

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Miguel Henrique de Oliveira Costa

Modelagem do comportamento estrutural de sistemas treliçados espaciais para escoramentos de estruturas de aço, concreto e mistas (aço-concreto)

Rio de Janeiro 2012 Miguel Henrique de Oliveira Costa

Modelagem do comportamento estrutural de sistemas treliçados espaciais para escoramentos de estruturas de aço, concreto e mistas (aço-concreto)

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Estruturas.

Orientador: Prof. Dr. José Guilherme Santos da Silva

Rio de Janeiro 2012

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

Costa, Miguel Henrique de Oliveira. Modelagem do comportamento estrutural de sistemas treliçados espaciais para escoramentos de estruturas de aço, concreto e mistas (aço-concreto) / Miguel Henrique de Oliveira Costa. – 2012. 134f.
Orientador: José Guilherme Santos da Silva. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia.
1. Aço – Estruturas - Dissertações. 2. Concreto – Estruturas - Dissertações. 3. Estruturas mistas de aço e concreto - Dissertações. 1. Silva, José Guilherme Santos da. II. Universidade do Estado do Rio de Janeiro. III. Título.

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada à fonte.

Assinatura

Data

Miguel Henrique de Oliveira Costa

Modelagem do comportamento estrutural de sistemas treliçados espaciais para escoramentos de estruturas de aço, concreto e mistas (aço-concreto)

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Estruturas.

Aprovado em: 03 de maio de 2012.

Banca Examinadora:

Prof. Dr. José Guilherme Santos da Silva (Orientador) Faculdade de Engenharia – UERJ

Prof. Dr. Luciano Rodrigues Ornelas de Lima Faculdade de Engenharia – UERJ

Prof. Dr. Raul Rosas e Silva Pontifícia Universidade Católica – PUC-Rio Departamento de Engenharia Civil

DEDICATÓRIA

A Deus, por iluminar meu caminho durante essa trajetória, à minha família e esposa por apoiare respeitar minhas escolha e em especial à minha mãe pelo exemplo de luta, perseverança e incentivo em todos os momentos difíceis.

AGRADECIMENTOS

Especial a minha mãe, minhas irmãs, irmãos e a todos familiares pelo incentivo e motivação.

A minha esposa Thais de Alcantara Oliveira e família pela paciência e apoio nesses momentos tão desafiadores, que nos exigiram tanto um do outro.

Ao meu orientador, Professor José Guilherme, pelo aprendizado nesses dois anos de mestrado.

Ao professor Luciano que me incentivou no e ao longo do curso e aos demais professores do PGECIV pelos ensinamentos.

Aos meus amigos de trabalho pela paciência com os meus estudos. À Mills Estruturas e Serviços de Engenharia S/A, pelo suporte material e técnico, em especial a Avelino e Vinicius pelo entendimento e compreensão das dificuldades dessa fase tão importante na minha carreira profissional e realização pessoal.

Aos meus colegas de mestrado, pelo companheirismo e pelo inegável apoio quando necessário. Aos estagiários e funcionários do LABBAS – UERJ.

À UERJ, pelo acolhimento, à CAPES pelo apoio financeiro e a todos aqueles, que embora não citados nominalmente, contribuíram direta e indiretamente para a execução deste trabalho.

E a Deus, acima de tudo, que me dá saúde e força para cada etapa da vida.

Mesmo desacreditado e ignorado por todos, não posso desistir, pois pra mim, vencer é a única solução *Albert Einstein*

RESUMO

COSTA, Miguel Henrique de Oliveira. *Modelagem do comportamento estrutural de sistemas treliçados espaciais para escoramentos de estruturas de aço, concreto e mistas (aço-concreto)*.2012.133f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012.

A utilização de treliças para o escoramento de elementos estruturais de concreto armado e aço é considerada uma solução eficaz para o atual sistema de construção de engenharia civil. Uma mudança de atitude no processo de construção, associado com a redução dos custos causou um aumento considerável na utilização de trelicas tridimensionais em aco com maior capacidade de carga. Infelizmente, o desenho destes sistemas estruturais baseia-se em cálculos muito simplificados relacionadas com vigas de uma dimensão, com propriedades de inércia constantes. Tal modelagem, muito simplificada, não pode representar adequadamente a resposta real dos modelos estruturais e pode levar a inviabilidade econômica ou mesmo inseguro desenho estrutural. Por outro lado, estas estruturas trelicadas estão relacionadas com modelos de geometria complexa e são desenhados para suportar níveis de cargas muito elevadas. Portanto, este trabalho de investigação propôs modelos de elementos finitos que representam o caráter tridimensional real do sistema de escoramento, avaliando o comportamento estático e dinâmico estrutural com mais confiabilidade e segurança. O modelo computacional proposto, desenvolvido para o sistema estrutural não linear de análise estática e dinâmica, aprovou as habituais técnicas de refinamento de malha presentes em simulações do método de elementos finitos, com base no programa ANSYS [1]. O presente estudo analisou os resultados de análises linear-elástica e não linear geométrica para ações de serviço, físicos e geométricos para as ações finais. Os resultados do presente estudo foram obtidas, com base na análise linear-elástica e não linearidade geométrica e física, e comparados com os fornecidos pela metodologia simplificada tradicional de cálculo e com os limites recomendadas por normas de concepção.

Palavras-chave: Sistemas de treliças tridimensionais; Análise não linear; O comportamento estrutural.

ABSTRACT

The use of lattice structures for shoring of steel, composite and reinforced concrete structures is considered an effective solution in the construction of civil engineering systems. An attitudinal change in the construction process associated with costs reduction has caused a considerable increase in the use of threedimensional lattice steel truss systems with greater load capacity. Unfortunately, the design of these structural systems is based on very simplified calculations related to one-dimensional beams with constant inertia properties. Such a very simplified modeling cannot adequately represent the actual response of the structural models and can lead to uneconomic or even unsafe structural design. On the other hand, these lattice steel structures are related to three-dimensional models of complex geometry and are designed to support very high loading levels. Therefore, this work research has proposed finite element models that represent the actual threedimensional character of shoring system, evaluating the static and dynamic structural behavior with more reliability and security. The proposed computational model, developed for the structural system non-linear static and dynamic analysis, adopted the usual mesh refinement techniques present in finite element method simulations, based on the Annoys program. The present study has considered the results of a linear-elastic and non-linear geometric analysis for serviceability actions, physical and geometrical nonlinear analysis for ultimate actions. The results of the present investigation were obtained, based on linear-elastic and non-linear geometric and physical analysis, and compared with those supplied by the traditional simplified methodology of calculation and with the limits recommended by design standards.

Keywords: Three-dimensional lattice truss systems; Non-linear analysis; Structural behavior.

LISTA DE FIGURAS

Figura 1– Viaduto sobre a Avenida dos Imigrantes - SP	20
Figura 2– Escoramento de obra de arte em estrutura elevada	21
Figura 3– Escoramento com treliça M-150	21
Figura 4– Obra de arte em estrutura elevada	21
Figura 5– Escoramento de obra de arte da passarela da Rocinha	22
Figura 6– Escoramento de obra de arte da ponte do Saber - RJ	22
Figura 7– Configuração da montagem da treliça	30
Figura 8– Vista tridimensional da estrutura montada (Modelo - IX)	31
Figura 9– Configuração dos modelos apresentados	32
Figura 10– Configuração dos modelos estruturais I,V e IX	39
Figura 11– Configuração dos modelos estruturais II,VI e X	40
Figura 12– Configuração dos modelos estruturais III,VII e XI	41
Figura 13– Configuração dos modelos estruturais IV, VIII e XII	42
Figura 14– Modelo estrutural I	46
Figura 15– Modelo estrutural II	46
Figura 16– Modelo estrutural III	46
Figura 17– Modelo estrutural IV	47
Figura 18– Modelo estrutural V	47
Figura 19– Modelo estrutural VI	47
Figura 20– Modelo estrutural VII	48
Figura 21– Modelo estrutural VIII	48
Figura 22– Modelo estrutural IX	48
Figura 23– Modelo estrutural X	49
Figura 24– Modelo estrutural XI	49
Figura 25– Modelo estrutural XII	49
Figura 26– Elemento BEAM 44	50
Figura 27– Elemento finito de tubo 3D PIPE16	50
Figura 28– Elemento finito de tubo LINK8 ANSYS [1]	51
Figura 29– Gráfico da rigidez pós limite	51
Figura 30– Modos de Vibração do Modelo Estrutural I	55
Figura 31– Modos de Vibração do Modelo Estrutural V	56

Figura 32– Modos de Vibração do Modelo Estrutural IX	57
Figura33– Carga distribuída em função do deslocamento no Modelo I	60
Figura34– Carga distribuída em função do deslocamento no Modelo V	60
Figura35– Deformada do Modelo estrutural I e V	61
Figura36– Esforços Normais do Modelo estrutural I	62
Figura37– Carga distribuída em função do deslocamento no Modelo II	63
Figura38– Carga distribuída em função do deslocamento no Modelo VI	63
Figura39– Deformada do Modelo estrutural II e VI	64
Figura40– Esforços Normais do Modelo estrutural II e VI	65
Figura41– Carga distribuída em função do deslocamento no Modelo III	66
Figura42– Carga distribuída em função do deslocamento no Modelo VII	66
Figura43– Deformada do Modelo estrutural III e VII	67
Figura44– Esforços Normais do Modelo estrutural III e VII	68
Figura45– Carga distribuída em função do deslocamento no Modelo IV	69
Figura46– Carga distribuída em função do deslocamento no Modelo VIII	69
Figura47– Deformada do Modelo estrutural IV e VIII	70
Figura48– Esforços Normais do Modelo estrutural IV e VIII	71
Figura 49– Deslocamento em função da carga concentrada no Modelo I	74
Figura 50– Deslocamento em função da carga concentrada no Modelo V	74
Figura 51– Deslocamento em função da carga concentrada no Modelo IX	75
Figura 52– Evolução das tensões de Von Misses (MPa) no modelo I	77
Figura 53– Evolução das tensões de Von Misses (MPa) no modelo V	78
Figura 54– Evolução das tensões de Von Misses (MPa) no modelo IX	79
Figura 55– Deformada no eixo y do Modelo estrutural I	80
Figura 56– Deformada no eixo y do Modelo estrutural V	80
Figura 57– Deformada no eixo y do Modelo estrutural IX	81
Figura 58– Deslocamento em função da carga concentrada no Modelo II	82
Figura 59– Deslocamento em função da carga concentrada no Modelo VI	82
Figura 60– Deslocamento em função da carga concentrada no Modelo X	83
Figura 61– Evolução das tensões de Von Misses (MPa) no modelo II	85
Figura 62– Evolução das tensões de Von Misses (MPa) no modelo VI	86
Figura 63– Evolução das tensões de Von Misses (MPa) no modelo X	87
Figura 64– Deformada no eixo y do Modelo estrutural II	88
Figura 65– Deformada no eixo y do Modelo estrutural VI	88

Figura 6	66– Deformada no eixo y do Modelo estrutural X	39
Figura 6	67– Deslocamento em função da carga concentrada no Modelo III	90
Figura 6	68– Deslocamento em função da carga concentrada no Modelo VII	90
Figura 6	69– Deslocamento em função da carga concentrada no Modelo XI	91
Figura 7	70– Evolução das tensões de Von Misses (MPa) no modelo III	93
Figura 7	71– Evolução das tensões de Von Misses (MPa) no modelo VII	94
Figura 7	72– Evolução das tensões de Von Misses (MPa) no modelo XI	95
Figura 7	73– Deformada no eixo y do Modelo estrutural III	96
Figura 7	74– Deformada no eixo y do Modelo estrutural VII	96
Figura 7	75– Deformada no eixo y do Modelo estrutural XI	97
Figura 7	76– Deslocamento em função da carga concentrada no Modelo IV	98
Figura 7	77– Deslocamento em função da carga concentrada no Modelo VIII	98
Figura 7	78– Deslocamento em função da carga concentrada no Modelo XII	99
Figura 7	79– Evolução das tensões de Von Misses (MPa) no modelo IV10	01
Figura 8	30– Evolução das tensões de Von Misses (MPa) no modelo VIII10)2
Figura 8	31– Evolução das tensões de Von Misses no modelo XII10)3
Figura 8	32– Deformada no eixo y do Modelo estrutural IV10)4
Figura 8	33– Deformada no eixo y do Modelo estrutural VIII10)4
Figura 8	34– Deformada no eixo y do Modelo estrutural XII10)5
Figura 8	35– Projeto da estrutura estudada10)7
Figura 8	36– Corte da estrutura estudada10	28
Figura 8	37– Esquema de aplicação das propriedades do material1	19
Figura 8	38– Esquema de aplicação de deslocamento no nó1 ²	19
Figura 8	39– Esquema de configuração da análise não linear12	20
Figura 9	90– Janela de convergência com interações12	21
Figura 9	91– Confirmação que o modelo possui solução12	21
Figura 9	92– Janela de análise dos deslocamentos12	22
Figura 9	93– Janela de análise do histórico dos deslocamentos12	23
Figura 9	94– Janela de análise do histórico dos esforços12	23
Figura 9	95– Gráfico carga versus deslocamento12	24
Figura 9	96– Salvar dados em formato txt12	24
Figura 9	94– Modos de Vibração do Modelo Estrutural II12	25
Figura 9	95– Modos de Vibração do Modelo Estrutural III12	26
Figura 9	96– Modos de Vibração do Modelo Estrutural IV12	27

Figura 97– Modos de Vibração do Modelo Estrutural VI	128
Figura 98– Modos de Vibração do Modelo Estrutural VII	129
Figura 99– Modos de Vibração do Modelo Estrutural VIII	130
Figura 100– Modos de Vibração do Modelo Estrutural X	131
Figura 101– Modos de Vibração do Modelo Estrutural XI	132
Figura 102– Modos de Vibração do Modelo Estrutural XII	133

LISTA DE TABELAS

Tabela 2– Propriedades físicas e geométricas das seções43
Tabela 3– Frequências naturais dos modelos investigados53
Tabela4– Variação do deslocamento vertical em função da carga distribuída no
Modelo I e V62
Tabela5– Variação do deslocamento vertical em função do carga distribuída no
Modelo II e VII65
Tabela6– Variação do deslocamento vertical em função do carga distribuída no
Modelo III e VII68
Tabela7– Variação do deslocamento vertical em função do carga distribuída no
Modelo IV e VIII71
Tabela 8 – Resumo das cargas dos modelos de análise linear
Tabela 8 – Carga Crítica do modelo numérico linear nos modelos I, V e IX75
Tabela 9 – Cargas Crítica numérica dos modelos I, V e IX
Tabela 10– Deslocamento em função da carga concentrada no Modelo I, V e IX81
Tabela 11 – Carga Crítica do modelo numérico linear nos modelos II, VI e X83
Tabela 12 – Cargas Crítica numérica dos modelos II, VI e X84
Tabela 13– Deslocamento em função da carga concentrada no Modelo II, VI e X…89
Tabela 14 – Carga Crítica do modelo numérico linear nos modelos III, VII e XI91
Tabela 15 – Cargas Crítica numérica dos modelos III, VII e XI
Tabela 16– Deslocamento em função da carga concentrada no Modelo III, VII e XI.
Tabela 17 – Carga Crítica do modelo numérico linear nos modelos IV, VIII e XII99
Tabela 18 – Cargas Crítica numérica dos modelos IV, VIII e XII100
Tabela 19– Deslocamento em função da carga concentrada no Modelo IV, VIII e XII.
Tabela 20 – Resumo das cargas de plastificação106
Tabela 21– Propriedades físicas do concreto estrutural109
Tabela 22– Carregamento por metro linear109
Tabela 23– Deslocamento vertical e esforço normal em função da carga distribuída

LISTA DE ABREVIATURAS E SIGLAS

M-150	Pórtico espacial treliçado
PUC - Rio	Pontifícia Universidade Católica do Rio de Janeiro
EUROCODE	European Committee for Standardisation
DEC	Departamento de Engenharia Civil
MSP	Modelo Simplificado de Projeto
ELUMSP	Estado Limite Último sobre o Modelo Simplificado de Projeto.
ELUMNL	Estado Limite Último sobre o Modelo Numérico Linear
MNL	Modelo Numérico Linear sem ponderação dos carregamentos
MNNL	Modelo Numérico Não Linear sem ponderação dos carregamentos
UERJ	Universidade do Estado do Rio de Janeiro

LISTA DE SÍMBOLOS

A _n	Área líquida da barra
Ag	Área bruta da seção transversal
A _e	Área líquida da seção transversal
A _{net}	Área total líquida da seção transversal
d	Diâmetro do furo na linha de ruptura
n	Quantidade de furos na linha de ruptura
t	Espessura da seção transversal
E	Módulo de elasticidade
V	Coeficiente de Poisson
α	Coeficiente de dilatação térmica
ρ	Densidade do aço
⁰ C	Temperatura em graus Celsius
N	Newton
kg	Quilograma
fy	Tensão limite de escoamento
f _u	Tensão última de ruptura
γмо	Coeficiente de resistência
Ύм1	Coeficiente de resistência
γм2	Coeficiente de resistência
Ya1	Coeficiente de resistência
Ya2	Coeficiente de resistência
Ct	Fator de redução da área líquida
χ	Fator de redução relativo às curvas de flambagem
Q	Fator de redução total a flambagem local
k _r	Fator de redução de ruptura
α	Fator de imperfeição generalizada
λ	Índice de esbeltez
λ_{E}	Índice de esbeltez Euleriano
N _{pl,rd}	Carga última de escoamento da seção bruta

N_{u,rd} Carga última de projeto de ruptura da seção líquida

- N_{t,rd} Força normal de tração da seção transversal
- N_d Carregamento solicitante
- N_{b,rd} Força última de projeto de escoamento da seção bruta
- N_{c,rd} Força última de projeto resistente à compressão
- N_e Força axial de flambagem elástica
- σ Tensão

SUMÁRIO

	INTRODUÇÃO	20
1	ASPECTOS DE PROJETO E SITUAÇÃO DO ASSUNTO	30
1.1	Recomendações de Projeto	32
1.1.1	Recomendações de projeto ABNT NBR 8800 [2]	33
1.1.1.1	Resistência à tração do elemento estrutural:	33
1.1.1.2	Resistência à compressão do elemento estrutural:	34
1.1.2	Recomendações de projeto Eurocode 3 [6]	35
1.1.2.1	Resistência à tração do elemento estrutural:	35
1.1.2.2	Resistência à compressão do elemento estrutural:	36
2	DESCRIÇÃO DO MODELO ESTRUTURAL INVESTIGADO	38
2.1	Introdução	38
2.2	Modelos Estruturais Investigados	39
2.3	Características físicas e geométricas das seções	43
3	MODELAGEM COMPUTACIONAL	45
3.1	Introdução	45
3.2	Modelos Numéricos	45
4	ANÁLISE DE MODOS DE VIBRAÇÃO E FREQUÊNCIAS	52
4.1	Generalidades	52
4.2	Análise das frequências naturais (Autovalores)	52
4.3	Análise dos modos de vibração (Autovetores)	54
5	ANÁLISE LINEAR ELÁSTICA	59
5.1	Introdução	59
5.2	Modelos Estruturais	60
5.2.1	Modelo Estrutural I e V - Análise de deslocamentos e esforços máximos	60
5.2.2	Modelo Estrutural II e VI - Análise de deslocamentos e esforços máximos	563
5.2.3	Modelo Estrutural III e VII - Análise de deslocamentos e esforços máximo	s66
5.2.4	Modelo Estrutural IV e VIII - Análise de deslocamentos e esforços máxim	os
		69
6	ANÁLISE NÃO LINEAR DOS MODELOS INVESTIGADOS	73
6.1	Introdução	73

6.1.1	Modelo Estrutural I, V e IX - Análise de deslocamentos, esforços e tensões
	74
6.1.2	Modelo Estrutural II, VI e X - Análise de deslocamentos, esforços e tensões
6.1.3	Modelo Estrutural III, VII e XI - Análise de deslocamentos, esforços e
	tensões90
6.1.4	Modelo Estrutural IV, VIII e XII - Análise de deslocamentos, esforços e
	tensões98
7	ESTUDO DE CASO107
7.1	Premissas de utilização108
8	CONSIDERAÇÕES FINAIS111
8.1	Introdução111
8.2	Considerações finais11
8.3	Sugestões para trabalhos futuros114
	REFERÊNCIAS115
	APÊNDICE A
	APÊNDICE B