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4.3.4 Cone impinging a mesh boundary test results

Galerkin leaves trailing waves all over the domain, and when the cone has
recently leaved the mesh, oscillations with a maximum height of 7.5% of the initial cone
height remains. SUPG leaves minimum oscillations that exits the mesh rapidly, just
behind the cone, with a maximum height of 7.1%. With the semi-Lagrangian method,
the cone exits the mesh cleanly, with no oscillations, as can be seen in figure 8.

(a) (b) (c)

Figure 8 – Results after a full rotation: (a) Galerkin; (b) SUPG (c) semi-
Lagrangian

In the previous test quadratic elements were used. It has been noticed in previ-
ous works with the semi-Lagrangian ((12), (25), (6)) that using lower order interpolation
(even with fine meshes) gives very diffusive results. This can be seen in figure 9. This
problems can be solved refining the mesh, as seen in figure 10. Here we have taken
a mesh with the double of elements to compensate the lower order elements. But on
the same mesh, with low order interpolation, the SUPG shows better results. We will
return to this in section 4.4.4 .
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(a) (b)

Figure 9 – Results on the cone impinging a mesh boundary (4 node quadri-
laterals instead of 9). (a): semi-Lagrangian; (b) SUPG.

Figure 10 – semi-Lagrangian results with 4 node quadrilaterals and a finer
mesh

4.4 Tests on the Navier-Stokes equations

4.4.1 The 2D lid-driven cavity test

In order to evaluate the characteristics of the semi-Lagrangian method and to
test its feasibility in the context of high Reynolds numbers we analyze the lid-driven
cavity problem, a well-known benchmark for N-S solvers. This flow is not only tech-
nologically important, it is of great scientific interest because it displays almost all fluid
mechanical phenomena in the simplest of geometrical settings. Thus corner eddies,
longitudinal vortices, nonuniqueness, transition and turbulence all occur naturally and
can be studied in the same closed geometry. This facilitates the comparison of results



49

from experiment, analysis, and computation over the whole range of Reynolds numbers
(26).

Figure 11 – Lid-driven cavity problem statement

The problem statement is shown in figure 11. It is a square cavity with no-slip
boundary conditions, and velocity in the upper boundary is equal to 1 in the x direction.
Pressure is pinned to zero in the lower left corner.

Erktuk et al. (27) solved the same problem using an streamfunction and vor-
ticity formulation using finite differences in a very fine mesh of 601×601 elements.
Hachem et al. (1) used an multiscale method for solving the same problem, over two
meshes: a fine one of 180×180 elements, and an coarse one of 64×64 elements. Ghia
et al. (28) applied a second-order accurate finite difference method using a fine grid
of 257×257. The work of Hachem has shown very good results compared with (27),
even with a coarser mesh. We will refer mostly to the works of Hachem and Erkturk.

The meshes employed in our simulations are presented in figures 12 and 13.
They are refined next to the boundary for better resolution of the boundary layer. This
mesh is composed of triangular elements with quadratic interpolation for velocity, and
linear interpolation for pressure (to satisfy the Babuska-Brezzi condition). Reynolds
numbers of 1.000, 5.000 and 10.000 are established. For all of them, calculations are
performed usings increasing CFLs of 1.1375, 1.52, 2.275 and 4.55, in order to compare
the semi-Lagrangian versus the SUPG. Results are compared with those of (27) and
(1).
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(a) (b)

Figure 12 – Lid driven cavity 2D meshes: (a) 2.000 elements. (b) 5.000
elements.

(a) (b)

Figure 13 – Lid driven cavity 2D meshes: (a) 10.000 elements. (b) 40.000
elements.

We consider that steady state has been reached once the L2-norm of the
normalized velocity diference between two timesteps is lower than 1.0e − 4. Veloc-
ity profiles, position of vortex, streamline plots and graphics of error of the solutions
(compared with a more accurate solution) are analysed, following the work of Hachem
(1) and the verification and validation procedures seen in (29). The error of a certain
simulation is computed as:

err(h) =

(∑
x,y

(viref − vik)
2

) 1
2

(4.1)
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where h is making reference to a certain mesh and vref is the velocity at the
points of the reference mesh (the accurate solution). Comparison is made against the
SUPG results computed with the finest mesh (40.000 elements).

4.4.2 2D lid-driven cavity test

Velocity profiles are shown in figures 15, 16 and 17. In those figures we ex-
pose extreme cases of resolution: our finer and our coarser mesh. Our results in the
meshes with intermediate resolution (5.000 and 10.000 elements) have shown an in-
termediate adequacy (as expected) between the coarsest and the finest mesh results,
and therefore are not exhibited. The very accurate solution from Erkturk (27) and our
SUPG solution are plotted as well as the semi-Lagrangian method for several CFLs
(equation 2.34) in order to show the influence of taking bigger time steps. As can be

Figure 14 – Position of vortex until Re=10.000

seen, for low CFLs (CFL ' 1.0), semi-Lagrangian approximation is good, very close
to the SUPG solution even for the highest Reynolds solution computed, however, the
SUPG solution is slightly better comparing to (27). As the CFL grows, approximation
becomes less accurate; this effect is more notorious when Reynolds number is higher;
in this case CFL ≥ 3.0 grants poor approximations. As the only parameter that is being
changed in this test (for the same mesh and same Reynolds number) is ∆t then we
can see that the origin of the problem stated before is strongly associated to the linear
trajectory used to approximate the material derivative in 3.1 .
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