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ABSTRACT

ISSA, M.V.S On the Accuracy and Efficiency of Cross-Entropy Method
for Structural Optimization. 2019. 94 f. Master’s Thesis (Master in Mechanical
Engineering) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio
de Janeiro, 2019.

This dissertation has the objective to evaluate the Cross-entropy method (CE) in
structural optimization. Trusses made of tubular structures are used as benchmark tests
and it is sought to minimize its mass considering some criteria of structural integrity. The
optimal values found by the CE are compared with other results obtained by Sequen-
tial quadratic programming (SQP) and Genetic algorithm (GA). Numerical experiments
demonstrate that the CE offers a solution for structural optimization in terms of accu-
racy and efficiency. This dissertation has four structural models where the optimization
methods are used considering constraints like yield stress, buckling, natural frequencies,
and maximum displacement. For each model, a finite element analysis (FEA) is done
to verify the structural integrity criteria which is then used for an optimization problem
evaluating the constraints, considering the values found by the three optimization proce-
dures (SQP, GA, CE). In some cases, the optimal values found by the CE are close to
those found by the SQP, being SQP a first-order method and CE a zero-order method.
The SQP, using the gradient (first-order) in its computational process, is more efficient
(better results) and faster than the CE, considering convex problems. When comparing
CE with another zero-order method, GA, it is noted that in most cases the CE is faster
and has better results than the GA, making the CE quite interesting for application in
structural optimization.

Keywords: structural optimization; nonlinear optimization; cross entropy method;

optimization experiments.



RESUMO

ISSA, M.V.S Sobre a Precisão e a Eficiência do Método de Entropia Cruzada para
Otimização Estrutural. 2019. 94 f. Tese de Mestrado (Mestre em Engenharia Mecânica)
– Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro,
Brasil, 2019.

Esta dissertação tem como objetivo avaliar o método de entropia cruzada (CE)
em otimização estrutural. Treliças compostas por estruturas tubulares são utilizadas
como testes de referência e busca-se minimizar a massa em conformidade com os critérios
de integridade estrutural. Os valores ótimos encontrados pelo CE são comparados com
outros resultados obtidos por programação quadrática sequencial (SQP) e algoritmo ge-
nético (GA). Experimentos numéricos demonstram que o CE oferece uma solução para
otimização estrutural em termos de precisão e eficiência. São considerados nessa disserta-
ção quatro modelos estruturais onde os métodos de otimização são usados considerando
restrições como tensão de escoamento, flambagem, freqüências naturais e deslocamento
máximo. Em cada modelo estudado, uma análise de elementos finitos (FEA) é feita para
verificar os critérios de integridade estrutural e isto faz parte do problema de otimiza-
ção, sendo feita quando avalia as restrições, considerando os valores encontrados pelos
três métodos de otimização (SQP, GA, CE). Em alguns casos, os valores ótimos encon-
trados pelo CE são próximos daqueles encontrados pelo SQP, sendo o SQP um método
de primeira ordem e o CE é um método de ordem zero. O SQP, utilizando o gradiente
(primeira ordem) em seu processo computacional, é mais eficiente (melhores resultados) e
mais rápido que o CE, considerando problemas convexos. Ao comparar o CE com outro
método de ordem zero, o GA, observa-se que na maioria dos casos, o CE é mais rápido e
tem melhores resultados que o GA, tornando o CE bastante interessante para aplicação
em otimizaçõ estrutural.

Palavras-chave: otimização estrutural; otimização não linear; entropia cruzada;

experimentos em otimização.
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INTRODUCTION

In this chapter, a general introduction for this dissertation is presented. It includes

a motivation for the addressed research problem, the underlying scientific and technolog-

ical challenges, the objectives of the work and the manuscript outline.

Optimization in engineering

Projects, constructions, and maintenance require engineers and managers to man-

age decisions at various stages. Optimization methods are tools used in several phases in

the decisions management. (RAO, 2009).

This need for optimization in engineering is evident in the design of a new product

and also in the modification of the design of an existing product. Performing this task

is not simple, mainly due to the many options that the designer has at his disposal

(VENKATARAMAN, 2002).

The approach traditionally adopted in various industry sectors employs a trial and

error methodology. This procedure chooses new settings based primarily on the profes-

sional experience. However, the choice of a new design is often not obvious, because it

works with conflicting objectives, such as reducing mass and increasing durability simulta-

neously. Thus, satisfactory but not optimal products or processes are generally obtained

(YANG, 2010).

In order to develop better and cheaper products, professionals are committed to

the optimization methodology since it employs a scientic method of faster searching ca-

pabilities. This methodology uses a mathematical optimization algorithm as an element

to select new designs iteratively in search of optimum configuration (SHUKLA; TIWARI,

2005).

To begin applying engineering optimization techniques, it is necessary to define

some basic objects: objective functions, design variables and constraints. Design variables

are the parameters free to modify, for example, geometric variables (thickness, width,

radii of curvature, etc), operating variables (input speed, load, temperature, etc) and

other quantities such as materials, trajectories, etc. The objective functions define the

goals of the project, that are, to minimize or maximize variables such as efficiency, costs,

stresses, load loss, friction, thermal exchange, etc. These functions are the driving forces

of optimization. Finally, constraints are the requirements that must be met by the new

designs. They can be requirements coming from standards, feasibility or manufacturing

(MUSKULUS; SCHAFHIRT, 2014).

As an example of the optimization success, consider the BMW Team competition
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car in the Interlagos race during the GT3 Championship. In order to reduce the lap

time (objective function), several car setup parameters have been modified: angle of the

aerofoil, configuration of the shock absorbers, wheels, among others. In total, 600 different

simulations were run in just one day, obtaining in the end a reduction of 1.38 seconds per

lap. A significant improvement for this competition (HORCAIO, 2013).

Figure 1 - BMW Z24 components that were project variables for optimization.

Source: (HORCAIO, 2013)

Within the oil and gas industry, an article (CUNHA Jr; SOIZE; SAMPAIO, 2015)

and a thesis (CUNHA Jr, 2015) show the search for a optimal configuration for the

operating parameters (weight on bit and column rotation) of an oil well drilling column,

aiming to maximize the advance speed of the column in the soil, reduce the production

time of the well and to reduce resource costs in the operation. A schematic of horizontal

drilling is presented in Figure 2.

Figure 2 - Schematic of horizontal drilling

Source: (CUNHA Jr; SOIZE; SAMPAIO, 2015)

Still in the context of the oil and gas industry, Petrobras used optimization to

perform the initial design of the P-55 platform, which is the largest semi-submersible

platform built in Brazil and already is in operation. The objective was to find the dimen-

sions of the hull of the platform that minimizes the vertical movement and comply with

various design constraints, such as movement, construction, and assembly (OLIVEIRA,

2008). The nature of the problem and the constraints have greatly reduced the number of
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viable configurations, so it was necessary to use a robust optimization algorithm capable

of finding the viable regions. The studies included hydrodynamic, stability and fatigue

analysis. A schematic of P-55 platform is presented Figure 3.

Figure 3 - Best platform shape and dimensions of the P-55 platform.

Source: (OLIVEIRA, 2008)

Structural optimization

Structural optimization (CHRISTENSEN; KLARBRING, 2009) seeks a better per-

formance of the structure, which means that it meets the mechanical demands that the

structural component is expected to provide using less material, reducing mass and con-

sequently reducing the weight. It consists in minimizing the weight while still meeting the

criteria of structural integrity. Due to complex geometric and the use of advanced mate-

rials, which have extremely nonlinear behavior, this can be very challenging (SAITOU et

al., 2005; ZAVALA et al., 2014).

Structural optimization has been applied to the development of industrial problems

for several years, with several types of materials. There are three types of optimization

structural problems: sizing, shape, and topology (CHRISTENSEN; KLARBRING, 2009;

GHASEMI; DIZANGIAN, 2010; SOUZA et al., 2016).
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Figure 4 - Illustration of the three types of structural optimization.
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Sizing optimization changes the size, such as cross-sections and other internal di-

mensions of structural components. The performance of structures can be improved by

optimal cross-sections. This may result in improved structural stiffness while decreas-

ing structural weight. For this reason, it is very common in the aircraft industry in the

components of the airplanes (CAVAGNA S. RICCI, 2011; GRIHON, 2017).

Shape optimization achieves the ideal shape modifying the predetermined bound-

aries. For a truss, the design variables change the node positions. This type of optimiza-

tion can be used to improve impact resistance or the welding process (EBY et al., 2002;

BOGOMOLNY; BENDSOE; HATTEL, 2009).

Topology optimization is frequently applied in structural optimization. All defini-

tions are based on a model analysis. The final result is the optimal material distribution.

One can cite as an example the topological optimization of a structure to improve the

passage of air or simply to improve flow efficiency (DEATON; GRANDHI, 2014). There

are examples too in the automotive industry (CAVAZZUTI et al., 2010) and other ar-

eas (TALISCHI et al., 2010; VATANABE et al., 2016; CHUN; SONG; PAULINO, 2019;

SANDERS; AGUILÓ; PAULINO, 2018; CUELLAR et al., 2018; THEDIN et al., 2018).
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Scientific and technological challenges

Optimization is intrinsically tied in achieving the highest overall performance,

whether one is an athlete, artist, engineer, economist (DANILO; GIRALDO, 2017) or

computer scientist (CHAOVALITWONGSE et al., 2017). Normally, computer analysis is

used to evaluate the quality of projects, with computational codes for calculation. Finite

element analysis (FEA), for example, is performed to calculate displacements, stresses,

vibration frequencies and other quantities of a structure. In a more general setting, com-

putational tools and sometimes experiments are constructed to judge the quality of the

proposed designs (VANDERPLAATS, 2006; ZAVALA et al., 2014).

If not satisfactory, the design is modified and analyses are repeated to improve the

product attending the design requirements. This approach of analysis and revision involves

changing variables. One can change many of design parameters simultaneously to improve

the design while verifying if all design constraints are met. The numerical optimization

does this. However, one of the difficulties is adapting the numerical methods for each

problem, which sometimes may become costly and prohibitive. (HAFTKA; GRANDHI,

1986; VANDERPLAATS, 2006).

The development of equipment, product or structure must have a good balance

between cost, time and quality. As the complexity of developed products increase, the

list of relevant resources become extensive and the deadlines for completing projects get

shortened. In the face of these challenges, the numerical methods present themselves as

a useful tool.

Due to the discontinuities and geometric complexity of some structural models,

derivative or gradient based methods may not possible to be used. Metaheuristics methods

are important in structural optimization because, usually, they too do not need the gradi-

ent of the objective function in the optimization problem. In addition, new metaheuristics

methods are emerging (LAGAROS; PAPADRAKAKIS; KOKOSSALAKIS, 2002; OF-

TADEH; MAHJOOB; SHARIATPANAHI, 2010; MIGUEL; MIGUEL, 2012; LIANG;

JUAREZ, 2015) and they are efficient algorithms which made it possible to find the

optimum solutions of engineering problems (LEE; GEEM, 2005).

However, in some cases metaheuristic techniques bring great computational cost,

which may be prohibitive. Despite the successful applications of metaheuristics in finding

optimal solutions to structural design problems, there are examples where metaheuristic

optimization methods are criticized on the basis of having no mathematical background.

Moreover, in two articles (WEYLAND, 2010; SORENSEN, 2013) some of the metaheuris-

tics are not new being imitation of other metaheuristics. In one article, it is even suggested

that researchers should be cautioned to conduct research on metaheuristics (SAKA; HA-

SANCEBI; GEEM, 2016). It is a great challenge to develop computationally efficient

metaheuristics.
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The great technological and scientific challenge is to develop increasingly efficient,

effective and robust computational methods to solve increasingly complex problems, sur-

passing the previously mentioned problems, such as discontinuities and geometric com-

plexity. Advanced and well-developed computational methods are a requirement to solve

different types of problems, because only some methods, as metaheuristics for example,

may solve some problems with a certain amount of efficiency and effectiveness. The solu-

tion of complicated optimization problems where classical numerical methods (gradient-

based) are not applicable is a common necessity, and the main alternatives in this case

are the metaheuristics, which are computationally more expensive.

Problem definition and objectives

In the context defined in the previous section of this dissertation, the objective

is the development of a new framework to deal with the structural optimization prob-

lem that employs the Cross-entropy Method (CE) (RUBINSTEIN, 1999; RUBINSTEIN,

2001; BOER et al., 2005; KROESE et al., 2013), a Monte Carlo technique (KROESE;

TAIMRE; BOTEV, 2011; RUBINSTEIN; KROESE, 2017) developed for the simulation of

rare events and frequently used in combinatorial optimization. To the best of the author’s

knowledge, there is only one work where this optimization method is used in structural

optimization (GHIDEY, 2015).

The specific objectives of this dissertation are to present a theoretical formulation

where CE is used as a numerical tool, showcasing implementation of this method in

a computational library and to evaluate the new methodology regarding accuracy and

computational efficiency when compared with other classical methods.

Dissertation contributions

This dissertation is focused on proposing a new computational framework for struc-

tural optimization based on the Cross-entropy method, a relatively new metaheuristic that

is successfully used in the simulation of rare events and combinatorial optimization. In

this context, the work presents as contributions: (i) the development of the mathemat-

ical formalism necessary to state the problem of structural optimization, as well as the

analysis of the new numerical procedure; (ii) the implementation of the new numerical

method in a computational code written in Matlab language; (iii) a detailed analysis on

the accuracy and efficiency of this new framework.
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Manuscript organization

This manuscript is divided in four chapters. Chapter 1 presents a review of the

scientific literature addressing structural optimization challenges and optimization tech-

niques employed in this area. Chapter 2 presents the solid mechanics concepts used by

structural optimization. Chapter 3 introduces mathematical formulation of a general op-

timization problem and discusses about numerical techniques of optimization methods

that are applied in this dissertation. Numerical experiments are presented in chapter 4,

as well as a proper discussion.
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1 LITERATURE REVIEW

This chapter presents a literature review related with structural optimization prob-

lems, optimization methods and an introduction to metaheuristic methods employed in

this scenario.

1.1 Structural optimization

The concept of optimization is tied to natural phenomena. Sir George Cayley

(1773-1857) measured the shape of a trout and noted, without mathematical proof, that

the trout has the form ideal to minimize flow resistance. Theodore von Karman observed

that this is precisely the shape of a lowdrag airfoil. Oliver Wendell Holmes (1809-1894), in

his classic verse, ”The Deacon’s Masterpiece or The Wonderful OneHoss Shay,” recorded

man’s desire to produce a uniformly strong, durable product. Perhaps the first structural

optimization was done by Maxwell in 1869, and then by Michel in 1904 on a more famous

work. These works supplied theoretical lower bounds on the weight of trusses and offer

considerable insight into the structural optimization problem (VANDERPLAATS, 1982).

Since then, the improvement of techniques for structural optimization has been con-

stantly sought, and currently greater computational resources are at disposal for scientific

and technological advance. There is a continuous development of new methods, especially

metaheuristics. One is always looking for the development of structural optimization

methods by the shape (HSU, 1994; AKBARI; SADOUGHI, 2013), size (BEKDAS S.

M. NIGDELI, 2015) and topology (CHUN; SONG; PAULINO, 2019). A work of Sanders

(SANDERS; AGUILÓ; PAULINO, 2018) stands out, which uses a topological structural

optimization with multimaterials that demonstrate the amount of variables that may be

worked with.

In the mechanical engineering department of the Unversidade do Estado do Rio

de Janeiro there are recent dissertations dealing with structural optimization. Two more

recent works can be mentioned: the dissertation of Lopes (LOPES, 2017) and Mendonça

(MENDONÇA, 2017). Another related dissertation dealing with structural optimization

is the work of Yilmaz (YILMAZ, 2014), which regards structural optimization of offshore

wind turbine towers. Other relevant dissertations can be found in (ZHANG, 2014; SILVA,

2016; BRUNO, 2017; ROCHA, 2017).
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1.2 Generalities on optimization theory

The discrete optimization problem has unknown variables of a finite set. Discrete

optimization problems can contain not only integer or binary variables, but also abstract

variable such as permutations. On the other hand, the viable set for continuous opti-

mization problems is usually uncountable. Continuous optimization problems are usually

easier to solve because it is possible to use objective functions and constraints at a given

point and get information about the behavior of the function at all points close to the

desired value (RAJEEV; KRISHNAMOORTHY, 1992; NOCEDAL; WRIGHT, 2006).

Continuous optimization techniques have an important role in solving discrete op-

timization problems. For example, the branch-and-bound method (MOHAMED et al.,

2007; RASTI-BARZOKI; HEJAZI; MAZDEH, 2013) for integer linear programming prob-

lems request the repeated solution. These subproblems are frequently solved by the Sim-

plex method (MAROS, 2013; NOCEDAL; WRIGHT, 2006).

Optimization problems can be classified according with the number of variables,

functions smoothness (differentiable or nondifferentiable), objective function, constraints

(linear, nonlinear, convex, not convex) and other characteristics (RAO, 2009).

Unconstrained optimization problems arise in many practical applications. It may

be safe to disregard some restrictions because they do not affect the solution and do not

interfere with the algorithms, even for some problems with natural constraints. Uncon-

strained problems also come from reformulated constrained optimization problems where

the constraints are substituted by penalization terms added to objective function. This

remove the constraints violations (NOCEDAL; WRIGHT, 2006; BONNANS et al., 2009;

RAO, 2009).

Constrained optimization problems come from models in which the constraints

limit the resolution of optimization problems. If objective function and constraints are

linear functions, the optimization problem will be a linear programming problem. Linear

programming problems are the most widely formulated and solved of all optimization

problems, for example, in management, financial, and economic applications. Nonlinear

programming problems, where at least some of the constraint or the objective function are

nonlinear, are natural in the physical sciences, engineering, management and economic

sciences (NOCEDAL; WRIGHT, 2006; BONNANS et al., 2009; RAO, 2009).

The global solution is needed in some applications, but in many problems it is dif-

ficult to find. Sometimes one does not find the global solution. For convex programming

and linear problems, the local solution is the global solution. Nonlinear problems, uncon-

strained and constrained, may have a local solution, not global (NOCEDAL; WRIGHT,

2006).

A “good algorithm” for numerical optimization must have these characteristics:

� Robustness. Should have the same performance in several types of problems of
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the same group, independent of the value chosen for the starting point.

� Efficiency. Should not require too much time and computational storage

� Accuracy. Should find solutions precisely, not being sensitive to data errors and

arithmetic rounding.

These characteristics are conflicting. Robust methods may also be slow. A fast

convergence method for a unconstrained nonlinear problem may need too much computer

storage. Trade-offs between convergence rate and storage, between robustness and speed,

so on, are central points in numerical optimization (NOCEDAL; WRIGHT, 2006). The

choice of one of these optimization methods depends on the type of design variables and

the time available for optimization.

1.3 Gradient-based methods

A gradient-based method is a numerical tool to find the local minimum of a func-

tion using the search directions defined by the gradient (maximum decline). Methods

which require the gradient with respect to all parameters to be computed are called first-

order methods (BONNANS et al., 2009). Some types of gradient-based optimization

methods are Steepest Descent, BGFS algorithm, DFP formula and Sequential quadratic

programming.

1.3.1 Steepest descent

Steepest descent is a gradient-based optimization method. Optimization methods,

which use the gradient vector to define the search direction for each iteration, are known

first-order methods because they use first-order partial derivatives of a function. The

simplest and most famous of these methods is the steepest descent, proposed by Cauchy

in 1847 (YUAN, 2006; SNYMAN; WILKE, 2018).

1.3.2 BFGS algorithm

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is a method for uncon-

strained nonlinear optimization problems. BFGS is a quasi-Newton method. The quasi-

Newton method is an alternative to Newton’s method that seek a point of a objective

function twice differentiable. Newton’s method and BFGS methods are not ensured to

converge, unless the objective function has a quadratic Taylor expansion close an optimum

point. BFGS has a good performance for non-smooth optimizations (BROYDEN, 1970;
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FLETCHER, 1970; GOLDFARB, 1970; SHANNO, 1970).

1.3.3 DFP formula

Davidon–Fletcher–Powell formula (DFP; William Davidon, Roger Fletcher, and

Michael Powell) finds the solution of the secant equation that is nearest to the solu-

tion estimated and satisfies the curvature condition. DFP was the first quasi-Newton

method that generalized the secant method to multidimensional problems. DFP keeps

the symmetry and positive definiteness in the Hessian matrix. A Hessian matrix is a

quadratic matrix with second-order partial derivatives. It represents the function cur-

vature. Hessian matrices are used commonly in problems that do not use Newtonian

methods (DAVIDON, 1991; AL-BAALI; FLETCHER, 1986; FLETCHER; MAZA, 1989;

NOCEDAL; WRIGHT, 2006; BONNANS et al., 2009; FLOUDAS; PARDALOS, 2009).

1.3.4 Sequential quadratic programming

The Sequential Quadratic Programming (SQP) algorithm is a form of Newton’s

method to solve problems adapted to computation. SQP is one of the most used techniques

for nonlinear constrained optimization generating steps by solving quadratic subproblems.

This SQP approach may be used both in line search and trust-region frameworks (BOGGS;

TOLLE, 2000; NOCEDAL; WRIGHT, 2006; BONNANS et al., 2009).

1.4 Metaheuristic methods

Metaheuristic methods are used to solve generic optimization problems, generally

applied to problems for which no efficient algorithm is known. They are general algorith-

mic structures adaptable to various optimizations, using a combination of random choices

and historical knowledge of old results acquired by the method to guide their searches

in neighborhoods within the research space, which avoids premature stops. Methods

which use only the criterion value at some positions and do not rely on derivatives are

called zero-order methods (or derivative-free) (BONNANS et al., 2009). There are several

types of metaheuristics and classifications, as shown in Figure 5. In the classification of

metaheuristics, there are those inspired by nature and populations. Within these, one has

evolutionary algorithms like Genetic Programming, Differential Evolution, Particle Swarm

Optimization, Estimation of Distribution Algorithm and Simulated Annealing. The ones

inspired by trajectories are GRASP (Greedy Randomized Adaptive Search Procedure),
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Variable Neighborhood Search, among others. Other classifications can be seen in Figure

5. New metaheuristic methods are constantly being created to solve specific problems,

and thus new classifications arise.

Figure 5 - Schematic classification of several types of metaheuristics methods.

Source: https://en.wikipedia.org/wiki/Metaheuristic

1.4.1 Genetic Algorithm

Genetic Algorithms (GA) are based on the biological concept of evolution in the

algorithmic recipes. As GA is part of many intelligent systems, it is also frequently

considered in the areas of computational intelligence and artificial intelligence (KRAMER,

2017).

The Figure 6 shows the continuous cycle of artificial evolution that is inspired by

natural evolution. The evolutionary process begins with randomly or manual solutions.
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Figure 6 - Schematic representation of Genetic Algorithm cycle.
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In according wtih Goldberg (GOLDBERG, 1989), these algorithms combine the

fitting with randomized information exchange to form new algorithms. In each generation,

a new group of artificial creatures (strings) are created using parts of the fittest ones

between the old, while the new part is tested for good measure.

GA operates on string populations, with the string encoded to represent some

underlying set of parameters. Reproduction, cross-over and mutation apply successive

copies of ex-strings and strings. However, despite its simplicity, the resulting research

performance is broad. GA performs an innovative exchange of concepts between strings

and thus connects to our own research or discovery ideas.

Four steps separate GA from more conventional optimization techniques:

1. Direct manipulation of a coding,

2. Search from a population,

3. Search via sampling,

4. Search using stochastic operators.

1.4.2 Particle swarm optimization

Particle Swarm Optimization (PSO) is inspired in social and cooperative behavior

exhibited by various species such as birds and fishes. It was created by Russell Eberhart

and James Kennedy in 1995 (KENNEDY; EBERHART, 1995). Originally, the two began

developing software simulations inspired in birds flocking around foods. PSO may be

applied in structural optimization (PEREZ; BEHDINAN, 2007) and even in photovoltaic

solar system (KHARE; RANGNEKAR, 2013).
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1.4.3 Simulated annealing

Simulated Annealing is a metaheuristic optimization method consisting in a prob-

abilistic local search technique. It is an iterative stochastic search method that has inspi-

ration in the annealing of the physical metallurgy, that involves a heating and a controlled

cooling of a material, reducing the defects and increasing mechanical strength and hard-

ness (HADDOCK; MITTHENTAL, 1992). As an example, simulated annealing can be

applied in deep learning (RERE; FANANY; ARYMURTHY, 2015), solution of an inverse

radiative transfer problem (SILVA NETO; SOEIRO, 2006) and structural optimization

(LEITE; TOPPING, 1999).

1.5 Cross-entropy method

The CE has its origins in an adaptive algorithm for rare-event simulation, based on

variance minimization, that uses Kullback–Leibler divergence as a measure of proximity

between two sampling distributions (BOTEV et al., 2013). It was proposed first time

by Rubinstein (RUBINSTEIN, 1997). The CE is modified to an algorithm for rare-

event estimation and combinatorial optimization where the original variance minimization

program is replaced by a similar CE minimization program.

The CE is a Monte Carlo technique for estimation and optimization problems.

Monte Carlo techniques are used for computational generation of random objects (KROESE

et al., 2014). This method can be used for two types of problems: estimation and opti-

mization (BOTEV et al., 2013). The CE was applied to the estimation of probability of

rare events in dynamic models (RUBISTEIN; KROESE, 2004).

The CE has already been applied in combinatorial optimization and estimation

of rare events. Application areas include DNA sequence alignment, telecommunication

system queuing models, neural computing, control and navigation, signal processing, pro-

gramming, project management, and reliability systems (KROESE; POROTSKY; RU-

BINSTEIN, 2006).

The CE also is connected to the fields of neural computing and was also successfully

applied in vector grouping and quantization. It can be considered that the CE is a

stochastic algorithm with two iterative phases: generation of random samples and update

of the random parameters, as parameters of probability density function (RUBINSTEIN;

KROESE, 2017).

The CE concept defines a precise mathematical framework that provides fast and

“good” update / learning rules (BOER et al., 2005; KROESE; POROTSKY; RUBIN-

STEIN, 2006; RUBINSTEIN; KROESE, 2017).
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2 OPTIMIZATION IN SOLID MECHANICS

In this chapter, the balance equations from continuum mechanics as well as suitable

boundary conditions are presented to construct a physical-mathematical model for the

structural problem of interest. A generic formulation is made to propose a framework for

application in general, although this dissertation only analyzes trusses. The criteria for

structural integrity and the calculation of the mass of the structure are also introduced

in this dissertation.

2.1 Balance equations from continuum mechanics

Consider the generic body of Figure 7, which deforms according to a linear elas-

tic regime of small displacements and deformations, subject to forces and displacements

prescribed in parts of the boundary.

Figure 7 - Illustration of a generic elastic body subject to prescribed forces and displacements.
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Let σ be the tensor stress, u the displacement field, ε the tensor strain and C the

4th order elasticity tensor, for this elastic solid. The boundary value problem of linear

elasticity is defined by the following equations



32

∇ · σ(u) = 0 , (1)

σ(u) = σ(u)T , (2)

ε(u) =
1

2

(
∇u + ∇uT

)
, (3)

σ(u) = C : ε(u) , (4)

with the following boundary conditions

σ(u) · n = t in ΓN , (5)

u = uD in ΓD , (6)

where the Eq.(1) represents the balance of linear momentum, Eq.(2) is from the balance

of angular momentum, Eq.(3) is a linear kinematic relationship between strain tensor and

displacement field, and Eq.(4) represents a linear constitutive relationship between stress

and strain tensors.. In the boundary conditions, ΓD is the partition of ∂B on which the

displacements are prescribed, ΓN is the complementary partition of ∂B on which forces

t are prescribed such that ΓD ∪ ΓN = B and ΓD ∩ ΓN = ∅. This constitutive model

is for small deformations of the linear elastic material and is the general Hooke Law

(HJELMSTAD, 2005; SLAUGHTER, 2002).

2.2 Discretization of balance equations

After multiplying the Eq.(1) by a weight function w and integrating in all body

volume B, one has the integral equation∫
B

(
∇ · σ(u)

)
·w dV = 0 , (7)

where dV is a volume element of body B. Using integration by parts,∫
B

(
∇ · σ(u)

)
·w dV =

∫
∂B

(
σ(u) · n

)
·w dS −

∫
B

σ(u) : ∇w dV , (8)

where dS is an area element in the surface B. Thus, recalling that σ(u) · n = t in ΓN ,∫
ΓN

t ·w dS −
∫
B

σ(u) : ∇w dV = 0 , (9)
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and considering the Eq.(3), the Eq.(4) and ∇w = ∇wT , the weak formulation of an

elastic solid is expressed as∫
B

ε(u) : C : ε(w) dV =

∫
ΓN

t ·w dS . (10)

To discretize, the Galerkin method is used. The unknown and virtual fields (ZOHDI,

2018) are

u(x) = uD(x) +
N∑
i=1

UiΦ
i(x) , (11)

w(x) =
N∑
j=1

UjΦ
j(x) . (12)

In this way, one obtains the expression

N∑
j=1

[∫
B

ε(uD) : C : ε(Φj) dV

]
�
�Uj +

N∑
j=1

N∑
i=1

[∫
B

ε(Φi) : C : ε(Φj) dV

]
Ui�

�Uj

=
N∑
j=1

[∫
ΓN

t · ΦjdS

]
�
�Uj ,

N∑
i=1

N∑
j=1

[∫
B

ε(Φi) : C : ε(Φj) dV

]
︸ ︷︷ ︸

[K]

Ui︸︷︷︸
U

=
N∑
j=1

[∫
ΓN

t · ΦjdS −
∫
B

ε(uD) : C : ε(Φj) dV

]
︸ ︷︷ ︸

Fr

,

[K]U = Fr , (13)

being [K] stiffness matrix, U displacement vector and Fr force vector.

2.3 Criteria for structural integrity

This section presents the criteria for structural integrity that are used as structural

optimization constraints.
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2.3.1 The von Mises yield criterion

The stress state (stress vector), associated to direction n is calculated through

the matrix vector by product between the stress tensor and n, i.e., in matrix form,

(SPENCER, 2004; IRGENS, 2008)
t
(n)
x

t
(n)
y

t
(n)
z

 =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



nx

ny

nz

 , (14)

or, in a simpler notation

t(n) = [σ] · n . (15)

In a state of stress at one point, the principal planes are those planes where the shear

stress (tangential component) is zero. To determine the planes defined by the normal

vectors n, such that the stress vectors are acting only on them, consider

t(n) = λ n . (16)

Substituting in Eq.(15),

[σ] · n = λ n , (17)

[σ] · n− λ [I] n = 0 , (18)(
[σ]− λ[I]

)
· n = 0 , (19)

being [I] the identity matrix. Therefore, the determination of the principal planes is

reduced to the solution of an eigenvalue problem, where the eigenvector of the stress

tensor defines the planes (principal directions) and the eigenvalues of the stress tensor, λ,

are the principal stress. In possession of the principal stresses σ1, σ2 and σ3, the criteria

of structural integrity can be evaluated.

Consider a point at a state of triaxial stress. The deformation begins when the

quadratic mean of the differences between the states of principal stresses is equal to that

verified from the beginning of the deformation (JONES, 2009). Being SY the yield stress,

the von Mises stress can be calculated by the expression

σVM =

√
1

2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
, (20)

and according to von Mises criterion, the material behaves elastically when

σVM ≤ SY . (21)
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2.3.2 Buckling

For bars, buckling is a phenomenon that occurs in slender structural parts (the

cross-sectional area is small in relation to its length) when an axial compression effort is

present. It happens when the structural part undergoes transverse bending when submit-

ted to an axial compression (σ < 0), causing a stability loss. The critical buckling load is

also known as the Euler load critical (JONES, 2009). Considering each structural element

as a bar hinged at the ends, the following formula defines the stress referring to buckling:

σE =
π2 E I

L2 A
, (22)

where E is Young’s modulus, I is moment of inertia, L is the length and A is the cross

area. Let σc be the compression stress (σ < 0) and σt be the tensile stress (σ > 0). Under

von Mises criterion (equivalent stress), to avoid buckling,

σc ≤ σE . (23)

The general criterion of structural integrity, for bars that are subjected to compressive

stresses, takes into account yield and buckling, considering the system as safe if

σc ≤ min (σE , SY ) . (24)

2.4 Structural optimization

The objective of the structural optimization problem treated in this dissertation is

the reduction of the mass while respecting the criteria of structural integrity. The density,

denoted by ρ is a scalar field that represents a local ratio between mass and volume

(IRGENS, 2008). The mass of an elastic body B, in the generic form, is given by,

m(x) =

∫
B

ρ(x) dV (25)

The objective function of the structural optimization problem is the minimization of the

Eq.(25), i.e., mass minimization.

The constraints of the structural optimization problem, which are in Eq.(24), are

evaluated using the balance equations: solving a system of partial differential equations

with the Eq.(1), Eq.(2), Eq.(3) and Eq.(4), under boundary conditions Eq.(5) and Eq.(6).

After calculating the Von Mises criterion and buckling, one has the constraints.
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2.5 Finite element analysis

In order to gain some insight into the truss behavior, a finite element analysis (FEA)

is done before the structural optimization process. The structural models analyzed in this

dissertation are trusses. The equilibrium equations are obtained from the principle of

virtual work, being written as the following matrix system shown in section 3.2,

[K] U = Fr , (26)

where [K] is the stiffness matrix, U is the displacement vector and Fr is force vector,

which are respectively defined by

U =
[
u1 v1 u2 v2 u3 v3 u4 v4 · · · · · · un vn

]T
, (27)

and

Fr =
[
fr1 fr2 fr3 fr4 fr5 fr6 fr7 fr8 fr9 · · · · · · frD

]T
. (28)

The number of nodes is n and D is number of degrees of freedom. The stiffness matrix

[K] is obtained by the expression

[K] =
N∑
e=1

[Ke] , (29)

where N is the number of elements and [Ke] is the elementary stiffness matrix. In global

coordinates the elementary stiffness matrix of the bar e is given by

[Ke] =
AeE

Le


cos2 θe cos θe sin θe − cos2 θe − cos θe sin θe

cos θe sin θe sin2 θe − cos θe sin θe − sin2 θe

− cos2 θe − cos θe sin θe cos2 θe cos θe sin θe

− cos θe sin θe − sin2 θe cos θe sin θe sin2 θe

 , (30)

where Ae is the cross-sectional area, E is the material modulus of elasticity, Le is the

element length and θe is the angle formed between the bar longitudinal axis and the

horizontal axis of the reference system (x axis) (FERREIRA, 2009).
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The local mass matrix of the finite elements for the linear 2D truss element can be

calculated as

[Me] =
ρAeLe

6


2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

 . (31)

The mass matrix [M] is obtained by expression

[M] =
N∑
e=1

[Me] . (32)

where [Me] is the elementary mass matrix in global coordinates.

The natural frequencies of a structural model are obtained by the following eigen-

value problem,

[K]φ = ω2[M]φ , (33)

being ω2 the eigenvalue and φ the eigenvector, where ω is the value of the natural fre-

quency. This work uses the Matlab function “eig” to obtain these values. The natural

frequencies obtained by Eq.(33) are in rad/s. To obtain the natural frequencies in Hz,

simply divide the values of ω by 2π.

There is a standardization in the mathematical formulation as of the second model

where the mass, stress, and constraints are calculated in the same way in these structural

models. The total mass of the two-dimensional truss is

m =
N∑
e=1

me =
N∑
e=1

ρLeAe . (34)

The normal stress at the bar e is obtained by expression

σe = EBe Ue , (35)

where

Be =
1

Le

[
− cos θe − sin θe cos θe sin θe

]
, (36)

being Be the deformation matrix and Ue the displacement in bar e.

The four structural integrity criteria employed in this dissertation are defined by

following their respective structural properties, respectively: yield stress, buckling, natural
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frequencies, and displacements.

The integrity criterion related to yield stress can be written as

|σe|
Sy
− 1 ≤ 0, e = 1, · · · , N . (37)

The buckling criterion is considered only when the stress is compressive, i.e., σe < 0.

A buckling constraint is defined by

− σe
σEe
− 1 ≤ 0, e = 1, · · · , N . (38)

Considering a structural optimization problem having as constraints three natural

frequencies, w∗1, w∗2 and w∗3, one has the expression for the constraints related to natural

frequencies,

1− ω1

w∗1
≤ 0 , (39)

1− ω2

w∗2
≤ 0 , (40)

1− ω3

w∗3
≤ 0 . (41)

Defining a maximum displacement dpmax for the nodes of the structural model and

considering this a constraint for a structural optimization problem, the constraints related

to maximum displacement are obtained by the expression,

dpn
dpmax

− 1 ≤ 0 , (42)

remembering that n is the node number. The dpn is the displacement in each node n, and

with the values of the U ,

dpn =
√
u2
n + v2

n . (43)

The structural optimization problem considered here aims to minimize the struc-

ture mass, Eq.(34), using di and t as design variables, considering as constraints the

inequalities in Eq.(37), and a limited set of values for d and t, i.e.,

dimin ≤ di ≤ dimax and tmin ≤ t ≤ tmax. (44)

In the cases which present variation of the cross-section areas and of height (shape opti-

mization),

Aemin ≤ Ae ≤ Aemax and Hmin ≤ H ≤ Hmax . (45)
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3 NUMERICAL METHODS

In this chapter, aiming to simplify the presentation of numerical methods for opti-

mization, a generic formulation of an optimization problem is made, followed by addressing

specifically three optimization methods, SQP, GA and CE. From the generic formulation,

the three methods are addressed, following the same nomenclature of the generic formu-

lation. At the end of the chapter, a simple objective function is used for comparison

between the three methods.

3.1 Generic formulation of an optimization problem

Let Rn be the n-dimensional Euclidean space, x the vector with the problem vari-

ables, J the objective function, pi and qi problem constraints; where J : Rn → R,

pi : Rn → R and qj : Rn → R. An abstract (generic) optimization problem can be

formulated as follows,

Find x ∈ Rn that maximize,

J (x) ,

subject to the restrictions

pi(x) = 0 i = 1, 2, . . . ,M ,

qj(x) ≤ 0 j = 1, 2, . . . , N .

(46)

In an optimization problem, one defines a “range” to find the optimal value of the

variable. Therefore, one defines xmin and xmax, where xmin ≤ x ≤ xmax. This inequality

is valid for each component of vector x. In structural optimization the main objective is

the reduction of the mass while respecting the structural criteria. For this reason, there

is a minimization in the generic formulation. In the structural integrity criteria, one has

values that are the constraints of the structural optimization, and in the cases addressed

only the restriction qj ≤ 0 is used.
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The generic formulation of an optimization problem can be presented more ele-

gantly as,

Find x? = arg max
x∈Aadm

J (x) ,

where

Aadm = {x ∈ Rn , pi(x) = 0 , i = 1, 2, . . . ,M and

qj(x) ≤ 0 , j = 1, 2, . . . , N} .

(47)

If the optimization problem is minimization instead of maximization, consider a

“dual relation” and add a negative sign in J ,

minJ (x) = max(−J (x)) . (48)

3.2 Sequential quadratic programming

Sequential quadratic programming (SQP) transforms the constrained optimization

problem into an unconstrained problem and constructs a sequence of approximations,

approximating the objective function for a quadratic function and the constraints for

linear functions, via Lagrange multipliers (BONNANS et al., 2009). For optimization

problems of minimization, the Lagrangian is,

L(x,λp,λq) = J (x)− λTp pi(x)− λTq qj(x) , (49)

where λp and λq are vectors of Lagrange multipliers. Considering an iteration xk, the

SQP starts a search direction d as a solution to the subproblem with the approximations,

L(x,λp,λq) ≈ L(xk,λkp,λ
k
q) +∇L(xk,λkp,λ

k
q) d+

1

2
dTHij[L(x,λp,λq)] d , (50)

pi(x) ≈ p(xk) +∇p(xk) d , (51)

qj(x) ≈ q(xk) +∇q(xk) d , (52)

where

d = x− xk , (53)

Hij =
∂2

∂xki ∂x
k
j

. (54)

where H is a differential operator. Hij[L(x,λp,λq)] is a Hessian.
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For optimization problems of minimization, SQP constructs a sequence of approx-

imations for x?, denoted xk+1 = dk + xk where each iteration solves subproblems of the

form:

Find d ∈ Rn such that

min∇L(xk,λkp,λ
k
q)
T d+ 1

2
dTBkd ,

where Bk = HijL(xk,λkp,λ
k
q) ,

such that

pi(x
k) +∇pi(xk)T d = 0 , i = 1, 2, . . . ,M ,

qi(x
k) +∇qj(xk)T d ≤ 0 , j = 1, 2, . . . , N .

(55)

The SQP is a first-order method when the gradient of the objective function and

of the constraints is provided. When the Hessian is also provided, SQP is a second-order

method. If the Hessian is not provided, an approximation is found by the BFGS method,

cited in section 1.3.2.

3.3 Genetic algorithm

Genetic algorithm (GA) is an optimization method based on the biological concept

of natural evolution. The GA maintains a population of solutions, which can be called

individuals, and modifies these groups using different operators until achieving the desired

improvement. The GA is formed by three specific steps: selection, crossover and mutation.

This algorithm originates from the work of Holland and his collaborators (HOL-

LAND, 1992) and has a philosophical basis in Darwin’s theory of the survival of those

that are most adapted to the environment (DARWIN, 2009). In a way analogous to the

natural process where a population of a given species adapts to its natural habitat, a

population of projects (candidates for solving the optimization problem) is then created,

allowing it to adapt to the project space.

In the natural process, by analogy, genetic information is stored in chains of chromosomes

that are altered through generations for adaptation of the environment. This chromosomal

structure represents generation memory and is altered by the reproduction of individuals.

In addition to reproduction, occasional mutations of genetic information may alter the

constitution of the chromosomes (SILVA NETO; BECCENERI, 2009).

The more adapted members of the population will be more likely to be selected,

contributing more to the improvement in the constitution of the chromosomes. This

process is facilitated if a fitness function (Jfit) is defined, which will be a measure of how
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good the individual is in relation to the others in a given generation in the process of

evolution. For problems without constraints, Jfit will serve as its own objective function.

For a problem with constraints, the penalty can be used to transform into an unconstrained

problem.

The following objective function is used as an example,

J (x) = e−(x−2)2 + 0.8e−(x+2)2 (56)

In this case, since it regards maximization and because it has no constraints, one can use

Jadap = maxJ (x). Therefore the fitness function is

Jfit = e−(x−2)2 + 0.8e−(x+2)2 (57)

The variable will be converted to its binary equivalent, being mapped to a fixed-

length string of 0 and 1. The numerical precision of each variable (solution) will determine

the length of this string. If we consider a chain of 10 binary digits, the minimum and

maximum values will be

(Xi)min = 0000000000 ,

(Xi)max = 1111111111 .

A linear mapping would convert intermediate values of real numbers and values as follows,

X = X(l) +
X(u) −X(l)

2ϕ − 1
Xbin , (58)

where X(u) is the maximum real value, X(l) is the minimum real value, ϕ is the length of

the binary chain and Xbin is the value corresponding to the current binary, which can be

calculated as

Xbin =

ϕ−1∑
K=0

2kbk (59)

where bk = 0 or 1. Because they have only one variable, a 10-digit string represents the

solution to this problem. If 4 variables were considered, four binary numbers correspond-

ing to each variable are juxtaposed, forming a chain of 40 digits of 0 and 1, that is, 10

digits for each variable (SILVA NETO; BECCENERI, 2009).
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3.3.1 Selection

The selection process is biased towards producing better adapted members and

eliminating less well-adapted members. Among several existing ways, the simplest to

select the members of the crossover, is to assign a probability to each member based on

their adaptability function. If $i is the measure of adaptability of the i-th member, this

probability can be associated with this member $i/
∑

Ps$i, where Ps is the population

size a new population of the same previous size is generated, but with a higher average of

adaptability. A widely used idea is to elucidate the individual of the population that is

well adapted (greater value of the adaptability function) directly to the next generation

(SILVA NETO; BECCENERI, 2009).

3.3.2 Crossover

The crossover process allows the characteristics of several projects to be inter-

changeable, creating a more adapted generation. A common type of crossing can be done

by selecting two parents, based on their respective odds of being chosen, randomly choos-

ing one or two points in the (binary) genetic chain and changing the digits 1 and 0 between

the two parents. In the literature, other types of crossing can be found (SILVA NETO;

BECCENERI, 2009).

3.3.3 Mutation

The mutation protects the genetic search for a premature loss of good genetic

material during screening and crossing. The mutation process is simply done by choosing

a few members of the population and, accordingly, a probability of 0 is changed to 1 (and

vice versa) at a randomly chosen point in its binary chains (SILVA NETO; BECCENERI,

2009).

A binary with ϕ digits allows the representation of 2ϕ values of a continuous vari-

able. If the continuous variable has an accuracy Ac, then the number of digits of the

binary string will be estimated,

2ϕ ≥ (X(u) −X(l))

Ac
+ 1 , (60)

where Ac represents the precision of the variables (resolution). When GA deals with

discrete internal variables, Ac = 1, so GA performs well with the entire discrete variables

(SILVA NETO; BECCENERI, 2009).
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3.4 Cross-entropy method

The Cross-entropy method (CE) is a Monte Carlo technique used for estimation

and optimization. In the estimation setting, the CE provides a form of searching for the

sampling of optimal importance. After formulating an optimization problem as an esti-

mation problem, CE becomes a powerful stochastic search method. The method is based

on a simple iterative procedure and in each iteration it contains only two phases: gener-

ating the random data samples (trajectories, vectors, etc.) and updating the parameters

of random mechanisms based on the data, in order to produce a better sample in the next

iteration (KROESE; TAIMRE; BOTEV, 2011).

The CE has its origin in the adaptation of the algorithm to estimate a rare event

based on variance minimization. This procedure was soon modified to an algorithm

adapted for estimation of rare events and combinatorial optimization, where the mini-

mum variation programs were replaced by the CE minimization program (BOTEV et al.,

2013).

To explain how CE works for optimization, it is necessary to explain how it works

for estimation and for rare-event probability estimation. Before starting with estimation,

one needs to have some definitions.

An experiment that is repeated with the same conditions and produces different

results is called a random experiment. A random experiment is described by a triplet, (Ω,

Σ, P), dubbed probability space, where Ω is the sample space (set of all possible events),

Σ is the set of all relevant events and P is the measure of probability (a measure of the

expectation of an event to occur).

A random variable is a mapping X : Ω → R defined on the probability space (Ω,

Σ, P) for which the preimage of every real number under X is a relevant event.

Let F be the probability distribution of X, also known as cumulative distribution

function (CDF), defined as the probability of elementary event {X ≤ x}, i.e.,

F (x) = P{X ≤ x} . (61)

If the function F is differentiable,

f(x) = dF (x)/dx , (62)

f is called the probability density function (PDF) of X, and one has

F (x) =

∫ x

−∞
f(ξ)dξ . (63)
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The expectation of a random variable X is

E{X} =

∫
R
x dF (x) . (64)

The mean value of a random variable X is defined as

µ = E{X} ,

=

∫
R
x dF (x) ,

=

∫
R
x f(x) dx . (65)

The variance of a random variable X is defined as

s2 = E{(X − µ)2} ,

=

∫
R
(x− µ)2 dF (x) ,

=

∫
R
(x− µ)2 f(x) dx . (66)

The variance can also be written as

s2 = E{X2} − µ2 . (67)

Let x = (x1, x2, . . . , xn) ∈ Rn, where x is a vector with problem variables, then

a random vector X = (X1, X2, . . . , Xn) is a collection of n random variables that may

be considered a (measurable) mapping X : Ω → Rn, where a collection of event in Ω is

mapped into a region on the n-dimensional Euclidean space Rn under such mapping.

3.4.1 Importance sampling estimator

Considering Ef the expectation using the PDF designated by f , define ` as

` = Ef{J (X)} =

∫
Rn

J (x) f(x) dx , (68)

where J is the objective function, and f is the PDF of the continuous random vector X.

Let g be other PDF in which g(x) = 0 implies that J (X) f(X) = 0 for all x (KROESE;

TAIMRE; BOTEV, 2011; RUBINSTEIN; KROESE, 2017). So one can rewrite,

` =

∫
Rn

J (x)
f(x)

g(x)
g(x) dx = Eg

{
J (X)

f(X)

g(X)

}
. (69)
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If X1,X2, . . . ,XN are independently and identically distributed (iid) in g,

ˆ̀=
1

N

N∑
K=1

J (Xk)
f(Xk)

g(Xk)
, (70)

is an unbiased importance sampling estimator of `.

3.4.2 Kullback-Leibler divergence

An alternative approach to the minimum variation method used in CE to choose an

“optimal” sample distribution is based on the Kullback-Leibler divergence (RUBISTEIN;

KROESE, 2004). This divergence between the two continuous PDFs g and h is given by

D(g, h) = Eg
{

ln
g(X)

h(X)

}
=

∫
Rn

g(x) ln
g(x)

h(x)
dx

=

∫
Rn

g(x) ln g(x) dx−
∫
Rn

g(x) lnh(x) dx . (71)

Since the choice of the importance sampling density is crucially linked to the variance

(V ar) of the estimator ˆ̀, one considers the minimization of the variance of ˆ̀ with respect

to g (RUBINSTEIN; KROESE, 2017),

min
g
V arg

(
J (X)

f(X)

g(X)

)
. (72)

The solution of the problem (72) is (RUBINSTEIN; MELAMED, 1998)

g? =
|J (x)|f(x)∫

Rn |J (x)|f(x) dx
, (73)

where g? is optimal importance sampling density. If J (x) ≥ 0, then

g? =
|J (x)|f(x)

`
. (74)

The idea of CE is to choose a probability density of importance h such that the Kullback-

Leibler divergence between the optimal probability density g? and h is minimal. Let h?

be the solution of the functional optimization problem,

min
h?
D (g?, h) . (75)

The probability density h is parameterized by a finite-dimensional vector u, denoting

f(x) = f(x;u) and h(x) = f(x;v), where v is a reference parameter and the intention
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is to find the optimum of these parameters. One can say that min
h?
D (g?, h) is equal to

max

∫
Rn

g?(x) ln f(x;v) dx , (76)

as

g? =
|J (x)|f(x;u)

`
, (77)

and v is the reference parameter that needs to be found and has terms that do not depend

on it. Minimizing Kullback-Leibler divergence between g? and f(·;v) is equivalent to

maximizing with respect to v,

v? = argmax
v

∫
Rn

J (x)f(x;u) ln f(x;v) dx . (78)

If Eu{J (X)} =
∫
J (x)f(x;u) dx,∫

Rn

J (x)f(x;u)dx =

∫
Rn

J (x)
f(x;u)

f(x;w)
f(x;w) dx

= Ew
{
J (X)

f(x;u)

f(x;w)

}
. (79)

Defining the likelihood ratio W (x;u,w) = f(x;u)/f(x;w), one has

v? = max
v

Ew{J (X)W (x;u,w)} . (80)

Using the Eq.(69) and Eq.(70) and then substituting in Eq.(80),

v? = max
v

1

N

N∑
k=1

J (Xk)W (Xk;u,w) ln f(Xk;v), (81)

where W (Xk;u,w) = f(xk;u)/f(xk;w) is the likelihood ratio.

3.4.3 Rare-event probability estimation

Let J (X) again be denoted as the performance of the sample, where X ∼ f(·;u),

and it is desired to estimate ` = Pu(J (X ≥ γ) = Eu{1{J (X)≥γ}}, for a fixed level γ. Note

that the estimation problem presents a particular case of ` with J (X) = 1{J (X)≥γ}. One

assumes as before that X has a PDF f(·;u) in some family f(·;v). Thus, one has the
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estimator ˆ̀,

ˆ̀=
1

N

N∑
K=1

1{J (Xk)≥γ}
f(Xk;u)

g(Xk)
. (82)

The Figure 8 shows a generalized distribution presenting an estimation of rare event, with

indication of γ.

Figure 8 - Generic distribution with indication γ.

γ

J (X) > γJ (X) < γ

“rare event”

x

y

If J (x) = 1{J (X)≥γ} , so

J (Xk) = 1 , if J (X) ≥ γ ,

J (Xk) = 0 , if J (X) < γ .

As you are considering an rare-event estimation, one has

v? = max
v

1

N

N∑
XkεE

W (Xk;u,v) ln f(Xk;v), (83)

where E are elite samples; Xk are values for which J (Xk) ≥ γ. Normally ` is considered

a rare event in the literature when it is less than 10−4.
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3.4.4 Cross-entropy algorithm for rare-event estimation

In cases where the CE is used in multilevel, where the reference parameters are con-

sidered as v̂ti and the levels as γ̂ti, the algorithm is constructed with the aim of promoting

convergence for v? and γ? (last level). In each iteration ti, one simulates N independent

random variables X1, . . . ,XN of the current density of the estimated importance sam-

ple, f(·; v̂ti−1), and sets γ̂ti to be (1 − %), which is the quantile of performance values

J(X1), . . . ,J(XN ), with γ̂ti = J(Ns−Ne+1), where % is a specified primary parameter called

a rarity parameter. Then one updates the value of v̂ti−1 to v̂ti, where v̂ti is calculated

using the maximization of probability equivalent to the minimization of Kullback-Leibler

divergence based on N e = [%N s] random variables, so that J (Xi) ≥ γ̂ti.

Given the sample size N s and the % parameter, perform the following steps, in

according with (BOTEV et al., 2013),

CE Algorithm for Rare-Event Estimation

1. Define v0 = v. Let N e = [%N s]. Set ti = 1.(iteration counter) ;

2. Generate X1, . . . ,XN ∼ identically distributed (∼ iid). Calculate Ji = J (Xi)

for all i, and order these from smallest to largest: J(1) ≤ . . . ≤ J(N). Let γ̂ti

be the sample (1− %) - quantile of performances; that is,

γ̂ti = J(Ns−Ne+1). If γ̂ti > γ, reset, γ̂ti to γ ;

3. Use the same sample X1, . . . ,XN to solve the stochastic program from Eq.(83) with

w = v̂ti−1. Denote the solution by v̂ti ;

4. If γ̂ti < γ set the counter ti = ti+ 1 and reiterate from Step 2;

otherwise, proceed with Step 5 ;

5. Let T = ti be the final iteration counter. Generate X1, . . . ,XN1 ∼ iid f(·; v̂T )

and estimate ` via importance sampling as in 82, with u = v̂T .

Algorithm reproduced integrally from (BOTEV et al., 2013).

3.4.5 Cross-entropy algorithm for optimization

Let J be a real-valued performance function in Rn. Suppose one wants to find the

maximum of J in the set Rn, and x? corresponds to the achieved maximum. Being the

maximum given by γ∗ (KROESE; TAIMRE; BOTEV, 2011),

J (x∗) = γ∗ = max
x∈Rn

J (x) . (84)

Associating it with the probability estimation problem, ` = P(J (X) ≥ γ), where X has

some PDF f(x;u) in Rn. If γ is a near-unknown choice γ∗, it is typically the probability of
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a rare-event, and the CE approach for estimation can be used to search for the distribution

of importance sampling near the sampling density of theoretical greatest importance,

which concentrates all its mass on the point X∗ (KROESE; TAIMRE; BOTEV, 2011).

Sampling from this distribution produces optimal or close to optimal results. The

main difference with CE for the simulation of a rare-event is that in the optimization

setting the final level, γ = γ∗, is not known in advance. The CE produces, for optimization,

a sequence of levels γ̂ti and reference parameter vti such the level tends to the ideal γ∗

and vti to the ideal v∗, corresponding to the point X∗ (KROESE; TAIMRE; BOTEV,

2011).

Given the sample size N s and the parameter %, in according with (BOTEV et al.,

2013),

CE Algorithm for optimization

1. Choose an initial parameter vector v0. Let N e = [%N s].

Set t = 1.(iteration counter) ;

2. Generate X1, . . . ,XN ∼ iid. Calculate Ji = J (Xi)

for all i, and order these from smallest to largest: J(1) ≤ . . . ≤ J(N). Let γ̂ti

be the sample (1− %) - quantile of performances; that is,

γ̂ti = J(Ns−Ne+1).

3. Use the same sample X1, . . . ,XN to solve the stochastic program

max
v

1

N

N∑
XkεE

ln f(Xk;v)

Denote the solution by v̂ti ;

4. If some stopping criterion is met, stop; otherwise, set ti = ti+ 1, and return to Step 2.

Algorithm reproduced integrally from (BOTEV et al., 2013).

Note that the estimate of step 5 is missing from the algorithm because in the

optimization configuration the estimation of ` does not matter. For the same reason, it

does not have the likelihood ratio W (Xk;u,v) in the problem for the step 3 (BOTEV et

al., 2013).

A smoothing updating rule is used, in which the vector v̂ti is

v̂ti = αv̂ti + (1− α)v̂ti−1 , (85)

where v̂ti is the solution of Eq.(85) and α is the smoothing parameter, which can vary

between 0 and 1 (typically between 0.7 and 1). The smoothing effect is discussed in detail

in the work of (COSTA; JONES; KROESE, 2007). In particular, it is shown that the

appropriate smoothing of the CE that converges and finds a good one is close to 1 (usually
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0.9). When this parameter is large, it generates a convergence for degenerate distribution,

which can happen quickly, which would “freeze” the algorithm in a suboptimal solution.

To avoid this, another form of smoothing is also used (KROESE; TAIMRE; BOTEV,

2011) ,

βti = β − β
(

1− 1

ti

)ϑ
(86)

where ϑ is a small integer (typically between 5 and 10), β is a large smoothing constant

(typically between 0.8 and 0.99) (KROESE; TAIMRE; BOTEV, 2011).

If the problem of optimization has constraints, the constraints are defined by the

inequality (BOTEV et al., 2013),

qi(X) ≤ 0 , i = 1, . . . , K. (87)

Two approaches can be used: acceptance-rejection (RUBISTEIN; KROESE, 2004)

and penalization. In the optimization problems addressed in this dissertation, only pe-

nalization is used. In penalization, the objective function is modified to

J̃ (X) = J (X) +
K∑
i=1

νi max{qi(X), 0} , (88)

where νi < 0 measures the importance (cost) of the ith penalty (BOTEV et al., 2013).

3.5 Example with a simple function

One wants to maximize the objective function, given by

J (x1, x2) = 3(1− x1)2 e−x
2
1−(x2+1)2 − 10

(
x1

5
− x3

1 − x5
2

)
e−x

2
1−x22 − 1

3
e−(x1+1)2−x22 . (89)
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The Figure 9 shows the graph of the function (89), considering the domain −3 ≤
x1 ≤ 3 and −3 ≤ x2 ≤ 3.

Figure 9 - Illustration of objective function with two variables plotted in 3D.

It is possible to note that J (x1, x2) is near of 8, in this specified range for x1

and x2. Table 1 shows the results found by three optimization methods approached in

this chapter, SQP, GA and CE, applied for maximization of this objective function, with

initial point x0 = [−2.8 − 2.8]. For each optimization method, the value of the objective

function J is presented along the variables x1, x2 and the number of evaluations of the

function (Func. Eval.).

Table 1 - Results found by SQP, GA and CE in a simple objective function without constraint.

Method J x1 x2 Func. Eval.

SQP 8.1 0 1.58 33
GA 8.1 0 1.58 1525
CE 8.1 0 1.58 625

In SQP, the objective function gradient is reported and tol = 10−4. The other

parameters values used are default to Matlab. In GA, Ps = 25, pe = 0.1 and tol = 10−4.

The other parameters values used are default to Matlab. For comparative purposes, in

the CE, N s = 25, % = 0.1, tol = 10−4.

The three methods arrive at the same value of the objective function, at the max-

imum point of the function in that interval. The CE needing less function evaluations

(Func. Eval.) than GA.
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The Figure 10 shows the way travelled by the three optimization methods on the

axis x1 and x2.

Figure 10 - Illustration of objective function with two variables plotted in 2D.
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At each iteration, GA generates population and CE generates samples. In Fig-

ure 10, the curves plotted by the GA and CE paths are the values of the population

averages for GA and the average samples for CE, generated in each iteration. The Ta-

ble 2 shows how the CE behaves in each iteration, updating the parameters like the

mean (µ) and standard deviation (s), while converging to the maximum of the objective

function.
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Table 2 - CE values in each iteration in objective function simple.

t J µ1 µ2 s1 s2

1 2.270146794 -0.459488051 -0.008968961 3.355055509 3.249769611
2 2.860637918 0.666141420 0.380440439 1.354542286 1.366441447
3 4.120106677 0.653027829 1.162957566 0.470619301 0.606686539
4 7.008146053 0.292017193 1.435687713 0.205226793 0.315769793
5 7.446003646 0.208695935 1.552400068 0.163201844 0.127856667
6 7.787336640 0.150389597 1.631149240 0.072993344 0.058795721
7 8.026009241 0.087775724 1.599568535 0.044001077 0.027193471
8 8.042151458 0.065650017 1.604063321 0.027625736 0.023088652
9 8.083833389 0.039167002 1.595569159 0.015990682 0.008429217
10 8.096324708 0.018816278 1.594326504 0.010926462 0.005318778
11 8.101883225 0.011828933 1.591081221 0.003974162 0.003303728
12 8.102966154 0.009470405 1.587883017 0.001917568 0.001899837
13 8.103276289 0.008622787 1.586882162 0.001050735 0.001376096
14 8.103513239 0.007690584 1.586595490 0.000714133 0.000765119
15 8.103689691 0.006903584 1.586423788 0.000593667 0.000288602
16 8.103927300 0.006181502 1.586305936 0.000460310 0.000242046
17 8.104050961 0.005799505 1.586206148 0.000242446 0.000224023
18 8.104080980 0.005554602 1.586130823 0.000104673 0.000205486
19 8.104097370 0.005516682 1.586056304 0.000130614 0.000186414
20 8.104156944 0.005428984 1.585846654 0.000093632 0.000173132
21 8.104198108 0.005353612 1.585647122 0.000060946 0.000163367
22 8.104232821 0.005284162 1.585569881 0.000036286 0.000094541

The three optimization methods found the same maximum value. Note that, in

this problem with a simple objective function without constraint, it can be said that

the CE is faster than the GA. In this dissertation, the results obtained in the numerical

experiments will all be discussed and commented in this manner.
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4 NUMERICAL EXPERIMENTS

This chapter presents the numerical results of this dissertation. Four trusses are

presented in this dissertation, where in the first truss the design variables are the internal

diameter di and height H, and in the second truss, di and thickness t. In the third truss,

the design variables are the cross-section area A of each bar and the constraints are, in the

first case, the yield stress and, in the second case, the natural frequencies. In the fourth

truss the design variables are di and t, at two heights (h1 and h2), considering scenarios

with and without buckling stress as constraints by checking the maximum displacement

allowed in the nodes.

4.1 Truss 1 - 2 bars and 3 nodes

The Figure 11 shows the truss 1 with a cross-section representation depicting its

symmetry and normal force N in each element and angle θ.

Figure 11 - Physical model of the Truss 1.
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Considering the structural bars as tubular, the design variables in this case are the

internal diameter di and height H, and a “minimum weight” is sought while the stresses in

the bars are smaller than yield stress Sy and of buckling σE, also respecting the structural
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integrity criteria.

Let ρ be the density, B the base half, P the applied load half, de the external

diameter, t the thickness and E the Young’s modulus, being all these variables with

known values. The objective optimization is weight minimization changing di and H.

Due to the symmetry and simplicity of the Truss 1, the stresses in the bars are equal

(σ1 = σ2 = σ), as well as the critical buckling stress in each bar (σE1 = σE2 = σE), and

mass, stresses, and constraints are found by expressions different from those shown in

section 2.5. The two stresses are compressible and equal. Therefore when considering

the buckling stress as constraints, these two stress are considered. Being m the objective

function, and x the design variables, the optimization problem is defined as

minxm =
∑2

e=1 ρAe(x)Le(x), x = {di, H} ,
where

20mm ≤ di ≤ 50mm ,

500mm ≤ H ≤ 1000mm ,

subject to

σ ≤ SY (yield stress constraint),

σ ≤ σE (buckling constraint).

(90)

The weight m of this model with two bars is given by

m = 2ρV , (91)

where V is the volume of each bar. The volume can be written as V = AL, where A is

the cross-section and L is the bar length, which are obtained by the expressions

A = (d2
e − d2

i )π/4 = [(di + 2t)2 − d2
i ]π/4 = (di t+ t2)π , (92)

L =
√
B2 +H2 . (93)

Thus, mass can be expressed by equation

m = 2ρπ(di t+ t2)
√
B2 +H2 . (94)

The force N , the angle θ and P are related in the expression,

2P = 2N cos θ = 2N B√
B2 +H2

. (95)

The stress σ in the bar depends of force N . So that

σ =
N
A

=
P
√
B2 +H2

Hπ (di t+ t2)
. (96)
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The inertial moment I is obtained by expression

I =
π

64
(d4
e − d4

i ) . (97)

With this, using the Eq.(22), the critical buckling stress for this case is

σE =
π2E((di + 2t)4 − d4

i )

16 (B2 +H2) (4 di t+ 4t2)
. (98)

For nominal conditions, the design variables are assumed as equal to (di, H) =

(50, 1000) mm. The considered yield stress is SY = 250MPa in each bar. The following

values are fixated: P = 25KN , E = 210GPa, B = 1.5m, t = 5mm and ρ = 7900 kg/m3.

The total mass of the truss in this case is m = 24.6 kg. The Table 4.1 has results in

nominal conditions.

Table 3 - Stresses at each bar of the two-dimensional truss with nominal conditions in Truss 1.

di (mm) H (mm) mass (kg) σ (MPa) σE (MPa) SY (MPa)

50 1000 24.6 -52 267 250

No structural integrity criteria are violated at the nominal condition, as can be

noted in Table 4.1. This problem can be solved by finding the solution of the lattice for a

sequence of pairs (di,H) within the established limits until one knows to update the weight

to the minimum. For small problems with few variations, this procedure is possible. The

structural optimization in this case is of size and shape.

For comparison with the CE, other optimization methods are used. One gradient-

based method, the SQP, and a zero-order metaheuristic, the GA.

In the SQP, the Matlab function called fmincon (find minimum of constrained

nonlinear multivariable function) is used. It is a nonlinear programming solver. Using

fmincon of the Matlab, the SQP algorithm is selected.

A parameter analysis is done with the SQP, GA and CE parameters, to identify

how the parameter individually affects the operation of these numerical methods. This

parameter analysis is done in this structural model because it is simpler than the others

explored in this dissertation. It is in the appendix of this dissertation.

The start points for the three methods are the middle points of the optimization

problem range.
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4.1.1 Optimization with yield stress constraint

In the SQP, the objective function gradient and constraints are reported and tol =

10−4. The others parameters values are the default of Matlab.

In general, GA parameters are the number of population, number of generations,

elite count, crossover fraction and mutation beyond the method convergence criteria.

Consider the GA parameters, Ps is the population size, EC is the elite count where EC =

pePs, pe is the percentage of the population size used in the elite count (0 ≤ pe ≤ 1), and

finally the crossover fraction. In this case, GA control parameters are Ps = 25, EC = 4,

cross fraction over is 0.8 (Matlab default) and tol = 10−4. The others parameters values

are the default of Matlab.

The number of samples N s, the elite number of samples N e, tolerance tol and

number of maximum iterations lmax are parameters that need to be defined in the be-

ginning of the CE Algorithm for optimization. In this case, CE control parameters are

N s = 25, N e = 4, tol = 10−4 and lmax = 100. Table 4 shows the results of the three

methods (SQP, GA and CE) for the stresses.

Note that all results respect the constraint σ ≤ SY . They come close to violating

the yield stress, because the optimization methods try to reduce the mass to the maximum

without violating the restrictions. Reducing the mass, increases the stress in the structure.

The SQP and GA arrive at the same value for di, and the σ in GA is most distant of

SY . In the Table 5 one has the results showing the mass and function evaluations (Func.

Eval.).

Table 4 - Stress at each bar with values found by optimization methods, not considering

buckling, for Truss 1.

Method di (mm) H (mm) σ (MPa)

SQP 20.0 395 250
GA 20.0 458 218
CE 20.1 431 231

Table 5 - Comparison between the results obtained with different optimization techniques, not

considering buckling, in Truss 1.

Method mass (kg) di (mm) H (mm) Func. Eval.

SQP 9.6 20.0 395 6
GA 9.7 20.0 458 3925
CE 9.7 20.1 431 325
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Note that the found values are different in the three optimization methods. The

values found by CE are better than GA, and CE is faster than GA, because the CE needs

fewer function evaluations (Func. Eval.). The mass is the same in GA and CE.

The Figure 12 shows the contour plot, demonstrating how the mass and σ are

changing according to the variables di and H, and also showing the solution points that

are in accord with the optimization problem constraints, where the masses is slightly

smaller than m = 10 kg. The Figure 13 shows that in the last iteration all the samples

are concentrated at the same point, very close to the SQP, where this point is the solution

found by the CE.

Figure 12 - Contour plot of mass and σ in function of the di and H of the Truss 1 with the

values found by optimization methods.
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The Figure 13 shows the behavior of the CE samples converging to the solution

according to each iteration. The solution found by SQP is marked with the color magenta.

The number of stop iterations is denoted lstop.



60

Figure 13 - Illustration of CE sampling of the domain at different levels (iterations), not

considering buckling, of the Truss 1. The magenta cross is the SQP reference

solution.(CE control parameters are N s = 25, N e = 4, tol = 10−4, lstop = 13 and

lmax = 100)
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(b) level l = 3
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(c) level l = 5
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(d) level l = 7
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(e) level l = 9
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(f) level l = 13

4.1.2 Optimization with yield stress and buckling limit constraints

Structural optimization considering buckling becomes a stringent test for the nu-

merical methods.

In the SQP, the objective function gradient and constraints are reported with

tol = 10−4. The GA control parameters are Ps = 25, EC = 17 and tol = 10−4. The

others parameters values are the default of Matlab. The CE control parameters are

N s = 50, N e = 15, tol = 10−4 and lmax = 100.

The Table 6 has the results obtained by the optimization methods. Note that all

results respect the constraint σ ≤ σE. The buckling stress changes with changes of the

design variables that are optimized. The CE finds the same mass as the GA, but the

Func. Eval. and CPU Time in the CE is smaller than in GA, as shown in the Table 7.

The Figure 14 shows how the mass, σ and σE are changing according with the

variables di and H, and the points that represent the solutions found by the optimization

methods. It is possible to note that the solution found in the CE is closer than that of

the SQP and more distant than that of the GA, and that the solutions found by the three

optimization methods are on the same line that represents the m = 14 kg.

The Figure 15 shows the behavior of the CE according to the iterations considering

buckling. In the last iteration all the samples are concentrated at the same point, very

close to the SQP, where the mean of this point is the solution found by the CE.
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Table 6 - Stress at each bar with values found by optimization methods considering buckling of

the Truss 1.

Method di (mm) H (mm) σ (MPa) σE (MPa)

SQP 29.1 674 114 114
GA 30.2 576 126 127
CE 29.4 659 115 117

Table 7 - Comparison between the results obtained with different optimization techniques

considering buckling in Truss 1.

Method mass (kg) di (mm) H (mm) Func. Eval.

SQP 13.9 29.1 674 19
GA 14.0 30.2 576 8550
CE 14.0 29.4 659 3850

Figure 14 - Contour plot of mass, σVM and σE in function of the di and H of the Truss 1.
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Figure 15 - Illustration of CE sampling of the domain at different levels (iterations) considering

buckling of the Truss 1. The magenta cross is the SQP reference solution. (CE

control parameters are N s = 50, N e = 15, tol = 10−4, lstop = 77 and lmax = 100)
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(a) level l = 1
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(b) level l = 20
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(c) level l = 30
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(d) level l = 40
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(e) level l = 60
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(f) level l = 77

4.2 Truss 2 - 11 bars and 6 nodes

The Truss 2 consists in 11 bars connected through 6 nodes, as shown in Figure 16.

Figure 16 - Physical model of the Truss 2.
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Note that due to kinematic constraints, u1 = v1 = v5 = 0 (Eq. 27), N = 11 and

f4 = f12 = −50kN and f8 = −100kN (Eq. 28). The optimization problem is defined as

minxm =
∑11

e=1 ρAe(x)Le, x = {di, t} ,
where

20mm ≤ di ≤ 100mm ,

3mm ≤ t ≤ 20mm ,

subject to

|σ| ≤ SY (yield stress constraint),

σc ≤ σE (buckling constraint).

(99)

It is needed to consider fix parameter values like E = 290GPa, SY = 25MPa and

ρ = 7900 kg/m3. Considering the nominal values with these parameters, di = 100 mm

and t = 20 mm, the mass in this conditions is m = 2262 kg. The Table 8 shows the stress

state with nominal values to check if they are close to the applied constraints. In nominal

conditions, the criterion of structural integrity is not violated, as can be noted in Table 8.

The start points for the three methods are the middle points of the optimization problem

range.

Table 8 - Stresses at each bar in initial conditions of the Truss 2.

bar 1 2 3 4 5 6 7 8 9 10 11

σ (MPa) -8 5 3 -2 -7 -4 3 -7 -2 5 -8

σE (MPa) 426 426 213 426 213 426 213 213 426 426 426

4.2.1 Optimization with yield stress constraint

Considering the yield stress constraint, in the SQP, the objective function gradient

and constraints are reported with tol = 10−4. The GA control parameters are Ps = 25,

EC = 3 and tol = 10−4. The others parameters values are the default of Matlab. The

CE control parameters are N s = 25, N e = 3, tol = 10−4 and lmax = 100. The Table 9

has the results.
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Table 9 - Comparison between the results obtained with different optimization techniques, not

considering buckling, in Truss 2.

Method mass (kg) di (mm) t (mm) Func. Eval.

SQP 78 20.0 3.5 5
GA 78 20.0 3.5 2657
CE 78 20.0 3.5 175

Note, in the Table 9, that all methods arrived at the same optimal value. The CE

being faster (Func. Eval. smaller) than the GA, but being slower than the SQP, which is

a gradient-based method.

The Table 10 shows the stress state with the optimal values of the variables found

by the three optimization methods. Note that all stresses in the bars are less than SY =

250MPa. This means that the optimization respects the imposed structural integrity

constraint.

Table 10 - Stresses at each bar with variables found by SQP, GA and CE method (equals) in

Truss 2.

bar 1 2 3 4 5 6 7 8 9 10 11

σ (MPa) -245 142 73 -51 -201 -103 73 -201 -51 142 -245

The Figure 17 shows how the samples converge to the optimal point, where the

behavior of the CE in each iteration is observed. In the last iteration, all samples are

concentrated at the optimum point, in this case.
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Figure 17 - Illustration of CE sampling of the domain at different levels (iterations) of the

Truss 2. The magenta cross is the SQP reference solution, not considering

buckling. (CE control parameters are N s = 25, N e = 3, tol = 10−4, lstop = 7 and

lmax = 100)
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(c) level l = 3
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(d) level l = 4
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(e) level l = 5
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4.2.2 Optimization with yield stress and buckling limit constraints

Considering yield stress and buckling limit constraints, the GA control parameters

are changed to Ps = 50 and EC = 15, and CE control parameters to N s = 50 and

N e = 15. The Table 11 has the results.

Table 11 - Comparison between the results obtained with different optimization techniques

considering buckling in Truss 2.

Method mass (kg) di (mm) t (mm) Func. Eval.

SQP 205 69.6 3.0 21
GA 209 68.7 3.1 5250
CE 207 69.9 3.0 2200

The CE found the same value of the SQP, being faster than the GA. The Table 12,

Table 13 and Table 14 show the stress state with the optimal values of the variables by

SQP, GA CE.

No stress exceeded the critical buckling stress when the stresses are compressive

(σ < 0), respecting the criterion of structural integrity, as show the Table 12, Table 13

and Table 14. The Figure 18 shows the behavior of the CE according to the iterations

considering buckling. The samples are very close to the optimum and little dispersed.
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Table 12 - Stresses at each bar with variables found by SQP method considering buckling in

Truss 2.

bar 1 2 3 4 5 6 7 8 9 10 11

σ (MPa) -92 54 27 -19 -76 -39 27 -76 -19 54 -92

σE (MPa) 152 152 76 152 76 152 76 76 152 152 152

Table 13 - Stresses at each bar with variables found by GA method considering buckling in

Truss 2.

bar 1 2 3 4 5 6 7 8 9 10 11

σ (MPa) -90 52 27 -19 -74 -38 27 -74 -19 52 -90

σE (MPa) 149 149 74 149 74 149 74 74 149 149 149

Table 14 - Stresses at each bar with variables found by CE method considering buckling in

Truss 2.

bar 1 2 3 4 5 6 7 8 9 10 11

σ (MPa) -92 54 27 -19 -76 -39 27 -76 -19 54 -92

σE (MPa) 152 152 76 152 76 152 76 76 152 152 152

Figure 18 - Illustration of CE sampling of the domain at different levels (iterations) of the

Truss 2. The magenta cross is the SQP reference solution considering buckling.

(CE control parameters are N s = 50, N e = 15, tol = 10−4, lstop = 40 and

lmax = 100)
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(c) level l = 11
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(d) level l = 15
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4.3 Truss 3 - 10 bars with 6 nodes

The Truss 3 consists of 10 bars connected through 6 nodes, as shown in Figure 19.

Figure 19 - Physical model of the Truss 3.
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This problem is based on Haftka’s example (HAFTKA; GÜRDAL, 1992). Note

that due to kinematic constraints, u5 = v5 = u6 = v6 = 0 (Eq. 27), N = 10 and

f4 = f8 = −P (Eq. 28). The optimization problem is defined as

minxm =
∑10

e=1 ρAeLe, x = {Ae} ,
where

65 mm2 ≤ Ae ≤ 12903 mm2 ,

subject to

|σ| ≤ SY (yield stress constraint),

If e = 9, SY = 517 MPa; else, SY = 172 MPa.

(100)

It is needed fixate parameters values like E = 68.9 GPa, L = 9.144 m, P =

444.8 kN and ρ = 2770 kg/m3. SY = 172 MPa for all members except bar 9. For bar

9, SY = 517 MPa. These values are chosen following the Haftka reference (HAFTKA;

GÜRDAL, 1992), and in this book are in English units. Considering the nominal values

with these parameters, Ae = 12903 mm2 for all areas, the mass in this conditions is

m = 3807 kg. In nominal conditions, the criterion of structural integrity is not violated,

as can be noticed in Table 15. The Table 15 shows the stress state with nominal values

to check that they are close to the applied constraints. The start points for the three

methods are the middle points of the optimization problem range.
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Table 15 - Stresses at each bar in nominal conditions in Truss 3.

bar 1 2 3 4 5 6 7 8 9 10

σ (MPa) 67 14 -71 -21 12 14 51 -47 29 -20

SY (MPa) 172 172 172 172 172 172 172 172 517 172

4.3.1 Optimization of cross-sectional areas with yield stress constraint

In the SQP, the objective function gradient and constraints are reported, using

tol = 10−4. The GA control parameters are Ps = 50, EC = 15 and tol = 10−4.

The other parameter values are the default of Matlab. The CE control parameters are

N s = 50, N e = 15, tol = 10−4 and lmax = 300.

Table 16 - Comparison between the results obtained with different techniques optimizing the

area of each bar in Truss 3.

Method mass (kg) Func. Eval.

SQP 679 12
GA 701 49930
CE 689 5950

In this case, the lstop = 238. The results found by SQP are identical to those found

in Haftka’s book (HAFTKA; GÜRDAL, 1992), which in the book are in English units.

The CE gets closer to SQP and is faster than GA. In the Tables 17, 18 and 19 one can

be seen if the constraint are respected.

Table 17 - Values at each bar with variables found by SQP method in Truss 3.

bar 1 2 3 4 5 6 7 8 9 10

Ae(mm
2) 5097 65 5526 2516 65 65 3741 3558 2372 91

σ (MPa) 172 172 -172 -172 0.01 172 172 -172 259 -172
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Table 18 - Values at each bar with variables found by GA method in Truss 3 .

bar 1 2 3 4 5 6 7 8 9 10

Ae(mm
2) 4962 289 5564 2319 68 300 4086 3307 2251 401

σ (MPa) 170 167 -169 -171 1.00 161 171 -170 250 -170

Table 19 - Values at each bar with variables found by CE method in Truss 3.

bar 1 2 3 4 5 6 7 8 9 10

Ae(mm
2) 5099 80 5529 2518 65 80 3765 3560 2374 113

σ (MPa) 172 172 -163 -172 -5.6 172 172 -171 257 -171

Note that all methods met the structural integrity criterion imposed in the struc-

tural optimization, where the CE came closer to the SQP. The Table 20 shows an illus-

tration of the areas obtained by the three optimization methods.

Table 20 - Illustration of the areas obtained by the three optimization methods considering

yield stress constraint in Truss 3.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

SQP

GA

CE

4.3.2 Optimization with natural frequency constraints

The natural frequency is also a criterion of structural integrity that can be used

as a constraint for structural optimization. The structural model must have values of

natural frequencies bigger or equal from defined values, such as ω∗1 = 7 Hz, ω∗2 = 15 Hz

and ω∗3 = 20 Hz, with an added mass mad of 454 kg, so that resonance does not occur.
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The design variables are the ten areas. The new range and added mass value are

based on Ho-Huu’s article (HO-HUU et al., 2016). The optimization problem is redefined

as

minxm =
∑10

e=1 ρAeLe, x = {Ae} ,
where

65.4 mm2 ≤ Ae ≤ 5000 mm2 ,

mad = 454 kg,

subject to

ω1 ≥ 7 Hz, ω2 ≥ 15 Hz and ω3 ≥ 20 Hz.

(101)

Considering that in the nominal conditions all the transverse areas of the bars have

the same value Ae = 5000 mm2, one has the natural frequencies in the Table 21.

Table 21 - Natural frequencies in the Truss 3 with nominal parameters in Hz.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

15.0 43.0 51.4 99.5 102.4 117.6 124.0 150.3

By reducing the cross-sectional areas and consequently the mass of the structural

system, with the natural frequency values defined to be used as constraints, it reduces the

mass of the structural system as much as possible until the natural frequency gets bigger

or equal to the values defined as constraint.

In the SQP, the objective function gradient and constraints are reported with

tol = 10−8. The GA control parameters are Ps = 50, EC = 10 and tol = 10−8.

The other parameter values are the default of Matlab. The CE control parameters are

N s = 50, N e = 10, tol = 10−8 and lmax = 100. The Table 22 has the results.

In this case, lstop = 96. The Table 23 shows the areas found by the optimization

methods. The Table 24 shows an illustration of the areas obtained by the three opti-

mization methods. The Table 25 shows the natural frequencies found by the optimization

methods. Note that all optimization methods have respected the constraints, with the

first three natural frequencies ω1, ω2 and ω3 being greater than the constraints ω∗1, ω∗2 and

ω∗3.
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Table 22 - Comparison between the results obtained with different techniques optimizing the

area of each bar in Truss 3.

Method mass (kg) Func. Eval.

SQP 530 313
GA 529 9836
CE 535 4800

Table 23 - Values of cross-sectional area in the Truss 3 found by optimization methods in mm2.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

SQP 3813 1800 3777 980 435 415 2380 1981 1132 1373

GA 3210 1507 3678 1314 79 493 2652 2210 1359 1282

CE 3581 1197 3308 1661 145 532 2230 2707 1448 1179

Table 24 - Illustration of the areas obtained by the three optimization methods considering

natural frequencies constraint in Truss 3.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

SQP

GA

CE

Table 25 - Natural frequencies in the Truss 3 found by optimization methods in Hz.

Method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SQP 7.0 17.6 20.0 20.0 28.2 31.1 47.7 52.3

GA 7.0 16.2 20.0 20.3 29.1 29.5 48.1 50.8

CE 7.0 16.8 20.1 21.0 28.5 30.5 48.1 51.1



72

Dynamic constraints also can be used in structural optimization. Local search

algorithms are not suitable in this type of optimization problem. Only global search

algorithms should be used to obtain optimal solutions for these situations (MIGUEL;

MIGUEL, 2012). In general, the SQP obtains better results than the GA and the CE.

However, in this case, where the constraints are the natural frequencies, the metaheuris-

tic, GA, obtain better results than those of SQP, which is a gradient-based optimization

method, and CE has a satisfactory result, as shown in the Table 25.

Miguel’s article (MIGUEL; MIGUEL, 2012) presents two new metaheuristic meth-

ods developed in the last decade: Harmony Search (HS) and Firefly Algorithm (FA). These

two optimization methods are applied in this optimization problem with constraints on

the natural frequencies being a nonlinear dynamic optimization problem. In this arti-

cle, is the first time that these two methods are used in sizing and shape optimization

with natural frequencies constraints, in according with (MIGUEL; MIGUEL, 2012). The

Table 26 has the results of the two methods and of the CE.

The Table 27 shows the areas found by the optimization methods CE, HS, and

FA. The Table 28 shows an illustration of the areas obtained by these three optimization

methods and the Table 29 shows the natural frequencies. The values of HS and FA are

from Miguel’s article (MIGUEL; MIGUEL, 2012).

Table 26 - Comparison between the results obtained by CE, HS and FA optimizing the area of

each bar in Truss 3.

Method mass (kg) Func. Eval.

CE 535 4800
HS 535 20000
FA 531 5000

Table 27 - Values of cross-sectional area in the Truss 3 found by optimization methods CE, HS

and FA in mm2.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

CE 3581 1197 3308 1661 145 532 2230 2707 1448 1179

HS 3428 1565 3764 1606 107 474 2250 2460 1287 1210

FA 3620 1403 3475 1490 65.4 467 2347 2551 1271 1235
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Table 28 - Illustration of the areas obtained by CE, HS and FA considering natural frequencies

constraint in Truss 3.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

CE

HS

FA

Table 29 - Natural frequencies in the Truss 3 found by optimization methods CE, HS and FA

in Hz.

Method ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

CE 7.0 16.8 20.1 21.0 28.5 30.5 48.1 51.1

HS 7.0 16.7 20.1 20.3 28.5 29.3 49.0 51.7

FA 7.0 16.1 20.0 20.0 28.5 28.9 48.3 50.8

The CE presents the same HS mass with smaller function evaluation number (Func.

Eval.). The FA presents a mass better than of CE and almost the same function evaluation

number. CE, HS, and FA are optimization methods considered news and for this, can

be improved and in the future present better results in this example. HS and FA are

not gradient-based and FA comes close to the SQP in the value of mass, even though FA

has the Func. Eval. much bigger, comparing with SQP. Although CE does not find a

better solution than other methods in this case, the CE finds a satisfactory solution with

a smaller function evaluation number (Func. Eval.), confirming its efficiency and viability

as a technique for structural optimization.
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4.4 Truss 4 - 15 bars and 8 nodes

The truss 4 consists of 15 bars connected through 8 nodes, as shown in Figure 20.

Figure 20 - Physic model of the Truss 4.
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Note that due to kinematic constraints, u1 = v1 = v6 = 0 (Eq. 27), N = 15 and

f4 = f6 = f8 = −100kN (Eq. 28).

The optimization problem is defined as

minxm =
∑15

e=1 ρAe(x)Le(x), x = {di, t, h1, h2} ,
where

50 mm ≤ di ≤ 100 mm ,

10 mm ≤ t ≤ 20 mm,

1000 mm ≤ h1 ≤ 2000 mm,

100 mm ≤ h2 ≤ 1000 mm,

subject to

|σ| ≤ SY (yield stress constraint),

σc ≤ σE (buckling constraint).

(102)

It is needed to consider fix parameter values like E = 290GPa, SY = 250MPa and

ρ = 7900kg/m3. Considering the nominal values with these parameters, di = 100 mm,

t = 20 mm, h1 = 2000 mm and h2 = 1000 mm, the mass in this conditions is m = 3352 kg.

The Table 30 shows stresses in each bar in the nominal conditions. In nominal conditions,

the criterion of structural integrity is not violated, as can be noted in Table 30.
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Table 30 - Stresses at each bar in initial conditions in Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -30 -27 -27 -30 36 31 31 -36 -10 -13 -10 -4 0.3 0.3 -4

σE (MPa) 588 588 588 588 407 530 530 407 1324 588 1324 294 407 407 294

4.4.1 Optimization with yield stress constraint

Considering the yield stress constraint, in the SQP, the objective function gradient

and constraints are not reported, with tol = 10−4. The GA control parameters are

Ps = 25, EC = 5 and tol = 10−4. The other parameter values are the default of

Matlab. The CE control parameters are N s = 25, N e = 5, tol = 10−4 and lmax = 100.

The Table 31 has the results.

In this case, lstop = 59. All optimization methods found the same value of internal

diameter, which in this case is the minimum limit for this design variable, and the value

of h1. CE is faster than GA and provides less mass than GA. The Tables 32, 33 and

34 show the stresses with the optimal values. These Tables show that the constraint

SY = 250 MPa is respected.

Table 31 - Comparison between the results obtained with different optimization techniques,

not considering buckling, optimizing di, t, h1 and h2 in Truss 4.

Method mass (kg) di (mm) t (mm) h1 (m) h2 (m) Func. Eval.

SQP 602 50.0 10.0 1.01 0.24 20
GA 609 50.0 10.1 1.01 0.21 3973
CE 608 50.0 10.1 1.01 0.18 1250

Table 32 - Stresses at each bar with variables found by SQP method, not considering buckling,

optimizing di, t, h1 and h2 in Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -237 -244 -244 -237 250 250 250 -250 -57 -46 -57 7 -13 -13 7
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Table 33 - Stresses at each bar with variables found by GA method, not considering buckling,

optimizing di, t, h1 and h2 in Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -233 -242 -242 -233 246 249 249 -247 -56 -42 -56 10 -16 -16 10

Table 34 - Stresses at each bar with variables found by CE method, not considering buckling,

optimizing di, t, h1 and h2 of the Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -234 -247 -247 -234 247 250 250 -247 -57 -39 -58 14 -20 -20 15

4.4.2 Optimization with yield stress and buckling limit constraints

Considering yield stress and buckling limit constraints, in the SQP, the objective

function gradient and constraints are not reported, with tol = 10−4. The GA control

parameters are Ps = 25, EC = 3 and tol = 10−4. The other parameter values are the

default of Matlab. The CE control parameters are N s = 25, N e = 3, tol = 10−4 and

lmax = 100. The Table 35 has the results.

In this case, the lstop = 38. The CE is faster than GA and has a mass less than

GA. The Tables 36, 37 and 38 show the stresses with the optimal values.

Table 35 - Comparison between the results obtained with different optimization techniques

considering buckling and optimizing di, t, h1 and h2 of the Truss 4.

Method mass (kg) di (mm) t (mm) h1 (m) h2 (m) Func. Eval.

SQP 815 68.5 10.0 1.32 0.10 56
GA 856 71.2 10.5 1.01 0.10 2625
CE 852 69.1 10.3 1.2 0.49 950
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Table 36 - Stresses at each bar with variables found by SQP method considering buckling and

optimizing di, t, h1 and h2 in Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -138 -152 -152 -138 151 158 158 -151 -47 -23 -47 15 -21 -21 15

σE (MPa) 180 180 180 180 151 180 180 151 931 804 931 147 151 151 147

Table 37 - Stresses at each bar with variables found by GA method considering buckling and

optimizing di, t, h1 and h2 in Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -165 -181 -181 -165 174 185 185 -174 -43 -24 -43 17 -21 -21 17

σE (MPa) 195 195 195 175 195 195 175 1723 1427 1723 172 175 175 175 172

Table 38 - Stresses at each bar with variables found by CE method considering buckling and

optimizing di, t, h1 and h2 in Truss 4.

bar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ (MPa) -146 -140 -140 -146 157 146 146 -157 -36 -40 -36 -7 -2 -2 -7

σE (MPa) 185 185 185 185 159 178 159 1153 581 1153 140 159 159 159 140

4.4.3 Optimization subject to maximum displacement

In this section, the maximum displacement is considered as a constraint for struc-

tural optimization. The maximum displacement value is dpmax = 50 mm. The nomi-

nal values are considered, with the following parameters: di = 100 mm, t = 20 mm,

h1 = 2000 mm and h1 = 1000 mm, for the displacements in each node, as shows in the

Table 39. Due kinematic constraints, u1 = v1 = v6 = 0. So, dp1 = 0.

With the FEA, it is possible to observe how the structural model behaves due to

vertical load, as shown in Figure 21, where the blue line represents the nominal condition

of the structural model and the red dashed line represents the deformed structural model.

In the SQP, the objective function gradient and constraints are not reported, with

tol = 10−4. The GA control parameters are Ps = 25, EC = 3 and tol = 10−4. The

others parameters values are the default of Matlab. The CE control parameters are

N s = 25, N e = 3, tol = 10−4 and lmax = 100. The Table 40 shows the results. The

Table 41 shows the displacements of each node with the values of the design variables

optimized by the optimization methods.
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Table 39 - Displacements in each node of the Truss 4 in nominal conditions.

node 1 2 3 4 5 6 7 8

dpn (mm) 0 3.0 3.5 3.2 1.6 2.9 3.3 3.1

Figure 21 - Displacements of the Truss 4.
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Table 40 - Comparison between the results obtained with different optimization techniques

subject to maximum displacement optimizing di, t, h1 and h2 in Truss 4.

Method mass (kg) di (mm) t (mm) h1 (m) h2 (m) Func. Eval.

SQP 602 50.0 10.0 1.04 0.16 35
GA 613 50.0 10.0 1.20 0.11 2699
CE 606 50.2 10.1 1.20 0.19 475

Table 41 - Displacement of each node in mm using the values found by the optimization

methods of the Truss 4.

Method dp1 dp2 dp3 dp4 dp5 dp6 dp7 dp8

SQP 0 40.0 50.0 41.2 13.5 39.8 49.8 40.8

GA 0 31.6 40.1 32.8 11.9 31.3 39.9 32.4

CE 0 39.5 48.9 40.6 13.4 39.2 48.7 40.2
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In this case, lstop = 19. The CE is faster than the GA and finds a better value

in the objective function than the GA. Note that the displacements nodes do not exceed

the maximum displacement, dpmax = 50 mm, respecting the constraint, as shown the

Table 41.



80

CONCLUDING REMARKS

This chapter recalls the main topics addressed in this dissertation, highlighting its

contributions and suggesting future works.

Thematic addressed

This work is motivated by the importance of structural optimization in the context

of Engineering and in the world, and the continuous search for new numerical methods

for this type of optimization.

In this context, the dissertation proposes a new framework for structural opti-

mization based on CE, a relatively new metaheuristic that has was successfully used in

simulation of rare events and combinatorial optimization. To the best of the author’s

knowledge, there is only one work where this optimization method is used in structural

optimization (GHIDEY, 2015).

Four structural models are used, with FEA being implemented before beginning

the structural optimization processes. For comparative analysis, in addition to CE, two

more methods of numerical optimization are presented: SQP, which is gradient-based, and

GA, which is a metaheuristic based on Darwin’s theory of evolution (DARWIN, 2009).

Therefore, in all structural models three optimization methods are used, SQP, GA and

CE.

Conclusions and contributions

The dissertation presents the following contributions:(i) the development of the

mathematical formalism necessary to formulate the problem of structural optimization,

as well as the analysis of the new numerical procedure; (ii) The implementation of the new

numerical method in a computational code in written Matlab language; (iii) a detailed

analysis on the accuracy and efficiency of this new framework.

The constraints of structural optimization problems are the structural integrity cri-

teria addressed in this dissertation, such as yield stress, buckling stress, natural frequencies

and displacement. Before mentioning these constraints for structural optimization, the

concept of solid mechanics is presented, such as the balance of continuous mechanics equa-

tions and boundary conditions, which needs to be considered for structural optimization.

A generic formulation of an optimization problem is also made and the mathemat-

ical approach of the three methods used, SQP, GA and CE, is presented following the



81

nomenclature of the initial generic formulation.

Numerical experiments evaluate the effectiveness and robustness of the cross-entropy

method in the context of structural optimization. The results show that the evaluated

method is very competitive, having a much better performance than genetic algorithm,

proving to be an appealing tool for optimization problems, especially when the use of

gradients is impractical.

It is important to mention that in all cases, the optimal values found by the CE

are close to those found by the SQP, being SQP a first-order method and CE a zero-

order method. Like SQP, which uses the gradient in its computational process, first-order

methods will in general be more efficient (better results) and faster than the CE for

convex problems. When comparing CE with another zero-order method, GA, it is noted

that in most case the CE is faster and obtains better results than the GA in the numerical

experiments and implementations presented in this work, making the CE quite interesting

for application in structural optimization.

It can be noticed that even with high computational resources, it is always nec-

essary to have a good professional or researcher who can analyze the data and interpret

them so that this information is not misused. The study of buckling stresses with the

optimization process requires greater attention due to the non convexity.

Suggestions for future works

In this dissertation, CE is used in two types of structural optimization, size and

shape. Size optimization changes the sizing, such as cross-sections and other internal

dimensions of structural components. Shape optimization changes the shape of a structure

to solve the problem in the best way.

For these reasons, the following is suggested for future works: (i) application of CE

in topological optimization, where in topological optimization all definitions are based on

model analysis and the final result is the optimal material distribution; (ii) application of

CE in 3D structural models for optimization.

Publication

During his master, the author, with his advisors and other collaborator published

an article in Proceeding Series of the Brazilian Society of Computational and Applied

Mathematics and presented the work at the congress XXXVIII Congresso Nacional de

Matemática Aplicada e Computacional (ISSA et al., 2018).
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APPENDIX A – Parameter analysis - Truss 1

This appendix contains the parameter analysis of the Truss 1 optimization.

A.1 Optimization with yield stress constraint

This section contains the parameter analysis considering yield stress constraint.

In the SQP, a formula for the gradient can be provided (Analytics gradient) or

not (Numerical gradient) for parameter analysis. Table 42 shows how the change in the

tolerance value affects the processing time and result. Other parameter values are the

default of Matlab.

Table 42 - Values of objective function and Func. Eval. obtained by SQP, not considering

buckling, in Truss 1.

Numerical gradient Analytics gradient
tol mass (kg) Func. Eval. mass (kg) Func. Eval.
10−2 9.6 15 9.6 5
10−3 9.6 18 9.6 6
10−4 9.6 18 9.6 6
10−6 9.6 21 9.6 7

The Table 42 shows how informing the gradient is relevant, in this case, when not

considering the buckling. The change in the value of tol influences in Func. Eval., where

decreasing tol, increases Func. Eval..

The values for the CE parameters that were used, such as N s, N e and tol, are the

ones that obtained the best result. For the comparative effect, the same values are used

for the GA parameters. In this case, Ps and pe have the same values as N s and N e in

the parameter analyses. The parameter value are shown in Table 43.
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Table 43 - Values of objective function and Func. Eval. obtained by GA for several values of

tol, pe and Ps, not considering buckling, in Truss 1.

Ps = 25
pe 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 9.7 1325 9.9 1325 9.8 1325
10−3 9.7 2625 9.7 2625 9.8 2625
10−4 9.6 3925 9.7 3925 9.7 3925
10−6 9.6 11120 9.7 6525 9.7 6525

Ps= 50
pe 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 10.0 2650 9.9 2650 9.8 2650
10−3 9.9 5250 9.7 5250 9.8 5250
10−4 9.6 7850 9.7 7850 9.7 7850
10−6 9.9 8650 9.7 13050 9.7 8500

Ps = 100
pe 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 9.6 5300 9.7 5300 9.7 5300
10−3 9.7 10500 9.6 10500 9.7 10500
10−4 9.7 17200 9.8 17200 9.6 17200
10−6 9.6 21900 9.6 22700 9.6 20900

Ps = 150
pe 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 9.7 7962 9.7 7962 9.6 7962
10−3 9.7 15750 9.7 15750 9.7 15750
10−4 9.6 23550 9.6 23550 9.6 23550
10−6 9.7 39150 9.6 39150 9.6 39150

In the case shown in Table 43, when the GA parameter values increase, such as Ps

and pe, the solutions found are closer to the optimum; following the solution found by the

SQP as a reference. The increase of the tol makes the search of the optimal solution more

refined, increasing the Func. Eval., while the increase of pe does not seems to influence.

Notice that in Table 44, increasing tol greatly increases the function evaluations

(Func. Eval.), and also taking the objective function closer to the SQP result, which is

used as reference, making the method more refined. In general, with the increase in the

value of N e, N s, tol and %, more function evaluations are required. Just as in the same

way of GA, by increasing the values of the parameters the solution of the CE gets closer

to the solution of the SQP.
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Table 44 - Values of objective function and Func. Eval. obtained by CE for several values of

tol, % and N s, not considering buckling, in Truss 1.

N s = 25
% 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 10.1 150 10.2 175 9.7 225
10−3 9.7 275 9.7 325 9.7 400
10−4 9.7 400 9.7 525 9.7 550
10−6 9.7 575 9.7 750 9.7 950

N s= 50
% 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 9.9 400 9.9 500 9.9 500
10−3 9.8 550 9.9 750 9.9 750
10−4 9.8 800 9.7 1100 9.7 1150
10−6 9.7 1250 9.7 1800 9.7 1800

N s = 100
% 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 9.8 700 10.0 700 9.8 900
10−3 9.7 1100 9.7 1200 9.7 1500
10−4 9.6 1600 9.6 1700 9.6 2400
10−6 9.6 2600 9.6 2600 9.6 3900

N s = 150
% 15% 20% 25%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 9.7 1200 9.8 1200 9.7 1350
10−3 9.7 1800 9.7 1950 9.6 2400
10−4 9.6 2550 9.6 2850 9.7 3150
10−6 9.6 3900 9.6 4200 9.6 4950
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A.2 Optimization with yield stress and buckling limit constraints

This section has the parameter analysis considering, in the optimization problem,

yield stress and buckling constraints.

Considering buckling, the value for parameter analyses in the SQP of the Truss

1 are in the Table 45. In this case, providing the gradient of the objective function and

constraints made the Func. Eval. somewhat smaller. The change in the value of tol

matters. The parameter analyses done in GA and CE, changing parameter values, are

shown in the Table 46 and Table 47.

Table 45 - Objective functions optimal obtained by SQP considering buckling in Truss 1.

Numerical gradient Analytics gradient
tol mass (kg) Func. Eval. mass (kg) Func. Eval.
10−2 13.9 28 13.9 16
10−3 13.9 31 13.9 17
10−4 13.9 37 13.9 19
10−6 13.9 40 13.9 20
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Table 46 - Values of objective function and Func. Eval. obtained by GA for several values of

tol, pe and Ps considering buckling in Truss 1.

Ps = 50
pe 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.0 2650 18.7 2662 14.6 5450
10−3 14.1 5262 14.1 5250 14.2 5262
10−4 13.9 5262 14.7 8500 13.9 5274
10−6 14.3 13600 14.3 20250 14.0 13050

Ps= 100
pe 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.0 31400 13.9 17600 14.4 31500
10−3 14.6 16000 14.1 32100 13.9 10512
10−4 14.0 10512 14.0 37000 13.9 10512
10−6 14.0 39000 14.0 15712 13.9 15712

Ps = 150
pe 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.1 47550 14.4 27450 14.0 7950
10−3 14.0 15762 14.4 46800 13.9 27150
10−4 14.3 57900 14.0 59850 14.3 28200
10−6 14.2 23572 13.9 23578 14.3 40350

Ps = 200
pe 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.5 32200 14.3 62400 18.5 10612
10−3 13.9 21012 14.3 62400 14.4 63000
10−4 14.0 21012 13.9 21024 13.9 21012
10−6 14.3 76800 14.6 46000 13.9 31412
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Table 47 - Objective functions optimal obtained by CE for several values of tol, % and N s, not

considering buckling, in Truss 1.

N s = 50
% 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.5 1200 14.4 1400 14.6 1550
10−3 14.2 2100 14.0 2300 14.2 2700
10−4 14.1 3050 14.0 3400 14.0 3850
10−6 14.3 4750 14.3 5400 14.0 5700

N s= 100
% 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.9 2500 14.7 2800 14.6 3800
10−3 14.5 4200 14.4 4700 14.4 6400
10−4 14.4 5700 14.0 6700 14.0 8500
10−6 14.2 9500 14.0 10400 14.1 13800

N s = 150
% 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.2 4050 14.2 4650 14.1 5550
10−3 14.2 6750 14.1 7650 14.1 9300
10−4 14.2 9600 14.1 10800 14.0 12900
10−6 14.1 15300 14.1 17400 14.0 21450

N s = 200
% 20% 25% 30%
tol mass (kg) Func. Eval. mass (kg) Func. Eval. mass (kg) Func. Eval.

10−2 14.0 5600 14.2 6400 14.2 7400
10−3 14.0 9200 14.2 10400 14.2 1220
10−4 14.0 13000 14.0 15000 14.2 18200
10−6 14.0 21600 14.0 25200 14.2 29400

When buckling is considered, the convexity of the optimization problem is lost,

giving rise to local extrema. Due to the non-convexity of the problem, the influence of

changing the parameter values becomes more random. Note that by increasing tol, there

is a large increase in the function evaluations (Func. Eval.).
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