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5 PERIODIC BOUNDARY CONDITIONS

5.1 Introductory remarks

Geometrically periodic configurations arise in many industrial applications and may

thenceforward lead fluid flows to some repetitive behaviour. This periodic nature is the basis

for several systems, including those operating under a cyclic way. For instance, periodic flows

occur in heat exchangers, evaporators, condenser tubes and electronics cooling, at which

either arrays of fins or plates are periodically arranged, thus creating sorts of patterns that

influence the flow and other properties of the system.

PBC have been an appreciated tool by researchers in attempting to obtain compu-

tational efficiency when either fully-developed or periodic regimes are taken into account.

Also, PBC are typically intended to isolate bulk phenomena, when one considers that the

boundaries of the real physical system have minor effects. Flows of granular material [?],

fluid-particle flows [?], molecular dynamics [?], heat and mass transfer problems [?], and the

dynamics of gas-liquid flows in long oil pipelines [?] are some examples of fields where this

strategy was used. Some of the references aforementioned use “simulation box”, “unit cell”,

or “tiling” as referring to PBC simulations, since the overall flow dynamics is confined into a

piece of the domain. Intuitively, the simplest way to idealize the periodicity is to set the same

values of an arbitrary quantity on the extremities of the cell.

In regard to a topological point of view, a two-dimensional strip, for instance, can

generate a cylinder just as a cylinder can generate a torus by “gluing" their extremities each

other. Such topological relations as well as the “tiling” process are depicted in Figure 29

to single out the periodic passage of generic streamlines of a representative in-loop flow.

Alike procedure to generate prismatic geometries is done by extrusion of elementary shapes,

through which periodic boundaries are identified by geometrical relations, such as reflections

or translations. When carrying these operations to the FE context presented here, a few

requirements must be fulfilled to avoid degradations and discontinuity of the solution over

the elements whose DOFs are under imposition of PBC. In this chapter, the whole strategy

to apply PBC on the ALE/FEM context studied is presented in details from the mesh pre-

processing stage. Comments on the mathematical formulation through FEM as well as the

computational implementation come next.
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Figure 29: Sketch of the topological mappings, “tiling” process, and in-loop flow settings for
generic geometries: 2D strip at left and 3D torus at right.

5.2 Design of periodic meshes and their pre-processing

It is assumed here that the PBC implementation depends on meshes that ensure a

one-to-one spatial correspondence between each pair of nodes belonging to each periodic

boundary chosen a priori. The strategy to build periodic meshes - thus termed because of

their geometrical construction - is based on both topological and geometrical ideas as before

mentioned. In this thesis, the surface mesh T Γ
hΓ

is generated through user-defined scripts

inserted into the GMSH software during the pre-processing stage. Sequentially, the volume

mesh T Ω
h is created during the code runtime.

Following [?], we will refer to the DOFs of a periodic mesh as: master, slave, or internal

according to their spatial location. It is worth to comment that in this context, DOFs and

nodes are terminologies used almost interchangeably since the main ideas behind the periodic

correspondence are of geometrical nature. The master DOFs will be those placed over the

boundary chosen to be at the upstream side of the flow, whereas the slave ones will be their

downstream counterparts. All the remnant DOFs, i.e. those that are out of the periodic

boundaries will be, hence, internal, even if they belong to nonperiodic boundaries. At first,

the master and slave nodes have different spatial coordinates over the mesh as regards the

period length, but, practically, their independence is changed by an overloading process by

which the slave DOFs render “dummy nodes”, thereby matching exactly the sites of the master
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DOFs. This numerical artifice eliminates the slave DOFs fictitiously to favour the periodic

simulation. Figure 30 (see a two-dimensional version in [?]) sketches the three-dimensional

geometrical rudiments to establish the PBC in the FEM. For this specific example, let ΓL , ΓR

be the master and slave periodic boundaries, respectively, and consider xL = (xL , yL , zL) ∈ ΓL ,

xR = (xR , yR , zR ) ∈ ΓR to be the master and slave nodes holding the DOFs of interest. For ι

nodes of discretization, the sequences

(xL ; ι) := {xL,1,xL,2, . . . ,xL,ι}

(xR ; ι) := {xR,1,xR,2, . . . ,xR,ι}

define the geometrical periodicity of the mesh if

xR = xL +LP eP (5.1)

for each pair of nodes.

periodic copy

process

flow direction

Figure 30: Geometrical sketch of the PBC implementation for a 3D periodic finite element
mesh.

In consequence of the geometrical identification, we achieve conformity between the

elements sharing the periodic boundaries. For a better view of this, letΩe
L,1 andΩe

R,1 be the

1-ring neighbours of ΓL and ΓR , respectively, where the definition of “k-rings” here is adapted

from that used by [?] to establish the pairing between the two families of periodic elements.

In this case, the entity shared with each periodic element is the boundary surface itself. In
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other words,

Ωe
d ,1 := {∪E

e=1Ω
e
d ; F e

d ∩Γd 6= ;}, d = L,R. (5.2)

Moreover, some elements can also share only nodes rather than an entire edge or face, thus

allowing that some F e
d is understood as a point only. In this manner, the DOFs that connect

edges and faces over the boundaries are prepared to undergo the “gluing” operation by which

the contributions of the slave DOFs are cumulative over the master nodes. That is to say, the

boundary faces of the elements ofΩe
L,1 are connected (in a continuous sense) to the internal

elements at right the equations relative to the nodes of ΓR are disregarded in the matrices

assembled via the standard FE process, which is discussed in the coming sections. In Figure

30, xL, j , xR, j represent the master and slave nodes, respectively, that seal a periodic pair,

whereas xe
L, j , xe

R, j are two nodes underpinning the 1-ring element blocks depicted therein.

Such nodes can be more informally recognized as “hooks” of the “umbrella” shape that is

formed by these tetrahedra and are excluded from the computational periodicity. Even tough,

they might be so geometrically since the meshes are always generated with volume restriction,

thus enforcing, in this case, quasi-symmetric elements due to the quality tetrahedralization.

The unstructured periodic meshes scripts take the built-in command Periodic Surface of

the GMSH software into account to generate, thereafter, an automatized mechanism that

transcribes the surface mesh placed over the master boundary onto the slave boundary. For a

sample script about how to generate surface periodic meshes inside a two-phase context (this

is the case of Figure 18), see Appendix C.

5.3 Periodic decomposition via the transformed variable approach

The imposition of PBC via the transformed variable approach used here follows the

physical model introduced by [?] through which the variables of the flow are converted into a

cyclic state. According to such a model, the main motivation to be conserved is that of dealing

with fully developed flows without having to face computations involving effects of entrance

region. Although the simulations presented in this thesis encompass mainly hydrodynamic

effects, other physical effects, such as thermal, concentration and electromagnetic fields can

be suitably treated through this approach if PBC were equally required (see Subsection 6.1.2).

Since this transformation decouples the flow of the entrance region, some kind of
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forcing term should be included in the model to compensate the fictitious in-loop domain

enforced by the periodicity. As suggested by [?], velocity and pressure should be treated

differently in the fully developed regime. While the velocity field obeys a relation of kind

v|ΓL = v|ΓR (5.3)

at the extremities of the periodic cell, the pressure drop is periodic along the cell length,

instead of the pressure field itself. For this reason, the approximation

∂p

∂(x ·eP )
≈ ∆p

LP
= p|ΓR

−p|ΓL

LP
=β (5.4)

used for a fluid flowing along the direction eP inside a cell of period LP , describes the periodic

pressure drop by means of a constant gradient. In this manner, β can be interpreted as a

mass flow producer and taken to characterize a decomposition of the pressure field p of the

momentum equation as

p =−β(x ·eP )+ p̃, (5.5)

where p̃ is related to the local motions of the flow, so that holds

p̃|ΓL
= p̃|ΓR

. (5.6)

As suggested by [?], [?], p̃ is said to be a reduced pressure. With this formulation, the prescrip-

tion of a pressure gradient is expected, as opposed to a mass flow, or inflow condition. Despite

of this interpretation valid for channel flows, for instance, the physical sense of β can take on

other facets.

On the other hand, we should bear in mind that Equation (5.5) evokes the hypothesis

on unidirectional fully-developed flow and might be the simplest way to settle a forcing term

for the periodic problem given the linear pressure drop. Furthermore, β as above is a dimen-

sional value. To be introduced in the dimensionless momentum equation, some suitable

form should be found (cf. [?], [?]). Depending on the physical situation to be simulated, β

may work as a body force acting on the fluid flow. This is the case, for instance, in a Poiseuille

starting flow (cf. Sec. 4 of [?]). For now, by choosing reference quantities for the Equation (5.5),
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we will assume that one of its possible representative dimensionless forms is

p

ρr e f U 2
r e f

=− βLr e f

ρr e f U 2
r e f

(x ·eP )

Lr e f
+ p̃

ρr e f U 2
r e f

⇒ p∗ =−β∗(x∗ ·e∗P )+ p̃∗, (5.7)

whose asterisk can be dropped out to have consistency with Equations (3.40) and (3.42).

Therewith, the dimensionless pressure gradient term is given by

β∗ = βLr e f

ρr e f U 2
r e f

=
(

β

ρr e f U 2
r e f

)
Lr e f . (5.8)

Since the term inside parentheses is the Euler number, we will associate β∗ with this dimen-

sionless group by defining

β∗ := Euβ∗ , (5.9)

and calling Euβ∗ an Euler number associated to the pressure gradient.

After dropping out the asterisk and inserting Equation (5.7) into Equation (3.43a), the

momentum equation takes on the form

B1,P (v, p̃, f; v̂,ρ,µ,g) := ρ
(
∂v

∂t
+ (v− v̂) ·∇v

)
−Euβe1 +∇p̃

− 1

Re
∇· [µ(∇v+∇vT )]− 1

F r 2
ρg− 1

W e
f = 0 (5.10)

being now p̃ the unknown to be determined.

The periodic boundary conditions resulting therefrom are

v|ΓL = v|ΓR (5.11)

nL ·∇v|ΓL =−nR ·∇v|ΓR (5.12)

p̃|ΓL = p̃|ΓR (5.13)

nL ·∇p̃|ΓL =−nR ·∇p̃|ΓR . (5.14)

These relations express the need for continuity over the periodic boundaries and assure that

the primitive variables are identical both in the inlet and outlet, thus closing the connection

loop, i.e. the fluid should leave the domain just as it comes in. In the FEM context, the

Neumann conditions play a relevant role during the assembling process of the elemental
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matrices modified for PBC which is explained in the next section. Comini et al. [?] underlined

that the normal derivative can be prescribed as zero or nonzero, depending if orthogonal or

skew incoming flow is desired, but the second case is not examined here.

5.4 FE/PBC implementation

Different methodologies are available to impose PBC through a FE approach both

in periodic and non-periodic meshes [?], [?], [?], [?], [?], [?]. Generally, they encompass the

enforcement of nodal connectivity through auxiliary lists during the assembling process of

the FE global system matrices as well as operations to suppress or sum rows and columns in

the global matrices. In this thesis, we have opted by the second strategy, which will be detailed

through the next sections.

5.4.1 Variational formulation in periodic domains

Analogous ideas to those presented in Section 4.3 are reused here to set forth a periodic

variational formulation for the governing equations. We start by putting together the forms

defined in Equations (5.10), (3.43b) and (3.43c) in the system


B1,P (v, p̃, f; v̂,ρ,µ,g)= 0

B2(v)= 0

B3(Ψ)= 0.

(5.15)

Next, define the following weight function spaces:

VP := {w ∈H 1
P (Ω); ∇·v = 0,v(x) = v(x+LP eP ), x ∈ ΓL}

QP := {q ∈L 2
P (Ω); q(x) = q(x+LP eP ), x ∈ ΓL}

RP := {r ∈L 2
P (Ω); r (x) = r (x+LP eP ), x ∈ ΓL}.

These spaces gather periodic functions used to comply with a variationally consistent formu-

lation of FE with PBC (cf. [?], [?]). Thenceforward, except for the addition of periodic weight

functions (vP , qP , rP ) ∈ (VP ,QP ,RP ) in the weak form equations (cf. Equations (4.29), (4.8a)
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and (4.8b), the system Equation (5.15) is identical to the original forms. Therefore,


B1,P (vP , p̃, f; v̂,ρ,µ,g)= 0

B2,P (vP )= 0

B3,P (ΨP )= 0

(5.16)

is the homologous periodic version of Equation (5.15) in the sense of Galerkin. The mesh

velocity field v̂ is not considered periodic since the methodology employed here prevents

the motion of T Γ2
. Consequently, nodes lying on the periodic boundaries are stationary

concerning the field v̂.

That said, when assigning bilinear forms similar to the standard formulation, the terms

expanded from the weighting of Equation (5.16)


∫
ΩB1,P (vP , p̃, f; v̂,ρ,µ,g) ·wP dΩ= 0∫

ΩB2,P (vP ) ·qP dΩ= 0∫
ΩB3,P (ΨP ) · rP dΩ= 0

(5.17)

give rise to the respective discrete equations for the quantities involved:

mρ,P (ρ;vn+1
h,P ,wh,P )+ ∆t

Re1/2
kP (µ;∇vn+1

h,P ,∇wh)+

+∆t gP (p̃n+1
h ,∇·wh,P ) =∆trn

h,P (5.18a)

dP (vn+1
h,P ,∇·qh,P ) = 0 (5.18b)

with rn
h,P = mρ,P (ρ;vn

h,d ,P ,wh,P )+mρ,P (ρ;gn
h ,wh,P )+

+λEuβmP (ϕn
h,P eP ,wh,P )+ 1

W e
(fσ

n
h ,wh,P )

with ψn
h,P eP , vh ,wh ∈ V h

P ⊂ VP and p̃h , qh,P ∈Qh
P ⊂QP for the momentum; and

mΨ,P

(
Ψn+1

h,P ,rh,P

)
+ ∆t

ReSc
kΨ,P (%;∇Ψn+1

h,P ,∇rh,P ) =∆tmΨ,P (Ψn
h,d ,P ,rh,P ). (5.19)

withΨh,P ,rh,P ,∈Rh
P ⊂RP for the scalar field.

All the bilinear forms P-subscripted above can be compared to their counterparts, viz.

Equations (4.31), (4.16a) and (4.16b). Different than the others, the termλEuβmP (ϕn
h,P eP ,wh,P )

have null contributions in the coordinates transverse to the streamwise periodic flow. In

other words, ϕn
h,P eP are the shape functions relative to the periodic direction eP chosen that
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determines

(ϕn
h,P eP ,wh,P ) = δi P (ϕn

h,P eP ,wh,P ), 1 ≤ i ,P ≤ 3, (5.20)

for the Kronecker’s delta δi P , i.e. the pressure gradient λEuβ acts only when i = P .

In turn, Equations (5.19), (5.18a) and (5.18b) generate the following set of matrix

equations:

Mρ,P vn+1
P + ∆t

Re
KP vn+1

P

+∆tGP p̃n+1 =∆t

[
Mρ,P vn

d ,P +MP bn + 1

F r 2
Mρ,P gn + 1

W e
MP fn

]
(5.21a)

DP vn+1
P = 0 (5.21b)

MΨ,PΨ
n+1
P + ∆t

ReSc
KΨ,PΨ

n+1
P =∆tMΨ,PΨ

n
d ,P , (5.21c)

with bn =λEuβeP .

Following by analogy to Equation (4.35), eqs. (5.21a - 5.21c) can be written as


BP vn+1

P +∆tGP p̃n+1= b1,P

DP vn+1
P = b2,P

BΨ,PΨ
n+1
P = b3,P ,

(5.22)

for each r.h.s. vector given by bi ,P , i = 1,2,3.

Although it is possible to develop a formal essay of the periodic variational formulation

– as expressed by Equation (5.22) –, the PBC can be enforced in a more pragmatic manner

by spanning directly the nonperiodic operators in the matrices already assembled during

the original formulation. The incorporation of the DOFs belonging to the periodic nodes

is reached through a pseudounion of the shape functions of the 1-ring neighbour elements

of ΓL , ΓR , which is given by changing the interelement connections in the global matrices.

Explanation in details about this procedure is given in [?].
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5.4.2 Computational implementation

Approaches to implement PBC may fall into a strategy of full reordering of the matrix

system by reassembling process. On the other hand, this step may also involve laborious

modifications in a large computational code, since all the matrices and vectors would have to

be rearranged. Instead performing reassembling operations, it is advisable to pave the entire

PBC problem yet during the assembling stage. Segal et al. [?] suggest that the global system is

previously mounted under PBC restrictions. Nonino and Comini [?] also have worked with

similar strategies. This track ends on a system like Equation (5.22). Alternatively, to circumvent

this painstaking task of reassembling, we have chosen to take a shortcut to eliminate the

DOFs corresponding to the slave periodic boundary. The proposed algorithm runs through

the original matrix system by localizing the indices of the connection elements and modifies

the elementary submatrices directly, thus avoiding additional memory allocation. A slightly

different strategy based on the manipulation of lists is explained, for instance, in [?].

During the elimination process, consider (i , j ) an arbitrary pair of indices identifying

the nodes over the periodic boundaries ΓL and ΓR , respectively; i bL a particular index for

each node over ΓL and i bR a particular index for each node over ΓR . Let us consider, for

m = 0,1,2,

A (i , j ;m)[·] =

i bL i bR i bLN i bRN



. . . | ... | ... | ... | ...

b(i+mυ,i+mυ) 0 ? 0 i bL
... | . . . | ... | ... | ...

0 b( j+mυ, j+mυ) 0 • i bR
... | ... | . . . | ... | ...

? 0 4 0 i bLN

... | ... | ... | . . . | ...

0 • 0 ¦ i bRN

... | ... | ... | ... | . . .

(5.23)

a symmetric submatrix-model for the original formulation containing the Neumann in-

terelement contributions according to the FE discretization for the pair (i bL, i bR). Above,
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i bLN , i bRN mark rows (columns) relative to an arbitrary node which is connected to the

periodic pair and the symbols at the crossed entries represent nonzero contributions. Hence,

this matrix is a substratum of what each global matrix contains on the rows (columns) for the

respective dimension. That is, if m = 0, the matrix is relative to a one-dimensional discretiza-

tion; if m = 1, two blocks like the one above should be modified; if m = 2, the discretization is

three-dimensional.

For each pair (i , j ), with i = i bL, i bR, j = i bL, i bR; i , j = 1, . . . , ι, found after algorith-

mic search, A [·] will be modified directly inside the matrices B, D, G, Ẽ from eqs. (4.25 - 4.27),

and BΨ from Equation (4.33) respecting their dimensions to obtain the periodic counterparts

BP , DP , GP , ẼP , and BΨ,P . Note that ẼP results of the LU-factorization for the periodic prob-

lem by analogy. Besides, since D and G are nonsquare matrices, A [·] must be adapted to be

dimensionally consistent. For three-dimensional problems, it turns out that

dim(B) = dim(BP ) = 3ιv ×3ιv (5.24a)

dim(D) = dim(DP ) = ιs ×3ιv (5.24b)

dim(G) = dim(GP ) = 3ιv × ιs (5.24c)

dim(Ẽ) = dim(ẼP ) = ιs × ιs (5.24d)

dim(BΨ) = dim(BΨ,P ) = ιs × ιs , (5.24e)

so that υ= ιv controls the number of DOFs of the velocity field by component, while υ= ιs
controls the number of DOFs of the pressure and scalar fields.

Thenceforth, the original matrices acquire their periodic version by

i) summing the row of A [·] relative to the periodic node i bL to the respective row relative

to the periodic node i bR,

ii) summing the column of A [·] relative to the periodic node i bL to the respective column

relative to the periodic node i bR,

iii) zeroing the row i bL,

iv) zeroing the column i bR and, finally

v) adding “1” at the diagonal entries (i bL, i bL) to avoid indetermination.
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This process results in

AP (i , j ;m)[·] =

i bL i bR i bLN i bRN



. . . | ... | ... | ... | ...

1 0 0 0 i bL
... | . . . | ... | ... | ...

0 ΣP (i , j ;m) ? • i bR
... | ... | . . . | ... | ...

0 ? 4 0 i bLN

... | ... | ... | . . . | ...

0 • 0 ¦ i bRN

... | ... | ... | ... | . . .

(5.25)

with

ΣP (i , j ;m) = b(i+mυ,i+mυ) +b( j+mυ, j+mυ), i , j = i bL, i bR; m = 0,1,2. (5.26)

Accordingly, let

U (i , j ;m)[·] =





...

c(i+mυ) i bL

|
c( j+mυ) i bR

...

� i bLN

|
∗ i bRN

...

m = 0,1,2, (5.27)

be a model for the elementary vectors of contribution. U [·] will be modified directly inside

the vectors b̃1, b̃2 from Equations (4.25) and (4.26), and bΨ = rn
Ψ+bcΨ from Equation (4.33)

respecting their dimensions to obtain the periodic counterparts b1,P , b2,P , and b3,P as referred
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in Equation (5.22) resulting in

U (i , j ;m)[·] =





...

0 i bL

|
ΣP (i , j ;m) i bR

...

� i bLN

|
∗ i bRN

...

m = 0,1,2, (5.28)

with, this time,

ΣP (i , j ;m) = c(i+mυ) + c( j+mυ), i , j = i bL, i bR; m = 0,1,2, (5.29)

and the zeroed component i bL as opposed to the model-matrix U [·].
The general algorithm of elimination of DOFs for the matrices and vectors of Equa-

tion (4.36) according to the previous models reads, for each time step t , as:
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for t : (0,T ] do

for i : [1, ι] do

for m : {0,1,2} do

i bL = iL(i ) ; /* iL: vector of indices ibL */

i bR = iR (i ) ; /* iR: vector of indices ibR */

A t (i bL, ·) ←A t (i bL, ·)+A t (i bR, ·) ; /* summing rows */

A t (·, i bL) ←A t (·, i bL)+A t (·, i bR) ; /* summing columns */

A t (i bR, ·) = 0 ; /* zeroing row ibR */

A t (·, i bR) = 0 ; /* zeroing column ibR */

if A [·] .= B, Ẽ,BΨ then

A t (i bL+mυ, i bL+mυ) = 1 ; /* filling diagonals */

end

if U [·] .= b̃1, b̃2,bΨ, (v, p̃,Ψ) then

U t (i bR +mυ) =U t (i bL+mυ) ; /* imposing periodicity */

end

t ← t +∆t

end

end

end

Observe, however, that (v, p̃,Ψ) must turn into (vP , p̃,ΨP ) each time step to update the

periodic solution of Equation (5.22). This is achieved applying the copying process provided

by U over these vectors. Besides, for three-dimensional problems, it turns out that

dim(b̃1) = dim(b1,P ) = 3ιv ×1 (5.30a)

dim(b̃2) = dim(b2,P ) = ιs ×1 (5.30b)

bΨ = dim(b3,P ) = ιs ×1 (5.30c)

dim(v) = dim(vP ) = 3ιv ×1 (5.30d)

dim(p) = dim(p̃) = ιs ×1 (5.30e)

dim(Ψ) = dim(ΨP ) = ιs ×1 (5.30f)

(5.30g)

so that, as aforementioned, υ = ιv controls the number of DOFs of the velocity field by
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component, while υ= ιs controls the number of DOFs of the pressure, periodic pressure and

scalar fields.

The overloaded equations due to the periodic modification can be better viewed if we

write the symbolic equation of the arguments (BP ,vP ,b1,P )

AP (i bL, i bR;0)[BP ]UP (i bL, i bR;0)[vP ] =UP (i bL, i bR;0)[b1,P ], (5.31)

the equations for the periodic pair (i bL, i bR) relative to the x−component of the velocity field

can be extracted:

i bL : [1]× [0] = [0] (5.32)

i bR : [B(i bL,i bL);P,x +B(i bR,i bR);P,x]× [vi bL;P,x +vi bR;P,x]+ [?x]× [�x]+ [•x]× [∗x] (5.33)

(5.34)

showing, de facto, the gist of the elimination process. The first equation is left out from the

computational effort; the second equation, hence, is overloaded, being interpreted as the sum

of two parcels: overload + extra contribution. Furthermore, in terms of matrices, the previous

arguments are embedded into a much bigger system formed by the parts

BP =


BP,x

BP,y

BP,z

 ; vP =


vP,x

vP,y

vP,z

 ; b1,P =


b1,P,x

b1,P,y

b1,P,z

 (5.35)

The same ideas apply to the other matrices, submatrices, vectors and subvectors making up

the system in Equation (5.22).

5.4.3 Repair of the backward-in-time Semi-Lagrangian search

When the approximation of the advective term through the SL method is applied

to the nodes near and over the master boundary, the backward-in-time search of the de-

parture points of the particle trajectories may “leak” outward the periodic cell for a higher

CFL number. Although the usual manner to correct this deviation is to push them back

to the boundary in order to be interpolated, this event has to be repaired by compensat-

ing the distance among two correspondent periodic nodes when PBC are implemented.
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flow direction

Figure 31: Displacement of the “leaked” departure points to correct the Semi-Lagrangian
backward-in-time search in a periodic domain.

Considering that we only deal with parallel boundaries here, this computation is done sim-

ply by adding once the length of the domain to the points whose streamwise coordinate

value falls outside the domain limits. Through this mechanism, the escaped points along

the time are rebounded to the opposite side, thus entering back into the domain. Poten-

tial flaws of interlement discontinuities are removed with such repair so that the correct-

ness of the advective interpolation as well as the cyclic behaviour of the simulation are

ensured. A two-dimensional schematic representation of this repair is depicted in Figure

31 for eP = e1. The condition for the departure points is given by the code snippet below

concerning the streamwise x−direction. Points x j are advected backward-in-time to the

departure points x j ,d , which are displaced toward the flow direction to the points x j ,d +LP e1.

for x j ∈Th do
Finds x j ,d

if x j ,d ·e1 < min{x j ,d ·e1} then
x j ,d ·e1 ← x j ,d ·e1 +LP

end

end
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6 CODE VALIDATION

6.1 Taylor vortex in highly viscous fluid

6.1.1 Spatial validation of PBC

A single-phase flow manufactured test to verify the spatial DOFs copying process

over the periodic boundaries is presented in this section. The domain is a simple cuboid of

dimensions 1.5Lr e f ×Lr e f ×0.2Lr e f , where Lr e f is the width as depicted in Figure 32. A Taylor

Figure 32: Periodic domain of simulation for a Taylor vortex carried away in a high viscous
fluid flow.

vortex, which is an analytical solution of the Navier-Stokes equations [?], is placed over the

domain as initial condition to evaluate the numerical error produced by addition of the PBC

in the computational code. The vortex’s velocity profile is written in dimensionless cylindrical

coordinates as

vr (t ) = 0 (6.1a)

vθ(t ) =$r exp

(
− r 2

4rc Re−1
t

)
(6.1b)

vz(t ) = 0 (6.1c)
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Parameter Value

rc Lr e f /30
Ur e f 1
$ 1
Re 35
Sc 650
∆t 0.1

Table 2: Physical parameters of the Taylor vortex flow.

and transformed to cartesian coordinates as

vx(t ) =Ur e f − vθ(t )sin(θ) (6.2a)

vy (t ) = vθ(t )cos(θ) (6.2b)

vz(t ) = 0 (6.2c)

to work as input data. Above,$ is the circulation, rc is the vortex’s core radius in the vθ-profile,

and Ur e f is an increment of tangential velocity added to push the vortex downstream. Once

the transient parcel of the tangential velocity decays rapidly with time, the time step ∆t as

well as the fluid flow properties were selected to produce a qualitative analysis of the vortex’s

hydrodynamics during this short period of unsteadiness as listed in Table 2.

Besides the enforcement of the PBC for velocity and pressure already expounded in

Equations (5.11 - 5.14) over ΓL and ΓR , the additional boundary conditions for this test are

slip (Γsl i p ) for the top and bottom surfaces and of moving walls (Γmov ) for the lateral surfaces

as follows:

v · t =Ur e f ; v ·b = v ·n = 0, at Γmov (6.3a)

v ·n = 0, at Γsl i p (6.3b)

Observe that n points outward the domain’s walls and b is the binormal vector per wall. To

anticipate the periodic passage of the vortex through the walls ΓL and ΓR , its center is shifted

from the domain’s center toward this side.

The relative error of velocity measured in the L 2-norm for this test is plotted in Figure
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33 and computed as

er el =
{∫

Ω

(v−vh)2

v2
h

} 1
2

(6.4)

The error curve limited by O (10−3) decreases monotonically until getting a minimum. Due to

the fast vortex’s dissipation observed, the analysis was performed in the range 0 ≤ t < 2.8.
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Figure 33: Relative error in L 2-norm of the velocity profile for the Taylor vortex flow.

6.1.2 Scalar transport with PBC

In addition to the hypothetical viscous fluid being simulated, the Gaussian profile

of a scalar quantity described in Equation (6.5) was also distributed initially throughout

the domain to verify the compatibility of PBC for cases of a passive scalar transportation

with Sc ≈ 650.0. Such conditions can, for instance, describe the spreading of contaminants

through sludge flows - provided that the hypothesis of Newtonian fluid is valid -, dissolved

salts in industrial mixing as well as represent the advection of low diffusivity chemical agents

interspersed in highly viscous liquids.

φ(x) = a exp

[
− (x ·e2 −xm)2

2b2

]
cos(x ·e1), b = 1

2π
(6.5)
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Figure 34: Taylor vortex’s velocity profile vx : (a) t = 0.0; (b) t ≈ 0.4; (c) t ≈ 0.8; (d) t ≈ 1.2.
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Figure 35: Taylor vortex’s velocity profile vy : (a) t = 0.0; (b) t ≈ 0.4; (c) t ≈ 0.8; (d) t ≈ 1.2.
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where xm is a point on the central plane parallel to the flow and the peak a = 0.8. Consequently,

the periodic boundary condition

φ|ΓL =φ|ΓR (6.6)

must accompany the Equations (6.3a) and (6.3b). Some pictures of the vortex’s streamwise
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Figure 36: Taylor vortex’s periodic pressure profile p̃: (a) t ≈ 0.4; (b) t ≈ 0.8; (c) t ≈ 1.2.

and transverse velocity profiles, periodic pressure field, and scalar field are depicted in Figure

34 and Figure 37 for three time instants, besides the initial condition. As seen, the continuity

of the profiles, before, during, and after crossing the periodic walls show the validity of the
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Figure 37: Scalar φ being carried by the fluid flow: (a) t = 0.0; (b) t ≈ 1.1; (c) t ≈ 2.0; (d) t ≈ 2.9.
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copying process embedded in the algorithm. In Figure 36, since the periodic pressure field

is zero at the initial instant, the picture was suppressed of the roster. On the other hand, as

depicted in Figure 37, the prolonged diffusion of the scalar field allows its observation a little

further beyond from the state saturated achieved more rapidly by the velocity.

6.2 Air bubble plume rising in quiescent water

6.2.1 Periodic array of in-line rising bubbles

Let Ω ⊂ R3 be the domain depicted in Figure 38 and Γ its boundary defined as Ω =
Ω1∪Ω2 and Γ= Γ1∪Γ2, with Γ2 = Γ∞∪ΓP , where the subscripts 1,2 indicate, respectively, the

dispersed phase and continuous phase of the flow, Γ∞ the Dirichlet portion of Γ2, and ΓP its

supplementary periodic portion. Here, Γ∞ is placed far from the bubble plume to account for

the bulk liquid region where the local interactions are mitigated. This boundary receives a

moving wall condition to ensure the well-known MFR technique (cf. Section 7.2, while the

PBC are assigned to ΓP = ΓT ∪ΓB . The surfaces ΓT and ΓB satisfy ΓT ≡ x+Le, ∀x ∈ ΓB for a

unit vector e as depicted by the element patches in light gray, i.e. the upper boundary ΓT is

topologically equivalent to ΓB by a displacement L. The extended plume model consists of an

arrangement containing spherical bubbles of diameter Db equally spaced from above and

below (relative to the poles) by a gap length s = Db and immersed into a cylinder of diameter

D À Db , whereas the periodic cell considers a slice of this configuration. To take into account

the effect of the periodic boundaries on the bubble wake region as well as minimize the

effects of the lateral wall, we set L = s +Db and D = 10Db for the cell’s period and diameter,

respectively.

6.2.2 Mathematical model

A detailed test for the case of an air bubble rising in an aqueous sugar solution con-

sidering PBC and the upward force caused by the pressure gradient Euβ (cf. Section 5.3) was

used to check the mathematical model and compared to recently published results [?]. For the

bubble plume, the equations valid for both phases separately, are written in the differential



125

(a)

periodic patch
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(b)

Figure 38: Arrangement of the unconfined in-line bubble plume: (a) extended plume model;
(b) detail of the periodic cell.

form as

ρ

(
∂u

∂t
+ (u− û) ·∇u

)
=λEuβe−∇p̃ + 1

Ar 1/2
∇· [µ(∇u+∇uT )]+ρg+ 1

Eo
f (6.7a)

∇·u = 0, in Ω× t , (6.7b)

with the dimensionless parameters Ar and Eo, viz. the Archimedes and Eötvös numbers,

respectively, defined by means of

Ar =
gr e f D3

r e f ρr e f

µ2
r e f

Eo =
ρr e f gr e f D2

r e f

σr e f
, (6.8)

take the place of the Re and W e number in Equation (3.40). In this case, Dr e f = Db ,ρr e f =
ρ2,µr e f = µ2. Moreover, for this analysis, a convenient way to obtain the dimensionless

pressure gradient it is to divide Equation (5.5) by ρr e f gr e f Dr e f and scale the reference velocity
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by
√

gr e f Dr e f . Thenceforth,

p∗ =−
(
βr e f

ρ2gr e f

)(
LP

Db

)
(x∗ ·e∗)+ p̃∗ (6.9)

gives the dimensionless form (the asterisk was dropped out)

p =−λEuβ(x ·e)+ p̃, (6.10)

with

Euβ =
β0

ρ2gr e f
,λ= LP

Db
. (6.11)

Since ρr e f is taken to be the liquid density ρ2 , Euβ can be interpreted this time as the ratio

of the upward body force to the gravitational force, which acts to balance the liquid mass

contained in the periodic cell. Consequently, at steady state, Euβ ≈O (ρ2g ·e) ≈ 1.

6.2.3 Mesh generation and adaptive refinement

For this study, the periodic mesh was constructed to enable the refinement control at

specified regions of the domain and improve the analysis of the flow, since local interactions

occurring near the bubble plume can be captured. Adaptive refinement strategies for the array

adaptive refinement

at the cylindrical wrap

circumferential

adaptive refinement

at bubbles' surface

Figure 39: Augmented view of mesh displaying adaptive refinement strategies: circumferen-
tial, at the bubble’s surface; azimuthal, at the cylindrical wrap region of radius Rc surrounding
it.

of Figure 38 were developed to operate on the bubble’s surface as well as over the fluid portion
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wrapped by a cylindrical “envelope” of radius Rc surrounding the bubble, as illustrated in

Figure 39. Such strategies afford not only the generation of finer surface meshes that distribute

nodes circumferentially on the spherical shells, but also the achievement of smaller elements

in the neighbourhood of the plume that produce good aspect ratios.

A view in perspective as well as a top-view of the unstructured mesh used for the

bubble plume simulation are displayed, respectively, in Figure 40 and Figure 41 at a particular

time instant so as to highlight the higher density of points around the center produced by the

adaptive refinement.

Figure 40: Computational mesh highlighting the bubble region: cut plane parallel to the axis
of rising of the plume.

Figure 41: Computational mesh highlighting the adaptive refinement provided by the cylin-
drical wrap: top-view.

6.2.4 Validation tests

Figure 42 is a plot of the bubble’s center of mass velocity ubc (t ) versus time for three

different simulations regarding physics and boundary conditions described as follows: test R1

- rising bubble with no-slip wall conditions everywhere under gravity only (closed boundaries);

test R2 - rising bubble with lateral no-slip wall conditions, open boundary conditions at the

top/bottom walls under gravity and upward body force; test R3 - rising bubble with lateral

moving wall conditions, PBC at the top/bottom walls under gravity and upward body force.

Test R1 is discussed in [?] for a parallelepipedal domain and good accordance is attained
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Data

µ1,µ2 ρ1,ρ2 σ Db Ar Eo
1.78e-5, 0.54 1.22, 1350 7.8e-2 2.61e-2 1092 116

Table 3: Physical property values for the numerical simulations: tests R1-R3.

here for a long cylindrical mesh; test R2 was performed to evaluate the balance between the

gravity and pressure gradient forces inside the artificial array; test R3, in turn, was carried

out to validate the complete PBC formulation coupled with the balance of forces. All of the

three tests were carried out over the same computational mesh, whose radius/height are,

respectively, 4Db/10Db , and the physical property values for them are listed in SI units in

Table 3. The time step computation depends on the mesh parameters as well as the other

variables related to the ALE model, being updated each iteration (cf. Sec. 5.1 of [?]). For the

current tests, an average time step ∆t ≈ 0.003 was determined.

As seen from the ubc profiles in Figure 42, the tests are in mutual agreement, except

for a slight profile discordance over the plateau of terminal velocity for the cases R2 and R3.

To measure these deviations in relation to R1, the mean percentage difference within the time

of simulation [0, tmax] given by

ER j ,R1 = 100%

tmax

(
υbc, j (t )−υbc,1(t )

υbc,1(t )

)
, j = 2,3,with

υbc,i (t ) =
∫ tmax

0
ubc,i (t )d t , i = 1,2,3, (6.12)

was computed to be ER2,R1 = 3.97% and ER3,R1 = 3.51%, thus reporting acceptable difference

ranges for both the cases, being the smallest one reported for the PBC/MFR formulation

proposed.

The deviations of R2 and R3 in relation to R1 is due to differences in the problem

setups, including effects coming from the boundary conditions and the splitting process used

to calculate the velocity field - as explained in Subsection 3.2.1. The tests were sensitive to the

time step size chosen, since the addition of the pressure gradient Euλ introduced a numerical

error of O (∆t ) caused by the imbalance between gravity forces and pressure forces produced

by the splitting process.
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Figure 42: Dimensionless rising velocities ubc (t ) for three different configurations of an air
bubble rising immersed into a aqueous sugar solution.

6.2.5 Rising velocity, aspect ratios, trajectories and spectra

Bubble deformation and oscillation are intimately linked to flow properties, such

as surface tension, bubble size, and inertia effects. The next subsections describe rising

velocities, bubble shape and oscillation analyses for two cases of bubble plumes inside the

periodic domain of Figure 38 (L = 2Db), whose physical property and parameter values are

listed in Table 4. For clarity, the cases are labeled as B1 and B2 and their underlying difference
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Figure 43: Elongation (φ) and flatness (ψ) ratios of the rising bubbles.

is related to the bubble diameter in the periodic cell, namely, 4.0 mm and 5.2 mm, respectively.

Curves of the two bubble shape factors were calculated and plotted in Figure 43, viz.
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Table 4: Physical property values for the numerical simulations: cases B1 and B2, respectively.
(from [?])

Case µ1,µ2 ρ1,ρ2 σ Db Ar 1/2 Eo

B1 18.2e-6, 958.08e-6 1.205, 998 0.0728 4e-3 824.96 2.15
B2 idem idem idem 5.2e-3 1222.8 3.63

the elongation and flatness ratios defined, respectively, as:

φ= b

c
; ψ= c

a
, (6.13)

where a,b,c are the maximum length of the bubble’s principal axes in the streamwise (chosen

to be the x axis) and transverse directions (y and z axes). As seen, the initial condition (that is

to say φ=ψ= 1) of both the cases vouch for the perfectly spheroidal shape of the bubbles.

With the time and the ascent motion of the bubbles, the flattening process dominates over

the elongation up to t ≈ 2.5, thus portraying an oblate shape with a dimple underneath the

bubble comparable to experimental observations [?]. From this threshold, shape irregularities

become more visible as oscillations are felt by the bubbles, without following, however,

a defined periodicity. In turn, the shape variations occur freely as far as the end of the

simulations, with the elongation profiles less protruded.

Path instabilities, zigzag and spiral motions for gas bubbles rising both in clean water

and other liquids are effects recognized in literature and the mechanisms responsible for their

appearing have been debated through different points of view (cf. [?], [?], [?], [?], [?]). It is

known, however, that the bubble’s mobility is deeply affected when impurities are dispersed

in the flow. To compare with these results, qualitative behaviours were observed for the cases

B1 and B2 in the periodic domain regarding the bubbles’ trajectories and its projections as

depicted in Figure 44. While in the first test the bubble underwent an off-center wobbling

motion marked by acute spots, the second test presented, furthermore, a twist motion around

the directrix line erected from the point (yt , zt ) = (0.09,−0.045), approximately between t = 2

and t = 4, before its full unfolding. Given the milimetric difference of diameters for the two

cases, these curves suggest that the effect of the bubbles’ wake brought onto themselves -

in the sense of a plume made up by equally spaced bubbles - amounts to a path instability

which depends on the bubble size and, therefore, on the Eötvös number, in accordance with

arguments expressed in the previous citations. Besides, the trajectories tend to develop a
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Figure 44: Bubbles’ spatial motion relative to the reference frame moving upwards along
with the center of mass (xr e f coordinate): (a) path and directrix line of the twist emerged
in case B2 (in red); (b) projection of the paths over the y z− and the directrix’s base point
(yt , zt ) = (0.09,−0.045) (in red).

seemingly chaotic path.

In attempting to quantify the harmonic modes involved in the oscillatory motion

of the bubbles, a spectral analysis based on the fast Fourier transform (FFT) of the signals

φ j (t ),ψ j (t ), j = 1,2, was performed. The spectral analysis considered only data on the range

given by tS = [2.5, tmax], thus disregarding the initial evolution stage. FFT-based spectra of

magnitude of disturbance energy computed through the expression

|F F TB j [F (t )]| = F F T [F (t )]F F T [F (t )];

F (t ) =φ j (t ),ψ j (t ), j = 1,2, (6.14)
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with the overbar meaning complex conjugate, for the ten first harmonic modes, 1.0 ≤ f tS
2π ≤

10.0, are depicted for the cases B1 and B2 in Figure 45. The analysis took into account a

considerably large quantity of sampling data over the reduced temporal interval tS , but it

showed that the energies of higher magnitude are noticeable only at the low frequencies of

the spectra.

This FFT-based analysis shows that both the cases have their energy peak concentrated

in the second harmonic. This value is close to the frequencies associated to the (2,0) and

the (2,2) modes reported in [?]. For the case B1 the energy peak associated to the flatness

profile is only slightly more intense that the elongation’s, while for the case B2 the elongation

energy is much larger than the flatness energy. Furthermore, the energy of the case B1 is

very concentrated on f tS
2π = 2.0, whereas that of the case B2 is spread over the frequencies in

the range 1.0 ≤ f tS
2π ≤ 3.0. On the other hand, a slight alternance of intensities between even

and odd harmonics can be observed along the range, though the case B1 has a higher overall

energy than the case B2. Considering that the spectra are nondimensional, the increased

spreading in the frequencies in case B2 is indicative of a more complex behaviour.

Filtered rising velocity profiles for the cases B1and B2 are depicted in Figure 46. The

need of filtering is firstly justified by the jump of density at the air-water interface, which

implies small pressure variations inside the bubble, thus generating higher velocity therein;

secondly, to remeshing operations inherent to the numerical method, such as insertion

and deletion of nodes, that cause instantaneous variations in the center of mass’s position.

Consequently, a special treatment of box filtering is required to smooth the influence of

short-time spurious oscillations experienced by the bubble while ascending. As seen, the

fluctuations of velocity are intensified from t ≈ 2.5, in accordance with the analysis previously

reported.

6.2.6 Wake effects and near-field velocity

Analyses of the flow in the bubble’s surroundings are limited here to a near-field

distance, defined to be the periodic cell region below of 2Db from the nondisplaced bubble’s

center of mass, and are conducted for each test in this subsection. Due to the complex

imaging of the three-dimensional hydrodynamic field evolving around the bubble, two stacks

of pictures gathering the velocity field as well as the bubble shape information at four time

instants, namely {3.00,4.50,5.50,6.50}, are arranged from Figure 47 to Figure 50 relative to
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Figure 45: FFT-based spectrum of disturbance energy for the ten first harmonic modes
relative to the signals representative of the aspect ratios profiles φ j (t ),ψ j (t ), j = 1,2 evaluated
in the interval tS = [2.5, tmax]: (a) case B1; (b) case B2.

an axis whose center is fixed in the initial position of the bubble’s center of mass. In the

background, the magnitude of the velocity field is plotted over the transverse planes y x and

zx; in the foreground, the bubble shape highlighting the zero-thickness finite element surface

meshing is overlaid.

The downward flow reflects the imposition of the MFR technique by which the degrees

of freedom of the streamwise velocity are subtracted by the center of mass velocity −Ubc

which is updated each time step. By comparing the flow evolution vis-a-vis for each pair

B1-B2 of projection planes, some inferences about the overall flow can be drawn from the
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Figure 46: Dimensionless rising velocities ubc (t) over the bubble’s reference frame for the
cases B1 and B2.

simulation snapshots. Firstly, the oblate shape persists for a considerable time along the path

and it is a common trait in both the cases; so is the wobbling motion, which is boosted up

by higher velocity gradients in the bubble’s skirt region around t = 5.50. Off-center motion is

seen by contrasting the bubble shape at t = 3.00, a few instants after the oscillation outset,

against t = 6.50; for instance, when the drift from the reference center is played by the

bubbles. Consecutive inclinations of the bubbles concerning the azimuthal angle formed

between their central axis and the streamwise axis are also exhibited on both projection

planes concomitantly, thereby confirming the presence of wobbles in the spatial trajectories

observed as much in the previous subsection as in the cited references. It is seen, moreover,

that the dimple evolution underneath the bubble of the case B1 differs from that arising in B2,

which is more restrained during this stage - however unclear from the pictures. Despite of

that, the dimple existence can be verified from the smooth reentrant portions of counterflow

underneath the bubbles and around their fringes.
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Figure 47: Velocity field and bubble shape for the case B1: plane y x; (a) t = 3.00, (b) t = 4.50,
(c) t = 5.50, (d) t = 6.50.
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Figure 48: Velocity field and bubble shape for the case B1: plane zx; (a) t = 3.00, (b) t = 4.50,
(c) t = 5.50, (d) t = 6.50.
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Figure 49: Velocity field and bubble shape for the case B2: plane y x; (a) t = 3.00, (b) t = 4.50,
(c) t = 5.50, (d) t = 6.50.
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Figure 50: Velocity field and bubble shape for the case B2: plane zx; (a) t = 3.00, (b) t = 4.50,
(c) t = 5.50, (d) t = 6.50.
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7 THE DROP JET IN CROSSFLOW

7.1 Problem posing

With a physical meaning similar to the cases reviewed in Chapter 1, the flow of a liquid

jet issued into another immiscible liquid portion after breaking in drops is analyzed. We focus

on the primary breakup zone after the drop detachment and not on the mechanisms leading

to the breakup. To give an insight about the whole description of the problem, we refer to the

arrangement of the DJICF studied in this thesis as depicted in Figure 51.

unbroken jet

region

A

B

C

breakup locus

and drop formation

detached drop

crossflow 

dominanceperiodic cell

Figure 51: Arrangement of the DJICF.

The cylindrical-shaped jet is considered to expel drops of diameter D j with velocity U j

in a periodic way and perpendicularly into an unconfined liquid portionΩ2 whose crossflow

velocity is U∞. The unbroken jet region is below the point A. Between the points A and B,

a Rayleigh breakup mode is assumed to occur and form the drop. During the short space

between B and C, the drop is completely detached off the jet. Beyond the point C, the crossflow
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inertia is assumed to dominate over the jet deflecting the drop depending on the crossflow-

to-jet velocity ratio λ. As it will be seen forth, the drop is modelled as a spherical body initially

which may deform along its trajectory depending on the flow properties, mainly ruled by the

W e, Oh, Re and C a numbers, where

C a = W e

Re

µ

λ−1
(7.1)

is the capillary number here defined according to [?] for the viscosity ratio µ=µ1/µ2. In this

preliminary study, gravity effects are not considered, just as the relevance of the F r number.

To account for the PBC, the periodic cell is placed around the drop by enclosing it

inside a certain period length LP . Since this approach imparts a limited treatment of the

flow, a MFR technique is additionally incremented in the modelling in attempting to analyze

deflection, topological changes and hydrodynamic effects over and surrounding the drop

enclosed by this simulation box. The relation between fixed and moving reference frames as

well as the collocation of the periodic cell domain and boundary conditions are elucidated by

observing Figure 52. In this idealized diagram, the drop, after detaching off the jet, travels in

moving frame

fixed frame

velocity 
components

periodic cell

Figure 52: Relation between fixed and moving reference frames in the DJICF flow as well as
an overview of the periodic cell domain with the selection of the boundary conditions.
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space undergoing the influence of the crossflow. Several configurations of the drop along its

trajectory are drawn in dashed lines. The velocity components following the drop’s motion are

placed at its center of mass xc , which performs the trajectory described by the curve XR(xc ,τ).

When establishing the relation between the physical reference frames, the called fixed frame

is firstly defined by R which, in this generalized scheme, is placed at a convenient site in the

continuous domainΩ2. The second referential, defined by R̂, is called the moving frame and

it is placed at the drop’s center of mass so that

∆x = xc −o (7.2)

represents the displacement of the drop’s center of mass in relation to the origin o ofR. At right,

in the same figure, the computational periodic cell is laid out as a cuboid whose boundaries

are divided into four groups represented by painted snips, namely, Γsl i p , ΓP , Γcr oss f low and

Γout f l ow . More specifically, aside the PBC and NBC, the DBC obey

p = 0 at Γout f low (7.3)

v ·n =V∞ at Γcr oss f l ow (7.4)

v ·n = 0 at Γsl i p , (7.5)

for n normal to its respective wall.

7.2 Moving frame reference technique

The MFR technique resorts to a strategy based on reference frames while creating a

relative context of interaction between Eulerian and Lagrangian descriptions. In this thesis,

the MFR approach is used together with the enforcement of PBC in order to reduce the

computational cost of the simulations when reducing, mainly, mesh size and number of DOFs

(see, e.g. Subsection 6.2.1).

Generally, MFR codes are used to simulate dispersed flows in their several config-

urations in which the dispersed bodies remain stopped with time whilst the boundaries

encircling them are placed in relative motion. Although the idea behind this technique can

be extended for other cases, examples of such applications with or without PBC are found,

mainly, in simulations of bubble or drop flows, as studied in [?], [?], [?], [?]. Whereas all of these
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papers use MFR for unidirectional flows only, this section describes the additional details of

implementation of the MFR technique by considering the existence of transverse flows as

well. Since this approach is adapted for the DJICF problem, the two-dimensional periodic

cell scheme depicted in Figure 53 will be used as an extension of those seen in the previous

section. Given that the drop has velocity U j , if U∞ 6=U j a curved trajectory is experienced by

Figure 53: Scheme of the displacement of a drop in crossflow and implementation of the
moving frame technique.

the drop even for a minimal displacement. Let us consider, however, B(τ= t ),B(τ= t+δt ) two

configurations of an arbitrary dispersed body B at two time instants. In relation to a cartesian

fixed frame R, the entire body undergoes an infinitesimal displacement of (δx,δy) from left to

right with its center of mass traveling according to the Lagrangian trajectory XR(xc ;τ). On the

other hand, the moving frame R̂ attached to the body’s center of mass xc which follows the

body motion in space and time, at first, should remain fixed for all the time at the position of

the center of mass identified in space when τ= t , thus conveying the dynamics to an Eulerian

point of view.

Whilst, physically, the instantaneous velocity

vi nst = lim
δt→0

δx

δt
(7.6)



143

is responsible for the infinitesimal displacement of the body within t ≤ τ≤ t +δt , numerically,

the velocity evaluated at the center of mass is the parameter playing the fundamental role

in the discrete time step ∆t . Therewith, two numerical steps arise: the computation of the

velocity and position of the center of mass and the determination of the body’s retardment.

The former will be discussed in Subsection 7.2.1; the latter, next.

Since the center of mass’ velocity vc is determined for each time instant, all the flow

field should undergo a retardment of velocity given by

vr el = v−vc (7.7)

to create a relative field so that the body B , after it has been displaced to B(τ = t + δt),

be brought back to its position at B(τ = t). The effect of such subtraction of the flow’s

velocity field is drawn in red lines in Figure 53 as much for the body itself as for an arbitrary

element e of the continuous phaseΩ2. That is to say, for each triangular element with vertices

xe
j , j = 1,2,3, the resulting velocity vc is summed to the nodal velocities with opposed sign

to give v j
r el ;e = ve

j − vc , j = 1,2,3. As explained by [?], the interplay between inertial and

stationary reference frames works as a correction scheme that may suffer the influence of

a wave pressure that eventually dissipates during the simulation since the body is forced to

go back and forth each time step, thus requiring some numerical artifice. In this thesis, the

numerical steps to implement the MFR technique are represented in the algorithm below:

for t : (0,T ] do

∆x(t ) = x(t )−x(t = 0) ; /* displacement */

vi nst (t ) = vc (t )+ ∆x
∆t ; /* accumulating instantaneous velocity */

vR = v(t )+vi nst ; /* recovering velocity - relative to FFR */

xR = x(t )+vR∆t ; /* recovering position - relative to FFR */

v(Ω) = v−vi nst (t ) ; /* corrected relative velocity - flow field */

end

It should be pointed out that such retardment operations require an update not only

of the DBC to take the changes of the flow field into account, but also of the code variables

that store the velocity values, which are reused in the iterative process.
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7.2.1 Computation of averaged quantities

As aforementioned, the computation of the velocity and position of the center of mass

of a dispersed body is necessary not only for the establishment of the MFR technique, but

also for a considerable amount of discrete quantities in the FE ambit. Generally, the center of

mass xc is an interior point not matching a mesh node as depicted by the dark points inside

the shaded triangular elements in Figure 53. Then, under the numerical point of view, every

property φ(xc ) is computed at element level through a global average of elementary nodal

values. For the specific case of determining the position and velocity of the center of mass of

a dispersed body, the following approximated version of integrals is computed:

φ(xg
c ) =

(Ð
φdVÐ

dV

)
Ω1

g

, g = 1,2, . . . ,nb

=

E∑
e=1

φ
g
c,eV g

e

E∑
e=1

V g
e

; φ
g
c,e =

#J∑
j=1

φg (xe
j )

#J
, J = m +1, (7.8)

where nb is the number of dispersed bodies, E is the number of simplices making up each

dispersed body, J is the number of vertices of the element and V stands for volume. These

formulae apply for each component separately in R3. Note, additionally, that, if m = 2, the

computations can be performed by replacing the volume integrals by area integrals and doing

the necessary modifications.

7.3 Numerical direct simulations

This section presents the main results of this thesis concerning the full 3D simulations

of the DJICF configuration. The liquid-liquid pairs chosen relate to well-known experimental

tests.

7.3.1 Initial condition

Because of the DJICF problem is based on the MFR technique explained previously, a

special initial condition was implemented for the simulations to restrain undesirable over-

shooting of the velocity field caused by the retardment effect applied to the drop during the

first iterative step. For this objective, the imposition of the potential flow around a cylinder



145

was done to wrap the drop region so as to seem a drop encapsulated by a tube extending

along the direction normal to the periodic one. Moreover, such flow tends to cause a slight

disturbance on the drop due to the circulations that rise up behind the drop in the nearby

wake region. Figure 54 depicts at the top three fluid layers passing around the drop on the

Figure 54: Past cylinder flow velocity profile as initial condition for the DJICF simulation.

planes z = zc , z = zc +R +δz and z = zc −R −δz, where R is the drop’s radius and δz a small

distance away from the poles; at the bottom is the top view of the flow on the symmetry plane

z = zc . When imposing such initial condition to the flow field, we intend to provoke a smooth

transition from the initial departure of the drop toward its subsequent instants when it will

experience the crossflow incidence. The periodicity is allotted to x-axis, whereas the crossflow

condition is assigned to y-axis.

The velocity profile of this condition is initialized over the computational mesh and

written in cylindrical coordinates as

vr = (U j cos(θ)+U∞ sin(θ))

[
1−

(
R

r

)2]
+Uadded (7.9)

vθ = (−U j sin(θ)+U∞ cos(θ))

[
1+

(
R

r

)2]
(7.10)

vz = 0, (7.11)

thus using U j and U∞ as parameters.
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At this point, it should be explained that Uadded =U j is added to the original profile

to compensate the difference which will be deduced of the flow immediately afterwards the

simulation begin because of the MFR calculation (see the algorithm in Section 7.2) that retards

the drop’s motion.

7.3.2 Study of DJICF cases: hydrodynamics and discussion

Two different pairs of immiscible liquids relating to experiments performed, respec-

tively, by Meister and Scheele [?] (also reproduced by [?]) for a water/n-heptane interface

and by Webster and Longmire [?] (see p. 226) for a water-glycerin/Dow Corning sylicon-oil

interface make up the next simulations, whose physical parameters are presented in Table

5 and Table 6. For convenience, the labels MS and WL will be used as abbreviations of the

references cited above to designate the numerical tests. Additionally, two other parameters

will determine the simulations, namely the ratio λ and the periodic cell’s length LP . Hence,

the different configurations of tests chosen are expressed by a triple of parameters as

(Re f ,λ,LP ), for Re f = MS, WL; λ= 1.0, 1.5, 2.0 and LP = 1.5, 3.0, 5.0. (7.12)

While different values of LP seek to analyze the effect of the PBC by considering different

spacing between drops (in the sense of the imposed periodicity), small values of λ seek to

add a weak effect to the crossflow so as to ensure small disturbances in the surroundings of

the drop and preserve the periodicity with less tendency to deflection. The cuboid-shaped

meshes used in the simulations, which differ one another by the length LP , are depicted in

Figure 55 clipped along the axis of periodicity.

The analysis of the simulations starts from the velocity field vR(t) = (uc , vc , wc )(t),

whose component profiles are organized for each configuration from Figure 56 to Figure 61 as

the ratio λ. By observing the curves of uc and vc , it is noticeable that uc decays monotonically

from U j = 1.0 - the dimensionless jet velocity - at the initial instant to zero in the far-field

Data

µ ρ D j Re W e
2.43 1.45 0.68 1851 2.20

Table 5: Parameters of simulation according to the experiment no. 5 of Meister and Scheele [?].
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Data

µ ρ Oh Re W e∗

0.15 1.18 0.013 50 0.80

Table 6: Parameters of simulation according to the fluid combination no. 1(c) of natural jet of
Webster and Longmire [?], p. 226. ∗W e = (ReOh)0.5

(a) (b)

(c)

Figure 55: Meshes used for the DJICF simulations: (a) LP = 1.5; (b) LP = 3.0; (c) LP = 5.0.
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region, whereas vc approaches asymptotically of U∞ =λU j . It should be noted that the initial

condition given by Equation (7.9) was essential to produce these profiles under a MFR scheme

as aforementioned.

On one hand, the behaviour of wc shows very small variations in comparison to the

other profiles during the interval of simulation studied. Except for the cases with LP = 1.5, wc

describes, at most, a slightly descending motion of the drop downward the crossflow plane,

but without following a defined pattern. The highest values of wc are observed in the cases

(MS, ·, ·), whose upper bounds are of O (10−2). On the other hand, the duration of decay of

uc as well as of rise of vc up to their respective final values differ from case to case. Note, for

example, how uc and vc reach their steady state within different times in the (W L, ·, ·) group.

Even more uncommon is the behaviour of uc for (W L, ·,1.5), which suggests an inflection

of the drop’s trajectory backward. Such a behaviour may be related to the influence of the

flow nearby the drop which is more prominent due to the PBC and the smaller value of LP .

The simulations were stopped taking the profile vc as reference, i.e. when the value of λ was

achieved, since it reflects the drop’s motion already dominated by the crossflow.
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Figure 56: uc (t ) profile - MS: (a) (MS, ·,1.5); (b) (MS, ·,3.0); (c) (MS, ·,5.0).
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Figure 57: vc (t ) profile - MS: (a) (MS, ·,1.5); (b) (MS, ·,3.0); (c) (MS, ·,5.0).
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Figure 58: wc (t ) profile - MS: (a) (MS, ·,1.5); (b) (MS, ·,3.0); (c) (MS, ·,5.0).
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Figure 59: uc (t ) profile - WL: (a) (W L, ·,1.5); (b) (W L, ·,3.0); (c) (W L, ·,5.0).
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Figure 60: vc (t ) profile - WL: (a) (W L, ·,1.5); (b) (W L, ·,3.0); (c) (W L, ·,5.0).
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Figure 61: wc (t ) profile - WL: (a) (W L, ·,1.5); (b) (W L, ·,3.0); (c) (W L, ·,5.0).

To illustrate the topological changes undergone by the drop in crossflow, some images

containing streamlines and drop shape cuts obtained through the group of simulations

(·,2.0, ·) at specific times are depicted below. The streamlines are seen from behind the drop,

encompassing it inside a box equivalent to half of the periodic cell cut by the symmetry plane

tangent to the periodic direction. For each image of streamline are associated two others of

symmetry planes that cross the drop surface along the regions x y and xz so as to characterize

the drop’s rims. Moreover, vectors of the relative velocity field vr el were plotted over the rims

to highlight its local effect over the drop. Though the family of tests WL showed moderate

deformation, their related shapes were included here for completeness.
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(b) (c)

Figure 62: Streamlines and drop’s rims at t ≈ 0.30 - test (MS,2.0,1.5): (a) streamlines and
velocity field; (b) drop’s rim on the plane x y ; (c) drop’s rim on the plane xz.
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Figure 63: Streamlines and drop’s rims at t ≈ 0.25 - test (MS,2.0,3.0): (a) streamlines and
velocity field; (b) drop’s rim on the plane x y ; (c) drop’s rim on the plane xz.
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Figure 64: Streamlines and drop’s rims at t ≈ 0.50 - test (MS,2.0,5.0): (a) streamlines and
velocity field; (b) drop’s rim on the plane x y ; (c) drop’s rim on the plane xz.
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Figure 65: Streamlines and drop’s rims at t ≈ 0.37 - test (W L,2.0,1.5): (a) streamlines and
velocity field; (b) drop’s rim on the plane x y ; (c) drop’s rim on the plane xz.
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Figure 66: Streamlines and drop’s rims at t ≈ 0.25 - test (W L,2.0,3.0): (a) streamlines and
velocity field; (b) drop’s rim on the plane x y ; (c) drop’s rim on the plane xz.



157

1.2 1.4 1.6 1.8 2

v

1.04 2.17

(a)

(b) (c)

Figure 67: Streamlines and drop’s rims at t ≈ 0.47 - test (W L,2.0,5.0): (a) streamlines and
velocity field; (b) drop’s rim on the plane x y ; (c) drop’s rim on the plane xz.
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7.4 Trajectory curves, drop shape variations and spectrum analyses

7.4.1 Trajectory curves

The drop’s behaviour concerning the trajectory that it experiences by incidence of

the crossflow is represented by curves projected onto the planes x y and xz. The former

class of projections display the deflection caused by the transverse flow; the latter class of

projections display the deviation of the drop away from its center of mass’ trajectory. Although

the trajectory is a three-dimensional curve, spatial variations occurring along the direction

normal to the uniform crossflow were found to be of a much smaller order than those due to

the deflection. Trajectories for the pair labeled as MS are plotted in Figure 68 and Figure 69,

while that Figure 70 and Figure 71 concern the pair labeled as WL. Given the small changes

taking place on the plane xz, we will focus on analyzing the curves traced on the planes x y .
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Figure 68: x y-plane drop trajectory - MS: (a) (MS, ·,1.5); (b) (MS, ·,3.0); (c) (MS, ·,5.0).

As expected, the higher is the value of λ the broader is the deflection of the drop

jet. This behaviour is consistent for almost all the cases simulated although the scale of

displacement between the x and y directions varies from 1::14 to 1::17 in these cases, meaning
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that the crossflow dominance takes place quickly. The unique exceptions are the curves traced

by the drop in the simulations of the group (·, ·,1.5) which, as mentioned in the previous

subsection, suggest that the drop moves oppositely to its initial direction of launch.
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Figure 69: xz-plane drop trajectory - MS: (a) (MS, ·,1.5); (b) (MS, ·,3.0); (c) (MS, ·,5.0).

The cases that describe the most uncommon behaviours are the ones of the family

(W L, ·,1.5), whose motion backward occurs in a scale 1::4. A possible explanation for this

situation may be related to the effect of a LP reduced and the consequences coming from

the periodic gap among drops declared as follows: the drop jet is launched with velocity UJ ;

due to the constant crossflow, the profile imposed and the momentum exchange, the drop

loses velocity and deforms; the drop’s deformation at the initial instants is caused by marked

flatness that forms a wider surface area which, in turn, eases the crossflow actuation; finally,

the crossflow pushes the drop backward. Such a description is coherent with the profile of

φ(t ) for LP = 1.5 depicted in Figure 73. It is possible observe that the flatness curve increases

to values above 1.0 for (W L, ·,1.5), whereas decreases to values below 1.0 for these cases at

the initial stages of motion, thus suggesting that a “lift” is produced. Furthermore, when

comparing the profiles of elongation and flatness for the families LP = 1.5 to their respective

profiles for LP = 3.0,5.0, we note that similar effects happen.
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Figure 70: x y-plane drop trajectory - WL: (a) (W L, ·,1.5); (b) (W L, ·,3.0); (c) (W L, ·,5.0).
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Figure 71: xz-plane drop trajectory - WL: (a) (W L, ·,1.5); (b) (W L, ·,3.0); (c) (W L, ·,5.0).
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7.4.2 Drop shape variations

To analyze the shape assumed by the drop in the flow considered here, the expressions

of aspect ratio for elongation and flatness are revisited from their definition in Equation (6.13),

i.e.

φ= b

c
; ψ= c

a
, (7.13)

for the principal axes a,b,c. The curves of φ(t)λ and ψ(t)λ are sketched below for each

simulation, by gathering the three different values of the ratio λ and of the length LP per

plot. The general behaviour for the curves is described by a region of oscillation, when the

drop deforms by action of the crossflow, followed by another of damping, when the drop

travels steadily. A specific feature that differ the profiles of the family MS from the family WL

is the time interval in which some deformation still is evident, which extends up to around

t ≈ 4.5 for WL and up to t ≈ 20.0 for MS. Arguments for having a much larger interval with

predominance of deformation for the MS cases rely on the different physical properties of the

flows, mainly on the value of the W e number which, being smaller, indicates that the forces

due to the surface tension dominate over the inertial forces as well as that the drop is less

tolerant to deformation. In this comparison, a caveat should be raised for the cases LP = 1.5,

that show some level of noise and out-of-phase oscillation for different values of λ, besides

being unclear to describe.

Another point to consider about the curves ofφ(t )λ andψ(t )λ concern their amplitude.

It is seen that, for all the cases simulated, the maximum and minimum values of flatness are,

respectively, higher and lower than elongation’s, thus suggesting that there are more shapes

with wider surface area projected perpendicularly to the crossflow direction. It one concludes,

additionally, that the variation of λ causes shape deformations very similar to the drop, with

localized discrepancies of phase occurring within the interval [0.0, t ≈ 2.0].
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Figure 72: Drop shape variation - (MS, ·,1.5): (a) φ(t ); (b) ψ(t ).
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Figure 73: Drop shape variation - (MS, ·,3.0): (a) φ(t ); (b) ψ(t ).
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Figure 74: Drop shape variation - (MS, ·,5.0): (a) φ(t ); (b) ψ(t ).
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Figure 75: Drop shape variation - (W L, ·,1.5): (a) φ(t ); (b) ψ(t ).
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Figure 76: Drop shape variation - (W L, ·,3.0): (a) φ(t ); (b) ψ(t ).
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Figure 77: Drop shape variation - (W L, ·,5.0): (a) φ(t ); (b) ψ(t ).
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7.4.3 Spectrum analyses

From this point on, spectrum analyses for the DJICF configurations studied are pre-

sented. The input signals for the FFT calculation correspond to the curves φ(t )λ and ψ(t )λ,

which evince disturbances affecting the drop. FFT-based spectra for elongation and flatness

are plotted in the figures below separated according to the values of λ. Inasmuch as the

spectrum of magnitude of such a disturbances is expressed as given by Equation (6.14), it is

convenient to introduce in the following discussion the values given by

Eφλ
= max{|F F T [φ(t )λ]|} and Eψλ

= max{|F F T [ψ(t )λ]|}, (7.14)

which represent, respectively, the maximum disturbance energy achieved with the slight

wobbling of the drop relative to the profiles of elongation and flatness, whereas

f ∗
φ and f ∗

ψ (7.15)

are dimensionless vibration frequencies (or harmonic modes) associated to each of these

profiles within a sampling range tS . The choice of tS , however, was done by truncating the

whole time of the simulations into the regions where the small disturbances were more active,

thus restraining the interval of analysis. Besides, only the 10 first modes are plotted for each

simulation. Spectra for the group MS are plotted from Figure 78 followed by spectra for the

group WL plotted from Figure 81.

Table 7 lists the maximum energy values along with their respective most amplified

modes associated to φ(t )λ and ψ(t )λ for the testing configurations (Re f ,λ,LP ). Furthermore,

note that

EF (t ) = max
{(ℜ{F F T [F (t )]}2 +ℑ{F F T [F (t )]}2)0.5

}
, F (t ) =φ(t )λ,ψ(t )λ (7.16)

evokes the maximum value in modulus of complex modes associated to the shape ratios.

A point to be emphasized is that the output of F F T [F (t )] requires that the sampling

time range tS be uniform. Since the selection of the time step ∆t may be different for each

simulation and vary after remeshing operations (cf. Sec. 5.1 of [?]), tS must be modified so
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Figure 78: FFT-based spectrum: (a) (MS,1.0,1.5); (b) (MS,1.5,1.5); (c) (MS,2.0,1.5).

that this uniformity be ensured. For that objective, the average time step

∆t = (∆t )n

N
= (t n+1 − t n)

N
; n = 0,1, . . . N −1 (7.17)

and the function interp1 from MATLAB® were used to build a new discrete vector tS equally

spaced from the original one. The sampling ranges specified for each case as well as the

approximated thresholds from which the disturbances are attenuated are organized in Table

8.
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Figure 79: FFT-based spectrum: (a) (MS,1.0,3.0); (b) (MS,1.5,3.0); (c) (MS,2.0,3.0).
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Figure 80: FFT-based spectrum: (a) (MS,1.0,5.0); (b) (MS,1.5,5.0); (c) (MS,2.0,5.0).
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Figure 81: FFT-based spectrum: (a) (W L,1.0,1.5); (b) (W L,1.5,1.5); (c) (W L,2.0,1.5).
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Figure 82: FFT-based spectrum: (a) (W L,1.0,3.0); (b) (W L,1.5,3.0); (c) (W L,2.0,3.0).
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Figure 83: FFT-based spectrum: (a) (W L,1.0,5.0); (b) (W L,1.5,5.0); (c) (W L,2.0,5.0).
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Test Configuration Elongation: φ Flatness: ψ
(Re f ,λ,LP ) Eφ f ∗

φ
Eψ f ∗

ψ

(MS,1.0,1.5) 0.1209e-03 4 0.8209e-04 4
(MS,1.5,1.5) 0.1371e-03 4 0.2307e-03 4
(MS,2.0,1.5) 0.2724e-03 4 0.5173e-03 4

(MS,1.0,3.0) 0.5823e-03 6 0.6555e-03 6
(MS,1.5,3.0) 0.6240e-03 6 1.2000e-03 5
(MS,2.0,3.0) 0.7976e-03 6 2.2000e-03 5

(MS,1.0,5.0) 0.5204e-03 6 0.5398e-03 5
(MS,1.5,5.0) 0.6744e-03 6 1.4000e-03 5
(MS,2.0,5.0) 0.8320e-03 6 2.1000e-03 5

(W L,1.0,1.5) 0.3273e-05 4 0.9720e-05 4
(W L,1.5,1.5) 0.6780e-05 4 2.9883e-05 4
(W L,2.0,1.5) 0.9122e-05 4 5.4396e-05 3

(W L,1.0,3.0) 1.9835e-05 5 1.5984e-05 5
(W L,1.5,3.0) 0.2279e-04 6 0.9535e-04 5
(W L,2.0,3.0) 0.3907e-04 6 2.5348e-04 5

(W L,1.0,5.0) 2.1435e-05 5 2.7042e-05 5
(W L,1.5,5.0) 0.3822e-04 5 1.1677e-04 5
(W L,2.0,5.0) 0.5176e-04 5 2.7757e-04 5

Table 7: Maximum disturbance energies and dominant modes of the spectral analyses.
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Test Configuration Sampling Range Threshold
(Re f ,λ,LP ) tS t ≈

(MS,1.0,1.5) 7.5 20.0
(MS,1.5,1.5) 7.5 20.0
(MS,2.0,1.5) 7.5 20.0

(MS,1.0,3.0) 10.0 20.0
(MS,1.5,3.0) 10.0 20.0
(MS,2.0,3.0) 10.0 20.0

(MS,1.0,5.0) 10.0 20.0
(MS,1.5,5.0) 10.0 20.0
(MS,2.0,5.0) 10.0 20.0

(W L,1.0,1.5) 4.0 12.0
(W L,1.5,1.5) 4.0 12.0
(W L,2.0,1.5) 4.0 12.0

(W L,1.0,3.0) 6.0 10.0
(W L,1.5,3.0) 6.0 10.0
(W L,2.0,3.0) 6.0 10.0

(W L,1.0,5.0) 5.5 10.0
(W L,1.5,5.0) 5.5 10.0
(W L,2.0,5.0) 5.5 10.0

Table 8: FFT sampling ranges and disturbance attenuation thresholds for the spectral analy-
ses.
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7.5 Mesh quality assessment

High-quality meshes are fundamental to produce accurate results. The poorer the

mesh elements are generated, the poorer the solution is computed. Bad elements are those

whose shape present certain disproportionalities or degeneracies which affect directly the

results since they magnify a series of problems regarding conditioning, discretization and

interpolation, for example.

Figure 84: Examples of skinny triangular elements: needle, at left; cap, at right.

According to the literature concerned with mesh generation, such a elements are

called skinny elements. Some classes of bad-quality triangles and tetrahedra are depicted

in Figure 84 and Figure 85, adapted from [?]. Needle elements have disparate edge lengths;

cap elements either have an angle near 180◦ (a triangle) or a large solid angle (tetrahedron);

sliver tetrahedra have very small circumradius-to-shortest edges ratio, but bad dihedrals.

Preventing the existence of these elements while creating a mesh is one of the big challenges

of a good mesh generator; so is developing robust dynamic meshing operations.

Figure 85: Examples of skinny tetrahedral elements: needle, at left; cap, at center; sliver, at
right.

In order to verify the effectiveness of the dynamic meshing provided by the ALE/FE

methodology used in this thesis such as reported in Section 4.4, the mesh quality of the

simulations was assessed using a quality measure relative to the ratio radius of tetrahedra,
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which reads as

Itet (t ) =
[

Rout (t )

3Ri n(t )

]
tet

, (7.18)

with Ri n (Rout ) being the inradius (circumradius) of a tetrahedral element. The data analysis

is plotted in the form of histograms (Itet (t)× A), where A is the number of mesh elements

relative to the index Itet . That is to say, the better is the quality of an element the closer is

Itet to 1.0 for this element. Note, furthermore, that Itet depends on time due to the arbitrary

mesh motion and consequent change of the inradius and circumradius. However, provided

that the mesh parameters are combined to produce good aspect ratios as well as fair point

distributions as Equation (4.38) rules, it is expected that Ri n and Rout do not vary overly with

time.

As will be seen through the histograms plotted below, an overall quality measure will

be given for the volume mesh. Since higher densities of Itet (t ) are concentrated by far in the

major part of the mesh elements, poor elements are almost absent in the simulations. This

observation ensures not only the quality of the method itself, but also of the mesh generator.

In the next subsections, the histograms of Itr i (t) are displayed before those of Itet (t) for

the MS and WL experimental conditions simulated. The behaviour of the histograms is

very similar for all the cases simulated. For this reason, only a few chosen arbitrarily were

considered.

The histograms gather data relative to the time instant when the insertion rate due to

the dynamical meshing returns the highest amount of elements whose quality is maximum.

Besides, the percentage of quality for this specific instant was computed so as to give the

maximum order of quality attained in the associated simulation. Table 9 lists the information

relative to the mesh quality assessment: tA is the time when the mesh reaches the maximum

number of tetrahedra; Amax
I

is the number of tetrahedra with the highest quality and O% is the

percentage of elements whose Itet is maximum in relation to the total mesh elements at tA.

The latter value emphasizes, additionally, the order of quality of the related test. It turns out,

therefore, that the high values presented - above 90 % for all the cases except for (MS,1.5,3.0)

- in the last column allow us to assert that the ALE/FE methodology applied is enough robust.
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Figure 86: Histograms - group MS: (a) (MS,1.0,1.5); (b) (MS,1.5,3.0); (c) (MS,2.0,5.0).
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Figure 87: Histograms - group WL: (a) (W L,1.0,1.5); (b) (W L,1.5,3.0); (c) (W L,2.0,5.0).
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Test Configuration Time
Instant

Number of
Elements

Quality
Percentage

(Re f ,λ,LP ) tA Amax
I

O%

(MS,1.0,1.5) 1.03 17881 95.86

(MS,1.5,3.0) 8.50 20748 87.42

(MS,2.0,5.0) 25.47 20421 91.54

(W L,1.5,1.5) 8.17 17060 96.71

(W L,2.0,3.0) 9.68 21229 91.88

(W L,2.0,5.0) 13.22 18479 92.20

Table 9: Quality indicators relative to the statistical histograms (Itet (t )× A;10).



175

CONCLUSION

This thesis studied the numerical modeling of a particular flow featured by the influ-

ence of a crossflow over drops that detach off a continuous jet taking into account a periodic

approach. The basis for this research was inspired in the well-known canonical flow of a jet in

crossflow, which was dealt with in a nonturbulent scope. Given the large amount of research

concerned with strong jet-to-crossflow ratios as well as with vortical structures shedding

through gas-liquid mixtures, this study took a different path when investigating weak cross-

flow ratios in liquid-liquid interfaces. Assumptions were established concerning the focus on

the jet’s primary breakup zone and the inclusion of periodic boundary conditions into the

model. Nevertheless, the computational structure as well as the ideas behind the numerical

algorithms demonstrated to be a promising tool in studying other two-phase flow regimes

pictured by dispersed bubbles and drops.

In Chapter 2, we addressed the fundamental aspects of the ALE description, introduced

a short review on numerical methods available to model two-phase flows, and discussed a

few topics of the mechanics with interfaces, such as the jump of properties near an interface

and the existence of surface tension. Finally, we established a mathematical description

of the meshing structures applied in the computational code used in this thesis to provide

organization of the content and resources for better theoretical outlines.

Basic principles used in CFD, governing equations, and the one-fluid formulation

were introduced in Chapter 3, by emphasizing the inclusion of the volumetric representation

of the surface tension force into the momentum equation and how a marker function is

implemented to identify the different fluids or phases making up the flow. Additionally,

selected information about the semi-lagrangian method and the projection method were

given.

Chapter 4 along with Chapter 5 provided the detailed description of the FE formulation

applied to two-phase flows as used in this thesis, by integrating the variational approach to

include periodic boundary conditions into this set. Moreover, they explained the peculiarities

of the operational tools that make up this methodology, subsequently applied to validation

tests in Chapter 6 that certified the implementations.

The drop jet in crossflow investigated with details in Chapter 7, starting from the

configuration of a very particular testing setup for studying different fluid-fluid cases. A
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technique based on a moving-frame reference were extended to deal with transverse flows.

Despite of using only two fluid pairs of known experimental applicability, several data could

be extracted from combinations of parameters defining the jet-to-crossflow ratio and the

periodic cell’s length, such as analyses of hydrodynamics, drop shape, spectrum and mesh

quality so promoting a handful of computational and statistical information fairly complete

as regarding the intended goals of this thesis.

Generally, the ALE/FE methodology employed here gathers many advantages since

it provides a generalized form to control the mesh motion, besides aggregating functions

that enable versatile dynamic meshing operations, such as node addition, node deletion,

mesh smoothing and refinement, which ensure a sophisticated level of adaptivity for different

flow behaviours. To enforce the usability of the tools developed with this work, analyses

of two-fluid configurations under experimental conditions were performed. Qualitative

comparisons about the hydrodynamics of bubble and drops immersed in fluids commonly

mentioned in literature as well as some contributions about shape factors and energy spectra

were presented.

By considering the overall set of technicalities employed in this thesis, a not exhaustive

list of issues can be arranged, of which specific problems may derive. Some directions for

future work are the following.

• Development of high-order methods: as issues relating to numerical accuracy, not only

the interpolation through the semi-lagrangian method needs an upgrade from its linear

capability, but also the projection method applied, which requires better accuracy.

• Algorithm improvement for PBC: although the matrix operations required to enforce

the PBC over rows and columns follow a computational approach known as CSR (Com-

pressed Sparse Row), which stores only the nonzero entries of the matrices in order to

escape memory allocation due to the sparsity, this methodology lacks of improvement

for column operations. The strategy was implemented for square matrices and well

applied for symmetric matrices while taking advantage of the symmetry to produce

more compact loops. Nonsquare matrices, however, are not optimized as to column

loops. Furthermore, the computation time for PBC operations also require additional

observation.
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• Selection of boundary conditions: the methodology presented here combines PBC, DBC,

and NBC set by selection of boundary physical groups tagged at the pre-processing level.

While the posing of the problems are well defined in regard to the mathematical point of

view, their numerical resolution might be intricate when defining consistent boundary

conditions. Running tests showed that the choice among pairs solver-preconditioner

may render dependent on the problem. Intersection points, viz. corner points, which

share different boundaries worth careful attention and better strategies to select priori-

ties should be achieved.

• Multidimensional periodicity: in this thesis, the periodicity was applied only in one

direction. Although this capability enables the simulation of several flows of practical

interest, other situations in which multidimensional periodicity occurs need to be

covered. The alternative way is to extend the mesh generation for more complex

surfaces, obtained by translation or rotation, for instance, and suit the computational

code to receive such extra functionality.

• Handling of topological changes: the modelling of physical phenomena associated to

the topological changes of dispersed bodies in two-phase configurations, such as acute

deformations, breakup and coalescence is not completely solved in the current code.

Besides requiring the reordering of the data structures responsible to save the mesh

data, such a capability should be assessed so that the physical interactions among the

dispersed bodies are respected. Flows whose hydrodynamic effects are complex (e.g.

approaching velocity, film thinning and rupture in bubble coalescence) represent a

path to be unveiled.

• Coupling of physical mechanisms: diabatic flows inside the scope of heat and mass

transfer dynamics together with multidimensional periodicity are a goal to be achieved,

since modern applications encompassing two-phase flow regimes, such as bubbly

and slug flows, have a big quota of interest in thermo-mechanical applications where

ubiquitous temperature variations and heat transfer processes reign.

• Parallel computing: advancing toward data parallelism as well as evaluating the perfor-

mance of the numerical code across a multi-core stage represents another potential

learning curve regarding the current code.
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• Curvature and capillary pressure modelling: the curvature computation follows a geo-

metrical idea which is based on the Frenet’s relations. Although the results obtained

until now are satisfactory for a class of dispersed flows, namely bubbles and drops,

other flow regimes, such as annular and jet flows require additional attention because

of their prolonged interfaces. Since they may have instabilities, localized high-curvature

zones may be generated by peaked nodes that cause unavoidable bad-shaped elements.

Therefore, new alternatives for interpolation and capture of numerically uncontrollable

curvatures should be developed. Additionally, advancements in the coupling with PBC

are necessary as regards the computation of curvature over the periodic faces over

which interface points overlap.

• Marangoni effects: flows subject to Marangoni effects generated by surface tension

gradients due to the influence of either contaminants or surfactants as well as reactive

flows represent another field of study opened to the numerical code used in this thesis.

• Multifluid interaction: all cases dealt with here take a two-fluid/two-phase flow condi-

tion. Although the interaction of too many dispersed elements can be studied in these

conditions, the codification required to include three or more substances should be

implemented. Surely, this further step will open up several opportunities of study.

• Extensions for the drop jet configuration: the inclusion of gravity is an incremental

effect to be considered in the future. Another point to be considered sticks to the

imposition of the initial condition of the jet. It is known that disturbances emerge from

a drop that detaches off a unbroken liquid jet, which may propagate with the drop’s

motion. Therefore, the survey on an initial condition that considers such a effects is

deserves additional study. Concerning the periodic spacing of drops, a condition similar

to a “multipole flow” formed by sources and sinks interposed in-line may help to resolve

the flow in the gaps between trailing and leading drops whilst also resorts to a disturbed

flow around the drops.

To conclude, it should be emphasized that has been arising not only many variants of

the classical FEM along the recent decades, but also many opportunities for newer applica-

tions. Incompressible two-phase flows, strictly, represent an important portion of this whole

and so will be the ongoing tools intended to develop FEM codes. ALE/FEM methods have

gained immeasurable proportions in fluid-structure interaction problems, from which other
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front-end creative solutions may appear and be adapted for different situations. Moreover,

with the ascension of FE-based commercial codes, the state-of-art in developing scientific

MCFD codes with robust and uncomplicated programming languages in this field will may

be able to become a prosper research line.
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APPENDIX A - Code Flowcharts

This appendix gathers overview flowcharts of the FE-based in-house code used in this

thesis concerning the three basic macro stages of any software turned to Computational Fluid

Dynamics as well as a very simple UML partial diagram of the main C++ classes involved in

the PBC programming.



181

Figure 88: Flowchart I: pre-processing stage.
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Figure 89: Flowchart II: processing stage.
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Figure 90: Flowchart III: post-processing stage.
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Figure 91: UML partial diagram of the in-house femSIM2D/3D code.
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APPENDIX B - GMSH SCRIPT SAMPLE (PERIODIC SURFACE)

/* File: sample-periodic-surface-thesis.geo

* Author: Peixoto de Oliveira, Gustavo

* Date: December 31st, 2013

* Description: Generates a 3D channel with periodicity

* and array of nb equally-spaced spheres.

*/

// Characteristic Lengths

b = 0.08; // bubbles

wp = 0.2; // walls

// Boundary Geometry

xMin = 0;

yMin = 0;

zMin = 0;

r1 = 1; // radius

D = 2*r1; // diameter

// Bubble Parameters

DB = 1; // bubble diameter

rb = DB/2; // bubble radius

g = rb; // gap length

s = 2*g; // slug length

nb = 3; // number of bubbles

LM = nb*DB + (nb - 1)*s; // bubble array

L = LM + 2*g; // channel length

// 1. PERIODIC SURFACES

// left end

p1 = newp;

Point(p1) = {xMin,yMin,zMin,wp}; // center

p2 = newp;

Point(p2) = {xMin,yMin,zMin - r1,wp};

p3 = newp;

Point(p3) = {xMin,yMin + r1,zMin,wp};

p4 = newp;

Point(p4) = {xMin,yMin,zMin + r1,wp};

p5 = newp;

Point(p5) = {xMin,yMin - r1,zMin,wp};

// right end

p6 = newp;

Point(p6) = {xMin + L,yMin,zMin,wp}; // center

p7 = newp;
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Point(p7) = {xMin + L,yMin,zMin - r1,wp};

p8 = newp;

Point(p8) = {xMin + L,yMin + r1,zMin,wp};

p9 = newp;

Point(p9) = {xMin + L,yMin,zMin + r1,wp};

p10 = newp;

Point(p10) = {xMin + L,yMin - r1,zMin,wp};

/* --- BUILDING CIRCLES --- */

// left end

c1 = newc;

Circle(c1) = {p2,p1,p3};

c2 = newc;

Circle(c2) = {p3,p1,p4};

c3 = newc;

Circle(c3) = {p4,p1,p5};

c4 = newc;

Circle(c4) = {p5,p1,p2};

// right end

c5 = newc;

Circle(c5) = {p7,p6,p8};

c6 = newc;

Circle(c6) = {p8,p6,p9};

c7 = newc;

Circle(c7) = {p9,p6,p10};

c8 = newc;

Circle(c8) = {p10,p6,p7};

/* --- BUILDING EXTERNAL LINES --- */

l1 = newl;

Line(l1) = {p2,p7};

l2 = newl;

Line(l2) = {p3,p8};

l3 = newl;

Line(l3) = {p4,p9};

l4 = newl;

Line(l4) = {p5,p10};

// 2. INTERNAL DOMAIN - BUBBLES

// Origin

x0 = xMin;

y0 = yMin;

z0 = zMin;

For i In {1:nb} // BEGIN LOOP

// --- spherical bubble points
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pp9 = newp;

Point(pp9) = {x0 + g + rb + (i - 1)*(DB + s), y0, z0, b};

pp10 = newp;

Point(pp10) = {x0 + g + rb + (i - 1)*(DB + s), y0, z0 - rb, b};

pp11 = newp;

Point(pp11) = {x0 + g + rb + (i - 1)*(DB + s), y0 + rb, z0, b};

pp12 = newp;

Point(pp12) = {x0 + g + rb + (i - 1)*(DB + s), y0, z0 + rb, b};

pp13 = newp;

Point(pp13) = {x0 + g + rb + (i - 1)*(DB + s), y0 - rb, z0, b};

pp14 = newp;

Point(pp14) = {x0 + g + (i - 1)*(DB + s), y0, z0, b};

pp15 = newp;

Point(pp15) = {x0 + g + DB + (i - 1)*(DB + s), y0, z0, b};

// --- BUILDING CIRCLES ---

// x-normal meridian

cc11 = newc;

Circle(cc11) = {pp12,pp9,pp11};

cc12 = newc;

Circle(cc12) = {pp11,pp9,pp10};

cc13 = newc;

Circle(cc13) = {pp10,pp9,pp13};

cc14 = newc;

Circle(cc14) = {pp13,pp9,pp12};

// z-normal meridian

cc15 = newc;

Circle(cc15) = {pp11,pp9,pp14};

cc16 = newc;

Circle(cc16) = {pp14,pp9,pp13};

cc17 = newc;

Circle(cc17) = {pp13,pp9,pp15};

cc18 = newc;

Circle(cc18) = {pp15,pp9,pp11};

// --- DISCRETIZATION (THETA) CIRCLES ---

nt2 = 14; // number of theta points per quarter of circle (total around circle is 4*nt)

//Transfinite Line{cc11,cc12,cc13,cc14,cc15,cc16,cc17,cc18} = nt2 Using Bump 1;

// BUBBLES’ SURFACES

// reference: central axis is X-positive and theta counterclockwise

// 0:Pi/2

lb21 = newl;

Line Loop(lb21) = {cc12,cc13,-cc16,-cc15};

sb21 = news;
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Ruled Surface(sb21) = {lb21};

// Pi/2:Pi

lb22 = newl;

Line Loop(lb22) = {-cc18,-cc17,-cc13,-cc12};

sb22 = news;

Ruled Surface(sb22) = {lb22};

// Pi:3*Pi/2

lb23 = newl;

Line Loop(lb23) = {-cc11,-cc14,cc17,cc18};

sb23 = news;

Ruled Surface(sb23) = {lb23};

// 3*Pi/2:2*Pi

lb24 = newl;

Line Loop(lb24) = {cc15,cc16,cc14,cc11};

sb24 = news;

Ruled Surface(sb24) = {lb24};

Printf("Generating dispersed body %g...",i);

Printf("Data bubble: %g",i);

Printf("Bubble’s ruled surface - 0:Pi/2 = %g",sb21);

Printf("Bubble’s ruled surface - Pi/2:Pi = %g",sb22);

Printf("Bubble’s ruled surface - Pi:1.5*Pi = %g",sb23);

Printf("Bubble’s ruled surface - 1.5*Pi:2*Pi = %g",sb24);

// DISPERSED PHYSICAL SURFACES

Physical Surface(Sprintf("Dispersed%g",i)) = {sb21,sb22,sb23,sb24};

EndFor

// 4. BUILDING EXTERNAL SURFACES

// left end

ll15 = newl;

Line Loop(ll15) = {-c4,-c3,-c2,-c1};

s1 = news;

Plane Surface(s1) = {ll15};

// right end

ll16 = newl;

Line Loop(ll16) = {c5,c6,c7,c8};

s2 = news;

Plane Surface(s2) = {ll16};

// channel’s surfaces

ll17 = newl;
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Line Loop(ll17) = {-l1,c1,l2,-c5};

s3 = news;

Ruled Surface(s3) = {ll17};

ll18 = newl;

Line Loop(ll18) = {-l2,c2,l3,-c6};

s4 = news;

Ruled Surface(s4) = {ll18};

ll19 = newl;

Line Loop(ll19) = {-l3,c3,l4,-c7};

s5 = news;

Ruled Surface(s5) = {ll19};

ll20 = newl;

Line Loop(ll20) = {-l4,c4,l1,-c8};

s6 = news;

Ruled Surface(s6) = {ll20};

// --- PERIODIC SURFACES MESHING s1 - Master :: s2 - Slave

Periodic Surface s1 {c1,c2,c3,c4} = s2 {c5,c6,c7,c8};

// 5. BOUNDARY PHYSICAL SURFACES

Physical Surface("PeriodicLeftBoundary") = {s1};

Physical Surface("PeriodicRightBoundary") = {s2};

Physical Surface("NoSlipBoundary") = {s3,s4,s5,s6};

/* End of script */
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APPENDIX C - EQUATIONS OF THE PBC FORMULATION

Enforcement of PBC: mathematical aspects

Let

∫
Ω
ρ

[
∂vP

∂t
+ (vP − v̂) ·∇vP

]
·wP dΩ−Euβ

∫
Ω

eP ·wP dΩ+
∫
Ω
∇p̃ ·wP dΩ

− 1

Re

∫
Ω
∇· [µ(∇vP +∇vP

T )] ·wP dΩ− 1

F r 2

∫
Ω
ρg ·wP dΩ

− 1

W e

∫
Ω

f ·wP dΩ= 0, vP ,wP ∈ VP

be the expanded form of

∫
Ω
B1,P (vP , p̃, f; v̂,ρ,µ,g) ·wP dΩ= 0,

which is included in Equation (5.17). By using integration by parts in the viscous term and

periodic pressure term,

∫
Ω
∇· [µ(∇vP +∇vP

T )] ·wP dΩ=−
∫
Ω
µ

[(∇vP +∇vP
T )

: ∇wT
P

]
dΩ+

+
∫
Γ

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ∫

Ω
∇p̃ ·wP dΩ=−

∫
Ω

p̃∇·wP dΩ+
∫
Γ

p̃wP ·ndΓ.

Now, since Γ= ΓP ∪ΓD , the Γ-integrals can be decomposed into

∫
Γ

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ=

∫
ΓD

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ+

+
∫
ΓP

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ∫

Γ
p̃wP ·ndΓ=

∫
ΓD

p̃wP ·ndΓ+
∫
ΓP

p̃wP ·ndΓ.

However, given that

wP |ΓD = 0,
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the integrals relate to the Dirichlet boundary vanish, thus remaining

∫
Γ

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ=

∫
ΓP

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ∫

Γ
p̃wP ·ndΓ=

∫
ΓP

p̃wP ·ndΓ.

The periodic boundary, in turn, is decomposed by ΓP = ΓL ∪ΓR , where ΓR = ΓL ⊕LP eP

to give

∫
ΓP

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ=

∫
ΓL

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ+

+
∫
ΓR

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ∫

ΓP

p̃wP ·ndΓ=
∫
ΓL

p̃wP ·ndΓ+
∫
ΓR

p̃wP ·ndΓ.

Now, the enforcement of the PBC require that

v|ΓL = v|ΓR

n ·∇v|ΓL =−n ·∇v|ΓR

p̃|ΓL = p̃|ΓR

n ·∇p̃|ΓL =−n ·∇p̃|ΓR ,

so that

∫
ΓL

n · [µ(∇vP +∇vP
T ) ·wP

]
dΓ+

∫
ΓR

(−n) · [µ(∇vP +∇vP
T ) ·wP

]
dΓ∫

ΓL

p̃wP ·ndΓ+
∫
ΓR

p̃wP · (−n)dΓ.

cancel out in the formulation because of the opposite sign of the normal vector over ΓR .

Finally, the periodic mesh nodes in the discrete equations are manipulated via rows/columns

operations.
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APPENDIX E - CURVATURE AND FRENET’S FRAME

Curvature

Curvature is a scalar function κ(s) that associates a real number to each point of a

parametrized curve in s by a real interval like a ≤ s ≤ b. From the Differential Geometry [?], one

ascertains that the curvature measures “how much the curve is bending at the parametrized

point”. This quantity is well understood by comparing it to the role played by a derivative of

the velocity vector at a point of a trajectory. However, the concept of curvature extends to

smooth surfaces where it turns into a much more intricate matter. For a general surface ζ,

κ(s) should satisfy some properties. The most intuitive are:

• k is a smooth map;

• a point with an open neighbourhood contained in a plane has zero curvature;

• if p,q ∈ ζ are points such that p has a neighbourhood that forms a sharp peak higher

than a neighbourhood of q, then κ(p) > κ(q).

Frenet Frame

When we consider a curve in R3 parameterized in s by a real interval like a ≤ s ≤ b,

three vectors are essential to give information about the curve, namely, the normal vector

n(s), the tangent vector t(s) and the binormal vector b(s). This latter vector only makes sense

in R3, since is defined by

b = t×n. (7.19)

{t,n,b} form an orthonormal basis to R3, which, indeed, is called the Frenet frame.

Calculation of curvature for one-dimensional interfaces

Another relevant characteristic of the method used here concerns to the computation

of the curvature κ, which depends on geometrical operations performed over interface ele-

ments. With the insertion of the CSF model [?] to estimate the interfacial force that goes along

with the Equation (3.39), an accurate retrieval of the curvature is needed. In order to spare
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painstaking reproductions of all the geometrical apparatus, we will refer to [?], [?] for further

ascertainments.

The discrete process to calculate the unit normal vector in two-dimensional domains

takes two properties into account. Firstly, the interface is a curve represented by a set of

linear elements and structured. Secondly, the normal vectors for each neighbour element

can be obtained by orthogonalizing the unit tangent vectors to each element, which, in fact,

are obtained by normalizing the element length itself. In turn, the normal vector for the

shared node is evaluated by summing the contributions of the normal elemental vectors. This

scheme is depicted in Figure 92. Mathematically, if n(eL,i ),n(eR,i ) are the unit normal vectors

evaluated over the neighbour elements respectively at left and at right of the interface node

xi , then,

n(eL,i ) = Rπ/2
[
t(eL,i )

]
, n(eR,i ) = Rπ/2

[
t(eR,i )

]
, (7.20)

where

t(eL,i ) = xL,i −xi

||xL,i −xi ||
, t(eR,i ) = xR,i −xi

||xR,i −xi ||
. (7.21)

Above, xL,i ,xR,i are the vertices of the neighbour elements not matching the interface node

and t(eL,i ),t(eR,i ) their respective unit tangent vectors generated by the rotation matrix Rπ/2.

Directly from Equations (7.20) and (7.21), one gets

n(xi ) = n(eL,i )+n(eR,i ) = Rπ/2
[
t(eL,i )+ t(eR,i )

]
. (7.22)

Meanwhile, the curvature κ(xi ) is evaluated for each interface node by an approximation

adapted from a formulae set of the Frenet’s frame, or, even more formally, Frenet-Serret

Theorem - see [?] - for curvature and torsion. 7.23 is the continuous version of one among the

Frenet’s formulae relating κ and the unit vector tangent t to the interface.

κn = ∂t

∂s
≈ t(eL,i )− t(eR,i )

h̄
. (7.23)

Since the elements eL,i ,eR,i do not necessarily have the same size, the evaluation of κ(xi ) is

undertaken as an average distribution over the mean length h̄ of the neighbour elements



194

(a) (b)

Figure 92: Scheme for the calculation of the curvature: (a) continuous and discrete versions;
(b) effect of the curvature upon the normal vector at xi .

given by

h̄ = 1

2
(hL +hR ), (7.24)

where hL ,hR are the lengths of the neighbour elements. Also depicted in Figure 92 at left, it is

seen that h̄ binds the two midpoints xm,L ,xm,R . At right, a sketch was added only to illustrate

how κ affects the normal vector ni by stretching it. From Equation (7.23), it is inferred that

the higher the tangential derivative along the interface, the higher the norm of the vector κni ,

because if, for instance, we choose a sequence (κp ) such that κ1 < κ2 < . . . < κp , then

||κ1ni || < ||κ2ni || < . . . < ||κp ni ||. (7.25)

In other words, high curvatures tend to magnify the normal vector at xi .
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APPENDIX E - VERIFICATION & VALIDATION

The following text contains clippings about the meaning of verification and validation

in terms of the CFD’s vogue. Such terminologies, sometimes used interchangeably, are

discussed here in order to elucidate presumable ambiguities. For a long and detailed review

about the topic, refer to [?] and references therein.

The concept of V&V

Definition 7.5.1 (Verification) The process of determining that a model implementation ac-

curately represents the developer’s conceptual description of the model and the solution to the

model.

Definition 7.5.2 (Validation) The process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the intended uses of the model.

Verification provides evidence, or substantiation, that the mathematical model, which

is derived from the conceptual model, is solved correctly by the computer code that is being

assessed. Verification does not address the issue of whether the mathematical model - defined

by a set of partial differential or integro-differential equations along with the required initial

and boundary conditions - has any relationship to the real world, e.g., physics. Validation, on

the other hand, provides evidence, or substantiation, of how accurately the computational

model simulates the real world for system responses of interest. Validation activities presume

that the computational model result is an accurate solution of the mathematical model.

Code verification procedures

Considering the numerical solution of PDEs, code verification comprises the activities

of:

1. defining appropriate benchmarks for the evaluation of solution accuracy and

2. determining what constitutes satisfactory performance of the algorithms on the bench-

marks.

Code verification relies on the comparison of computational solutions to the “correct an-

swer”. The correct answer is provided by highly accurate solutions for a set of well-chosen
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Figure 93: Example of a process of verification to detect errors in codes. Extracted from [?].

benchmarks, and this answer can only be known in a relatively small number of isolated cases.

These cases therefore assume a very important role in code verification and should be care-

fully formalized in test plans that describe how the code will be verified. In code verification,

the key feature to determine is the observed, or demonstrated, order of convergence using

multiple numerical solutions. An exampled of method that uses exact or highly accurate

solutions to the PDEs to detect numerical algorithm deficiencies and programming errors is

illustrated in Figure 93.

The mathematical model is the general model for the application of interest, whereas

the exact and highly accurate solutions to the PDEs are special-case solutions of the mathe-

matical model. For these special cases, benchmark solutions can be computed. Four types of

highly accurate solutions (from highest to lowest) are recognized:

1. manufactured solutions;

2. analytical solutions;

3. highly accurate numerical solutions to the ODEs and

4. highly accurate numerical solutions to the PDEs.

More specifically, analytical solutions are closed-form solutions to special cases of the PDEs

defined in the mathematical model, commonly represented by infinite series, complex in-

tegrals, and asymptotic expansions. However, the most significant practical shortcoming of
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classical analytical solutions is that they exist only for very simplified physics, material prop-

erties, and geometries. Therefore, it is indispensable to use the same modelling assumptions

for both the benchmark solution and the code being tested.
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