

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Paulo José Barreto Teixeira

Verificação experimental da largura colaborante em mesas de lajes nervuradas

Rio de Janeiro 2012 Paulo José Barreto Teixeira

Verificação experimental da largura colaborante em mesas de lajes nervuradas

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Estruturas.

Orientadora: Prof^a. Dr^a. Maria Elizabeth da Nóbrega Tavares Coorientador (es): Prof^a. Dr^a. Regina Helena Ferreira de Souza Prof. Dr. Evandro da Silveira Goulart

> Rio de Janeiro 2012

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

T266 Teixeira, Paulo José Barreto. Verificação experimental da largura colaborante em mesas de lajes nervuradas / Paulo José Barreto Teixeira. - 2012. 211 f.
Orientadora: Maria Elizabeth da Nóbrega Tavares. Coorientadores: Regina Helena Ferreira de Souza, Evandro da Silveira Goulart. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia.
1. Engenharia Civil. 2. Lajes de concreto – Dissertações. 3. Concreto armado – Dissertações. I. Tavares, Maria Elizabeth da Nóbrega. II. Universidade do Estado do Rio de Janeiro. III. Título.

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Paulo José Barreto Teixeira

Verificação experimental da largura colaborante em mesas de lajes nervuradas

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Estruturas.

Aprovado em: 26 de outubro de 2012.

Banca Examinadora:

Prof^a. Dr^a. Maria Elizabeth da Nóbrega Tavares(Orientadora) Faculdade de Engenharia – UERJ

Prof^a. Dr^a. Regina Helena Ferreira de Souza (Coorientadora) Faculdade de Engenharia – UERJ

Prof. Dr. Evandro da Silveira Goulart (Coorientador) Faculdade de Engenharia – UERJ

Prof^a. Dr^a. Margareth da Silva Magalhães Faculdade de Engenharia – UERJ

Prof^a. Dr^a. Claudia Maria de Oliveira Campos Universidade Federal Fluminense – UFF

> Rio de Janeiro 2012

DEDICATÓRIA

A Deus, por permitir mais essa vitória. Aos meus pais (*in memoriam*). A minha querida esposa Isabel Cristina, pela paciência e dedicação.

AGRADECIMENTOS

Aos meus orientadores, Prof^a. Doutora Maria Elizabeth da Nóbrega Tavares, Prof^a. Doutora Regina Helena Ferreira de Souza, Prof. Doutor Evandro da Silveira Goulart por toda a ajuda e demonstração de força de vontade, pela excelente orientação, apontando os melhores caminhos, dando estímulos para o desenvolvimento deste trabalho.

Aos professores, pelos ensinamentos, dentro e fora da sala de aula, durante a época da graduação e agora do mestrado

Aos funcionáios do laboratório da UERJ: Carlos, André, Paulo Inácio e Antonio Inácio.

Ao Engenheiro Roberto Solano Carneiro de Novaes, por todo o apoio e pelas soluções criativas.

Aos meus colegas de mestrado, pelo companheirismo e pelo inegável apoio quando necessário.

A UERJ, porque sem ela não poderia ter realizado este sonho de conquista.

A todos aqueles, que embora não citados nominalmente, contribuíram direta e indiretamente para a execução deste trabalho.

À CAPES pelo apoio financeiro.

"O aumento do conhecimento é como uma esfera dilatando-se no espaço: quanto maior a nossa compreensão, maior o nosso contato com o desconhecido".

•

Blaise Pascal

RESUMO

TEIXEIRA, Paulo José Barreto. *Verificação Experimental da Largura Colaborante em Mesas de Lajes Nervuradas.* 2012. 211f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012.

Este trabalho apresenta um estudo experimental para determinação da largura colaborante em mesas de lajes nervuradas de concreto armado. Esta largura é definida comumente utilizando-se as recomendações contidas nas diversas normas e procedimentos já consagrados de estruturas de concreto armado. Visando a determinação da largura da mesa que efetivamente contribui na capacidade resistente da seção de lajes nervuradas, foram instrumentados e ensaiados modelos que buscaram reproduzir faixas de nervuras e painéis de laje. As faixas possuíam dimensões reais de duas nervuras principais, enquanto as lajes reproduziam painéis em escala reduzida (1:2). Em parte dos modelos, foram inseridos extensômetros de resistência elétrica nas armaduras e no concreto, além de transdutores para verificação das flechas. Foram calculadas as larguras a partir das curvas de tensões e flechas verificadas experimentalmente. Verificou-se, também, a influência da presença de tubulação embutida ao longo da mesa das faixas de laje.

Palavras-chave: Concreto armado; Largura colaborante; Lajes nervuradas.

ABSTRACT

This paper presents an experimental study to determine the cooperating width in flange waffle slabs of reinforced concrete. This width is usually established through the recommendations in the various rules and procedures already defined for reinforced concrete structures. In order to determine the width of the flange that effectively contributes to the ability of the resistant section slabs, models that sought to play tracks of panels and ribbed slab were tested and instrumented. The strips had two actual dimensions of main ribs, while the slab panels were reproduced on a reduced scale (1:2). In some of the models, electrical resistance strain gages were inserted in the reinforcement and in the concrete, and the arrows were checked by the transducers. The Widths were calculated from the curves of stress and the arrows were experimentally verified. The influence of a pipe embedded along the tracks of the flange slabs were also taken into consideration.

Keywords: Reinforced concrete; Width cooperating; Waffle slabs.

LISTA DE FIGURAS

Figura 1 – Largura colaborante de uma laje	27
Figura 2 – Dimensão na seção transversal de uma laje nervurada	31
Figura 3 – Lajes nervurada ortotrópica (Araújo, 2010)	34
Figura 4 – Transformação da laje nervurada em laje maciça equivalente	36
Figura 5 – Laje nervurada composta por cubas semicilíndricas	38
Figura 6 – Grelha de laje nervurada	39
Figura 7 – Carregamentos nos nós e nas barras de uma grelha	42
Figura 8 – Malha de elementos finitos de laje nervurada	43
Figura 9 – Malha de elementos finitos de laje nervurada	44
Figura 10 – Modelo laminar	45
Figura 11 – Largura colaborante	46
Figura 12 – Viga metálica e laje para determinação da largura colaborante	47
Figura 13 – Largura colaborante ao longo de estrutura composta por vigas e	
chapa fina	47
Figura 14 – Largura colaborante para regiões de momento positivo	49
Figura 15 – Aspecto de fôrmas semicilíndricas invertidas, sendo barrotes	
e meio-barrotes	50
Figura 16 – Aspecto, antes da concretagem, de fôrmas de uma laje	51
Figura 17 – Aspecto do escoramento e montagem de fôrmas	51
Figura 18 – Esquema dos elementos de uma laje de cubas semicilíndricas	52
Figura 19 – Detalhes da composição da seção composta por BRC – 130	53
Figura 20 – Pavimento modelado no software TQS	55
Figura 21 – Colagem dos moldes em EPS sobre gabarito	56
Figura 22 – Colagem dos moldes em EPS sobre gabarito	56
Figura 23 – Retirada dos moldes de EPS, com o auxílio de espátula	56
Figura 24 – Retirada dos moldes de EPS, com o auxílio de espátula	56
Figura 25 – Detalhe da colagem dos extensômetros	57
Figura 26 – Aspecto de instrumentação da armadura de cisalhamento	57
Figura 27 – Detalhe do extensômetro colado na armadura	58
Figura 28 – Seções equivalentes	60
Figura 29 – Espaçamento das nervuras principal	60

Figura 30 – Espaçamento das nervuras secundárias	61
Figura 31 – Pórtico 3D (modelo I)	61
Figura 32 – Faixa a ser estudada (modelo I)	62
Figura 33 – Grelha de momentos fletores	63
Figura 34 – Grelha de deslocamentos	63
Figura 35 – Detalhamento das armaduras	64
Figura 36 – Pórtico 3D (modelo II)	65
Figura 37 – Laje modelo II, planta e vista lateral	66
Figura 38 – Grelha de momentos fletores (modelo II)	67
Figura 39 – Grelha de deslocamentos (modelo II)	67
Figura 40 – Detalhamento das armaduras (modelo II)	68
Figura 41 – Seções equivalentes	69
Figura 42 – Seções equivalentes da nervura principal	70
Figura 43 – Distância entre seções equivalentes - nervura secundária	70
Figura 44 – Pórtico 3D, modelo PL-01	71
Figura 45 – Planta do modelo PL-01	71
Figura 46 – Grelha de momentos fletores PL-01	72
Figura 47 – Grelha de deslocamentos PL-01	72
Figura 48 – Detalhamento das armaduras para PL-01	73
Figura 49 – Detalhamento das armaduras para o modelo reduzido de PL-01	74
Figura 50 – Vista inferior e corte PL-01	74
Figura 51 – Pórtico 3D, modelo PL-02	75
Figura 52 – Planta do modelo PL-02	76
Figura 53 – Aspecto da grelha de momentos fletores PL-02	76
Figura 54 – Aspecto da grelha de deslocamentos de PL-02	77
Figura 55 – Detalhamento das armaduras para PL-02	77
Figura 56 – Detalhamento das armaduras para modelo reduzido PL-02	78
Figura 57 – Vista inferior e corte do modelo reduzido PL02	79
Figura 58 – Aspecto de modelo de viga sem tubulação inserida	81
Figura 59 – Aspecto de modelo de viga com tubulação inserida	81
Figura 60 – Painel para concretagem dos modelos I e II	82
Figura 61 – Planta do painel de fôrma dos elementos dos modelos I e II	82
Figura 62 – Painel para concretagem dos elementos dos modelos I e II	83

Figura 63 – Ensaio de abatimento e corpos de prova moldados para elementos	
dos modelos I e II	84
Figura 64 – Ensaio de abatimento e corpos de prova moldados para elementos	
dos modelos I e II	84
Figura 65 – Lançamento do concreto na fôrma dos modelos I e II	84
Figura 66 – Aspecto, após a desforma de elmentos do modelos I e II	85
Figura 67 – Aspecto de um meio-barrote reduzido	85
Figura 68 – Dimensões do meio-barrote reduzido em escala 1:2	86
Figura 69 – Aspecto da fôrma PL-01	86
Figura 70 – Aspecto da fôrma PL-02	87
Figura 71 – Detalhe da fixação das armaduras	87
Figura 72 – Armadura de flexão de PL-01	88
Figura 73 – Armadura de flexão de PL-02	88
Figura 74 – Dosagem em peso de brita usada no concreto de PL-01 e PL-02	90
Figura 75 – Realização de "slump test" no concreto de PL-01 e PL-02	90
Figura 76 – Realização de "slump test" no concreto de PL-01 e PL-02	90
Figura 77 – Corpos de prova de PL-01 e PL-02	91
Figura 78 – Aplicação de desmoldante	91
Figura 79 – Concretagem e posicionamento da armadura não estrutural	92
Figura 80 – Regularização da superfície do painel de laje PL-02	92
Figura 81 – PL-01 após concretagem	93
Figura 82 – PL-02 após concretagem	93
Figura 83 – PL-01 após retirada de parte das fôrmas de barrotes reduzidos	94
Figura 84 – Aspecto final de PL-01 e PL-02	94
Figura 85 – Aspecto final de PL-01 e PL-02	94
Figura 86 – Corpo de prova durante e após o ensaio de compressão diametral	96
Figura 87 – Corpo de prova durante e após o ensaio de compressão diametral	96
Figura 88 – Diagrama Tensão X Deformação para aço CA-60 de PL-01	97
Figura 89 – Corpo de prova revestido com enxofre	98
Figura 90 – Corpo de prova durante o ensaio de compressão axial	98
Figura 91 – Diagrama Tensão X Deformação para aço CA-60 de PL-02	99
Figura 92 – Ensaio de tração do aço	99
Figura 93 – Ensaio de tração do aço	99

Figura 94 – Corpo de prova durante o ensaio de compressão axial	100
Figura 95 – Corpo de prova durante o ensaio de compressão diametral	101
Figura 96 – Corpo de prova durante o ensaio de compressão diametral	101
Figura 97 – Viga V-2A	103
Figura 98 – Viga V-2B	103
Figura 99 – Posicionamento dos strain gages em PL-01	104
Figura 100 – Posicionamento dos strain gages em PL-02	104
Figura 101 – Preparo de superfície de concreto para colagem de	
extensômetros	105
Figura 102 – Preparo de superfície do aço para colagem de extensômetros	105
Figura 103 – Preparo de superfície do aço para colagem de extensômetros	106
Figura 104 – Limpeza preliminar de superfície do aço	106
Figura 105 – Strain gage colado sobre a superfície do concreto	
V-2A e PL-01	107
Figura 106 – Strain gage colado sobre a superfície do concreto	
V-2A e PL-01	107
Figura 107 – Strain gage e pinças para manuseio	108
Figura 108 – Strain gage fixado sobre armadura	108
Figura 109 – Strain gage fixado sobre armadura	108
Figura 110 – Detalhe do preparo da extremidade de fio e soldagem	109
Figura 111 – Detalhe do preparo da extremidade de fio e soldagem	109
Figura 112 – Armaduras com fios conectados	110
Figura 113 – Detalhes da identificação do fio e presilha de fixação	110
Figura 114 – Detalhes da identificação do fio e presilha de fixação	110
Figura 115 – Detalhe da aplicação e embalagem da resina incolor	111
Figura 116 – Detalhe da aplicação e embalagem da resina incolor	111
Figura 117 – Detalhe da aplicação e embalagem da resina preta de proteção	111
Figura 118 – Detalhe da aplicação e embalagem da resina preta de proteção	111
Figura 119 – Detalhes dos equipamentos de aquisição de dados	112
Figura 120 – Detalhes dos equipamentos de aquisição de dados	112
Figura 121 – Detalhes dos transdutores utilizados nos ensaios	113
Figura 122 – Detalhe do posicionamento do transdutores utilizados nos	
ensaios das vigas	113

Figura 123 – Detalhe dos defletômetros e dos transdutores utilizados nos	
ensaios das vigas	114
Figura 124 – Detalhe dos defletômetros e dos transdutores utilizados nos	
ensaios das vigas	114
Figura 125 – Posicionamento dos transdutores nos ensaios de PL-01	114
Figura 126 – Detalhe dos defletômetros e dos transdutores posicionados	115
Figura 127 – Detalhe do posicionamento dos transdutores de PL-02	115
Figura 128 – Detalhe de transdutor ao lado de defletômetro utilizado no	
ensaio de PL-02	115
Figura 129 – Curva de calibração 1a do transdutor 1	117
Figura 130 – Curva de calibração 1b do transdutor 1	117
Figura 131 – Curva de calibração 2a do transdutor 2	118
Figura 132 – Curva de calibração 2b do transdutor 2	119
Figura 133 – Curva de calibração 3a do transdutor 3	120
Figura 134 – Curva de calibração 3b do transdutor 3	120
Figura 135 – Detalhes da aplicação de carga e apoios das vigas	123
Figura 136 – Aspecto do ajuste no ponto de aplicação das cargas	124
Figura 137 – Aspecto da viga V-1 posicionada para o ensaio	125
Figura 138 – Gráfico Carga X Flecha da viga V-1	126
Figura 139 – Detalhe das fissuras de V-1	126
Figura 140 – Viga V-2A antes do ensaio	127
Figura 141 – Gráficos Carga X Flecha da viga V-2A para os defletômetros	129
Figura 142 – Gráficos Carga X Flecha da viga V-2A para os transdutores	129
Figura 143 – Gráficos Carga X Flecha da viga V-2A para os defletômetros	
e transdutores	130
Figura 144 – Gráficos Carga X Deformação da viga V-2A para o concreto	
comprimido	132
Figura 145 – Gráfico Carga X Deformação da viga V-2A para o concreto	
Tracionado	132
Figura 146 – Gráfico Carga X Deformação da viga V-2A para o concreto	
tracionado na direção secundária	134
Figura 147 – Gráfico Carga X Deformação da viga V-2A para aço comprimido,	
na direção secundária	134

Figura 148 – Gráfico Carga X Deformação da viga V-2A para aço tracionado,	
na direção principal	136
Figura 149 – Aspecto das fissuras da viga V-2A	136
Figura 150 – Aspecto das fissuras da viga V-2A para uma carga de 10kN	137
Figura 151 – Aspecto das fissuras da viga V-2A, próxima à nervura	
secundária, para uma carga de 13kN	137
Figura 152 – Detalhe das fissuras de V-2A	138
Figura 153 – Detalhes (a) e (b) da ruptura de V-2A	139
Figura 154 – Detalhe da posição de defletômetros e transdutores na viga V-2B.	140
Figura 155 – Gráficos Carga X Flecha da viga V-2B para os defletômetros	141
Figura 156 – Gráficos Carga X Flecha da viga V-2B para os transdutores	142
Figura 157 – Gráficos Carga X Flecha da viga V-2B para os defletômetro e	
transdutores	142
Figura 158 – Gráficos Carga X Deformação da viga V-2B para o concreto	
comprimido	144
Figura 159 – Gráficos Carga X Deformação da viga V-2B para o concreto	
tracionado	144
Figura 160 – Gráfico Carga X Deformação da viga V-2B para o concreto	
tracionado, na direção secundária	145
Figura 161 – Gráficos Carga X Deformação da viga V-2B para aço tracionado.	147
Figura 162 – Gráfico Carga X Deformação da viga V-2B para aço na direção	
Secundária	147
Figura 163 – Detalhe da carga sem o aparecimento de fissuras na viga V-2B	148
Figura 164 – Detalhe da carga com o aparecimento de fissuras na viga V-2B	149
Figura 165 – Detalhes da fissura de V-2B	149
Figura 166 – Detalhe da ruptura do aço de V-2B	151
Figura 167 – Detalhe do esmagamento do concreto de V-2B	151
Figura 168 – Aspecto de V-2B após o término do ensaio	152
Figura 169 – Gráficos Carga X Flecha da viga V-3 – 3 ciclos	154
Figura 170 – Detalhe de aplicação de cargas em PL-01	155
Figura 171 – Detalhe da aplicação de cargas em PL-02	156
Figura 172 – Detalhe da proporção entre a chapa e os vãos das lajes	156
Figura 173 – Detalhe do quadro para apoio de PL-01	157

Figura 174 – Detalhe de PL-01 conectada ao equipamento	158
Figura 175 – Gráfico Carga X Flecha da laje PL-01, defletômetro	160
Figura 176 – Gráficos Carga X Flecha da laje PL-01, transdutores	160
Figura 177 – Gráficos Carga X Flecha da laje PL-01, comparativo defletômetro	
e transdutor	161
Figura 178 – Gráficos Carga X Deformação para concreto comprimido	163
Figura 179 – Gráficos Carga X Deformação para concreto tracionado	163
Figura 180 – Gráficos Carga X Deformação, na nervura secundária de PL-01	165
Figura 181 – Gráficos Carga X Deformação, aço na nervura principal de PL-01	167
Figura 182 – Gráficos Carga X Deformação, aço na nervura principal de PL-01	167
Figura 183 – Detalhe da 1ª fissura de PL-01	168
Figura 184 – Detalhe do 1º, 2º e 4º tipo de fissura de PL-01	168
Figura 185 – Detalhe dos posicionamentos de fissuras de PL-01	169
Figura 186 – Detalhe de fissuras ao longo das nervuras principais de PL-01	170
Figura 187 – Detalhe da ruptura na parte inferior de PL-01	170
Figura 188 – Detalhe da ruptura na parte superior de PL-01	171
Figura 189 – Aspecto de PL-02 posicionada para o ensaio – vista frontal	171
Figura 190 – Aspecto de PL-02 posicionada para o ensaio – vista lateral	172
Figura 191 – Aspecto dos transdutores e defletômetros de PL-02	172
Figura 192 – Gráficos Carga X Flecha da laje PL-02, defletômetros	174
Figura 193 – Gráficos Carga X Flecha da laje PL-02, transdutores	174
Figura 194 – Gráficos Carga X Flecha da laje PL-02, defletômetros	
e transdutores	175
Figura 195 – Gráficos Carga X Deformação, concreto comprimido	177
Figura 196 – Gráficos Carga X Deformação, concreto tracionado	177
Figura 197 – Gráficos Carga X Deformação no concreto, nervura secundária	178
Figura 198 – Gráficos Carga X Deformação aço tracionado de PL-02	180
Figura 199 – Gráficos Carga X Deformação aço tracionado	181
Figura 200 – Aspecto da 1ª e 2ª fissura	181
Figura 201 – Detalhe da fissura nº 1, para uma carga de 30kN	181
Figura 202 – Detalhe dos posicionamentos de fissura de PL-02	182
Figura 203 – Aspecto geral de PL-02 após a ruptura	183
Figura 204 – Aspecto da parte inferior de PL02 após a ruptura	183

Figura 205 – Gráfico carga x flecha – comparativo V-1 e V-2A	185
Figura 206 – Esquema das tensões verificadas no concreto	186
Figura 207 – Esquema das tensões verificadas no concreto para os	
painéis de laje	188
Figura 208 – Determinação dos grupos de elementos das vigas	192
Figura 209 – Aspecto da aplicação de cargas e dos apoios modelados	
no SAP 2000	193
Figura 210 – Determinação dos grupos de elementos das lajes	194
Figura 211 – Aspecto da aplicação de cargas e apoios do modelo de PL01	195
Figura 212 – Aspecto da distribuição de tensões em PL-01	196
Figura 213 – Aspecto da distribuição de tensões em PL-02	197
Figura 214 – Aspecto da curva de tensões	198
Figura 215 – Aspecto da distribuição de tensões na carga de fissuração	199

LISTA DE TABELAS

Tabela 1 – Resumo dos dados do modelo I	64
Tabela 2 – Resumo dos dados do modelo II	68
Tabela 3 – Resumo dos dados do protótipo de PL-01	73
Tabela 4 – Resumo dos dados do modelo reduzido de PL-01	74
Tabela 5 – Resumo dos dados do protótipo de PL-02	78
Tabela 6 – Resumo dos dados dos modelos	78
Tabela 7 – Resumo das peças executadas, calculadas pelos modelos I e II	80
Tabela 8 – Materiais utilizados na dosagem do 1º, 2º e 3º traços	83
Tabela 9 – Materiais utilizados na dosagem do 1º, 2º e 3º traços	83
Tabela 10 – Resumo dos materiais usados na dosagem do concreto de PL-01.	89
Tabela 11 – Resumo dos materiais usados na dosagem do concreto de PL-02.	89
Tabela 12 – Resumo da resistência à compressão na idade de "j" dias	95
Tabela 13 – Resumo da resistência à compressão diametral para "j" dias	96
Tabela 14 – Resumo da resistência à compressão na idade de "j"dias	97
Tabela 15 – Resumo da resistência à compressão na idade de "j"dias	100
Tabela 16 – Resumo da resistência à compressão diametral para idade de	
"j"dias	101
Tabela 17 – Resumo dos dados dos strain gages	109
Tabela 18 – Resumo dos dados do equipamento de aquisição de dados	112
Tabela 19 – Resumo dos dados da calibração do transdutor 1	116
Tabela 20 – Resumo dos dados da calibração do transdutor 2	118
Tabela 21 – Resumo dos dados da calibração do transdutor 3	119
Tabela 22 – Resumo das calibrações dos três transdutores	121
Tabela 23 – Resumo das calibrações dos três transdutores e erros	122
Tabela 24 – Resumo das cargas e flechas de V-1	125
Tabela 25 – Resumo das fissuras de V-1	127
Tabela 26 – Resumo das cargas e flechas de V-2A	128
Tabela 27 – Resumo das cargas e deformações no concreto de V-2A	131
Tabela 28 – Resumo das cargas e deformações no concreto de V-2A na	
direção secundária	133

Tabela 29 – Resumo das cargas e deformações no aço de V-2A nas direções	
principal e secundária	135
Tabela 30 – Resumo de cargas e fissuras de V-2A	137
Tabela 31 – Resumo da posição e abertura das fissuras de V-2A	138
Tabela 32 – Resumo das cargas e flechas de V-2B	141
Tabela 33 – Resumo das cargas e deformações no concreto de V-2B	143
Tabela 34 – Resumo das cargas e deformações no concreto tracionado de V-	
2B, na direção secundária	145
Tabela 35 – Resumo das cargas e deformações no aço de V-2B nas direções,	
principal e secundária	146
Tabela 36 – Resumo de cargas e fissuras de V-2B	148
Tabela 37 – Resumo das posições e aberturas máximas das fissuras de V-2B.	150
Tabela 38 – Resumo dos ciclos	153
Tabela 39 – Resumo das dimensões das chapas utilizadas nos ensaios das	
lajes	157
Tabela 40 – Resumo das cargas e flechas de PL-01	159
Tabela 41 – Resumo das cargas e deformações de PL-01	162
Tabela 42 – Resumo das cargas e deformações, direção secundária de PL-01.	164
Tabela 43 – Resumo das cargas e deformações, na armadura (direção	
principal) de PL-01	166
Tabela 44 – Cargas e ordem de aparecimento das fissuras de PL-01	169
Tabela 45 – Resumo das cargas e flechas de PL-02	173
Tabela 46 – Cargas e deformações no concreto de PL-02, na direção principal	176
Tabela 47 – Cargas e deformações no concreto, direção secundária de PL-02.	178
Tabela 48 – Cargas e deformações no aço, direção principal de PL-02	179
Tabela 49 – Resumo das cargas e aberturas de fissuras de PL-02	182
Tabela 50 – Comparativo entre V-1 e V-2A (viga com e sem tubulação)	184
Tabela 51 – Resumo das tensões de compressão no concreto de V-2A	186
Tabela 52 – Resumo das tensões de compressão no concreto de V-2B	187
Tabela 53 – Resumo das tensões de tração no concreto de V-2A	187
Tabela 54 – Resumo das tensões de tração no concreto de V-2B	188
Tabela 55 – Tensões de compressão verificadas experimentalmente em PL-01	189
Tabela 56 – Tensões de tração verificadas experimentalmente em PL-01	190

Tabela 57 – Tensões de compressão verificadas experimentalmente em PL-02	191
Tabela 58 – Tensões de tração verificadas experimentalmente em PL-02	191
Tabela 59 – Resumo das discretização usada nas vigas	193
Tabela 60 – Resumo da discretização das lajes	195
Tabela 61 – Comparativo das tensões experimentais e numéricas para PL-01	196
Tabela 62 – Comparativo das tensões experimentais e numéricas para PL-02	197
Tabela 63 – Tensões de compressão e largura colaborante de V-2A e V-2B	200
Tabela 64 – Cálculo da largura colaborante para PL-01	201
Tabela 65 – Cálculo da largura colaborante para PL-02	202

LISTA DE ABREVIATURAS E SIGLAS

ACI-318	American Concrete Institute
NBR - 6118	Norma Brasileira para Estruturas de Concreto
EUROCODE	European Committee for Standardisation
BRC	Barrote Redutor de Concreto
СР	Corpo de prova de concreto
m	Metro
cm	Centímetro
mm	Milímetro
m²	Metro quadrado
M ³	Metro cúbico
Ν	Newton
kN	Kilonewton
kN/m²	Kilonewton por metro quadrado
MPa	Megapascal
EPS	Poliestireno expandido (isopor)
ERE	Extensômetro de resistência elétrica (strain gage)

LISTA DE SÍMBOLOS

b _w	Espessura da alma
b _f	Largura da mesa
h _{eq}	Altura da laje maciça equivalente
h _f	Altura da mesa da laje nervurada
h	Altura total da laje nervurada
α	Coeficiente que depende do carregamento, dos vãos e das condições de
	contorno das lajes
f _c	Resistência à compressão simples
f _{ct}	Resistência à tração simples
V	Coeficiente de Poisson
E _{cs}	Módulo de Elasticidade do secante do concreto
D	Rigidez da laje
D _e	Rigidez equivalente
W_{exp}	Flecha da laje nervurada obtida experimentalmente
f _{ck}	Resistência a compressão do concreto aos 28 dias
σ_{max}	Tensão máxima na mesa.
b _e	Largura efetiva (colaborante) da mesa
I	Distância inter-eixos da nervura principal
L	Distância inter-eixos da nervura secundária
В	Largura mínima da nervura secundária
Dj	Altura do molde (cuba semicilíndrica)
ε _s	Deformação do aço
ε _c	Deformação no concreto
σ_{c}	Tensão no concreto
σ_{s}	Tensão no aço
V	Voltagem lida pelos transdutores
K _{Transd}	Constante de calibração para os transdutores
O reta	Média dos coeficientes angulares das retas dos gráficos de calibração.
(δ x)	Erros relativos das calibrações dos transdutores

SUMÁRIO

	INTRODUÇÃO	25
1	PRESCRIÇÕES NORMATIVAS SOBRE LAJES	
	NERVURADAS	30
1.1	Prescrições da NBR-6118 – 2003	30
1.2	Recomendações do EUROCODE (2004)	32
1.3	Recomendações do ACI-318 – 08	33
2	REVISÃO BIBLIOGRÁFICA	34
2.1	Modelos de cálculo de lajes	34
2.1.1	Método da espessura equivalente	34
2.1.2	Analogia de grelha	38
2.1.2.1	Localização dos elementos de grelha	39
2.1.2.2	Características geométricas dos elementos de grelha	40
2.1.2.3	Simulação das condições de apoio	41
2.1.2.4	Consideração do carregamento	42
2.1.3	Método dos elementos finitos	42
2.1.4	Método laminar	44
2.2	O conceito de largura colaborante	46
2.3	Lajes nervuradas compostas por cubas semicilíndricas	
	Invertidas	50
2.4	Modelos reduzidos	53
2.4.1	Utilização de modelos reduzidos na análise de estruturas	53
2.4.2	Utilização de modelos reduzidos na análise de lajes nervuradas	55
3	PROGRAMA EXPERIMENTAL	59
3.1	Pré-dimensionamento dos modelos a serem estudados	59
3.1.1	Aspectos gerais	59
3.1.2	Pré-dimensionamento do modelo I – painel quadrado	59
3.1.3	Pré-dimensionamento do modelo II – painel retangular	65
3.1.4	Pré-dimensionamento do modelo III - painel de PL-01	69
3.1.5	Pré-dimensionamento do modelo IV - painel de PL-02	75

3.2	Confecção dos modelos a serem ensaiados	79
3.2.1	Elementos de faixas dos modelos I e II	79
3.2.2	Painéis de laje PL-01 e PL-02	85
3.3	Ensaios dos materiais utilizados	95
3.3.1	Materiais utilizados nos modelos I e II – elementos de faixa	95
3.3.2	Materiais do modelo reduzido PL-01	96
3.3.3	Materiais do modelos reduzido PL-02	99
3.4	Instrumentação dos modelos	102
3.4.1	Procedimentos gerais	102
3.4.1.1	Marcação da posição da instrumentação	102
3.4.1.2	Preparo das superfícies	105
3.4.1.3	Limpeza das superfícies	106
3.4.1.4	Colagem dos extensômetros (strain gages)	107
3.4.1.5	Teste preliminar dos extensômetros - verificação do valor da	
	resistência	108
3.4.1.6	Soldagem dos fios nos extensômetros	109
3.4.1.7	Aplicação de resinas de proteção nos extensômetros	111
3.5	Equipamentos utilizados nos ensaios	112
3.5.1	Equipamentos de aquisição de dados	112
3.5.2	Transdutores diferenciais	113
3.5.3	Calibração dos transdutores	116
4	REALIZAÇÃO DOS ENSAIOS	123
4.1	Considerações iniciais sobre a realização dos ensaios	123
4.2	Aplicação das cargas e condições de apoio	123
4.3	Ensaio da viga V-1	124
4.3.1	Verificação das flechas	124
4.3.2	Observação das fissuras	126
4.4	Ensaio da viga V-2A	127
4.4.1	Verificação das flechas	127
4.4.2	Verificação das deformações	130
4.4.3	Observação das fissuras	136
4.4.4	Ruptura da viga V-2A	139
4.5	Ensaio da viga V-2B	140

4.5.1	Verificação das flechas	140
4.5.2	Verificação das deformações	143
4.5.3	Observação das fissuras	148
4.5.4	Ruptura da viga V-2B	150
4.6	Ensaio da viga V-3	152
4.6.1	Verificação das flechas	152
4.7	Ensaios dos painéis de laje PL-01 e PL-02	155
4.7.1	Metodologia para aplicação das cargas	155
4.7.2	Ensaio de PL-01	157
4.7.2.1	Verificação das flechas de PL-01	158
4.7.2.2	Verificação das deformações em PL-01	161
4.7.2.3	Observação das fissuras em PL-01	168
4.7.2.4	Ruptura de PL-01	170
4.7.3	Ensaio de PL-02	171
4.7.3.1	Verificação das flechas de PL-02	172
4.7.3.2	Verificação das deformações em PL-02	175
4.7.3.3	Observação das fissuras em PL-02	181
4.7.3.4	Ruptura de PL-02	183
5	ANÁLISE DOS RESULTADOS DOS ENSAIOS	184
5.1	Verificação da influência da tubulação inserida na mesa	184
5.2	Determinação da tensões experimentais	185
5.2.1	Tensões experimentais nos modelos de vigas V-2A e V-2B	185
5.2.2	Tensões experimentais em PL-01 e PL-02	188
5.3	Elaboração dos modelos numéricos	192
5.3.1	Modelos numéricos para as vigas	192
5.3.2	Modelos numéricos para as lajes PL-01 e PL-02	194
5.4	Comparativos entre os resultados numéricos e os	
	experimentais das tensões para PL-01 e PL-02	196
5.4.1	Comparativos das tensões de PL-01	196
5.4.2	Comparativos das tensões de PL-02	197
5.5	CÁLCULO DA LARGURA COLABORANTE	198
5.5.1	Cálculo da largura colaborante V-2A e V-2B, a partir das	
	tensões na mesa	198

5.5.2	Cálculo da largura colaborante em PL-01, a partir das flechas	
	experimentais	201
5.5.3	Cálculo da largura colaborante em PL-02, a partir das flechas	
	experimentais	202
6	CONCLUSÕES	204
6.1	Conclusões sobre os modelos de vigas (faixas)	204
6.2	Conclusões sobre os modelos de lajes PL-01 e PL-02	205
6.2.1	Painel de laje PL-01	205
6.2.2	Painel de laje PL-02	206
6.3	Sugestões para trabalhos futuros	208
	REFERÊNCIAS	209