41

5.2 Cálculo da Função de Controle Aproximado u_K

Passa-se, a seguir, à obtenção de uma caracterização mais explícita de \boldsymbol{u}_{K} e da matriz $\mathbf{G}_{K} \in \mathbb{R}^{K \times K}$. Neste sentido, note, inicialmente, que como para todo $v \in L_{2}(0, t_{F})$, $\psi \in L_{2}(\mathcal{U})$,

$$\langle \mathcal{T}_{\theta}^{*}(\psi), v \rangle_{\mathrm{T}} = \langle \psi, \mathcal{T}_{\theta}(v) \rangle,$$
 (5.2.1)

е

$$\langle \psi, \mathcal{T}_{\theta} (v) \rangle^{\text{por}} \stackrel{(4.1.1)}{=} \lim_{L \to \infty} \langle \psi, \underline{\theta}_{bL} (t_F; v) \rangle$$

$$\stackrel{\text{por}}{=} \stackrel{(4.1.4)}{\lim_{L \to \infty}} \lim_{l=1} \sum_{l=1}^{L} c_{bl} (t_F; v) \langle \psi, \phi_l \rangle$$

$$\stackrel{\text{por}}{=} \stackrel{(4.1.6)}{\lim_{L \to \infty}} \sum_{l=1}^{L} \langle \psi, \phi_l \rangle \int_{0}^{t_F} \exp\left[-\nu_l (t_F - \tau)\right] \boldsymbol{\beta}_{Sl} v(\tau) d\tau$$

$$= \lim_{L \to \infty} \langle \underline{\chi}_L (\psi), v \rangle_{\mathrm{T}}$$

$$(5.2.2)$$

onde

$$\underline{\chi}_{L}(\psi) \stackrel{\scriptscriptstyle \Delta}{=} \sum_{l=1}^{L} \langle \psi, \phi_{l} \rangle \exp\left[-\nu_{l} \left(t_{F} - \tau\right)\right] \boldsymbol{\beta}_{\boldsymbol{S}l}.$$
(5.2.3)

Segue-se de (5.2.1) e (5.2.3) que para todo $v \in L_2(0, t_F)$ e para toda $\psi \in L_2(\mathcal{U})$

$$\langle \mathcal{T}_{\theta}^{*}(\psi), v \rangle_{\mathrm{T}} = \lim_{L \to \infty} \langle \underline{\chi}_{L}(\psi), v \rangle_{\mathrm{T}}.$$
 (5.2.4)

Em particular, para todo $v \in L_2(0, t_F)$, para $p \leq K$, para toda $L \geq K$, $\underline{\chi}_L(\psi_p^K) = \underline{\chi}_L(\phi_k) = \underline{\chi}_K(\phi_k)$ e k = r e, portanto,

$$\langle \mathcal{T}_{\theta}^{*}\left(\psi_{p}^{K}\right), v \rangle_{\mathrm{T}} = \langle \underline{\chi}_{K}\left(\psi_{p}^{K}\right), v \rangle_{\mathrm{T}}.$$
 (5.2.5)

Segue-se que

$$\mathcal{T}_{\theta}^{*}\left(\psi_{p}^{K}\right) = \underline{\chi}_{K}\left(\psi_{p}^{K}\right) \tag{5.2.6}$$

onde

$$\underline{\chi}_{L}\left(\psi_{p}^{K}\right)\left(\tau\right) = \exp\left[-\nu_{k}\left(t_{F}-\tau\right)\right]\boldsymbol{\beta}_{\boldsymbol{S}k} \quad e \quad p = k.$$
(5.2.7)

5.2.1 Forma Matricial de \boldsymbol{u}_K

De (5.1.8) e de (5.2.7) a função \boldsymbol{u}_{K} pode ser escrita em forma matricial como

$$\boldsymbol{u}_{K}(\tau) = \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \boldsymbol{\Phi}_{K}(t_{F} - \tau) \,\overline{\boldsymbol{\alpha}}_{K} \in \mathbb{R}^{m} \quad \text{para todo } \tau \in [0, t_{F}], \quad (5.2.8)$$

onde *m* é número de sinais $\boldsymbol{\beta}_{\boldsymbol{S}\boldsymbol{j}}(x), \boldsymbol{j} = 1, \ldots, m$ a serem controladas, $K \leq K_a$ é o tamanho do truncamento para calcular o sinal de controle e K_a é o número de coeficientes da função fracamente convergente θ_{K_a} dada em (3.1.31), $\boldsymbol{\overline{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} = [\langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_1 \rangle, \ldots, \langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_K \rangle] \in$ $\mathbb{R}^{m \times K}$, onde $\langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_i \rangle = [\langle \boldsymbol{\beta}_{\boldsymbol{S}1}, \phi_i \rangle, \ldots, \langle \boldsymbol{\beta}_{\boldsymbol{S}m}, \phi_i \rangle]^{\mathrm{T}}$ para $i = 1, \ldots, K, \ \boldsymbol{\Phi}_K(t_F - \tau) =$ $\exp [\mathbf{A}_K(t_F - \tau)] \in \mathbb{R}^{K \times K}, \ \boldsymbol{\overline{\alpha}}_K$ definida em (5.1.11) e

$$\mathbf{A}_{K} = \begin{bmatrix} -\alpha \left(\frac{(1)\pi}{L_{x}}\right)^{2} & & & \\ & \ddots & & & \\ & & -\alpha \left(\frac{(k)\pi}{L_{x}}\right)^{2} & & \\ 0 & & \ddots & \\ & & & -\alpha \left(\frac{(K)\pi}{L_{x}}\right)^{2} \end{bmatrix} \in \mathbb{R}^{K \times K}. \quad (5.2.9)$$

5.2.2 Forma da Matriz \mathbf{G}_K

Decorre, então de (5.1.10) e (5.2.7) que para todo $i, j = 1, \ldots, K$,

$$\{\mathbf{G}_{K}\}_{i,j} = \int_{0}^{t_{F}} \exp\left[-\nu_{i}\left(t_{F}-\tau\right)\right] \boldsymbol{\beta}_{\boldsymbol{S}i}^{\mathrm{T}} \boldsymbol{\beta}_{\boldsymbol{S}j} \exp\left[-\nu_{j}\left(t_{F}-\tau\right)\right] d\tau \qquad (5.2.10)$$

ou equivalentemente,

$$\{\boldsymbol{G}_{K}\}_{i,j} = \int_{0}^{t_{F}} \exp\left[-\nu_{i}t\right] \boldsymbol{\beta}_{\boldsymbol{S}i}^{\mathrm{T}} \boldsymbol{\beta}_{\boldsymbol{S}j} \exp\left[-\nu_{j}t\right] dt \qquad (5.2.11)$$

onde $i = 1, \ldots, K$ e $j = 1, \ldots, K$ e, portanto,

$$\mathbf{G}_{K} = \int_{0}^{t_{F}} \exp\left(\mathbf{A}_{K}t\right) \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp\left(\mathbf{A}_{K}t\right) dt$$
(5.2.12)

onde \mathbf{A}_K está dada por (5.2.9) e $\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K} = [\langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_1 \rangle, \dots, \langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_K \rangle]^{\mathrm{T}} \in \mathbb{R}^{K \times m}.$

Finalmente, para todo $t \in [0, t_F]$ defina-se

$$\mathbf{F}(t) \stackrel{\Delta}{=} \exp\left(\mathbf{A}_{K}t\right) \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp\left(\mathbf{A}_{K}t\right) \in \mathbb{R}^{K \times K}.$$
(5.2.13)

Então (5.2.12) pode ser reescrita como

$$\mathbf{G}_K = \int_0^{t_F} \mathbf{F}(t) dt. \tag{5.2.14}$$

Derivando (5.2.13) com respeito à variável t obtém-se

$$\dot{\mathbf{F}}(t) = \mathbf{A}_{K}\left(\exp\left[\mathbf{A}_{K}t\right]\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}\right)\left(\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}}\exp\left[\mathbf{A}_{K}t\right]\right) + \left(\exp\left[\mathbf{A}_{K}t\right]\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}\right)\left(\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}}\exp\left[\mathbf{A}_{K}t\right]\right)\mathbf{A}_{K}$$

$$= \mathbf{A}_{K}\mathbf{F}(t) + \mathbf{F}(t)\mathbf{A}_{K}.$$
(5.2.15)

Obtém-se assim que para todo $t \in [0, t_F]$

$$\mathbf{F}(t) = \mathbf{F}(0) + \int_{0}^{t} \{\mathbf{A}_{K}\mathbf{F}(\sigma) + \mathbf{F}(\sigma)\mathbf{A}_{K}\} d\sigma$$
$$= \mathbf{F}(0) + \mathbf{A}_{K}\int_{0}^{t}\mathbf{F}(\sigma) d\sigma + \int_{0}^{t}\mathbf{F}(\sigma) d\sigma \mathbf{A}_{K}.$$
(5.2.16)

Logo para $t = t_F$ temos

$$\mathbf{F}(t_F) = \mathbf{F}(0) + \mathbf{A}_K \mathbf{G}_K + \mathbf{G}_K \mathbf{A}_K$$
(5.2.17)

e portanto $\mathbf{G}_K \in \mathbb{R}^{K \times K}$ pode ser obtido como a única solução da equação de Lyapunov (LAUB, 2005, p. 144–148), (ZHOU; DOYLE; GLOVER, 1996, p. 71–72)

$$\mathbf{A}_{K}\mathbf{G}_{K} + \mathbf{G}_{K}\mathbf{A}_{K} = \mathbf{F}\left(t_{F}\right) - \mathbf{F}\left(0\right).$$
(5.2.18)

Note-se que as matrizes na equação (5.2.18) têm dimensões K e, portanto não dependem do número m de sinais escalares de controle.

5.3 Cálculo da Função Aproximadamente Controlada $\theta_{\text{cont.}}$

Como assume-se que $\boldsymbol{u}_{K}(\tau)$ é um controle ótimo aproximado, então é possível definir a função aproximadamente controlada no tempo t_{F} como $\theta_{\text{cont.}}$. Determina-se, a seguir, a representação explicita desta função. Usando (4.1.1) a expressão em (3.1.30) pode ser reescrita como

$$\underline{\mathbf{C}}_{K_{a}}(t) = \underline{\mathbf{g}}_{K_{a}} \Phi_{K_{a}}(t) + \int_{0}^{t} \Phi_{K_{a}}(t-\tau) \underline{\mathbf{f}}_{K_{a}}(\tau) d\tau$$

$$= \underline{\mathbf{g}}_{K_{a}} \Phi_{K_{a}}(t) + \int_{0}^{t} \Phi_{K_{a}}(t-\tau) \underline{\mathbf{f}}_{\mathbf{S}K_{a}}(\tau) d\tau + \int_{0}^{t} \Phi_{K_{a}}(t-\tau) \overline{\boldsymbol{\beta}}_{\mathbf{S}K_{a}} \boldsymbol{u}_{K}(\tau) d\tau$$
(5.3.1)

onde $\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_{a}}^{\mathrm{T}} = [\langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_{1} \rangle, \dots, \langle \boldsymbol{\beta}_{\boldsymbol{S}}, \phi_{K_{a}} \rangle] \in \mathbb{R}^{m \times K_{a}} \text{ e } \Phi_{K_{a}}(t-\tau) = \exp [\mathbf{A}_{K_{a}}(t-\tau)] \in \mathbb{R}^{K_{a} \times K_{a}}.$

Definindo

$$\widehat{\underline{\mathbf{C}}}_{\boldsymbol{S}K_{a}}(t) = \underline{\mathbf{g}}_{K_{a}} \Phi_{K_{a}}(t) + \int_{0}^{t} \Phi_{K_{a}}(t-\tau) \underline{\mathbf{f}}_{\boldsymbol{S}K_{a}}(\tau) d\tau \qquad (5.3.2)$$

$$\widehat{\underline{C}}_{\boldsymbol{u}_{K}K_{a}}\left(t;\boldsymbol{u}_{K}\left(\tau\right)\right) = \int_{0}^{t} \boldsymbol{\Phi}_{K_{a}}\left(t-\tau\right) \underline{\boldsymbol{\beta}}_{\boldsymbol{S}K_{a}} \boldsymbol{u}_{K}\left(\tau\right) d\tau.$$
(5.3.3)

Rescreve-se (5.3.1) como

$$\underline{\mathbf{C}}_{K_{a}}(t) = \widehat{\underline{\mathbf{C}}}_{\mathbf{S}K_{a}}(t) + \widehat{\underline{\mathbf{C}}}_{\boldsymbol{u}_{K}K_{a}}(t; \boldsymbol{u}_{K}(\tau)) \in \mathbb{R}^{K_{a}}.$$
(5.3.4)

A seguir define-se explicitamente a função aproximadamente controlada no tempo $t=t_F, \label{eq:tf}$

$$\theta_{\text{cont.}}\left(x, t_F\right) = \sum_{k=1}^{K_a} \widehat{C}_{\theta k}\left(t_F\right) \phi_k\left(x\right), \qquad (5.3.5)$$

onde os coeficientes estão dados por

$$\widehat{C}_{\theta k}\left(t_{F}\right) = \widehat{C}_{Sk}\left(t_{F}\right) + \widehat{C}_{\boldsymbol{u}_{K}k}\left(t_{F};\boldsymbol{u}_{K}\left(\tau\right)\right)$$
(5.3.6)

 $\operatorname{com} \widehat{C}_{Sk}(t_F) \in \underline{\widehat{C}}_{SK_a}(t_F) \in \widehat{C}_{\boldsymbol{u}_K k}(t_F; \boldsymbol{u}_K(\tau)) \in \underline{\widehat{C}}_{\boldsymbol{u}_K K_a}(t_F; \boldsymbol{u}_K(\tau)).$

Estes coeficientes calculam-se da seguinte maneira,

$$\widehat{C}_{Sk}(t_F) = g_k \exp\left[-\nu_k t_F\right] + \int_0^{t_F} \exp\left[-\nu_k \left(t_F - \tau\right)\right] f_{Sk}(\tau) d\tau$$

$$= g_k \exp\left[-\alpha \left(\frac{k\pi}{L_x}\right)^2 t_F\right] + \int_0^{t_F} \exp\left[-\alpha \left(\frac{k\pi}{L_x}\right)^2 \left(t_F - \tau\right)\right] f_{Sk}(\tau) d\tau,$$
(5.3.7)

onde $g_k = \langle g(x), \phi_k \rangle$ e $f_{Sk}(\tau) = \langle f_S(x, \tau), \phi_k \rangle$.

Substituindo (5.2.8) em (5.3.3) obtém-se

$$\widehat{\underline{C}}_{\boldsymbol{u}_{K}K_{a}}\left(t_{F};\boldsymbol{u}_{K}\left(\tau\right)\right) = \int_{0}^{t_{F}} \boldsymbol{\Phi}_{K_{a}}\left(t_{F}-\tau\right)\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_{a}}\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}}\boldsymbol{\Phi}_{K}\left(t_{F}-\tau\right)\overline{\boldsymbol{\alpha}}_{K}d\tau$$

$$= \left\{\int_{0}^{t_{F}} \boldsymbol{\Phi}_{K_{a}}\left(t_{F}-\tau\right)\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_{a}}\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}}\boldsymbol{\Phi}_{K}\left(t_{F}-\tau\right)^{\mathrm{T}}d\tau\right\}\overline{\boldsymbol{\alpha}}_{K} \quad (5.3.8)$$

$$= \left\{\int_{0}^{t_{F}} \exp\left[\mathbf{A}_{K_{a}}\left(t_{F}-\tau\right)\right]\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_{a}}\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}}\exp\left[\mathbf{A}_{K}\left(t_{F}-\tau\right)\right]d\tau\right\}\overline{\boldsymbol{\alpha}}_{K}.$$

Fazendo a mudança de variável $\omega = t_F - \tau$ em (5.3.8) define-se

$$\mathbf{G}_{K_{a}K} = \int_{0}^{t_{F}} \exp\left[\mathbf{A}_{K_{a}}\left(\omega\right)\right] \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_{a}} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp\left[\mathbf{A}_{K}\left(\omega\right)\right] d\omega.$$
(5.3.9)

Definindo para todo $\omega \in [0, t_F]$

$$\mathbf{H}(\omega) \stackrel{\scriptscriptstyle \Delta}{=} \exp\left[\mathbf{A}_{K_a}(\omega)\right] \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_a} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp\left[\mathbf{A}_{K}(\omega)\right] \in \mathbb{R}^{K_a \times K}$$
(5.3.10)

e seguindo o mesmo raciocínio usado para obter (5.2.18) obtém-se a seguinte equação de Sylvester (LAUB, 2005, p. 144–148), (ZHOU; DOYLE; GLOVER, 1996, p. 71–72)

$$\mathbf{A}_{K_a}\mathbf{G}_{K_aK} + \mathbf{G}_{K_aK}\mathbf{A}_K = \mathbf{H}(t_F) - \mathbf{H}(0).$$
(5.3.11)

que tem como única solução a $\mathbf{G}_{K_aK} \in \mathbb{R}^{K_a \times K}$.

Logo (5.3.8) pode ser escrita da forma

$$\widehat{\underline{\mathbf{C}}}_{\boldsymbol{u}_{K}K_{a}}\left(t_{F};\boldsymbol{u}_{K}\left(\tau\right)\right) = \mathbf{G}_{K_{a}K}\overline{\boldsymbol{\alpha}}_{K} \in \mathbb{R}^{K_{a}}.$$
(5.3.12)

Os coeficientes $\underline{\widehat{C}}_{\boldsymbol{u}_{K}k}\left(t_{F};\boldsymbol{u}_{K}\left(\tau\right)\right)$ serão da forma

$$\widehat{\underline{C}}_{\boldsymbol{u}_{K}k}\left(t_{F};\boldsymbol{u}_{K}\left(\tau\right)\right) = \sum_{j=1}^{K} \widehat{g}_{kj} \bar{\alpha}_{j}, \qquad (5.3.13)$$

onde $\hat{g}_{kj} \in \mathbf{G}_{K_aK}$ e $\bar{\alpha}_j \in \overline{\alpha}_K$ com $k = 1, \dots, K_a$ e $j = 1, \dots, K$.

5.4 Sequência de Cálculos Necessários para a Obtenção de u_K e $\theta_{\text{cont.}}$

5.4.1 Cálculos para Obter \boldsymbol{u}_K

A sequência de cálculos necessários para a obtenção de u_K é sumarizada a seguir (para um dado K):

- Obtenção de $\overline{\boldsymbol{\theta}}_{K}$ (definido após (5.1.10)) a partir dos dados $(f, g, \boldsymbol{\beta}_{\boldsymbol{S}}, \theta_{r}, t_{F}, \rho_{F})$, da matriz diagonal $\mathbf{A}_{K} \in \mathbb{R}^{K \times K}$ (definida em (5.2.9)) e da matriz $\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K} \in \mathbb{R}^{K \times m}$ (definida após (5.2.12) acima).
- Cálculo de $\mathbf{F}(0) = \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} e \mathbf{F}(t_F) = \exp(\mathbf{A}_K t_F) \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp(\mathbf{A}_K t_F).$
- Resolver (5.2.18) para obter \mathbf{G}_K .
- Resolver $(\mathbf{I} + \rho_F \mathbf{G}_K) \overline{\boldsymbol{\alpha}}_K = \rho_F \overline{\boldsymbol{\theta}}_K$ para obter $\overline{\boldsymbol{\alpha}}_K \in \mathbb{R}^K$.
- Obter $\boldsymbol{u}_{K} = \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp\left[\mathbf{A}_{K}\left(t_{F}-\tau\right)\right] \overline{\boldsymbol{\alpha}}_{K}.$

Note-se que u_K pode ser gerado pelo sistema linear de dimensão finita

$$\begin{cases} \dot{\mathbf{x}}_{\boldsymbol{u}}(t) = -\mathbf{A}_{K}\mathbf{x}_{\boldsymbol{u}}(t) \\ \boldsymbol{u}_{K}(t) = \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}}\mathbf{x}_{\boldsymbol{u}}(t) \\ \mathbf{x}_{\boldsymbol{u}}(0) = \exp\left(\mathbf{A}_{K}t_{F}\right)\overline{\boldsymbol{\alpha}}_{K} \end{cases}$$
(5.4.1)

5.4.2 Cálculos para Obter $\theta_{\text{cont.}}$

A sequência de cálculos necessários para a obtenção de $\theta_{\text{cont.}}$ é sumarizada a seguir (para um dado K_a):

- Obtenção da matriz diagonal $\mathbf{A}_{K_a} \in \mathbb{R}^{K_a \times K_a}$ (definida em (3.1.26)), da matriz $\overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_a} \in \mathbb{R}^{K_a \times m}$ (definidos após (5.3.1) acima).
- Cálculo de $\mathbf{H}(0) = \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_a} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \in \mathbf{H}(t_F) = \exp\left(\mathbf{A}_{K_a} t_F\right) \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K_a} \overline{\boldsymbol{\beta}}_{\boldsymbol{S}K}^{\mathrm{T}} \exp\left(\mathbf{A}_K t_F\right).$
- Resolver (5.3.11) para obter \mathbf{G}_{K_aK} .
- Calcular (5.3.2) e (5.3.12) para obter $\widehat{C}_{\theta k}(t_F)$ em (5.3.6).
- Obter $\theta_{\text{cont.}}(x, t_F) = \sum_{k=1}^{K_a} \widehat{C}_{\theta k}(t_F) \phi_k(x).$

6 RESULTADOS NUMÉRICOS

A seguir, apresentam-se dezesseis exemplos numéricos que mostram a aplicação do método desenvolvido anteriormente para o caso 1-D. Estes exemplos representam uma barra com coeficiente de condutividade térmica, $\alpha = 1$, com um comprimento $L_x = 1$ sem perturbação inicial, isto é $f_S(x,t) = 0$, assim como g(x) = 0, mas com uma fonte de calor forçante dada por $\beta_S(x)$, a qual será regulada ou controlada no tempo, num intervalo [0, 1] pela função u(t). Como objetivo queremos atingir no tempo $t_F = 1$, um perfil de temperatura específico dado por $\underline{\theta}_r(x, 1)$ o qual será aproximado por $\theta_{\text{cont.}}(x, 1)$. Baseado nestas condições podemos formular matematicamente o seguinte problema de controle ótimo.

Problema de Controle Ótimo.

Achar \boldsymbol{u} tal que

$$\min_{\boldsymbol{u}\in L_2(0,1)^m} \mathcal{J}(\boldsymbol{u}) = \|\boldsymbol{u}\|_{L^2(0,1)}^2 + \rho_F \|\theta_o(t_F;\boldsymbol{u}) - \underline{\theta}_r\|_{L^2((0,1))}^2, \text{ onde } \rho_F \in \mathbb{R}_+$$
(6.0.1)

sujeito a

Para cada exemplo mantêm-se fixos os tamanhos dos truncamentos para as funções aproximadas, $K_a = 20$ para obter $\theta_{\text{cont.}}$ e K = 10 para obter \boldsymbol{u}_K .

6.1 Exemplo # 1

Aproximação do estado final desejado $\underline{\theta}_r = 1 - 2 \left| x - \frac{1}{2} \right|$ usando a função de distribuição espacial $\boldsymbol{\beta}_{\boldsymbol{S}}(x) = \begin{cases} 0 & \text{se } 0 \leq x < \frac{7}{16}, \\ 1 & \text{se } \frac{7}{16} \leq x < \frac{9}{16}, \\ 0 & \text{se } \frac{9}{16} \leq x \leq 1. \end{cases}$

Figura 1: Gráficos das funções $\underline{\theta}_r$ (esquerda) e $\pmb{\beta_S}$ (direita).

Fonte controlada de forma <u>individual.</u>

Figura 2: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

Resultados numéricos obtidos variando ρ_F nas normas do máximo e L_2 para o caso em que se tem uma fonte com o seu controle.

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	164.0856	2.2815	0.1016
10000	186.9709	1.3547	0.0665
20000	202.6782	0.8238	0.0531

Tabela 1: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 3: Gráfico de u_K no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

Resultados numéricos obtidos variando ρ_F nas normas do máximo e L_2 para o caso em que se tem uma fonte com o seu controle.

Tabela 2: Valor máximo atingido por u_K no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	49.4989
10000	49.3003
20000	50.5635

Os resultados acima (e das demais tabelas) corroboram a expectativa intuitiva de que à medida que ρ_F aumenta é possível alcançar estados finais mais próximos do desejado à custa de maior "energia" (norma quadrática) dos sinais de controle correspondentes.

O valor de máximo de \boldsymbol{u}_K é calculado da seguinte forma

$$\|\boldsymbol{u}_{K}\|_{\infty} = \sup\left\{\left[\boldsymbol{u}_{K}^{\mathrm{T}}(t)\boldsymbol{u}_{K}(t)\right]^{\frac{1}{2}}: t \in [0,1]\right\}.$$

Observe-se que a função de controle u_K consegue levar o sistema ao estado final desejado com a peculiaridade de que faz um "esforço maior" nos instantes finais antes de alcançar o tempo $t_F = 1$ prescrito. Nesses instantes finais acontece o pico máximo e consequentemente o controle usa a "energia máxima", apresentada na tabela anterior, para alcançar o objetivo desejado.

6.2Exemplo # 2

$$\begin{split} \text{Aproximação do estado final desejado } \underline{\theta}_r &= 1-2 \left| x - \frac{1}{2} \right| \text{ usando a função de distribuição espacial } \beta_{\boldsymbol{S}}(x) = \begin{cases} 0 \quad \text{se} \quad 0 \leq x < \frac{5}{16}, \\ 1 \quad \text{se} \quad \frac{5}{16} \leq x < \frac{7}{16}, \\ 0 \quad \text{se} \quad \frac{7}{16} \leq x < \frac{9}{16}, \\ 1 \quad \text{se} \quad \frac{9}{16} \leq x < \frac{11}{16}, \\ 0 \quad \text{se} \quad \frac{11}{16} \leq x \leq 1. \end{cases} \end{split}$$

Figura 4: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma individual.

Figura 5: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	107.4066	2.0242	0.2295
10000	117.0282	1.6378	0.1935
20000	125.5832	1.4368	0.1669

Tabela 3: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 6: Gráficos de u_{K_1} e u_{K_2} no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

Tabela 4: Valor máximo atingido por u_K no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	45.2938
10000	49.4313
20000	55.6379

Exemplo # 36.3

Figura 7: Gráficos das funções $\underline{\theta}_r$ (esquerda) e $\beta_{\mathbf{S}}$ (direita).

Fontes controladas de forma individual.

Figura 8: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

Resultados numéricos obtidos variando ρ_F nas normas do máximo e L_2 para o casos em que se tem uma fonte com o seu controle.

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	97.9070	1.3474	0.1190
10000	106.1226	0.7729	0.0779
20000	111.2549	0.4652	0.0552

Tabela 5: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 9: Gráficos de $\boldsymbol{u}_{K_1}, \boldsymbol{u}_{K_2} \in \boldsymbol{u}_{K_3}$ no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

É possível ver que o comportamento "individual" de cada função de controle satisfazendo-se assim as expectativas intuitivas físicas.

Tabela 6: Valor máximo atingido por u_K no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	51.1433
10000	53.0475
20000	52.1600

Comparando os exemplos 1 e 3 nota-se que no caso de três controles independentes consegue-se alcançar uma melhor aproximação do estado final desejado (no sentido da norma quadrática) e com menor "energia de controle" do que no caso de um único controle.

6.4 Exemplo # 4

Aproximação do estado final desejado $\underline{\theta}_r = -4x (x - 1)$ usando a função de distribuição espacial $\beta_{\mathbf{S}}(x) = \begin{cases} 0 & \text{se} & 0 \le x < \frac{7}{16}, \\ 1 & \text{se} & \frac{7}{16} \le x < \frac{9}{16}, \\ 0 & \text{se} & \frac{9}{16} \le x \le 1. \end{cases}$

Figura 10: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma <u>individual.</u>

Figura 11: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

	0		- ,
$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	279.9367	4.3797	0.2056
10000	347.2604	3.0774	0.1521
20000	413.5566	2.1631	0.1125

Tabela 7: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 12: Gráfico de \boldsymbol{u}_{K} no intervalo de tempo [0, 1] para os diferentes valores de ρ_{F} .

Tabela 8: Valor máximo atingido por \boldsymbol{u}_K no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	59.6615
10000	66.2299
20000	72.0370

6.5 Exemplo # 5

Aproximação do estado final desejado $\underline{\theta}_r = -4x (x - 1)$ usando a função de distri-

buição espacial
$$\boldsymbol{\beta}_{\boldsymbol{S}}(x) = \begin{cases} 0 & \text{se} \quad 0 \le x < \frac{\pi}{16}, \\ 1 & \text{se} \quad \frac{5}{16} \le x < \frac{7}{16}, \\ 0 & \text{se} \quad \frac{7}{16} \le x < \frac{9}{16}, \\ 1 & \text{se} \quad \frac{9}{16} \le x < \frac{11}{16}, \\ 0 & \text{se} \quad \frac{11}{16} \le x \le 1. \end{cases}$$

Figura 13: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma **individual.**

Figura 14: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	175.1499	2.8539	0.1469
10000	195.6230	2.2154	0.1165
20000	223.9487	1.7427	0.0897

Tabela 9: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 15: Gráficos de $\boldsymbol{u}_{K_1} \in \boldsymbol{u}_{K_2}$ no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

Tabela 10: Valor máximo atingido por \boldsymbol{u}_{K} no intervalo de tempo [0, 1] para os diferentes valores de ρ_{F} .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	48.0708
10000	50.3654
20000	53.3308

6.6 Exemplo # 6

Aproximação do estado final desejado $\underline{\theta}_r = -4x(x-1)$ usando a função de distri-

buição espacial
$$\boldsymbol{\beta}_{S}(x) = \begin{cases} 0 & \text{se } 0 \leq x < \frac{1}{16}, \\ 1 & \text{se } \frac{3}{16} \leq x < \frac{5}{16}, \\ 0 & \text{se } \frac{5}{16} \leq x < \frac{7}{16}, \\ 1 & \text{se } \frac{7}{16} \leq x < \frac{9}{16}, \\ 0 & \text{se } \frac{9}{16} \leq x < \frac{11}{16}, \\ 1 & \text{se } \frac{11}{16} \leq x < \frac{13}{16}, \\ 0 & \text{se } \frac{13}{16} \leq x \leq 1. \end{cases}$$

Figura 16: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma **individual.**

Figura 17: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	151.2469	1.6336	0.0771
10000	162.0141	1.0375	0.0538
20000	169.7699	0.7147	0.0424

Tabela 11: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 18: Gráficos de $\boldsymbol{u}_{K_1}, \boldsymbol{u}_{K_2} \in \boldsymbol{u}_{K_3}$ no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

Tabela 12: Valor máximo atingido por \boldsymbol{u}_K no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

ρ_F	$\ oldsymbol{u}_K\ _\infty$
5000	51.5650
10000	53.4364
20000	55.0973

Comparando os exemplos 4 e 6 observe-se que novamente consegue-se alcançar um estado final mais próximo do desejado (tanto no sentido da norma quadrática como no caso da norma uniforme) e com menor "energia de controle" do que no caso de um único controle.

6.7 Exemplo # 7

Aproximação do estado final desejado $\underline{\theta}_r = x$ usando a função de distribuição espacial $\beta_{\mathbf{S}}(x) = \begin{cases} 0 & \text{se} \quad 0 \le x < \frac{7}{16}, \\ 1 & \text{se} \quad \frac{7}{16} \le x < \frac{9}{16}, \\ 0 & \text{se} \quad \frac{9}{16} \le x \le 1. \end{cases}$

Figura 19: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma **individual.**

Figura 20: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

	0		- ,
$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	127.4222	11.8709	1
10000	189.5779	11.4942	1
20000	282.4022	11.2077	1

Tabela 13: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 21: Gráfico de \boldsymbol{u}_{K} no intervalo de tempo [0, 1] para os diferentes valores de ρ_{F} .

Tabela 14: Valor máximo atingido por \boldsymbol{u}_{K} no intervalo de tempo [0, 1] para os diferentes valores de ρ_{F} .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	39.8878
10000	47.9663
20000	58.0119

6.8 Exemplo # 8

Aproximação do estado final desejado $\underline{\theta}_r = x$ usando a função de distribuição es-

pacial
$$\boldsymbol{\beta}_{\boldsymbol{S}}(x) = \begin{cases} 0 & \text{se } & 0 \le x < \frac{9}{16}, \\ 1 & \text{se } \frac{5}{16} \le x < \frac{7}{16}, \\ 0 & \text{se } \frac{7}{16} \le x < \frac{9}{16}, \\ 1 & \text{se } \frac{9}{16} \le x < \frac{11}{16}, \\ 0 & \text{se } \frac{11}{16} \le x \le 1. \end{cases}$$

Figura 22: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma **individual.**

Figura 23: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	130.9287	10.2141	1
10000	228.7800	9.5362	1
20000	412.2293	8.8489	1

Tabela 15: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 24: Gráficos de $\boldsymbol{u}_{K_1} \in \boldsymbol{u}_{K_2}$ no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

Tabela 16: Valor máximo atingido por \boldsymbol{u}_{K} no intervalo de tempo [0, 1] para os diferentes valores de ρ_{F} .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	49.4544
10000	76.2146
20000	108.1131

6.9 Exemplo # 9

Aproximação do estado final desejado $\underline{\theta}_r = x$ usando a função de distribuição es-

$$\text{pacial } \boldsymbol{\beta}_{\boldsymbol{S}}(x) = \begin{cases} 0 & \text{se } 0 \leq x < \frac{5}{16}, \\ 1 & \text{se } \frac{3}{16} \leq x < \frac{5}{16}, \\ 0 & \text{se } \frac{5}{16} \leq x < \frac{7}{16}, \\ 1 & \text{se } \frac{7}{16} \leq x < \frac{9}{16}, \\ 0 & \text{se } \frac{9}{16} \leq x < \frac{11}{16}, \\ 1 & \text{se } \frac{11}{16} \leq x < \frac{13}{16}, \\ 0 & \text{se } \frac{13}{16} \leq x \leq 1. \end{cases}$$

Figura 25: Gráficos das funções $\underline{\theta}_r$ (esquerda) e β_s (direita). Fontes controladas de forma <u>individual.</u>

Figura 26: Gráficos comparativos entre $\theta_{\text{cont.}}$ (tracejada) e $\underline{\theta}_r$ (continua) para diferentes valores de ρ_F .

$ ho_F$	$\ oldsymbol{u}_K\ _{L_2}^2$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{L_2}$	$\ \theta_{\text{cont.}} - \underline{\theta}_r\ _{\infty}$
5000	117.8714	8.7433	1
10000	167.7176	8.3383	1
20000	265.7428	7.9302	1

Tabela 17: Energia de \boldsymbol{u}_{K} e erro de aproximação.

Figura 27: Gráficos de $\boldsymbol{u}_{K_1}, \boldsymbol{u}_{K_2} \in \boldsymbol{u}_{K_3}$ no intervalo de tempo [0, 1] para os diferentes valores de ρ_F .

Tabela 18: Valor máximo atingido por \boldsymbol{u}_{K} no intervalo de tempo [0, 1] para os diferentes valores de ρ_{F} .

$ ho_F$	$\ oldsymbol{u}_K\ _\infty$
5000	66.2620
10000	84.7802
20000	133.1046

Comparando os exemplos 7 ao 9 observe-se que ainda que a função objetivo não satisfaz uma das condições de fronteira prescritas (valores na fronteira nulos), o resultado numérico não apresenta oscilações abruptas como acontece com uma aproximação de Fourier não controlada de 10 termos, mostrando assim a estabilidade de método numérico obtido.