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RESUMO

LUCENA, Rachel Manhães de. Estudo Numérico da dissolução do CO2 em aquiferos salinos

com interface deformada. 135f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de

Engenharia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 2016.

Consideramos o problema de geração de fingers induzidos por flutuações de den-

sidade do fluido que ocupa um meio poroso pela instabilidade de uma camada de fluido

parcialmente miscível dissolvendo em uma camada fluido menos denso existente abaixo.

O processo de fingering induz uma distribuição desigual de CO2 dissolvido nas camadas

superiores, o que afeta a ditribuição da tensão superficial na interface, e desestabiliza a

geometria de superfície plana. Assumimos uma interface curva para modelar os efeitos de

tensão superficial. O principal objetivo é verificar se a superfície curva aumenta a taxa de

dissolução CO2 e avaliar uma curvatura que maximiza a dissolução do gás. São realizadas

simulações numéricas bidimensionais e dependentes do tempo, assumindo que o fluxo é gov-

ernado pela Lei de Darcy, juntamente com a aproximação de Boussinesq, para contabilizar os

efeitos introduzidos pela flutuação de densidades dependente da concentração. Os resultados

mostraram que a deformação da interface induz o início da formação dos fingers, entretanto

o aumento dessa deformação diminui a quantidade de fingers. Tal como o fluxo de dissolução

é influenciado pelas deformações idealizadas. O campo de velocidade é modelado por uma

formulação vorticidade-função de corrente. As equações resultantes são resolvidos através

de Taylor-Galerkin Método dos Elementos Finitos, utilizando o Método de Crank-Nicolson

para a discretização temporal.

Palavras-chave: fingering; instabilidades hidrodinâmicas; escoamento em meios porosos;

sequestro de gás carbônico; método dos elementos finitos.



ABSTRACT

LUCENA, Rachel Manhães de. Numerical study of CO2 dissolution in saline aquifers with de-

formed interface. 135f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia,

Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 2016.

We address the problem of buoyancy-driven fingering generated in porous media

by the instability of a partially miscible fluid layer dissolving in a less dense fluid existing

underneath. The fingering process induces an uneven distribution of dissolved CO2 in the

upper layers, which affects the surface tension distribution at the interface, and unstabilizes

the geometry of the flat surface. We assume a curved interface to model surface tension effects.

The main purpose is to check if the curved surface increases the CO2 dissolution rate and

a evaluate a curvature that maximizes the gas dissolution. A 2D time dependent numerical

simulation is performed, assuming that the flow is governed by Darcy’s law, along with the

Boussinesq approximation, to account for buoyancy effects introduced by concentration

dependent densities. The results show that the interface deformation induces the onset

of fingering, however the number of fingers decreases as the deformation increases and

the dissolution rate is influenced by the prescribed interface deformations. The velocity

field is modeled by a vorticity-stream function formulation. The resulting equations are

solved through the Taylor-Galerkin Finite Element Method, using a Crank-Nicolson time

discretization.

Keywords: fingering; hydrodynamic instabilities; porous media flow; carbon sequestration;

finite element method.
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INTRODUCTION

Motivation

Carbon dioxide (CO2) capture and geological storage is an enabling technology pro-

posed to mitigate consequences of the continued use of fossil fuels, well into this century [1].

The main relevance for the geological storage of CO2 is reducing anthropogenic emissions into

the atmosphere. Currently we know that the power and industry sectors combined dominate

current global CO2 emissions, accounting for about 60% of total CO2 emissions [2] [3].

Storage of carbon dioxide into deep saline aquifers has shown to be highly effective

and has been addressed by many researchers ( [4], [2], [5], [6], [7], [8]). When CO2 is injected

into the brine, the transport of the dissolved gas can occur by diffusion, advection, and

convection, depending on the stage of sequestration process and geophysical properties of

aquifer [9], [10].

The dissolution process results in a density gradient pointing upwards, that triggers a

buoyancy-driven instability which, in turn, leads to a convective motion of the aquifer, and

to the onset of a structure of fingers [11]. Experimentally, CO2 dissolution process has been

performed by a model developed in a very small thickness Hele-Shaw cell to reproduce a

two-dimensional experiment [12], [13], [12], [14].

Justification

The present work is a numerical study and leads to a better evaluation of the carbon

dioxide dissolution rate in the brine and in a classification of the associated phenomena

related to the development of a structure of fingers.

The onset of the fingering structure induces an uneven distribution of dissolved CO2 in

the upper layers of the aquifer, which affects the surface tension distribution at the interface,

and unstabilizes the geometry of the flat surface. The emerging deformed interface affects

the fingering process, and may enhance CO2 sequestration.

Nevertheless, most of the existing studies consider a flat interface, neglecting deforma-

tions resulting of the nonuniform distribution of the surface tension.
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Main proposal

The present study addresses the effect of the curvature of the CO2/brine interface on

the onset and development of a structure of fingers, and how is the rate of gas dissolution

affected by the enhanced aquifer motion induced by the interface curvature. The main

motivation is to check if the curved surface increases the dissolution rate and evaluate an

undulation amplitude that maximizes CO2 dissolution.

Methodology

A 2D time dependent numerical simulation is performed, assuming that the flow is

governed by Darcy’s law, along with the Boussinesq approximation, to account for buoyancy

effects introduced by concentration dependent densities. The velocity field is modeled by

a vorticity-stream function formulation. The resulting equations are solved through the

Taylor-Galerkin Finite Element Method, using a Crank-Nicolson time discretization.

Organization of this thesis

This thesis is organized in six chapters as described below:

1. Chapter 1 - Bibliographic Review: This chapter comprises the motivation of the work

and review of the existing literature on the subject.

2. Chapter 2 - Mathematical Model: We present the assumed hypothesis and we derive

the mathematical equations that model the proposed problem.

3. Chapter 3 - Methodology: We discuss the methodologies followed to solve the model

equations, namely, the Finite Element Method for solving the linear systems of equa-

tions and the post-processing procedure for characterization of the emerging fingering

structure.

4. Chapter 4 - Linear Stability Analysis on a Flat Interface: In this chapter, we performed

the linear stability analysis of the problem assuming flat interface in order to validate

the numerical schemes.

5. Chapter 5 - Code Verification and Grid Convergence: We present the procedures

adopted for verification of the main numerical code written in the C language.
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6. Chapter 6 - Numerical Results: The results obtained with the procedures described in

Chapter 3 are presented and discussed in this chapter.

The thesis comprises a conclusive chapter where we suggest future works on the

problem and also four appendices complementing the work.
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1 BIBLIOGRAPHIC REVIEW

Notably, and regrettably, several indicators currently point to an increase in the Earth’s

temperature. Since the beginning of industrial age, an average increase of 0.6◦C and an

increase of 10cm to 20cm in the sea level has been recorded. Nowadays, we are suffering the

first negative effects: disorganized climate, floods, heat waves, droughts, melting glaciers,

rising sea levels, changes in flora and fauna. The experts on the planet identify the gases

called Greenhouse Gases (GHG), mainly the carbon gas or carbon dioxide (CO2), which

generates about 55% of the anthropogenic greenhouse effect, as the responsible for these

climate changes. Produced in large quantities by human activities (transport, habitat and

industry), GHG escape mainly during the combustion of fossil fuels (coal, oil or gas). In a

century, concentrations of these gases in the atmosphere increased by 50% and that of CO2 by

31% [3, 15].

Surely, the amount of carbon dioxide emitted by humans are a small part of the total

annual carbon cycle, but the natural carbon sinks in the biosphere and the oceans absorb

only half of them. The surplus accumulates year after year in the Earth’s atmosphere by

disrupting the delicate mechanisms of the climate. If nothing is done or not enough to reduce

CO2 emissions and better manage consumption of fossil fuels, experts predict for 2100 an

average temperature increase of 2 to 6◦C and an increase of 9 to 88cm of sea level, with all

the negative consequences thereof [3]. The current rate of anthropogenic emissions of CO2

demand technological solutions on a large scale [7].

Unfortunately, most scenarios project that the supply of primary energy will continue

to be dominated by fossil fuels until at least the middle of the century [16]. But, most models

also indicate that known technological options1 could achieve a broad range of atmospheric

stabilization levels but that implementation would require socio-economic and institutional

changes. In this context, the availability of carbon dioxide capture and storage (CCS) in the

portfolio of options could facilitate achieving stabilization goals [7].

Despite the wide range alternatives measures proposed for combating the greenhouse

effect (energy savings, clean transportation, renewable energy sources, nuclear power, among

others), the feature of carbon dioxide capture and storage is an indispensable supplementary

measure to limit the global warming. CCS is a process consisting of the separation of CO2

1“Known technological options" refer to technologies that exist in operation or in the pilot plant stage at the
present time.
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from industrial and energy-related sources, transport to a storage location and long-term

isolation from the atmosphere [2, 3]. CCS has the potential to reduce overall mitigation costs

and increase flexibility in achieving greenhouse gas emission reductions.

As its name suggests, this technique offers capture and storage of CO2. The capture

can be applied to large point sources. The large point sources of CO2 include large fossil fuel

or biomass energy facilities, major CO2-emitting industries, natural gas production, synthetic

fuel plants and fossil fuel-based hydrogen production plants (see Table 1) [2].

Table 1: Profile of worldwide large stationary CO2 sources with emissions of more than 0.1
million tonnes of CO2 (MtCO2) per year [2].

Process Number of sources Emissions (MtCO2 yr−1)

Fossil fuels

Power 4,942 10,539

Cement production 1,175 932

Refineries 638 798

Iron and steel industry 269 646

Petrochemical industry 470 379

Oil and gas processing Not available 50

Other sources 90 33

Biomass

Bioethanol and bioenergy 303 91

Total 7,887 13,466

Within the technical storage methods, we can indicate: geological storage (in geologi-

cal formations, such as oil and gas fields, unminable coal beds and deep saline formations),

which constitute the largest potential storage volumes, ocean storage (direct release into the

ocean water column or onto the deep seafloor) and industrial fixation of CO2 into inorganic

carbonates [2, 5]. Among proposed CCS options, geological formations such as oil and gas

reservoirs and deep saline aquifers appear to be the most promising [17].

Table 1 shows the main concentrated sources of pollution and for this cases there are

directly interested in the capture of carbon dioxide. The main difficulty is to distinguish it

from other constituents (for examples: water vapour and nitrogen). The techniques used

today are relatively expensive. There are different types of CO2 capture systems: capture from
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industrial process streams, post-combustion, pre-combustion and oxyfuel combustion, as

shown in Figure 1. Some factors are important in the selection the capture system, such as:

concentration of CO2, in the gas stream, the pressure of the gas and the fuel type (solid or

gas) [2, 3].

Figure 1: Schematic representation of capture systems. Fuels and products are indicated for
oxyfuel combustion, pre-combustion, post-combustion and industrial sources of CO2 [2].

CO2 has been captured from industrial process streams for 80 years, although most

of the CO2 that is captured is vented to the atmosphere due to lack of incentive or legal

requirement to store it. Current examples of CO2 capture from process streams are purification

of natural gas and production of hydrogen-containing synthesis gas for the manufacture of

ammonia, alcohols and synthetic liquid fuels. Most of the techniques employed for CO2

capture in the examples mentioned are also similar to those used in pre-combustion capture.

Other industrial process streams which are a source of CO2 that is not captured include

cement and steel production, and fermentation processes for food and drink production [2].

Post-combustion systems separate CO2 from the flue gases produced by the combus-
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tion of the primary fuel in air. Instead of being discharged directly to the atmosphere, flue gas

is passed through equipment which separates most of the CO2. These systems normally use a

liquid solvent to capture the small fraction of CO2 (typically 3–15% by volume) present in a

flue gas stream in which the main constituent is nitrogen (from air) [2, 3].

Pre-combustion systems process the primary fuel in a reactor with steam and air or

oxygen to produce a mixture consisting mainly of carbon monoxide and hydrogen (“synthesis

gas”). Additional hydrogen, together with CO2, is produced by reacting the carbon monoxide

with steam in a second reactor. The resulting mixture of hydrogen and CO2 can then be

separated into a CO2 gas stream, and a stream of hydrogen. CO2 is then separated, usually

by a physical or chemical absorption process, resulting in a hydrogen-rich fuel which can be

used in many applications, such as boilers, furnaces, gas turbines, engines and fuel cells [2, 3].

Although the initial fuel conversion steps are more elaborated and costly than in post

combustion systems, the high concentrations of CO2 produced by the shift reactor (typically

15 to 60% by volume on a dry basis) and the high pressures often encountered in these

applications are more favourable for CO2 separation [2].

Oxyfuel combustion systems use oxygen instead of air for combustion of the primary

fuel to produce a flue gas that is mainly water vapour and CO2, resulting in a flue gas with

high CO2 concentrations (greater than 80% by volume). The water vapour is then removed

by cooling and compressing the gas stream. Oxyfuel combustion requires the upstream

separation of oxygen from air, with a purity of 95–99% oxygen assumed in most current

designs. Further treatment of the flue gas may be needed to remove air pollutants and

noncondensed gases (such as nitrogen) from the flue gas before the CO2 is sent to storage.

The power plant systems of reference for oxyfuel combustion capture systems are the same as

those noted for post-combustion capture systems [2, 3].

After capture, the CO2 would then be compressed and transported for storage in

geological formations, in the ocean, in mineral carbonates, or for use in industrial processes

for long durations that can cover several centuries, and this in any case security (see Figure

2) [2, 3]. The options envisaged for geological storage are:

• storage in deep aquifers, the first channel in terms of capacity and geographical dis-

tribution; Experts estimate storage capacity in aquifers at several thousand billion

tons;

• storage in depleted oil and gas deposits, an option all the more interesting as CO2
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injection can help to better recover additional oil;

• storage in the deposit coal seams not yet exploited, the injection may be accompanied

by the production of methane (natural gas) commercially valuable;

• storage in basic rocks (basalts, peridotites, etc) ensuring at the same time the mineral-

ization of CO2 by carbonation of silicates.

Although the ocean storage removes the injected CO2 from the atmosphere for several

hundred years, this option has been abandoned due to the great uncertainties both on the

long-term impact of an increase in CO2 on the marine ecosystem and also on the residence

time of CO2 in the ocean [1, 3].

Carbon dioxide must be directed after capture to the storage site. There are several

techniques to transport it. However, volume data such as solutions based on a large scale only

involve the use of pipelines and ships (see Figure 2) [3].

Figure 2: Schematic diagram of possible CCS systems showing the sources for which CCS
might be relevant, transport of CO2 and storage options [2].

Bachu [1] suggests that although various climate change mitigation options have

different spatial and temporal ranges of applicability, the reduction of anthropogenic CO2

emissions into the atmosphere can be achieved only through the broad and deep applica-

tion, in developed and developing countries alike, of a portfolio of measures that includes
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significant technological breakthroughs to increase energy efficiency, increasing as much

as possible the share of non-fossil forms of energy production, and increasing the size and

intake rate of CO2 sinks, particularly carbon capture and storage in geological media [4–6].

In geological formations, carbon dioxide can be trapped by three mechanisms [18]:

1. trapped as a residual phase, commonly referred to as residual phase trapping;

2. dissolved into the formations brine, a process known as solubility trapping;

3. dissolved and dissociated into ionic species and react with minerals in the geologic

formation, leading to the precipitation of secondary carbonate minerals, also called

mineral trapping.

Solubility trapping has been studied in last years ( [1, 9, 10, 19–23]) and has shown

that the interface separating the supercritical free phase CO2 and brine is destabilised by

dissolving CO2 into the brine. In fact, the dissolution of CO2 increases the density of the liquid,

resulting in a gravity inversion and instability. The primary benefit of solubility trapping is that

once CO2 is dissolved, it no longer exists as a separate phase, thereby eliminating the buoyant

forces that drive it upwards. Subsequently, it will form ionic species as the rock dissolves,

accompanied by a rise in the pH. Finally, some fraction may be converted to stable carbonate

minerals (mineral trapping), the most permanent form of geological storage reducing the risk

of CO2 return to the atmosphere over the long-term [2, 18].

There are many works involving the study of carbon sequestration, we can mention:

[7, 8, 10, 18, 21–28], however, some of these authors use in their study different mechanisms of

trapping. Motivated by the CCS, Neufeld and Huppert [24] presented a theoretical-numerical

study the propagation of gravity currents in a porous medium bounded by a thin layer of much

lower permeability, which provides the basis for addressing the role of viscosity differences

between CO2 and the ambient fluid, residual trapping of the injected CO2 and flow in tilted

formations on the propagation of injected CO2 through layered strata.

On the other hand, Pau et al. [25] performed high-resolution simulations to accurately

characterize the dissolution-diffusion-convection process and concluded that although de-

tails of the convection process are chaotic in nature, the onset time of convection, and the

long-term CO2 mass flux associated with the convective activity, are robust and insensitive

to modest problem variations. They also concluded that, at long time, the CO2 mass flux

reaches a stabilized state that approaches a constant value at space time scales of interest for
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geological storage of CO2, in particular, the long-term behavior is convection-dominated and

depends only on the mean value of the permeability.

Dissolution and transport of CO2 during geological storage occur through different

transport mechanisms, including diffusion, dispersion, advection, and natural convection.

Regardless of the transportation mode, the dissolution process is favourable since it mitigates

the risk of leakage from the storage formation to shallower formations. This is because brine

dissolved with CO2 is slightly denser than ambient formation brine, resulting in CO2 sinking

rather than rising though a leakage pathway [10]. It is important remark that the dissolution

trapping occurs when CO2 dissolves into the brine under ambient temperature and pressure

conditioned in a typical aquifer [25].

In this work, we focus on the carbon dioxide sequestration in deep saline formations

with solubility trapping approach. CO2 storage in deep saline aquifers is a mature technology

that can be applied immediately. These formations are believed to have by far the largest

capacity for CO2 storage and are much more widespread than other options. While there

are uncertainties, the global capacity to store CO2 deep underground is large. Depleted oil

and gas reservoirs are estimated to have a storage capacity of 675–900GtCO2. Deep saline

formations are very likely to have a storage capacity of at least 1000GtCO2 and some studies

suggest it may be an order of magnitude greater than this, but quantification of the upper

range is difficult until additional studies are undertaken [1, 2].

When the CO2 is injected in a saline aquifer, it is essential that trapping be permanent

to minimize the risk of leakage into shallower formations. Leakage is a primary concern

because the plume of injected CO2 is buoyant relative to the ambient groundwater at repre-

sentative aquifer conditions, and will rise toward the top of the aquifer after injection and

spread laterally as a buoyant gravity current [29].

One mechanism that acts to trap the buoyant CO2 is the dissolution of free-phase

CO2 into the groundwater. Dissolved CO2 is securely stored within the subsurface because

it is no longer buoyant: the density of water increases with dissolved CO2 concentration,

so groundwater containing dissolved CO2 will sink toward the bottom of the aquifer. As

this mixture sinks in dense, CO2-rich fingers, the resulting convective flow sweeps fresh

groundwater upward. This convective dissolution process greatly enhances the rate at which

the CO2 dissolves into the groundwater [29]. The dissolution process results in a density

gradient pointing upwards, that triggers a buoyancy-driven instability which, in turn, leads to
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a convective motion of the aquifer, and to the onset of a structure of fingers (see Figure 3),

which plays a crucial role in the CCS projects in aquifers due to its direct effects on increasing

CO2 dissolution rate [13].

Figure 3: Instability of front at the interface of CO2 and water causes natural mixing in the
aquifer [13].

Fingering refers to hydrodynamic instabilities of deforming interfaces into fingers

during the displacement of fluids in porous media. These instabilities are closely linked to

changes in viscosity or density between the different layers or within a single phase containing

a solute invariable concentration that affects the fluid density or viscosity [11].

Fingering occurs in a wide variety of applications, including secondary and tertiary oil

recovery, fixed bed regeneration in chemical processing, hydrology, and filtration. Indeed, the

phenomena are expected to occur in many of the myriad of fields of science and technology

in which fluids flow through porous materials, and thus the literature is a diverse one [11]. We

stress that our focus is in geologic carbon dioxide sequestration which involves injecting CO2

into saline aquifers.

The onset of the fingering structure induces an uneven distribution of dissolved CO2

in the upper layers of the aquifer, which affects the surface tension distribution at the in-

terface, and unstabilizes the geometry of the at surface. The emerging deformed interface

affects the fingering process, and may enhance CO2 sequestration. Nevertheless, most of the

existing studies consider a flat interface, neglecting deformations resulting of the nonuniform

distribution of the surface tension.

The present study addresses the effect of the curvature of the CO2/brine interface on

the onset and development of a structure of fingers, and how is the rate of gas dissolution
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affected by the enhanced aquifer motion induced by the interface curvature. The main

motivation is to check if the curved surface increases the dissolution rate and evaluate an

undulation amplitude that maximizes CO2 dissolution.

Linear stability analysis (LSA) is a widely used technique in which one finds numeri-

cally the earliest time at which linearized perturbations to the basic profile begin to grow. The

first drawback of LSA is that due to linearization, the magnitude of the disturbance at later

times is always proportional to the initial perturbation, so there is no natural criterion for

when instability occurs. The second drawback of LSA is that the evolution of the perturbation

depends on the Fourier spectrum of the initial disturbance [30].

Due to the importance of this technique, there are many works that perform the

LSA with the convective dissolution of the carbon dioxide, it being the main subject of this

analysis [20, 22, 25, 30–33]. In this work we also perform a linear stability analysis with the

flat and deformed interface (the latter only presents preliminary results). LSA supports us to

validate the results in the validation of the numerical code.

Experimental study of the CO2 dissolution process has been done by a model devel-

oped in a vertically-oriented Hele-Shaw cell, to reproduce a two-dimensional experiment.

The experiment is performed in a transparent Hele-Shaw cell containing brine overlain by

CO2 gas is presented. In the Hele-Shaw cell fluid flows in the narrow space between two

parallel plates in a manner that is mathematically analogous (Darcy’s law) to flow in porous

media. This experiment provides visual observations of convective instabilities that would be

useful in conceptual understanding of the effects density-driven convection on enhancing

the mass transfer rate of CO2 in brine [13]. Few studies have attempted to measure convec-

tive mixing quantities such as widths, lengths, and wavelengths of convective fingers, the

timescale of the finger advancement, dissolution flux, average concentration, and horizontally

averaged concentration profiles from experiments conducted in Hele-Shaw cells [10], we can

cite: [12–14, 28, 34].

Slim [8] presents a summary of the distinct regimes of the rich dynamics of the con-

vective dissolution based in some authors mentioned previously, as follow:

1. Initially, there is a diffusive regime in which the concentration profile is close to a

onedimensional diffusive error function. The flux decays proportionally 1/
p

t .

2. Eventually, sufficient dense fluid accumulates beneath the upper boundary for pertur-

bations to amplify in a linear-growth regime.
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3. Once convective fingers are macroscopic, they accelerate downwards with little lateral

motion, stripping dense fluid from the interface and sharpening the concentration

gradient at the upper boundary. This augments the dissolution flux, causing it to

deviate from t = 1/
p

t decay and grow to a local maximum, in a flux-growth regime.

4. Once fingers are sufficiently long, they begin interacting with their neighbors in a merg-

ing regime. Pairs of fingers zip together from the root downwards and stunted fingers

retreat. Several generations of such coarsening occur to form complex downwelling

plumes.

5. As a result of this coarsening, the upper horizontal boundary layer between the remain-

ing primary plumes becomes sufficiently thick to be unstable. New plumes form, only

to be swept back into and be subsumed by the primary plumes. In the Hele-Shaw cell

experimental study of Slim et al. [35], this was hypothesized to be a separate reinitiation

regime. During it, mergers had ceased.

6. Finally plumes impact the lower boundary and the entire layer progressively saturates

with dissolved solute in a vertical size-dependent shut-down regime. The horizontally

averaged concentration field has a vertically well-mixed bulk with a gradually expanding

upper horizontal boundary layer.

According to Slim [8] in diffusive regime, the dissolution flux rate decays as F (t) =
1/

p
πt and in the flux-growth regime, the key characteristic is that the flux is statistically

constant throughout F = 0.017 (nondimensional). In our work we performed and analyze the

simulations into the six regimes mentioned previously.

Hewitt et al. [27] performed simulations in miscible system. They proposed to relax the

flat-interface assumption, thus, the interface is free to ’deform’, and solute can be entrained

across it. The extent of the deformation decreases with increasing of concentration in the

upper boundary. The dominant wavelength of the deformed interface appears to be set by

the lateral spacing of the descending megaplumes. The results suggest that the total solute

flux F (t) is initially much greater than with a flat interface, i.e., interfacial deformation can

dramatically enhance the convective flux.

In this work, we calculate and analyze the dissolution flux across the upper inter-

face, assuming both flat and deformed surfaces. Our analysis comprised the evolution of

concentration profiles and mixing length, among others.
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2 MATHEMATICAL MODEL

We address the problem of the onset and development of fingers, originated by the

instability of the upper layers of a fluid media placed in a porous media. Over this first fluid

layer, another one is placed, of a fluid with higher density than the density of the lower one. In

addition of being denser than the underneath fluid, the upper one is assumed to be partially

soluble in the lower fluid. Dissolution a single chemical species of the denser fluid, placed

over the one filling the porous media, leads to a buoyancy instability at the top of this layer,

and to the onset of a convective motion that can affect the rate of dissolution of the upper

fluid.

We perform a time dependent numerical two-dimensional simulation of the instability

of a denser layer on the top of the fluid occupying the porous media. The simulations are

performed on rectangular domains, with the horizontal and vertical coordinate axes denoted,

respectively, by x and y , and the vertical axis oriented downwards (see Figure 4). Accordingly,

the gravitational acceleration is oriented on the opposite sense of the y axis.

The convective motion is assumed to obey Darcy’s law, with the Boussinesq approx-

imation to capture the instability induced by the concentration dependent density of the

fluid filling the porous media. The fluid viscosity is assumed to be constant, and we choose a

vorticity-stream function formulation to represent the system hydrodynamics, among the

existing formulations for solving the Navier-Stokes equations, to which the hydrodynamic

field obeys [14]. By so doing we eliminate the variable pressure, reducing thus, the number of

variables and of equations to be solved in each element.

2.1 The vorticity equation

We consider a incompressible two-dimensional flow with flow velocity u. The stream

function satisfies the equations:

u = u(u, v) where u = ∂ψ

∂y
and v =−∂ψ

∂x
, (2.1)
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where ψ represents the stream function. The flow vorticity is equal to the curl of velocity field,

namely:

ω=∇×u. (2.2)

By replacing the components of the velocity vector, expressed in terms of the stream

function we obtain the following equation for the flow vorticity:

∂2ψ

∂y2
+ ∂2ψ

∂x2
=−ωz .

The flow vorticity, along with the stream function formulation, is given, thus, by:

∇2ψ=−ωz , (2.3)

where ∇2ψ stands for the laplacian of ψ.

2.2 The vorticity transport equation

This section describes the steps accomplished for derivation of the non dimensional

vorticity transport equation, assuming the Boussinesq approximation, a parabolic velocity

profile in a two-dimensional Hele-Shaw cell, along with the Brinkman correction.

2.2.1 Boussinesq approximation

The first step of the procedure towards the derivation of the governing vorticity-stream

function equations of the problem consists in introducing the constitutive equation for the

specific mass and an expression for the perturbed pressure in the Navier-Stokes equations [36].

The Navier-Stokes read, in vector form:

ρ
Du

Dt
=−∇p +µ∇2u+ρg,

where u is the velocity vector, p stems for the pressure, ρ, for the fluid specific mass, µ, for the
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fluid viscosity and g, for the gravity acceleration:

ρ = ρ0 +∆ρ
p = p ′−ρ0g y

g = −g∇y,

with ρ0 and g constants.

Developing the terms of the Navier-Stokes equation:

ρ
Du

Dt
= −∇(p ′−ρ0g y )+µ∇2u−ρg∇y ;

ρ
Du

Dt
= −∇p ′+ρ0g∇y −ρg∇y +µ∇2u;

ρ
Du

Dt
= −∇p ′− (ρ−ρ0)g∇y +µ∇2u;

ρ
Du

Dt
= −∇p ′−∆ρg∇y +µ∇2u,

where ∇y defines the direction of g. Assuming ∆ρ = ρ0βc, where c is the mass concentration

and β is an arbitrary constant, we have:

ρ
Du

Dt
=−∇p ′+µ∇2u+ρ0βcg. (2.4)

The Boussinesq approximation neglects specific mass variations in the inertia terms

(ρ = ρ0), so we have:

ρ0
Du

Dt
=−∇p ′+µ∇2u+ρ0βcg.

Finally, we assume that the fluid acceleration is small, namely, (Du/Dt ≈ 0), what

leads to:

∇p ′ =µ∇2u+ρ0βcg. (2.5)

2.2.2 Parabolic velocity profile

This step consists in evaluating the parabolic velocity profile in the Hele-Shaw cell [37].
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We assume that the fluid velocity is given by:

u = z(δ− z)k,

where δ is the distance between the parallel plates of the cell. The average velocity is given by:

ū = 1

δ
k

∫ δ

0
z(δ− z)d z,

what leads to:

k = δū∫ δ
0 z(δ− z)d z

=⇒ k = 6ū

δ2
.

By replacing k in the velocity equation we obtain the derivative in the z direction:

u = 6ū

δ2
z(δ− z) =⇒ ∂u

∂z

∣∣∣
z=0

= 6ū

δ2
(δ−2z)

∣∣∣
z=0

= 6ū

δ
.

So, we can also write:

∂u

∂z
= 6ū

δ
. (2.6)

2.2.3 Reduction of the problem dimensionality

In this step we eliminate one of the spatial directions, reducing the original problem

in dimensionless form, governed by Eq. 2.5, to a two-dimensional one.

Assuming that the average velocity, the pressure and the concentration are given by:

ū = 1

δ

∫ δ

0
u d z; p̄ = 1

δ

∫ δ

0
p d z; c̄ = 1

δ

∫ δ

0
c d z, (2.7)

and integrating Eq. 2.5 along the z direction, we obtain

1

δ

∫ δ

0

∂p

∂x
d z = 1

δ

∫ δ

0
µ
∂2u

∂z2
d z + 1

δ

∫ δ

0
µ

(
∂2u

∂x2
+ ∂2u

∂y2

)
d z − 1

δ

∫ δ

0
ρ0βcg

∂y

∂x
d z, (2.8)

using Eqs. 2.6 and 2.7:

∂p̄

∂x
=−12µ

δ2
ū+µ

(
∂2ū

∂x2
+ ∂2ū

∂y2

)
−ρ0βc̄g

∂y

∂x
. (2.9)
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The form given by Eq. 2.9 is the sought two-dimmensional equation. In vector form:

∇p̄ =−12µ

δ2
ū+µ∇2ū−ρ0βc̄g∇y, (2.10)

with non zero ∇p and ∇y in the x direction only.

2.2.4 Brinkman number approach

The Brinkman’s pre-factor (B) consists of a constant correction factor that modifies

the original Brinkman number (Br ) [38], and changes Eq. 2.10 to a form closer to Darcy’s law.

We mention that an approximation is made when we assume a parabolic velocity profile in

the Hele-Shaw cell, and a correction in the Brinkman number is introduced, with the above

defined pre-factor [39].

Accordingly, the term containing the laplacian operator appearing in Eq. 2.10 refers to

the corrected Brinkman number. Eq. 2.10 takes, thus, the form:

∇p̄ =−12µ

δ2
ū+Bµ∇2ū−ρ0βc̄g∇y, (2.11)

where B refers to the Brinkman’s pre-factor, which is given by 12/π2.

2.2.5 Non-dimensionalization process

This step comprises the non-dimensionalization process of Eq. 2.11, made with intro-

duction of the following non-dimensional variables:

u∗ = ū

uc
; ρ∗ = ρ

∆ρ0
= ρ

ρA −ρ0
; `∗ = `

`c
; p∗ = p̄κ

µD
; ∇∗ = `c∇; g∗ = g

g
, (2.12)

where: uc = ρ0gκαa0/µ stands for the characteristic velocity, a0, for the initial concentration,

κ= δ2/12 for the medium permeability, δ, for the distance between the plates of the Hele-

Shaw cell, `c = D/uc for the characteristic length,α and D , for the expansion and the diffusion

coefficients. g stands for the gravitational acceleration magnitude, ρ0 for the specific mass of

the fluid, µ, for the fluid viscosity, and ρA for the undisturbed specific mass.
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Introducing the non dimensional variables - Eqs. 2.12 - in Eq. 2.11, we obtain:

1

`c
∇∗µ

D

κ
p∗ =−µ

κ
uc u∗+µB

`2
c
∇∗2uc u+∆ρ0ρ

∗g.

Next, we multiply this equation by
`cκ

µD
, to obtain:

∇∗p∗ =−`c

D
uc u∗+ κB

`2
c
∇∗2u∗+ `cκg∆ρ0

µD
ρ∗g∗.

By replacing the medium permeability κ, and the pre-factor B in the Brinkman term

we arrive to:

Br = δ2

π2`2
c

.

In what concerns to the gravitational term, we have:

`cκg∆ρ0

µD
ρ∗g∗ = κg∆ρ0

µ

1

uc
ρ∗g∗,

having in mind that `c = D/uc .

Assuming that ρ = ρ0(1+αa) we have ρA = ρ0(1+αa0) and ∆ρ0 = ρA −ρ0 = ρ0(1+
α)a0 −ρ0 = ρ0αa0. Taking also into account the definition of uc , we simplify the gravitational

term, to obtain:

κgρ0αa0

µ

1

uc
ρ∗g∗ = κgρ0αa0

µ

µ

ρ0gκαa0
ρ∗g∗ = ρ∗g∗.

We have, thus, the non-dimensional form of Eq. 2.11, given by:

∇p =−u+Br∇2u+ρg, (2.13)

where the asterisks were removed.

Eq. 2.13 can be used in two different approaches of the problem:

1. By assuming Darcy’s law, we obtain:

∇p =−u+ρg, (2.14)
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with Br → 0.

2. By assuming the Darcy-Brinkman’s equation, we have:

∇p =Br∇2u+ρg, (2.15)

with Br →∞.

2.2.6 Vorticity-stream function approach

Here, we take the curl of Eq. 2.14, to obtain the governing equations in the framework

of the vorticity-stream function formulation.

Upon assuming ρ =βc and gT = [0 − g 0], we take the curl of βcg, to successively

obtain:

[∇×βcg
]=

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂/∂x ∂/∂y ∂/∂z

0 −βcg 0

∣∣∣∣∣∣∣∣∣∣
=


0

0

− ∂
∂xβcg

 ,

thus:

[∇×βcg
]=−βgz

∂c

∂x
.

It is well known, form vector analysis, that ∇× (∇F ) = 0, i.e., the curl of the gradient of

scalar field vanishes [36]. In consequence, we have ∇× (∇p) = 0.

By taking the curl of Eq. (2.14), we obtain:

0 =−ωz −βgz
∂c

∂x
, (2.16)

where gz denotes the gravitational acceleration along the z direction.

The vorticity transport equation, assuming Darcy’s law, is then obtained from Eqs. 2.3

and 2.16:

∇2ψ=βgz
∂c

∂x
. (2.17)
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2.3 Concentration equation

The mass transport equation of a chemical species, and assuming that diffusion follows

the First Fick’s law, and denoting the species concentration by c reads [36]:

∂c

∂t
+u ·∇c =∇· (D∇c),

where D stands for the diffusion coefficient.

Assuming a constant diffusion coefficient, we have:

∂c

∂t
+u ·∇c =D∇2c,

where the left hand side of this equation stands for the material derivative of c.

The transport equation of the concentration c may thus, be written in shorter form:

Dc

Dt
=D∇2c, (2.18)

where D/Dt denotes the material derivative.

As shown in Secs. 2.2 and 2.3 the model equations governing the system evolution are

given by:

∇2ψ= R
∂c

∂x
. (2.19)

Dc

Dt
=D∇2c, (2.20)

where R =βgz and gz associates the z direction as the one of the gravitational acceleration.

2.4 Boundary conditions

This work addresses the effect of the curvature of the interface between two fluids,

on the rate of dissolution the upper one, denser and partially miscible with the second one,

placed underneath. The geometrical domain configurations, with a flat horizontal upper

interface, and with deformed upper interface, where dissolution occurs, is schematically

shown in Figure 4.
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Figure 4: Left: A porous domain, with flat upper interface. At right: a domain with deformed
interface. We denote the flat domain horizontal length by Lx , and the vertical length by Ly .
The deformed vertical domain length is denoted by Lyd . The coordinate system defined on
the domain deforms, as the upper interface so does. We denote the undeformed coordi-
nate system by (x, y∗), and the deformed one, by (x, y). A is the amplitude of the interface
deformation.

Points of the undeformed domain are mapped into the points of the deformed one,

according to the following formula:

y = y∗+ A

2

(
1− y∗

Ly

)[
1−cos

(
2πx

Lx

)]
, (2.21)

The boundary of the flat domain is defined by: Γ∗ = Γ∗1 ∪Γ2 ∪Γ3 ∪Γ4, whereas the

deformed domain boundary is given by: Γ= Γ1 ∪Γ2 ∪Γ3 ∪Γ4.

Boundary conditions for the velocity field are prescribed as non-slip at the upper (Γ1)

and lower (Γ2) boundaries, and periodic, along the lateral ones. In what concerns to the

concentration field, we prescribe null flux at Γ2, periodic conditions at the side boundaries

(Γ3 and Γ4) and c = 1 at the upper interface. Formally stating, we prescribe:

u ·n = 0 at Γ1 and Γ2 (2.22)

n ·∇c = 0 at Γ2 (2.23)

c = 1 at Γ1. (2.24)

Periodic boundary conditions were implemented to mimic the infinite domain, where

the system state is repeated at the lateral sides with prescribed period. Figure 5 illustrates this
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condition.

x

y

Lx Lx Lx

(a) (b) (c)

1

Figure 5: Schematic of periodic lateral boundaries.

Figure 5(b) represents the same configuration shown in Figure 4 and Figure 5(c) shows

another configuration of the domain. Chapter 5 shows the first results configured according

to Figure 5(b). However in Chapter 6 we show the results configured according to Figure 5(c),

where the fingers better appears for larger amplitudes of deformation.

2.4.1 Initial condition

The dissolution process is initially dominated by a diffusion mechanism. The change

to the convective regime results of an instability of the interface, which can be anticipated by

the forcing of a deformed interface. A small perturbation is imposed to the concentration at

the upper interface, in t = 0. The imposed perturbation takes the form:

c(x, y, t ) = 1+2

(
rand− 1

2

)
×10−3, (2.25)

at t = 0, for (x, y) ∈ Γ1, where rand stands for a random number between 0 and 1. For the

remaining points of the domain,Ω−Γ1 we prescribe c(x, y, t ) = 0 at t = 0.

2.5 Analytical solution

When the velocity field vanishes, namely, when ∇2ψ= 0, the concentration field, evolv-

ing in compliance with Eqs. 2.19 and 2.20, becomes purely diffusive, with the concentration
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distribution given by [40]:

c(y, t ) = 1−erf

(
y

2
p

t

)
. (2.26)

Figure 6 presents a plot of analytical solution of concentration given by the Eq. 2.26. In

this case, Ly = 400 and time of plot t = 100.

0 100 200 300 400

0

0.5

1

y

c(
y
,t
)

t = 100

1

Figure 6: Concentration profile in absence of any flow at time t = 100.
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3 METHODOLOGY

In this chapter we present the methodology adopted to solve numerically the governing

equations and to analyse the numerical results of the subject problem of this thesis. The

numerical method basically encompasses the Finite Element Method (FEM).

3.1 The Finite Element Method (FEM)

The Finite Element Method is widely used for solving boundary value problems. Con-

tinuous problems are replaced by a discrete approximated one with the following characteris-

tics:

(a) the continuous media is divided in a finite collection of parts (denoted as elements), with

the behaviour of the elements characterized by the values assumed by a finite number of

associated parameters;

(b) the solution of the complete set of equations governing the behaviour of the discrete

problem strictly follows the rules applicable to originally discrete problems [41] [42].

3.1.1 The Variational or Weak Formulation

Equations 2.19 and 2.20 are written in the strong form of the boundary value problem.

Though some methods directly employ the strong formulation of the problem, the Finite

Element Method assumes a different approach, where the governing equations are written in

the weak or variational form of the problem.
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Figure 7: Representation of the domain for the finite element method.

The variational or weak form is obtained by weighing the governing differential equa-

tions with a suitable weighing function satisfying the condition v ∈ V and v = 0 in Γg , where

Γg stands for the geometric boundary of the problem, and V is the space of functions defined

by:

V := {
v ∈H 1(Ω) | v = 0 in Γc

}
,

with Γc being a possible contour of the domainΩ and H 1 being the space defined by:

H 1(Ω) :=
{

v ∈L 2(Ω)
∣∣∣ ∂v

∂xi
∈L 2(Ω), i = 1, . . . ,n

}
,

where L 2(Ω) is the Lebesgue space, namely, the space of all square integrable functions,

defined by:

L 2(Ω) :=
{

v
∣∣ ∫ 1

0
v2d x <∞

}
.

in this framework, the functional space H 1 comprises all square-integrable functions also

having square-integrable first derivatives.

By so weighting and subsequently integrating Eqs. 2.19 and 2.20 we obtain the weak
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form of governing equations, in the form:

∫
Ω
∇ψT∇q dΩ+R

∫
Ω

cx q dΩ = 0 (3.1)∫
Ω

Dc

Dt
r dΩ+

∫
Ω
∇cT∇r dΩ = 0, (3.2)

where q and r ∈ V .

The abstract and bilinear form of the set of Eqs. 3.1-3.2 are given by:

K (q,ψ)+
(

q,R;
∂c

∂x

)
= 0, (3.3)

M

(
r,

Dc

Dt

)
+Kc (r,c) = 0, (3.4)

where:

K (q,ψ) =
∫
Ω
∇ψT∇q dΩ,(

q,R;
∂c

∂x

)
= R

∫
Ω

cx q dΩ,

M

(
r,

Dc

Dt

)
=

∫
Ω

Dc

Dt
r dΩ,

Kc (r,c) =
∫
Ω
∇cT∇r dΩ.

3.1.2 The Galerkin Formulation

Let U h ⊂U and V h ⊂ V be finite dimension spaces. We assume that for all wh ∈ V h ,

wh = 0 exactly or approximately, at least, in Γg .

Figure 8: Representation of discretized domain. Left: domain before discretization and right:
domain after discretization with nodes.
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The domain discretization leads to subdomainsΩe -elements, with 1 ≤ e ≤ nel , where

nel is the number of elements. The e elements can be, in bidimensional cases, either triangles

or quadrilaterals.

The set of global number of nodes is defined by: η= {1,2, . . . ,nnp }, where nnp is the

number of nodal points. We define ηg ⊂ η as the set of the “g−nodes”, representing the set

of nodes assigned to the domain boundary, which are prescribed. So, we address ourselves

to evaluate the value of prescribed boundary variables. In other words, we iteratively solve

neq = #(η−ηg ) equations.

A typical member of V h holds the form:

qh = ∑
A∈η−ηg

NAcA, (3.5)

where NA is the shape function associated to the global node A and cA stands for a constant.

Similarly,

r h = ∑
A∈η−ηg

NAdA, (3.6)

where dA is the unknown at the global node A.

Equations 3.3 and 3.4 can be written, in the vectorial form, as:

Kψ+Dxc = 0, (3.7)

M
Dc

Dt
+Kc c = 0, (3.8)

where K and Kc are stiffness matrices, M is a mass matrix and Dx is the matrix containing the

gradient along the x direction.

3.1.3 Triangular element and natural coordinates

In this work we adopt triangular finite elements with straight edges, an approach that

enables the use of natural coordinates (also denoted by area coordinates) to evaluate the

shape functions.

Following this approach, we consider a triangle with vertices 1,2 and 3 (in the counter

clockwise sense) with area A , divided in three areas A1,A2 and A3, i.e., A =A1 +A2 +A3.
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Figure 9: Sketch of triangular finite element. Left: areas Ai of triangle and right: interpolation
function ξ.

We can assume coordinates:

ξ1 = A1

A
, ξ2 = A2

A
, ξ3 = A3

A
,

having thus: ξ1 +ξ2 +ξ3 = 1.

By considering next, the following interpolation function: φ(ξ1,ξ2,ξ3) =φ1ξ1 +φ2ξ2 +
φ3ξ3, we have:

ξ1 = A1

A
= a(1)

0 +a(1)
1 x +a(1)

2 y

ξ2 = A2

A
= a(2)

0 +a(2)
1 x +a(2)

2 y

ξ3 = A2

A
= a(3)

0 +a(3)
1 x +a(3)

2 y .

We can also write the following system of equations, in order to perform the change of

coordinates:
1

x

y

=


1 1 1

x1 x2 x3

y1 y2 y3



ξ1

ξ2

ξ3

⇒


1

x

y

= A


ξ1

ξ2

ξ3


The coordinate system (ξ1,ξ2,ξ3), is obtained thus, by solving the following system of
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equations:


ξ1

ξ2

ξ3

= A−1


1

x

y

 ,

By replacing xi j = xi −x j , yi j = yi −y j with i and j = 1,2,3 and 2A = det (A) = x21 y31−
x31 y21, we obtain the inverse matrix A−1:

A−1 = 1

2A


x2 y3 −x3 y2 y23 x32

x3 y1 −x1 y3 y31 x13

x1 y2 −x2 y1 y12 x21

 .

Writing the matrices associated to each element requires the use of differentiable

interpolation functions, with respect to the cartesian coordinates. We consider thus:

Na = Na(ξ1,ξ2,ξ3),

By deriving Na with respect to the cartesian coordinates x e y , we obtain:

∂Na

∂x
= ∂Na

∂ξ1

∂ξ1

∂x
+ ∂Na

∂ξ2

∂ξ2

∂x
+ ∂Na

∂ξ3

∂ξ3

∂x
∂Na

∂y
= ∂Na

∂ξ1

∂ξ1

∂y
+ ∂Na

∂ξ2

∂ξ2

∂y
+ ∂Na

∂ξ3

∂ξ3

∂y
.

From the relationship between coordinates ξi e x, y , we have the following relations:

∂N1

∂x
= y23

2A
;

∂N2

∂x
= y31

2A
;

∂N3

∂x
= y12

2A

∂N1

∂y
= x32

2A
;

∂N2

∂y
= x13

2A
;

∂N3

∂y
= x21

2A
.

Integration of polynomials in ξ1,ξ2 e ξ3 within the triangles area is given by:

∫
A
ξk

1 ξ
l
2 ξ

m
3 dA = 2A

k ! l ! m!

(2+k + l +m)!
. (3.9)

The gradient of the shape function Na is given, for triangular elements in two dimen-
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sions, by:

∇Na =


∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N1

∂y

∂N2

∂y

∂N3

∂y

= 1

2A

 y23 y31 y12

x32 x13 x21

 .

3.1.4 Global stiffness and mass matrices

Matrices K and M, obtained in eqs. 3.7 and 3.8 are denoted as stiffness and mass

matrices, respectively. As shown before, these matrices are, in general, given by:

K =
∫
Ω
∇ψT∇q dΩ= a(q,ψ) (3.10)

M =
∫
Ω

Dc

Dt
r dΩ= (r,Dc/Dt ). (3.11)

Upon replacing the Galerkin form (Eqs. 3.5-3.6) in Eqs. 3.10 and 3.11, we obtain:

K =
∫
Ω
∇N T

A ∇NB dΩ= a(NA, NB ) (3.12)

M =
∫
Ω

NA NB dΩ= (NA, NB ), (3.13)

where indices A and B refer to global element nodes.

The stiffness and mass matrices are in the global form, these matrices can be assem-

bling by finite elements, thus:

K =
nel∑
e=1

Ke and M =
nel∑
e=1

Me , (3.14)

where Ke = [K e
AB ] and Me = [M e

AB ], with global nodes A and B .

3.1.5 Assembly of the global stiffness and mass matrices

The assembly of global matrices is systematically made, through the data arrays which

provides necessary informations about nodes and elements localization of a matrix. The LM

array, location matrix, store these informations according to:

LM(a,e) = P, (3.15)
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where e is the element, a is the local node and P is the global equation number.

The nodal data is stored in the IEN array, the element nodes array, which systematically

relates local node numbers to global node numbers:

IEN(a,e) = A, (3.16)

where a is the local node number, e is the element number and A is the global node number.

To specify the global ordering of equations we define the ID array, also called the

destination array, which relates the global nodes numbers and global equation numbers:

ID(A) = P, (3.17)

where A is the global node number and P is the global equation number. Thus, we construct

the relationship:

LM(a,e) = ID(IEN(a,e)). (3.18)

For the global nodes A and B , if A 6= 0 and B 6= 0, we arrive to:

KAB = KAB +ke
ab , (3.19)

where K is the global matrix, ke
ab is the element matrix with a and b local nodes.

Let en and em be triangular elements. For each one we have the local and global nodes,

according to Figure 10:

en

em

(1)

(3)

(2)

i

k

j

1

en

em

(1)

(2)
(3)

i

k

j

l

1

Figure 10: Triangular elements with local and global nodes.

In Figure 10, the subscripts (1), (2) and (3) are the local nodes and i , j ,k and l are the
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global nodes of the mesh. Given the element matrix me for e−element, by:

me =


me

11 me
12 me

13

me
21 me

22 me
23

me
31 me

32 me
33

 ,

where the subscripts are the local nodes. We can rewrite me in a global element matrix Me ,

represented by:

i j k

i

Me = j

k



...
...

...

· · · me
11 me

12 me
13 · · ·

· · · me
21 me

22 me
23 · · ·

· · · me
31 me

32 me
33 · · ·

...
...

...


,

where i , j and k are the global nodes of the mesh.

Therefore, taking into account Eq. 3.14, the assembly of global matrix reads:

M =
nel∑
e=1

Me ,

where M is any global matrix.

3.1.6 Element stiffness and mass matrices

Since a stiffness matrix is associated to each element, we can, thus, particularize the

global stiffness matrix belonging to element e, with the local nodes a and b, by denoting: ke
ab ,

the elements of this last matrix evaluated by: ke
ab = a(Na , Nb)e or even,

ke
ab =

∫
Ωe

(∇Na)T ∇Nb dΩe .

Since the gradient of the shape functions are constants the stiffness matrix takes the
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following simple form:

ke
ab = (∇Na)T∇Nb ,

namely,

ke
ab = 1

4A



y23 x32

y31 x13

y12 x21



 y23 y31 y12

x32 x13 x21

 .

We can thus, represent the stiffness matrix in a simplified form given by:

ke
ab = 1

4A



y2
23 +x2

32 y23 y31 +x32x13 y23 y12 +x32x21

y31 y23 +x13x32 y2
31 +x2

13 y31 y12 +x13x21

y12 y23 +x21x32 y12 y31 +x21x13 y2
12 +x2

21


.

The mass matrix associated to local nodes a and b is given by:

me
ab =

∫ e

Ω
Na Nb dΩe =

∫ e

Ω
ξaξb dΩe .

By the Eq. 3.9 it is possible to calculate the entries of the element mass matrix, thus we

obtain:

1. If a = b:

me
aa =

∫ e

Ω
ξ2

a dΩe = 2A
2!

4!
= A

6
.

2. If a 6= b:

me
ab =

∫ e

Ω
ξaξb dΩe = 2A

1!

4!
= A

12
.
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The element mass matrix is given thus, by:

Me = A

12


2 1 1

1 2 1

1 1 2

 .

3.2 Mesh definition

As discussed in Sec. 2.4 of Chapter 2, we are concerned with a domain limited in the

upper boundary by a deformed interface, which can be conveniently mapped to a rectangular

domain using Eq. 2.21.

Thus, the mesh nodes are suitably generated in the rectangular domain, using a

cartesian structured grid. The mesh is then generated from the cartesian grid nodes using

either Delaunay triangulation or dividing each rectangular cell into two triangles in a fixed

local topology.

Once the mesh on the rectangular domain is generated, it is mapped to the curvilinear

domain employing Eq. 2.21. Note that the mapping given by Eq. 2.21 is employed only for

the generation of the mesh. The solution of the linear system of equations is performed in

cartesian coordinates on the deformed mesh, The Finite Element Method being responsible

for the metrics due to the deformation of the elements in the final mesh.

Figure 11: Example of mesh generation. Left: before mapping and at right: after mapping
with deformed upper boundary.
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3.3 The Crank-Nicolson Method

The mass transport equation comprises a material derivative term, which we discretize

in time by using the second order in time Crank-Nicolson [43] method, which is numerically

stable.

We look thus, for functions ψ and c satisfying the global form of equations:

Kψ+Dxc = 0, (3.20)(
1

∆t
M− α

2
K

)
cn+1 =

(
1

∆t
M+ 1−α

ReSc
K

)
cn − (u ·Dx +v ·Dy )cn (3.21)

where u and v are the diagonal matrices which represent the velocity. Indeed, we can use

this form for the convective term in Eq. 3.21, due to use of the lumped mass matrix, that it is

possible to approximate: ML ·u ·M−1
L Dx to u ·Dx . The lumped mass matrix (ML) is a diagonal

matrix that has in each element of its diagonal the sum of the elements of the respective row.

3.4 Computational implementation of the numerical method

Numerically solving algebraic linear systems of the form Ax = b by direct methods

usually results in numerically expensive implementations in terms of CPU time, for matrices

of order 104 or higher. Alternatively, iterative methods are faster, and more suitable for solving

linear system comprising large and sparse matrices. An approximate solution is obtained

after a finite number of iterative steps.

The system of equations is solved in two steps. In the first one we obtain the stream

function. Velocity components are then obtained and introduced in the transport equation,

which is subsequently solved. An LU factorization is applied as a preconditioner to the

matrices and the linear systems and the velocity field from the stream function solutions are

then solved with the use of GMRES (Generalized Minimal Residual) solver. LU factorization

as well as GMRES routines form the PETSc library are utilized [44].

Algorithm 1 describes the procedure employed in the numerical implementation.
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Define: physical domain, number of triangular elements, amplitude of

deformation, and time interval.

Create: nodal coordinates vectors and mesh connectivity matrix.

Apply: nonlinear vertical stretching to nodal coordinates vectors.

Define: boundary conditions vectors. %Using the mesh

Create: linear system matrices.

Apply: deformation in the upper boundary.

Assemble: finite element matrices (stiffness and mass).

Apply: boundary conditions in the matrices.

Impose: initial condition in the concentration vector.

Define: solvers for each unknown variable.

For each iteration:

Compute: concentration vector.

Apply: boundary conditions.

Compute: Darcy vector and applies the boundary conditions.

Solve: Darcy equation linear system.

Solve: concentration equation.

Post-process: save profiles, mixing length, space time maps, and

other data.

Stop: when the prescribed final time is reached.

Algorithm 1: Algorithm employed in the numerical implementation

3.5 Characterization of the fingering structure

In this section, we present the characterization procedure of the nonlinear dynamics

of the concentration and velocity fields [45], [8].

Given the bidimensional concentration field, we obtain the averaged profiles in each

direction at successive times. The transverse average profile (x−direction) is defined as:

< c(y, t ) >= 1

Lx

∫ Lx

0
c(x, y, t )d x. (3.22)

< c(x, t) > gathers information about the total amount of CO2 stored in a layer located at

a distance y . In the diffusive regime it coincides with the analytical solution and in the

convective regime indicates which position in the y-direction the finger has reached in a



56

given time. The longitudinal averaged profile is given by:

< c(x, t ) >= 1

Ly

∫ Ly

0
c(x, y, t )d y. (3.23)

< c(x, t ) > gathers information about the level of interaction between fingers.

The transverse profile allows to define the mixing length and the area under the curve

of the profile. The mixing length (L(t )) represents the distance between the upper interface

and the tip of the finger with larger length. It is evaluated from the transverse average profile,

and is given by the minimum y coordinate such that < c(y, t ) >≥ 0.01, as a function of time.

In the diffusive regime, L(t ) = 2
p

t erf−1(0.99), where t is time (see Appendix A).

The area under the curve of the transverse profile represents the amount of solute

dissolved in the brine as a function of the time:

S(t ) =
∫ Ly

0
< c(y, t ) > d y. (3.24)

An important figure is the dissolution flux, defined as the rate at which solute dissolves

through of the upper boundary [8], [27]. This figure is given by:

F (t ) = 1

Lx

∫ Lx

0
n ·∇c

∣∣∣∣
y=0

dl , (3.25)

where dl = d x/ny , and ny is the y component of the unit normal vector.

The dynamics of the system may be captured by mapping the maximum and minimum

points of the longitudinal average profile at successive times. This mapping also captures the

number of fingers over time.

We also built a space-time map of concentration of the solute at a fixed distance ∆y ′

from the upper boundary and saved the concentration along the horizontal direction in the

time. ∆y ′ was chosen sufficiently small to capture the onset of the fingers.

Figure 12 exemplify the space-time map constructed with ∆y ′ = 0, namely, on the top

of some domain.
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Figure 12: Mapping the space-time concentration.

Figure 13 shows the system state at four time moments of the evolution, where we

identify four y−coordinates at which we construct space-time charts (see Figure 14). Flat

interface was assumed and runs were performed with domain length Lx = 600 and Ly = 800

and final time 25000. Figure 14 shows space-time charts with the distance from the top

∆y ′ = 5%,10%,30% and 50%, i.e., ∆y ′ = 40,80,120 and 400, respectively.
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Figure 13: Time evolution of simulation with flat interface and identifying the y−coordinates
at which we construct the space-time charts.
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Figure 14: Space-time maps identifying prescribed times of evolution.
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4 LINEAR STABILITY ANALYSIS ON A FLAT INTERFACE

In this chapter we consider the linear stability of perturbations near a flat interface. Ac-

cordingly, we address the base state with perturbations to obtain the linear analysis equations

which lead to a eigenvalue-eigenfunction problem.

The base state of the problem is the time dependent solution of Eq. 2.20 of the concen-

tration field in absence of any flow ( [40]):

c̄(y, t ) = 1−erf

(
y

2
p

t

)
. (4.1)

The Linear Stability Analysis (LSA) consists in adding perturbations to the base state

solution characterized by the concentration profile (4.1) and

 c

ψ

=
 c̄(y, t )

0

+

 c̃(y)
i

k
ψ̃(y)

exp(σt + i kx), (4.2)

where i 2 = −1, k is the wavenumber of the perturbation and σ is the growth rate. The

linearised evolution equations for the disturbances c̃ and ψ̃ are thus:

ψ̃y y −k2ψ̃ = k2c̃ (4.3)

σc̃ + ψ̃c̄y = c̃y y −k2c̃, (4.4)

where the subscripts denote partial derivatives.

Boundary conditions for the concentration and stream function perturbations c̃ and

ψ̃ are thus:

y = 0 : c̃ = 0, ψ̃= 0

y →∞ : c̃ → 0, ψ̃→ 0.

Upon defining the differential operator Dn = d n/d yn with n = 1,2, a we rewrite Eq. 4.3:

(
D2 −k2)ψ̃= k2c̃, (4.5)
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and inversely:

ψ̃= (
D2 −k2)−1

k2c̃. (4.6)

Upon replacing ψ̃ in Eq. 4.4 and rearranging terms we arrive at an eigenvalue-eigenfunction

equation for the rate of growth σ and associated vertical concentration profile in the form:

[(
D2 −k2)− (

D2 −k2)−1
k2Dc̄

]
c̃ =σc̃.

On the basis of Eqs. 2.19- 2.20, a LSA can be performed to obtain dispersion curves

giving the growth rate of the perturbations as a function of the wavenumber (see Figure 15).

We can see that all perturbations are damped for t < 55.59 and a bifurcation occurs at t = 55.59

when the first perturbation becomes marginally stable with a wavenumber k = 0.06192.

0 0.02 0.04 0.06 0.08 0.1 0.12

−0.004

−0.002

0

0.002

0.004

k

σ

t = 30

t = 55.59

t = 100

t = 252.86

t = 500

t = 1000

1

Figure 15: Dispersion curves of normal mode perturbations of the base state, numerically
obtained for several times. All perturbations are damped for t < 55.59. A bifurcation occurs
at t = 55.59 when the first perturbation becomes marginally stable with a wavenumber
k = 0.06192.

4.1 Code validation – perturbation growth with frozen base state

This section describes the procedure adopted to validate the Finite Elements code

developed in Matlab®, used to solve Eqs. 2.19-2.20. Section 4.1.1 addresses the effect of the

mesh spacing on the rate of growth of perturbations σ. Section 4.1.2 compares values of

σ given by the linear stability analysis with the ones of a specific mode (k0 = 0.06192), as
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extracted from the numerical integration of the governing equations with frozen base state at

t0 = 252. This condition is expressed by ψ= 0 and a concentration distribution according to:

c =
(
1−erf

(
y

2
p

t0

))
+a c̃(t0, y) cos(k0x). (4.7)

Here c̃(t0, y) is the eigenfunction associated to k0, as obtained from the linear stability analysis

at t0 = 252 and a is the amplitude of the perturbation at t = 0.

4.1.1 Mesh spacing

In order to evaluate the effect of the mesh refinement we performed a series of 10

experiments where we measured the rate of growth of a perturbation as above (Eq. 4.7). The

experiments were performed with the following conditions:

1. Domain dimensions: λ×4λ, along the x and y directions, respectively. Here λ is the

wavelength associated with perturbations with k0 = 0.06192;

2. Freezing the base state: at the end of each time step we subtracted the base state at

t = 252+∆t from the numerical solution and added the base state at t0 = 252. ∆t is the

time step used in the integration procedure;

3. Mesh construction: for each of the 10 experiments we set a grid of N ×M points equally

spaced along the x and y directions respectively, as given in Table 2. After setting

the grid points we proceeded with a Delaunay triangulation by the Matlab function

(see Figure 16);

4. Error evaluation was made by comparing the rate of growth of the perturbation with

k0 = 0.06192, evaluated at 31st time step of each run with the “exact” value obtained from

the linear stability analysis (σexact = 3.9581×10−3 at t = 252), according to following

formula:

εr el =
|σapprox −σexact|

σexact
×100. (4.8)
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Figure 16: Two uniform meshes used in the in the experiments conducted to evaluate the
effect of the mesh refinement on the results of the numerical integration of Eqs. 2.19 - 2.20. N
and M are the number of points along the x and y directions, respectively. Left: N = 11 and
M = 41. Right: N = 21 and M = 81.

Table 2 summarizes the information about the 10 experiments: number of points of

the mesh along directions x e y , distance ∆x between successive points in both directions,

rate of growth σapprox obtained from each experiments and error, according to Eq. 4.8.

Table 2: σapprox and error in the rate of growth, evaluated at the 31st time step according to
Eq. 4.8 for 10 mesh refinements.

N M ∆x σapprox εrel (%)

11 41 10.14726 2.5512 · 10−3 35.5451
21 81 5.07363 3.55812 · 10−3 10.1056
31 121 3.38242 3.76779 · 10−3 4.8085
41 161 2.53682 3.83377 · 10−3 3.1416
51 201 2.02945 3.86949 · 10−3 2.2392
61 241 1.69121 3.88869 · 10−3 1.7541
71 281 1.44961 3.90002 · 10−3 1.4677
81 321 1.26841 3.90789 · 10−3 1.2688
91 361 1.12747 3.9134 · 10−3 1.1298
101 401 1.01473 3.91775 · 10−3 1.0199

1

Figure 17 shows that the error is proportional to ∆x2 for coarse meshes and propor-

tional to ∆x for fine meshes.
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Figure 17: Comparison between relative error, distance ∆x and distance ∆x2. This figure
shows that the error is proportional to ∆x2 for coarse meshes and proportional to ∆x for fine
meshes.

4.1.2 The rate of growth of perturbations with frozen base state

This section reports the experiments conducted to evaluate the rate of growth of modes

with the wavelength λ associated to k0 = 0.06192. We denote this mode as “mode 4”. Initial

condition used in the experiments consisted of the base state at t = 252 plus perturbation

with this wavenumber.

Having in mind that meshes with 161 points distributed along a domain with a length

of 4λ in the y direction result in errors of order of 3% in the rate of growth we adopted a

domain with dimensions 4λ×4λ in all simulations and a grid with 150 points evenly spaced

along the x direction and 150 points along the y direction, with a quadratically increasing

distance between successive points (see Figure 18).
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Figure 18: A non-uniform grid with N ×M = 150×150 points.

Figure 19 shows a plot of the square of the amplitude of mode 4 as a function of time.

Six experiments were run with different initial amplitude of the perturbations a (see Eq. 4.7)

as indicated in Figure 19. The figure shows that perturbations with higher initial amplitude

attain saturation earlier than perturbations with smaller initial amplitude. The growth is

exponential, except at the first moments of evolution of a perturbation with the smaller initial

amplitude, probably due to interference with other modes introduced by the numerical grid.

We also included a curve (in black) of the growth of a perturbation as given by the linear

stability analysis at t = 252. We observe that this curve shows a slope identical to the slope

obtained from integration of the complete evolution equations, a result that validates the

code.

In order to extract the amplitude of mode 4 we adopted the following procedure:

1. The base state is subtracted from result of the numerical result of integration, both at

the same time;

2. The result is integrated along the y direction, folowed by evaluation of the Fourier

transform of the result, giving the sought amplitude.
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Figure 19: Evolution of the amplitude of Mode 4 for initial amplitudes as given in the figure.

Figure 20 presents a plot of the rate of growth σ as a function of time. This figure

confirms that the the rate of growth obtained from the numerical integration of the evolution

equations matches the “exact” value from the linear stability analysis during the stages of

linear growth, except for the case where we started from a perturbation with very small initial

amplitude and the mode is affected by the grid noise.

This figure also shows the horizontal line, in black, corresponding to σ as given by the

linear stability analysis. As above mentioned, the curve associated with the smaller initial

amplitude a = 2×10−6 shows an irregular behaviour at first instants, due to grid noise.
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Figure 20: The “exact” rate of growth and rates of growth σ1, σ2, σ3, σ4, σ5 and σ6 associated
to perturbations with initial amplitudes a = 2×10−1, a = 2×10−2, a = 2×10−3, a = 2×10−4,
a = 2×10−5 e a = 2×10−6, respectively.
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4.2 Deployment of instabilities with variable base state

In this section we investigate the deployment of instabilities with a time dependent

base state by numerically integrating Eqs. 2.19-2.20 from random initial conditions (Sec. 4.2.1)

and from initial conditions consisting of mode 4 (Sec. 4.2.2). In both cases we run the

experiments with different amplitudes of the initial condition.

4.2.1 Random initial conditions

Figure 21 presents a plot of the concentration profile of the base state at various times,

as given by Eq. 4.1 (lines with marks) and the profiles obtained by numerical integration of

Eqs. 2.19-2.20 (lines without marks). The curves are averaged along the x direction. The figure

shows the base state and deviation of the base state due to the onset of instabilities at the first

stages of evolution, starting from random initial conditions. This figure shows adherence of

the concentration profile to the base state up to t = 1000 at least. Deviation from the base

state solution after t = 3000 evidences the onset of instabilities.
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Figure 21: Comparison of concentration profiles at several times, as given by the solution
of Eq. 4.1 (lines with marks) and obtained by numerical integration of Eqs. 2.19-2.20 (lines
without marks). Base state and deviation of the base state due to the onset of instabilities at
the first stages of evolution, starting from random initial conditions. Deviation from the base
state solution at t = 3000 evidences the growth of unstable modes.

Figure 22 shows the amplitude of perturbation modes of concentration and stream

function obtained from the solution of the governing equations using Fourier analysis, at

t = 1500. The figure presents the vertical eigenmodes associated perturbations with 2, 3, 4 and

5 fingers (modes 2, 3, 4 and 5) at t = 1500. The modes were obtained by subtracting the base
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state at t = 1500 from the result of the integration at that time, followed by the extraction of

the modes by applying fast Fourier transform. This figure shows that the modes are identified

by the corresponding number of fingers.
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Figure 22: Perturbation eigenfunctions at t = 1500. Perturbation modes of ψ are represented
by lines with marks and concentration, by lines without marks. Mode profiles were obtained
by subtraction of the base state from the result of the numerical integration of Eqs. 2.19-2.20,
followed by averaging along the x direction and by decomposition in Fourier modes. Modes
are identified by the corresponding number of fingers.

Figure 23 shows the result of a simulation with random initial condition, where we can

see that mode 3, containing three fingers, prevails in domains with dimensions 4λ×4λ.

Figure 23: Left: concentration profile of mode 3 at t = 1500. Center and right: concentration
distribution at times t = 1500 and t = 3000.

Figure 24 and Figure 25 present the amplitude of modes 3 and 4 for different random

initial conditions. A comparison between Figure 24 and Figure 25 shows that the growth of

mode 3 persits for times t = 3000 and longer.
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Figure 24: Amplitude of mode 3 for several amplitudes a of the random initial condition
and evolving base state. In black: growth of the amplitude of mode 3, as given by the linear
stability analysis at t = 252.
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Figure 25: Amplitude of mode 4 for several amplitudes a of the random initial condition
and evolving base state. In black: growth of the amplitude of mode 4, as given by the linear
stability analysis at t = 252.

Figure 26 and Figure 27 present the rate of growth of modes 3 and 4 for four different

initial amplitudes of the random initial condition. These figures show that the rate of growth

changes significantly in time due to the deployment of the base state.
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Figure 26: Rate of growth of mode 3 with four different initial amplitudes of the random initial
condition. This figure shows that the rate of growth changes significantly in time due to the
deployment of the base state.
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Figure 27: Rate of growth of mode 4 with four initial amplitudes of the random initial con-
dition. In black: rate of growth of mode 4 as given by the linear stability analysis at t = 252.
In addition to showing the decrease of the rate of growth the figure also shows the long term
behavior of the mode as strongly nonlinear effects become dominant.

4.2.2 Initial condition: mode 4

This section reports the simulations starting from the base state at t0 = 252 plus mode

4 with different amplitudes a of the initial condition, according to Eq. 4.7.

Figure 28 presents a plot of the concentration profile of the base state at various times,

as given by Eq. 4.1 (lines with marks) and the profiles obtained by numerical integration of
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Eqs. 2.19-2.20 (lines without marks). The curves are averaged along the x direction. Similarly

to the case with random initial conditions. This figure shows adherence of the concentration

profile to the base state up to t = 1000 at least. Deviation from the base state solution after

t = 3000 evidences the onset of instabilities.
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Figure 28: Base state and deviation of the base state due to the onset of instabilities at the
first stages of evolution, starting from the base state at t0 = 252 plus mode 4 with different
amplitudes a of the initial condition. This figure presents a comparison of concentration
profiles at several times, as given by the solution of Eq. 4.1 (lines with marks) and obtained by
numerical integration of Eqs. 2.19-2.20 (lines without marks). Deviation from the base state
solution at t = 3000 evidences the growth of unstable modes. Initial condition consisting of
mode 4 (the most stable mode at t = 252 with initial amplitude a = 2×10−4).

Figure 29 presents the perturbation modes of ψ and the concentration c obtained by

subtraction of the base state from the result of the numerical integration of Eqs. 2.19-2.20,

followed by averaging along the x direction and by decomposition in Fourier modes. Modes

are identified by the corresponding number of fingers. In this simulation the initial condition

consists of mode 4, ie, the most stable mode at t = 252 with initial amplitude a = 2×10−4.
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Figure 29: Perturbation eigenfunctions at t = 1500. Perturbation modes of ψ are represented
by lines with marks and concentration modes, by lines without marks. Modes were obtained
by subtraction of the base state from the result of the numerical integration of Eqs. 2.19-2.20,
followed by averaging along the x direction and by decomposition in Fourier modes. Modes
are identified by the corresponding number of fingers. Initial condition consisting of mode 4
(the most stable mode at t = 252 with initial amplitude a = 2×10−4).

Figure 30 shows the result of a simulation with initial condition mode 4, where we can

see that the initial condition induces the development of four fingers.

Figure 30: Left: concentration profile of mode 4 at t = 1500. Center and right: concentration
distribution at times t = 1500 and t = 3000.

Figure 31 and Figure 32 show the amplitude and rates of growth of mode 4 with the

different initial amplitudes a of the perturbation.
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Figure 31: Amplitude of mode 4 for several amplitudes a of the initial condition and evolving
base state. In black: growth of the amplitude of mode 4, as given by the linear stability analysis
at t = 252.
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Figure 32: Rate of growth of mode 4 with the different initial amplitudes a of the perturbation
(mode 4). In black: rate of growth of mode 4, as given by the linear stability analysis at t = 252.

Simulations made with an initial condition consisting of the concentration distribution

of mode 4 are compared with results obtained by freezing the base state and the ones obtained

by integration of the full evolution equations, where the base state evolves (see Figure 33 and

Figure 34).
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Figure 33: A comparison between the evolution of the amplitude of mode 4 with frozen base
state (curves without marks) and evolving base state (curves with marks).
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Figure 34: A comparison between the evolution of the rate of growth of mode 4 with frozen
base state (curves without marks) and evolving base state (curves with marks).

In conclusion, freezing the base state profile does not qualitatively change the pattern

of fingers developed and, at the same time, renders easier the analysis of the developed

pattern.
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4.3 The nonlinear regime

Figure 35, Figure 37 and Figure 38 show the evolution from earlier stages of mode

selection, linear growth to saturation and strongly nonlinear regime for initial conditions

consisting of the base state at t = 252 and random initial conditions and for same base

state plus mode 4. In both cases we performed simulations with different amplitudes of the

perturbation added to the base state at t = 0.
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4.3.1 Random initial condition

t = 200 t = 1000 t = 2000 t = 8000

t = 200 t = 1000 t = 2000 t = 8000

t = 200 t = 1000 t = 2000 t = 8000

t = 200 t = 1000 t = 2000 t = 8000

Figure 35: Time evolution of the concentration consisting of the base state at t = 252 and
random intial conditions with initial amplitudes a = 1×10−2, a = 3×10−2, a = 1×10−1 and
a = 3×10−1. The frames cover the stages of modes selection, linear growth, saturation of
growth and strongly nonlinear regime.
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Figure 36: Long term evolution of modes 3 and 4 starting from initial conditions consisting
of the base state at t0 = 252 plus a random distribution with four initial amplitudes a (see
Eq. 4.7). Black lines show the rate of growth from LSA. Curves of mode 3 a constructed without
marks; curves of mode 4 a constructed with marks.

Figure 35 shows the effect of the amplitude of the initial condition in the number of

fingers of the structure at t = 2000. The point becomes clear by observing the evolution of

the amplitude of the modes (see also Figure 36). A numerical simulation performed with

a = 3×10−1 shows that an instability appears at t = 2000, resulting in structures with larger

number of fingers. Figure 36 also shows that the amplitude of mode 3 dominates (same a and

t ) over other modes.

For times t = 2000 to t = 8000, we observe the development of instabilities, contain-

ing initially a large number of modes close to the concentration boundary layer, though a

single mode eventually survives for longer times. The result confirms the ones obtained by

Figure 36.

4.3.2 Initial condition: mode 4

Figure 37 and Figure 38 present the system evolution starting with mode 4 as the

initial condition, and different amplitudes. Prescription of this initial condition and larger

amplitudes result in patterns with four fingers since early stages of evolution. For instance,

assuming a = 2×10−1 a structure with four fingers already exists at t = 260. As the structure

grows and nonlinear effects appear the number of surving fingers is reduced to 1-3 (t = 8000).
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These instabilities are also shown in Figure 39 at times t = 6000 and t = 10000.

t = 260 t = 1000 t = 2000 t = 8000

t = 260 t = 1000 t = 2000 t = 8000

t = 260 t = 1000 t = 2000 t = 8000

Figure 37: Time evolution of the concentration from the base state at t = 252 and mode 4
with initial amplitudes a = 2×10−1, a = 2×10−2 and a = 2×10−3 (see Eq. 4.7).
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Figure 38: Time evolution of the concentration from the base state at t = 252 and mode 4
with initial amplitudes a = 2×10−4, a = 2×10−5 and a = 2×10−6 (see Eq. 4.7).
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Figure 39: Long term evolution of mode 4 starting from initial conditions consisting of the
base state at t0 = 252 plus mode 4 with six initial amplitudes a (see Eq. 4.7). In black: growth
of the amplitude of mode 4 as given by the LSA at t0 = 252.

Eqs. 2.19 - 2.20 were solved numerically using Finite Element code with the material

derivative represented by a semi-Lagrangian scheme. Tests conducted with different grid

refinements showed that error in the evaluation of σ decreases with ∆x for finer meshes and

with (∆x)2 for coarser ones. Upon freezing the base state we recover the same rate of growth

obtained with the linear stability analysis, giving us a certain degree of confidence in the code.

We observed that when integrating the evolution equation starting from the base state

plus a perturbation a minimum initial level of this one is required to obtain the linear growth

of the linear stability analysis in the first stages of evolution. If this minimum is not included

in the initial condition a deviation occurs at the first stages of the linear growth, due to noise

introduced by the grid.

As we allow the base state to evolve we observe a certain deviation in the rate of growth

of the amplitude of modes when comparing with σ obtained from the linear analysis, due to

nonlinear effects.
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5 CODE VERIFICATION AND GRID CONVERGENCE

Chapter 4 presents the results of the LSA performed as part of the validation process

of the numerical code, written in Matlab. The numerical algorithms developed for this code

were, subsequently, translated to the C programming language and included in a more robust

code, written in this language.

This chapter presents the results of the tests performed to verify the behavior of the C

numerical code developed as part of this thesis, and also, the procedure followed to select the

numerical grid and the time step adopted in the numerical simulations.

5.1 Code verification

The code verification procedure consisted in solving the governing equations in the

purely diffusive state, namely, for the case where Eq. 2.19 becomes ∇2ψ= 0 at the upper flat

interface, with boundary conditions e = 1 at the upper boundary, n ·∇c = 0 at the bottom and

periodic at the sidewalls. Figure 40 and Figure 41 show the system evolution in two different

times, obtained by numerical integration of the governing equations, the analytical solution,

and the absolute error, defined as the absolute difference between the two solutions.

Figure 40: Left: the system state at t = 1000. At the center: the the analytical solution. At right:
the absolute error, defined as the difference between both solutions at t = 1000.
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Figure 41: Left: the system state at t = 5000. At the center: the analytical solution. At right:
the absolute error, defined as the difference between both solutions at t = 5000.

The system and numerical parameters adopted in the runs performed for the verifica-

tions leading to the results presented in Figure 40 and Figure 41 are:

- Domain dimensions: Lx = 1600 and Ly = 1600.

- Numerical grid: 150×120 grid points.

- Time step: d t = 5.0.

The results confirm the consistence of implementation of the boundary conditions,

verifying thus the consistence of the code written in C, with functions of the PETSc library.

5.2 Results with flat interface

Following the code verification process we applied the characterization figures defined

in Section 3.5 to the results of a simulation (see Figure 42 to Figure 46) run in a small domain

with the following parameters:

Domain dimensions: Lx = 2000 and Ly = 2000.

Numerical grid: 401×401 grid points.

Initial and final times: t0 = 0 and t f = 20000, respectively.

CPU run time: 1h20mi n.
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Figure 42: System state at t = 2500, 5000, 7500, 10000, 15000 and 20000, respectively.
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Figure 43: Left: average concentration longitudinal profile: < c(x, t) >. Right: average
concentration transverse profile: < c(y, t ) >.
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Figure 44: Left: evolution of the fingers length. Right: evolution of fingers area.

x

t
 0

 5000

 10000

 15000

 20000

 0  500  1000  1500  2000

1

x

t
 0

 5000

 10000

 15000

 20000

 0  500  1000  1500  2000

1

Figure 45: Left: space-time chart at a prescribed distance of the interface - ∆y ′ = 100. Right:
position of the fingers maximum and minimum.
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Figure 46: Average number of wavelengths.

The above results qualitatively match the existing results found in the literature [45]

and contribute for the validation of the code developed in the framework of this thesis.
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5.3 Grid convergence

Following the code validation process, as above described, we proceeded addressing

the grid spacing ∆x and ∆y , along the two directions, and also, the optimum time step ∆t ,

for the simulations performed. It is worth to mention that the thin boundary layer at the

interface between the two fluids recommends the use of variable ∆y n order to better capture

the dynamics within the boundary layer. We adopted an exponentially growing ∆y .

Five computational runs were made with different values of ∆x, ∆t and random initial

conditions. The domain dimensions were defined as Lx = 1000 and Ly = 2000, and the

integration was made in the time interval t0 = 0 to t f = 20.000.

Tests performed with ∆x = 10.0:

We adopted a computational grid with 101×201 points in this series of runs. Table 3

presents the average number of fingers and the associated times, of each group comprising

five simulations.

Table 3: Effect of the selected time step ∆t and of the time of evolution on the number of
fingers in the domain.

∆t fingers (≈) CPU time

5.00 7 6min

2.50 7 11min

1.25 7 20min

Figure 47 shows the mixing length for the 15 runs with ∆t = 5.0, 2.5 and 1.25 and

random initial conditions. Blue curves refer to tests with ∆t = 5.0, red curves, to ∆t = 2.5,

green curves, to ∆t = 1.25. Dashed curves refer to the average of runs performed with each of

the above ∆t .
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Figure 47: Left: evolution of the mixing length of the fingers. Right: average mixing length of
the tests for each ∆t .

Tests performed with ∆x = 5.0:

For this series, we adopted a numerical grid with 201×401 points. Table 4 presents the

average number of fingers and the associated times, of each group comprising five simula-

tions.

Table 4: Effect of the selected time step ∆t and of the time of evolution on the number of
fingers in the domain.

∆t fingers (≈) CPU time

5.00 6 30min

2.50 6 50min

1.25 6 1h15min

Figure 48 shows the mixing length for the 15 runs with ∆t = 5.0, 2.5 and 1.25 and

random initial conditions. Blue curves refer to tests with ∆t = 5.0, red curves, to ∆t = 2.5,

green curves, to ∆t = 1.25. Dashed curves refer to the average of runs performed with each of

the above ∆t .
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Figure 48: Left: evolution of the mixing length of the fingers. Right: average mixing length of
the tests for each ∆t .

Tests performed with ∆x = 2.5:

The computational grid: 401×801 points. Table 5 presents the average number of

fingers and the associated times, of each group comprising five simulations.

Table 5: Effect of the selected time step ∆t and of the time of evolution on the number of
fingers in the domain.

∆t fingers (≈) CPU time

2.50 6 6h

1.25 7 9h

0.625 7 16h

Figure 49 shows the mixing length for the 15 runs with ∆t = 2.5, 1.25 and 0.625 and

random initial conditions. Blue curves refer to tests with ∆t = 2.5, red curves, to ∆t = 1.25,

green curves, to ∆t = 0.625. Dashed curves refer to the average of runs performed with each

of the above ∆t .



88

0

2,
00
0

4,
00
0

6,
00
0

8,
00
0

10
,0
00

12
,0
00

14
,0
00

16
,0
00

0

500

1,000

1,500

time (t)

M
ix

in
g

le
n

g
th

∆t = 2.5

∆t = 1.25

∆t = 0.625

1

0

2,
00
0

4,
00
0

6,
00
0

8,
00
0

10
,0
00

12
,0
00

14
,0
00

16
,0
00

0

500

1,000

1,500

time (t)

M
ix

in
g

L
en

g
th

∆t = 2.5

∆t = 1.25

∆t = 0.625

1

Figure 49: Left: evolution of the mixing length of the fingers. Right: average mixing length of
the tests for each ∆t .

Figure 50 shows all the average mixing lenghts obtained in the 15 tests performed (see

Figure 47 to Figure 49).
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Figure 50: Comparison between average mixing lengths obtained in the tests performed as
above, with three values of ∆x and ∆t .

An inspection of Figure 50, and of Table 3-Table 5 leads to the conclusion that∆x = 5.0,

with time step ∆t = 2.5 are the optimum values for our simulations. In what concerns to

the vertical spacing we assumed an exponential growth along the y direction, ranging from

∆y = 2.5 to ∆y = 7.5 at the domain bottom.
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5.4 Choosing the integration domain

The choice of a suitable domain of integration is of utmost importance to reproduce

existing results and to assure that we obtain qualitatively and quantitatively sound new results,

that mimic the behavior of real systems ( [8], [27]). Accordingly, we performed tests with flat

interface and several domain dimensions Lx e Ly , and present the results of two of them.

Sections 5.4.1 and 5.4.2 summarize the results of tests performed with dfferent domains,

selected among the conducted ones.

5.4.1 Flat interface

This section presents the results of two of our tests, performed in domains with same

horizontal length and different depths.

The results of the first simulation are shown in Figure 51 to Figure 55. These results

were obtained in a run where we assumed Ly = 6000, and the following parameters:

Domain dimensions: Lx = 4000 and Ly = 6000.

Numerical grid: 801×1201 grid points.

Initial and final times: t0 = 0 and t f = 50000, respectively.

Figure 51: Time evolution frames, at times: t = 10000,20000,30000,40000,45000 and 50000,
from left to right.
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Figure 52: Left: average concentration longitudinal profile: < c(x, t) >. Right: average
concentration transverse profile: < c(y, t ) >. The time interval between two successive curves
is ∆t ′ = 5000, the first curve is in t = 5000.
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Figure 53: Mixing length (left), and finger area (right).
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Figure 54: Space-time map with ∆y ′ = 300 from the top (left), and position of fingers maxi-
mum and minimum (right).
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Figure 55: Average wavelength.

The second series of runs was performed in systems with domain depth Ly = 12000,

and the following parameters:

Domain dimensions: Lx = 4000 and Ly = 12000.

Numerical grid: 801×2401 grid points.

Initial and final times: t0 = 0 and t f = 120000, respectively.

The results of the second simulation are shown in Figure 56 to Figure 60. We obtained

the following results:

Figure 56: Time evolution frames, at times: t = 10000,25000,40000,55000,70000,85000,100000
and 120000, from left to right.
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Figure 57: Left: average concentration longitudinal profile: < c(x, t) >. Right: average
concentration transverse profile: < c(y, t ) >. The time interval between two successive curves
is ∆t ′ = 5000, the first curve is in t = 5000.
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Figure 58: Mixing length (left), and finger area (right).
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Figure 59: Space-time map with ∆y ′ = 120 from the top (left), and position of fingers maxi-
mum and minimum (right).
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Figure 60: Average number of fingers.

From Figure 51 to Figure 60 we conclude that the domain depth Ly afect the elapsed

time between the beginning of the dissolution process and the time in which fingers reach the

domain bottom. We also infer that deeper domains favour the development of larger number

of fingers close to the boundary layer (see Figure 54 and Figure 59, left).

5.4.2 Deformed interface

Two series of runs were preformed with deformed interface, assuming an amplitude

of deformation A = 600, same domain length in the two cases, and two different depths.

The first series of runs was done assuming Ly = 6600 and the following parameters:

Domain dimensions: Lx = 4000 and Ly = 6600.

Numerical grid: 801×1201 grid points.

Initial and final times: t0 = 0 and t f = 45000, respectively,

Figure 61 and Figure 65 present the results for one initial condition.
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Figure 61: Time evolution frames, at times: t = 10000,20000,30000,40000 and 45000, from
left to right.
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Figure 62: Left: average concentration longitudinal profile, < c(x, t) >. Right: average con-
centration transverse profile, < c(y, t ) >. The time interval between two successive curves is
∆t ′ = 5000, the first curve is in t = 5000.
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Figure 63: Mixing length (left), and finger area (right).
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Figure 64: Space-time map with ∆y ′ = 300 from the top (left), and position of fingers maxi-
mum and minimum (right).
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Figure 65: Average number of fingers.

The second series of runs with deformed interface (A = 600), was made in a system

with domain depth Ly = 12600, and the following parameters:

Domain dimensions: Lx = 4000 and Ly = 12600.

Numerical grid: 801×2401 grid points.

Initial and final times: t0 = 0 and t f = 85000, respectively.

The results are presented in Figure 66 to Figure 70:
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Figure 66: Time evolution frames, at times: t = 10000,25000,40000,55000,70000 and 85000,
from left to right.
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Figure 67: Left: average concentration longitudinal profile: < c(x, t) >. Right: average
concentration transverse profile: < c(y, t ) >. The time interval between two successive curves
is ∆t ′ = 5000, the first curve is in t = 5000.
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Figure 68: Mixing length (left), and finger area (right).
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Figure 69: Space-time map with ∆y ′ = 120 from the top (left), and position of fingers maxi-
mum and minimum (right).
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Figure 70: Average number of fingers.

As in the case of flat interfaces, the results obtained with deformed ones show that

deeper domains result in more complex structure of patterns. The point becomes clear when

we compare Figure 54 and Figure 59 with Figure 64 and Figure 69.

From the above results, we conclude that a suitable domain for integration of the

governing equations is the one with the fastest evolution, and featuring effects like the merge

an thickening of fingers, and new instabilities. Among the domains and parameters used in

the above tests, the set that better matches the above desired characteristics is the one defined

by Lx = 4000 and Ly = 12000+ A, where A is the amplitude of the interface deformation.
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6 NUMERICAL RESULTS

This chapter deals with the numerical results obtained with simulations of the problem

in configurations with prescribed fixed upper interface deformations. Numerical integration

of the governing equations (Eqs. 2.19 and 2.20) were performed over a physical domain

defined by: Lx = 4000×12000+A, (A standing for the amplitude of the interface deformation).

A numerical mesh containing nel = 2(nx −1)
(
ny −1

)= 3,840,000 triangular elements

was adopted, with nx = 801 and ny = 2401, where nx and ny are, respectively, the number of

points along the x and y directions. The time step adopted to advance time was ∆t = 2.5. The

same time interval was adopted in all simulations, and this time was selected as the one at

which a first finger reaches the domain bottom, in simulations with flat interface. Simulations

were performed in domains with flat and four deformed interfaces, A = 0,300,600,900 and

1200.

Figure 71 to Figure 75 present an overall picture of the dynamic evolution of the system,

as obtained in our simulations. We can see the dynamics of density fingering in different times

of the deformed gas/brine interface and the space-time map, respectively. As mentioned in

Chapter 2, the simulations were made under periodic boundary conditions, so Figure 72 to

Figure 75 show the concave deformation of the interface. The sequence of frames with the

time evolution shows a flow towards the lower part of the deformation and the onset of the

first finger at that point.

Figure 71 to Figure 75 also contain, at left, the space-time chart associated to the simu-

lation. This chart consists of a plot of the time evolution of the concentration distribution at a

prescribed distance of the interface, just below the interface boundary layer. Concentration

is plotted along the horizontal axis of the figure, and time, along the vertical one, increasing

from t = t0 = 0 at the top, to tend = 95000 at the bottom. The figure shows the successive onset

of fingers in the boundary layer, and the merge of developed ones.
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Figure 71: Time evolution of the case with A = 0, in times: t = 3000, 5000, 10000, 25000, 40000,
55000, 70000, 85000 and 95000 and the associated space-time chart evaluated at a distance
∆y ′ = 120 of the flat interface.

Figure 72: Time evolution of the case with A = 300, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000 and the associated space-time chart evaluated at a
distance ∆y ′ = 120 of the deformed interface.

Figure 73: Time evolution of the case with A = 600, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000 and the associated space-time chart evaluated at a
distance ∆y ′ = 120 of the deformed interface.
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Figure 74: Time evolution of the case with A = 900, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000 and the associated space-time chart evaluated at a
distance ∆y ′ = 120 of the deformed interface.

Figure 75: Time evolution of the case with A = 1200, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 e 95000 and the associated space-time chart evaluated at a distance
∆y ′ = 120 of the deformed interface.

The above figures show an onset of fingers evenly distributed along the flat interface

at early times of evolution. However, a progressive thickening of three main fingers, to which

new ones merge, is observed after t = 40000.

The merging process is enhanced in the deformed interfaces due to the drifting of the

fingers caused by the inclination of the interface, as it is shown in Appendix B. This leads to a

stronger coalescence process in the case of larger deformations.

In the cases with deformed upper interface A = 300 and A = 600, we see that the onset

of new fingers at initial times decays, as the amplitude of the deformation increases. The

evolution proceeds in a qualitative way close to the behavior of domains with flat interface

after t = 40000, with the new ones merging the sole plume that survives directly below the

lower point of the deformation. The configuration with A = 900 shows the onset of a single

large finger just below the lower point of the deformation and two smaller ones that contribute
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to the thickening of largest one. Only one finger develops at the lower point of the domain

with the larger amplitude among the cases we addressed (A = 1200).

This is consistent with the inhibition of growth of perturbations observed in the case

of large interface inclinations, as seen in Appendix B. In fact for A = 1200 fingers develop

only at the extreme of the interface, which are the regions with smaller inclination, and the

formation of fingers is suppressed on the inclined regions.

Figure 76(a) to Figure 80(a) show the average longitudinal < c(x, t ) > at times t = 5000,

10000, 25000, 40000, 55000, 70000, and 85000, associated to the results presented in Figure

71 to Figure 75 for deformed interfaces with amplitudes A = 0,300, 600, 900 and 1200. These

profiles show the time evolution of horizontal distribution of the concentration, were we can

observe the onset, fusion and collapse of fingers.

Figure 76(b) to Figure 80(b) show the average transverse < c(y, t ) > at times t = 5000,

10000, 25000, 40000, 55000, 70000 and 85000, associated to the results presented in Figure 71

to Figure 75 for the cases of flat and deformed interfaces. The profiles give us a picture of the

concentration along the vertical direction. In the diffusive regime we recover the analytical

solution of this phase of the evolution, and the total amount of dissolved CO2 in a layer located

at a distance y , in the convective regime.
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Figure 76: (a) Average concentration longitudinal profile, < c(x, t ) >; (b) average concentra-
tion transverse profile, < c(y, t ) >, both for with flat interface (A = 0).



102

0 1,000 2,000 3,000 4,000
0

0.05

0.1

0.15

0.2

0.25

x

<
c(
x
,t
)
>

1

0 2,000 4,000 6,000 8,000 10,000 12,000

0

0.2

0.4

0.6

0.8

1

y

<
c(
y
,t
)
>

1

(a) (b)

Figure 77: (a) Average concentration longitudinal profile, < c(x, t ) >; (b) average concentra-
tion transverse profile, < c(y, t ) >, both for deformed interface with A = 300.
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Figure 78: (a) Average concentration longitudinal profile, < c(x, t ) >; (b) average concentra-
tion transverse profile, < c(y, t ) >, both for deformed interface with A = 600.



103

0 1,000 2,000 3,000 4,000
0

0.1

0.2

0.3

0.4

x

<
c(
x
,t
)
>

1

0 2,000 4,000 6,000 8,000 10,000 12,000

0

0.2

0.4

0.6

0.8

1

y

<
c(
y
,t
)
>

1

(a) (b)

Figure 79: (a) Average concentration longitudinal profile, < c(x, t ) >; (b) average concentra-
tion transverse profile, < c(y, t ) >, both for deformed interface with A = 900.
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Figure 80: (a) Average concentration longitudinal profile, < c(x, t ) >; (b) average concentra-
tion transverse profile, < c(y, t ) >, both for deformed interface with A = 1200.

Figure 81 shows the mixing length for one flat and four deformed interfaces. Each

curve presents the average mixing length of nine runs, made with different initial conditions.

From this figure we conclude that larger interface deformations accelerate dissolution. This

figure includes a zoom of the region close to the origin of the axis where we can see that the

interface with larger deformation amplitude accelerates dissolution (Figure 82 to Figure 84

better explain the effect).
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Figure 81: Mixing length as a function of time for plane surface and four values of the
deformed interface. Each curve presents the average mixing length of nine runs, made with
different initial conditions.

Figure 82 to Figure 84 show the beginning of the evolution in the diffusive regime (Fig-

ure 82(a)) to convective regime (Figure 83(a) and Figure 84(a)). Mixing lengths are evaluated at

the x coordinate where the interface elevation is minimum and maximum, and concentration

attains the value c = 0.01. The result is shown in Figure 82(b) to Figure 84(b). Clearly, the

interface deformation enhances the convective process. Regarding the deformation, we can

see an accumulation of the flow in the minimum point of deformation. Figure 83(b) and

Figure 84(b) show that the mixing length tends to the analytic solution (Ldiffusive curve) at the

minimum point (Lymin ), moves away from the analytic curve after time t = 500 and is higher

than mixing length (L) of simulation. In contrast to the flat interface, Figure 82(b), the regime

is totally diffusive up to time t = 3300, while at the maximum point of deformation the mixing

length is smaller than the analytic mixing length, namely, is smaller than the diffusive one.
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(a) Time evolution frames. (b) Mixing length.

Figure 82: (a) Diffusive layer panel in the case with flat interface, from t = 0 to t = 3300 with
∆t = 300. (b) Mixing length as a function of time.
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(a) Time evolution frames. (b) Mixing length.

Figure 83: (a) Diffusive layer panel in the case with deformed upper interface A = 600, from
t = 0 to t = 3300 with ∆t = 300. (b) Mixing length as a function of time.



106

0 500 1,000 1,500 2,000 2,500 3,000
0

100

200

300

400

500

600

700

time (t)

M
ix
in
g
le
n
g
th

Ldiffusive

L(A=0)

Lymax

Lymin

0 500 1,000 1,500 2,000 2,500 3,000
0

100

200

300

400

500

600

700

time (t)

M
ix
in
g
le
n
g
th

Ldiffusive

L(A=0)

Lymax

Lymin

1

(a) (b)

Figure 84: (a) Diffusive layer panel in the case with deformed upper interface A = 1200, from
t = 0 to t = 3300 with ∆t = 300. (b) Mixing length as a function of time.

Figure 85 presents a plot of the amount of dissolved CO2, as described in Chapter 3.5.

The plots show that systems with deformed interface always present larger amounts of dis-

solved CO2, up to t = 10,000. However, deformed interfaces become progressively less effi-

cient for larger times. For example, only interfaces with deformations up to A = 600 present

amounts of dissolution larger than flat ones, for t < 50,000.
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Figure 85: Area of the averaged transverse profile as a function of time for flat and four
deformed interfaces. This area represents the total amount of dissolved CO2. Each curve
presents the average of nine runs, made with different initial conditions.

The evolution dynamics can be evaluated by following the existing number of fingers.
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Figure 71 to Figure 75 show that the interface deformation affects the amount of existing

fingers. Figure 86 presents the system evolution for five amplitudes of deformation. Figure

86 presents the time evolution of the average number of fingers (< n >). Initially, the flat

interface presents the largest < n > up to t = 40000. After this time, the average number of

fingers closely follows the average number developed in systems with deformed interface,

with A = 300 and A = 600. For configurations with larger amplitudes, we observe that < n >
decreases and tends to a constant value, as shown in the cases A = 900 and A = 1200, where

< n > tends to 3 and 1, respectively. Particularly, in the case where A = 1200, the number of

fingers is defined by the high forcing represented by the large deformation.
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Figure 86: Averaged number of fingers as function of time for configurations with different
interface deformations.

Figure 87 shows the relationship between amplitude of deformation and number of

fingers at t0 = 4400, where the convective regime already dominates. Though built with data

extracted from an initial time of the evolution, this figure already captures the tendency of the

system to develop structures with less fingers, as the amplitude of the interface increases, as

identified in Figure 86.
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Figure 87: Relationship between average number of fingers and amplitude of deformation,
at time t0 = 4400. Each curve presents the average of nine runs, made with different initial
conditions.

Figure 88 shows the sensitivity of the system evolution to changes in the initial con-

dition. This figure presents nine space-time maps of the evolution for flat interface (A = 0)

and four deformed interfaces (A = 300, A = 600, A = 900 and A = 1200). The space-time

charts were evaluated at a distance ∆y ′ sufficiently small from the interface to capture the

onset of the structure before interaction between fingers reduce the number of them. The

maps present the solute concentration along the x direction, at a prescribed distance of the

interface (∆y ′ = 120), as a function of time. Each map corresponds to a simulation run starting

from a different initial condition, as identified in Figure 88.

Figure 88(a) shows that flat interfaces do not favor the onset of fingers in any particular

point, what leads to more homogeneous distributions of fingers at early moments of the

evolution. In these simulations we observe that fingers do not interact until the approximately

same elapsed time, and start merging beyond this time. The large number of new fingers

formed at the interface merge, but the system evolves to a structure with several ones, even

for long times.

The case with A = 600 (Figure 88(c)) shows that a main finger first appears at the lowest

point of the interface. Subsequently, new fingers appear in the neighbourhood of the lowest

point of the interface. The new fingers merge with the main finger. The number of fingers

surviving for long times is not so large as in the flat interface configuration, but, nevertheless,
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more than one finger survives, as shown, for instance in runs # 3 and 7.

Figure 86 shows that larger interface deformations induce the onset of structures with

a single finger. Figure 88(e) confirms the fact, and also shows that fingers initially formed

along the interface rapidly merge with the main one.
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Figure 88: Space-time maps of the evolution for flat interface (A = 0) and for four deformed interfaces
(A = 300, A = 600, A = 900 and A = 1200). The charts present the solute concentration along the
x direction, at a prescribed distance of the interface (∆y ′ = 120), as a function of time. Each map
corresponds to a simulation run starting from a different initial condition.
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The dissolution flux, defined as the rate at which solute dissolves through of the upper

boundary, provides an additional insight about the effect of the interface deformation on the

amount of solute dissolved in the brine. Figure 89 shows the average flux along time, for the

flat and deformed interfaces considered. This figure confirms the result given in Figure 85,

where we can see that less deformed interfaces lead to larger amounts of solute captured by

the brine.
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Figure 89: Time evolution of the average flux of CO2 across the flat and deformed interface
cases. Each curve presents the average of nine runs, made with different initial conditions.
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CONCLUSIONS AND FUTURE WORKS

This work addresses a transient, two dimensional numerical study of the dissolution of

carbon dioxide in the porous media found in saline aquifers. Dissolution of CO2 in the brine

leads to a gravitational instability, with denser layers at the upper part of the aquifer, inducing

a convective mixing and the development of a structure of fingers. The system dynamics

is assumed to obey Darcy’s law, along with the Boussinesq approximation, to account for

buoyancy effects introduced by concentration dependent densities.

A sinusoidal deformed interface between CO2 and brine was assumed, with one wave-

length along the domain length. This wavelength is much larger than the one of the fingers

structure that emerges at the early moments of the evolution in the case of flat interfaces. Four

different levels of deformation were assumed in our simulations. The results were compared

with simulations performed in domains with flat interface.

We target the influence of the interface curvature on the rate of dissolution of CO2,

and on the total amount of gas dissolved in the brine, in a prescribed time interval. The same

time interval was adopted in all simulations, and this time was selected as the one at which a

first finger reaches the domain bottom, in simulations with flat interface.

Our results show that the interface deformation induces the onset of a structure where

the number of fingers decreases as the interface deformation increases. Fingers initially

formed at interfaces with larger deformation rapidly merge with the surviving ones, accel-

erating the dissolution process at the beginning. At later times, the velocity of propagation

of the finger tips is increased in case of deformed interface, as can be seen by the increase

in the measure of the mixing lenght. However, since the number of fingers decreases with

larger interface deformations, the total amount of gas dissolved in the brine decreases in

these cases. For short times, the flux is generally reduced by the interfaces undulation but, for

longer times, the difference in flux reduces for large interface deformations.

The velocity field is modeled by a vorticity-stream function formulation. The resulting

equations are solved through the finite element method, with the material derivative of the

concentration numerically represented by a Crank-Nicolson scheme.
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Future works

For future works, we propose:

- Optimization and parallelization of the numerical code in C language.

- Investigate effects of the surface deformation and of the size of the periodic domain on

the emerging structure of fingers.

- Address the problem of fingering in systems with deformable interfaces.

- Coupling the flow with reaction and dissolution of other chemical species.
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APPENDIX A - ANALYTICAL SOLUTIONS

We defined the mixing length and the area under the curve of the transverse concen-

tration profile in Sec. 3.5 of Chapter 3. In purely diffusive regimes, i.e., in absence of any flow

in vertical direction, an analytical solution exists. For the mixing length we have:

< c(y, t ) >= 1−erf(z),

where z = y

2
p

t
.

The transverse average concentration profile can be approximate by:

< c(y, t ) >= e−z2

z
p
π

,

for z >> 1.

Let y1 be such that < c(y1, t ) >= cε. We choose cε = 0.01. Thus,

cε = e−z2
1

z1
p
π

,

then

z1 = 1.849 = y1

2
p

t
,

so, we arrive to:

y1 = 3.698
p

t .

For y0 = 0 we have < c(y0, t ) >= 1. The solution of mixing length in the diffusive regime

is given by:

L = y0 − y1 = 3.698
p

t .

The area S(t) under the curve of the transverse profile along the time is defined in
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Eq.3.24, so we have:

< c(y, t ) >= 1−erf

(
y

2
p

t

)
.

Integrating this equation:

S(t ) =
∫ ∞

0

[
1−erf

(
y

2
p

t

)]
d y,

with z = y

2
p

t
, thus:

S(t ) = 2
p

t
∫ ∞

0
[1−erf(z)d z] ,

so:

S(t ) = 2p
π

p
t .

Therefore, the solution of area in the diffusive regime is given by:

S(t ) = 1.128
p

t .
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APPENDIX B - LINEAR STABILITY AND NONLINEAR SIMULATION ON INCLINED INTER-

FACES

In this appendix we consider the linear stability of perturbations near an inclined inter-

face, due to gravity effects. This problem can be used to explain the behaviour of instability in

regions where the interface is deformed since, as a first approximation when the wavelength

of the deformation is very long compared to the wavelength of the perturbation, the fact that

the interface is deformed can be taken into account by its inclination with respect to the

horizontal.

Posing the problem and governing equations

Similar to the horizontal case, we consider the problem of buoyancy-driven fingering

generated in porous media by the dissolution of a fluid layer initially placed over a less dense

one in which it is partially miscible. The interface is inclined by an angle θ relative to the

vertical direction. The focus is on the lower layer only where the convective dissolution

dynamics takes place.

A linear stability is performed, considering the Boussinesq approximation to account

for buoyancy effects introduced by a concentration dependent density. The viscosity is

assumed as constant. A vorticity-stream function formulation is adopted to solve the hydro-

dynamic field [39], [14].

We consider the incompressible flow in porous media following Darcy’s Law, driven

by density differences associated to the non dimensional concentration of a solute c, in a

domain as shown in Fig. 1. The driving mechanism of the flow is the body force b associated

to gravity and the density of the fluid that, considering the Boussinesq approximation, is

given by b = gc, where g = (−cosθ, sinθ) is the gravity vector (see Figure 90). Hence, the flow

velocity u = (u, v) is given, in non dimensional form, by

u =−∇p +gc.
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Figure 90: Sketch of domain with inclined surface,note that only gravity is schematically
inclined.

Considering a two-dimensional flow, the vorticity ω=∇×u, in general has nonzero

component

ωz = ∂v

∂x
− ∂u

∂y
= cosθ

∂c

∂x
− sinθ

∂c

∂y
.

The nondimensional equations describing the dynamics in the flow field governing

the evolution of the concentration field close to an inclined surface are:

∇2ψ = −cosθ
∂c

∂x
+ sinθ

∂c

∂y
(6.1)

Dc

Dt
= ∇2c, (6.2)

where ψ is the stream function (u = (u, v) = (∂ψ/∂y,−∂ψ/∂x)) and c is the concentration

field. Equation 6.1 is the vorticity transport equation with Darcy’s Law and Eq. 6.2 is the

concentration transport equation.

Boundary conditions are analogous to the case of the flat and horizontal interface.

Base State

The base state of the problem is the time dependent solution of Eq. 6.2 of the concen-

tration field, considering that the base state velocity has no component in the y direction, and
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that the base profile is not a function of x, therefore canceling the advection nonlinear terms:

c̄(y, t ) = 1−erf

(
y

2
p

t

)
. (6.3)

Analogously, the x velocity component is given by:

ū(y, t ) = sinθ

(
1−erf

(
y

2
p

t

))
. (6.4)

Hence

ū(y, t ) = sinθ c̄(y, t ). (6.5)

Linear Stability Analysis (LSA) of the Base State

The LSA consists in adding perturbations to the base state solution characterized by

the concentration profile (6.3) and

 c

ψ

=
 c̄(y, t )

ψ̄(y, t )

+

 c̃(y)
i

k
ψ̃(y)

exp(σt + i kx), (6.6)

where i 2 = −1, k is the wavenumber of the perturbation and σ is the growth rate. The

linearised evolution equations for the disturbances c̃ and ψ̃ are thus:

ψ̃y y −k2ψ̃ = −cosθk2c̃ − i sinθkc̃y (6.7)

σc̃ + ψ̃c̄y + i ūkc̃ = c̃y y −k2c̃ (6.8)

Boundary conditions for the concentration and stream function perturbations c̃ and

ψ̃ are thus:

y = 0 : c̃ = 0, ψ̃= 0

y →∞ : c̃ → 0, ψ̃→ 0.

Upon defining Dn = d n/d yn , we rewrite Eq. 6.7:

(
D2 −k2)ψ̃=−cosθk2c̃ − i sinθkDc̃, (6.9)
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and inversely:

ψ̃ = −(
D2 −k2)−1 (

cos θk2 + i sinθkD
)

c̃. (6.10)

Likewise, Eq. 6.8 is rewritten as:

(
D2 −k2) c̃ − ψ̃Dc̄ − i ūkc̃ = σc̃ (6.11)

Upon replacing ψ̃ from Eq. 6.10 in Eq. 6.11 and rearranging terms we arrive at an

eigenvalue-eigenfunction equation for the rate of growth σ and associated vertical concentra-

tion profile in the form:

[(
D2 −k2)+Dc̄

(
D2 −k2)−1 (

cosθk2 + i sinθkD
)

c̄ − i kū
]

c̃ =σc̃, (6.12)

or, using Eq. 6.5

[(
D2 −k2)+Dc̄

(
D2 −k2)−1 (

cosθ k2 + i sinθ kD
)− i sinθ kc̄

]
c̃ =σc̃. (6.13)

Equation 6.10 is an eigenvalue-eigenfuntion problem to find pairs (σ, c̃), for each

value of θ, k and a given t , which defines c̄. The most unstable mode correspond to the

eigenfunction with the eigenvalue of greatest real part.

On the basis of Eqs. 6.1- 6.2, a LSA can be performed to obtain dispersion curves giving

the growth rate of the perturbations as a function of the wavenumber.

Figure 91 and Figure 92 show the dispersion curves of normal mode perturbations of

the base state, numerically obtained for several times, in the case of an horizontal interface

(θ = 0) compared to one inclined interface case (θ = π/16). The real part of σ (Fig. Figure

91) shows the growth (σ > 0) or decay (σ < 0) rate of the perturbations. Results for θ = 0

reproduce results found elsewhere. In this case, it can be seen that all perturbations are

damped for t < 55.59. A first perturbation becomes marginally stable with a wavenumber

k = 0.06, at t = 55.59. For the case of the inclined interface, all curves are displaced to the

left and downwards, showing an increase in the stability of the flow, reducing the maximum

growth rate and the maximum amplified wavenumber.
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Figure 91: Dispersion curves (real part) of normal mode perturbations of the base state,
numerically obtained for several times. Solid lines, θ = 0, dashed lines, θ =π/16. For θ = 0, all
perturbations are damped for t < 55.59, and a bifurcation occurs at t = 55.59 when the first
perturbation becomes marginally stable with a wavenumber k = 0.06192.For θ =π/16, all the
curves are slightly displaced to the left and downwards.
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Figure 92: Dispersion curves (imaginary part) of normal mode perturbations of the base
state, numerically obtained for several times. Solid lines, θ = 0, dashed lines, θ = π/16. All
perturbations are stationary for θ = 0. For θ =π/16, the perturbation phase velocity increases
with wavenumber k and with time t .

The dispersion curves for various angles of inclination and t = 252.86 are shown in

Figure 93 and Figure 94. The effect of the inclination can be seen to be to gradually decrease

the maximum amplification, the wavenumber of maximum amplification and the maximum

amplified wavenumber as the inclination angle increases. For θ > 5π/16, perturbations of all

wavenumbers are attenuated. The main effect of the inclination can be seen on the imaginary
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part of the eigenvalue, that gives rise to the drift velocity of the perturbations. In fact, for θ = 0

the eigenvalue is real, and therefore there is no drift velocity. However, as θ departs from zero,

σI and the drift velocity, −σI /k increases.
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Figure 93: Dispersion curves (real part) of normal mode perturbations of the base state,
numerically obtained for several inclination angles θ and t = 252.86.
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Figure 94: Dispersion curves (imaginary part) of normal mode perturbations of the base state,
numerically obtained for several inclination angles θ and t = 252.86. The perturbations are
stationary for θ = 0. For θ > 0, the perturbation phase velocity increases with wavenumber k
and with wavenumber k.

Figure 95 and Figure 96 shows the results for large k. Figure 96 shows that the drift

velocity approaches asymptotically the value 1, when divided by sinθ, with θ associated to

each curve.
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Figure 95: Dispersion curves (real part) of normal mode perturbations of the base state,
numerically obtained for several inclination angles θ and t = 252.86, for large values of k.
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Figure 96: Dispersion curves (imaginary part) of normal mode perturbations of the base
state, numerically obtained for several inclination angles θ and t = 252.86, for large values of
k.

Numerical simulations of the complete non-linear equations show the time evolution

of the fingers for larger times (see Figure 97 to Figure 100). Fingers develop similarly to the

case with θ = 0 however they tend to drift towards the right, as predicted by the LSA.
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Figure 97: Time evolution of the case with θ =π/32, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000.

Figure 98: Time evolution of the case with θ =π/16, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000.

Figure 99: Time evolution of the case with θ = π/8, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000.

Figure 100: Time evolution of the case with θ =π/6, in times: t = 3000, 5000, 10000, 25000,
40000, 55000, 70000, 85000 and 95000.
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The space-time maps Figure 101 and Figure 102 show that drift velocity increases as θ

is increased, and the number of fingers decreases.

Figure 101: Left: space-time map with θ =π/32 and right: space-time map with θ =π/16.

Figure 102: Left: space-time map with θ =π/8 and right: space-time map with θ =π/6.
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APPENDIX C - CCIS 2016

This appendix we show the poster presented at 4th Conference of Computational

Interdisciplinary Sciences (CCIS 2016), in this work was presented some results about density

fingering. The 4th edition toke place in November 2016, in the city of São José dos Campos -

SP, Brazil.
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Abstract

We address the problem of buoyancy-driven fingering generated in porous media by the instability of a partially miscible fluid layer dissolving in a less dense fluid existing underneath. The fingering process induces an uneven
distribution of dissolved CO2 in the upper layers, which affects the surface tension distribution at the interface, and unstabilizes the geometry of the flat surface. We assume an undulated interface to model surface tension

effects. The main purpose is to check if the curved surface increases the CO2 dissolution rate and a evaluate an undulation amplitude that maximizes the gas dissolution. A 2D time dependent numerical simulation is performed,
assuming that the flow is governed by Darcy’s law, along with the Boussinesq approximation, to account for buoyancy effects introduced by concentration dependent densities. The velocity field is modeled by a vorticity-stream
function formulation. The resulting equations are solved through the Taylor-Galerkin Finite Element Method, using a Crank-Nicolson time discretization.
Keywords: Porous Media, CO2 storage, Fingering, Finite Element Method.

1. Introduction

Carbon dioxide (CO2) capture and geological storage is
an enabling technology proposed to mitigate conse-

quences of the continued use of fossil fuels, well into this
century[1]. The main relevance for the geological storage
of CO2 is reducing anthropogenic emissions into the atmo-
sphere. Currently we know that the power and industry sec-
tors combined dominate current global CO2 emissions, ac-
counting for about 60% of total CO2 emissions[2][3].
Storage of carbon dioxide into deep saline aquifers has
shown to be highly effective([4], [2], [5], [6], [7], [8]). When
CO2 is injected into the brine, the transport of the dissolved
gas can occur by diffusion, advection, and convection, de-
pending on the stage of sequestration process and geo-
physical properties of aquifer[9], [10]. The dissolution pro-
cess results in a density gradient pointing upwards, that
triggers a buoyancy-driven instability which, in turn, leads
to a convective motion of the aquifer, and to the onset of a
structure of fingers [11]. The present work leads to a better
evaluation of the carbon dioxide dissolution rate in the brine
and in a classification of the associated phenomena related
to the development of a structure of fingers.
The onset of the fingering structure induces an uneven dis-
tribution of dissolved CO2 in the upper layers of the aquifer,
which affects the surface tension distribution at the inter-
face, and unstabilizes the geometry of the flat surface. The
emerging deformed interface affects the fingering process,
and may enhance CO2 sequestration. Nevertheless, most
of the existing studies consider a flat interface, neglecting
deformations resulting of the nonuniform distribution of the
surface tension. The present study addresses the effect of
the curvature of the CO2/brine interface on the onset and
development of a structure of fingers, and how is the rate
of gas dissolution affected by the enhanced aquifer motion
induced by the interface curvature. The main motivation is
to check if the curved surface increases the dissolution rate
and evaluate an undulation amplitude that maximizes CO2
dissolution.
A 2D time dependent numerical simulation is performed,
assuming that the flow is governed by Darcy’s law, along
with the Boussinesq approximation, to account for buoy-
ancy effects introduced by concentration dependent den-
sities. The velocity field is modeled by a vorticity-stream
function formulation. The resulting equations are solved
through the Taylor-Galerkin Finite Element Method, using
a Crank-Nicolson time discretization.

2. Governing Equations

The equations describing the dynamics in the flow field
are:

∇2ψ =
∂c

∂x
(1)

Dc

Dt
= ∇2c, (2)

where: ψ is the stream function (u = (∂ψ/∂y,−∂ψ/∂x)) and
c is the concentration field. Equation 1 is the vorticity trans-
port equation with Darcy’s Law and Eq. 2 is the concentra-
tion transport equation.
Boundary conditions for the velocity field are prescribed as
slip, i.e., zero normal component (v) of velocity at the up-
per, and lower walls and periodic at the sidewalls. For the
dimensionless concentration field, we prescribe boundary
conditions no flux at the lower wall, periodic boundary con-
ditions at the sidewalls and at the top we set a constant
value equal to 1.

3. Numerical results

Numerical integration of the governing equations (Eqs. 1
and 2) were performed over a domain Lx = 4000,

Ly = 12000 + A, where A is the amplitude of the interface
deformation.

A numerical mesh containing nel = 2 (nx − 1)
(
ny − 1

)
=

3, 840, 000 triangular elements was adopted, with nx = 801
and ny = 2401, where nx and ny are, respectively, the num-
ber of points along the x and y directions. The time step
adopted to advance time was ∆t = 2.5. The same time
interval was adopted in all simulations, and this time was
selected as the one at which a first finger reaches the do-
main bottom, in simulations with flat interface. Simulations
were performed in domains with flat and four deformed in-
terfaces, A = 0, 300, 600, 900 and 1200. Each curve, in Fig-
ures 2, 3, 4 and 5, presents the average of nine runs, made
with different initial conditions.

Figure 1: An overview of the simulations, with three differ-
ent maximum heights A (A = 0, 600, 1200, respectively), of
the deformed gas/brine interface. Each line presents an
evolution of the fingering structure, the associated space-
time chart evaluated at a distance ∆y = 120 of the flat inter-
face and the dissolution flux at the interface.
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Figure 2: Mixing length as a function of time for plane sur-
face and four values of the deformed interface.
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Figure 3: Area of the averaged transverse profile as a func-
tion of time for flat and four deformed interfaces. This area
represents the total amount of dissolved CO2.
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Figure 4: Time evolution of the average flux of CO2 across
the flat and deformed interface cases.
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Figure 5: Averaged number of fingers as function of time
for configurations with different interface deformations.

4. Conclusions

Our results show that the interface deformation induces
the onset of a structure where the number of fingers

decreases as the interface deformation increases. Fingers
initially formed at interfaces with larger deformation rapidly
merge with the surviving ones, accelerating the dissolution
process at the beginning. However, since the number of fin-
gers decreases with larger interface deformations, the total
amount of gas dissolved in the brine decreases in these
cases.
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Abstract

We address the problem of buoyancy-driven fingering generated in
porous media by the instability of a partially miscible fluid layer dis-
solving in another denser fluid placed below it. A 2D time dependent
numerical simulation is performed, assuming that the flow is governed
by Darcy’s law, along with the Boussinesq approximation to account
for buoyancy effects introduced by concentration dependent densities.
The velocity field is modeled by a vorticity-stream function formu-
lation. The resulting equations are solved through the finite element
method, with the material derivative of the concentrations numerically
represented by a Semi-Lagrangian Scheme.

Keywords: fingering, instability, finite element method.

1. FINITE ELEMENT METHOD

Fingering refers to hydrodynamic instabilities of deforming interfaces into
fingers during the displacement of fluids in porous media. These instabilities
are closely linked to changes in viscosity or density between the different
layers or within a single phase containing a solute invariable concentration
that affects the fluid density or viscosity[1].

Fingering occurs in a variety of applications, including CO2 sequestration
techniques, secondary and tertiary crude oil recovery, fixed bed regeneration
chemical processing, hydrology, filtration, liquid chromatography, and medi-
cal applications, among others. In fact, the phenomena are expected to occur

1E-mail Corresponding Author: rachel.lucena@uerj.br



in different fields of science and technology, in which flows in porous media
are present.

We consider the problem of buoyancy-driven fingering generated in porous
media by the dissolution of a fluid layer initially placed over a less dense one
in which it is partially miscible. The focus is on the lower layer only where
the convective dissolution dynamics takes place.

A 2D time dependent numerical simulation is performed, assuming that
the flow is governed by Darcy’s law, along with the Boussinesq approximation
to account for buoyancy effects introduced by a concentration dependent
density. The viscosity is assumed as constant. A vorticity-stream function
formulation is adopted to solve the hydrodynamic field [2, 3]. The resulting
equations are solved through the finite element method, with the material
derivative of the concentrations numerically represented by a semi-lagrangian
scheme[4].

Boundary conditions for the velocity field are prescribed as no slip at the
upper and lower walls and periodic at the sidewalls. For the dimensionless
concentration field, we prescribe as boundary conditions no flux at the lower
wall, periodic boundary conditions at the sidewalls and at the top we set
a constant value equal to 1. The upper boundary is assumed as flat and
horizontal. The onset of fingering is induced by the numerical grid.

Darcy’s law and the advective-diffusion equation of the transport of the
relevant chemical species are solved in the weak form (also called variational
form). The variational form of the governing equations are obtained by prop-
erly weighting the equations with weighting functions. The global system,
with discrete representation of the derivatives and written in matrix form
reads:

Kψ + Mω = 0

Mω = RDxc (1)

(M + ∆tK) cn+1 −Mcnd = 0.

where Eq. 1 are the stream function, vorticity equation (Darcy’s Law) and
concentration transport equation, respectively, K is the stiffness matrix, M
is the mass matrix, Dx is the gradient matrix, cd is the concentration at the
departure points of the lagrangian trajectories.

The system of equations is solved in two steps. In the first one we obtain
the stream function and vorticity. Velocity components are then obtained
and introduced in the transport equation of c, which is subsequently solved.



An incomplete LU pre-conditioner is applied to the matrices and the linear
systems are then solved with the use of GMRES (Generalized Minimal Resid-
ual) solver. Preconditioned conjugate gradients methods were also used to
obtain the velocity field from the stream function solutions.

2. NUMERICAL RESULTS

Figure 1(a) shows average concentration profiles c for different times,
where the dashed curves refer to the analytical solution related to the numer-
ical profile shown by the continuous curve of the same color. We can observe
that for t = 4000 a sharp distortion due to the perturbation growth, can be
observed in the nonlinear evolution regime of c (see Fig. 1(e)). Fig. 1(b) shows
the amplitude of perturbation modes of concentration and stream function
obtained from the solution of the governing equations using Fourier analysis,
at t = 3000.

(a) Average concentration profile (b) ψ and c for different modes

(c) Mode n = 3 (d) t = 3000 (e) t = 4000 (f) Forced

Figure 1 - Numerical results.



3. CONCLUSIONS

Solutions obtained up to now are in accordance with those found in the
literature [5]. The evolution strongly depends on the initial condition. We are
currently investigating the nonlinear evolution of instabilities developed with
either a flat upper surface or forced by a deformed upper surface (Figs. 1(e)
and 1(f)).
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