

	rubelu 5.21 Kesultudo do teste i de Studelit.									
	$\Delta X0 (m)$	Δ Y0 (m)	$\Delta Z0 (m)$	ΔOMEGA (m)	$\Delta \mathbf{PHI}(\mathbf{m})$	Δ KAPPA (m)				
\overline{d}	0,000	0,000	0,000	0,0000	0,0000	0,0000				
$S\overline{d}$	0,000	0,000	0,000	0,0000	0,0000	0,0000				
t_{χ}	0	0	0	0	0	0				
	$t_{(n-1,1-\alpha/2)} = 2,201$									

Tabela 3.21 - Resultado do teste t de Student.

3.1.3 <u>Comparação das diferenças entre os parâmetros da orientação interior obtidos no E-</u> <u>FOTO sem parâmetros adicionais e o software LPS, com a inclusão dos parâmetros relativos</u> <u>as distorções das lentes da câmara fotogramétrica.</u>

Considerando no processamento os parâmetros relativos as distorções das lentes da câmara fotogramétrica que constam no certificado de calibração da câmara, foram determinados os parâmetros da orientação interior no E-FOTO sem levar em consideração os parâmetros adicionais e comparado com os parâmetros da orientação interior obtidos com o LPS, utilizando os parâmetros adicionais. Os resultados dos parâmetros da orientação interior determinado no E-FOTO estão na tabela 3.4. Na tabela 3.22 estão os resultados dos

parâmetros da orientação interior considerando a inclusão dos parâmetros adicionais das lentes da câmara fotogramétrica obtidos no LPS. O relatório dos resultados do LPS estão apêndice D.

Foto	a0 (mm)	a1 (mm)	a2 (mm)	b0 (mm)	b1 (mm)	b2 (mm)
1866	-117,1769	0,020973	-0,000041	118,1007	-0,000039	-0,020974
1867	-117,2901	0,020977	-0,000038	118,2426	-0,000037	-0,020976
1868	-117,2642	0,020975	-0,000036	118,0943	-0,000036	-0,020975
1869	-117,7627	0,020976	-0,000042	118,2448	-0,000040	-0,020979
1852	-117,0054	0,020986	-0,000035	117,4624	-0,000037	-0,020985
1853	-117,4478	0,020987	-0,000033	117,3001	-0,000034	-0,020985
1854	-116,5726	0,020985	-0,000035	117,4430	-0,000035	-0,020985
1855	-118,0570	0,020986	-0,000037	117,4233	-0,000037	-0,020985
1809	-116,7906	0,020976	-0,000073	117,7509	-0,000073	-0,020975
1810	-116,5029	0,020981	-0,000072	117,6706	-0,000073	-0,020981
1811	-116,9826	0,020981	-0,000061	117,6214	-0,000060	-0,020979
1812	-116,7576	0,020977	-0,000081	117,2682	-0,000081	-0,020977

Tabela 3.22 - Parâmetros da orientação interior obtidos com o LPS, com à inclusão dos parâmetros adicionais.

Conclui-se (tabela 3.23) que as diferenças na obtenção de cada parâmetro da orientação interior pelo E-FOTO e LPS considerando os parâmetros adicionais, não é significativa com 5% de significância.

	$\Delta a0 (mm)$	$\Delta a1 (mm)$	$\Delta a2 (mm)$	$\Delta b0 (mm)$	$\Delta b1 (mm)$	Δ b2 (mm)			
\overline{d}	0,0000	0,000000	0,000000	0,0000	0,000000	0,000000			
$S_{\overline{d}}$	0,0000	0,000000	0,000000	0,0000	0,000000	0,000000			
t_{x}	0	0	0	0	0	0			
	$t_{(n-1,1-\alpha/2)} = 2,201$								

Tabela 3.23 - Resultado do teste t de Student.

3.1.4 <u>Comparação das diferenças entre os parâmetros da orientação exterior obtidos no E-FOTO sem parâmetros adicionais e o software LPS, com à inclusão dos parâmetros relativos as distorções das lentes da câmara fotogramétrica.</u>

Utilizando as medidas dos pontos de controle no espaço-imagem realizado no módulo de orientação exterior do E-FOTO (tabelas 3.7 a 3.18). Foi realizado o processamento com o LPS, considerando os parâmetros adicionais (K0, K1 e k2), obtidos no certificado de

calibração da câmara. Determinaram-se os parâmetros da orientação exterior para cada imagem do bloco de fotografias do Projeto RURAL. Sabendo que o E-FOTO não considera os parâmetros adicionais, foram utilizados os parâmetros da orientação exterior determinados na seção 3.1.2 tabela 3.19. Na tabela 3.24 estão os parâmetros da orientação exterior obtidos com o LPS. O relatório do processamento com LPS está no apêndice D.

Foto	X0 (m)	Y0 (m)	Z0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)
1869	628106,680	7488658,140	4795,436	-0,0265	0,0289	0,0070
1868	630890,627	7488647,365	4805,468	-0,0399	0,0249	0,0468
1867	633632,249	7488649,573	4776,210	-0,0357	0,0335	0,0362
1866	636393,866	7488607,956	4744,392	-0,0187	0,0363	0,0419
1852	628163,964	7483661,399	4801,664	0,0186	-0,0244	-0,0008
1853	630940,519	7483608,434	4812,426	0,0006	-0,0487	-0,0028
1854	633682,663	7483604,200	4810,797	-0,0027	-0,0192	-0,0125
1855	636461,216	7483564,120	4788,048	0,0182	-0,0233	-0,0332
1812	628043,279	7478901,769	4811,838	-0,0131	0,0161	0,0285
1811	630792,530	7478871,669	4798,541	-0,0422	0,0323	0,0257
1810	633549,480	7478824,298	4780,098	-0,0525	0,0277	0,0366
1809	636318,232	7478780,155	4808,383	-0,0191	0,0246	0,0227

Tabela 3.24 - Parâmetros da orientação exterior obtidos com o LPS, com à inclusão dos parâmetros adicionais.

Na tabela 3.25 estão os resultados das diferenças entre os parâmetros da orientação exterior determinados com E-FOTO e com LPS considerando os parâmetros adicionais.

e o LFS com a metusao dos parametros adicionais.						1
Foto	$\Delta X0 (m)$	Δ Y0 (m)	$\Delta Z0 (m)$	Δ OMEGA (rad)	Δ PHI (rad)	Δ KAPPA (rad)
1809	-0,071	0,014	0,639	0,0000	0,0000	0,0000
1810	0,086	-0,051	0,912	0,0000	0,0000	0,0000
1811	-0,144	0,403	1,215	-0,0001	-0,0001	0,0000
1812	0,004	0,021	0,474	0,0000	0,0000	0,0000
1852	-0,614	0,750	1,194	-0,0002	-0,0001	0,0000
1853	0,159	0,162	0,715	0,0000	0,0000	0,0000
1854	0,146	-0,307	1,497	0,0001	0,0000	0,0000
1855	0,125	0,079	0,552	-0,0001	0,0000	0,0000
1866	0,131	0,141	0,583	0,0000	0,0000	0,0000
1867	-0,176	0,221	0,717	-0,0001	-0,0001	0,0000
1868	-0,613	0,584	0,812	-0,0001	-0,0001	0,0000
1869	0,024	0,010	0,456	0,0000	0,0000	0,0000

Tabela 3.25 - As diferenças entre cada parâmetro da orientação exterior obtidos com E-FOTO e o LPS com à inclusão dos parâmetros adicionais.

Os resultados obtidos foram analisados utilizando o método da inferência estatística pelo teste de hipóteses t de Student. Avaliou-se, se as diferenças entre o E-FOTO e o LPS considerando os parâmetros adicionais na determinação dos parâmetros da orientação exterior são equivalentes com 5% de significância. As hipóteses testadas foram:

Conclui-se que todos os parâmetros da orientação exterior determinados no E-FOTO que tiveram o t calculado inferior ao t tabelado, não diferem dos parâmetros obtidos com o LPS, levando em consideração os parâmetros adicionais, com 5% de significância. O parâmetro Z0 possui t calculado maior que t tabelado, portanto conclui-se que a diferença na determinação deste parâmetro é significativa com 5% de significância.

Na tabela 3.26 estão os valores da diferença de cada parâmetro da orientação exterior para as 12 fotografias, o desvio padrão da média e os respectivos "t" calculados para cada parâmetro.

	$\Delta \mathbf{X0} (\mathbf{m})$	Δ Y0 (m)	$\Delta Z0 (m)$	$\Delta OMEGA (rad)$	$\Delta \mathbf{PHI} \ (\mathbf{rad})$	Δ KAPPA (rad)			
\overline{d}	-0,079	0,169	0,814	0,000	0,000	0,000			
$S_{\overline{d}}$	0,274	0,290	0,330	0,000	0,000	0,000			
t_{χ}	0,288	0,583	2,467	0	0	0			
	$t_{(n-1,1-\alpha/2)} = 2,201$								

Tabela 3.26 - Resultado do teste *t* de Student.

3.2 Medição dos pontos de verificação no módulo estereoploter versão 1.64 do E-FOTO para avaliação da qualidade dos resultados segundo o Padrão de Exatidão Cartográfica.

As medições fotogramétricas dos pontos de verificação foram realizadas nos 9 pares estereoscópicos formados no módulo estereoplotter versão 1.64. O algoritmo da interseção espacial permite que pontos homólogos, medidos sobre o modelo estereoscópico no espaçoimagem, possam ter suas coordenadas tridimensionais determinadas no espaço-objeto. Foram medidos 30 pontos bem definidos no espaço-imagem. Cada ponto foi medido três vezes, considerando assim o valor médio das medições como o mais provável para as coordenadas no espaço-objeto do ponto considerado, sendo possível a determinação do desvio padrão das medições realizadas. Na tabela 3.27 estão os valores médios das coordenadas dos pontos fotogramétricos medidos, juntamente com seus respectivos desvios-padrão.

Ponto	E (m)	$\sigma_{\bar{r}}$ (m)	N (m)	$\sigma_{\bar{r}}$ (m)	H (m)	$\sigma_{\bar{r}}$ (m)
RUA JOSÉ TÚNULA	633892,891	0,378	7484182,674	0,007	36,583	0,038
MONUMENTO	634494,254	0,332	7482033,188	0,377	34,541	0,643
IV	634521,562	1,732	7482701,255	0,36	33,853	0,12
IBA	635631,432	0,000	7482406,879	0,001	33,670	0,000
IT	634915,136	0,163	7480643,540	0,531	17,757	0,651
INCRA	637151,266	0,808	7480639,171	0,856	16,002	0,582
GPS05	631570,377	0,368	7480352,534	0,799	22,859	0,029
RUA07	633018,792	0,278	7483884,724	0,631	42,320	0,644
GPS18	634709,873	0,268	7486894,020	0,440	28,459	1,711
GPS29	627337,563	1,081	7480237,971	1,474	40,521	0,136
RUA01	632775,535	0,259	7484473,611	0,616	38,298	0,671
RUA CAMBUCI	633959,805	0,006	7483717,816	0,383	53,881	0,006
P1	634710,207	0,003	7482150,886	0,193	29,117	0,008
LAGO AÇU	633891,778	0,366	7482110,610	0,330	29,681	0,631
GPS16	636144,575	0,391	7485498,467	0,325	28,283	1,184
IZ	634783,532	0,802	7481024,474	0,706	28,420	1,092
GPS26	629067,754	0,329	7477319,877	0,352	25,746	0,661
GEOLOGIA	635255,626	0,292	7480120,254	0,654	25,822	1,699
GPS15	628971,472	0,368	7488512,976	0,386	68,905	0,008
SÃO MIGUEL	631511,952	1,071	7487907,575	0,333	42,279	0,666
RUA26	634316,869	0,338	7484471,737	0,289	41,102	0,723
CNA	633796,203	0,767	7483605,918	0,195	36,508	0,613
PESAGRO	634970,839	0,177	7482469,661	0,207	27,909	0,649
ICHS	634979,055	0,296	7481647,809	1,018	19,948	1,689
CFC	635614,066	0,374	7481824,548	0,198	23,797	0,015
GELADEIRA	636354,667	0,334	7481217,109	0,959	17,317	1,128
GPS28	628573,752	0,297	7479465,674	0,726	21,638	0,642
GPS20	633858,413	0,313	7489910,631	0,318	39,441	1,095
GPS11	627998,362	0,384	7489162,100	0,971	74,621	0,660
GPS25	634395,228	0,095	7482105,769	0,377	33,560	0,616

Tabela 3.27 - Coordenadas dos pontos de verificação no espaço-objeto (E, N e H) medidos no módulo estereoploter versão 1.64 do E-FOTO, com seus respectivos desvios-padrão.

As coordenadas obtidas no módulo estereoplotter foram comparadas com as coordenadas de terreno (verdade de campo), para classificar a carta topográfica possível de ser obtida a partir de um projeto fotogramétrico processado no E-FOTO segundo o Padrão de Exatidão Cartográfica (apêndice E). Na tabela 3.28 estão as coordenadas no espaço-objeto (E, N e H) dos pontos de verificação obtidas através do sistema de posicionamento por satélites.

Ponto	E (m)	$\sigma_{\bar{r}}$ (m)	N (m)	$\sigma_{\bar{r}}$ (m)	H (m)	$\sigma_{\bar{r}}$ (m)
RUA JOSÉ TÚNULA	633891,685	0,003	7484186,033	0,003	35.761	0,007
MONUMENTO	634494,743	0,002	7482029,824	0,002	32,799	0,006
IV	634522,136	0,005	7482700,738	0,005	31,948	0,015
IBA	635631,941	0,002	7482406,445	0,001	32,500	0,005
IT	634915,253	0,002	7480642,654	0,002	17,362	0,004
INCRA	637152,308	0,005	7480640,629	0,004	19,555	0,016
GPS05	631573,860	0,006	7480355,13	0,006	21,384	0,014
RUA07	633018,600	0,007	7483888,954	0,004	44,643	0,016
GPS18	634710,485	0,011	7486894,405	0,008	27,636	0,012
GPS29	627337,248	0,003	7480239,168	0,002	41,869	0,005
RUA01	632777,055	0,008	7484473,616	0,007	40,969	0,02
RUA CAMBUCÍ	633959,728	0,017	7483716,905	0,023	55,409	0,035
P1	634708,746	0,002	7482149,549	0,002	26,287	0,007
LAGO AÇÚ	633890,385	0,002	7482110,526	0,002	27,275	0,005
GPS16	636143,795	0,004	7485497,959	0,004	25,787	0,009
IZ	634783,747	0,002	7481022,658	0,002	25,924	0,006
GPS26	629068,460	0,007	7477318,83	0,004	22,954	0,024
GEOLOGIA	635257,164	0,002	7480120,71	0,002	26,884	0,003
GPS15	628971,603	0,026	7488512,444	0,022	66,718	0,038
SÃO MIGUEL	631511,217	0,026	7487904,607	0,022	41,592	0,038
RUA26	634317,782	0,005	7484473,623	0,002	42,568	0,011
CNA	633797,810	0,009	7483607,379	0,01	37,811	0,010
PESAGRO	634970,985	0,007	7482469,57	0,006	25,972	0,017
ICHS	634977,808	0,005	7481647,504	0,004	18,605	0,015
CFC	635614,421	0,003	7481825,202	0,003	23,780	0,008
GELADEIRA	636354,209	0,003	7481216,372	0,004	16,784	0,013
GPS28	628573,216	0,007	7479465,196	0,007	21,970	0,03
GPS20	633857,897	0,016	7489912,511	0,015	40,520	0,019
GPS11	627998,476	0,007	7489160,359	0,009	72,777	0,028
GPS25	634394,500	0,009	7482105,647	0,006	30,981	0,009

Tabela 3.28 - Coordenadas no espaço-objeto (E, N e H) dos pontos de verificação medidos com tecnologia de posicionamento por satélite e seus respectivos desvios-padrão.

Na tabela 3.29 estão as diferenças encontradas entre as coordenadas dos pontos de verificação no espaço-objeto obtidas com tecnologia de posicionamento por satélites e as obtidas fotogrametricamente no módulo estereoplotter versão 1.64 do E-FOTO. Para a classificação da carta também foi calculado o erro posicional planimétrico entre os pontos medidos.

Donto	$\Delta \mathbf{F}$ (m)	ANI (ma)	AII (m)	$\mathbf{EP} = [(\Delta \mathbf{E})^2 + (\Delta \mathbf{N})^2]^{1/2}$
Ponto	Δ E (m)	ΔIN (M)	Δ H (m)	(m)
RUA JOSÉ TÚNULA	-1,206	3,359	-0,822	3,569
MONUMENTO	0,489	-3,364	-1,742	3,399
IV	0,574	-0,517	-1,905	0,773
IBA	0,509	-0,434	-1,170	0,669
IT	0,117	-0,886	-0,395	0,894
INCRA	1,042	1,458	3,553	1,792
GPS05	3,483	2,596	-1,475	4,344
RUA07	-0,192	4,23	2,323	4,234
GPS18	0,612	0,385	-0,823	0,723
GPS29	-0,315	1,197	1,348	1,238
RUA01	1,52	0,005	2,671	1,520
RUA CAMBUCÍ	-0,077	-0,911	1,528	0,914
P1	-1,461	-1,337	-2,830	1,980
LAGO AÇÚ	-1,393	-0,084	-2,406	1,396
GPS16	-0,78	-0,508	-2,496	0,931
IZ	0,215	-1,816	-2,496	1,829
GPS26	0,706	-1,047	-2,792	1,263
GEOLOGIA	1,538	0,456	1,062	1,604
GPS15	0,131	-0,532	-2,187	0,548
SÃO MIGUEL	-0,735	-2,968	-0,687	3,058
RUA26	0,913	1,886	1,466	2,095
CNA	1,607	1,461	1,303	2,172
PESAGRO	0,146	-0,091	-1,937	0,172
ICHS	-1,247	-0,305	-1,343	1,284
CFC	0,355	0,654	-0,017	0,744
GELADEIRA	-0,458	-0,737	-0,533	0,868
GPS28	-0,536	-0,478	0,332	0,718
GPS20	-0,516	1,88	1,079	1,950
GPS11	0,114	-1,741	-1,844	1,745
GPS25	-0,728	-0,122	-2,579	0,738

Tabela 3.29 - As diferenças entre as coordenadas no espaço-objeto (E, N e H) obtidas com tecnologia de posicionamento por satélite e o E-FOTO e a determinação do erro posicional.

Analisando o erro posicional planimétrico e a diferença de altitude da tabela 3.29, conclui-se que a carta topográfica possível de ser construída por procedimentos fotogramétricos será na escala 1/10.000 e com equidistância vertical de 5 m. Diante dos valores definidos no Padrão de Exatidão Cartográfica para a escala 1/10.000, a referida carta

pode ser classificada como: Classe A em relação a planimetria e Classe B em relação a altimetria.

3.3 Verificação se as medidas fotogramétricas realizadas no módulo estereoplotter versão 1.64 do E-FOTO podem ser consideradas equivalentes às realizadas com tecnologia de posicionamento por satélite.

Para verificar se as medidas fotogramétricas realizadas no módulo estereoplotter versão 1.64 do E-FOTO são equivalente as medidas com a tecnologia de posicionamento por satélites, foram selecionados 30 pontos bem definidos nas imagens, no qual foram medidos com 3 repetições e obtido suas coordenadas médias tridimensionais e seus respectivos desvios-padrão (tabela 3.27). No terreno os pontos selecionados foram ocupados e determinando-se suas respectivas coordenadas tridimensionais através do sistema de posicionamento global por satélites (tabela 3.28).

Na tabela 3.30 estão as diferenças encontradas entre as coordenadas medidas com tecnologia de posicionamento global por satélites e as coordenadas obtidas no módulo estereoplotter versão 1.64 do E-FOTO.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta \mathbf{N} (\mathbf{m})$	$\Delta \mathbf{H}(\mathbf{m})$
RUA JOSÉ TÚNULA	-1,206	3,359	-0,822
MONUMENTO	0,489	-3,364	-1,742
IV	0,574	-0,517	-1,905
IBA	0,509	-0,434	-1,170
IT	0,117	-0,886	-0,395
INCRA	1,042	1,458	3,553
GPS05	3,483	2,596	-1,475
RUA07	-0,192	4,23	2,323
GPS18	0,612	0,385	-0,823
GPS29	-0,315	1,197	1,348
RUA01	1,520	0,005	2,671
RUA CAMBUCÍ	-0,077	-0,911	1,528
P1	-1,461	-1,337	-2,830
LAGO AÇÚ	-1,393	-0,084	-2,406
GPS16	-0,780	-0,508	-2,496
IZ	0,215	-1,816	-2,496

Tabela 3.30 - As diferenças entre as coordenadas no espaço-objeto (E, N e H) obtidas com tecnologia de posicionamento por satélite e no módulo estereoplotter versão 1.64 do E-FOTO.

Cont. Tabela 3.30.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$
GPS26	0,706	-1,047	-2,792
GEOLOGIA	1,538	0,456	1,062
GPS15	0,131	-0,532	-2,187
SÃO MIGUEL	-0,735	-2,968	-0,687
RUA26	0,913	1,886	1,466
CNA	1,607	1,461	1,303
PESAGRO	0,146	-0,091	-1,937
ICHS	-1,247	-0,305	-1,343
CFC	0,355	0,654	-0,017
GELADEIRA	-0,458	-0,737	-0,533
GPS28	-0,536	-0,478	0,332
GPS20	-0,516	1,88	1,079
GPS11	0,114	-1,741	-1,844
GPS25	-0,728	-0,122	-2,579
\overline{d}	0,148	0,056	-0,527
$S_{\overline{d}}$	0,193	0,307	0,329

Conclui-se com nível de significância de 5%, que as coordenadas no espaço-objeto dos pontos de verificação obtidas no módulo estereoplotter versão 1.64 do E-FOTO são equivalentes às coordenadas obtidas com tecnologia de posicionamento global por satélites. A tabela 3.31 apresenta o resultado do teste.

	ΔE (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$			
\overline{d}	0,148	0,056	-0,527			
$S_{\overline{d}}$	0,193	0,307	0,329			
t_x	0,767	0,182	1,602			
$t_{(n-1,1-\alpha/2)} = 2,045$						

Tabela 3.31 - Resultado do teste t de Student. ΔE (m) ΔN (m) ΔH (m)

3.4 Avaliação das metodologias utilizadas para a obtenção das coordenadas dos pontos de verificação no espaço-objeto, utilizando o módulo estereoplotter versão 1.64 do E-FOTO e o software LPS.

As leituras médias no espaço-imagem (coluna e linha) dos pontos de verificação realizadas no estereoplotter versão 1.64 do E-FOTO, foram introduzidas no software LPS para a determinação das coordenadas dos pontos de verificação no espaço-objeto.

Deseja-se saber se as metodologias na determinação das coordenadas no espaço-objeto dos pontos de verificação obtidas no módulo estereoplotter versão 1.64 do E-FOTO e as obtidas com software LPS são equivalentes com nível de significância de 5%. Na tabela 4.27 estão as coordenadas no espaço-objeto dos pontos de verificação determinados no módulo estereoplotter versão 1.64 do E-FOTO. Na tabela 3.32 as coordenadas dos pontos de verificação determinados com o LPS.

Bonto	E (m)	N (m)	U (m)
Folito	E (III)		п (ш)
RUA JOSÉ TÚNULA	633893,072	7484182,882	36,631
MONUMENTO	634494,373	7482033,313	34,929
IV	634521,565	7482701,339	33,704
IBA	635631,487	7482406,876	33,632
IT	634915,195	7480643,666	17,581
INCRA	637150,835	7480640,300	17,324
GPS05	631570,644	7480352,281	22,802
RUA07	633019,733	7483884,553	43,260
GPS18	634709,777	7486894,625	29,329
GPS29	627336,595	7480238,051	39,162
RUA01	632775,663	7484473,666	37,923
RUA CAMBUCÍ	633959,756	7483717,811	53,924
P1	634710,248	7482150,906	28,844
LAGO AÇÚ	633891,910	7482110,803	29,974
GPS16	636144,617	7485498,329	28,474
IZ	634783,169	7481024,708	29,010
GPS26	629067,779	7477320,181	26,404
GEOLOGIA	635255,549	7480120,372	25,356
GPS15	628971,241	7488512,419	69,037
SÃO MIGUEL	631511,405	7487906,426	41,692
RUA26	634316,566	7484471,982	41,493

Tabela 3.32 - Coordenadas no espaço-objeto dos pontos de verificação obtidos com o LPS.

Ponto	E (m)	N (m)	H (m)
CNA	633796,393	7483606,247	35,771
PESAGRO	634970,777	7482469,720	28,136
ICHS	634979,165	7481648,004	20,390
CFC	635613,949	7481824,639	23,682
GELADEIRA	636356,312	7481219,082	12,442
GPS28	628573,881	7479465,859	21,882
GPS20	633858,663	7489910,850	39,658
GPS11	627998,587	7489161,770	75,337
GPS25	634394,849	7482104,748	31,350

Cont. Tabela 3.32.

Na tabela 3.33 estão os resultados das diferenças entre as coordenadas dos pontos de verificação obtidos no software LPS e no módulo estereoplotter versão 1.64 do E - FOTO.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$
Rua José Túnula	0,181	0,208	0,048
Monumento	0,119	0,125	0,388
IV	0,003	0,084	-0,149
IBA	0,055	-0,003	-0,038
IT	0,059	0,126	-0,176
INCRA	-0,431	1,129	1,322
GPS05	0,267	-0,253	-0,057
Rua07	0,941	-0,171	0,940
GPS18	-0,096	0,605	0,870
GPS29	-0,968	0,080	-1,359
Rua01	0,128	0,055	-0,375
Rua Cambuci	-0,049	-0,005	0,043
P1	0,041	0,020	-0,273
Lago Açu	0,132	0,193	0,293
GPS16	0,042	-0,138	0,191
IZ	-0,363	0,234	0,590
GPS26	0,025	0,304	0,658
Geologia	-0,077	0,118	-0,466
GPS15	-0,231	-0,557	0,132
São Miguel	-0,547	-1,149	-0,587

Tabela 3.33 - As diferenças entre as coordenadas no espaço-objeto (E, N e H) obtidas com o LPS e no módulo estereoplotter versão 1.64 do E-FOTO.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$
Rua26	-0,303	0,245	0,391
CNA	0,190	0,329	-0,737
Pesagro	-0,062	0,059	0,227
ICHS	0,110	0,195	0,442
CFC	-0,117	0,091	-0,115
Geladeira	1,645	1,973	-4,875
GPS28	0,129	0,185	0,244
GPS20	0,250	0,219	0,217
GPS11	0,225	-0,330	0,716
GPS25	-0,379	-1,021	-2,210
\overline{d}	0,031	0,098	-0,124
$S_{\overline{d}}$	0,082	0,100	0,206

Cont. Tabela 3.33.

Conclui-se com 5% de significância que as metodologias na determinação das coordenadas no espaço-objeto dos pontos de verificação obtidas com o estereoplotter versão 1.64 do E-FOTO e com LPS são equivalentes. Na tabela 3.34 o resultado do teste.

	$\Delta \mathbf{E}$ (m)	$\Delta \mathbf{N} (\mathbf{m})$	$\Delta \mathbf{H}(\mathbf{m})$				
\overline{d}	0,031	0,098	-0,124				
$S_{\overline{d}}$	0,082	0,100	0,206				
t_x	0,378	0,980	0,602				
	$t_{(n-1,1-\alpha/2)} = 2,045$						

Tabela 4.34 - Resultado do teste *t* de Student.

3.5 **Projeto Santiago de Compostela**

3.5.1 <u>Comparação das metodologias utilizadas na determinação dos parâmetros da</u> <u>orientação interior pelo E-FOTO e o software LPS, sem autocalibração</u>.

O processamento fotogramétrico do projeto Santiago de Compostela, consistiu na realização da orientação interior no E-FOTO, obtendo-se os parâmetros da orientação interior para cada imagem que compõem o bloco. A particularidade do projeto Santiago de Campostela é a ausência do certificado de calibração da câmara, sendo necessário considerar a câmara padrão. Nas tabelas 3.35 e 3.36 estão as coordenadas das marcas fiduciais no sistema analógico (câmara padrão) e suas respectivas medidas no espaço-imagem para cada fotografia no módulo de orientação interior do E-FOTO.

Tabela 3.35 - Coordenadas da marcas fiduciais no sistema fotogramétrico analógico (câmara padrão) e suas respectivas medidas no espaço-imagem para as fotografias 41705, 41706 e 41707 no módulo de orientação interior do E-EOTO

	41700 C 41707 no modulo de orientação michor do E-1010.								
Coordenadas das Marcas			Coord	enadas das	s Marcas Fi	iduciais m	edidas par	a cada	
Fiduciais	em milíme	tros			fotografia	em pixel			
			Fotograf	ia 41705	Fotograf	ïa 41706	Fotograf	ia 41707	
Marca Fiducial	x (mm)	y (mm)	Coluna	linha	Coluna	linha	coluna	linha	
1	115.0	0.0	11459	5607	11476	5613	11573	5561	
2	-115.0	0.0	753	5706	766	5659	864	5718	
3	0.0	115.0	6051	303	6093	274	6146	278	
4	0.0	-115.0	6141	10980	6128	10963	6292	10966	

Tabela 3.36 - Coordenadas da marcas fiduciais no sistema fotogramétrico analógico (câmara padrão) e suas respectivas medidas no espaço-imagem para as fotografias 41738, 41739 e 41740 no módulo de orientação interior do E-FOTO

Coordenadas das Marcas			Coord	enadas das	s Marcas F	iduciais m	edidas par	a cada
Fiduciais	em milíme	etros			fotografia	em pixel		
			Fotograf	ïa 41738	Fotograf	ïa 41739	Fotograf	fia 41740
Marca Fiducial	x (mm)	y (mm)	Coluna	linha	Coluna	linha	coluna	linha
1	115,0	0,0	10924	5745	10843	5634	10980	5613
2	-115,0	0,0	242	5798	175	5721	300	5679
3	0,0	115,0	5555	398	5451	311	5611	273
4	0,0	-115,0	5612	11105	5542	11008	5676	10970

Foram obtidos com a realização da orientação interior no E-FOTO, os parâmetros da orientação interior para cada imagem do bloco de fotografias do projeto Santiago de

Compostela. Na tabela 3.37 estão os parâmetros da orientação interior obtidos no E-FOTO (a0, a1, a2, b0, b1 e b2). A matriz variância covariância dos parâmetros da orientação interior ajustados encontra-se no apêndice E.

Foto	a0(mm)	a1(mm)	a2(mm)	b0(mm)	b1(mm)	b2(mm)
1705	-130,0358	0,021482	-0,000181	122,8936	-0,000199	-0,021540
1706	-130,9391	0,021475	-0,000070	121,6465	-0,000092	-0,021517
1707	-131,8834	0,021473	-0,000293	123,1074	-0,000315	-0,021515
1740	-120,7568	0,021535	-0,000131	121,8772	-0,000133	-0,021500
1739	-117,5896	0,021558	-0,000183	122,8356	-0,000175	-0,021500
1738	-119,5525	0,021531	-0,000115	124,3553	-0,000106	-0,021480

Tabela 3.37 - Parâmetros da orientação interior obtidos com o E-FOTO para cada fotografia do Proieto Santiago Compostela.

A fim de verificar se a metodologia utilizada na obtenção dos parâmetros da orientação interior com o E-FOTO é equivalente aos parâmetros obtidos com o LPS. As medidas das marcas fiduciais no espaço-imagem obtidas no módulo de orientação interior do E-FOTO, foram introduzidas no LPS para processamento. Na tabela 3.38 estão os parâmetros da orientação interior obtidos com o LPS. O relatório do processamento no LPS encontra-se no apêndice G.

Tabela 3.38 - Parâmetros da orientação interior obtidos com o LPS para cada fotografia do Projeto Santiago de Compostela.

Foto	a0(mm)	a1(mm)	a2(mm)	b0(mm)	b1(mm)	b2(mm)
41705	-130,0358	0,021482	-0,000181	122,9004	-0,000201	-0,021540
41706	-130,9391	0,021475	-0,000070	121,6465	-0,000092	-0,021517
41707	-131,8834	0,021473	-0,000293	123,1074	-0,000315	-0,021515
41740	-120,7568	0,021535	-0,000131	121,8772	-0,000133	-0,021500
41739	-117,5896	0,021558	-0,000183	122,8356	-0,000175	-0,021500
41738	-119,5525	0,021531	-0,000115	124,3553	-0,000107	-0,021481

Observa-se na tabela 3.39 que as metodologias para a obtenção de cada parâmetro da orientação interior com E-FOTO e o com o LPS, sem autocalibração, são equivalentes com nível de significância de 5%.

 $\Delta a0 (mm)$ $\Delta a1 (mm)$ $\Delta a2 (mm)$ $\Delta b0 (mm)$ $\Delta b1 (mm)$ $\Delta b2 (mm)$ 0,0000 0,000000 0,000000 0,0000 0,000000 0,000000 \overline{d} 0.0000 0,000000 0,000000 0,0000 0.000000 0.000000 Sd

Tabela 3.39 - Resultado do teste t de Student.

0.0	III. Tabela 5	57.				
	$\Delta a0 (mm)$	$\Delta a1 (mm)$	$\Delta a2 (mm)$	$\Delta b0 (mm)$	$\Delta b1 (mm)$	$\Delta b2 (mm)$
t_x	0	0	0	0	0	0
			t _{(n-1,1-0}	$_{1/2)} = 2,201$		

Cont. Tabela 3.39.

3.5.2 <u>Comparação das metodologias utilizadas na determinação dos parâmetros da</u> <u>orientação exterior pelo E-FOTO e o software LPS, sem autocalibração</u>.

Obtidos os parâmetros da orientação interior e conhecendo as coordenadas no espaçoobjeto dos pontos de controle. Foi possível obter os parâmetros da orientação exterior para as imagens do Projeto Santiago Compostela. A leitura das coordenadas dos pontos de controle no espaço-imagem no módulo da orientação exterior do E-FOTO para cada fotografia estão nas tabelas 3.40 a 3.45.

Tabela 3.40 - Identificação dos pontos de controle, suas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (linha e coluna) e analógica (mm), para fotografia 41705.

Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
PC 04	632200,520	4795866,545	457,603	3711	966	-50,493	101,347			
PC 32	635401,766	4791403,092	456,871	8612	9551	53,414	101,347			
PC 28	631820,159	4790680,967	425,180	2709	9410	-73,546	-80,336			
PC 42	636444,382	4795447,134	469,018	10696	1974	99,373	78,244			
PC 11	632092,857	4794754,836	470,890	3435	2780	-56,750	62,328			
	Número de iterações $= 4$									

Tabela 3.41 - Identificação dos pontos de controle, suas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (linha e coluna) e analógica (mm), para fotografia 41706.

Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)		
PC 13	635044,525	4794273,165	467,758	3848	3671	-48,562	42,302		
PC 32	635401,766	4791403,092	456,871	4221	8418	-40,886	-59,873		
PC 70	638600,500	4795326,399	526,198	9852	2149	80,480	74,496		
PC 56	637595,482	4790798,436	548,919	7821	9670	36,335	-87,145		
	Número de iterações $= 4$								

Tabela 3.42 - Identificação dos pontos de controle, suas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (linha e coluna) e analógica (mm), para fotografia 41707.

		F · (, , , , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,	0
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)
PC 70	638600,500	4795326,399	526,198	5260	1890	-19,489	80,784
PC 56	637595,482	4790798,436	548,919	3505	9454	-59,393	-81,401
PC 58	639699,890	4790282,274	599,42	7035	10395	16,129	-102,760
PC 48	640132,069	4792077,512	542,340	7778	7342	32,980	-37,309
		Númer	o de iteraçã	5es = 4			

Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)		
PC 32	635401,766	4791403,092	456,871	10397	2004	102,8780	77,408		
PC 28	631820,159	4790680,967	425,18	4435	2832	-25,620	60,398		
PC 80	630590,497	4786376,707	442,266	1962	9732	-79,778	-87,624		
PC 90	635818,352	4787297,339	503,893	10689	8849	108,270	-69,799		
	Número de iterações = 4								

Tabela 3.43 - Identificação dos pontos de controle, suas coordenadas no espaço-objeto (E, N e H) e <u>no espaço-imagem em pixel (linha e coluna) e analógica (mm), para fotografia 4</u>1740.

Tabela 3.44 - Identificação dos pontos de controle, suas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (linha e coluna) e analógica (mm), para fotografia 41739.

Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)		
PC 32	635401,766	4791403,092	456,871	5834	1951	7,823	79,867		
PC 56	637595,482	4790798,436	548,919	9464	3123	85,864	54,033		
PC 90	635818,352	4787297,339	503,893	6086	8784	12,002	-67,084		
PC 40	633765,596	4790251,465	446,331	3036	3677	-52,813	43,249		
	Número de iterações = 4								

Tabela 3.45 - Identificação dos pontos de controle, suas coordenadas no espaço-objeto (E, N e H) e no espaço-imagem em pixel (linha e coluna) e analógica (mm), para fotografia 41738.

	0			U	· · · ·		<u> </u>			
Id	E (m)	N (m)	H (m)	col	lin	ξ (mm)	η (mm)			
PC 32	635401,766	4791403,092	456,871	1334	2061	-91,066	79,942			
PC 58	639699,890	4790282,274	599,420	8421	4031	61,297	36,869			
PC 48	640132,069	4792077,512	542,34	9179	1068	77,957	100,435			
PC 96	640404,045	4787600,598	556,229	9469	8622	83,3361	-61,859			
	Número de iterações = 4									

Na tabela 3.46 estão os parâmetros da orientação exterior obtidos no módulo de orientação exterior da versão integrada do E-FOTO. A matriz variância covariância dos parâmetros ajustados encontra-se no apêndice F.

Tabela 3.46 - Parâmetros da orientação exterior para as fotografias do Projeto Santiago de Compostela obtidas com o E-FOTO.

Foto	X0 (m)	Y0 (m)	Z0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)			
31705	633802,261	4793119,992	4796,614	-0,005587	0,003189	0,057815			
31706	636488,415	4793147,035	4792,608	0,000771	0,003682	0,049955			
31707	639183,172	4793111,816	4803,481	-0,0041821	-0,002221	0,022582			
31740	632684,278	4789023,742	4790,092	-0,0008177	0,003312	0,072026			
31739	635365,002	4789146,930	4788,489	-0,001477	0,0042182	0,073526			
31738	638078,111	4789189,017	4788,793	0,007410	0,0038080	0,033334			

As coordenadas dos pontos de controle no espaço-imagem medida no módulo de orientação exterior do E-FOTO para cada fotografia, tabelas 3.40 a 3.45, foram introduzidas

no software LPS para a realização da fototriangulação. Na tabela 3.47 estão os parâmetros da orientação exterior obtidos no LPS. O relatório do processamento no software LPS encontrase no apêndice G.

Foto	X0 (m)	Y0 (m)	Z0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)				
31705	633801,999	4793120,412	4796,654	-0,0056	0,0031	0,0579				
31706	636488,413	4793147,033	4792,607	0,0008	0,0037	0,0500				
31707	639183,174	4793111,815	4803,481	-0,0042	-0,0022	0,0226				
31740	632684,278	4789023,743	4790,091	-0,0008	0,0033	0,0720				
31739	635365,001	4789146,935	4788,490	-0,0015	0,0042	0,0735				
31738	638078,114	4789189,017	4788,793	0,0074	0,0038	0,0333				

Tabela 3.47 - Parâmetros da orientação exterior das fotografias do Projeto Santiago de Compostela obtidos com o LPS sem autocalibração.

Os resultados obtidos foram analisados utilizando o método de inferência estatística pelo teste de hipóteses *t* de Student. Avaliou se as metodologias utilizadas pelo E-FOTO e o software LPS são equivalentes na obtenção dos parâmetros da orientação exterior com 5% de significância.

Observa-se na tabela 3.48 que as metodologias para a obtenção de cada parâmetro da orientação exterior pelo E-FOTO e o software LPS são equivalentes com 5% de significância, pois o *t* calculado de cada parâmetro é inferior ao *t* tabelado.

	$\Delta \mathbf{X0} (\mathbf{m})$	Δ Y0 (m)	$\Delta Z0 (m)$	△OMEGA (rad)	$\Delta PHI (rad)$	Δ KAPPA (rad)			
\overline{d}	-0,043	0,071	0,006	0,0000	0,0000	0,0000			
$S_{\overline{d}}$	0,107	0,171	0,016	0,0000	0,0000	0,0000			
t_{χ}	0,402	0,415	0,375	0	0	0			
	$t_{(n-1,1-\alpha/2)} = 2,571$								

Tabela 3.48 - Resultado do teste t de Student.

3.5.3 <u>Verificação da diferença entre os parâmetros da orientação interior obtida no E-FOTO,</u> para o bloco de fotografias do Projeto Santiago de Compostela com autocalibração realizada no software LPS.

O Projeto Santiago de Compostela foi criado no E-FOTO sem certificado de calibração da câmara por não estar disponível. Sendo assim, considerou-se uma câmara

padrão para o processamento fotogramétrico. Nas tabelas 3.35 e 3.36 estão as coordenadas das marcas fiduciais no sistema fotogramétrico analógico da câmara padrão. Utilizando o LPS foi realizada a autocalibração da câmara, determinando a distância focal calibrada (f=153,479 mm) e as coordenadas do ponto principal ($\xi_0 = -0,038$ mm e $\eta_0 = -0,032$ mm) no sistema analógico e pelo modelo de Jacobsen's a determinação dos parâmetros adicionais (k0, k1 e k2). Com os parâmetros de calibração da câmara determinado, foram realizadas as orientações interior e exterior no E-FOTO. Os parâmetros da orientação interior obtido está na tabela 3.49. A matriz variância covariância dos parâmetros da orientação interior obtidos com o E-FOTO encontra-se no apêndice H.

Tabela 3.49 - Parâmetros da orientação interior para as fotografias do Projeto Santiago de Compostela obtidos com o E-FOTO após autocalibração da câmara fotogramétrica realizada no LPS

Foto	a0 (mm)	a1 (mm)	a2 (mm)	b0 (mm)	b1 (mm)	b2 (mm)
41705	-130,0358	0,021482	-0,00018	122,8936	-0,000199	-0,021540
41706	-130,9391	0,021475	-0,00007	121,6465	-0,000092	-0,021517
41707	-131,8834	0,021473	-0,00029	123,1074	-0,000315	-0,021515
41740	-120,7568	0,021535	-0,00013	121,8772	-0,000133	-0,021500
41739	-117,5896	0,021558	-0,00018	122,8356	-0,000175	-0,021500
41738	-119,5525	0,021531	-0,00011	124,3553	-0,000107	-0,021481

No software LPS foram obtidos os parâmetros da orientação interior com a autocalibração. Na tabela 3.50 estão os parâmetros da autocalibração determinados com o software LPS. O relatório do processamento executado no software LPS encontra-se no apêndice J.

Tabela 3.50 - Parâmetros da orientação interior obtidos com o LPS para as fotografias do Projeto Santiago de Compostela após autocalibração da câmara fotogramétrica realizada no

Foto	a0 (mm)	a1 (mm)	a2 (mm)	b0 (mm)	b1 (mm)	b2 (mm)
41705	-130,0358	0,021482	-0,000181	122,9004	-0,000201	-0,021540
41706	-130,9391	0,021475	-0,000070	121,6465	-0,000092	-0,021517
41707	-131,8834	0,021473	-0,000293	123,1074	-0,000315	-0,021515
41740	-120,7568	0,021535	-0,000131	121,8772	-0,000133	-0,021500
41739	-117,5896	0,021558	-0,000183	122,8356	-0,000175	-0,021500
41738	-119,5525	0,021531	-0,000115	124,3553	-0,000107	-0,021481

Os resultados obtidos foram analisados utilizando o método de inferência estatística pelo teste de hipóteses *t* de Student. Avaliou se há diferença significativa na determinação dos parâmetros da orientação interior entre o E-FOTO e software LPS com 5% de significância, com a autocalibração da câmara fotogramétrica realizada no software LPS.

Observa-se na tabela 3.51 que não há diferença significativa na obtenção de cada parâmetro da orientação interior com o E-FOTO e o software LPS com 5% de significância, com a autocalibração da câmara fotogramétrica realizada no software LPS. Pois o t calculado para cada parâmetro é inferior ao *t* tabelado.

	$\Delta a0 (mm)$	$\Delta a1 (mm)$	$\Delta a2 (mm)$	$\Delta b0 (mm)$	$\Delta b1 (mm)$	Δ b2 (mm)			
\overline{d}	0,0000	0,000000	0,000000	0,0011	0,000000	0,000000			
$S_{\overline{d}}$	0,0000	0,000000	0,000000	0,0028	0,000001	0,000000			
t_{χ}	0	0	0	0,393	0	0			
	$t_{(n-1,1-\alpha/2)} = 2,571$								

Tabela 3.51 - Resultado do teste *t* de Student.

Na tabela 3.52 estão os parâmetros da orientação exterior obtidos no módulo de orientação exterior da versão integrada do E-FOTO, a partir da autocalibração realizada no software LPS. A matriz variância covariância dos parâmetros da orientação exterior obtidos no E-FOTO encontra-se no apêndice I.

Tabela 3.52 - Parâmetros da orientação exterior para as fotografias do Projeto Santiago de Compostela obtidos com o E-FOTO após autocalibração da câmara fotogramétrica realizada

	no Er S.									
Foto	X0 (m)	Y0 (m)	Z0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)				
31705	633801,211	4793119	4795,474	-0,0056	0,0032	0,0578				
31706	636487,377	4793146,1	4791,475	0,0008	0,0037	0,0500				
31707	639182,134	4793110,9	4802,342	-0,0042	-0,0022	0,0226				
31740	632683,239	4789022,8	4788,94	-0,0008	0,0033	0,0720				
31739	635363,906	4789145,9	4787,345	-0,0015	0,0042	0,0735				
31738	638077,098	4789188,1	4787,653	0,0074	0,0038	0,3330				

^{3.5.4 &}lt;u>Verificação das diferenças entre os parâmetros da orientação exterior obtida no E-</u> <u>FOTO, para o bloco de fotografias do Projeto Santiago de Compostela, com autocalibração</u> <u>realizada no software LPS</u>.

Na tabela 3.53 estão os parâmetros da orientação exterior obtidos no software LPS, com a autocalibração da câmara fotogramétrica. O relatório do processamento no software LPS encontra-se no apêndice J.

	LI S.									
Foto	X0 (m)	Y0 (m)	Z0 (m)	OMEGA (rad)	PHI (rad)	KAPPA (rad)				
31705	633800,755	4793121	4797,095	-0,0056	0,0032	0,058				
31706	636489,453	4793148	4792,632	0,0006	0,0041	0,0497				
31707	639183,452	4793112	4802,788	-0,0044	-0,0019	0,0226				
31740	632683,808	4789023	4790,502	-0,0010	0,0034	0,0719				
31739	635365,500	4789147	4788,374	-0,0016	0,0046	0,0732				
31738	638078,105	4789189	4788,655	0,0070	0,0041	0,0335				

Tabela 3.53 - Parâmetros da orientação exterior para as fotografias do Projeto Santiago de Compostela obtidos com o LPS após autocalibração da câmara fotogramétrica realizada no

Observa-se na tabela 3.54 que as metodologias para a obtenção de cada parâmetro da orientação exterior pelo E-FOTO e o software LPS são equivalentes com 5% de significância, exceto para o parâmetro Z0, onde o *t* calculado é superior ao *t* tabelado.

	$\Delta \mathbf{X0} (\mathbf{m})$	Δ Y0 (m)	$\Delta Z0 (m)$	$\Delta OMEGA (rad)$	Δ PHI (rad)	Δ KAPPA (rad)					
\overline{d}	1,018	1,039	1,136	-0,0002	0,0003	-0,0500					
$S_{\overline{d}}$	0,885	0,620	0,430	0,0001	0,0002	0,1222					
t _x	1,150	1,676	2,642	2,000	1,500	0,409					
$t_{(n-1,1-\alpha/2)} = 2,571$											

Tabela 3.54 - Resultado do teste t de Student.

3.6 Avaliação da qualidade dos resultados das medições das coordenadas no espaçoobjeto dos pontos de verificação no módulo estereoplotter versão 1.64, segundo o Padrão de Exatidão Cartográfica.

As medições fotogramétricas dos pontos de verificação foram realizadas nos 4 pares estereoscópicos formados no módulo estereoplotter versão 1.64. O algoritmo da interseção espacial, implementado no E-FOTO, permite que pontos homólogos, medidos sobre o modelo estereoscópico no espaço-imagem, possam ter suas coordenadas tridimensionais determinadas no espaço-objeto, sendo conhecidos os parâmetros das orientações interior e exterior. Foram medidos 18 pontos de verificação no espaço-imagem. A identificação dos pontos no espaço-imagem foi auxiliado pela ortofoto da região, por causa do intervalo temporal de 58 anos das

fotografias utilizadas no projeto Santiago de Compostela. Cada ponto foi medido três vezes, considerando assim o valor médio das medições como o mais provável para as coordenadas no espaço-objeto do ponto considerado, sendo determinado o desvio padrão da média das medições realizadas. A precisão das medições dos pontos de verificação no E-FOTO, foram calculadas pela fórmula (4). Na tabela 3.55 estão os valores médios das coordenadas dos pontos fotogramétricos medidos juntamente com o seu respectivo desvio padrão.

Ponto	E (m)	$\sigma_{_{\overline{x}}}$	N (m)	$\sigma_{_{\overline{x}}}$	H (m)	$\sigma_{_{\overline{x}}}$
14	634408,545	0,167	4794445,629	0,113	478,759	0,638
15	634555,989	0,169	4794254,495	0,27	467,529	0,317
17	635074,680	0,198	4793788,985	0,346	439,731	0,922
18	635109,726	0,365	4793700,274	0,057	437,478	0,558
33	635133,774	0,006	4791193,532	0,270	447,763	0,681
34	635267,676	0,604	4791056,590	0,259	451,918	0,311
35	636126,279	0,215	4790225,167	0,185	433,871	0,027
40	633764,886	0,222	4790256,632	0,401	448,379	0,979
41	633901,610	0,008	4790522,602	0,372	440,806	0,353
43	636444,164	0,359	4794980,574	0,160	446,020	0,293
53	637421,039	0,069	4790542,032	0,192	514,376	0,318
64	637228,682	0,207	4794060,118	0,262	453,102	0,861
65	636942,404	0,212	4793979,486	0,800	447,880	0,649
71	638677,624	0,238	4795151,526	0,562	534,305	0,852
85	633132,272	0,190	4788107,624	0,483	485,013	0,304
86	633593,734	0,415	4788187,789	0,249	492,372	0,579
87	634137,602	0,444	4788026,048	0,044	495,683	0,540
88	634525,272	1,890	4787975,420	1,226	502,392	0,641

Tabela 3.55 - Coordenada média dos pontos de verificação no espaço-objeto (E, N e H) medido no módulo estereoploter v1.64 do E-FOTO, com seus respectivos desvios-padrão.

As coordenadas medidas no módulo estereoplotter versão 1.64, foram comparadas com as coordenadas de terreno (verdade de campo) obtidas por tecnologia de posicionamento por satélites pela equipe técnica em Santiago de Compostela na Espanha, para classificar a carta topográfica segundo a PEC possível de ser construída. Na tabela 3.56 estão as coordenadas no espaço-objeto (E, N e H) dos pontos de verificação medidos com tecnologia de posicionamento global.
Donto	GPS				
ronto	E (m)	L (m) N (m)			
14	634409,847	4794444,435	475,100		
15	634557,265	4794253,669	465,009		
17	635074,924	4793788,056	444,301		
18	635110,259	4793699,889	440,800		
33	635136,086	4791192,046	446,378		
34	635268,976	4791055,652	454,398		
35	636128,127	4790228,004	439,246		
40	633765,596	4790251,465	446,331		
41	633902,422	4790518,100	438,336		
43	636440,294	4794970,682	460,156		
53	637422,537	4790533,912	512,192		
64	637229,044	4794055,101	451,096		
65	636942,624	4793972,508	447,630		
71	638679,244	4795151,873	533,709		
85	633134,728	4788104,992	480,270		
86	633597,793	4788184,094	485,246		
87	634144,503	4788020,662	488,928		
88	634530,614	4787970,922	495,967		

Tabela 3.56 - Coordenadas no espaço-objeto (E, N e H) dos pontos de verificação medidas com tecnologia de posicionamento por satélite.

Na tabela 3.57 estão as diferenças encontradas entre as coordenadas (E, N e H) dos pontos de verificação obtidas com tecnologia de posicionamento por satélites e as coordenadas obtidas fotogrametricamente do espaço-objeto no módulo estereoplotter versão 1.64 do E-FOTO. Para a classificação da carta foi calculado o erro posicional e as diferenças de altitude entre os pontos medidos.

r · · · · · · · ·	P			
Ponto	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$	$\mathbf{EP} = [(\Delta \mathbf{E})^2 + (\Delta \mathbf{N})^2]^{1/2}$
14	1,302	-1,194	-3,659	1,767
15	1,276	-0,826	-2,520	1,520
17	0,244	-0,929	4,570	0,961
18	0,533	-0,385	3,322	0,658
33	2,312	-1,486	-1,385	2,748
34	1,300	-0,938	2,480	1,603
35	1,848	2,837	5,375	3,386
40	0,710	-5,167	-2,048	5,216
41	0,812	-4,502	-2,470	4,575

Tabela 3.57 - As diferenças entre as coordenadas no espaço-objeto (E, N e H) obtidas com tecnologia de posicionamento por satélite e o E-FOTO e a determinação do erro posicional.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta \mathbf{N}$ (m)	$\Delta \mathbf{H} (\mathbf{m})$	$\mathbf{EP} = \left[\left(\Delta \mathbf{E} \right)^2 + \left(\Delta \mathbf{N} \right)^2 \right]^{1/2}$
43	-3,87	-9,892	14,136	10,622
53	1,498	-8,120	-2,184	8,257
64	0,362	-5,017	-2,006	5,030
65	0,220	-6,978	-0,250	6,981
71	1,620	0,347	-0,596	1,657
85	2,456	-2,632	-4,743	3,600
86	4,059	-3,695	-7,126	5,489
87	6,901	-5,386	-6,755	8,754
88	5,342	-4,498	-6,425	6,983

Cont. Tabela 3.57.

Analisando a tabela 3.57, conclui-se que a carta topográfica possível de ser construída por procedimentos fotogramétricos na escala 1/25.000 e com equidistância vertical de 10 m, pode ser classificada como: Classe A em relação a planimetria e Classe C em relação a altimetria.

3.7 Comparação das metodologias utilizadas na determinação das coordenadas no espaço-objeto dos pontos de verificação no módulo estereoplotter versão 1.64 do E-FOTO e no software LPS.

Com a média das medidas dos pontos de verificação realizadas no espaço-imagem no módulo estereoplotter versão 1.64 do E-FOTO, foram então introduzidas no LPS para a determinação das coordenadas dos pontos de verificação no espaço-objeto. Deseja-se saber se as metodologias na determinação das coordenadas dos pontos de verificação obtidas no módulo estereoplotter versão 1.64 do E-FOTO e as determinadas com o software LPS é equivalente, com 5% de significância. Na tabela 4.56 estão as coordenadas no espaço-objeto determinadas no módulo estereoplotter versão 1.64 do E-FOTO. Na tabela 3.58 estão as coordenadas no espaço-objeto dos pontos de verificação determinados com o software LPS.

Ponto	E (m)	N (m)	H (m)	
14	634408,183	4794444,581	480,486	
17	635074,298	4793788,473	439,462	
18	635109,179	4793699,549	437,834	
33	635133,782	4791192,273	447,246	

Tabela 3.58 - Coordenadas no espaço-objeto (E, N e H) dos pontos de verificação obtidas com o LPS

Cont.	Tab	ela	3.58.
-------	-----	-----	-------

Ponto	E (m)	N (m)	H (m)
34	635267,659	4791055,305	450,906
35	636127,282	4790223,214	431,690
40	633764,905	4790255,644	448,827
41	633901,383	4790521,443	440,790
43	636443,853	4794979,992	446,481
53	637421,134	4790625,091	519,302
64	637228,510	4794060,716	453,202
65	636942,134	4793979,950	447,816
71	638678,080	4795153,078	531,182
85	633132,479	4788106,675	486,389
86	633593,771	4788186,895	492,686
87	634138,111	4788024,997	495,014
88	634525,778	4787974,457	500,856

Na tabela 3.59 as diferenças entre as coordenadas dos pontos de verificação obtidos no LPS e no módulo estereoplotter versão 1.64 do E-FOTO.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$
14	-0,362	-1,048	1,727
17	-0,382	-0,512	-0,269
18	-0,547	-0,725	0,356
33	0,008	-1,259	-0,517
34	-0,017	-1,285	-1,012
35	1,003	-1,953	-2,181
40	0,019	-0,988	0,448
41	-0,227	-1,159	-0,016
43	-0,311	-0,582	0,461
53	0,095	83,059	4,926
64	-0,172	0,598	0,100
65	-0,270	0,464	-0,064
71	0,456	1,552	-3,123
85	0,207	-0,949	1,376
86	0,037	-0,894	0,314
87	0,509	-1,051	-0,669
88	0,506	-0,963	-1,536
\overline{d}	0.032	4.253	0.019

Tabela 3.59 - As diferenças entre as coordenadas obtidas com o LPS e no módulo estereoplotter versão 1.64 do E-FOTO.

Cont. Tabela 3.59.

Ponto	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{H}(\mathbf{m})$
$S_{\overline{d}}$	0,098	4,929	0,422

Conclui-se que as metodologias na determinação das coordenadas dos pontos de verificação no módulo estereoplotter versão 1.64 do E-FOTO e o software LPS são equivalentes com 5% de significância. Na tabela 3.60 o resultado do teste.

	$\Delta \mathbf{E}$ (m)	$\Delta N(m)$	$\Delta \mathbf{Z} (\mathbf{m})$	
\overline{d}	0,032	4,253	0,019	
$S_{\overline{d}}$	0,098	4,929	0,422	
t_x	0,327	0,863	0,045	
	$t_{(n-1,1-\alpha/2)} = 2,110$			

Tabela 3.60 - Resultado do teste *t* de Student.

4 CONCLUSÃO

A seguir são apresentadas as conclusões sobre os projetos RURAL e Santiago de Compostela.

4.1 Projeto Rural

As diferenças entre os resultados obtidos com as metodologias para a determinação de cada parâmetro das orientações interior e exterior, sem inclusão dos parâmetros relativos às distorções das lentes da câmara fotogramétrica, utilizada pelo E-FOTO e o LPS não são significativas em nível de 5%.

As diferenças na obtenção de cada parâmetro da orientação interior obtidas com o E-FOTO e com o software LPS, sendo que no LPS foi incluso os parâmetros relativos às distorções das lentes da câmara fotogramétrica, não são significativas em nível de 5%.

As diferenças na obtenção de cada parâmetro da orientação exterior obtidas com o E-FOTO e com o LPS, com a inclusão no LPS dos parâmetros relativos às distorções das lentes da câmara fotogramétrica, é significativa na obtenção do parâmetro Z0, em nível de 5%. Sendo assim verifica-se que o software LPS considera os parâmetros relativos às distorções das lentes da câmara fotogramétrica no cálculo do parâmetro Z0. A versão integrada 1.0β não considera no modelo matemático da ressecção espacial os parâmetros relativos às distorções das lentes da câmara fotogramétrica.

Segundo o Padrão de Exatidão Cartográfica a qualidade dos resultados obtidos nas medições fotogramétricas dos pontos de verificação no módulo estereoplotter versão 1.64 do E-FOTO, possibilita confeccionar uma carta topográfica na escala de 1/10.000 com equidistância vertical de 5 m, cuja classe é A para a planimetria e B para a altimetria.

Conclui-se com nível de significância de 5% que as coordenadas obtidas no módulo estereoplotter versão 1.64 do E-FOTO são equivalentes as coordenadas medidas com tecnologia de posicionamento por satélite.

As diferenças nos resultados obtidos com as metodologias utilizadas pelo E-FOTO e pelo LPS, sem levar em consideração os parâmetros relativos às distorções das lentes da câmara fotogramétrica no software LPS na obtenção das coordenadas dos pontos de verificação no espaço-objeto, não são significativas em nível de 5%.

4.2 **Projeto Santiago de Compostela**

As diferenças entre os resultados obtidos com as metodologias para a determinação de cada parâmetro das orientações interior e exterior, sem a autocalibração da câmara fotogramétrica realizada no LPS, utilizada pelo E-FOTO e o LPS não são significativas em nível de 5%.

As diferenças na obtenção de cada parâmetro da orientação interior obtidas com o E-FOTO e com o LPS, após a autocalibração da câmara fotogramétrica no LPS, não são significativas em nível de 5%.

As diferenças na obtenção de cada parâmetro da orientação exterior obtidas com o E-FOTO e com o LPS, após a autocalibração da câmara fotogramétrica no software LPS, é significativa para o parâmetro Z0 em nível de 5%.

Segundo o Padrão de Exatidão Cartográfica a qualidade dos resultados obtidos nas medições fotogramétricas dos pontos de verificação no módulo estereoplotter versão 1.64 do E-FOTO, possibilita confeccionar uma carta topográfica na escala de 1/25.000, com eqüidistância vertical de 10 m, cuja classe é A para a planimetria e C para a altimetria.

As metodologias utilizadas pelo E-FOTO e pelo LPS na obtenção das coordenadas (E, N e H) no espaço-objeto dos pontos de verificação, não são significativas em nível de 5%.

De maneira geral pode-se concluir que:

Os resultados obtidos com a versão integrada do E-FOTO na determinação dos parâmetros das orientações interior e exterior e no cálculo das coordenadas dos pontos de verificação, quando comparados com os resultados do processamento realizado no LPS sem a inclusão dos parâmetros relativos às distorções das lentes da câmara fotogramétrica e sem a autocalibração da câmara fotogramétrica, não diferem significativamente, podendo-se afirmar que possuem metodologias equivalentes.

Os resultados obtidos com a versão integrada do E-FOTO na determinação dos parâmetros da orientação exterior, quando comparadas com os resultados obtidos com o LPS, levando em consideração os parâmetros relativos às distorções das lentes da câmara fotogramétrica e a autocalibração da câmara fotogramétrica, diferem significativamente na determinação do parâmetro Z0.

De acordo com o Padrão de Exatidão Cartográfica a qualidade dos resultados das medições fotogramétricas dos pontos de verificação no módulo estereoplotter versão 1.64 do E-FOTO, seria possível obter um documento cartográfico Classe A em relação à planimetria e Classe B em relação à altimetria, com equidistância vertical de 5 m na escala 1/10.000 com o

projeto Rural e Classe A em relação à planimetria e Classe C em relação à altimetria, com equidistância vertical de 10 m na escala 1/25.000 com o projeto Santiago de Compostela. A qualidade dos resultados das medições fotogramétricas realizadas no projeto Santiago de Compostela foram comprometidas pelo fato de não possuir o certificado de calibração da câmara e também por que as fotografias da região são bem antigas, dificultando significativamente a identificação dos pontos de controle e de verificação no espaço-imagem.

As coordenadas medidas fotogrametricamente no módulo estereoplotter versão 1.64 podem ser consideradas equivalentes as coordenadas obtidas com o posicionamento por satélite.

5 SUGESTÕES PARA TRABALHOS FUTUROS

A seguir são apresentadas algumas sugestões para a realização de trabalhos futuros utilizando o software livre de fotogrametria digital E-FOTO:

- Determinar a precisão relativa nas medições fotogramétricas de feições lineares (perímetro), de área e na estimativa de volumes, no módulo estereoplotter do E-FOTO;

- Avaliar a qualidade dos cálculos do módulo de fototriangulação (em desenvolvimento);

- Avaliar a qualidade dos cálculos do módulo de extração automática do MDS (em desenvolvimento);

- Avaliar a qualidade dos cálculos do módulo de ortorretificação (em desenvolvimento).

REFERÊNCIAS

ANDERSON, P. S. *Fundamentos para fotointerpretação*. Rio de Janeiro: Sociedade Brasileira de Cartografia, 1982, 129 p.

ANDRADE, J. B. Fotogrametria. 2. ed. SBEE, 2003. 274 p.

ASSAD, E. D.; SANO, E, E. *Sistema de Informações Geográficas. Aplicações na agricultura.* 2. ed. revisada e ampliada, Embrapa, Brasília, Brasil, 1998. 434p.

BITTENCOURT, A. J. Fotogrametria. Ed. SBEE, Curitiba, Brasil, 1998. 246p.

BRITO, J. L. N. S.; FILHO, L. C. T.C. *Fotogrametria Digital*. Eduerj, Rio de Janeiro, Brasil, 2007. 196p.

DELMAR, A. B. M.; GARCIA, G. J. *Princípios de Fotogrametria e Fotointerpretação*. Ed. Nobel, São Paulo, Brasil, 1986. 258p.

GONZALES, R. C.; WOODS, R. E. *Processamento de Imagens Digitais*. Ed. Edgard Blucher Ltda, São Paulo, Brasil, 2000. 509p.

IBGE. NOÇÕES BÁSICAS DE CARTOGRAFIA. Rio de Janeiro, 1999. 128p.

LILLESAND, T. M.; KIEFER, R. W. *Remote Sensing and Image Interpretation.* 4. ed. New York: John Wiley & Sons, 2000. 724p.

MANUAL OF PHOTOGRAMMETRY. American Society of Photogrammetry. 4. ed., 1980.

NOVO, E. M. L. D. M. Sensoriamento remoto: princípios e aplicações. 3. ed. revisada e ampliada, Editora Blucher, São Paulo, Brasil, 2008. 363p.

RICCI, M; PETRI, S. *Princípios de aerofotogrametria e interpretação geológica*. Companhia Editora Nacional, São Paulo, Brasil, 1965. 226p.

SCHENK, T. Digital Photogrammetry. 1. ed. Estados Unidos: TerraScience, 1999. 428p.

SILVEIRA, M. T. *VISUALIZAÇÃO E MEDIÇÃO DE IMAGENS FOTOGRAMÉTRICAS DIGITAIS*. Tese de Mestrado do Curso de Sistemas e Computação da Universidade do Estado do Rio de Janeiro. Rio de Janeiro, 2005. 157p.

TAVARES, P.E.M. e P.M. FAGUNDES. *Fotogrametria*. Universidade do Estado do Rio de Janeiro. Rio de Janeiro, 1990. 379p.

TUTORIAL DO SUBMÓDULO DE GERENCIAMENTO DE PROJETOS FOTOGRAMÉTRICOS DA VERSÃO INTEGRADA DO E-FOTO (VERSÃO EDUCACIONAL). Disponível em: (http://www.efoto.eng.uerj.br/). Acesso em: 15 ago. 2011.

TUTORIAL DO SUBMÓDULO DO ORIENTAÇÃO INTERIOR E-FOTO. Disponível em: (http://www.efoto.eng.uerj.br/). Acesso em: 15 ago. 2011.

TUTORIAL DE ORIENTAÇÃO EXTERIOR POR RESSECÇÃO ESPACIAL NO SOFTWARE LIVRE E-FOTO. Disponível em: (http://www.efoto.eng.uerj.br/). Acesso em: 15 ago. 2011.

TUTORIAL DE ESTEREOPLOTTER DO SOFTWARE LIVRE E-FOTO. Disponível em: (http://www.efoto.eng.uerj.br/). Acesso em: 15 ago. 2011.

Wolf, P. R.; Dewitt, B. A. *Elements of Photogrammetry: With Applications in GIS.* 3. ed. U.S.A.: McGraw-Hill, 2000, 607p.