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RESUMO 

 

 

OLIVEIRA FILHO, A. G. de. Simulação de escoamento reativo bidimensional através de 
uma formulação função corrente - vorticidade com termo de empuxo, usando o método de 
elementos finitos. 2017. 139f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de 
Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2017. 
 

 A construção de usinas hidrelétricas com a finalidade de suprir a demanda de energia 
elétrica sempre é apresentada acoplada aos conceitos de aproveitamento de recursos naturais e 
como sendo mais "limpa" do que a produção termelétrica. Na verdade, essa opção é 
responsável por grandes impactos ambientais porque a decomposição da matéria orgânica 
submersa nos enormes reservatórios implica na geração de grandes volumes de gases de efeito 
estufa. Assim, é interessante estudar formas de modelar este fenômeno. A literatura afirma 
que tais escoamentos têm características estratificadas, com perfis de densidade e temperatura 
determinados por ciclos ambientais externos e apresentam dois componentes principais: a 
velocidade longitudinal, impulsionada pela alimentação e descarga e a velocidade vertical, 
impulsionada principalmente pela evolução de gás para a superfície. Portanto, foi decidido 
estudar um modelo de escoamento bidimensional com formulação de função-corrente e 
vorticidade, levando em conta um perfil de densidade influenciado pelo gás desprendido 
através da aproximação de Boussinesq. Além disso, tendo em conta a oxidação do metano no 
reservatório, um termo de caimento é adicionado à equação de transporte da concentração, o 
que caracteriza um escoamento reativo. Para as simulações, realizadas com o objetivo final de 
obter perfis de velocidade e concentração, o Método de Elementos Finitos surge como um 
método viável porque pode manusear equações convectiva-difusivas, cujas condições de 
contorno são consistentemente integradas na chamada forma fraca do sistema. Tendo em 
conta os ciclos sazonais característicos dos fenômenos ambientais, soluções analíticas 
multidimensionais para condições de contorno transientes são propostas. Considerações sobre 
novas condições de contorno para o transporte da vorticidade, mais ajustadas ao fenômeno do 
que as usualmente encontradas na bibliografia atual são feitas, o que também é uma inovação. 
Resultados são obtidos e criticados e dificuldades na implementação do modelo são 
discutidas. Sugestões para trabalhos futuros também são apresentadas. 
 

Palavras-chave: Escoamentos reativos; Simulação; Formulação de função-corrente e 

vorticidade; Método de Elementos Finitos. 



 

 

ABSTRACT 

 

 

OLIVEIRA FILHO, A. G. de. Two-dimensional reactive flow simulation through a vorticity-
stream function formulation with buoyant term using finite elements method. 2017. 139f. Tese 
(Doutorado em Engenharia Mecânica) - Faculdade de Engenharia, Universidade do Estado do 
Rio de Janeiro, Rio de Janeiro, 2017. 
 

Construction of hydroelectric power plants to supply the demand for electrical energy 
has always been introduced coupled to the concept of harnessing of natural resources and as 
being more "clean" than thermoelectric production. Actually, it causes large environmental 
impacts because decomposition of organic matter submerged in huge reservoirs implies in 
generation of large volumes of greenhouse gases. Thus, it is of interest to study ways to model 
this phenomenon. Although reservoir flows comprise mixed water and gases, related literature 
states that these flows have stratified characteristics with density and temperature profiles 
determined by external environmental cycles. In these basins, the flow has two main 
components that draw attention: the longitudinal velocity, driven mainly by feeding inflow 
and outflow discharge and the vertical velocity, driven mainly by gas evolution to the surface. 
Therefore, it was decided to study a two-dimensional flow model through stream function 
vorticity formulation, taking into account the density profile provided by the gas given off 
through Boussinesq approximation. Also, in view of methane oxidation reaction within the 
reservoir, a decay term is added to the species transport equation, implying in a reactive flow. 
For the simulations, with the ultimate goal of obtaining flow velocity and concentration 
profiles, Finite Elements Method emerges as a viable method which can handle-diffusive 
convective equations, whose boundary conditions are consistently integrated in the system 
weak form. In view of the seasonal cycles present in environmental phenomena, 
multidimensional analytical solutions for transient boundary conditions are proposed. 
Considerations on novel boundary conditions for the transport of vorticity, more adjusted to 
the physical phenomena than those currently found in the bibliography are made, which is 
also an innovation. Results are obtained and criticized and difficulties in the implementation 
of the model are discussed. Suggestions for further work are also outlined. 
 

Keywords: Reactive flows; Simulation; Vorticity-stream function formulation; Finite 

Elements Method. 
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INTRODUCTION 

 

0.1 Preliminairies 

Construction of large dams to meet Brazil growing energy needs has always been 
considered due both to the concept of harnessing natural resources and the fact that fully 
dominated technology to their deployment is already available in the country. 
Environmentalists have also reinforced this option as being the most "clean" and safe, 
although, actually, it may provide environmental impacts even more significant than 
thermoelectric generation (FEARNSIDE, 2002; St LOUIS et al., 2000). 

It is to note that anaerobic decomposition of submerged organic matter in reservoirs 
implies in generation of large volumes of methane and carbon dioxide that evolve into the 
atmosphere. A typical composition of this given off gas is presented by Table 1. 

 
Table 1 – Typical composition of biogas 

 
   Source: www.kolumbus.fi, 2007. 

 
As it can be seen, CH4 and CO2 are the most important components. Furthermore, it is 

known that methane is about 21 times more powerful in contributing to global warming than 
carbon dioxide, maybe the most famous greenhouse gas for the general public. Calculations 
already performed show that the world 52,000 large dams may contribute with more than four 
percent of the total warming impact of human activities (ENS, 2007). So, it seems interesting 
to model this phenomenon, in order to find ways to counteract possible environmental 
harmful effects in the use of hydroelectric power plants. 

 

0.2 Sketch of Reservoirs Dynamics 
 

Figure 1 – Lake and reservoir view of Itaipu hydroeletric plant 

 

Source: Itaipu Binacional, 2016. 
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A reservoir is an artificial lake, where flow from a river is impounded by a dam. The 
flow differs from those of watercourses, like channels and rivers, by the fact that it is far 
weaker and mostly not driven by gravity but, instead, by surface winds and buoyancy forces 
(CUSHMAN-ROISIN, 2014).  

An also important feature of these water bodies is their great depth which, coupled to 
weak flow velocities, implies in the consideration of a residence time, defined as the average 
time spent by a water parcel from time of inflow to that of outflow (CUSHMAN-ROISIN, 
2012). 

This residence, or retention, time is often large in huge reservoirs and, in this case, the 
fluid dynamics may be controlled by cyclic variations causing water heating and cooling, 
affecting its capacity to mix and disperse pollutants (CUSHMAN-ROISIN, 2012). Reservoirs 
becomes, then, stratified water bodies showing particular flow patterns, as depicted in Figure 
2, below, where the shading indicates an increase in density with increasing depth. 

 
Figure 2 – Schematic of stratified flow in reservoirs 

 

Source: PEETERS; KIPFER, 2009. 
 

Limnology usually defines three layers in such stratified flows (CUSHMAN-ROISIN, 
2014): 

Figure 3 – Stratified layers illustration 

 
Source: CUSHMAN-ROISIN, 2014. 

 

 Epilimnion: affected by surface processes which include wind-driven waves and 
currents, heating and cooling, aeration, input and discharge of chemical species and 
pollutants, etc; 



18 

 

 

 Thermocline: a region of larger vertical temperature and density change; 

 Hypoliminion or benthos: affected by the epiliminion and benthic processes such as 
convection penetrating from above, sedimentation, biological decomposition 
ensuing oxygen consumption, chemical exchange with bottom sediments, etc. 

These layers show proper density profiles caused by temperature, amount of solids in 
suspension and also by gases concentration that arise from the decomposition of degradable 
biomass and react with dissolved oxygen to form other products. 

Although quantitatively differing, depending on the reservoir characteristics and 
location, gas concentration and temperature profiles show similar shapes in its corresponding 
layers, as illustrated by Figure4. 

 

Figure 4 – Gas concentration and temperature in world reservoirs 

 

(a) Balbina, Brazil 

(GUÉRIN et al., 2006) 

 

 

(b)Petit-Saut, French Guyana 
(GUÉRIN et al., 2006) 

 

(c) Tillari, India 
(NARVENKAR et al., 2013) 

 

(d)Illersjön, Sweden 
        (BASTVIKEN et al., 2002) 

 

This implies in the generalization of possible density profiles, as proposed by 
Boegman (2009), illustrated by Figure 5, and makes possible its adoption in a model. It must 
be remarked also that such vertical density profile, coupled to the longitudinal feature of the 
reservoir water discharging flow, leads to consideration of a 2-D model, over which this study 
will be restricted. 

      Temp 
(oC) 
      O2     
(μM) 
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Figure 5 - Characteristic continuous water-column density stratifications as found 
in lakes and typical layer approximations 

 

Source: BOEGMAN, 2009. 
 

The first illustration at the left of Figure 5 shows a constant density profile that may be 
considered for an incompressible but completely mixed flow in only one layer. The second 
from the left shows constant density profiles in two layers, denoting also complete mixing 
within the layers, which is also represented by the third illustration, this time, in three layers. 
The last three figures shows profiles with layers in which the mixing is not uniform and 
prescribe linear density variations. In any case, the simplicity of these profiles makes possible 
an implementation in a numerical procedure. Moreover, it may imply that turbulence is 
restricted to the layers limits, where it is smoothed. 

Methane, due to its high proportion in biogas composition and dominance role in 
global warming, is of major concern. Also, being a known fuel, its use is already being 
considered for power generation (BAMBACE et al., 2007; LIMA et al., 2008), in addition to 
hydroelectric generation, which would also have the effect of preventing it of popping out into 
the atmosphere. So, to complete this sketch, it is worthy the illustration by Bastviken et al. 
(2002), depicting methane dynamics in stratified reservoirs (Figure 6). 
 

Figure 6 – Illustration of methane dynamics 

 

Source: BASTVIKEN et al., 2002. 
 

Methane is exported from anoxic sediments into the lake where it either accumulates 
in anoxic bottom waters, gets oxidized in a zone of extensive net methane consumption in 
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anoxic or oxic water layers and in oxic sediments, or reaches well-mixed surface water and 
gets emitted to the atmosphere. The zone of net methane consumption indicates where most of 
the methane is oxidized, although some methane oxidation may occur at lower rates outside 
that zone.  
 

0.3 Aims and Scope 

The objective of the present work is to introduce a formulation that may be applied to 
a model that simulates the hydrodynamics of hydroelectric power plant reservoirs in presence 
of greenhouse gases originated from biomass decomposition. It is to expect that computation 
of this model could afford velocity and concentration profiles that may be used as a basis for 
the mitigation of harmful effects these gases cause when they are added to the atmosphere. It 
must also be added that flow dynamics of methane naturally will imply in the study of a 
reactive flow. 

To construct the model, the following considerations are made: 

a) The problem of current interest is the solution of the chemical species transport 
equation, in order to determine the gas concentration field and, although this 
implies in the solution of the equations of motion, the velocity field is to be 
determined rather than to be specified; 

b) The model must incorporate the features of reservoirs dynamics, as sketched above, 
which imply in the addition of reaction and buoyant terms to the transport 
equations; 

c) Also, reservoirs are not confined basins, having inflow and outflows currents that 
need to be modeled; 

d) Water thermal expansion may be described by (CUSHMAN-ROISIN, 2012): 

  oo TTa  1             (1) 

where a = 2.57 x 10-4/oC and ρo = 999 kg/m3 for To = 15oC. 

e) As consequence of Equation 1, even large temperature changes between the surface 
and the bottom in a reservoir will imply in small density differences. So, it is 
possible to consider incompressibility of the flow within the layers and the 
vorticity-stream function formulation is employed; 

f) In order to reduce computational cost in the resolution of the governing equations, 
the energy equation will not be considered, by assuming that density variations are 
coupled to thermal changes in the waterbed. In fact, in such environments, the 
energy equation may be assumed decoupled from the continuity and further 
governing equations, because the temperature profiles are induced from external 
weather conditions; 

g) Due to the usual large dimensions of reservoirs and to velocity and concentration 
components, multidimensional formulations are necessary; 

h) Reservoirs weak flow velocities point at the analysis of flows only at moderate 
Reynolds Numbers and so, averaged hydrodynamic fields will be assumed without 
the introduction of turbulence models in the evolution equations. 

In view of these considerations, the problem will be addressed by: 
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a) 2-D Navier-Stokes equations in the stream-function formulation, incorporating a 
buoyant term originated through the Boussinesq approximation, which is obtained 
as described by Aziz and Hellums (1967): 
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b) 2-D Convection-Diffusion-Reaction Equation (CDRE) for the gas concentration 
(C): 

  rCD.C.u
t

C
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c) where, for 2-D flows, the diffusion coefficient is defined as 
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0
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is the decay term related to the gas. 

d) It must be observed, however that, in the proposed vorticity-stream function 
formulation, the velocity vector in Equation 4 is associated to the stream function as 
mentioned in item “a” above; 

e) Domain shape and surfaces representing a reservoir basin with inflow by the left 
boundary and the right boundary representing the dam and outflow surface. A 
possibility is illustrated by the following figure. 

 

Figure 7 – Domain shape and surfaces. 

 

 

0.4 Numerical Procedure and Code Programming 

The numerical procedure will be approached by the Finite Elements Method (FEM), 
which is a viable alternative, showing necessary flexibility to deal with problems of 
multidimensional reactive flows in complex geometries and to reach the expected results. The 
FEM formulation used is known as Galerkin FEM (GFEM), in which weight functions are 
selected as the shape functions, or, for 2-D:    y,xSy,xw i . 

For some time, FEM has been employed in the study of fluid flows of various 
characteristics and its use, based on weighted residues approach with a Galerkin formulation. 
A fundamental reference for time-dependent Navier-Stokes equations approximation is Taylor 
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and Hood (1973) and, for reactive flows, Finlayson (1972, 1980), whose developments need 
to be widened and adjusted to the case in view. 

 Gauss Quadrature (GQ) appears as one of the most preferred integration technique to 
be used in FEM (SERT, 2015). By this technique, integrals are evaluated between special 
unitary limits, implying in the concept of using master element. The original element form is 
not lost, however, because it is possible to perform proper coordinate changes through 
Jacobian transformations, which need to be programmed. 

A major contribution is also expected to be achieved with a new form of defining 
boundary conditions (BCs) for the transport equations. As many other continuum problems 
that arise in engineering and physics, the one under study is posed by appropriate differential 
equations, already referred, whose BCs, applied to the unknown functions that solve the 
problem, individualize a depicted situation. 

As it is illustrated by Figure 8, we seek a function u such that it satisfies a certain 
differential equation set A in the domain Ω, subjected to restrictions at the boundaries Γ 
(B(u)). 

Figure 8 – Problem domain Ω and boundary Γ 

 

Source: ZIENKIEWICZ; TAYLOR, 2000. 

 

If the BCs are known, probably supplied by experimental measures, they must be 
imposed at the boundaries, necessarily forcing the observed values. But in the case of 
simulations occurring prior to experimental activity, these boundaries need to be predicted. It 
must be observed that these BC may be difficult to predict, mainly in the case of time 
dependent inputs, as is the case of flows occurring under environmental variations. It seems 
then that the best way of doing this is to extend the physics of the problem, described by the 
differential equations, to the boundaries. This is attempted by introducing a new form of BC, 
as is addressed in the following sections. 

In order to make programming an easier task, an option was made towards adoption of 
MATLAB language, where built-in routines provide numerous resources to treat matrix and 
vector calculations. However, it must be remarked that although MATLAB can perform 
symbolic integration, the integrals in the formulation are evaluated numerically, in a more 
flexible and much faster way. By doing so, a code that is easier to translate into a lower level 
language is also made available. 

 As a matter of fact, programming in a language that would allow faster computation is, 
naturally, one of the next steps of this work. So, the aim of elaborate the code by writing its 
routines with minimum use of MATLAB private resources is pursued. 
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0.5 Model Verification and Implementation 

Simulations are very useful not only when they reproduce previously obtained 
experimental data, but also when they are able to anticipate results. Whatever is its purpose, 
the model has to be verified and the comparison between numerical and analytical solutions is 
one way to attain it.  

Thus, the verification is pursued in two steps: 

1) Compare results from the species transport equation for the gas transport with 
predefined flow velocity profile to analytical solutions. It is to note that most classical 
solutions of the species transport equation often restrict their analysis to one-dimensional 
spaces, while the model demands bi-dimensional calculation. So, development of proper 
analytical solution is one of the aspects of a base work. 

2) Analytical solutions of momentum transport for the particular case of flow in 
reservoirs basins could not be retrieved. So, for the velocity profile, the verification must be 
pursued by applying the code to cases of enclosed flow cavity for which there are established 
data available. This is done by modifying the original data, setting inflows and outflows to 
zero and applying BCs for enclosed cavities. 

The model will be implemented by coupling momentum equations in stream function 
and vorticity formulation to the species transport equation. It is to expect that, once checked 
on the basis sketched above, it may accurately represent flow and gas concentration profiles in 
domains depicting hypothetic reservoir basins. 

 

0.6 Closure 

This thesis is assumed rewarding as a doctoral study, presenting itself potential of, 
once attaining its goal, to contribute with: 

1) Use of vorticity-stream function formulation in 2-D stratified reactive flows; 

2) Modeling of flows in cavities with a free surface and with momentum and mass 
eflux; 

3) Improved way of evaluating wall BCs for the vorticity transport equation; 

4) Novel downstream BC formulation for parabolic problems; 

5) Approximation of reservoirs’ dynamic processes. 



 

 

 

1. SIMULATION OF SPECIES CONCENTRATION DISTRIBUTION IN 
REACTIVE FLOWS WITH TIME VARYING BOUNDARY CONDITIONS 

 

This thesis is particularly aimed at developing a coherent formulation to be used in 2-
D simulations of lengthy reservoirs reactive flows where its depth is comparatively larger than 
its width, so convective and diffusive effects may be laterally-averaged. The inlet boundary 
concentration is a pulse, a series of pulses or a continuous periodic function which apply to 
conditions naturally observed in environmental phenomena, like those related to reservoirs 
dynamics. 

It must be remarked that cyclical, time varying, input imply in outlet conditions not 
always consistently treated by the usual BCs presented in the literature (OLIVEIRA FILHO et 
al., 2017). So, an aspect to be approached preliminarily is the study of BCs that can more 
properly capture the physics of these flows and provide better solutions. 

 

1.1 Outlet Boundary Conditions for the Transport Equation 

Usually, three types of BC apply to the species transport equation and for the case of 
an uncoupled velocity profile u : 

cC       on  Γe         (5) 

q
C






    on  Γn         (6) 

h
C

DCu 






   on  Γr          (7) 

where c , q  and h  may be homogeneous, constant valued or function of time and the greek 
letter Γ denote the correspondent surface where the BC applies. Equation 5 is usually referred 
to as Dirichlet or Essential Boundary Condition (EBC), Equation 6, as Neumann or Natural 
Boundary Condition (NBC) and Equation 7, as Robin or Cauchy Boundary Condition (RBC) 
and, as consequence, Γe is the surface where an EBC applies, Γn, where a NBC applies and Γr, 
where a RBC applies. 

It must be emphasized that, in the case of time-dependent inlet conditions, special 
attention must be given to the outlet BC. Since the exit concentration or the species flux is 
unknown, assuming prescribed values at the outlet is not consistent. It is verified that, to the 
present, this indeterminacy is treated either by considering that the outlet concentration 
gradients are zero, which may be physically unrealistic (ZISKIND et al., 2011), or by using 
Robin type BCs, best suited to represent inlet conditions. 

 

1.2 Literature Review 

 It is possible to find papers that address the advection–dispersion equation, with or 
without the reaction term, providing both analytical and numerical solutions. Most of them 
were written for cases of pollutants discharge, a similar but not identical case as the one of the 
present concern. However, it is possible to use them as basis for the analysis of concentration 
profiles in reactive flows.  

O’Loughlin and Bowmer (1975), for instance, developed analytical solutions to 
Equation 4 in 1-D channel flows with decaying species, later extended by Chapman (1979) to 
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non-uniform steady rivers, both considering only pulse or continuous inlet concentrations and 
homogeneous NBC for the concentrations at the outlet. Comparison with the results obtained 
in the experimental works of Vilhena and Leal (1981) for non-reacting pollutants in point 
source injection shows good agreement with them. Czernuszenko (1987), also working with 
dispersion of conservative species, proposed a numerical solution for the 2-D advection–
diffusion equation, using a conditionally stable finite differences (FD) scheme. But, since the 
study was restricted to mixing far from the pollution source, leaving convection to the 
background, the equation was bounded by NBCs, not encompassing unsteady BCs. Piasecki 
and Katopodes (1997) interested in sensitivity of contaminant concentration profiles to timely 
changes in its load treated the problem using a FEM scheme, but the unsteady load was a 
zeroth order production term of the transport equation and the problem was subjected to 
Dirichlet and Neumann type BCs. Kaschiashvili et al. (2007) provided a consistent model for 
river reactive flow problems in one, two and three dimensions and used dimension-splitting 
FD numerical schemes, with unsteady upstream BC and a NBC downstream. But, due to the 
equilibrium condition at the outlet, consisting of a constant spatial concentration gradient, this 
BC no longer applies and is modified, sometimes, with the introduction of an additional 
parameter in order to better reproduce experimental data. The fact supports the remark that 
time-dependent inlet conditions may imply in difficulties for prescribing values for the outlet 
conditions. Lee and Seo (2007) used a 2-D finite elements model, based on the Streamline-
Upwind Petrov-Galerkin Method (SUPG) together with a Crank-Nicholson FD scheme for the 
time derivative, but restricted to rivers where the process is diffusion dominated and the 
downstream BC was a prescribed diffusion flux. Three years later, the same authors employed 
this same method to accidental mass release in rivers (LEE; SEO, 2010) and, similarly to 
Piasecki and Katopodes (1997), the accidental mass release was represented by a zeroth order 
production term of the transport equation which was subjected to Dirichlet inlet BC and 
Neumann outlet BC, once more not considering unsteady BCs. 

 As it can be noted, it seems that FEM has a lot of competition from other numerical 
methods in the simulation of reactive flows, in spite its ability of consistently coping with 
differential BCs (LOGAN, 2007). This might be explained by the existence of the advective 
term in the transport equation that makes the system of equations nonsymmetric and prone to 
numerical oscillations (YU; SINGH, 1995). Several authors addressed the problem by 
focusing the development of consistent and stable FEM schemes for these flows (YU; 
SINGH, 1995; GALEÃO et al., 2004; JOHN; SCHMEYER, 2008) but rarely holding their 
attention on unsteady BCs. The studies of Konzen et al (2007) by which a convective-
diffusive-reactive problem formulated through vorticity and stream-function is numerically 
solved, employing Galerkin FEM (GFEM) together with a Runge-Kutta scheme for the time 
stepping are also quoted. But, owing to the formulation adopted, the BCs were assumed 
homogeneous Neumann type and the flow, taking place in a closed cavity, is not subjected to 
inflows and outflows rates, as in reservoirs. 

Therefore, it may be time to focus on the accuracy improvement of numerical schemes 
that aim the simulation of reactive flows, by considering an unsteady outlet BC that could 
properly be more consistent with time dependent inlet conditions, as it happens in reservoirs 
environments. 

 

1.3 Mathematical Formulation 

 The reaction term in Equation 4 may considerably vary, depending on the process. For 
simplicity, it was decided to analyze only a first order reaction model for the methane 
oxidation and the diffusion tensor is assumed constant. 
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In order to obtain a species transport model that can be verified, at first an uncoupled 
velocity profile u  is considered. For simplicity, a linear form, related to the dependence of 
the diffusion coefficients, is also assumed and the transport equation then becomes: 
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with initial condition given by: 

C(xi, 0) = 0              (9) 

 BCs used at the inlet or upstream are prescribed in one of the two forms below: 

Cinj(0,y,t) = 0,  t ≠ nτ  
Cinj(0,y,t) = C*

inj,  t = nτ 

in order to represent short injections at arbitrary times nτ, or to represent a periodic injection, 
it is assumed : 

Cinj(0,y,t) = CI (1 + cos mπt)          (11) 

where CI is the mean amplitude of the species concentration at the inlet. In Equations 10-11, 
the y coordinate dependence is applicable to 2-D flows. 

In order to apply a FEM scheme with a Galerkin formulation to solve Equation 8, a 
weighted residual statement of that equation is elaborated, which reads: 
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where w is an arbitrary weight function. 

 By applying the divergence theorem to the third term of Equation 12, and substituting 
the result in the same equation , the following weak form is obtained: 
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 Having in mind the general shape of the reservoir depicted in Figure 7 and a flow 
occurring from left to right, one has that xx enn


 , yy enn


  and that the domain surface is 

outin   21 . 

Γ1 and Γ2 represent upper and lower limit surfaces and have the related fluxes equal to 
zero. Γin, by its turn, represents the inlet boundary, subjected to specified, but time-dependent, 
BCs, as given by Equations 10-11. In this case, the weight functions are zero for Γin, implying 
that the surface integral is only evaluated along Γout. Γout is the output boundary, comprising 
only the opening of the dam spillway. 

For that outlet surface, it can assume that: 

xen


              (14) 

and, therefore, the r.h.s. of Equation 13 becomes: 

  (10) 
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By looking again at Equation 15, it can be verified that the weak formulation boundary 
term represents the species flux by Fick’s Law. Yu and Singh (1995) sustain that this 
formulation should only be applied to situations where there are exclusively diffusion fluxes 
at the outlet boundary. But in the problems under consideration, advection effectively occurs 
at the outlet, and must be taken into account in the BC expression. 

In fact, there are cases where gradients normal to the outlet surface are zero, bringing 
the formulation back onto consistency, even in presence of convection because it eliminates 
the surface integral. Again considering Equation 15: 
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One must have in mind that for a developed profile, Equation 16 also implies, taking 
into account Equation 8, in: 
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It is again emphasized that this condition does not hold when the gradients at the outlet 
are not zero. It is well known that flow problems involving the transport of chemical species 
with homogeneous NBC fail to satisfy the conservation law for species concentrations within 
the domain (GOLZ; DORROH, 2001). In particular, prescribed constant outlet fluxes also do 
not lead to correct description of time-dependent problems. 

So, for the sake of generality another outlet BC must be assumed. For instance, 
studying momentum transport in such flows, several authors have proposed to prescribe as 
downstream BC the inviscid momentum equation (BRISTEAU et al., 1987): 
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where u


 is the averaged velocity vector and p is the pressure. 

Then, it is expected that a similar condition can be applied to the species transport 
equation. As a strong support for the intention of following the above model and disregard the 
viscous term of Equation 4 in a new BC, it is pointed out that in the flows under 
consideration, the species dispersion is mainly due to vertical and transverse velocity 
gradients, while molecular and turbulent diffusions are generally negligible (LAUNAY et al., 
2015). 

So, by considering concentration as the dependent variable and inserting the reaction 
term present in Equation 8: 
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where a first order reaction term is adopted to represent methane decay. 

Equation 19 is, in fact, a nonhomogeneous material derivative. It depicts a condition, 
termed Material Derivative Boundary Condition (MDBC) (OLIVEIRA FILHO et al., 2017), 
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that is constructed with the aim of taking to the outlet surfaces the main phenomena 
represented by the equation itself, rather than imposing an arbitrary condition at the domain 
shelf and so, better capture the outlet implications of time-dependent inputs. 

In order to profit of MDBC in the formulation, it may be assumed that, at the boundary 

Γout, Unu


 , where 22
yx uuU  , what, in general, can match the features of a flow by the 

spillway of a dam. 

Then, Equation 19 can be expressed as: 
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where: ii enn

 . 

Following, combining equations 13, 15 and 20, it is possible to write: 
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1.4 Numerical Procedure 

By using the Galerkin formulation, the concentration profile is approximated by: 
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 Substituting this approximation into the weak form given by Equation 21, where, 
according to the GFEM, the weight functions are the same as the shape functions 
(ZIENKIEWICZ; TAYLOR, 2000), one has: 
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where the boundary integral (r.h.s of Equation 21) was approximated through: 
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 Equation 23 encompasses a stiffness matrix and a modified mass matrix which is 

related to the concentration time derivative 






 
C  and the reaction term. It can be put in matrix 

form as: 
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where, M1 and K are, respectively, the modified mass and stiffness matrices. 

 In order to solve Equation 25, it is employed a numerical scheme, using the Crank-
Nicholson Method (LEWIS et al., 2005), which reads: 
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 It must be observed that it is also possible to look for another solution without 
modifying the original mass matrix, as suggested above. In this case, the use of the Crank-
Nicholson scheme on GFEM approximation of Equation 13, implies in: 
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where {B}t and {B}t+1 are the boundary terms arising from the line integral approximation on 

the r.h.s of Equation 13 at times t and t+1, [M] is 
 


NN

j
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 and [K1] is a modified 

stiffness matrix, now including the decay term, last on the left term of Equation 21, or: 
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 In this case, the boundary vectors ({B}t and {B}t+1)  must be evaluated using Equation 
24. Being dependent on the concentration and its time derivative in past and present time 
steps, these vectors must be continuously updated, making the numerical scheme for solving 
Equation 26 simpler than the one required for solving Equation 27. Thus, the first scheme was 
adopted. 

 

1.5 Analytical Solutions to the CDRE 

This class of problems has already motivated many studies pursuing analytical 
solutions of convection-diffusion-reaction equations subjected to time-dependent BCs, like 
the ones from van Genuchten and Alves (1982), Logan and Zlotnik (1995), Logan (1996), 
Aral and Liao (1996), Golz and Dorroh (2001), Chen and Liu (2011) and Pérez Guerrero et al. 
(2013). These studies are mostly restricted to 1-D cases when reservoirs, usually with large 
dimensions, ask for multidimensional calculations. However, it is interesting to consider some 
of these solutions for purposes of model verification. 

In the simplest case of 1-D flow, analytical solutions for continuous and pulse mass 
injection, are, respectively (O’LOUGHLIN; BOWMER, 1975; CHAPMAN, 1979): 
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and: 
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where 2
2

x

x
x u

kDH   and M inj is the total mass injected per unit area. 

 And for a 2-D case with pulse injection where there is a transversal diffusion Dy and 
zero lateral component of velocity (VILHENA; SEFIDVASH, 1985): 
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 Furthermore, it is not necessary to assume that the inlet BCs given by Equations 10-11 
occur independently in order to obtain a more generic solution. If it is considered that they are 
time dependent, isolated or combined they have a Fourier representation, under a time 
periodic form as f(t). In this way, an one-dimensional analytical solution may be obtained. 

 By following the work of Logan and Zlotnik (1996), it is possible to establish that 
Equation 8 clearly admits a solution of the form: 

  tˆxˆet,xC              (32) 

where ̂ and ̂  are complex valued, thus: 

IR iˆ       and  IR iˆ        (33) 

 Then, substituting Equations 32-33 in the 1-D form of Equation 8, one obtains: 

2 ˆDˆukˆ
xx             (34) 

 Once the periodic BC forces the inlet concentration at a fixed value, βR = 0 and 
the solution may be expressed as: 

    tixIiR Iet,xC
  R           (35) 

where R means the real part of Equation 35 and: 
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 Also, considering that the concentration at x = 0 cannot take negative values, it 
is necessary to add a constant forcing, such that this restriction is satisfied, and 
Equation 35 becomes: 

    tixIiR
o

IeCt,xC
  R           (37) 

 For this constant forcing, obviously βR = βI =0 and therefore, with the use of 
Equation 36: 
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what implies in: 
  xˆ

o
oeC R             (39) 

 Thus, given k, xu  and Dx, as well as an abitrary αR, the analytical solution may be 

constructed, employing Equations 36-39. 

 As conditions applicable to cyclic environmental conditions found in the reservoirs 
under consideration may be represented by continuous periodic functions, a 2-D analytic 
solution to the CDRE may be constructed in order to aid verification of the two-dimensional 
model. 

 In this case, one may consider as ansatz: 

  tˆyˆxˆ yxet,y,xC
            (40) 

 Once more, observing that i̂ and ̂  are complex valued: 

IxRxx iˆ   , IRy yiyˆ    and IR iˆ        (41) 

By substituting the relations of Equation 40 in the ansatz (Equation 39), one obtains: 

 22
yyxxyyxx ˆDˆDˆuˆukˆ            (42) 

 Similarly to the one-dimensional case, taking real and imaginary parts of Equation 42: 

    2222
yIyRyxIxRxyRyxRxR ˆˆDˆˆDuuk          (43) 

and:  yIyRyxIxRxyIyxIxI DDuu  22          (44) 

 Considering periodicity in the y direction, hence βR and αyR are set to zero, in order to 
obtain bounded solutions, while αyI is an arbitrarily prescribed constant, in order to properly 
represent oscillations in the y coordinate. 

 Supposing an isotropic diffusion tensor, in order to simplify the solution, one obtains, 
after inserting the above conditions in Equation 43 and substituting in Equation 43: 
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which, upon substitution in Equation 43, yelds: 
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and the solution can be expressed as: 
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 Also, to assure the nonnegative restriction for the concentration profile, βI = 0, which 
supplies the constant forcing: 
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where αyI is arbitrarily prescribed and: 
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 Although referring to the linear species transport equation, the solutions may work as a 
basis for the model verification. In the same way as the 1-D case, the solution, employing 
Equations 45 to 49 may be constructed. Further insight on the solution development held from 
Equation 32 on can be found in Annex A of this thesis. 

 

1.6 Code, Methods and Verification 

 The numerical procedure described before was programmed in MATLAB, as 
mentioned before, using GFEM. The integrals in Equation 23 were evaluated by the GQ. The 
solution domain was discretized in regular triangular or quadrangular element meshes by 
routines within the program, depending on the case run. The program is also capable of 
performing GQ calculations in diversified number of interval points. Linear shape functions 
were used throughout, so precision of the scheme was controlled by properly refining the 
mesh. 

 It is well known that simple GFEM presents numerical oscillations and instabilities in 
problems where advection is important. So, more elaborated FEM schemes would be required 
to solve problems with small diffusion coefficients. However, considering that the role of the 
unsteady BC along with the outlet BC represented by a material derivative were the main 
aspects to be investigated, this method was employed with restrictions. Aware that some of 
the major factors causing these issues are improper choice of a time step size and also of 
element size and shape (YU; SINGH, 1995), it was adopted, as a basis for the time step and 
element size control, respectively, (CHAPRA; CANALE, 2010): 
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 In order to test the code with the analytical solutions given by Equations 29-31, the 
inlet BCs to be applied at x=0 must carry on the initial shape of the defined concentration, as 
suggested by Yu and Li (1998). This implies in: 

a) for Equation 29: 
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b) for equation 30: 
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c) for equation 31: 
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 Having that in mind, for constant and pulse injection cases the concentration profiles 
plotted in the figures below are obtained. 

 
Figure 9 – 1-D analytical and numerical solutions of equations 29-30. 

 

Tags: (A) – Equation 29, Pe = 200; (B) – Equation 30, Pe = 50; 

 ooo – Analytical Solution;            – Numerical Solution. 

 

(A) 

(B) 
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Figure 10 – 2-D analytical and numerical solutions of equation 31 (1250 elements mesh FEM; 
GQ 9 points; Pe=50; time elapsed = 1.20) 

 

Tags:               – Analytical Solution;                   – Numerical Solution. 

 

In the Figures 9-10, being the characteristic dimension depicted by the horizontal axis 
(x = 20), conditions for Pe = 50 are: xu = 10, Dx = 4.0 and k = 1.0 and for Pe = 200 are: xu = 

10, Dx = 1.0 and k = 1.0, resulting in the same Damköhler Number (2.0) for all cases. For 2-D 
test, case of Equation 30, which admits a lateral component of diffusion, Dy was set equal to 
0.2. The 1-D tests were conducted setting the y coordinate components to zero and the 2-D 
tests assumed that y represents the reservoir width, instead of its depth, as it will be employed 
in the reservoir simulation. 

The numerical solution for the periodic inlet BC (Equation 11) may be compared with 
the 1-D analytical solution constructed from Equations 35-38. Figure 11 shows the outcome 
for Pe = 100, where xu = 5.0, Dx =1.0 and k = 0.1, implying in Da = 0.4. Again, the 1-D 

numerical plot is obtained by setting the y coordinate components of the code to zero. 

 

Figure 11 – 1-D analytical and numerical solutions with periodic inlet BC (1250 
elements mesh FEM; GQ 9 points; Pe=100; time elapsed = 10.0) 

 

Tags: ooo – Analytical Solution;            – Numerical Solution. 
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2-D numerical solution for the periodic inlet, by its turn is compared to the developed 
analytical solution. The outcome shown in the following figure is a frame obtained for an 
elapsed time of 50.0 in an hypothetical basin such as length (x) = 10, width (y) = 5, k = 0.01, 

xu = 2.0, yu = 0.2 and D = 1.0. αxR and αyI were arbitrarily set to – 0.1 

Figure 12 – 2-D analytical and numerical solutions with periodic inlet BC. 

 

 
Other results were obtained, varying elapsed times, and the error was evaluated through 

Root Mean Square Deviation (RMSD), or: 

 
nd

CC
nd

i
a
ii 


 1

2

RMSD          (54) 

where a
iC is the analytical solution at node i for a given total number of nodes nd. Table 2, 

below, shows said RMSD evaluations. 
 

Table 2 – Figure 12 correspondent RMSD. 

t RMSD 
30.0 0.0589 
50.0 0.0547 
70.0 0.0691 

 
 In order to obtain these plots, numerical calculations were performed respecting the 

stability restrictions posed by Equations 50. The plots show good agreement between 
analytical and numerical solutions even for high Péclet Numbers. 
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 It is possible to observe a better agreement between analytical and numerical solutions 
for the continuous injection case, as shown in plot A of Figure 9. The plot B of Figure 9 and 
the plot of Figure 10 show that the numerical curves are slightly delayed compared to the 
exact solutions. This delay results from the fact that the discrete time integration cannot 
completely follow the instant moment of mass release (LEE; SEO, 2010). RMSD calculations 
shown in Figure 12 reveal acceptable deviations from the exact solution for the two-
dimensional case (Table 2). 

 Thus, it can be concluded that the code has been verified and is able to present reliable 
simulations of concentration profiles in reactive flows. 

 

1.7 Use of MDBC compared to EBC and NBC for finite domains 

 The analytical solutions which were used to verify the code assume Neumann’s outlet 
BCs at semi-infinite domains which is a plausible condition to reach consistent solutions 
naturally applicable to very long domains. Otherwise, solutions for finite domains that accept 
EBC or NBC are subjected to criticism (ZISKIND, 2011). So, in order to verify the validity of 
using MDBC in these domains, 1-D solutions of Equation 8 subjected to a time periodic inlet 
that adopt EBC, NBC or MDBC were compared. 

Figure 13 compares simulated concentration profiles for sorted conditions, such as Pe 
= 5 ( xu = 1.0; Dx = 4.0; k = 0.1), Pe = 25 ( xu = 5.0; Dx = 4.0; k = 0.1) and Pe = 100 ( xu = 5.0; 

Dx = 1.0; k = 0.1). In order to obtain the plots, a 1-D form of Equation 8 subjected to a time 
periodic inlet BC (Equation 11) is solved, changing the outlet BC type. First, an EBC 
arbitrarily set to a given constant value is employed, then, a homogeneous NBC and last, the 
proposed MDBC. Then, the concentrations differences (Dif C) along coordinate x were 
plotted. 

 

Figure 13 – 1-D concentration profile differences – numerical solutions (Outlet BC: 0.5; 
Outlet NBC: Equation 16; Outlet MDBC: Equation 20). 

 
 

As it can be can seen, profiles obtained when the adopted outlet condition is either 
EBC or the homogeneous NBC, compared to those obtained by the adoption of the MDBC, 
concentrate larger differences around the exit. 
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Thus, in order to check which is the best suited BC for the case in study, 
concentrations 1-D profiles for various flow and reaction parameters were numerically 
evaluated. The results were compared to the analytical solution applying the RMSD (Equation 
54) around the domain exit. This implies that, in this case, nd is restricted to the total  number 
of nodes at the outlet region. 

 

Table 3 – RMSD between 1-D analytical and numerical solutions. 
Pe = 100 RMSD 

Δx Δt Da An. ˗ EBC An. - NBC An. - MDBC 

0.2 0.02 
0.1 0.8193 0.0315 0.0226 
1.0 0.2640 0.1839 0.1744 
2.0 0.0745 0.0044 0.0022 

Pe = 50 RMSD 

0.2 
0.005 0.1 0.8628 0.0098 0.0041 

0.05 
1.0 0.4982 0.0106 0.0032 
2.0 0.1312 0.0809 0.0798 

Pe = 25 RMSD 
0.2 0.02 0.1 0.8846 0.0777 0.0537 
0.4 0.01 1.0 0.4010 0.0676 0.0679 
0.2 0.02 2.0 0.1476 0.0387 0.0259 

Pe = 5 RMSD 

0.2 
0.05 0.1 0.6155 0.0275 0.0191 
0.2 1.0 0.5672 0.0071 0.0072 
0.1 2.0 0.0880 0.0178 0.0034 

(Outlet EBC = 0.0; Outlet NBC: Equation 16; Outlet MDBC: Equation 20) 

 

It is observed that the numerical solutions with outlet EBC provide the poorest 
approximations in all Péclet and Damköhler Numbers considered and that MDBC solutions 
result in better approximations than NBC in almost all cases. This is possibly due to the fact 
that MDBC better captures specific features of the flow because it encompasses, in its 
formulation, physical effects of the problem which are not present in the usual types of BCs. 

Results on Table 3 also point at examples where the advantages of using MDBC 
instead of homogeneous NBC are not clear. Such situations arise from particular flow 
conditions that imply in very small concentration gradients at the outlet, as consequence of 
Péclet and Damköhler Numbers combinations. These cases approach patterns that can be 
treated conveniently by the homogeneous NBC and so, when outcomes obtained both with the 
use of NBC and MDBC are compared, it is verified analogous deviation from the analytical 
solution. However, these are special cases of the problem and the use of the MDBC for more 
general formulations is established. 

 

1.8 Closure 

 In transient reactive flow problems subjected to unsteady BC the main issue is to 
achieve physical coherence in constructing the model to be solved. Some analytical solutions 
of this class of problems are found in the literature which, though being parabolic, usually 
assume the outlet BC in the form of a constant concentration or of a given concentration 
gradient. 

As indicated by Piasecki and Katopodes (1997), the simulations confirmed that 
oscillatory inlet conditions result in time-dependent concentrations at the outlet, that cannot be 
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accounted for by EBCs and NBCs. Also, NBCs may not represent the total equilibrium flux at 
the outlet (YU; SINGH, 1995), leading to physically incomplete models that could perform 
imprecise profile estimation. 

A new procedure was then proposed, by which a material derivative is considered as 
the outlet BC. Results show that these BCs provide a better picture of the process, once they 
provide automatic updating of the outlet equilibrium concentration. 

This contribution will be employed in the formulation of Equation 4 of the system 
encompassed by Equations 2 to 4 and generalized in the formulations of Equations 2 and 3. It 
is also necessary to remark that Equation 13, although inheriting the linear form from 
Equation 8, can be applied to nonlinear problems through FEM. This is because in the 
construction of the approximate solution, the coefficients may be considered locally constants, 
being evaluated along the mesh, depending on the element coordinates. See, for instance, 
function calcSElem(e) in Appendix B. 

Further aspects of this section can be found in Annex B. 




