

Universidade do Estado do Rio de Janeiro

Centro de Ciência e Tecnologia

Faculdade de Engenharia

Pedro Juan Torres López

Parallel Implementation of Finite Element Code for Two-

Dimensional Incompreensible Navier-Stokes Equations with Scalar

Transport

Rio de Janeiro

2010

Pedro Juan Torres López

Parallel Implementation of Finite Element Code for Two-Dimensional

Incompreensible Navier-Stokes Equations with Scalar Transport

Dissertação apresentada, como requisito
parcial para obtenção do título de Mestre,
ao Programa de Pós-Graduação em
Engenharia Mecânica, da Universidade do
Estado do Rio de Janeiro. Área de
concentração: Fenômenos de Transporte

Orientador: Prof. Dr. Norberto Magiavacchi

Rio de Janeiro

2010

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

L864 López, Pedro Juan Torres.
Parallel implementation of finite element code for two-

dimensional incompreensible navier-stokes equations with scalar
transport / Pedro Juan Torres López. – 2010.

87f.

Orientador: Norberto Magiavacchi.
Dissertação (Mestrado) – Universidade do Estado do Rio de

Janeiro, Faculdade de Engenharia.

1. Engenharia Mecânica. 2. Método dos elementos finitos -
Dissertações. 3. Condensação. I. Mangiavacchi, Norberto. II.
Universidade do Estado do Rio de Janeiro. III. Título.

CDU 66.02/.04

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial

desta tese, desde que citada a fonte.

Assinatura Data

Pedro Juan Torres López

Parallel Implementation of Finite Element Code for Two-Dimensional

Incompreensible Navier-Stokes Equations with Scalar Transport

Dissertação apresentada, como requisito
parcial para obtenção do título de Mestre,
ao Programa de Pós-Graduação em
Engenharia Mecânica, da Universidade do
Estado do Rio de Janeiro. Área de
concentração: Fenômenos de Transporte

Aprovado em: de 2010.

Banca Examinadora:

Prof. Dr. Norberto Mangiavacchi (Orientador)
Faculdade de Engenharia - UERJ

Prof. Dr. Carlos Antônio de Moura
Faculdade de Matemática e Estatística - UERJ

Prof. Dr. Luiz Mariano Paes de Carvalho Filho
Faculdade de Matemática e Estatística - UERJ

Prof. Dr. Antonio Castelo Filho
Instituto de Ciências Matemáticas e de Computação - ICMC-USP

Rio de Janeiro

2010

DEDICATÓRIA

Dedicated to the people I love the most in this life:
my family.

AGRADECIMENTOS

I would like to thank my adviser Professor Norberto Mangiavacchi for all his

help. I greatly appreciate his time, patient, efforts, and his advice, during the research

and writing process. His knowledge and insight has been an invaluable source of

guidance during this two years.

I thank to Professor Christian Schaerer, friend and mentor, for believe in me

well-before I believed in myself and for show me the amazing path of the science.

I thank to all GESAR team Maxini, Sonia, George, Andre for all the help and

my laboratory partners Esther, Raama, Michele, Felipe, Virginia, Katia, Gustavo for

their friendship, support and for all the great times shared together.

Special thanks to my friend and "sushi’s partner" Hyun, for share his wisdom

and for the invaluable advice during the code development. To Hugo, Leon and

Manolo for the friendship, partnership, support and for all the "slayer, team slayer and

fake team slayer" shared together. I’ll always be indebted with you.

Thanks to FAPERJ for the financial support.

Finally and most importantly, I would like to acknowledge my family for

understanding the strain that this process put on me. I thank my parents Justina and

Pedro, my sister Gracie, my lovely nieces Aleli and Lauri, and my nephew Alejandro,

for bringing so much happiness into my life. I would like to say a special word of

thanks to my Mother and Father, for all the support and for all the anxiety they had

suffered on my behalf. Thanks you so much.

RESUMO

López, Pedro Juan Torres. Implementação paralela de um código de elementos
finitos em 2D para as Equações de Navier-Stokes para fluidos incompressíveis com
transporte de escalaresl. 2010. 87f. Dissertação (Mestrado em Engenharia
Mecânica) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, 2010.

O estudo do fluxo de água e do transporte escalar em reservatórios
hidrelétricos é importante para a determinação da qualidade da água durante as
fases iniciais do enchimento e durante a vida útil do reservatório. Neste contexto, um
código de elementos finitos paralelo 2D foi implementado para resolver as equações
de Navier-Stokes para fluido incompressível acopladas a transporte escalar,
utilizando o modelo de programação de troca de mensagens, a fim de realizar
simulações em um ambiente de cluster de computadores. A discretização espacial é
baseada no elemento MINI, que satisfaz as condições de Babuska-Brezzi (BB), que
permite uma formulação mista estável. Todas as estruturas de dados distribuídos
necessárias nas diferentes fases do código, como pré-processamento, solução e
pós-processamento, foram implementadas usando a biblioteca PETSc. Os sistemas
lineares resultantes foram resolvidos usando o método da projeção discreto com
fatoração LU por blocos. Para aumentar o desempenho paralelo na solução dos
sistemas lineares, foi empregado o método de condensação estática para resolver a
velocidade intermediária nos vértices e no centróide do elemento MINI
separadamente. Os resultados de desempenho do método de condensação estática
com a abordagem da solução do sistema completo foram comparados. Os testes
mostraram que o método de condensação estática apresenta melhor desempenho
para grandes problemas, às custas de maior uso de memória. O desempenho de
outras partes do código também são apresentados.

Palavras-chave: Métodos de Elementos Finitos; Condensação Estática;
Particionamento de Malhas; Sistema Linear de Grande; PETSc.

ABSTRACT

Lópes, Pedro Juan Torres. Parallel implementation of finite element code for
twodimensional incompressible Navier-Stokes Equations with scalar transport. 2010.
87f. Dissertation (Master in Mechanical Engineering) – Faculty of Engineering, State
University of Rio de Janeiro, Rio de Janeiro, 2010.

The study of the water flow and scalar transport in water reservoirs is
important for the determination of the water quality during the initial stages of the
reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite
element code for solving the incompressible Navier-Stokes equations coupled with
scalar transport was implemented using the message-passing programming model,
in order to perform simulations of hidropower water reservoirs in a computer cluster
environment. The spatial discretization is based on the MINI element that satisfies
the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable
mixed formulation. All the distributed data structures needed in the different stages of
the code, such as preprocessing, solving and post processing, were implemented
using the PETSc library. The resulting linear systems were solved using the
projection method implemented by an approximate block LU factorization. In order to
increase the parallel performance in the solution of the linear systems, we employ the
static condensation method for solving the intermediate velocity at the vertex and
centroid nodes separately. We compare performance results of the static
condensation method with the approach of solving the complete system. In our tests
the static condensation method shows better performance for large problems, at the
cost of an increased memory usage. Performance results for other intensive parts of
the code in a computer cluster are also presented.

Keywords: Parallel Finite Element; Static Condensation; Mesh Partition; Large Linear
System; PETSc.

LISTA DE FIGURAS

2.1 Reservoir 16

2.2 2D Mini Element 20

2.3 Typical Sparsity Pattern for our problem: (a) Sparsity Pattern for Matrix

K . (b) Sparsity Pattern for Matrix M

24

3.1 Typical FEM Program 26.

3.2 Classifications of Parallel Computers by memory: (a) Distributed

Memory. (b) Shared Memory

27

3.3 Diagram of PETSc Library (BALAY et al., 2009) 28

3.4 Matrix Parallel Layout used on PETSc 30

4.1 UML Diagram 39

4.2 Partitioning Process 41

4.3 Redistribution Process: (a) Simplified Set of Operations . (b)

Redistribute Meshwith new ordering

41

4.4 Examples of Mesh Partitioning for different domains: (a) Example of a

Reservoir Branch. (b) Mesh of the Reservoir Branch after the decomposition. (c)

Rectangular Domain Partitioned with 16 processes

42

4.5 Sketch of the scatters vertices algorithm 43

4.6 Sparsity Patter of Matrix M and K: (a) Sparsity of Matrix K with 8

process. (b) Sparsity of Matrix M with 3 process

47

4.7 Sparsity of Kss with 8 process 48

4.8 VTK Files Hierarchy 50

5.1 Diagram of the Cluster 52

5.2 Architectural overview for dual-socket_quad-core Intel Harpertown 53

5.3 Stream Benchmark Results for both MPI and Thread Version 55

5.4 MFlops Achieved for each matrix: (a) MFlops per Core Achieved for

different Matrices. (b) Total MFlops Achieved

56

5.5 Memory Bandwidth Achieved for each matrix: (a) Memory Bandwidth

Measured per Core. (b) Total Memory Bandwidth Measured with core increase

56

5.6 Beff Results for different MPI functions and communications pattern: (a)

Sendrecv, Ring and Random patterns . (b) Alltoal, Ring and Random patterns

57

5.7 Beff Results for different MPI functions and communications pattern: (a) non-

blk, Ring and Random patterns . (b) Best Transfers method,Ring and Random

patterns

58

5.8 Beff Results for different MPI functions and communications pattern: (a)

Average, Ring and Random patterns for Sendrcv,Alltoall,non-blk. (b) Best Method

58

6.1 2D Domain with Boundary Conditions 61

6.2 Preprocessing Time: (a) Distributions . (b) Partitions 63

6.3 Preprocessing Time: (a) Redistributions. (b) Scattering 63

6.4 Load Balancing: (a) Load Balancing of Elements . (b) Load Balancing of

Vertices

64

6.5 Partitions and Redistributions Speedup: (a) Partitions . (b) Redistributions 64

6.6 Assembling Time (sec.): (a) Problem 1. (b) Problem 2 65

6.7 Assembling Speedup 65

6.8 Number of Iterations and Time for Method 1. Problem 1: (a) Iterations Time in

seconds. (b) Number of Iterations

66

6.9 Efficiency Ratio and Speedup for Method 1 - Problem 1: (a) Efficiency Ratio.

(b) Speedup

67

6.10 Time and Iterations Time for Solver CG with ASM preconditioner Method 1-

Problem 1 : (a) Iterations Time in seconds. (b) Numbers of Iterations

67

6.11 Speedup and efficiency for CG+ASM. Method 1-Problem 1 : (a) Efficiency

Ratio. (b) Speedup

68

6.12 Number of Iterations and Time for Method 1. Problem 2: (a) Iterations Time in

seconds. (b) Number of Iterations

68

6.13 Efficiency Ratio and Speedup for Method 1 - Problem 2: (a) Efficiency Ratio.

(b) Speedup

69

6.14 Time and Iterations Time for Solver CG with ASM preconditioner Method 1-

Problem 2 : (a) Iterations Time in seconds. (b) Numbers of Iterations

69

6.15 Speedup and efficiency for CG+ASM. Method 1-Problem 2: (a) Efficiency

Ratio. (b) Speedup

70

6.16 Number of Iterations and Time for Method 2. Problem 1: (a) Iterations Time in

seconds. (b) Number of Iterations

70

6.17 Speedup and Efficiency. Method 2 - Problem 1: (a) Efficiency Ratio. (b)

Speedup

71

6.18 Number of Iterations and time. Method 2 - Problem 1: (a) Time in seconds. (b)

Iterations 71

6.19 Speedup and Efficiency with Solver CG + ASM. Method 2 - Problem 1: (a)

Speedup. (b) Efficiency

72

6.20 Number of Iterations and Time for Method 2. Problem 2: (a) Iterations Time in

seconds. (b) Number of Iterations

72

6.21 Speedup and Efficiency. Method 2 - Problem 2: (a) Efficiency Ratio. (b)

Speedup

73

6.22 Number of Iterations and time. Method 2 - Problem 2: (a) Time in seconds. (b)

Iterations

73

6.23 Speedup and Efficiency with Solver CG + ASM. Method 2 - Problem 1: (a)

Efficiency Ratio. (b) Speedup

74

6.24 Time Comparison between Method 1 and Method 2: (a) Results for Problem 1.

(b) Results for Problem 2

74

6.25 Execution Time and Iteration count for Pressure in Problem 1: (a) Execution

Time (sec.).(b) Iteration count

75

6.26 Speedup 75

6.27 Execution Time and Iteration count for Pressure in Problem 2: (a) Execution

Time (sec.). (b) Iteration count

76

6.28 Speedup 76

6.29 Execution Time and Iteration count for Scalar Concentrations in Problem 1: (a)

Execution Time (sec.). (b) Iteration count

77

6.30 Speedup 77

6.31 Execution Time and Iteration count for Scalar Concentrations in Problem 2: (a)

Execution Time (sec.). (b) Iteration count

78

6.32 Speedup 78

6.33 Operations Counts Measured in Problem 1: (a) Total FLOPs. (b) Flops per

Iterations

79

6.34 Operations Counts Measured in Problem 2: (a) Total FLOPs. (b) Flops per

Iterations

79

6.35 MFlops/sec in Problem 1 and 2: (a) Problem 1. (b) Problem 2 80

6.36 Snapshot of the Simulations: (a) Scalar Concentrations. (b) Pressure 81

6.37 Snapshot of the Simulations: (a) Velocity - Component X. (b) Velocity -

Component Y

81

SUMÁRIO

1 INTRODUCTION 13

2 Mathematic Model of The Problem 15

2.1 Equations of the Model ... 15

2.1.1 The Model ... 16

2.2 Variational approaches ... 16

2.3 Galerkin Finite element method and Matrix Form Equa tions 18

2.4 Time Discretizations - Semi-Lagrangian method .. 19

2.5 Ladyzhenskaya Babuska-Brezzi Conditions ... 20

2.6 Solving The Linear Equations System - Projection me thod 21

2.7 Sparsity Pattern .. 23

3 Finite Element Program and Their Parallelization 25

3.1 A General Structure of Finite Element Program .. 25

3.2 Basics Concepts of Parallel Computing .. 26

3.3 Programming Models ... 27

3.4 The PETSc Library .. 28

3.4.1 Matrix-Vector Parallel Layout .. 29

3.5 Performance Bottlenecks ... 30

3.5.1 Parallel Programming Paradigm ... 30

3.6 Mesh Partition and Decomposition .. 31

3.7 Assemble and Solve - The Kernel .. 32

3.7.1 Assemble .. 33

3.7.2 Solve .. 34

4 Implementation 37

4.1 Scope .. 37

4.2 Preprocessing - Model Class ... 39

4.2.1 Partitioning and Distribution Elements .. 39

4.2.2 Partitioning, Scattering and Renumbering Vertices ... 42

4.2.3 Boundary Conditions Treatment ... 44

4.2.4 Vertices Connectivity and Ghost Element .. 45

4.3 Simulator Class .. 45

4.3.1 Techniques used for Matrix Assembling .. 46

4.3.2 Boundary Conditions .. 49

4.3.3 Solving The Linear System .. 49

4.4 Postprocessing ... 50

uθ

5 Computational Platform 52

5.1 Hardware Platform ... 52

5.2 Libraries and Compilers Used ... 53

5.3 Some Benchmark Results .. 54

5.3.1 Memory Bandwidth - STREAMS .. 54

5.3.2 Communication bandwidth and latency - bef f (Effective Bandwidth Benchmark) .
 57

6 Results 60

6.1 Numeric Problem ... 60

6.2 Performance Measures .. 61

6.3 Running Strategy .. 62

6.4 Preprocessing .. 62

6.5 Solver ... 65

6.5.1 Results for Intermediate Veloctiy - System Bûn+1 = rn + bc2 66

6.5.1.1 Method 1 66

6.5.1.2 Method 2 .. 70

6.5.1.3 Comparison between Method 1 and Method 2 ... 74

6.5.2 Results for Pressure - System DB- −1Gp̃n+1 = −Dûn+1 + bc1 75
6.5.3 Results for Scalar Concentrations - System Bθ θ̃n+1 = rn + bc3 76

6.5.4 Flops Comparison for Each Linear System .. 78

6.6 Total Time .. 80

6.7 Simulations .. 81

7 Summary 82

7.1 Future Research Area ... 83

REFERENCES 84

CHAPTER 1

INTRODUCTION

The biomass decomposition and water analysis are an important and necessary task dur-
ing the initial stages of the reservoir filling and during the life of the reservoir. This is the main
subject studied in the GESAR work group, involving different areas of science as mechanical
engineering, computational science, geography, biology and chemistry.

As the development of the numerical model progresses, the complexity of the algorithms
and the data sets needed for a reasonable quality of the computed results increase, as well as
the computational cost. The concept of parallelism arises as solutions enabling data storage and
computational power increases. Since computational cluster are made from commodity parts,
this approach has become affordable and accessible.

Based on this facts this work aims to enhance the computational performance of the
numerical models parallelizing an existing code, developed in the GESAR work group (ANJOS

et al., 2007; SHIN, 2009). The parallelization was performed using functions and data structures
from PETSc, which is based on the MPI standard. PETSc enables to handle matrix and vector
objects at different levels of abstractions, which is a necessary property if we want to implement
some problem specific approach for assemble and solve the linear system in an efficient way.

The numerical model solves the Navier-Stokes equations coupled with scalar transport
using the Finite Element Method. In order to satisfies the Babuska-Brezzi (BB) condition, the
spatial discretization is based on the MINI element, and the resulting linear system was resolved
using an approximated block LU factorization.

Basically the workflow of the computational code has the following steps: decompose
the domain using a parallel partition library, compute the matrix entries, assemble the matrix,
solve the linear system and save the result. Since we must handle multiple degrees of freedom

CHAPTER 1. INTRODUCTION 14

(dof) per node, a mapping strategy must be adopted in order to attempt one important goal
in parallel programming, which is to maintain the data locality (FOSTER, 1995). Also, when
solving the intermediate velocity (chapter 2) two approaches were implemented. The first called
Method 1, was solving the complete linear system, that is, dof on vertices plus on centroids
resulting on a large size matrix. In the second, called Method 2, we used the idea of static
condensation to create a smaller matrix or condensed matrix on each subdomain, eliminating
the dof of the centroids. Next, we use each of this local matrices on each subdomain to mount
the global system, solve this, and back on the local domain to solve the centroids, obtaining
finally the whole solutions. Details of this approach are given in chapter 4.

Results are shown and discussed, comparing the static condensation approach presents
superior in terms of parallel performance.

This dissertation is organized as follows:

• In chapter 2, will expose the motivations and the mathematics formulation of the problem.
Some concepts about parallel computing and a brief review of the PETSc library are given.

• In chapter 3, will explain the main part of a parallel finite element code and the issues that
involve the parallelization.

• In chapter 4, the code implementations will described.

• In chapter 5, the computational platform is described, and some benchmark results are
given.

• In chapter 6, the results will be presented and discussed.

CHAPTER 2

MATHEMATIC MODEL OF THE PROBLEM

In this chapter we describe the mathematic solved model, introducing the spatial and
time discretization. The Galerking semi-discrete method for spatial discretization and the semi-
lagrangian for time. Finally the general procedure for solving the problem is presented and the
resulting sparsity pattern is discussed.

2.1 Equations of the Model

The final aim is to perform simulations for water flow and scalar transport in water
reservoirs like shown in figure 2.1, during the initial stages of the reservoir filling and during
the life of the reservoir. The geometry of the domain is usually quite complex, involving many
branches with dendritic structure. Therefore, it is desirable to employ a numerical method ca-
pable to deal with unstructured meshes to discretize the domain. Among the possible choices,
we selected the Finite Element method to solve the model equations. The mathematical state-
ment of this problem, is based on the continuity equations, the Navier-Stokes equations and the
advection-diffusion equation for the scalar transport, subject to appropriate boundary and initial
conditions.

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 16

Figure 2.1: Reservoir.

2.1.1 The Model

The model solved, as we said before, is the Navier-Stokes equation for incompressible
fluid flow and scalar transport equations (BATCHELOR, 2000; KUNDU; COHEN, 2002).

∂u
∂t

+ u · ∇u = −1

ρ
∇p+

1

ρ
∇ · [µ(∇u +∇uT)] + g (2.1)

∇ · u = 0 (2.2)

Dθ

Dt
= ∇ · (α∇θ) (2.3)

The equations 2.1,2.2 and 2.3 are the Navier-Stokes, continuity and scalar transport
equations respectively, where u is the velocity, p is the pressure, θ scalar quantity of magni-
tude of a property of the fluid, ρ is the density of the fluid, µ is the dynamic viscosity, and α is
the molecular (heat or mass) diffusivity coefficient. The equation 2.1 can be expressed in terms
of the substantive derivative operator D

Dt
as showed in the equation 2.4.

Du
Dt

= −1

ρ
∇p+

1

ρ
∇ · [µ(∇u +∇uT)] + g (2.4)

2.2 Variational approaches

Formally, a fluid flow solution is given by the function u, p and θ defined on (Ω, t) ⊂
R3 × R+, which satisfy the following differential equations system, in non-dimensional form

∂u
∂t

+ u · ∇u = −1

ρ
∇p+

1

Re
∇ · [µ(∇u +∇uT)] +

1

Fr2
g (2.5a)

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 17

∇ · u = 0 (2.5b)
Dθ

Dt
=

1

ReSc
∇ · (α∇θ) (2.5c)

subject to the following boundary conditions,

u = uΓu on Γu;
∂u

∂n
= uΓnu on Γ n

u (2.6a)

p = pΓp on Γp;
∂p

∂n
= pΓnp on Γ n

p (2.6b)

θ = θΓθ on Γθ;
∂θ

∂n
= θΓnθ on Γ n

θ (2.6c)

and initial conditions,

ui = ut0 p = pt0 θ = θt0 in Ω at t = t0 (2.7)

Equations 2.5 are known as strong formulations of the problem, that is, the solution u,
p and θ, satisfy the system equation on every point of Ω. The problem can be equivalently
formulated in the so-called variational form, also known as weak formulation, which is given
by equations 2.8. Details about this procedure can be found in (ZIENKIEWICZ; TAYLOR, 2000a;
BATCHELOR, 2000).

∫
Ω

∇wp · udΩ =

∫
Γ cp

wpu · ndΓ (2.8a)∫
Ω

w
Du
Dt

dΩ−
∫

Ω

∇wpdΩ +

∫
Ω

1

Re
[∇u +∇uT] : wdΩ = 0 (2.8b)∫

Ω

wθ
Dθ

Dt
dΩ +

∫
Ω

1

Sc Re
∇wθ · ∇θdΩ = 0 (2.8c)

Here we suppose that the gravity term has no dynamic effect in our problem, so it can
be neglected. The formulations could be read as, find functions u ∈ H1

uΓu
× R+, p ∈ L2 × R+

and θ ∈ H1
Γθ
× R+ that satisfy the weak formulation 2.8 for all w, wp and wθ ∈ H1

0, where the
spacesH1

uΓu
,H1

uΓu
and L2 are defined as follows,

L2(Ω) =

{
v : Ω→ R;

∫
Ω

v2dΩ <∞
}

(2.9)

H1(Ω) =
{
v : Ω→ R; v,∇v ∈ L2(Ω)

}
(2.10)

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 18

H1
ξ(Ω) =

{
v ∈ H1(Ω); v = ξ in Γξ

}
and where ξ is any function defined in the boundary Γξ (2.11)

Finally we can say that a solution of 2.5, also is a solution of 2.8. The oppositive is not
true, in general.

From equantions 2.8 we can distinguish two kinds of functions. The functions belonging
to the solutions space and those that belongs to the w functions space, first set are called trial

functions and the ones belonging to the second are called weight functions.

2.3 Galerkin Finite element method and Matrix Form Equations

In order to compute an approximate solution to this problem, we need to introduce some
restrictions in the search space, that is, seek an approximate solutions in a finite-dimensional

subspace of the space of solutions rather than in the whole space. This is known as Galerking’s

method, (see (BECKER; CAREY; ODEN, 1981)). Now, since the choice of the basis function is
arbitrary, we need a technique for constructing them. The finite element method provides a gen-
eral and systematic technique for constructing basis functions (HUGHES, 2000; ZIENKIEWICZ;

TAYLOR, 2000b; BECKER; CAREY; ODEN, 1981).
On the basis of these concepts we can perform the spatial discretization of equation 2.8,

which result is the semi-discrete form of the equations. Details about this procedure for this
problem can be found in (ANJOS et al., 2007; SHIN, 2009). The matrix form of the equations can
be written as,

M ˙̃u−Gp̃ + Kũ = bcn2 (2.12a)

Dũ = bcn1 (2.12b)

Mθ
˙̃θ + Kθθ̃ = bcn3 (2.12c)

where M is the mass matrix, G is the gradient matrix, K is the momentum diffusion
matrix, D is the divergence matrix, Mθ is the scalar mass matrix, Kθ is the scalar diffusion
matrix. In the 2D dimensinal case the matrices have the following structure,

D =
[
D1 D2

]
np×2nu

(2.13a)

G =

[
G1

G2

]
2nu×np

(2.13b)

Mρ =

[
Mρ 0

0 Mρ

]
2nu×2nu

(2.13c)

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 19

Kρ =

[
2Kρ11 +Kρ22 Kρ12

Kρ21 Kρ11 + 2Kρ22

]
2nu×2nu

(2.13d)

Mθ =
[
Mθ

]
nθ×nθ

(2.13e)

Kθ =
[
Kθ1 +Kθ2

]
nθ×nθ

(2.13f)

and the unknown variables vector are given by

p̃ =
[
p
]
np×1

(2.14a)

ũ =

[
ũ1

ũ2

]
2nu×1

(2.14b)

θ̃ =
[
θ̃
]
nθ×1

(2.14c)

Where nu is the number of nodes for velocity, np is the number of nodes for pressure
and nθ is the number of nodes for the scalar concentration.

2.4 Time Discretizations - Semi-Lagrangian method

The resulting equations 2.12, is an ordinary differential equations system in time, there-
fore we need to perform a time discretization. The approach used in this work is the semi-
lagrangian method, originally introduced in (CHARNEY; FJÖRTOFT; NEUMMAN, 1952; WIIN-

NIELSEN, 1959; J.S., 1963; J., 1981). This technique allow us to use larger time stable step
than a Eulerian approach. This technique try to take the best of the two known scheme Eulerian

and Lagrangian. Basically this consist in use different set of particles at each time step, the set
of particles being chosen such that they arrive exactly at the of the mesh at the of the time step.
For a mathematical formulation we can start on representing the substantive derivative of the
function φ at the point xi discretized using a first order scheme as

Dφ

Dt
=
φn+1
m − φnd

∆t
(2.15)

where, φn+1
m = φ(xm, t

n+1) is the image of φ at the point xm and the time step n + 1 and
φnd = φ(xd, t

n) is the image of φ at the point xd and the time step n, obtained by interpolating
the solution on the mesh nodes at time step n. The i-component of the position xd is obtained
using the expression

xid = xim − ui∆t (i = 1, 2, 3) (2.16)

where ui = ui(xm, t
n) is the velocity vector at the point xm and time step n.

Finally equations 2.12 discretized in time using a semilagrangian scheme looks like the

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 20

following,

M

(
ũn+1 − ũnd

∆t

)
−Gp̃n+1 + K

(
λũn+1 + (1− λ)ũnd

)
= bcn2 (2.17a)

Dũn+1 = bcn1 (2.17b)

Mθ

(
θ̃n+1 − θ̃nd

∆t

)
+ Kθ

(
λθ̃n+1 + (1− λ)θ̃nd

)
= bcn3 (2.17c)

where, λ is a parameter to obtain different methods of discretization in time. For λ = 0 results
a explicit discretization, for λ = 1 results a semi-implicit discretization and for λ = 1

2
results

the Crank-Nicolson method.

2.5 Ladyzhenskaya Babuska-Brezzi Conditions

As we said before the block matrix of the system 2.19 is indefinite, that is, it has positive
and also negative eingenvalues. Then we would take a particular care to that system has a unique
solution. It can be shown that, provided the kernel (null space) of matrix G is zero, the system
2.19 will have unique solution. To ensure this solution of the discrete problem, interpolation
functions for velocity v and pressure p must be carefully matched. This requirements is known
as inf-sup conditions, also known as Ladyzhenskaya Babuska-Brezy condition. To satisfy this
stability conditions, we use in this work the MINI element, see (ZIENKIEWICZ; TAYLOR, 2000a;
ZIENKIEWICZ; TAYLOR, 2000b; HUGHES, 2000).

Velocity node

Pressure node

Figure 2.2: 2D Mini Element.

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 21

2.6 Solving The Linear Equations System - Projection method

Once we have made all the discretizations, we need to perform the resolution of the set
of linear equations system resulted, so we can rewrite the equations 2.17 as follows,

Dũn+1 = bcd1 + bcn1 (2.18a)(
M

∆t
+ λK

)
ũn+1 −Gp̃n+1 =

(
M

∆t
− (1− λ)K

)
ũnd + bcd2 + bcn2 (2.18b)(

Mθ

∆t
+ λKθ

)
θ̃n+1 =

(
Mθ

∆t
− (1− λ)Kθ

)
θ̃nd + bcd3 + bcn3 (2.18c)

We can rewrite these equations in a simpler way, as follows[
B −G
D 0

][
ũn+1

p̃n+1

]
=

[
rnu
0

]
+

[
bcd2

bcd1

]
+

[
bcn2

bcn1

]
(2.19)

Bθθ̃
n+1 = rnθ + bcd3 + bcn3 (2.20)

where, the matrix B and Bθ are given by

B =
M

∆t
+ λK (2.21a)

Bθ =
Mθ

∆t
+ λKθ (2.21b)

and the vector rnu and rnθ are given by

rnu =

(
M

∆t
− (1− λ)K

)
ũnd (2.22a)

rnθ =

(
Mθ

∆t
− (1− λ)Kθ

)
θ̃nd (2.22b)

The equation 2.20 is easy to solve, not so the system 2.19. This system is in general large,
indeterminate and difficult to solve in an efficient way. The matrix of this system is known as
saddle point and is one fundamental problem in scientific computing (BENZI et al., 2005). Most
traditional solve methods like the projection or fractional step methods, were conceived to allow
the system to be solved as a series of individuals equations, saving in this way computational
efforts and produce simpler code implementations (PEROT, 1993; LEE; OH; KIM, 2001). The
price of this approach is a certain loss of accuracy in the solution.

The projection method consists of decomposing the matrix of the equation 2.19 via a

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 22

block factorization. Applying the LU factorization, the following linear system is obtained[
B 0

D DB−1G

][
I −B−1G

0 I

][
ũn+1

p̃n+1

]
=

[
rnu
0

]
+

[
bc2

bc1

]
(2.23)

where, bci = bcdi + bcni (i = 1, 2, 3).
In the first instance the intermediate solution is obtained by solving the following equa-

tion system [
B 0

D DB−1G

][
ûn+1

p̂n+1

]
=

[
rnu
0

]
+

[
bc2

bc1

]
(2.24)

and then, the final solution is obtained by solving[
I −B−1G

0 I

][
ũn+1

p̃n+1

]
=

[
ûn+1

p̂n+1

]
(2.25)

Using the two equations (equation 2.24 and 2.25) the solution can be obtained by the
following steps

Bûn+1 = rnu + bc2 (2.26a)

DB−1Gp̃n+1 = −Dûn+1 + bc1 (2.26b)

Bθθ̃
n+1 = rnθ + bc3 (2.26c)

ũn+1 = ûn+1 + B−1Gp̃n+1 (2.26d)

This method relies on the Helmholtz-Hodge decomposition, which says that any vector
can be decomposed into a component of a zero divergence and another with zero curl.

Solving the equations 2.26 is known as the Uzawa method. However, to solve 2.26b
exactly is a very expensive step. Therefore, an approximation is performed in order to increase
the computational efficiency, yielding the following approximate factorization

Bûn+1 = rnu + bc2 (2.27a)

DB̃−1Gp̃n+1 = −Dûn+1 + bc1 (2.27b)

Bθθ̃
n+1 = rnθ + bc3 (2.27c)

ũn+1 = ûn+1 + B̃−1Gp̃n+1 (2.27d)

where B̃ is a diagonal (lumped) approximation of B.

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 23

Finally we can describe the solutions algorithm with more details as following.
Algorithm 1: General Procedure

1 Assemble Matrix: B,D, G, B̃−1 and Bθ

2 for i← 1 to Nsteps do
Apply Boundary Conditions.
Resolve ûn+1 from:

3 Bûn+1 = rnu + bc2

Resolve p̃n+1 from:
4 DB̃−1Gp̃n+1 = −Dûn+1 + bc1

Find the final velocity: ũn+1 = ûn+1 + B̃−1Gp̃n+1

Calculate the Scalar Concentrations:
5 Bθθ̃

n+1 = rnθ + bc3

Dump Solutions.
end

2.7 Sparsity Pattern

The resulting matrices, seen in the previous section, are large and sparse, as typically
resulting from the PDE discretization. A matrix with very few nonzero elements is a sparse
matrix. It is possible to take advantage of this fact, using special scheme to store them, like
CSR, CSC, MRS and others see (SAAD, 1999) for details. Consequently algorithm that uses the
matrix must be designed to work with this kind of storage (SAAD, 1999). The sparse matrices
in algorithm 1 are unstructured, because their entries are non regularly located.

Figures 2.3(a) and 2.3(b) shown a typical sparsity of matrix K and M for this problem,
with this particular type of element mesh and numerating all vertices first following by centroids,
see (ANJOS et al., 2007; SHIN, 2009) for details.

CHAPTER 2. MATHEMATIC MODEL OF THE PROBLEM 24

(a)

(b)

Figure 2.3: Typical Sparsity Pattern for our problem: (a) Sparsity Pattern for Matrix
K . (b) Sparsity Pattern for Matrix M.

The blocks matrix in the main diagonal correspond to each degree of freedom, X and Y
in our case, note the influence of centroids in the final size of the matrix.

CHAPTER 3

FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION

In this chapter we introduce a general structure of a typical finite element code. The
bottlenecks on each stage are explained. Next, the parallelization strategy on each stage of the
code is discussed.

3.1 A General Structure of Finite Element Program

In general, a finite element program could be designed as a process with three indepen-
dents stages, that is preprocessing, main processing and postprocessing. Each must be executed
in right sequential order to produce the desired result. The preprocessing part includes: read
input data, mesh generation, define data arrays, and element-related data. The postprocessing,
which is the last stage, directly gives the solution in graphical form or may be linked to an
external postprocessor via an interface. The main processing unit is responsible for the compu-
tational effort and often most of the computing (CPU) time during a calculation, consequently
this part is the most time consuming part of whole work. Sometimes this part is called kernel

and usually many finite element programs only consist of this unit, leaving the pre- and post
processing to be performed by linking external programs. We can break up this unit into two
parts: assemble and solver, see figure 3.1 . In the assemble part we mount the stiffness matrix
and load vector and next in the solver we solve the entire equation system assembled in this
way.

In the following sections we provide a short review of parallel computer architectures
and programming models to introduce the parallel programming paradigm employed in this
work.

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 26

Figure 3.1: Typical FEM Program .

Algorithm 2: Finite Element Procedure

Preprocessing

while i<Nsteps do
assemble matrix
intermediate velocity calculation
pressure calculation
velocity correction calculation
scalar calculation

end
Posprocessing

3.2 Basics Concepts of Parallel Computing

A parallel computer is a set of processors that are able to work cooperatively to solve
a computational problem (FOSTER, 1995). Two types of parallel computers can be highlight,
those with distributed memory (fig. 3.2(a)) and those with shared memory (fig. 3.2(b)). More
extensive classifications and explanations can be founded in (FOSTER, 1995; KSHEMKALYANI;

SINGHAL, 2008).

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 27

(a) (b)

Figure 3.2: Classifications of Parallel Computers by memory: (a) Distributed Mem-
ory. (b) Shared Memory.

In the distributed memory architecture each processors has its own memory and com-
munications are performed through either specialized (InfiniBand, Quadrics, Myrinet, etc) or
commodities (Gigabit Ethernet) networks. In shared memory architecture a single space address
are shared between all the processors.

From the programming point of view parallel computers with shared memory are easy
to program and sharing data is fast due to the proximity of memory to processors. In opposite
to this there are not scalability between processors and memory, also they becomes expensive
to design and produce with ever increasing numbers of processors. In other hand, distribute
memory has the advantage that the memory is scalable with number of processors and cost
effectiveness because can use commodity, i.e., off-the-self processors and networking. As a
disadvantages they are hard to programming, because the programmers is responsible for many
of the details associated with the data communications. The largest and fastest computers in the
world today employ both shared and distributed memory architectures.

3.3 Programming Models

Several programming models are available for parallel computers, but each of them are
associated to the underlying hardware. Some of them are shared memory, message passing, and
hybrid. From this group we can stick out two, shared memory and message passing, for details
of these approaches see (GRAMA; GUPTA; KUMAR, 2003).

Shared memory model programm share a common address space, that is why we need
mechanisms for control the access to the memory space, however, with this approach the no-
tion of memory ownership disappears, with the need of explicitly communications, therefore
simplifies the program development (HUGHES; HUGHES, 2008; GRAMA et al., 2003). Some APIs
that help the programming in this fashion are the POSIX Threads (BUTENHOF, 1997; BURNS;

WELLINGS, 2009) and OpenMP (OPENMP, 2010).
In distributed memory model, each process owns a memory space and communications

must be performed explicitly to exchange data between process.The message-passing program-

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 28

ming paradigm is one of the oldest and most widely used approaches for programming parallel
computers (GRAMA et al., 2003). The specifications of APIs needed to perform communica-
tions in this model is Message Passing Interface (MPI) and there are several implementation,
commercial also as non-commercial, for a complete list see (ANL/MSC, 2010a). The implemen-
tations used in this work is the MPICH2 (ANL/MSC, 2010b). An important and desirable features
on this model is the data locality, since local data is less costly to access that the remote data.

3.4 The PETSc Library

The parallel code implemented in this work was development using the message passing
programming model. The main library used to develop this work was PETSc, that in words
of their authors "is a suite of data structures and routines for the scalable (parallel) solution of
scientific applications modeled by partial differential equations. It employs the MPI standard
for parallelism" (BALAY et al., 2009), basically all the necessary distribute object and functions
for implement the parallel code were taken from this library. PETSc provide basically four main
object Vec, Mat, KSP/PC and SNES 3.3.

• Vec: for handle vectors sequentials/parallels and basic operations of linear algebra.

• Mat: for handle matrix sequential and parallel with different format.

• KSP/PC: implement a set of solvers algorithms based on Krylov Subspace and precondi-
tioners such as ILU, ICC, algebraic multigrid, and others.

• SNES: implementations of Newton method, with global convergency (linear search, trusted
region).

Figure 3.3: Diagram of PETSc Library (BALAY et al., 2009).

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 29

Others objects that was widely used in this work was the IS and AO. ISis an abstract
object for general indexing and setup vector scatters and AO is an abstract object that manages
mapping between different global numbering.

Implement a complete parallel unstructured grid finite element code with PETSc repre-
sent a good deal of work and requires a lot of application level coding, but it can manage all the
linear solvers, which allow concentrate the effort on parallel unstructured grid manipulations.

Next, we will explain how is the treatment of distribute vectors and matrices in this
library.

3.4.1 Matrix-Vector Parallel Layout

We will review now how is the parallel layout of vector and matrices in PETSc, with a
simple but relevant example. The matrix are partitioned by contiguous chunks of rows across
the processors, and all column are local, as showed in 3.4. Suppose we want to perform a
matrix-vector Ax = b product, we must take care choosing the parallel layout of each vector,
that is, each vector layout must be consistent with matrix column or row parallel layout. There-
fore we have in 3.4 that the left vector x must be compatible with column layout and the right b
must be compatible with row layout. Fortunately PETSc have specialized function that given a
matrix we get compatible vectors, avoiding inconsistencies in the code. In this manner on each
local structure of distributed object matrix A we have two sequential submatrix named diagonal
and off-diagonal matrix, details about algorithms of matrix-vector product in distributed envi-
ronment can be see in (SAAD, 1999). The fact of the continuous distributions of rows across the
process, become relevant at time of matrix assembly, resulting desirable proper numbering in
each subdomains, this will be explained in further chapters.

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 30

Figure 3.4: Matrix Parallel Layout used on PETSc.

3.5 Performance Bottlenecks

Most of the computational effort is made in the kernel of the program, as we said before.
In order to perform more complex simulations, i.e., complex numerical models and geometry,
we need to improve this unit, taking parallel programming technique as prime approach, based
on successful results reported in the literature and the reduction of commodity hardware costs.

When performing large scale finite element computations, basically all stages of the
program demand more effort. In fact, when the problem is large, the mesh is huge, demanding
high cost of I/O work and memory usage. Inside the kernel this large mesh would affect the cost
of assembly and solver stage consuming even more memory, this in turn would produce large
amount of results that have to be saved.

As we explained, the most resources and time consuming stage is the kernel, because
it need to be performed every time step. In principle we shall focus in the improvement of
this unit, but we will need to accomplish some task in the preprocessing stage (like the mesh
partition and decomposition) to achieve full parallelism in the kernel.

3.5.1 Parallel Programming Paradigm

In large application we could have serious bottlenecks in the preprocessing and post pro-
cessing stages, since the NFS is not scalable for more than 64 nodes, see (STERLING; SALMON;

SAVARESE., 1999) for details. To overcome this we should use some parallel file system for HPC
like Lustre, PanFS,PVFS2,etc, see (LAYTON, 2007). Another option is to split input/ouput file
avoiding the transfers and synchronization between nodes.

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 31

Inside the kernel, we have to improve two substage assemble and solve. Algorithm
3 shows a typical element-by-element style assembly from FEM theory, see (HUGHES, 2000;
GOCKENBACH, 2006). In this algorithms, each element has its own local matrix and adds his
contributions to the global matrix. In this way the program will iterate over each element in
order to build the global matrix. Since each element can be iterated and processed in an inde-
pendent order, this bring to us a natural approach for parallelism. Employing either the distribute
memory or a shared memory paradigm. As mentioned before we selected the message-passing
model because it maps the available hardware. This allows us to distribute work (in a distributed
environment like a cluster) across the processes, enabling each process to work on it own data,
consisting on a set of elements independently, saving a considerable amount of time in the com-
putation of the global matrix. Once we have assembled the matrix (or matrices) and vector (or
vectors), we need to proceed to solve the system equation. There are excellent works about
this issue employing PETSc (BALAY et al., 1997; BALAY et al., 2010; BALAY et al., 2009), Trilinos
(HEROUX, 2005), SPOOLES (ASHCRAFT; GRIMES, 1999) and others.

Algorithm 3: Element-oriented algorithm for assembly

1 Allocate memory and create the sparse matrix A

foreach element e ∈ D do
construct elemental local matrix a of the element
foreach ie ∈ e do

foreach je ∈ e do
add contribution to the global matrix A
AM(ie)M(je)+ = aieje

end
end

end
whereM is a function that associates a local numbering to a global numbering

Necessarily, we will have data exchanging between process, in order to complete assem-
ble and solve stages. Since the communication bandwidth is a bottleneck in the message passing
programming models, minimizing communication is the most important problem to solve with
this programming models.

3.6 Mesh Partition and Decomposition

The general parallelization strategy is to decompose the problem domain into subdo-
mains and distribute them onto the processors. This partition must be such that minimizes the
communication and balances the computational load on each processors, i.e., the number of
elements must be equal or near equal on each subdomain. In some problem this load balancing

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 32

would be inefficient because the computational effort varies from element to element. In such
case another strategy must be applied, see for example (LU, 2008).

The partitioning problem for p processor can be expressed as findings p subsets ω1 . . . ωp

of elements such that:

D =

p⋃
i=1

ωi and ∀i, j i 6= j ωi ∩ ωj = Aij, i, j = 1 . . . p (3.1)

with the constraint that the workload W (ωi) = constant ∀ i = 1 . . . p, and the subset
Aij is such that the connections between subdomains is minimum. In practice, the workload
in each subdomain may not be equal, as long as the connections result in reduced inter-process
communications.

This problem is known to be NP-complete problem in general (GAREY; JOHNSON; STOCK-

MEYER, 1974). However, since the problem arises in many applications areas, many approxi-
mation algorithms have been developed over the years.

Basically partitions methods are divided into those which use the spatial coordinates of
the nodes called geometric methods and those which use connectivity of the mesh called graph

based methods. The geometric methods are usually fast but do not necessarily have or use any
knowledge of edges, resulting sometime in a disconnected mesh and in a not optimized data
dependencies/communication (WALSHAW; CROSS, 1999). Behind the graph based methods we
have the spectral and the multilevel methods. The spectral partitioning has proven to provide
good quality of mesh partitions but demand very high computational effort (KARYPIS; KUMAR,
1995). Multilevel method algorithms have been shown to be very fast and produce very high
quality partitioning. The idea is to minimize the problem size by contracting the graph into
coarser approximations which are used to solve the actual problem. This methods is described
in (KARYPIS; KUMAR, 1995).

Geometric methods as well as graph based methods have been implemented in a variety
of package like PARMETIS (LAB, 2010), JOSTLE (WALSHAW, 2010), SCOTH (PELLEGRINI,
2010), CHACO (HENDRICKSON, 2010), etc. In this work we chose as initial tool PARMETIS,
but thanks to the abstract interface given by PETSc, we can work transparently with any pack-
age. In chapter 4 we will explain details about this implementation.

3.7 Assemble and Solve - The Kernel

The assemble an the solve substage are the core operations of the system and they need
to run very efficiently, since they execute many times, requiring consideration not only of the
algorithm but also of the hardware where it will be executed. In this section we will explain the
approach taken for the assemble and solve substages.

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 33

3.7.1 Assemble

As we explain before, the assemble is the process in which we perform the calculation of
the matrix and thus the linear system. The parallel version of algorithm 3 is show in algorithm
4.

During the assembly we need to cache or stash matrix entries before to perform the
assembly in its final format, then there is a repetitive process of allocating memory and copying
from the old to the new storage, which is a very expensive task. This explain the routine in
line 1 in the algorithm 4. Before allocation we need to process the mesh in order to estimate
the number of non-zeros entries per row of the matrix. In our problem context this is done
by looping over the vertices, computing the number of neighbor vertices, which dictates the
number of non-zero entries for the corresponding matrix row. Allocating the matrix can increase
the performance significantly.

As a result of the mesh partition, each process has its own set of data to work on, this set
has its own local numerations. Later on, to have the contributions of each element in the correct
place in the global matrix, we need some way to associate the local numerations with his global
numerations. Note that these are one-to-one relations. We will call this association a mapping

function. Let be Ilocal = 1 . . . n and Iglobal = 1 . . . N , where n is the local size assigned to each
process and N the global size, next we define the mapping function as a injective function F
such as F : Ilocal → Iglobal (note that n ≤ N). This is done in line 2. We define another usefull
function FAB that takes a set of global numberings A and associates to them another global
numbering B.

Since we use PETSc objects for matrices and vectors, we are able to use a range of sparse
matrix formats available in the package. The default format is the compressed sparse row format
(CSR) see (SAAD, 1999). PETSc also supports additional formats like block compressed row,
block diagonal storage, see (BALAY et al., 2009) for further details.

The rest of the routines are dedicate to calculate the elemental matrix and to add the

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 34

contributions. The element matrix computations depend on what matrix we are calculating.
Algorithm 4: Element-oriented algorithm for assembly - Parallel Version

1 Allocate memory and create the sparse matrix A

foreach element e ∈ ωi do
construct elemental local matrix a of the element

2 F(Ilocal) = Iglobal

foreach i ∈ e do
foreach j ∈ e do

add contribution to the global matrix A
AF(i)F(j)+ = aij

end
end

end

3.7.2 Solve

Once we have the linear system mounted in the form Ax = b, we can proceed to its
resolution. As we saw in algorithm 1, there are three linear systems to resolve, intermediate
velocity ûn+1, pressure p̃n+1, and scalar concentrations θ̃n+1, line 3, 4 and 5 of algorithm 1
respectively. To resolve these large linear equations systems we have two approaches: direct
and iterative. Direct methods perform a factorization of matrix,which in deep is based on the
Gaussian elimination. They are robust, they would give exact solutions in the absence of round-
off errors, and are chosen when reliability is the primary concern. Due to their robustness and
reliability, which is required in certain applications, there is an effort to develop direct solvers
in both distributed and shared memory computers. Example of this are MUMPs (AMESTOY et

al., 1999), SUPERLU (DEMMEL et al., 1999; DEMMEL; GILBERT; LI, 1999; LI; DEMMEL, 2003)
and UmfPack (DAVIS; DUFF, 1994) package, with which it is possible to solve linear systems of
fairly large size efficiently in a reasonable amount of time.

Unfortunately direct methods require too many resources in terms of storage and time
when the problem size increases, resulting in poorly scalable algorithms. The iterative methods
relax the resources requirement by direct methods, at the price of less reliability and not always
achieving the desired accuracy on the solution. The idea behind these method is to approximate
the solution by a sequence of matrix-vector multiplications {Axk}. A metric of the quality is the
number of iterations performed or the velocity of error reduction. In iterative methods, the ker-
nel operations are the sparse matrix vector multiplications (SpMV), they are easy to parallelize,
turning them suitable for parallel computing, in both shared and distributed environments.

Several iterative methods have been proposed (SAAD; VORST, 2000) (FREUND; GOLUB;

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 35

NACHTIGAL, 2008) (SIMONCINI; SZYLD, 2007). Some of them are the conjugate gradient (CG)
(LANCZOS, 1952; HESTENES; STIEFEL, 1952; REID,) which has shown excellent convergence
properties with symmetric positive definitive matrices (SPD), GMRes (SAAD; SCHULTZ, 1986)
and BiCGStab (VORST, 1992), which can be seen as general solvers and are specially used to
solve nonsymmetric problems. In our context problem, just the conjugate gradient is consid-
ered.

When the iterative methods are taking too many steps to attain convergence, modifica-
tion on the original system are required. This is known as preconditioning, which when it is
choosen correctly, accelerate dramatically the convergence. The action of a preconditioner is to
modify the spectral properties of the coefficient matrix, i.e., producing spectra with almost all
eigenvalues clustered around 1, (SAAD, 1999; DEMMEL, 1997). This is still an open and very
important research area in scientific computing, many efforts are focused in developing a good
general preconditioner instead of improving the existing iterative algorithms. We can state the
problem of preconditioning as find a matrix M with the following properties,

• M−1 is an approximation in some sense of A,

• M−1 is easy to obtain.

Some common preconditioners are diagonal or Jacobi, block Jacobi (BJ), additive Schwarz

methods (ASM), incomplete Cholesky factorization (ICC) for symmetric problems, incomplete

LU factorization (ILU) for nonsymmetric problems, and domain decomposition based. Extense
review of this can be founded in (SAAD, 1999; BENZI et al., 2005; DEMMEL, 1997). The pre-
conditioners considered in this work are ILU, ICC, BJ and ASM. An ILU preconditioner is in
general an LU factorization with some set of entries dropped during the factorization process.
Different algorithm of discarding new nonzeros lead to differents level of ILU, thus an ILU of
level zero, called ILU(0), is the simplest form of ILU preconditioner, it has the same sparsity
pattern of the original matrix (SAAD, 1999). In the same way, we get an ICC factorization but
applying Cholesky factorization instead of LU factorization. The block Jacobi preconditioner
can be thougth as a generalizations of a diagonal preconditioner. The former is the simplest
preconditioner which consist of just the diagonal entries of the matrix, so if A = (aij), the
preconditioner will be M = (aii). Consequently, a block diagonal preconditioner which can be
described as follow: let

A =

A11 · · · A1k

...
Ak1 · · · Akk

be a block matrix, with diagonal square matrices Aii. Then a block diagonal precondi-

tioner has the form,

CHAPTER 3. FINITE ELEMENT PROGRAM AND THEIR PARALLELIZATION 36

M =

M11

. . .

Mkk

 ,

choosing Mii = Aii we obtain a block Jacobi preconditioner.
This preconditioner is specially interesting in parallel computing, since each block can

be chosen to match the division of variables over processors. The idea using this preoconditioner
is to perform an incomplete factorization (ILU or ICC) on each block, eliminating the fill-in be-
tween blocks, making it suitable for parallel computing since it does not need communications
between subdomain.

There are more radical approaches to exploit the parallelism in incomplete factorization,
which are based on renumbering of the unknowns. These techniques are known as multicolor-

ing or graph-coloring (SAAD, 1999). Others techniques for parallel preconditioner are multi-
elimination incomplete LU, distribute ILU, and domain decomposition approach, see (SAAD,
1999) for a review of this methods.

Ordering
Ordering consists on finding a permutation matrix P such the reordered matrix PAP T

has some desired properties in terms of ensuing factorizations. Sparse matrix ordering have
been widely used in combination with direct methods to reduce fill-in (DUFF; ERISMAN; REID,
1989; GEORGE; LIU, 1981). On the other hand it has been shown, mostly in a experimental
way, that the reordering in an incomplete factorizations tend to affect the rate of convergence
of preconditioned Krylov subspace methods (BENZI; SZYLD; DUIN, 1999; BENZI; HAWS; TUMA,
2001; CHOW; SAAD, 1997),i.e., an incomplete factorization is sensitive to the ordering of the
unknowns. Several reorderings have been proposed, in this work we tested four ordering algo-
rithms: nested dissection, one-way dissection, reverse Cuthill-McKee, and Quotient Minimum

Degree, descriptions of this algorithm can be founded in (GEORGE; LIU, 1981; SAAD, 1999;
DUFF; ERISMAN; REID, 1989; GEORGE, 1971; GEORGE,).

Finally, we summarize solvers techniques used on each linear system,

• Intermediate Velocity(SPD) - Solver:CG + Preconditioner:BJ + Reordering on each block

• Pressure(Symmetric) - Solver:CG + Preconditioner:BJ + Reordering on each Block

• Scalar Concetrations (SPD) Solver:CG + Preconditioner:BJ + Reordering on each block

Results obtained with these solvers are showed in chapter 6.

CHAPTER 4

IMPLEMENTATION

This chapter present details about the implementations. First we explain the scope, the
library used, and give a sequence call of the main program. We present all the implemented
classes using the UML diagram, and describe the algorithm used on each method.

4.1 Scope

The implementation is written in C++ language, which use the object oriented program-
ming paradigm (OOP). The design is originally based on the work realized in our work group,
see (SHIN, 2009; ANJOS et al., 2007). The figure 4.1 shows the UML diagram for the code im-
plementation. The original design is maintained but the underlying data structure was totally
modified using using both the C++ STL (Standard Template Library) and the Boost Multiarray
(http://www.boost.org/) libraries (KARLSSON, 2005), also all methods and data structure nec-
essary for parallelism were added, taken mostly from PETSc. In the figure 4.1 classes with
white colors were only changed the data structure, the algorithms were kept equals. On the
other hands, the classes Mesh and Simulator were almost totally changed and adapted to run
in parallel environment, and a new class VTKFile was added to support parallel I/O. The pro-
gramming model used was the message-passing, since it is appropriate for cluster environment.
It is important to mention that all functions and objects were taken from PETSc and we will
reference with italics letters. The sequence of function called in the main programm is shown

CHAPTER 4. IMPLEMENTATION 38

next.
Algorithm 5: Sequence of Calling on the main program

1 Mesh mesh()
2 mesh.readVTK()
3 mesh.Distribute()
4 mesh.PartitionsElements()
5 mesh.MoveElements()
6 mesh.ScattersVertices()
7 mesh.GlobalRenumberVertex()
8 mesh.setCentroid()
9 mesh.GetVertexConectivity()

10 Simulator s(mesh)
11 VTKFile results()
12 SolverPetsc p
13 s.init()
14 for i← 1 to Nsteps do

s.applyBC()
s.solveLinearSystem()
results.write()

end

The class Mesh is responsible for the preprocessing state,that is, read, partition and re-
distribute the data, and create the mapping for the different orderings used. Simulator class uses
the informations of Mesh together with FEMLinElement and FEMMiniElement to generate
matrix entries. The SemiLagrangian class computes the effect of the substantial derivative op-
erator. The solutions of the linear systems are performed in the in the Solver class. The main
methods implemented on each class will be described in detail below.

CHAPTER 4. IMPLEMENTATION 39

+Simulator()

+init()

+assembleK()

+stepSL()

+UnCoupled()

+setUnCoupledBC()

+getSubMatrix()

+gatherVelocity()

+scatterVelocity()

-K,M:PetscMatrix

Simulator

+MeshDistribute()

+MeshPartitionElements()

+MeshMoveElements()

+MeshPartitionsVertices()

+MeshScattersVertices()

+GlobalRenumerationVertex()

+SetBC()

+BroadcastBC()

+SetCentroid()

+SetNeighbour()

+GetVertexConectivity()

+GetGhostIEN()

-IEN:boost

-listVert

-localVert

Model
+compute()

+testElement()

+departElement()

-convLin:PetscMatrix

SemiLagrangian

1

*

TElement

+getM()

+getK()

FEMMiniElement

+getM()

+getK()

FEMLinElement

1

*

Solver

1

*

+Solve()

-KSP:PetscStruct

SolverPetsc

Figure 4.1: UML Diagram.

4.2 Preprocessing - Model Class

Class responsible to hold, build and manipulate all information about the mesh and
boundary conditions. Implementations details of main methods to perform this task are give
next.

4.2.1 Partitioning and Distribution Elements

In our approach the root process (rank = 0) reads the mesh from a file, which is in
a VTK format file (KITWARE, 2010). It reads the total number of elements and vertices, and
broadcast these values, so each process performs a simple calculation using equations 4.1, to
determine how many values will have to receive. Next, the root process distribute linearly the
vertices and elements to all process.

mlocal = (numElem)/N + f(numElem,N) (4.1a)

CHAPTER 4. IMPLEMENTATION 40

nlocal = (numV ert)/N + f(numV ert,N) (4.1b)

f(a,N) =

1 if a mod N > 0

0 if a mod N = 0
(4.1c)

Once all processes have their portion of mesh (vertices coordinates and vertices of el-
ements), we have performed an initial distribution of the mesh. For a real scalable portion of
IO code, each process must reads from binary file its portion of mesh, but we choose this as an
initial approach. As illustrations of this process we give a small example shown in the figure
4.2.

In order to use a graph partitioner, we need to calculate the adjacency of each element.
This job is performed by the root process, and then distributed this list to all other processors.
Next, once all processes have their portion, they call collectively a function and create a parallel
sparse matrix representing the adjacency list. The matrix does not has any value associated
(BALAY et al., 2009).

Using this distributed matrix, we call a set of functions, on which we select the parti-
tioner to use. A typical calling sequence is as follow,

Algorithm 6: Partition and Distribution of elements
Input: Mesh File in VTK format.
Output: Partitioned Mesh - Each process will have its own list of elements, with globlal

numbering of vertices(IEN array).
1 Root process (rank=0) reads the mesh file and distribute linearly across the process
2 Compute the element neighbors and distribute
3 Mount a parallel adjacency matrix
4 Compute the partitioning
5 Redistribute the element to the correct processor

The ParMETIS library, is called in line 4 of algorithm 6, generating as a result a mapping
of node number to processors. This process is illustrate in the figure 4.2, for p = 2 and a small
mesh with 4 elements and 6 vertices. This is a preliminary information required to perform the
redistribution of nodes to the correct processors.

CHAPTER 4. IMPLEMENTATION 41

Figure 4.2: Partitioning Process.

As we see in the output index, elements 0, 3 were assigned to process 0, and elements
1, 2 were to assigned to process 1. The functions responsible for this task are MeshDistribute()
and MeshPartitionElement() in class Model. At this point we don’t have yet the necessary
information to perform the element redistributions.

Besides the mapping to the new process, we need a new global cells (elements) number-
ing, this is automatically done with the functions ISPartitioningToNumbering(), which gives an
index set with new numbering. With this information we can perform the scatters and gathers
to move the element to the correct processor.

The movement process is done with the VecScatter object, which is basically a gener-
alized ’struct’ to perform scatters and gathers operations. It can work with both parallel and
sequential Vec (PETSc’s Object for vectors). In order to use this objects we need to setup two
index sets, source and destination,i.e., we need to specify which indices to take, and where
to put them. Following with our little example, we illustrate the redistributions process in the
figure 4.3(a).

(a) (b)

Figure 4.3: Redistribution Process: (a) Simplified Set of Operations . (b) Redis-
tribute Mesh with new ordering.

CHAPTER 4. IMPLEMENTATION 42

Here we scattered from a sequential to parallel vector, the figure 4.3(b) shows the final
result of this operations, the final distribution of the mesh. These procedures are implemented
in MeshMoveElements(). It is important to note that the final index set in 4.3(a) shows the
global numerations of elements. This is a very simplified model, just to show how the methods
works. In practice, each node represent a data block of size 3, containing the 3 vertices indices
(in global numbering) that describe each element of the mesh. Once each process has its correct
portions of the mesh we use local numbering to accessing it. The figure 4.4 shows examples of
mesh decomposition with 16 processes using the implemented routine.

(a) (b)

(c)

Figure 4.4: Examples of Mesh Partitioning for different domains: (a) Example of a Reser-
voir Branch. (b) Mesh of the Reservoir Branch after the decomposition. (b) Rectangular
Domain Partitioned with 16 processes.

4.2.2 Partitioning, Scattering and Renumbering Vertices

Once we have the list of owned elements, we need the vertices coordinates for each
elements vertex, to perform computations in the next stages. As a first step we need to compute
what vertices will be needed. Then we perform scatter operations in similar way made in the
elements movement, with the difference that in this case we scatter from parallel to sequential

CHAPTER 4. IMPLEMENTATION 43

vector. The algorithm 7 show how to achieve these operations.
Algorithm 7: Scatter Vertices

Input: Element nodes array (IEN).
Output: Coordinates (X,Y) of requested vertices.

1 Copy all indices from IEN array to a list vertices array
2 Apply sort and unique algorithm to this list vertices

3 Mount a parallel vector with the coordinates obtained during the initial mesh distributions
4 Mount a index set with the indices of vertices needed
5 Perform the Scatter
6 Copy received coordinates (X,Y) in a more efficient container

Figure 4.5 outlines the behavior of the algorithm 7. As we can see, the communication
pattern is random, and could become a bottleneck for very large problem. Further improvement
in this phase can be a better initial partition to reduce the number of exchanged coordinates.

Figure 4.5: Sketch of the scatters vertices algorithm.

At the end of this stage, we have all vertices coordinates needed for computations. Tak-
ing into account the data layout used by PETSc see 3.4.1, we need to compute new vertices
numerations, in order to generate most matrix entries locally. Following this idea, the set of
indices of vertices in the process 0 are numerated first, then the next processor in the rank and
so on. The approach was to first resolve the ownership vertices and to then create a function
that maps the actual vertices numbering with the new more convenient numeration. In PETSc
terminology this is called an AO (Applications Ordering), that basically is a struct which store
both numerations. This can be expensive in term of memory use. First of all, we need to resolve
the ownership, since to form the AO object we need that each process contributes with a unique

CHAPTER 4. IMPLEMENTATION 44

set of indices. The algorithm proposed is shown below (algorithm 8).
Algorithm 8: Resolving Vertices Ownership

Input: List of Vertices.
Output: List of Owned Vertices.

1 Get information about process neighbors.
2 for p← 1 to nprocs do

if rank > procs[p] then
Ik = Ik + Ip

end
end

3 Set difference between the list of vertices and Ik
4 Save the difference in a separate list, this will be the local owned vertices.

The algorithm uses the information from the neighborhood, to obtain this informations
we use the function ISLocalToGlobalMappingGetInfo(), where we obtain the number of process
connected to the current process, indices of vertices shared with them, and other information.

Once the vertices ownership is resolved, we are able to construct an applications ordering
FAO, to get the new numerations desired. If we applied this process to our example we obtain,

{0, 3, 4, 5, 1, 2} FAO−−→ {0, 1, 2, 3, 4, 5}

Proc 0 {0, 3, 4, 5} → Proc 0 {0, 1, 2, 3}

Proc 1 {1, 2, 4, 5} → Proc 1 {4, 5, 2, 3}

This information allows us to create otherFAO to deal cleanly with different numberings
for each degree of freedom. This is quite relevant, since this ordering will determine the data
locality, which in turn impacts in the parallel assemble performance. Different approaches for
this were taken and will be explained in 4.3.1. The task above corresponds to GlobalRenumer-
ationVertex().

4.2.3 Boundary Conditions Treatment

For boundary conditions the process 0 reads the file that contain the information, and
broadcast the whole data. Once all process have this data, each process replace the not owned
indices by −1. Then when a vector that contain boundary indices is assemble, the flag
VEC_IGNORE_NEGATIVE_INDICES is activated before setting any value. In the other hand,
for matrix is not so easy to impose boundary conditions. The strategy used are explained in
4.3.2.

CHAPTER 4. IMPLEMENTATION 45

4.2.4 Vertices Connectivity and Ghost Element

As we explained in section 3.7.1, the matrix preallocation is crucial for performance. In
order to do that, we need to estimate the number of non-zeros per row that the matrix will have.
In our approach, we determine the maximum non-zeros. More specific calculation (which are
in turn more efficient) can be done.

Unfortunately the strategy to compute the number of non-zeros (nnz) per row in a se-
quential matrix is different that for parallel matrix. This stems from the fact that for parallel
matrix, we need to preallocate two matrices for process, i.e., each process has the portion of
the global matrix separated in two matrices,a square submatrix and a rectangular submatrix.
Then we need to determinate separately the non-zero entries for each matrix. These numbers
are calculated by both function VerticesGetConnectivity() and GetGhostElement().

Algorithm 9: Getting Ghost Element
Input: IEN array.
Output: IEN Ghosted per process.

1 Get information about process neighbors.
2 for i← 1 to n do

search In in IEN
save connectivity in IENGhosted

end
3 Get the number of element ghosted.
4 MPI_alltoall to exchange how much element will be received from each process.
5 MPI_Sendrecv to exchange the ghosted element.

The VerticesGetConnectivity() function basically counts the number of neighbor on each
vertex, which will be equal to the number of element neighbors. This information should be
enough to preallocate a sequential matrix. In order to preallocate a parallel matrix, we need to
estimate the nnz per row for both diagonal and off-diagonal matrix inner into a parallel matrix.
That is way we need the second functions GetGhostElement(), to estimate the amount of off
process values or nnz per row of off diagonal matrix. The algorithm 9 is used to this purpose.

4.3 Simulator Class

The Simulator class is responsible to perform all computations related to the simu-
lations, like matrix assembling, boundary conditions applications and linear system setuping.
Different assembling approaches were used, which will be explained in details below.

CHAPTER 4. IMPLEMENTATION 46

4.3.1 Techniques used for Matrix Assembling

Once we have the mesh partitioned in a number of sub-domains equals to the number of
processes and if we want to obtain the same sparsity pattern shown in the figure 2.3, each sub-
domain will contribute on different portions of matrix, i.e., each processor will generate entry
values for unknown that do not to belong to them, resulting in an excessive communication
between sub-domains. To avoid this,we propose and compare two different approaches for
matrix assembling.

Method 1
Since in PETSc the matrix is distribute row-wise across the processors, we must be

careful during assembly in maintaining the data locality, i.e., generate almost all values for
the portion of the array that belongs to it. This is accomplished if the i row is mapped to the
processor p, then so is the unknown i. Then it becomes necessary a set of previous steps before
assembly the matrix, as shown in the algorithm 10.

Algorithm 10: Setting Mapping for Assembling

1 Each process counts the number of owned dofs for velocity.
2 Do MPI_Scan so that every process knows its starting offset.
3 Each process numbers owned dofs starting with this offset.
4 Create two FAO one for each degree of freedom per node.

{Indices of V ertices} FAOX−−−→ {Indices of rows for X}

{Indices of V ertices} FAOY−−−→ {Indices of rows for Y }

5 With the two FAO create one object F .
6 Do the Assembly as explained in algorithm 3.

In this way the mapping object F is constructed such as almost all unknowns of the
process are mapped to the matrix rows that belong to the process. The load balancing here
will depend on the quality of vertices partition. Each mapping function is expensive in term
of memory, since it is proportional to the number of total vertices, so we concatenate the both
resulting mapping for X and Y, in one array and created a ISLocalToGlobalMapping struct to
manage in one object all local to global conversions. The number of communications required
in the assembling it proportional to the number of vertices in the interface on each sub-domain,
which value was attempted to minimize with the graph partitioner. The sparsity resulted using
this method is shown in the figure 4.6.

CHAPTER 4. IMPLEMENTATION 47

(a) (b)

Figure 4.6: Sparsity Patter of Matrix M and K: (a) Sparsity of Matrix K with 8
process. (b) Sparsity of Matrix M with 3 process.

Method 2
This second technique is focused in the matrix B and try to exploit the sparsity pattern,

this sparsity is equal to the matrix K (figure 2.3).
The linear system Bûn+1 = rnu + bc2 (line 3 of algorithms 1) includes both vertices

nodes as well as centroids nodes. The influence of the centroids in the total size of matrix
is remarkable, due to the numbers of elements is greater than the numbers of vertices. In a
effort of reduce that communications we propose the algorithm 11, whose key step is the static

condensation (KARDESTUNCER; NORRIE, 1987). Essentially we perform the elimination of dof’s
of the centroids, consequently we do not need to communicate these values to other processes,

CHAPTER 4. IMPLEMENTATION 48

expecting a considerable reduction of message exchanged.
Algorithm 11: Centroids dof’s Eliminations

1 (l) Mount Blocal on each subdomain
2 (l) Using local rhs of 2.27a and Blocal mount the local linear system(

kss ksi

kis kii

)(
ûs

ui

)
=

(
fs

fi

)

3 (l) Apply static condensation on each subdomain
- Calculate Kj

ss = kss − ksik−1
ii kis

- Calculate F j
s = fs − ksik−1

ii fi

4 (G) Mount Kss and Fs
Kss =

∑n
j=1K

j
ss

Fs =
∑n

j=1 F
j
s

where n is the number of subdomains
5 (G) Solve the global system Kssus = Fs and gather ûs
6 (l) Calculate on each subdomain ui = Kii(fi −Kisûs)

7 (G) Mount the global solution ûn+1

End
(l) indicates local operations, (G) indicates global operations

The matrix k−1
ii is not expensive, because it is almost diagonal. The assembly in line 3

is done with a mapping similar to Method 1. Once we have the intermediate velocity, we can
proceed as described in 1. In this manner, we have two methods to perform the linear system
calculation, method 1 resolves all linear with a convenient dof’s permutations, method 2 is equal
to method 1 except that the intermediate velocity is calculated using algorithm 11.

Figure 4.7: Sparsity of Kss with 8 process.

CHAPTER 4. IMPLEMENTATION 49

4.3.2 Boundary Conditions

The Dirichlet boundary conditions are applied to the global linear system. The usual
approach to avoid the loose of symmetry is to zero the i-column and and i-row associated to the
i boundary conditions, put 1 in the (i,i) entries of the matrix and the i-column to the right-hand
side (rhs). Since we use the CSR sparse format extract a column could be very expensive, in
terms of CPU time. In this work we use an equivalent approach, which is to replace the i-row
associated with the i boundary conditions, by rows of identity matrix and putting known value in
the i entry of the rhs, using the function MatZeroRows(). Then to use symmetric solvers method
we employ the PCREDISTRIBUTE preconditioner, which basically redistribute the matrix and
solve a smaller system. In the following iterations before reassembling the matrix we activate
the option MAT_NO_NEW_NONZERO_ENTRIES.

4.3.3 Solving The Linear System

Resolution of the linear system in PETSc library are based in the KSP object, the central
part of the library implementations (figure 3.3), through this we have access to a wide variety
of solvers and preconditioners, covering parallel, sequential, direct and iterative solvers, as well
as an interface to external packages solvers, see (BALAY et al., 2009) for full list of options.

An attractive feature of the implementations is the algorithm independence, i.e., we can
change or choose particular solvers and/or precondiotioners at runtime between runs of the
program and even inside the program, passing an argument by command line and/or a file, and
inside the programm this is passed to the corresponding context, this is useful when we are
trying to compare different methods for a given problem. A similar paradigm is employed with
most object in the package, which enables a runtime customization. This is done by maintaining
a database of options, which basically have three possible inputs: file, environmental variable
and command line. Others features of PETSc design are reported in (MATHEMATICS,) (BALAY

et al., 1997) and (GROPP, 1998).
In our model we solve three linear system, to choose the algorithms and other op-

tions for each linear system we use the function KSPSetOptionsPrefix() in the constructor of
each object SolverPetsc. With this functions we assign a name to each object (e.g. "veloc-
ity","pressure","scalar") allowing to control all KSP options database by command line, with
just putting the name of the object in front (e.g. "-velocity_ksp_type cg"). Note that in our case
we have three SolverPetsc objects, one for each linear system.

A typical sequence of function call in PETSc is shown below. Actually this calling is
made inside a SolverPetsc object.

1 KSPCreate() // Create the object KSP, all processor must call this. This is part of the con-
structor in SolverPetsc class.

CHAPTER 4. IMPLEMENTATION 50

2 KSPSetOperators() // Associate the matrix of the linear system with the KSP object.

3 KSPGetPC() // Get a pointer to the preconditioner object.

4 PCSetType() // Set a preconditioner.

5 KSPSetTolerances() // Set stopping criteria.

6 KSPSetFromOptions() // This reads database options for the KSP objects and will override
any options specified above.

7 KSPSolve() // Solves the linear system.

The call 3,4 and 5 inside the program are optional, since all options can be controlled by
command line and set in call 6. An example of a runtime option setup could be "-velocity_ksp_type
cg -velocity_pc_type ilu", this means that we chose the CG algorithm for the solver and ILU for
the preconditioner.

4.4 Postprocessing

As mentioned in section 3.5, the storage could be another performance bottleneck if
just one process would collect all the results in one file. Then, we implemented a new class
VTKFile where each processor could store data independently of each others. This is done
using the XML format of Visualization ToolKit (VTK), which has parallel format support, with
the ability to save local data into a separate file without knowledge of the entire global dataset
(KITWARE, 2010), reducing dramatically the communications between process.

Figure 4.8: VTK Files Hierarchy .

CHAPTER 4. IMPLEMENTATION 51

The parallel format of VTK specifies a set of files, with a hierarchy shown in the 4.8.
Each processor saves its local data in the vtu file, in a serial format. The pvd and pvtu does not
store any data, they only points to the set of serial vtu files, to keep track of time-varying data.

CHAPTER 5

COMPUTATIONAL PLATFORM

In this chapter we introduce the hardware architecture and the software library used in
the numerical experiment. We give a brief overview of the multicore hardware and present some
benchmark results performed, in order to characterize the performance in the cluster.

5.1 Hardware Platform

Our platform consist on fours nodes with multi-core processor, interconnected by a 48
port Gb Ethernet switch. Figure 5.1 shows a simplified diagram of the cluster.

Figure 5.1: Diagram of the Cluster.

Each node has two Intel Quad-Core Xeon (Harpertown) E5410. Table 5.1 give a sum-
mary of the main features of each node.

CHAPTER 5. COMPUTATIONAL PLATFORM 53

Table 5.1: Architectural summary

Intel Quad-Core Xeon E5410
Clock(Ghz) 2.33
L2 Cache 12MB

Bus Speed (Mhz) 1333
GFLOP/s per core 9.3

System
Sockets 2

Cores�Socket 4
L2 Cache 4x6 (Shared by 2)

DRAM Bus DDR2-667
RAM Available 16GB

Hard Disk 500GB
Operating System - Kernel Ubuntu 9.04 - 2.6.28-18-server

The Intel Xeon E5410 processor is based on the Intel Core microarchitecture, including
on each core a 256KB L1 cache and each two cores (one chip) has shared 6MB L2 cache. The
whole system has 74.7 GFlop/s peak performance, but will likely never attain the peak due to the
memory bandwidth limitations. The figure 5.2 shows the microarchitecture for this processor.

Figure 5.2: Architectural overview for dual-socket×quad-core Intel Harpertown.

5.2 Libraries and Compilers Used

Three main libraries were used the Intel Math Kernel Library version 10.2 Update 4
(10.2.4.032), MPICH2 version 1.3a1 and PETSc version 3.1-p1. The compilers used were the
Intel C++ and Fortran compiler for Linux version 11.1 Update 5 (11.1.069).

The MPICH2 was configured with nemesis (BUNTINAS; MERCIER; GROPP, 2006) as com-
munications subsystem, and compiled with icc, icpc and ifort with options "-O3 -static-intel".
This release includes a new default process manager HYDRA, replacing the MPD.

The PETSc library was configure with the followings options:

CHAPTER 5. COMPUTATIONAL PLATFORM 54

• –download-parmetis=1 –with-parmetis=1

• –with-clanguage=C++ CC=icc CXX=icpc FC=ifort

• CXXOPTFLAGS="-O3 -static-intel"

• COPTFLAGS="-O3 -static-intel"

• FOPTFLAGS="-O3 -static-intel"

• –with-blas-lapack-dir=/opt/intel/mkl/10.2.4.032

With the first option ParMetis (Version 3.1.1) was installed automatically by PETSc and
the last option enabled us to, use the core math functions from MKL in PETSc, such as BLAS
and LAPACK library.

5.3 Some Benchmark Results

5.3.1 Memory Bandwidth - STREAMS

The STREAM (MCCALPIN, 1991-2007) benchmark (version 5.9) was used to measured
the memory bandwidth. This is a synthetic benchmark, written in standard Fortran 77 and C,
which measures the performance of four long vector operations,i.e., the length of the array used
is defined larger than the cache of the machine and the code is made such as the data re-use is
avoided (MCCALPIN, 1995).

The fours kernel operations are: "Copy","Scale", "Sum" and "Triad". Each of them
give independent informations about the memory access behavior. The table 5.2 shown what is
performed on each operations.

Table 5.2: STREAMS Kernel Operations

Name Kernel
Iteration

Bytes Flops
COPY: a(i) = b(i) 16 0
SCALE: a(i) = q ∗ b(i) 16 1
SUM: a(i) = b(i) + c(i) 24 1
TRIAD: a(i) = b(i) + q ∗ c(i) 24 2

In order to evaluate memory access behavior on each node two version of STREAMS
benchmark for multiple processors was tested, one using OpenMP directives and the other using
MPI calls. The compilation was made as follows,

CHAPTER 5. COMPUTATIONAL PLATFORM 55

Table 5.3: STREAMS Results (TRIAD operations)

Operations
Memory Bandwidth Achieved (MB/s) with Cores�Thread

1 2 3 4 5 6 7 8
TRIAD-MPI 3725.8553 4318.0892 5345.1903 6022.9636 5866.398 6018.7922 6062.9061 6124.5151

TRIAD-Thread 3726.7519 5677.7290 5408.5158 6270.2938 5881.6691 6036.2364 5957.2012 6122.8853

• OpenMP: icc -O2 -openmp -D_OPENMP stream.c -o stream_openmp

• MPI: ifort -O -I/usr/local/include -L/usr/local/lib \
-lmpich -lpthread -lrt stream_mpi.f mysecond.o -o stream_mpi

The results for these runs are shown in figure 5.3, and in particular for TRIAD kernel
are shown in table 5.3.

0 2 4 6 8
3500

4000

4500

5000

5500

6000

6500

Number of cores

M
em

or
y

B
an

dw
id

th
 (

M
B

/s
)

Copy − MPI
Scale − MPI
Add − MPI
Triad−MPI
Copy−Thread
Scale−Thread
Add−Thread
Triad−Thread

Figure 5.3: Stream Benchmark Results for both MPI and Thread Version.

As we can see both version give similar results. The figure 5.3 shows the memory
bandwidth saturation with the increase number of threads or processes, because they share the
limited resources as cache and memory bandwidth, see figure 5.2. In consequence, memory-
intensive applications can suffer a constrain in the scalability and will not scale as expected.

Sparse Matrix-Vector Product (SpMV)
Since the SpMV operations are the kernel of most Krylov subspace methods, and has

been shown that the performance of these operations in a give platform is sensitive to the mem-

CHAPTER 5. COMPUTATIONAL PLATFORM 56

ory bandwith, since it is a memory intensive operations (GROPP et al., 1999; GROPP et al., 2000).
In order to characterize the matrix-vector product in one node, we perform a small test for 4
different sparse matrices, arising from different problems and with different sizes, running tests
from 1 to 8 processes. The first three matrices were taken from matrix market (BOISVERT et al.,
1997) (s1rmq4m1,e40r0000,nasasrb) and the fourth matrix was the resulting for the intermedi-
ate velocity in our problem. Each matrix size was chosen in increasing order, and developed a
small code with PETSc objects and functions, to perform the mat-vec product. The MFlops/s
and memory bandwidth (MB/s = 1e+06Bytes/s) results are given in figures 5.4 5.5.

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

Number of Cores

M
F

lo
ps

/s
 p

er
 C

or
e

s1rmq4m1
e40r0000
nasasrb
Velocity Matrix

(a)

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

Numbers of Cores

M
F

lo
ps

/s
ec

s1rmq4m1
e40r0000
nasasrb
Velocity

(b)

Figure 5.4: MFlops Achieved for each matrix: (a) MFlops per Core Achieved for
different Matrices. (b) Total MFlops Achieved.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

9

Numbers of Cores

M
em

or
y

B
an

dw
ith

 p
er

 C
or

e
(M

B
yt

es
/s

)

s1rmq4m1
e40r0000
nasasrb
Velocity

(a)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7
x 10

9

Numbers of Cores

M
em

or
y

B
an

dw
ith

 (
M

B
yt

es
/s

)

s1rmq4m1
e40r0000
nasasrb
Velocity
stream (TRIAD)

(b)

Figure 5.5: Memory Bandwidth Achieved for each matrix: (a) Memory Bandwidth
Measured per Core. (b) Total Memory Bandwidth Measured with core increase.

We can see (figure 5.4(a)) a reduction of MFlops/sec per core with the increase of
problem, showing the competition of each process for the limited memory bandwidth. This

CHAPTER 5. COMPUTATIONAL PLATFORM 57

is demonstrated more clearly in figures 5.5(a) and 5.5(b), where with process increases, they
suffers a reduction of their individual memory bandwidth. Finally, we can not expected full
scalability with the core/process increases in our platform, when performing memory intensive
computation, like mat-vec product.

5.3.2 Communication bandwidth and latency - beff (Effective Bandwidth Benchmark)

The Effective Bandwidth Benchmark (beff) (Version 3.5) (RABENSEIFNER; KONIGES,)
was used, this measures the accumulated bandwidth of communications network of parallel or
distributed computer. Using several communications patterns and message sizes this bench-
mark give a single number which represent the effective bandwidth in the cluster. Basically,
the communication patters is based on rings and on random distributions and the communica-
tions was implemented with different approaches of MPI (MPI_Sendrecv,MPI_Alltoallv and
non-blocking functions). Finally (beff) is computed as a logarithmic average of the results of
both ring patterns and random patters, detail of this calculation and algorithms can be seen in
(SOLCHENBACH, 1999) (RABENSEIFNER; KONIGES,).

The results for 4 process (1 process per node) are shown in the figure 5.8. In our test jus
two ring patterns are possible, the first is two rings of size 2 and the second is one ring including
all process.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Sndrcv, ring & random patterns

ring-2*2fix
ring-1*4fix

worst random
avg random
best random

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Alltoal, ring & random patterns

ring-2*2fix
ring-1*4fix

worst random
avg random
best random

(b)

Figure 5.6: beff Results for different MPI functions and communications pattern: (a)
Sendrecv, Ring and Random patterns . (b) Alltoal, Ring and Random patterns .

CHAPTER 5. COMPUTATIONAL PLATFORM 58

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

non-blk, ring & random patterns

ring-2*2fix
ring-1*4fix

worst random
avg random
best random

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best transfer method, ring & random patterns

ring-2*2fix
ring-1*4fix

worst random
avg random
best random

(b)

Figure 5.7: beff Results for different MPI functions and communications pattern: (a) non-
blk, Ring and Random patterns . (b) Best Transfers method,Ring and Random patterns
.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Ring & random average: Sndrcv, Alltoal, non-blk

Sendrcv rings
Alltoal rings

non-blk rings
Sendrcv random
Alltoal random

non-blk random

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best method: rings & random

rings minumum
rings average

rings maximum
random minimum

random average
random maximum

ring & random average

(b)

Figure 5.8: beff Results for different MPI functions and communications pattern: (a) Av-
erage, Ring and Random patterns for Sendrcv,Alltoall,non-blk. (b) Best Method.

The main results for our cluster configurations, that is, the effective bandwidth measured
and latency for different patters are shown in the table 5.4.

The results are consistent with the architecture of the platform, since the switch is a
standard gigabit and the communications cards are standard gigabit ethernet cards.

CHAPTER 5. COMPUTATIONAL PLATFORM 59

Table 5.4: Effective Bandwidth Benchmark beff Main Results

beff = 145.393 MB/s = 36.348 * 4 PEs with 1024
number beff Lmax beff beff Latency Latency Latency ping-pong
of pro- at Lmax at Lmax rings& rings ping- bandwidth
cessors rings& rings random only pong

random only
MByte/s MByte/s MByte/s mircosec microsec microsec MByte/s

accumulated 4 145 8 MB 388 364 34.013 35.817 50.418 123

per process 36 97 91
Ping-Pong result (only the processes with rank 0 and 1 in MPI_COMM_WORLD were used):

Latency: 50.418 microsec per message Bandwidth: 122.508 MB/s (with MB/s = 106 byte/s)

CHAPTER 6

RESULTS

In this chapter the main results obtained are presented. Tests were performed consid-
ering two problem. The performance results for preprocessing and solve are reported. Next,
comparison between method 1 and 2 described in chapter 4 are made. Finally we compare the
flops necessary to solve each linear system.

6.1 Numeric Problem

The implementations were tested using a classic geometry used by both experimental
and numerical research. This geometry with the boundary conditions used is shown in the
figure 6.1. The no-slip conditions were imposed in all the walls for both x and y components
of velocity and zero pressure in the outflow. In the inflow of canal we prescribe boundary
conditions only for the x component of velocity and the scalar concentration.

CHAPTER 6. RESULTS 61

Figure 6.1: 2D Domain with Boundary Conditions.

We test with two different mesh sizes. The number of vertices and elements are shown
in the table 6.1, along the dimensions and the number of nonzero elements obtained for each
matrix.

Table 6.1: Problems Summaries

Mesh Velocity Pressure Scalar
Vertices Elements size nnz size nnz size nnz

Problem 1 20000 39402 118804 1658464 20000 408810 20000 138802
Problem 2 200000 395802 1191604 16648864 200000 4109222 200000 1391602

6.2 Performance Measures

To study the performance of the implementations we have used a number of metrics to
measured the benefits from parallelism. The first metric was the executions time or cpu time,
defined as the time elapsed from the moment a parallel computations starts to the moment the
last processing element finish execution. The second was the relative speedup or just speedup

for our context, defined as the ratio of the elapsed time of the parallel algorithm on one processor
to elapsed time of the parallel algorithm on p processors, and can be expressed as follows,

speedup =
t1
tp

where t1 is the elapsed time on one processor, and tp is the elapsed time for p processors.
The third was the efficiency ratio (SAAD; SOSONKINA; ZHANG, 1998) defined as the ratio

of the CPU time spent on computing the preconditioner to that on computing the solutions by the

CHAPTER 6. RESULTS 62

preconditioned solver. This gives a measure of how expensive is to construct the preconditioner
relative to the iterations phase. The fourth was the iteration count, which is the number of steps
taken by a linear solver to get a solutions under defined stopping criteria. The last two metrics
are specially applied to the solving stage.

6.3 Running Strategy

In each nodes was allocated a maximum of fours processes, in such way that the intra-
node communications were preferred, e.g., if we run 6 processes, the first 4 processes were
allocated in the first node, and the rest 2 processes were allocated in the the second node. The
runs was performed using the topology-aware allocation "topo:sockets,cores" to avoid processes
sharing a core. This is possible using the process manager HYDRA (NADA, a).

6.4 Preprocessing

The preprocessing stage, as we saw above, consist in read, distribute, partition, redis-
tribute elements and vertices, i.e., do all necessary steps to get the mesh ready to use. For both
problem 1 and 2, it was measured the cpu time on each stage and the results are shown in fig-
ures 6.2- 6.5. Figure 6.2 gives the distribute time which shown a random behavior with a slight
tendency to increase, but this behavior is associate to how the processes were allocated in the
cluster, that is, in some cases we have a non-uniform number of processes doing intra-node and
inter-node communications.

The graph partitioning and redistribution stages were measured in order to determine any
communications bottleneck. The results in figures 6.3 and 6.5(b) shown that the redistribution
for both elements and vertices scale well up to a certain number of processes. This could be
explained by looking to figure 6.4 were we get an accentuated load imbalance as a results of the
mesh partitions stage, which increases the communications time. On the other hand, we observe
almost no speedup in the partitions process, figures 6.2(b) and 6.5(a). However thanks to the
parallelism using PARMETIS this stage remains cheap respect to the total execution time, even
when the number of processes increases.

CHAPTER 6. RESULTS 63

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

Numbers of Processes

T
im

e
(s

ec
.)

Distributions Time

Problem 1
Problem 2

(a)

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Numbers of Processes

T
im

e
(s

ec
.)

Partitions Time

Problem 1
Problem 2

(b)

Figure 6.2: Preprocessing Time: (a) Distributions . (b) Partitions .

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Numbers of Processes

T
im

e
(s

ec
.)

Redistributions Time

Problem 1
Problem 2

(a)

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Numbers of Processes

T
im

e
(s

ec
.)

Scattering Time

Problem 1
Problem 2

(b)

Figure 6.3: Preprocessing Time: (a) Redistributions. (b) Scattering .

CHAPTER 6. RESULTS 64

0 2 4 6 8 10 12 14 16
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Numbers of Proceses

R
at

io
 (

M
ax

/M
in

)

Load Balancing of Elements Partition (Max/Min).

P1
P2

(a)

0 2 4 6 8 10 12 14 16
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Numbers of Proceses

R
at

io
 (

M
ax

/M
in

)

Load Balancing of Vertices Partition (Max/Min).

P1
P2

(b)

Figure 6.4: Load Balancing: (a) Load Balancing of Elements . (b) Load Balancing of
Vertices .

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Processes

S
pe

ed
up

Partitions Speedup

Problem 1
Problem 2
Ideal

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Processes

S
pe

ed
up

Redistributions Speedup

Problem 1
Problem 2
Ideal

(b)

Figure 6.5: Partitions and Redistributions Speedup: (a) Partitions . (b) Redistributions .

Assembling
In order to verify the bottleneck and the gain from parallelism we also measured the

CPU time in the assembling stage, which covers the preallocation process, the builds of all in-
volved matrices, which involves some communications between domains to exchange boundary
values. The results for both methods are shown in figure 6.6, the elapsed time is reduced with
the number of processes increase, therefore the performance in this stage was improved. It is
important to note that, since the partitions are made by element, a set of vertices are ghosted on
each subdomain, whose entries in the matrix must be updated generating serial communications
on each subdomain or process, hence it is admissible a performance decrease. The speedup re-
sult was shown in figure 6.7. From these figures, we can see that Method 2 was aided by the
allocations strategy.

CHAPTER 6. RESULTS 65

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Processes

T
im

e
(s

ec
.)

Assembling Comparison Time. Method 1 and Method 2. Problem 1.

Method 1
Method 2

(a)

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

Number of Processes

T
im

e
(s

ec
.)

Assembling Comparison Time. Method 1 and Method 2. Problem 2.

Method 1
Method 2

(b)

Figure 6.6: Assembling Time (sec.): (a) Problem 1. (b) Problem 2.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

Number of Processes

T
im

e
(s

ec
.)

Assembling Comparison − Speedup. Method 1 and Method 2.

Method 1−P1
Method 2−P1
Method 1−P2
Method 2−P2

Figure 6.7: Assembling Speedup.

6.5 Solver

In this section we present the results of the solvers with the three linear system. For all
matrices we used the conjugate gradient method, and the Block-Jacobi (BJACOBI) and Additive
Schwarz Methods as preconditioner. For the block Jacobi preconditioner we use the incomplete
Cholesky Factorizations with 0 fill-in (ICC(0)) and test different ordering algorithms as natural,
nested dissection (nd), one-way dissection (1wd), and the reverse Cuthill McKee (RCM). For
the ASM preconditioner we use the restrict type with ILU(0) on each block, and three different
overlap 1, 2 and 4. The tolerance used was relative of 1e-08, absolute of 1e-50 and divergence
of 10000.

CHAPTER 6. RESULTS 66

6.5.1 Results for Intermediate Veloctiy - System Bûn+1 = rnu + bc2

In this subsection we show the results for each methods used and the results for each
problem, finally we compare both methods.

6.5.1.1 Method 1

We present and discuss results for both problem 1 and problem 2 using method 1.
Problem 1
The results for the problem 1 using method 1 are shown in figures 6.8-6.11. We can

observe in figures 6.8(a) and 6.8(b) that the best performance obtained was using one-way dis-
section algorithm, this is the smaller iterations counts, hence the the time was reduced. Note that
runs with reverse Cuthill McKee did not converge for some number of process (p=12,13,15).
The efficient ratio results are shown in figure 6.9(a), were aside the natural, the cheapest precon-
tioner was obtained with reverse Cuthill McKee. The figure 6.9(b) shows that the solver scales
well until 11 process, where it become flat. It could be due the problem become too smaller
from this number of process, therefore the overhead dominate the communications.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time.Solver CG + BJACOBI(ICC(0)) + Reorderings.Method 1−P1.

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

Numbers of Processes

Ite
ra

tio
ns

Numbers of Iterations. Solver CG + BJACOBI(ICC(0)) + Reorderings.Method 1−P1

natural
nd
1wd
rcm

(b)

Figure 6.8: Number of Iterations and Time for Method 1. Problem 1: (a) Iterations Time
in seconds. (b) Number of Iterations.

CHAPTER 6. RESULTS 67

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Numbers of Proceses

E
ffi

ci
en

cy
 r

at
io

Efficiency ratio. Method 1−P1.

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + BJACOBI(ICC(0)) + Reorderings.Method 1−P1.

natural
nd
1wd
rcm

(b)

Figure 6.9: Efficiency Ratio and Speedup for Method 1 - Problem 1: (a) Efficiency Ratio.
(b) Speedup.

The results for ASM preconditioner are shown in figures 6.11-6.10, compared with the
the ICC(0) we do not get better performance with this preconditioner, evidenced by the number
of iterations resulting, see figure 6.10(b). The speedup resulted are shown in figure 6.11(b).

0 2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

9

10

11

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + ASM.Method 1−P1

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
400

500

600

700

800

900

1000

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + ASM. Method 1−P1

Overlap 1
Overlap 2
Overlap 4

(b)

Figure 6.10: Time and Iterations Time for Solver CG with ASM preconditioner Method
1- Problem 1 : (a) Iterations Time in seconds. (b) Numbers of Iterations.

CHAPTER 6. RESULTS 68

0 2 4 6 8 10 12 14 16
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Numbers of Proceses

E
ffi

ci
en

cy
 R

at
io

Efficiency Ratio. Solver CG + ASM.Method 2−P1.

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + ASM. Method 1−P1

Overlap 1
Overlap 2
Overlap 4
Ideal

(b)

Figure 6.11: Speedup and efficiency for CG+ASM. Method 1-Problem 1 : (a) Efficiency
Ratio. (b) Speedup.

Problem 2
The same set of runs was repeated for problem 2, and the results shown in figures 6.12-

6.15. Here, with the ICC(0) preconditioners we get a similar behavior that in problem 1, hence
the one-way dissection represent the best iteration count resolution time. We note a variation
respect to problem 1 in the efficient-ratio (figure 6.13(a)) and the speedup (6.13(b)), here the
one-way dissection suffers a cost increase with the number of process. Respect to the scaling
we observe a better scaling only for the one-way dissection, and since the time of the solver is
dominated by the matrix-vector product and the number of iterations (figure 6.12(b)) remains
almost constant (except for reverse Cuchill McKee), we attribute this scaling behavior to the
inter- and intra-node communications pattern.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

Numbers of Processes

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI(ICC(0)) + Reorderings. Method 1−P2

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
50

100

150

200

250

300

350

400

450

500

550

Numbers of Processes

Ite
ra

tio
ns

Numbers of Iterations. Solver CG + BJACOBI(ICC(0)) + Reorderings. Method 1−P2.

natural
nd
1wd
rcm

(b)

Figure 6.12: Number of Iterations and Time for Method 1. Problem 2: (a) Iterations Time
in seconds. (b) Number of Iterations.

CHAPTER 6. RESULTS 69

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

Numbers of Processes

E
ffi

ci
en

cy
 r

at
io

Efficiency ratio. Method 1−P2.

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Processes

S
pe

ed
up

Speedup. Solver CG + BJACOBI(ICC(0)) + Reorderings. Method 1−P2

natural
nd
1wd
rcm
ideal

(b)

Figure 6.13: Efficiency Ratio and Speedup for Method 1 - Problem 2: (a) Efficiency Ratio.
(b) Speedup.

Again, as in problem 1 the results for the ASM preconditioner are not better than the
ICC(0) preconditioner. Results are shown in figures 6.14-6.15. Note the almost identical behav-
ior with different overlap values.

0 2 4 6 8 10 12 14 16
40

60

80

100

120

140

160

180

200

220

240

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e

Iterations Time. Solver CG + BJACOBI(ICC(0)) + Reorderings. Method 1−P2.

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
515

520

525

530

535

540

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + ASM.Method 1−P2

Overlap 1
Overlap 2
Overlap 4

(b)

Figure 6.14: Time and Iterations Time for Solver CG with ASM preconditioner Method
1- Problem 2 : (a) Iterations Time in seconds. (b) Numbers of Iterations.

CHAPTER 6. RESULTS 70

0 2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10
x 10

−3

Numbers of Proceses

E
ffi

ci
en

cy
 r

at
io

Efficiency ratio.Solver CG + ASM. Method 1−P2

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup .Solver CG + ASM.Method 1−P2

Overlap 1
Overlap 2
Overlap 4
Ideal

(b)

Figure 6.15: Speedup and efficiency for CG+ASM. Method 1-Problem 2: (a) Efficiency
Ratio. (b) Speedup.

6.5.1.2 Method 2

We present and discuss results for both problem 1 and problem 2 using method 2.
Problem 1
The results are shown in figures 6.16-6.19. Here, unlike the method 1, the best time

figure 6.16(a) and number of iterations figure 6.16(b) was achieved using natural ordering, hence
this preconditioner is the better one. The figure 6.17(a) shows a good scalability up to eight
processes, where it become almost flat, which was probably due to the small problem size.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI + Reorderings.Method 2−P1

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
70

80

90

100

110

120

130

140

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + BJACOBI + Reorderings.Method 2−P1.

natural
nd
1wd
rcm

(b)

Figure 6.16: Number of Iterations and Time for Method 2. Problem 1: (a) Iterations Time
in seconds. (b) Number of Iterations.

CHAPTER 6. RESULTS 71

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Numbers of Proceses

E
ffi

ci
en

cy
 r

at
io

Efficiency ratio.Solver CG + BJACOBI + Reorderings.Method 2−P1.

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + BJACOBI + Reorderings. Method 2−P1.

natural
nd
1wd
rcm
ideal

(b)

Figure 6.17: Speedup and Efficiency. Method 2 - Problem 1: (a) Efficiency Ratio. (b)
Speedup.

The results for ASM preconditioners are shown in the figures 6.18-6.19. Note that with
overlap 1 and for number of process larger than 2 the solver did not converge. The best time
was achieved using overlap 2, but again this is not as good as the one obtained with ICC(0).
The resulting speedup and efficiency with this preconditioner are shown in figure 6.19(a) and
6.19(b).

0 2 4 6 8 10 12 14 16
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + ASM. Method 2−P1.

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
74

76

78

80

82

84

86

88

90

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + ASM.Method 2−P1.

Overlap 1
Overlap 2
Overlap 4

(b)

Figure 6.18: Number of Iterations and time. Method 2 - Problem 1: (a) Time in seconds.
(b) Iterations.

CHAPTER 6. RESULTS 72

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + ASM.Method 2−P1.

Overlap 1
Overlap 2
Overlap 4
Ideal

(a)

0 2 4 6 8 10 12 14 16
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Numbers of Proceses

E
ffi

ci
en

cy
 R

at
io

Efficiency Ratio.Solver CG + ASM. Method 1−P1

Overlap 1
Overlap 2
Overlap 4

(b)

Figure 6.19: Speedup and Efficiency with Solver CG + ASM. Method 2 - Problem 1: (a)
Speedup. (b) Efficiency.

Problem 2
The same options of runs in the problem 1 were repeated for problem 2, the results are

shown in figures 6.20-6.23. Agains the natural ordering wins in this case, note that for pro-
cess increases the executions times (figure 6.20(a)) for different preconditioner are close to each
other. This problem with method 2 in particular shows a better scalability (figure 6.21(a)) com-
pared with the obtained in method 1 - problem 2 (figure 6.13(a)), which is probably due to the
reduction of the number of nonzero of the off-diagonal matrix with the centroids eliminations,
which could reduce the inter-process communications during the matrix-vector product.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI + Reorderings.Method 2−P2

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
70

80

90

100

110

120

130

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + BJACOBI + Reorderings.Method 2−P2.

natural
nd
1wd
rcm

(b)

Figure 6.20: Number of Iterations and Time for Method 2. Problem 2: (a) Iterations Time
in seconds. (b) Number of Iterations.

CHAPTER 6. RESULTS 73

0 2 4 6 8 10 12 14 16
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Numbers of Proceses

E
ffi

ci
en

cy
 r

at
io

Efficiency ratio.Solver CG + BJACOBI + Reorderings.Method 2−P2.

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + BJACOBI + Reorderings. Method 2−P2.

natural
nd
1wd
rcm
ideal

(b)

Figure 6.21: Speedup and Efficiency. Method 2 - Problem 2: (a) Efficiency Ratio. (b)
Speedup.

Results for ASM preconditioner are shown in figures 6.22-6.23. As in problem 1 the
ASM with overlap 1 did not converge for process larger than 2, and the ICC(0) is still better.
The resulting speedup is shown in 6.23(a), also we get a better scalability in this case.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + ASM. Method 2−P2.

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
50

100

150

200

250

300

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + ASM.Method 2−P2.

Overlap 1
Overlap 2
Overlap 4

(b)

Figure 6.22: Number of Iterations and time. Method 2 - Problem 2: (a) Time in seconds.
(b) Iterations.

CHAPTER 6. RESULTS 74

0 2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Numbers of Proceses

E
ffi

ci
en

cy
 R

at
io

Efficiency Ratio. Solver CG + ASM.Method 2−P2.

Overlap 1
Overlap 2
Overlap 4

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + ASM.Method 2−P2.

Overlap 1
Overlap 2
Overlap 4
Ideal

(b)

Figure 6.23: Speedup and Efficiency with Solver CG + ASM. Method 2 - Problem 1: (a)
Efficiency Ratio. (b) Speedup.

6.5.1.3 Comparison between Method 1 and Method 2

In figures 6.24 we compare the two proposed methods. That is, we take the best time
obtained for methods 1 which is using CG and ICC(0) with one-way dissection ordering, and
take the best time obtained for method 2 which is CG and ICC(0) with natural ordering and add
the time spent in line 5, 6 and 7 of algorithm 11. This represent the total time to get a complete
solution.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

Number of Processes

T
im

e
(s

ec
.)

Best Solver Comparison. Method 1 and Method 2. Problem 1.

Method 2
Method 1

(a)

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

Number of Processes

T
im

e
(s

ec
.)

Best Solver Comparison. Method 1 and Method 2. Problem 2.

Method 2
Method 1

(b)

Figure 6.24: Time Comparison between Method 1 and Method 2: (a) Results for Problem
1. (b) Results for Problem 2.

For both problem 1 and problem 2 the method 2 was better, and the difference become
superior for the large one.

CHAPTER 6. RESULTS 75

6.5.2 Results for Pressure - System DB̃−1Gp̃n+1 = −Dûn+1 + bc1

Here, we present the results for the pressure linear system referenced in the line 4 of
algorithm 1, for each problem solved we show the execution time, number of iterations and
speedup for each precondiotioner. Only the ICC(0) block jacobi results were presented. Results
from ASM preconditioner were discarded because this preconditioner did not converge for most
cases.

Problem 1
Figures 6.25(a) and 6.25(b) show the CPU time and the iteration count, respectively. In

this case it is not so clear which ordering algorithm was more efficient. The potencial candidates
are the natural and the reverse Cuchill McKee. For this problem we get speedup up to 4 process
as shown in the figure 6.26, from this value on, it become almost flat, which probably is due
small size of the matrix.

0 2 4 6 8 10 12 14 16
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Numbers of Processes

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI + Reorderings.Pressure−P1

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
60

70

80

90

100

110

120

130

Numbers of Processes

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + BJACOBI + Reorderings.Pressure−P1.

natural
nd
1wd
rcm

(b)

Figure 6.25: Execution Time and Iteration count for Pressure in Problem 1: (a) Execution
Time (sec.). (b) Iteration count.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Processes

S
pe

ed
up

Speedup. Solver CG + BJACOBI + Reorderings. Pressure−P1.

natural
nd
1wd
rcm
ideal

Figure 6.26: Speedup

CHAPTER 6. RESULTS 76

Problem 2
For this problem we get an abnormal convergence behavior for natural ordering, thus

we can say that reverse Cuchill McKee gives a better result for iterations count. Hence the
execution time also are better for reverse Cuchill McKee, see figures 6.27(a) and 6.27(b). Unlike
the problem 1, this problem size presents a good scalability (figure 6.28).

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI + Reorderings.Pressure−P2

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + BJACOBI + Reorderings.Pressure−P2.

natural
nd
1wd
rcm

(b)

Figure 6.27: Execution Time and Iteration count for Pressure in Problem 2: (a) Execution
Time (sec.). (b) Iteration count.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + BJACOBI + Reorderings. Pressure−P2.

natural
nd
1wd
rcm
ideal

Figure 6.28: Speedup

6.5.3 Results for Scalar Concentrations - System Bθθ̃
n+1 = rnθ + bc3

Results for linear system referenced in line 5 of algorithm 1 are presented in figures
6.29-6.32. For each problem solved we present the behavior of the solver using the only the
ICC(0) preconditioner.

Problem 1

CHAPTER 6. RESULTS 77

Due to the small size of the scalar concentration system we do not get gain with paral-
lelism, but a least the cost of resolve the linear system remains cheap compared with the others
linear system (figures 6.29(a) and 6.29(b)). Also, in this case the possible candidates are natural
and reverse Cuchill McKee algorithm. As expected the speedup is not good for this problem
size (6.30).

0 2 4 6 8 10 12 14 16
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI + Reorderings.Scalar−P1

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
20

30

40

50

60

70

80

90

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + BJACOBI + Reorderings.Scalar−P1.

natural
nd
1wd
rcm

(b)

Figure 6.29: Execution Time and Iteration count for Scalar Concentrations in Problem 1:
(a) Execution Time (sec.). (b) Iteration count.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + BJACOBI + Reorderings. Scalar−P1.

natural
nd
1wd
rcm
ideal

Figure 6.30: Speedup

Problem 2
With this problem size we get more advantage from parallelism, as can be see in figure

6.32. Observing figures 6.31(a) and 6.31(b) we can say that the natural ordering give better
performance.

CHAPTER 6. RESULTS 78

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Numbers of Proceses

Ite
ra

tio
ns

 T
im

e
(s

ec
.)

Iterations Time. Solver CG + BJACOBI + Reorderings.Scalar−P2

natural
nd
1wd
rcm

(a)

0 2 4 6 8 10 12 14 16
20

25

30

35

40

45

Numbers of Proceses

Ite
ra

tio
ns

Numbers of Iterations.Solver CG + BJACOBI + Reorderings.Scalar−P2.

natural
nd
1wd
rcm

(b)

Figure 6.31: Execution Time and Iteration count for Scalar Concentrations in Problem 2:
(a) Execution Time (sec.). (b) Iteration count.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Numbers of Proceses

S
pe

ed
up

Speedup. Solver CG + BJACOBI + Reorderings. Scalar−P2.

natural
nd
1wd
rcm
ideal

Figure 6.32: Speedup

6.5.4 Flops Comparison for Each Linear System

In this part we show a comparison of Flops (floating point operation count) for each
linear systems. In this context we define 1 flop as 1 real operation of type multiply,divide,add
or subtract. Results are shown in figures 6.33 and 6.34, one figure for each problem, and were
taken the best results for each linear system. That is, we took the one-way dissection for velocity
in method 1, the natural for velocity in method 2, reverse Cuchil McKee for pressure and natural
for scalar concentration. We divide the results of each problem in two subfigures part(a) and
part (b). Part (a) shows the total flops required for each solver to get the final solutions, the
dependency on the numbers of iterations to get this solutions explains the variations of flops for
different process. Part (b) shows the total flops required for one iterations.

Note that the flops required for method 2 for one iteration is larger than the required

CHAPTER 6. RESULTS 79

by method 1 (figures 6.33(b) and 6.34(b)), but the total flops to get a solutions in method 2 is
less than the required by method 1 (figures 6.33(a) and 6.34(a)). This is because in method
2 the solver is performed in a reduced matrix and the flops required for one iteration (labeled
as "Velocity-M2-Iter"), the rest of the flops are used to get the condensed matrix. That is, the
intensive kernel operations, during the solver process, accumulate the flops for this reduced
matrix, which in the end results in a total flops reduction .

1 2 3 4

0

5

10

15

20

0

0.5

1

1.5

2

x 10
9

 Operations Counts per Process for each System. Problem 1

Processes

O
pe

ra
tio

ns
 C

ou
nt

s
(F

lo
ps

)

Scalar
Pressure
Velocity−M2
Velocity−M1

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12
x 10

6

Linear System

F
lo

ps

Flops per Iterations on Linear System. Problem 1.

Scalar
Pressure
Velocity−M1
Velocity−M2
Velocity−M2−Iter

(b)

Figure 6.33: Operations Counts Measured in Problem 1: (a) Total FLOPs. (b) Flops per
Iterations.

1 2 3 4

0

5

10

15

20

0

2

4

6

8

10

12

x 10
9

 Operations Counts per Process for each System. Problem 2

Processes

O
pe

ra
tio

ns
 C

ou
nt

s
(F

lo
ps

)

Scalar
Pressure
Velocity−M1
Velocity−M2

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12
x 10

7

Linear System

F
lo

ps

Flops per Iterations on Linear System. Problem 2.

Scalar
Pressure
Velocity−M1
Velocity−M2
Velocity−M2−Iter

(b)

Figure 6.34: Operations Counts Measured in Problem 2: (a) Total FLOPs. (b) Flops per
Iterations.

CHAPTER 6. RESULTS 80

1 2 3 4

0

5

10

15

20

0

1000

2000

3000

4000

5000

MFlops/sec for each Linear System. Problem 1

Processes

M
F

lo
ps

/s
ec

Scalar
Velocity−M2
Pressure
Velocity−M1

(a)

1 2 3 4

0

5

10

15

20

0

1000

2000

3000

4000

5000

6000

MFlops/sec for each Linear System. Problem 2

Processes

M
F

lo
ps

/s
ec

Velocity−M2
Velocity−M1
Scalar
Pressure

(b)

Figure 6.35: MFlops/sec in Problem 1 and 2: (a) Problem 1. (b) Problem 2.

Finally figure 6.35 shows the MFlops/sec achieved for each linear system. These were
calculate using the following expression,

MFlops/sec = 10−6 ∗ (

p∑
i=0

fi)/(tmax)

Where fi is the flops on process i, p the number of process and tmax is the maximum
time measured over all processes.

6.6 Total Time

Table 6.2 gives a summary of total time achieved. That is, the elapsed time in the pre-
processing stage and the solver for the three linear system.

Table 6.2: Results Summary

Problem Method
Processes

1 2 4 8 16

P1
M1 4.4138 3.4992 2.0417 1.3351 1.2591
M2 3.1173 2.4837 1.4825 1.2028 1.1528

P2
M1 63.3070 49.7690 27.0765 16.3059 14.9857
M2 15.3952 13.0751 10.3741 7.5806 5.9422

We note that for small problem the runs with method 1 and method 2, are almost closely.
But for larger problem the the method 2 become superior.

CHAPTER 6. RESULTS 81

6.7 Simulations

Figures 6.36 and 6.37 shows an instants of the simulations. The parameters used for this
runs were Re = 100 and Sc = 20 and boundary conditions described above.

(a) (b)

Figure 6.36: Snapshot of the Simulations: (a) Scalar Concentrations. (b) Pressure.

(a) (b)

Figure 6.37: Snapshot of the Simulations: (a) Velocity - Component X. (b) Velocity -
Component Y.

CHAPTER 7

SUMMARY

In this work, the parallelization of finite element code for numerical simulations of water
reservoirs is investigated and implemented using PETSc and MPICH libraries.

Chapters 1 - 3 give an introduction to the problem and a review of the main concepts
necessary to develop this work. Implementation details about partitioning, elements and ver-
tices distributions, and the mapping of degree of freedom were given in chapter 4. The mapping
technique and the static matrix allocations were crucial to improve the assembling process. Im-
plementing a complete finite element code with PETSc represent a great investment of effort
in coding, but we can easily perform runs to tests different solver and preconditioner algorithm
in order to determine the best solver for a given problem. In chapter 5 we see that memory
bandwidth is a serious limitations of the scalability when performing sparse matrix-vector mul-
tiplications (SpMV). In chapter 6 we were able to determine the best preconditioner among the
preconditioners tested, which were for intermediate velocity: one-way dissection reordering in
method 1 and natural reordering in method 2. For pressure and scalar were the reverse Cuchil
McKee and natural respectively. Respect to the method 1 and method 2 tested we can conclude
that the method 2 (Static Condensation) was superior in time respect to the method 2, at a cost
of increase the used memory. Further improvement can be done in this part, by avoiding the
copy of part of the matrix when performing the factorization. In almost all part of the code we
have enough room for tuning and get better speedup.

In general the computational time was reduced with the parallel implementations com-
pared with the serial code, however more and longer simulations are needed in order to fine tune
the implementations, in all stages.

CHAPTER 7. SUMMARY 83

7.1 Future Research Area

Some future research can be given in order to improve the implementations.

• In the preprocessing stage a geometric partitioner can be used to get a better speedup.
Other parallel partitioning libraries can be tested and compared.

• In the assembling process the exact amount of non zeros of the matrix can be calculated,
resulting in a perfect matrix allocation. Also setting up values by blocks in the matrix can
result in a more efficient assembling.

• In the solver stage copy of the matrix can be avoided during the static condensation, re-
sulting in a reduction of memory used. Also, more general factorization can be performed.

• Test other software implementations like OPEN-MX and GAMMA to improve the mes-
sage passing performance over the Ethernet network.

• Implement the code using hybrid programming models.

• Extend the code to the tri-dimensional case.

• Implement the semi-lagrangian scheme in parallel.

REFERENCES

AMESTOY, P. R. et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic

Scheduling. 1999.

ANJOS, G. R. d. et al. Numerical modeling of the hydrodynamic field coupled to the transport
of chemical species through the finiteelement. In: 6th International Congress on Industrial and

Applied Mathematics (ICIAM 2007). Zurique: 6th International Congress on Industrial and
Applied Mathematics, 2007.

ANL/MSC. MPI Implementations. 2010.
Http://www.mcs.anl.gov/research/projects/mpi/implementations.html.

ANL/MSC. MPICH2: High-performance and Widely Portable MPI. 2010.
Http://www.mcs.anl.gov/research/projects/mpich2.

ASHCRAFT, C.; GRIMES, R. Spooles: An object-oriented sparse matrix library. In: In

Proceedings of the 9th SIAM Conference on Parallel Processing for Scientific Computing. [S.l.:
s.n.], 1999. p. pages.

BALAY, S. et al. PETSc Users Manual. [S.l.], 2010.

BALAY, S. et al. PETSc Web page. 2009. Http://www.mcs.anl.gov/petsc.

BALAY, S. et al. Efficient management of parallelism in object oriented numerical software
libraries. In: ARGE, E.; BRUASET, A. M.; LANGTANGEN, H. P. (Ed.). Modern Software

Tools in Scientific Computing. [S.l.]: Birkhäuser Press, 1997. p. 163–202.

REFERENCES 85

BATCHELOR, G. An introduction to fluid dynamics. UK: Cambridge University Press, 2000.

BECKER, E. B.; CAREY, G. F.; ODEN, J. T. Finite Element Method. [S.l.]: Prentice-Hall,
1981.

BENZI, M. et al. Numerical solution of saddle point problems. Acta Numerica, v. 14, p. 1–137,
2005.

BENZI, M.; HAWS, J.; TUMA, M. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM Journal on Scientific Computing, Citeseer, v. 22, n. 4, p. 1333–1353, 2001.

BENZI, M.; SZYLD, D.; DUIN, A. V. Orderings for incomplete factorization preconditioning
of nonsymmetric problems. SIAM Journal on Scientific Computing, Citeseer, v. 20, n. 5, p.
1652–1670, 1999.

BOISVERT, R. et al. The Matrix Market: A web resource for test matrix collections. Quality

of Numerical Software, Assessment and Enhancement, Citeseer, p. 125–137, 1997.

BUNTINAS, D.; MERCIER, G.; GROPP, W. Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem. In: Sixth IEEE International

Symposium on Cluster Computing and the Grid, 2006. CCGRID 06. [S.l.: s.n.], 2006. v. 1.

BURNS, A.; WELLINGS, A. Real-Time Systems and Programming Languages: Ada,

Real-Time Java and C/Real-Time POSIX. USA: Addison-Wesley Educational Publishers Inc,
2009. ISBN 0321417453, 9780321417459.

BUTENHOF, D. R. Programming with POSIX threads. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997. ISBN 0-201-63392-2.

CHARNEY, J.; FJÖRTOFT, R.; NEUMMAN, J. von. On a numerical method of integrating
the barotropic vorticity equation. Tellus, p. 179–194, 1952.

CHOW, E.; SAAD, Y. Experimental study of ILU preconditioners for indefinite matrices.
Journal of Computational and Applied Mathematics, Citeseer, v. 86, n. 2, p. 387–414, 1997.

DAVIS, T. A.; DUFF, I. S. An Unsymmetric-Pattern Multifrontal Method for Sparse LU

Factorization. [S.l.], 1994.

DEMMEL, J. Applied numerical linear algebra. [S.l.]: Society for Industrial Mathematics,
1997.

DEMMEL, J. W. et al. A supernodal approach to sparse partial pivoting. SIAM J. Matrix

Analysis and Applications, v. 20, n. 3, p. 720–755, 1999.

REFERENCES 86

DEMMEL, J. W.; GILBERT, J. R.; LI, X. S. An asynchronous parallel supernodal algorithm
for sparse gaussian elimination. SIAM J. Matrix Analysis and Applications, v. 20, n. 4, p.
915–952, 1999.

DUFF, I.; ERISMAN, A.; REID, J. Direct methods for sparse matrices. [S.l.]: Oxford
University Press, USA, 1989.

FOSTER, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering: Parallelism and computing. [S.l.]: Addison Wesley, 1995.

FREUND, R.; GOLUB, G.; NACHTIGAL, N. Iterative solution of linear systems. Acta

Numerica, Cambridge Univ Press, v. 1, p. 57–100, 2008.

GAREY, M. R.; JOHNSON, D. S.; STOCKMEYER, L. Some simplified np-complete
problems. In: Annual ACM Symposium on Theory of Computing archive.Proceedings of the

sixth annual ACM symposium on Theory of computing. [S.l.: s.n.], 1974.

GEORGE, A. An automatic one-way dissection algorithm for irregular finite element problems.
Numerical Analysis, Springer, p. 76–89.

GEORGE, A.; LIU, J. Computer solution of large sparse positive definite systems. Prentice
Hall, 1981.

GEORGE, J. Computer implementation of the finite element method. 1971.

GOCKENBACH, M. S. Understanding and Implementing the Finite Element Method.
Houghton, Michigan: SIAM, 2006.

GRAMA, A. et al. Introduction to Parallel Computing,. 2nd. ed. [S.l.]: Pearson Education
Limited, 2003.

GRAMA, A.; GUPTA, A.; KUMAR, G. K. andVipin. Introduction to parallel computing.
[S.l.]: Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

GROPP, W. Exploiting Existing Software in Libraries: Successes, Failures, and Reasons Why.
1998.

GROPP, W. et al. Toward realistic performance bounds for implicit CFD codes. In: CITESEER.
Proceedings of Parallel CFD. [S.l.], 1999. v. 99.

GROPP, W. et al. Latency, bandwidth, and concurrent issue limitations in high-performance
CFD. In: CITESEER. First MIT Conference on Computational Fluid and Solid Mechanics,

Cambridge, MA (US), 06/12/2001–06/14/2001. [S.l.], 2000.

REFERENCES 87

HENDRICKSON, B. Chaco: Software for Partitioning Graphs. January 2010. http:
//www.sandia.gov/~bahendr/chaco.html.

HEROUX, M. e. a. An overview of trilinos. Special issue on the Advanced CompuTational

Software (ACTS) Collection, v. 31, n. 3, p. 397 – 423, 2005.

HESTENES, M.; STIEFEL, E. Methods of conjugate gradients for solving linear systems. J,
1952.

HUGHES, C.; HUGHES, T. Professional Multicore Programming Design and Implementation

for C++ Developers. [S.l.]: Wiley Publishing, Inc., 2008.

HUGHES, T. The finite element method: Linear static and dynamic finite element analysis.
New York: Dover Publications, 2000.

J., R. A. A stable numerical integration scheme for the primitive meteorogical equations.
ATMOSPHERE-OCEAN, v. 19, n. 35-46, 1981.

J.S., S. A semi-lagrangian method of solving the vorticity advection equtions. Tellus, p.
336–342, 1963.

KARDESTUNCER, H.; NORRIE, D. Finite element handbook. [S.l.]: McGraw-Hill, Inc. New
York, NY, USA, 1987.

KARLSSON, B. Beyond the C++ standard library. [S.l.]: Addison-Wesley Professional, 2005.

KARYPIS, G.; KUMAR, V. Parallel Multilevel Graph Partitioning. [S.l.], 1995.

KITWARE. VTK File Formats for VTK Version 4.2. 2010. Http://www.vtk.org/VTK/img/file-
formats.pdf.

KSHEMKALYANI, A. D.; SINGHAL, M. Distributed Computing Principles, Algorithms, and

Systems. [S.l.]: Cambridge University Press, 2008.

KUNDU, P. K.; COHEN, I. M. Fluid Mechanics. 2nd. ed. London and San Diego, CA:
Academic Press, 2002.

LAB, K. ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering. January
2010. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

LANCZOS, C. Solution of systems of linear equations by minimized iterations. J. Res. Nat.

Bur. Standards, Citeseer, v. 49, n. 1, p. 33–53, 1952.

LAYTON, J. B. Parallel platters: File systems for hpc clusters. Linux Magazine, 2007.

http://www.sandia.gov/~bahendr/chaco.html
http://www.sandia.gov/~bahendr/chaco.html
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

REFERENCES 88

LEE, M. J.; OH, B. D.; KIM, Y. B. Canonical fractional-step methods and consistent boundary
conditions for the incompressible navier-stokes equations. Journal of Computational Physics,
v. 168, p. 73–100, 2001.

LI, X. S.; DEMMEL, J. W. SuperLU_DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Mathematical Software, v. 29, n. 2, p.
110–140, June 2003.

LU, Y. Optimum Flow Domain Partitioning of the Three-Dimensional Water Flow for

Parallel Computation. Dissertação (Master of Science Thesis) — KTH Computer Science and
Comunication, Stockholm, Sweden, 2008.

MATHEMATICS, W. G. Why we Couldn’t Use Numerical Libraries for PETSc.

MCCALPIN, J. D. STREAM: Sustainable Memory Bandwidth in High Performance

Computers. Charlottesville, Virginia, 1991–2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/. Disponível em: <http://www.cs.virginia.edu/stream/>.

MCCALPIN, J. D. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter, p. 19–25, dez. 1995.

OPENMP. The OpenMP API specification for parallel programming. 2010. Http://openmp.org.

PELLEGRINI, F. Scotch §PT-Scotch. January 2010. http://www.labri.fr/perso/
pelegrin/scotch.

PEROT, J. B. An analysis of the fractional step method. Journal of Computational Physics,
v. 108, p. 51–58, 1993.

RABENSEIFNER, R.; KONIGES, A. Effective communication and file-i/o bandwidth
benchmarks. Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Springer, p. 24–35.

REID, E. On the method of conjugate gradients for the solution of large sparse systems of
linear equations. Work, v. 501, p. 39911.

SAAD, Y. Iterative Methods for Sparse Linear System. 2nd. ed. [S.l.]: SIAM, 1999.

SAAD, Y.; SCHULTZ, M. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., v. 7, n. 3, p. 856–869, 1986.

http://www.cs.virginia.edu/stream/
http://www.labri.fr/perso/pelegrin/scotch
http://www.labri.fr/perso/pelegrin/scotch

SAAD, Y.; SOSONKINA, M.; ZHANG, J. Domain decomposition and multi-level type
techniques for general sparse linear systems. Contemporary Mathematics, Citeseer, v. 218, p.
174–190, 1998.

SAAD, Y.; VORST, H. V. D. Iterative solution of linear systems in the 20th century. Journal of

Computational and Applied Mathematics, Elsevier, v. 123, n. 1-2, p. 1–33, 2000.

SHIN, H. H. A Methodology of Study of Three Dimensional Stratified Turbulent Fluid Flow

for Hydroelectric Power Plant Reservoir Simulation. Dissertação (Mestrado) — Faculdade de
Engenharia Mecânica, 2009.

SIMONCINI, V.; SZYLD, D. Recent computational developments in Krylov subspace methods
for linear systems. Numerical Linear Algebra with Applications, Citeseer, v. 14, n. 1, p. 1,
2007.

SOLCHENBACH, K. Benchmarking the balance of parallel computers. In: SPEC Workshop

on Benchmarking Parallel and High-Performance Computing Systems, Wuppertal, Germany.
[S.l.: s.n.], 1999.

STERLING, T.; SALMON, J.; SAVARESE., D. B. D. How to Build a Beowulf: A Guide to the

Implementation and Application of PC Clusters: Parallelism and computing. [S.l.]: MIT Press,
1999.

VORST, H. A. van der. Bi-cgstab: a fast and smoothly converging variant of bi-cg for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, v. 13, n. 2, p. 631–644, 1992. ISSN 0196-5204.

WALSHAW, C. JOSTLE Ů graph partitioning software. January 2010. http://staffweb.
cms.gre.ac.uk/~c.walshaw/jostle.

WALSHAW, C.; CROSS, M. Parallel mesh partitioning on distributed memory systems. In:
Parallel and Distributed Processing for Computational Mechanics. Saxe-Coburg Publications.
[S.l.: s.n.], 1999.

WIIN-NIELSEN, A. on applications of trajectory method in numerical forecasting. Tellus, p.
180–196, 1959.

ZIENKIEWICZ, O.; TAYLOR, R. The finite element method: Volume 3: Fluid dynamics. Ma:
Butterworth-Heinemann, 2000.

ZIENKIEWICZ, O.; TAYLOR, R. The finite element method: Volume 1: The basis. Ma:
Butterworth-Heinemann, 2000.

89

http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle

	Pedro Juan Torres Lopez_Pt1

