2 - MATERIAIS E MÉTODOS

2.1 - O Material Soldado

Para a realização deste trabalho foram utilizados tubos do aço ASTM A335 grau P91 (ASTM A335, 2006) com um diâmetro exterior de 152,4 mm e 19 mm de espessura. Segundo o certificado do material (Anexo A), o aço sofreu tratamento térmico de normalização a 1070°C durante 87 minutos com resfriamento ao ar, em seguida foi revenido a 770°C com uma duração de 180 minutos e resfriado ao ar. A Tabela 4 apresenta a composição química esperada para o material e a composição do lote utilizado neste estudo.

	Composição Química (% em peso)					
Elemento	AST	Lote				
	Mínimo Máximo					
С	0,08	0,12	0,108			
Mn	0,30	0,60	0,53			
Р	-	0,02	0,013			
S	-	0,01	0,002			
Si	0,20	0,50	0,33			
Cr	8,00	9,50	8,56			
Мо	0,85	1,05	0,87			
V	0,18	0,25	0,221			
N	0,03	0,07	0,053			
AI	-	0,02	0,012			
Ni	-	0,4	0,30			
Ti	-	0,01	0,003			
Cu	-	-	0,19			
As	-	-	0,006			

Tabela 1. Composição química do aço P91 [ASTM A335, 2006].

Com base na composição química do lote e com as fórmulas apresentadas no capítulo 1, Subseção 1.2.5, o Carbono Equivalente (CE) e aos fatores Watanabe (J) e Bruscato (X) são:

CE = 2,21. Este valor indica que há sensibilidade à fissuração a frio e baixa soldabilidade;

Fator J = 111,8. Como este valor foi inferior a 120, supostamente o metal de base é pouco susceptível à fragilização no reaquecimento;

Fator X = 19. Como o valor foi inferior a 20, supostamente o metal de base é pouco susceptível à fragilização no reaquecimento.

Portanto, o aço P91 utilizado neste estudo possui, segundo o valor de CE obtido, baixa soldabilidade, sendo necessários cuidados em etapas de préaquecimento, pós-aquecimento e TTPS. Contudo, os valores dos fatores J e X sugerem que o aço apresenta aparentemente resistência suficiente a uma possível fragilização no reaquecimento no metal de base.

2.2 - Procedimento de Soldagem

A soldagem do tubo foi realizada pela empresa UTC Engenharia S.A., todos os procedimentos foram efetuados para processos TIG na região na região da raiz e Arame Tubular com proteção gasosa para as regiões de enchimento e reforço das juntas soldadas. Foram soldadas juntas de topo com chanfro em V, com ângulo de abertura de 30 graus, abertura da raiz de 2 mm e face da raiz de 1 mm (Figura 32). Além disso, o tubo foi soldado na direção transversal a direção do seu comprimento, com posição de soldagem 6G [Marques et al., 2005] e progressão ascendente; a Figura 33 mostra o tubo posicionado para soldagem e o detalhe de um chanfro.

Figura 1. Dimensões do chanfro (unidade em mm).

Figura 2. Tubo na posição 6G para soldagem.

Os procedimentos de soldagem do tubo ocorreram de forma a se obter duas condições: a junta sem reparo e com duplo reparo. Para obtenção destas condições foram necessárias três etapas. Primeiramente a junta foi soldada com os três primeiros passes por TIG na região da raiz até 8 mm da espessura e com o enchimento e reforço por Arame Tubular somando 17 passes para o preenchimento total da junta.

A junta foi sujeita a um pré-aquecimento de 260°C com temperatura entre passes de 263-306°C. Após 48 horas finalizada esta soldagem, a junta foi submetida a um ensaio de ultrassom para análise da integridade da solda e verificação se a mesma estava isenta de defeitos detectáveis pela técnica, quando então, deu-se início a execução do TTPS para alívio de tensões residuais. A junta foi aquecida a uma taxa de 125°C/h, mantida a 760°C durante 2 horas e resfriada a taxa de 125°C/h até a temperatura ambiente. Durante as etapas do TTPS a temperatura foi controlada por um medidor de temperatura e o tubo foi coberto por uma manta refratária para evitar perda de calor. A Figura 34 mostra a junta com o isolamento térmico.

Figura 3. Junta com isolamento térmico.

Logo após o primeiro procedimento de soldagem, a junta foi cortada para retirada de amostras. Em outro local do tubo, todo este primeiro processo foi repetido, gerando a junta soldada nas mesmas condições e, através de processos de usinagem, foi retirado metade do metal de solda, isto é, metade da ZF foi excluída, então, a junta foi novamente preenchida neste local com 1 passe na raiz por TIG até 4 mm da espessura e completada com mais 8 passes por Arame Tubular. O TTPS foi reaplicado nas mesmas condições já descritas, simulando assim uma situação de reparo.

Por fim, o procedimento de reparo foi repetido e a junta foi aberta novamente no mesmo local obtendo assim a condição de duplo reparo, e da mesma forma o passe da raiz foi feito por TIG até 4 mm da espessura, mais 6 passes por Arame Tubular e o TTPS sendo reaplicado pela terceira vez nas mesmas condições. A Figura 35 esquematiza a sequência de procedimentos efetuados até a condição final chamada de "duplo reparo".

Figura 4. Sequência de alterações na junta soldada.

Os consumíveis de soldagem utilizados foram o arame tubular marca Supercore F91 de classificação E91T1-B9, e a vareta marca 9CrMoV-N, classificação ER90S-B9 para o processo TIG [AWS A5.28M, 2005; AWS A5.29M, 2005]. A Tabela 5 mostra a composição química de cada consumível de acordo com o certificado de qualidade do material (Anexo A).

	Elementos (% em peso)								
E91T1-B9	С	Mn	Р	S	Si	Cr	Мо	v	As
	0,084	0,60	0,018	0,01	0,33	8,86	1,00	0,21	0,001
	Sn	Sb	Nb	Cu	AI	Ni	Ν	Ni +Mn	-
	0,007	0,003	0,04	0,06	0,006	0,05	0,05	1,08	-
ER90S-B9	С	Mn	Р	S	Si	Cr	Мо	v	As
	0,123	0,75	0,007	0,004	0,24	8,90	0,95	0,20	0,003
	Sn	Sb	Nb	Cu	AI	Ni	Ν	Ni +Mn	Mn/Sn
	0,04	0,002	0,06	0,05	0,001	0,44	0,04	1,19	187,5

Tabela 2. Composição química dos consumíveis.

Os parâmetros de soldagem utilizados nos três procedimentos estão apresentados na Tabela 6.

	Soldagem		1º reparo		2º reparo	
	TIG	Arame Tubular	TIG	Arame Tubular	TIG	Arame Tubular
Eletrodo	ER90S-B9; Ø 3,2	E91T1-B9; Ø 1,2	ER90S-B9; Ø 3,2	E91T1-B9; Ø 1,2	ER90S-B9; Ø 3,2	E91T1-B9; Ø 1,2
Gás de proteção	100% Ar	80% Ar / 20% CO2	100% Ar	100% Ar 80% Ar / 100% A 20% CO2		80% Ar / 20% CO2
Vazão (L/min)	12	14	14	15 14		15
Aporte Térmico (KJ/cm)	13,23 -20,23	10,19 -17,23	20,62	11,19 - 15,54	20,46	10,57 - 14,60
Tensão (V)	13,90	27,00	12	12 25		25
Amperagem (A)	110,0 - 149	164 - 172	120	175	120	170
Bocal (mm)	-	16	-	16	-	16
Pré-aquecimento (⁰C)	260,00		252		252	
Temperatura entre passes (ºC)	263 - 306		262 - 300		265 - 287	

Tabela 3. Parâmetros de soldagem (Anexo B).

2.3 - Preparação Metalográfica

Foi retirada do tubo uma amostra de cada condição (sem reparo e com duplo reparo) para análise metalográfica (Figura 36). As amostras com dimensões em torno de 75 mm de comprimento, 20 de largura e 20 de espessura foram cortadas na direção longitudinal de forma que contemplassem toda a junta e parte do metal de base. Em seguida, as amostras passaram pelas etapas de lixamento, com as lixas metalográficas de 180, 220, 280, 400, 600, 800 e 1200, e polimento, em panos com pasta de diamante de 1 μ m e 0,25 μ m.

O ataque químico utilizado para revelar a microestrutura e as regiões da solda foi realizado com uma solução, denominada Vilella [ASM Metals Handbook, 1989], constituída de uma mistura de 100 mL etanol + 1g ácido pícrico + 5 mL ácido clorídrico. As amostras ficaram imersas na solução durante 40 segundos.

Figura 5. Amostras para análise macro e micrográfica.

2.4 - Análise Macroscópica

Imagens macroscópicas das juntas soldadas foram obtidas utilizando-se um estereoscópio da Marca Zeiss, modelo Discovery V8, equipado com câmera digital para captura de imagens.

2.5 - Microscopia

2.5.1 - Microscopia Óptica

Para análise microestrutural e captura das imagens foi utilizado um microscópio óptico da marca Zeiss, modelo Axio - Lab. A1, equipado para aumentos de 50, 100, 500 e 1000 vezes, e câmera digital integrada ao computador para captura de imagens.

Após a preparação metalográfica as amostras das duas condições foram submetidas a análise por microscopia óptica com o objetivo se obter imagens das diferentes zonas da junta soldada. Desta forma, foram geradas imagens com aumentos de 500 e 1000 vezes do metal de base, ZTA e zona de fusão, esta última foi subdivida em três regiões: raiz, enchimento (região intermediária entre as bordas da solda) e reforço (região mais próxima à borda superior da solda). A Figura 37

mostra a esquematização das três regiões da zona de fusão e a nomenclatura utilizada neste trabalho para referenciar as zonas analisadas nas amostras.

Figura 6. Regiões e zonas analisadas nas juntas com e sem reparo.

2.5.2 - Microscopia Eletrônica de Varredura

A microscopia eletrônica de varredura foi realizada com as amostras das duas condições, com e sem o duplo reparo, após a preparação metalográfica somente e também após ataque químico. Foram geradas imagens com aumentos de 1000 e 4000 vezes começando pelo metal de base e depois as regiões da junta, ZTA e toda a zona de fusão. Para a captura de imagens foi utilizado um MEV da marca JEOL, modelo JSM-6510LV com sistema acoplado para análise química semiquantitativa por EDS (Energy Dispersive Spectroscopy), com software próprio para análise *line scan* (análise química ao longo de uma linha) e operando a 20kV.

Para auxiliar a análise qualitativa de algumas imagens obtidas por MEV, foi utilizado o *software* de processamento digital de imagem Fiji – ImageJ. Basicamente, as imagens foram segmentadas por limiarização de forma a separar objetos da imagem do plano de fundo (*background*). As imagens não sofreram pré e pósprocessamento e o método de limiarização utilizado foi o automático padrão do software (*default*).

2.6 - Ensaios Mecânicos

2.6.1 - Ensaio de Microdureza

Perfis de dureza foram obtidos para uma amostra de cada condição após a preparação metalográfica e ataque químico com o reagente Vilella, que tornou possível visualizar os limites entre metal de base, ZTA e zona de fusão. Foi utilizado um microdurômetro da marca PanTec, modelo MV 1000A, equipado com câmera digital para captura de imagens. Todos os ensaios foram realizados segundo norma ISO 6507-1 [ABNT NM ISSO 6507-1, 2008], com força de 0,9807N (0,1kgf) e tempo de aplicação de carga de 10 segundos.

A Figura 38 apresenta o esquema utilizado para os ensaios de microdureza, no qual foram realizadas indentações ao longo de três linhas. As linhas de indentação 1 e 3 foram traçadas a 4 mm das extremidades, a linha 2 está situada no centro da amostra. As medidas foram realizadas a um passo de 1 mm a partir da posição central da zona de fusão, tanto para a direita quanto para a esquerda. Na linha 1 foram realizadas 11 medidas para a direita e 11 para a esquerda, totalizando 22 pontos em cada condição. Na linha 2 foram realizadas 16 medidas para a direita e 16 para a esquerda, totalizando 32 pontos e, por último, a linha 3 com 23 medidas para a direita e 23 para a esquerda num total de 46.

Figura 7. Linhas de indentação para os perfis de dureza.

2.6.2 - Ensaio de Impacto

Para verificar a quantidade de energia absorvida em cada região da junta soldada foram realizados ensaios de impacto Charpy para as duas condições: com e sem reparo. Os ensaios de impacto foram solicitados pela empresa UTC Engenharia S.A. e foram realizados nos laboratórios da empresa DMCJ Inspeções Ltda., os resultados foram cedidos para este trabalho. As dimensões de corpo de prova seguiram o padrão da ASTM E23 [ASTM E23, 2007] (Figura 39), com comprimento de 55 mm, 10 mm de largura, 10 mm de espessura e entalhe em "V".

Figura 8. Dimensões do corpo de prova para ensaio de impacto [ASTM E23, 2007].

Para o ensaio, os corpos de prova foram extraídos na direção longitudinal ao comprimento do tubo e transversal à extensão da solda nas regiões do metal de base, ZTA e zona de fusão seguindo os critérios da norma ASME IX [ASME IX, 2013]; para cada região foram preparados três corpos de prova com o entalhe posicionado no centro da junta (aproximadamente metade da espessura). Contudo, para a solda na condição de duplo reparo, os corpos de prova seguiram um plano de remoção diferente quanto às regiões da junta, a Figura 40 ilustra as zonas em que foram retirados os corpos de prova, ZF do lado sem reparo, ZTA central da junta reparada, ZF do 2º reparo e ZTA entre a ZF do 2º reparo e o MB, áreas 2, 3, 4 e 5 respectivamente. Ao todo foram 9 corpos de prova para a solda sem reparo e 15 para a solda com reparo.

Figura 9. Regiões de retirada dos corpos de prova para impacto da solda com reparo

Os ensaios foram realizados a temperatura de 20°C seguindo a norma ASME B31.1 [ASME B31.1, 2008], além disso, utlizou-se um pêndulo de impacto Pantec ATMI.

3.6.3. - Ensaio de Tração

Da mesma forma que os ensaios de impacto, os ensaios de tração também foram solicitados pela empresa UTC Engenharia S.A. e foram realizados nos laboratórios da empresa DMCJ Inspeções Ltda., os resultados foram cedidos para este trabalho. Os corpos de prova foram feitos com comprimento total de aproximadamente 300 mm e retirados no sentido transversal à linha de solda de acordo com a norma ASME IX [ASME IX, 2013]; suas dimensões são mostradas na Figura 41, onde: **a** é espessura, **r** é o filete, **b**1 é a largura, **b** é a largura útil, **L**s o comprimento da solda e **L**c o comprimento útil.

Figura 10. Corpo de prova para ensaio de tração [Adaptado de Rocha, 2012].

Os ensaios de tração foram realizados a temperatura de 21ºC numa máquina de marca Pantec modelo Versat com capacidade de carga de 1000kN e para cada condição foram preparados 2 corpos de prova.