4.4.7 Discussão dos resultados

As análises por equilíbrio limite e por elementos finitos forneceram resultados coerentes, compatíveis ao que realmente ocorreu no km 78 da RJ-116. A zona de ruptura passa entre a interface e o interior da camada de solo residual.

A similaridade entre os parâmetros utilizados para as duas camadas e o fato da superfície ruptura passar pela camada de solo residual, corroboram com a hipótese desta camada se comportar com um "colúvio recente". O fato de ser um solo residual muito maduro e micáceo contribui para esse comportamento.

As primeiras análises comparando os fatores de segurança previstos entre o Slide e Plaxis foram bem coerentes, apresentando fatores de segurança próximos e superfícies de ruptura semelhantes. Os fatores de segurança para ambas as seções foram próximos a 1,6 no slide e 1,8 no Plaxis. As superfícies de ruptura em ambas as seções ocorreram na camada de colúvio na região a montante da cortina atirantada.

A primeira análise por elementos finitos realizada tentou reproduzir os deslocamentos do inclinômetro I-02, ocorridos entre dezembro de 2015 e dezembro 2016 com os dados de monitoramento fornecidos em janeiro de 2017. A escolha do período se deu em função das leituras do piezômetro. Foi registrado para os piezômetros PZ-01, PZ-14 e PZ-19 uma variação de aproximadamente 5,0 m na cota piezométrica. As variações começaram em junho de 2016 e se mantiveram durante os meses seguintes, o que está indicado no relatório de monitoramento.

A escolha do inclinômetro I-02 se deu pelo tempo de instalação, pela quantidade de leituras realizadas, pelos deslocamentos mais significativos, e por caracterizar bem a superfície de ruptura ocorrida. O deslocamento acumulado máximo ocorrido para o inclinômetro I-02 foi de aproximadamente 111 mm. O deslocamento ocorrido entre dezembro de 2015 e dezembro de 2016 foi da ordem de 6 mm. Os resultados da primeira análise, previram deslocamentos na faixa de 1.49 mm.

A causa provável pode estar associada ao módulo de deformabilidade da camada de solo residual. As movimentações no meio da camada podem ter um realinhamento na estrutura do solo, rico em mica que possui estrutura lamelar,

tendendo a se alinhar no processo de cisalhamento, alterando os parâmetros de atrito e deformabilidade da camada.

A segunda análise consistiu em calibrar o modelo, variando o módulo de elasticidade da camada a fim de se obter uma melhor concordância para os deslocamentos previstos. O faixa de valores do módulo de elasticidade foi definido a partir dos resultados das sondagens realizadas na região. A maiorias das literaturas apresentam estimativas nas quais os valores de módulo de elasticidade (E) pode ser considerado de 2 a 3 vezes o valor do N_{SPT} medido em MPa.

A partir da segunda análise, verificou-se que para o valor de 40 MPa, a previsão de deslocamentos apresentou a melhor coerência para as profundidades entre 8 m e 22 m, predominantemente composta por solo residual. Para a camada de colúvio, porém, os resultados não apresentaram uma boa concordância. Os dados do inclinômetro indicam deslocamento de 6,0 mm enquanto que os valores da análise são de aproximadamente 2,16 mm.

Como era de se esperar, as análises mostraram que as deformações decrescem à medida em que se aumenta o módulo E do solo. Os valores máximos de deslocamento previsto no Plaxis são de 3,38 mm para E=25 MPa e 1,49 mm para E=60 MPa. Os resultados estão resumidos na Tabela 11 e plotados na Figura 22. Conforme justificado no item anterior, a análise se restringiu apenas à Seção F, que secciona o inclinômetro I-02. As análises realizadas para a seção E não puderam ser comparadas com as medidas de I-02 por conta da diferença da geometria da seção, embora a distribuição dos deslocamentos ao longo da profundidade apresentassem comportamento similar.

Foi analisada, também, a influência provocada pelo aumento do nível d'água nos deslocamentos do talude. As variações foram feitas gradualmente a cada metro, partindo de 5 metros até 10 metros. Verificou-se que com o aumento do nível d'água os deslocamentos também aumentam, como tem se observado pelo monitoramento. Outra constatação realizada foi que ao se plotar os deslocamentos versus nível d'agua (Figura 32), os deslocamentos medidos apresentaram uma variação na taxa de crescimento. A curva apresentou uma tendência próxima a um polinomial de segundo grau.

Considerando aspectos técnicos de desenvolvimento de projetos de controle de movimentações, os deslocamentos observados no MEF a partir do programa

Plaxis podem ser tomados como representativos para o fenômeno observado no km 78 da RJ-116.

A partir da calibração do modelo e análise realizadas para diferentes níveis piezométricos foi possível revisar os níveis de atenção estabelecidos no projeto através do programa Plaxis. As cotas piezométricas, estabelecidas no projeto, foram muito parecidas com as cotas verificadas pelo Plaxis para o nível de alerta (FS=1,5) e o nível de emergência (FS=1,2). Pode-se dizer que as análises estabelecidas no projeto foram mais conservadoras em relação às cotas obtidas pelas análises do Plaxis.

As análises foram satisfatórias, definindo a superfície de ruptura esperada e os fatores de segurança entre o Plaxis e Slide foram coerentes com FS=1,8 e 1,6 respectivamente para a primeira previsão de deslocamentos.

Os resultados mostraram a influência do N.A sobre a estabilidade do talude e a importância da drenagem na estabilidade da encosta. A presença de estruturas de contenção não é suficiente para restringir os deslocamentos de uma encosta tão extensa e com essas características geológicas e geohidrológicas. Para um controle das movimentações do talude, é indispensável a execução de um sistema de drenagem superficial, para reduzir o volume de água que infiltra, e profundo, para rebaixar o nível freático principalmente na interface solo/rocha e assim mantê-lo estável.

5. CONCLUSÃO

O presente trabalhou buscou avaliar a desempenho das estruturas de estabilização, as condições de estabilidade e a influência do sistema de drenagem de um talude localizado no Km 78 da rodovia RJ-116. O talude composto basicamente por uma camada de colúvio argiloso assente sobre uma camada de solo residual silto arenosa micácea tem apresentado um longo histórico de movimentações. Tais movimentação foram deflagradas por interferências antrópicas, associadas a condicionantes naturais como geologia propícia a movimentações, hidrologia, hidrogeologia, relevo e chuvas.

A evidente movimentação na rodovia e sua importância para a logística da cidade de Nova Friburgo exigiu que fossem executadas soluções de engenharia. As primeiras tentativas de controle das movimentações não foram eficientes, levando a um estudo mais detalhado. Novas intervenções foram executadas e hoje a encosta conta também com um sistema de monitoramento periódico e protocolos de alerta caso os níveis d'água e/ou as movimentações alcancem os níveis de atenção estimados.

Este trabalho analisou numericamente as movimentações do talude e o desempenho das estruturas de contenção com o auxílio do software Plaxis. Os resultados foram bastante satisfatórios, ficando próximo do ocorrido e esperado.

As conclusões acerca do trabalho, são as seguintes:

- A estabilidade da encosta é extremamente sensível às variações do nível d'água, como foi constato pelo monitoramento e verificado na modelagem;
- Consequentemente, os fatores de segurança sofrem grande influência das condições de saturação aos quais a encosta é submetida;
- As ações antrópicas associadas a fatores como geologia local, hidrologia e chuvas produziram uma nova condição de instabilidade bastante complexa na encosta, justificada nas sondagens pela composição mineralógica do solo residual rico em mica que associado ao início da movimentações e saturação produziram um solo residual instável com características semelhantes à de um colúvio situado em grandes profundidades;

- A proximidade dos parâmetros utilizados na análise numérica do colúvio e solo residual sustentam a hipótese de formação de um colúvio recente;
- Os programas Plaxis e Slide forneceram resultado bastantes compatíveis. A comparação entre programa de equilíbrio limite e programa de elementos finitos na obtenção foi fundamental para confiança e validação do modelo;
- Apesar dos deslocamentos relativos na camada superficial serem superiores aos previstos na análise numérica, a grandes profundidades o modelo apresentou boa concordância.

Além do monitoramento constante, é imprescindível que haja manutenção nos sistemas de drenagem superficial, profunda e do próprio monitoramento. No caso analisado por essa dissertação, fica evidente a intima relação entre o nível do lençol freático e as movimentações do talude. Situações como colmatação de barbacãs e DHP's, rompimento de inclinômetros, leituras duvidosas para inclinômetros, piezômetro e medidores de nível d'água devem receber total atenção neste caso e as medidas previstas devem ser tomadas.

SUGESTÃO PARA FUTUROS TRABALHOS

O desenvolvimento deste trabalho gerou dúvidas e questões que podem ser estudadas em futuros trabalhos, tais como:

- Dimensionamento da drenagem superficial e profunda para toda a bacia do talude de modo a reduzir o nível d'água crítico para épocas de grandes chuvas, impedindo assim novas movimentações e uma maior segurança da rodovia.
- Retirada de novas amostras para o solo residual em uma profundidade e revisão dos parâmetros para uma modelagem mais precisa desta camada.
- Novas análises numéricas comparando os resultados para outros inclinômetros.

REFERÊNCIAS

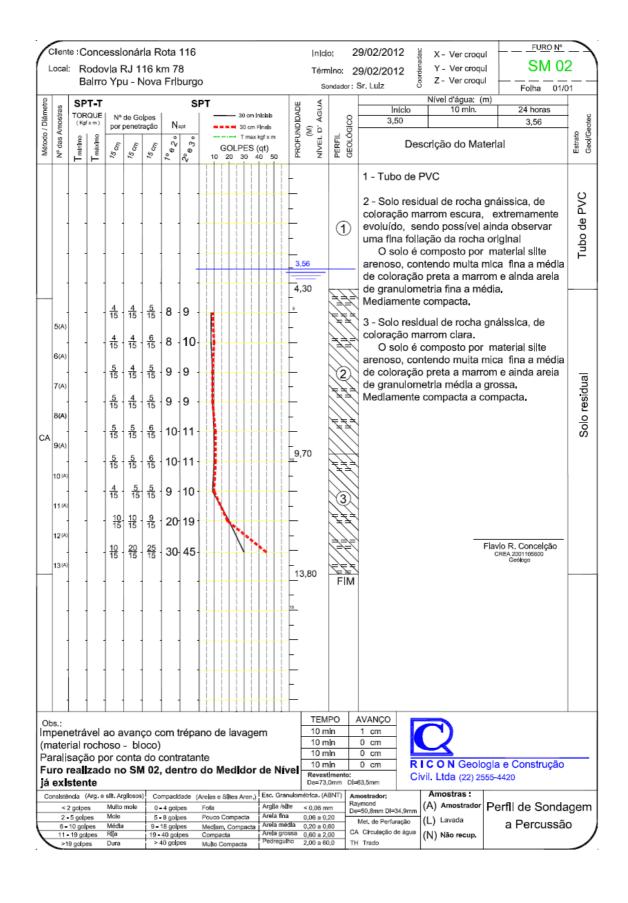
- [1] AGUILERA, C. E. T. Aplicação de Métodos de Análise de Estabilidade de Taludes de Grande Altura em Mineração. Dissertação (Mestrado em Engenharia Civil) –Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.
- [2] AUGUSTO FILHO, O. Caracterização Geológico-Geotécnica Voltada à Estabilização de Encostas: uma Proposta Metodológica. In: 1a COBRAE, Rio de Janeiro. Anais, ABMS/ABGE, v. 2, p. 721-733, 1992.
- [3] AUGUSTO FILHO, O.; VIRGILI, J. C. Estabilidade de Taludes. São Paulo: In. Oliveira, A.M.S e Brito.; S.N.A. (eds) Geologia de Engenharia. ABGE, 1998. 243 269 p.
- [4] AZAMBUJA, M.A.E. 1963, Origem, formação e composição mineralógica dos solos — Importância na pavimentação de pistas. Notas de Aula do Curso de Especialização de Pavimentação Rodoviária, Fortaleza, IDR. Boletim do DAER, p. 59-101.
- [5] BARROS, W. T., BOGOSSIAN, F. & LOPES, P. C. C., 1992, "O escorregamento do Soberbo", Publicação especial da I COBRAE, Rio de Janeiro, 14p.
- [6] BASTOS, C. A. B. Mapeamento e caracterização geomecânica das unidades geotécnicas de solos oriundos dos granitos, gnaisses e migmatitos de Porto Alegre. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, p. 155, 1991.
- [7] BASTOS, C. A. B. Mapeamento e caracterização geomecânica das unidades geotécnicas de solos oriundos dos granitos, gnaisses e migmatitos de Porto

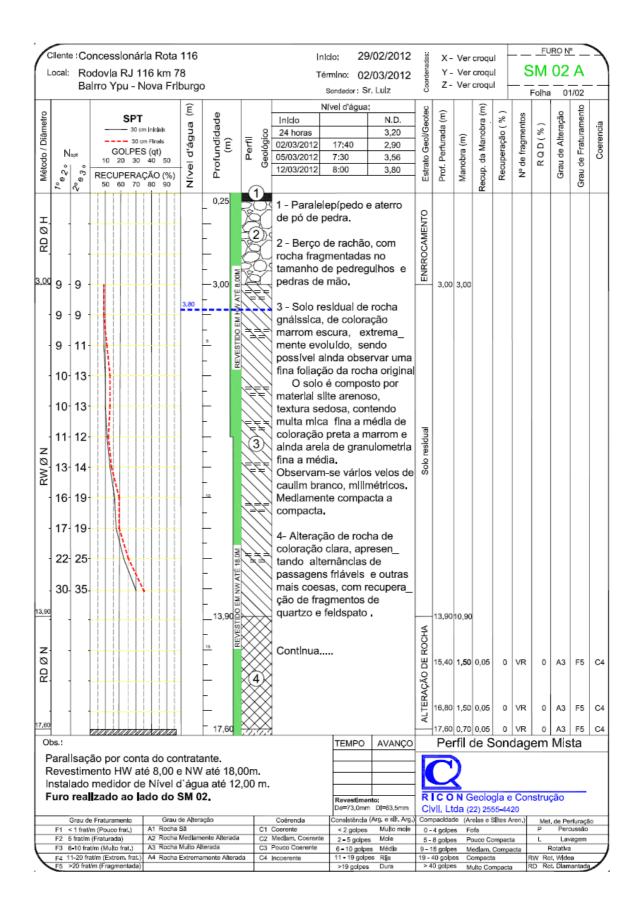
- Alegre. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, p. 155, 1991.
- [8] CLEMENTINO, R. V., 1993, "Características dos solos coluvionares e residuais de granito do escorregamento da rua Licurgo, RJ", Dissertação de Mestrado, COPPE/UFRJ.
- [9] COSTA, J. E. & BAKER, V. R., 1981, Surficial Geology: Building with the Earth.
- [10] CRUDEN, D. M.; VARNES, D. J. Landslide Types and processes. In: TURNER, A.K.; SHUSTER, R.L. (eds), Landslides Investigation and Mitigation. Transportation Research Board Special Report 247. National Research Council, Washington DC, p. 36-75, 1996.
- [11] DEERE, D. U. & PATTON, F. D., 1971, "Slope stability in residual soils", IV Pan. Am. Conf. on Soil Mech. Found. Eng., v.1, pp87-170, Puerto Rico.
- [12] DUNCAN, J.M. Closure of Discussion of "Factors of Safety and Reliability in Geotechnical Engineering", Journal of Geotechnical and Geoenvironmental Engineering, Volume 127, Number 8, pp. 717-721, 2001.
- [13] Ellen, S. D. e Fleming, R. W. (1987) Mobilization of Debris Flows from Soil Slips, San Francisco Bay Region, California. In: Debris Flows/Avalanches: Process, Recognition and Mitigation, Reviews in Engineering Geology, vol. 7, Geological Society of America, 31-40
- [14] FERNANDES, N. F. e AMARAL, C. P. do. Movimentos de massa: uma abordagem geológica - geomorfológica. In: GUERRA, A. J. T e CUNHA, S. B. (orgs.) Geomorfologia e meio ambiente. 2.ed. Rio de Janeiro: Bertrand Brasil, 1998. p.123-194.

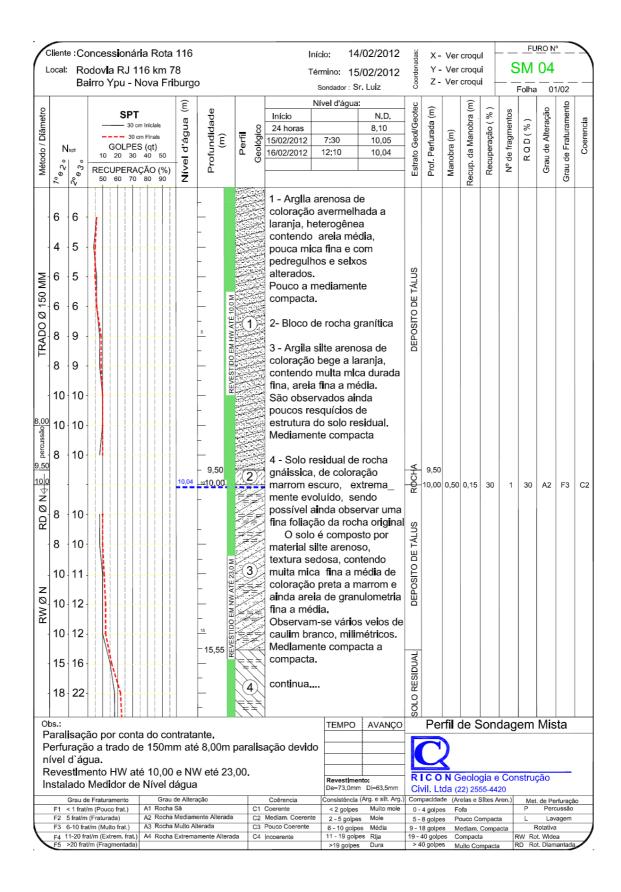
- [15] Fleming, R. W. e Johnson, A. M. (1994) Landslide in Colluvium. U. S. Geological Survey Bulletin 2059-B, 24p.
- [16] GEORIO. Manual de Encostas: Análise e Investigação. 2ª Edição., Rio de Janeiro, v. 2, 2014.
- [17] GERSCOVICH, D. M. S. Estabilidade de Taludes, Apostila do curso de mestrado em engenharia civil ênfase em Geotecnia, Rio de Janeiro, 2010.
- [18] GERSCOVICH, D. M. S. Resistencia ao Cisalhamento, Apostila do curso de mestrado em engenharia civil - ênfase em Geotecnia. Rio de Janeiro: UERJ, 2010
- [19] GONZÁLEZ DE VALLEJO, L. I.; FERRER, M.; ORTUÑO, L. & OTEO, C. (2002). Ingeniería geológica. Prentice Hall, Madrid, 715 pp.
- [20] GUIDICINI, G. E. N. C. M. Estabilidade de Taludes Naturais e de Escavação. 2ª. ed. [S.I.]: Editora da USP/Edgar Blucher, 1984. 194 p.
- [21] GUIMARÃES, F. E. B.. P, 2016, "Análise de um escorregamento ocorrido em um talude na RJ-116". Dissertação de Mestrado. Universidade do Estado do Rio de Janeiro.
- [22] HUTCHINSON, J. N. Mass movement. In: Encyclopedia of Geomorphology. Ed. Fairbidge, R. W. (2ed.). Reinhold Book Co. New York 1968
- [23] John Wiley & Sons, New York. In TURNER (1996).
- [24] LACERDA, W. A. & SANDRONI, S. S, 1985, "Movimentos de massas coluviais", Mesa Redonda sobre os Aspectos Geotécnicos de Encostas, v. único, p.III-1 a III-19. Rio de Janeiro.

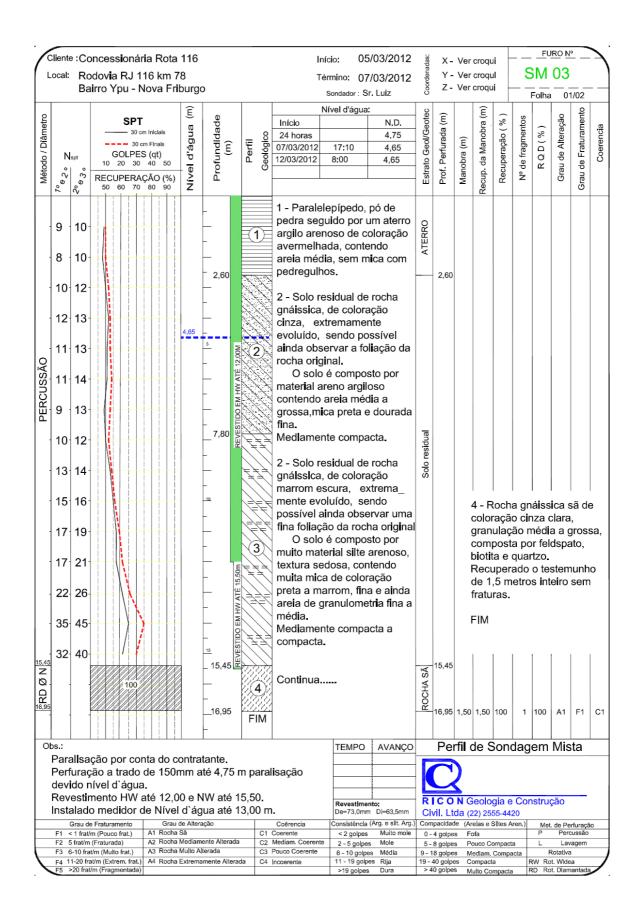
- [25] LACERDA, W. A., 2002, "Comportamento geotécnico de massas coluviais" III Simpósio de prática de Engenharia da Região Sul, GEOSUL'2002, ABMS, Joinville, p.219-231.
- [26] LACERDA, W. A., 2004, "The behavior of colluvial slopes in a tropical environment", Landslides: Evaluation and Stabilization, Lacerda, Ehrlich, Fontoura & Sayão Eds., v.2, pp.1315-1342.
- [27] LEROUEIL, S. (2001). "Natural slopes and cuts: movement and failure mechanisms". Geotechnique, Vol. 51, no 3, pp. 197-243.
- [28] MOREIRA, J. E., 1974, "Estabilidade de taludes de solos residuais de granito e de gnaisse". Dissertação de Mestrado, COPPE/UFRJ.
- [29] MOREIRA, J. E., 1974, "Estabilidade de taludes de solos residuais de granito e gnaisse". Dissertação de Mestrado, COPPE/UFRJ.
- [30] MSHANA, N. S., SUZUKI, A. & KITAZONO, Y., 1993, "Effects of weathering on stability of natural slopes in NORTH-CENTRAL KUMAMOTO", Japanese Society of Soil Mechanics and Foundation Engineering, Soils and Foundation, v.33, n. 4, p. 74-87, December.
- [31] NBR:6484, A. B. N. T. Solo Sondagens de simples reconhecimento com SPT Método de ensaio., Rio de Janeiro, 2001.
- [32] NBR-6122, A. B. N. T. Projeto e Execução de Fundações, Rio de Janeiro, p. 91, 1996.
- [33] Oliveira, A.M.S e Brito.; S.N.A. (eds) Geologia de Engenharia. ABGE, 1998. 243 269 p.

- [34] OLIVEIRA, E. P. Caracterização bio-físico-químico-mineralógica e micromorfológica de um perfil de alteração de granito-gnaisse de Curitiba, PR. Rio de Janeiro: Dissertação de Mestrado, PUC, 2006.
- [35] ORTIGÃO, J. A. R. Introdução à mecânica dos solos dos estados críticos. 2.ed. Rio de Janeiro, Livros Técnicos e Científicos, p. 378, 1995.
- [36] PENTEADO, M. M., 1978, "Fundamentos de Geomorfologia", IBGE.
- [37] PINTO, C. S. Curso básico de mecânica dos solos. São Paulo, Oficina de Textos, p. 247, 2000.
- [38] RAMOS, M. O., 1991, "Instrumentação e análise de escorregamento em solo residual ocorrido na rua Licurgo, Serra da Misericórdia (Rio de Janeiro) ", Dissertação de Mestrado, COPPE/UFRJ.
- [39] Relatório Técnico Rt-170214-03-V01 de Monitoramento de Inclinômetros e Piezômetros no km 78+800 da rodovia RJ-116 (Janeiro/2017)
- [40] RIBEIRO R. C. H.; 2008 "Aplicações De Probabilidade e Estatística em Análises Geotécnicas". Tese de Doutorado, Departamento de Engenharia Civil, PUC-Rio, Brasil.
- [41] RODRIGUES, R. 1992, Características geológicas e geotécnicas intervenientes na estabilidade de massas coluviais da Serra de Cubatão SP. Tese de Mestrado, USP/São Carlos, São Paulo, Brasil.
- [42] RODRIGUEZ, T. T.;2005 "Proposta de Classificação Geotécnica para Colúvios Brasileiros, RJ. Tese de Doutorado, COPPE/UFRJ.

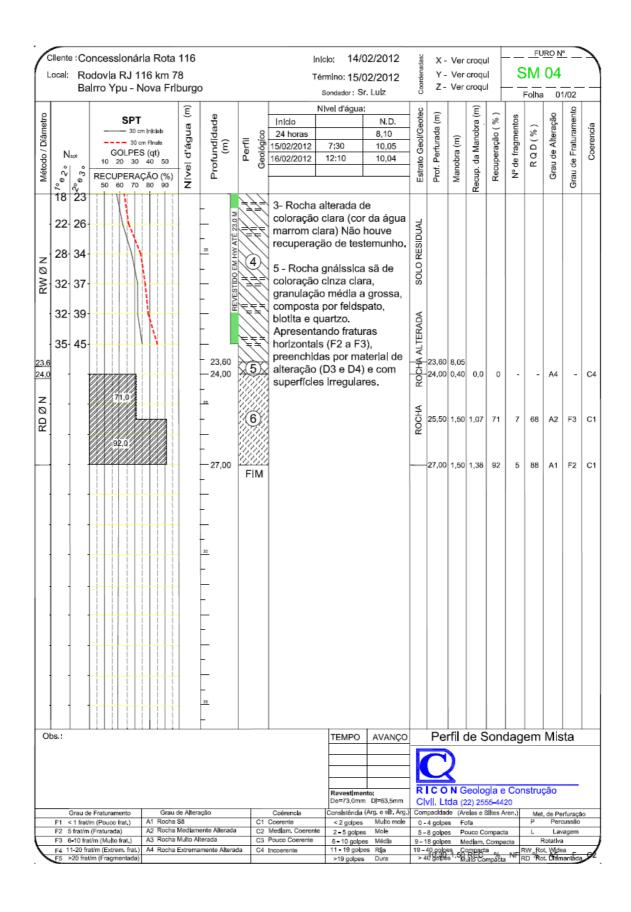

- [43] RUDDOCK, E.e., 1969 "Properties and Position in Lateritic Ground: Some Statistical Relationship", Proc. of the Speciality Session Eng. Prop. of Lat. Soils 7th Int. Conf. on Soil Mech. and Found
- [44] SALAMUNI, E.; ROCHA, L. A. & ROCHA, A. L., 1999. O Parque Nacional do Iguaçu. In: Sítios geológicos e Paleontológicos do Brasil. Schobbenhaus et al. Editores.www.unb.br/ig/sigep/sitio011/sitio011.htm
- [45] SALOMÃO, F.X.T.: ANTUNES. F.S. Solos em Pedologia in OLIVEIRA. A.M.S. BRITO. S.N.A. (Editores) Geologia de Engenharia. São Paulo: Associação Brasileira de Geologia de Engenharia. p. 87 100. 1998.
- [46] SANDRONI, S.S., 1982, "Previsão de comportamento de taludes examinados a partir de casos históricos", VII COBRAMSEF, ABMS, Recife, v. VII, p.74 a 97.
- [47] SCHILLING, G. H., 1992. "Instrumentação e análise dos movimentos da encosta do Soberbo Alto da Boa Vista RJ", Dissertação de Mestrado, COPPE/UFRJ, Rio de Janeiro
- [48] SCHNAID, F.; ODEBRECHT, E. Ensaios de campo e suas aplicações à, 2012.
 SCHNAID, F. Ensaios de Campo e Suas Aplicações à Engenharia de Fundações., São Paulo: Oficina de Textos, p. 190, 2000.
- [49] SIEIRA, A.C.C.F. (1998) "Análise do Comportamento de um Muro de Contenção Utilizando Pneus". Dissertação de Mestrado, Departamento de Engenharia Civil, PUC-Rio, Brasil, 110p.
- [50] SOARES, J. E. S & POLITANO, C. F., 1997a, "Deslizamento de massa de solo de grandes dimensões, Encosta de Piraquara", II COBRAE, ABMS, Rio de Janeiro, v.1, p. 475-484.

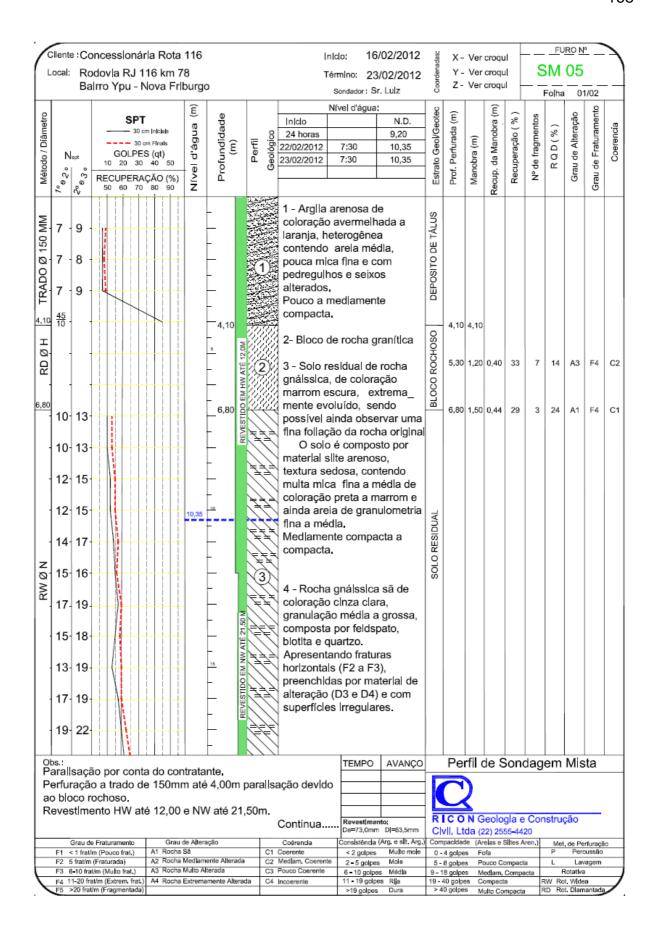

- [51] SOARES, J. E. S & POLITANO, C. F., 1997b, "Análise do comportamento do reforço de cortinas atirantadas", II COBRAE, v.2, p.719-727.
- [52] Soberbo", Publicação especial da I COBRAE, Rio de Janeiro, 14p
- [53] TURNER, A. K., 1996, "Colluvium and Talus", In: Landslides: Investigation and Mitigation, Chapter 3, Transportation Research Board, Special Report 247.
- [54] Vargas Jr, E.; Costa Filho, L. M.; Prado Campos, L. E. (1986) "A study of the relationship between the stability of slopes in residual soils and rain intensity". In Proceedings of International Symposium on Environmental Geotechnology, Bethlehem – Pennsylvania, USA, 491-500.
- [55] VARGAS, M., 1981, Introdução à mecânica dos solos. Editora McGraw Hill, São Paulo.
- [56] VARNES, D. J. Landslide Types and Processes. In: ECKEL, E.B. (eds), Highway Research Board, Special Report, v. 29, p. 20-47, 1958.
- [57] VARNES, D. J. Slope Movement and Types and Processes. In: SCHUSTER, R.L.; KRIZEK, R.J. (eds), Landslides, Analysis and Control. Transportation Research Board Special Report 176. National Academy of Sciences, Washington DC, 1978. p. 11-33.
- [58] VAZ, L. F., 1996, "Classificação genética dos solos e dos horizontes de alteração de rocha em regiões tropicais", Solos e Rochas, v.19, n.2, p.117-136.
- [59] WOLLE, C. M., 1988, Análise dos escorregamentos translacionais numa região da Serra do Mar no contexto de uma classificação de mecanismos de instabilização de encostas. Tese de D.Sc., USP, São Paulo, Brasil.

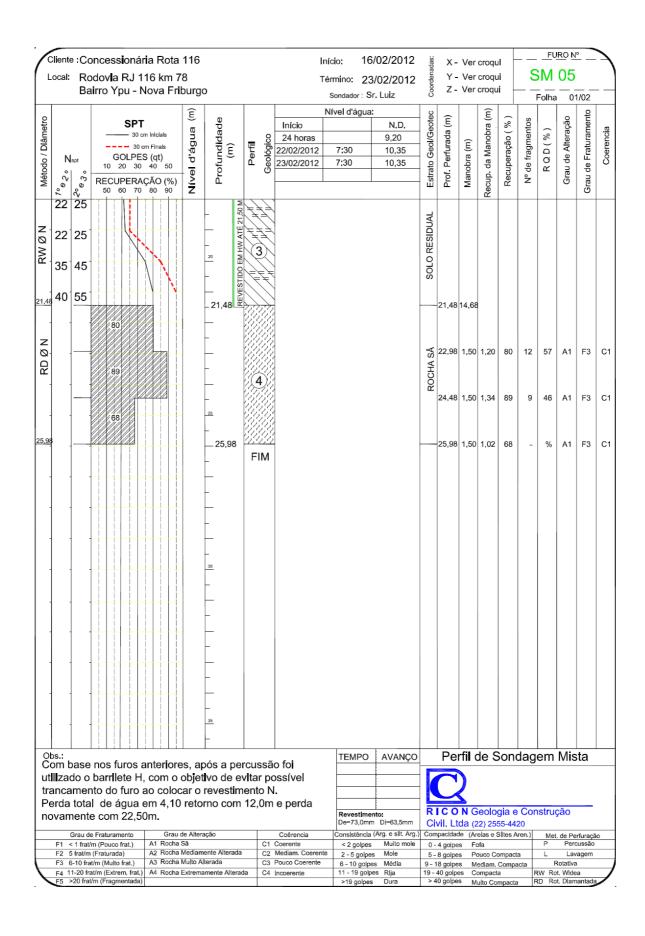

[60] ANEXOS

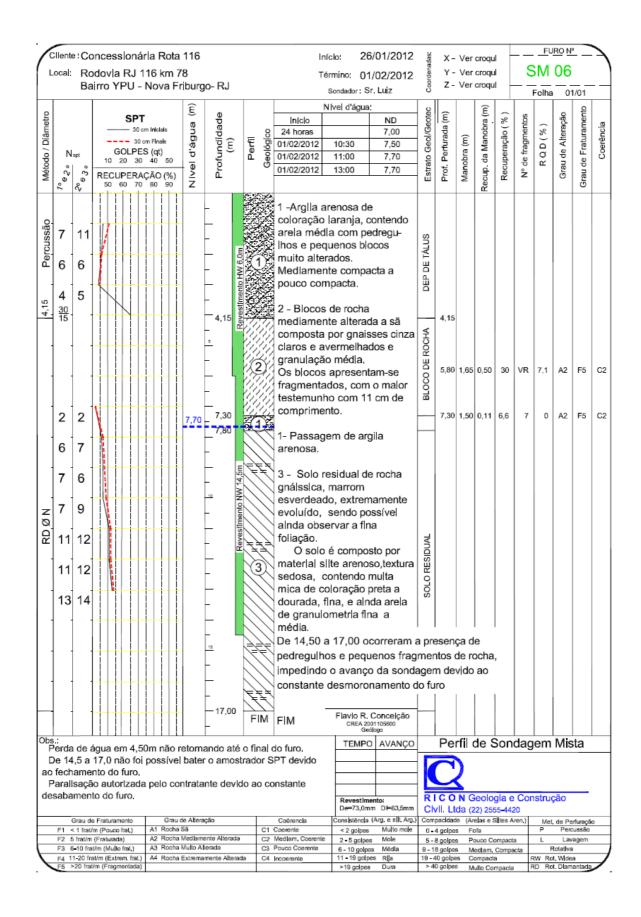


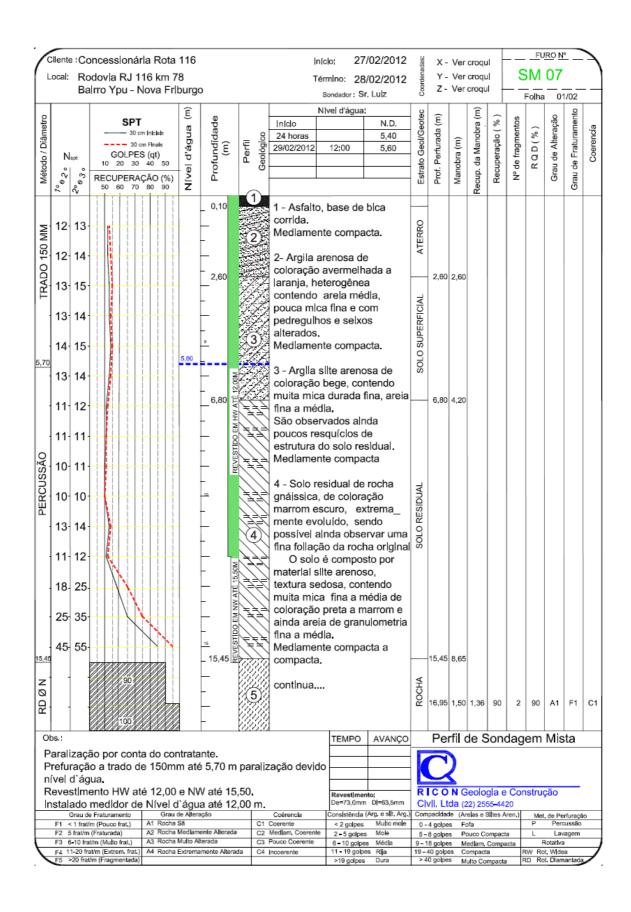
С	liente :Co	ncessionária	a Rota	116			Inío	cio: 07	/03/2012	Coordenadas:	X -	Ver	croqu	a þ		_	IRO N			
L		dov l a RJ 110					Término: 09/03/2012					′ - Ver croqui ′ - Ver croqui			SM 01					
	Ва	irro Ypu - No	ova Fri	burgo)			Sondador : Sr	. Luiz	Š	Z -	Ver	croqu	1		Folha	0	1/02		
				Œ	(D)			ível d'água:		fec	<u>(</u>		Œ		s		0	nto		
Consider Consider		SPT —— 30 cm l	Inicials		Profundidade (m)		Início 24 horas		N.D.	Estrato Geol/Geotec	Prof. Perfurada (m)		Recup. da Manobra (m)	Recuperação (%	N° de fragmentos	(%	Grau de Alteração	Grau de Fraturamento		
2		30 cm		ágı	indic (m)	Perfi l Geológico	Início			Jeol/	fura	Manobra (m)	Manc	ação	agm	QD(%)	Alte	ratur		
3	Nspt	GOLPES 10 20 30 4		<u>0</u>))	Seol Pe	Início			g g	Per	obra	dal	l per	de fr	S O	n de	Je Fi		
	7° 62° 8° 63°	RECUPERAÇÃ		Nível d'água	P					Estra	Prof	Man	cnb.	Rec	ž		Gra	ran		
4	% %	50 60 70 8	80 90	Z		z(6)z							_						ļ	
	FIM 6			6 - Rocha (coloração (granulação	c i nza clar	a,		1,60	1,60	1,60	100	1	100	A1	F1					
					20	1	composta blotlta e qu testemunh	oor feldsp artzo. O	oato,											
					-		inteiro, sen 1,60m													
2					_		Fim													
:					_															
					25															
1					_															
					_															
1					30															
					35															
					-															
)b	os.:				ı		I	ТЕМРО	AVANÇO		Pe	rfil o	de S	Son	dag	em	Mis	ta	_	
								Revestimer	nto:	R	C O	N G	eolo	gia e	Cor	stru	ção			
_	Grau d	e Fraturamento	Grau	de Altera	ação		Coêrencia	De=73,0mm	Di=63,5mm (Arg. e sllt. Arg.)	Ci	vil. Lt pacidad	da (2	22) 25	55-44	20		. de Pe	rfurac*	ăc	
_	F1 < 1 frat/	m (Pouco frat.)	A1 Rocha	Sã	ente Alterada		Coerente	< 2 golpes	Muito mole	0 -	4 golpe	s Fo	ofa			Р	Perd	cussão		
_		t/m (Multo frat.)	A2 Rocha A3 Rocha				Mediam. Coerente Pouco Coerente	2 - 5 golpes 6 - 10 golpe			8 golpe 8 golpe		ouco Ci edlam.		acta		Rotativa		_	
_	F4 11-20 fra	nt/m (Extrem, frat,) // m (Fragmentada)	A4 Rocha	Extrema	mente Altera	da C4	Incoerente	11 - 19 golpe >19 golpes			40 golp		ompact				t. Wlde			

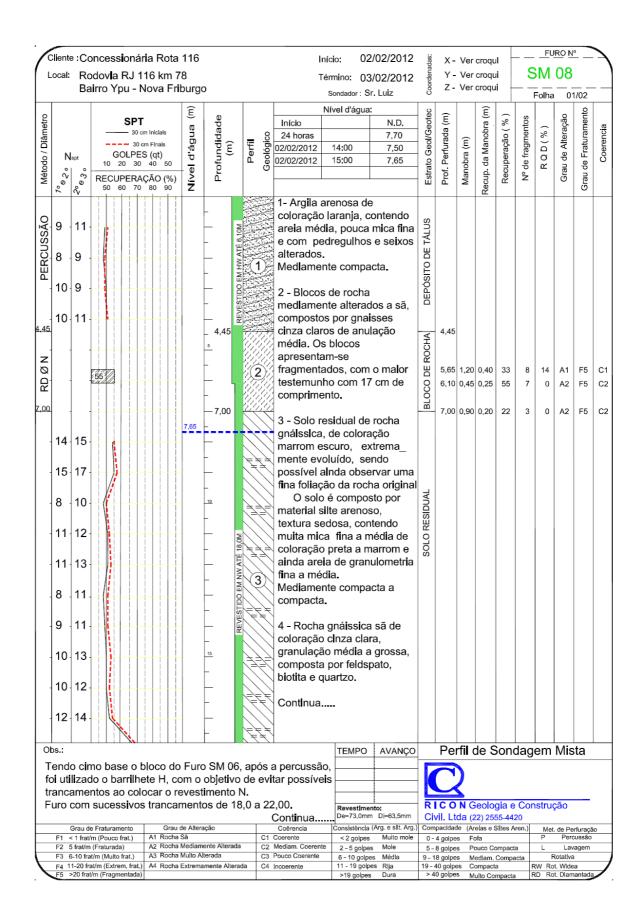


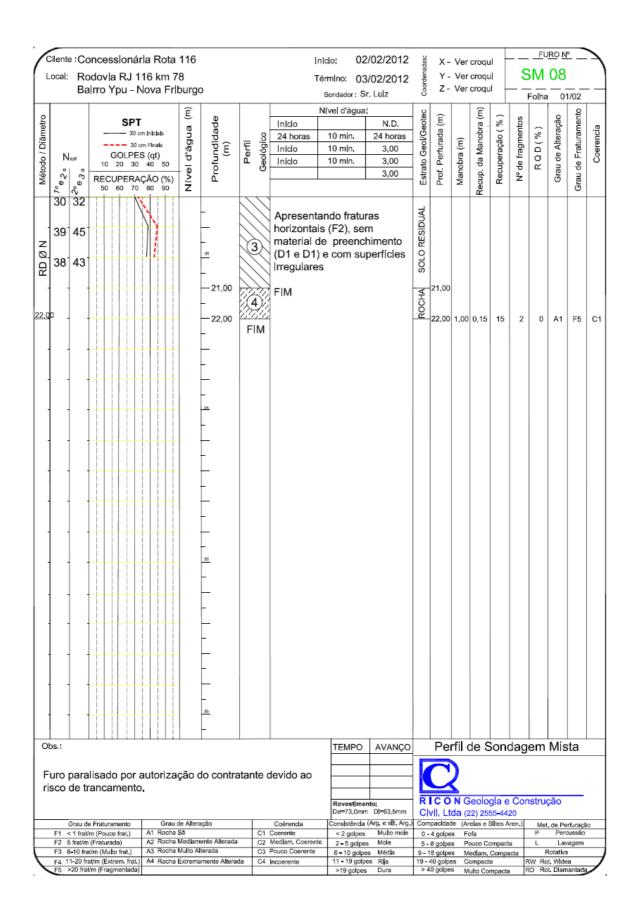


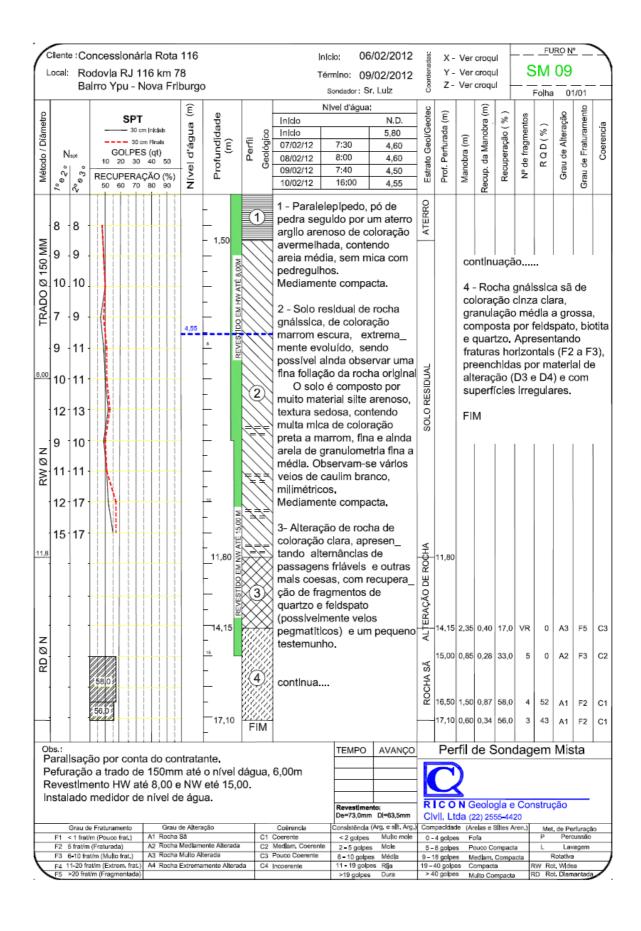


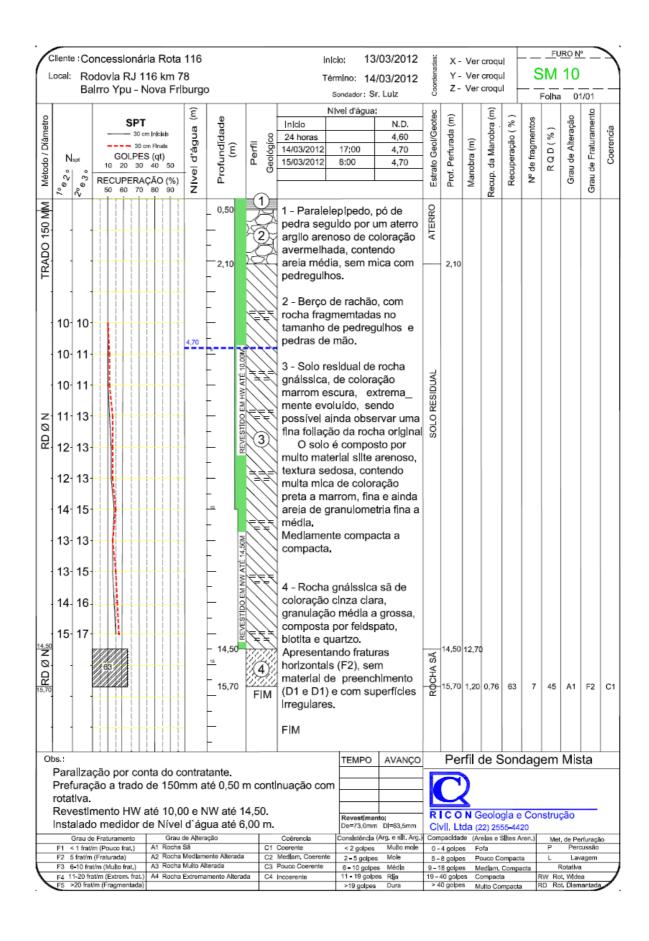


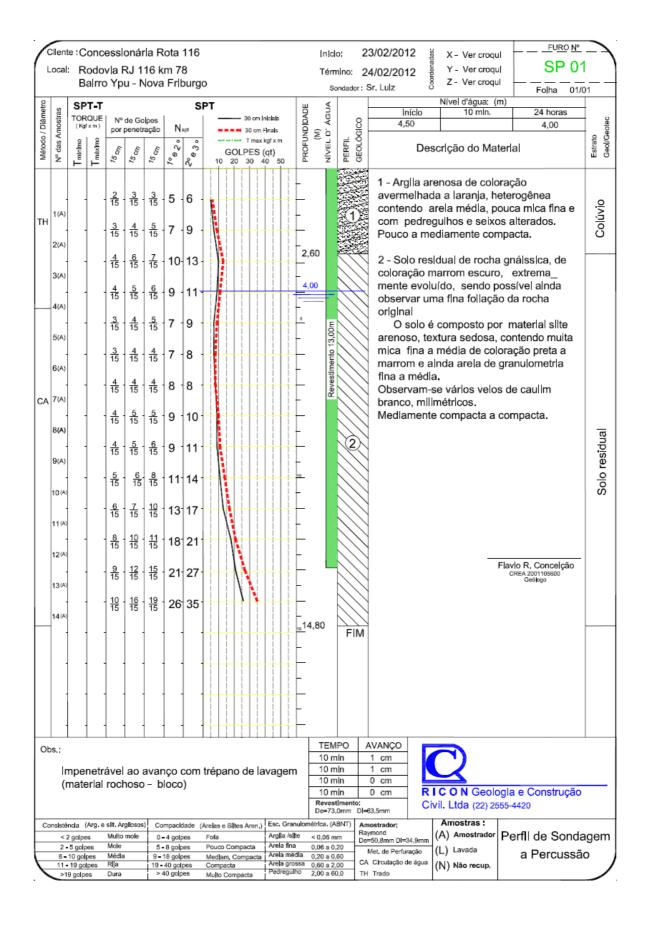

C	liente	:Co	ncess i oná	ria Rota	116			Inío	io: 29	0/02/2012	das:	X -	Ver	croqu	ս է			RO N		
L	ocal:		dov l a RJ 1					Tér	mino: 02	2/03/2012	Coordenadas:	Υ -		croqu		S	M	02	Α	
		Ва	irro Ypu - N	Nova Fri	burg	D		5	Sondador : S	r. Lu i z	8	Z -	Ver	croqu	"		olha	01	/02	
					Œ			Ni	vel d'água	:	ွ			Ê					9	Г
Metodo / Dialifetio			SPT			Profundidade (m)		Início		N.D.	Estrato Geol/Geotec	Prof. Perfurada (m)		ora ((%)	de fragmentos	_	Grau de Alteração	Grau de Fraturamento	١.
<u> </u>				m Inicials cm Finals	d'água	dida (Perfil Geológico	24 horas	17.40	3,20	9/0	Irad	Ê	anot	ção	gme	QD(%)	Alter	tura	
5	N	spt	GOLPE	S (qt)	d'á	und i (m)	Perfil eológic	02/03/2012 05/03/2012	17:40 7:30	2,90 3,56	Ge	erfu	ıa (ı	a M	eraç	frag	ΩD	de A	Fra	l.
3			10 20 30	40 50	Nive	rof	_	12/03/2012	8:00	3,80	trate	, F	Manobra (m)	р.	Recuperação (%	N° de	ď	rau	n de	
2	70,620	% % % %	RECUPERA 50 60 70	80 90	ź	ш.		1		-	ш	4	ž	Recup. da Manobra (m)	ď	_		0	Gra	
200			96			- - - 19,10	(5),	5 - Rocha ç			ROCHA	19,10	1.50	1 44	96	7	82	A1	F2	
						20	FIM	coloração o granulação composta p	média a	grossa,		10,10	1,00	1,44		,	02	7.1		
						_		blotlta e qu	artzo.											
	1					_		Apresentar horizontais	(F2 a F3	3),										
	-	-						preenchida alteração (l	D3 e D4)	e com										
		-				E		superfícies	ırregula	res.										
								F i m												
						-														
1		-				25														
1	-			-		-														
						Ĺ														
						-														
1	-	-		++++		-														
						-														
1	1	-				-														l
						-														l
1	-	-		++++	-	30														l
						-														l
1	-	-				H														l
ı				1111		-														l
1	1	-		1111	1	-														l
l						-														l
1	1	-		1111																l
l				1111																l
1	1																			l
l				1111		35														l
1	1																			
) b	s.:								ТЕМРО	AVANÇO		Pe	rfil o	de S	Sono	dag	em	Mis	ta	L
)							
									Baur - Mr.		R	I C O	N G	eolo	gia e	Con	stru	cão		
					4- 87					n Dj=63,5mm	Ci	vil. Lt	da (2	22) 25	55-442	20				
			Fraturamento n (Pouco frat.)	A1 Rocha				Coerente	Consistência < 2 golpes	(Arg. e sllt. Arg.) Muito mole	_	pacidad 4 golpe		elas e s ofa	sites A	ren.)	Met P	de Pe	rfuraçã ussão	io
	F2 5	frat/m	(Fraturada)	A2 Rocha A3 Rocha		ente Alterada Iterada		Mediam. Coerente Pouco Coerente	2 - 5 golpe	s Mole	5 -	8 golpe	s Po	ouco Co			L		agem	_
	F4 1	1-20 fra	/m (Multo frat.) t/m (Extrem, frat.)			amente Alterad		Incoerente	6 - 10 golpe 11 - 19 golp		19 -	18 golpe 40 golpe	es C	edlam. ompact		R	W Ro	Rotativa t. Wide	a	_
-	E5 >	20 frat	m (Fragmentada)	1			-		>19 golpes			0 golpe		ulto Co			D Ro			_

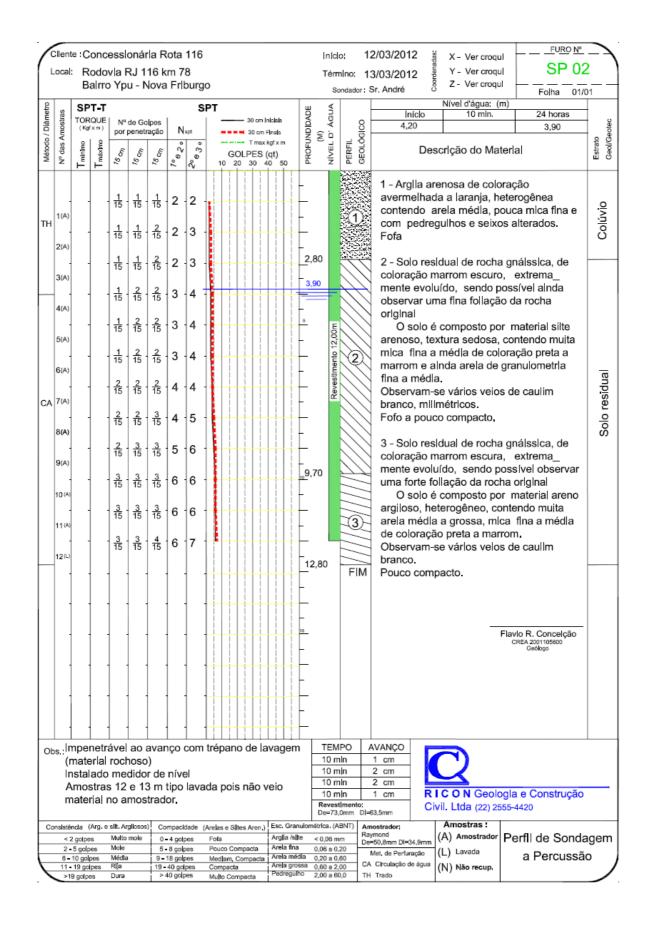


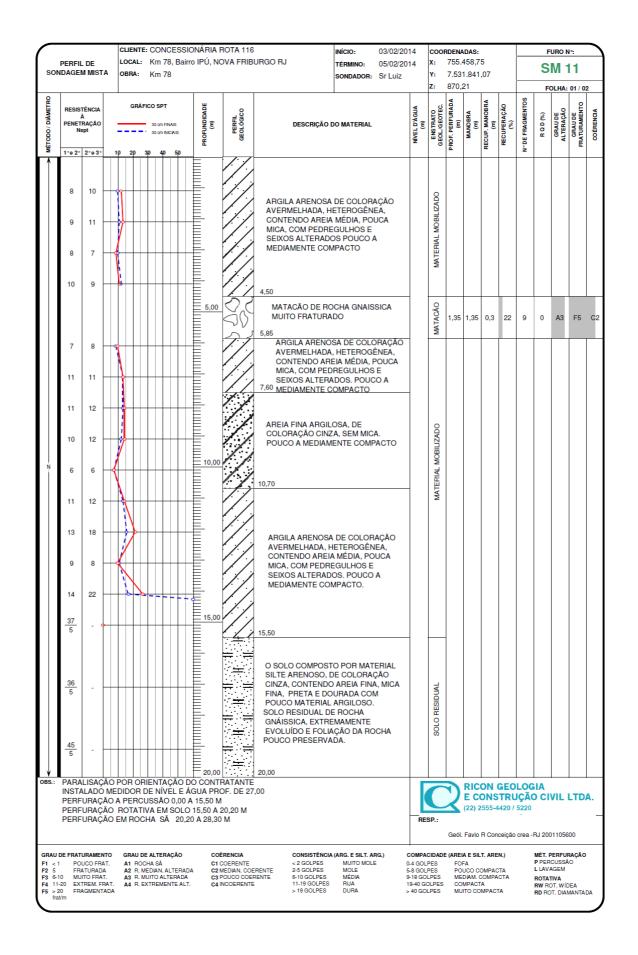


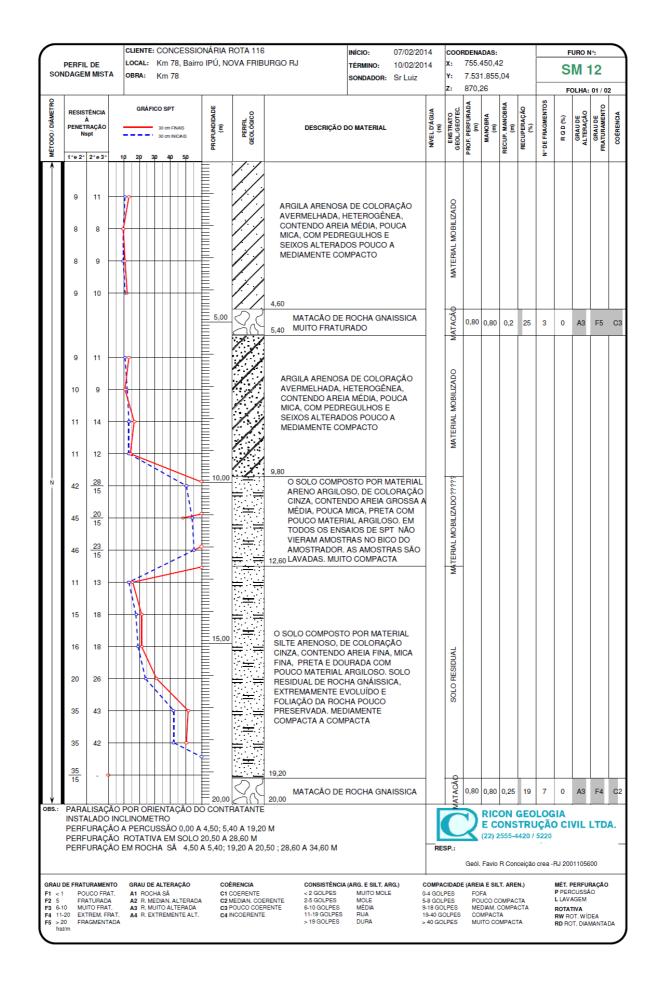


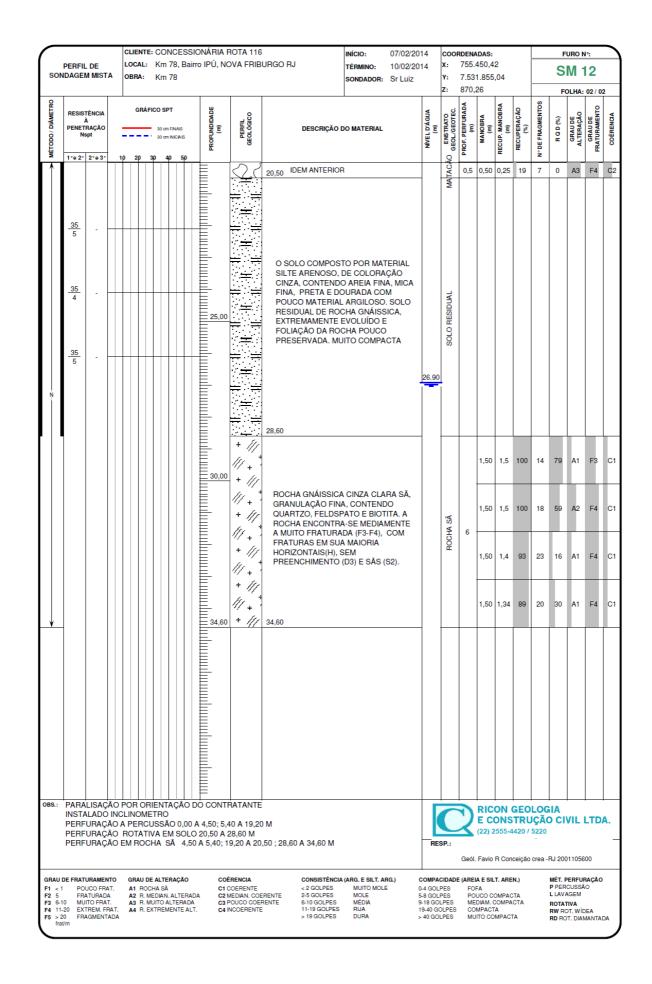


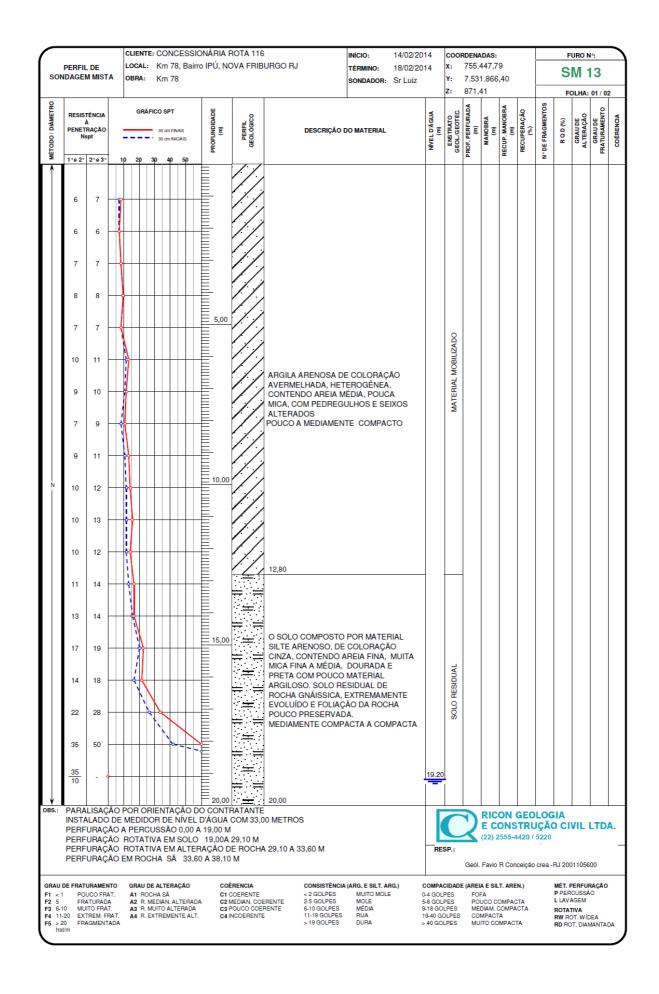

$\overline{}$		ouovia rsj. i	116 km 7	'8					7/02/2012	Coordenadas:			croqu				07		_
0	В	alrro Ypu - I)			Sondador: S		Coor	Z-	Ver	croqu	ı -		Folha		1/02	
0				Œ)			N	lvel d'água	<u> </u>	o			Ē						
힐		SPT			Profundīdade (m)					Estrato Geol/Geotec	Prof. Perfurada (m)		Recup. da Manobra (m)	(%)	utos	_	Grau de Alteração	Grau de Fraturamento	.05
Método / Diâmetro			om Inicials om Finals	Nível d'água	رة القرار	<u>≡</u> 86				1 8	rade	Ē	anot	Recuperação (%)	N° de fragmentos	QD(%)	Altera	tura	Coerencia
9	Nspt	GOLPE	S (qt)	ا م <u>ّ</u>	(m)	Perfil Geológico				98	erfu	ora (ω W	era	Į ja	a	de A	Fra	Se
étoc	° °	10 20 30 RECUPERA		<u>e</u>	Jo C	_ ŏ				strat	ē	Manobra (m)	d.	ecur	9	œ	Jran	a de	
≥ ,	% % % % & 3°	50 60 70	80 90	Έ	-					Ü	ď	≥	Recu	<u>~</u>	-		0	Gre	
z		100	0000			333				4	18.45	1.50	1,50	100	4	100	A1	F1	C1
Ø			<u> </u>			(5)	1			ROCHA	10,40	1,50	1,50	100	-	100	\ \ \ \ \ \		"
윤					_	370	1			×									
\dashv					20 19,75	95959	1			-	19,75	1,30	0,80	61	6	40	A2	F3	C2
					_	FIM													
	1				_														
					-														
-	4	<u> </u>	<u> </u>		_														
					-														
-	-				_														
					-														
-	4	11111			_														
					-														
-	-				25														
					-														
-	4	<u> </u>	1-1-1-1		_														
					-														
-	-				_														
					-														
-	+			+ +	_														
					-														
-	+			+ +	-														
					-														
-	+			+ +	30														
					-														
-	-			-	-														
					-														
+	+			-	_														
					-														
+	+	11111			-														
					-														
+	+			1 1	-														
					-														
+	+			+ +	35														
					-														
Obs	S. !							TEMPO	AVANÇO	_	Pe	rfil (de S	Sono	dag	em	Mis	ta	
											$\overline{}$	•							
												2							
								Revestime			IC O					stru	ção		
	Grau	de Fraturamento	Grau	de Altera	ção		Coêrencia		n DI=63,5mm (Arg. e sllt. Arg.)		vII, Li npacida					Met	, de Pe	rfurana	io.
	F1 < 1 fra	t/m (Pouco frat.)	A1 Rocha	Sã			Coerente	< 2 golpes	Multo mole	0 -	4 golpe	s F	ofa			Р	Perd	ussão	
		n (Fraturada) at/m (Multo frat.)	A2 Rocha A3 Rocha		ente Alterada erada		Mediam, Coerente Pouco Coerente	2 - 5 golpe 6 - 10 golpe			- 8 golpe 18 golpe			ompact Compa		L	Lav Rotativa	agem	
$\overline{}$	F4 11-20	rat/m (Extrem. frat. at/m (Fragmentada		Extrema	mente Alterad		Incoerente	11 - 19 golp >19 golpes	es Rija	19 -	40 golp 40 golpe	es C	ompact		F	RW Ro	t, Wide	a	

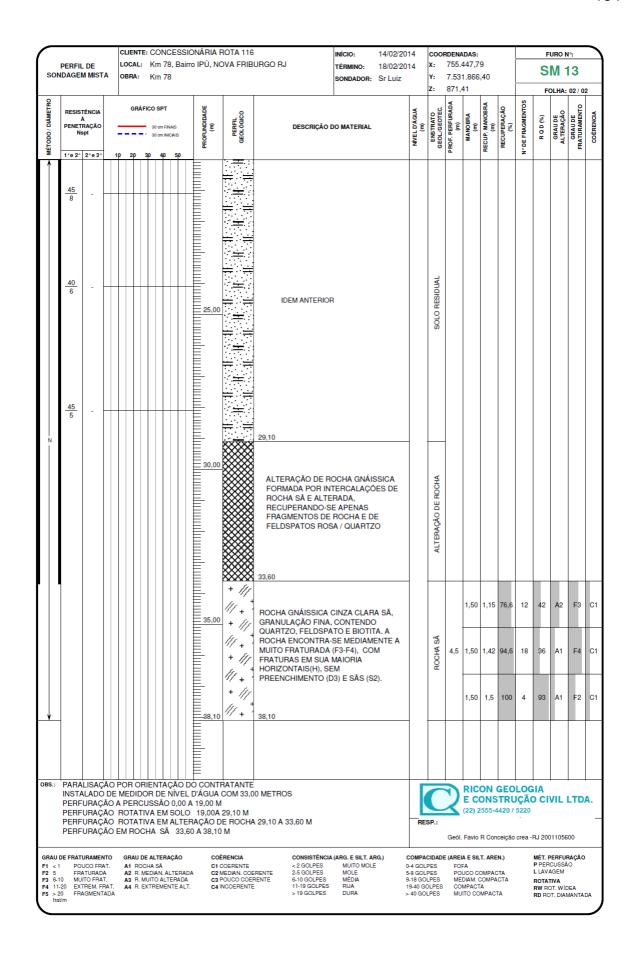


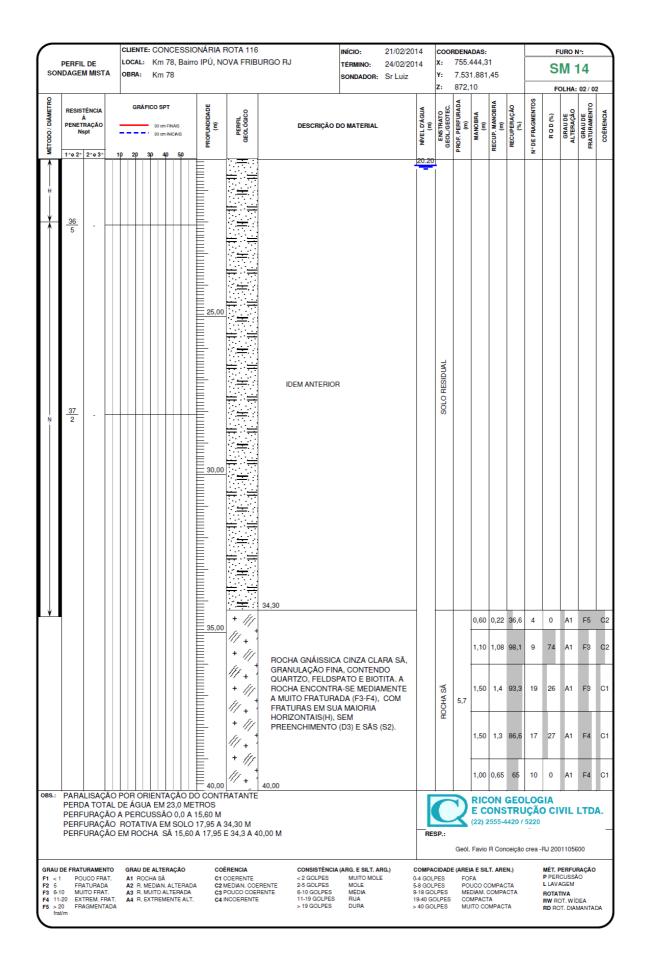


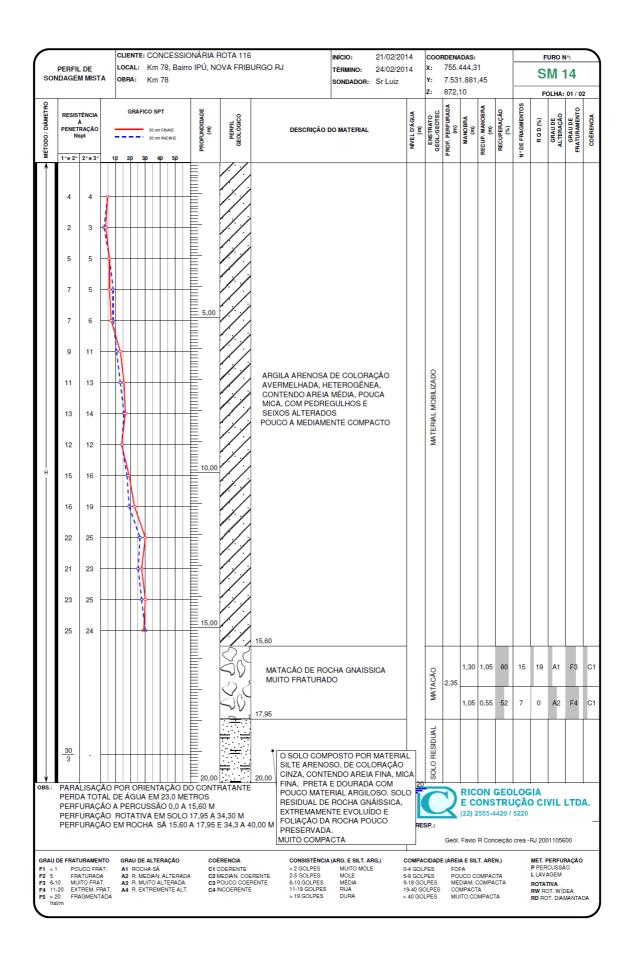


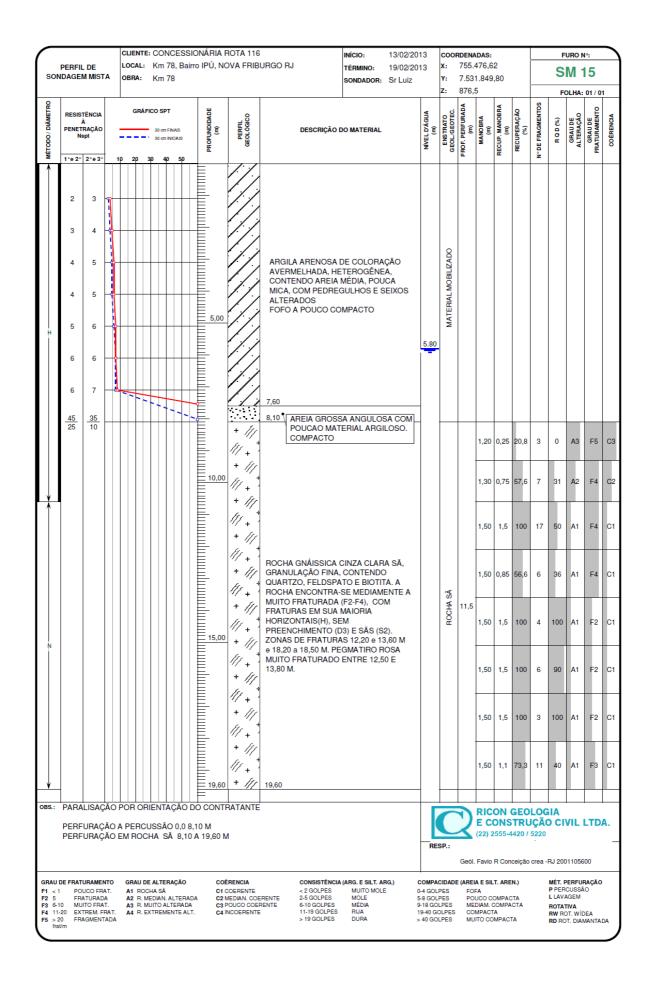


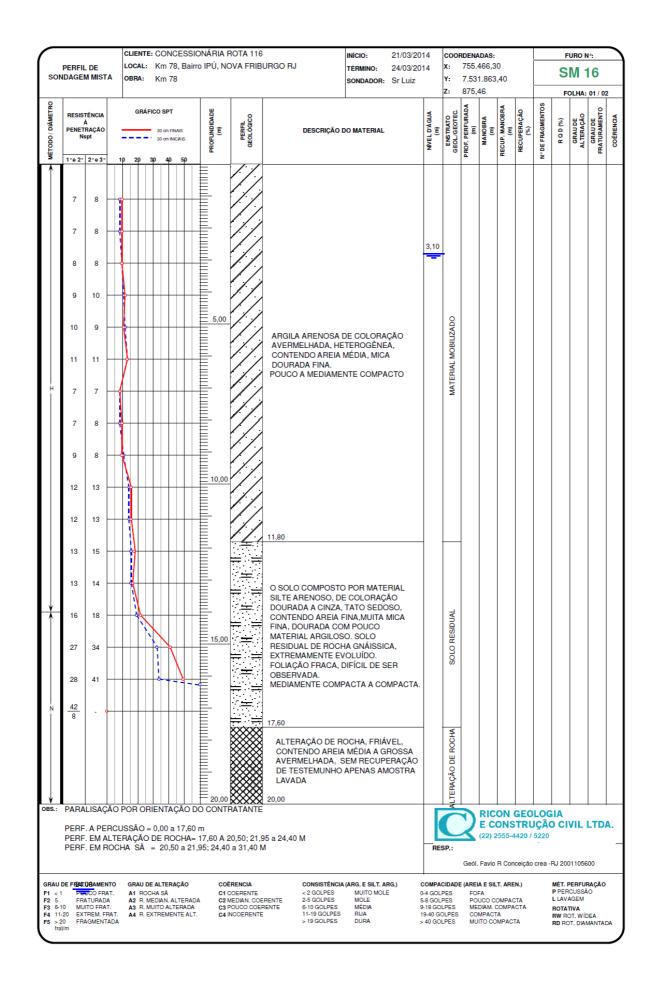


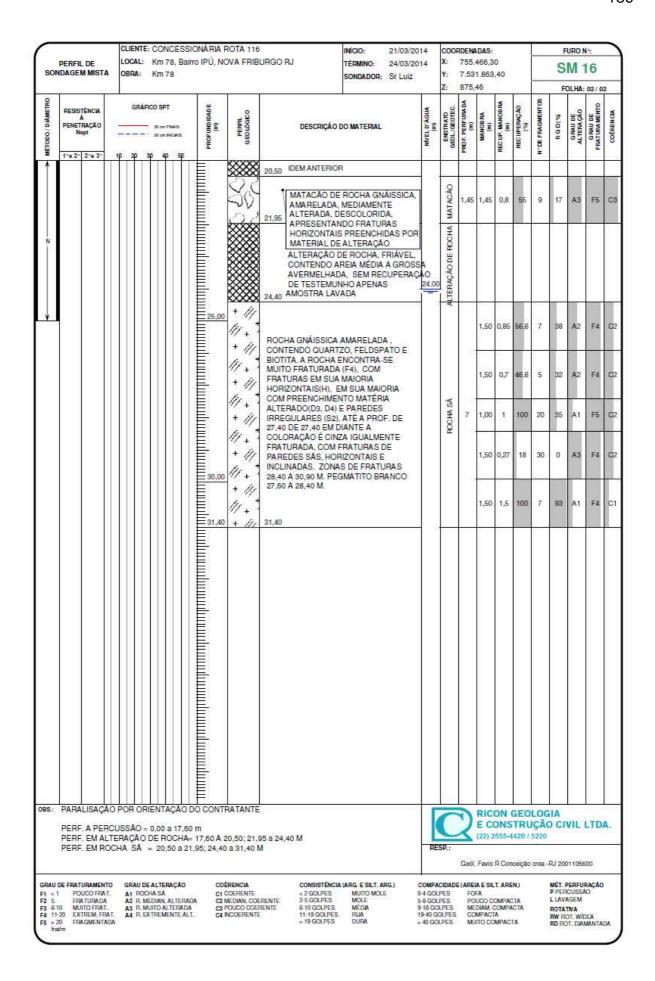


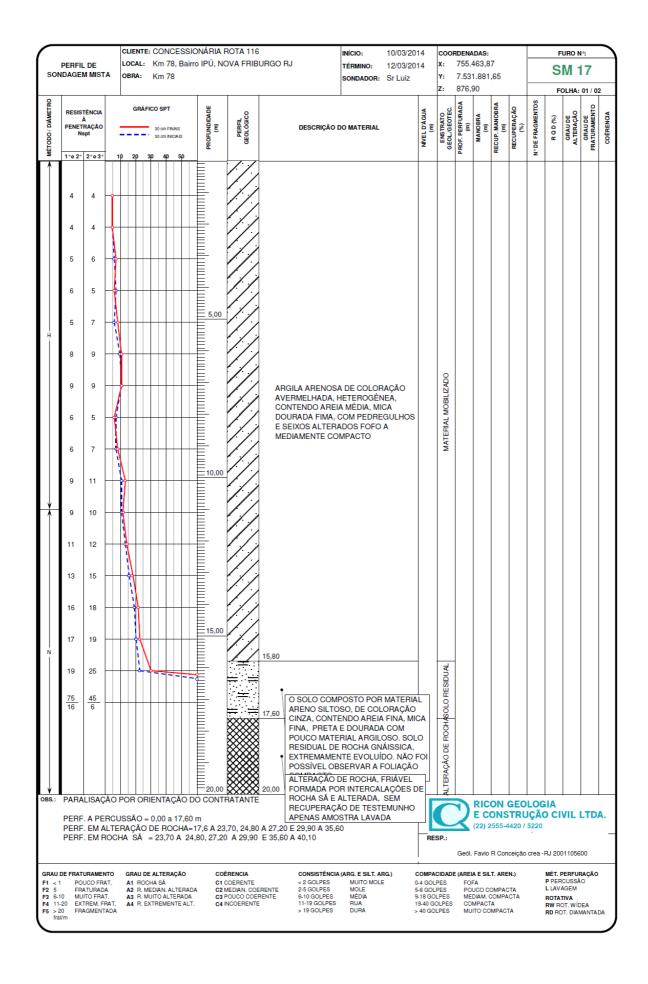

	PERFIL DE IDAGEM MISTA	CLIENTE: CONCESSI LOCAL: Km 78, Bair OBRA: Km 78			URGO RJ	NÍCIO: 03/02/20 FÉRMINO: 05/02/20 SONDADOR: Sr Luiz		X: Y:	7.53	458,7 1.841	5			S	M	11			
MÉTODO/ DIÂMETRO	RESISTÊNCIA À PENETRAÇÃO Nspt	90 cm FNAIS 30 cm FNAIS 50 cm FNAIS	PROFUNDIDADE (m) PERFIL GEOLÓGICO		DESCRIÇÃO DO MATERIAL		NÍVEL D'ÁGUA (m)	GEOL/GEOTEC.	PROF. PERFURADA (m)		RECUP. MANOBRA (m)	RECUPERAÇÃO (%)	N°DE FRAGMENTOS	R Q D (%)	GRAUDE TO ALTERACÃO				
1				IDEM ANTERIOR					1,50	0,41	27	16	0	A2	F4	С			
				+ // // + [*] + //	ROCHA GNÁISSICA CINZA CLARA SÁ, GRANULAÇÃO FINA, CONTENDO QUARTZO, FELDSPATO E BIOTITA. A ROCHA ENCONTRA-SE MEDIAMENTE A MUITO FRATURADA (F3-F4), COM FRATURAS EM SUA MAIORIA HORIZONTAIS(H), SEM PREENCHIMENTO (D3) E SÁS (S2).							1,50	0,93	62	24	0	A 2	F4	C
Ň				11 + 11 + 11 11 +				ROCHA SÃ	8,1	1,50	1,43	95	16	58	A1	F3	c		
			25,00	+ [[] [[] + []]				- B		1,50	0,7	47	8	35	A1	F2	(
				11/ + [†] + 1//						0,90	0,9	100	17	19	A1	F4	c		
Į.			28,30	/// + ///	28,30		27.70			1,20	1,2	100	11	65	A1	F3	c		
OBS.:	INSTALADO M	D POR ORIENTAÇÃO I EDIDOR DE NÍVEL E /	ÁGUA PRO	F. DE 27									DLO0		VIL	LTD) DA.		
	PERFURAÇÃO	PATEROUSSAO 0,00 POTATIVA EM SOLO EM ROCHA SÃ 20,2	15,50 A 2	20,20 M			RE	SP.:	4	(22) 2	2555-4	1420 /	5220 crea						
GRAU I F1 < 1 F2 5 F3 6-1 F4 11- F5 > 2 frat	FRATURADA 0 MUITO FRAT. 20 EXTREM. FRAT 0 FRAGMENTAD	A1 ROCHA SĂ A2 R. MEDIAN. ALTERAL A3 R. MUITO ALTERADA . A4 R. EXTREMENTE ALT	C1 C DA C2 M C3 P	RENCIA COERENTE IEDIAN. COE OUCO COER NCOERENTE	< 2 GOLPES RENTE 2-5 GOLPES RENTE 6-10 GOLPES	MUITO MOLE MOLE MÉDIA RIJA	COMPA 0-4 GOL 5-8 GOL 9-18 GO 19-40 GO	PES PES LPES DLPES	FOI POI ME CO		OMPAC COMPA	CTA CTA		P PER L LAV ROTA RW R	PERFU RCUSS AGEM TIVA OT. WÍ	ÃO DEA			

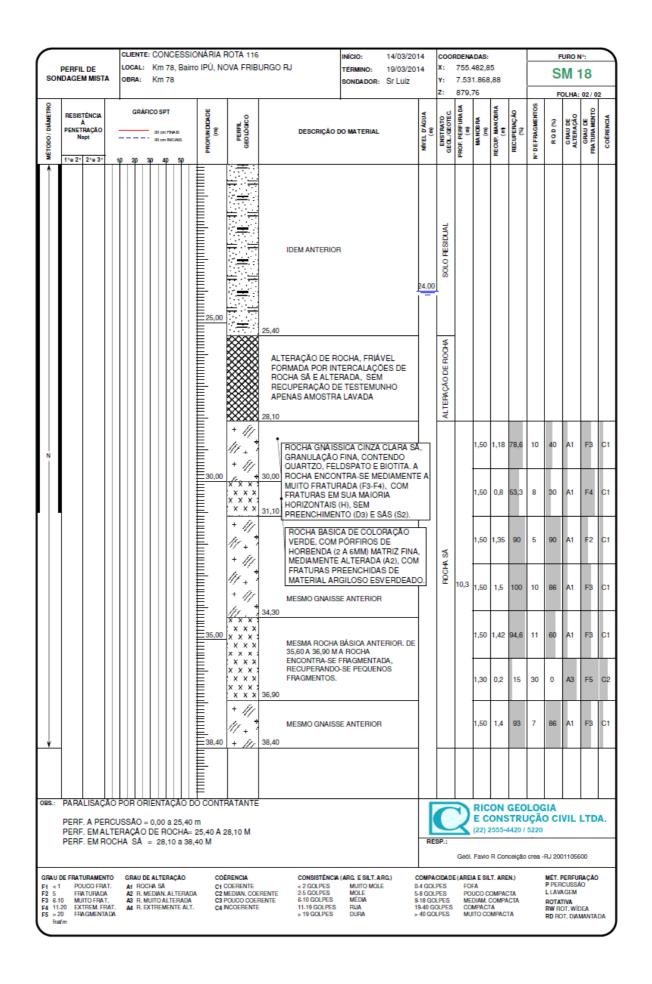


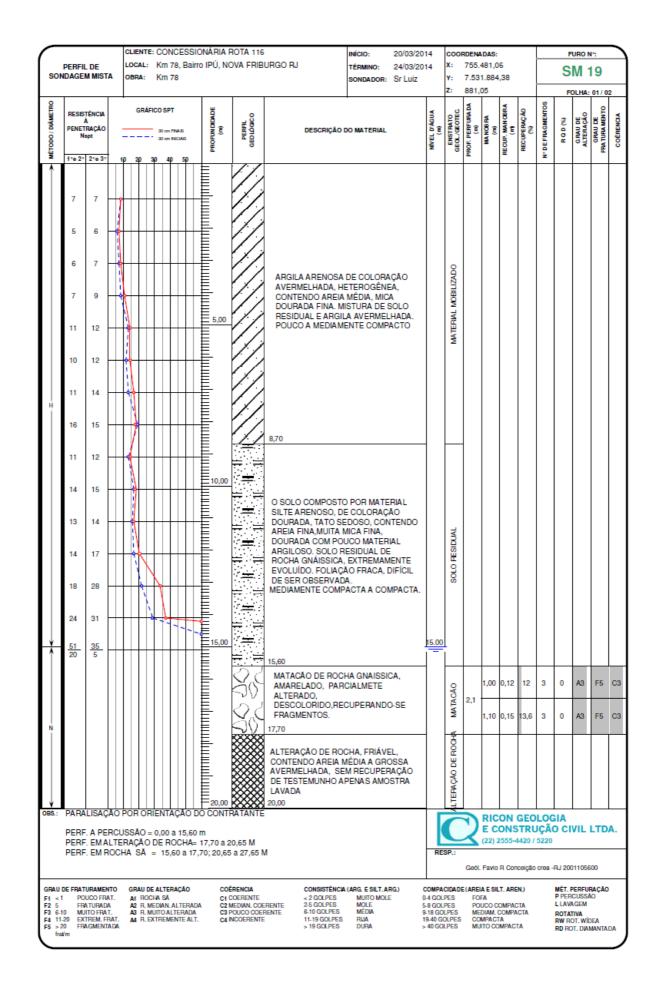


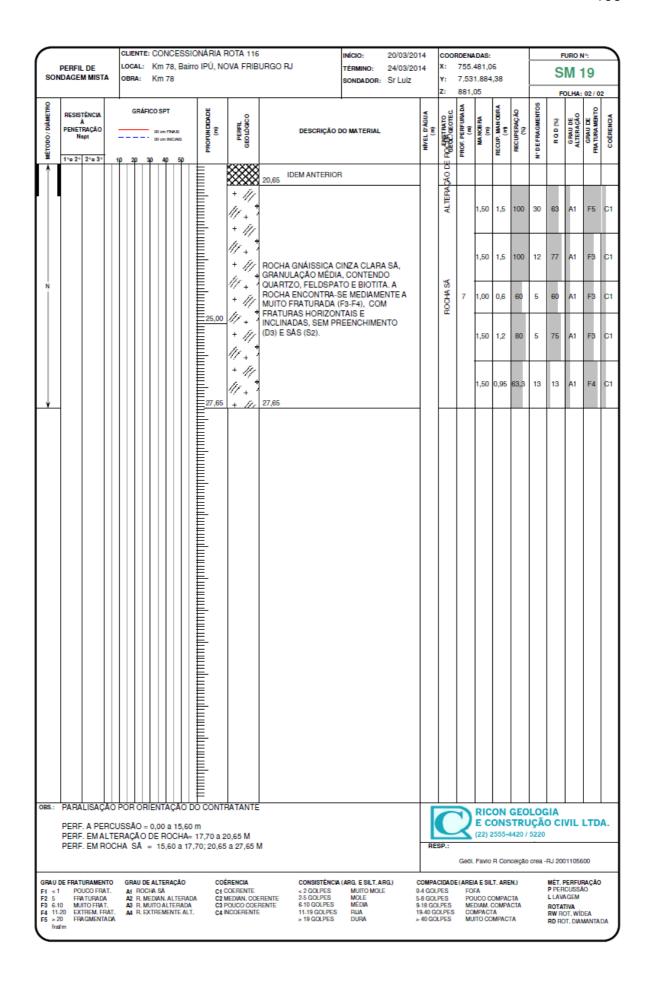


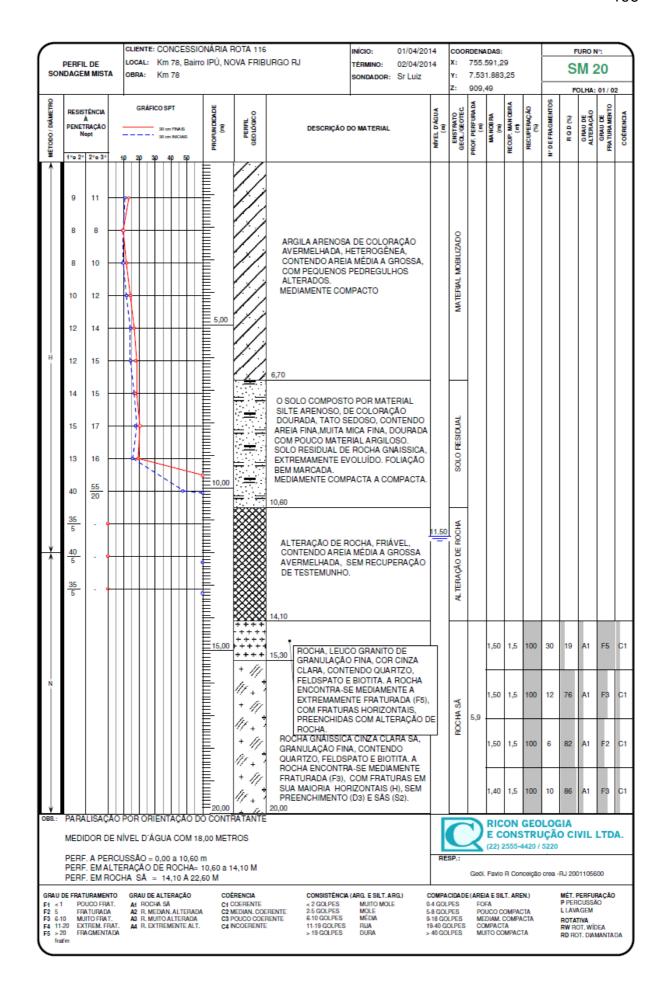




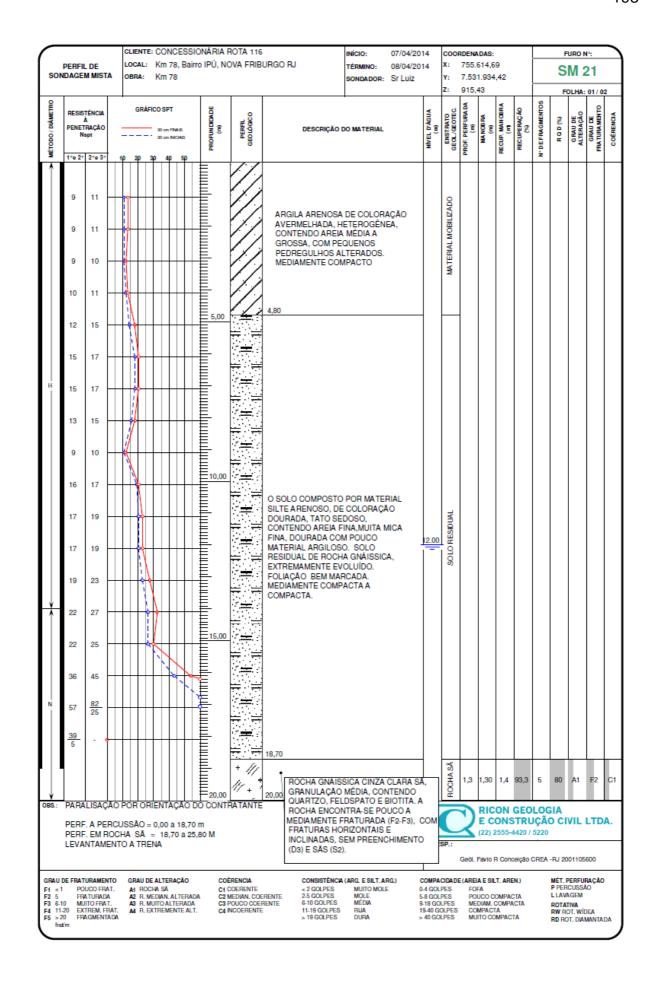


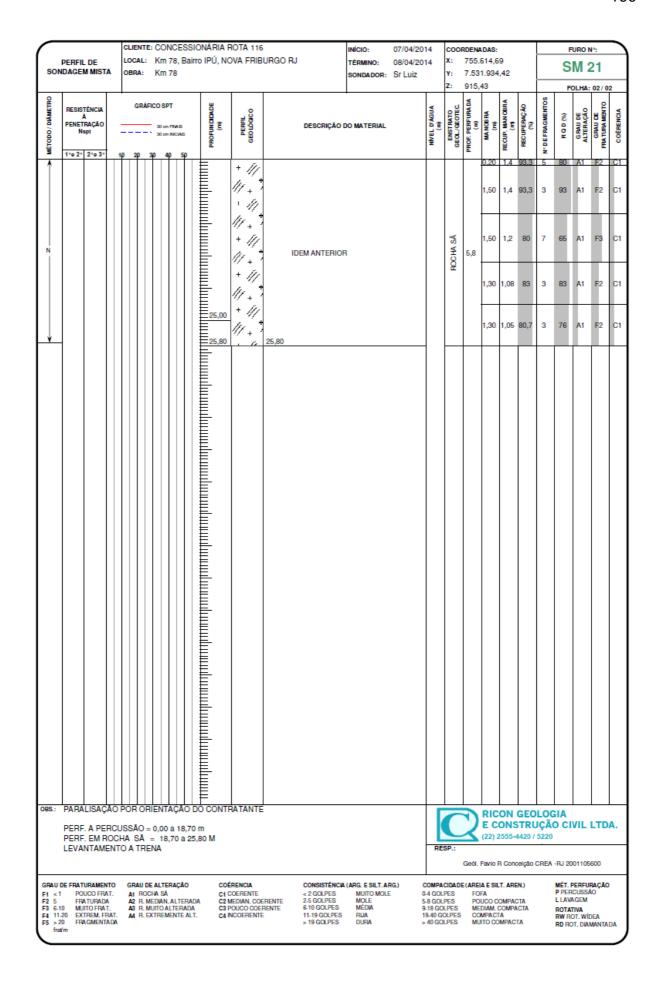


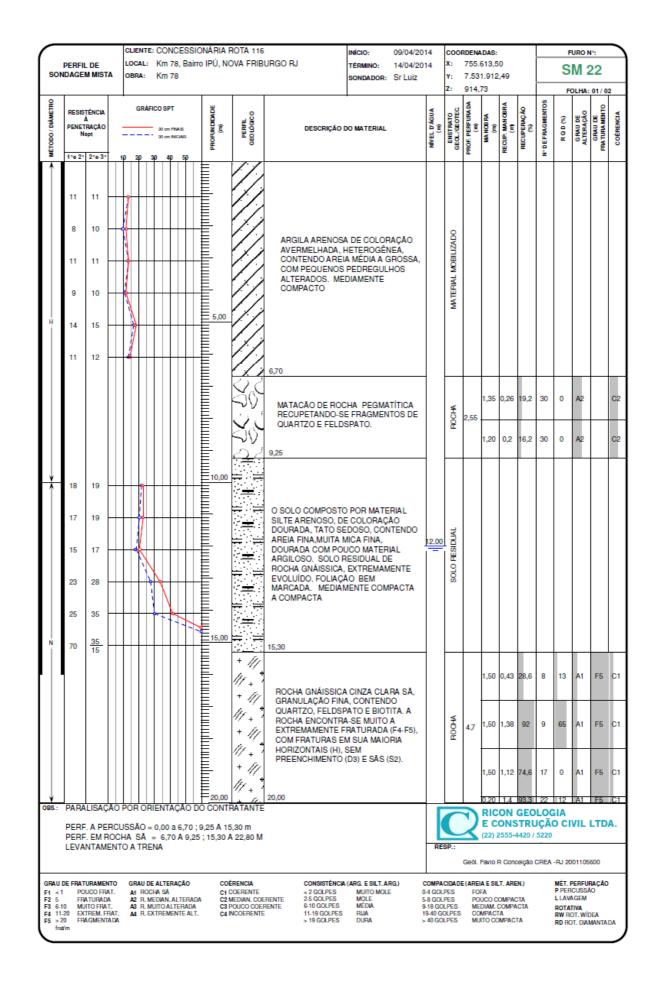


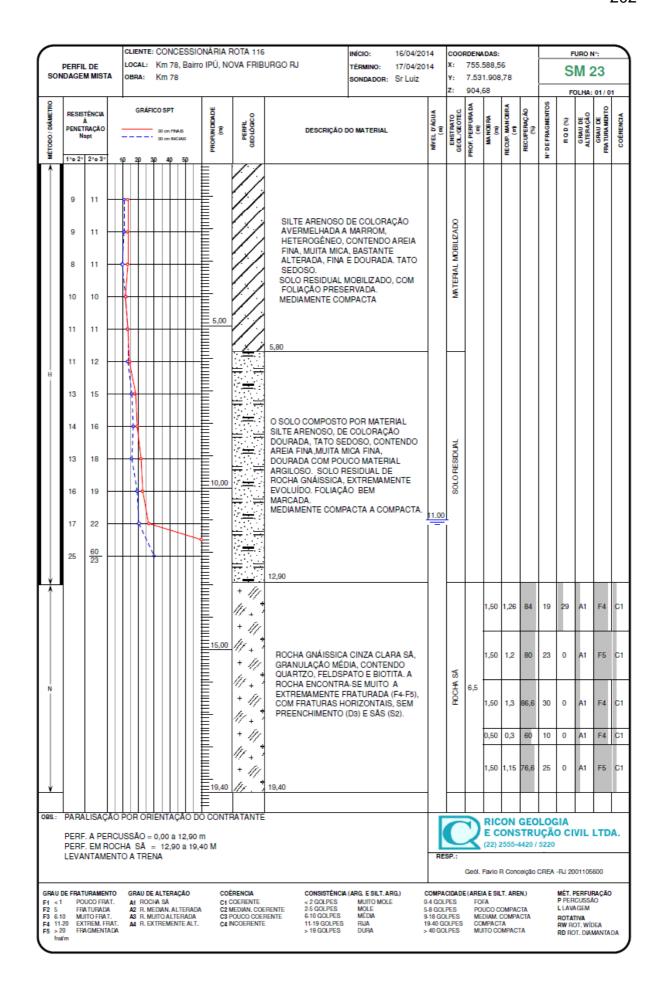

	CLIENTE: CONCESSIONÁRIA ROTA 116 PERFIL DE INDAGEM MISTA OBRA: Km 78 GRÁFICO SPT PENETRAÇÃO SO GRERANS CLIENTE: CONCESSIONÁRIA ROTA 116 LOCAL: Km 78, Bairro IPÚ, NOVA FRIBURGO R. OBRA: Km 78							INÍCIO: TÉRMINO: SONDADOR:	10/03/20 12/03/20 Sr Luiz		X: Y:	755. 7.53	ADAS: 463,8 1.881				S	URO N	17	<u> </u>			
MÉTODO / DIÂMETRO	RESISTENCIA À PENETRAÇÃO 30 cm							PROFUNDIDADE (m)	PERFIL GEOLÓGICO	DESCRIÇÃO I	OO MATERIAL		NÍVEL D'ÁGUA (m)	ENSTRATO ::	PROF. PERFURADA (m)		RECUP. MANOBRA (m)	RECUPERAÇÃO (%)	N° DE FRAGMENTOS	RQD(%)	GRAUDE H	GRAUDE 50	Т
·Z										IDEM ANTERIO 23,70	DR		22.00	ALTERAÇÃ									
\								25,00		24,80 MATACÃO DE CINZA, MEDIA DESCOLORID FRATURAS HOPRENCHIDA ALTERAÇÃO LO FORMADA PO ROCHA SÃ E RECUPERAÇÃO REC	MENTE ALTI A, APRESEN DRIZONTAIS S POR MATE DE ROCHA, F R INTERCAL ALTERADA, ÁO DE TESTE	ERADA, NTANDO ERIAL DE FRIÁVEL AÇÕES I SEM EMUNHO		ALTERAÇÃO DE ROCHAMATACÃO	0,80	0,80	0,7	87,5	15	16,25	A2	F4	C2
									10 JO	MATAÇÃO DE CINZA, MEDIAI DESCOLORIDA FRATURAS HO PREENCHIDAS	STRA LAVAD ROCHA GNA MENTE ALTE A, APRESEN DRIZONTAIS	NISSICA, ERADA, ITANDO		MATACÃO	2,7		0,55	39,2	8	0	A2	F3	C2
								35,00		29,90 ALTERAÇÃO DE RIFORMADA POR IN ROCHA SÃ E ALTE RECUPERAÇÃO DI APENAS AMOSTRA	TERCALAÇÕ RADA, SEM E TESTEMUN	ES DE		ALTERAÇÃO DE ROCHA									
									+ /// /// + /// /// + ///	ROCHA GNÁISSICA GRANULAÇÃO FIN QUARTZO, FELDSF ROCHA ENCONTRI MUITO FRATURAD/	A, CONTEND PATO E BIOT A-SE MEDIAN A (F3-F4), CO	O ITA. A MENTE A		ROCHA SÃ	4,5	1,50		100	7	77 53	A1	F3	C1
OBS.:	PARA	LISAÇÃ	ÃO I	PORC	DRIEI	NTA	ÇÃO	40,10	## ### ### ###########################	FRATURAS EM SUA HORIZONTAIS(H), S PREENCHIMENTO	SEM	S2).	Ļ				0,68		6	20	A1	F4	C1
	PERF		LTE	RAÇÃ	O DE	R	CHA	=17,6 A 2		A 27,20 E 29,90 A 35,6 E 35,60 A 40,10	0		RE	SP.:	Geól.	E C (22) 2	ONS 2555-4	1420 /	JÇÃ(5220	O CI			A. -
GRAU C F1 < 1 F2 5 F3 6-1 F4 11-1 F5 > 20 frat	PO FR 0 MU 20 EX 0 FR	URAMENT UCO FRAT ATURADA ITO FRAT. TREM. FRA	T. AT.	A1 R A2 R A3 R	R. MUIT	SĀ IAN. A O AL	AÇÃO ALTERA TERADI NTE AL	DA C2	ÉRENCIA COERENTE MEDIAN. COE POUCO COE INCOERENTE	< 2 GOLPES ERENTE 2-5 GOLPES RENTE 6-10 GOLPES	(ARG. E SILT. AF MUITO MOLE MOLE MÉDIA RIJA DURA	E 0	COMPA 0-4 GOL 5-8 GOL 9-18 GO 19-40 GO	PES PES LPES OLPES	FO PO ME CO		OMPAC COMPA	CTA ACTA		MÉT. I P PER L LAVA ROTA RW RC RD RC	CUSSĀ AGEM TIVA DT. WÍE	O DEA	

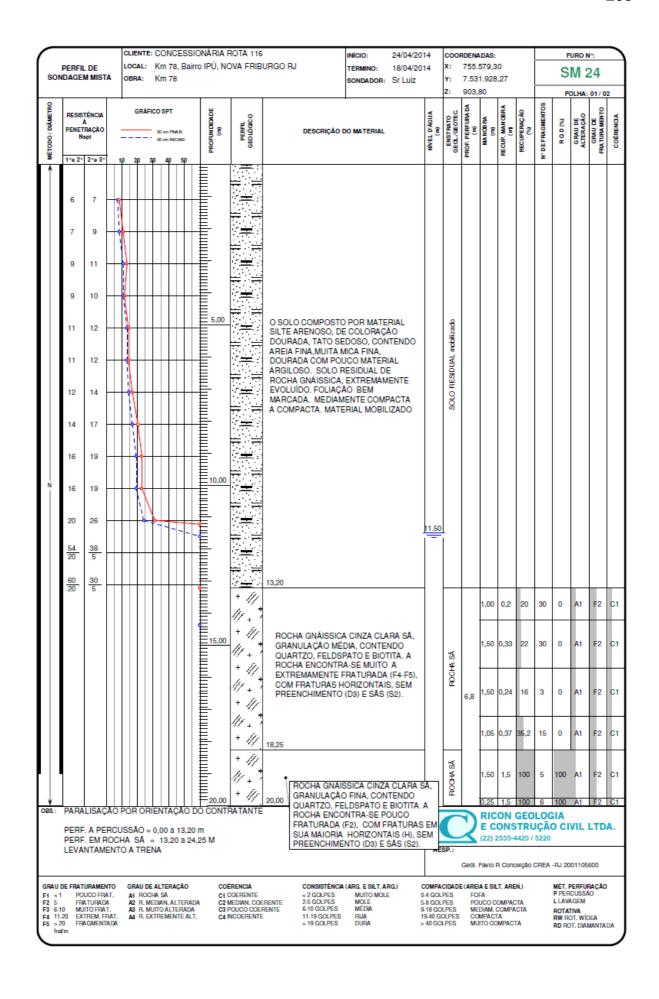
	PERFIL DE LOCAL: Km 78, Bairro IPÚ, NOVA FRIBURGO IOBRA: Km 78								INÍCIO: TÉRMINO: SONDADOR:	14/03/20 19/03/20 Sr Luiz		X: Y:	7.53	482,8 1.868					M 1		_		
MÉTODO/DIÂMETRO	RESISTÊNCIA PENETRAÇÃO NSpt 1*e 2* 2*e 3* 10 20 30 40					om FINAIS om INICAS	6	PROFUNDIDADE (m)	PERFIL GEOLÓGICO	DESCRIÇÃO	DO MATERIAL		NÍVEL D'ÁGUA (m)	ENSTRATO :: GEOL/GEOTEC.	PROF. PERFURADA (m)	Г	RECUP. MANOBRA (m)	RECUPERAÇÃO (%)	N° DE FRAGMENTOS	R Q D (%)	GRAUDE ALTERAÇÃO :	GRAUDE 10	2
								5,00		SILTE ARENOSO I AVERMELHADA A I HETEROGÉNEA, C MÉDIA, MUITA MIC, MISTURA DE SILTE RESIDUAL. FOFO A POUCO C 8,70 8,70 8,70 8,70 0 SOLO COMPOST SILTE ARENOSO, I DOURADA A CINZA CONTENDO AREIA FINA, DOURADA C MATERIAL ARGILO RESIDUAL DE ROC EXTREMAMENTE E FOLIAÇÃO FRACA, OBSERVADA. MAT SUCEPTÍVEL A DE: DEVIDO A GRANDE MICA. DEVIDO A DI OBSERVAÇÃO CD SOLO PODE ESTAI MEDIAMENTE COM COMPACTA.	O POR MATE	ERIAL AGO DOSO, MICA CA, SER DE DE DE ESTE		SOLO RESIDUAL MATERIAL MOBILIZADO									
	PER PER	F. A PEF	CUS	SÃO AÇÃO	= 0,0 DE	0 a 25 ROCH	5,40 i	m 25,40 A 2					RE	SP.:	2 Geól.	E C	ONS 2555-4	1420 /	JÇÃ(5220	O CI	VIL I		A.
F1 < 1 F2 5 F3 6-1	I P F 10 M -20 E	TURAMENT DUCO FRAT RATURADA UITO FRAT. KTREM. FRA	г. , АТ. ,	A1 RO A2 R.I A3 R.I	ICHA S MEDIAI MUITO	ERAÇĂ Ă N. ALTE ALTER MENTE	RADA ADA	C1 C C2 N	ERENCIA COERENTE MEDIAN. COE POUCO COE NCOERENTE	< 2 GOLPES ERENTE 2-5 GOLPES RENTE 6-10 GOLPES	A (ARG. E SILT. AF MUITO MOLE MOLE MÉDIA RIJA DURA	E (COMPA 0-4 GOL 5-8 GOL 0-18 GO 19-40 GO -40 GO	PES PES LPES OLPES	FO PO ME CO	A E SIL	OMPAC	EN.) OTA ACTA		MÉT. F P PER L LAVA ROTAT	PERFUR CUSSĀ AGEM	AÇÃO O EA	

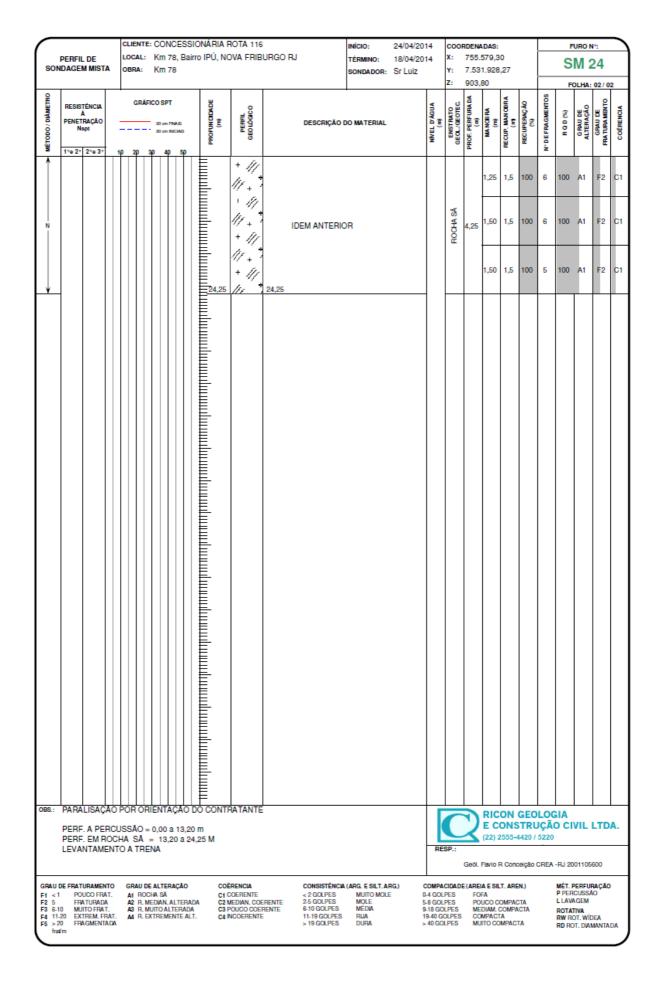


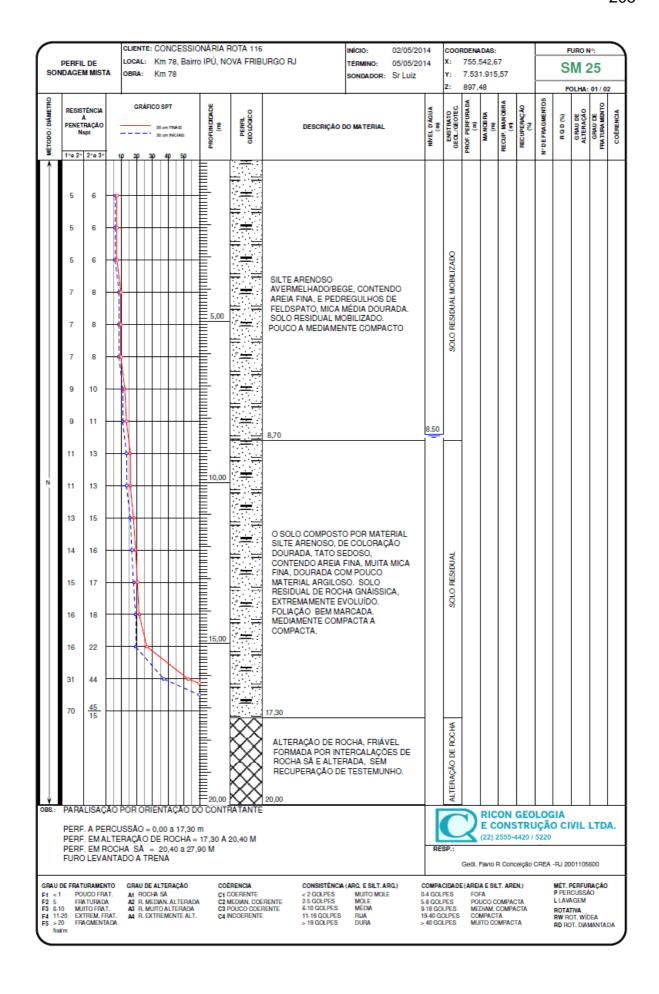




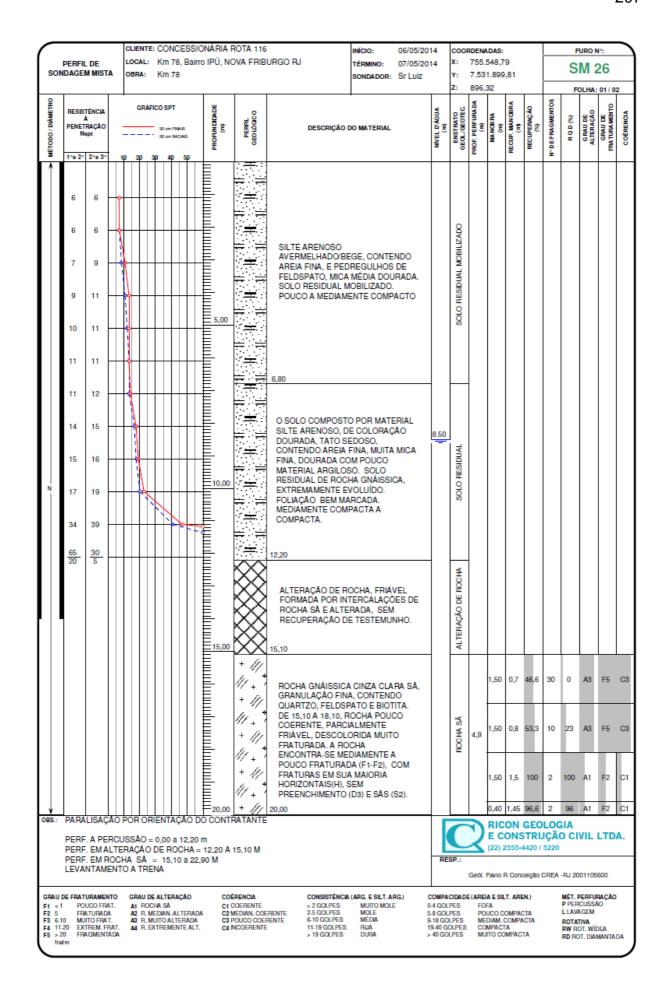

PERFIL DE LOCAL: Km 78, Bairro IPÚ, NOVA FRIBURGO RJ TÉRMINO: 02/04/2014 X: SONDAGEM MISTA OBRA: Km 78 SONDADOR: Sr Luiz Y: Z:			755. 753. 7.53	591,2 1.883	9			S	M 2	20	02							
МЕТОВО / ВІЙМЕТВО	RESISTÊNCIA À PENETRAÇÃO Napt	GRÁFICO SPT 20 cm FINALE 20 cm NACAUS	PROFUNCIONDE (m)	PERFIL GEOLÓGICO	DESCRIÇÃO I	OO MATERIAL		NÍVEL D'ÁGUA (m)	GECL/GEOTEC.	PROF. PERFURADA (m)	MANOBRA (m)	RECUP, MANOBRA	RECUPERAÇÃO	N*DEFRAGMENTOS	RQD (%)	GRAU DE ALTERAÇÃO	GRAU DE FRATURAMENTO	Т
N.				+ 11/ 11/+ 11/	IDEM ANTERIOR	R				2,6	1,50	1,5	100	9	84	A1	F3	C1
J.			22,60	// . * + //	22,60						1,00	0,9	90	8	40	A1	F3	C1
	MEDIDOR DE PERF. A PER(PERF. EM ALT	D POR ORIENTAÇÃO D NÍVEL D'ÁGUA COM 18 CUSSÃO = 0,00 a 10,60 TERAÇÃO DE ROCHA= CITO A TRENA	8,00 METF m 10,60 a 1	ROS				RE	SP.:	ソ	E C	ONS 2555-4	GEO GTRU 1420 /	JÇÃ(5220	O CI			DA.
F1 < 1 F2 5 F3 6-10 F4 11-3	POUCO FRAT. FRATURADA MUITO FRAT.	A2 R. MEDIAN. ALTERAD A3 R. MUITO ALTERADA T. A4 R. EXTREMENTE ALT.	C1 C A C2 M C3 P	RENCIA OERENTE IEDIAN. COE OUCO COEF ICOERENTE	RENTE 6-10 GOLPES	(ARG. E SILT. A MUITO MOLI MOLE MÉDIA RIJA DURA	E 0 5 9 1	COMPA 1-4 GOL 1-8 GOL 1-18 GO 9-40 GO	PES PES LPES OLPES	ME	FA UCO CI DIAM. (MPA CT	OMPAC COMPA	CTA CTA		P PER L LAW ROTA RW RO		OEA	

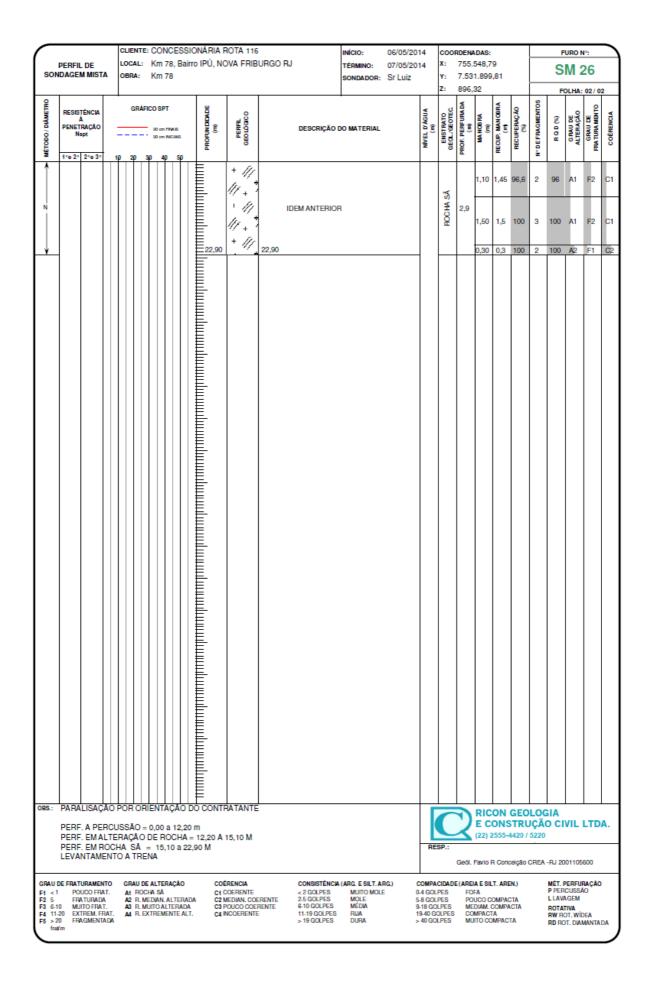




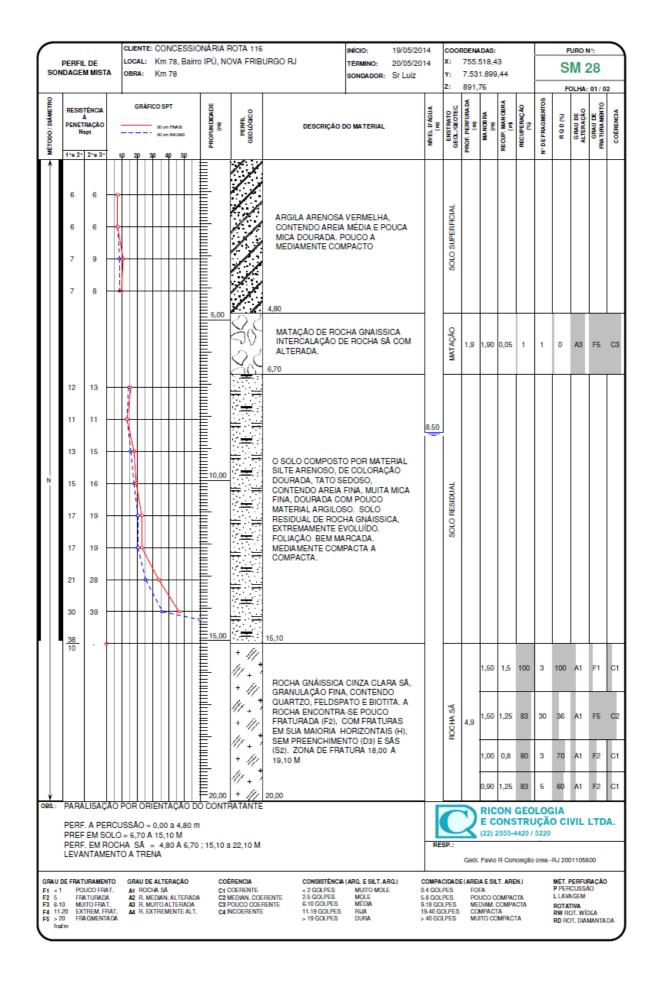


PRINCIPAL PRIN	SON	PERFI	L DE M MISTA	LC			78, B		NÁRIA IPÚ, N			URGO F	RJ		ŀ	INÍCIO: TÉRMINO SONDAD		09/04 14/04 Sr Lu	4/201		X: Y:	755. 7.53	613,5 1.912	0				M 2		
OBS.: PARALISAÇÃO POR ORIENTAÇÃO DO CONTRATANTE RICON GEOLOGIA	меторо/ рійметво	PENET N	À TRAÇÃO spt	10		20 cm	PNAS NICIAIS		PROFUNCIONDE (m)		PERFIL GEOLÓGICO		DE	ESCRIÇ	ÇÃO D	D MATER	IAL			NIVEL D'ÁGUA (m)				RECUP, MANOBRA (m)	RECUPERAÇÃO	N* DEFRAGMENTOS				
OBS.: PARALISAÇÃO POR ORIENTAÇÃO DO CONTRATANTE RICON GEOLOGIA	\bigcap									1	7 + 3										4		1,30	1,4	93,3	22	12	A1	F5	C1
OBS.: PARALISAÇÃO POR ORIENTAÇÃO DO CONTRATANTE RICON GEOLOGIA	Ň									1/2	7 + 7		IDEM	I ANTE	ERIO	R					ROCH	2,8	1,50	1,44	96	12	53	A1	F5	C1
PERF. A PERCUSSÃO = 0,00 a 6,70 ; 9,25 Å 15,30 M PERF. EM ROCHA SÃ = 6,70 Å 9,25 ; 15,30 Å 22,80 M LEVANTAMENTO A TRENA Geól. Favio R Conceição CREA -RJ 2001105600 GRAU DE FRATURAMENTO GRAU DE ALTERAÇÃO COÉRENCIA CONSISTÊNCIA (ARG. E SILT. ARG.) COMPACIDADE (AREIA E SILT. AREN.) MÉT. PERFURAÇÃO		PERF PERF LEVA	F. A PER F. EM RC NTAME	CUSS OCHA NTO	SÃO = SÃ A TRE	= 0,00 = 6,7 ENA	a 6,7	O D0 70 ; 9	CONT	FRA 15,3 A 2	TANTE 0 m 2,80 M			ONSISTI	ČNICISA (1	ADG E SI	TAS						E C (22) :	ONS 2555-4 R Conc	4420 /	JÇÃ 5220	-RJ 20	001105	600	

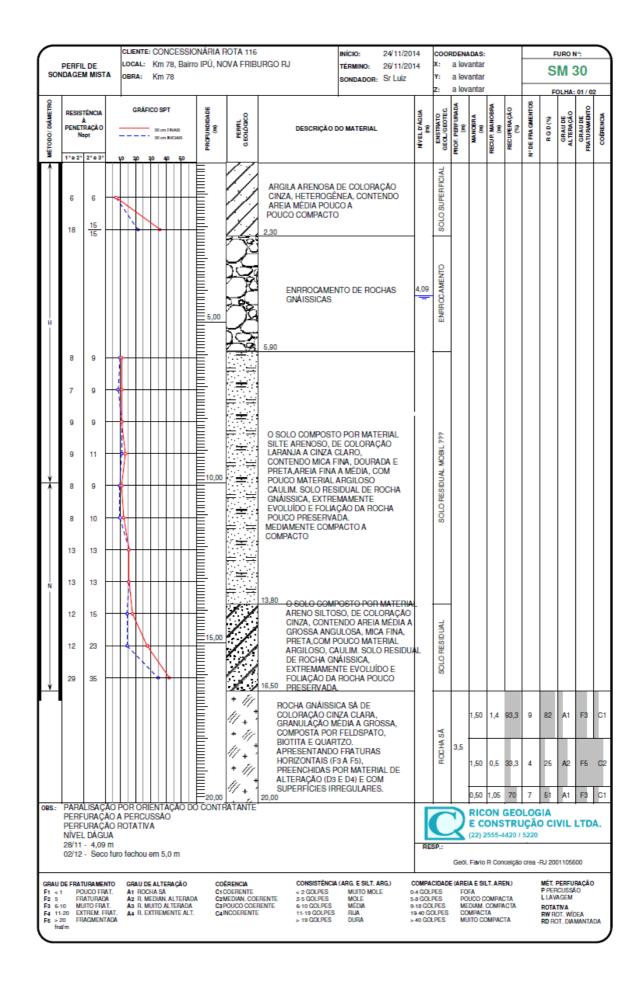


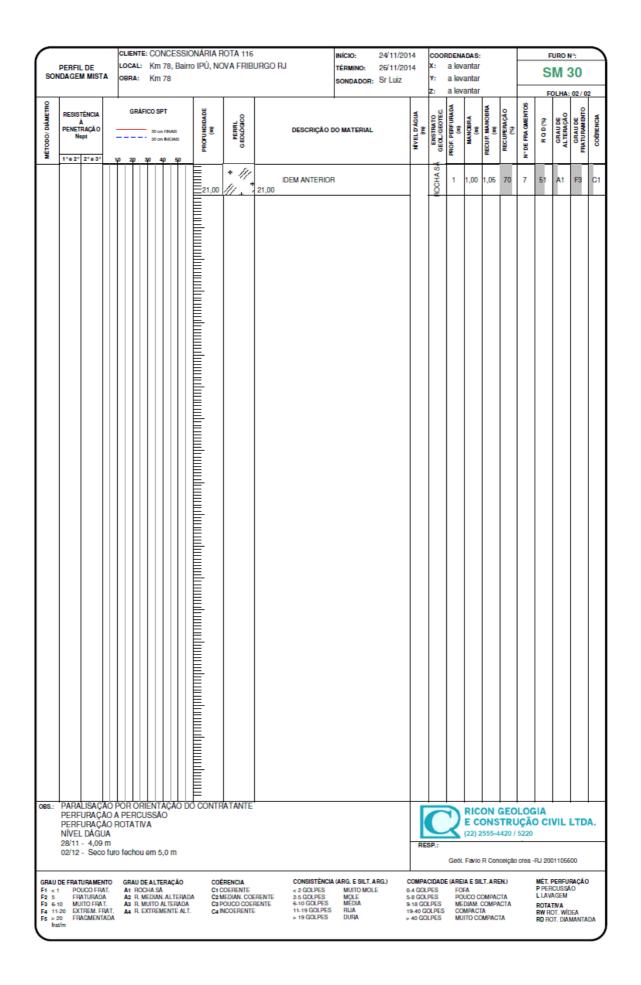


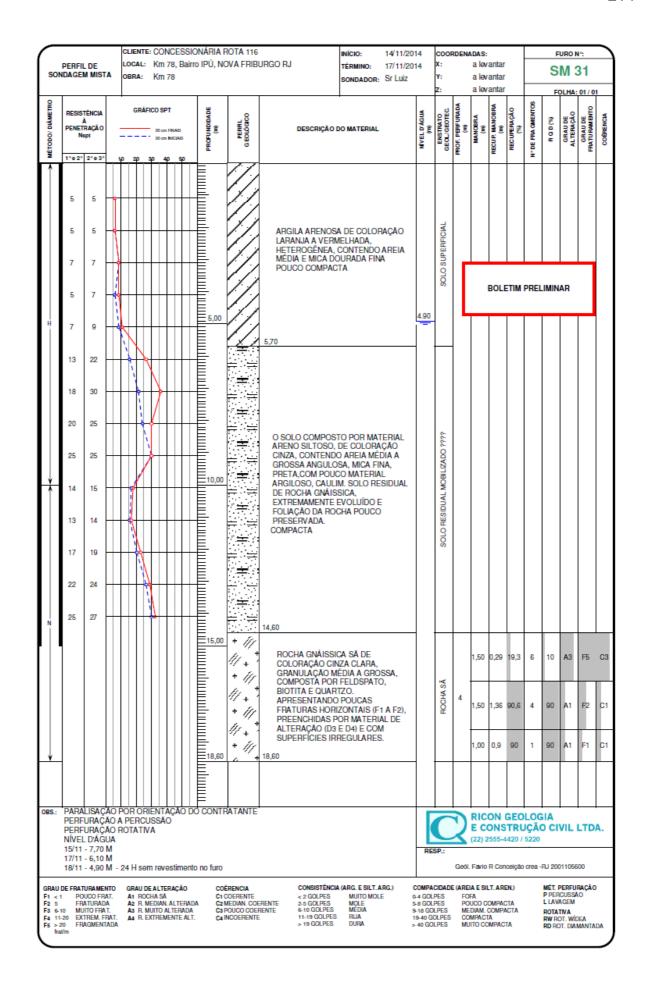


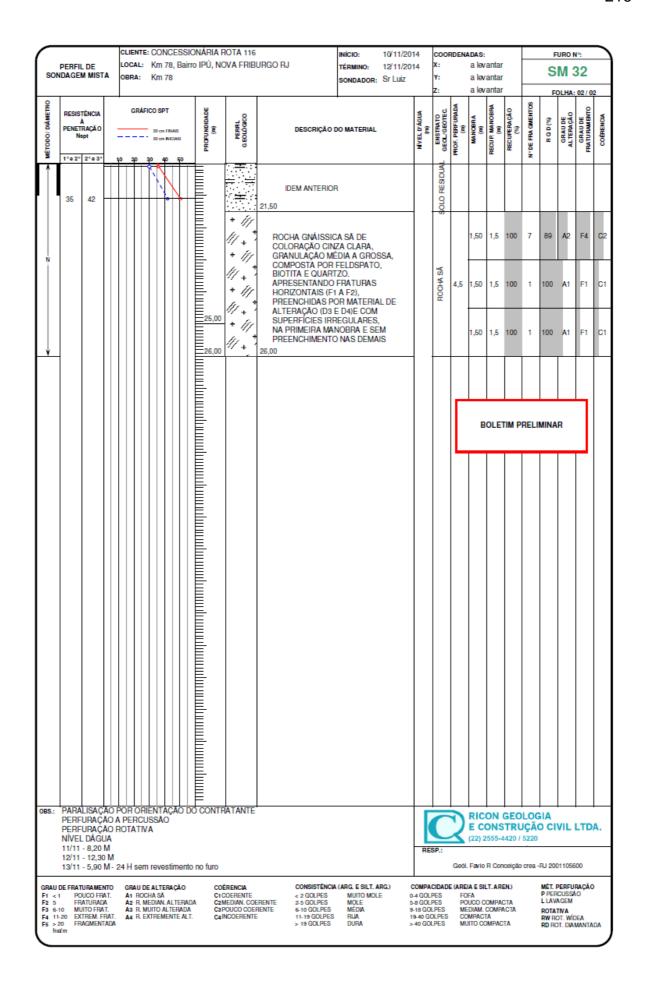


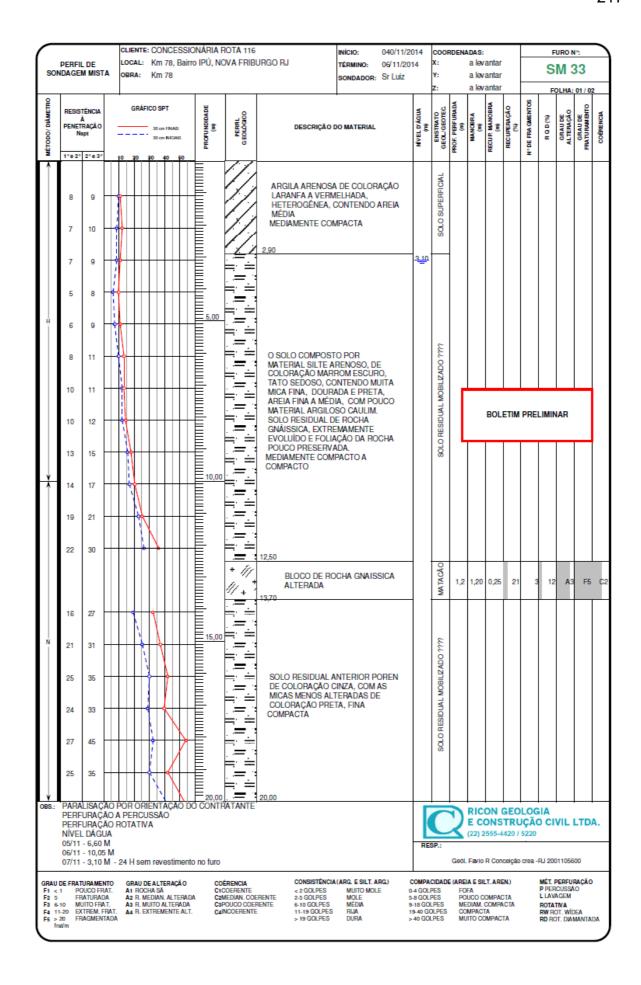
PERFIL DE Sondagem Mista	CLIENTE: CONCESSIONÁRIA F LOCAL: Km 78, Bairro IPÚ, NO OBRA: Km 78		INÍCIO: TÉRMINO: SONDADOR:	02/05/201 05/05/201 Sr Luiz	4 X:	755.5 7.531. 897.4	42,67 .915,57			S	M 2	25	
	GRÁFICO SPT	PERFLGEOLÓGICO	DESCRIÇÃO DO MATERIAL		NIVEL D'AGUA (m) E ROENSTRATO	4	(m) RECUP, MANOBRA	(m) RECUPERAÇÃO	N*DEFRAGMENTOS	R Q D (%)	GRAU DE ALTERAÇÃO		
\uparrow		+ ///	EM ANTERIOR		IBAÇÃO D						Г		
		/// + [†] + ///			ALTE		,50 1,3	5 90	4	86	A1	F2	C1
		+ 111				1	,50 1,4	5 97	5	87	A1	F2	C1
N	25,00 = 27,90	+ /// QUART. ROCHA	. GNÁISSICA CINZA CLA LAÇÃO FINA, CONTENE ZO, FELDSPATO E BIOT .ENCONTRA-SE MEDIA CO FRATURADA (F1-F2).	OO TTA. A MENTE	ROCHASĂ	7,5 1	,50 1,3	8 92	3	92	A1	F2	C1
		HORIZO PREEN + ///	RAS EM SUA MAIORIA DNTAIS(H), SEM CHIMENTO (D3) E SĀS (S2).		1	,50 1,5	100	4	100	A1	F2	C1
	27.90	/// + /// + /// //c = 27,90				1	,50 1,5	100	1	100	A1	F1	C1
PERF. A PERCU PERF. EMALTE	GRAU DE ALTERAÇÃO COÊ		CONSISTÊNCIA (ARG. E SILT.A.		RESP.:	Gedl. Fa		STR 5-4420 Incelção	UÇÃ / 5220	O CI		600 RAÇÃO	

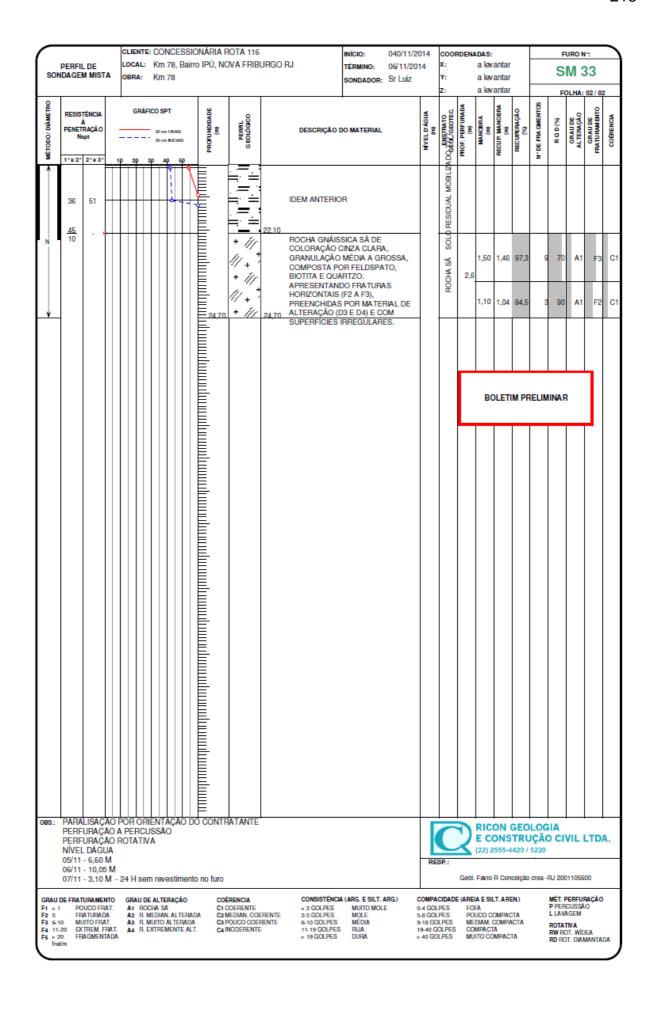


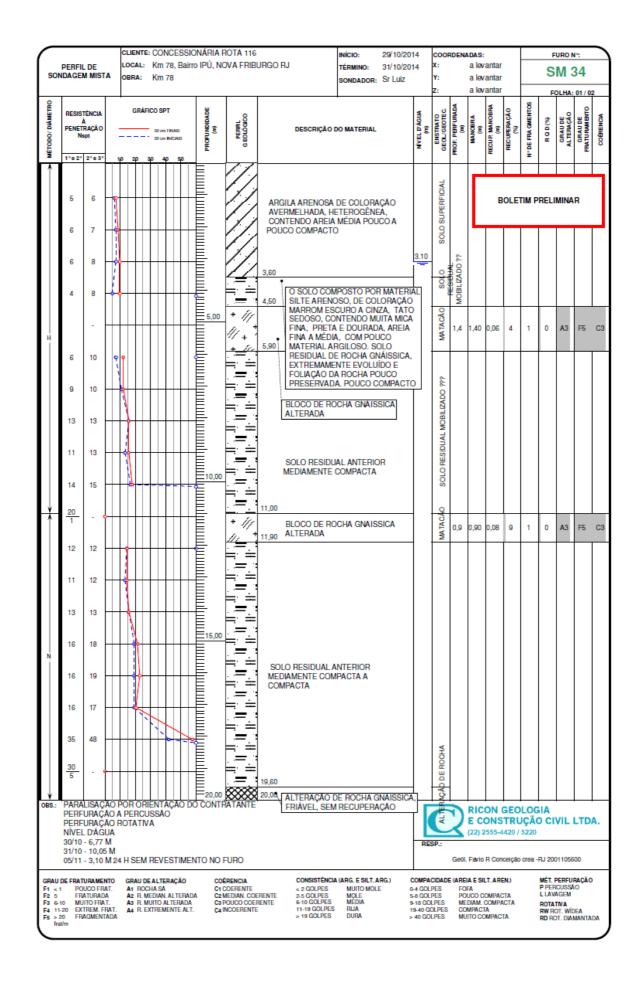


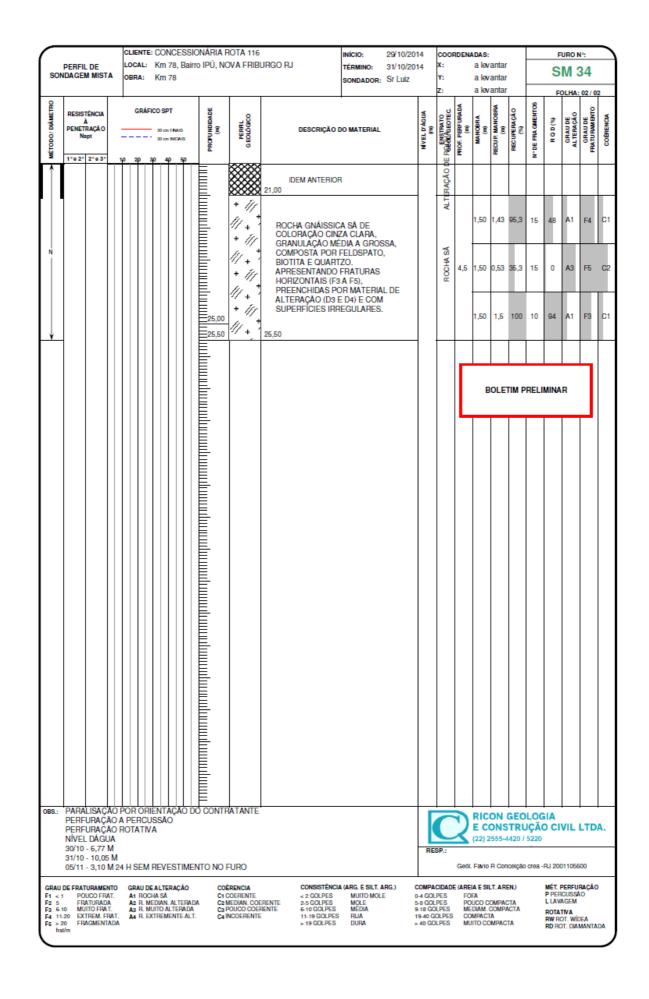


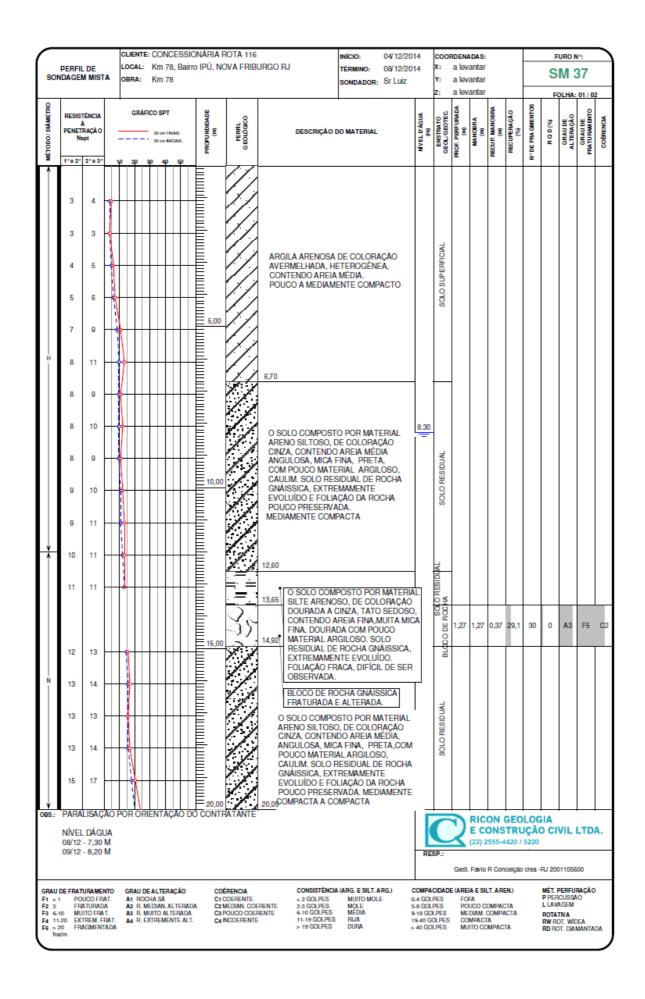

		CLIENTE: CONCESSIO ERFIL DE AGEM MISTA COBRA: Km 78 RESISTÈNCIA GRÁFICO SPT					INÍCIO: TÉRMINO:	19/05/20 20/05/20		X:	755.	ADAS: 518,4 1.890	13				M 2		_				
3011	- norm	A	08	nut:	IMI	10					SONDADOR:	Sr Luiz		Y: Z:	7.53 891,	1.899 76	,44				DLHA:		02
МЕТОВО / ВІЙМЕТВО		ÇÃO	 1p		20 cm	FNAS	5	PROFUNDIDADE (m)	PERFIL	DESCRIÇ	ÃO DO MATERIAL		NÍVEL D'ÁGUA (m)	ENSTRATO GEOL/GEOTEC	PROF. PERFURADA (m)	MANGBRA (m)	RECUP. MANOBRA	RECUPERAÇÃO	N° DE FRAGMENTOS	RQD (%)	GRAU DE ALTERAÇÃO	GRAU DE FRA TURA MENTO	
↑ N									+ 1/1	IDEM ANTER	IIOR			HA SĂ	2,1	0,60	1,25	83	5	60	A1	F2	С
ļ								22,10	[1] [1]	22,10	ion			ROCHA	2,.	1,50	1,5	100	7	86	A1	F3	С
OBS.:									RATANTE														
	PERF. A	PERO M SOL	CUSS .O = 6 CHA	ÃO = 5,70 A SÃ :	0,00 15,1 = 4,8	a 4,	80 m	1	a 22,10 M				RE	SP.:	<u>ス</u>	E C (22)	ONS	GEO TRU 1420 /	JÇÃ(5220	O CI			A
F1 <1 F2 5 F3 6-10	FRATU 0 MUITO 20 EXTRE 0 FRAGI	D FRAT. JRADA FRAT.	А А А	ROC R.M R.M	HA SĂ EDIAN UITO A	ALTE	RADA ADA	C1 (A C21 C31	ÉRENCIA COERENTE MEDIAN, COI POUCO COE INCOERENTI	< 2 GOLPE ERENTE 2-5 GOLPE RENTE 6-10 GOLPE	S MOLE S MÉDIA PES RIJA	E 0 6 9	1-4 GOL 1-8 GOL 1-18 GO	CIDADI PES PES LPES OLPES	FO PO ME CO	IA E SIL FA UCO C DIAM. (LT. ARE	ENL) CTA		MÉT. F P PER L LAW ROTA RW RO	PERFUI CUSS/A NGEM	RAÇÃO O	

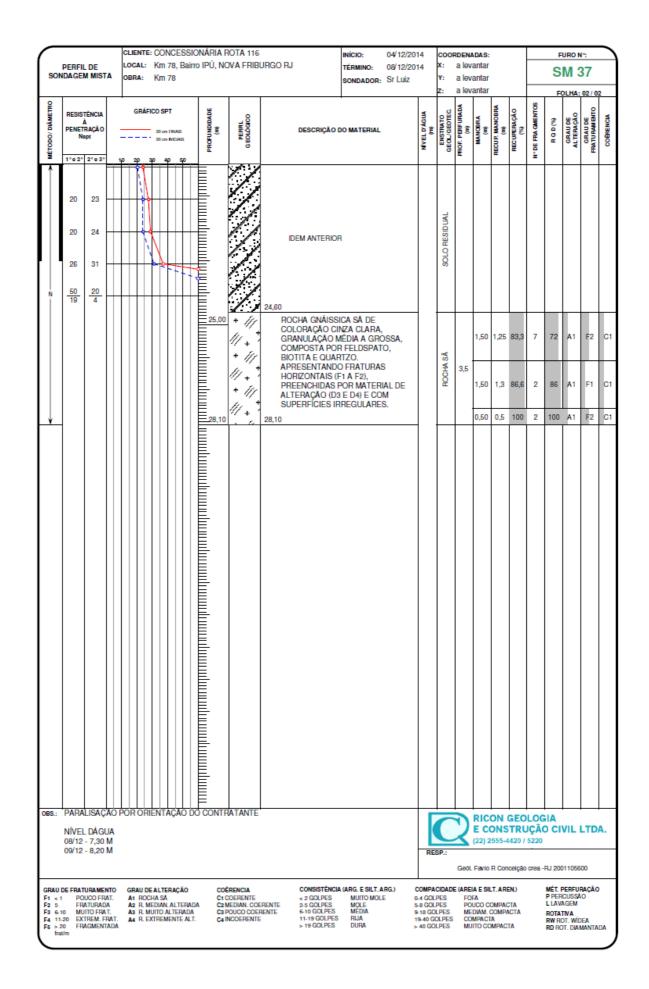


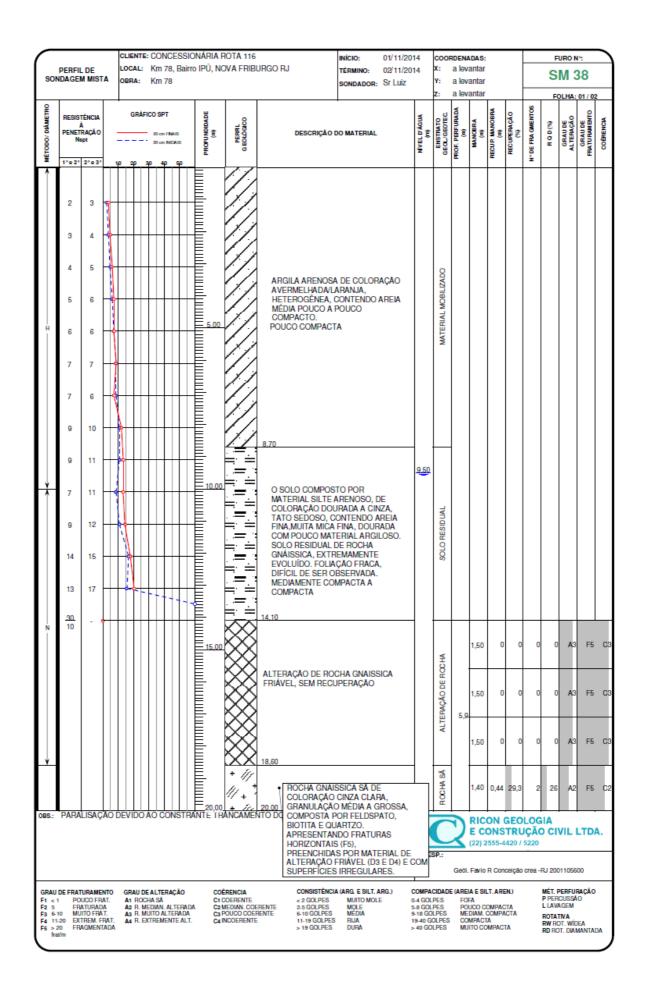


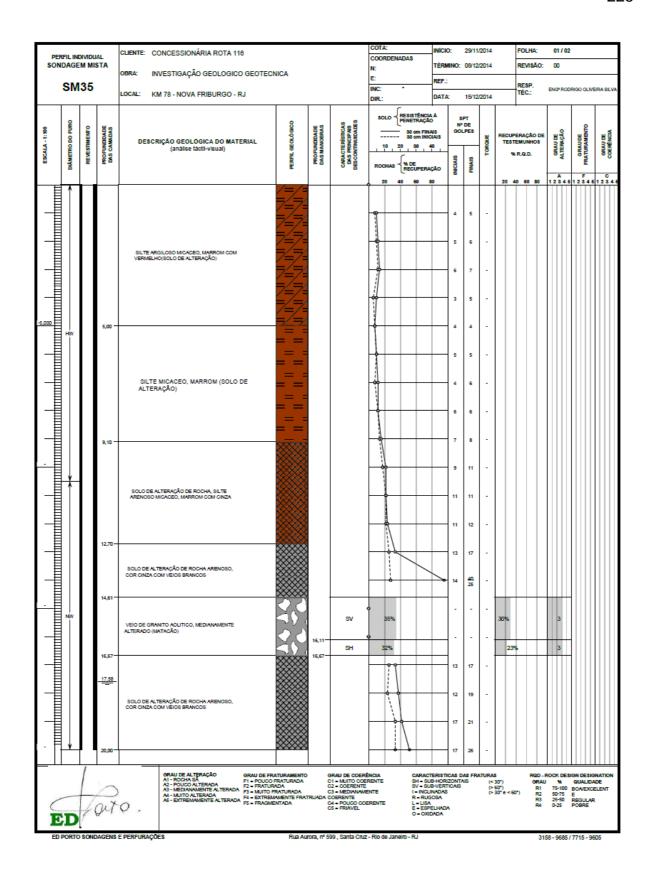


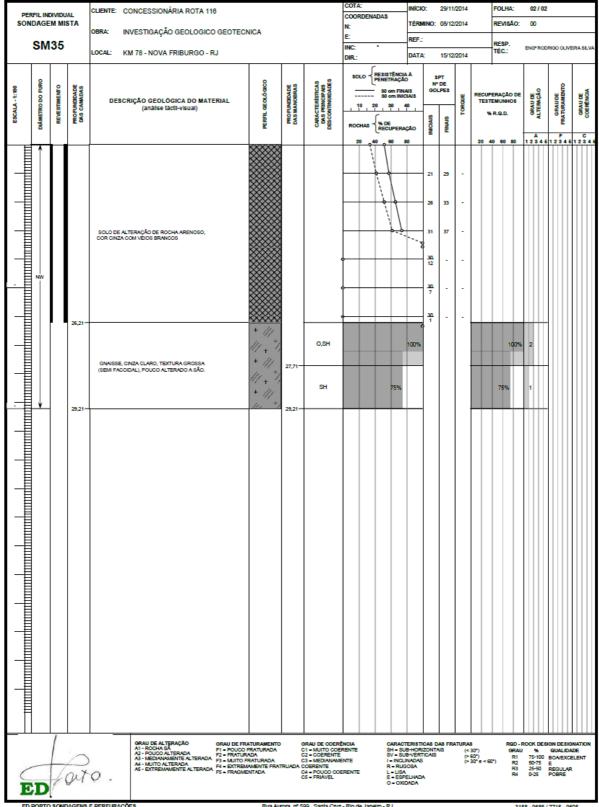


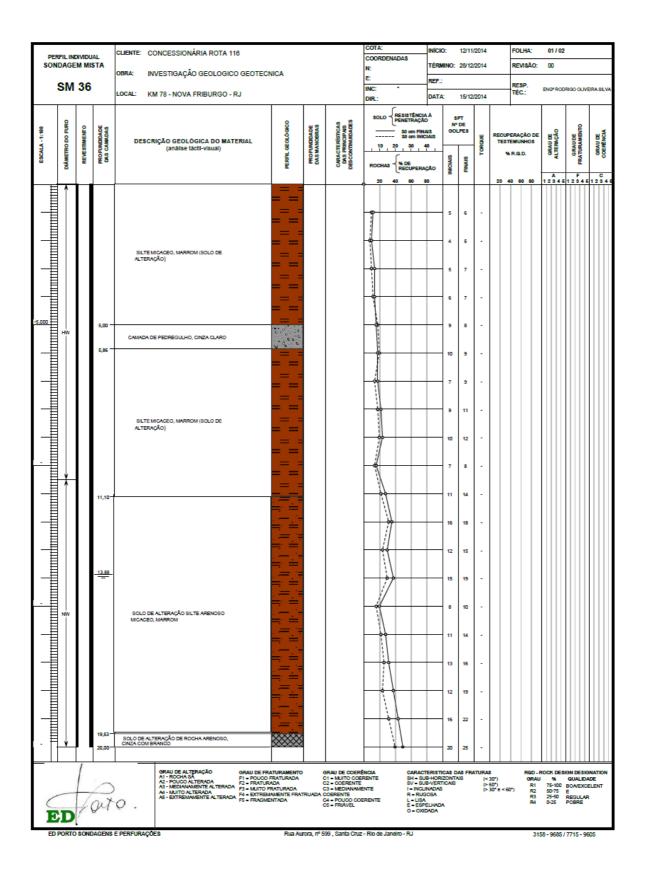


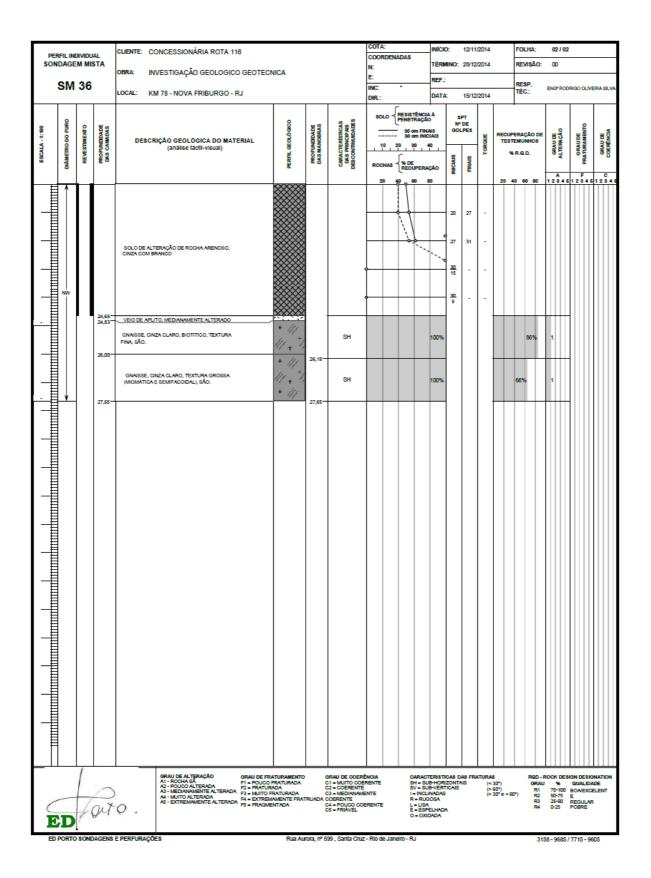












A A PENETRAÇÃO Nept	GRÁFICO SPT	ооводово 111 + 111	DESCRIÇÃO DO MATERIAL IDEM ANTERIOR 24,60	NVEL D'AGUA	ROCHASĂ ENSTRATO :Y	PROF. PERFURADA DE (m) (m)	MANOBRA (m)	(m) HECUP: MANOBRA (m)	Н	2 N° DE FRA GMENTOS	(%) GD R S3	A 2	GRAUDE GRAUDE	COERCIA
	24.8 1111 111 1	* 11 * 11 * 11 * 11 * 11 * 11 * 11 * 1			ROCHASĀ	4,6	1,50	0,2	13,3	30	0	A 2	F5	C
		11 + 11 11 + 11 11 + 12			ROCHASĀ	4,6								
	E24.6	* 111	24.60				1,50	0,3	20	3	18	A 2	F5	С
										- 1				
GRAU DE FRATURAMENTO GI	VIDO AO CONSTRANTE T		NTO DO FERRAMENTAL CONSISTÊNCIA (ARG. E SILT. ARG.) 2 GOLPES MUITO MOLE		SP.:	Geól.	E C((22) 2 Fevio	ON GONS	TRU 420 / 5 ceição o	ÇÃC 5220 crea -F	RJ 200		00 NAÇÃO	

