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5 ADVANCED RESULTS

5.1 The damping term effect

As previously mentioned, the damping term is a controversial one: while it is an inter-

esting addition to the KS equation in order to obtain stationary patterns, the physical meaning

is not sufficiently clear up to this moment. The present study adopts the aforementioned time

splitting finite-difference method to acquire solutions for the two-dimensional DKS equation

under 3 circumstances: α= 0, α= 0.05, and α= 0.15. The mesh consisted of 512 × 512 points

with a harmonic monomodal initial pattern in the~1x direction (~q = q0~1x), a small amplitude

of 0.1, and parameters θ, K and aµ as found in Table 4. Recapping the results from the linear

stability analysis, a value ofλc = 18 was calculated for the critical wavelength, corresponding

to the maximum growth rate in the~1x direction. In this sense, each wavelength of the final

pattern was estimated to be represented by 18 points.

According to the previous work of Paniconi and Elder [41], three distinct solutions in

the late time limit might be expected for the DKS equation, depending on the parameter α:

periodic large hexagonal morphology for higher values, an oscillatory or breathing hexagonal

state for middle values, and a spatiotemporal chaotic state for lower values. However, since

the present endeavor considers realistic coefficients related to the physics of sputtering,

the same range of α values employed by Paniconi and Elder would not produce the same

effects. Besides, in opposition to Paniconi and Elder, our study deals with an anisotropic DKS

equation. Thereafter, during the first moments, linear effects lead to the selection of a well

defined ripple direction; then, once nonlinear effects take over the system, cellular structures

will develop (clearly seen on the α= 0.15 case).

The undamped solution is shown in Figure 59, when α = 0. The initial condition

presented a wavenumber qo = 1.7181 ·10−1 (14 wavelengths in the system). A disordered

chaotic cellular structure is obtained for late time, with large variations of cell size and shape,

as displayed in Figure 59a for τ= 11803. From the L1 curve (Figure 59b), we can see that the

chaotic pattern is reached within τ= 500. While a steady state isn’t reached for the analyzed

period, it is clear that the evolution dynamics are much slower during late time.
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(a) Surface height h̄n for τ= 11,803
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(b) L1 norm evolution

Figure 59: Numerical solution for a 2D anisotropic DKS equation - Spatiotemporal chaotic
pattern, α= 0

Figure 60 reveals the numerical solution for α = 0.05. The initial condition was the

same from the previous case (qo = 1.7181·10−1) . A spatiotemporal chaotic cellular structure is

obtained for late time, which can be seen in Figure 59a for τ= 11,750. In comparison with the

undamped structure, the late time pattern forα= 0.05 is much more organized, with a smaller

variation of cell sizes and shapes, with some of them approaching the λc width. The L1 norm

evolution (Figure 60b) shows that a strongly oscillatory state is reached by τ= 2,000, where

L1 starts fluctuating around L1 = 0.02. These intense dynamics differ from the undamped

case: even though the structure is more organized, it keeps changing at a constant rate for an

undefined period of time.
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(a) Surface height h̄n for τ= 11,750
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(b) L1 norm evolution

Figure 60: Numerical solution for a 2D anisotropic DKS equation - Chaotic semi-organized
oscillatory behavior, α= 0.05
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For higher values of α, e.g. α= 0.15, a defect-free hexagonal structure can be obtained,

as displayed by Figure 61. A smaller wavenumber qo = 2.4544 ·10−2 was employed for the

initial condition, since our previous studies revealed that an 1D structure with wavelength

similar to λc would prevail for qo = 1.7181·10−1 even in late time. Figure 61b shows that at first

the L1 norm has a continuous decline, which represents the stabilization of an 1D structure

with ~q ∼ ~qc . Even though this pattern seems to be approaching a steady state, hexagonal

modes emerge when τ is approaching τ = 2,000, leading to a fast growth of L1, and to the

formation of a new structure. Posteriorly, L1 reaches a peak, and the structure initiates its

final stabilization, quickly removing defects and descending up to the stationary state, which

is illustrated by Figure 61a for τ= 14,630.
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(a) Surface height h̄n for τ= 14,630
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(b) L1 norm evolution

Figure 61: Numerical solution for a 2D anisotropic DKS equation - Stationary hexagonal
structure, α= 0.15

Comparing the structure evolution for α= 0.15 and α= 0.05, we confirm the coinci-

dent time for the emergence of the hexagonal modes, close to τ = 2,000. For α = 0.15, the

damping effect is sufficient for an ordered and quick reorganization of the structure after a

L1 peak, while for α = 0.05 the damping is not high enough to allow the nanostructure to

reorganize itself into a perfectly ordered hexagonal state, and it keeps chaotically oscillating

around the peak L1 value. Another observation concerning the obtained height values must

be pointed out. All of them are negative, being consistent with the erosive phenomenon.

However, for α= 0, the mean height of the surface falls continuously with time, while main-

taining the distance h̄di f between the minimum and maximum points around h̄di f = 6.4. For

α= 0.05 the mean height remains approximately constant, around -0.5 and -3.5 (h̄di f ∼ 3.0),

for an undefined time. Finally, for the steady state obtained with a damping α = 0.15, the
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maximum and minimum height values were, respectively, -0.03 and -0.81 (h̄di f = 0.78).

The practical significance of those results is that the acquired structures might depend

on the duration of the irradiation. For a short time-duration sputtering in a system with

α= 0.15, we observe only the formation of ripples, while hexagons may emerge for a longer

duration of the experiment. In contrast, for a system with α= 0 or 0.05, the final structure will

depend on time, since it keeps changing with the irradiation duration.

5.2 Anisotropy and angle of incidence

The weakly nonlinear analysis developed by Walgraef [42] investigated the parameters

involved in the relative anisotropy of the resulting patterns, through the Fourier transform and

adiabatic elimination. The relative anisotropy is studied by A = ∆

K̄ q4
c
, where qc is the critical

wavenumber obtained from our previous linear stability analysis, and∆= 3
4 (|µ̄|−|ν̄|)q2

c . Figure

62 plots the relative anisotropy A versus θ for K̄ = 5 and aµ = 4. From the plot we observe that

A for θ = 0.5236 (30◦) is approximately 1.15, which was the value used up to this moment.

The following results investigate the effect of varying the angle of incidence in the resulting

pattern, motivated by this behavior of the relative anisotropy.
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Figure 62: Relative anisotropy A versus θ for K̄ = 5 and aµ = 4

One region we are particularly interested is near θ = 1.2, since νx and νy may present

opposite signs with similar modulus. This observation implies that there will be one direction

for the unstable modes where the nonlinear terms will compensate each other, as studied in

the work of Rost and Krug [17]. For this simulation, we defined a θ value of 1.1549 (66.17◦),
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which means that we will have the following anisotropy coefficients: νx = 0.0658 and νy =

−0.0659.

Before showing the results for our case related to the sputtering model, we would like

to show a reproduction of the results from Rost and Krug. More clearly, we have introduced

their same parameters in our code to compare the numerical results, which is an opportunity

to present another proof of reliability for the numerical method employed in the present

endeavor. The equation reproduced was the following:

∂h̄

∂τ
= −

∂2h

∂X 2
−α

∂2h

∂Y 2
+

1

2

[( ∂h

∂X

)2
+ β

( ∂h

∂Y

)2]

−
( ∂4h

∂X 4
+2

∂4h

∂X 2Y 2
+

∂4h

∂Y 4

)

(5.1)

Rost and Krug studied this equation evolution whenα= 1 and β=−1. In this situation,

the cancellation of the two nonlinearities can break down the stabilization mechanism. Figure

63 shows their result for a system of size 500 × 500 starting from a random initial condition.

Several parallel ridges nucleate and grow from the random background, spreading over the

system. Solving Equation 5.1 with our semi-implicit splitting scheme, we obtained the results

shown by Figure 64 (L1 rate of variation per time) and Figure 65.

Figure 63: Numerical result of Eq. 5.1 obtained by Rost and Krug (1995) [17]. The parameters
were α = 1 and β = −1 in order to cancel the nonlinearities. Parallel ridges nucleate and
coalesce, taking over the system.



82

0 10 20 30 40 50 60 70 80 90

10
0

10
−0.2

10
−0.4

10
−0.6

10
−0.8

τ

L
1
n
o
r
m

Figure 64: L1 norm rate of variation per time for the reproduction of the results from Rost
and Krug with the semi-implicit time splitting scheme.
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Figure 65: System of size 512 × 512, showing the evolution in time of Equation 5.1 with
∆τ= 0.01, α= 1 and β=−1. The numerical results obtained through the semi-implicit time
splitting reveals the nucleation and growth of parallel ridges.

As expected, the coalescence of parallel ridges were also present in our results, pro-

viding here another proof of reliability for the implemented scheme. We now proceed to the

simulation of Equation 2.3 with θ = 66.17◦, with the parameters informed by Table 5. The

damping coefficient was chosen as α= 0.1 because of undesirable effects brought to the dy-

namics for this range of θ by higher values ofα (heavy damping may lead to the disappearance

of the structure with continuous decay of the mean height modulus).

Figure 66 and Figure 67 display the result from the θ = 66.17◦ simulation. In fact,

the nonlinearities compensate each other when the system choses the~1x direction for the

unstable modes. The nanostructure obtained for τ= 180 is still irregular in terms of the ripple
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Table 5: Parameters for the 66.17° simulation

Parameter Values Description

L 256 domain side

ᾱ 0.10 damping coefficient

K̄ 5 surface diffusion effects

∆X ,∆Y 1 space step

θ 66.17° angle of incidence of the beam

∆τ 0.001 time step

aµ 4 penetration depth/width of energy distribution

behavior, but the direction of preference is clear. There are approximately 23 wavelengths in

the domain, which is less than the critical number of wavelengths from the linear stability

analysis. In this case, we did not obtain a stationary structure, since the irregular ripple

behavior keeps moving, although the pattern’s preferred direction remains the same. This is

sensed by the L1 rate of change in time, as it stabilizes around 1 ×10−1.8, when the structure

reaches a configuration similar to τ= 180 without ceasing the ripples’ movement.
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Figure 66: L1 norm rate of change per time for θ = 66.17◦. Movements in the structure remain
until the end, without reaching a stationary state.
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Figure 67: Simulation results for a system 512× 512 with an angle θ = 66.17◦. The nonlinear-
ities cancel each other and a well defined direction arises from the unstable mode. This is
made clear by the selection of the~1x direction for τ= 180.

Next, the anisotropy investigation due to angle variations moves toward higher values

for the relative anisotropy. Here we conducted simulations for θ = 40◦, aiming to find the

possible differences that could be introduced in the structure by the anisotropy, in relation

to the previous studied θ = 30◦ cases. Therefore, the employed parameters were the same

as those used throughout Chapter 3, except for the angle of incidence. The initial condition

for the following case was a monomodal pattern with ~q = q0~1Y (q0 = 2.5771 ·10−2), which

presented the same final morphology as the one obtained from a random initial profile.

Figure 68 suggests that the stationary state is reached as the L1 rate of change decreases

in the late time until the stop criterion is reached (L1 = 1 ·10−7). The hexagonal modes emerge

around τ= 500, and they start to reorganize in structure, as seen in Figure 69 (a). A defectless

pattern is obtained from this nonequilibrium dynamics, clearly shown by Figure 69 (b). A clean
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spectrum of the most relevant modes (central part) acquired by the Fast Fourier Transform

is displayed by Figure 69 (d). However, the final pattern is different from the θ = 30◦ case:

here, the anisotropy effects lead to a diagonal connection between the cellular structure,

resembling diagonal chains. This morphology is evident in the zoomed image from Figure 69

(c).
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Figure 68: L1 norm rate of change per time for θ = 40◦. Hexagonal modes emerge around
τ= 500 and the stationary state criteria is met at τ= 41,960.
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Figure 69: Simulation results for a system 512 × 512 with an angle θ = 40◦. Hexagonal modes
emerge and reorganize the structure. The final pattern displays the cells connected in the
diagonal, like chains.


