2 MODELO MECÂNICO

Neste capítulo aplicaremos a teoria de mistura para modelar o escoamento de um líquido por um meio poroso rígido, homogêneo, isotrópico e em repouso. A mistura será formada por 3 constituintes: um líquido incompressível, o meio poroso e um gás inerte com baixíssima densidade. Assumiremos também que a mistura é isotérmica e que os componentes são quimicamente inertes, ou seja, não haverá reação química entre eles. Iremos nos referir ao constituinte líquido por G_F (componente-F), e as grandezas associadas a ele por $\rho_F, \overline{v^F}, T^F, \dots$ etc., e ao constituinte gasoso por G_G .

Alguns conceitos associados ao meio poroso são descritos a seguir:

- POROSIDADE (ε): corresponde à razão entre o volume máximo de líquido que pode ser colocado em um meio poroso e o volume total da região contendo o meio poroso. Intuitivamente, ε é uma medida da quantidade de vazios ativos no meio poroso, e seus valores variam de 0 < ε < 1.
- FRAÇÃO DE FLUIDO (φ) : corresponde a razão entre o volume de liquido em um meio poroso dV_F (volume do liquido tratado como contínuo isolado fora da mistura) e o volume total da região contendo o meio poroso dV. Analisando um fluido contido em um volume infinitesimal, temos :

$$\rho_{\rm F} = \frac{dm_{\rm F}}{dV}$$

onde ρ_F corresponde a densidade parcial do fluido em dV. Sabemos que

$$\rho_0 = \frac{dm_F}{dV_F}$$

onde ρ_0 corresponde a densidade usual do fluido. Logo a fração de fluido vale

$$\varphi = \frac{dV_F}{dV} = \frac{dm_F/\rho_0}{dm_F/\rho_F} = \frac{\rho_F}{\rho_0}$$
(2.1)

SATURAÇÃO (ψ) : corresponde a quanto do meio poroso está preenchido com fluido, ou seja, a razão entre o volume de fluido em um meio poroso e o volume máximo de fluido que pode ser colocado no meio poroso, portanto seus valores podem variar de 0 < ψ ≤ 1. Em um *dV* teremos:

$$\psi = \frac{1}{\varepsilon} \frac{dV_F}{dV}$$
(2.2)

substituindo $\rho_0 e \rho_F$ temos:

$$\psi = \frac{\rho_F}{\varepsilon \rho_0} = \frac{\varphi}{\varepsilon} \tag{2.3}$$

Variações de saturação e fração de fluido

Na mistura em foco neste trabalho só trabalharemos com as equações que governam o movimento do líquido, pois o meio poroso é rígido e está em repouso e o gás inerte serve apenas para dotar a mistura de uma certa compressibilidade ao preencher os espaços não preenchidos pelo fluido, portanto a saturação ψ nos indicará quanto de fluido e quanto de gás teremos no meio poroso. Vamos então simplificar a notação, denotando:

$$\overrightarrow{v^F} = \overrightarrow{v}$$

Observe que neste capítulo, v não está representando a velocidade baricêntrica, como no capítulo anterior.

Analisando um paralelepípedo de um meio poroso uniforme, chamaremos de A_{ε} , a soma das áreas dos poros em uma face (em preto) e A a área da face.

Matriz porosa em forma de paralelepipedo

Teremos então :

$$\int A_{\varepsilon} dz = A_{\varepsilon} h = \text{volume dos poros}$$

portanto:

$$A_{\varepsilon} h = \varepsilon Ah \Longrightarrow A_{\varepsilon} = \varepsilon A$$

observe que esta relação serve para cortes em qualquer direção, para um meio poroso natural, independente dele ser isotrópico.

A pressão de gás-líquido dentro dos poros, será denotada por p_0 , e pode ser calculada por:

$$p_0 = \frac{dF}{dA_{\varepsilon}} = \frac{dF}{\varepsilon dA}$$

A pressão parcial da mistura gás-líquido, que é a soma das pressões parciais $p_F + p_G$, vale:

$$p_F + p_G = \frac{dF}{dA} = \varepsilon p_0 \tag{2.4}$$

O valor de *F* é o mesmo nas 2 equações, pois no cálculo das pressões parciais, só haverá gás-fluido, nos poros.

A relação entre $p_F e p_G$, depende de quanto gás e quanto líquido há nos poros, ou seja, elas serão proporcionais aos respectivos volumes. Teremos então:

$$\psi = \frac{dV_F}{dV_F + dV_G} = \frac{p_F}{p_F + p_G}$$

substituindo as eqs. (2.4) e (2.3) :

$$p_{\mathsf{F}} = \psi \varepsilon p_{0} \Longrightarrow$$
$$p_{\mathsf{F}} = \varphi p_{0}$$

Quanto às relações constitutivas para o tensor parcial de tensões T^{F} , o meio poroso não permite a formação das lâminas do fluxo laminar. A direção em que o fluido se desloca, não é regida pela viscosidade, pois o fluido segue o caminho dos poros, portanto seu movimento é dominado pela ação da pressão. Descartaremos então as componentes de cisalhamento do tensor de tensões e a força de superfície na interface. O tensor de tensões consistirá apenas das tensões normais do fluido, ou seja:

$$\boldsymbol{T}^{\boldsymbol{F}} = -\boldsymbol{p}_{\boldsymbol{F}} \boldsymbol{I} = -\boldsymbol{p}_{\boldsymbol{O}} \boldsymbol{\varphi} \boldsymbol{I}$$
(2.5)

onde I é o tensor identidade e p_0 será assumida constante enquanto não houver saturação.

Reescrevendo a equação da continuidade (1.14), para $C_{\rm F}$ teremos:

$$\frac{\partial \rho_F}{\partial t} + div \left(\rho_F \vec{v} \right) = 0$$

substituindo a eq. (2.1) obtemos:

$$\frac{\partial (\varphi \, \rho_{\rm o})}{\partial t} + div \left(\varphi \, \rho_{\rm o} \vec{v}\right) = 0$$

Como ρ_0 é constante:

$$\frac{\partial \varphi}{\partial t} + div \left(\varphi \vec{v} \right) = 0$$
(2.6)

que no caso unidimensional se reduz a:

$$\frac{\partial \varphi}{\partial t} + \frac{\partial (\varphi v)}{\partial x} = 0$$
(2.7)

A equação do momento linear para o componente-F, é da forma:

$$\rho_{F}\overrightarrow{a^{F}} = \overrightarrow{H^{F}} + \rho_{F}\overrightarrow{G^{F}} + div T^{F}$$

como
$$\overrightarrow{a^{F}} = \frac{D\overrightarrow{v}}{Dt} = \nabla\overrightarrow{v}\cdot\overrightarrow{v} + \frac{\partial\overrightarrow{v}}{\partial t}$$
 e por (2.5) $T^{F} = -p_{0}\varphi I$ teremos:

$$\rho_{F} \left(\nabla\overrightarrow{v}\cdot\overrightarrow{v} + \frac{\partial\overrightarrow{v}}{\partial t}\right) = \overrightarrow{H^{F}} + \rho_{F} \overrightarrow{G^{F}} - div(p_{0}\varphi I) =$$

$$= \rho_{F} \left(\nabla\overrightarrow{v}\cdot\overrightarrow{v} + \frac{\partial\overrightarrow{v}}{\partial t}\right) = \overrightarrow{H^{F}} + \rho_{F} \overrightarrow{G^{F}} - \nabla(p_{0}\varphi)$$
(2.8)

A força de corpo $\rho_F \overline{G^F}$, será desconsiderada, pois seu efeito é desprezível, comparado às outras forças. Assumiremos também que $\overline{H^{\vec{F}}}$ está relacionado ao gradiente de saturação [18]:

$$\overline{H}^{\vec{F}} = -\frac{\mu D}{K} \nabla \varphi \tag{2.9}$$

 $(\mu$ -representa a viscosidade do fluido

onde: $\begin{cases} D & e^{-K} \\ D & e^{-K} \end{cases}$ ocception to the difusão K -permeabilidade específica do meio poroso

substituindo as eqs. (2.1) e (2.9) na equação de momento linear, teremos:

$$\varphi\left(\nabla \overrightarrow{v} \cdot \overrightarrow{v} + \frac{\partial \overrightarrow{v}}{\partial t}\right) = -\nabla\left(\frac{\mu D}{K\rho_0} + \frac{\rho_0 \varphi}{\rho_0}\right)$$

podemos reescrever a equação acima de forma mais conveniente definindo pressão:

$$\rho = \frac{\mu D}{\kappa \rho_0} + \frac{\rho_0 \varphi}{\rho_0}$$
(2.10)

observando que p é função apenas de φ . A pressão p não é uma pressão usual ou parcial, sua definição serve apenas para normalizar a equação . Substituindo p teremos:

$$\varphi\left(\nabla \overrightarrow{v} \cdot \overrightarrow{v} + \frac{\partial \overrightarrow{v}}{\partial t}\right) + \nabla p = 0$$
(2.11)

que pode ainda ser reescrita somando-se \vec{v} vezes a equação (2.6)

$$\vec{v} \, div \left(\varphi \, \vec{v} \right) + \vec{v} \, \frac{\partial \varphi}{\partial t} + \varphi \frac{\partial \vec{v}}{\partial t} + \varphi \nabla \vec{v} \cdot \vec{v} + \nabla p = 0 \implies \frac{\partial \left(\varphi \, \vec{v} \right)}{\partial t} + \nabla \left(\varphi \, \vec{v} \right) \cdot \vec{v} + \varphi \, \vec{v} \, div \, \vec{v} + \nabla p = 0 \quad \text{ou}$$

$$\frac{\partial \left(\varphi \overrightarrow{v}\right)}{\partial t} + \nabla \left(\varphi \overrightarrow{v}\right) \cdot \overrightarrow{v} + div \left(\varphi \overrightarrow{v} \otimes \overrightarrow{v}\right) + \nabla p = 0$$

No caso unidimensional, faremos as substituições:

$$\nabla p \rightarrow \frac{\partial p}{\partial x}$$
 e $\nabla \vec{v} \cdot \vec{v} \rightarrow v \frac{\partial v}{\partial x}$

na eq. (2.11) e teremos

$$\varphi \, \mathbf{v} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \varphi \frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \mathbf{p}}{\partial \mathbf{x}} = \mathbf{0}$$

somando v vezes a eq. (2.7) :

$$\underbrace{v \frac{\partial(\varphi v)}{\partial x} \varphi v \frac{\partial v}{\partial x}}_{\frac{\partial(\varphi v)}{\partial x} \frac{\partial(\varphi v)}{\partial x}} + \underbrace{\varphi \frac{\partial v}{\partial t} + v \frac{\partial \varphi}{\partial t}}_{\frac{\partial(\varphi v)}{\partial t}} + \frac{\partial p}{\partial x} = 0$$

obtendo a seguinte equação do momento linear no caso unidimensional

$$\frac{\partial(\varphi v)}{\partial t} + \frac{\partial(\varphi v^2 + p)}{\partial x} = 0$$
(2.12)

Nosso modelo matemático para o escoamento unidimensional em meio poroso, consiste nas equações (2.7) e (2.12). Teremos ainda que t>0 e a fração de fluido φ , pode variar no máximo até os poros estarem totalmente preenchidos pelo fluido, ou seja quando houver saturação:

$$\varphi_{\max} = \varepsilon$$

resultando no sistema hiperbólico não linear de equações diferenciais parciais,

$$\begin{cases} \frac{\partial \varphi}{\partial t} + \frac{\partial (\varphi v)}{\partial x} = 0\\ \frac{\partial (\varphi v)}{\partial t} + \frac{\partial (\varphi v^2 + p)}{\partial x} = 0 \end{cases}$$
(2.13)

para $x \in \mathbb{R}$ e t > 0, sujeito a restrição geométrica $0 < \varphi \leq \varepsilon$.

A seguir, iremos desenvolver as condições de salto para o caso unidimensional. Substituindo $\rho = \rho_0 \varphi$ na equação da continuidade (1.28), teremos:

$$\left[\varphi\,\rho_0(v-u)i{\boldsymbol{\cdot}}\hat{n}\right]=0$$

observe que \hat{n} só pode assumir os valores $\pm i$, que implica

$$[\varphi \rho_0(v-u)] = 0 \implies \rho_0[\varphi v] = \rho_0 u[\varphi] \implies$$

$$\left[\varphi \,\mathbf{V}\right] = u\left[\varphi\right] \tag{2.14}$$

que é a condição de salto da equação da continuidade no caso unidimensional.

Na equação do momento linear (1.29), iremos substituir também $T^{F} = -p_{0} \varphi I$, obtendo:

$$\left[\rho_0 \varphi \, \mathbf{v} \, i \left((\mathbf{v} - \mathbf{u}) i \cdot \hat{\mathbf{n}} \right) + \varphi \, \mathbf{p}_0 \, \hat{\mathbf{n}} \right] = \vec{\mathbf{0}} \implies \left[\rho_0 \varphi \, \mathbf{v}^2 - \rho_0 \varphi \, \mathbf{v} \mathbf{u} + \varphi \, \mathbf{p}_0 \right] = \mathbf{0}$$

dividindo por ρ_0 :

$$\left[\varphi v^{2} + \varphi \frac{p_{0}}{\rho_{0}}\right] = \left[\varphi v\right] u$$
pela equação (2.10), sabemos que $\left[\varphi \frac{p_{0}}{\rho_{0}}\right] = \left[\rho\right]$, portanto:
$$\left[\varphi v^{2} + \rho\right] = \left[\varphi v\right] u$$

que é a condição de salto para o momento linear no caso unidimensional.

As duas condições de salto podem ser reescritas da forma:

$$\frac{\left[\varphi v\right]}{\left[\varphi\right]} = \frac{\left[\varphi v^2 + \rho\right]}{\left[\varphi v\right]} = u$$
(2.15)

3 O PROBLEMA DE RIEMANN ASSOCIADO AO ESCOAMENTO EM MEIO POROSO

O sistema de equações diferenciais parciais (2.12)

$$\begin{cases} \frac{\partial \varphi}{\partial t} + \frac{\partial (\varphi v)}{\partial x} = 0\\ \frac{\partial (\varphi v)}{\partial t} + \frac{\partial}{\partial x} \left(p + \varphi v^2 \right) = 0 \end{cases}$$

discutido no capítulo 2, juntamente com as condições iniciais

$$(\varphi, v) = \begin{cases} (\varphi_L, v_L) \text{ para } x < 0\\ (\varphi_R, v_R) \text{ para } x > 0 \end{cases} \text{ em } t = 0$$

torna-se um problema de Riemann clássico, que possui a mesma estrutura em problemas de elasticidade e dinâmica de gases.

Na nossa análise inicial, adotaremos p como função de φ (não necessariamente $p_0\varphi$). Teremos ainda que p' > 0 nos dará um problema hiperbólico e p'' > 0 um sistema não linear.

Definindo $\xi = x/t$ (ver Apêndice B) teremos que tanto φ , $v \in p$ serão funções de ξ , e fazendo a mudança de variável de (x, t) para ξ , nosso sistema de equações diferenciais parciais se transforma num sistema de equações diferenciais ordinárias. Aplicando a regra da cadeia

$$\begin{cases} \frac{\partial w}{\partial t} = -\frac{x}{t^2} \frac{dw}{d\xi} \\ \frac{\partial w}{\partial x} = \frac{1}{t} \frac{dw}{d\xi} \end{cases} \text{ obtemos} \\ -\xi \frac{d\varphi}{d\xi} + \frac{d(\varphi v)}{d\xi} = 0 \\ -\xi \frac{d(\varphi v)}{d\xi} + p' \frac{d\varphi}{d\xi} + v \frac{d(\varphi v)}{d\xi} + \varphi v \frac{dv}{d\xi} = 0 \end{cases}$$

usando a derivada do produto $v \frac{d(\varphi v)}{d\xi} = v \left(v \frac{d\varphi}{d\xi} + \varphi \frac{dv}{d\xi} \right)$ para substituir $\frac{dv}{d\xi}$ obtemos:

$$\begin{cases} -\xi \frac{d\varphi}{d\xi} + \frac{d(\varphi v)}{d\xi} = 0\\ (p' - v^2) \frac{d\varphi}{d\xi} + (2v - \xi) \frac{d(\varphi v)}{d\xi} = 0 \end{cases}$$

que escrito na forma matricial

$$\begin{bmatrix} -\boldsymbol{\xi} & 1\\ (\boldsymbol{p}'-\boldsymbol{v}^2) & (2\boldsymbol{v}-\boldsymbol{\xi}) \end{bmatrix} \frac{d}{d\boldsymbol{\xi}} \begin{bmatrix} \boldsymbol{\varphi}\\ \boldsymbol{\varphi} \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$
 (3.1)

O sistema possui a solução trivial:

$$\frac{d}{d\boldsymbol{\xi}} \begin{bmatrix} \boldsymbol{\varphi} \\ \boldsymbol{\varphi} \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix} \Rightarrow \boldsymbol{\varphi} \in \boldsymbol{v} \text{ constantes}$$

Não haverá solução contínua em todo domínio ($t \ge 0$) satisfazendo a solução acima, pois $\boldsymbol{\varphi}_R \neq \boldsymbol{\varphi}_L$ e $v_R \neq v_L$. O sistema terá também solução se:

$$\det\begin{bmatrix} -\boldsymbol{\xi} & 1\\ (\boldsymbol{\rho}' - \boldsymbol{v}^2) & (2\boldsymbol{v} - \boldsymbol{\xi}) \end{bmatrix} = 0$$
(3.2)

e as soluções estariam no núcleo da transformação. Resolvendo a equação (3.2) obtemos:

$$\boldsymbol{\lambda}_1 = \boldsymbol{v} - \sqrt{\boldsymbol{p}'} \in \boldsymbol{\lambda}_2 = \boldsymbol{v} + \sqrt{\boldsymbol{p}'}$$

Podemos observar que $\boldsymbol{\lambda}_1$ e $\boldsymbol{\lambda}_2$ são os autovalores da matriz

$$\begin{bmatrix} 0 & 1 \\ (p' - v^2) & 2v \end{bmatrix}$$

Substituindo o valor $\lambda_1 = v - \sqrt{p'}$ e efetuando a primeira linha do produto matricial (3.1)(observe que uma linha do produto matricial já é suficiente), obtemos:

$$(\sqrt{p'} - v) d\varphi + d(\varphi v) = 0 \Longrightarrow$$

$$\sqrt{p'} d\varphi + \varphi dv = 0$$
(3.3)

Integrando os dois lados, obtemos o primeiro invariante de Riemann:

$$R_1 \equiv v + \int \frac{\sqrt{p'}}{\varphi} d\varphi$$

Analogamente, substituindo o valor $\lambda_2 = v + \sqrt{p'}$, obtemos o segundo invariante de Riemann :

$$R_2 \equiv v - \int \frac{\sqrt{p'}}{\varphi} d\varphi$$

Tanto $\lambda_1 = v - \sqrt{p'}$ como $\lambda_2 = v + \sqrt{p'}$ não geram solução contínua em todo domínio $(\xi \in \mathbb{R})$, pois a condição inicial (φ_L, v_L) para x < 0 e t = 0 implicaria que $\xi \rightarrow v_L \pm \sqrt{p'(\varphi_L)}$ que possui um valor finito, enquanto sabemos que $\xi \rightarrow -\infty$. O mesmo ocorre para (φ_R, v_R) para x > 0 e t = 0. Iremos nos referir aos 3 tipos de solução por:

• S_0 quando $\varphi \in v$ constantes

•
$$S_1$$
 quando $\xi = \frac{x}{t} = v - \sqrt{p'}$

• S_2 quando $\xi = \frac{x}{t} = v + \sqrt{p'}$

Como nenhuma das 3 gera uma solução contínua em toda reta $\xi \in \mathbb{R}$, para obter tal solução teremos de combinar os 3 tipos de solução em subintervalos da reta. Como em $\xi \to \pm \infty$,não há solução do tipo S_1 ou S_2 , teremos que $\varphi \in v$ serão constantes nos intervalos:

$$\begin{cases} \varphi = \varphi_L \\ \mathbf{v} = \mathbf{v}_L \end{cases} \quad \text{para } \xi \in \left(-\infty, \xi_L\right] \quad e \quad \begin{cases} \varphi = \varphi_R \\ \mathbf{v} = \mathbf{v}_R \end{cases} \quad \text{para } \xi \in \left[\xi_R, +\infty\right) \end{cases}$$

para algum ξ_L e ξ_R .

Fração de fluido e velocidade em $\pm \infty$

Vale observar que intervalos na reta ξ , correspondem a leques no plano $x \times t$. (ver figura abaixo)

Correlação entre intervalos no eixo ξ e leques no plano $x \times t$

Um intervalo com solução $S_{\scriptscriptstyle 1}$ não pode encostar em outro com solução $S_{\scriptscriptstyle 2}$, ou seja; não existe $a, b \in c \in \mathbb{R}$ tal que em [a, b] há solução $S_1 \in m$ [b, c] solução S_2 (ou vice versa), pois teríamos que :

b pertence ao primeiro intervalo $\Rightarrow b = v - \sqrt{p'}$

b pertence ao segundo intervalo $\Rightarrow b = v + \sqrt{p'}$, logo

$$v - \sqrt{p'} = v + \sqrt{p'} \implies \sqrt{p'} = 0 \implies p' = 0$$

que é falso pois por hipótese, p' > 0.

Não poderemos ter também um intervalo satisfazendo S_{0} entre dois intervalos satisfazendo $S_{\rm 1}$ (ou $S_{\rm 2}$)

Situação impossível - $S_{\scriptscriptstyle 0}\,$ entre dois intervalos do mesmo tipo

No intervalo do meio (inclusive em a e b), $\varphi_o e v_0$ são constantes. Como a está no primeiro intervalo, vale : $a = v_0 - \sqrt{p'(\varphi_0)}$. Idem para b no segundo intervalo $b = v_0 - \sqrt{p'(\varphi_0)}$. Portanto:

$$a=v_0-\sqrt{p'(\varphi_0)}=b$$

ou seja, não há intervalo nenhum no meio.

Também não ocorrerá a situação em que teremos os intervalos na ordem (esquerda para direita) : $S_2 - S_0 - S_1$.

Como $a e b \in [a,b]$, satisfazem S_0 . Teremos para ambos $\varphi = \varphi_o e v = v_0$. Como a satisfaz S_2 e b satisfaz S_1 , teremos ainda:

$$a = v_0 + \sqrt{p'(\varphi_0)}$$
$$b = v_0 - \sqrt{p'(\varphi_0)}$$

como a < b

$$a = v_0 + \sqrt{p'(\varphi_0)} < v_0 - \sqrt{p'(\varphi_0)} = b \implies \sqrt{p'(\varphi_0)} < 0$$

que é falso.

Construindo as únicas sequências possíveis de intervalos, para que tenhamos solução contínua, teremos:

 $\begin{array}{rrrr} 1 & S_0 & -S_1 & -S_0 & -S_2 & -S_0 \\ 2 & S_0 & -S_1 & -S_0 \\ 3 & S_0 & -S_2 & -S_0 \end{array}$

Todas as sequências possíveis de intervalos

Os valores de φ e v são constantes quando a solução é do tipo S_0 . Para S_1 e S_2 , eles tem que satisfazer as equações diferenciais ordinárias (3.3), e conseqüentemente os respectivos invariantes de Riemann.

Analisando a seqüência ($S_0 - S_1 - S_0$) podemos facilmente calcular $\xi_L \in \xi_R$, pois :

$$\xi_L = v_L - \sqrt{p'(\varphi_L)}$$
 e $\xi_R = v_R - \sqrt{p'(\varphi_R)}$

Podemos ainda determinar $\varphi \in v$ entre $\xi_L \in \xi_R$ resolvendo a equação diferencial ordinária (3.3), com a condição inicial $\varphi = \varphi_L \in v = v_L \text{ em } \xi_L$. Este problema já terá solução bem definida independente dos valores $\varphi = \varphi_R \in v = v_R \text{ em } \xi_R$, e tais valores só serão satisfeitos por coincidência. O mesmo ocorre para seqüência ($S_0 - S_2 - S_0$). Tais casos dificilmente ocorrerão, e na prática teremos apenas a solução do tipo ($S_0 - S_1 - S_0 - S_2 - S_0$). Para esta seqüência de intervalos, podemos encontrar $\xi_L \in \xi_R$ pois:

$$\xi_L = \mathbf{V}_L - \sqrt{\mathbf{p}'(\varphi_L)} \quad \text{e} \quad \xi_R = \mathbf{V}_R + \sqrt{\mathbf{p}'(\varphi_R)}$$

Entre $\xi_1 \in \xi_2$, $\varphi = \varphi_* \in v = v_*$ são constantes, e seus valores estão relacionados por :

$$\xi_1 = v_* - \sqrt{p'(\varphi_*)}$$
 e $\xi_2 = v_* + \sqrt{p'(\varphi_*)}$

Para resolvermos o problema de Riemann, temos ainda de encontrar $\varphi_* \in v_*$. Como $\xi_1 \in \xi_2$ estão no segundo (S_1) e no quarto(S_2) intervalos ambos estarão sujeitos às equações diferenciais / invariantes de Riemann correspondentes aos seus intervalos:

$$\int_{\varphi_{L}}^{\varphi_{*}} \frac{\sqrt{p'}}{\varphi} d\varphi = v_{L} - v_{*} \quad e$$

$$\int_{\varphi_{*}}^{\varphi_{R}} \frac{\sqrt{p'}}{\varphi} d\varphi = v_{R} - v_{*} \quad (3.4)$$

que resolvendo as integrais vira um sistema de equações algébricas em φ_* e v_* com uma única solução. Assim teremos uma solução contínua para o problema de Riemann no eixo ξ . Para que esta solução seja coerente, precisamos ainda que:

$$\xi_L < \xi_1 < \xi_2 < \xi_R$$

Sabemos que:

$$\xi_1 = \mathbf{v}_* - \sqrt{\mathbf{p}'(\varphi_*)} < \mathbf{v}_* + \sqrt{\mathbf{p}'(\varphi_*)} = \xi_2$$

portanto basta conferir as desigualdades :

$$\xi_L < \xi_1 \quad e \quad \xi_2 < \xi_R \tag{3.5}$$

Caso alguma das desigualdades (3.5) não seja satisfeita, teremos de encontrar uma solução descontinua para o problema de Riemann. Tal solução terá de satisfazer os princípios físicos da equação do momento linear e da conservação de massa, ou seja, as condições de salto (2.14).

Iremos tratar de agora em diante, do caso $p=c^2\varphi$, discutido no nosso modelo mecânico do capítulo anterior. Teremos que:

$$p'=c^2$$
 e $\int \frac{\sqrt{p'}}{\varphi} d\varphi = c \ln \varphi + cte$

No caso contínuo, teremos que as integrais (3.4) viram:

$$v_{L} - v_{*} = c \ln \left(\frac{\varphi_{*}}{\varphi_{L}} \right) \quad e$$

$$v_{R} - v_{*} = c \ln \left(\frac{\varphi_{R}}{\varphi_{*}} \right)$$
(3.6)

Resolvendo o sistema, encontraremos:

$$\varphi_* = \sqrt{\varphi_L \varphi_R} \ \mathbf{e}^{\left(\frac{\mathbf{v}_L - \mathbf{v}_R}{2c}\right)}$$

$$\mathbf{v}_* = \frac{\mathbf{v}_L + \mathbf{v}_R}{2} + \frac{\mathbf{c}}{2} \ln\left(\frac{\varphi_L}{\varphi_R}\right)$$
(3.7)

Podemos agora verificar as condições para existência de uma solução contínua através das desigualdades (3.5):

$$\begin{cases} \xi_L < \xi_1 \implies V_L - C < V_* - C \implies V_L < V_* \\ \xi_2 < \xi_R \implies V_* + C < V_R + C \implies V_* < V_R \end{cases}$$
(3.8)

substituindo o valor de v_* da equação (3.7)

$$v_{L} < \frac{v_{L} + v_{R}}{2} + \frac{c}{2} \ln \left(\frac{\varphi_{L}}{\varphi_{R}} \right) < v_{R} \implies \frac{v_{L} - v_{R}}{2} < \frac{c}{2} \ln \left(\frac{\varphi_{L}}{\varphi_{R}} \right) < \frac{v_{R} - v_{L}}{2}$$

que implica:

$$c\left|\ln\left(\frac{\varphi_L}{\varphi_R}\right)\right| < v_R - v_L \tag{3.9}$$

que é a desigualdade que deve ser atendida para se garantir a existência de solução contínua.

Teremos também desigualdades para a fração de fluido φ :

$$v_L < v_* \Rightarrow v_L - v_* = c \ln \left(\frac{\varphi_*}{\varphi_L} \right) < 0 \Rightarrow \frac{\varphi_*}{\varphi_L} < 1$$

analogamente para φ_R teremos então:

$$\varphi_L > \varphi_* \quad \text{e} \quad \varphi_R > \varphi_* \tag{3.10}$$

Na Literatura clássica estas soluções que encontramos associadas a $S_1 \mbox{ e } S_2$, são chamadas de **rarefações**, nome que surgiu na dinâmica de gases. O nome também tem justificativa física no nosso problema, visto que a fração de fluido

encontrada (φ_*) é menor que as frações de fluido iniciais (φ_L e φ_R). Na solução contínua, iremos nos referir as rarefações associadas à S_1 e S_2 , por rarefação-1 e rarefação-2.

Supondo que alguma ou ambas as desigualdades em (3.10) não sejam satisfeitas, teremos que buscar uma solução descontínua para o problema de Riemann.

Analisando inicialmente o caso

$$\varphi_* > \varphi_L \quad e \quad \varphi_R > \varphi_* \tag{3.11}$$

encontraríamos que o segundo intervalo não existe, visto que o ponto final do intervalo seria menor que o inicial ($\xi_L > \xi_1$ e $\xi_2 < \xi_R$). Não há problema em relação ao quarto intervalo; continua valendo S_2 . Buscaremos uma solução sem o segundo intervalo, e teremos uma descontinuidade/choque entre o primeiro e o "terceiro" intervalo, no ponto que chamaremos de ξ_1 . Iremos nos referir a este caso como choque-1 rarefação-2, e teremos de usar as condições de salto (2.14) em ξ_1 .

Seqüência de intervalos para choque-1 / rarefação-2

Recalculando os pontos da reta ξ , através de um novo sistema constituído por (2.14) e (3.6):

$$\begin{cases} \xi_1 = \mathbf{s}_1 = \frac{\varphi_* \mathbf{v}_* - \varphi_L \mathbf{v}_L}{\varphi_* - \varphi_L} = \frac{\mathbf{c}^2 \varphi_* + \varphi_* \mathbf{v}_*^2 - \mathbf{c}^2 \varphi_L - \varphi_L \mathbf{v}_L^2}{\varphi_* \mathbf{v}_* - \varphi_L \mathbf{v}_L} \\ \mathbf{v}_R - \mathbf{v}_* = \mathbf{c} \ln \left(\frac{\varphi_R}{\varphi_*}\right) \end{cases}$$
(3.12)

Apesar da descontinuidade ser em ξ_1 , o valor de ξ_2 terá de ser recalculado, porém as desigualdades (3.11) se mantém, visto que as curvas de choque e de rarefação tem contato C^2 no espaço de estados (φ , v). Simplificando a primeira equação do sistema (3.12), obtemos:

$$\mathbf{v}_* = \mathbf{v}_L \pm \mathbf{c} \frac{\left(\varphi_* - \varphi_L\right)}{\sqrt{\varphi_* \varphi_L}}$$

A solução $v_* = v_L + c \frac{(\varphi_* - \varphi_L)}{\sqrt{\varphi_* \varphi_L}}$ nos conduz a resultados que satisfaz a desigualdade

(3.9) (cálculo consiste em substituir v_* da solução acima, em (3.6)), portanto a solução seria do tipo rarefação-1/rarefação-2, e não haveria descontinuidade, que é falso. A única solução válida seria :

$$v_{*} = v_{L} - c \frac{(\varphi_{*} - \varphi_{L})}{\sqrt{\varphi_{*}\varphi_{L}}}$$

$$v_{*} = v_{R} - c \ln\left(\frac{\varphi_{R}}{\varphi_{*}}\right)$$
(3.13)

onde concluímos que :

$$v_* < v_R \quad e \quad v_* < v_L \tag{3.14}$$

O sistema (3.13) pode ser resolvido, determinando os valores de $v_* e \varphi_*$. Manipulando algebricamente as inequações (3.11) e as relações (3.13), chegaremos em uma condição suficiente para a existência de uma solução do tipo choque-1/rarefação-2 :

$$c \ln \left(\frac{\varphi_L}{\varphi_R} \right) < v_L - v_R < c \frac{(\varphi_R - \varphi_L)}{\sqrt{\varphi_R \varphi_L}}$$
 (3.15)

Uma análise análoga para os casos $\varphi_L > \varphi_* \in \varphi_* > \varphi_R$ (rarefação-1/choque-2) e $\varphi_* > \varphi_L$ e $\varphi_* > \varphi_R$ (choque-1/choque-2) nos fornecerão:

• Rarefação-1/choque-2

$$\begin{aligned} \mathbf{v}_{*} = \mathbf{v}_{L} + \mathbf{c} \ln \left(\frac{\varphi_{L}}{\varphi_{*}} \right) \\ \mathbf{v}_{*} = \mathbf{v}_{R} + \mathbf{c} \frac{\left(\varphi_{*} - \varphi_{R} \right)}{\sqrt{\varphi_{*} \varphi_{R}}} \\ \mathbf{v}_{*} > \mathbf{v}_{R} \quad \mathbf{e} \quad \mathbf{v}_{*} > \mathbf{v}_{L} \end{aligned}$$

condições suficientes para existência de solução:

$$\mathbf{c}\frac{\left(\varphi_{R}-\varphi_{L}\right)}{\sqrt{\varphi_{R}\varphi_{L}}} < \mathbf{v}_{R}-\mathbf{v}_{L} < \mathbf{c}\ln\left(\frac{\varphi_{L}}{\varphi_{R}}\right)$$

• Choque-1/choque-2

$$v_* = v_L - c \frac{(\varphi_* - \varphi_L)}{\sqrt{\varphi_* \varphi_L}}$$
$$v_* = v_R + c \frac{(\varphi_* - \varphi_R)}{\sqrt{\varphi_* \varphi_R}}$$
$$v_R < v_* < v_L$$

condição suficiente:

$$c \left| \frac{\left(\varphi_{R} - \varphi_{L} \right)}{\sqrt{\varphi_{R} \varphi_{L}}} \right| < v_{L} - v_{R}$$

Condições para as 4 possibilidades de solução para o problema de Riemann

se	então a solução é do tipo		
$v_R - v_L > c \left \ln \frac{\varphi_L}{\varphi_R} \right $	Rarefação-1/rarefação-2		
$-c\left \sqrt{\frac{\varphi_R}{\varphi_L}}-\sqrt{\frac{\varphi_L}{\varphi_R}}\right > v_R - v_L$	Choque-1/choque-2		
$c\left[\sqrt{\frac{\varphi_R}{\varphi_L}} - \sqrt{\frac{\varphi_L}{\varphi_R}}\right] < v_R - v_L < c \ln \frac{\varphi_L}{\varphi_R}$	Rarefação-1/choque-2		
$-c\left[\sqrt{\frac{\varphi_R}{\varphi_L}} - \sqrt{\frac{\varphi_L}{\varphi_R}}\right] < v_R - v_L < -c \ln \frac{\varphi_L}{\varphi_R}$	Choque-1/rarefação-2		

4 A TRANSIÇÃO INSATURADO - SATURADO

Devido à incompressibilidade do líquido e à rigidez da matriz porosa, o problema resolvido no capítulo anterior:

$$\begin{cases} \frac{\partial \varphi}{\partial t} + \frac{\partial (\varphi v)}{\partial x} = 0\\ \frac{\partial (\varphi v)}{\partial t} + \frac{\partial}{\partial x} (\rho + \varphi v^2) = 0 \end{cases}$$

juntamente com a condição inicial:

$$(\varphi, v) = \begin{cases} (\varphi_L, v_L) \text{ para } x < 0\\ (\varphi_R, v_R) \text{ para } x > 0 \end{cases} \text{ em } t = 0$$

só tem sentido físico se a restrição $\varphi \leq \varepsilon$ for satisfeita em toda parte, para qualquer instante de tempo. Seu significado é que o poro não pode comportar mais líquido do que cabe nele. Dos quatro tipos de solução possíveis para o problema hiperbólico sob investigação, 3 satisfazem essa restrição físico/geométrica, lembrando que as condições iniciais sobre a fração de fluido ($\varphi_L \in \varphi_R$) serão sempre menores que a porosidade ε , isto é:

$$\varphi_L < \varepsilon$$
 e $\varphi_R < \varepsilon$

Quando a solução for do tipo:

• Rarefação-1/Rarefação-2, o estado intermediário será tal que

$$\varphi_* < \varphi_L < \varepsilon \ \, {\rm e} \ \, \varphi_* < \varphi_R < \varepsilon \ \, ({
m solução contínua}).$$

Choque-1/Rarefação-2, o estado intermediário será tal que

$$\varphi_L < \varphi_* < \varphi_R < \varepsilon$$
 .

• Rarefação-1/Choque-2, o estado intermediário será tal que

$$\varphi_{R} < \varphi_{*} < \varphi_{L} < \varepsilon$$
 .

Em todos os casos citados acima, fica assegurada a desigualdade $\varphi < \varepsilon$ em toda parte. O único caso em que não podemos garantir que $\varphi < \varepsilon$, é o caso Choque-1/Choque-2, pois teremos:

$$\varphi_L < \varphi_*$$
 e $\varphi_R < \varphi_*$

que não limita φ_* superiormente. Uma solução em que $\varphi_* > \varepsilon$, não é fisicamente aceitável. Além disso, quando a fração de fluido tiver o mesmo valor da porosidade, a pressão não será mais uma função da fração de fluido.

O modelo mecânico tratado no capítulo anterior, não se aplica a partir do instante que houver saturação ($\varphi_* = \varepsilon$). Apesar disto, mesmo num contexto onde há descontinuidade, as equações do momento linear e da conservação de massa, continuam válidas, em outras palavras, valem as condições de salto (2.14), porém, não poderemos usar a relação constitutiva para pressão ($p = c^2 \varphi_*$), já que a partir da saturação, a fração de fluido irá se manter constante. Substituindo $\varphi_* = \varepsilon$ nas condições de salto (2.14), obtemos:

$$\xi_{1} = \frac{\varepsilon \mathbf{V}_{*} - \varphi_{L} \mathbf{V}_{L}}{\varepsilon - \varphi_{L}} = \frac{\varepsilon \mathbf{V}_{*}^{2} - \varphi_{L} \mathbf{V}_{L}^{2} + \mathbf{p}_{*} - \mathbf{C}^{2} \varphi_{L}}{\varepsilon \mathbf{V}_{*} - \varphi_{L} \mathbf{V}_{L}}$$
$$\xi_{2} = \frac{\varphi_{R} \mathbf{V}_{R} - \varepsilon \mathbf{V}_{*}}{\varphi_{R} - \varepsilon} = \frac{\varphi_{R} \mathbf{V}_{R}^{2} - \varepsilon \mathbf{V}_{*}^{2} + \mathbf{C}^{2} \varphi_{R} - \mathbf{p}_{*}}{\varphi_{R} \mathbf{V}_{R} - \varepsilon \mathbf{V}_{*}}$$

que é um sistema de 2 equações em 2 incógnitas: $v_* \in p_*$. Efetuando algumas simplificações, ficamos com:

$$(\mathbf{v}_* - \mathbf{v}_L)^2 = (\mathbf{p}_* - \mathbf{c}^2 \varphi_L) \left(\frac{1}{\varphi_L} - \frac{1}{\varepsilon}\right)$$
$$(\mathbf{v}_* - \mathbf{v}_R)^2 = (\mathbf{p}_* - \mathbf{c}^2 \varphi_R) \left(\frac{1}{\varphi_R} - \frac{1}{\varepsilon}\right)$$

Apesar de cada equação do sistema fornecer 2 valores para v_* , somente um será admitido, por motivos já discutidos no capítulo anterior (condições de entropia), portanto

$$v_* = v_L - \sqrt{(p_* - c^2 \varphi_L) \left(\frac{1}{\varphi_L} - \frac{1}{\varepsilon}\right)}$$
$$v_* = v_R + \sqrt{(p_* - c^2 \varphi_R) \left(\frac{1}{\varphi_R} - \frac{1}{\varepsilon}\right)}$$

A seguir, mostraremos algumas simulações onde podemos comparar a solução obtida com e sem a restrição geométrica $\varphi \leq \varepsilon$. Estaremos simulando o caso choque-1/choque-2 com a fração de fluido à esquerda igual à direita ($\varphi_L = \varphi_R$) e com velocidades de aproximação simétricas ($v_L = -v_R$). Teremos resultados para fração de fluido (φ_*), pressão (p_*) e velocidade de propagação (**s**). Observe que **s** não é a velocidade do componente liquido após o choque, e sim a velocidade da onda de choque. Mostraremos também a discrepância percentual entre os resultados com e

sem restrição $\left(\frac{(\text{com}) - (\text{sem})}{(\text{sem})}\right)$, chamando a atenção que os resultados onde $\varphi > \varepsilon$ não tem sentido físico.

Em outras palavras "com restrição" e "sem restrição" não são apenas uma questão de opção de simulação. São dois contextos: o primeiro sempre tem sentido físico, enquanto o segundo representa um problema meramente matemático (e bem mais simples).

DADOS INICIAIS		SEM RESTRIÇÃO		COM RESTRIÇÃO			DISCREPÂNCIAS		
$\varphi_L = \varphi_R$	$V_L = -V_R$	$arphi_*$	S	p _*	$arphi_{*}$	s	p _*	Pressão	Velocidade propagação
0,20	0,05	0,21	0,975	0,21	0,21	0,975	0,21	0,00%	0,00%
0,20	0,20	0,244	0,905	0,244	0,244	0,905	0,244	0,00%	0,00%
0,32	0,45	0,50	0,80	0,50	0,50	0,80	0,50	0,00%	0,00%
0,32	0,80	0,698	0,677	0,698	0,60	0,914	0,759	8,70%	35,04%
0,32	1,25	1,042	0,554	1,042	0,60	1,429	1,391	33,57%	157,75%
0,44	1,80	2,218	0,445	2,218	0,60	4,95	5,786	160,83%	1011,45%
0,44	3,20	5,349	0,287	5,349	0,60	8,80	17,336	224,07%	2968,38%
0,56	4,05	10,275	0,233	10,275	0,60	56,70	138,341	1246,40%	24187,18%
0,56	5,00	15,099	0,193	15,099	0,60	70,00	210,560	1294,51%	36248,05%
0,56	6,05	21,603	0,161	21,603	0,60	84,70	308,021	1325,83%	52507,17%

5 **CONSIDERAÇÕES FINAIS**

A contribuição principal deste trabalho foi a descrição do processo de saturação num meio porosos rígido, levando em conta as restrições geométricas impostas pela incompressibilidade do líquido e pela rigidez do meio poroso.

Tais restrições, oriundas da realidade física, vinham sendo sistematicamente desconsiderada em trabalhos anteriores onde, muitas vezes, a quantidade de líquido presente numa região superava o máximo admissível.

As consequências da não imposição de limites para a quantidade de líquido nos poros era, além da aberração física, a obtenção de pressões muito abaixo das reais e de velocidades de propagação muito menores do que as fisicamente realistas. Dessa forma, diversos processos eram simulados longe da sua realidade física. Por exemplo, sem o uso da restrição, dificilmente poderíamos prever a fratura de um meio poroso.

O uso da restrição deu origem a uma nova classe de problemas de Riemann, cuja solução era desconhecida. Uma das contribuições desse trabalho foi apresentar a solução exata para um problema de Riemann com uma variável sujeita a uma restrição (um limite) físico. Certamente outros surgirão...

De maneira nenhuma esse trabalho é considerado uma solução definitiva para o processo de transição insaturado-saturado. Ele é um ponto de partida. Mas, antes de tudo, é uma prova de que podemos nos aproximar muito mais da realidade física e um bom motivo para que não aceitemos resultados provenientes de situações virtuais, convenientemente manipuladas.

Este trabalho tem várias continuações naturais como, por exemplo, a simulação de problemas com condições iniciais quaisquer e/ou o emprego de novas relações constitutivas para a pressão.

Além disso, levando em conta os efeitos da transição insaturado-saturado aqui descritos, é intenção do autor simular o processo de propagação de poluentes e/ou contaminantes em contextos onde haja transição insaturado-saturado. O uso de aproximantes de Riemann também faz parte do espectro de trabalhos futuros pretendidos pelo autor.

REFERÊNCIAS

- [1] ALAZMI, B.; VAFAI, K. *Analysis of variants within the porous models.* J. Heat Transfer 122. 303-326, 2000.
- [2] APOSTOL, T.M. Mathematical Analysis 2^a ed. Massachusetts: Addison-Wesley, 1974.
- [3] ARIS, R. *Vectors, Tensors, and the Basic Equations of Fluid Mechanicas*. New Jersey: Prentice-Hall, 1962.
- [4] ASPLUND, E.; BUNGART, L. *A first course in integration*. New York: Holt, Rinehart & Winston, 1966.
- [5] ATKIN, R.J.; CRAINE, R.E. *Continuum theories of mixtures. Basic theory and historical development.* Q.J. Mech. Appl. Math. 29. 209-244, 1976.
- [6] AW, A. ; RASCLE, M. *Resurrection of "second order" models of traffic flow.* SIAM J. Appl. Math. 60. 916-938, 2000.
- [7] BERTHELIN, F. ; DEGOND T. ; DELITALA, M. ; RASCLE, M. A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal. 187. 185-220, 2008.
- [8] BISHOP, R.L.; GOLDBERG, S.I. *Tensor analysis on manifold*. New York: Dover publications, 1968.
- [9] CHADWICK, P. *Continuum Mechanics*. London: George Allen & Unwin, 1976.
- [10] COLOMBO, R.M. ; GOATIN, P. *A well posed conservation law with a variable unilateral constraint.* J. Differ. Equ. 234. 654-675, 2007.
- [11] DAGANZO, C. *Requiem for second order fluid approximations of traffic flow.* Transp. Res. B 29. 277-286, 1995.
- [12] DESLOGE, E. A. *Classical Mechanics vol.1*. Florida: Krieger publishing co., 1989.
- [13] DESPRÉS, B. ; LAGOUTIÈRE, F. ; SEGUIN, N. *Weak solutions to Friedrichs systems with convex contraints.* Nonlinearity 24. 3055-3081, 2011.
- [14] FEYNMAN, R.P. ; LEIGHTON, R.B. ; SANDS, M. *The Feynman lectures on Physics vol.1.* Massachusetts: Addison-Wesley, 1964.

- [15] FRENCH, A.D. Newtonian Mechanics. London: W.W. Norton & Co., 1970.
- [16] GAMA, R.M.S. ; PEDROSA F., J.J. ; MARTINS COSTA, M.L. Modeling the saturation process of flows through rigid porous media by the solution of a nonlinear hyperbolic system with one constraint unknown. J. Appl. Math. Mech. 92. 921-936, 2012.
- [17] GARABEDIAN, P.R. *Partial differential equations*. New York: John Wiley & Sons, 1964.
- [18] MARTINS COSTA, M.L.; GAMA, R.M.S. Numerical simulation of onedimensional flows through porous media with shock waves. Int. J. Numer. Methods Eng. 52. 1047-1067, 2001.
- [19] ROSSMANITH, J.A. *A high-resolution constrained transport method with adaptive mech refinement for ideal MHD*. Comput. Phys. Commun. 164. 128-133, 2004.
- [20] SLATTERY, C. *Advanced transport phenomena*. Berlin: Springer-Verlag, 1999.
- [21] SMOLLER, J. *Shock waves and reaction-diffusion equations*. Berlin: Springer-Verlag, 1983.
- [22] SPENCER, A.J.M. Continuum Mechanics. London: Longman, 1980.

APÉNDICE A - Continuidade da Densidade

Diremos que a densidade em um ponto P vale $oldsymbol{
ho}$, sempre que:

dado $\boldsymbol{\varepsilon} > 0$, existe $\boldsymbol{\delta} > 0$ tal que

se
$$\mathcal{A} \subset \mathcal{B}(\mathcal{P}, \delta) \Rightarrow \left| \frac{\mathcal{M}(\mathcal{A})}{\mathcal{V}(\mathcal{A})} - \rho \right| < \varepsilon$$

onde $B(P, \delta)$ corresponde a bola de centro P e raio δ , M(A) massa e V(A) volume limitados por A, uma região Jordan-mensurável. Vale então :

Proposição :

Se ρ está definida em um aberto A em \mathbb{R}^3 , então ρ é contínua em A

Seja $x \in A$; dado $\varepsilon > 0$, existe $\delta > 0$ com $B(x, \delta) \subset A$, tal que se $R \subset B(x, \delta)$ então

$$\frac{M(R)}{V(R)} - \rho(x) < \varepsilon / 2$$

se $y \in B(x, \delta)$ existe $\delta_1 > 0$ tal que $R \subset B(y, \delta_1) \subset A \Rightarrow \left| \frac{M(R)}{V(R)} - \rho(y) \right| < \varepsilon / 2$

se tomarmos $R = B(x, \delta) \cap B(y, \delta_1)$, sabemos que R é aberto (interseção de abertos) e não vazia pois y pertence à R e como R está contido em $B(x, \delta)$ e $B(y, \delta_1)$ temos :

$$\frac{M(R)}{V(R)} - \rho(x) \bigg| + \bigg| \frac{M(R)}{V(R)} - \rho(y) \bigg| < \varepsilon \implies \big| \rho(x) - \rho(y) \big| < \varepsilon$$

que vale para qualquer $y \in B(x, \delta)$, portanto ρ é contínuo em qualquer $x \in A$, ou seja, ρ é contínuo em A.

As equações diferenciais parciais do tipo:

$$\frac{\partial u}{\partial t} + \frac{\partial (f(u))}{\partial x} = 0$$
(B.1)

são chamadas de leis de conservação em analogia a alguns sistemas físicos. A substituição $\xi = x/t$ surge quando buscamos uma solução contínua para (B.1) com $t \ge 0$ e condição inicial :

$$u(x,0) = \begin{cases} U_L & \text{se } x < 0\\ U_R & \text{se } x > 0 \end{cases} \quad \text{com } U_L \neq U_R$$

A condição inicial possui uma descontinuidade em (0, 0). Iremos procurar uma solução contínua em :

$$\mathcal{R} = \left\{ (x,t) \in \mathbb{R}^2 \mid t \ge 0 \ \text{e} \ (x,t) \neq (0,0) \right\}$$

ou seja, a única descontinuidade estará na origem. Reescrevendo (B.1):

$$\frac{\partial u}{\partial t} + f'(u)\frac{\partial u}{\partial x} = (f'(u), 1) \cdot \nabla u = 0$$
(B.2)

Analisando as curvas de nível u =cte, teremos que f'(u) = C também será constante, e por (B.2):

$$\nabla u \cdot (C,1) = 0$$

Como a curva de nível é sempre perpendicular a ∇u , o vetor (C,1) será sempre paralelo a sua reta tangente, ou seja; **a curva de nível será uma reta**. Sabemos que curvas de nível para diferentes valores de u, não podem se interceptar, nem interceptar os semi-eixos x > 0 e x < 0, pois u vale U_L e U_R (respectivamente) nos semi-eixos. Uma forma de não ocorrer esta intercessão, seria tomar retas paralelas ao eixo x, porém tal solução não seria continua em t = 0, pois u não pode tender simultaneamente para U_L e U_R . A única forma de não haver descontinuidade em \mathcal{R} seria se todas as curvas de nível (retas) se interceptarem na origem, já que a origem (0,0) não pertence a \mathcal{R} . Sendo assim, as curvas de nível serão as retas da forma : portanto os pontos onde *u* é constante correspondem aos pontos em que $\xi = x/t$ logo *u* é função de $\xi = x/t$.

APÊNDICE C - O Esquema de Glimm

James Glimm introduziu o Método de Escolha Aleatória como uma prova construtiva da existência de soluções para uma classe de sistemas de leis de conservação hiperbólicos não lineares. A teoria deste método tem como base o estudo das iterações de ondas elementares na solução do problema de Riemann, cuja formulação matemática apresenta uma forte base termodinâmica – representada pela condição de entropia.

O Método de Glimm é uma técnica semianalítica para tratar soluções descontínuas de sistemas hiperbólicos de leis de conservação, no qual soluções aproximadas são representadas por funções constantes por partes.

Chorin modificou o método original e o transformou em uma ferramenta computacional para a solução numérica de leis de conservação hiperbólicas homogêneas. Colella propôs um procedimento mais preciso e investigou uma extensão do esquema de Glimm a sistemas bidimensionais usando o método de partição do operador.

Entre as principais características do método de Glimm estão a sua capacidade de não dissipar o choque, preservando assim, a sua magnitude e posição, além do baixo custo computacional se comparado a outros métodos de aproximação de problemas não lineares como o método de elementos finitos associado a uma técnica de captura de choques, por exemplo. Além disto, quando o comprimento dos passos tomados em relação à variável espacial tende a zero, a aproximação obtida tende a solução exata do problema, considerando, neste caso, a sua solução fraca.

No entanto, tal método apresenta uma inconveniente desvantagem uma vez que sua implementação, na simulação de problemas de valor inicial, requer o conhecimento prévio da solução completa do problema de Riemann associado a sistemas hiperbólicos.

Em essência, o método consiste em um procedimento numérico que utiliza a solução do problema de Riemann associado na geração de soluções aproximadas de equações hiperbólicas, sujeitas a condições iniciais arbitrárias. Os problemas de Riemann são problemas de valor inicial cuja condição inicial é, necessariamente, uma função degrau. Como o esquema de Glimm constrói a solução para um problema de valor inicial a partir da solução de um certo número pré-determinado de problemas de Riemann associados, para marchar no tempo de um instante $t = t_n$ a um instante $t_{n+1} = t_n + \Delta t$, a condição inicial arbitrária deve ser aproximada por funções constantes por partes.

A fim de evitar uma interação direta entre choques referentes a dois problemas de Riemann consecutivos, o avanço de tempo Δt deve ser escolhido de tal forma a satisfazer a condição de Courant-Friedrichs-Lewy, assegurando, desta forma, a unicidade da solução, ou seja,

$$\Delta t = t_{n+1} - t_n \le \frac{\Delta x}{2|\lambda|_{\max}} \tag{C.1}$$

onde $|\lambda|_{max}$ é a velocidade máxima de propagação, em valor absoluto, da descontinuidade considerando todos os problemas de Riemann no tempo t_n , ou seja, a norma do valor máximo dos autovalores do sistema.

O método de Glimm permite, assim, a construção de uma solução para problemas de valor inicial – conhecidos como sistemas hiperbólicos não lineares sujeitos a valores iniciais arbitrários – através da solução de um certo número de problemas de Riemann associados. A condição inicial arbitrária, dada por uma função da posição *x* é aproximada por funções constantes por partes, conhecidas como funções degrau. Em seguida, um problema de Riemann – um problema de valor inicial cuja condição inicial é necessariamente uma função degrau – deve ser resolvido para cada dois passos consecutivos.

Desta forma, o objetivo deste método é unir de forma apropriada a solução de tantos problemas de Riemann quantos forem necessários para evoluir de forma sucessiva de um tempo $t = t_n$ para um tempo $t_{n+1} = t_n + \Delta t$.

Este procedimento pode ser facilmente compreendido através da ilustração de um degrau genérico em um plano $x \times t$, mostrado na Figura abaixo.

Ilustração de um passo genérico no esquema de Glimm.

A Figura acima ilustra a evolução de um instante de tempo t_n para um instante subseqüente t_{n+1} , mostrando que a solução obtida no tempo t_{n+1} não é mais uma função degrau e, assim, uma nova escolha aleatória de θ_n , após cada passo de tempo, é requerida, a fim de construir a condição inicial para o próximo instante que deve ser constante por partes. Aqui θ_n é um número escolhido aleatoriamente no intervalo $\left[-\frac{1}{2}, +\frac{1}{2}\right]$ e Δx é o tamanho de cada passo ($\Delta x = x_{i+1} - x_i$).

Uma aproximação inicial para os campos F, $G \in H$ no tempo t_{n+1} , denotada como \tilde{F}_{n+1} , $\tilde{G}_{n+1} \in \tilde{H}_{i_{n+1}}$, é obtida pela aplicação do método de Glimm ao problema homogêneo associado, definido pelo seguinte sistema de equações:

$$\begin{cases} \frac{\partial F}{\partial t} + \frac{\partial G}{\partial r} = 0\\ \frac{\partial G}{\partial t} + \frac{\partial}{\partial r} \left(\frac{G^2}{F} + \tilde{p}(F) \right) = 0\\ \frac{\partial H}{\partial t} + \frac{\partial}{\partial r} \left(\frac{GH_i}{F} \right) = 0, \quad i = 1, m \end{cases}$$
(C.2)

com

$$F = \hat{F}_n(x) \quad \text{em} \quad t = t_n$$

$$G = \hat{G}_n(x) \quad \text{em} \quad t = t_n$$

$$H = \hat{H}_{i_n}(x) \quad \text{em} \quad t = t_n$$
(C.3)

Como o sistema homogêneo associado às equações (C.2) pode estar sujeito a um conjunto qualquer de dados arbitrários, é construída uma solução para este problema de valor inicial, aproximando os dados iniciais por funções constantes por partes – as funções degrau, com degraus de mesma largura.

Antes de empregar o esquema de Glimm para a resolução das equações (C.2) -(C.3), a solução (ou aproximação) do problema de Riemann associado deve ser conhecida.

Como (C.2) pode estar sujeita a quaisquer dados iniciais arbitrários é conveniente representá-los como:

$$F(x,0) = F_0(x)$$

$$G(x,0) = G_0(x)$$

$$H_i(x,0) = H_{i_0}(x)$$

(C.4)

Assim, (C.2) e (C.4) caracterizam um problema de valor inicial. A implementação do esquema de Glimm requer a aproximação das condições iniciais (C.4) por funções degrau que, para o problema considerado neste trabalho, serão consideradas funções com larguras iguais a dos passos.

O primeiro procedimento para empregar este esquema é aproximar os dados iniciais (no tempo t_n) pelas funções constantes por partes apresentadas a seguir:

$$F = \hat{F}_{n}(x) \approx F_{n_{j}} = \hat{F}_{n}(x_{j} + \theta_{n}\Delta x) \quad \text{para} \quad x_{j} - \frac{\Delta x}{2} < x < x_{j} + \frac{\Delta x}{2}$$

$$G = \hat{G}_{n}(x) \approx G_{n_{j}} = \hat{G}_{n}(x_{j} + \theta_{n}\Delta x) \quad \text{para} \quad x_{j} - \frac{\Delta x}{2} < x < x_{j} + \frac{\Delta x}{2} \quad (C.5)$$

$$H = \hat{H}_{i_{n}}(x) \approx H_{i_{n_{j}}} = \hat{H}_{i_{n}}(x_{j} + \theta_{n}\Delta x) \quad \text{para} \quad x_{j} - \frac{\Delta x}{2} < x < x_{j} + \frac{\Delta x}{2}$$

onde, como mencionado anteriormente, θ_n é um número escolhido aleatoriamente no intervalo $\left[-\frac{1}{2}, +\frac{1}{2}\right]$ e Δx é o tamanho de cada passo ($\Delta x = x_{i+1} - x_i$). Tal procedimento é ilustrado pela aproximação mostrada na Figura:

Construção de uma distribuição constante por partes para uma função F

As aproximações mostradas na equação (C.5) para os dados iniciais geram, para cada dois degraus consecutivos, um problema de valor inicial conhecido como problema de Riemann, associado às equações (C.2)-(C.3) desde que algumas condições sejam verificadas. Primeiro, o sistema deve ser hiperbólico e genuinamente não linear. A fim de garantir essa hipótese, a primeira derivada da pressão em relação a massa específica, p', deve ser positiva. Além disto, o problema de Riemann representa um tipo especial de problema de valor inicial definido, neste caso, como:

$$\begin{cases} \frac{\partial F}{\partial t} + \frac{\partial G}{\partial r} = 0\\ \frac{\partial G}{\partial t} + \frac{\partial}{\partial r} \left(\frac{G^2}{F} + p(F) \right) = 0\\ \frac{\partial H_i}{\partial t} + \frac{\partial}{\partial r} \left(\frac{GH_i}{F} \right) = 0 \qquad i = 1, m \end{cases}$$
(C.6)

com

$$(F,G,H) = \left(F_{n_j},G_{n_j},H_{i_{n_j}}\right) \quad \text{para} \quad t = t_n , \quad -\infty < x < x_j + \frac{\Delta x}{2}$$
$$(F,G,H) = \left(F_{n_{j+1}},G_{n_{j+1}},H_{i_{n_{j+1}}}\right) \quad \text{para} \quad t = t_n , \quad x_j + \frac{\Delta x}{2} < x < \infty$$

Seja $\overline{F}_{n_j}, \overline{G}_{n_j} \in \overline{H}_{i_{n_j}}$ a solução generalizada das equações (C.6) - (C.7). Então, a aproximação para a solução das equações (C.2) - (C.3) no tempo t_{n+1} é dada por:

$$\begin{aligned} F &= \hat{F}_{n+1}(\mathbf{x}) \approx \overline{F}_{n_j}(\mathbf{x}, t_{n+1}) & \text{para } \mathbf{x}_j < \mathbf{x} < \mathbf{x}_{j+1} \\ G &= \hat{G}_{n+1}(\mathbf{x}) \approx \overline{G}_{n_j}(\mathbf{x}, t_{n+1}) & \text{para } \mathbf{x}_j < \mathbf{x} < \mathbf{x}_{j+1} \\ H &= \hat{H}_{i_{n+1}}(\mathbf{x}) \approx \overline{H}_{i_n}(\mathbf{x}, t_{n+1}) & \text{para } \mathbf{x}_j < \mathbf{x} < \mathbf{x}_{j+1} \end{aligned}$$
(C.8)

Após cada avanço no tempo, a solução obtida não mais representa uma função degrau. Assim sendo, uma nova escolha aleatória é necessária que permita construir a condição inicial na forma de uma função degrau para realizar a evolução no tempo de um dado instante t_n para o próximo instante t_{n+1} , empregando o método de Glimm.

Se a solução para um dado instante de tempo t_n for conhecida, os dados iniciais para o próximo degrau, t_{n+1} , são aproximados por:

$$F_{j_n} = F(x_j + \theta_n \Delta x, t_n) \quad \text{para} \quad x_j - \frac{\Delta x}{2} < x < x_j + \frac{\Delta x}{2}$$

$$G_{j_n} = G(x_j + \theta_n \Delta x, t_n) \quad \text{para} \quad x_j - \frac{\Delta x}{2} < x < x_j + \frac{\Delta x}{2}$$

$$H_{i_{j_n}} = H_i(x_j + \theta_n \Delta x, t_n) \quad \text{para} \quad x_j - \frac{\Delta x}{2} < x < x_j + \frac{\Delta x}{2}$$
(C.9)