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RESUMO

SHIN, Hyun Ho. Uma Metodologia de Estudo de Simulação Tridimensional de Escoamento
Turbulento Estratificado no Reservatório de Plantas Hidrelétricas. 2009. 83f. Dissertação
(Mestrado em Engenharia Mecânica) – Faculdade de Engenharia Mecânica, Universidade do
Estado do Rio de Janeiro, Rio de Janeiro, 2009.

Uma simulação numérica que leva em conta os efeitos de estratificação e mistura es-
calar (como a temperatura, salinidade ou substância solúvel em água) é necessária para estudar
e prever os impactos ambientais que um reservatório de usina hidrelétrica pode produzir. Este
trabalho sugere uma metodologia para o estudo de escoamentos ambientais, principalmente
aqueles em que o conhecimento da interação entre a estratificação e mistura pode dar noções
importantes dos fenômenos que ocorrem. Por esta razão, ferramentas de simulação numérica
3D de escoamento ambiental são desenvolvidas. Um gerador de malha de tetraedros do reser-
vatório e o modelo de turbulência algébrico baseado no número de Richardson são as principais
ferramentas desenvolvidas. A principal dificuldade na geração de uma malha de tetraedros de
um reservatório é a distribuição não uniforme dos pontos relacionada com a relação despro-
porcional entre as escalas horizontais e verticais do reservatório. Neste tipo de distribuição de
pontos, o algoritmo convencional de geração de malha de tetraedros pode tornar-se instável. Por
esta razão, um gerador de malha não estruturada de tetraedros é desenvolvido e a metodologia
utilizada para obter elementos conformes é descrita. A geração de malha superficial de triângu-
los utilizando a triangulação Delaunay e a construção do tetraedros a partir da malha triangular
são os principais passos para o gerador de malha. A simulação hidrodinâmica com o modelo de
turbulência fornece uma ferramenta útil e computacionalmente viável para fins de engenharia.
Além disso, o modelo de turbulência baseado no número de Richardson leva em conta os efeitos
da interação entre turbulência e estratificação. O modelo algébrico é o mais simples entre os di-
versos modelos de turbulência. Mas, fornece resultados realistas com o ajuste de uma pequena
quantidade de parâmetros. São incorporados os modelos de viscosidade/difusividade turbulenta
para escoamento estratificado. Na aproximação das equações médias de Reynolds e transporte
de escalar é utilizando o Método dos Elementos Finitos. Os termos convectivos são aproxi-
mados utilizando o método semi-Lagrangeano, e a aproximação espacial é baseada no método
de Galerkin. Os resultados computacionais são comparados com os resultados disponíveis na
literatura. E, finalmente, a simulação de escoamento em um braço de reservatório é apresentada.

Palavras-chave: Geração de Malha não estruturada, Simulação Numérica, Métodos de Elemen-
tos Finitos, Equações Médias de Reynolds, Modelo de Viscosidade/Difusividade Turbulenta,
Escoamento Estratificado Turbulento.



ABSTRACT

To study and forecast the environmental impacts that a hydroelectric power plant reser-
voir may produce, a numerical simulation that takes into account the effects of stratification
and scalar mixing (such as temperature, salinity or water-soluble substance) is required. This
work proposes a methodology for the study of the environmental fluid flow phenomena, mainly
for flows in which the knowledge of the interaction between stratification and mixing can give
important notions of the phenomena that occur. For this, a numerical simulation tool for 3D
environmental flow is developed. A tetrahedral mesh generator of the reservoir based on the
terrain topology and an algebraic turbulence model based on the Richardson number are the
main tools developed. The main difficulty in tetrahedral mesh generation of a reservoir is non-
uniform distribution of the points related to the huge ratio between the horizontal and vertical
scales of the reservoir. In this type of point distributions, conventional tetrahedron mesh genera-
tion algorithm may become unstable. For this reason, a unstructured tetrahedral mesh generator
is developed and the methodology used to obtain conforming elements is described. Triangular
surface mesh generation using the Delaunay triangulation and the construction of the tetrahedra
from the triangular surface mesh are the main steps to the mesh generator. The hydrodynamic
simulation of reservoirs with a turbulence model provides a useful tool that is computationally
viable for engineering purposes. Furthermore, the turbulence model based on the Richardson
number takes into account the effects of interaction between turbulence and stratification. The
algebraic model is the simplest among the various models of turbulence, but provides realistic
results with the fitting of a small amount of parameters. Eddy-Viscosity/Diffusivity models for
stratified turbulent flows models are incorporated. Using the Finite Element Method (FEM)
approximation the Reynolds-averaged Navier-Stokes (RANS) and mean scalar transport equa-
tions are approximated. The convective terms are discretized employing the Semi-Lagrangian
method, and the spatial discretization is based on the Galerkin method. The computational re-
sults are compared with the results available in the literature. Finally, the simulation of the flow
in a branch of a reservoir is presented.

Keywords: Unstructured Mesh Generation, Numerical Simulation, Finite Element Method,
Reynolds Averaged Navier Stokes equations, Eddy-Viscosity/Diffusivity Models, Stratified Tur-
bulent Flow.
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INTRODUCTION

Vertical profiles of temperature in the water column of several reservoirs show the strat-

ified condition of the reservoirs (GUÉRIN et al., 2006; DEMARTY; BASTIEN; TREMBLAY, 2009).

This condition affects the distribution of the nutrients amount and also the contaminants may

exist. In temperate regions, the climate in summer and winter seasons are favorable to the ther-

mal stratification. However, in spring and autumn, the thermal stratification is broken due to

the overturn produced by the variation in temperature profile, that leads to mixing of the water

column and the nutrients. The result of this mixing is water with homogenized properties. In

tropical regions, the reservoir is stratified most of the year. But in wet season, rain and wind

provide the necessary energy for mixing.

The knowledge of the effects of stratification and the mixing process in the nutrients

or the contaminants behaviors requires the study of the physics of the flow. The mathematical

models, used to describe the transport phenomena, promise to increase understanding about

these behaviors.

In continuum mechanics, the basis of fluid dynamics models is the Navier-Stokes equa-

tions, that are nonlinear partial differential equations. The transport phenomena are described

using the Navier-Stokes equations together with continuity equation and the scalar (such as

temperature, salinity or water-soluble substance) transport equations. The nonlinear character

of the Navier-Stokes equations makes it impossible to obtain the analytic solution of these in

most cases. Improvements in computer power and storage, in recent decades, have enabled the
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development of an area of fluid mechanics dedicated to the simulation of the flows employ-

ing computers (BATES; LANE; FERGUSON, 2005). This area is Computational Fluid Dynamics

(CFD). CFD provides useful tools for the discretization of the mathematical models to obtain

approximate solutions using scientific computation (WRIGHT, 2005).

There are several approaches to obtain the numerical solution of the fluid dynamics

models. Classical techniques such as the Direct Numerical Simulation (DNS) can be used to

simulate environmental flows, by solving the Navier-Stokes and scalar transport equations. DNS

is very important for flow analysis because it gives details of the flow structures, however, this

is possible only when the temporal and spatial resolution is fine enough to capture the whole

range of scales of the flow (POPE, 2000). This requires large computational resources, which in

practical engineering situations is not feasible.

Techniques based on statistical approach of Navier-Stokes equations provide a useful

tool that is computationally viable for engineering purposes (SOTIROPOULOS, 2005). This ap-

proach relies on the Reynolds decomposition that consists in the separation of the instantaneous

values variables into the time averaged component and the fluctuating component. Introduc-

ing the Reynolds decomposition into the fluid motion equations and applying time averages,

the equations for the mean values variables are obtained. In this process new unknowns which

are the average of products of fluctuations appear. These unknowns are described using the

turbulence models.

The algebraic model is the simplest among the various models of turbulence. Its sim-

plicity is that it is not necessary to solve any differential equation, and with the adjustments

of a small amount of parameters realistic results can be obtained. The relevant dimensionless

parameter is called Richardson number and involves the effects of inertia and the buoyancy ef-

fects. In stratified flow, the evaluation of this parameter becomes necessary to take into account

the effect of interaction between turbulence and stratification.

The main goal of this work is to develop a numerical simulation tool for 3D environ-

mental flow using an algebraic turbulence model based on the Richardson number. The approx-

imation method used is the Finite Element Method (FEM). The Galerkin semi-discrete finite el-

ement method is used for spatial discretization. The nonlinear convective terms are discretized

with the time derivative term. These terms are written in the form of substantial derivative, and

are discretized by the semi-Lagrangian semi-implicit scheme. The MINI tetrahedral element
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is adopted for velocity and pressure discretization and the linear tetrahedral element for scalar

fields. These elements provide the consistent function spaces for the unknown functions that

are necessary for simulation of incompressible fluid flows.

One advantage of using FEM, is that the FEM is based on unstructured meshes (FERZIGER;

PERIĆ, 2002). A mesh composed of the simplices (triangles in 2D and tetrahedra in 3D) of De-

launay has the property to adapt to any complex geometry. This property is desirable to generate

meshes that accurately represent complex natural topographies. Nowadays, there are several

types of terrain data. And every tool for analysis of environmental flows must be able to read

the various geographic data and generate a suitable mesh for the numerical simulation (FEM in

this case). The main difficulty in mesh generation of tetrahedral finite element of the reservoir

is non-uniform distribution of points. This non-uniform distribution is related to the huge ratio

between the horizontal and vertical scales of the reservoir. In this type of points distribution,

conventional tetrahedron mesh generation algorithm may become unstable. Hence, before ex-

pounding the numerical scheme, a tetrahedron mesh generation strategy to be used in numerical

simulation is presented.

Objectives

As mentioned above, the main objective of this work is to develop a numerical simulation

tool for environmental flow using an algebraic turbulence model for stratified flow.

Specific objectives are:

• To briefly describe the types of terrain data employed in this work (chapter 1).

• To develop the tetrahedron mesh generation for FEM from the available terrain data

(chapter 2).

• To describe the governing equations and the parameterizations of the variables in-

herent to the stratified turbulent flow (chapter 3).

• To describe the spatial Galerkin discretization and Semi-Lagrangian substantial deriva-

tive discretization (chapter 4).

• To develop a module of turbulence model for stratified flow and to incorporate into

the existing FEM code of hydrodynamic transport simulation (chapter 5).

• To briefly describe the Object Oriented Programming (OOP) used to numerical sim-
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ulation (chapter 5).

• To present the computational results of a simple model and to compare with the

available literature (chapter 6).

• To present the simulation of the scale model of a confluence (chapter 6).

• To present the simulation of the flow in a branch of a reservoir (chapter 6).



CHAPTER 1

GEOGRAPHIC TOPOLOGY

Numerical modeling of hydrodynamic applications in real geophysical systems requires

the correct representation of the terrain topological data. The main difficulty in the represen-

tation of the terrain data consist in the heterogeneity of the data sets that differ in precision,

type, structure, among other factors. In this chapter, the different types of terrain data to be

encountered in real geophysical systems and its features are presented.

1.1 Raster and Vector data type

There are two principal data models to represent the real world object. The first one is

the raster data type, and another is the vector data type (HARMON; ANDERSON, 2003).

1.1.1 Raster data type

The raster data type consists of rows and columns of cells, with each cell storing color

value (RGB colors) or elevation (Figure 1.1). The raster which cells store color value is called

raster images, and the cells are called pixel. Several file format such as TIFF, GeoTIFF, JPEG,

are used to store raster images. The GeoTIFF file format embeds georeference information,

such as coordinate systems, ellipsoids, datums, projections, within a TIFF file. Figure 1.1(a)
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shows a GeoTIFF image of a region in Rio de Janeiro state (Brazil) close to 43◦ S – 22◦ W. The

Digital Elevation Model (DEM) data file (also known as Digital Terrain Model (DTM)) stores

the elevation information, and is used to represent the elevation as raster. Figure 1.1(b) shows

a DTM image of the region of Rio de Janeiro state and south of Minas Gerais state in Brazil,

between 42◦ and 48◦ S – 21◦ and 24◦ W.

240.0320.0400.0Elevation (m)

(a)

−500.0

1000.0

2500.0

Elevation (m)

(b)

Figure 1.1: Images of the raster data: (a) GeoTIFF image of a region in Rio de
Janeiro state (43◦ S – 22◦ W). (b) DTM image of the region of Rio de Janeiro state
and south of Minas Gerais state.
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1.1.2 Vector data type

In vector data type, the geographic information is expressed as vectors according to the

geometrical shapes. The geospatial data are stored as points (simple location, such as, remote

measure location), lines or polylines (such as rivers or contour lines), and polygons (such as

lakes). Each shape (points/lines/polygons) has attributes that describes it, such as the name, ele-

vation, visualization features and any meteorological or environmental measures. The shapefile

(a collection of files with .shp, .shx, .dbf extension, developed and regulated by Environmental

Systems Research Institute (ESRI)) is the common geographic vector data format (Figure 1.2).

Figure 1.2(a) shows the image of a shpefile storing information of contour lines as polylines.

The image correponds to a region of Nova Friburgo in Rio de Janeiro state (Brazil) close to

22.3◦ S – 42.6◦ W. Figure 1.2(b) shows the image of some contour lines extracted from the

shapefile showed in the Figure 1.2(a).

200.0

1250.0

2300.0

Elevation (m)

(a) (b)

Figure 1.2: Images of the vector data: (a) Shapefile of a region of Nova Friburgo
in Rio de Janeiro state. (b) Some contour lines of a river channel extrated from the
shapefile showed in (a).

The shapefiles employed in this work have the information of the geometric data as

polylines. These polylines form the contour lines. The cloud of points for the mesh generation

is extracted from the contour lines. The Figure 1.3 shows the contour lines and the cloud of

points lying on the contour lines.
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Figure 1.3: Image of the contour lines with the cloud of points.



CHAPTER 2

MESH GENERATION

This chapter describes the methodology used to discretize the spatial domain. From a

cloud of points forming contour lines (shown in the previous chapter) of the continuous spa-

tial domain, a surface mesh of Delaunay (BERG et al., 2000) triangles is generated using the

incremental algorithm of nodes insertion. Then, a conforming mesh of tetrahedra is built. The

non-uniform distribution of the points related to the huge ratio between the horizontal and verti-

cal scales of the reservoir, commented in the introduction (chapter ), can be visualized in Figure

2.1. The properties of the Delaunay triangulation, the algorithm to generate it, and the process

of building the tetrahedral mesh are presented.

238.0246.0254.0
depth = 16.0 m

Elevation (m)
(a)

width ' 200.0 m

(b)

Figure 2.1: Non-uniform distribution of points in a river channel: (a) Side view. (b)
Top view.
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2.1 Delaunay triangulation

Given a set of points, the Delaunay triangulation maximizes the minimum angle of all

possible triangulations (BERG et al., 2000; O’ROURKE, 1998). This property is desirable for

the stiffness matrix conditioning in the FEM formulation (SHEWCHUK, 2002) and is equivalent

to the property that the circumscribed circle (denoted as circumcircle) of any triangle in the

Delaunay triangulation is empty (contains no other point in its interior).

2.1.1 Randomized incremental algorithm

A randomized incremental algorithm is used to compute a Delaunay triangulation. The

point is inserted in random order, one at a time, and the triangulation is updated with each new

addition. Consider a new point inserted into an initial triangulation (Figure 2.2(a)), triangles

with circumcircle containing the new inserted point are located and deleted from the list of

triangle. A new triangulation is obtained by joining the new point to the nodes at the edges of

the cavity created by the previous removal of triangles (see Figure 2.2(b)).

(a) (b)

Figure 2.2: Randomized incremental algorithm of node insertion: (a) Given an ini-
tial triangulation, triangles with circumcircles containing a new point are removed.
(b) A new triangulation is shown. (MAVRIPLIS, 1997)

Consider P = {p1, p2, . . . , pn} be a set of points in the plane, the process begins with an

initial triangulation formed by a single triangle containing all points of the set P . Let p−1, p−2

and p−3 the vertices of this triangle, the triangulation of the set P ∪{p−1, p−2, p−3} is computed.

After having inserted all points, the Delaunay triangulation of the set P is obtained by removing

the points p−1, p−2 and p−3 with all incident edges.
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2.1.2 Convex hull

To verify if a point lies in the circumcircle of a triangle, a geometry structure named

convex hull is used. The convex hull of a set of points is the smallest convex set that contains

the set of points. The lower convex hull of a set of points is defined as the portion of the convex

hull that leaves all the points above it.

Let P ′ = {p′1, p′2, . . . , p′n} be the projection of the points of P onto the paraboloid z =

x2 + y2. The statement that the projection of the lower convex hull of P ′ onto the plane z = 0

is the Delaunay triangulation of P will be shown.

The equation of the tangent plane to the paraboloid above some point (a, b, a2 + b2) is

z = 2ax+ 2by − (a2 + b2) (2.1)

and shifting this tangent plane upwards by some positive value r2 produces the plane whose

equation is

z = 2ax+ 2by − (a2 + b2) + r2 (2.2)

The equation obtained by intersecting this shifted plane and the paraboloid is

z = x2 + y2 = 2ax+ 2by − (a2 + b2) + r2 (2.3)

(x− a)2 + (y − b)2 = r2 (2.4)

The equation (2.4) suggests that the projection of the intersection between the shifted

plane and the paraboloid projected onto the plane z = 0 is a circle with center (a, b, 0) and

radius r. Notice that r2 is the distance that the plane has been shifted upwards from the point of

tangency (a, b, a2 + b2). It is easy to see that when the tangent plane to the paraboloid is shifting

upwards the radius of the circle is growing. That is, all points of the paraboloid located below

a shifted plane are projected on the plane z = 0 inside the circle obtained by projecting on this

plane (plane z = 0) the intersection between the shifted plane and the paraboloid.

Now consider pi, pj , and pk three points in the plane z = 0, and its projections p′i, p
′
j ,

and p′k onto the paraboloid. p′i, p
′
j , and p′k determine a plane α that intersects the paraboloid.

The projection of this intersection on the plane z = 0 is a circle passing through pi, pj , and pk.
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Notice that the circle is the circumcircle of the triangle (4pipjpk) formed by the points pi, pj ,

and pk. By definition, the plane α is one side of the lower convex hull if no other point is below

this plane. And as shown in the previous paragraph, only the points below the plane α have

their projections on the plane z = 0 inside the circle. That is, if there are no other point below

the plane α, then the circumcircle of the triangle4pipjpk is empty, i.e., the triangle4pipjpk is

a Delaunay triangle.

2.1.3 Non-uniform distribution of points

In a triangulation, it is possible that the edges of the triangles have a preferential direc-

tion. This is achieved by projecting onto an elliptic paraboloid, instead of projecting it onto a

paraboloid of revolution. Given the direction and the ratio of non-uniformity, the equation of

elliptic paraboloid is obtained from the quadratic form.

The equation of the paraboloid of revolution in the quadratic form is

z = x2 + y2 =

 x

y

T  1 0

0 1

 x

y

 (2.5)

The relation between the preferential direction and the original coordinate is given by

two transformation matrices. Let φ be the preferential direction measured counterclockwise,

and η the ratio between the mean lengths of the edges in the preferential direction and the

perpendicular direction to this. The (x, y) coordinate related to the preferential direction, let say

(xp, yp), using the transformation matrices is

 xp

yp

 =

 cosφ − sinφ

sinφ cosφ

 η 0

0 1

 x

y

 (2.6)

Rearranging this equation,

 x

y

 =

 1

η
cosφ

1

η
sinφ

− sinφ cosφ


 xp

yp

 (2.7)

Substituting this equation into the equation (2.5), the following elliptic paraboloid equation is
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obtained.

z =

(
1

η2
cos2 φ+ sin2 φ

)
x2
p + sin 2φ

(
1

η2
− 1

)
xpyp +

(
1

η2
sin2 φ+ cos2 φ

)
y2
p (2.8)

2.1.4 Optimized search

A drawback for the Delaunay triangulation is its high computational cost as a new point

is inserted. Notice that for each inserted point, to identify the triangles with circumcircle con-

taining the point, it is necessary to search across all the triangles in the triangulation of the

previous iteration. Hence, the searching algorithm is a bottleneck in this process.

To reduce the computational cost, an auxiliary structured quadrilateral mesh and a data

structure with information of the neighbored triangles are used. With the auxiliary mesh, it is

possible to recognize a triangle next to the new point inserted. The data structure reduces the

search time to identify the triangles with circumcircle containing the point.

The disadvantage of using extra information for search is the increasing memory use.

However, this information can be used to easily identify the nodes at the mesh boundary. This

is important in order to impose the boundary conditions in the FEM routine.

2.2 Reservoir 3D Mesh Generation Routine

There are two features that are desirable and usually found in cartesian unstructured

reservoir meshes:

Layers. The points are connected to other points at the same z coordinate. This feature is

desirable, specially in strongly stratified flows since the velocity is preferably horizontal,

and a mesh constructed with horizontal layers will introduce less artificial diffusion.

Sticks. The points are connected vertically to other points at the same x, y coordinate, but at a

different z coordinate. This feature is desirable because it allows a simplification of the

pressure calculation, which varies almost hydrostatically in the vertical direction. In the

limit of very low vertical accelerations, the pressure distribution can be assumed hydro-

static and pressure can be computed from the surface pressure, integrating vertically the

z-momentum equation.
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Even if the pressure distribution is not assumed to be hydrostatic, the vertical alignment

in the sticks produces a better coupling between the vertical velocity and the pressure fields.

The routine of mesh generation employs as input data the coordinate points of the con-

tour lines corresponding to the bottom of the reservoir. However, these points are not sufficient

to generate a tetrahedral mesh. Therefore additional points need to be defined inside the reser-

voir. Next, the mechanism of inclusion of these additional points producing layers and sticks, is

discussed.

2.2.1 Points adding process

Throughout each point that does not belong to the upper (external) contour lines, a ver-

tical line (stick) is drawn. This vertical lines intersect the horizontal planes (layers). The inter-

sections lying inside the reservoir are the points to be added to the set of points P . Notice that

now the points are classified in layers. The Figure 2.3(a) shows an example of the contour lines

points, while the Figure 2.3(b) shows the points after the point adding process.

238.0246.0254.0Elevation (m)
(a) (b)

Figure 2.3: Points adding process: (a) contour lines points. (b) points filling the
reservoir.

2.2.2 Prism partition process

After the point adding process, the code generates a two-dimensional mesh using the

Delaunay triangulation with the information of the sticks and layers. Once the Delaunay tri-

angulation was performed, the triangular prisms are constructed and partitioned in order to

produce the tetrahedral elements.
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The process of dividing the prisms is not trivial since it is possible to obtain a non-

conforming tetrahedron (see Figure 2.4(a)). Therefore, restrictions during the prism partitioning

process are imposed.

(a) (b)

Figure 2.4: Partitioning prisms: (a) non-conforming tetrahedron. (b) conforming
tetrahedron.

To solve this problem, each edge is orientated (using arrows) considering the crescent

x-coordinate. Using the origin vertex of the arrow as a starting point, diagonals are drawn to

each lateral face (see Figure 2.4(b)). Notice that, since the orientation of the edges is arbitrary,

the partition of the prism is not unique.

A 3D mesh is shown in Figure 2.5. It can be observed that the final mesh has the desired

feature: the points lie on the intersection of planes (layers) with vertical lines (sticks).

Figure 2.5: Three-dimensional Mesh.
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GOVERNING EQUATIONS

This chapter describes the derivation of the Reynolds Averaged Navier-Stokes (RANS)

and mean scalar transport equations, and then analyzes the eddy viscosity/diffusivity model,

specifically the algebraic model applied to numerical simulation. At last, the stratified turbulent

flow model is shown. To represent the equations, index notation has been used.

3.1 Fundamental equations of fluid flow

The fundamental equations of Fluid Mechanics are derived from the conservation laws of

mass and momentum (BATCHELOR, 2000; KUNDU; COHEN, 2002). The continuity, Navier-Stokes

and scalar transport equations based on Boussinesq approximation and Reynolds averaging are

shown.

3.1.1 Continuity equation

The conservation of mass leads to the continuity equation, and reads:

1

ρ

Dρ

Dt
+
∂ui
∂xi

= 0 (3.1)
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where, ui(i = 1, 2, 3) are the instantaneous velocity components, xi(i = 1, 2, 3) are the coor-

dinate axes with direction 3 vertically upward, ρ is the density of the fluid, and the substantive

derivative operator D/Dt is defined as

D

Dt
=

∂

∂t
+ ui

∂

∂xi
(3.2)

Based on the Boussinesq approximation, the continuity equation (3.1) reduces to the

incompressible form:
∂ui
∂xi

= 0 (3.3)

The Boussinesq approximation states that density differences at low Mach numbers (de-

fined as Mc = U/c, where U is a characteristic velocity of the flow and c is the sound velocity

in the fluid) are sufficiently small and can be neglected, except in the gravity term where ρ is

multiplied by gi(i = 3), the acceleration due to gravity (KUNDU; COHEN, 2002; OERTEL, 2004).

3.1.2 Navier-Stokes equation

The law of momentum conservation relates the acceleration of fluid particles with the

forces exerted on them. Two types of forces are considered: body forces, and surface forces.

The body forces are related to the gravity forces and the surface forces, which have a molecular

origin, are represented by the stress tensor σij(i, j = 1, 2, 3). Then, the conservation of the

linear momentum is given by the equation:

ρ
Dui
Dt

=
∂σij
∂xj

+ ρgi (3.4)

The conservation of angular momentum shows that the stress tensor is symmetric. For a fluid

in motion, the stress tensor is split into a part −pδij (where, p is the pressure of the fluid and

δij(i, j = 1, 2, 3) is the Kronecker delta) that would exist if the fluid were at rest and additional

components τij(i, j = 1, 2, 3) (called the deviatoric stress tensor) due to viscosity:

σij = −pδij + τij (3.5)



CHAPTER 3. GOVERNING EQUATIONS 30

Newtonian fluids are those in which there is a linear relation between deviatoric stress and rate

of strain tensor, i.e.,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.6)

where the constant of proportionality µ is the molecular dynamic viscosity of the fluid (the

kinematic viscosity is defined as ν = µ/ρ). Then, for Newtonian fluids, the equation (3.5) takes

the form

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.7)

Substitution of equation (3.7) into the momentum equation (3.4) gives

ρ
Dui
Dt

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρgi (3.8)

This equation is called the Navier-Stokes (NS) equation.

Consider the case where the fluid is at rest and the density is uniform throughout the

domain. Let ρr be the density of reference and pr the reference pressure. Then,

∂pr
∂xi

= ρrgi (3.9)

Subtracting this equation from equation (3.8) and dividing by ρr, it is obtained

ρ

ρr

Dui
Dt

= − 1

ρr

∂(p− pr)
∂xi

+
1

ρr

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
ρ− ρr
ρr

gi (3.10)

Relying on the Boussinesq approximation (KUNDU; COHEN, 2002; OERTEL, 2004), the density

difference is considered negligible in the term of left hand side, i.e., ρ/ρr = 1. However, the

density difference in the term that contains the acceleration due to gravity remains.

Finally, the Navier-Stokes equation for incompressible and Newtonian fluid with Boussi-

nesq approximation is

Dui
Dt

= − 1

ρr

∂p

∂xi
+

1

ρr

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
ρ− ρr
ρr

gi (3.11)

where p is the pressure variation from reference pressure.



CHAPTER 3. GOVERNING EQUATIONS 31

3.1.3 Scalar transport equation

Let θ be a scalar quantity of magnitude of a property of the fluid (e.g. temperature) or

concentration of a substance (like salt) that induces stratification in the flow. The transport equa-

tion of scalar quantity θ, is governed by (KUNDU; COHEN, 2002; BATCHELOR, 2000; LANDAU;

LIFSHITZ, 1987)
Dθ

Dt
=

∂

∂xj

(
α
∂θ

∂xj

)
+ Sθ (3.12)

where Sθ is a source or sink of θ and α is the molecular (heat or mass) diffusivity coefficient.

Relying on the Boussinesq approximation, in equation (3.12), the scalar quantity θ can

be considered as a variation with respect to a reference value θr.

The local density of the equation (3.11) is related to θ via an equation of state of the

following form:
ρ− ρr
ρr

= −βθ (3.13)

where, β is the thermal expansion coefficient in case the local density is related to the tempera-

ture.

3.2 Derivation of mean equations

The statistical approach is used to simulate turbulent flow. Turbulent flows are charac-

terized by the existence of several length scales. This approach acts as a filter that removes all

small length scales in the flow. The statistical approach based on Reynolds decomposition is

shown. Then, the fundamental equations are derived for the mean equation of turbulent flow.

3.2.1 Statistical approach

The statistical approach is based on Reynolds decomposition. Instantaneous value of

each dependent variable is decomposed as a sum of a mean and a fluctuation around this mean

value. For example, for the component i of velocity,

ui(x, t) = Ui(x, t) + u′i(x, t) (3.14)



CHAPTER 3. GOVERNING EQUATIONS 32

where Ui(x, t) is the mean part and u′i(x, t) is the random fluctuation part. The mean value is

given by

Ui(x, t) =
1

T

∫ t+T

t

ui(x, t) dt (3.15)

where the averaging interval T is taken to be much longer than the maximum period of the

turbulent fluctuations. Notice that

u′i(x, t) = 0 (3.16)

where the overbar denotes time averaging.

3.2.2 Mean continuity equation

Substituting the Reynolds decomposition, equation (3.14), into the continuity equation

(3.3)

∂(Ui + u′i)

∂xi
= 0

∂Ui
∂xi

+
∂u′i
∂xi

= 0 (3.17)

Averaging this equation and taking into account the equation (3.16), the continuity equation for

mean motion takes the form:
∂Ui
∂xi

= 0 (3.18)

Notice that the mean continuity equation (equation 3.18) is identical to the instantaneous equa-

tion (equation 3.3), with the instantaneous velocity replaced by the mean velocity.

Subtracting the equation (3.18) from the equation (3.17), the continuity equation for the

fluctuations is obtained
∂u′i
∂xi

= 0 (3.19)
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3.2.3 Reynolds averaged Navier-Stokes equations

To derive the mean equation of NS equations, the equation (3.11) is rewritten, consider-

ing the equality (3.13), as follows

∂ui
∂t

+
∂(uiuj)

∂xj
= − 1

ρr

∂p

∂xi
+

1

ρr

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
− βθgi (3.20)

Applying the Reynolds decomposition, the above equation reads

∂(Ui + u′i)

∂t
+
∂((Ui + u′i)(Uj + u′j))

∂xj

= − 1

ρr

∂(P + p′)

∂xi
+

1

ρr

∂

∂xj

[
µ

(
∂(Ui + u′i)

∂xj
+
∂(Uj + u′j)

∂xi

)]
− β(Θ + θ′)gi (3.21)

where P is defined as

P (x, t) =
1

T

∫ t+T

t

p(x, t) dt (3.22)

and, Θ is given by

Θ(x, t) =
1

T

∫ t+T

t

θ(x, t) dt (3.23)

Averaging the equation (3.21), the Reynolds averaged Navier-Stokes (RANS) equations

are obtained,

∂Ui
∂t

+
∂(UiUj + u′iu

′
j)

∂xj
= − 1

ρr

∂P

∂xi
+

1

ρr

∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− βΘgi (3.24)

Defining the mean substantial derivative as

D

Dt
=

∂

∂t
+ Ui

∂

∂xi
(3.25)

the equation (3.24) can be written as follows

DUi
Dt

= − 1

ρr

∂P

∂xi
+

1

ρr

∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− ρru′iu′j

]
− βΘgi (3.26)

The correlation u′iu′j appears when averaging the product of two quantities (ui and uj). The

tensor −ρru′iu′j due to the fluctuation of the velocity is known as the Reynolds stress tensor.
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This tensor is symmetric, and thus has six independent components. Also, the tensor u′iu′j is

referred to Reynolds tensor.

3.2.4 Mean scalar transport equation

Proceeding in a similar way to the previous section, the equation (3.12) is rewritten as

follows
∂θ

∂t
+
∂(ujθ)

∂xj
=

∂

∂xj

(
α
∂θ

∂xj

)
+ Sθ (3.27)

Applying the Reynolds decomposition, the equation (3.27) reads

∂(Θ + θ′)

∂t
+
∂
(
(Uj + u′j)(Θ + θ′)

)
∂xj

=
∂

∂xj

(
α
∂(Θ + θ′)

∂xj

)
+ Sθ (3.28)

Averaging this equation, the mean scalar equation is obtained, which using the equation (3.25),

has the following form
DΘ

Dt
=

∂

∂xj

(
α
∂Θ

∂xj
− θ′u′j

)
+ Sθ (3.29)

The correlation θ′u′j is a vector called turbulent scalar flux.

3.2.5 The closure problem

For a three dimensional turbulent transport, there are five independent equations given by

the three components of RANS equations (equation 3.26), mean continuity equation (equation

3.18) and mean scalar transport equation (equation 3.29). However these five equations contain

more than five unknowns. In addition to Ui(i = 1, 2, 3), P and Θ (five quantities), the Reynolds

stress tensor introduces six unknowns and the scalar flux three additional unknowns.

Consequently the Reynolds equations system is unclosed. That is, the system cannot

be solved except when the Reynolds stress and turbulent scalar flux are determined. For this

purpose, the Boussinesq eddy viscosity/diffusivity approach is used.
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3.3 Eddy-viscosity/diffusivity model

The turbulent kinetic energy is defined as (POPE, 2000):

k =
1

2
ρru′2i (3.30)

That is half of the trace of the Reynolds tensor. As the Reynolds tensor is symmetrical, there

are axes (called principal axes), for which the tensor is diagonal. The diagonal components are

the eigenvalues λi(i = 1, 2, 3) of the tensor.

The isotropic part of the tensor is defined as a tensor with diagonal components equal to

λi
3

=
2

3
ρrk (3.31)

and their off-diagonal components are zero. Thus, the isotropic part of the Reynolds tensor

reads
2

3
ρrkδij (3.32)

The deviatoric part of the Reynolds tensor, defined as the difference between the Reynolds

tensor and its isotropic part, which reads

− ρru′iu′j +
2

3
ρrkδij (3.33)

In analogy to the relationship between the deviatoric stress and the strain rate tensor of

Newtonian fluids (equation 3.6), J. Boussinesq has suggested that the deviatoric Reynolds stress

tensor (equation 3.33) is proportional to the mean strain rate tensor, with the proportionality

factor µt called eddy viscosity (POPE, 2000; WILCOX, 1993). The hypothesis reads

− ρru′iu′j +
2

3
ρrkδij = ρrµt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(3.34)

Incorporating this assumption in the average Reynolds equation (3.26),

DUi
Dt

= − 1

ρr

∂

∂xi

(
P +

2

3
ρrk

)
+

1

ρr

∂

∂xj

[
µeff

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− βΘgi (3.35)
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where

µeff (x, t) = µ+ µt(x, t) (3.36)

is the effective viscosity. While the molecular viscosity µ (property of the fluid) is considered

constant throughout the domain, the eddy viscosity µt is not a physical property, and depends

on the flow under consideration.

It is possible to obtain a kinematic effective viscosity νeff , dividing the effective viscosity

µeff by the density of the fluid ρr. The expression P + 2
3
ρrk of the equation (3.35) is a modified

mean pressure and can be considered simply as P . Then, the equation (3.35) is rewritten in

terms of the kinematic effective viscosity νeff and the modified mean pressure P as

DUi
Dt

= − 1

ρr

∂P

∂xi
+

∂

∂xj

[
νeff

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− βΘgi (3.37)

Similarly, in analogy to Fourier’s law of the heat transfer or Fick’s law of molecular

diffusion, the turbulent scalar flux is proportional to the mean scalar gradient, with the propor-

tionality factor αt called eddy or turbulent diffusivity. The hypothesis reads

− θ′u′ = αt
∂Θ

∂xj
(3.38)

Substituting into the equation (3.29)

DΘ

Dt
=

∂

∂xj

(
αeff

∂Θ

∂xj

)
+ Sθ (3.39)

where

αeff (x, t) = α + αt(x, t) (3.40)

is the effective diffusivity.

3.4 Algebraic models

Algebraic models are zero (differential) equation models to estimate the eddy-viscosity

diffusivity. The algebraic models rely on Prandtl’s mixing length hypothesis (OERTEL, 2004;

SCHLICHTING; GERSTEN, 2000). Consider the velocity profile in the boundary layer of a two-
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Figure 3.1: Prandtl’s mixing length: average velocity profile in the boundary layer
of a two-dimensional flow.

dimensional flow, shown in the figure 3.1. To simplify, it is assumed that the average velocity

U1 is dependent only on x2. Assuming that a fluid element has moved from a position x2 with

average velocity U1 by distance l, the order of magnitude of the fluctuating velocity u′1, in the

x1 direction, is given by the difference in velocity that the particle has suffered

∆U1 = U1(x2 + l)− U1(x2) (3.41)

Expanding U1(x2 + l) in a Taylor series and ignoring higher order terms, yields

∆U1 = l
∂U1

∂x2

(3.42)

Based on the continuity equation for the fluctuations (equation 3.19), the fluctuation of

velocity u′2, in the x2 direction, is the same order of magnitude as that of u′1. Then, the Reynolds

stress tensor is of order of magnitude

ρr

(
l
∂U1

∂x2

)2

(3.43)

The sign of the Reynolds stress tensor −ρru′1u′2 is positive, since u′1 and u′2 have opposite signs

and their product u′1u
′
2 is negative. To ensure that the Reynolds stress tensor has the same sign
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that the velocity gradient, it is expressed as follows

− ρru′1u′2 = ρrl
2

∣∣∣∣∂U1

∂x2

∣∣∣∣ ∂U1

∂x2

(3.44)

Comparing this equation with the equation of the eddy viscosity, the following relation for

kinematic eddy viscosity is obtained

νt = l2
∣∣∣∣∂U1

∂x2

∣∣∣∣ (3.45)

As a generalization for 3D flow, the equation (3.45) is expressed as

νt = 2l2
√
SijSij (3.46)

where Sij is the mean strain rate tensor defined as

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(3.47)

The length l, called the mixing length, is a characteristic turbulence length and represents

the average diameter of the eddies. Notice that a solid surface has an effect on the size of the

vortices. This means that a solid surface has an influence on the mixing length. Therefore, the

influences of the solid surfaces in the flow must be taken into account. The part of the fluid

mechanics that studies the effect of solid surface in the flow is called the boundary layer theory.

A brief description of the boundary layer theory is shown in the following section.

3.5 Boundary layer

The fluid flow is influenced by the presence of solid surfaces. Fluid particles imme-

diately next to the surface remain at rest, a situation called no-slip condition. And there is a

transition zone for the velocity (nonzero velocity gradient) near the surface. This zone is called

boundary layer. In the boundary layer, the flow is dominated mainly by viscous effects. Outside

the boundary layer, there is a region called inviscid outer flow where the viscous effects can be

neglected.

Depending on the type of flow there are two types of boundaries layer: the laminar
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boundary layer and turbulent boundary layer. A parameter characterizes the condition of flow.

This parameter is the Reynolds number (Re), which is a dimensionless number: ratio of inertial

forces and viscous forces, defined as

Re =
UL

ν
(3.48)

whereU andL are characteristic velocity and some characteristic length of the flow respectively.

For low Reynolds numbers the flow is laminar. The transition from laminar to turbulent occurs

above a certain value of the Reynolds number. This value is called the critical Reynolds number

(Recrit ). The laminar-turbulent transition is affected by various factors including the nature of

the surface (roughness), the pressure distribution of the outer flow and turbulence intensity.

The turbulent boundary layer is split into three regions: the inner region (viscous wall

region); the log-law region and the outer region (core layer). The inner region, where the size

of the vortices depends on the proximity of the surface, is called viscous wall region. Within

the viscous wall region there are two layers. The viscous sublayer is the part of the wall viscous

region close to the wall. In this layer the Reynolds stress tensor is negligible compared to the

viscous stress tensor (POPE, 2000). The layer where the effects of turbulent and viscous effects

are of the same order of magnitude is the buffer layer. The log-law region is the transition region

between the viscous wall region and the outer region. The name log-law is because in this region

the velocity profile is logarithmic. In the log-law region the production and the dissipation of the

turbulent energy are almost in balance. In the core layer (outer region), the flow is dominated

by inertia effects. In this region the size of vortices is constant.

The figure 3.2 shows the mixing length model for turbulent boundary layer. δ is the

thickness of the boundary layer, defined as the distance to the surface where the velocity is 99%

of the velocity of the outer flow. κ = 0.41 and λ = 0.09 are constants. κ is called von Kármán

constant. Viscous wall region and log-law region are restricted to values of x3 less than (λ/κ)δ

(about fifth of the boundary layer). In this zone the mixing length is proportional to the distance

to the surface and in the outer region the mixing length is constant.



CHAPTER 3. GOVERNING EQUATIONS 40

x3

l

O

λδ

λ

κ
δ

δ

Figure 3.2: Mixing length model for turbulent boundary layer.

This model reads

l =


κx3 0 < x3 ≤

λ

κ
δ

λδ
λ

κ
δ ≤ x3 ≤ δ

(3.49)

3.6 Turbulence modeling for stratified flows

The interaction between turbulence and stratification is parameterized in terms of the

local gradient Richardson number. The local gradient Richardson number is defined as

Ri =
N2
L(

∂U

∂z

)2 (3.50)

where NL is the local Brunt-Väisälä buoyancy frequency and z is the direction of stratification.

The Brunt-Väisälä frequency is defined as

NL =

(
− g

ρr

∂ρ

∂z

) 1
2

(3.51)

The Brunt-Väisälä frequency gives the stabilizing influence of the stratification. IfN2
L > 0, then

the Brunt-Väisälä frequency is the frequency of oscillation due to the buoyancy effects within a

stable environment. The stratification is unstable if N2
L < 0.

The denominator of the equation (3.50) is the vertical shear in the mean horizontal ve-

locity and gives the destabilizing influence of the shear.

Since the sign of the denominator of the Richardson number is always positive, the sign

of the Richardson number depends only on the Brunt-Väisälä frequency. Negative Richardson

number corresponds to the case where both buoyancy and shear destabilize the flow generating
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turbulence. For a stable environment, the Ri is positive.

From a critical value of Richardson number, denoted as Ri c, turbulent motion is sup-

pressed by the stable density gradient. When Ri < Ri c, the buoyancy is unable to suppress

the turbulence, and the turbulent viscosity depends on the Ri . Sotiropoulos (2005) suggests

a modified mixing-length model for stratification. This model can be formulated as follows

(SOTIROPOULOS, 2005):

Stable stratification (Ri > 0)

νt =

 2l2
√
SijSij (1−Ri/Ric)2 0 ≤ Ri ≤ Ric

0 Ri ≥ Ric
(3.52)

Unstable stratification

νt = 2l2
√
SijSij (1−Ri)1/2 (3.53)

3.7 Boundary and initial condition

The formulation of a problem modeled by differential equations is given by a set of

differential equations whose solutions satisfy certain restrictions so-called boundary and initial

conditions. There are two types of boundary conditions used. The Dirichlet boundary conditions

describe the variables values along the boundary of the domain and the Neumann boundary

conditions describe the variables gradients along the boundary. Initial conditions are specified

by the variables values throughout the domain at time t = t0.

Four type of boundary types are mentioned. The t− n coordinate system is used. The t

and n have the direction of the tangent and normal, respectively, to the surface in each point.

Solid walls boundary conditions. On solid walls (impermeable surface) the no-slip condition

is applied, i.e.

Ut = Un = 0 (3.54)

Free surface symmetry plane conditions. Dirichlet boundary condition for velocity normal

to the surface with zero value is employed. For normal gradients of the tangential velocity
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and scalar concentration are zero (Neumann boundary condition).

Un =
∂Ut
∂xn

=
∂Θ

∂xn
= 0 (3.55)

Inflow conditions. At inflow surface, the values of the velocity and the scalar concentration

are prescribed for each simulation of interest. For example, the following definition is

possible

Un = Uinflow ; Ut = 0; Θ = Θinflow (3.56)

where Uinflow and Θinflow are values defined for each simulation.

Outflow conditions. At outflow surface, it is possible to assume that the flow is fully devel-

oped. Therefore, the Neumann condition for the velocity and the scalar concentration is

employed.
∂Un
∂xn

=
∂Ut
∂xn

=
∂Θ

∂xn
= 0 (3.57)

3.8 Nondimensional form

The equations (3.18), (3.37) and (3.39) are written in nondimensional form. For this, the

following scales for the variables are used:

U∗i =
Ui
Uc

x∗i =
xi
Lc

ρ∗ =
ρ

ρr
P ∗=

P

ρrU2
c

t∗ =
tUc
Lc

Θ∗ =
Θ

Θr

g∗i =
gi
gr

where, Uc is the characteristic velocity of the flow, Lc is the characteristic length and Θr is the

reference concentration of the scalar Θ.

After subtituition of the variable scaling, the equations (3.18), (3.37) and (3.39) become:

∂U∗i
∂x∗i

= 0 (3.58a)

DU∗i
Dt∗

= −∂P
∗

∂x∗i
+

∂

∂x∗j

[
1

Reeff

(
∂U∗i
∂x∗j

+
∂U∗j
∂x∗i

)]
− 1

Fr 2Θ
∗g∗i (3.58b)
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DΘ∗

Dt∗
=

∂

∂x∗j

(
1

Sceff Reeff

∂Θ∗

∂x∗j

)
+ S∗θ (3.58c)

where, Reeff , defined as

Reeff =
UcLc
νeff

(3.59)

is the effective Reynolds number. It is similar to the Reynolds number defined above, but in

this case the effective viscosity is used instead the molecular viscosity. Based on the turbulence

model for stratified flow (equations 3.52 and 3.53), the effective Reynolds numbers can be

written as

Re−1
eff =

 2l∗2
√
S∗ijS

∗
ij (1−Ri/Ric)2 + Re−1 0 ≤ Ri ≤ Ric

Re−1 Ri ≥ Ric
(3.60)

for stable stratification (Ri > 0) and

Re−1
eff = 2l∗2

√
S∗ijS

∗
ij (1−Ri)1/2 + Re−1 (3.61)

for unstable stratification, where l∗ and S∗ are defined as

S∗ij = Sij
Lc
Uc

l∗ =
l

Lc
(3.62)

and Re is defined as

Re =
UcLc
ν

(3.63)

where ν is the molecular viscosity.

Other dimensionless number Fr , which appears in the equation (3.58b), is the Froude

number, and is defined as

Fr =
Uc√
g′Lc

(3.64)

This dimensionless number gives ratio of inertia forces and gravity forces. The g′ is called

reduced gravity and is defined as

g′ = βΘrg (3.65)



CHAPTER 3. GOVERNING EQUATIONS 44

The reduced gravity is also commonly defined as

g′ =
ρ− ρr
ρr

g (3.66)

which can be obtained using the equation (3.13).

The Schmidt number that gives rate of the momentum diffusivity and scalar diffusivity,

is defined as

Sceff =
νeff

αeff

(3.67)

For convenience, the asterisks and the subscript term .eff are dropped from the nondi-

mensional equations (equations 3.58).



CHAPTER 4

DISCRETIZATION METHOD

This chapter describes the discretization methods used to obtain the flow solution. The

variational approach (weak form) of the RANS and mean scalar transport equations system are

shown. Then, the Galerkin semi-discrete method for spatial discretization and semi-Lagrangian

method for the convective terms discretization are presented.

4.1 Variational approaches

The fluid flow solution is given by the functions Ui(i = 1, 2, 3), P and Θ defined in

(Ω, t) ⊂ R3 × R+, which satisfy the following differential equations system

∂Ui
∂xi

= 0 (4.1a)

DUi
Dt

= −∂P
∂xi

+
∂

∂xj

[
1

Re

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− 1

Fr 2Θgi (4.1b)

DΘ

Dt
=

∂

∂xj

(
1

Sc Re

∂Θ

∂xj

)
+ Sθ (4.1c)

restricted to the following boundary conditions

Ui = UΓi on Γi;
∂Ui
∂xn

= UΓ ci on Γ c
i (i = 1, 2, 3) (4.2a)
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P = PΓp on Γp;
∂P

∂xn
= PΓ cp on Γ c

p (4.2b)

Θ = ΘΓθ on Γθ;
∂Θ

∂xn
= ΘΓ cθ

on Γ c
θ (4.2c)

and initial conditions

Ui = Uit0 P = Pt0 Θ = Θt0
in Ω at t = t0 (4.3)

where Ω is the domain of the differential equations system, and Γ = Γξ ⊕ Γ c
ξ (Γ = Γξ ∪ Γ c

ξ

and Γξ ∩ Γ c
ξ = ∅) are the boundary of Ω, i.e., Γ = ∂Ω. The Dirichlet boundary condition is

prescribed on the part of the boundary denoted by Γξ and the Neumann boundary condition is

prescribed on the other part denoted by Γ c
ξ .

Let L2(Ω) be the space of functions defined in Ω that are square integrable over Ω, i.e.,

L2(Ω) =

{
v : Ω→ R;

∫
Ω

v2dΩ <∞
}

(4.4)

the Sobolev space of degree oneH1(Ω) is defined as the space of functions defined over Ω such

that the function and its first partial derivatives, in the weak sense, are in L2(Ω). That is,

H1(Ω) =

{
v : Ω→ R; v,

∂v

∂xi
∈ L2(Ω), i = 1, 2, 3

}
(4.5)

The subspace H1
ξ(Ω) is defined as the subset of H1(Ω) that takes the value of the function ξ on

the boundary Γξ where Dirichlet boundary conditions are imposed, i.e.,

H1
ξ(Ω) =

{
v ∈ H1(Ω); v = ξ in Γξ

}
(4.6)

and, particularly for ξ = 0 (called homogeneous boundary condition),

H1
0(Ω) =

{
v ∈ H1(Ω); v = 0 in Γξ

}
(4.7)

Let wi(i = 1, 2, 3), wp and wθ ∈ H1
0, called weighting functions, and the residual func-
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tions of the equations (4.1):

R1 =
∂Ui
∂xi

(4.8a)

R2i =
DUi
Dt

+
∂P

∂xi
− ∂

∂xj

[
1

Re

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+

1

Fr 2Θgi (4.8b)

R3 =
DΘ

Dt
− ∂

∂xj

(
1

Sc Re

∂Θ

∂xj

)
− Sθ (4.8c)

The weighted residual form is obtained by multiplying the residual functions (equations 4.8) by

the weighting functions, integrating over the domain (Ω), and equaling the integrals to zero, as

follows

∫
Ω

wpR1dΩ =

∫
Ω

wp
∂Ui
∂xi

dΩ = 0 (4.9a)∫
Ω

wiR2idΩ =

∫
Ω

wi

{
DUi
Dt

+
∂P

∂xi
− ∂

∂xj

[
1

Re

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+

1

Fr 2Θgi

}
dΩ = 0 (4.9b)∫

Ω

wθR3dΩ =

∫
Ω

wθ

{
DΘ

Dt
− ∂

∂xj

(
1

Sc Re

∂Θ

∂xj

)
− Sθ

}
dΩ = 0 (4.9c)

The Green’s identities, can be applied in the following form:

∫
Ω

wi
∂

∂xj

[
1

Re

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
dΩ =

∫
Γi

1

Re
wi

(
∂Ui
∂xj

+
∂Uj
∂xi

)
njdΓ

−
∫

Ω

1

Re

∂wi
∂xj

(
∂Ui
∂xj

+
∂Uj
∂xi

)
dΩ (4.10a)∫

Ω

wθ
∂

∂xj

(
1

Sc Re

∂Θ

∂xj

)
dΩ =

∫
Γθ

1

Sc Re
wθ
∂Θ

∂xj
njdΓ −

∫
Ω

1

Sc Re

∂wθ
∂xj

∂Θ

∂xj
dΩ (4.10b)

where, ni(i = 1, 2, 3) is the component of the vector normal to the boundary in each point.

Notice that the integrals along the boundary of Ω can be separated into two integrals according

to the boundary conditions type (Dirichlet or Neumann). The integrals along the boundary

Γξ(ξ = Ui, P, Θ) are zero, because the weighting functions wp, wi(i = 1, 2, 3) and wθ belong

to the subspaceH1
0.

Substituting the equations (4.10) into the equations (4.9)

∫
Ω

wp
∂Ui
∂xi

dΩ = 0 (4.11a)
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∫
Ω

wi
DUi
Dt

dΩ +

∫
Ω

wi
∂P

∂xi
Ω +

∫
Ω

1

Re

∂wi
∂xj

(
∂Ui
∂xj

+
∂Uj
∂xi

)
dΩ +

∫
Ω

wi
1

Fr 2ΘgidΩ

=

∫
Γ ci

1

Re
wi

(
∂Ui
∂xj

+
∂Uj
∂xi

)
njdΓ (4.11b)∫

Ω

wθ
DΘ

Dt
dΩ +

∫
Ω

1

Sc Re

∂wθ
∂xj

∂Θ

∂xj
dΩ =

∫
Γ cθ

1

Sc Re
wθ
∂Θ

∂xj
njdΓ +

∫
Ω

wθSθdΩ (4.11c)

A solution of the system (4.1) is also a solution of the system (4.11). However, while the

solution of the system (4.1) has the restriction that it must have second order derivatives in Ω,

the solution of the system (4.11) only requires to be differentiable to first order. This means that

the differentiability requirements of the solution have been relaxed. For this reason, the system

(4.11) is called the weak form or variational form of the system (4.1).

The variational approach of the differential equations system (4.1) reads: Seek functions

Ui ∈ H1
UΓi
× R+(i = 1, 2, 3), P ∈ L2 × R+ and Θ ∈ H1

ΘΓθ
× R+, such that verify the weak

form (equation 4.11) of the problem for all wp, wi(i = 1, 2, 3) and wθ ∈ H1
0.

4.2 Element of mesh

To solve numerically the fluid flow problem, the domain where the functions are defined

is discretized. This means, instead of the functions defined in infinite dimensional space, an

approximate solution is sought in a finite dimensional function space. Seek an approximate

solution of a variational problem in a finite dimensional space means write the solution as a

linear combination of elements of the basis (with undetermined coefficient) that generates the

space and then solve the algebraic linear equations system obtained. The choice of the basis

for the space defines the degree of difficulty in solving the linear system. For this reason, an

appropriate choice of basis is important for the performance of the numerical simulation.

The FEM provides techniques for constructing appropriate basis, using functions, which

are smooth enough, defined piecewise over small subregion of the domain. Smooth enough

functions are obtained by belonging to the Sobolev space of degree one, which is the search

space for the solution of the variational form. Piecewise functions with compact support are

defined generating a sparse linear system. This is desirable to reduce the computational cost for

solving the linear system. Moreover, the functions of the basis are such that the coefficients of

the linear combination are the values of the solution in these nodes. This allows the imposition
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of Dirichlet boundary conditions on the variables on an easy way.

In FEM, the domain is divided into subregions in which the functions for the basis of

the solution space are defined. These subregions are called elements. The function of the basis

is called interpolating function or shape function. The element shape should be such that the

interpolation functions defined in it satisfy the requirements mentioned in the paragraph above.

In principle, it is possible to employ the same interpolation space for all variables. But

in incompressible problems such as the one being treated, there are numerical difficulties due to

the constraint on the velocity field to satisfy the divergent free condition. To avoid this problem,

the Ladyzhenskaya, Babuska and Brezzi (LBB) condition, which says that the velocity and

pressure spaces must be consistent, must be satisfied. In the figure 4.1 shows the MINI element

which belongs to the Taylor-Hood element family, which fulfills the LBB condition.

1

2

3

45

V elocity node

Pressure node

Figure 4.1: Mini tetrahedron element.

The vertices nodes of the tetrahedron are used to calculate the pressure and the concen-

tration field and the centroid node (also called bubble node) combined with the vertices nodes

to calculate the velocity.

4.2.1 Volume coordinates

A new set of coordinates, Li(i = 1, 2, 3, 4) for a tetrahedron is defined. Consider the

tetrahedron with vertices enumerated as in figure 4.1. Let xij be the j-component (j = 1, 2, 3)

of the vertices i(i = 1, 2, 3, 4). The coordinate of a point Q(xj), interior to tetrahedron, related
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to the new set of coordinates is given as follows,

xj = Lixij (4.12a)

1 =
4∑
i=1

Li (4.12b)

Solving equations 4.12 gives

Li =
Vi
V

(i = 1, 2, 3, 4) (4.13)

where V is the volume of the tetrahedron 1234, and Vi is the volume of the tetrahedron Qjkl

with i 6= j, i 6= k, and i 6= l. The set of coordinates Li(i = 1, 2, 3, 4) are called volume

coordinates.

4.2.2 Shape function for tetrahedra

Let ne be the number of elements that form the domain and Ωe the subregion of this

domain defined for the element e(e = 1, . . . , ne). Henceforth, a superscript e is placed on the

variable to indicate that this variable is defined locally in the element e. The domain Ω is

Ω ≈
ne⋃
e=1

Ωe (4.14)

And further, let n be the number of nodes of the discrete domain. It is convenient to define the

interpolation function ϕm of the node m(m = 1, . . . , n), such that, at node n ϕm(xn) = δmn.

The piecewise shape functions are obtained by joining the interpolation function re-

stricted to the tetrahedron domain Ωe, i.e.

ϕes = ϕm|Ωe (4.15)

where, s is the local enumeration for the node xm (that is, xes = xm). The restricted interpolation

functions are given by

ϕei = Li (i = 1, 2, 3, 4) (4.16)
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for the linear tetrahedron, i.e., using only the vertices of the tetrahedron, and

ϕei = Li − 64L1L2L3L4 (i = 1, 2, 3, 4) (4.17a)

ϕe5 = 256L1L2L3L4 (4.17b)

for the mini tetrahedron, i.e., using five nodes (the vertices with the bubble node).

Let H(n) be the Sobolev space of degree one with dimension n. The interpolation func-

tions ϕm(m = 1, . . . , n) form a basis of the spaceH(n).

4.3 Galerkin method

The unknown functions of the variational form the equations (4.11) belong toH1. How-

ever, these functions can be separated as

Ui = UΓi + Ûi (i = 1, 2, 3) (4.18a)

P = PΓp + P̂ (4.18b)

Θ = ΘΓθ + Θ̂ (4.18c)

where, UΓi ∈ H1
Γi

(i = 1, 2, 3), PΓp ∈ H1
Γp

, ΘΓθ ∈ H1
Γθ

, and Ûi(i = 1, 2, 3), P̂ and Θ̂ ∈ H1
0.

That is, each variable is separated into a function that satisfies the specified Dirichlet boundary

conditions and another with homogeneous boundary conditions. The first is known, and the

second belongs toH1
0.

The Galerkin method is based on making the projection of the residue on the search

space of solution being zero. This is achieved by making the interpolation and weighting func-

tions belong to the same space,H1
0.

Let nu be the number of nodes for velocity, np be the number of nodes for pressure and

nθ be the number of nodes for the scalar concentration. The spaces in which the approximate

solutions for velocity, pressure and scalar are H(nu), H(np) and H(nθ), respectively. The basis

for these spaces are ϕm(m = 1, . . . , nu) ∈ H(nu), χm(m = 1, . . . , np) ∈ H(np), ψm(m =

1, . . . , nθ) ∈ H(nθ). The functions of the equations (4.18) are written as linear combination of
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the basis functions, as follows

Ui(xj, t) ≈
∑

m∈ηu−ηΓi

ϕm(xj)Uim(t) +
∑
m∈ηΓi

ϕm(xj)UΓim (i = 1, 2, 3) (4.19a)

P (xj, t) ≈
∑

m∈ηp−ηΓp

χm(xj)Pm(t) +
∑
m∈ηΓp

χm(xj)PΓpm (4.19b)

Θ(xj, t) ≈
∑

m∈ηθ−ηΓθ

ψm(xj)Θm(t) +
∑
m∈ηΓθ

ψm(xj)ΘΓθm (4.19c)

where ηu = {1, . . . , nu}, ηp = {1, . . . , np} and ηθ = {1, . . . , nθ} are the sets of node number

for velocity, pressure and scalar concentration respectively, ηΓi = {m ∈ ηu;xm ∈ Γi}, ηΓp =

{m ∈ ηp;xm ∈ Γp}, and ηΓθ = {m ∈ ηθ;xm ∈ Γθ} the sets of node at which Dirichlet boundary

conditions are prescribed, Uim(t) (m ∈ ηu − ηΓi), Pm(t) (m ∈ ηp − ηΓp) and Θm(t) (m ∈
ηθ − ηΓθ) are undetermined coefficients, and UΓim (m ∈ ηΓi), PΓpm (m ∈ ηΓp) and ΘΓθm (m ∈
ηΓθ) are the nodes values on the Dirichlet boundary conditions. The unknown coefficients are

continuous in time. This means that the approximate solution is time dependent. For this reason,

this approximation is called semi-discrete approach.

The subspace of H(n) with zero value at points of Dirichlet boundary conditions, is

denoted by H(n)
0 . Notice that ϕm(m ∈ ηu − ηΓi), χm(m ∈ ηp − ηΓp) and ψm(m ∈ ηθ − ηΓθ)

form the basis ofH(nu)
0 ,H(np)

0 andH(nθ)
0 respectively. The weighting functions belong toH(nu)

0 ,

H(np)
0 andH(nθ)

0 . That is,

wi =
∑

m∈ηu−ηΓi

aimϕm(xj) (i = 1, 2, 3) (4.20a)

wp =
∑

m∈ηp−ηΓp

bmχm(xj) (4.20b)

wθ =
∑

m∈ηθ−ηΓθ

cmψm(xj) (4.20c)

where aim(m ∈ ηu − ηΓi , i = 1, 2, 3), bm(m ∈ ηp − ηΓp), and cm(m ∈ ηθ − ηΓθ) are non-zero

coefficients.

The semi-discret form of the variational equations is obtained substituting the equations

(4.19) and (4.20) into the equations (4.11). Performing summation of the integrals restricted to
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the elements domain, the following equations are obtained

∑
e

∫
Ωe

∑
m,n∈e

χem
∂ϕen
∂xi

UindΩ = 0 (4.21a)

∑
e

∫
Ωe

∑
m,n∈e

ϕemϕ
e
n

DUin
Dt

dΩ +
∑
e

∫
Ωe

∑
m,n∈e

ϕem
∂χen
∂xi

PndΩ

+
∑
e

1

Ree

∫
Ωe

∑
m,n∈e

∂ϕem
∂xj

(
∂ϕen
∂xj

Uin +
∂ϕen
∂xi

Ujn

)
dΩ +

∑
e

∫
Ωe

∑
m,n∈e

ϕem
1

Fr 2ψ
e
nΘngidΩ

=
∑
e

1

Ree

∫
Γ c ei

∑
m,n∈e

ϕem

(
∂ϕen
∂xj

Uin +
∂ϕen
∂xi

Ujn

)
njdΓ

(4.21b)∑
e

∫
Ωe

∑
m,n∈e

ψemψ
e
n

DΘ

Dt
dΩ +

∑
e

1

SceRee

∫
Ωe

∑
m,n∈e

∂ψem
∂xj

∂ψen
∂xj

ΘndΩ

=
∑
e

1

SceRee

∫
Γ c eθ

∑
m,n∈e

ψem
∂ψen
∂xj

ΘnnjdΓ +
∑
e

∫
Ωe

∑
m,n∈e

ψemSθdΩ (4.21c)

These equations can be represented as a system of ordinary differential equations

Diũi = 0 (4.22a)

Mρ
˙̃ui +Gip̃+Kρjjũi +Kρjiũj +

1

Fr 2 giF θ̃ = bcn2i (i = 1, 2, 3) (4.22b)

Mθ
˙̃θ +Kθiθ̃ = bcn3 (4.22c)

The unknown variables are

ũi = [ ũia ] nu×1, ũia = Uia, 1 ≤ a ≤ nu, i = 1, 2, 3 (4.23a)

p̃ = [ p̃a ] np×1, p̃a = Pa, 1 ≤ a ≤ np (4.23b)

θ̃ = [ θ̃a ] nθ×1, θ̃a = Θa, 1 ≤ a ≤ nθ (4.23c)

where the values with subscript a are nodal values. The substantial derivatives of the velocity

and the scalar concentration are represented as ˙̃ui(i = 1, 2, 3) and ˙̃θ given by

˙̃ui = [ ˙̃uia ] nu×1,
˙̃uia =

DUia
Dt

, 1 ≤ a ≤ nu, i = 1, 2, 3 (4.24a)

˙̃θ = [ ˙̃θa ] nθ×1,
˙̃θa =

DΘa

Dt
, 1 ≤ a ≤ nθ (4.24b)
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The matrices are

Di = [ Di ab ] np×nu, 1 ≤ a ≤ np, 1 ≤ b ≤ nu, i = 1, 2, 3 (4.25a)

Mρ = [ Mρ ab ] nu×nu, 1 ≤ a ≤ nu, 1 ≤ b ≤ nu, (4.25b)

Gi = [ Gi ab ] nu×np, 1 ≤ a ≤ nu, 1 ≤ b ≤ np, i = 1, 2, 3 (4.25c)

Kρij = [ Kρij ab ] nu×nu, 1 ≤ a ≤ nu, 1 ≤ b ≤ nu, i, j = 1, 2, 3 (4.25d)

F = [ Fab ] nu×nθ, 1 ≤ a ≤ nu, 1 ≤ b ≤ nθ, (4.25e)

Mθ = [ Mθ ab ] nθ×nθ, 1 ≤ a ≤ nθ, 1 ≤ b ≤ nθ, (4.25f)

Kθi = [ Kθi ab ] nθ×nθ, 1 ≤ a ≤ nθ, 1 ≤ b ≤ nθ, i = 1, 2, 3 (4.25g)

To assemble these matrices an auxiliary operator that relates the global node numbers with the

local node numbers is used. This operator is called location matrix, and it is defined as LM :

(m,n, e) 7→ (a, b), where m,n are the local node numeration, e is the element identifier, and

a, b global node enumeration. The following relations show how the matrices of the equations

(4.25) are mounted

Di ab ← Di ab +De
imn ; De

imn =

∫
Ωe
χem

∂ϕen
∂xi

dΩ (i = 1, 2, 3) (4.26a)

Mρ ab ←Mρ ab +M e
ρmn ; M e

ρmn =

∫
Ωe
ϕemϕ

e
ndΩ (4.26b)

Gi ab ← Gi ab +Ge
imn ; Ge

imn =

∫
Ωe
ϕem

∂χen
∂xi

dΩ (i = 1, 2, 3) (4.26c)

Kρij ab ← Kρij ab +Ke
ρijmn ; Ke

ρijmn =
1

Ree

∫
Ωe

∂ϕem
∂xi

∂ϕen
∂xj

dΩ (i, j = 1, 2, 3) (4.26d)

Fab ← Fab + F e
mn ; F e

mn =

∫
Ωe
ϕemψ

e
ndΩ (4.26e)

Mθ ab ←Mθ ab +M e
θmn ; M e

θmn =

∫
Ωe
ψemψ

e
ndΩ (4.26f)

Kθi ab ← Kθi ab +Ke
θimn ; Ke

θimn =
1

SceRee

∫
Ωe

∂ψem
∂xi

∂ψen
∂xi

dΩ (i, j = 1, 2, 3) (4.26g)

The equation (4.22) is written in matrix form as

Dũ = 0 (4.27a)

Mρ
˙̃u + Gp̃ + Kρũ +

1

Fr 2gFθ̃ = bcn2 (4.27b)
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Mθ
˙̃θ + Kθθ̃ = bcn3 (4.27c)

where, D is the divergence matrix, G is the gradient matrix, Mρ is the mass matrix, Kρ is the

momentum diffusion matrix, Mθ is the scalar mass matrix, Kθ is the scalar diffusion matrix.

These matrices are given by

D =
[
D1 D2 D3

]
np×3nu

(4.28a)

G =


G1

G2

G3


3nu×np

(4.28b)

Mρ =


Mρ 0 0

0 Mρ 0

0 0 Mρ


3nu×3nu

(4.28c)

Kρ =


2Kρ11 +Kρ22 +Kρ33 Kρ12 Kρ13

Kρ21 Kρ11 + 2Kρ22 +Kρ33 Kρ23

Kρ31 Kρ32 Kρ11 +Kρ22 + 2Kρ33


3nu×3nu

(4.28d)

Mθ =
[
Mθ

]
nθ×nθ

(4.28e)

Kθ =
[
Kθ1 +Kθ2 +Kθ3

]
nθ×nθ

(4.28f)

and the unknown variables vector are given by

p̃ =
[
p
]
np×1

(4.29a)

ũ =


ũ1

ũ2

ũ3


3nu×1

(4.29b)

θ̃ =
[
θ̃
]
nθ×1

(4.29c)
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4.4 Semi-Lagrangian method

The ordinary differential equations system (equations 4.27) is solved employing the

semi-Lagrangian method for time discretization. Because of the larger allowable time step,

the semi-Lagrangian technique contributes to a significant enhancement of the efficiency of

the semi-implicit integration scheme (Robert et al., 1984). Using a function φ, the substantive

derivative of this function at the point xi can be discretized using a first order scheme as

Dφ

Dt
=
φn+1
m − φnd

∆t
(4.30)

where, φn+1
m = φ(xm, t

n+1) is the image of φ at the point xm and the time step n + 1 and

φnd = φ(xd, t
n) is the image of φ at the point xd and the time step n, obtained by interpolating

the solution on the mesh nodes at time step n. The i-component of the position xd is obtained

using the expression

xid = xim − ui∆t (i = 1, 2, 3) (4.31)

where ui = ui(xm, t
n) is the velocity vector at the point xm and time step n.

Equations (4.27), with time discretization read

Dũn+1 = 0 (4.32a)

Mρ

(
ũn+1 − ũnd

∆t

)
+ Gp̃n+1 + Kρ

(
λũn+1 + (1− λ)ũnd

)
+

1

Fr 2gFθ̃
n
d = bcn2 (4.32b)

Mθ

(
θ̃n+1 − θ̃nd

∆t

)
+ Kθ

(
λθ̃n+1 + (1− λ)θ̃nd

)
= bcn3 (4.32c)

where, λ is a parameter to obtain different methods of discretization in time. For λ = 0 results

a explicit discretization, λ = 1 results a semi-implicit discretization and λ = 1
2

results the

Crank-Nicolson method.
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4.5 Projection method

The linear equations system (4.32) is solved employing the block LU approximate fac-

torization. The linear system (4.32) is rewritten as

Dũn+1 = bcd1 (4.33a)(
Mρ

∆t
+ λKρ

)
ũn+1 + Gp̃n+1 =

(
Mρ

∆t
− (1− λ)Kρ

)
ũnd −

1

Fr 2gFθ̃
n
d + bcd2 + bcn2

(4.33b)(
Mθ

∆t
+ λKθ

)
θ̃n+1 =

(
Mθ

∆t
− (1− λ)Kθ

)
θ̃nd + bcd3 + bcn3 (4.33c)

The representation in matrix form of these equations is
M′

ρ G 0

D 0 0

0 0 M′
θ




ũn+1

p̃n+1

θ̃n+1

 =


rnu
0

rnθ

+


bcd2

bcd1

bcd3

+


bcn2

0

bcn3

 (4.34)

where, the matrix M′
ρ and M′

θ are given by

M′
ρ =

Mρ

∆t
+ λKρ (4.35a)

M′
θ =

Mθ

∆t
+ λKθ (4.35b)

and the vector rnu and rnθ are given by

rnu =

(
Mρ

∆t
− (1− λ)Kρ

)
ũnd −

1

Fr 2gFθ̃
n
d (4.36a)

rnθ =

(
Mθ

∆t
− (1− λ)Kθ

)
θ̃nd (4.36b)

The projection method consists of decomposing the matrix of the equation (4.34) via a

block factorization. Applying the LU factorization, the following linear system is obtained
M′

ρ 0 0

D −DM′−1
ρ G 0

0 0 M′
θ




I M′−1
ρ G 0

0 I 0

0 0 I




ũn+1

p̃n+1

θ̃n+1

 =


rnu
0

rnθ

+


bc2

bc1

bc3

 (4.37)
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where, bci = bcdi + bcni (i = 1, 2, 3).

In the first instance the intermediate solution is obtained by solving the following equa-

tion system 
M′

ρ 0 0

D −DM′−1
ρ G 0

0 0 M′
θ




ûn+1

p̂n+1

θ̂n+1

 =


rnu
0

rnθ

+


bc2

bc1

bc3

 (4.38)

and then, the final solution is obtained by solving
I M′−1

ρ G 0

0 I 0

0 0 I




ũn+1

p̃n+1

θ̃n+1

 =


ûn+1

p̂n+1

θ̂n+1

 (4.39)

Using the two equations (equation 4.38 and 4.39) the solution can be obtained by the

following steps

M′
ρû

n+1 = rnu + bc2 (4.40a)

DM′−1
ρ Gp̃n+1 = Dûn+1 − bc1 (4.40b)

M′
θθ̃
n+1 = rnθ + bc3 (4.40c)

ũn+1 = ûn+1 −M′−1
ρ Gp̃n+1 (4.40d)

This method relies on the Helmholtz-Hodge decomposition, which says that any vector

can be decomposed into a component of a zero divergence and another with zero curl.

Solving the equations (4.40) is known as the Uzawa method. However, to solve the

equation (4.40b) exactly is a very expensive step. Therefore, an approximation is performed in

order to increase the computational efficiency, yielding the following approximate factorization

M′
ρû

n+1 = rnu + bc2 (4.41a)

DM̃′−1
ρ Gp̃n+1 = Dûn+1 − bc1 (4.41b)

M′
θθ̃
n+1 = rnθ + bc3 (4.41c)
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ũn+1 = ûn+1 − M̃′−1
ρ Gp̃n+1 (4.41d)

where M̃′
ρ is a diagonal (lumped) approximation of M′

ρ



CHAPTER 5

SYSTEM DESIGN

Object Oriented Programming (OOP) may provide a higher abstraction level that sim-

plifies the modeling of the otherwise complex interactions between model components. The

Unified Modeling Language (UML) is a standardized modeling language to describe object ori-

ented projects. The UML is a graphical language to visualize and document the artifacts of a

system design. UML has several types of graphical diagrams including the class diagram that

is one of the most popular. The class diagram describes the structure of a system by showing

its classes, their attributes, and their relationships. The figure 5.1 is a class diagram showing the

relation between the GUI class and the classes used to manipulated different terrain models, as

well as, mesh generators. Just some basic attributes and operations are displayed.

The GUI class is responsible to manage the graphical interface which allows user to

interact with the different components of the simulation software. The GUI class has areas to

visualize different objects. The areaTerrain object contains information of the terrain objects

derived from the clShapeTerrain, clCloudTerrain and clRasterTerrain classes. The clShapeTer-

rain class is responsible to read the shapefile and to store the contour lines data. The clCloudTer-

rain class extracts the points of the contour lines data of the object of the clShapeTerrain class

received. clCloudTerrain, also can read point data files. The clRasterTerrain class reads two

types of file: DTM data files and GeoTIFF files. This class stores the pixel information into a
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matrix in RGBA color format.

clShapeTerrain-size: int-listCurves: vectorST+clShapeTerrain(FILE)+ShapeRead(FILE): void
clRasterTerrain-X,Y,Z: clMatrix-color: ColorRGBA+importDTM(FILE): void+GeoTi�Read(FILE): void

clCloudTerrain-size: int-x,y,z: clVector+clCloudTerrain(clShapeTerrain)+importXYZ(FILE): void clMeshTerrain-size: int-x,y,z: clVector-numTri: int-tri: ITRIANGLE*+clMeshTerrain(clCloudTerrain)+Delaunay2d(): void
clFEMesh2d-size: int-x,y,z: clVector-numTri: int-tri: ITRIANGLE*+clFEMMesh2d(clMeshTerrain)

clFEMesh3d-size: int-x,y,z: clVector-numTet: int-tet: ITETRAHEDRON*+clFEMMesh3d(clFEMesh2d)+saveMesh(): FILEGUI-areaTerrain: TerrainDraw-areaMesh: MeshDraw-areaSimulator: SimDraw+DRAW(): void+saveMesh(): FILE+saveBC(): FILE

Simulator*1

*1
* 1* 1 *1 *1

*
1

Figure 5.1: UML class diagram of the GUI.

The areaMesh object contains information of the mesh object derived from the clMeshTer-

rain, clFEMesh2d and clFEMesh3d classes. The clMeshTerrain class receives a clCloudTerrain

object and generates the two dimensional mesh using the Delaunay triangulation algorithm. The

clFEMesh2d class bounds the domain of a object of the clMeshTerrain class to obtain a two di-

mensional finite element mesh. The clFEMesh3d class is responsible to generate the three

dimensional finite element mesh from a object of the clFEMesh2d class.

At last, the areaSim object stores the information of the objects of the Simulator class.

The GUI class provides methods that allow the visualization of the objects described and to set

the different conditions for the simulation. The details of the Simulator class are shown in the

figure 5.2.

The Simulator class is responsible to interconnect the various classes for the simulation.
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Simulator-TurbulenceModel:bool=true+Simulator(Model)+init():void+assemble():void+step():void+stepTmodel():void+save():FILE
Model-X,Y,Z:clVector-IEN:clMatrix-bcu,bcv,bcw,bcp,bcc:clVector+readMesh(FILE):void+readBC(FILE):void

SemiLagrangian-convlin:clMatrix+compute():void+testElement():void+departElement():void

SolverPCG+solver() GMRes+solver() PetscPCG+solver() PetscGMRes+solver()

TElement
FEMLinElemet+getM()+getK()FEMMiniElement+getM()+getK()

* 1

* 1
*1

Figure 5.2: UML class diagram of the Simulator.

The constructor of the Simulator class receives a object of the Model class. This class reads

the files (mesh, boundary conditions and simulation option) which contain the information nec-

essary for simulation and stores it. The value of the TurbulenceModel determines whether the

turbulence model is used or not. The matrices are assembled by the member assemble of the

Simulator class. This member uses the TElement class, that depending of the type of element,

linear tetrahedron or mini tetrahedron, is called the heir FEMLinElement or FEMMiniElement

classes. The stepTmodel member of the Simulator class uses the object of the SemiLagrangian

class, that mounts the convLin matrix to compute the effect of the substantial derivative oper-

ator. The objects of the Solver class are used to solve the linear equations system obtained.

If the matrix of the linear system is symmetric positive defined (SPD), the object of the PCG

class is used. But, if the matrix is not positive defined, the object of the GMRes class is used.

The PetscPCG and PetscGMRes classes use the Portable Extensible Toolkit for Scientific Com-

putation (PETSc) (BALAY et al., 2009; BALAY et al., 2008; BALAY et al., 1997), that is a data

structures and routines library based on the Message Passing Interface Implementation (mpich),
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Basic Linear Algebra Subprograms (BLAS) and Linear Algebra Package (LAPACK). At last,

the solutions are saved in ASCII format by the save member of the Simulator class.



CHAPTER 6

NUMERICAL SIMULATIONS

The code validation was performed comparing the results of simulations with results

from the literature and analytical solutions of flows with uniform density.

In this chapter, the numerical simulations of gravity currents are shown. Several numer-

ical simulations have been performed to compare with the results of 2D gravity currents flows

available in the literature. Then, the numerical simulations of the scale model of a confluence

and the flow in a branch of a reservoir are shown.

Gravity current is a fluid flow driven by density difference. The structure of the gravity

current is affected by the stratification. Since the gravity currents are formed in several natural

phenomena and also man-made, several experiments and simulations have been done to better

understand it.

The simulations are performed in server with the following configurations:

• 2 Quad-Core Intel Xeon processor E5320 1.86GHz 8MB 1066MHz

• RAM: 16GB

• HD: 400GB

• 2 Port Giga Ethernet

• OS: Ubuntu Server 8.04
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6.1 2D Gravity Current

The results of the 2D gravity current simulation are shown. The configuration of the

numerical simulation is the same as the laboratory experiment performed by Eghbalzadeh et al.

(2008). In the experiments of Eghbalzadeh et al. (2008), a rectangular channel was filled with

fresh water with a depth of 0.1m. A gate is located at a distance of 0.3m from the left end

dividing the channel into two regions (Figure 6.1). Salt (NaCl) was added to the left until the

uniform density 1011.4 kg/m− was obtained. Finally, the gate was removed suddenly.

fresh watersalt water

10 20 30 40 50 60 70 cm

Figure 6.1: Initial configuration of the 2D gavity current simulation.

The spatial computational domain used is a parallelepiped with the following dimen-

sion: height 0.1m, length 1.2m and 0.01m thickness. Vertical faces and the bottom horizontal

face are considered as solid surface and the top horizontal face as free surface. The salinity

and the density employed in the numerical simulation are based on the One Atmosphere Inter-

national Equation of State of Seawater (UNESCO, 1981). The density of fresh water at 20 ◦C

is ρr = 998.2063 kg/m− and the salinity to obtain the density of the salt water released in

the experiment is 17.41 g/l. The reduced gravity (equation 3.66) is g′ = 0.1297m/s and the

contraction coefficient due to the salinity is β = 7.5919× 10−4m/kg. The Schmidt number

using the molecular values (molecular viscosity and diffusivity) is Sc = 640 . The turbulent

Schmidt number were Sct = 2.

The mesh has 10 406 vertices points and 30 240 tetrahedral elements and the time step

adopted is ts = 0.010 74 s.

The characteristic length adopted is the half the height of the channel, that is Lc =

0.05m. The velocity is scaled by the wave velocity at the interface defined as Uc =
√
g′Lc =

8.0518× 10−2m/s. Then, the characteristic time is tc =
Lc
Uc

= 0.621 s. The Reynolds number,

using molecular viscosity (ν = 1.01× 10−6m/s), is Re = 4026 .

The linear equation system is solved using data structures and solvers provided by

PETSc. The matrices M′
ρ and M′

θ of the equations (4.41a) and (4.41c), respectively, are sym-

metric positive defined. Then, these equations are solved using Preconditioned Conjugate Gra-



CHAPTER 6. NUMERICAL SIMULATIONS 66

dient (PCG) iterative method. The matrix M̃′−1
ρ of the equation (4.41b) is diagonal, but the

matrices D and G are not transpose to each other. Then, the matrix DM̃′−1
ρ G is not symmetric.

For this reason, the equation (4.41b) is solved using Generalized Minimal Residual (GMRes)

method.

Comparison between the results obtained by Eghbalzadeh et al. (2008) and the sim-

ulation performed are shown in the figure 6.2. The upper picture is the visualization of the

laboratory experiment, the intermediate picture following corresponds to the numerical simula-

tion carried out by Eghbalzadeh et al. (2008) for coarse grid resolution, and the lower picture is

the visualization of the numerical simulation performed.

(a) (b)

Figure 6.2: Comparison between the experimental and numerical results of Egh-
balzadeh et al. (2008) and the simulation performed: (a) t = 4.4 s. (b) t = 6.8 s

Figure 6.3 shows the velocity of the gravity current nose computed from the numerical

simulation. There is good correlation at the beginning of the simulation. There is no significant
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Figure 6.3: Velocity of the computed gravity current nose.
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difference comparing the initial acceleration and the peak velocity reached by the nose for both

simulations. After the stage of acceleration, velocity decays in the simulation possibly due to

numerical diffusion. This numerical diffusion is caused by coarse mesh resolution and the low

order (only first order) discretization employed in the semi-Lagrangian method.

6.2 Model of confluence

A confluence of rivers is the point where two or more rivers join,bodies of water. The

bodies of water that meet may have different properties such as temperature, concentration

of salts and other compounds, sediments, pollutants, among others. Stable stratification can

maintain different bodies of water as separate, with little mixing. In contrast, the turbulence can

break up the stratification and generate strong mixing of the bodies of water. Understanding the

physics of the confluence is very important for the prediction of impacts that it may produce.

The gravity current flow on a scale model of a confluence is studied by means of labora-

tory experiment and numerical simulation, in order to validate the code in the case of complex

geometry.

6.2.1 Laboratory Experiment

The Figure 6.4 show the scale model of confluence used. Salt water was released from

behind a lock gate placed on the tributary (point A of the Figure 6.4). The lines showed in

Figure 6.4(a) are contour lines of water depth.

The length of the main stem is 1.195m and the width is 0.5m; the length of the tributary

is 0.5m and the width is 0.1m. The lock gate is placed at 0.1m from the confluence. The height

of the water level is stabilized at 0.06m, measured on the gate. The temperature of the water is

25 ◦C and the salinity of 4 g/l for the salt water on the tributary is used. The reduced gravity is

g′ = 0.296m/s and the contraction coefficient due to the salinity is β = 7.5421× 10−4m/kg.

6.2.2 Numerical Simulation

The mesh forming the computational domain is generated from a cloud of points that

lay in 21 contour lines separated on average 4.2mm in the vertical direction. At first, the two-
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(a) (b)

Figure 6.4: Scale model of confluence: (a) Sketch. (b) Picture.

dimensional surface mesh is generated (figure 6.5(a)). In the main stem the points are distributed

uniformly, but in the tributary a nonuniform distribution was introduced applying the stretching

defined by the equation 2.8, for φ = 90◦ and η = 3. Then, the tetrahedral mesh is generated

using the algorithms described in section 2.2. The mesh generated has 49 762 vertices, 311 987

node points and 262 225 tetrahedral elements. Notice that the node points are associated with

vertices plus the centroid (bubble node) of each element. The figure 6.5(b) shows a close-up of

the 3D mesh obtained.

(a) (b)

Figure 6.5: Mesh of the confluence model: (a) Surface mesh. (b) 3D mesh with
edges of the tetrahedra.
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6.2.3 Results

Laboratory and numerical simulations were performed for the same choice of parameters

and initial conditions. The laboratory experiment was recorded on digital video and the captured

images were compared with visualizations obtained from the data of the numerical simulation

at similar times.

The laboratory experiment and the numerical simulation both show three main periods:

• During a first stage, a gravity wave propagates along the tributary similarly to the

2D gravity current in the section 6.1. Figure 6.6 shows the development of the 2D wave

along the tributary.

Figure 6.6: Numerical simulation of gravity current wave propagating along the
tributary.

• On the second stage, the gravity current reaches the main stem and propagates simi-

larly to an axisymmetric gravity current (figure 6.7).

(a) (b)

Figure 6.7: Propagation of the wave similar to an axisymmetric gravity current: (a)
Laboratory experiment. (b) Numerical simulation.



CHAPTER 6. NUMERICAL SIMULATIONS 70

• Finally, on a third stage, the current interacts with the bottom of the main stem and

starts to propagate upstream and downstream of the main stem (figure 6.8 and 6.9).

(a) (b)

Figure 6.8: Propagation of the wave in the main stem: (a) Laboratory experiment.
(b) Numerical simulation.

Figures 6.7 to 6.9 show good correlation between experimental and numerical results.

(a) (b)

Figure 6.9: Propagation of the wave in the main stem: (a) Laboratory experiment.
(b) Numerical simulation.

6.3 Reservoir Simulation

To perform a numerical simulation of a branch of a natural reservoir the shapefile con-

taining the geographic data of a reservoir is loaded and a branch is selected. The contour lines

correspond to a region in Rio de Janeiro state (Brazil) close to 42.577◦ S – 22.415◦ W. The
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contour lines separations are 20.0m in vertical direction. Figure 6.10 shows the contour lines

with the dimensions of the reservoir. The cloud of points is extracted from the contour lines.

Figure 6.11 shows the contour lines and the cloud of points lying in these contour lines.

300.0

420.0

540.0

Elevation (m)

2 795.0 m

2 850.0 m

Figure 6.10: Contour lines and the dimensions of the reservoir GUI.

From the cloud of points, using the Delaunay triangulation algorithm, the surface mesh

is generated. Figure 6.12 shows the 2D image of the triangular mesh shown in the graphic user

interface (GUI) and the Figure 6.13(a) shows the triangular surface mesh. By adding points into

the reservoir domain and using tetrahedra construction from the triangular prism, the tetrahedra

mesh is generated (Figure 6.13(b)).

Figure 6.11: Contour lines and cloud of point shown in the interface GUI.
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Figure 6.12: 2D triangular mesh shown in the GUI.

The Figures 6.14 to 6.19 show different stages of the simulation. Figure 6.14 shows the

initial conditions of the simulation. The simulation has two inflows that meet in a confluence.

The inflow velocity of the left side (inflow A) of the Figure 6.14 is 0.6708m/s with null scalar

concentration and the right side inflow velocity (inflow B) is 0.6403m/s with 3 % of concen-

tration. The gray surface is an isosurface of scalar concentration corresponding to a value of

0.1 %. The size and the color of the arrows are related to the magnitude of the velocity and the

direction of the arrows is related to the direction of velocity. The color of the arrow is limited

by red for maximum velocity and blue for minimum velocity, respectively. The initial scalar

concentration is stratified and advances due to the velocity caused by the inflow and also due to

(a) (b)

Figure 6.13: Mesh of the reservoir: (a) Surface mesh (top view). (b) 3D mesh.
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a gravity current that is emphasized by the downstream slope given by the geographic condition.

Figure 6.14: Initial condition of the simulation.

Figure 6.15 shows the simulation at 14.87 s. The scalar advances mainly along the

bottom of reservoir and there is very little diffusion.

Figure 6.15: Simulation at 14.87 s.
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Figure 6.16: Simulation at 29.74 s.

The figures 6.16 (simulation at time step 29.74 s) and 6.17 (simulation at time step

59.48 s) show the fast advance of the scalar front. Notice that the passage of the fluid from

inflow A is disturbed due to the inertia of the gravity current coming from the inflow B, which

is caused by density gradients.

Figure 6.17: Simulation at 59.48 s.
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Figure 6.18: Simulation at 89.22 s.

The figure 6.18 (simulation at time step 89.22 s) shows the isosurface of scalar concen-

tration almost reaching the zone of outflow. It is possible to observe that the velocity field has

focused even more on the area where the scalar advances. The figure 6.19 (simulation at time

step 178.44 s) shows that the scalar isosurface reached the outflow zone. After this stage, there

are no significant variations in the flow.

Figure 6.19: Simulation at 178.44 s.

The flow of fluid within the isosurface of scalar concentration constitutes a gravity cur-

rent. The heavier fluid moves along the deepest regions of the reservoir, with a much higher

velocity than the surface layers. Thus producing a short circuit along the bottom of the reser-
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voir. This phenomenon is important because it substantially decreases the mean residence time

of the water leaving the reservoir. The simulated behavior is consistent with the behavior ob-

served in reservoirs under similar conditions.

The simulation of the flow in a reservoir shows a flow pattern that is qualitatively consis-

tent with field observation. The results confirm that the code is capable of dealing with complex

geometry and physics typical of real applications in reservoir modeling.



CHAPTER 7

SUMMARY

This work is part of a project, which proposes the construction of a methodology to study

and forecast the environmental impacts that a hydroelectric power plant reservoir may produce.

This project is developed by a group called GESAR and joins different areas of science such

as mechanical engineering for fluid flow analysis, mathematics for resolution of the discretized

equations of fluid flow, computational science for computational resource to simulate the fluid

flow, geography for geographic information system (GIS) data analysis, biology and chemistry

for biomass decomposition and water quality analysis.

In this context, the objectives of this work are to provide numerical simulation tools

for 3D environmental flows and to describe a methodology for numerical simulation of the

reservoir. In the numerical simulation of hydrodynamic applications in real geophysical system,

the areas cited above are involved. This work describes not only the equations and the numerical

methods of the fluid flow but also several issues, that are related to the numerical simulation of

the reservoir.

A tetrahedral mesh generator of the reservoir based on the terrain topology and an alge-

braic turbulence model based on the Richardson number are the main tools developed.

The chapter 5 gives information on the code structure based on the object oriented pro-

gramming. The entire code was developed by the group of numerical simulation of GESAR,



CHAPTER 7. SUMMARY 78

that the author belongs to. The classes clShapeTerrain, clCloudTerrain, clRasterTerrain and

clMeshTerrain were previously described by Mangiavacchi et al. (2005), Dongala et al. (2006).

Part of the classes clMeshTerrain, clFEMesh2d and clFEMesh3d referring to the mesh genera-

tion were developed by the author for this work. The class Simulator, originally described by

Anjos et al. (2007), is the hydrodynamic and scalar transport simulator. In this work, it was

introduced a turbulence model for stratified flow. It is important to emphasize that the code pre-

sented is only one part of all the code developed by the group, because there are other modules

such 2DH, 2DB simulation, decay and meteorology which are not represented in this work.

For numerical simulation of real geophysical systems it is necessary to represent ade-

quately the terrain geophysical topology. The points used by the mesh generator are extracted

from the terrain topological data. The main difficulty in tetrahedral mesh generation of a reser-

voir is non-uniform distribution of the points related to the huge ratio between the horizontal

and vertical scales of the reservoir. In this type of points distribution, conventional tetrahedron

mesh generation algorithm may become unstable. For this reason, a unstructured tetrahedral

mesh generator was developed and the methodology used was described in detail in this work.

Triangular surface mesh generation using the Delaunay triangulation and the construction of

the tetrahedra from the triangular surface information are the main steps to the mesh generator.

To generate the triangular surface mesh a randomized incremental algorithm with optimized

search was used. Furthermore, the triangular surface mesh generator is able to obtain meshes

with edges having a preferential direction. This algorithm is used to generate the mesh of the

tributary of the confluence model (section 6.2). From the triangular surface mesh, by adding

points into the computational domain and prism partition process, the tetrahedral mesh was gen-

erated. The points are added respecting the layers of the contour lines and sticks formed by the

vertical lines passing through the points at the surface. With this methodology, it was possible

to construct prisms and split them into conforming tetrahedra.

Direct Numerical Simulation of the Navier-Stokes equations is very important for flow

analysis. But this technique requires large computational resources, which in practical engineer-

ing situations are not feasible. The hydrodynamic simulation with a turbulence model provides a

useful tool that is computationally viable for engineering purposes. Eddy-Viscosity/Diffusivity

models for stratified turbulent flows were incorporated in the Reynolds-averaged Navier-Stokes

(RANS) and mean scalar transport equations. These models are algebraic models based on the



CHAPTER 7. SUMMARY 79

Richardson number and provide realistic results with the fitting of a small amount of parameters.

Several numerical simulations have been performed to compare with the results available

in the literature. Comparisons with the results obtained by Eghbalzadeh et al. (2008) for the 2D

gravity current show that there is good correlation at the beginning of the simulation, related

to the initial acceleration and the peak velocity reached by the gravity current nose. After the

stage of acceleration, the velocity decays in the performed simulation possibly due to numerical

diffusion caused by coarse mesh resolution and the low order (only first order) discretization

employed in the semi-Lagrangian method.

The simulation of the model of confluence is performed in order to compare the structure

of the 3D gravity current with the laboratory experiment. The results obtained were satisfactory,

considering that a relatively coarse mesh, limited by the computational resources, has been used.

Finally, the simulation of a branch of a reservoir was adequate to verify the mesh gen-

erator from the real terrain data and also the simulation of the flow in a potential reservoir

application.

7.1 Future Research Area

In this work, 3D reservoir simulation with algebraic turbulent model was tested and

validated.

A number of improvements deserve further attention in order to achieve better perfor-

mance of the simulation tool.

In terms of the mesh generator, the uses of an adequate data structure to save the infor-

mation of the mesh may provide savings in the computational cost.

In terms of the physics, considering that the meteorological data is a factor that is closely

related to the stratification and mixing process, it is necessity to link the meteorological infor-

mation with the 3D fluid flow simulation.

In terms of the computational resource, the problem of the numerical diffusion may

be reduced by developing high order semi-Lagrangian methods. High performance scientific

computing techniques must be developed and employed to allow the use of finer meshes and

provide more accuracy in the simulations.
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