

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Felipe Ernani Barbosa Plaisant Guimarães

Análise de um escorregamento ocorrido em um talude na RJ-116

Rio de Janeiro 2016 Felipe Ernani Barbosa Plaisant Guimarães

Análise de um escorregamento ocorrido em um talude na RJ-116

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Geotecnia.

Orientadores:

Prof^a. Dra. Ana Cristina Castro Fontenla Sieira Prof. Dr. Rogério Luiz Feijó

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

G963 Guimarães, Felipe Ernani Barbosa Plaisant. Análise de um escorregamento ocorrido em um talude na RJ-116 / Felipe Ernani Barbosa Plaisant Guimarães. – 2016. 183f. Orientador: Ana Cristina Castro Fontenla Sieira. Coorientador: Rogério Luiz Feijó. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. 1. Engenharia civil. 2. Taludes (Mecânica do solo) – Estabilidade - Dissertações. 3. Solo - Erosão - Dissertações. 4. Cisalhamento - Dissertações. 5. Deslizamento de terras -Dissertações. I. Sieira, Ana Cristina Castro Fontenla. II.Feijó, Rogério Luiz. III. Universidade do Estado do Rio. IV. Título.

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Felipe Ernani Barbosa Plaisant Guimarães

Análise de um escorregamento ocorrido em um talude na RJ-116

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Geotecnia.

Aprovado em: 09 de Setembro de 2016. Banca Examinadora:

> Prof^a. Dra. Ana Cristina Castro Fontenla Sieira (Orientadora) Faculdade de Engenharia – UERJ

Prof. Dr. Rogério Luiz Feijó (Coorientador) Faculdade de Engenharia – UERJ

Prof. Dr. Armando Prestes de Menezes Filho Faculdade de Engenharia – UERJ

Prof^a. Dra. Michéle Dal Toé Casagrande Pontifícia Universidade Católica do Rio de Janeiro – PUC-RJ

DEDICATÓRIA

A Deus, por permitir mais essa vitória. Ao meu Pai, mãe, a minha família, pela paciência e carinho nestes anos e a minha querida namorada Suzana, por estar sempre presente em todos os momentos.

AGRADECIMENTOS

Aos meus orientadores, Prof^a. Ana Cristina Castro Fontenla Sieira, Prof. Rogério Luiz Feijó por toda a ajuda e pela excelente orientação, para o desenvolvimento deste trabalho e pela amizade demonstrada desde a graduação.

Aos professores, pelos ensinamentos, dentro e fora da sala de aula, durante a época da graduação e agora no mestrado

Aos meus amigos de mestrado e graduação, pelo durante esta jornada.

Ao Eng. Robson Saramago pelo fornecimento dos dados das instrumentações e dos estudos anteriores, aos técnicos do laboratório de mecânica dos solos da UERJ, Raí Araújo e Antônio Marcos pelo apoio na execução dos ensaios de laboratório e coleta do material. E ao Eng. Sérgio lório do laboratório de Geotecnia da COPPE/UFRJ de pelo auxilio na execução dos ensaios triaxiais.

A UERJ, porque sem ela não poderia ter realizado esta conquista.

A todos aqueles, que embora não citados nominalmente, contribuíram direta e indiretamente para esta realização.

Nunca deixe ninguém te dizer que não pode fazer alguma coisa. Se você tem um sonho tem que correr atrás dele. As pessoas não conseguem vencer e dizem que você também não vai vencer. Se você quer uma coisa corre atrás. *Will Smith*

RESUMO

GUIMARÃES, Felipe Ernani Barbosa Plaisant. *Análise de um escorregamento ocorrido em um talude na RJ-116.* 2016. 183f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2016.

O presente trabalho tem como objetivo a compreensão de um escorregamento ocorrido em um talude no km 78 da RJ - 116 - Rodovia Presidente João Goulart, Nova Friburgo - RJ. O talude possui um longo histórico de movimentações, e algumas intervenções foram executadas para estabilização da encosta. Entretanto, as movimentações não cessaram, havendo assim a necessidade de investigação mais detalhada da Geologia da Região. Sondagens mistas foram realizadas para definição do perfil geológico do talude. Adicionalmente, o comportamento do talude foi monitorado com o auxílio de inclinômetros e piezômetros. Complementarmente, foram retiradas amostras indeformadas para obtenção de parâmetros dos solos envolvidos, a partir de ensaios de caracterização, cisalhamento direto e triaxial. Com a finalidade de estabelecer as causas das movimentações deste talude a partir de retroanálises, através dos métodos de análises tradicionais de equilíbrio limite e do método de elemento finitos, foram utilizados os programas computacionais Plaxis e Slide para seções representativas definidas pelos levantamentos topográficos. O nível d' água foi adotado com base nos piezômetros, sondagens e informações técnicas. Os resultados das análises mostraram a existência de duas zonas de deslocamentos e também o guanto o nível d' água influencia na instabilidade do talude. Para solucionar o problema da movimentação do talude, foram propostas intervenções de drenagens superficiais e profundas a fim de manter o nível d'água abaixo da sua condição crítica, e um constante monitoramento a partir de instrumentações de campo.

Palavras-chave: Estabilidade de Taludes; Cisalhamento; Direto; Triaxial; Retroanálise.

ABSTRACT

GUIMARÃES, Felipe Ernani Barbosa Plaisant. *Analysis of a landslide occurred on a slope at km 78 of the RJ - 116.* 2016. 183f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2016.

This study aims to understand a landslide occurred on a slope at km 78 of the RJ - 116 - Highway President Joao Goulart, Nova Friburgo - RJ. The slope at km 78 has a long history of movements, and some interventions were performed for the slope stabilization. However, the changes have not ceased, so there is necessity for more detailed investigation of the region's geology. Mixed surveys were performed to define the geological profile of the slope. In addition, the slope behavior was monitored with the assist of inclinometers and piezometers. In addition, soil samples were taken for obtaining soil parameters involved, based characterization test, direct and triaxial shear. In order to establish the causes of the movements of this slope from back analysis through traditional methods of analysis of limit equilibrium and finite element method, computer programs Plaxis and Slide for representative sections defined by the surveys were used. The water level was chosen based on piezometers, surveys and technical information. The results of the analysis showed the existence of two areas of displacement and also how much the water level influences the instability of the slope. To solve the problem of slope movement, it was proposed interventions of superficial and deep drainage in order to maintain the water level below its critical condition, and constant monitoring from field instrumentation.

Keywords: Slope Stability; Direct Shear; Triaxial; Back Analysis.

LISTA DE FIGURAS

Figura 1 - Taludes naturais e artificiais (IPT, 2014)	22
Figura 2 – Rastejo (REIS, 2001)	26
Figura 3 – Queda de Blocos Fonte: Lynn Highland, USGS	26
Figura 4 – Corrida Fonte: Sabo Dept, MLIT	27
Figura 5 – Escorregamento Rotacional (REIS, 2001)	28
Figura 6 – Escorregamento Translacional (REIS, 2001)	29
Figura 7 - Ilustração dos dois tipos de mecanismos de instabilização associados a	aos
escorregamentos translacionais (WOLLE, 1988)	30
Figura 8 – Escorregamento em Cunha (REIS, 2001)	31
Figura 9 - Perfil de intemperismo: a) rocha metamórfica; b) rocha ígnea intrusiva.	
(Adaptado de DEERE e PATTON, 1971)	33
Figura 10 - Relação entre mineralogia e resistência ao cisalhamento de solos	
residuais de gnaisse (SANDRONI, 1981)	35
Figura 11 - Tripé empregado na execução do ensaio SPT (DANTAS NETO, 2008).41
Figura 12 - Equipamentos para sondagem rotativa (DEMIN)	42
Figura 13 - Zona fraca, zona cisalhada e superfície de cisalhamento	43
Figura 14 - Escorregamento de um corpo rígido sobre um plano horizontal (PINT	О,
2000)	44
Figura 15 - Critério de Rankine	45
Figura 16 - Critério de Tresca	45
Figura 17 – Envoltória de Mohr (BASTOS, 1991)	46
Figura 18 – Envoltória Mohr-Coulomb (BASTOS, 1991)	46
Figura 19 – Descrição detalhada dos componentes do ensaio de cisalhamento	
direto. Fonte: SlideShare	47
Figura 20 - Resultados do ensaio de cisalhamento direto: (a) Gráfico típico; (b)	
deslocamento vertical. (CAVALCANTE e CASAGRANDE, 2006)	48
Figura 21 - Envoltória de ruptura obtida do ensaio de cisalhamento direto.	
(CAVALCANTE e CASAGRANDE, 2006)	48
Figura 22 – Descrição dos componentes da célula e prensa Triaxial. Fonte:	
SlideShare	50
Figura 23 - Ensaio Triaxial	51

Figura 24 - Círculos de Mohr e envoltória de ruptura obtida do ensaio de compressã	0
triaxial (CAVALCANTE e CASAGRANDE, 2006)5	1
Figura 25 – Elementos triangulares de 6 e 15 nós (FRIGERIO, 2004)5	7
Figura 26 – Exemplo da pesquisa do círculo crítico5	8
Figura 27 - Exemplo da pesquisa não circular5	8
Figura 28 - Detalhe do levantamento da pista: Rodovia RJ 116, km 786	0
Figura 29 - Detalhe do levantamento da pista6	0
Figura 30 - Detalhe da cicatriz no topo do talude, próximo ao maciço rochoso6	1
Figura 31 - Detalhe da cicatriz e processo erosivo no topo do talude, próximo ao	
maciço rochoso6	1
Figura 32 - Vista frontal da cortina atirantada, presença de água nos drenos6	1
Figura 33 – Espaçamento entre os painéis da cortina devido à movimentação6	2
Figura 34 – Detalhe da água saindo dos drenos (período sem chuva)6	2
Figura 35 – Detalhe da água no pé da cortina6	3
Figura 36 – Lateral da Cortina e parte do talude6	3
Figura 37 – Cicatriz desenvolvida cortina, devido à movimentação6	3
Figura 38 – Detalhe do talude, topo da cortina e comercio local6	4
Figura 39 - Topografia realizada na totalidade do terreno, Agosto de 20146	5
Figura 40 - Seção elaborada pelos topógrafos, identificando o levantamento da pista	ł
da rodovia6	6
Figura 41 - Vista aérea do km 78, 02/05/2004 (GOOGLE)6	6
Figura 42 - Vista aérea do km 78, 26/05/2004 (GOOGLE)6	7
Figura 43 - Vista aérea do km 78, 07/08/2010 (GOOGLE)6	7
Figura 44 – Detalhe Corte no pé do talude, 12/10/2010 (GOOGLE)6	8
Figura 45 - Vista aérea do km 78, 12/10/2010 (GOOGLE)6	8
Figura 46 - Vista aérea do km 78, 19/01/2011 (GOOGLE)6	9
Figura 47 - Detalhe das trincas devido a movimentação do talude, 19/01/2011	
(GOOGLE)6	9
Figura 48 - Vista aérea do km 78, 24/05/2013 (GOOGLE)7	0
Figura 49 - Detalhe do sentido das árvores , 24/05/2013 (GOOGLE)7	0
Figura 50 - Vista aérea do km 78, 02/01/2014 (GOOGLE)7	1
Figura 51 - Vista 3D aproximada do km 78, 18/12/2015 (GOOGLE)7	1
Figura 52 - Vista 3D aproximada do km78, 18/12/2015 (GOOGLE)7	2
Figura 53 - Vista aérea do km78, 18/12/2015 (GOOGLE) –7	2

Figura 54 - Localização das sondagens mistas executadas	74
Figura 55 – Perfil Longitudinal D	75
Figura 56 - Perfil Longitudinal E	76
Figura 57 - Perfil Longitudinal F	77
Figura 58 - Inclinômetros e sondagens. (TERRAE, 2014)	79
Figura 59 - Inclinômetro I-1 – Profundidade x Deslocamentos horizontais	
(Acumulados)	80
Figura 60 - Inclinômetro I-2 – Profundidade x Deslocamentos horizontais	
(Acumulados)	80
Figura 61 - Inclinômetro I-3 – Profundidade x Deslocamentos horizontais	
(Acumulados)	81
Figura 62 - Inclinômetro I-4 – Profundidade x Deslocamentos horizontais	
(Acumulados)	81
Figura 63 - Inclinômetro I-5 – Profundidade x Deslocamentos horizontais	
(Acumulados)	82
Figura 64 – Locação dos Piezômetros (TERRAE, 2014)	83
Figura 65 - Leituras dos piezômetros (agosto/2015 a fevereiro/2016)	84
Figura 66 – Detalhe da retirada da amostra indeformada do Solo 1, Prof: 30cm8	85
Figura 67 – Detalhe da retirada da amostra indeformada do Solo 2, Prof: 3,00m8	85
Figura 68 – Detalhes dos ensaios de caracterização	86
Figura 69 - Curva Granulométrica do Solo 1	87
Figura 70 - Curva Granulométrica do Solo 2	87
Figura 71 – Amostra sendo preparada para o cisalhamento	89
Figura 72 – Corpo de prova saturado já cisalhado	89
Figura 73 – Corpo de prova no ensaio Triaxial	90
Figura 74 – Corpos de prova após o ensaio Triaxial	90
Figura 75 – Curvas Tensão x Deslocamento (Solo 1 – Natural)	91
Figura 76 - Deslocamento Vertical x Deslocamento Horizontal (Solo 1 – Natural)	92
Figura 77 – Envoltória de Resistência (Solo 1 – Natural): τ = 19,871 + 0,7624 σ 9	92
Figura 78 – Curvas Tensão x Deslocamento (Solo 1 – Inundado)	93
Figura 79 – Deslocamento Vertical x Deslocamento Horizontal (Solo 1 – Inundado)	93
Figura 80 – Envoltória de Resistência: (Solo 1 – Inundado): τ = 13,92 + 0,7312 σ 9	94
Figura 81 – Curvas Tensão x Deslocamento (Solo 2 – Natural)	94

Figura 82 – Deslocamento Vertical x Deslocamento Horizontal (Solo 2 – Natural)95
Figura 83 – Envoltória de resistência (Solo 2 – Natural): τ = 16,315 + 0,7969 σ 95
Figura 84 – Curvas Tensão x Deslocamento (Solo 2 – Inundado)
Figura 85 – Deslocamento Vertical x Deslocamento Horizontal (Solo 2 – Inundado)
Figura 86 – Envoltória de Resistência (Solo 2 – Inundado): τ = 10,433 + 0,8128 σ 97
Figura 87 – Curvas Tensão x Deformação (Solo 1)99
Figura 88 – Curvas Deformação Volumétrica x Deformação Específica (Solo 1)99
Figura 89– Envoltória de Resistência (Solo 1): q = 5,2403 + 0,3809p100
Figura 90 – Envoltória de Ruptura (Solo 1)100
Figura 91 – Curvas Tensão x Deformação (Solo 2)101
Figura 92 – Curvas Deformação Volumétrica x Deformação Específica (Solo 2)101
Figura 93 – Envoltória de Resistência (Solo 2): q = 2,111 + 0,4625p102
Figura 94 – Envoltória de Ruptura (Solo 2)102
Figura 95 - Seção E com a topografia anterior a 2010 no programa Slide106
Figura 96 -Seção F com a topografia anterior a 2010 no programa Slide106
Figura 97 - Seção E com a topografia e malha de elementos finitos após
movimentações no programa Plaxis107
Figura 98 - Seção F com a topografia e malha de elementos finitos após
movimentações no programa Plaxis107
Figura 99 - Talude tridimensional com suas condições de fronteira. (VILELA, 2011)
Figura 100 – Seção E – Topografia original – Nível d' água (2011) – Método Janbu
Corrected -Slide111
Figura 101 - Seção E – Topografia original – Nível d'água (2011) – Método Spencer -Slide
Figura 102 - Secão F – Topografia original –Nivel d' água (2011) – Método Janbu
Corrected -Slide
Figura 103 - Seção F – Topografia original – Nível d'água (2011) – Método Spencer
–Slide
Figura 104 – Seção E - Topografia original – Nível d'água (2011) – Plaxis - FS=1,0

Figura 105 - Seção E (reduzida) - Topografia original – Nível d'água (2011) – Plaxis - FS=1,0
Figura 106 - Seção F - Topografia original – Nível d' água (2011) – Plaxis - FS=1,0
Figura 107 - Seção F (reduzida) - Topografia original – Nível d'água (2011) – Plaxis - FS=1,0114
Figura 108 - Seção E – Topografia e Nível d'água (2014) –Método Janbu Corrected -Slide115
Figura 109 - Seção E – Topografia e Nível d'água (2014) – Método Spencer -Slide 116
Figura 110 - Seção F – Topografia e Nível d'água (2014) – Método Janbu Corrected -Slide116
Figura 111 - Seção F – Topografia e Nível d' água (2014) – Método Spencer –Slide 117
Figura 112 - Seção E – Topografia (2014) e Nível d'água (2011) – Método Janbu Corrected -Slide
Figura 113 - Seção E – Topografia (2014) e Nível d'água (2011) – Método Spencer - Slide
Figura 114 - Seção F – Topografia (2014) e Nível d'água (2011) – Método Janbu Corrected –Slide119
Figura 115 - Seção F – Topografia (2014) e Nível d'água (2011) – Método Spencer - Slide
Figura 116 – Seção E - Topografia (2014) e Nível d'água (2011) – Completa – Plaxis – FS=1,0120
Figura 117 - Seção E - Topografia (2014) e Nível d'água (2011) – Reduzida – Plaxis- FS=1,0121
Figura 118 - Seção F - Topografia (2014) e Nível d'água (2011) – Completa – Plaxis – FS=1,0121
Figura 119 – Perfil de deslocamentos da seção F122
Figura 120 – Deslocamentos encontrados seção F122
Figura 121 - Perfil de deslocamentos da seção E123
Figura 122 – Deslocamentos encontrados seção E123
Figura 123 – Deslocamentos do inclinômetro I-02124
Figura 124 – Comparativo dos deslocamentos Plaxis x Inclinômetro125

Figura 125 – Seção E com o solo 2 dividido em 3 camadas	.125
Figura 126 – Seção F com o solo 2 dividido em 3 camadas	.126
Figura 127 – Deslocamentos Seção E – Plaxis	.127
Figura 128 – Deslocamentos obtidos seção E	.127
Figura 129 – Deslocamentos Seção F – Plaxis	.128
Figura 130 – Deslocamentos obtidos seção F	.128
Figura 131 – Comparativo dos Deslocamentos para a nova modelagem	.129
Figura 132 – Exemplo de uma drenagem superficial completa para o local. (PINI,	J
2011)	.131

LISTA DE TABELAS

Tabela 1 - Principais classificações de movimentos de massa no Brasil
(FERNANDES e AMARAL, 1998)24
Tabela 2 - Principais tipos de movimentos de massa no Brasil (AUGUSTO FILHO,
1992)25
Tabela 3 – Lista das Principais causas de movimentos de massa (CRUDEN e
VARNES, 1996)
Tabela 4 - Parâmetros de resistência ao cisalhamento de solos residuais jovens
decorrentes de rochas metamórficas (COSTA FILHO, 1989)
Tabela 5 - Parâmetros de resistência ao cisalhamento residual de solos tropicais
brasileiros (BRESSANI, 2001)37
Tabela 6 - Parâmetros de resistência ao cisalhamento residual de solos tropicais do
estado do Rio Grande do Sul, estudados por (BRESSANI, 2001)
Tabela 7 - Influência da qualidade da investigação nos fatores de segurança (Wright,
1977 apud (SCHNAID, 2000)
Tabela 8 – Fatores de segurança recomendado pela (NBR-6122, 1996)40
Tabela 9 – Vantagens e desvantagens do ensaio de cisalhamento direto49
Tabela 10 – Vantagens e Desvantagens do Ensaio Triaxial51
Tabela 11 - Importância da análise probabilística de estabilidade de taludes (DUCAN
J., 2001) apud (FLORES, 2008)53
Tabela 12 - Tipos e Características das Análises Determinísticas (MOTA, 2014)54
Tabela 13 - Relação de características dos principais métodos de Cálculo de
Estabilidade por Equilíbrio Limite (RIBEIRO JUNIOR, 2011)55
Tabela 14 – Classificação dos Solos88
Tabela 15 – Índices Físicos98
Tabela 16 – Valores de Resistência – Cisalhamento Direto
Tabela 17 – Valores de resistência do ensaio triaxial103
Tabela 18 – Módulos de Deformabilidade103
Tabela 19 – Resultados dos dois ensaios104
Tabela 20 - Avaliação dos Parâmetros de Resistência e deformabilidade em Função
do SPT (BOWLES, 1997)109
Tabela 21 – Parâmetros de Resistência (AGUILERA, 2009)

Tabela 22 – Valores Típicos de Permeabilidade (CASAGRANDE e FADUM, 1940)
Tabela 23 – Parâmetros utilizados nos Programas110
Tabela 24 – Correlação Módulo de Elasticidade x N _{SPT} (DÉCOURT, 1996)126
Tabela 25 – Módulos de Deformabilidade adotados para as subcamadas da seção E
Tabela 26 – Módulos de Deformabilidade adotados para as subcamadas da seção F

LISTA DE ABREVIATURAS E SIGLAS

ABNT	Associação Brasileira de Normas Técnicas
СРТ	Ensaio de Penetração de Cone
FS	Fator de Segurança
IP	Índice de Plasticidade
IPT	Instituto de Pesquisas Tecnológicas
L.L.	Limite de Liquidez
L.P.	Limite de Plasticidade
SPT	Sondagem à Percussão
N.A.	Nível d' Água
UFRJ	Universidade Federal do Rio de Janeiro
UERJ	Universidade do Estado do Rio de Janeiro

LISTA DE SÍMBOLOS

С	Coesão
E	Modulo de Elasticidade
е	Índice de Vazios
Gs	Densidade dos Grãos
ho	Teor de Umidade
k	Coeficiente de Permeabilidade
N _{SPT}	Índice de Resistência à Penetração
S	Grau de Saturação
φ	Ângulo de Atrito
φ'	Ângulo de Atrito Efetivo
γnat	Peso Específico Natural
γs	Peso Específico Seco
τ	Tensão Cisalhante
σ	Tensão Normal
v	Coeficiente de Poisson

SUMÁRIO

	20
1 REVISÃO BIBLIOGRÁFICA	22
1.1 Movimentos de Massa	22
1.1.1 Tipos de Movimentos de Massa	23
1.1.2 Fatores Condicionantes	31
1.2 Intemperismo	33
1.2.1 Aspectos Comportamentais dos Solos Residuais de Gnaisse	34
1.2.2 Resistência ao Cisalhamento de Solos Residuais	35
1.3 Ensaios de Campo	39
1.3.1 Sondagem a percussão	40
1.3.2 Sondagem Rotativa	41
1.3.3 Sondagem Mista	42
1.4 Resistencia ao Cisalhamento dos Solos	42
1.4.1 Coesão	43
1.4.2 Ângulo de Atrito	43
1.4.3 Critérios de Ruptura	44
1.5 Ensaios para Determinação da Resistência ao cisalhamento dos Solo	os46
1.5.1 Ensaio de Cisalhamento Direto	47
1.5.2 Ensaio de Compressão Triaxial	49
1.6 Métodos de Análise de Estabilidade de Taludes	52
1.6.1 Análise Probabilística	52
1.6.2 Análise Determinística	53
1.6.2 Análise Determinística 1.7 Ferramentas Computacionais	53 56
 1.6.2 Análise Determinística	53 56 57
 1.6.2 Análise Determinística	53 56 57 57
 1.6.2 Análise Determinística. 1.7 Ferramentas Computacionais 1.7.1 Plaxis 2D 1.7.2 Slide 2D. 2 DESCRIÇÃO DO CASO EM ESTUDO. 	53 56 57 57 5 7
 1.6.2 Análise Determinística. 1.7 Ferramentas Computacionais 1.7.1 Plaxis 2D 1.7.2 Slide 2D. 2 DESCRIÇÃO DO CASO EM ESTUDO 2.1 Histórico do Problema 	53 56 57 57 59 59
 1.6.2 Análise Determinística. 1.7 Ferramentas Computacionais 1.7.1 Plaxis 2D 1.7.2 Slide 2D. 2 DESCRIÇÃO DO CASO EM ESTUDO 2.1 Histórico do Problema 2.2 Investigação Geotécnica e Topográfica 	53 57 57 57 59 59 64
 1.6.2 Análise Determinística. 1.7 Ferramentas Computacionais 1.7.1 Plaxis 2D 1.7.2 Slide 2D. 2 DESCRIÇÃO DO CASO EM ESTUDO 2.1 Histórico do Problema 2.2 Investigação Geotécnica e Topográfica 2.2.1 Topografia da Região 	53 57 57 57 59 59 64 64
 1.6.2 Análise Determinística	53 57 57 57 59 59 64 64 64

3.1 Inclinômetros	78
3.2 Piezômetros	82
4 ENSAIOS DE LABORATÓRIO	84
4.1 Ensaios de Caracterização	86
4.2 Ensaios de Resistência ao Cisalhamento dos Solos	88
4.2.1 Resultados dos Ensaios de Cisalhamento Direto	91
4.2.2 Resultados dos Ensaios Triaxiais (CD)	98
4.2.1 Comparação entre os Resultados dos Ensaios de Cisalhamento Direto e	
Triaxiais	103
5 ANÁLISE NUMÉRICA	105
5.1 Geometria	106
5.2 Condições de Contorno	107
5.3 Parâmetros Adotados	108
5.4 Retroanálise do escorregamento: Condição inicial (2011)	110
5.4.1 Análise de estabilidade pelo Slide	110
5.4.2 Análise de estabilidade pelo Plaxis	113
5.5 Previsão dos fatores de segurança para condição atual	115
5.5.1 Análise de estabilidade na condição atual pelo Slide	115
5.5.2 Análise de estabilidade na situação crítica pelo Slide	117
5.5.1 Análise de estabilidade na situação crítica pelo Plaxis	120
5.6 Análise dos deslocamentos: Programa Plaxis	121
5.6.1 Análise dos deslocamentos com o aumento do modulo de elasticidade	125
5.7 Discussão dos resultados	129
CONCLUSÃO	131
SUGESTÃO PARA FUTUROS TRABALHOS	133
REFERÊNCIAS	134
ANEXO	140

INTRODUÇÃO

Os escorregamentos destacam-se como o tipo de acidente de origem geológica mais comum, principalmente no período das chuvas. O estudo dos processos de instabilização de taludes e suas formas de contenção tornam-se necessários, devido a desastrosas consequências que os escorregamentos acarretam e a frequência que os mesmos acontecem.

Os órgãos rodoviários têm convivido com um número muito grande de processos de instabilização de taludes. Alguns desses processos podem se desenvolver devido à insuficiência de estudos geológico-geotécnicos na fase de projeto, fatores construtivos e/ou à falta de manutenção. Assim, importantes rodovias brasileiras apresentam muitos dos seus taludes afetados por escorregamentos.

Um exemplo marcante desses desastres ocorreu no município de Nova Friburgo, situado na região centro-oeste do estado do Rio de Janeiro, uma série de deslizamentos ocorridos no mês de Janeiro de 2011, após uma sequência de chuvas fortes em um curto período de tempo. Esse desastre gerou problemas espalhados por toda a região, algumas obras foram realizadas, outras estão em andamento, mas devido ao grande número de áreas de risco e a verba destinada para as obras, alguns locais foram escolhidos para obras emergenciais, outros com soluções provisórias, e certos locais passaram por obras que não solucionaram o problema.

A presente dissertação de mestrado apresenta uma investigação das causas que levaram um talude rodoviário à ruptura, localizado no Km 78 da RJ-116, no município de Nova Friburgo, no Estado do Rio de Janeiro.

O talude em estudo possui um longo histórico de movimentações, em direção à estrada. Os problemas de instabilidade são visíveis, observando-se o levantamento da pista.

Foram levantados aspectos geológicos e geomorfológicos da região, a partir de dados de topografia e resultados de sondagens a percussão. Os solos que compõem o perfil foram caracterizados, bem como executados ensaios de cisalhamento direto e triaxiais com amostras indeformadas, buscando-se determinar parâmetros de resistência para a compreensão do problema.

Objetivo

O objetivo deste trabalho consiste na compreensão das causas de instabilidade do talude em estudo, e na busca de uma solução definitiva para as movimentações. Para isto serão retiradas amostras indeformadas dos solos envolvidos e realizados ensaios de laboratório (caracterização, cisalhamento direto e triaxial). A partir dos parâmetros geotécnicos dos solos, e de dados coletados da instrumentação de campo (piezometria e inclinometria), serão executadas retroanálises a partir de métodos de análises de equilíbrio limite e de elementos finitos, buscando-se entender o histórico de movimentações e propor uma solução para o problema.

Estrutura da Dissertação

Após esta introdução é apresentado o capitulo 1 onde é feita uma revisão bibliográfica sobre o assunto, buscando-se apresentar, de forma ampla, os principais aspectos relacionados aos movimentos de terra, alguns ensaios de campo e laboratório, descrever um pouco sobre resistência dos solos e apresentar alguns métodos e ferramentas de análise de estabilidade. O capítulo 2 apresentará todo o histórico do problema e as informações correspondentes a topografia e geologia da região. O capitulo 3 detalhará as instrumentações implantadas no talude. O capitulo 4 mostrará todos os resultados dos ensaios de laboratório e os seus objetivos. O capitulo 5 será composto pelas condições e parâmetros utilizados nos programas computacionais e pela apresentação da análise dos resultados. E por fim teremos a conclusão sobre tudo que foi investigado e apresentação das possíveis causas e soluções para o problema.

1 REVISÃO BIBLIOGRÁFICA

1.1 Movimentos de Massa

Para compreender os tipos de movimento de massa, deve-se entender a definição de encostas ou taludes. Os taludes podem ser naturais ou artificiais, conforme mostrado na Figura 1.

Taludes ou encostas naturais são definidos como superfícies inclinadas de maciços terrosos, rochosos ou mistos (solo e rocha), originados de processos geológicos e geomorfológicos diversos (AUGUSTO FILHO e VIRGILI, 1998).

Os taludes artificiais são taludes naturais alterados ou criados por ações humanas, encontrados por exemplo em barragens de reservatórios, rodovias e ferrovias.

Figura 1 - Taludes naturais e artificiais (IPT, 2014).

Os dois tipos de taludes estão sujeitos a movimentos de massa. Segundo Costa Nunes (1970) a força da gravidade por si só não é suficiente para provocar a ruptura de um talude. Portanto, a estabilidade do talude está também condicionada às propriedades geotécnicas dos materiais constituintes, à forma do talude e maciços adjacentes, à constituição e distribuição das descontinuidades, à presença de água, às tensões internas, aos abalos sísmicos ou outras ações dinâmicas.

Mecanicamente, um escorregamento de massa ocorre quando as tensões solicitantes excedem a resistência ao cisalhamento do solo. A condição de estabilidade é definida através do Fator de Segurança (FS). Matematicamente, esse fator é definido como a expressão do balanço entre as forças resistivas (que tendem a manter o talude estável) e as forças cisalhantes (que tendem a movimentar o talude para baixo) ou simplesmente como a razão entre a resistência cisalhante média e a tensão cisalhante ao longo da superfície crítica de ruptura. Valores de FS iguais a 1,0 indicam condições limites de estabilidade (meta-estabilidade). A estabilidade é garantida para valores de FS maiores do que 1,0 (SILVA, 2005)

Esses valores de FS são definidos por normas ou adotados por um engenheiro responsável, podendo variar devido à falta de informações necessárias, ou por precaução com influências externas humanas ou da natureza. Esse tema será abordado no item1.3.

1.1.1 Tipos de Movimentos de Massa

Na literatura, existem diversas classificações de movimentos de massa propostas por diferentes autores internacionais e nacionais. Os principais critérios para classificação são: a velocidade, o mecanismo do movimento, o tipo de material deslizado, as deformações, a geometria e a presença de água.

A Tabela 1 apresenta um resumo destas classificações por três autores nacionais.

Tabela 1 - Principais classificações de movimentos de massa no	o Brasil (FERNANDES
e AMARAL, 1998).	

Freire (1965)	Guidicini e Nieble (1984)	IPT (1991)
Escoamentos: Rastejos corridas	Escoamentos: Rastejos corridas	Rastejos Corridas de Massa
Escorregamentos: rotacionais translacionais	Escorregamentos: rotacionais translacionais queda de blocos queda de detritos	Escorregamentos
Subsidências e Desabamentos –	Subsidências: subsidências recalques desabamentos Formas de Transição Movimentos Complexos	Quedas e Tombamentos

Augusto Filho (1992) descreve de forma mais profundas os principais tipos de movimentos de massa que ocorrem no Brasil, conforme a Tabela 2.

É possível notar diferenças significativas entre os vários sistemas de classificação. Isto se deve, sobretudo, à falta de um critério único. Cada autor atribui maior importância a um determinado parâmetro, seja a velocidade, os materiais envolvidos, o modo de deformação, etc. Entretanto, nota-se que alguns tipos genéricos de movimentos de massa estão presentes na maior parte das classificações. São eles: o rastejo (*creep*), as corridas (*flows*), os escorregamentos (*slides*) e as quedas de blocos (*rockfalls*).

Tabela 2 - Principais tipos de movimentos de massa no Brasil (AUGUSTO FILHO,1992).

Processos	Características do movimento	Material	Geometria
RASTEJO (" <i>CREEP</i> ")	 vários planos de deslocamento (internos) velocidades muito baixas a baixas (cm/ano) e decrescentes com a profundidade movimentos constantes, sazonais ou intermitentes 	 Solo Depósitos Rocha alterada e/ou fraturada 	– Geometri a indefinida
ESCORREGAM ENTOS (" <i>SLIDES</i> ")	 poucos planos de deslocamento (externo) velocidades médias (m/h) a altas (m/s) pequenos a grandes volumes de material 	Geometria e mat – Planares espessos, solos plano de fraquez – Circulares – homogêneos e ro fraturadas – Em cunha –	eriais variáveis: – solos pouco e rochas com um a solos espessos ochas muito solos e rochas com
QUEDAS ("FALLS")	 sem plano de deslocamento movimento tipo queda livre ou em plano inclinado pequenos à médios volumes 	– Material rochoso	Geometria variável: – lascas – placas – blocos – e outras
CORRIDAS ("FLOWS")	 muitas superfícies de deslocamento (internas e externas à massa em movimentação) movimento semelhante a um líquido viscoso desenvolvimento ao longo de drenagens velocidades médias a altas -grandes volumes de material 	 Mobilizaçã o de solo, rocha, detritos e água 	 Extenso raio de alcance, mesmo em áreas planas

Rastejo

Movimentos com velocidades muito baixas e movimentações constantes, sazonais ou intermitentes.

Figura 2 – Rastejo (REIS, 2001).

Quedas de Blocos

Movimento de queda livre onde os materiais envolvidos são lascas, placas ou blocos de rocha.

Figura 3 – Queda de Blocos Fonte: Lynn Highland, USGS

Corridas

Movimento com velocidades altas e de longo alcance. Mobilização de solo, rocha, detritos e água

Figura 4 – Corrida Fonte: Sabo Dept, MLIT

Os itens subsequentes apresentam detalhes sobre escorregamentos e suas variações.

Escorregamentos

Escorregamentos são, em geral, movimentos de massa de significativa frequência na natureza.

Duas causas podem ser responsáveis pela ocorrência de escorregamentos; o aumento do peso da massa potencialmente instável ou a diminuição da resistência ao cisalhamento (CAPUTO, 1981).

Devido aos fatores geomorfológicos, geotécnicos e geológicos é difícil prever onde e quando um escorregamento pode acontecer. Contudo, sabe-se que a infiltração de água em períodos chuvosos tem um papel fundamental na deflagração dos escorregamentos, já que o aumento da poropressão provoca a redução da tensão efetiva do solo e, consequentemente, a redução na sua resistência ao cisalhamento. De acordo com a geometria da encosta e os materiais envolvidos, os escorregamentos podem ser divididos em três tipos: Rotacionais, translacionais e em cunha.

a) Escorregamentos Rotacionais:

Highland e Bobrowsky (2008) definem escorregamentos rotacionais, ilustrados na Figura 5, como um tipo de deslizamento em que a superfície da ruptura é curvada no sentido superior (em forma de colher) e o movimento da queda é mais ou menos rotatório em torno de um eixo paralelo ao contorno do talude. A massa deslocada pode, sob certas circunstâncias, mover-se de maneira relativamente coerente, ao longo da superfície de ruptura e com pouca deformação interna. O topo do material deslocado pode mover-se quase que verticalmente para baixo e a parte superior desse material pode inclinar-se para trás em direção ao talude. Os autores destacam também que nos escorregamentos rotacionais é comum a ocorrência de várias rupturas paralelas e sucessivas no mesmo escorregamento. Os principais mecanismos deflagradores deste efeito são: as chuvas e a erosão do pé do talude por ações antrópicas ou por causas naturais.

Figura 5 – Escorregamento Rotacional (REIS, 2001).

b) Escorregamentos Translacionais:

De acordo com Highland e Bobrowsky (2008), a massa de um escorregamento translacional move-se para fora, ou para baixo e para fora, ao longo

de uma superfície relativamente plana, com pequeno movimento rotacional ou inclinação para trás (Figura 6). Esse tipo de deslizamento pode progredir por distâncias consideráveis, se a superfície da ruptura estiver suficientemente inclinada, ao contrário dos escorregamentos rotacionais, que normalmente ocorrem ao longo de descontinuidades geológicas tais como falhas, junções, superfícies, estratificações, ou o ponto de contato entre rocha e solo.

Figura 6 – Escorregamento Translacional (REIS, 2001).

Carvalho et al (2007) evidenciam a alta frequência deste tipo de movimento das encostas brasileiras devido às altas declividades e heterogeneidade de solos e rochas, formando descontinuidades mecânicas e hidrológicas, como, por exemplo, planos de fraqueza como foliação, xistosidade, fraturas, falhas.

Segundo Wolle (1988), há dois tipos prováveis de mecanismos que podem explicar a deflagração destes movimentos, ambos associados aos efeitos causados pela infiltração das águas de chuva, como pode ser observado na Figura 7.

O primeiro tipo de mecanismo, denominado "clássico", envolve a elevação do nível de água pré-existente, devido a uma rede de fluxo gerada pela água infiltrada. Neste caso, há um acréscimo nas poropressões no interior do maciço gerando uma diminuição nas tensões efetivas.

A condição básica para a ocorrência deste mecanismo é a existência de uma camada impermeável subjacente aos horizontes superficiais, onde possa constatar a

diminuição da condutividade hidráulica com o aumento da profundidade, ao longo do perfil.

O segundo tipo de mecanismo ocorre quando há a formação de uma frente de umedecimento, sem nível de água pré-existente, causando eliminação ou redução da sucção devido à infiltração das águas de chuva. Neste caso, há um aumento da condutividade hidráulica ao longo da profundidade e a direção de fluxo é praticamente na vertical.

DE TALUDE INFINITO" POR ELEVAÇÃO DO N.A. DE REDE DE DA RESISTÊNCIA DEVIDO À ELI-FLUXO PARALELA.

DE TALUDE INFINITO FOR "REDUÇÃO DE "FRENTE DE SATURAÇÃO" (REDUÇÃO MINAÇÃO DAS TENSÕES DE SUCÇÃO)

Figura 7 - Ilustração dos dois tipos de mecanismos de instabilização associados aos escorregamentos translacionais (WOLLE, 1988).

Os escorregamentos translacionais podem ser divididos ainda em três grupos em função do tipo de material deslizado: Rocha, Solo e Rocha com Solo.

Escorregamentos translacionais de rocha: a movimentação se dá em planos de fraqueza que correspondem às superfícies associadas à estruturas geológicas, tais como, estratificação, xistosidade, gnaissificação, acamamento, falhas, juntas de alívio de tensões e outras.

Escorregamentos translacionais de solo: os movimentos ocorrem ao longo de uma superfície plana condicionada a alguma feição estrutural do substrato, dentro do manto de alteração, com forma tabular e espessuras que dependem da natureza das rochas, do clima e do relevo. Em geral, o movimento é de curta duração, de velocidade elevada e grande poder de destruição. Os escorregamentos translacionais associados com maior quantidade de água podem passar a corridas,

ou podem se converter em rastejo, após a acumulação do material movimentado no pé da vertente.

Escorregamentos translacionais de rocha e solo: a massa transportada pelo movimento apresenta um volume de rocha significativo. O que melhor representa tais movimentos é a que envolve massas de tálus/colúvio. Os depósitos de tálus/colúvio que, em geral, encontram-se nos sopés das escarpas, são constituídos por blocos rochosos e fragmentos de tamanhos variados envolvidos em matriz terrosa, provenientes do mesmo processo de acumulação.

c) Escorregamentos em Cunha:

Os escorregamentos em cunha, Figura 8, têm ocorrência mais restrita às regiões que apresentam um relevo fortemente controlado por estruturas geológicas. São associados aos maciços rochosos pouco ou muito alterados, nos quais a existência de duas estruturas planares, desfavoráveis à estabilidade, condiciona o deslocamento de um prisma ao longo do eixo de intersecção destes planos. (TOMINAGA, 2009)

Escorregamento em Cunha

Figura 8 – Escorregamento em Cunha (REIS, 2001).

1.1.2 Fatores Condicionantes

Na maioria dos processos de instabilização de encostas e taludes, atuam, mais de um fator condicionante.

A principais causas destes movimentos, divididas em 4 grupos, estão listadas na Tabela 3.

Tabela 3 – Lista das Principais causas de movimentos de massa (CRUDEN e VARNES
1996)

CAUSAS GEOLÓGICAS	CAUSAS MORFOLÓGICAS	CAUSAS FÍSICAS	CAUSAS HUMANAS
Materiais fracos	Levantamento tectônico ou vulcânico	Chuvas intensas	Escavações de taludes
Materiais sensíveis	Alívio por degelo -	Derretimento rápido de neve	Sobrecarga no talude ou na crista
Materiais intemperizados	Erosão fluvial no pé do talude	Precipitações excepcionalmente prolongadas	Rebaixamento (reservatórios)
Materiais fissurados ou fraturados	Erosão glacial no pé do talude	Terremotos	Irrigação
Orientação desfavorável de descontinuidades (acamamento, xistosidade, etc.)	Erosão nas margens laterais	Erupções vulcânicas	Mineração
Orientação desfavorável de descontinuidades estruturais (falhas, contatos, inconformidades, etc.)	Erosão subterrânea (Solução e <i>piping</i>)	Descongelamento	Vibração artificial
Contraste de permeabilidade	Deposição de cargas no talude ou na crista	Intemperismo por congelamento e descongelamento	Vazamento de água
Contraste de rigidez (materiais densos, rígidos sobre materiais plástico)	Remoção da vegetação (fogo, seca)	intemperismo por expansão e retração	

1.2 Intemperismo

O intemperismo tem grande influência sobre as propriedades dos solos como, por exemplo, a resistência ao cisalhamento, compressibilidade, permeabilidade e coeficiente de empuxo lateral. Essas propriedades são modificadas como resultado do intemperismo, sendo que a magnitude destas modificações depende do nível das mudanças provocadas na estrutura dos solos pelos processos intempéricos (CHANDLER, 1969).

O resultado da ação do intemperismo, seja ele físico (mudança na estrutura, resistência e textura da rocha) ou químico (mudança na composição e microestrutura por decomposição), dá origem à formação de um "perfil de alteração" ou "perfil de solo", constituído por uma sequência de camadas distintas por suas características físicas, químicas, mineralógicas, morfológicas e biológicas. (OLIVEIRA, 2006)

Os maciços rochosos intemperizados apresentam em geral uma sequência de camadas que mostram o avanço da alteração em profundidade. Os autores (DEERE e PATTON, 1971) propuseram um perfil sumarizado em quatro camadas representativas, Figura 9.

Figura 9 - Perfil de intemperismo: a) rocha metamórfica; b) rocha ígnea intrusiva. (Adaptado de DEERE e PATTON, 1971).

Estas camadas correspondem a:

 Rocha sã: Setores do maciço ainda não atingidos pelo intemperismo, os minerais apresentam-se com brilho e sem sinais evidentes de alteração.

 Rocha alterada: Camada onde os minerais exibem sinais evidentes de alteração (perda de brilho e cor), especialmente ao longo das juntas e falhas.

 Solo residual jovem: Camada de solo constituído por minerais primários e secundários, que ainda guarda características herdadas da rocha original (estrutura reliquiar). Pode conter alguns blocos rochosos na sua massa.

– Solo residual maduro: Constituído por minerais secundários (transformados e neoformados) e primários que resistiram ao intemperismo, de granulação variável dependendo do tipo de rocha de origem. Trata-se geralmente de um solo homogêneo e com estrutura porosa.

1.2.1 Aspectos Comportamentais dos Solos Residuais de Gnaisse

Os solos residuais são solos formados a partir da desintegração e decomposição da rocha, por processos de intemperismo. A ação do intemperismo sobre as rochas é gradual, variando em função do tipo da rocha e das condições climáticas locais.

Os feldspatos, em graus variados de alteração, e as micas, que se distribuem invariavelmente de forma orientada, tendem a determinar o comportamento dos solos residuais de gnaisse. Solos mais micáceos tendem a ter menor resistência ao cisalhamento quanto maior o teor de mica (menor resistência ao cisalhamento drenada sob condições inundadas) (SANDRONI, 1981).

A Figura 10 mostra um gráfico com envoltórias de resistência ao cisalhamento que ilustram o decréscimo de resistência de solos residuais de gnaisse à medida que o teor de mica aumenta para cinco solos por Sandroni (1981) na década de 70.

Figura 10 - Relação entre mineralogia e resistência ao cisalhamento de solos residuais de gnaisse (SANDRONI, 1981).

1.2.2 Resistência ao Cisalhamento de Solos Residuais

A resistência ao cisalhamento dos materiais integrantes de um perfil de intemperismo de rochas, como as graníticas e as gnáissicas, é influenciada por diferentes fatores, que variam em função do grau de intemperismo. (Dearman et al., 1978) apud (BERNARDES, 2003)

Nos primeiros estágios de intemperismo, a resistência ao cisalhamento passa a ser controlada, principalmente, pela resistência das descontinuidades. Deve-se levar em conta também os aspectos de comportamento relacionados à presença de superfícies polidas nestas descontinuidades ("*slickensides*") ou ao preenchimento destas descontinuidades com argilas ou outros materiais. A localização destas zonas de fraqueza, nos seus diferentes graus de alteração, não é uma tarefa fácil, pois depende da intensidade do programa de investigação geotécnica e de conhecimentos de geologia estrutural (BASTOS, 1991)

Costa Filho (1989) mostra que é usual a ocorrência de anisotropia nos parâmetros de resistência ao cisalhamento, no caso de solos residuais originados de rochas metamórficas (Tabela 4), onde os parâmetros de resistência paralelo e perpendicular são em relação aos planos de xistosidade de cada material.

Rocha Matriz	Macro- estrutura	Parâmetros (ensaio de di	de Resistência cisalhamento ireto)	Condição de Saturação	Referência	
		Paralelo	Perpendicular			
Quartzito	Laminado	c= 20kPa	c= 50kPa	Parcialmente	Sandroni	
Ferrítico	(silte arenoso)	\$\$\phi=37^{\circ}\$\$	\$\$\\$	saturado	(1985)	
Quartzito	Xistoso (areia	c= 40kPa	c= 45kPa	Parcialmente	Sandroni	
Micáceo	siltosa)	φ=22°	φ=27°	saturado	(1985)	
Gnaisse	Em camadas (camadas	c= 40kPa φ=22°	c= 52kPa \$\$\\$	Parcialmente saturado	Campos	
Migmatítico	ricas em mica)	c= 30kPa φ=21°	c= 49kPa φ=22°	Submerso	(1974)	
Xisto	Laminado	c= 78kPa	c= 100kPa	Parcialmente	Durci and	
	(silte arenoso)	φ=28°	\$\$\phi\$=27°\$\$	saturado	Vargas (1983)	
Filito	Xistoso (silte)	c= 10kPa	c= 60kPa	Parcialmente	Durci and	
(micáceo)		φ=29°	\$\$\phi\$=41°\$	saturado	Vargas (1983)	

Tabela 4 - Parâmetros de resistência ao cisalhamento de solos residuais jovensdecorrentes de rochas metamórficas (COSTA FILHO, 1989).

A Tabela 5 apresenta um resumo dos parâmetros de resistência ao cisalhamento residual de diversos solos tropicais brasileiros, indicando também a fração argila e o índice de plasticidade de cada solo.

		ID	EA	e'	<i></i>
Referência	Descrição do solo	(%)	(%)	(kPa)	φ _r (°)
Lacerda e Silveira (1992)	Solo saprolítico de quartzo-diorito, micáceo	8	5-9	0	16
Chammas (1976)	Solo saprolítico de migmatito	NP	25	0	25
Chammas (1976)	Solo saprolítico de migmatito, micáceo	NP	20	0	17
Chammas (1976)	Solo saprolítico de migmatito, micáceo	NP	20	0	27
Seraphin (1974)	Solo saprolítico de migmatito	NP	4	0	33,5
Seraphin (1974)	Solo saprolítico de migmatito, micáceo	NP	2	4	27
Tanaka (1976)	Solo residual marrom de basalto vesicular	21	30	2-8	27-30
Tanaka (1976)	Solo residual vermelho de basalto vesicular	36	25	0-8	22,7
Simões (1991)	argila vermelha	37-48	67-69	0	12-16
Duarte (1986)	argila cinza	55	67	0	10
Kanji (1974)	Solo residual de basalto	74	66	0	10
Souza Pinto et al (1994)	Solo residual de basalto	24	26	0	19
Souza Pinto et al (1994)	Solo residual de basalto	93	54	0	10,5
Souza Pinto et al (1994)	Solo residual de basalto	39	56	0	9
Souza Pinto e Nader (1991)	Solo residual de migmatito, micáceo	20	20	0	17
Souza Pinto e Nader (1991)	Solo residual de migmatito, micáceo	18	10	0	22
Souza Pinto e Nader (1991)	Solo residual de migmatito, micáceo	21	8	0	21
Souza Pinto e Nader (1991)	Solo residual de gnaisse, micáceo	6	5	0	28
Souza Pinto e Nader (1991)	Solo residual de gnaisse, micáceo	11	12	0	30
Souza Pinto e Nader (1991)	Areia siltosa micácea	16	15	0	21

Tabela 5 - Parâmetros de resistência ao cisalhamento residual de solos tropicaisbrasileiros (BRESSANI, 2001).

Bressani (2001) apresenta os parâmetros de resistência ao cisalhamento residual de alguns solos tropicais relacionados a problemas de instabilidade de taludes no Rio Grande do Sul (Tabela 6). A resistência ao cisalhamento residual destes solos é controlada pelas tensões efetivas e principalmente por aspectos geológicos como a evolução pedológica destes solos, a mineralogia, o tamanho das partículas, a rocha de origem e o intemperismo.

Formação	Descrição do solo	IP (%)	FA (%)	φ´r (°)
Botucatu	Solo residual de arenito (horizonte C)	6	12	33,5
Botucatu	Solo residual de arenito (horizonte B)	13	44	28,7
Rosário do Sul	solo residual de arenito	12	13	27,3
Santa Maria	coluvio vermelho	27	18	19,4
Santa Maria	argila de preenchimento de fraturas	49	45	14,3
Santa Maria	solo residual de lamito vermelho	35	13	13,8
Gravataí	colúvio vermelho	10	39	36,2
Gravataí	solo cinza de preenchimento de fraturas	10	42	28,0
Gravataí	solo residual de argilito	50	74	10,6
Santa Maria	solo residual de siltito	26	22	20,4
Santa Maria	camada cinza no solo residual de siltito	42	43	17,7
Serra Geral	solo residual de basalto	19	35	10,0
Serra Geral	colúvio de basalto	46	52	11,8
Serra Geral	solo residual de basalto vesicular	72	65	11,3
Serra Geral	argila em juntas de intemperismo no basalto	75	68	8,8
Serra Geral	argila de zonas de intemperismo do basalto	46	52	14,4
Serra Geral	solo residual de basalto	25	31	20,6
Serra Geral	solo saprolítico de basalto	23	10	16,7

Tabela 6 - Parâmetros de resistência ao cisalhamento residual de solos tropicais doestado do Rio Grande do Sul, estudados por (BRESSANI, 2001).

Ibañez (2008) estudou diversos autores de teses e artigos com solos residuais e concluiu que:

• Os efeitos de anisotropia no solo residual diminuem na medida que aumenta o grau de intemperismo, sendo insignificantes para o solo maduro.

 A ação intempérica nos contatos e fissuras da macroestrutura provoca a formação de uma matriz de argilominerais que desarticula as feições anisotrópicas, aumentando os graus de liberdade das partículas menos alteradas, e levando a um comportamento global mais isotrópico.

• A anisotropia estrutural não influi marcadamente no valor da resistência ao cisalhamento, onde as variações não ultrapassam 10%. É de se esperar, no entanto, maiores variações em solos residuais de rochas com foliação mais intensa, para baixos estágios de intemperismo.

• Efeitos anisotrópicos manifestam-se na deformabilidade do solo residual jovem, onde as rigidezes são maiores no caso de carregamento normal ao plano de xistosidade, junto com uma menor deformação na ruptura e uma maior tendência dilatante.

• Feições reliquiares (planos de fraqueza e fissuras) condicionam a resposta do solo, induzindo uma direção preferencial de ruptura.

 A permeabilidade pode variar em solos residuais jovens, com baixa porcentagem de finos, onde se favorece o fluxo na direção da foliação e das fissuras com paredes pouco intemperizadas.

1.3 Ensaios de Campo

O conhecimento das condições de subsolo em um determinado local é uma condição fundamental para a elaboração de projetos de fundações e de obras de contenção seguros e econômicos. No Brasil, estima-se que o custo envolvido na realização das sondagens de reconhecimento varie normalmente de 0,2% a 0,5% do custo total da obra (SCHNAID, 2000).

A importância das investigações geotécnicas pode-se refletir nos fatores de segurança das obras de engenharia. Os resultados apresentados na Tabela 7 mostram os efeitos econômicos em obras em função dos níveis de investigação adotados. Observa-se que quanto menos informações se tem sobre a obra, maior é o fator de segurança necessário, e consequentemente, maior é o gasto com a estrutura.

Tabela 7 - Influência da qualidade da investigação nos fatores de segurança (Wright,1977 apud (SCHNAID, 2000).

Tipo de estrutura	Investigação precária	Investigação Normal	Investigação precisa		
Monumental	3,5	2,3	1,7		
Permanente	2,8	1,9	1,5		
Temporária	2,3	1,7	1,4		

A NBR 6122 (1996) recomenda que os fatores de segurança a serem aplicados nos parâmetros geotécnicos empregados no dimensionamento de fundações e obras de contenção, devem ser função do nível de investigação adotado, conforme apresentado na Tabela 8.

Parâmetro	In situ ¹	Laboratório	Correlação ²	
Tangente do ângulo	1.2	1.3	1,4	
de atrito	• ,—	.,0		
Coesão				
(estabilidade e	1,3	1,4	1,5	
empuxo de terra)				
Coesão (capacidade				
de carga de	1,4	1,5	1,6	
fundações)				

Tabela 8 – Fatores de segurança recomendado pela (NBR-6122, 1996)

1 CPT, Palheta e Pressiômetro. 2 SPT e Dilatômetro.

1.3.1 Sondagem a percussão

A Sondagem a Percussão é a mais rotineira e econômica ferramenta de investigação geotécnica no Brasil e, praticamente, no mundo. O ensaio permite a identificação da densidade de solos granulares e da consistência de solos coesivos, possibilitando uma medida de resistência dinâmica aliada a uma sondagem de simples reconhecimento do subsolo (SCHNAID e ODEBRECHT, 2012).

A NBR:6484 (2001) reúne especificações relativas à aparelhagem, processos de avanço de perfuração, execução de ensaio penetrométrico e amostragem, observação do nível de água e apresentação dos resultados. Além disso, esta norma possibilita a classificação das camadas de solos investigados em função dos valores de N_{SPT}.

O ensaio é realizado em três fases com penetrações de 15 cm e o N_{SPT} será a quantidade de golpes necessários para fazer penetrar os últimos 30 cm (os primeiros 15 cm são desprezados devido à perturbação do terreno provocada pelos trabalhos de penetração).

Figura 11 - Tripé empregado na execução do ensaio SPT (DANTAS NETO, 2008).

Carvalho (2012) reúne as referências de autores consagrados que estudaram os fatores que influenciam os resultados do ensaio SPT. Cita também que, na maioria dos casos, os fatores que influenciam o NSPT podem ser classificados como sendo de três naturezas: humana, do equipamento e de procedimento.

Alguma das finalidades das sondagens: definição da estratigrafia; determinação da profundidade do NA; retirada de amostras deformadas; medida do índice de resistência a penetração (N_{SPT}).

1.3.2 Sondagem Rotativa

A Sondagem Rotativa é utilizada para perfuração e reconhecimento de rochas e solos, através de sondas rotativas, que permitem a retirada de amostras da rocha atravessada, recuperadas através do barrilete, podendo atingir grandes profundidades.

Figura 12 - Equipamentos para sondagem rotativa (DEMIN).

1.3.3 Sondagem Mista

A sondagem mista é utilizada em terrenos com presença de solos alterados e rochas, se trata de uma sondagem SPT executada junto com uma sondagem rotativa para atravessar obstáculos rochosos e identifica-los.

1.4 Resistencia ao Cisalhamento dos Solos

Define-se como resistência ao cisalhamento do solo a tensão cisalhante que ocorre no plano de ruptura no instante da ruptura. A ruptura em si é caracterizada pela formação de uma superfície de cisalhamento contínua na massa de solo. Existe, portanto, uma camada de solo em torno da superfície de cisalhamento que perde suas características durante o processo de ruptura, formando assim a zona cisalhada, como mostra a Figura 13. Inicialmente há a formação da zona cisalhada e, em seguida, desenvolve-se a superfície de cisalhamento. Este processo é bem caracterizado, tanto em ensaios de cisalhamento direto, como nos escorregamentos de taludes.

Figura 13 - Zona fraca, zona cisalhada e superfície de cisalhamento

As características de cisalhamento do solo são representadas pela coesão do solo, pelo ângulo de atrito interno e pela resistência do solo ao cisalhamento (ORTIGÃO, 1995).

1.4.1 <u>Coesão</u>

A coesão do solo é a força de atração entre as superfícies de suas partículas, podendo ser real ou aparente. Geralmente, a influência da coesão na resistência ao cisalhamento de solos sedimentares é muito pequena quando comparada com a resistência por atrito entre os grãos. Mas existem solos naturalmente cimentados, onde a coesão real apresenta valores significativos. Nos solos residuais, o aparecimento dessa cimentação é notável e às vezes confere ao solo resistências elevadas (VARGAS, 1977).

A coesão real deve ser bem diferenciada da coesão aparente: a coesão real, é uma parcela da resistência ao cisalhamento de solos úmidos, não saturados, devida à tensão entre partículas resultante da pressão capilar da água. A coesão aparente é, na realidade, um fenômeno de atrito, onde a tensão normal que a determina é consequente da pressão capilar. Com a saturação do solo, esta parcela da resistência desaparece, donde provém o nome de aparente. (PINTO, 2000)

1.4.2 Ângulo de Atrito

O ângulo de atrito do solo representa interação entre as partículas do solo, sendo definido como o ângulo máximo que a força transmitida ao solo pode fazer

com a força normal ao plano de contato, sem que ocorra deslizamento. O ângulo de atrito do solo depende de fatores como grau de compactação, percentual e tipo de argila, tamanho e forma dos grãos de areia do solo (PINTO, 2000).

A resistência friccional, conferida ao solo pelo atrito interno entre as partículas, pode ser demonstrada fazendo uma analogia com o problema de deslizamento de um corpo rígido sobre uma superfície plana horizontal, conforme mostrado na Figura 14.

Figura 14 - Escorregamento de um corpo rígido sobre um plano horizontal (PINTO, 2000).

A relação entre as forças tangencial e normal pode ser escrita da seguinte forma:

$$T = N. \tan \varphi \tag{1}$$

Onde **N** é a força vertical transmitida pelo corpo, **T** é a força necessária para provocar o deslizamento do corpo e ϕ é o ângulo formado entre a resultante das duas forças com a normal **N**. Nos solos, é denominado ângulo de atrito interno.

1.4.3 Critérios de Ruptura

A ruptura é um estado de tensões arbitrário, o qual é escolhido na curva tensão x deformação, dependendo do critério escolhido. Independente do critério de ruptura, em geral trabalha-se com o conceito de envoltória de ruptura (ou de resistência) a qual define o lugar geométrico dos estados de tensão na ruptura. Assim sendo, estados de tensão inferiores aos da envoltória correspondem a situações de estabilidade. A região acima da envoltória corresponde a estados de tensão impossíveis de ocorrer.

Alguns critérios de ruptura serão apresentados a seguir:

Critério de Rankine: a ruptura ocorre quando a tensão de tração se iguala à tensão normal máxima (σ_{max}) observada em ensaio de tração (Figura 15).

Figura 15 - Critério de Rankine

 Critério de Tresca: a ruptura ocorre quando a tensão de cisalhamento se iguala à tensão de cisalhamento máxima (τ_{max}) observada em ensaio de tração (Figura 16).

Figura 16 - Critério de Tresca

- **Critério de Mohr**: a ruptura ocorre quando no plano de ruptura a combinação das tensões normais e cisalhantes (σ , τ) é tal que a tensão de cisalhamento é máxima; isto é $\tau_f = f(\sigma)$. Esta combinação de tensões, avaliada através do círculo de Mohr, resulta em uma em uma envoltória curva que circunscreve os

círculos correspondentes à ruptura (Figura 17).

Figura 17 – Envoltória de Mohr (BASTOS, 1991)

Critério de Mohr-Coulomb: este critério assume que a envoltória de Mohr é definida por uma linha reta (Figura 18), como :

$$\tau = \mathbf{c}' + \sigma' \times \tan \mathbf{\phi} \tag{2}$$

sendo c' e ϕ' coesão e ângulo de atrito interno, respectivamente.

Figura 18 – Envoltória Mohr-Coulomb (BASTOS, 1991)

1.5 Ensaios para Determinação da Resistência ao cisalhamento dos Solos

A resistência ao cisalhamento dos solos pode ser determinada em laboratório através de diversos ensaios, sendo os mais difundidos os ensaios de cisalhamento direto e de compressão triaxial. As amostras utilizadas devem ser indeformadas, para se manter os parâmetros e as características originais dos solos. Quando não for possível obter amostras indeformadas, devem ser remoldadas de forma a reproduzir as condições que se pretende obter na obra a ser realizada (VARGAS, 1977).

1.5.1 Ensaio de Cisalhamento Direto

O ensaio de cisalhamento direto é o mais antigo procedimento para a determinação da resistência ao cisalhamento e se baseia diretamente no critério de Mohr-Coulomb.

O ensaio pode ser composto de três fases: inundação, adensamento e cisalhamento. O período de inundação é de aproximadamente 24h. Na fase de adensamento, a amostra é submetida a um carregamento vertical que visa o adensamento do corpo de prova através da redução do índice de vazios. Na fase do cisalhamento, a metade inferior da caixa bipartida é submetida a um deslocamento horizontal com velocidade constante, enquanto a metade superior é mantida fixa, medindo-se a força de reação.

Para realizar o ensaio, um corpo de prova do solo é colocado numa caixa bipartida de cisalhamento. Em seguida, aplica-se inicialmente uma força vertical N (PINTO, 2000). Posteriormente, uma força tangencial T é aplicada ao anel que contém a parte superior do corpo de prova, provocando seu deslocamento, medindo-se a força suportada pelo solo. As forças T e N, divididas pela área da seção transversal do corpo de prova, indicam as tensões σ e τ atuantes. Um esquema do ensaio é apresentado na Figura 19.

Figura 19 – Descrição detalhada dos componentes do ensaio de cisalhamento direto. Fonte: SlideShare

A tensão de cisalhamento (τ) é geralmente representada em função do deslocamento horizontal (δ h), medido no sentido do cisalhamento, conforme se mostra na Figura 20(a). O deslocamento vertical durante o ensaio é também registrado, indicando se a amostra de solo está se deformando positivamente (compressão) ou se ocorre expansão, deslocamento negativo, Figura 20(b). O ensaio não tem norma brasileira, mas os procedimentos de execução do ensaio podem ser facilmente encontrados em diversos livros de Mecânica dos Solos (CAVALCANTE e CASAGRANDE, 2006).

É prática corrente se realizar três ensaios com tensões normais diferentes, por exemplo, 50 kPa, 100 kPa e 200 kPa, e obter os pares de valores (σ ; τ) para cada amostra. Com os três pares de valores se pode traçar a envoltória de ruptura do solo, a envoltória de Mohr-Coulomb, conforme mostrado na Figura 21. (CAVALCANTE e CASAGRANDE, 2006).

Figura 21 - Envoltória de ruptura obtida do ensaio de cisalhamento direto. (CAVALCANTE e CASAGRANDE, 2006).

A Tabela 9 reúne as vantagens e desvantagens do ensaio de cisalhamento direto.

Vantagens	Desvantagens			
	Análise do estado de tensões complexa			
Simplicidade/Praticidade	(Rotação das tensões principais com o			
	cisalhamento)			
Facilidade na moldagem de amostras de	Não permite a obtenção de parâmetros de			
areia	deformabilidade			
Rapidez (Solos permeáveis)	O plano de ruptura é imposto (Pode não ser			
Rapidez (30103 permeavels)	o de maior fraqueza)			
	Restrições ao movimento nas bordas da			
	amostra (Heterogeneidade das tensões			
Possibilita condição inundada	cisalhantes no plano horizontal => ruptura			
	progressiva e inclinação do plano de			
	cisalhamento)			
Possibilita grandes deformações por	Comumente não se medem nem são			
reversões na caixa de cisalhamento	controladas as proceãos poutros			
(Resistencia residual)	controladas as pressões neutras			
Planos proforonciais do runturo	Muito Lento (Solos de baixa			
Fianos preferenciais de ruplula	permeabilidade)			

Tabela 9 – Vantagens e desvantagens do ensaio de cisalhamento direto

1.5.2 Ensaio de Compressão Triaxial

O ensaio triaxial é o mais comum e versátil para a determinação das propriedades de tensão-deformação-resistência dos solos em laboratório. No ensaio triaxial, o corpo de prova cilíndrico é moldado com a relação altura/diâmetro da ordem de 2,0.

O corpo de prova é envolvido por uma membrana de borracha, vedada no topo e na base por anéis de borracha ou elásticos comuns, para evitar contato com água e variação de umidade durante o ensaio. É utilizado também papel-filtro entre o corpo-de-prova e a pedra porosa, para evitar o entrada de solo na pedra.

Os instrumentos necessários para a medição da variação volumétrica e da poropressão constam de um transdutor de pressão, uma válvula para controle da

drenagem e uma bureta graduada. A drenagem pode ser controlada através da válvula, que é o único caminho possível de entrada ou saída de água; fechando-a, o ensaio é realizado em condições não drenadas. A Figura 22 mostra este componentes.

Figura 22 – Descrição dos componentes da célula e prensa Triaxial. Fonte: SlideShare

Assim como o ensaio de cisalhamento direto, o triaxial é realizado em duas etapas: na primeira, aplica-se uma tensão confinante isotrópica (σ_c) e, na fase de cisalhamento, mantém-se constante o valor de σ_c e aumenta-se o valor da tensão axial, σ_1 através da aplicação da tensão desviadora $\Delta \sigma_1 = \sigma_1 - \sigma_3$, conforme mostra a Figura 23.

Figura 23 - Ensaio Triaxial.

A envoltória de ruptura obtida a partir de um ensaio de compressão triaxial é ilustrada na Figura 24.

Figura 24 - Círculos de Mohr e envoltória de ruptura obtida do ensaio de compressão triaxial (CAVALCANTE e CASAGRANDE, 2006)

O ensaio de compressão triaxial apresenta as vantagens e desvantagens listadas na Tabela 10.

Mantanana	Desconteners		
vantagens	Desvantagens		
Plano de ruptura não é imposto	Ensaio mais complexo e demorado		
Não ocorre ruptura progressiva	Atrito em volta do pistão		
Planos principais fixos	Sem bolhas de ar		
Estado de tensão conhecido durante todo o ensaio	Não pode haver vazamento		
Controle de drenagem	-		

Tabela 10 – Vantagens e Desvantagens do Ensaio Triaxial

1.6 Métodos de Análise de Estabilidade de Taludes

Os objetivos dos métodos de estabilidade de taludes são (DYMINSKI, 2009):

- Averiguar a estabilidade de taludes em diferentes tipos de obras geotécnicas, sob diferentes condições de solicitação, de modo a permitir a execução de projetos econômicos e seguros;
- Averiguar a possibilidade de escorregamentos de taludes naturais ou construídos pelo homem;
- Analisar escorregamentos já ocorridos, obtendo-se subsídios para o entendimento de mecanismos de ruptura e da influência de fatores ambientais (Retroanálise);
- Executar projetos de estabilização de taludes já rompidos, investigando-se as alternativas de medidas preventivas e corretivas que possam ser necessárias;
- Estudar o efeito de carregamentos extremos naturais ou decorrentes da ação do homem, tais como, terremotos, maremotos, explosões, altos gradientes de temperaturas, obras, etc.

As técnicas de estabilidade podem ser divididas em análises probabilísticas e análises determinísticas. Na análise determinística a segurança do talude é medida por um fator de segurança. Já a análise probabilística, estima a segurança a partir da probabilidade de ocorrência da ruptura do talude (GEORIO, 2000).

1.6.1 Análise Probabilística

A análise probabilística avalia as condições de estabilidade de taludes considerando os erros associados à natureza do problema e à variabilidade das características do talude e do solo que o constitui. Por essa análise, caracteriza-se a segurança de um talude pelo valor do fator de segurança (FS) baseado em valores médios corrigidos por parâmetros probabilísticos ou, pelo valor do índice de confiabilidade (β), que envolve implicitamente o comportamento de uma função de parâmetros aleatórios, a qual define o estado de segurança de um talude. Busca-se com isso, um melhor entendimento sobre o problema e o aumento da certeza nos resultados (RIBEIRO JUNIOR, 2011)

A Tabela 11 destaca a importância da análise probabilística de estabilidade de taludes.

Autor	Benefícios de Análises de Probabilidade
Christian e Baecher (2003)	Fornece uma estrutura para estabelecer fatores de segurança apropriados e dirige melhor a um entendimento de relativa importância das incertezas.
Ladd e Da Re (2001)	Fornece um método sistemático para avaliar combinadas influências de incertezas dos parâmetros que afetam o fator de segurança.
	Fornece um sistemático método de determinação do grau de segurança, ao menos em termos relativos.
Moriwaki e Barneich (2001)	Quantifica a contribuição de todas as incertezas de cada parâmetro.
Koutsoftas (2001)	Fornece uma ferramenta útil para avaliar o risco associado com recomendações de projeto.

Tabela 11 - Importância da análise probabilística de estabilidade de taludes (DUCANJ., 2001) apud (FLORES, 2008)

1.6.2 Análise Determinística

O objetivo da análise determinística de estabilidade é avaliar a possibilidade de ocorrência de escorregamento de massa de solo presente em talude natural ou construído. Em geral, as análises são realizadas comparando-se as tensões cisalhantes mobilizadas com resistência ao cisalhamento, definindo-se, assim, um fator de segurança FS.

As análises determinísticas são divididas nos seguintes métodos: análise limite, análise tensão x deformação e análise por equilíbrio limite. A Tabela 12 reúne as características de cada análise.

Tabela 12 - Tipos e Características das Análises Determinísticas (MOTA, 2014)

Tipos	Características
Análise Limite	Uso das teorias de limite inferior e superior da teoria da plasticidade, em que se empregam problemas como: definição do campo de tensões admissíveis realísticos (limite inferior) e definição do modo de ruptura "a priori" realístico, ou seja, a forma da superfície de ruptura (limite superior).
Tensão x Deformação	Baseia-se no Método dos Elementos Finitos (MEF) ou no Método das Diferenças Finitas (MDF). Permite definir regiões plastificadas, bem como o campo de velocidade das deformações, sendo em muitos casos mais decisivo do que o FS. Faz-se necessário o auxílio de ferramentas computacionais.
Equilíbrio Limite	Tem como objetivo encontrar a superfície crítica de ruptura, ou seja, a que corresponde ao menor valor de FS. Nesse tipo de análise, assume- se a existência de uma superfície de ruptura bem definida, em que a massa de solo ou rocha encontra-se em condições de ruptura generalizada iminente. Em geral a teoria de Mohr-Coulomb é adotada como critério de ruptura, o qual é satisfeito ao longo de toda a superfície provável de ruptura, considerando o coeficiente de segurança constante e único ao longo desta superfície. Dentre os principais métodos, citam-se: Fellenius (1936), Bishop (1955), Jambu (1954, 1957), Morgensten e Price (1965), Spencer (1967), Sarma (1973, 1979).

1.6.2.1 Análise de Estabilidade por Equilíbrio Limite

O método de análise por equilíbrio limite consiste na determinação do equilíbrio de uma massa ativa de solo, a qual pode ser delimitada por uma superfície de ruptura circular, poligonal ou de outra geometria qualquer. O método assume que a ruptura se dá ao longo de uma superfície e que todos os elementos ao longo desta superfície atingem a condição de FS, simultaneamente.

Equilíbrio limite é um método que visa determinar o grau de estabilidade a partir das seguintes premissas:

- I. A ruptura acontece simultaneamente ao longo de uma superfície, que pode ser de qualquer geometria;
- II. A massa de solo se encontra em condições iminentes de ruptura e o critério de Mohr Coulomb é satisfeito;
- III. O fator de segurança é único ao longo de toda a superfície de ruptura;
- IV. A trajetória de tensões é vertical;
- V. O modelo de deformação do material é rígido plástico;

 VI. As equações de equilíbrio estático são válidas até o momento da ruptura, quando na verdade o processo é cinemático.

Alguns dos métodos para cálculo de estabilidade por equilíbrio-limite mais utilizados estão resumidos na Tabela 13.

 Tabela 13 - Relação de características dos principais métodos de Cálculo de

 Estabilidade por Equilíbrio Limite (RIBEIRO JUNIOR, 2011)

Método Característica	Taylor (1948)	Hoek & Bray, (1981)	Fellenius (1936)	Bishop (1955)	Bishop e Morgenstern	Spencer (1967)	Janbu (1973)	Morgenstern & Price (1968)	Sarma (1973– 1979)	Talude Infinito
Solo homogêneo	~	~	~	~	~	~	~	~	~	~
Solo estratificado			~	~	~	~	~	~	~	~
Tipo de superfície	circular	circular	circular	circular	circular	circular	qualquer	qualquer	qualquer	Paralela a encosta
Geometria do talude	simples	simples	qualquer	qualquer	qualquer	qualquer	qualquer	qualquer	qualquer	qualquer
Utilização de ábacos	~	~			~					
Método das fatias			~	~		~	~	~	~	~
Solução interativa				~	~	~	~	~	~	
Método rigoroso						~	~	~	~	
Incorpora diferentes condições de poropressão	~	fluxo	~	~	~	~	~	~	~	~
Notas sobre forças			(1)	(2)		(3)	(4)		(5)	(6)

(1)Equilíbrio de forças na direção normal ao plano de ruptura;

(2)Equilíbrio de forças na direção vertical;

(3)Forças interlamelares representadas por resultante, em termos de tensões totais, passando pelo ponto de interseção das demais forças;

(4)Despreza forças verticais e a resultante passa pelo ponto médio da base;

(5)Considera forças sísmicas;

(6)Estabilidade geral representada pela estabilidade de uma fatia.

1.6.2.1 Análise de Estabilidade por Elementos Finitos

A vantagem do uso de ferramentas numéricas na busca da compreensão da resposta dos solos aos diversos sistemas construtivos reside na possibilidade de incorporação da não linearidade da curva $\sigma \times \epsilon$, da anisotropia, da não homogeneidade, da influência do estado inicial de tensões e das etapas construtivas. Como resultado, identificam-se áreas rompidas ou plastificadas, níveis de tensão e magnitude das deformações (RIBEIRO JUNIOR, 2011)

O Método dos Elementos Finitos (MEF) consiste na divisão do meio contínuo em elementos cujo comportamento pode ser formulado em função da sua geometria e de suas propriedades. O conjunto de elementos discretizados no modelo forma a malha de Elementos Finitos. Os elementos são conectados por nós, cuja a quantidade irá afetar diretamente a precisão dos resultados. Estes elementos podem ter propriedades diferentes entre si, uma vez que, as leis básicas do problema são atribuídas a pontos de tensão no interior dos elementos, e funções de interpolação são utilizadas para estender os resultados aos nós, onde são computados os deslocamentos. O MEF, por sua versatilidade é o mais utilizado em Geotecnia. O aumento da quantidade de nós faz a solução por Elementos Finitos convergir para a solução exata.

Griffiths e Lane, (1999) apud Teixeira, (2008), apontam as vantagens do uso do método dos elementos finitos:

- Não é necessário determinar a forma e a localização da superfície de ruptura. A ruptura ocorre naturalmente através das zonas da massa de solo onde a resistência ao cisalhamento não é capaz de sustentar as tensões cisalhantes aplicadas.
- Uma vez que não há o conceito de fatias nas análises por elementos finitos, não há necessidade de se levar em consideração as forças laterais nas mesmas. O método de elementos finitos preserva o equilíbrio global até que a ruptura seja alcançada.
- Quando dados reais de compressibilidade do solo estão disponíveis, as soluções por elementos finitos fornecem informações referentes às deformações nos níveis de tensão de trabalho.
- O método de elementos finitos é capaz de monitorar a ruptura progressiva na tensão cisalhante última.

1.7 Ferramentas Computacionais

Em função do facilidade de acesso aos modernos sistemas computacionais, o uso de modelagem numérica por equilíbrio limite e elementos finitos na engenharia geotécnica tem sido cada vez mais difundido e adotado pelos escritórios de projetos e consultoria geotécnica.

Atualmente existe uma variedade de programas de elementos finitos para auxiliar na análise de estabilidade dos taludes, softwares como o Plaxis (Elementos Finitos 3D e 2D), Geoslope (Equilíbrio Limite), Slide (Equilíbrio Limite 2D), FLAC (Diferenças Finitas 2D e 3D), Abaqus (Elementos Finitos), entre outros.

No presente trabalho, serão utilizados os programas Slide, para análises por equilíbrio limite, e o programa Plaxis 2D, para análises por elementos finitos. Os itens subsequentes apresentam um breve detalhamento dos dois programas.

1.7.1 Plaxis 2D

O Plaxis 2D é um programa de elementos finitos bidimensional, desenvolvido para a análise de problemas geotécnicos envolvendo deformações, estabilidade e fluxo.

O software possui os seguintes modelos constitutivos para a representação do comportamento de materiais geotécnicos: linear elástico, modelo de Mohr-Coulomb, modelo elasto-plástico com endurecimento isotrópico (*Hardening Soil Model*), modelo elasto-plástico com amolecimento (*Soft Soil Model*) e modelo constitutivo para problemas com dependência no tempo (*Creep*).

A malha de elementos que o software utiliza é triangular composta por elementos de 6 ou 15 nós, Figura 25, podendo ser refinada local ou globalmente. O refinamento aumenta a densidade de elementos e reduz o tamanho dos elementos finitos.

Figura 25 – Elementos triangulares de 6 e 15 nós (FRIGERIO, 2004)

1.7.2 Slide 2D

O Slide é um programa computacional comercial desenvolvido pela empresa Rocscience, utilizado no cálculo de estabilidade de taludes por Equilíbrio Limite 2D. A análise do programa é feita por pesquisas de superfícies circulares e não circulares, superfícies compostas, superfícies planas, etc. No caso de superfícies circulares, a pesquisa do círculo crítico é feita a partir da delimitação de uma malha formada por diversos pontos que representam os centros dos círculos (Figura 26). O Slide utiliza os seguintes métodos de análises: Ordinário, Fellenius, Bishop simplificado, Janbu simplificado, Spencer, Army Corps of Engineers # 1, Army Corps of Engineers # 2, Lowe-Karafiath, GLE / Morgenstern-Price.

Existem quatro diferentes métodos de pesquisa disponíveis no Slide para localizar as superfícies de deslizamento não circulares críticas: Block Search, Path Search, Simulated Annealing, Auto Refine Search. O método Auto Refine por exemplo gera superfícies circulares, utilizando o algoritmo descrito pela ferramenta e cada círculo é convertido em uma superfície não circular por um número de vértices desta superfície e buscando um fator de segurança mínimo para essas superfícies não circulares. Para superfícies não circulares o Slide recomenda os seguintes métodos: Jambu Corrected e Spencer.

Figura 27 - Exemplo da pesquisa não circular

2 DESCRIÇÃO DO CASO EM ESTUDO

2.1 Histórico do Problema

O talude em estudo, localizado no km 78 da Rodovia RJ 116, apresenta um longo histórico de movimentações, e algumas intervenções. Após a catástrofe de Janeiro de 2011, a Concessionária Rota 116 S/A contratou uma empresa para elaboração do projeto de estabilização do trecho junto à pista, visando aumentar a condição de segurança dos usuários da rodovia, assim como do comércio e de moradores vizinhos.

Na ocasião, foram implantados painéis de cortinas atirantadas a montante da via e uma cortina de estacas com tirantes e grampeamento junto à pista. Em paralelo, a Concessionária Rota 116 S.A. instalou inclinômetros e medidores de nível de água para monitorar a encosta e melhor identificar as características das movimentações do talude.

A continuação da movimentação mostrou que o projeto de estabilização, não previu algumas condições ou fatores como volume de massa se deslocando ou profundidade dos deslocamentos, conforme esperado inicialmente pelo projeto da cortina construída no local. Assim, as obras realizadas anteriormente não foram suficientes para impedir a movimentação do talude. Provavelmente, os inúmeros processos de instabilização ao longo de décadas, e o nível d'água elevado, mobilizaram uma grande massa de solo fazendo com que os movimentos se iniciassem.

Em geral, o que ocorre é uma reativação de um escorregamento préexistente, com a superfície de ruptura entre o colúvio e o solo residual subjacente. A elevação do nível d'água durante o período de 2011 a 2012, reativou o escorregamento. Essa hipótese deverá ser confirmada a partir das análises executadas no presente trabalho. A partir das novas informações fornecidas pela instrumentação e por ensaios de laboratório, pretende-se modelar fisicamente o problema, de forma a se ter um entendimento do processo de deslizamento.

Cabe comentar também que a camada de solo residual, abaixo do solo coluvionar, é muito micácea. A referida mica possui estrutura lamelar, tendendo a se

alinhar, quando no processo de cisalhamento, reduzindo o ângulo de atrito, um outro possível fator para as movimentações.

Verifica-se no trecho, uma grande movimentação de massa, com formação de cicatrizes de ruptura e processos erosivos no topo do talude, movimentações dos painéis da cortina atirantada implantada, além do levantamento da pista da rodovia, conforme pode ser visto na Figura 28 a Figura 38.

Chama-se a atenção para a Figura 34 e para Figura 35, pela quantidade de água que sai dos drenos, apesar de um período de 3 semanas sem chuva.

Figura 28 - Detalhe do levantamento da pista: Rodovia RJ 116, km 78

Figura 29 - Detalhe do levantamento da pista

Figura 30 - Detalhe da cicatriz no topo do talude, próximo ao maciço rochoso

Figura 31 - Detalhe da cicatriz e processo erosivo no topo do talude, próximo ao maciço rochoso

Figura 32 - Vista frontal da cortina atirantada, presença de água nos drenos

Figura 33 – Espaçamento entre os painéis da cortina devido à movimentação

Figura 34 – Detalhe da água saindo dos drenos (período sem chuva)

Figura 35 – Detalhe da água no pé da cortina

Figura 36 – Lateral da Cortina e parte do talude

Figura 37 – Cicatriz desenvolvida cortina, devido à movimentação

Figura 38 – Detalhe do talude, topo da cortina e comercio local

2.2 Investigação Geotécnica e Topográfica

Na área em estudo, foram executados levantamentos topográficos e sondagens em todo o terreno envolvido no processo de instabilização.

2.2.1 Topografia da Região

O primeiro levantamento topográfico, fornecido pela Concessionária Rota 116 S.A., foi realizado em fevereiro de 2011, de forma localizada, junto ao pé do talude, no trecho próximo à rodovia. Em janeiro e agosto de 2014, com a cortina atirantada já implantada, foram realizadas complementações desta topografia para auxiliar no entendimento do problema e propiciar a análise e a elaboração dos projetos das intervenções de estabilização.

Em outubro de 2014, foi realizado um novo levantamento topográfico para melhor detalhar o trecho junto à cortina e à rodovia, evidenciando o levantamento da pista que havia ocorrido. A Figura 39 apresenta o levantamento topográfico de agosto de 2014 realizado em todo o talude. A Figura 40 apresenta um perfil fornecido pela empresa responsável pela topografia onde é possível observar o levantamento ocorrido na pista da rodovia RJ 116.

Figura 39 - Topografia realizada na totalidade do terreno, Agosto de 2014

Figura 40 - Seção elaborada pelos topógrafos, identificando o levantamento da pista da rodovia

Com o auxílio do Google Earth, uma ferramenta de levantamento por satélite, foi possível acompanhar toda a movimentação e as intervenções no trecho em questão, do período de 2004 a 2015 (Figura 41 a Figura 53).

Figura 41 - Vista aérea do km 78, 02/05/2004 (GOOGLE)

Figura 42 - Vista aérea do km 78, 26/05/2004 (GOOGLE)

Figura 43 - Vista aérea do km 78, 07/08/2010 (GOOGLE)

Figura 44 – Detalhe Corte no pé do talude, 12/10/2010 (GOOGLE)

Figura 45 - Vista aérea do km 78, 12/10/2010 (GOOGLE)

Figura 46 - Vista aérea do km 78, 19/01/2011 (GOOGLE)

Figura 47 - Detalhe das trincas devido a movimentação do talude, 19/01/2011 (GOOGLE)

Figura 48 - Vista aérea do km 78, 24/05/2013 (GOOGLE)

Figura 49 - Detalhe do sentido das árvores , 24/05/2013 (GOOGLE)

Figura 50 - Vista aérea do km 78, 02/01/2014 (GOOGLE)

Figura 51 - Vista 3D aproximada do km 78, 18/12/2015 (GOOGLE)

Figura 52 - Vista 3D aproximada do km78, 18/12/2015 (GOOGLE)

Figura 53 - Vista aérea do km78, 18/12/2015 (GOOGLE) -

2.2.2 Sondagens

Foram realizadas no total 3 (três) campanhas de sondagens para identificação da estratigrafia do local e melhor compreensão das características geomecânicas das camadas que participam do processo de instabilização.

A primeira campanha, realizada em março/2012, com um total de 10 sondagens à percussão e mistas compreendeu a área próxima à rodovia RJ 116. Já a segunda campanha, realizada em fevereiro/2014 englobou todo o talude, com um total de 18 sondagens mistas realizadas desde a cortina atirantada existente até o afloramento de rocha, localizado no topo do talude. Em novembro e dezembro/2014 foi realizada uma campanha complementar de sondagens mistas com o objetivo de sanar algumas dúvidas restantes a respeito das camadas do solo. Os boletins de sondagem das 3 (três) campanhas são apresentados no Anexo 1. A Figura 54 apresenta a localização de todas as sondagens executadas. As sondagens se encontram em anexo no final da dissertação.

A partir dos resultados das sondagens, foi possível definir a estratigrafia local. Superficialmente há uma camada de até 6 metros, aproximadamente, de um solo argiloso avermelhado pouco micáceo coluvionar (NSPT≤10). Subjacente a esta camada coluvionar, verifica-se um perfil típico de intemperismo, com camada espessa de solo residual silto arenoso de coloração cinza e muito micáceo, com NSPT crescente com a profundidade, seguido de uma rocha gnáissica com diferentes graus de alteração e fraturamento. As seções D, E e F foram escolhidas de forma a abordarem o maior número de sondagens possíveis e por possuírem maior representatividade para as análises, Figura 55 a Figura 57.

Figura 54 - Localização das sondagens mistas executadas

Figura 56 - Perfil Longitudinal E

Figura 57 - Perfil Longitudinal F

3 INSTRUMENTAÇÃO

A instrumentação de campo constou de inclinômetros, para o monitoramento dos deslocamentos horizontais, e piezômetros, para o controle das poropressões. Os resultados da instrumentação foram fornecidos para o auxílio do presente trabalho.

3.1 Inclinômetros

Foram instalados 3 inclinômetros próximos à rodovia RJ 116 (I-01, I-02 e I-03). Os inclinômetros I-01 e I-02, com primeira leitura em novembro/2013, foram instalados a jusante da cortina atirantada e a montante da linha de estacas executadas junto à pista, respectivamente. O inclinômetro I-03 foi instalado posteriormente, com primeira leitura em julho/2014, a montante da cortina atirantada. A Figura 58 apresenta o posicionamento dos inclinômetros.

O inclinômetro I-01 foi diagnosticado como obstruído em janeiro de 2014, na profundidade aproximada de 6,0 m. Seus dados serão apresentados apenas a título de registro. Em outubro de 2015, o inclinômetro I-01 foi substituído pelo inclinômetro I-04 e, adicionalmente foi instalado o inclinômetro I-05.

No inclinômetro I-01 (com leitura somente em dezembro/2013) foram registrados deslocamentos acumulados de aproximadamente 74,5 mm na direção perpendicular ao talude, desde a superfície do talude até uma profundidade de 7,5 metros (Figura 59). No inclinômetro I-02, os deslocamentos acumulados chegaram a 115 mm, em 2016 (Figura 60). É interessante observar o avanço dos deslocamentos horizontais acumulados no período de Dezembro/2013 a Dezembro/2014, que foram de 70 a 112 mm respectivamente, com um acréscimo de 42 mm. A partir do início de 2015, os deslocamentos horizontais continuaram de forma reduzida devido ao baixo índice pluviométrico na região e ao início das obras de contenção e drenagem.

Figura 58 - Inclinômetros e sondagens. (TERRAE, 2014)

Apenas o inclinômetro I-2 forneceu leituras por um longo período e com variações significativas. O inclinômetro I-5 possui boa resposta mas foi instalado posteriormente, e possui poucas leituras. A partir da interpretação das leituras dos inclinômetros, profundidade e localização dos deslocamentos, é possível observar que a zona de movimentação se encontra entre 0 a 12 m de profundidade a partir da boca do furo do inclinômetro, e que os deslocamentos máximos se encontram entre 0 a 7m de profundidade (Figura 59 a Figura 63).

Figura 60 - Inclinômetro I-2 – Profundidade x Deslocamentos horizontais (Acumulados)

Figura 61 - Inclinômetro I-3 – Profundidade x Deslocamentos horizontais (Acumulados)

Figura 62 - Inclinômetro I-4 – Profundidade x Deslocamentos horizontais (Acumulados)

Figura 63 - Inclinômetro I-5 – Profundidade x Deslocamentos horizontais (Acumulados)

3.2 Piezômetros

No talude, foram instaladas 03 (três) linhas de tubos de piezômetros, do tipo Casagrande, sendo a primeira a jusante do solo grampeado, a segunda entre o solo grampeado e a cortina atirantada, e a terceira a montante da cortina. Os piezômetros foram instalados em agosto de 2015, com a localização apresentada na Figura 64. Foi fornecido para auxílio do presente trabalho apenas o gráfico com os resultados do piezômetro contido na Figura 65. Nota-se que dos 20 piezômetros instalados, apenas 8 (PZ08, PZ09, PZ10, PZ11, PZ15, PZ16, PZ19 e PZ20) apresentaram leituras de Agosto/2015 a Fevereiro/2016. Os demais piezômetros apresentaram problemas ou estavam obstruídos só possuindo a primeira leitura.

De um modo geral, observa-se uma elevação acentuada da cota piezométrica de Agosto/2015 a Setembro/2015 (Figura 65). A partir setembro, a cota permanece aproximadamente constante. Cabe ressaltar que as leituras dos inclinômetros não

refletiram esse aumento da cota piezométrica de agosto para setembro, possivelmente um erro de leitura na coleta dos dados.

Figura 64 – Locação dos Piezômetros (TERRAE, 2014)

Figura 65 - Leituras dos piezômetros (agosto/2015 a fevereiro/2016)

4 ENSAIOS DE LABORATÓRIO

Os ensaios de laboratório são fundamentais para a obtenção dos parâmetros geotécnicos dos solos (caracterização, resistência, deformabilidade, etc.), de forma possibilitar uma melhor interpretação do escorregamento. O programa experimental consistiu de ensaios de caracterização (granulometria, limites de Atterberg e densidade), serão realizados no laboratório de solos da UERJ, e resistência (ensaios de cisalhamento direto e triaxiais), realizados no laboratórios da UERJ e COPPE/UFRJ respectivamente.

Para execução dos ensaios de laboratório, foram retiradas 2 amostras indeformadas de dimensões 30 cm x 30 cm próximas à locação da sondagem SM 33, sondagem que se encontra em anexo no final da disseração, onde o solo residual se encontrava mais próximo da superfície, facilitando a coleta da amostra. A

primeira amostra foi retirada a 30 cm de profundidade de um solo argilo arenoso, solo coluvionar, denominado (solo 1), a partir de uma escavação manual. A segunda amostra foi retirada a 3,0 m de profundidade de um solo silte arenoso micáceo, solo residual, denominado (solo 2), com o auxílio de uma retroescavadeira fornecida pela concessionária da rodovia. Não foi possível a retirada das amostras da rocha bastante fraturada e alterada, denominado (solo 3), por se encontrar em grande profundidade. A Figura 66 e Figura 67 apresenta os detalhes da coleta das amostras.

Figura 66 – Detalhe da retirada da amostra indeformada do Solo 1, Prof: 30cm

Figura 67 – Detalhe da retirada da amostra indeformada do Solo 2, Prof: 3,00m

4.1 Ensaios de Caracterização

De forma a caracterizar os materiais envolvidos no escorregamento, foram realizados inicialmente, com base nas normas da ABNT, ensaios de granulometria (NBR-6457), densidade (NBR-6457), e limites de plasticidade (NBR-7180) e liquidez (NBR-6459) para cada amostra. (Figura 68) Os ensaios foram executados no Laboratório de Mecânica dos Solos, da Universidade do Estado do Rio de Janeiro.

Figura 68 – Detalhes dos ensaios de caracterização

A Figura 69 e a Figura 70 apresentam as curvas granulométricas obtidas para os solos coletados a diferentes profundidades. Na Tabela 14, são apresentados os percentuais dos diferentes tipos de solo, bem como os resultados dos ensaios de densidade e limites de Atterberg. Observa-se que o solo 1, mais superficial, apresenta 50 % de areia e pedregulho, e 50 % de finos (silte e argila), sendo classificado como um solo argilo arenoso. O solo 2 apresenta 68 % de areia e pedregulho, e 32 % de finos, sendo classificado como um solo argiloso. Este solo não apresentou limites de liquidez e plasticidade, tendo em vista a alta fração areia.

A classificação dos dois solos obtida a partir dos ensaios de laboratório foi diferente da classificação fornecida pelas sondagens, principalmente com relação ao solo 2. Como apresentado no Item 2.2.2, nas sondagens, o solo 1 foi classificado como um solo argilo arenoso pouco micáceo, e o solo 2 como um solo silto arenoso muito micáceo. A possível causa desta diferença é que na sondagem a classificação é tátil e visual não sendo 100% fiel à realidade. O ensaio de laboratório fornece uma

maior segurança quanto à classificação. Cabe salientar a presença acentuada de mica no solo 2, o que caracterizaria uma possibilidade maior de ocorrência de instabilizações.

Figura 70 - Curva Granulométrica do Solo 2

Solo 1			Solo 2				
Pedregulho	Areia	Silte Argila		Pedregulho	Areia	Silte	Argila
4%	46%	13%	37%	1%	67%	14%	18%
Densidade dos grãos (G _s) (NBR -6508)		2,635		Densidade dos grãos (G₅) (NBR -6508)		2,645	
Limite de Liquidez (NBR-6459)		49,09%		Limite de Liquidez (NBR-6459)			-
Limite de Plasticidade (NBR-7180)		28,99%		Limite de Plasticidade (NBR-7180)			-
Índice de Plasticidade		20,10%		Índice de Plasticidade		-	
Classificação: Solo Argilo Arenoso			Classificação: Solo Areno Argiloso				

Tabela 14 – Classificação dos Solos

4.2 Ensaios de Resistência ao Cisalhamento dos Solos

Em seguida, foram realizados 12 ensaios de cisalhamento direto: 3 na condição natural e 3 inundados, para cada uma das amostras, ensaios realizados no Laboratório de Mecânica dos Solos da UERJ.

Todos os ensaios de cisalhamento foram realizados com amostras indeformadas moldadas em caixas de 10 cm x 10 cm, Figura 71. Os corpos de provas inundados foram realizados da seguinte forma, após moldagem foram transferidos para a caixa de cisalhamento onde em seguida a caixa foi preenchida com água e deixados por 24h. Os corpos de prova inundados e os nas umidades natural foram adensados e em seguida cisalhados. Foram adotadas as seguintes tensões normais de 50 kPa, 100 kPa e 200 kPa. E o ensaio de cisalhamento foi executado com uma velocidade de 0,09 mm/min.

Figura 71 – Amostra sendo preparada para o cisalhamento.

Figura 72 – Corpo de prova saturado já cisalhado.

Como o objetivo é apresentar uma análise numérica da instabilização observada no talude do km 78 da RJ 116, houve a necessidade de se determinar os módulos de elasticidade dos materiais envolvidos. Para isso, foram executados 3 ensaios triaxiais, do tipo adensado drenado (CD), no laboratório de solos da COPPE/UFRJ, para cada amostra indeformada de solo. Os ensaios foram realizados com as tensões confinantes de 50 kPa, 100 kPa e 200 kPa. Os corpos de prova foram moldados com dimensões 5 cm x 10 cm e a velocidade dos ensaios foi de 0,06 mm/s. Foram realizadas duas baterias de ensaios, em corpos de prova saturados através da aplicação de contrapressão. Uma bateria relativa ao solo 1 e outra ao solo 2, totalizando 6 corpos de prova ensaiados.

Figura 73 – Corpo de prova no ensaio Triaxial.

Figura 74 – Corpos de prova após o ensaio Triaxial.

4.2.1 Resultados dos Ensaios de Cisalhamento Direto

O ensaio de cisalhamento direto forneceu as curvas tensão cisalhante *versus* deslocamento e as envoltórias de resistência para cada solo na condição natural e inundada (Figura 75 a Figura 86). A partir destas curvas, pode-se obter os parâmetros de resistência dos solos.

As curvas tensão cisalhante *versus* deslocamento horizontal obtidas para ambos os solos mostram que para níveis mais altos de tensão vertical, há uma perda de resistência após a tensão máxima (pico). E as curvas deslocamento vertical *versus* deslocamento horizontal indicam que ambos os solos apresentam uma compressão inicial seguido de uma expansão. Na condição natural, o solo 2 consegue expandir mais que a compressão inicial para as tensões de 50 kPa e 100kPa, e o solo 1 para a tensão de 50kPa. Já na condição inundada, ambos os solos apresentam uma expansão inferior à compressão inicial.

Figura 75 – Curvas Tensão x Deslocamento (Solo 1 – Natural)

Deslocamento Horizontal (mm)

Figura 76 - Deslocamento Vertical x Deslocamento Horizontal (Solo 1 – Natural)

Figura 77 – Envoltória de Resistência (Solo 1 – Natural): τ = 19,871 + 0,7624 σ

Figura 78 – Curvas Tensão x Deslocamento (Solo 1 – Inundado)

Figura 79 – Deslocamento Vertical x Deslocamento Horizontal (Solo 1 – Inundado)

Figura 80 – Envoltória de Resistência: (Solo 1 – Inundado): τ = 13,92 + 0,7312 σ

Figura 81 – Curvas Tensão x Deslocamento (Solo 2 – Natural)

Figura 82 – Deslocamento Vertical x Deslocamento Horizontal (Solo 2 – Natural)

Figura 83 – Envoltória de resistência (Solo 2 – Natural): τ = 16,315 + 0,7969 σ

Figura 84 – Curvas Tensão x Deslocamento (Solo 2 – Inundado)

Deslocamento Horizontal (mm)

Figura 85 – Deslocamento Vertical x Deslocamento Horizontal (Solo 2 – Inundado)

Figura 86 – Envoltória de Resistência (Solo 2 – Inundado): τ = 10,433 + 0,8128σ

A Tabela 15 apresenta os índices físicos para os dois solos, e a Tabela 16 reúne os valores de resistência dos solos obtidos a partir dos ensaios de cisalhamento direto.

Comparando-se os resultados obtidos pelo ensaio de cisalhamento direto, verifica-se que o solo 1, por ter uma maior quantidade de argila em relação ao solo 2, tende a apresentar uma maior coesão. Por sua vez, o solo 2, por apresentar uma maior quantidade de areia e mica, tende a apresentar uma coesão efetiva menor que o solo 1. A diferença em termos da parcela de coesão efetiva da resistência entre os solos é muito pequena. No entanto, como esperado, o solo 2 apresentar um coesão efetiva menor. Quanto à parcela de atrito ambos os materiais apresentaram resultados muito similares.

	Teor de Umidade (h₀)	Índice de Vazios (e _o)	Peso Esp. Natural (γ _n)	Peso Esp. Seco (γ₅)	Grau de Saturação (S₀)
	%		(kN/m³)	(kN/m³)	(%)
SOLO 1	22,72	0,89	16,81	13,45	67,16
SOLO 2	24,77	0,92	16,84	13,23	71,12

Tabela 15 – Índices Físicos

Tabela 16 – Valores de Resistência – Cisalhamento Direto

Valores de Resistência	Solo 1 Natural	Solo 1 Inundado	Solo 2 Natural	Solo 2 Inundado
Ângulo de Atrito Interno ¢' (º)	37	36	39	39
c' (kPa)	20	14	16	10

4.2.2 Resultados dos Ensaios Triaxiais (CD)

A Figura 87 a Figura 94 apresentam as curvas obtidas nos ensaios triaxiais para ambos os solos, juntamente com as respectivas envoltórias de resistência. Os resultados indicam que o solo 1 apresenta um intercepto coesivo ligeiramente superior ao solo 2, e um ângulo de atrito levemente inferior. O mesmo comportamento foi observado nos ensaios de cisalhamento direto. A Tabela 17 reúne os parâmetros de resistência obtidos para os dois solos. O resultado da coesão efetiva menor para o solo 2 é coerente com a presença de mica neste material.

Ressalta-se que, apesar da semelhança dos resultados obtidos para os dois solos, nota-se uma diminuição do teor de argila e um aumento da fração silte e areia com a profundidade.

Figura 87 – Curvas Tensão x Deformação (Solo 1)

Figura 88 – Curvas Deformação Volumétrica x Deformação Específica (Solo 1)

Figura 89– Envoltória de Resistência (Solo 1): q = 5,2403 + 0,3809p

Figura 90 – Envoltória de Ruptura (Solo 1)

Figura 92 – Curvas Deformação Volumétrica x Deformação Específica (Solo 2)

Figura 94 – Envoltória de Ruptura (Solo 2)

Valores de Resistência	Solo 1	Solo 2
c' (kPa)	5,58	2,32
Ângulo de Atrito Interno ¢' (°)	22.39	27.5

Tabela 17 – Valores de resistência do ensaio triaxial

A Tabela 18 apresenta os valores de módulo de deformabilidade obtidos a partir das curvas tensão *versus* deformação. Os resultados mostraram-se próximos, possivelmente porque o material extraído se encontrava ainda em uma faixa intermediária entre o solo coluvionar e o solo residual. Coerentemente, os valores de deformabilidade aumentam com o aumento do nível de tensão imposto no ensaio.

Tensão	Sol	lo 1	Solo 2		
Confinante	Ei	E ₅₀	Ei	E ₅₀	
	(kPa)	(kPa)	(kPa)	(kPa)	
50 kPa	2,4. 10 ³	4,0. 10 ³	2,3. 10 ³	2,8. 10 ³	
100 kPa	3,0. 10 ³	4,2. 10 ³	3,3. 10 ³	4,0. 10 ³	
200 kPa	4,7. 10 ³	7,0. 10 ³	4,7. 10 ³	6,0. 10 ³	

Tabela 18 – Módulos de Deformabilidade

4.2.1 <u>Comparação entre os Resultados dos Ensaios de Cisalhamento Direto e</u> <u>Triaxiais</u>

Conforme mencionado anteriormente, não foram observadas variações de resistência significativas entre os dois tipos de solo ensaiados, para cada tipo de ensaio realizado. O que se pode observar é que em ambas as baterias de ensaios (cisalhamento direto e triaxiais), a coesão efetiva é sempre menor no solo 2, o que é coerente com a presença de mica neste material.

No entanto, comparando-se os resultados dos ensaios de cisalhamento direto com os triaxiais, observam-se diferenças significativas (Tabela 19). Um explicação para isso pode estar relacionada às condições de saturação do material e principalmente a influência da anisotropia das amostras. Nos ensaios de cisalhamento direto, o corpo de prova, apesar de permanecer embebido por 24 horas, não alcança o mesmo grau de saturação de um corpo de prova submetido à saturação por contrapressão. Este fato pode explicar as divergências entre os resultados. Infelizmente não foi possível realizar ensaios triaxias em amostras naturais por insuficiência de amostras.

Nas análises realizadas no presente trabalho, foram utilizados os resultados obtidos a partir dos ensaios triaxiais, por serem os mais representativos e fornecerem o rol completo de parâmetros para as análises numéricas, e devido ao ensaio triaxial ter sido realizado e monitorado por sensores ligados diretamente a um computador, diminuindo o máximo a ocorrência de erros.

	C	ISALHAME	TRIAXIAL			
Valores de Resistência	Solo 1 Natural	Solo 1 Inundado	Solo 2 Natural	Solo 2 Inundado	Solo 1 Saturado	Solo 2 Saturado
Ângulo de Atrito Interno φ' (º)	37	36	39	39	22	28
c' (kPa)	20	14	16	10	6	2

Tabela 19 – Resultados dos dois ensaios

5 ANÁLISE NUMÉRICA

O presente Capítulo reúne os aspectos envolvidos na modelagem numérica, tais como geometria, condições de contorno, metodologia, parâmetros adotados e análise de resultados. Ressalta-se que as análises buscaram compreender os motivos da movimentação do talude, a partir da visualização das deformações e da obtenção de fatores de segurança.

Nas análises, foram utilizados dois programas computacionais conhecidos no meio técnico: o programa Plaxis 2D e o programa Slide. O primeiro programa executa análises pelo método dos elementos finitos, permitindo a compreensão do comportamento tensão-deformação do talude. O programa fornece tensões, deformações, e determina fatores de segurança. O segundo programa determina fatores de segurança pelo método do equilíbrio limite. Estes programas foram descritos no Item 1.7 da presente dissertação.

Como condição inicial nas análises, foi estabelecido o nível d'água do ano de 2011 que se encontrava próximo à superfície devido ao grande volume de chuvas que ocorreram no mês de Janeiro e que deram início à movimentação.

Os piezômetros foram instalados em 2015 quando os movimentos já estavam praticamente controlados e apenas um inclinômetro (I-02) mostrou leituras significativas para o período de 2013 a 2015.

Nas análises foi utilizado primeiramente o programa Slide, para a determinação dos fatores de segurança do talude para cada situação de saturação. Foram verificadas as superfícies críticas para cada uma das seções analisadas, e determinados os fatores de segurança mínimos através dos métodos de Spencer e Jambu Corrected.

Na segunda etapa, realizada com o programa Plaxis, os deslocamentos horizontais previstos numericamente foram confrontados com os fornecidos pelos inclinômetros. Nesta etapa, levou-se em consideração a variação do nível d'agua fornecida pelos piezômetros para o período em análise.

As seções adotadas nas análises numéricas foram elaboradas com base no levantamento topográfico e geotécnico fornecido pelas sondagens apresentadas no Capítulo 2.

Inicialmente, foram estabelecidas três seções típicas onde se observa a presença de uma camada superficial constituída de um solo argilo arenoso com espessuras entre 3,0 m e 16,0 m, sobrejacente a uma camada composta por um solo arenoso residual de rocha gnaisse contendo muita mica com espessuras de 6,0 m a 20,0 m. Em profundidade, foi detectada a presença de uma rocha gnaisse bastante fraturada. A Figura 95 e a Figura 96 apresentam as geometrias adotadas nas análises com o programa Slide, considerando o perfil antes das movimentações. A Figura 97 e a Figura 98 apresentam as malhas de elementos finitos geradas e refinadas no programa Plaxis após o início das movimentações.

Figura 95 - Seção E com a topografia anterior a 2010 no programa Slide.

Figura 96 -Seção F com a topografia anterior a 2010 no programa Slide.

Figura 97 - Seção E com a topografia e malha de elementos finitos após movimentações no programa Plaxis.

Figura 98 - Seção F com a topografia e malha de elementos finitos após movimentações no programa Plaxis.

5.2 Condições de Contorno

A Figura 99 representa as condições de contorno de uma encosta qualquer. A lateral fundo e frente possuem restrição de movimentação no eixo x; A lateral jusante e montante possuem restrição de movimentação no eixo y e a base inferior é restrita de se deslocar em todas direções. A superfície é livre por ser o local analisado para ocorrência da ruptura.

Para a modelagem no Plaxis 2D teremos restrições de movimentação na base e na lateral a montante e a jusante.

Figura 99 - Talude tridimensional com suas condições de fronteira. (VILELA, 2011)

A modelagem será dividida em 2 fases de alteração de nível d'água, talude saturado e não saturado, para as seções no Programa Plaxis e Slide, a fim de avaliar a situação mais crítica e qual a provável situação gerou a movimentação do talude da rodovia em termos de estabilidade e deslocamentos.

5.3 Parâmetros Adotados

Os parâmetros adotados para os solos superficiais (denominados anteriormente como solos 1 e 2) serão definidos com base nos resultados dos ensaios triaxiais, por ter sido uma gama de parâmetros maiores e por ser um ensaio com um maior controle, no nosso caso foi todo informatizado. O cisalhamento direto foi de grande auxilio apesar de não ter sido escolhido, nos permitiu uma comparação de resultados e a avaliação dos mesmos. Para o solo 3, devido à grande profundidade, não foi possível a retirada de amostra para ensaios. Desta forma, todos os parâmetros adotados para este solo foram definidos a partir de proposições da literatura em função do N_{SPT} (Tabela 20) e valores típicos dos parâmetros de resistência (c e ϕ) citados na Tabela 21 por Aguilera, (2009).

Os valores de permeabilidade dos solos 1, 2 e 3 também foram determinados a partir de dados da literatura (Tabela 22). Foram adotados valores de

permeabilidade de 10^{-5} cm/s, 10^{-4} cm/s e 10^{-2} cm/s para os solos 1, 2 e 3, respectivamente.

Areias e Solos Arenosos												
Compacidade	N_{SPT} γ (t/m ³) c(tf/m ²)		¢°	E (t/m²)	υ							
Fofa Medianamente Compacta Compacta		1,8	0	30-35	500-1400	0.2 - 0.4						
		1,9	0	35-40	1400-4000							
		2	0	40-45	4000-7000	0,5 a 0,4						
Muito Compacta	50	>2	0	>45	>7000							
	Argil	as e Solos A	Argilosos									
Compacidade	N _{SPT}	γ(t/m³)	c (t/m²)	¢°	E (t/m²)	υ						
Mole	2	1,5	1,2-2,5	0	120-280							
Média Rija		1,7	2,5-5,0	0	280-500	04-05						
		1,9	5,0-15	0	500-1500	0,4 d 0,5						
Dura	30	>2	>15	0	>1500							

Tabela 20 - Avaliação dos Parâmetros de Resistência e deformabilidade em Função do SPT (BOWLES, 1997)

Tabela 21 – Parâmetros de Resistência (AGUILERA, 2009)

Rocha	Coesão	Ângulo de Atrito						
Gnaisse	150-400	30-40						
Granito	150-500	45-58						
Basalto	200-600	48-55						

Tabela 22 – Valores Típicos de Permeabilidade (CASAGRANDE e FADUM, 1940)

	K	415	Matanial
	cm/seg	m/dia	Material
10 ⁻² 10 ⁻³ 10 ⁻⁷	1 a 100	864 a 86400	Pedregulho limpo
10-3	0,001 a 1	0,86 a 864	Areia limpas, misturas de areia limpas e pedregulho
10 ⁻⁷	10 ⁻⁷ a 10 ⁻³	8,64 x 10 ⁻⁵ a 0,86	Areias muito finas; siltes; misturas de areia, silte e argila; argilas estratificadas
10 ⁻⁹	10 ⁻⁹ a 10 ⁻⁷	8,64 x 10 ⁻⁷ a 8,64 x 10 ⁻⁵	Argilas não alteradas

A Tabela 23 reúne os parâmetros adotados nas análises com os programas Plaxis e Slide, provenientes dos ensaios e de proposições da literatura.

	γn	γs	φ	С		k	E
	(kN/m³)	(kN/m³)	(°)	kPa	Ū	(cm/seg)	kPa
Solo 1	16,8	13,5	22	6	0,3	10 ⁻⁵	4.10 ³
Solo 2	16,8	13,5	28	2	0,3	10 ⁻⁴	6.10 ³
Solo 3	22	20	35	150	0,3	10 ⁻²	5.10 ⁵

Tabela 23 – Parâmetros utilizados nos Programas

5.4 Retroanálise do escorregamento: Condição inicial (2011)

Para a retroanálise do escorregamento, foram modeladas duas seções (E e F) representativas, com base num levantamento topográfico anterior a 2010. Esses dois perfis serão adotados como perfis originais antes do início da movimentação. O nível d' se encontra próximo a superfície sendo correspondente ao período de 2011.

5.4.1 Análise de estabilidade pelo Slide

Para a determinação dos fatores de segurança, foi realizada uma busca das superfícies críticas ao longo do talude, com o nível d'água próximo à superfície. As Figuras Figura 100 a Figura 103 ilustram os resultados obtidos.

Foram detectadas duas áreas críticas para as seções E e F, indicando a ocorrência de duas movimentações: uma no topo do talude próximo ao maciço rochoso e outra com uma elevada extensão do meio da seção até a rodovia. Esse resultado é bem próximo do que realmente ocorreu, pela foto do GOOGLE, Figura 50, que mostra uma movimentação no topo e o levantamento da pista como uma segunda movimentação, caracterizando assim duas movimentações ao longo no talude.

As superfícies prováveis de rupturas são não circulares e os métodos utilizados pelo programa foram o método do Spencer e Janbu Corrected recomendados pelo programa para superfícies não circulares.

Figura 100 – Seção E – Topografia original – Nível d'água (2011) – Método Janbu Corrected -Slide

Figura 101 - Seção E – Topografia original – Nível d'água (2011) – Método Spencer -

Figura 102 - Seção F – Topografia original –Nivel d'água (2011) – Método Janbu Corrected -Slide

Figura 103 - Seção F – Topografia original – Nível d'água (2011) – Método Spencer – Slide

Ressalta-se que nas quatro análises foram obtidos fatores de segurança próximos a 1. Na zona próxima à pista, as superfícies críticas ocorrem entre a zona de contato do solo 1 e do solo 2. No topo, a ruptura ocorre no material 2, caracterizando assim duas zonas de ruptura.

5.4.2 Análise de estabilidade pelo Plaxis

O programa Plaxis, de elementos finitos, permite a previsão dos deslocamentos ao longo do talude, e a determinação de fatores de segurança.

Os resultados obtidos pelo Plaxis para a condição de 2011 estão apresentados na Figura 104 a Figura 107. Observa-se que o programa fornece uma região extensa de deslocamentos (do topo do talude até a pista), com duas zonas com superfícies de ruptura com fatores de segurança inferiores a 1,0. Estes resultados são compatíveis com os fornecidos pelo Slide, que indicam que o deslizamento inicia no topo do talude, mas também ocorre junto à pista, indicando duas áreas de elevado risco de ruptura.

Figura 104 – Seção E - Topografia original – Nível d'água (2011) – Plaxis - FS=1,0

Figura 105 - Seção E (reduzida) - Topografia original – Nível d' água (2011) – Plaxis - FS=1,0

Figura 106 - Seção F - Topografia original – Nível d'água (2011) – Plaxis - FS=1,0

Figura 107 - Seção F (reduzida) - Topografia original – Nível d' água (2011) – Plaxis -FS=1,0

5.5 Previsão dos fatores de segurança para condição atual

Neste item, são verificadas as condições de estabilidade para a condição atual, com base no perfil levantado em 2014 após as movimentações e com um nível d'água em uma cota inferior em relação a 2011, e para as condições de NA de 2011, a fim de avaliar a influência do nível d'água na instabilidade da região.

5.5.1 Análise de estabilidade na condição atual pelo Slide

Para as condições de 2014, observa-se nas seções E e F fatores de segurança da ordem de 1,45 no topo do talude, para os métodos de Janbu Corrected e Spencer, no programa Slide (Figura 108 a Figura 111). Nas condições de topografia e nível d'água atuais, não se observam problemas de instabilidade.

Figura 108 - Seção E – Topografia e Nível d'água (2014) –Método Janbu Corrected -Slide

Figura 109 - Seção E - Topografia e Nível d' água (2014) - Método Spencer -Slide

Figura 110 - Seção F – Topografia e Nível d'água (2014) – Método Janbu Corrected -Slide

Figura 111 - Seção F – Topografia e Nível d'água (2014) – Método Spencer – Slide

5.5.2 Análise de estabilidade na situação crítica pelo Slide

Nesta análise, foi adotado o perfil de 2014, mas considerado um nível d'água elevado, similar ao que ocorreu em 2011. Novamente, os resultados indicam a presença de duas superfícies de ruptura com fatores de segurança próximos a 1,0 para a seção E em ambos os métodos (Janbu-Corrected e Spencer), como mostra a Figura 112 e Figura 113. Para a seção F, os resultados indicam a presença de uma superfície de ruptura do meio da seção até a rodovia (Figura 114 e Figura 115).

Figura 112 - Seção E – Topografia (2014) e Nível d'água (2011) – Método Janbu Corrected -Slide

Figura 113 - Seção E – Topografia (2014) e Nível d'água (2011) – Método Spencer -Slide

Figura 114 - Seção F – Topografia (2014) e Nível d'água (2011) – Método Janbu Corrected –Slide

Figura 115 - Seção F – Topografia (2014) e Nível d'água (2011) – Método Spencer -Slide

5.5.1 Análise de estabilidade na situação crítica pelo Plaxis

Da mesma forma modelada anteriormente no programa Slide foi realizado no programa Plaxis, sendo adotado o perfil de 2014, e considerado um nível d'água elevado, similar ao que ocorreu em 2011.

Os resultados da modelagem para a Seção E completa(Figura 116), indicam a presença de duas superfícies de ruptura com fatores de segurança próximos a 1,0. Para uma pesquisa mais detalhada da superfície de ruptura próxima da rodovia, foi modelada uma seção reduzida (Figura 117), onde indicou um FS=1,0, os resultados ficaram próximos ao encontrado pelo programa Slide.

Para a Seção F foi encontrado apenas uma superfície ruptura próximo a pista com fator de segurança próximo de 1,0, Figura 118.

Indicando assim que apesar da mudança da geometria do talude devido as movimentações ocorridas a ocorrência de um novo período de chuvas e por consequência o aumento do nível d'água, o talude continuará se movimentando.

Figura 116 – Seção E - Topografia (2014) e Nível d'água (2011) – Completa – Plaxis – FS=1,0

Figura 117 - Seção E - Topografia (2014) e Nível d' água (2011) – Reduzida – Plaxis-FS=1,0

Figura 118 - Seção F - Topografia (2014) e Nível d'água (2011) – Completa – Plaxis – FS=1,0

5.6 Análise dos deslocamentos: Programa Plaxis

De forma a compreender o impacto do nível d'água na movimentação do talude, foram realizadas simulações numéricas para duas seções no Plaxis, utilizando o perfil de 2014 e variando o nível d'água de acordo com as informações de 2013 e 2015. Os deslocamentos horizontais previstos numericamente foram confrontados com os fornecidos pelos inclinômetros nestas datas.

Como citado anteriormente apenas o inclinômetro I-2 forneceu leituras consideráveis e os piezômetros foram instalados muito recentemente e em poucos pontos do terreno, apresentando assim poucas leituras, assim não foi possível estabelecer uma relação muito precisa entre os deslocamentos dos inclinômetros *versus* variação do nível d' agua.

Os resultados da modelagem indicam deslocamentos máximos de 182 (Seção F) a 161mm (Seção E) próximos à rodovia, Figura 120 e Figura 122, respectivamente, enquanto os inclinômetros fornecem deslocamentos acumulados para o mesmo período de aproximadamente 115 mm, Figura 123. E os deslocamentos na modelagem vão a profundidades muito maiores do que os inclinômetros acusam, como pode ser visto na Figura 124 que mostra um comparativos dos deslocamentos do inclinômetro e os obtidos pelo Plaxis.

Figura 119 - Perfil de deslocamentos da seção F

Figura 120 – Deslocamentos encontrados seção F

Figura 121 - Perfil de deslocamentos da seção E

Figura 122 – Deslocamentos encontrados seção E

Figura 123 – Deslocamentos do inclinômetro I-02

Figura 124 – Comparativo dos deslocamentos Plaxis x Inclinômetro

5.6.1 Análise dos deslocamentos com o aumento do modulo de elasticidade

Como foi observado anteriormente a modelagem considerando o solo 2 homogêneo resultou em deslocamentos maiores e em profundidade maiores, em relação aos resultados dos inclinômetros. Objetivando avaliar a influência do aumento de rigidez do solo 2 com a profundidade, identificada pelos valores de N_{SPT} fornecidos pelas sondagens, foi realizada uma nova modelagem.

Tendo em vista os valores de N_{SPT} crescentes com a profundidade do solo 2, optou-se por executar a análise subdividindo o solo 2 em 3 camadas, para a Seção E (Figura 125) e Seção F (Figura 126), com diferentes módulos de elasticidades, a primeira subcamada terá os mesmo módulo modelados na modelagem anterior, obtido pelo ensaio triaxial, para as duas camadas seguintes, subcamada 2 e subcamada 3, o módulo de elasticidade será em função de correlação do N_{SPT}, da Tabela 24, por se tratar de um silte arenoso, o N_{SPT} médio será multiplicado por 3,0 e os módulos adotados para modelagem para a seção E e F serão apresentados na Tabela 25 e Tabela 26 respectivamente.

Figura 125 – Seção E com o solo 2 dividido em 3 camadas

Figura 126 – Seção F com o solo 2 dividido em 3 camadas

Tabela 24 – Correlação Módulo de Elasticidade x N_{SPT} (DÉCOURT, 1996)

Correlaçõe	Correlações Módulo de Elasticidade x N _{SPT}								
Areias	$E = 3,5 N_{SPT} (MN/m^2)$								
Argilas	$E = 2,5 N_{SPT} (MN/m^2)$								

Tabela 25 – Módulos de Deformabilidade adotados para as subcamadas da seção E

Subcamada	Nspt Médio	E (MN/m ²)
2	16	48
3	27	81

Tabela 26 – Módulos de Deformabilidade adotados para as subcamadas da seção F

Subcamada	Nspt Médio	E (MN/m ²)
2	14	42
3	26	78

Os resultados obtidos a partir da nova modelagem estão apresentados na Figura 128 e Figura 130 respectivamente. Observam-se menores deslocamentos máximos comparados com os deslocamentos obtidos na modelagem que adotou o solo 2 como homogêneo e uma considerável redução dos deslocamentos com a profundidade. Para a seção E, foi obtido um deslocamento máximo de 86 mm e para a seção F um deslocamento máximo de 104 mm.

Figura 127 – Deslocamentos Seção E – Plaxis

Figura 128 – Deslocamentos obtidos seção E

Figura 129 – Deslocamentos Seção F – Plaxis

Figura 130 – Deslocamentos obtidos seção F

Confrontando-se os deslocamentos horizontais previstos numericamente com os fornecidos pelo inclinômetro I-02 (Figura 131), verifica-se uma boa concordância entre os resultados, indicando a maior rigidez do solo 2 em profundidade.

Figura 131 – Comparativo dos Deslocamentos para a nova modelagem

5.7 Discussão dos resultados

As análises por equilíbrio limite e por elementos finitos forneceram resultados coerentes, compatíveis ao que realmente ocorreu no Km 78 da RJ-116. Foram claramente definidas duas zonas de movimentação, uma na parte superior do talude, com a superfície crítica passando no interior da camada de solo residual, e uma mais abaixo, próximo à pista, com superfície crítica passando na interface do solo residual com solo coluvionar. Apesar da utilização dos parâmetros similares para os solos 1 e 2, obtidos em laboratório, as zonas de movimentação ocorrem na interface entre os dois solos, na profundidade onde os parâmetros do laboratório

foram obtidos, onde o solo residual se encontra em uma faixa muito madura e micácea.

Os resultados foram satisfatórios para os dois métodos em se tratando de localização da superfície potencial de ruptura.

Para os deslocamentos previstos pelo programa Plaxis, com o solo 2 homogêneo, quando comparado com as medições dos inclinômetros nos mostram as seguintes diferenças. Os deslocamentos máximos medidos foram da ordem de 115 mm (Inclinômetro I-02) em fevereiro de 2016 e com deslocamentos variando até a profundidade de 12m. Os resultados da modelagem numérica previram deslocamentos na faixa de 161 a 182 mm e com deslocamento variando a uma profundidade de 18 a 20 m respectivamente, conforme foi mostrado na Figura 124.

A causa provável pode estar associada à representatividade dos parâmetros da camada do solo 2 adotados no modelo. Como já mencionado, o solo 2 na sua região mais superficial encontra-se muito maduro e com parâmetros similares aos do solo 1. Na modelagem, o solo 2 foi considerado homogêneo ao longo da profundidade, o que não corresponde à realidade. Nas sondagens realizadas, observou-se um aumento gradual de resistência com a profundidade a partir da interface do solo 1 com solo 2. Portanto, a consideração da camada de solo 2 ser homogênea, pode ter contribuído para a discrepância dos resultados de deslocamentos.

Já para as análises de deslocamento no Plaxis subdividindo o solo 2 em 3 camadas com os módulos de deformabilidade variando em função do NSPT, foram previstos deslocamentos horizontais mais próximos aos medidos pelo inclinômetro I-02, como foi mostrado na Figura 131.

Considerando os aspectos técnicos de desenvolvimento de projetos de controle de movimentações, os deslocamentos observados tanto no campo quanto os obtidos nas análises numéricas convergem para uma mesma ordem de grandeza.

Dessa forma, pode-se tomar os resultados obtidos no MEF a partir do programa Plaxis como representativo do fenômeno observado no km 78 da RJ-116, certificando esta ferramenta como um método capaz de prever a estabilidade de taludes.

Os resultados mostram a influência do N.A. sobre a estabilidade do talude e a importância da drenagem na estabilidade da encosta. Apesar da execução de uma cortina, esta não foi capaz de conter a movimentação que se estende ao longo de

uma área extensa. Para a estabilização do talude, a execução de um bom sistema de drenagem superficial (Figura 132) e profunda, com o objetivo de reduzir o volume de água que infiltra ao longo do talude, e principalmente na interface do solo com o maciço rochoso, será suficiente para conter as movimentações do talude.

Em conjunto a manutenção do sistema de drenagem e o monitoramento do talude com inclinômetros e piezômetros são de fundamental importância para prevenir problemas futuros.

Figura 132 – Exemplo de uma drenagem superficial completa para o local. (PINI, 2011)

CONCLUSÃO

O presente trabalho buscou analisar as condições de estabilidade de um talude no Km 78 da rodovia RJ-116, que apresentou um histórico de movimentações. Talude do qual possui um longo histórico de movimentações devido a alterações de origem humanas (corte no pé do talude) e de origens naturais (geologia, intemperismos e chuvas). A evidente continuação das movimentações após 2011 exigiu que fossem executadas soluções de engenharia para o local. No entanto, por desconhecimento dos processos de instabilização as propostas executadas não obtiveram êxito.

Este trabalho avaliou as causas da movimentação e apresenta a solução para o caso de instabilidade do talude, detalhando os dados levantados e fazendo uma retro análise com o auxílio de softwares computacionais. Os resultados ficaram próximos do esperado e do ocorrido.

Como principais conclusões, destacam-se:

- É nítida a influência da variação do lençol freático na estabilidade do talude em estudo, que apresenta baixa declividade e é composto por um solo coluvionar sobre solo residual maduro e/ou rocha alterada.
- Os fatores de segurança obtidos mostraram-se muito influenciados pelas condições de saturação do talude.
- Foram detectadas duas áreas críticas para as seções analisadas, indicando a ocorrência de duas movimentações: uma no topo do talude próximo ao maciço rochoso e outra com uma elevada extensão do meio da seção até a rodovia.
- A análise dos deslocamentos utilizando o solo 2 homogêneo mostrou leve discrepância. Uma explicação para tal fato se deve que a consideração de um perfil homogêneo para o solo residual (solo 2), não representa a realidade do talude pois o solo 2 apresenta resistência e rigidez crescentes com a profundidade.
- A análise dos deslocamentos utilizando o solo 2 dividido em subcamadas forneceu resultados compatíveis com os observados no campo.
- Os programas Plaxis e Slide, forneceram resultados muito compatíveis com o ocorrido e a utilização dos dois programas em conjunto foi de fundamental importância.

Após a compreensão de todo o processo, uma solução definitiva para estabilização do talude foi proposta. A solução contempla um sistema de drenagem superficial em conjunto com um sistema de drenagem profunda a fim de reduzir o nível d'água e aumentar os fatores de segurança.

É indispensável também, para à segurança da encosta, ao longo do tempo, uma adequada manutenção do sistema de drenagem. Assim, deve-se também realizar o monitoramento constante do sistema de drenagem. Desse modo, um sistema de instrumentação com inclinômetros e medidores de nível d'água está proposto.

SUGESTÃO PARA FUTUROS TRABALHOS

O desenvolvimento deste trabalho gerou dúvidas e questões que podem ser estudadas em futuros trabalhos, tais como:

- Coleta de um período maior de dados dos inclinômetros e dos piezômetros principalmente que foram instalados muito recentemente, proporcionando assim uma melhor análise dos deslocamentos x elevação do nível d'água.
- ii. Dimensionamento da drenagem superficial e profunda para toda a bacia do talude de modo a reduzir o nível d'água crítico para épocas de grandes chuvas, impedindo assim novas movimentações e uma maior segurança da rodovia.
- iii. Retirada de novas amostras para o solo residual em uma profundidade maior para auxiliar em uma modelagem mais precisa desta camada.

REFERÊNCIAS

AGUILERA, C. E. T. Aplicação de Métodos de Análise de Estabilidade de Taludes de Grande Altura em Mineração. Dissertação (Mestrado em Engenharia Civil)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

ALEIXO, M. S. Comportamento tensão-deformação de solos residuais no equipamento triaxial. Dissertação de mestrado. Dpto. Eng. Civil, PUC-Rio, 1998.

AUGUSTO FILHO, O. Caracterização Geológico-Geotécnica Voltada à Estabilização de Encostas: uma Proposta Metodológica. In: 1a COBRAE, Rio de Janeiro. Anais, ABMS/ABGE, v. 2, p. 721-733, 1992.

AUGUSTO FILHO, O.; VIRGILI, J. C. Estabilidade de Taludes. São Paulo: In. Oliveira, A.M.S e Brito.; S.N.A.(eds) Geologia de Engenharia. ABGE, 1998. 243 – 269 p.

ÁVILA, C. R. D. Comportamento geotécnico e classificação geomecânica de maciços rochosos em taludes na região de belo horizonte. NUGEO/UFOP, Ouro Preto – MG, 2014.

BASTOS, C. Apostila de Mecanica dos Solos. Universidade Federal do Rio Grande, Rio Grande, RS, 2008.

BASTOS, C. A. B. Mapeamento e caracterização geomecânica das unidades geotécnicas de solos oriundos dos granitos, gnaisses e migmatitos de Porto Alegre. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, p. 155, 1991.

BERNARDES, J. D. A. Investigação sobre a resistência ao cisalhamento de um solo residual de gnaisse, Dissertação mestrado da Universidade Federal do Rio Grande do Sul, 2003.

BOWLES, J. Foundation Analysis and Design. McGraw-Hill, Inc. Fifth Edition., 1997.

BRESSANI, L. A. BICA, A.V.D.; PINHEIRO, R.J.B.; RIGO, M.L., Residual shear strength of some tropical soils from Rio Grande do Sul. Solos e Rochas, v. 24, n. 2, p. 103-113, 2001.

BROMHEAD, E. N. The Stability of Slopes. 2 ed. Glasgow: Blackie Academic & Professional, p. 411, 1986.

CAPUTO, H. P. Mecânica dos Solos e Suas Aplicações. 4. ed. Rio de Janeiro: Livros Técnicos e Científicos Editora S.A, v. 2, 1981. p. 488.

CARVALHO, C. S.; MACEDO, E. S.; OGURA, A. T. Mapeamento de riscos em encostas e margem de rios. Brasília - Instituto de Pesquisas Tecnológicas,: [s.n.], 2007.

CARVALHO, I. S. Propostas para a certificação das empresas de sondagens à percussão. Dissertação de Mestrado. Cuiabá - MT: UFMT., 2012.

CASAGRANDE, A.; FADUM, R. E. Notes on soil testing for engineering purposes. Harvard Univ. Grad. School Publ.268, 1940.

CAVALCANTE, E. H.; CASAGRANDE, M. D. T. Mecanica dos Solos II - Notas de Aula. Centro de ciências exatas e tecnologia - UFS, 2006.

CHANDLER, R. J. The effect of weathering on the shear strength properties of Keuper marl., v. 19, n. 3, p. 321-334, 1969.

COSTA FILHO, L. M., DOBEREINER, L., CAMPOS, T.M.P., VARGAS JR., E.A. -Engineering Properties and Design Assessment of Tropical Soils: Fabric and Engineering Properties, In: XII ICSMFE, international conference on soil mechanics and fundations engineering. Proceedings, Rio de Janeiro, 1989.

COSTA NUNES, A. J. D. Estabilidade de Taludes- Rocha e Solo., V congresso brasileiro de mecânica dos solos e engenharia de fundação, 1970. ,[s.l] : [s.n], p 98-118.

CRUDEN, D. M.; VARNES, D. J. Landslide Types and Processes. In: TURNER, A.K.; SHUSTER, R.L. (eds), Landslides Investigation and Mitigation. Transportation Research Board Special Report 247. National Research Council, Washington DC, p. 36-75, 1996.

DANTAS NETO, S. A. Fundações e obras de contenção.. Notas de aula da disciplina Fundações e Obras de Contenção – Curso de Engenharia Civil/UFC., Fortaleza, p. 134, 2008.

DEERE, D. U.; PATTON, F. D. Estabilidad de taludes en suelos residuals. IV Cong. Pan. MEc. Suelo, 1: p 93-185., Puerto Rico, 1971.

DEMIN. Departamento de Engenharia de Minas -UFRGS. Disponivel em: http://www.ufrgs.br/demin/discpl_grad/geologia2/material/sondagem-ppt2.pdf>.

DUCAN J., M. Closure of Discussion of "Factors of Safety and Reliability in Geotechnical Engineering". Journal of Geotechnical and Geoenvironmental Engineering, v. 127, p. 717-721, 2001.

DYMINSKI, A. S. Estabilidade de Taludes, Notas de Aula, Universidade Federal do Paraná, Curitiba – PR, 2009.

EISENBERGER, C. N. Estudo do comportamento de um talude coluvionar urbano em santa cruz do sul -rs. Rio Grande do Sul : Mestrado em Engenharia Civil / UFGRS., 2003.

FERNANDES, N. F.; AMARAL, C. P. Movimentos de Massa: uma Abordagem Geológico-Geomorfológica. In: GUERRA, A J.T; CUNHA, S.B. (Orgs). 2^o. ed. Rio de Janeiro: Editora Bertrand Brasil, 1998. 123-194 p.

FLORES, E. A. F. Análises probalisticas da estabilidade de taludes considerando a variabilidade espacial do solo. Dissertação do mestrado em Eng. Civil - PUC, Rio de Janeiro, 2008.

FREDLUND, D. G.; RAHARDJO, H. Soil mechanics for unsaturated soils. New York, John Wiley, p. 517, 1993.

FREIRE, E. S. D. Movimentos Coletivos de Solos e Rochas e sua Moderna Sistemática. Revista Construção, Rio de Janeiro, p. 10-18, Março 1965.

FRIGERIO, G. P. Retroanálise de uma escavação de vala escorada a céu aberto de uma linha do metrô de São Paulo. Dissertação de mestrado da USP, São Paulo, 2004.

GEORIO. Manual de Encostas: Análise e Investigação. 2ª Edição., Rio de Janeiro, v. 1, p. 69-88, 2000.

GERSCOVICH, D. M. S. Estabilidade de Taludes, Apostila do curso de mestrado em engenharia civil - ênfase em Geotecnia, Rio de Janeiro, 2010.

GERSCOVICH, D. M. S. Resistencia ao Cisalhamento, Apostila do curso de mestrado em engenharia civil - ênfase em Geotecnia. Rio de Janeiro: UERJ, 2010.

GOOGLE. Imagens do Google Earth - http://www.google.com.br/earth.

GRIFFITHS, D. V.; LANE,. Slope stability analysis by finite elements, v. 49, n. 3, p. 387-403, 1999.

GUIDICINI, G. E. N. C. M. Estabilidade de Taludes Naturais e de Escavação. 2^a. ed. [S.I.]: Editora da USP/Edgar Blucher, 1984. 194 p.

HIGHLAND, L. M.; BOBROWSKY, P. O Manual do Deslizamento: um guia para a compreensão de deslizamentos., Reston, Virginia: U.S. Geological Survey, p. 13, 2008.

HUCTHINSON, J. N. General Report: Morphological and Geotechnical Parameters of Landslides in Relation to Geology and Hydrogeology. 5th INT. SYMP. ON LANDSLIDES, Lausanne. Proc., v. 1, p. 3-35, 1988.

HUNTER, G.; FELL, R. Estimation of travel distance for landslides in soil. Australian Geomechanics, 2002.

IBAÑEZ, J. P. Modelagem micro-mecânica. Tese (Doutorado em Engenharia Civil)) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, p. 60, 2008.

IPT. Manual de Ocupação de Encostas. CUNHA, M.A. (Coord). IPT, São Paulo, v. nº 1831, p. 216, 1991.

Little, A. L. "The Engineering Classification of Residual Tropical Soils". Proc. of Speciality Session on Engineering Properties of Lateritic Soils, VII ICSMFE, Mexico City,1969

MARANGON, M. Parâmetros dos Solos para Cálculo de Fundações. UFJF, Minas Gerais, 2009.

MOTA, A. P. Análise de um escorregamento ocorrido em um talude na Via Lagos. Rio de Janiero: Mestrado em Geotecnia - UERJ, 2014.

NBR:6484, A. B. N. T. Solo - Sondagens de simples reconhecimento com SPT - Método de ensaio., Rio de Janeiro, 2001.

NBR-6122, A. B. N. T. Projeto e Execução de Fundações, Rio de Janeiro, p. 91, 1996.

OLIVEIRA, E. P. Caracterização bio-físico-químico-mineralógica e micromorfológica de um perfil de alteração de granito-gnaisse de Curitiba, PR. Rio de Janeiro: Dissertação de Mestrado, PUC, 2006.

ORTIGÃO, J. A. R. Introdução à mecânica dos solos dos estados críticos. 2.ed. Rio de Janeiro, Livros Técnicos e Científicos, p. 378, 1995.

PASTORE, E. L. Weathering profiles. 10th Panamerican Conference on Soil Mechanics and Foundation Engineering, ISSMFE, Guadalajara, Mexico, p. 353-364, 1995.

PINHEIRO, R. J. B. Estudo de alguns casos de instabilidade da encosta da serra geral no estado do Rio Grande do Sul, Tese de Doutoramento, Universidade Federal do Rio Grande do Sul;, 2000.

PINI. Obras de retaludamento, http://infraestruturaurbana.pini.com.br/solucoestecnicas/7/obras-de-retaludamento-235540-1.aspx, 2011. PINTO, C. S. Curso básico de mecânica dos solos. São Paulo, Oficina de Textos, p. 247, 2000.

REFFATTI, M. E. Análise numérica de uma escavação de grande porte em Porto Alegre / RS: Caso de obra. Dissertação de mestrado - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2002.

REIS, F. Curso de Geologia Ambiental, 2001. Disponivel em: http://www.rc.unesp.br/igce/aplicada/ead/interacao/inter09b.html.

RIBEIRO JUNIOR, C. A. Análise numérica de escorregamento em encostas. Rio de Janeiro: Dissertação Mestrado - UERJ, 2011.

RIZZON, M. M. Risco geotécnico de encostas ocupadas: avaliação e indicação de soluções para mitigar problemas na vila graciliano ramos em Porto Alegre. Rio Grande do Sul: Universidade Federal do Rio Grande do Sul, 2012.

SANDRONI, S. S. Solos residuais gnáissicos – pesquisa realizada na PUC-Rio. Simpósio Brasileiro de Solos Tropicais em Engenharia. COPPE/UFRJ – ABMS. Anais., Rio de Janeiro, 1981.

SANDRONI, S. S. Sampling and Testing of Residual Soils - A Review of International Practice, Proceedings. Scorpion Press (Hong Kong)., 1985.

SARMA, A.K., and BORA, P.K., Influence of Rainfall on Landslide, International Conference on Landslides, Slope Stability and the Safety of Infra-Structures, Malaysia, 1994.

SASSA, K. Geotechnical Classification of Landslides. Landslide News, nº. 3, p. 21-24, 1989.

SCHNAID, F. .; ODEBRECHT, E. Ensaios de campo e suas aplicações à, 2012.

SCHNAID, F. Ensaios de Campo e Suas Aplicações à Engenharia de Fundações., São Paulo : Oficina de Textos, p. 190, 2000.

SEW, G. S.; CHIN, T. Y. The determination of shear strength in residual soils for slope stability analysis. Seminar Cerun Kebangsaan 2001, Cameron Highland, 2001.

SILVA, B. A. D. Análise de estabilidade de taludes ao longo da rota de um duto submarino na Bacia de Campos, RJ, Rio de Janeiro, PUC, p. 89-90, 2005.

SKEMPTON, A. W.; HUCTHINSON, J. N. Stability of Natural Slopes and Embankment Foundations. State-of-the-art Report. 7th ICSMFE. Mexico, Proc.: State-of-the-art vol, 1969. p. 291-340.

TEIXEIRA, L. M. Análise numérica do comportamento de um oleoduto sujeito a movimentos de encosta. Tese doutorado em engenharia civil - PUC-RJ, Rio de Janeiro, 2008.

TERRAE. Relatório Técnico da Rodovia RJ116 - km 78, Janeiro 2014.

TERZAGHI, K. Mechanisms of Landslides, Engineering Geology (Berkey), Geological Society of America., 1950.

TOMINAGA, L. K. Escorregamentos. In: TOMINAGA, L. K.; SANTORO, J.; AMARAL, R. (Org.). Desastres naturais: conhecer para prevenir. São Paulo: Instituto Geológico: [s.n.], 2009. 25-38 p.

VARGAS, M. Introdução à Mecânica dos Solos, Ed. McGraw Hil do Brasil Ltda., São Paulo, 1977.

VARNES, D. J. andslide Types and Processes. In: ECKEL, E.B. (eds), Highway Research Board, Special Report, v. 29, p. 20-47, 1958.

VARNES, D. J. Slope Movement and Types and Processes. In: SCHUSTER, R.L.; KRIZEK, R.J. (eds), Landslides, Analysis and Control. Transportation Research Board Special Report 176. National Academy of Sciences, Washington DC, 1978. p. 11-33.

VILELA, R. Análise tridimensional da estabilidade de taludes. Universidade Federal de Goiás, XIX Seminário de Iniciação Científica da UFG - PIVIC, 2011.

WOLLE, C. M. Mecanismos de Instabilização de Encostas na Serra do Mar. [S.I.]: Encontro Técnico: Estabilidade de Encostas, ABMS, 1988. 16-40 p.

10	Cliente :Concessionária Rota 116 Início: 07/03/2012 🛔 x - Ver croqui												FURO Nº								
Local: Rodovla RJ 116 km 78 Término: 09/03/2012										croqu	ll I	S	M	01							
Bairro Ypu - Nova Friburgo									ondador (Sr, Lulz	Cont	z.	Ver	croqu	۱ <u>۱</u>		Folhs		1/02		
	Ê								N	vel ďágu	a:	0		Ê						2	
eto			SPT		π	ade		[Início		N.D.	l ee	Ē		Bug.	2	g	~	ação	men	2
-Be			30 c	n Iniciais m Finais	ß	å dig e		8	24 horas		4.50	18	Irade	Ê	anot	8	Bme	%)	Aftera	tura	Puer
1/05	N	spt	GOLPES	S (qt)	d's	Ľ,	Pe :	8	12/03/2012		4,50	- 8	But	Dra	N B	Bieg	a ta	8	de	Fra	8
fétox	ŝ	ŝ	RECUPERA	CÃO (%)	9	0	()	Ő				strat	j.	ano	P.	line ge	P 2	æ	Bau	au de	
2	°.	~	50 60 70	80 90	Ē	-						Ш	<u> </u>	~	Rec	Ľ.			Ŭ	5	
						0,25	1	Ę	1 - Paralele	pípedo	e aterro		0,25								
						- 1	R		de pó de po	edra.		E									
N T O						- 1	10	È	2 Barra d	a mahā	ia com	μĘ									
2	-	-				-	P.	Å	z - Berço d rocha fradr	e racna nemtad	ao, com las no	ScA									
-					l ł	-	Ð	ą	tamanho de	e pedre	egulhos e	N.									
3,00	9	10			+ +	- 3,00	R	⊰	pedras de r	não,		<u> </u>	2,75								
					l t	- 3	Æ	Ż	3 - Silte are	h neon	le										
	10-	12			4,30	-	77	7	coloração a	marela	a/bege										
		10			l t		₹ <i>₹</i>	ł	contendo a	rela mé	édla,										
1	11-	13			1 1	- 3	\square	Л	poucos peo	regulho	os	5									
2	12	14				2	₹ <i>₹</i> }	Ż	dourada fin	angulo a.	isos e mic	ĨZ									
ā	12	14	1			100	[Z]	Ę	Mdedlamer	ite com	npacta										
12	11-	11				-	N3	N				E									
-					ιı		4 - Bloco de rocha gnalssica														
	14-	13	<u> </u>			_ 1	1	7	mato natu	auo e (aneiauo.	8									
						- 1	\mathbb{N}	Л	5 - Solo res	dual d	e rocha										
	15-	16			+ +	-	14	3	gnálssica, o	le colo	ração										
					1 1	-	\sum	Ч	mente evol	uro, e uído, s	endo						1				
	14-	16			1 1	-	17	5	possível alr	nda obs	servar uma										
10,55						- 10,55	ê î î î	\geq	fina follação	o da roo	cha orlgina	4	7,55								
	1	-			1 1	- 1	14	Ý.	O SOIO 6 material silt	e compo	osto por										
	~ ~	~ -			1	11,80	ŰQ	2	textura sed	te arenoso, losa, contendo			1,30	1.30 0.34 2	26	4 8	8	A2	F5	C2	
1	25	25			11	- i (\mathbb{N}	multa mica fina a média de										1			
	26	27			[\sim	Y	coloração p	ão preta a marrom e											
1_1	20	2/-			1 [\sim	fina a média.													
a.	28	38				_ 7	5	N	Observam-	se várle	os velos de) S									
8						- 2	\mathbb{N}	Л	caulim brar	co, mll	métricos.	1 S	1								
	35-	42-				15 2	Compacta.					0									
							\sim	Л	Continua			los									
	35-	45				- 1		1													
16,60 Z			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		16,60		X				- S	4,80								
Ø	-					_	12	0				E E									
2			<u> </u>			-	122	2				8									
Ot	08.1									TEMPO) AVANÇO	4	Pe	rfl (de S	Son	dag	em	Mls	ta	
In	stal	ado	medldor de	nível d	água	•															
P	ara	saçi	ão por cont	a do cor	ntrata	nte								۲.							
Revestimento: RICON Geo										eolo	gla e	Cor	stru	ção	_						
\vdash		Search of the	Enturamento	Garrie	fe Aborn	não	_		Coâmada	De 73.0mm D 63.5mm Clvll, Ltda (22) 2555-4420				P.0	de T						
	Grau de Fraturamento Grau de Ateração Co F1 <1 fratim (Pouco frat.) A1 Rocha Sã C1 Coer					Coerente	< 2 golpe	es Multo mole	0	4 golpe	is Fi	onas e : Día	- 105 P		P	Perce	nuraçã Sussão	10			
\vdash	F2 5 frat/m (Fraturada) A2 Rocha Medjamente Alterada F3 6-10 frat/m (Muto frat.) A3 Rocha Muto Alterada				0	:2 :3 F	Pouco Coerente	2 - 5 gat 6 - 10 ga	pes Mole pes Média	5	8 golpe 18 golpe	5 Pi 5 M	ouco Ca ediam.	ompact Comp	a acta	F	Las Rotativa	agem			
\mathcal{L}	F4 1	1-20 fra 20 feat	itim (Extrem, frat.)	A4 Rocha	Extremen	mente Altera	da C	24.1	ncoerente	11 - 19 go	pes Rip	19-	40 gop	88 C	ompact	8	F	W Ro	t, Wide	a	7

Cliente : Concessionária Rota 116 Index 14/02/2012	FURO Nº
Logik Bodovio B 116 km 79	⁸ X - Ver croqui SM 04
Bairro Ypu - Nova Friburgo	Z Ver croqui
Sondador : Sr. Luiz	5 Folha 01/02
SPT E P	Estrato Geol/Ceotec Prof. Perfurada (m) Manobra (m) Recup. da Manobra (m Recup. da Manobra (m Crau de Fraturamento Grau de Fraturamento Coerencia
6 -6 4 -5 4 -5 6 -6 4 -5 6 -6 6 -6 6 -6 6 -6 7 -7 7 -7 8 -9 10 10 8 -9 10 -7 8 -9 8 -9 10 -7 8 -9 10 -7 8 -9 10 -7 8 -9 10 -7 8 -9 10 -7 8 -10 8 -10 9.50 -10.00 10 -11 9.50 -10.00 10 -10.00 10 -10.00 10 -10.00 10 -11.00 10 -11.00 10 -11	SULTA DEPOSITO DE TÁLUS 8000 RESIDUAL 8000 1000 100000 100000 10000
Obs.: TEMPO AVANÇO	Perfil de Sondagem Mista
Paralisação por conta do contratame. Perfuração a trado de 150mm até 8.00m paralisação devido	
nível d'água,	
Revestimento HW até 10,00 e NW eté 23,00	R C O N Geologia e Construção
Instalado Medidor de Nível dágua	Civil, Ltda (22) 2555-4420
Grau de Fraturamento Orisu de Alteração Coêrenda Consistência (Arg. e s E. Arg.) E1 < 1 (ratio (Pouro (rat.) Al Roda Sé	Compacidade (Arelas e Siles Aren.) Met. de Perturação
F2 5 fratim (Fouturds) A2 Roch Mediamente Alterada C2 Modam Corente 2 5 golpes Multi mole	5 8 golpes Pouce Compacta L Lavagem
F3 6-10 tratim (Multo frat.) A3 Roche Multo Atterede C3 Pouco Coerente 6 - 10 golpes Middle F4 11-20 fratim (Extrem, frat.) A4 Roche Extremamente Aberade C4 Incoerente 11 - 19 golpes R(a	9 18 golpes Medjam Compacta Rotativa 19 40 golpes Compacta RW Rot Widea

6	lente	:Co	ncessionár	a Rota	116				Iníc	ka: 16	/02/2012	::	х.	Ver	croal			FU	RO N		1
' L	ocal	Ro	dovla RJ 1	16 km 7	8				Térr	mino: 25	102/2012	denadi	Ŷ.	Ver	croqu	.	S	м	05		
		Ba	Irro Ypu - N	lova Fri	ourgo				s	ondador: S	r, Lulz	Coord	z.	Ver	croqu	۱ŀ		Folha		/02	
					Ê				N	vel d'água	:	0			Ê			ona		9	
Método / Dfâmetro	7°82° Z	2°8.3°	SPT 30 cm GOLPES 10 20 30 RECUPERAG 50 60 70	n Inklaw m Finals 5 (qt) 40 50 ÇÃO (%) 80 90	Nivel d'água (r	Profundidade (m)	Perfl	Geológico	Iniclo 24 horas 22/02/2012 23/02/2012	7:30 7:30	N.D. 9,20 10,35 10,35	Estrato Geol/Geote	Prof. Perfurada (m)	Manobra (m)	Recup. da Manobra (n	Recuperação (%)	N° de fragmentos	RQD(%)	Grau de Alteração	Grau de Fraturament	Coerencia
. 👸 . RD Ø H 🔓 TRADO Ø 150 MM	7 - 7 - 7 - 行 - - - - - - - - - - - - - - - - - -	9 - 8 - 9 -				- - 4,10 - - 6,80			 Arglia ar coloração a laranja, heti contendo a pouca mica pedregulho: alterados. Pouco a me compacta. Bloco de Solo res gnáissica, o marrom eso mente evoli possível air 	enosa d vermelh arogêne irela mé fina e c s e selxo adlamen rocha g idual de je colora cura, e: uldo, se ida obse	le nada a a dla, om os te ranítica rocha ação strema_ ndo ervar uma	BLOCO ROCHOSO DEPOSITO DE TÁLUS	4,10 5,30 6,80	4,10 1,20 1,50	0,40	33	7	14	A3 A1	F4	C2 C1
-	10-	13				-	REVE	A	fina follação O solo é material sit) da roci compo e areno	ha orlginal sto por so,										
-	12-	15				-	1		textura sed multa mica coloração p	osa, cor fina a n oreta a n	ntendo nédla de narrom e										
	12-	15			10,35		1 Mar	A A	ainda areia fina a média Mediamente	de gran a. e compa	ulometria icta a	ESIDUAL									
N	15-	16							compacta.			SOLOR									
Ν. N	17-	19	-			-	No.	E.	4 - Rocha g coloração c granulação	nálssica Inza cla média a	a sã de ra, 1 grossa,										
	15-	18				-	WATE 21.5	Y	composta p blotita e qua Apresentan	or feldsj artzo. ido fratu	pato, ras										
	13-	19			-	5	TIDO EM N		horizontals preenchida: alteração (I	(F2 a F3 s por ma 03 e D4	3), aterlal de) e com										
	19-	22-				_	AL REVE	1 H	superfícles	Irregula	res.										
								\sum													
Pa	ara	saçå	io por conta	a do con	tratant	te.				TEMPO	AVANÇO		Pe		je S	son	lag	em	MIS	ta	
Pe	orfur	açã	o a trado de	a 150mr	n até 4	4,00m	n para	allsa	ação devido)							
R	eves	tlme	ento HW ate	ė 12,00	e NW	até 2	1,50n	n.	Continua	Revestime De=73.0m/	nto;	R	CO	N G	eolo	gla e	Con	struç	ăo	_	
_	(Brau de	Fraturamento	Grau o	ie Alteraçã	io			Coërencia	Consistência	(Arg. e sit. Arg.)	Com	pacidad	ie (Ar	elas e t	Silters A	ren.)	Met.	de Per	furaçã	0
_	F1 <	1 frat/m	m (Pouco frat,) (Fraturada)	A1 Rocha A2 Rocha	se Vedamen	te Altera	da	C1 (Coerente Mediam, Coerente	< 2 gopes 2 - 5 gopr	8 Mole	0.	4 golpe 8 golpe	s Fo	nta suco Ca	mpact	8	P	Lav	ussão agem	
F3 6-10 trabin (Multo frat.) A3 Rocha Multo Aberada F4 11-20 frat/m (Extrem. frat.) A4 Rocha Extremamente								C3	Pouco Coerente nocerente	6 10 go pr	es Rim	9.1	8 golpe 60 golpe	5 M	edjam, omoact	Comps	icta p	R W Ref	otativa . Wide	8	-
F4 11-20 frat/m (Extrem, frat.) A4 Rocha Extremamente Abera F5 >20 frat/m (Fragmentada)								04	NAME OF BRIDE	>19 go per	Dura	24	0 golpe	6 M	ulto Co	moacla	R	D Ro	t. Diam	antada	/

Cliente 'Con	reselonária Rota	116	laís	la 16/	02/2012	¥						FU	RO N		2
Local Bod	lovia B 116 km 7		init.		02/2012	nede	÷.	Verd	roqui		S	M	05		
Bain	ro You - Nova Frib	ourao	Ter	mino: 23/	/02/2012	cordi	z.	Vero	croqui	Ľ					
			\$	iondador : Si	Luiz	0				4	F	Folha	01	/02	_
Método / Dfâmetro 7° 8,2° ≩ 2° 8,3° ≩	SPT 30 cm Indels 30 cm Indels GOLPES (qt) 10 20 30 40 50 RECUPERAÇÃO (%) 50 60 70 80 90	N Ivel d'água (m) Profundidade (m) Perfil	Ni Iniclo 24 horas 22/02/2012 23/02/2012	vel d'água: 7:30 7:30	N.D. 9,20 10,35 10,35	Estrato Geol/Geotec	Prof. Perfurada (m)	Manobra (m)	Recup. da Manobra (m)	Recuperação (%)	N° de fragmentos	RQD(%)	Grau de Alteração	Grau de Fraturamento	Coerencia
22 25 2 22 25 2 35 45 21.49 40 55			AN AN AN AN AN AN			SOLO RESIDUAL	21,48	14,68							
RDØN	69		Ð			ROCHA SĂ	22,96	1,50	1,20	80	12	57	A1	F3	C1
25.94		-				T	24,48	1,50	1,34	89	9	46	A1	F3	C1
		- F	im Ι												
Obs. Com base a	os furos anterioro	s anós a percu	ടെട്ടറ fol	TEMPO	AVANÇO		Per	fll d	le S	ond	lage	em	Mls	ta	
utilizado o b	arrilete H. com o c	s, apos a percu obietivo de evita	asao loi Ir possível												
trancamento	o do furo ao coloc	ar o revestiment	to N.					2							
Perda total	de água em 4,10 com 22 50m	retorno com 12	,0m e perda	Revestimen	to;	R	сo	N G	eolog	la e	Con	strug	ăo	_	
novamente	55m 22,50m			De=73,0mm	D=63,5mm	Ch	/II. Lte	da (2	2) 255	5-442	20				
Grau de F F1 < 1 fratim	Fraturamento Grau d (Pouco frat.) A1 Rocha S	e Alteração lá	Coërenda C1 Coerente	< 2 polpes	(Arg. e sit. Arg.) Multo mole	Com	pacidad 4 golow	e (Are s Fol	tas e S fa	tes Ar	nen.)	P	de Pero	rluraçã ussão	0
F2 5 frat/m (Fi	raturada) A2 Rocha M	redamente Alterada	C2 Mediam Coerente	2 - 5 go pes	Mole	5	8 golper	s Po	uco Co	npacts		L	Lav	agem	
F3 6-10 tratim	m (Multo frat.) A3 Rocha M m (Extrem, frat.) A4 Rocha E	ixtremamente Aberada	G3 Pouco Coerente G4 Incoerente	6 10 golper 11 19 golpe	s Media Is Rig	9 1 19	8 golpe 10 golpe	5 Me 18 Cm	diam, C mpacta	Compa	cia R	R W Rol	otativa Wide	3	-
EE >20 fration	(Tenenseteda)			a de la grape	0		a series a		1.0000		- 12			-	_

1	lente	:Co	ncessioná	la Rota	116			Inio	lo: 26	3/01/2012	10	Χ.	Ver	-			FU	RO N	0	2
(.	ocal:	Ro	dovla RJ 1	16 km 7	8			Tán	miner 01	/02/2012	enade	Ŷ	Ver	croqu	.	S	M	06		
		Ba	rro YPU -	Nova Fr	lburgo	- RJ		s	ondador; S	r, Luiz	Coord	z-	Ver	croqu	i -		Folba		101	
h					Ê			N	vel d'água	1				2			Una	-	0	
Método / Dfâmetro	7ª820 Z	2°0.3°	SPT 30 30 30 30 30 30 30 30 30 30 30 30 30	m Habala m Fhala 5 (qt) 40 50 ÇÃO (%) 80 90	Nivel d'água (r	ProfundIdade (m)	Perfl	Inicio 24 horas 01/02/2012 01/02/2012 01/02/2012 01/02/2012	10:30 11:00 13:00	ND 7,00 7,50 7,70 7,70	Estrato Geol/Geote	Prof. Perfurada (m)	Manobra (m)	Recup. da Manobra (n	Recuperação (%)	N° de fragmentos	R Q D (%)	Grau de Alteração	Grau de Fraturament	Coerência
4,15 Percussão	7 6 4 <u>30</u> 15	11 6 5						1 -Arglia an coloração li arela média lhos e pequ muito altera Mediament pouco com 2 - Blocos o mediament composta p claros e avi granulação Os blocos o	enosa de aranja, c a com pe ienos ble idos, e compa pacta. de rocha e alterad or gnals ermelha média.	e contendo edregu- ocos incta a ita a să ises clnza dos e	DE ROCHA DEP DE TÁLUS	4,15	1,65	0.50	30	VR	7,1	A2	F5	C2
-	2	2			7,70	7,30 7,80	1	1- Passage arenosa.	apresent los, com o com 11 to, m de arg	omalor Icm de glia	BLOCO	7,30	1,50	0,11	6,6	7	0	~~ A2	F5	C2
z	7	6 9				ento NW 14.5m	È	3 - Solo re gnálssica, r esverdeado evoluído, s	s dua de narrom o, extren endo po	e rocha namente ssível										
. RD Ø	11 11 13	12 12 14			-	Revestim	3	alnda obsei follação. O solo é material sili sedosa, co mica de col dourada fit	var a fin compo e areno ntendo i oração j pa_e aln	a sto por so,textura multa oreta a da arela	SOLO RESIDUAL									
-	-				-	-		de granulor média. De 14,50 a pedregulho: Impedindo o constante d	netrla flr 17,00 o s e pequ o avanço esmoro	na a correram a uenos frag o da sonda namento o	a pre mer ager lo fu	esen ntos (n de ro	ça d de ro vido	e ocha ao	,					
\square	1	1			[-17,00	FIN	FIM	Flavio R, CREA 20	Concelção 01106600										
Obs	i ando			lin eño -	etomor	ada até a	dec	do fure	TEMPO	AVANÇO		Pe	rfll o	de S	Son	dao	em	MIs	sta	
ao P des	erca le 14 fech arall saba	Series agua em e, som hao retornando ate o final do turo, S a 17,0 não fol possível bater o amostrador SPT devido amento do furo, sação autorizada pelo contratante devido ao constante mento do furo, Bevestimento; Der23 form DE33 form DE33 form																		
			Fachara	- Ann	in Alexand			Colora	De=73,0=	m D⊫83,5mm	Ch	AI, Lt	da (2	2) 25	55-442	20				
E	F1 4	aralu de 1 fratA	m (Pouco frai,)	A1 Rocha	a Antoniqui Sili Marine Sili	n Alizante	C	1 Coerente	< 2 golpes	Multo mole	0.	4 golpe	a (An s Fo	nta Ita	-ipes A	cert)	P	Perc Perc	riuraçã 118880	0
	F2 5	frat/m 10 frat	(Fraturada) Vm (Multo frat.)	A2 Rocha A3 Rocha	Multo Alter	ada	c	2 Mediam, Coerenie 3 Pouco Coerenie	2 -5 gape 6 -10 gape	s Mole s Média	5. 9.1	8 golpe 8 golpe	s Po s M	uco Co ediam,	ompact Comps	a cia	L F	Lav Iotativa	agem	
\mathcal{L}	F4 11-20 frat/m (Extrem, fat) A4 Rochs Extrememente Allerade C4 Incoerente F5 >20 frat/m (Fragmentada)							4 Incoerente	11 - 19 golp	es Rija	19-4	10 golpe 0 golpe	18 Ca	ompact	a	R	W Ro	t. Wide	a aotada	1

1	llente	:Co	ncessionár	a Rota	116				Infe	w 0	2/02/2012	12	v	Ver				FU	RO N		1
(\cdot)	ocal:	Ro	dovla R.I 1	16 km 7	8				Tán	alno: 0	2/02/2012	enada	Ŷ.	Ver	croqu		S	м	08)
⁻		Ba	Irro Ypu - N	lova Frit	ourgo					andadar 1 S	2/02/2012	Courd	z.	Ver	croqu	i					
					<u> </u>		_		a ML	onicación ; «	9, LUIZ				~			Folha	01	/02	
Método / Dfâmetro	1°⊕2° Z	2°83° ž	SPT 30 cm 30	n Inicials m Finals 6 (qt) 40 SO CÃO (%) 80 90	Nivel d'água (m	ProfundIdade (m)	Perfil	Geológico	Inicio 24 horas 02/02/2012 02/02/2012	14:00 15:00	N.D. 7,70 7,50 7,65	Estrato Geo/Geotec	Prof. Perfurada (m)	Manobra (m)	Recup. da Manobra (m	Recuperação (%)	N° de fragmentos	RQD(%)	Grau de Alteração	Grau de Fraturamento	Coerencia
B RDØN B PERCUSSÃO	9 - 8 - 10- 10- - 14- 15- 8 - 11- 11- 8 - 11- 11- 11- 11- 11- 11- 11- 11- 11- 1	11 - 9 - 11 - 15 - 17 - 10 - 12 - 13 - 11 - 13 - 11 - 13 - 14 -			7,65	- - 4,45 - - - - - - - - - - - - - - - - - - -			 Arglia are coloração la arela média e com pedr alterados. Mediamente 2 - Blocos d mediamente 2 - Blocos d média. Os b apresentam fragmentad 1 - Solo res gnálssica, d marrom eso mente evolu possível aln fina follação O solo é material silti textura sede multa mica coloração p alnda arela fina a média Mediamente compacta. 4 - Rocha g coloração c granulação composta p blotita e qua 	nosa d iranja, e iranja, e	e contendo i mica fina s e selxos acta. i dos a să, lisses ilação n o malor 7 cm de e rocha ação xtrema_ endo ervar uma ha original sto por so, ntendo nédia de narrom e bulometria acta a a să de ra, a grossa, pato,	SOLO RESIDUAL BLOCO DE ROCHA DEPÓSITO DE TÁLUS	4,45 5,65 6,10 7,00	1,20 0,45	0,40	33 55 22	873	14 0	A1 A2 A2	F5 F5 F5	C1 C2 C2
							14	7		TEMPO	AVA100		Po	-fil a		ion/	daa		Mle	ta	
17	an i Ionda			loco do	Euro	SMO	e oné	5e -	Dercussão	TEMPO	AVANÇO		re	in c	16.2	OTIO	Jay	eill	wis	ud	
fr	ende slutti	Izad	io base o b lo o barrlihe	te H. co	moo	bletly	o de «	os a evit	ar possívels)							
tr	anca	me	ntos ao colo	car o re	evestlr	nento	N.	- * 1 U					-	٢.							
F	uro d	>om	sucessivos	trancar	nento	s de 1	8,0 a	22	,00.	Revestim	into;	R	со	NG	eolo	gla e	Con	strug	ăo		
								0	Continua	De 73,0m	m D = 83,5mm	C	/II. Lt	da (2	2) 25	55-44	20				
	F1 4	Grau de	Fraturamento m (Pouco frat.)	Grau d A1 Rocha 3	te Alteraçi Sé	ao		C1 0	Coërenda Coerente	Consistênci < 2 poice	(Arg.est.Arg.) Multomole	Com	pecidad 4 goloe	s Fr	elas e 5 sfa	S tes A	ren.)	P	de Pero	furaçã ussão	6
	F2 5	frat/m	(Fraturada)	A2 Rocha	Vedamer	te Alterac	\$9	C2 1	Mediam, Coerente	2 5 gop	IS Mole	5	8 golpe	s Po	ouco Co	mpact	8	L	Lav	agem	
\leftarrow	F3 6	10 fra 1-20 fra	t/m (Multo frat.) It/m (Extrem, frat.)	A3 Rocha A4 Rocha	wulto Alte Extremen	rada ente Alber	ebe	C3 F C4 I	nooerente	6 10 got 11 19 got	es Média 205 Rim	9-1	8 golpe 10 golpe	5 M	ediam. ampach	Comps	icia R	W Bo	otativa Wide		-
\sim	56.3	20 frat	m (Ecomodiada)		ALC: UNKNOW!					1.10 get	Dura	3.4	0 ooloo	VI	- paul	-	- 18	D Do	- Diam	antada	1

ſ	PERFI	LDE	CLIENT LOCAL:	E:CON	VCESS 78, Bai	ONÁRIA P to IPÚ, NO	OTA 116 WA FRIB	URGO RJ	início: Término:	03/02/20 05/02/20	14 14	COOF X:	DENAL 755.4	AS: 58,75				F	URO N M 1	6 1	
S	ONDAGE	M MISTA	OBRA:	Km	78				SONDADOR:	SrLuiz		Y: Z:	7.531. 870,2	841,0 1	07			FC	ILHA:	01/02	2
utropo (pi Autrico	PENET	TÉNCIA A TRAÇÃO apt	GRA	20 m	T TNAE NEAE	PROFUNDER/DE	PERFL ambidanco	DESCRIÇÃO	XO MATERIAL		(m) (m)	ENSTRATO GEOL/GEOTEC.	PROF. PERFURADA (m)	(14	RIDUR MANOBIN	RECUPERAÇÃO (%)	N* DE FRA GAENTOS	R G D (%)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRINA
2	8 9 8 10 7 11 11 10 6 11 13 9 14 <u>37</u> 5 <u>36</u> 5 <u>455</u> <u>455</u>					ովուտություներուություներություներություներություներություներություներություներություներություներություներությո 1810-1810-1810-1810-1810-1810-1810-1810		ARGILA ARENOSA AVERMELHADA, H CONTENDO AREIA MICA, COM PEDRE SEIXOS ALTERADO MEDIAMENTE COM 4,50 MATACÃO DE RC MUITO FRATURA 5,85 ARGILA ARENO AVERMELHADA CONTENDO AR MICA, COM PEDI SEIXOS ALTERA 7,60 MEDIAMENTE CO AREIA FINA ARGIL COLORAÇÃO CINZ POUCO A MEDIAM 10,70 ARGILA ARENOSA AVERIMELHADA, H CONTENDO AREIJ MICA, COM PEDI SEIXOS ALTERAD MEDIAMENTE CO 15,50 O SOLO COMPOST SILTE ARENOSO, I CINZA, CONTENDO FINA, PRETA E DO POUCO MATERIAL SOLO RESIDUAL DI GNÁISSICA, EXTRE EVOLUÍDO E FOLU POUCO PRESERVA	DE COLORA MÉDIA, POI GULHOS E IS POUCOA (PACTO CHA GNAIS) DO SA DE COLO HETEROGÉS ISA MÉDIA, PO GULHOS E COMPACTO OSA, DE A, SEM MIC/ ENTE COMP ETEROSÊN IMÉDIA, PO GULHOS E OS, POUCO MPACTO. O POR MATI E COLORA DA REIA FINA URADA COM AREIA FINA URADA COM AREIA FINA URADA COM			SOLO RESIDUAL MATERIAL MOBILIZADO MA TACÃO MA TERIAL MOBILIZADO	1,35	.,35	0,3	222	9	0	A3	F5	62
OPS	PARA INST/ PERF PERF PERF	LISAÇÃO ALADO M URAÇÃO URAÇÃO URAÇÃO	POR O EDIDOR A PERC ROTAT	RIENT/ DE NÍ CUSSĂ TVA EI CHA S	AÇÃO VÊLE O 0,00 M SOLO	20,00 00 CONTR AGUA PRO A 15,50 M 0 15,50 A 28,30	ATANTE DF. DE 27 20,20 M M	20,00			RE	C SP.:	2	CO 22) 25	0N 0 0NS1 55-4	3E0 TRU 420 /	LOG IÇÃO	IA D CI	VIL	LTD	A.
G TE E T E	UDE FRAT <1 PO 5 FR 6-10 ML 11-20 EX > 20 FR Indim	URAMENTO UCO FRAT. ATURADA ITO FRAT. TREM. FRAT. AGMENTADA	GRAU (A1 RC A2 R.) A3 R.) A4 R.)	DE ALTEI XHA SĂ MEDAN MUITO AL EXTREM	RAÇÃO ALTERADA LITERADA ENTE ALT	000 04 024 05 03F	RENCIA COERENTE AEDAN, COE OUCO COER NOCERENTE	CONSISTENCI < 2 GOLPES RENTE 5-10 GOLPES 11-10 GOLPES > 10 GOLPES	(ARG, E SELT AR MUITO MOLE MEDIA RUA DURA	86.) (: : : : : : :	00MPA 14 GOL 18 GOL 19 GO 9 40 GO	DIDADO PES LPES LPES LPES LPES	Gool F (AREA FOF/ POU MED COM	E SILT	AREA MRACIO	ceição NJ TA CTA A	crea-l	RJ 200 P PER LIAVA ROTAT RW RC RD RO	ILLIOSE CLISSĂ CLISSĂ CLISSĂ CLISSĂ TVA DT. VID	AÇĂ D O EA	*

	PERFIL		CLIENT	E: CON	CESSI 18, Bair	ONÁRIA I to IPÚ, N	Rota 116 Dva frib	URGO RJ	início: Término:	07/02/20	14 14	COOF X:	10ENA 755.4	DAS: 50,43	2			F	uron M 1	۰ 2	
~			USHA:	Km 7	8				SONDADOR:	SrLuiz		1: Z:	7.531 870,2	.855, 6	,04			FC)LHA:	01/0	2
MÉTODO (DIÁMETRO	RESIS PENET N	TÊNCIA À TRAÇÃO spt		ACO SPT	NAR NGAR	PROFUNDENCE (11)	PIRFIL GIDLÓGICO	DESCRIÇÃO (XO MATERIAL		NV EL DÁ GUA (m)	ENSTRATO OR OL/OBOTEC.	PROF. PERFURADA (m)	WANDERA (m)	REDUR MANOBRA (m)	RECUPERAÇÃO (N)	N* DE FRA GAENTOS	R G D (%)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRINGA
Ť	1.02		ŤŤ	ÎΠ	Ť	ŧ	17														
	9 8 8	11 - 8 - 9 -						ARIGILA ARENOSA AVERMELHADA, H CONTENDO A REU MICA, COM PEDRI SEIXOS ALTERAD MEDIAMENTE COI	I DE COLOR/ IETEROGÉN A MÉDIA, PO EGULHOS E GULHOS E OS POUCO / MPACTO	AÇÃO EÂ, UCA A		MATERAL MOBILZADO									
	1					E_	4	4,60				9				-			_		
	L					5,00	ZC	5,40 MUITO FRATU	RADO	ISSIGA		MA TAG	0,80	0,80	0,2	25	3	0	A3	F5	C3
	9 10 11 11	11 - 9 - 14 - 12 -				ափասկասկաս		AÇÃO IEA, UCA A		MATERAL MOBLIZADO											
N	42 45 46	28 15 20 15 23 15			·			O SOLO COMPC ARENO ARGLO CINZA, CONTEN MÉDIA, POUCA POUCO MATER TODOS OS ENS VIERA MAMOST AMOSTRADOR. 12,60 LAVADAS. MUIT	OSTO POR M SO, DE COL(IDO AREIA G MICA, PRET/ IAL ARGILOS AIOS DE SPI RAS NO BIC AS AMOSTR O COMPACT	ATERIAL ORAÇÃO ROSSA A A COM XO. EM T NÃO O DO AS SÃO XA		TERML MOBILZA DO 7771									
	11 15 16 20 35	13 - 18 - 18 - 26 - 43 -						O SOLO COMPOSITI SILTE ARENOSO, D CINZA, CONTENDO FINA, PRETA E DO POUCO MATERIAL/ RESIDUAL DE ROC EXTREMAMENTE E FOLIAÇÃO DA ROC PRESERVADA. MEE COMPACTA A COM	D POR MATE E COLORAÇ AREIA FINA, IRADA COM ARGILOSO. S HA GNÁISSIO HA POUCO JAMENTE PACTA	FIIAL Ao Mica Solo Xa,		SOLO RESIDUAL W									
	35	42				Ē	= =														
	<u>35</u> 15	-							0												
ļ	DADA					E20,00	2d	MATACÃO DE 20,00	ROCHA GNA	ISSICA	_	MTAG	0,80	0,80	0,25	19	7	0	A3	F4	G 2
000	PARA INST/ PERF PERF PERF	URAÇĂ	INCLINOM INCLINOM IO A PERC IO ROTAT	ETRO USSÃO IVA EN CHA SI	0 0,00 I SOLO A 4,50	A 4,50; 5, 20,50 Å) A 5,40; 1	40 A 19,20 28,60 M 19,20 A 20,	M 50 ; 28,60 Å 34,60 M		G 1	RE	SP.:		RICO E CO 22) 2 Favio F	ON (ONS 555-4 R Con	GEO TRU 420 / /	LOG IÇÃO 5220 crea-l	RJ 200	VIL		A.
	1 PO FR 10 MU 1-20 EX 20 FR stim	ATURADA ATURADA ITO FRA T TREM. FR ACMENTA	T. A1 RO A2 R.1 A3 R.1 AT. A4 R.1 DA	CHA SĂ MEDAN. / MUITOAL EXTREME	ALTERAD TERADA INTE ALT	C10 A C21 A C21 C31 C31 C4	COERENTE MEDIAN, COE POUCO COER NCOERENTE	CONSISTENCIA < 2 GOLPES RENTE - 2-5 GOLPES ENTE - 6-10 GOLPES 11-19 GOLPES > 19 GOLPES	MUITO MOLE MOLE MÉDIA RIJA DURA		4 GOL +8 GOL +18 GOL +18 GO 9-40 GO 40 GO	PES PES LPES LPES LPES LPES	FOF POL MED COM	A IGO CO IAM. C IPAC 10 TO CO	DMFA.C COMFA.C A MPACT	TA CTA		ROTAT ROTAT RW RC RD RD	CUSSĂ IGEM IVA DT. WÍC IT. DIAM		•

501	PERFIL	L DE M MIST/	A	CLIE LOC/	NTE: Al: A:	CO Km	NCE 78,	ISS Bair	ONÁRIA to IPÚ, I	A ROT NOVA	A 116 FRIB	URGO RJ	início: Término: Sondador:	14/02/20 18/02/20 St Luiz	14 14	COOF X: Y:	755.4	DAS: 447,7	9			F	URON M 1	⊪ 3	
						PA10						1	SUNDADON:	ortuiz		Z:	871,	11	~			F	olha:	01 / 0	2
METODO (DI AMETINO	PENET No	TÉNCIA RAÇÃO spl				00 S	- 719442 - 719442 - 719442	=	PROFUNDER/DE		albidato	DESCRIÇÃO I	XO MATERIAL		NV EL DÁ GUA (m)	ENSTRATO CALICADOTEC.	PROF. PERFURADA (m)	(14)	REUR WANDER	RECUPERAÇÃO	N - DE FRA GAENTOS	0.0008	ALT BAQAO	GRAU DE FRATURA MENTO	CORRINAL
R	6 6 7 8 7 10 9 10 10	7 - 6 - 7 - 8 - 7 - 11 - 12 - 12 - 12 -										ARGILA ARENOSA DI AVERMELHADA, HET CONTENDO AREIA M MICA, COM PEDREG ALTERADOS POUCO A MEDIAMEN	E COLORAÇ EROGÊNEÂ ÉDIA, POUC LIHOS E SE TE COMPAC	ÃO A KOS CTO		MATERIAL MOBIL ZADO									
	11 13 17 14 22 35 <u>35</u> 10	10 12 10 13 10 12 11 14 13 14 14 15,00 14 18 22 28 35 50								18 11: A Collection of Collection (A Collect		O SOLO COMPOSTO SILTE ARENOSO, DE CINZA, CONTENDO A MICA FINA A MÉDIA, PRETA COM POUCO ARGILOSO. SOLO RE ROCHA, GNÁISSICA, EVOLUÍDO E FOLIAC POUCO PRESERVAD MEDIAMENTE COMP	POR MATER REIA FINA, DOURADA MATERIAL SIDUAL DE EXTREMAMI ÃO DA ROCI A. A.	RIAL O MUITA E ENTE HA IPACTA	19.20	SOLO RESIDUAL									
GRAU GRAU F1 41 F2 5 F2 6 F1 6 F1 F2 5 F2 6 F1 F2 5 F1 F2 5 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	PARA INSTA PERF PERF PERF PERF TERF TERF TERF TERF TERF TERF TERF	LISAC URACI URACI URACI URACI URACI URACI URACI URAMEN UCO FRA ATURADA ITO FRA TISEAL FR		POR MED ROT ROT EM R	ORI NDO RCU ATIV OCF	IENT IR DI ISSA /A E IA SA ITA ITAA ITAA	A CA E NÍ A CO M SI M AI SA ERAQU		20,0 DÓ CON DÁGU A 19,00 D 19,00 RAÇÃO SO Á 38, C	DE R 10 M A 29, DE R 10 M	ANTE M 33,0 10 M OCHA KIA SENTE AN COE ERENTE	20,00 IN METROS A 29,10 A 33,60 M CONSISTENCIA + 2 GOLPES BENTE 5- GOLPES 1-19 GOLPES + 19 GOLPES	(ARG, E SELT, AN MUITO MOLE MOLE MOLA FILIA DURA	se) (RES COMPAN 14 GOLI 14 GOLI	SP.: SP.: SPES SPES SPES SPES SPES	Gadi Gadi For Mai Col Mul	RIC E C (22) 2 Favio A E SIL A E SIL E SIL	ON ON ON S	GEO TRU 1420 / IA20 / I	LOG JÇÃ(5220	RJ 200 RJ 200 MÉT. P P PER LIAW ROTAT RW RC RD RO	VIL 11056 CUSSA CUSSA CUSSA CUSSA		A.

$ \subset $				CLIE	NTE: (CON	ICES	SIO	NÁRIA F	IOTA 116			INICIO:	21/02/20	14	000	RDENA	DAS:				F	JRO N	e.	
so	PERFI	L DE M MISTA		OBR	kt: j k: j	Km 2 Km 2	78, B 78	airro	IPU, NO	WA FHIB	URGO	RJ	TÉRMINO: SONDADOR:	24/02/20 SrLuiz	14	X: Y:	755.	444,3 1.881	45			S	M 1	4	
																Z:	872,	10				R	ILHA:	01 / C	2
TTODO (DI ANETTRO	PENET	TÊNCIA À TRAÇÃO apt	-	9	RÁRO	30 and 30 and	T INAX NEAR		PROFUNDENDE	PERFL		DESCRIÇÃO	DO MATERIAL		NUP IL D'A GUA	DNSTRATO OR OLUGBOTEO.	NOR. PERFURADA (m)	MANORIA (11)	NEUR MANDER	RECUPERAÇÃO (M)	· DE FRA GAENTOS	R Q D (%)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURAMENTO	COÉRENDA
Ā	11621	2*e 2*	10	Ĩ	1	4	9 90			1.1						-	•	<u> </u>	-		z				
	4 2 5 7 7 9 11 13 12 15 15 22 21 23 25	4 - 3 - 5 - 6 - 11 - 13 - 14 - 12 - 19 - 25 - 23 - 25 - 24 -									ARC AVE COM MIC SED POU	SILA ARENOSA FIMELHADA, H VTENDO AREDRI KOS ALTERADI CO A MEDIAM	DE COLORA ETEROGÊNI MÉDIA, POI GULHOS E DS ENTE COMPJ	IÇÃO EA, JCA ACTO		MATERAL MOBILZADO									
										25	MA	TACÃO DE RO	CHA GNAISS DO	SICA		AGÃO	2,35	1,30	1,05	80	15	19	A1	F3	C1
										20						MAT		1,05	0,55	52	7	0	A2	F4	C1
	<u>30</u> 3										17,95	O SOLO COM	POSTO POR	MATERIA	L I	XLO RESIDUAL									
085	PAR/	LISACA		POR	ORIE	NT/			20,00 CONT	ATANTE	20,00	CINZA, CONT FINA, PRETA	E DOURADA	COM	۵A ۲	ŝ		Dic	0.00						
	PERF PERF PERF	UFAÇĂ		PEF ROT/ M R	GUA RCUS ATIV/ OCH	em : SSÃO A en A s	23,0 0 0,0 4 SO Å 15,	MET LO 1 ,60 /	TROS 5,60 M 17,95 A 3 A 17,95 E	34,30 M E 34,3 A 4	0,00 M	POUCO MATE RESIDUAL DE EXTREMAME FOLIAÇÃO DA PRESERVADA	HIAL ARGIL EROCHA GN NTE EVOLUÍ NROCHA PO A. NCTA	USO. SOL ÁISSICA, DO E UCO	.0 1	SP.:	2	E C((22) 2	B Con	420 /	LOG JÇÃO 5220		VIL	00	A.
	U DE FRAT 2 1 PO 5 FR 5 10 ML 11-20 EX 20 FR halfm	UCO FRA ATURADA ITO FRA I TREM. FRA ACMENTA	TD T. AT.	GRA A1 A2 A3 A4	n de A Rochv R. Met R. Mut R. Ext	ulter A SĂ BAN TOAL REM	ALTER LTERA INTE /	ADA DA ALT.	006 010 029 039 049	RENCIA COERENTE AETIAN. COE VOLCO COER NCOERENTE	RENTE	CONSISTÈNCI < 2 GOLPES 2-5 GOLPES 6-10 GOLPES 11-10 GOLPES > 19 GOLPES	A(ARG. E SELT. A) MUITO MOLI MOLE MÉDIA RUA DURA	RG.) :	COMPA 5-4 GOL 5-8 GOL 5-18 GO 19-40 GO - 40 GO	ODADO PES PES LPES DLPES LPES	FOI PO MEI CO MU	A E SIL FA UCO G DAM. (MPACI ITO CO	T. ARE OMFA.C DOMFA DOMFA MPACI	N.) TA CTA JA		MÉT. P P PERI LLAVA ROTAT RW RC RD RO	ERFUE CUSSĂ GEM TVA T. WÍO T. DIAA	EA O EA MANTAI	

ſ		RFIL D	E MISTA	CLI LOC	ente: :Al: :A:	CON Km	NCES 78, B 78	SSIO lairro	NÁRIA F IPÚ, NO	NOTA 116 WA FRIB	URGO RJ	início: Término: Sondador:	21/02/20 24/02/20 St Luit	14 14	COOF X: Y:	755./	ADAS: 444,3	45			F S	urio n M 1	۰ 4	
L						- and						SUNDADUN:	orcut		Z:	872,	10				FC	DLHA:	02/0	2
witness (substitutes)	Ri Pi	A A ENETRA Napt	çÃo		GRÁR	20 SP	т лыла ансия о 50		PROFUNDEADE	PERFL	DESCRIÇÃO	DO MATERIAL		NV B. DÁ GUA (m)	DISTRATO GEOL/GEOTEC.	PROF. PERFURADA	ANOBRA (11)	REDUR MANDER	RECUPERAÇÃO (N)	N* DE FRA GAENTOS	R Q D (%)	GRAU DE ALT EPAQÃO	GRAU DE FRATURA MENTO	CORRENAN
		<u>36</u> 5	-						25,00		IDEM ANTERIO 34,30	9		20.40	10010 FESIDIAL									
									35,00	+ /// /// + ///	ROCHA GNÁISSIC GRANULAÇÃO FIN	A CINZA CLA A. CONTENI	IRA SĂ,				1,10	0,22 1,08	36,6 98,1	9	74	A1	F5 F3	C2 C2
										* /// ///+	QUARTZO, FELDS ROCHA ENCONTR A MUITO FRATURA FRATURAS EM SU	PATO E BIOT A-SE MEDIA IDA (F3-F4), A MAIORIA	TITA. A MENTE COM		ROCHA SÅ	57	1,50	1,4	93,3	19	26	A1	F3	C1
										+ 11 11 + 11	HUHIZUNIAIS(H), PREENCHIMENTO	∋⊨м (D3) ESÁS ((S2).		C.		1,50	1,3	86,6	17	27	A1	F4	61
									40,00	/// +]	40,00						1,00	0,65	65	10	0	A 1	F4	C1
08	S: PA PE PE PE	PARALISAÇÃO POR ORIENTAÇÃO DO CONTRATANTE PERDA TOTAL DE ÁGUA EM 23,0 METROS PERFURAÇÃO A PERCUSSÃO 0,0 A 15,60 M PERFURAÇÃO ROTATIVA EM SOLO 17,95 A 34,30 M PERFURAÇÃO EM ROCHA SĂ 15,60 A 17,95 E 34,3 A 40,00 M RESP: Gadi. Favio R Conceição														LOG IÇÃO 5220 crea-l	IA D CIV	VIL	L TD /	A.				
8 7 2 7 7 7 8	<1 5 610 11-20 5 20 halm	POUC FRATU MUITO EXTRE FRACE	AMENTO O FRAT. IFIADA O FRAT. M. FRAT. MENTADA	A1 A3 A3	RUDE RUME RUME RUME	ALTE HA SĂ EDAN UITOA CTREN	ALTER LITERA ENTE	D RADA IDA ALT.	010 025 037 047	RENCIA COERENTE EDAN. COE OUCO COER COERENTE	CONSISTÉNCU < 2 GOLPES RENTE 2-5 GOLPES RENTE 6-10 GOLPES 11-19 GOLPES > 19 GOLPES	MUITO MOLE MUITO MOLE MÉDIA RUA DURA	RG.) (00000000000000000000000000000000000000	DEADS PES LPES LPES LPES LPES	FOI PO ME CO MU	A E SIL FA UCO G DIAM. (MPAC1 ITO CO	IC ARE OMFA C DOMFA C DOMFA D MPACI	CTA CTA IA		NET. P P PER L LAVA ROTAT RW RC RD RD	CUSSĂ CUSSĂ IGEM TVA DT. WÍC IT. DIAA		~

\bigcap	PERFI	LDE		CLIE	inte: Al:	CO Km	NCE 78, I	SSIC Bairr	DNÁRIA ₀ IPÚ, N	ROTA OVA I	116 FRIB	URGO RJ	INÍCIO: TÉRMINO:	13/02/20 19/02/20	13 13	COOF X:	rdena 755.4	DAS:	2			F	URON	e.	
SO	NDAGE	M MIST	A	OBR	A:	Km	78						SONDADOR:	SrLuiz		Y: Z:	7.531 876,1	.849 5	,80			5		01/0	_
utropo (pi/werso	RESS PENET	TÊNCIA À TRAÇÃO apt				20 SF 30 == 30 ==	71 11642		PROFUNDENDE	PERFL	amúaico	DESCRIÇÃO	DO MATERIAL		NVEL DÁGUA (m)	ENSTRATO OR OLUGROTE C.	PROF. PERFURADA (m)	MANDERA (11)	REUR MANORMA	RECUPERACIO (N)	N* DE FRA GAENTOS	R G D (1)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRENAN
*z	2 3 4 5 5	3 4 5 6										ARGILA ARENOSA AVERMELHADA, H CONTENDO AREIA MICA, COM PEDRE ALTERADOS FOFO A POUCO CI	DE COLORA ETEROGÊNI MÉDIA, POL GULHOS E S MIPACTO	ição Ja, Ica Seixos	5.80	MATERAL MOBILZADO									
	6 45 25	7 <u>35</u> 10								+ 11 + 11		7,60 8,10 AREIA GROS POUCAO MA COMPACTO	-			1,20	0,25	20,8	3	0	A3	F5	3		
Ì										1 + 11 + 11	+111 + 111						1,50	1,5	100	17	50	A1	F4	C1	
										+ ///	/// +	ROCHA GNAISSICA GRANULAÇÃO FINA QUARTZO, FELDSP ROCHA ENCONTRA MUITO FRATURADA	CINZA CLAF , CONTEND ATO E BIOTI -SE MEDIAM (F2-F4), CO	VASĂ, D TALA IENTEA		A SÅ		1,50	0,85	56,6	6	36	A1	F4	C1
N									15,0	+	/// + //	FRATURAS EM SUA HORIZONTAIS(H), S PREENCHIMENTO (ZONAS DE FRATUR	MAIORIA EM D3) E SÃS (S AS 12,20 e 1	2). 3,60 M		ROCH	11,5	1,50	1,5	100	4	100	A1	F2	C1
										/// +	+	e 18,20 a 18,50 M. P MUITO FRATURADO 13,80 M.	EMATHOF	IOSA IOE				1,50	1,5	100	6	90	A1	F2	C1
										• + ///	-///							1,50	1,5	100	3	100	A1	F2	C1
ļ									19,60	+ /// +	111 + 111	19,60						1,50	1,1	73,3	11	40	A1	FS	C1
OPS:	PAR/ PERF PERF	URAÇ URAÇ	ĂO ĂO	POR A PE EM F	RCU	ENT ISSĂ	AÇA Oo, SA s	0 B	O CONT 10 M A 19,60	IRATA	NTE				RE	SP.:	2	RIC E CI (22) 2 Favio	ON ONS	GEO TRU 1420 /	LOG JÇÃ(5220	IIA D CIV	VIL		A.
GRAU Fi < Fi 6 Fi 6 Fi 6 Fi 6 Fi 6 Fi 6 Fi 6 Fi 6	DE FRAT I PO FR 10 ML -20 EX 20 FR d/m	URAMEN UCO FRA ATURAD ITO FRA TREM. F AGMENT	NTO A.T. A. T. F.A.T. A.D.A.	GR A1 A2 A3 A4	ROCH ROCH R.ME R.MU R.EX	ALTE IA SĂ DAN ITOA TREN	RAÇĂ L ALTE LITER IENTE	I D I FA DA A DA I ALT	00 01 03 04	COERE MEDIAN POUCO INCOER	NTE N. COE COE RENTE	CONSISTÊNCI < 2 (QUEES RENTE - 5 (QUEES RENTE - 6 10 (QUEES - 11-19 (QUEES > 19 (QUEES	A(ARG, E SILT, A MUITO MOL MOLA MEDIA RUA DURA	RG.)	COMPA 54 GOL 58 GOL 58 GOL 540 GO 540 GO	DIDADS PES LPES LPES LPES	FOI POI MED COM	A E SIL A UCD CI DIAM. C MPAC1 ITO CO	T. ARE DMFA.C DOMFA.C DOMFA. A MPA.C	INQ CTA CTA		MÉT. P P PER LIAVA ROTAT RW RC RD RD	CLISSÁ CLISSÁ IGEM TVA 21. WÍO 11. DIAM	AÇÃO O KA MANTAJ	~

			CLIENT LOCAL:	E: CO Km	NCES 78, Ba	SIONÁRIA irro IPÚ, N	ROTA 116 OVA FRIB	URGO RJ	início: Término:	21/03/20 24/03/20	14 14	COOF X: X.	755.4	DAS:	0			F	URON M 1	اء 6	
			UBHA:	Km	78				SONDADOR:	SrLuiz		1: Z:	7.531 875,4	.863 16	,40			F	OLHA:	01/0	2
ufroco (pr)Autriso	RESISTÊN À PENETRAÇ Napî	AO	GRÅ	30- 30- 30-	PT PRAX	PROFUNDER/DE	PERFL	DESCRIÇÃO I	DO MATERIAL		NV EL DÁ GUA (m)	DISTRATO GEOL/GEOTEC.	PROF. PERFURADA (m)	WANDERA (m)	REDUR MANDERA	RECUPERACIÓN (N)	N* DE FRA GAENTOS	R Q D (%)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRINAL
×	1**2* 2* 7 1 7 1 8 1 9 1 10 1 7 1 7 1 9 1 10 1 11 1 7 1 9 1 12 1 12 1	3						ARGILA ARENOSA AVERMELHADA, HE CONTENDO AREIA DOURADA FINA. POUCO A MEDIAME	DE COLORA TEROGÊNEJ MÉDIA, MICA NTE COMPA	сто 2.	3,10	MATERIAL MCBIL ZADO									
> × ×	13 1 13 1 16 1 27 3 28 4 <u>42</u> 8 ·	5 4 4 4 1 1 A A CÃO	208.0				11,80 O SOLO COMPOSTO SILTE ARENOSO, DI DOURADA A CINZA, CONTENDO AREIA FINA, DOURADA CO MATERIAL ARGILOS RESIDUAL DE ROCO EXTREMAMENTE EN FOLIAÇÃO FRACA, I OBSERVADA. MEDIAMENTE COMP 17,60 ALTERAÇÃO DE R CONTENDO AREIA AVERMELHADA, S DE TESTEMUNHO LAVADA 20,00	D POR MATE E COLORAÇÀ TATO SEDO INA, MUITA N M POUCO O. SOLO IA GNÁISSIC JOLUÍDO. DIFÍCIL DE SI PACTA A CON PACTA A CON DCHA, FRIÁN MÉDIA A GI SEM RECUPE A PENAS AM	RIAL IO SO, MICA A, ER MPACTA. /EL, ROSSA FIAÇÃO OSTRA		ALTERAÇÃO DE ROCHA SOLO RESIDUAL										
GRAU	PERF. A PERF. E PERF. E	PERCI MALTE M ROC	POHO ISSÃO RAÇÃO HA SĂ	= 0,00 DE R = 20	a 17,6 IOCHA ,50 a 2	0 m 17,60 Å 1,95; 24,4	20,50; 21,5 0 a 31,40 M	95 а 24,40 М И сонаетбиси	(ARG E SILT AR	ı (ع	RE	SP.:	Godi.	RIC E C (22) 2 Favio	ON CONS	GEO TRU 420 / ceição	LOG JÇÃO 5220	IIA D C I' RJ 200	VIL I	00 00	A.
FI 6 FI 6 FI 6 FI 6 FI 6 FI 6 FI 6 FI 6	I PERACU FRATU IO MUITO I-20 EXTREE 20 FRACAN d/m	FRAT. BADA FRAT. A. FRAT. ENTADA	A1 R0 A2 R1 A3 R1 A4 R1	ICHA SĂ MEDAN MUITO A EXTREM	ALTERAL LITERAL AENTE A	ADA CS A CS LT. C4	COERENTE MEDAN, COE POUCO COER NCOERENTE	2 QCLPES RENTE 2-5 QCLPES 6-10 QCLPES 11-19 QCLPES > 19 QCLPES	MUITO MOLE MOLE MÉDIA RUA DURA		4 GOL 40 GOL 9 40 GO 40 GO	PES PES LPES LPES LPES	FOF POL MER COM	A JCD CO MPACT TO CO	OMPA C COMPA A MPAC1	TA CTA		P PER LIAW ROTAT RW RC RD RD	CUSSA IGEM TVA DT. WID IT. DIAM	O XEA MANTAI	•

501	PERFIL DE NDAGEM MISTA	CLIENTE: CONCESSIONÁRIA ROTA 11 LOCAL: Km 78, Bairro IPÚ, NOVA FRIE OBRA: Km 78	i INÍCIO: 10/03/20 URGO RJ TÉRMINO: 12/03/20 SONDADOR: Sr Luiz	14 CO 14 X: Y:	755.463,8 7.531.881	17 ,65	5	FURD N	; 7
MÉTODO (DI AMETINO	RESETÊNCIA À PENETRAÇÃO Napi	GRÁPICO SPT 30 	DESCRIÇÃO DO MATERIAL	NV RL D'Á GLA (n) INSTRATO	B76,90	RIEUR MANORM (m) RECUPERAÇÃO (A)	N° DE FRA OMENTOS R O D(%)	OLHA: OKVABLIN BI INVE	GRAU DE FRATURA VENTO COÉFENDIA
* N			IDEM ANTERIOR 23,70	0 ALTERACÃO DE ROCHA					
Ļ			24,80 CINZA, MEDIA MENTE ALTERADA, DESCOLORIDA, APRESENTANDO FRATURAS HORIZONTAIS PREENCHIDAS POR MATERIAL DE ALTERAÇÃO DE ROCHA, FRIÁVEL FORMADA POR INTERCALAÇÕES I FORMADA POR INTERCALAÇÕES RECUPERAÇÃO DE TESTEMUNHO	M TERAÇÃO DE ROCHAMITACÃO	0,80 0,80	0,7 87,5	15 16,2	5 A2	F4 C2
			APENAS AMOSTRA LAVADA MATACÃO DE ROCHA GNAISSICA, CINZA, MEDIAMENTE ALTERADA, DESCOLORIDA, APRESENTANDO FRATURAS HORIZONTAIS PREENCHIDAS POR MATERIAL DE ALTERAÇÃO	MATACÃO	1,40 2,7 1,30	0,55 39,2 0,52 40	8 0 8 0	A2 A1	F3 C2
			ALTERAÇÃO DE ROCHA, FRIÁVEL FORMADA POR INTERCALAÇÕES DE ROCHA SĂ E ALTERADA, SEM RECUPERAÇÃO DE TESTEMUNHO APENAS AMOSTRA LAVADA	AL TERAÇÃO DE ROCHA					
		+ // ///+ ///+	ROCHA GNÁISSICA CINZA CLARA SÁ,		1,50	1,5 100	7 77	A1	F3 C1
			GHANULAÇÃO FINA, CONTENDO QUARTZO, FELDSPATO E BIOTITA, A ROCHA ENCONTRA-SE MEDIAMENTE A MUITO FRATURADA (F3-F4), COM FRATURAS EN SUA MAIORIA UNDRZONTAISIDA SEM	ROCHA SA	4,5 1,50	1,05 70	8 53	A1	F3 C1
		+ /// 40,10 /// +	PREENCHIMENTO (D3) E SÅS (S2). 40,10		1,50	0,68 45,3	6 20	A1	F4 C1
OPS:	PARALISAÇÃO PERF. A PERC PERF. EMALT PERF. EM ROO	DPOH ORIENTAÇÃO DO CONTRATANTI USSÃO = 0,00 a 17,50 m ERAÇÃO DE ROCHA=17,5 Å 23,70, 24,8 CHA SÃ = 23,70 Å 24,80, 27,20 Å 29,90	: A 27,20 E 29,90 A 35,60 E 35,60 A 40,10	1,50 0,68 HE,3 6 20 A1 RICON GEOLOGIA E CONSTRUÇÃO CIVIL (22) 2555-4420 / 5220 RESP:: Geôl. Favio R Conceição crea-RJ 2001105 MUITO MOLE 04 GOLPES FORA POLICO COMPACITA DE CAREA RESP:: Geôl. Favio R Conceição crea-RJ 2001105 MUITO MOLE 04 GOLPES FORA POLICO COMPACITA RECONPES MUITO MOLE A GOLPES GOMPACITA COMPACITA ROMPACITA ROMPACITA COMPACITA ROMPACITA COMPACITA COMPACITA COMPACITA ROMPACITA ROMPACITA ROMPACITA ROMPACITA ROMPACITA COMPACITA ROMPACITA ROMPACITA				IVIL L	.TDA.
GRAU FI ST FI ST F	DE FRATURAMENTO I POUCO FRAT. FRATURADA 10 MUITO FRAT. 20 EXTREMENTADA 20 FRAGMENTADA	GRAU DE ALTERAÇÃO COÉRENCIA A1 ROCIA SĂ CI DORENTE A2 R. MEDAN ALTERADA CI PORENTE A3 R. MUTOALTERADA CI PORENT A4 R. EXTREMENTE ALT. C4 NOCERENT	CONSISTÊNCIA(ARG. E SL'LARG.) 4.2 GOLPES MUITO MOLE BENTE 3-5 GOLPES MOLE HENTE 6-10 GOLPES MÉDIA 5. 11-19 GOLPES RUA 5. 10 GOLPES DURA	COMPACIDA 34 GOLPES 340 GOLPES 3940 GOLPES 40 GOLPES	Geôl, Favio FOFA POLICO C MEDIAM S COMPACI MUITO CC	R Conceigão IT AREN.) OMPACTA COMPACTA IA MPACTA	CTER-RJ 2 MÉT PPE LIA ROT ROT RD F	DOTTOSSO PERFUR ROUSSÃO NAGEM ATIVA ROT. WÍDI ROT. DIAM	O NGÃO S

	PERFIL DE	CLIENTE: CONCESSIONÁRIA LOCAL: Km 78, Bairro IPÚ, N ORBA: Km 78, Bairro IPÚ, N	ROTA 116 IOVA FRIBURGO RJ	INÍCIO: 14/03/20 TÉRMINO: 19/03/20	014 014	COORD X: 70	ENADAS: 55.482,8	5		FU SN	^{RON} 18	
		Vone: Km /8		SONDADOR: SrLuz		Z: 8	9,76			FOL	HA: 01	02
MÉTODO (DI AMETINO	RESETÉNCIA À PENETRAÇÃO Napt	GRÁRCOSPT BILL SILLING	Tildg DESCRI	ÃO DO MATERIAL	NV EL DÁGUA (m)	DISTRATO DE OL/DEDTE C. PROF. PERFURADA	(m) MARCHAN	RICUR MANDER (15) RICUPERAÇÃO	Nº DE FRA GAENTOS	(N) D D U	ALT BACK	CODIENDA
н.			SILTE ARENO AVERMELHAD HETEROGENE MÉDIA MUTA MISTURA DE S RESIDUAL FOFO A POUC	O DE COLORAÇÃO A DOURADA, A CONTENDO AREIA MICA DOURADA FINA. LTE ARENOSO E SOLO D COMPACTO	_	MATERIAL MOBILIZADO						
×			O SOLO COMP SILTE ARENOS DOURADA A C CONTENDO AF FINA, DOURAD MATERIAL ARE RESIDUAL ADE RESIDUAL ADE EXTREMAMEN FOLIAÇÃO FRA OBSERVAÇÃO OBSERVAÇÃO SOLO PODE ES COMPACTA.	OSTO POR MATERIAL O, DE COLORAÇÃO NZA, TATO SEDOSO, ELA FINA, MUITA MICA A COM POUCO ILOSO. SOLO OCHA GNÁISSICA, TE EVOLUÍDO. CA, DIFÍCIL DE SER MATERIAL MUITO DESLIZAMENTO NDE QUANTIDADE DE CIDA FOLIAÇÃO ESTE ITAR MOVIMENTANDO. COMPACTA A		SOLO PESIDUAL.						
085:	PARALISAÇÃO PERF. A PERCI PERF. EMALTE PERF. EM ROC	POR ORIENTAÇÃO DO CONT USSÃO -= 0,00 a 25,40 m IRAÇÃO DE ROCHA-= 25,40 Å HA SÃ -= 28,10 a 38,40 M	17ATANTE 28,10 M		RES		RIC E C (22) 2	ON GE ONSTR	UÇÃO	CIV	IL LT	DA.
						G	eól. Favio	R Conceiçă	o crea-R	J 2001	105600	
GRAU FIC FIC FIC FIC FIC FIC FIC FIC FIC FIC	DE FRATURAMENTO 1 POUCO FRAT. FRATURADA 10 MUITO FRAT. 20 EXTREM. FRAT. 20 FRAGMENTADA kim	GRAU DE ALTERAÇÃO CO A1 ROCIA SĂ A2 R. MEDAN ALTERADA CO A3 R. MUITOALTERADA CO A4 R. EXTREMENTE ALT. C4	XERENCIA CONSIST CORRENTE < 2 GOLP MEDAN. CORRENTE < 2 GOLP INDEC CORRENTE 6-10 GOL INCORPENTE 11-10 GO > 19 GOL	ENCLA(ARG. ESLITARG.) IS MULTO MOLE IS MOLE IS MÉDIA PES RUA IS DURA	04 GOLI 54 GOLI 54 GOLI 54 GOL 1940 GO 54 GOL 24.00	DEADE(A PES PES LPES LPES LPES	REA E SU FOFA POUCO C MEDIAM (COMPACI MUITO CC	IT AREN.) OMFACTA COMFACTA IA IMPACTA	P L R R R	ET. PERCU PERCU LAVAG NOTATIV ROTATIV ROTATIV ROTATIV ROTATIV	REURAÇI USSÃO IEM M WÍDEA DIAMAN	TADA

	PERFI	DE		CLIEN	ITE: (L:)	CON (m 7	CESS 8, Ba	irro I	ÁRIA F PÚ, NO	OTA 116 WA FRIB	i URGO	RJ			início: Término		14/03/20 19/03/20	14 14	COO(X:	rden/ 755/	ADAS: 482,8	5			F	URON	h:	
50	NDAGE	M MISTA	۱.	OBRA	: 1	(m 7	8								SONDADO	R:	SrLuiz		Y: Z:	7.53 879)	1.868 76	,88		<u> </u>	5	DLHA:	02/0	2
MÉTODO (DIÁMETIRO	RESE PENET	TÉNCIA RAÇÃO spi		G3	айясс 	0 SPT 10 = 11 10 = 10	NAR 1000		PROFUNDER DE	PERFL		I	DESCR	IÇÃO D	O MATER	AL		NUEL D'A GUA	DISTRATO GEOL/GEOTEC.	PROF. PERFURADA (m)	MANORIAN (m)	RIDUR WANDER	RECUPERACIO	N* DE FRA GAENTOS	(N) 0 0 H	GRAU DE ALT ERAÇÃO	GRAU DE CONTRACTORIA	CODENIA
Î									25,00		25,40	IDE	MANT	ERIOR				24.00	CHA SOLO RESIDUAL									
											AL1 FO RO RE API 28,10	TERA ORMAI OCHA CUPI CUPI	AÇÃO IDA PO ISĂ E ERAÇA S AMO	de ro Dr int Alter Ao de Stra	DCHA, FF TERCALA RADA, S TESTEI LAVADA	iláv Çőe Em Mun	el Es de IHO		ALTERAÇÃODE RO									
N									30,00	• /// // + • ///	30,00	ROC GRA QUA ROC	CHA G ANULA ARTZO CHA E	NAISS Ação I), feli Ncon	SICA CIN FINA, CO DSPATO ITRA-SE	ZA C INTE E B MEL	CLARA SA ENDO IOTITA, A DIAMENT	L,			1,50	1,18	78,6	10	40	A1	F3	C1
	ļ								_	× × × × × × × × × + <i>///</i>	31,10	MUI FRA HOR PRE	ITO FR TURA RIZON EENCI	ATUR SEM TAIS (HMEN	ADA (F3 SUA MA H), SEM TO (D3)	F4), ORI	, COM A (S (S2).				1,50	0,8	53,3	8	30	A1	F4	C1
									_	/// + * + ///		RO VEI HO ME FR/	DCHA IRDE, DRBEN EDIAM ATUR	BASIC COM F IDA (2 ENTE AS PR	A DE CO PÓRFIRC A 6MM) ALTERA REENCHI	LOF IS D MAT DA (DAS	1AÇÃO IE IRIZ FINA (A2), CON 3 DE	i	OHA SÅ		1,50	1,35	90	5	90	A1	F2	C1
									_	// + · + /// //	34,30	MA	SMO G	NAISSI	GILOSO I	OR	ERDEAD	0.	BO	10,3	1,50	1,5	100	10	86	A1	F3	C1
									35,00	× × × × × × × × × × × × ×		MES 35,6 ENC	SMA RI 60 A 36 CONTR	OCHA 90 M / A-SE F	BÁSICA A A ROCHA	NTE	RIOR. DE				1,50	1,42	94,6	11	60	A1	F3	C1
									_	× × × × × × × × × • × × × + <i>///</i>	36,90	FRA	AGMEN	ITOS.	-SE PEQU	ENU					1,30	0,2	15	30	0	AS	F5	C2
Ļ									38,40	/// + + ///	38,40	MES	SMO G	NAISSI	E ANTERI	OR					1,50	1,4	93	7	86	A1	FS	C1
									_																			
085:	PAR/ PERF PERF PERF	LISAÇĂ A PER E EMAL E EM RO	icu .tei .tei .ch	POR (SSĂC RAÇĂ IA SI	DRIE 0 = 0 10 Di 1 =	NTA ,00 a E RC 28,1	CAO 125,4 CCHA 10 a 3	0 m = 25 8,40	40 A 2	8,10 M								RE	SP.:	2	RIC E C (22) 2 Favio	ONS 1555-4	GEO TRU 1420 /	LOG JÇÃ(5220	IIA D C I	VIL 011056	LTD.	Α.
GRAL F1 < F2 5 F1 6 F4 1 F5 2	1 PC 1 PC 10 ML 1-20 EX 20 FR stim	URAMENT UCO FRAT ATURADA ITO FRAT. TREM. FRV ACMENTA	TD T. A.T. DA	GRA1 A1 5 A2 5 A3 5 A4 5	U DE A ROCHA R. MED R. MUIT R. EXTT	lter Isä Anl / Ioal: Reme	AÇÃO ALTERA TERAD NTE A	DA A T.	006 010 029 039 049	RENCIA COERENTE EDAN. COE OUCO COER VCOERENTE	RENTE RENTE	0 2 0 1 2	00NSIS < 2 GOL 2-5 GOL 6-10 GO 11-19 GO > 19 GO	TÉNCIA(PES IPES ILPES ILPES ILPES	ARG E SIL MUITON MOLE MÉDIA RIJA DURA	C ARI	c) (4 GOL 4 GOL 4 GOL 4 GOL 4 GO 4 GO	CIDADO PES PES LPES LPES LPES	FO PO ME OO MU	A E SIL FA UCO O DAM (MPAC) ITO OC	LE ARE CMFA.C COMFA COMFA C MPAC	INJ CTA CTA IA		MÉT. P P PER LLAW ROTA RW RC RD RC	AGEN TVA DT. WIE	AÇĂ C O XEA MANTA	DA)

\bigcap	PERFIL DE	CLIENTE: CONCESSIONÁRIA RO LOCAL: Km 78, Bairro IPÚ, NOV	DTA 116 /A FRIBURGO RJ	INÍCIO: 20/03/20 TÉRMINO: 24/03/20	14 14	COORDEN X: 755.	ADAS: 481,06		S	URON M 1	۱ ۰ 9	
50	NUAGEM MISTA	OBRA: Km 78		SONDADOR: SrLuiz		Y: 7.53 Z: 881,	1.884,38 05		F	OLHA:	01/02	_
utropo (primtino)	RESISTÊNCIA À PENETRAÇÃO Napt	С С С С С С С С С С С С С С С С С С С	ты страната с Страната страната с Страната страната стр	DO MATERIAL	NVEL DÁGUA (m)	INSTRATO GEOL/GEOTEC. FROK. PERFURADA (m)	MANORA (m) REDUR MANORM	RECUPERACIO (N) N- DE FRA CAENTOS	R 0 0(4)	GRAU DE ALT ERAÇÃO	GRAU DE CENTO	CORRINA
H	1 2 2 7 7 5 6 6 7 11 12 11 12 11 14 16 15 11 12 11 14 16 15 13 14 14 17 18 28 24 31		ARGILA ARENOS AVERMELHADA, I CONTENDO AREU DOURADA FINA. N RESIDUALE ARG POUCO A MEDIAN B,70 B,70 B,70 B,70 B,70 B,70 B,70 B,70	O POR MATERIAL LA VERMELHADA. LA VERMELHADA. LA VERMELHADA. LENTE COMPACTO DE COLORAÇÃO EDOSO, CONTENDO MICA FINA, UCO MATERIAL RESIDUAL DE LEXTREMAMENTE JA PACTA A COMPACTA.		SOLO RESIDUAL MATERIAL MOBILIZADO						
Ì	51 35 20 5		AMATACÃO DE ROC AMATACÃO DE ROC AMARELADO, PA	CHA GNAISSICA, RCIALMETE	15.00	cyo	1,00 0,12	12 3	0	A3	F5 (C3
N			DESCOLORIDO, RE FRAGMENTOS. 17,70	CUPERANDO-SE		2,1 VIVW VI	1,10 0,15 1	3,6 3	0	A3	F5 (C3
ļ			ALTERAÇÃO DE RO CONTENDO AREIA AVERIMELHADA, S DE TESTEMUNHO / LAVADA 20,00	XCHA, FRIÁVEL, MÉDIA A GROSSA EM RECUPERAÇÃO APENAS AMOSTRA		LTERACIO DE ROCH						
085:	PARALISAÇÃO PERF. A PERCL PERF. EMALTE PERF. EM ROCI	POH ORIENTAÇÃO DO CONTRA JSSÃO - 0,00 a 15,60 m IRAÇÃO DE ROCHA- 17,70 a 20, HA SÃ - 15,60 a 17,70; 20,65 a	atante ,65 M 1 27,65 M		RES		RICON G E CONST (22) 2555-44	EOLC RUÇ	DGIA ÃO CI 20	VIL		
GRAU FI < FI 6 FI 6 FI 6 FI 6 FI 6 FI 6 FI 6 FI 6	DE FRATURAMENTO 1 POUCO FRAT. FRATURADA 10 MUTO FRAT. 20 FRACMENTADA 8111	GRAU DE ALTERAÇÃO COÊR A FIROCHA SĂ G100 A FIROCHA SĂ C2405 A FIROCHA INTERADA C2405 A FIROCHI TERADA C3403 A FIROCHI TERADA C3403 A FIROCHI TERADA C3403	ENCIA CONSISTÊNC KERENTE < 2 GOLPES IDAN CORFENTE 25 GOLPES DECOCIFIENTE 5-10 GOLPES SOERENTE 11-19 GOLPES > 10 GOLPES	A(ARG E SILT ARG.) MUITO MOLE MOLE MOLA E MLA FILA DURA	00MPA0 54 GOLP 58 GOLP 518 GOL 540 GOL 540 GOL	IDADE (ARE ES FO PES ME PES ME PES MU	A E SILT. AREN FA LICD COMPACT DAM. COMPACTA MPACTA JITO COMPACTA	ų TA	MÉT. I P PES LIAW ROTA RW R RD RC	PERFUR CUSSĂ AGEM TVA DT. WÍD DT. DIAN	EA C	,) ,)

\bigcap	PERFIL DE		CLIENT	TE:CO : Km	NCES 78, Ba	SIONÁRIA I irro IPÚ, N	Rota 116 Ova Frib	URGO RJ	INÍCIO: 01/04 TÉRMINO: 02/04	V2014 V2014	C X	00R0	ENADAS 55.591,	: 29			F	URO N	h:	
SO	NDAGEM MI	STA	OBRA:	Кл	78				SONDADOR: SrLu	iiz.	Y	5 7 5 9	.531.88 09,49	3,25		<u> </u>	5		01/0	,
METODO (DI MUETINO	RESISTENC A PENETRAÇÃ Napl	x 10		ARCO S	PT ====================================	PROFUNDER DE	PERFL	DESCRIÇÃO I	DO MATERIAL	NV B. DÁGUA	(m)	OF OLIVAROTEC.	(m)	RIDUR WANDER	OKONERACIÓN (N)	N - DE FRA GAENTOS	NO DO	GRAU DE ALT ERAÇÃO	GRAU CE FRATURA MENTO	CORRINA
н.	9 11 8 8 8 10 10 12 12 14 12 15							ARGILA ARENOSA AVERMELHADA, E CONTENDO AREU COM PEQUENOS ALTERADOS. MEDIAMENTE COM	A DE COLORAÇÃO IETEROGÊNEA A MÉDIA A GROSS PEDREGULHOS MPACTO) A,		MATERIAL MOBUIZADO								
*	14 15 15 17 13 16 40 $\frac{55}{20}$ $\frac{35}{5}$ - $\frac{40}{5}$ - $\frac{35}{5}$ -							O SOLO COMPOST SILTE ARENOSO, D DOURADA, TATOS AREIA FINA, MUITA I COM POUCO MATEI SOLO RESIDUAL DE EXTREMAMENTE EN BEM MARCADA. MEDIAMENTE COM 10,60 ALTERAÇÃO DE R CONTENDO AREI AVERMELHADA, 3 DE TESTEMUNHO 14,10	O POR MATERIAL E COLORAÇÃO EDOSO, CONTENI MICA FINA, DOUR INA ARGILOSO, E ROCHA GNAISSI VOLUIDO, FOLIAÇ, PACTA A COMPAC OCHA, FRIÁVEL, A MÉDIA A GROSS SEM RECUPERAÇ	00 CA. AO TA. 11	.50	ALTEMÇÃO DE ROCIM SOLO RESIDUAL								
N						15,00	+++++ + /// /// + * ///	15,30 ROCHA, LEUC GRANULAÇÃO CLARA, CONT FELDSPATO I ENCONTRA S EXTREMAME COM CRATUR	CO GRANITO DE D FINA, COR CINZ, ENDO QUARTZO, E BIOTITA, A ROCH E MEDIAMENTE A NTE FRATURADA (AS LIOPZCATADE	а 4а (F5),		5	1,50) 1,5) 1,5	100 100	30	19 76	A1	F5 F3	сı С
							/// + /// + /// + /// + /// +	PREENCHIDA ROCHA. ROCHA. GRANULAÇÃO FIN QUARTZO, FELDSI ROCHA ENCONTR FRATURADA (F3), SUA MAJORIA HOI PREENCHIMENTO	A CINZA CLARA S A CINZA CLARA S A, CONTENDO PATO E BIOTITA. / A SE MEDIAMENT COM FRATURAS RIZONTAIS (H), SE (D3) E SÅS (S2).	io de A, E EM M		ROCH.	,9 1,50 1,40) 1,5	100	6 10	82 86	A1 A1	F2 F3	с1 С1
GRAU R1 < R2 S R1 11 R3 51 R1 11 R3 51 R1 11 R3 51 R1 11 R3 51 R1 11 R1 11 R11	PARALIS MEDIDOF PERF. A 1 PERF. EN PERF. EN PERF. EN 1 POLCO FRATUR 10 EXTREM 20 FRATUREN 20 FRACE		USSÃO USSÃO ERAÇÃ CHA SĂ GRAU A1 R A2 R A3 R A3 R	AGU AGU DEF = 0,00 DEF = 14 DEALTI DEALTI DEALTI DEALTI DEALTI DEALTI	A COM a 10,6 A COM a 10,6 ROCHA 4,10 A 3 ERAÇÃO A ALTERA MENTE A	DO CONT 18,00 MET 18,00 MET 10 m = 10,60 a 1 22,50 M co to A co to	RATANTE ROS 14,10 M ÉRENCIA CDEFENTE MEDIAN. COF POLICO COEF	COMSISTENCU COMSISTENCU 2 COLPES RENTE 3 COLPES 1 - 10 COLPES > 10 COLPES > 10 COLPES	KARLESHLARG.) MLITO MOLE MOLE MEDA HIJA DIEFA	004 (5-0 9-10 19-4 >-40	RESP SOLPS SOLPS SOLPS GOLPS GOLPS	ADE() S S S S S S S S S S S S S S S S S S S	REA ES FOFA POLICO MEDIAM COMPAI MUTTO C	CON 2555- 0 Fl Cor ILT. ARI COMPACIONIPACIONI TIA	GEO STRU 4420 / Inceição ENJ CTA ACTA	LOG JÇÃO 5220	RJ 200 RJ 200 RET. 6 P PER LLAW ROTA: RW RC RD RC	VIL I DI1056 CUSSA CUSSA CUSSA TVA DT. WID		A.

$ \subset $				CLIE	NTE:	CO	NCE	SSI	ONÁRIA	ROTA 11	6	2.01	INÍCIO:	07/04/20	14	000	RDENA	DAS:	_			F	URO I	ŀ:	
so	NDAGE	L DE M MIST/	A	OBR	AL: A:	Km	78, 78	Bain	IN INU, I	VOVA FHI	BUHG	JHJ	TERMINO: SONDADOR:	08/04/20 Sr Luiz	14	¥:	7.53	614,6 1.934	9 ,42			S	M 2	21	
																Z:	915,4	43				R	OLHA:	01/0	2
NH N	RESE	TÉNCIA		•	RÁR	00 S	РТ		DADE	.8					MID	ខ្ពុម្ព័	NUMBA	ă	MICO I	8	ENTOS	2		END.	¥0
10.0	PENET	na ção lapt				30 m			(B)	DIDO		DESCRIÇÃO	DO MATERIAL		N R	NETRA	10 (B)	(14)	1 1 1 1	an an	TTA ON	0 D D	T IBMU	TURNU T	NIEL
Mttoc	1.02	210.21						50	£	a					ž	" 8	PROF	•	N	8		-	~ 4	N.	ŏ
î										17.															
	a	11																							
	-											RGILAARENOSA	DE COLOR	ACÃO		ZVDC									
	9	11	+	+		\vdash		+	ŧ	11	Â	VERMELHADA, H ONTENDO AREIA	eterogên Média a	IEÅ,		TBOM									
											, G	ROSSA, COM PE EDREGULHOS A	quenos Lterados.			RIAL 1									
	9	10	+	H		\vdash	$^{+}$	+	Ē		- M	EDIAMENTE CON	IPACTO			MATE									
	10								Ē.		1					-									
				1							4,80														
	12	15	+	+		\vdash		+	5,00	<u>'</u>					1		1								
										=	-														
	15	17	4,80 4,80 4,80 0 SOLO COMPOSTO POR MATE SILTE ARENOSO, DE COLORAÇ DOURADO AREIA FINA, MUITA FINA, DOURADA COM POUCO MATERIAL ARGILOSO. SOLO CONTENDO AREIA FINA, MUITA FINA, DOURADA COM POUCO MATERIAL ARGILOSO. SOLO FOLIAÇÃO BEM MARCADA. MEDIAMENTE EVOLUÍDO. FOLIAÇÃO BEM MARCADA. MEDIAMENTE COMPACITA A COMPACITA.																						
÷.	15	17																							
			Also Consistences MEDIAMENTE COMPACTO 4,80																						
	13	15	4,80 4,80																						
			A ,80 4,80																						
		10		X					Ē	= =	1														
	16	17					\parallel		10,0	<u> </u>															
									E		0 S	OLO COMPOSTO	POR MATE	RIAL											
	17	19	+	+	ł	\vdash	┼	+	Ē	= =	DO	URADA, TATO SE	DOSO,	MICA		IDUAL									
	17	19							Ē.	=	FIN	A, DOURADA CO	M POUCO		12.00	82									
					Ι					= =	RES	SIDUAL DE ROCH	A GNÁISSIC	CA,		SOLO									
	19	23	ALEO ALEO								ACTA A														
Ų.			O SOLO COMPOSTO POR MA SILTE ARENOSO, DE COLOR DOURADA, TATO SEDOSO, CONTENDO AREIA FINA,MUT FINA, DOURADA COM POUC MATERIAL ARGILOSO. SOLO RESIDUAL DE ROCHA GNÁISSICA CIN GUARTETE EVOLUÍDO. FOLIAÇÃO BEM MARCADA. MEDIAMENTE EVOLUÍDO. FOLIAÇÃO BEM MARCADA. MEDIAMENTE COMPACTA A COMPACTA. ROCHA GNAISSICA CIN GUARTETE, FELTOR AÇÃO POR ORIENTAÇÃO DO CONTRATANTE PERCUSSÃO – 0,00 a 18,70 m MRCICHA SÁ. – 18,70 a 25,80 M																						
î	22	27	O SOLO COMPOSTO POR MA SILTE ARENOSO, DE COLOR DOURADA, TATO SEDOSO, CONTRIDO AREIA FINA, MUT FINA, DOURADA COM POUC MATERIAL ARGILOSO. SOLO RESIDUAL DE ROCHA GAÚS SILTE ARENOSO, DE COLOR DOURADA, TATO SEDOSO, CONTRIDO AREIA FINA, MUT FINA, DOURADA COM POUC MATERIAL ARGILOSO. SOLO RESIDUAL DE ROCHA GAÚS SILTE ARENOSO, DE COLOR DOURADA, TATO SEDOSO, CONTRIDO AREIA FINA, MUT MATERIAL ARGILOSO. SOLO RESIDUAL DE ROCHA GAÚS SILTE ARENOSO, DE COLOR DOURADA, TATO SEDOSO, CONTRIDO AREIA FINA, MUT MATERIAL ARGILOSO. SOLO FOLIAÇÃO BEM MARCADA. MEDIAMENTE COMPACTA A COMPACTA.																						
	22	25	FINA, DOURADA COM POUCO MATERIAL ARGILOSO. SOLO MESIDUAL DE ROCHA GINÁIS EXTREMAMENTE EVOLUDO. FOLLAÇÃO BEM MARCADA. MEDIAMENTE COMPACTA A COMPACTA.																						
							K			= =	1														
	36	45	+	+		\mathbb{H}	H	┝	ŧ	_															
N	_	82																							
	57	25																							
	39																								
										-	18,70	1			-	*							-		
[]]	1									111	1	ROCHA GNAIS	SIÇA CINZA	CLARA S	A,	CHA 8	1,3	1,30	1,4	93,3	5	80	A1	F2	C1
085	PAD	ALISAC)		POP	OP						20,00	GRANULAÇÃO QUARTZO, FEL	MÉDIA, CO DSPATO E	NTENDO BIOTITA.	A	B									
	PER	. A PEF		ISSA	0=	0.00) a 1	8,70	m		_	ROCHA ENCO MEDIAMENTE F	NTRA-SE PO RATURADA	UCO A (F2-F3),	сом	C	2	RIC E C	ON	GEO	JÇÃ	ilA D Cl	VIL	LTD	Α.
	PERF. A PERCUSSÃO – 0,00 a 18,70 m PERF. EM ROCHA SÃ – 18,70 a 25,80 M LEVANTAMENTO A TRENA (D3) E SÁS (S2). COM FRATURADA (F2-F3), COM FRATURADA (F2-F3), COM FRATURAD																								
	LEVANTAMENTO A TRENA INCLINADAS, SEM PREENCHIMENTO (D3) E SÁS (S2). Gold, Favio R Concelção CREA -RJ 2001105600 COMBINETROLIARE, E SILT AREN, MET, PERFURAÇÃO COMBINETROLIARE, E SILT AREN, MET, PERFURAÇÃO PERFURAÇÃO																								
GRAU	DE FRAT	TURAMEN	то	GRV	w De	ALT	RAQ	lo	c	OFRENCIA		CONSISTENCY	ARG E SILT A	RG.)	COMPA	CIDADO	(ARE)	A E SIL	T. ARE	anų)		MÉT. P	ERFU	a c A c	,
F1 4 F2 5 F3 6	1 PC FR 10 ML	ATUFADA	τ.	A1 A2 A3	FL ME	HA SĂ EDAN JITOA	LALT	EFAD ADA	× 0	1 COERENTE 2 MEDIAN, CO 3 POUCO COE	ERENTE	< 2 GOLPES 2-5 GOLPES 6-10 GOLPES	MUITO MOL MEDIA		9-4 GOL 5-8 GOL 9-18 GO	PES PES LPES	PO	DAM. (CTA CTA		ROTA	IGEM TVA		
F4 1 F5 >	1-20 EX 20 FR ddim	AGMENTA	AT.	A4	R.EX	TREA	VENT	EALT	c	4 NODERENT	E.	11-19 GOLPES > 19 GOLPES	RUA		19-40 GA +40 GC	OLPES LPES	MU	MPACT ITO CO	A MPAC	IA		RW RC RD RD	DT. WIL	dea Manta	DA

50	PERFI	L DE M MISTA	CLI LO OB	ente: Cal: Ra:	CON Km Km	NCES 78, B 78	SSION lairro	NÁRIA F IPÚ, NO	iota 116 Na Frib	URGO RJ	início: Término: Sondador:	09/04/20 14/04/20 Sr Luiz	14 14	COO(X: Y:	755.0 7.53	DAS: 513,5	0 ,49			F	URO N M 2	۱÷ 22	
METCODO /DI MAETINO	RESIS PENET N	TÊNCIA À TRAÇÃO apt			20 97 20	T PRAZ NEAR		PROFUNDEM DE	PERFL ambdaco	DESCRIÇÃO	DO MATERIAL		NVEL PÁGUA (m)	CELOLOBOTEO.	914,7 VOVUNJED JOSE	WANDERA CO	RIDUR MANOBINA (11)	RECUPERACIÓO (N)	N* DE FRA GAENTOS	H (N) C D H		GRAU DE GRAU DE CONTRACTURA DE CONTRACTURACTURA DE CONTRACTURA DE CONTRACTURA DE CONTRACTURA DE CONTRACTURA DE	CODENIA
А 	11 8 11 9 14 11	11 10 11 10 15 12						5,00		ARGILA ARENOS AVERMELHADA, I CONTENDO AREL COM PEQUENOS ALTERADOS, ME COMPACTO	A DE COLOR IETEROGÊN A MÉDIAA G PEDREGULI DIAMENTE	AÇÃO IEĂ, IROSSA, HOS		MATERIAL MOBULZADO									
									<u> </u>	MATACÃO DE ROC RECUPETANDO-S QUARTZO E FELD	CHA PEGMA E FRAGMEN SPATO.	TÍTICA TOS DE		ROCHA	2,55	1,35	0,26	19,2	30	0	A2		C2
									53	9,25						1,20	0,2	16,2	30	0	A2		C2
	18 17 15 23 25 70	19 - 19 - 17 - 28 - 35 - <u>35</u> -						10,00		O SOLO COMPOSITO SILTE ARENOSO, DI DOURADA, TATO SE AREIA FINA,MUITA I DOURADA COM POI ARGILOSO. SOLO F ROCHA GNÁISSICA, EVOLUIDO, FOLIAÇ MARCADA, MEDIAI A COMPACTA	D POR MATE EOSO, CON MICA FINA, JCO MATERI IESIDUAL DE EXTREMAM AO BEM MENTE COM	RIAL AO ITENDO IAL EINTE PACTA	ICA SDE YO YO E 1,35 2,55 0,26 1,20 19,2 30 0 4,2 A2 IL NDO IE 12,00 12,00 1,35 12,00 0,2 16,2 30 0 A2 IL NDO IE 12,00 100 12,00 100 14,00 100 14,00 1										
		15							+ /// ///+	1.010.0						1,50	0,43	28,6	8	13	A1	F5	C1
									+ 11 11 + + 11	ROCHA GNÁISSIC/ GRANULAÇÃO FIN QUARTZO, FELDS/ ROCHA ENCONTR/ EXTREMAMENTE F COM FRATURAS E	A CINZA CLA A, CONTEND A TO E BIOT A-SE MUITO/ RATURADA M SUA MAIO	RASĂ,)o 1ta.a A (F4-F5), RIA		ROCHA	4,7	1,50	1,38	92	9	65	A1	F5	C1
								30.00	"/ + + /// // +	PREENCHIMENTO	5EM (D3) E SÃS ()	S2).				1,50	1,12	74,6	17	0	A1	F5	C1
OPS:	PARA PERF PERF LEVA	LISAÇA	ICUSS DCHA	AO - (SĂ - TREN	ENT/ 0,00 6,7	a 6,7	0 DO 10 ; 9, 9,25 ;	25 A 15 15,30 A	30 m 22,80 M	1.04900			RE	C SPL:	2	0.20 RIC E C (22) 2	0N (0NS 555-4	GEO TRU	22 LOG JÇÃ(5220	iIA D CI	VIL	LTD	A.
GRAU FIZSE FIZE FIZE FIZE FIZE FIZE FIZE FIZE FIZ	1 PO FR 10 ML 1-20 EX 20 FR stim	URAMENT UCO FRAT ATURADA ITO FRAT TREM, FRA ACMENTA	TD GA	AU DEA ROCH R.ME R.MU R.EXC	ALTE A SĂ DAN ITOAI TREM	ALTER ALTERA ENTE	D PADA DA ALT.	006 010 029 039 049	RENCIA COERENTE ELIAN, COE OLCO COER VCOERENTE	CONSISTÉNCI < 2 GOLPES RENTE 5-0 GOLPES 11-19 GOLPES > 19 GOLPES	(ARG E SELT AR MUITO MOLE MOLE MÉDIA RUA DURA	8G.) (COMPA 3-4 GOL 3-8 GOL 3-18 GO 19-40 GO 40 GO	DIDADO PES LPES LPES LPES	Gadi, I (ARE) FO ME CO MU	Favio F A E SIL A UCO CI DIAM. C MPAC1 ITO CO	Conc T. ARE DMFA C COMFA A MPACT	naição (nu) TTA CTA IA	DREA	-RJ 20 MÉT. P P PER LIAVA ROTAT RW RC RD RO	OTTOS CUSSA CUSSA CUSSA CUSSA CUSSA CUSSA CUSSA	EDO D D KEA MANTAI	DA .

(,	PERFIL	DE	CL L C	IENT CAL	E:C	ONC m 78	CESS 8, Ba	SIONÁR irro IPÚ,	ia r No	ota 116 Va Frib	URGO RJ	início: Término:	16/04/20 17/04/20	14 14	COO X:	755.	DAS: 588,5	6			F	URO N M 2	⊨ 23	
s	ON	DAGE	MIST/	A OE	IRA:	K	m 78	8					SONDADOR:	SrLuiz		Y: Z:	7.53 904,/	1.908 58	,78			FC	ILHA:	01/0	1
freeo os la la meo		RESET Å PENET No	TÉNCIA RAÇÃO Ipt		GRA		5PT	A2	PROFUNDENDE	Ê	PERFL arbidanco	DESCRIÇÃO I	XX MATERIAL		NV EL DÁ GUA (m)	DISTRATO CELOLICERCE.	PROF. PERFURADA (m)	ARIONAN (17)	RIDUR MANDERA	RECUPERACIÓO (N)	N* DE FRA GAENTOS	R G D (10)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRINAL
		9 9 8 10 11 11 13 14 13 16 17 25	2** 2* 11 11 11 11 10 11 12 15 16 18 22 <u>50</u>							.00		SILTE A RENOSO AVERMELHADA A HETEROGÉNEO, FINA, MUITA MIC SEDOSO. SOLO RESIDUAL FOLIAÇÃO PRESI MEDIAMENTE COM 5,80 O SOLO COMPOSTO SILTE ARENOSO, DE DOURADA, TATO SE AREIA FINA, MUITA M DOURADA COM POL AREILOSO, SOLO R ROCHA GNÁISSICA, EVOLUÍDO. FOLIAÇÃ MARCADA.	DE COLORA MARROM, CONTENDO L. BASTANTE E DOURADA MOBILIZADO ERVADA. MPACTA MPAC	ÇÃO AREIA I I TATO I, COM RIAL IO TENDO AL ENTE MPACTA.	11.00	SOLO FESIDUAL MATERIAL MOBUZADO	85				N-				
ļ											+ // + //	12,90						1,50	1,26	84	19	29	A1	F4	CI
									15,	,00	(+ + (ROCHA GNÁISSICA GRANULAÇÃO MÉL QUARTZO, FELDSF	CINZA CLA DIA, CONTEN ATO E BIOT	RA SĂ, IDO ITA. A		\ SV		1,50	1,2	80	23	0	A1	F5	C1
											" + + /// // +	EXTREMAMENTE F COM FRATURAS H PREENCHIMENTO	(-SE MUTTO RATURADA DRIZONTAIS (D8) E SÃS ()	A (F4-F5), S, SEM S2).		ROCHI	6,5	1,50	1,3	86,6	30	0	A 1	F4	C1
									E		* //							0,50	0,3	60	10	0	A1	F4	C1
									19.	.40	(+ + (-	19,40						1,50	1,15	76,6	25	0	A1	F5	C1
Γ										ĺ								_							
081		PERF	LISAÇA A PER EM R NTAME	AO PO RCUSS OCHA	R O SÃO SĂ TR		VTA(00 a 12,90	AO 12,9 0 a 1	DO CO 0 m 9,40 M	NTR	ATANTE	Augustations		201	RE	SP.:		RIC E C (22) 2 Favio F	ON ONS	GEO TRU 1420 /	LOG JÇÃO 5220	RJ 20	VIL 01105	LTD:	Α.
S ARRAR	< 1 5 6 10 11-3 5 20 fmt	PCI FR/ D MU 20 EXT D FR/ D FR/ T	UCO FRA ATURADA ITO FRA 1 ITO FRA 1 ITO FRA 1 ITO FRA 1	T. A L A L A MT. A MA	4 R 2 R 4 R	ALCHA I MEDA MUITO EXTR	SĂ ANLA DALT EMEN	EPAD TE A	DA A T.	0069 02 M 03 P0 04 N	DERENTE EDAN. COE DUCO COER COERENTE	CONSISTENCIA < 2 GOLPES RENTE 5-10 GOLPES 11-19 GOLPES > 19 GOLPES	MUITO MOLE MOLE MEDIA RIJA DURA		4 GOL 4 GOL 4 GOL 4 GOL 4 GOL 9 40 GO	PES PES LPES LPES LPES LPES	FO PO ME CO MU	FA UCD CI DIAM. (MPAC1 ITO CO	ompaci Dompaci A MPACI	ITA CTA IA		ROTAT ROTAT ROTAT ROTAT	CUSSĂ CUSSĂ IGEM TVA DT. WÍD IT. DIAM	ALA O	•

$ \cap $	PERFIL DE	CLIENTE: CONCESSIONÁRIA ROTA 11 LOCAL: Km 78, Bairro IPÚ, NOVA FRI	6 BURGO RJ	INÍCIO: 24/04/201 TÉRMINO: 18/04/201	14 C 14 X	OORDENA : 755.0	DAS: 579,30		FURD N:	
50	NDAGEM MISTA	OBRA: Km 78		SONDADOR: Sr Luiz	Y	: 7.531 : 903,8	1.928,27 30			4
froco (DIARTRO	RESISTÊNCIA À PENETRAÇÃO Napl		DESCRIÇÃO	DO MATERIAL	NV EL DÁ GUA (m)	GEOLIGEOTE C. PROF. PERFURADA (m)	MANORFA (11) (12) (13) (14) (13) (14) (14) (14) (14) (14) (14) (14) (14	P DE FRA GAENTOS R O D(%)	GRAU DE ALT ERAÇÃO	CODIENDA CODIENDA
N	1*•2* 2*• 3* 6 7 7 9 9 11 9 10 11 12 11 12 12 14 14 17 16 19 20 26 54 38 20 5		O SOLO COMPOSTI SILTE ARENOSO, D DOURADA, TATO SI AREIA FINA, MUITA I DOURADA COM PO ARGILOSO, SOLO I ROCHA GNÁISSICA EVOLUÍDO. FOLIAC MARCADA. MEDIAN A COMPACTA. MATI	D POR MATERIAL E COLORAÇÃO EDOSO, CONTENDO MICA FINA, UCO MATERIAL RESIDUAL DE EXTREMAMENTE ÃO BEM MENTE COMPACTA FINAL MOBILIZADO	11.50	8 CUC) RES DUM. mobilizado				
			ROCHA GNÁISSIC GRANULAÇÃO MÉ QUARTZO, FELDS ROCHA ENCONTF EXTREMAMENTE COM FRATURAS I PREENCHIMENTO	A CINZA CLARA SĂ, DIA, CONTENDO PATO E BIOTITA, A A-SE MUITO A FRATUFADA (F4-F5), IORIZONTAIS, SEM (D3) E SĂS (S2).		POCHA SĂ B	1,50 0,33 22 1,50 0,24 16	30 0 3 0	A1 A1	F2 C1
		+ // + // + //	18,25	SSICA CINZA CLARA S D FINA, CONTENDO		ROCHA SÁ	1,05 0,37 35,2 1,50 1,5 100	15 0 5 100	A1 A1	F2 C1
	PARALISAÇÃO PERF, A PERC PERF, EM ROC LEVANTAMENTO LEVANTAMENTO 1 POUCO FRAT. FRATURADA 10 MUTO FRAT. 1-20 EXTREM FRAT. 20 FRAGMENTADA NÚM	POR ORIENTAÇÃO DO CONTRATANT USSÃO = 0,00 a 13,20 m HA SÃ = 13,20 a 24,25 M TO A TRENA GRAU DE ALTERAÇÃO A1 ROCIA SĂ A2 R. MEDRA ALTERADA A3 R. MEDRA ALTERADA A4 R. EXTREMENTE ALT. CO POR CONTRATANT	CONSISTING CONSISTING	ALDSPATO E BIOTITA . INTRA SE POUCO (F2), COM FFATUIRAS, HORIZONTAIS (H), SI NTO (D3) E SÅS (S2). ALARG, E BILLARG,) MUITO MOLE MUITO MOLE MUITO MOLE MUITO MOLE MUITO MOLE MUITO MOLE MUITO MOLE MUITO MOLE MUITO MOLE	A EM EM TRESP COMPACE H GOLPS H GOLPS H GOLPS H GOLPS H GOLPS	Gool, F Gool, F S POI S POI S MUI	0.25 [1,5]1000 RICON GEO E CONSTRU (22) 2555-4420 / Farlo R Conceição A E SILT. AREN) A SO COMPACTA MENDA TO COMPACTA	CREA -RJ 2	VIL L 00110560 PERFURA RCUSAO A GEM TTVA OT. DIAMO	E2 [C1 TDA. 00 940

6	PERFIL DE	CLIENTE: CONCESSIONÁRIA R LOCAL: Km 78, Bairro IPÚ, NO ORBA: K- 78	OTA 116 VA FRIBURGO RJ	INÍCIO: 02/05/20 TÉRMINO: 05/05/20	14 14	COORDENADAS: X: 755.542,0	57	S	URO N-: M 25	
		Conne: Km /8		SONDADOR: SrLuz		Z: 897,48	5,67	F	OLHA: 01/	02
étropo (pi Aletteo	RESISTÈNCIA À PENETRAÇÃO Napt	GRÁRCO SPT 2 		O DO MATERIAL	NV EL DÁ GUA (m)	BASTRATO GEOL/GEOTE C. (m) WANDERA 61)	REUR WANDER (1) RECUPERACIÓO	N° DE FRA GAENTOS R O D(%)	GRAU DE ALT ERAÇÃO GRAU DE FRATURARENTO	COLIENDA
C	5 6 5 6 7 8 7 8 7 8 9 10 9 10 9 11 11 13 13 15 14 16 15 17 16 18 16 22 31 44 70 45/15		SILTE ARENOSO AVERMELHADOY AREIA FINA, E PE ELISPATO, MC SOLO RESIDUAL POUCO A MEDIAN POUCO A MEDIAN BOUCO A MEDIAN ELISPATO, MC SOLO COMPO SILTE ARENOSO DOURADA, TATO CONTENDO A MEDIAN ENTREMANENTE FOLAÇÃO BEM MATERIAL ARGIL RESIDUAL DE ESTIDUAL DE ENTREMAMENTE FOLAÇÃO BEM MEDIAMENTE FOLAÇÃO BEM MEDIAMENTE FOLAÇÃO BEM MEDIAMENTE FOLAÇÃO BEM MEDIAMENTE FOLAÇÃO BEM MEDIAMENTE FOLAÇÃO BEM MEDIAMENTE FOLAÇÃO BEM	EGE, CONTENDO DREGULHOS DE A MEDIA DOURADA. MOBILIZADO. IENTE COMPACTO STO POR MATERIAL DE COLORAÇÃO SEDOSO, A FINA, MUITA MICA COM POUCO OSO. SOLO CHA GNÁISSICA, EVOLUÍDO. MARCADA. MIPACTAA	8.50	ERQÃO DE FICIAN SOLO RESIDUAL O SOLO RESIDUAL MOBILIZADO				
ORS:	PARALISAÇÃO PERF. A PERCU PERF. EMALTE	POR ORIENTAÇÃO DO CONTR USSÃO - 0,00 a 17,30 m ERAÇÃO DE ROCHA - 17,30 A 2	20,00 ATANTE 10,40 M				ON GEO ONSTRU 2555-4420 /	LOGIA JÇÃO CI)A.
	PERF. EM ROC FURO LEVANT/	HA SĂ = 20,40 a 27,90 M Ado A TRENA			RES	Gadil, Favio	R Conceição	CREA -RJ 2	001105600	
GRAU F1 < F2 5 F3 6 F4 11 F3 11 F3 11	DE FRATURAMENTO 1 POUCO FRAT. FRATURADA 10 MUITO FRAT. 20 EXTREM. FRAT. 20 FRACMENTADA dim	GRAU DE ALTERAÇÃO COÊS A1 ROCIA SĂ 2 R. MEDAN ALTERADA C100 A3 R. MUITOALTERADA C3P0 A4 R. EXTREMENTE ALT. C4 IN	RENCIA CONSISTÉR CERENTE - 2 COLPES DAN. COERENTE - 2-5 COLPES DUCO COERENTE - 5-10 COLPE COERENTE - 11-16 COLP - 19 COLPE - 19 COLPE	CIA(ARG, E SILT ARG.) MUITO MOLE MOLE S MÉDIA IS RUA S DURA	00MPA0 54 GOLP 58 GOLP 518 GOL 518 GOL 540 GOL 540 GOL	NDADE (AREA E SI NES FOFA NES POLICIO (PES MEDIAM. LPES COMPAC PES MUITO O	LT. AREN.) XOMPACTA COMPACTA TA OMPACTA	NET. PPER LLAV ROTA RW R RD R	PERFURAÇÃ ICUSSÃO AGEM TIVA OT. WÍDEA DT. DIAMANTA	O ADA

				CLIEN	TE:C	ON(CESS B Dai	IONÁRIA 110 IRÚ N	ROTA 116	URGO R I	INÍCIO: 06/05	s/2014	4	COOF	IDENA	DAS:				F	URO N	h.	
so	NDAGE	M MISTA	•	OBRA	: K	m 7	8	1011-0,14	OTA Philo	undo na	SONDADOR: SrLu	iz.	•	¥:	7.531	.899	,81			S	M 2	26	
ê	Τ		_											Z:	896,3 \$	12	¥	_	8	F	ILHA:	01/0	2
	RESE	TÊNCIA À TRACĂO		GR		SPT		DEMO	ALC: NO	reservedo			y and	RATO BOTEC	RFURAT	Wage (N NOBF	andio 0	OMENT	000	N DIG	U DE	VDN
000	N	apt	1			O and Per	CAR	NOW A		occorrigato (d ^o		101. PE	NAN D	and a	4noat	OR FRA	0 H	ALTER	RATUR	cotta
1 A	1*e2*	2*e 2*	10	7		49	-	-	1			_			2			-	ż				
N N	6 7 9 10 11 11 14 15 17 34 <u>65</u> 20	6 - 9 - 111 - 112 - 115 - 116 - 119 - 300 - 5 -								SILTE ARENOSO AVERMELHADO/BA AREIA FINA, E PED FELDSPATO, MICA SOLO RESIDUAL N POUCO A MEDIAM 900CO A MEDIAM 5,80 0 SOLO COMPOST SILTE ARENOSO, D DOURADA, TATO S CONTENDO AREIA FINA, DOURADA CO MATERIAL ARGILO RESIDUAL DE ROC EXTREMAMENTE COM COMPACTA. 12,20	EGE, CONTENDO REGULHOS DE MÉDIA DOURADA IOBILIZADO. ENTE COMPACTO EDOSO, ENTE COMPACTO EDOSO, FINA, MUITA MICA M, POUCO SO. SOLO HA GNÁISSICA, YOLUIDO. RCADA. PACTA A DCHA, FRIÁVEL	E	1.50	FROCHA SOLO RESIDUAL SOLO RESIDUAL CARDO									
								15,00	\bigotimes_{\cdot}	FORMADA POR IN ROCHA SĂ E ALTE RECUPERAÇÃO D	TERCALAÇÕES DE RADA, SEM E TESTEMUNHO.	E		AL TERAÇÃO DE									
									/// + + ///	ROCHA GNÁISSIC/ GRANULAÇÃO FIN	CINZA CLARA SĂ A, CONTENDO					1,50	0,7	46,6	30	0	AS	F5	C3
								որություն	/// + + ///	FRATURALS A ROUTER	A TO E BIOTTAL OCHA POUCO ALMENTE DRIDA MUITO CHA DIAMENTE A			ROCHA SÅ	4,9	1,50	0,8	53,3	10	23	A3	F5	83
								30.00	+ /// /// + + ///	POUCO FRATURAL FRATURAS EM SUL HORIZONTAIS(H), S PREENCHIMENTO	DA (F1-F2), COM A MAIORIA SEM (D3) E SÅS (S2).					1,50	1,5	100	2	100	A1	F2	C1
ORS:	PAR	LISAÇA	lo F	ORO	RIE	NTA	ÇÃO	DO CONT	RATANTE			\uparrow			3	RIC	ON	GEO	LOG	A			
	PERF	. A PEF	icu .tef	SSÃO RAÇÃ) – 0, O DE	00 a E RO	12,20 CHA) m - 12,20 A	15,10 M						2	E C((22) 2	DNS 555-4	TRU 1420 /	5220	D CI	VIL	LTD	A.
	PERI	. Em R(DCH	IA SA	REN/	15,1	0 a 2	2,90 M				ľ	RES	sP.:	Doct -		10-	-	COL.	0100	01100		
	1 DE FRA 1 PC 10 MU 1-20 EX 20 FR stim	TURAMENT ATURADA ITO FRA T TREM. FR AGMENTA	TD T. AT.	GRAU A1 R A2 R A3 R A4 R	I DE AL IOCHA L MEDI L MUIT L EXTR	SÅ AN A DALT EMD	I TERAD TERADA NTE AL	04 04 02 1. 04	ÉRENCIA COERENTE MEDAN. COE POLICO COE INCOERENTE	COMSISTÉNCIU < 2 COLPES RENTE 2-5 COLPES RENTE 6-10 COLPES 11-19 COLPES > 19 COLPES	(ARG, E SELT, ARG.) MUITO MOLE MOLE MEDA RUA DURA	00 04 54 91 19 24	I GOLI I GOLI I GOLI II GOLI II GOLI II GOLI II GOLI	PES PES PES PES PES	FOF POL MEE CON	A E SIL A JOD CO DAM. C MPACT TO CO	T ARE DMRAC	ini) DTA CTA CTA IA		P PER LLAW ROTAT RW RC RD RO	CUSSA GEN TVA T. DIAM		~

(PERFI	DE		CLIE	NTE: Al:	CON Km	NCE 78, I	SSI Bain	ONÁRIA I o IPÚ, NO	ROTA 116 DVA FRIB	URGO RJ	início: Término:	08/05/20 12/05/20	14 14	COO(X:	755.	DAS: 520,4	а			F	URO N M 2	⊨ 27	
	SON	DAGE	MIST	•	OBR	A:	Km	78					SONDADOR:	SrLuiz		Y: Z:	7.53	1.883 76	,48			F	ILHA:	01/0	_
	atropo (primtino	RESIS PENET N	TÊNCIA RAÇÃO IPI	:	,	SRÁRIO	30 SF 30 cm	T		PROFUNDENCE	PERFL	DESCRIÇÃO (O MATERIAL		NUEL DÁGUA (m)	ENSTRATO GEOLIGEOTEC.	PROF. PERFURADA (m)	MANORIA (11)	REDUR MANDERN (m)	RECUPERAÇÃO (N)	Nº DE FRA GAENTOS	R 0 0 (1)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRINAL
	×	6 6 9 9 11 11 11 12 25 31	6 · 7 · 7 · 7 · 7 · 7 · 10 · 13 · 13 · 13 · 15 · 37 · 54 · 54 · 54 · 54 · 54 · 54 · 54 · 5									SOLO ARENOSO AF MARROM CLARO A CONTENDO AREIA I GROSSA, MICA MÉL SOLO RESIDUALI M POUCO A MEDIAME 4,80 O SOLO COMPOSTO SILTE ARENOSO, DI DOURADA, TATO SE CONTENDO AREIA I FINA, DOURADA CO MATERIAL ARGILOS RESIDUAL DE ROCO EXTREMAMENTE EN FOLIAÇÃO FRACA (I MORILZAD ????) COMPACTA A COMP	BGILOSO BEGE, MÉDIA A DIA DOUPAD BILIZADO. NTE COMPA DIALASSA COLORAÇ EDOSO, TRA, MUTA M POUCO IO. SOLO 4 GNÁISSI OLUÍDO. WATERIAL MEDIAMENT ACTA.	ia. Icto Rial Ao Mica IE	9.00	SOLO RESIDUAL SOLO RESIDUAL WORLZADC									
											* /// /// + /// + /// +	DOCUA ONÁISSICA		DASĂ				1,50	1,5	100	7	95 93	A1	F2 F2	C1
										15,00	+ /// /// + ///	GRANULAÇÃO FINA QUARTZO, FELDSP ROCHA ENCONTRA A POUCO FRATURA FRATURAS EM SUA HODIZONTAJSUN SUA	ATO E BIOTI ATO E BIOTI -SE MEDIAN (DA (F1-F2), MAIORIA	o ITA.A MENTE COM		ROCHA SĂ	7,3	1,50	1,35	90	4	90	A1	F2	C1
											* + * // // + * //	PREENCHIMENTO (Da) E SÁS (S2).				1,50	1,5	100	4	100	A1	F2	C1
	ļ									19,00	/// + + ///	19,00			-			1,30	1,2	92,3	6	92	A1	F2	C1
										Ē															
0	25:	PARA PERF PERF LEVA	LISAÇ A PEI Em R NTAME	AO I RCU OCI ENTO	POR ISS/ HAS DA	ORII 10 - (SA - TREN	ENT/ 0,00 11, IA	a 11 ,70 a	1,70 1,70 1 19,	O CONTI m ,00 M	RATANTE				RE	C SP.:		RIC E C (22) 2 Favio F	ON ONS	GEO TRU 1420 /	LOG JÇÃ(5220	IA D CI	VIL 01105	LTD/	A .
G THEFT	AU0 1 < 1 2 5 3 6 1 4 11- 5 > 2 fml	PC FR 0 MU 20 EX 0 FR im	URAMEN UCO FRA ATURADY ITO FRA 1 TREM. FF AGMENT	ITD (T. K T. WAT. ADA	GR A1 A2 A3 A4	ROCH ROCH R.ME R.MU R.EX	ALTE A SĂ DAN ITO A TREM	ALTE LTER	ERAD ADA E ALT	C00 A C20 C31 C41	ERENCIA COERENTE MEDIAN, COE POLICO COER NOCERENTE	CONSISTÊNCIA < 2 GOLPES 25 GOLPES IENTE 6-10 GOLPES 11-19 GOLPES > 19 GOLPES	(ARG, E SELT, A) MUITO MOLI MOLE MÉDIA RUA DURA	RG.) (00MPA H4 GOL H8 GOL H8 GO 9 40 GO	CIDADO PES LPES LPES LPES LPES	FOI POI MEI COI MU	A E SIL FA UCO CI DIAM. (MPACI ITO CO	IT ARE OMPACION IA IMPACI	INI) Ista Ista Ia		MÉT. P P PER L LAVA ROTAT RW RC RD RD	CUSSA CUSSA IGEM INA IT. WID IT. DIAA	AQÃ O O XEA MANTAI	×)

PERFIL DE SONDAGEM MISTA					NTE: (AL:	CON Km 1	VCES 78, B	SION airro II	ÁRIA F PÚ, NO	ROTA 116 DVA FRIB	URGO RJ	início: Término:	14 14	COO X: X:	755.	DAS: 518,4	3		FURD N= SM 28					
	NUAGE		^	OBH	A:	Km i	78					SONDADOR:	SrLuiz		Υ: Ζ:	7.53	1.899 76	,44		FOLHA: 01/0			2	
utroco (crimitino)	RESISTÊNCIA À PENETRAÇÃO Napt			GRÁRCO SPT					DESC 114104 (st 0.0000710010 (st 0.0000710010 (st 0.000710010 (st 0.000710010 (st 0.000710010 (st 0.000710010 (st 0.00071000 (st 0.00071000 (st 0.00071000 (st 0.0007000) (st 0.0007000) (st 0.0007000) (st 0.0007000) (st 0.0007000) (st 0.0007000) (st 0.0007000) (st 0.00070) (st 0.000700000000000000000000000000000000			IO DO MATERIAL			DISTRATO GEOL/GEOTEC.	PROF. PERFURADA (m)	WANDERA (m)	RIDUR MANORMA	RECUPERAÇÃO (N)	N - DE FRA GAENTOS	8 G D (%)	GRAU DE ALT ERAÇÃO	GRAU DE FRATURA MENTO	CORRINA
× 10 10 10 10 10 10 10 10 10 10 10 10 10	1***** 6 6 7 7 12 11 13 15 17 17 21 30 <u>38</u> 10	2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 •							5,00		ARGILA ARENOSA CONTENDO AREIA MICA DOURADA. P MEDIAMENTE CON 4,80 MATAÇÃO DE ROC INTERCALAÇÃO D ALTERADA. 6,70 O SOLO COMPOST SILTE ARENOSO, D DOURADA, TATO S CONTENDO AREIA FINA, DOURADA, TATO S CONTENDO AREIA FINA, DOURADA, TATO S CONTENDO AREIA FINA, DOURADA, TATO S CONTENDO AREIA FINA, DOURADA, COM MEDIAMENTE COM COMPACTA. 15,10 ROCHA GNÁISSICA GRANULAÇÃO FINM MEDIAMENTE COM COMPACTA.	VERIMELHA MÉDIA E PO OUCO A IPACTO HA GNAISS E ROCHA SI E ROCHA SI E ROCHA SI E COLORAÇ E COLORA E COLORA E COLORAÇ E COLORAÇ E COLORAÇ E COLORA E	ICA COM ICA COM ICA CA, MICA CA, FIAL CA, CA, CA, CA, CA, CA, CA, CA, CA, CA,	8.50	ROCHA SA SOLO RESIDUAL MATA (A C SOLO SUPERFICIAL	1,9	1,50	1,5 0,8	100 83 80	2 1 3 30 30	0 100 36 70	A3 A1 A1	F5 F2	C3 C1 C1
								l	20,00	+ ///	20,00						0,90	1,25	83	5	60	A1	F2	C1
ORS: PARALISAÇÃO POR ORIENTAÇÃO DO CONTRATANTE PERF. A PERCUSSÃO = 0,00 a 4,80 m PREF EM SOLO = 6,70 A 15,10 M PERF. EM ROCHA SÃ = 4.80 A 6,70 : 15,10 a 22.10 M										RICON GEOLOGIA E CONSTRUÇÃO CIVIL LTDA. (22) 2555-4420 / 5220														
LEVANTAMENTO A TRENA									n£		Geól	Favio	R Con	ceição	io crea-RJ 2001105600									
GRAU DE FRATURAMENTO GRAU DE ALTERAÇÃO COÑENCIA CONSISTÊNCIA(ARG, E SELT ARG.) CO FI < 1										IOMPACIDADE (AREIA E SILT. AREIN) MÉT. PERFUBAÇÃO 44 GOLPES FORA PERFUBISÃO 48 GOLPES FOILCO COMPACTA LIAVAGEM 18 GOLPES MEIDAR COMPACTA ROTATIVA 948 GOLPES COMPACTA ROTATIVA 48 GOLPES MUITO COMPACTA ROTAT. ADAMANTADA								•						

PERFIL DE Sondagem Mista				A	CLI LOC OBF	ente Val.: Va.:	CC Kn Kn	DNC n 78, n 78	ESS Bal	ionária f Ito IPÚ, N	OTA 116 DVA FRIB	URGO R	início: Término: Sondador	10/11/20 12/11/20 : Sr Lubz	14 14	COO X: Y:)RDENADAS: a ibvantar a ibvantar					F	FURD N: SM 32			
9	8											I				T	Z:	*	a ibvantar			9	R	DLHA:	02/0	2
W CODO/ DÁVETO		RESISTÊNCIA À PENETRA ÇÃO Nap: 1°e 2° 2°e 3°			GRÁROD SPT					NI NO NO DA DE	PERFL.		DESCRIÇÃO DO MATERIAL			NVEL DÁGUA (11)	GIDL/GEOTEC.	PROF. PERFURADA	ANN CIPA	RECUP, MANOGRA	N) N)	N° DE FRAMMENTO	RODON	OVO ULE VOID	GPAU CE	COMPRIME
ĺ	Ľ	35	42									21,50	idem anteri	OR			OLORESIDUA									
											• 11 11 • • 11	RO	ROCHA GNÁISS COLORAÇÃO CI	ÁISSICA SĂ DE O CINZA CLARA, ÃO MÉDIA A GROSSA			w.		1,50	1,5	100	7	89	A2	F4	C2
											111 . • 111 111 .	COMPOSTA POR FI BIOTITA E QUARTZ APRESENTANDO F HORIZONTAIS (F1 A PREENCHIDAS POL	R FELDSPAT RTZO. O FRATURAS F1 A F2), POR MATERI	ALDE		ROCHA SA	45	1,50	1,5	100	1	100	A1	FI	C1	
	↓									25,00	• 111 111 •	ALTERAÇÃO (D3 6 SUPERFÍCIES IRR NA PRIMEIRA MAI PREENCHIMENTO 26,00	SED4)ECON RREGULARES ANOBRAES TO NAS DEM	EM AIS				1,50	1,5	100	1	100	A1	P1	C1	
																		╞							_	
																		L	B	BOLETIM P			RELIMINAR			
DEB: PARALISAÇÃO POR OFILENTAÇÃO DO CONTRATANTE PERFURAÇÃO A PERCUSSÃO PERFURAÇÃO ROTATIVA NÍVEL DÁQUA 11/11 - 8,20 M											RICON GEOLOGIA E CONSTRUÇÃO CIVIL LTDA. (22) 2555-4420 / 5220															
12/11 - 12,30 M 13/11 - 5,90 M - 24 H sem revestimento no turo												Gað	Favio	RCar	nanição	crea-	RJ 200	011056	00							
GRAU DE FRATURAMENTO GRAU DE ALTERAÇÃO COÚRENCIA COMENTÉNCIA (ARG. E SUT. ARG.) CO FI <1 POLICOFRAT. ATRICASA SÁ. COCRENTE 2 SCALPES MUTOMOLE D F2 5 FRATURADA AS RUEDUNA, ATERNADA CENCICORRENTE 2 SCALPES MUTOMOLE D F3 6 10 MUTOFRAT. AS RUEDUNA, ATERNADA CENCICO CORRENTE 2 SCALPES MULE S F4 11-30 EXTIENDA FRAT. AS RUETENDE CANCERENTE 16-10/2021/FS RUA S F4 15-30 EXTIENDA FRAT. AS RUETENDE CANCERENTE 16-10/2021/FS RUA S F3 >20 FRAMENTADA EXTIEMENTE ALT. CANCERENTE 16-10/2021/FS RUA S F1 15-30 EXTIENDA FRAT. AS RUETENDE 2 SCALPES RUA S F1 15-30 EXTIENDA FRAT. AS RUETENDES 2 SCALPES RUA S F1 15-30 EXTIENDA FRAT. AS RUETENDES 2 SCALPES RUA S F1 15-30 EXTIENDA FRAT. AS RUETENDES 2 SCALPES RUA S									00MPA 54 GOL 54 GOL 54 GOL 19 40 GO 40 GO	CIDAD PES PES UPES UPES UPES	FC PC ME	A E SI SFA SUCO C EDAM SMPAC UTO CX	LT. AR COMPACION TA COMPACION	ENL) CITA CITA IA		MÉT. I P PER LLAW ROTA ROTA ROTA ROTA	AGEN CUSSÁ AGEN TVA DT. WÍD DT. DIAN	EA CANTA	•							

PERFIL DE SONDAGEM MISTA				CUENTE: CONCESSIONÀRIA ROTA 116 LOCAL: Km 78, Baimo IPÚ, NOVA FRIBURGO RJ OBRA: Km 78											INÍC TÉR	NO: MINO:	040/11/2 05/11/20	014 14	COO X: Y:	RDEN	ADAS: a lov a lov	antar rantar		FURD N: SM 33					
															SUNUADON: SI LUZ				Z:	a byantar				FOLHA: 02				2	
M ÉPODOV DÁ METRO	RESISTÊNCIA PENETRAÇÃO Nap: 0 11º 2º 2º 9 7			GRÁRICO SPT					N N N N N N N N N N N N N N N N N N N				CRIÇÃO	RIÇÃO DO MATERIAL			NU DAGUNA MARIE DÁGUNA	A DOUT NOT DATE.	PROF, PERFURADA (m)	MAID NAM	RECUP, MANORIA (m)	N) NOVERNANO	N- CE FRANKINTOS	NOD UN	OVO DE LA COMUNICIÓN DE	GEAU CE	CORPENDA		
Î	36	51										22,10	D	EM /	NTERI	IOR				O RESIDUAL MOBILE									
Ň	10										+ /// ROCHA GM COLORAC GRANULÁ COMPOST + /// BIOTITA E APRESEN					IA GINÁISSICA SĂ DE RAÇÃO CINZA CLARA, IULÁÇÃO MÉDIA A GROSSA, 'OSTA POR FELIDSPATO, TA E QUARTZO. SENTANDO FRATURAS				OCHA BA BO	2,6	1,50	1,45	97,3	\$	70	A1	F3	C1
Ļ										70	11/ . • 11/	24.70	H PF AL	HORIZONTAIS PREENCHIDAS ALTERAÇÃO (D	S (F2 S PO (D3 E	(F2 A F3), POR MATERIAL D 35 E D4) E COM INREGULARED.			œ		1,10	1,04	94,5	3	90	A1	F2	C1	
																											_		
																				B	DLET	IM PR	I PRELIMINAR						
OB2:	OBL: PARALISAÇÃO POR OHIENTAÇÃO DO CONTRATANTE PERFURAÇÃO A PERCUSSÃO PERFURAÇÃO ROTATIVA NÍVEL DÁGUA									C	2	RIC E C (22) 2	ON ONS	GEO TRU	LOC JÇÃ(5220	ila D Ci	VIL	LTD	A.										
	05/11 - 5,50 M 05/11 - 10,05 M 07/11 - 3,10 M - 24 H sem revestimento no funo									RE	SP.:	Gad	Favio	RCar	nonição	crea-	RJ 200	011056	00										
	GRAU DE FRATURAMENTO GRAU DE ALTERAÇÃO COÑERINE COMENTÊNCIA (A.R.C. E SULT. ARG.) CO FI< 41 POLICID FRAT. A1 ROCIA SĂ C1 COERENTE > 2 COLPES NUTO MULE C1 F2 S FATURADA AZ R.MENALATERADA C2MECINA. COERENTE > 2 COLPES NUTO MULE C1 F3 6.10 MUTO FRAT. A2 R.MENALATERADA C2MECINA. COERENTE 5 4000LPES MUEO MUEO F3 6.10 MUTO FRAT. A3 R.MUTO ALTERADA C3POLICO COERENTE 6 1000LPES MUEO MEDIA 5 F3 5.20 FRACIMENTADA C3POLICO COERENTE 6 1000LPES MUEO MEDIA 5 F3<>20 FRACIMENTADA > 19 GOLPES DURA 5 19 GOLPES DURA 5								0000FA 5-8 GOL 5-8 GOL 9-18 GOL 19-40 GO - 40 GO	CIDAD PES PES LPES OLPES UPES	FO PO ME OC	A E SI FA DUCO O DUMA (MPACI ITO OC	LT. AR COMPAC COMPY IA IMPAC	EN.) UCTA TA		NÉT. P PER LLAW ROTAL RURC RD RC	NGREU Cuess NGEM TVA DT. WIE DT. DIA1	ICA MANTA	•										

PERFIL DE Sondagem Mista			OC/	NTE: NL: N:	CO Km Km	NCES 78, 8 78	isk Salm	ONÁRIA F to IPÚ, NO	ROTA 110 DVA FRIE	6 8U	RGO RJ	início: Término: Sondador:	29/10/20 31/10/20 Sr Luiz	14 14	COO X: Y:	RDEN	a by a by	antar antar		FURD N-: SM 34				
M ÉTODOV DÁMETRO	2 3 4 5 5 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7			GRÁRICO SPT					PROTUNE EAL KE INT RE FFL OR CLOBECO			CRIÇÃO DO MATERIAL			ENSTRATO N	PRIOF, PERFURADA (m)	a by Verbyw	AUTOR (III)	PROUPERACIÓN (N	N° CE FRANKINTOS	R (S) d D B	ALLEN ON OR ALLEN	CTANDAND	COMPRIMA
1										× •	IDEM ANTERIOF 21,00	1			PACIA DE									
[.									+ 11) 111 + + 11)		ROCHA GNÁISSIC COLORAÇÃO CINA GRANILIAÇÃO MÉ	A SĂ DE ZA CLARA,			ALTE		1,50	1,43	95,3	15	48	A1	F4	C1
Ň									11/ . • 11/ 11/	✓ GRANULAÇÃO MEDIA A GROSSA, COMPOSTA POR FELDEPATO, ◆ BIOTITA E CUARTIZO. ✓ APRESENTANDO FRATURAS HORIZONTAIS (F3 A F5), PERESENTANDO POR MATEDIAL DE	45	1,50	0,53	35,3	15	0	A3	F5	C2					
Ļ								25,00 25,50	• (1) • (1) 11/ •	1	ALTERAÇÃO (D3 E SUPERFÍCIES IRR 25,50	E D4) E COM EGULARES.					1,50	1,5	100	10	94	A1	F3	C1
																┍							4	
															L	E	RELIMINAR							
										(2	RIC E C	ON ONS	GEO	LOG	ilA D Cl	VIL	LTD	A.					
NIVEL DAGUA 30'10 - 6,77 M 39'10 - 10,05 M 05'11 - 3,10 M 24 H SEM REVESTIMENTO NO FURO									RE	SP.:	Gra	(aa) a	R Cor	conição	- -	RJ 200	11056	00	-					
GRAU F1 <1 F2 5 F3 64 F4 11 F5 51 fn	GRAU DE FRATURAMENTO GRAU DE ALTERAÇÃO COÉRENCIA COMBRITÂNDIA, ARU E SULTA RA F1 <1 POLIDO FRAT. A1 ROCIA SÁ CI COERENTE <2 COLPES MUITO MOLE F2 51 FRATURAMENTO GRAU DE ALTERAÇÃO COÉRENTE <2 COLPES MUITO MOLE F2 5 FRATURAMENTO A2 R.MEDIAN.ALTERADA CEMEDIAN.COERENTE >25 COLPES MOLE F3 6-10 MUTO FRAT. A3 R.MUTOCALTERADA CEMEDIAN.COERENTE >25 COLPES MOLA F4 11-20 EXTREMA FRAT. A4 R.EXTREMENTEALT. CHINOGERENTE 11-BOCUPES RUA F3 > 20 FRACIMINADA > 19 GOLPES DURA >								00MPA 54 GOL 54 GOL 54 GOL 19 40 GO 40 GO	CIDAD PES PES LPES OLPES	FO PO ME OC ML	A E SI GA DIAM (MPAC) ITO CO	LT. AR CMIPAC COMPY IA MIPAC	EN.) ITA ICTA TA		MÉT. F P PER LLAW ROTAT RW RC RD RD	NGREU CUSSĂ NGEM TVA DT. WİD T. DIAI	EA MANTA						

