
 

 

 

APPENDIX B – MATLAB CODE FOR COMPUTATION OF VELOCITY AND 
CONCENTRATION PROFILES 

 

B.1 Source code 
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B.2 Code inputs sample file 

 

 



 

 

APPENDIX C – LID-DRIVEN CAVITY TEST MATLAB CODE 

 

C.1 Source code 
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C.2 Code inputs sample file 
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Abstract – The determination of species concentration profiles in reactive flows with variable inlets is a 
problem of practical interest to many fields such as in flow reactor transient operation and in cyclic 
degradable pollutants disposals in watercourses. In these cases, the inflow condition often consists of a 
time-dependent function which may imply in unsteady outflows, not always well represented by the 
usual boundary conditions (BC) so far used. A new approach, using an outlet condition in the form of a 
material derivative, termed Material Derivative Boundary Condition (MDBC), is introduced and a 
numerical model to solve convection-diffusion-reaction equations in two-dimensional (2-D) 
incompressible flows is developed. Upon reviewing the literature, it is noticed that Finite Element 
Method (FEM) is rarely used in the simulation of reactive flows, in spite of its ability of consistently 
coping with variable BCs. The above facts are reasons to explore its use along with a semi-discrete 
formulation with Galerkin Method in our simulations. Results are obtained for various conditions, in 
order to show features of the code and are compared to existing solutions. Use of MDBC is shown to 
provide a better approximation of the exit concentrations and use of FEM in reactive flows is further 
enhanced. 

 
Keywords — Concentration Profile Simulation, 2-D Reactive Flows, Finite Element Method, Material 
Derivative, Unsteady Boundary Conditions. 

 
 

INTRODUCTION 
 
Preliminaries 
 

The determination of species concentration profiles in incompressible reactive flows 
presents practical interest to many engineering applications, such as tubular continuous 
chemical reactors design and operation, concentration evolution prediction of degradable and 
non-buoyant contaminants in rivers, downstream industrial wastewater or domestic sewage 
discharge, etc.  
 

While reactants in chemical reactors are subject to transformation due to chemical or 
biochemical reactions, pollutants in rivers may also disappear by physical processes, such as 
volatilization or reactive decay, all of which being accounted for in the transport equation by 
addition of a reaction term r (van der Perk, 2013): 
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where we define for 2-D flows:  









y

x
ij D

D
D

0

0
. 

 
After a certain initial time interval, when the mixing processes are completed, species 

concentration along the flow can be modeled by the use of equation 1. In ideal tube reactors, 
often treated as plug flow devices, molecular diffusion and radial/lateral velocities terms may 
be dropped (Levenspiel, 1999), leading to one-dimensional (1-D) pure advective-reactive 
model. In other cases, these terms must be taken into account, requiring 2-D models to 
describe the flow. It is also reasonable to assume 1-D convective and diffusive flows for small 
rivers and channels when the length is ten or more times larger than its width (Kachiashvili et 
al., 2007). In larger watercourses, by its turn, where the river depth is significantly small 
compared to its width, depth-averaged concentrations assuming vertically well-mixed species 
could be employed (Lee and Seo, 2007), making it possible to apply a 2-D model derived 
from equation 1. 
 

Thus, it is all about solving equation 1 in the applicable dimensions, subject to proper initial 
and boundary conditions Usually, three types of BC apply: 
 

cC        on  Γe     (2) 
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   on  Γr       (4) 

 
where c , q  and g  may be homogeneous, constant valued or function of time and the greek 
letters Γ denote the correspondent surface where the BC applies. Equation 2 is usually 
referred to as Dirichlet or Essential Boundary Condition (EBC), equation 3, as Neumann or 
Natural Boundary Condition (NBC) and equation 4, as Robin or Cauchy Boundary Condition. 
 
Scope 
 
 In this paper, we are particularly interested in 2-D simulations of reacting species 
transport, where the inlet boundary concentration is a pulse, a series of pulses or a continuous 
periodic function. These inlet conditions apply to cases of flow chemical reactors operating 
under variable inlet feed and variable species concentration spills in rivers and channels. 
 

This class of problems has motivated studies pursuing analytical solutions of convection-
diffusion-reaction equations subjected to time-dependent BCs, like the ones from van 
Genuchten and Alves (1982), Logan and Zlotnik (1995), Logan (1996), Aral and Liao (1996), 
Golz and Dorroh (2001), Chen and Liu (2011) and Pérez Guerrero et al. (2013). However, 
these studies either are restricted to 1-D cases, or adopt conditions that may not represent time 
dependence close to the domain exit.  
 

We emphasize that, in the case of time-dependent inlet conditions, special attention must be 
given to the outlet BC. Since the exit concentration or the species flux is an unknown, 
assuming prescribed values at the outlet is not consistent. 
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To the present, as in the works cited above, this indeterminacy is treated either by 
considering that the outlet concentration gradients are zero, which may be physically 
unrealistic (Ziskind et al., 2011), or by using Robin type BCs, best suited to represent inlet 
conditions. 
 
Literature Review 
 
 A number of papers address the advection–dispersion equation, with or without the 
reaction term, providing both analytical and numerical solutions for cases of pollutants 
discharge. O’Loughlin and Bowmer (1975), for instance, applied analytical solutions to 
equation 1 in 1-D channel flows with decaying species, later extended by Chapman (1979) to 
non-uniform steady rivers, both considering only pulse or continuous inlet concentrations and 
homogeneous NBC for the concentrations at the outlet. Comparison with the results obtained 
in the experimental works of Vilhena and Leal (1981) for non-reacting pollutants in point 
source injection shows good agreement with them. Czernuszenko (1987), also working with 
dispersion of conservative species, proposed a numerical solution for the 2-D advection–
diffusion equation, using a conditionally stable finite differences (FD) scheme. But, since the 
study was restricted to mixing far from the pollution source, leaving convection to the 
background, the equation was bounded by NBCs, not encompassing unsteady BCs. Piasecki 
and Katopodes (1997) interested in sensitivity of contaminant concentration profiles to timely 
changes in its load, a similar aspect of our own concern, treated the problem by the use of a 
FEM scheme, but the unsteady load was a zeroth order production term of the transport 
equation and the problem was subjected to Dirichlet and Neumann type BCs. Kaschiashvili et 
al. (2007) provided a consistent model for river reactive flow problems in one, two and three 
dimensions and used dimension-splitting FD numerical schemes, with unsteady upstream BC 
and a NBC downstream. But, due to the equilibrium condition at the outlet, consisting of a 
constant spatial concentration gradient, this BC no longer applies and is modified, sometimes, 
with the introduction of an additional parameter in order to better reproduce experimental 
data. The fact supports our remark that time-dependent inlet conditions may imply in 
difficulties for prescribing values for the outlet conditions. Lee and Seo (2007) used a 2-D 
finite element model, based on the Streamline-Upwind Petrov-Galerkin Method (SUPG) 
together with a Crank-Nicholson FD scheme for the time derivative, as in this paper, but 
restricted to rivers where the process is diffusion dominated and the downstream BC was a 
prescribed diffusion flux. Two years later, the same authors employed this same method to 
accidental mass release in rivers (Lee and Seo, 2009) and, similarly to Piasecki and 
Katopodes (1997), the accidental mass release was represented by a zeroth order production 
term of the transport equation which was subjected to Dirichlet inlet BC and Neumann outlet 
BC, once more not considering unsteady BCs. 
 
 The literature survey detailed above, related to watercourses pollutants spills, shows 
that FEM has not been widely used to obtain solutions of reactive flows, in spite of its ability 
of consistently coping with differential BCs (Logan, 2007). This might be explained by the 
existence of the advective term in the transport equation that makes the system of equations 
nonsymmetric and prone to numerical oscillations (Yu and Singh, 1995). Several authors 
addressed the problem by focusing the development of consistent and stable FEM schemes for 
these flows (Yu and Singh, 1995; Galeão et al., 2004; John and Schmeyer, 2011) but rarely 
holding their attention on unsteady BCs. We also quote the studies of Konzen et al (2007) by 
which a convective-diffusive-reactive problem formulated through vorticity and stream-
function is numerically solved, employing Galerkin FEM (GFEM) together with a Runge-
Kutta scheme for the time stepping. But, owing to the formulation adopted, the BCs were 
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assumed homogeneous Neumann type and the flow, taking place in a closed cavity, is not 
subjected to inflows and outflows rates, as in rivers and continuous chemical reactors. 
 

Modeling work on fluid dynamics by FEM in chemical reactors is also not commonly found 
in the literature. Ranade’s (2002) book on reactors computational fluid modeling employs the 
finite volume method, in the examples and applications presented. Sometimes, commercial 
packages using the FEM on their built-in routines are employed for the study of chemical 
reactors models performance (Galante, 2012; Mushtaq, 2014). However, in addition to being 
proprietary, these routines often focus simulations of chemical reaction media, rather than 
flow dynamics. Yet, it is possible to verify, in the works by Skrzypacz and Tobiska (2005) 
and Skrzypacz (2010), a FEM scheme to solve a simple 1-D reactive flow in packed bed 
reactors. Even though these two studies assume steady flow, BCs are of Dirichlet type and the 
reaction term is not explicitly solved, the convenience of using FEM in chemical reactors flow 
modeling is pointed out. 

 
Aims and Objective 
 

Thus, additional motivation exists for the study of concentration fields using FEM, to 
simulate problems modeled by equation 1 and subjected to unsteady BCs. 

 
Our proposal, and what depicts the main contribution of this work, is to use an outlet BC in 

the form of a material derivative, directly representing the concentration gradient or the 
species flux time dependence, an usual feature for such models. 
 

To the authors’ knowledge, no analytical solution considering a material derivative as the 
outlet BC was yet constructed. So, a computer code prototype is developed in MATLAB, 
through a semi-discrete formulation with GFEM and implicit FD scheme for the simulations. 
The inlet, or upstream, unsteady BC behavior is assumed either as time periodic, or as pulse 
functions, providing a variable condition. At the outlet, or downstream, to better represent the 
equilibrium condition among diffusion, advection and reaction in unsteady conditions, the 
outlet flux is evaluated by the species concentration material derivative. 
 
 

MATHEMATICAL FORMULATION 
 

 Considering the objectives of the present study, of addressing isothermal reactive 
flows, an average hydrodynamic field is assumed, so turbulence models are not introduced in 
the evolution equations. We emphasize that averaging the concentration field along one of the 
three directions, in order to construct 2-D models, requires that reactants or pollutants be 
mixed at a much faster rate than the reaction rate, as in the microfluid idealization 
(Levenspiel, 1999). 
 

The reaction term in equation 1 may considerably vary, depending on the process. For 
simplicity, it was decided to analyze only a first order reaction model and the diffusion tensor 
was considered constant. The transport equation then becomes: 
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with initial condition given by: 

C(xi, 0) = 0           (6) 
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 BCs used at the inlet or upstream are prescribed in one of the two forms below: 

Cinj(0,y,t) = 0,  t ≠ nτ  

Cinj(0,y,t) = C*
inj,  t = nτ 

 

in order to represent short injections at arbitrary times nτ, or to represent a periodic injection, 
we assume : 

Cinj(0,y,t) = CI (1 + cos mπt)         (8) 

where CI is the mean amplitude of the species concentration at the inlet. In equations 7-8, the 
y coordinate dependence is applicable to 2-D flows and may represent the injection in part or 
along all its length. 
 
 As already mentioned, analytical solutions for this kind of problem exist and will be 
used in order to validate numerical results. These solutions assume either prescribed or 
Neumann’s outlet BCs mostly at semi-infinite domains. Moreover, even the solutions for 
finite domains that accept one or other of those BC are subjected to criticism (Ziskind, 2011). 
 

Equation 5 is solved by a FEM scheme, with a Galerkin formulation. So, a weighted 
residual statement of that equation reads: 

0
2



























wdkC
xx

C
ijD

x

C
iu

t

C

jii

      (9) 

 
 By applying the divergence theorem to the third term of the above equation, and 
substituting the result in equation 9, the following weak form is obtained: 
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where xx enn

 , yy enn


  and outin   21 . 

 
 Γ1 and Γ2 represent lateral surfaces and the related fluxes are zero. Γin, by its turn, 
represents the inlet boundary, subjected to specified, but time-dependent, BCs, as given by 
equations 7-8. In this case, the weight functions are zero for Γin, implying that the surface 
integral is only evaluated along Γout. 
 
 For the outlet surface, we can assume that: 

xen
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and, therefore, the r.h.s. of equation 10 becomes: 
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By looking again at equation 12, it can be verified that the weak formulation boundary term 
represents the species flux by Fick’s Law. Yu and Singh (1995) sustain that this formulation 
should only be applied to situations where there are exclusively diffusion fluxes at the outlet 
boundary. But in the problems under consideration, advection effectively occurs at the outlet, 
and must be taken into account in the BC expression. 

In fact, there are cases where gradients normal to the outlet surface are zero, bringing the 
formulation back onto consistency, even in presence of convection because it eliminates the 
surface integral. Again considering equation 12: 
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We must have in mind that for a developed profile, equation 13 also implies, taking into 

account equation 5, in: 
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We emphasize that this condition does not hold when the gradients at the outlet are not 

zero. It is well known that flow problems involving the transport of chemical species with 
homogeneous NBC fail to satisfy the conservation law for species concentrations within the 
domain (Golz and Dorroh, 2001). In particular, prescribed constant outlet fluxes also do not 
lead to correct description of time-dependent problems. 

 
So, for the sake of generality another outlet BC must be assumed. We point out that, in the 

flows under consideration, the species dispersion is mainly due to vertical and transverse 
velocity gradients, while molecular and turbulent diffusions are generally negligible (Launay 
et al., 2015). So, adding the advection term to equation 14, one has: 
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Equation 15 is in fact a nonhomogeneous material derivative that automatically evaluates 

the spatial gradients at the outlet boundary. We propose to term it Material Derivative 
Boundary Condition, or MDBC, as previously mentioned. 

 

 Assuming that, at the boundary Γout, Unu


 , where 22
yx uuU  , then, equation 15 

can be expressed as: 
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where: ii enn

  

 
Following, combining equations 10, 12 and 16, it is possible to write: 
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 Then, equation 17 is the one to be numerically implemented by GFEM, in order to obtain 
the species concentration profiles. 
 The numerical procedure may be tested by comparing the results with existing analytical 
solutions. In the simplest case of 1-D flow, analytical solutions for continuous and pulse mass 
injection, are, respectively (O’Loughlin and Bowmer, 1975; Chapman, 1979): 
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and: 
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where 2
2

x

x
x u

kDH   and M inj is the total mass injected per unit area. And for a 2-D case with 

pulse injection where there is a transversal diffusion Dy and zero lateral component of velocity 
(Vilhena and Sefidvash, 1985): 
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 When the inlet BC is given by equation 8, an one-dimensional analytical solution may 
be obtained. By following the work of Logan and Zlotnik (1996), it is possible to establish 
that equation 5 clearly admits a solution of the form: 

  tˆxˆet,xC              (21) 

where ̂ and ̂  are complex valued, thus: 

IR iˆ      and   IR iˆ        (22 
 
 Then, substituting equations 21-22 in the 1-D form of equation 5, one obtains: 

2 ˆDˆukˆ
xx            (23) 

 
 Once the periodic BC forces the inlet concentration at a fixed value, βR = 0 and 
the solution may be expressed as: 

    tixIiR Iet,xC
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where R means the real part of equation 24 and: 
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 Also, considering that the concentration at x = 0 cannot take negative values, it 
is necessary to add a constant forcing, such that this restriction is satisfied, and 
equation 24 becomes: 

    tixIiR
o

IeCt,xC
  R           (26) 

 
 For this constant forcing, obviously βR = βI =0 and therefore, with the use of 
equation 25: 
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what implies in: 
  xˆ

o
oeC R            (28) 

 
 Thus, given k, xu  and Dx, as well as an abitrary αR, the analytical solution may be 

constructed, employing equations 25-28. 
 
 

NUMERICAL PROCEDURE 
 

 By using the Galerkin formulation, the concentration profile is approximated by: 
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 Substituting this approximation into the weak form given by equation 17, where, according 
to the GFEM, the weight functions are the same as the shape functions (Zienkiewicz and 
Taylor, 2000), one has: 
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where the boundary integral (r.h.s of equation 17) was approximated through: 
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 Equation 30 encompasses a stiffness matrix and a modified mass matrix which is related to 
the concentration time derivative and the reaction term. It can be put under matrix form as: 
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where, M1 and K are, respectively, the modified mass and stiffness matrices. 
 
 In order to solve equation 32, we employ a numerical scheme, using the Crank-Nicholson 
Method (Lewis et al., 2005), which reads: 
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 It must be observed that it is also possible to look for another solution without modifying 
the original mass matrix, as suggested above. In this case, the use of the Crank-Nicholson 
scheme on GFEM approximation of equation 10, implies in: 
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where {B}t and {B}t+1 are the boundary terms arising from the line integral approximation on 

the r.h.s of equation 10 at times t and t+1, [M] is 
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stiffness matrix, now including the decay term, last on the left term of equation 17, or: 
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 In this case, the boundary vectors ({B}t and {B}t+1)  must be evaluated using equation 31. 
Being dependent on the concentration and its time derivative in past and present time steps, 
these vectors must be continuously updated, making the numerical scheme for solving 
equation 33 simpler than the one required for solving equation 34. Thus, we opted for the first 
scheme. 
 
 The code was implemented in MATLAB, taking advantage of its matrix calculation 
resources. The integrals in equation 30 were evaluated by the Gauss Quadrature (GQ). The 
solution domain was discretized in regular triangular or quadrangular element meshes by 
routines within the program, depending on the case run. The program is also capable of 
performing GQ calculations in diversified number of interval points. Linear shape functions 
were used throughout this work, so precision of the scheme was controlled by properly 
refining the mesh. 
 
 It is well known that simple GFEM presents numerical oscillations and instabilities in 
problems where advection is important. So, more elaborated FEM schemes would be required 
to solve problems with small diffusion coefficients. However, considering that the role of the 
unsteady BC along with the outlet BC represented by a material derivative were the main 
aspects to be investigated, this method was employed with restrictions. Aware that some of 
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the major factors causing these issues are improper choice of a time step size and also of 
element size and shape (Yu and Singh, 1995), we adopted, as a basis for the time step and 
element size control, respectively, (Chapra and Canale, 2010): 
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RESULTS AND DISCUSSION 

 
Preliminary Tests 
 

 A more detailed look at the analytical solution presented by equation 18 reveals that, 
actually, the assumed constant upstream BC is not time independent, as it may appear to be in 
a first glimpse. Assuming unitary injection concentration (Cinj = 1.0), the analytical solution 
result in the plots of Figure 1, obtained for Pe = 5.0 ( xu = 1.0; Dx = 4.0; Da = 2.0).  

 

 
Figure 1. 1-D Plot of Analytical Solution (Equation 18). 

 
As it can be verified, within the stream limits, the BC shows an unsteady profile 

characterized by the inlet concentration correction due to particular advective and diffusion 
effects. Obviously, the analytical solution follows the general form of the concentration 
profile for this kind of problems (Vilhena and Sefidvash, 1985): 

     ktexpt,xCt,xC  o           (37) 

where Co is the corrected species concentration to initial time. 
 
 It can be also easily seen, by inspection of equations 19 and 20, that the solution for 
pulse injections also follows equation 37, in order to correct the inlet concentration values. 
 

So, in order to check the code results, the inlet BCs to be applied at x=0 must carry on the 
initial shape of the defined concentration, as suggested by Yu and Li (1998). This implies in: 

d) for equation 18:  

* ˗ t1; * ˗ t2; * ˗ t3; * ˗ t4; o ˗ t5 

t1 < t2 < t3 < t4 < t5 
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e) for equation 19: 
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and: 

f) for equation 20: 
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Having that in mind, one can apply equations 38-40 to the MATLAB code and compare the 

results with the analytical solutions for constant and pulse injection cases. 
 
In the following Figures 2-3, conditions for Pe = 5.0 are the same as for Figure 1; for Pe = 

50 are: xu = 10, Dx = 4.0 and k = 1.0; for Pe = 200 are: xu = 10, Dx = 1.0 and k = 1.0, resulting 

in the same Damköhler Number (2.0) for all cases. For the tests with equation 20, which 
admits a lateral component of diffusion, Dy was set equal to 0.2 and its 1-D plot (graph C of 
Figure 2) represents the centerline concentration profile (y = 0.0). 

 

 
Figure 2. 1-D Analytical and Numerical Solution of Equations 18-20 Cases. 

 

The numerical solution of equation 5, for the periodic inlet BC (equation 8), may be compared 
with the 1-D analytical solution constructed from equations 25-28 through a plot extracted 
from the centerline concentration profile. Figure 4 shows the outcome for Pe = 100, where 

xu = 5.0, Dx =1.0 and k = 0.1, implying in Da = 0.4. 
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Figure 3. 2-D Analytical and Numerical Solution of Equation 20 Case.  

(1250 Elements Mesh; GQ 9 points; Pe = 50) 
 

 
oooo –  Analytical Solution                  –  Numerical Solution 

Figure 4. 1-D Analytical and Numerical Solutions of Equation 5 with periodic inlet BC. 
(1250 Elements Mesh; GQ 9 points). 

 
In order to obtain the plots of Figures 2 to 4, we run the code and then compared the results 

with the analytical solution correspondent to the time run. Numerical calculation was 
performed, respecting the stability restrictions posed by equations 36. The plots show good 
agreement between analytical and numerical solutions even for high Péclet Numbers. 
 

It is possible to observe a better agreement between analytical and numerical solutions for 
the continuous injection case (equation 15), as shown in plot A of Figure 2. The plots B and C 
of Figure 2 (equations 19 and 20) and the plot of Figure 3 (equation 20), show that the 
numerical curves are slightly delayed compared to the exact solutions. This delay results from 
the fact that the discrete time integration cannot completely follow the instant moment of 
mass release (Lee and Seo, 2010). 
 
Comparing Analytical and Numerical Solutions 
 

Figure 5 compares simulated concentration profiles for sorted conditions, such as Pe = 5 
( xu = 1.0; Dx = 4.0; k = 0.1), Pe = 25 ( xu = 5.0; Dx = 4.0; k = 0.1) and Pe = 100 ( xu = 5.0; Dx 

= 1.0; k = 0.1). In order to obtain the plots, we solved equation 5 subjected to a time periodic 
inlet BC (equation 8), changing the outlet BC type. First, we employed an EBC arbitrarily set 
to a given constant value, then, we employed a homogeneous NBC and last, our proposed 
MDBC. Since the meshes used were the same in all simulations, we compared the centerline 
nodes values obtained, plotting the concentrations differences (Dif C). 
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As we can see, profiles obtained when the adopted outlet condition is either EBC or the 

homogeneous NBC, compared to those obtained by the adoption of the MDBC, concentrate 
larger differences around the exit. 

 

 
Figure 5. Centerline Concentration Profile Differences – Numerical Solutions. 

(Inlet BC: Equation 8; Outlet EBC = 0.5; Outlet NBC: Equation 13; Outlet MDBC: Equation 16). 
 
 In order to check the validity of the above proposition, we numerically evaluated 
concentrations 1-D profiles for various flow and reaction parameters. The results were 
compared to the analytical solution and analyzed by the Root-Mean-Square Deviation 
(RMSD), or: 

 
nd

CC
nd

i
a
ii 


 1

2

RMSD          (41) 

where a
iC is the analytical solution at node i for a given total number of nodes nd at the exit 

region. 
Table1. RMSD between 1-D Analytical and Numerical Solutions. 

Pe = 100 RMSD 
Δx Δt Da An. ˗ EBC An. - NBC An. - MDBC 

0.2 0.02 
0.1 0.8193 0.0315 0.0226 
1.0 0.2640 0.1839 0.1744 
2.0 0.0745 0.0044 0.0022 

Pe = 50 RMSD 

0.2 
0.005 0.1 0.8628 0.0098 0.0041 

0.05 
1.0 0.4982 0.0106 0.0032 
2.0 0.1312 0.0809 0.0798 

Pe = 25 RMSD 
0.2 0.02 0.1 0.8846 0.0777 0.0537 
0.4 0.01 1.0 0.4010 0.0676 0.0679 
0.2 0.02 2.0 0.1476 0.0387 0.0259 

Pe = 5 RMSD 

0.2 
0.05 0.1 0.6155 0.0275 0.0191 
0.2 1.0 0.5672 0.0071 0.0072 
0.1 2.0 0.0880 0.0178 0.0034 

(Inlet BC: Equation 8; Outlet EBC = 0.0; Outlet NBC: Equation 13; Outlet MDBC: Equation 16). 
 

Outcome Analysis 
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We observe that the numerical solutions with outlet EBC provide the poorest 

approximations in all Péclet and Damköhler Numbers considered and that MDBC solutions 
result in better approximations than NBC in almost all cases. This is possibly due to the fact 
that MDBC better captures specific features of the flow because it encompasses, in its 
formulation, physical effects of the problem which are not present in the usual types of BCs. 
 
 Results on Table 1 also point at examples where the advantages of using MDBC 
instead of homogeneous NBC are not clear. Such situations arise from particular flow 
conditions that imply in very small concentration gradients at the outlet, as consequence of 
Péclet and Damköhler Numbers combinations. These cases approach patterns that can be 
treated conveniently by the homogeneous NBC (equation 3) and so, when we compare the 
outcomes obtained both with the use of NBC and MDBC, we verify analogous deviation from 
the analytical solution. However, these are special cases of the problem and the use of the 
MDBC for more general formulations is established. 
 
2-D Simulation Results 
 
 Having in mind the satisfactory results obtained in the tests, we further used the code 
to investigate the behavior of 2-D systems. Velocities and diffusion constants were chosen as 
close as possible to real configurations. 
 

For instance, Figure 6 shows the results of 2-D and 1-D simulations under conditions such 
that the inlet BC is the periodic concentration oscillation given by equation 8, lateral 
components of velocity and diffusivity are ten times smaller than the longitudinal components 
( xu = 5.0, yu = 0.5, Dx =1.0, Dy =0.1 and k = 0.1), implying in Pe = 100 and Da = 0.4. 

 

 
Figure 6. Concentration Profile for Decaying Species. 

(900 Elements Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16) 
 

In this case, corresponding to a high Pe, convective transport plays a major role overcoming 
diffusion transport and reaction decay. Parts A and B of Figure 6 show the oscillatory 
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behaviour of the concentration profile along the domain at different time values for the 
concentration along all the domain. We also note the variable outlet concentration values that 
would not properly be captured by EBCs and possibly NBCs. 

 
Figure 7 shows the outlet concentrations for Pe = 10 and Da = 0.4 ( xu =0.5; yu =0.05; Dx 

=1.0; Dy =0.1; k=0.01), subject to the same BCs, implying a more important role for diffusive 
transport. In addition, smaller flow rates allow the chemical reaction to further evolve as the 
convective transport takes place. Following, the oscillatory behavior of the inlet concentration 
is damped before reaching the domain outlet and the solution approaches the typical shape of 
pure diffusive transport problems subjected to oscillatory BC, known as periodic steady-state 
(Bird et al, 2002). 

 
 

 
Figure 7. Concentration Profile for Decaying Species. 

(2000 Elements Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16) 
 
 

When equations 7 are applied as the inlet BC, resulting in pulse injection of time-dependent 
concentrations, the code shows the concentration profiles approaching the oscillatory profile 
as the interval time between each injection becomes shorter (part A of Figure 8), or the pulse 
injection profile (part B of Figure 8), in a Gaussian shape, as it becomes larger. 
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Figure 8. Concentration Profile for Decaying Species. 

(1000 Elements Mesh - Inlet BC: Equation 7; Outlet BC: Equation 16) 
 

The code is able to simulate 2-D configurations. including flow predictions when the 
velocities profiles are steady but dependent on the spatial coordinates such that  yuu xx   

and  xuu yy  . For example, if a steady parabolic profile is considered for the longitudinal 

velocity (equation 42), for the same other parameters as those of Figure 4, Figure 9 is 
obtained: 

 
205 yy.u x             (42) 

 

 

Figure 9. Concentration Profile for Decaying Species – Parabolic Longitudinal Velocity. 
(700 Elements Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16) 

 
Figure 9 depicts the evolution of the species cloud deformed due to the existence of lateral 

components of velocity and diffusion. But the mass injection occurs uniformly at the inlet 
cross section area, a condition most found in chemical reactors or in small channels.  

 
 So, in order to demonstrate the code ability to simulate conditions more likely to 
happen in large watercourses, we modify the inlet BC as follows. Considering that in 2-D 
analysis the inlet may also be dependent on y (equation 8) we are able to obtain results: 
 

a) for centered pointsource injection: 



134 

 

 

 

Figure 10. Concentration Profile for Decaying Species – Left centerline injection. 
(1250 Elements Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16) 

 
 

b) for right margin (left bottom) pointsource injection: 
 

 
Figure 11. Concentration Profile for Decaying Species – Bottom left injection. 

(1250 Elements Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16) 
 
 

c) for left margin (upper left) pointsource injection: 
 

 

Figure 12. Concentration Profile for Decaying Species – Upper left injection. 
(1250 Elements Mesh - Inlet BC: Equation 8; Outlet BC: Equation 16) 
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Figures 10 and 11 are obtained from the same parameters as those for Figure 9 and in 
Figure 12 the lateral component of the velocity is set from the upper margin downwards, 
assuming the negative of Figure 9 value for this same component. 
 
 

CONCLUSION 
 In transient reactive flow problems subjected to unsteady BC the main issue is to 
achieve physical coherence in constructing the model to be solved. Some analytical solutions 
of this class of problems are found in the literature which, though being parabolic, usually 
assume the outlet BC in the form of a constant concentration or of a given concentration 
gradient. 
 

As indicated by Piasecki and Katopodes (1997), simulations presented in this work 
confirmed that oscillatory inlet conditions result in time-dependent concentrations at the 
outlet, that cannot be accounted for by EBCs and NBCs. Also, NBCs may not represent the 
total equilibrium flux at the outlet (Yu and Singh, 1995), leading to physically incomplete 
models that could perform imprecise profile estimation. 
 
 A new procedure was then proposed, by which a material derivative is considered as 
the outlet BC. Our results show that these BCs provide a better picture of the process, 
updating the outlet equilibrium concentration. 
 
 A MATLAB code was developed with a numerical scheme subjected to prescribed 
stability restrictions (equations 36), using a semi-implicit GFEM scheme. Good agreement 
was obtained between simulations and existing analytical solutions, as can be seen on Figures 
2 to 4 and Table 1. It is also shown in Table 1 and Figure 5 comparisons of numerical 
solutions using EBC, homogeneous NBC and the proposed MDBC, evidencing the positive 
aspects of applying the material derivative as the outlet BC. Following, 2-D simulations were 
then performed in rectangular channels, assuming fully developed velocity profiles. 
 
 The code features a certain flexibility for automatically generating regular triangular 
and quadrangular meshes that could be selected to the applicable case. There was also the 
option of changing the number of GQ points to evaluate the model integrals, known to 
slightly affect the computational time. 
 
 Several simulations were run on a i5 CPU notebook, limited to a maximum of 2000 
element meshes, all requiring few minutes to run, showing that even more refined meshes 
could be used while keeping CPU times within acceptable limits. Our tests indicate that the 
numerical scheme is sufficiently tested to be implemented in codes written in lower level 
languages. 
 
 The use of FEM in reactive flows simulation was reinforced and, finally, a further 
improvement could be made in the code by future works, in the sense of adopting more 
elaborated FEM formulations, involving a SUPG or other more advanced stabilization 
technique, so to combine the advantages of more stable schemes with the proposed adoption 
of the MDBC. 

 
NOMENCLATURE 

 
C     section-averaged species concentration 
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Cappr   approximated concentration given by the FEM formulation 
Cinj    injected averaged concentration 
Dx, Dy   averaged diffusion coefficient in the direction of the respective coordinate axis 
Da    Damköhler Number 
k     reaction constant or pollutant decay constant 
m, n   arbitrary integers 1, 2, 3 … 
NN    number of nodes in the finite element mesh 
Pe    Péclet Number 
r     reaction term 
Sj(xi)   shape function 
t     time 

iu     averaged flow velocity along coordinate ix  

w     arbitrary weight function 

ix     coordinate in an arbitrary direction i 

Γ     control surface 
Γs     arbitrary boundary on surfaces 
τ     arbitrary time between injections 
Ω     control volume 
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