
Universidade do Estado do Rio de Janeiro

Centro de Ciência e Tecnologia

Faculdade de Engenharia

Nestor M. Solalinde

A FINITE ELEMENT BASED LEVEL SET APPROACH FOR THE

SIMULATION OF TWO-PHASED FLOWS

Rio de Janeiro

2011

Nestor M. Solalinde

A finite element based level set approach for the simulation of two-phased

flows

Dissertação apresentada, como
requisito parcial para a obtenção do
título de Mestre, ao programa de
Pós-Graduação em Engenharia
Mecânica, da Universidade do
Estado do Rio de Janeiro. Área de
concentração: Fenômenos de
Transporte.

Orientador: Prof. D.Sc. Norberto Mangiavacchi

Rio de Janeiro

2011

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

Bibliotecária: Júlia Vieira – CRB7/6022

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial

desta tese, desde que citada a fonte.

Assinatura Data

S684 Solalinde, Nestor M.
A finite element based level set approach for the simulation os

two-phased flows / Nestor M. Solalinde. – 2011.
71f.

Orientador: Norberto Mangiavacchi.
Dissertação (Mestrado) – Universidade do Estado do Rio de

Janeiro, Faculdade de Engenharia.

1. Engenharia Mecânica - Teses. 2. Método dos elementos
finitos - Teses. 3.Mecânica dos fluidos - Teses. 4. Métodos de
simulação - Teses. I. Mangiavacchi, Norberto. II. Universidade do
Estado do Rio de Janeiro, Faculdade de Engenharia. III. Título.

CDU 532:519.63

Nestor M. Solalinde

A finite element based level set approach for the simulation of two-phased

flows

Dissertação apresentada, como
requisito parcial para a obtenção do
título de Mestre, ao programa de
Pós-Graduação em Engenharia
Mecânica, da Universidade do
Estado do Rio de Janeiro. Área de
concentração: Fenômenos de
Transporte.

Aprovada em 31 de dezembro de 2011.

Banca examinadora:

 Prof. Dr. Norberto Mangiavacchi (Orientador)

Faculdade de Engenharia – UERJ

Prof. Dr. Christian Emilio Schaerer Serra

Faculdad de Politécnica - UNA

Prof. Dr. Fabricio Simeoni de Sousa

Instituto de Ciências Matemáticas e de Computação - USP

Prof. Dr. Renato Nascimento Elias

COPPE - UFRJ

Rio de Janeiro

2011

DEDICATION

To my family.

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Norberto Mangiavacchi, for his

continued support and advice. Special thanks to Prof. Christian Schaerer for his

constant guidance and support before and during this master program. I would like

also to thank my colleagues of GESAR Hugo Checo, Pedro Torrez, Hyun Ho Shin

and Leon Matos for many useful discussions over broad range of topics. I am also

very grateful to the FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de

Janeiro) as this work was supported by a master student’s scholarship.

Above all, I would like to thank my whole family, father, mother and brothers

as well as to my closest friends for providing important motivation and constant

support along this important stage of my life.

RESUMO

SOLALINDE, Nestor M. Abordagem level-set para simulação de fluidos
bifasicos baseada no método de elementos finitos . 2011. 71f. Dissertação
(Mestrado em Engenharia Mecânica) – Faculdade de Engenharia, Universidade do
Estado do Rio de Janeiro, Rio de Janeiro, 2011.

Neste trabalho, apresentamos uma abordagem level-set para simulação de
fluidos bifasicos imiscíveis. O modelo consiste nas equações de Navier-Stokes
incompressíveis, juntamente com uma equação de advecção para a função level-
set. A abordagem CSF (Continuum Surface Force) é utilizada para modelar o efeito
da tensão superficial. O método level-set é utilizado para capturar a interface entre
os fluidos. Aqui, a função level-set é transportada e reinicializada em cada iteração.
A discretização espacial é baseada em uma malha de elementos finitos não-
estruturados que utiliza refinamento de malha adaptativa para maior precisão. Níveis
de refinamento são calculados como altos na região próxima à interface e baixos
longe dela. Para a discretização da velocidade e da pressão, espaços de elementos
finitos padrão (LBB estável) são levados em consideração. A discretização da
derivada no tempo resulta numa aproximação implícita. O algoritmo de elementos
finitos é implementado usando a biblioteca de elementos finitos libmesh.

Palavras-chave: Simulação numérica; Método de elementos finitos; Fluidos

multifásicos; Level-set; libMesh.

ABSTRACT

SOLALINDE, Nestor M. A finite element based level set approach for the
simulation of two-phased flows. 2011. 71f. Dissertation (Master in Mechanical
Engineering) – Faculty of Mechanical Engineering, State University of Rio de Janeiro,
Rio de Janeiro, 2011.

In this work, we present a level set approach for the simulation of two-phase
immiscible newtonian fluids. The model consists on the incompressible Navier-
Stokes equations, coupled with an advection equation for the level set function. The
so-called Continuum Surface Force approach (CSF) is used to model the effect of
surface tension. The level set method is used to capture the interface between the
fluids. Here, the level set function is advected and reinitialized at each timestep. The
spatial discretization is based on an unstructured Finite Element mesh that uses
adaptive mesh refinement for higher accuracy. Refinement levels are set to be high
on regions near the interface and low away from it. For the discretization of velocity
and pressure fields, standard (LBB stable) finite element spaces are taken in
consideration. Discretization of the time derivative is given by backward
differentiation resulting in an implicit approximation. The finite element algorithm is
implemented using the libmesh library.

Keywords: Numerical Simulation; Finite Element Method (FEM); Multiphase Flows;

Level-Set method; libMesh.

LIST OF FIGURES

2.1 Curvature calculation: (a) using equation set (2.48), (b) using equation set (2.49),
(c) level set function for (a) and (b). 25

5.1 Plane Poiseuille Flow simulation domain mesh and horizontal velocity distribution. 52
5.2 Pressure gradient evaluation for plane poiseuille flow: (a) with Reynolds number

equal to 10, (b) with Reynolds number equal to 100. 53
5.3 Driven cavity flow steady state velocity distribution at Reynolds 10000. 54
5.4 Comparison between streamlines given by literature and computed data for Re=10.000:

(a) (HACHEM et al., 2010), (b) computed data. 54
5.5 Velocity profiles along the vertical and horizontal lines passing through the geo-

metric center of the cavity: (a) Computed v-velocity profiles along horizontal line
passing through the geometric center of the cavity, (b) Computed u-velocity profiles
along vertical line passing through the geometric center of the cavity. 55

5.6 Oscillation of the bubble diameter as a function of non-dimensional time. 57
5.7 Numerical experiment on rising bubble: (a) t=0.0, (b) t=5.0, (c) t=15.0, (d) t=25.1 . 58
5.8 Numerical experiment on rising bubble: (a) t=0.0, (b) t=0.077, (c) t=0.179, (d)

t=0.262, (e) t=0.707, (f) t=0.937, (g) t=1.030, (h) t=1.150 59

LIST OF TABLES

5.1 Pressure gradient evaluation parameters and results. 52
5.2 Physical parameters used for capillary pressure evaluation. ∗No gravity field

involved 1/F r = 0. 56
5.3 Physical parameters used for frequency of oscillation evaluation. ∗No gravity

field involved 1/F r = 0. 58

CONTENTS

1 INTRODUCTION 12
1.1 Objectives . 13
1.2 Overview . 13

2 MATHEMATICAL MODEL 15
2.1 Introduction . 15
2.2 Governing Equations . 15
2.2.1 Mass Conservation . 16
2.2.2 Conservation of Momentum . 16
2.2.3 Navier Stokes Equations . 17
2.2.4 Newtonian fluids . 18
2.2.5 Surface Tension . 18
2.3 Nondimensionalization . 19
2.4 Level-Set Equations . 20
2.4.1 Level-Set Advection . 21
2.4.2 Level-Set Reinitialization . 22
2.4.3 Mean Curvature . 24
2.5 Model Summary . 25

3 TIME AND SPACE DISCRETIZATION 28
3.1 Preliminary definitions . 28

CONTENTS

3.2 Convection-Diffusion equation . 29
3.2.1 Strong form of the problem . 30
3.2.2 Weak Formulation and Spatial Discretization . 30
3.2.3 Stabilized Finite Element Formulation . 31
3.2.4 Time discretization . 32
3.3 Navier-Stokes equations . 32
3.3.1 Strong form of the problem . 32
3.3.2 Weighting functions and trial solutions . 33
3.3.3 Weak Formulation and Spatial Discretization . 33
3.3.4 Stabilized Finite Element Formulation . 36
3.3.5 Time discretization . 37
3.3.6 Linearization . 37

4 NUMERICAL IMPLEMENTATION 39
4.1 Solution Methodology . 39
4.2 Convection-Diffusion Problem . 40
4.2.1 System Assembly . 40
4.3 Navier-Stokes equations . 41
4.3.1 System Assembly . 41
4.4 Boundary Conditions . 56
4.5 Adaptive Mesh Refinement . 47
4.6 Solution Algorithm . 47
4.6.1 Main Algorithm . 48
4.6.2 Reinitialization Algorithm . 48
4.6.3 Level Set Advection. 48
4.6.4 Heaviside and Curvature Calculation . 49
4.6.5 Navier Stokes Algorithm . 49
4.6.6 Convection Diffusion Algorithm . 50
4.6.7 Refinement Algorithm . 50

5 VALIDATION AND RESULTS 51
5.1 Navier Stokes Solver . 51
5.1.1 Plane Poiseuille Flow . 51
5.1.2 Driven cavity flow . 53
5.2 Capillary Pressure Evaluation . 54
5.3 Frequency of Oscillation . 56

CONTENTS

5.4 Numerical experiments . 57
5.4.1 Rising bubble . 57
5.4.2 Bubble Coalescence . 58

6 SUMMARY 60
6.1 Future Works . 60

A APPENDIX 61
A.1 Generalized Navier-Stokes element matrices and vectors 61

REFERENCES 69

CHAPTER 1

INTRODUCTION

Many natural processes involve interactions between immiscible fluids. Bubbles and
drops for example, play a major role in the interaction of the oceans with the atmosphere, and
both, air bubbles near a free surface or cavitation bubbles are of major importance for the de-
tection of submarines in naval applications. The study of bubble interaction is also important
for the development of industrial equipments such as bubble-driven circulation systems used in
metal processing operations such as steel making, ladle metallurgy, and the secondary refining
of aluminum and copper (ESMAEELI; TRYGGVASON, 1998).

One of the main difficulties encountered when performing multiphase fluid simulations
is related to the discontinuities at the fronts separating different fluids. A number of methods
have been developed to approximate the fronts. Among these, the level set method, introduced
by Osher and Sethian (OSHER; SETHIAN, 1988), has acquired popularity because of its algorith-
mic simplicity and its flexibility for handling topology changes. In this method, the fronts are
represented by a zero level set of a function φ, that is advected by solving φt+u ·∇φ = 0 where
u is the velocity field. Most numerical procedures designed to solve this equation will introduce
artificial diffusion leading to pronounced mass conservation errors. However, as pointed out by
(SUSSMAN; SMEREKA; OSHER, 1994), mass conservation problems can be avoided by properly
reinitializing the level set function.

In this work, the method is based on a level-set formulation discretized by a finite el-
ement technique. Surface tension forces acting at the interfaces separating the two fluids, as
well as density and viscosity jumps across such interfaces have been integrated into the fi-

CHAPTER 1. INTRODUCTION 14

nite element framework. This method is based on the weak-formulation of the Navier Stokes
Equations, where the singular surface tension forces, with the strength directly defined by the
interface shape, are included through line integrals along the interfaces. The discontinuous den-
sity and viscosity are included in the finite element integrals.

As higher computational capabilities and resources become available day by day, adap-
tive mesh refining techniques are becoming popular and gaining interest from many researchers.
These techniques are meant to reduce the computational costs of the algorithm and increase
overall accuracy at the same time. As it is well known, the level set approach is commonly
known to present mass conservation problems. By implementing adaptive mesh refinement,
together with a mass conserving reinitialization function for the level set equation, we have
observed that mass conservation problems of the level-set method are reduced to just a tiny
fraction.

1.1 Objectives

The main objective of this work is to develop a two-phase flow simulation tool, that
can be easily implemented and is capable of handling customized meshes and arbitrary bound-
ary conditions, as well as topological changes such as merging and breaking of bubbles or drops.

Specific objectives are:

• Develop specific object oriented programming tools that provide flexibility and easy im-
plementation of two-phased simulation models to new users.

• Describe the governing equations and the parameterizations inherent to two-phase flows.

• Describe the stabilized formulation and spatial discretization of both advection-diffusion
and Navier-Stokes equations.

• Briefly describe the Object Oriented Programming (OOP) used in the numerical simula-
tion.

• Present the computational results of benchmark validation models and their comparison
with results available in literature.

1.2 Overview

This work is organized as follows:
Chapter 2 "Mathematical Model" gives an insight of the physical and mathematical

grounds of the method used for the simulation of two-phased flows. This chapter introduces

CHAPTER 1. INTRODUCTION 15

the concepts behind simulation of incompressible fluids, surface tension and level set equations.
At the end, a model summary is included to give the reader a general overview of the method.

Chapter 3 "Time and Space Discretization" exposes the weak, Galerkin and stabilized
formulations as well as time discretization of: the convection-diffusion equation that is used to
solve the advection and reinitialization of the level set equation, followed by, the Navier-Stokes
equation for incompressible fluids. Furthermore, given the nonlinear nature of the Navier-
Stokes equation, the linearization method used to solve the nonlinear problem is presented.

Chapter 4 "Numerical Implementation" explains how the set of principles and methods
presented on previous chapters are implemented into a computational framework. It begins by
presenting the general solution methodology. Then, the procedure for assembling the matrix
and right hand side of the convection-diffusion and the Navier-Stokes equations is explained in
detail. Furthermore, we describe the method used to define boundary conditions and to adap-
tively refine the mesh when needed. Finally, the solution algorithms are exposed in detail.

Chapter 5 "Validation and Results" presents the computational results of benchmark
validation models. It begins by evaluating the Navier-Stokes solver accuracy, then, the pressure
inside a static bubble and frequency of oscillation of an elliptical bubble and, finally, the rising
velocity of a single bubble in a continuous phase.

Finally, Chapter 6 summarizes the work performed and discusses open issues which
should be considered as future work.

CHAPTER 2

MATHEMATICAL MODEL

2.1 Introduction

In this chapter we will be setting the mathematical grounds for the simulation of multi-
phasic flows. Particularly, our problem is reduced to the case of two immiscible fluids, where
surface tension forces act at the interfaces separating both fluids with the intensity directly de-
fined by the interface shape. The numerical method is based on a level-set formulation for
incompressible multiphase flows. Here, the interface distance separating the two-fluids can be
represented as the zero level set of a continuous function. In the level set method, the interface
is embedded in a scalar distance field. This method was first introduced by (OSHER; SETHIAN,
1988).

The equations describing the immiscible multiphase incompressible flow are essentially
the Navier Stokes equations for incompressible flow. The contribution of the surface tension
forces f is, in addition to the gravity forces, added as a source term. Furthermore, we assume
Dirichlet boundary conditions for the velocity and Newman for the pressure, with one Dirichlet
point exception to remove the non-trivial null space of constant pressure solutions.

2.2 Governing Equations

Let us consider a domain Ω ∈ <2, that contains two different immiscible incompressible
Newtonian phases (eg. fluid and gas). The time-dependent domains, which contains the phases,
are denoted by Ω1 = Ω1(t) and Ω2 = Ω2(t) with Ω1 ∪ Ω2 = Ω. The interface between the two
phases (∂Ω1 ∩ ∂Ω2) is denoted by Γ = Γ(t).

CHAPTER 2. MATHEMATICAL MODEL 17

2.2.1 Mass Conservation

The mass conservation principle establish that the mass of a fluid volume (a volume that
always contains the same fluid particles) is constant (HAUKE, 2008). Therefore we can write,

d

dt
M =

d

dt

∫
Ωt

ρdV = 0 (2.1)

where Ωt stands for a region of space occupied by the same fluid particles in a given time t.
Now, we would like to express this in terms of a region in space R that is time independent and
for that we apply the Reynolds transport theorem to (2.1) leading to,

d

dt

∫
Ωt

ρdV =

∫
R

∂ρ

∂t
dV +

∮
∂R

ρ(v · n)dS = 0 (2.2)

where v is the velocity field and n is the unit outward normal to R. Applying the divergence
theorem to the second term on the right hand side we get,∫

R

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0 ⇒ ∂ρ

∂t
+∇ · (ρv) = 0 (2.3)

Note that∇ · (ρv) = ρ∇ · v + v · ∇ρ, and we can rewrite equation (2.3) as

Dρ

Dt
+ ρ∇ · v = 0 (2.4)

where Dρ
Dt

is the material derivative of density.

We will see that the density parameter depends on the level set function φ that is not
time independent, and is therefore not constant throw the whole domain. But again, taking
in consideration that the density is variable only between one phase and the other, meaning,
only in the interface region, and that there is no mass crossing the interface (the two phases are
immiscible) we can neglect the material derivative term of density in equation (2.4). That leaves
us with

ρ∇ · v = 0 or ∇ · v = 0 (2.5)

2.2.2 Conservation of Momentum

Euler’s first law of conservation of the linear momentum states that in an inertial frame
the time rate of change of linear momentum of an arbitrary portion of a continuous body is equal
to the total applied force acting on the considered portion (HAUKE, 2008), and is expressed as,

CHAPTER 2. MATHEMATICAL MODEL 18

d

dt

∫
Ωt

ρvdV = FS + FV =

∮
∂Ω

σ · ndS +

∫
Ωt

bdV (2.6)

where FS and FV are the surface forces and body forces respectively, where σ is the Cauchy
stress tensor and b is body force per volume unit. When the active body force is only due to the
gravitational field we can write b = ρg, where g is the gravitational acceleration. Applying the
Reynolds transport theorem to the left hand side of equation (2.6) we obtain,∫

Ω

∂(ρv)

∂t
dV +

∮
∂Ω

(ρv ⊗ v) · ndS =

∮
∂Ω

σ · ndS +

∫
Ω

bdV (2.7)

Applying the divergence theorem,∫
Ω

∂(ρv)

∂t
dV +

∫
Ω

∇ · (ρv ⊗ v)dV =

∫
Ω

∇ · σdV +

∫
Ω

bdV (2.8)

Recalling from section (2.2.1) that v ∂ρ
∂t

+ v∇ · (ρv) = 0, we can write the left hand side of
equation (2.8) as,

∂(ρv)

∂t
+∇ · (ρv ⊗ v) =

∂(ρv)

∂t
+ v∇ · (ρv) + ρ∇v · v

= ρ
∂v

∂t
+ v

∂ρ

∂t
+ v∇ · (ρv) + ρv · ∇v

= ρ
∂v

∂t
+ ρv · ∇v

Subsequently, we can rewrite equation (2.8) as,

ρ
∂v

∂t
+ ρv · ∇v = ∇ · σ + b (2.9)

2.2.3 Navier Stokes Equations

Let us now consider a flow region Ω ∈ <nsd , where nsd = 2 or 3. The domain Ω occupied
by the fluid will be assumed bounded (finite size). The boundary ∂Ω of the fluid domain is
assumed to be Lipschitz continuous, meaning that it is a closed and sufficient regular surface.
Then, the time-dependent flow of a viscous incompressible fluid is governed by the following
form of the momentum equation (2.9) and the mass-conservation equation (2.4), called the
Navier-Stokes equations:

ρ
∂v

∂t
+ ρv · ∇v = ∇ · σ + b in Ω (2.10a)

∇ · v = 0 in Ω (2.10b)

CHAPTER 2. MATHEMATICAL MODEL 19

2.2.4 Newtonian fluids

A common practice is to decompose the Cauchy stress tensor σ (or σij written in index
notation), into the sum of an isotropic part −pδij and a remaining non-isotropic part τij , the
deviatoric stress tensor:

σij = −pδij + τij (2.11)

Following (DONEA; HUERTA, 2003), in a Newtonian fluid, it is assumed that the stress tensor
and the strain rate tensor are linearly related. The stress-strain rate relationship is given by

σij = −pδij + τij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ λ

∂vk
∂xk

δij (2.12)

where µ is the fluid dynamic viscosity and λ the so-called second coefficient of viscosity. For
an incompressible fluid one has ∇ · v = 0 and consequently the above relation reduces to the
Stokes’ law

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.13)

that in compact form reads

σ = −pI + 2µε(u) (2.14)

here, ε is the deformation rate tensor,

ε(u) =
1

2
[∇u + (∇u)T] (2.15)

2.2.5 Surface Tension

The effect of the surface tension can be expressed in terms of a localized force at the
interface, by the so-called continuum surface force (CSF) model.(BRACKBILL; KOTHE; ZEMACH,
1992)

f = σk∇HΓ (2.16)

where σ is the surface tension coefficient, k is the curvature and∇HΓ is the Heaviside function
with support on Γ, this is, HΓ = H(φ). The mean curvature is computed from the level set
function as shown on section 2.4.3. Note that we can also express equation (2.16) in terms of
the derivative of the Heaviside function as follows,

f = σkδΓn (2.17)

CHAPTER 2. MATHEMATICAL MODEL 20

where δΓ is the derivative of the Heaviside function and n is the unit vector normal to the
interface.

2.3 Nondimensionalization

With the purpose of parameterize our problem, we will write the Navier-Stokes equa-
tions in nondimensional form. Now let us rewrite the navier stokes equations (2.10) using
equations (2.14), (2.15) and (2.16), therefore assuming that we are working with newtonian
fluids, a gravitational force field g and surface tension forces acting on the interface Γ

ρ
∂v

∂t
+ ρv · ∇v = −∇ · p+∇ · [µ(∇v +∇vT)] + ρg + σkδΓn in Ω (2.18a)

∇ · v = 0 in Ω (2.18b)

and let us define the following nondimensionalization parameters,

ρ = ρ∞ρ
∗ x = Lx∗ g = g∞g

∗ k =
1

L
k∗

µ = µ∞µ
∗ v = Uv∗ t =

L

U
t∗ δΓ =

1

L
δ∗Γ

p = ρ∞U
2p∗

∂

∂t
=
U

L

∂

∂t∗
∇ =

1

L
∇∗

where the asterisk indicates a nondimensional variable. Substituting these parameters on equa-
tions (2.10a) and (2.10b) we get,

ρ∗
(
ρ∞U

2

L

)
∂v∗

∂t∗
+ ρ∗

(
ρ∞U

2

L

)
v∗ · ∇∗v∗ = −

(
ρ∞U

2

L

)
∇∗ · p∗

+
µ∞U

L2
∇∗ · [µ∗(∇∗v∗ +∇∗v∗T)] + ρ∞g∞ρ

∗g∗ +
σ

L2
k∗δ∗Γn (2.19a)

∇∗ · v∗ = 0 (2.19b)

Note however that σ is not dimensionless. If we multiply (2.19a) by L/ρ∞U2 we get,

ρ∗
∂v∗

∂t∗
+ ρ∗v∗ · ∇∗v∗ = −∇∗ · p∗ +

(
µ∞

ρ∞LU

)
∇∗ · [µ∗(∇∗v∗ +∇∗v∗T)]

+

(
Lg∞
U2

)
ρ∗g∗ +

(
σ

ρ∞U2L

)
k∗δ∗Γn (2.20a)

∇∗ · v∗ = 0 (2.20b)

And equation (2.20) can be written as,

ρ∗
∂v∗

∂t∗
+ ρ∗v∗ · ∇∗v∗ = −∇∗ · p∗ +

1

Re
∇ · [µ∗(∇∗v∗ +∇∗v∗T)]

CHAPTER 2. MATHEMATICAL MODEL 21

+
1

Fr2
ρ∗g∗ +

1

We
k∗δ∗Γn (2.21a)

∇∗ · v∗ = 0 (2.21b)

Where Re, Fr and We are the nondimensional Reynolds, Froude and Weber numbers respec-
tively. These are depicted as follows(HAUKE, 2008),

Reynolds Number. The Reynolds number steams from dividing the convective term by the
viscous diffusion term, representing the ratio of inertial to viscous forces, and is given by,

Re =
ρ∞LU

µ∞
(2.22)

Froude Number. Similarly to the Reynolds number, the Froude number is the ration of iner-
tial forces to body forces, and is given by,

Fr =
U√
g∞L

(2.23)

Weber Number. The Weber number is a dimensionless number that controls the significance
of the surface tension force. It is given by,

We =
ρ∞U

2L

σ
(2.24)

When studying the dynamics of bubbles or drops, the Morton (Mo) and Eotvos(Eo)
nondimensional numbers can also be useful. These are used to caracterize the shape of bubbles
or drops. They are defined as,

Mo = g∞µ4

ρ∞σ3 (2.25)

Eo = ∆ρgL2

σ
(2.26)

The Morton and Eotvos numbers can also be expressed in terms of the Reynolds, Froude
and Weber numbers through the following equations,

Eo = We
Fr2 (2.27)

Mo = We3

Fr2Re4
(2.28)

2.4 Level-Set Equations

Originally introduced by (OSHER; SETHIAN, 1988), the level-set method is a simple and
versatile method for computing and analyzing the motion of an interface Γ in two or three

CHAPTER 2. MATHEMATICAL MODEL 22

dimensions. It allow us to compute and analyze the subsequent motion of the interface under a
velocity field. The interface is captured as the zero level set of a smooth (Lipschitz continuous)
distance function φ, positive inside Ω1, negative outside Ω1 and zero on Γ. Topological merging
and breaking are well defined and easily performed.

The jumps in the coefficients, µ and ρ can be described using the level set function
(which has its zero level precisely at the interface Γ) in combination with the Heaviside function,

H(ζ) = 0 for ζ < 0, H(ζ) = 1 for ζ > 0 (2.29)

ρ(φ) = ρ1 + (ρ2 − ρ1)H(φ) (2.30)

µ(φ) = µ1 + (µ2 − µ1)H(φ) (2.31)

where we can take H(0) = 1/2. However, as a result of the discontinuous density and viscosity
jumps, numerical instabilities are presented, and since δΓ = 0 almost everywhere except on the
interface (which has measure 0), it seems unlikely that any standard numerical approximation
based on sampling will give a good approximation of the integral of equation (2.16). Thus, we
define the smeared-out Heaviside function (OSHER; FEDKIW, 2003),

Hε (φ) =


0 φ < −ε

1
2

+ φ
2ε

+ 1
2π
sin
(
πφ
ε

)
−ε ≤ φ ≤ ε

1 ε < φ

 (2.32)

where ε is a parameter that determines the size of the bandwidth of numerical smearing. A
typically good value is ε = 1.5∆x (OSHER; FEDKIW, 2003), where ∆x can be taken as an
approximate measure of the grid. Furthermore, we can replace equation (2.16) with

f = σk∇Hε (2.33)

Additionally, we define the smeared-out delta function as,

δε=
∂Hε

∂φ
=


0 φ < −ε

1
2ε

+ 1
2ε

cos
(
πφ
ε

)
−ε ≤ φ ≤ ε

0 ε < φ

 (2.34)

2.4.1 Level-Set Advection

The level set function is initialized as a signed distance function, carrying information
about the closest distance to any interface separating the two fluids. To determine the evolution
of the interfaces, the level set function is advected over the domain by the velocity field. The

CHAPTER 2. MATHEMATICAL MODEL 23

advection equation is given by the following equation,

φt + u · ∇φ = 0 (2.35)

which is equivalent to a linear convection-diffusion problem, where the diffusion term is equal
to zero.

The strong form of the problem is given as follows: Given a scalar k ∈ R and a vector
field b defined on a region Ω ⊂ Rd, find φ(x, t) such that:

φ̇− k∆φ+ b · ∇φ = f on Ω× I
φ = g on Γ× I

φ(x, 0) = φ0 on Ω

(2.36)

with f = 0, b = u, and k = 0.
Dado um escalar k ∈ R e um campo vetorial b definido na região Ω ⊂ Rd, encontre φ(x, t) tal
que:

φ̇− k∆φ+ b · ∇φ = f on Ω× I
φ = g on Γ× I

φ(x, 0) = φ0 on Ω

(2.37)

onde f = 0, b = u, e k = 0.

2.4.2 Level-Set Reinitialization

It has been shown (SUSSMAN; SMEREKA; OSHER, 1994) that it is critical that the level set
function remains a distance function in regions close to the interface, in order to obtain accept-
able accuracy in the computation of the unit normal and the mean curvature. After advection,
the level set function does not necessarily correspond to a distance function any more. Keep-
ing φ a distance function is achieved by reinitialization of the level set function, given by the
following equation introduced by (SUSSMAN; SMEREKA; OSHER, 1994),

∂ϕ

∂τ
= S (ϕ0) (1− |∇ϕ|) (2.38)

where ϕ0 is the solution of equation (2.37) for a given time, ϕ (τ) is the reinitialized level set
function at artificial time τ and S(ϕ) is a sign function, given by

S(ϕ) =


−1 for ϕ<0

0 for ϕ= 0

1 for ϕ>0

 (2.39)

CHAPTER 2. MATHEMATICAL MODEL 24

Numerical tests, indicate that better results are obtained when S (ϕ0) is numerically
smeared out, so a better choice is determined by (PENG et al., 1999) as

S(ϕ, h)=
ϕ√

ϕ2+|∇ϕ|2(h)2
(2.40)

which has shown to yield improved and stable results, especially when the initial ϕ0 is a poor
estimate of signed distance (OSHER; FEDKIW, 2003).
By solving this equation, we obtain a distance function with the same zero level set of ϕ0.
Equation (2.38) can also be written as: (TORNBERG; ENGQUIST, 2000)

∂ϕ

∂τ
+ w · ∇ϕ = S(ϕ0), w = S(ϕ0)

∇ϕ
|∇ϕ|

(2.41)

which is a purely convective system, with the velocity field defined by w and the force function
f defined by f = S(ϕ). This equation can be solved as a convection diffusion equation as
described in section 3.2.

A method presented by (SUSSMAN; FATEMI, 1999) suggests an improvement to the stan-
dard reinitialization procedure. The method states that if the interface does not move during
reinitialization, the area is preserved. On the other hand, one can preserve the area while al-
lowing the interface to move, implying that the proposed constraint is weaker than it should be.
The local constraint is implemented by the addition of a correction term to the right hand side
of equation (2.38),

∂ϕ

∂τ
= S(ϕ0) (1− |∇ϕ|) + λδε(ϕ) |∇ϕ| (2.42)

We can rewrite this as follows,

∂ϕ

∂τ
=
∂ϕ̃

∂τ
+ λδε(ϕ̃) |∇ϕ̃| with, (2.43)

∂ϕ̃

∂τ
= S (ϕ0) (1− |∇ϕ̃|) (2.44)

The mentioned constrain is defined by ∫
Ωe

Hε (ϕ) dΩ= 0 (2.45)

where Ωe is an individual cell and Hε (φ) is the smeared-out heaviside function defined by
equation (2.59). This is equivalent to∫

Ωe

Ḣε (ϕ) ϕt dΩ =

∫
Ωe

δε(ϕ)(ϕ̃t+ λδε (ϕ) |∇ϕ|)dΩ = 0 (2.46)

CHAPTER 2. MATHEMATICAL MODEL 25

This way, a particular λi,j is determined on each cell by the following equation,

λe = −

∫
Ωe
δε(ϕ)

(
ϕ̃n+1−ϕ̃n

∆t

)
dΩ∫

Ωe
δε

2(ϕ) |∇ϕ| dΩ
(2.47)

where equation (2.43) is used to compute ϕ̃n+1 from ϕ̃n.

In summary, the initial guess ϕ̃n+1 obtained from equation (2.43) is replaced with a
corrected ϕ̃n+1 + ∆t λδε(ϕ) |∇ϕ|, where λ is calculated on each cell using equation (2.47).

2.4.3 Mean Curvature

Whenever the level set function remains a perfect distance function, i.e. |∇φ| = 1, with-
out imperfections, we can calculate the unit normal and the mean curvature using the following
equations,

n = ∇φ (2.48a)

k = ∇ · n (2.48b)

However, if the level set function is not a perfect distance function or if it presents even
the smallest imperfections, then these will be significantly magnified by the derivatives and even
more by second derivatives. To reduce these errors we make use of a new methodology in which
the unit normal is corrected using a reinitialization procedure (given that∇φ ·∇ ∂φ

∂xi
= 0) and the

calculation of the mean curvature is made by using directional derivatives. The new equations
are then presented as follows (2-dimensional case),

nx+ ∆T (S(φ)∇φ) · ∇nx =
∂φ

∂x
(2.49a)

ny + ∆T (S(φ)∇φ) · ∇ny =
∂φ

∂y
(2.49b)

n =
(nx, ny)

‖(nx, ny‖
(2.49c)

n⊥ = (−ny, nx) (see that n · n⊥ = 0) (2.49d)

k = −ny(n⊥ · ∇nx) + nx(n⊥ · ∇ny) (2.49e)

where ∆T is a constant that can generally be set to be numerically equal to the interface jump
smearing constant ε. The 3-dimensional case can be stated as follows,

nx+ ∆T (S(φ)∇φ) · ∇nx =
∂φ

∂x
(2.50a)

CHAPTER 2. MATHEMATICAL MODEL 26

ny + ∆T (S(φ)∇φ) · ∇ny =
∂φ

∂y
(2.50b)

nz + ∆T (S(φ)∇φ) · ∇nz =
∂φ

∂z
(2.50c)

n =
(nx, ny, nz)

‖(nx, ny, nz)‖
(2.50d)

n⊥1 = (nx⊥1, ny⊥1, nz⊥1) =
(−ny, nx, 0)

‖(−ny, nx, 0)‖
(2.50e)

n⊥2 = (nx⊥2, ny⊥2, nz⊥2) = n× n⊥1 (2.50f)

k = nx⊥1(n⊥1 · ∇nx) + ny⊥1(n⊥1 · ∇ny) + nz⊥1(n⊥1 · ∇nz)

+ nx⊥2(n⊥2 · ∇nx) + ny⊥2(n⊥2 · ∇ny) + nz⊥2(n⊥1 · ∇nz) (2.50g)

where × is the cross-product operator. Note that n⊥1 · n = 0, n⊥2 · n = 0 and n⊥1 · n⊥2 = 0.
Note also that an exception must be made for the case where n = (0, 0, k).

(a) (b)

(c)

Figure 2.1: Curvature calculation: (a) using equation set (2.48), (b) using equation
set (2.49), (c) level set function for (a) and (b).

2.5 Model Summary

Let us consider a domain Ω ∈ <2, that contains two different immiscible incompressible
Newtonian phases (eg. fluid and gas). The time-dependent domains which contain the phases
are denoted by Ω1 = Ω1(t) and Ω2 = Ω2(t) with Ω1 ∪ Ω2 = Ω. The interface between the
two phases (∂Ω1 ∩ ∂Ω2) is denoted by Γ = Γ(t). The equations describing the immiscible

CHAPTER 2. MATHEMATICAL MODEL 27

multiphase incompressible flow are essentially the Navier Stokes equations for incompressible
flow. The contribution of the surface tension forces f is, in addition to the gravity forces, added
as a source term. The equations, assuming continuity of the velocity across the interface, can
be written:

ρr(φ)

(
∂u

∂t
+ u · ∇u

)
= −∇ · p+

ρr(φ)

Fr2
g +

1

We
f (2.51)

+
1

Re
∇ · [µr(φ)(∇u +∇uT)]

∇ · u = 0 (2.52)

φt + u · ∇φ = 0 (2.53)

where u is the velocity field, p is the pressure field, µr and ρr are the discontinuous relative vis-
cosity and density, g represents the gravitational acceleration field and φ is the level set equation.
In equation (2.51), Re, Fr and We are the non-dimensional Reynolds, Froude and Weber num-
bers. Furthermore, we assume Dirichlet boundary conditions for the velocity and Newman for
the pressure, with one Dirichlet point exception to remove the non-trivial null space of constant
pressure solutions.

The effect of the surface tension can be expressed in terms of a localized force at the
interface, by the so-called continuum surface force (CSF) model.(BRACKBILL; KOTHE; ZEMACH,
1992)

f = σrk∇HΓ (2.54)

where σr is the relative surface tension coefficient, k is the curvature and HΓ is the Heaviside
function with support on Γ. The unit normal and the mean curvature are computed using the
following equations,

nx+ ∆T (S(φ)∇φ) · ∇nx =
∂φ

∂x
(2.55a)

ny + ∆T (S(φ)∇φ) · ∇ny =
∂φ

∂y
(2.55b)

n =
(nx, ny)

‖(nx, ny‖
(2.55c)

n⊥ = (−ny, nx) (2.55d)

k = −ny(n⊥ · ∇nx) + nx(n⊥ · ∇ny) (2.55e)

The jumps in the coefficients, µ and ρ can be described using the level set function

CHAPTER 2. MATHEMATICAL MODEL 28

(which has its zero level precisely at the interface Γ) in combination with the Heaviside function,

H(ζ) = 0 for ζ < 0, H(ζ) = 1 for ζ > 0 (2.56)

ρ(φ) = ρ1 + (ρ2 − ρ1)H(φ) (2.57)

µ(φ) = µ1 + (µ2 − µ1)H(φ) (2.58)

As a result of the discontinuous density and viscosity jumps, numerical instabilities are
presented, and since δΓ = 0 almost everywhere except on the interface (which has measure 0), it
seems unlikely that any standard numerical approximation based on sampling will give a good
approximation of the integral of equation (2.54). Thus, we define the smeared-out Heaviside
function,

Hε (φ) =


0 φ < −ε

1
2

+ φ
2ε

+ 1
2π
sin
(
πφ
ε

)
−ε ≤ φ ≤ ε

1 ε < φ

 (2.59)

where ε is a parameter that determines the size of the bandwidth of numerical smearing. Then,
the smeared-out delta function is defined as,

δε=
∂Hε

∂φ
=


0 φ < −ε

1
2ε

+ 1
2ε

cos
(
π
ε

)
−ε ≤ φ ≤ ε

0 ε < φ

 (2.60)

where ε is determined as above, and we can replace equation (2.54) with

f = σrkδεn (2.61)

To complete the general formulation given by equations (2.51), (2.52) and (2.53), we
must now include the condition of keeping the level set function a signed distance function.
We do this by reinitializing the level set function with the following equation introduced by
Sussman et. al. (SUSSMAN; SMEREKA; OSHER, 1994)

∂ϕ

∂τ
= S (ϕ0) (1− |∇ϕ|) (2.62)

where ϕ0 is the solution of equation (2.53) for a given time, ϕ (τ) is the reinitialized level set
function at artificial time τ and S(ϕ) is a sign function.

CHAPTER 3

TIME AND SPACE DISCRETIZATION

This work makes use of the finite element method for the spatial discretization. Among
the basic advantages of the method which have led to its widespread acceptance and use are the
ease in modeling complex geometries, the consistent treatment of differential-type boundary
conditions and the possibility to be programmed in a flexible and general purpose format.

We will start this chapter by setting up mathematical preliminar definitions to be used
later on. Subsequently, we will expose the weak, Galerkin, stabilized formulation and time
discretization scheme for the Convection-Diffusion equation which is the general formulation
for both the level-set equation (2.37) and the reinitialization equation (2.41). Furthermore, we
will proceed likewise to the discrete stabilized form of the Navier-Stokes equation (2.21). Fi-
nally, given the nonlinear nature of the Navier-Stokes equation, we will present the linearization
method used to solve the nonlinear problem.

3.1 Preliminary definitions

Consider a spatial region (or domain) Ω ⊂ Rnsd discretized with piecewise smooth
boundary Γ. Here, nsd = 2 or 3 denotes the number of spatial dimensions. Following (DONEA;

HUERTA, 2003), we shall denote by L2(Ω) the space of functions that are square integrable over
the domain Ω. This space is equipped with the standard inner product,

(u, v) =

∫
Ω

uvdΩ and norm ‖v‖0 = (v, v)1/2

CHAPTER 3. TIME AND SPACE DISCRETIZATION 30

Furthermore, for any non-negative integer k, we define the Sobolev space Hk(Ω): given α =

(α1, α2, . . . , αnsd
) ∈ Nnsd and the non-negative integer |α| = α1 + α2 + · · ·+ αnsd

,

Hk(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂|α|u

∂xα1
1 ∂x

α2
2 · · · ∂x

αnsd
nsd

∈ L2(Ω)∀|α| ≤ k

}
Note that the Sobolev space for k = 1 is defined by

H1 (Ω) =

{
v ∈ L2 (Ω)

∥∥∥∥ ∂v∂xi ∈ L2 (Ω) , ∀i ∈ N, i ≤ nsd

}
We shall also use frequently the subspace

H1
0 (Ω) = {v ∈ H1(Ω)|v = 0 on Γ}

For the particular case of vector functions belonging to
[
Hk(Ω)

]m, the space of vector functions
with m components, the inner product is given by

(u,v) =

∫
Ω

u · vdΩ (3.1)

In addition, inner products for functions defined along boundaries are denoted by

(u, h)Γ =

∫
Γ

uhdΓ (3.2)

Note that there is no ambiguity in using the same notation to represent the inner product of
vector valued functions or scalars.

Recalling equation (2.14) and (2.15) of section 2.2.4, note that neither of these equations
are in nondimensional form, for which it is convenient to define

σ∗ = −p∗I +
2µr
Re

ε(u∗) (3.3)

where σ∗, p∗ and u∗ are nondimensionalized variables.

3.2 Convection-Diffusion equation

As mentioned before, the solution of the convection-diffusion equation plays a mayor
role as it represents the general case for the solution of the level-set advection and reinitializa-
tion.

CHAPTER 3. TIME AND SPACE DISCRETIZATION 31

Level Set advection. The Level-Set advection equation is a convection diffusion equation
where particularly f = 0, Γ = ΓN , h = 0, k ≈ 0 and the velocity b is set equal to the velocity
u given by the navier stokes equation. Ideally, we should be able to solve this system setting
the diffusion term k = 0 but due to the unstable nature of the numerical problem it is a common
practice to use non-zero values. However, since we are applying streamline diffusion we are
able to use a fairly low magnitudes of k. Since we are looking for accuracy on the solution of
the level-set advection equation, we’ll use θ = 0.5 (centered differences), therefore obtaining
second order accuracy for the time discretization.

Reinitialization equation. The reinitialization equation (2.41) is a purely convective system,
with the velocity field defined by w and the force function f defined by f = S(ϕ). Therefore,
we can apply the same procedure used for the advection of the level set equation, just that for
this case, we will use an implicit time discretization scheme, because we are looking for fast,
robust convergence and only the steady state solution is of interest. Same as with the advection
of the level set equation, we are forced to include small amounts of artificial diffusion to ensure
stability. However, mass losses still remain insignificant due to the use of the mass conserving
technique described on section 2.4.2.

3.2.1 Strong form of the problem

The strong form of the problem is given as follows: Given a scalar k ∈ R and a vector
field b defined on a region Ω ⊂ Rnsd , find φ(x, t) such that:

φ̇− k∆φ+ b · ∇φ = f on Ω× I
φ = g on ΓD × I

kn · ∇φ = h on ΓN × I
φ(x, 0) = φ0 on Ω

(3.4)

where n is the vector normal to the boundary and ΓD and ΓN are the Dirichlet and Newman
boundaries respectively, and we can state that ∂Ω = Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

3.2.2 Weak Formulation and Spatial Discretization

Weak Formulation. Lets consider the following function spaces,

S = {φ ∈ H1(Ω) : φ = g on ΓD} (3.5)

V = {v ∈ H1(Ω) : v = 0 on ΓD} = H1
0 (3.6)

For this problem, we obtain the semi-discrete analog by multiplying (3.4) by v ∈ V = H1
0 (Ω)

CHAPTER 3. TIME AND SPACE DISCRETIZATION 32

integrating over Ω and using the usual Green’s formula. Then, we obtain the following varia-
tional formulation: Find φ(t) ∈ S, t ∈ I such that:

(φ̇(t), v) + a(φ(t), v) = (f(t), v) +
∫

ΓN
hvdΓ ∀v ∈ V t ∈ I (3.7)

with the bilinear operators defined as

a(φ, v) =
∫

Ω
k∇φ · ∇vdΩ

b(b;φ, v) =
∫

Ω
(b · ∇φ)vdΩ

(φ, v) =
∫

Ω
φvdΩ

Galerkin formulation. Now, let Sh be a finite dimensional subspace of S and Vh be a finite
dimensional subspace of V with basis {N1, . . . ,NM}. Setting φh element of Sh and vh = v

element of Vh, then the Galerkin variational formulation is defined as: Find φh(t) ∈ Sh, t ∈ I
such that

(φ̇h(t), v) + a(φh(t), v) + b(b;φ, v) = (f(t), v) +
∫

ΓN
hvdΓ ∀v ∈ Vh t ∈ I (3.8)

Finite element formulation. We can choose to build the spaces Sh and Vh through finite
element approximations, such that

Ω̄ =

nel⋃
e=1

Ωe and,

nel⋂
e=1

Ωe = ∅

Here nel is the number of elements and Ωe is the element domain corresponding to the element
e.

3.2.3 Stabilized Finite Element Formulation

Following (TEZDUYAR; OSAWA, 2000), the stabilized finite element formulation of (3.4)
can be written as follows: Find φh ∈ Sh such that ∀vh ∈ Vh:∫

Ω
vh

(
φ̇h(t) + b · ∇φh − f

)
dΩ +

∫
Ω
k∇φh · ∇vh

+
∑nel

e=1

∫
Ωe
τSUPGb · ∇vh

(
φ̇h(t) + b · ∇φh − k∇ · ∇φh − f

)
dΩ =

∫
ΓN
vhhdΓ

(3.9)
Here, τSUPG is the SUPG stabilization parameter. Alternately, we can express the previous
equation as follows. Let w = v+ τ u · ∇v where v ∈ Vh. Then equation (3.9) can be written as

CHAPTER 3. TIME AND SPACE DISCRETIZATION 33

follows: Find φh(t) ∈ Sh, t ∈ I such that ∀v ∈ Vh and, t ∈ I ,

(φ̇h(t), w) + a(φh(t), w) = (f(t), w) + (h, v)ΓN
(3.10)

3.2.4 Time discretization

Applying the generalized Crank-Nicholson time-discretization method, we obtain the
following problem: Find φnh ∈ Vh, n = 0, . . . , N such that ∀v ∈ Vh,(

φnh − φn−1
h

∆t
, w

)
+ a

(
θφnh + (1− θ)φn−1

h , w
)

=

(θf(tn) + (1− θ)f(tn−1), w) + (h, v)ΓN
(3.11)

Reordering and taking advantage on the bilinearity of the operators we get,

(φnh, w) + ∆tθa(φnh, w) = (φn−1
h , w)−∆t(1− θ)a(φn−1

h , w)

+ ∆tθ(f(tn), w) + ∆t(1− θ)(f(tn−1), w) + ∆t(h, v)ΓN
(3.12)

3.3 Navier-Stokes equations

3.3.1 Strong form of the problem

The strong form of the problem is given by extending equations (2.51) and (2.52) to in-
clude boundary and initial conditions. The governing equations and associated initial/boundary
conditions are:

ρr(φ)

(
∂u

∂t
+ u · ∇u

)
+∇p− 1

Re
∇ · (2µr(φ)ε(u)) = f on Ω× I (3.13a)

∇ · u = 0 on Ω× I (3.13b)

u = uD on ΓD × I (3.13c)

n · σ = h on ΓN × I (3.13d)

u(x, 0) = u0(x) on Ω (3.13e)

where we assume that∇ · u0 = 0, and the force term f is given by,

f =
ρr(φ)

Fr2
g +

1

We
k∇HΓ on Ω× I (3.14)

CHAPTER 3. TIME AND SPACE DISCRETIZATION 34

3.3.2 Weighting functions and trial solutions

The trial solution space S containing the approximating functions for the velocity is
characterized as follows:

S = {v ∈ (H1(Ω))nsd |v = vD on ΓD} (3.15)

Note the candidate approximating functions must satisfy Dirichlet boundary conditions on ΓD.
The weighting funtions of the velocity w, belong to the space of functions V. Elements of
this class share the same characteristics as those in class S, except that weighting functions are
required to vanish on ΓD where the velocity is prescribed. The weighting functions space V is
defined by

V = {w ∈ (H1(Ω))nsd|w = 0 on ΓD} (3.16)

Additionally, we introduce the space of functions Q for pressure. Since no spatial derivatives
of pressure appear on the weak form of the problem, functions in Q are simply required to be
square-integrable. Consequently, we can define the pressure space of functions Q as,

Q = L2(Ω) (3.17)

which suffices the trial solution space and the weighting function space for pressure.

3.3.3 Weak Formulation and Spatial Discretization

Weak Formulation. Projecting equation (2.51) onto the space of weighting functions w ∈ V

for the momentum equation and q ∈ Q for the incompressibility equation (2.52), we obtain the
following variational formulation: given f , uD, h and u0, find u(x, t) ∈ S × I and p(x, t) ∈
Q× I , such that for all (w, q) ∈ V ×Q,

(w,ut) + c(u;w,u) + d(w; p,u) + e(q,u) = (w, f) + (w,h)ΓN
(3.18)

where the previous operators are defined as,

c(u;w,v) =

∫
Ω

w · ρr(φ)(u · ∇v)dΩ (3.19)

d(w; p,u) =

∫
Ω

ε(w) : σ∗(p,u)dΩ (3.20)

e(q,u) =

∫
Ω

q∇ · udΩ (3.21)

CHAPTER 3. TIME AND SPACE DISCRETIZATION 35

Galerkin Spatial Discretization. To get a discrete analog for the previous formulation we
need to introduce local approximations for both the velocity uh and pressure ph, as well as for
their associated weighting functions wh and qh. We denote Sh and Vh the finite dimensional
subspaces of S and V, and Qh the finite dimensional space of Q.

For the Galerkin formulation, the velocity approximation uh ∈ Sh admits the representa-
tion uh = vh+uhD, where the field uhD satisfies the Dirichlet boundary condition. Thus, the aux-
iliary velocity vh belongs to the same space as the test function wh, namely Vh. Furthermore,
the Galerkin spatial discretization proceeds as follows: For each t ∈ I , we define uhD(t) ∈ Sh

such that uh(t) = vh(t) + uhD(t). Then we seek the auxiliary velocity field vh(·, t) ∈ Vh and
pressure ph(·, t) ∈ Qh, such that, for all (wh, qh) ∈ Vh ×Qh,

(wh,vht) + c(vh;wh,vh) + d(wh; ph,vh) + e(qh,vh) = (wh, fh)+

(wh,hh)ΓN
− c(vh;wh,uhD)− d(wh; ph,uhD)− e(qh,uhD) (3.22)

The next step in the Galerkin formulation consist in approximating the velocity compo-
nents uhi in terms of shape functions and associated nodal values. The velocity components are
approximated as follows:

vhi (x) =
∑

A∈η ηDi

NA(x)viA (3.23a)

uhDi(x) =
∑
A∈ηDi

NA(x)uDi(xA) (3.23b)

where η denotes the set of global velocity node numbers in the finite element mesh, ηDi ⊂ η

the subset of velocity nodes belonging to the Dirichlet portion of the boundary, NA is the shape
function associated with the global node number A, and viA the value of uhi at node number A.
In the Galerkin formulation, test functions are defined such that,

whi ∈ V h
i = span

A∈η ηDi

{NA} (3.24)

The pressure field is interpolated using a different set of pressure nodes denoted by η̄
and the shape functions N̄Ā, as,

ph(x) =
∑
Ā∈η̄

N̄Ā(x)pĀ (3.25)

where Ā is the global pressure node number and pĀ is the pressure value at Ā. Similarly, the

CHAPTER 3. TIME AND SPACE DISCRETIZATION 36

weighting function qh for the pressure is expressed as,

qh ∈ Qh = span
Ā∈η̄
{N̄Ā} (3.26)

Babuska-Brezzi compatibility condition. In order to ensure the solvability of the discrete
problem, the election of subspaces must be made while satisfying the following condition:
There is a positive constant c such that,

sup
v∈Vh

(q, divv)

‖v‖1

> c ‖q‖0 ∀q ∈ Qh v = (u, v) (3.27)

where ‖v‖1 =

nsd∑
i=1

(∫
Ω

[u2
i + |∇ui|2]dΩ

) 1
2

‖q‖0 =

(∫
Ω

q2dΩ

) 1
2

Here, the inequality (3.27) is called the Babuska-Brezzi condition. Keeping this condition in
mind, we are now able to select proper subspaces. A good choice of Vh and Qh on square Ωe

elements is given by,

V h = {v ∈ V : v|Ωe ∈ Q2(Ωe)} (3.28a)

Hh = {q ∈ Q : q|Ωe ∈ P1(Ωe)} (3.28b)

where Q2(Ωe) is the set of biquadratic functions on Ωe, and P1(Ωe) is the space of linear func-
tions defined on Ωe. This is,

Q2(Ωe) = {v : v(x) =
2∑

i,j=0

aijx
i
1x

j
2, x ∈ Ωe where aij ∈ R} (3.29a)

Pr(Ωe) = {p : p(x) =
r∑
i=0

aix
i, x ∈ Ωe where ai ∈ R} (3.29b)

Finally, the finite element discretization of this weak form yields the system of semi-discrete
equations t ∈ I ,

Mv̇(t) + [K + C(u(t))]v(t) + Gp(t) = f(t,u(t)) (3.30a)

GTv(t) = h(t) (3.30b)

v(0) = u0 − uD(0) (3.30c)

CHAPTER 3. TIME AND SPACE DISCRETIZATION 37

where M is the standard finite element matrix, K is the viscosity matrix, C(u(t)) is the con-
vection matrix and G and GT are, respectively, the discrete gradient operator and the discrete
divergence operator.

3.3.4 Stabilized Finite Element Formulation

Let us assume that we have some suitably defined finite dimensional trial solution and
test function spaces for velocity and pressure: Sh, Vh, and Qh. The stabilized finite element
formulation of equation (3.13) can be written as follows: find uh ∈ Sh × I and ph ∈ Qh × I ,
for all (wh, qh) ∈ Vh ×Qh, such that,

(
wh,uht

)
+ c
(
uh;wh,uh

)
+ d

(
wh; ph,uh

)
+ e

(
qh,uh

)
−
(
wh, fh

)
−
(
wh,hh

)
ΓN

+

nel∑
e=1

([
τSUPGu

h · ∇wh +
1

ρr(φ)
τPSPG∇qh

]
,<(uht , a

h, ph,uh)

)
Ωe

+

nel∑
e=1

(
τLSIC∇ ·wh, ρr(φ)∇ · uh

)
Ωe

= 0 (3.31)

where
<(uht , a

h, ph,uh) = ρr(φ)
(
uht + ah · ∇uh − fh

)
−∇ · σ∗(ph,uh)

is the residual of the momentum equation. Here the stabilization parameters are defined as
follows, (TEZDUYAR; OSAWA, 2000)

hUGN = 2‖uh‖

(
nen∑
a=1

|uh · ∇Na|

)−1

(3.32a)

τSUGN1 =
hUGN
2‖u‖

(3.32b)

τSUGN2 =
∆t

2
(3.32c)

τSUGN3 =
h2
UGN

4ν
(3.32d)

τSUPG =

(
1

τ 2
SUGN1

+
1

τ 2
SUGN2

+
1

τ 2
SUGN3

)−1/2

(3.32e)

τPSPG = τSUPG (3.32f)

τLSIC =
hUGN

2
‖uh‖z (3.32g)

z =
ReUGN

3
for ReUGN 6 3, z = 1 for ReUGN > 3 (3.32h)

with ReUGN =
‖uh‖hUGN

2ν
(3.32i)

CHAPTER 3. TIME AND SPACE DISCRETIZATION 38

where Na is the interpolation function associated with the node a.

3.3.5 Time discretization

Finite differences are employed for the time discretization. This is given by the θ-
scheme. Equation (3.31) then become,(

wh,
(uhn+1 − uhn)

∆t

)
+ c
(
uhα;wh,uhθ

)
+ d

(
wh; phn+1,u

h
θ

)
+ e

(
qh,uhθ

)
−
(
wh, fh

)
−
(
wh,hh

)
ΓN

+

nel∑
e=1

(
τSUPGu

h
α · ∇wh,<

(
(uhn+1 − uhn)

∆t
,uhα, p

h
n+1,u

h
θ

))
Ωe

+

nel∑
e=1

(
τPSPG∇qh

ρr(φ)
,<
(

(uhn+1 − uhn)

∆t
,uhα, p

h
n+1,u

h
θ

))
Ωe

+

nel∑
e=1

(
τLSIC∇ ·wh, ρr(φ)∇ · (uhθ)

)
Ωe

= 0 (3.33)

The parameters θ and α are taken to be in the interval [0, 1] and we define uhθ and uhα as,

uhθ = θuhn+1 + (1− θ)uhn and,

uhα = αuhn+1 + (1− α)uhn

Here, α = θ = 0 gives the explicit Euler method, θ = 1, α = 0 gives a semi-implicit method
and α = θ = 1 an fully implicit Euler method. Also note that Crank-Nicholson, θ = 1/2 is the
only second-order accurate method.

In the resulting expansion of equation (3.33), we assume that uhn+1 appearing in the
advective operator τSUPGu

h
n+1 ·∇wh is evaluated at time level n+ 1 but nonlinear iteration level

i rather than i+ 1. Note that this term only appears if the parameter α is different from 0.

3.3.6 Linearization

After time discretization, equation (3.33) can be written in residual form for the unknown
nodal values Un+1 as the nonlinear algebraic system,

R(Un+1) = 0 (3.34)

We can see now, that for any α 6= 0 we need to solve a nonlinear system. To do so,
we use a nonlinear Newton solver. As we are solving the pressure-velocity coupled system,

CHAPTER 3. TIME AND SPACE DISCRETIZATION 39

we can select LBB stable elements, then being able to set the τPSPG parameter equal to 0. For
our problem, we choose quadrilateral elements with 8 degrees of freedom, with second order
accuracy for the velocity and first order accuracy for the pressure.

The goal is to define a sequence of linear problems that, when solved, converge to obtain
the solution Un+1 of the nonlinear system (3.34). We can achieve this goal with the Newton-
Raphson method, that results from expanding (3.34) with a Taylor series about iterate Ul

n+1:[
∂R(Ul

n+1)

∂Un+1

]
δUl+1

n+1 = −R(Ul
n+1) +O

(
(δUl+1

n+1)2
)

(3.35)

where ∂R
∂U

is the Jacobian matrix for the nonlinear system δUl+1
n+1 = Ul+1

n+1 − Ul
n+1. Setting

O
(
(δUl+1

n+1)2
)
≈ 0 yields Newton’s method[

∂R(Ul
n+1)

∂Un+1

]
δUl+1

n+1 = −R(Ul
n+1) (3.36)

that results in an implicit linear system for δUl+1
n+1 and a sequence of iterates l = (0, 1, . . .)

which converges to Un+1 (KIRK, 2007). Note that the left hand side of equation (3.36) is nothing
more than the derivative of R in the direction specified by δU, which is defined by[

∂R

∂U

]
δU = lim

ε→0

{
R(U + εδU)−R(U)

ε

}
(3.37)

It’s worthwhile to recall that Newton’s method exhibits second-order conditional conver-
gence, meaning that the magnitude of the residual decreases quadratically at successive iterates
provided that the initial guess is sufficiently close to the unknown. For this reason, our al-
gorithm adopts linear extrapolation, using previous solutions to estimate the initial Newton’s
iterate. This has shown marked improvement on the convergence rate, but even with this imple-
mentation, sometimes the initial guess is far from the exact solution and the algorithm diverges.
Our algorithm deals with this problem by reducing the time step, therefore looking for the un-
known closer to the previous solution.

Solving a large system of equations such as the one presented by equation (3.34) can
be a hard task to the linear solver, as it can lead to a bad-conditioned system of equations. An
approximate block ILU factorization is employed.

CHAPTER 4

NUMERICAL IMPLEMENTATION

In this chapter we describe the numerical implementation of the formulations detailed on
previous chapters. The numerical finite element simulation code was written in C++ language
with the aid of the libmesh library (KIRK et al., 2006) as base tool.

libmesh is a parallel adaptive finite element library for simulating partial differential
equations. Among many advantages this library offers the possibility of selecting different
generic 1D, 2D and 3D finite element types and interpolation functions; runtime selection of
different quadrature rules; mesh creation, modification, input, output and format translation
utilities; with support for adaptive mesh refinement (AMR) computations in parallel platforms.
With this tool, the program implementation became much easier and was performed in short
period of time.

4.1 Solution Methodology

Assuming that the initial level set function φ0, the initial pressure and the initial velocity
field are known, the algorithm can be summarized as follows,

1. Refine the mesh in the region close to the interface.

2. Calculate the Heaviside function from equation (2.59).

3. Calculate Curvature as in section 2.4.3.

4. Solve discrete Navier-Stokes equations (2.51) and (2.52) through a Newton nonlinear
iterative procedure to obtain the new velocity field u. Solve the symmetric linear systems
with an ILU preconditioned GMRES method. Refine and coarsen the mesh if needed.

CHAPTER 4. NUMERICAL IMPLEMENTATION 41

5. Solve equation (2.53) to advect the level set function φ by the velocity field u.

6. Reinitialize the level set function by solving equation (2.62) with an iterative procedure
to restore the distance function property in the region close to the zero level set.

7. Save results, return to step 2)

4.2 Convection-Diffusion Problem

4.2.1 System Assembly

The assembly of the element contributions given by equation (3.12) into the complete
system, results in a matrix equation of the form

KU = F (4.1)

where U is the vector of the unknown nodal values. In practice, the global matrix K, and nodal
vector F, result from the topological assembly of element contributions. The addition of these
contributions to the appropriate location in the global matrix, K, and nodal vector F, can be
represented through the action of an assembly operator Ae acting on the local element matrix
and nodal vector as follows:

K = AeKe, Ke
ab =

∫
Ωe

NaNbdΩ

+

∫
Ωe

θ∆t(∇Nb · b)NadΩ

+

∫
Ωe

εθ∆t(∇Na · ∇Nb)dΩ

+

∫
Ωe

τSUPG(∇Na · b)(Nb − εθ∆t(∇ · ∇Nb) + b · ∇Nb)dΩ

F = AeFe, F e
a =

∫
Ωe

φhn−1NadΩ

−
∫

Ωe

∆t(1− θ)(∇φhn−1 · b)NadΩ

−
∫

Ωe

ε(1− θ)∆t(∇Na · ∇φhn−1)dΩ

+

∫
Ωe

∆tfNadΩ

+

∫
Ωe

τSUPG(∇Na · b)(φhn−1 + ∆t(f) + ε∆t(1− θ)∇ · ∇φhn−1

−∆t(1− θ)(b · ∇φhn−1))dΩ

CHAPTER 4. NUMERICAL IMPLEMENTATION 42

whereNa is the shape function associated with the node number a of the element Ωe in the finite
element mesh. Note that the approximation φh can also be written,

φh(x) =
∑
a∈ηΩe

Na(x)Ua (4.2)

where ηΩe is the set of nodes belonging to the element Ωe.

4.3 Navier-Stokes equations

4.3.1 System Assembly

Following the procedure described in the previous section, the assembly of the element
contributions for the Navier Stokes equations given by equation (3.36), into the complete system
results in a matrix equation of the form

KU = F (4.3)

where U is the vector of the unknown nodal values. In practice, the global matrix K, and nodal
vector F, result from the topological assembly of element contributions. The addition of these
contributions to the appropriate location in the global matrix, K, and nodal vector F, can be
represented through the action of an assembly operator Ae acting on the local element matrix
and nodal vector as follows:

K = AeKe (4.4)

F = AeFe (4.5)

where again, we can split the element matrix Ke and element vector Fe into submatrices each
corresponding to the unknown nodal values of the velocity components u and v (assuming
nsd = 2) and pressure p, as follows,

Ke =

 Ke
uu Ke

uv Ke
up

Ke
vu Ke

vv Ke
vp

Ke
pu Ke

pv Ke
pp

 F e =

 F e
u

F e
v

F e
p

 (4.6)

Note that we can also write equation (3.33) as a sum of terms as follows,(
wh,

(uhn+1 − uhn)

∆t

)
TEMPORAL

+ c
(
uhα;wh,uhθ

)
CONVECTION

CHAPTER 4. NUMERICAL IMPLEMENTATION 43

+ d
(
wh; phn+1,u

h
θ

)
STRESS

+ e
(
qh,uhθ

)
+

nel∑
e=1

(
τLSIC∇ ·wh, ρr(φ)∇ · (uhθ)

)
Ωe

CONTINUITY

−
(
wh, fh

)
−
(
wh,hh

)
ΓN

FORCE

+

nel∑
e=1

(
τSUPGu

h
α · ∇wh +

τPSPG∇qh

ρr(φ)
, ρr(φ)

(uhn+1 − uhn)

∆t

)
Ωe

TEMPORALSUPGPSPG

+

nel∑
e=1

(
τSUPGu

h
α · ∇wh +

τPSPG∇qh

ρr(φ)
, ρr(φ)uhα · ∇uhθ

)
Ωe

CONVECTIONSUPGPSPG

+

nel∑
e=1

(
τSUPGu

h
α · ∇wh +

τPSPG∇qh

ρr(φ)
,−∇ · σ∗(phn+1,u

h
θ)

)
Ωe

STRESSSUPGPSPG

+

nel∑
e=1

(
τSUPGu

h
α · ∇wh +

τPSPG∇qh

ρr(φ)
,−ρr(φ)fh

)
Ωe

FORCESUPGPSPG

= 0 (4.7)

Then, assuming τPSPG = τLSIC = 0, θ = 1, α = 1 (see Appendix A.1 for the general case), we
can calculate each element submatrix writing the terms in the same order as follows,

Fuea =

∫
Ω

(

+ (ρrunNa) / (∆t)

+0

+ρr

(
∂uin+1

∂x
u+

∂uin+1

∂y
v

)
Na

+0

+
k

We

∂H

∂x
Na

+

(
ρrτSUPGun

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

))
/ (∆t)

+0

+ρrτSUPG

(
∂uin+1

∂x
u+

∂uin+1

∂y
v

)((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
+

k

We

∂H

∂x
τSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
) dΩ

Fvea =

∫
Ω

(

CHAPTER 4. NUMERICAL IMPLEMENTATION 44

+ (ρrvnNa) / (∆t)

+0

+ρr

(
∂vin+1

∂x
u+

∂vin+1

∂y
v

)
Na

+0

+

(
k

We

∂H

∂y
+

ρr
Fr2

)
Na

+

(
ρrτSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
vn

)
/ (∆t)

+0

+ρrτSUPG

(
∂vin+1

∂x
u+

∂vin+1

∂y
v

)((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
+

(
k

We

∂H

∂y
+

ρr
Fr2

)
τSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
) dΩ

Kuueab =

∫
Ω

(

+ (ρrNbNa) / (∆t)

+

((
2

(
∂Nb

∂x

)(
∂Na

∂x

)
+

(
∂Nb

∂y

)(
∂Na

∂y

))
µr

)
/Re

+ρr

((
∂Nb

∂x

)
u+

∂uin+1

∂x
Nb +

(
∂Nb

∂y

)
v

)
Na

+0

+0

+

(
ρrτSUPGNb

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

))
/ (∆t)

+−
(((

∂2Nb

∂x2
+
∂2Nb

∂y2

)
µrτSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

))
/Re

)
+ρrτSUPG

((
∂Nb

∂x

)
u+

∂uin+1

∂x
Nb +

(
∂Nb

∂y

)
v

)((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
+0

) dΩ

Kuveab =

∫
Ω

(

+0

+

((
∂Nb

∂x

)(
∂Na

∂y

)
µr

)
/Re

CHAPTER 4. NUMERICAL IMPLEMENTATION 45

+
∂uin+1

∂y
ρrNbNa

+0

+0

+0

+0

+
∂uin+1

∂y
ρrτSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
Nb

+0

) dΩ

Kvueab =

∫
Ω

(

+0

+

((
∂Nb

∂y

)(
∂Na

∂x

)
µr

)
/Re

+
∂vin+1

∂x
ρrNbNa

+0

+0

+0

+0

+
∂vin+1

∂x
ρrτSUPGNb

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
+0

) dΩ

Kvveab =

∫
Ω

(

+ (ρrNbNa) / (∆t)

+

(((
∂Nb

∂x

)(
∂Na

∂x

)
+ 2

(
∂Nb

∂y

)(
∂Na

∂y

))
µr

)
/Re

+ρr

((
∂Nb

∂x

)
u+

(
∂Nb

∂y

)
v +

∂vin+1

∂y
Nb

)
Na

+0

+0

+

(
ρrτSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
Nb

)
/ (∆t)

CHAPTER 4. NUMERICAL IMPLEMENTATION 46

+−
(((

∂2Nb

∂x2
+
∂2Nb

∂y2

)
µrτSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

))
/Re

)
+ρrτSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)((
∂Nb

∂x

)
u+

(
∂Nb

∂y

)
v +

∂vin+1

∂y
Nb

)
+0

) dΩ

Kupeab =

∫
Ω

(

+0

+−
((

∂Na

∂x

)
Mb

)
+0

+0

+0

+0

+

(
∂Mb

∂x

)
τSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
+0

+0

) dΩ

Kvpeab =

∫
Ω

(

+0

+−
((

∂Na

∂y

)
Mb

)
+0

+0

+0

+0

+

(
∂Mb

∂y

)
τSUPG

((
∂Na

∂x

)
u+

(
∂Na

∂y

)
v

)
+0

+0

) dΩ

Kpueab =

∫
Ω

(

CHAPTER 4. NUMERICAL IMPLEMENTATION 47

+0

+0

+0

+

(
∂Nb

∂x

)
Ma

+0

+0

+0

+0

+0

) dΩ

Kpveab =

∫
Ω

(

+0

+0

+0

+

(
∂Nb

∂y

)
Ma

+0

+0

+0

+0

+0

) dΩ

Kppeab = 0

4.4 Boundary Conditions

In this work, the penalty method was used to impose boundary conditions. This method
has the advantage of easily introducing constrains while maintaining the shape of the matrix.
Suppose we wish to solve our standard matrix problem,

KU = F (4.8)

where, as usual, K is symmetric and positive-definite, subject to a constraint on one of the

CHAPTER 4. NUMERICAL IMPLEMENTATION 48

degrees of freedom, namely,
UQ = q (4.9)

where the subscript Q represents the equation number in the global ordering and q is a given
constant. The modified problem consisting of (4.8) and (4.9) may be formulated as a constrained

variational problem.
One way to impose boundary conditions is to use the penalty method. Suppose that

node 8 is on ΓD, so that U8 = q8 must be satisfied from the system of linear equations (4.8) we
have,

K81U1 +K82U2 + . . .+K88U8 + . . .+K8NUN = F8 (4.10)

in addition to the boundary condition. If (4.10) is rewritten as

K81U1 +K82U2 + . . .+ (K88 + k)U8 + . . .+K8NUN = F8 + kq8 (4.11)

by adding the term kU8 on the left side and kq8 on the right side, and if k → ∞, it is clear that
U8 → q8 and the relation (4.10) is approximately equivalent to the boundary condition.

4.5 Adaptive Mesh Refinement

In this work, we make use of adaptive mesh refinement techniques to achieve higher
accuracy with lower computational costs. The refinement of the mesh is performed based on
an error estimation, that is initially set to be high on the region of the interface of both fluids,
and subsequently calculated from the velocity vector and pressure coming from the solution of
the Navier-Stokes calculation. This error estimation is calculated through the the techniques
presented in (KELLY et al., 1983) in which the error is based on the jump of the gradients across
inter-element boundaries.

4.6 Solution Algorithm

The algorithms described below combine the methodologies outlined in the previous
sections.

CHAPTER 4. NUMERICAL IMPLEMENTATION 49

4.6.1 Main Algorithm

Algorithm 4.1 Main Algorithm
1: Initialize mesh and simulation parameters
2: Set φn = φ0

3: Refine the mesh only on the region near the interface
4: Set φn = φ0 on new finer grid
5: for i = 1 to Ntimesteps do
6: Calculate time step ∆t (when using variable time steps)
7: Solve reinitialization function (see Algorithm 4.2)
8: Calculate Heaviside function Hε (φ) and Curvature k (see Algorithm 4.4)
9: Solve Navier Stokes nonlinear solver (see Algorithm 4.5)

10: Solve Level Set advection equation (see Algorithm 4.3)
11: Save Results
12: end for

4.6.2 Reinitialization Algorithm

See section 2.4.2 for further details.

Algorithm 4.2 Reinitialization Algorithm
1: Given φn, ∆τ , tolreinit
2: Set ϕn = φn

3: Set kreinit ≈ 0, kreinit > 0
4: Set θreinit = 1
5: Define w = S(ϕn−1, h) ∇ϕ

n−1

|∇ϕn−1|
6: Define f = S(ϕn−1, h)
7: repeat
8: Set ϕn−1 = ϕn

9: Set ϕ̃n = CONVECTIONDIFFUSION(w, f, ϕn−1,∆τ, kreinit, θreinit)
10: Calculate ζ = λδε(ϕ̃) |∇ϕ̃|
11: Set ϕn = ϕ̃n + ζ
12: until ‖ϕn − ϕn−1‖∞ < tolreinithmin
13: Set φn−1 = ϕn

4.6.3 Level Set Advection.

See section 2.4.1 for further details.

CHAPTER 4. NUMERICAL IMPLEMENTATION 50

Algorithm 4.3 Level Set Advection Algorithm

1: Given φn−1, u, ∆t
2: Set klvlset ≈ 0, k > 0
3: Set θlvlset = 0.5
4: Define f = 0
5: Set φn = CONVECTIONDIFFUSION(u, f, φn−1,∆t, klvlset, θlvlset)

4.6.4 Heaviside and Curvature Calculation

See sections 2.4 and 2.4.3 for further details.

Algorithm 4.4 Heaviside and Curvature Calculation
1: Given ϕ = ϕn, ε

2: Calculate Heaviside: Hε (ϕ) =


0 ϕ < −ε

1
2

+ ϕ
2ε

+ 1
2π
sin
(
πϕ
ε

)
−ε ≤ ϕ ≤ ε

1 ε < ϕ


3: Set nx0 = 0
4: Set ∆T ≈ h
5: Set knx ≈ 0, k > 0
6: Set θnx = 1
7: Define v = S(ϕ, h)∇ϕ
8: Define fnx = 1

∆T
∂ϕ
∂x

9: Set nx = CONVECTIONDIFFUSION(v, fnx, 0,∆T, knx, θnx)
10: Define fny = 1

∆T
∂ϕ
∂y

11: Set ny = CONVECTIONDIFFUSION(v, fny, 0,∆T, knx, θnx)

12: Define n = (nx,ny)
‖(nx,ny‖

13: Define n⊥ = (−ny, nx)
14: Calculate Curvature: k = −ny(n⊥ · ∇nx) + nx(n⊥ · ∇ny)

4.6.5 Navier Stokes Algorithm

See sections 2.2.3, 2.2.4, 2.2.5, 2.3, 3.3 and specially 4.3 for further details.

CHAPTER 4. NUMERICAL IMPLEMENTATION 51

Algorithm 4.5 Navier Stokes
1: Set Un−2 = Un−1 (Store older solution)
2: Set Un−1 = Un (Store old solution)
3: Set w = (0.5, 0.5, 1) (Refinement weights)
4: Given tol
5: Set l = 0
6: Set refineflag = true
7: repeat
8: l = l + 1
9: Set Ul−1 = Ul (Store previous nonlinear iteration)

10: Assembly the system matrix K = AeKe described in section 4.3.1
11: Assembly the system vector F = AeFe described in section 4.3.1
12: Solve the linear system KUl = F
13: Evaluate δU = Ul −Ul−1

14: if refineflag == true then
15: refineflag = REFINEMESH(Ul,w)
16: end if
17: until ‖δU‖‖Ul‖ < tol or l == Nnlsteps

4.6.6 Convection Diffusion Algorithm

See sections 3.2 and 4.2 for further details.

Algorithm 4.6 Convection Diffusion Function

1: function CONVECTIONDIFFUSION(b, f, φ0,∆t, ε, θ)
2: Using b, f, φ0,∆t, ε, θ
3: Assembly the system matrix K = AeKe described in section 4.2.1
4: Assembly the system vector F = AeFe described in section 4.2.1
5: Solve the linear system KU = F
6: return U
7: end function

4.6.7 Refinement Algorithm

See section 4.5 for further details.

Algorithm 4.7 Refinement Algorithm

1: function REFINEMENT(Ul,w)
2: Using Ul, w
3: Given tolref , tolcoarsen
4: Refine elements with error higher than tolref
5: Coarsen elements with error lower than tolcoarsen
6: end function

CHAPTER 5

VALIDATION AND RESULTS

To validate the code and method and assess robustness and precision, we perform a
number of test calculations. First, we start by running single fluid simulations to evaluate the
Navier-Stokes solver accuracy. Next, we evaluate the pressure inside a static bubble and fre-
quency of oscillation of an elliptical bubble and compare the results with analytical solutions.
Then, we evaluate the rising velocity of a single bubble in a continuous phase for both low and
moderate Reynolds numbers.

5.1 Navier Stokes Solver

5.1.1 Plane Poiseuille Flow

A validation of the balance of viscous and pressure terms in the Navier-Stokes solver
is performed by evaluating the pressure gradient on a steady laminar viscous flow in a two-
dimensional channel, known as plane Poiseuille flow. The viscous fluid flows from a region
of higher pressure to one of lower pressure between two parallel plates separated by a fixed
distance h.

The domain length is 8h. Boundary conditions are non-slip at the top and bottom walls,
prescribed velocity at the inflow on the left boundary, and prescribed pressure at the outflow
on the right boundary. Under these conditions, considering steady developed flow, the pressure
gradient is given by

∂p

∂x
= −12

µU

h2
(5.1)

CHAPTER 5. VALIDATION AND RESULTS 53

where U is the average velocity, and ∂p
∂x

is the pressure gradient. Simulation parameters and
results are listed in table 5.1.

Plane Poiseuille flow
Physical Parameters
Reference density ρ∞ kg/m3 1000 1000 1000
Reference viscosity µ∞ Pa·s 0.001 0.001 0.0001
Average Velocity U m/s 0.001 0.01 0.01
Reference Length h m 0.001 0.001 0.001
Non-dimensional Numbers
Reynolds Number Re ρUh

µ
1 10 100

Results
Theoretical Pressure Gradient ∂p

∂x
Pa/m −12 −120 −12

Pressure Gradient ∂p
∂x

Pa/m −12.0010 −120.0210 −11.9872

Pressure Gradient relative error ||Ep||
||∇p|| 8.33 · 10−5 1.75 · 10−4 1.06 · 10−3

Table 5.1: Pressure gradient evaluation parameters and results.

Figure 5.1: Plane Poiseuille Flow simulation domain mesh and horizontal velocity
distribution.

Figure 5.1 shows the simulation domain and mesh, and the horizontal velocity distri-
bution. Note that Dirichlet boundary conditions are imposed. The result of the simulation for
pressure along the horizontal line passing through the center of the domain is shown in figure
5.2 for Reynolds numbers 10 and 100. These results show that the expected velocity profile and
pressure gradient are obtained. Since the velocity profile is parabolic and the pressure gradient
is linear the computed solution for this case problem is accurate up to machine precision, for
various values of physical parameters, thus corroborating the correctness of the implementation
of viscous and pressure terms.

CHAPTER 5. VALIDATION AND RESULTS 54

(a) (b)

Figure 5.2: Pressure gradient evaluation for plane poiseuille flow: (a) with Reynolds
number equal to 10, (b) with Reynolds number equal to 100.

5.1.2 Driven cavity flow

The driven cavity flow was simulated in order to validate the implementation of the
advection terms. This validation case computes the laminar incompressible flow for a 2D driven
cavity at various Reynolds numbers. Particularly, the case of Reynolds number equal to 10.000
is studied in detail. The domain and the boundary conditions employed in the simulations are
illustrated in figure 5.3.

Figure 5.3: Driven cavity flow steady state velocity distribution at Reynolds 10000.

CHAPTER 5. VALIDATION AND RESULTS 55

The domain is a L × L square. Boundary conditions are non-slip (prescribed velocity)
at the four walls. The cavity is driven by a translating plate with velocity U at the top of the
cavity.

At steady state, the position of the vortices show good agreement with those reported
in the literature (HACHEM et al., 2010). Also, as shown in figure 5.5, the velocity profiles along
the vertical and horizontal lines passing through the geometric center of the cavity match those
described in the literature (ERTURK, 2008), thus validating the implementation of the advection
terms in the SUPG implementation. Also, the position and amount of vortices of the computed
data match those of the literature as seen in figure 5.4.

(a) (b)

Figure 5.4: Comparison between streamlines given by literature and computed data
for Re=10.000: (a) (HACHEM et al., 2010), (b) computed data.

5.2 Capillary Pressure Evaluation

We perform this test to validate the computation of the interfacial tension and the capil-
lary pressure. Here, we perform calculations of an spherical fluid bubble or drop of one phase
immerse into a fluid of another phase with different grid sizes. These are compared with analyt-
ical results obtained by the Young-Laplace (BRACKBILL; KOTHE; ZEMACH, 1992) equation for
capillary pressure,

∆p = σκ = σ

(
1

R1

+
1

R2

)
(5.2)

where ∆p is the pressure difference across the fluid interface, σ is the surface tension, and R1

and R2 are the principal radii of curvature. Table 5.2 describes the physical parameters used for

CHAPTER 5. VALIDATION AND RESULTS 56

(a)

(b)

Figure 5.5: Velocity profiles along the vertical and horizontal lines passing through
the geometric center of the cavity: (a) Computed v-velocity profiles along horizon-
tal line passing through the geometric center of the cavity, (b) Computed u-velocity
profiles along vertical line passing through the geometric center of the cavity.

CHAPTER 5. VALIDATION AND RESULTS 57

the simulations.

Capillary Pressure Evaluation
Physical Parameters
Reference density ρ∞ 1000 kg/m3

Reference viscosity µ∞ 8.9 · 10−4 Pa·s
Surface tension coefficient σ 0.02361 N/m
Diameter of the bubble D 0.04 m
Relative density of external fluid ρ1 1
Relative density of internal fluid ρ2 0.5
Relative viscosity of external fluid µ1 1
Relative viscosity of internal fluid µ2 0.05
Non-dimensionalization Parameters
Reference Length L 0.04 m
Reference Velocity (

√
gL) U 0.626 m

Non-dimensional Numbers
Reynolds Number Re 10.91
Weber Number We 1.0
Froude Number∗ Fr –

Table 5.2: Physical parameters used for capillary pressure evaluation. ∗No gravity
field involved 1/Fr = 0.

Under these conditions, the analytic value of the pressure jump at the interface is de-
ducible from the Young-Laplace equation.

5.3 Frequency of Oscillation

The purpose of this test is to validate the effects of surface tension on an initially ellipti-
cal bubble immerse on a continuous flow without any gravity field. For this problem exists an
analytical solution for the oscillation frequency. Assuming the viscous effects to be small, and
that we are working on an infinite domain, this analytic expression is given by (LAMB, 1945),

ω2 =
(n3 − n)σ

(ρ2 + ρ1)ρ∞R3
(5.3)

With an amplitude decay given by
a(t) = a0e

−t/τ (5.4)

where τ = R/5ν, ν is the kinematic viscosity, a0 is the initial amplitude, ω is the angular
velocity for the frequency of oscillation. Figure 5.6 shows a comparison between the numerical
result and the analytical function given by,

y(t) = y0 + a0e
−t/τcos(ωt) (5.5)

The physical parameters used for these simulations are shown in Table 5.3.

CHAPTER 5. VALIDATION AND RESULTS 58

Figure 5.6: Oscillation of the bubble diameter as a function of non-dimensional
time.

Frequency of Oscillation Evaluation
Physical Parameters
Reference density ρ∞ 1000 kg/m3

Reference viscosity µ∞ 8.9 · 10−4 Pa·s
Surface tension coefficient σ 0.02361 N/m
Diameter of the bubble D 0.04 m
Relative density of external fluid ρ1 1
Relative density of internal fluid ρ2 100
Relative viscosity of external fluid µ1 0.1
Relative viscosity of internal fluid µ2 0.35
Non-dimensionalization Parameters
Reference Length L 0.04 m
Reference Velocity U 0.02429 m
Non-dimensional Numbers
Reynolds Number Re 1091.91
Weber Number We 1.0
Froude Number∗ Fr –

Table 5.3: Physical parameters used for frequency of oscillation evaluation. ∗No
gravity field involved 1/Fr = 0.

5.4 Numerical experiments

In this section, we present the results of the computation of two numerical experiments.
The nondimensional parameters that were used to characterize each problem are: The Morton
number Mo, the Eötvös number Eo and the Froude number Fr.

CHAPTER 5. VALIDATION AND RESULTS 59

5.4.1 Rising bubble

The first experiment consists on an initially stationary bubble that rises due the effect
of gravitational forces. The parameters that were used for these simulations are Fr=10.01,
Eo=1000 and Mo=0.01. The time step used was variable.

(a) (b) (c) (d)

Figure 5.7: Numerical experiment on rising bubble: (a) t=0.0, (b) t=5.0, (c) t=15.0,
(d) t=25.1

5.4.2 Bubble Coalescence

The second experiment focuses on bubble coalescence. The parameters that were used
for these simulations are Fr = 0.319, Eo = 10 and Eo = 0.1.

CHAPTER 5. VALIDATION AND RESULTS 60

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Numerical experiment on rising bubble: (a) t=0.0, (b) t=0.077, (c)
t=0.179, (d) t=0.262, (e) t=0.707, (f) t=0.937, (g) t=1.030, (h) t=1.150

CHAPTER 6

SUMMARY

The method presented in this paper is an adaptive finite element level set approach that
deals with the mass conservation problems that are inherent to the level set method, through
mesh refinement capabilities and accurate correction techniques for keeping the level set func-
tion a sign function. This method results on effectively conserving mass properties while easily
dealing with topological changes of the fronts, such as bubble coalescence and changes on free
surface. The code implements a finite element unstructured mesh as well as a control proce-
dure using libmesh, an adaptive C++ finite element library for simulating partial differential
equations.

6.1 Future Works

We can see from the last simulation that the bubbles start the merging process when
they are close enough so that the smeared out surface tension force of one bubble cancels with
the one of the other, reducing the surface tension in that region. In reality, this should happen
when the region that defines one bubble intersects the region defined by the other bubble. From
equation (2.61) we can see that the surface tension is defined by the smeared out derivative of
the surface tension, thus accuracy can be increased by reducing the numerical smearing of the
interface. However, by doing this we are introducing numerical instabilities, thus, the region is
refined and the simulation becomes highly computationally intensive. Now, with the difficulties
of the method identified, we can think on new methods to achieve even more accurate results
on coarse meshes, such as the ghost fluid method shown in (OSHER; FEDKIW, 2003) to directly
define the pressure jump across the interface.

APPENDIX A

APPENDIX

A.1 Generalized Navier-Stokes element matrices and vectors

As we have seen, we can split the element matrix Ke and element vector Fe into sub-
matrices each corresponding to the unknown nodal values of the velocity components u and v
(assuming nsd = 2) and pressure p,

Ke =

 Ke
uu Ke

uv Ke
up

Ke
vu Ke

vv Ke
vp

Ke
pu Ke

pv Ke
pp

 F e =

 F e
u

F e
v

F e
p

 (A.1)

Then, starting from equation (4.7) and assuming τPSPG = τLSIC = 0, we can calculate
each element submatrix writing the terms in the same order, as follows,

Fuea =

∫
Ω

(

+ (ρrunNa) / (∆t)

+

((
2
∂un
∂x

(
∂Na

∂x

)
+

(
∂un
∂y

+
∂vn
∂x

)(
∂Na

∂y

))
µr (θ − 1)

)
/Re

+−
(
ρr

(
(α− 1)

∂un
∂x

(θ − 1)un−

αθ

(
∂uin+1

∂x
u+

∂uin+1

∂y
v

)
+ (α− 1)

∂un
∂y

(θ − 1) vn

)
Na

)
+0

APPENDIX A. APPENDIX 63

+
k

We

∂H

∂x
Na

+−
((

ρrτSUPGun

((
∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
/ (∆t)

)
+

((
∂2un
∂x2

+
∂2un
∂y2

)
µr (θ − 1) τSUPG((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
/Re

+ρrτSUPG

(
(α− 1)

∂un
∂x

(θ − 1)un−

αθ

(
∂uin+1

∂x
u+

∂uin+1

∂y
v

)
+ (α− 1)

∂un
∂y

(θ − 1) vn

)
((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

)
+−

(
k

We

∂H

∂x
τSUPG

((
∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
) dΩ

Fvea =

∫
Ω

(

+ (ρrvnNa) / (∆t)

+

(((
∂un
∂y

+
∂vn
∂x

)(
∂Na

∂x

)
+ 2

∂vn
∂y

(
∂Na

∂y

))
µr (θ − 1)

)
/Re

+−
(
ρr

(
(α− 1)

∂vn
∂x

(θ − 1)un−

αθ

(
∂vin+1

∂x
u+

∂vin+1

∂y
v

)
+ (α− 1)

∂vn
∂y

(θ − 1) vn

)
Na

)
+0

+

(
k

We

∂H

∂y
+

ρr
Fr2

)
Na

+−
((

ρrτSUPGvn

((
∂Na

∂x

)
(− (αu) + (α− 1)un) +

APPENDIX A. APPENDIX 64

(
∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
/ (∆t)

)
+

((
∂2vn
∂x2

+
∂2vn
∂y2

)
µr (θ − 1) τSUPG((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
/Re

+ρrτSUPG

(
(α− 1)

∂vn
∂x

(θ − 1)un−

αθ

(
∂vin+1

∂x
u+

∂vin+1

∂y
v

)
+ (α− 1)

∂vn
∂y

(θ − 1) vn

)
((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

)
+−

((
k

We

∂H

∂y
+

ρr
Fr2

)
τSUPG

((
∂Na

∂x

)
(− (αu) +

(α− 1)un) +

(
∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
) dΩ

Kuueab =

∫
Ω

(

+ (ρrNbNa) / (∆t)

+

((
2

(
∂Nb

∂x

)(
∂Na

∂x

)
+

(
∂Nb

∂y

)(
∂Na

∂y

))
µrθ

)
/Re

+ρr

(
−
(
α
∂un
∂x

(θ − 1)Nb

)
+

θ

(
α
∂uin+1

∂x
Nb +

(
∂Nb

∂x

)
(αu+ un − αun) +(

∂Nb

∂y

)
(αv + vn − αvn)

))
Na

+0

+0

+

(
ρrτSUPGNb

((
∂Na

∂x

)
(αu+ un − αun) +(

∂Na

∂y

)
(αv + vn − αvn)

))
/ (∆t)

APPENDIX A. APPENDIX 65

+

((
∂2Nb

∂x2
+
∂2Nb

∂y2

)
µrθτSUPG((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
/Re

+ρrτSUPG

((
∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

)(
α
∂un
∂x

(θ − 1)Nb−

αθ

(
∂uin+1

∂x
Nb +

(
∂Nb

∂x

)
(u− un) +

(
∂Nb

∂y

)
(v − vn)

)
−

θ

((
∂Nb

∂x

)
un +

(
∂Nb

∂y

)
vn

))
+0

) dΩ

Kuveab =

∫
Ω

(

+0

+

((
∂Nb

∂x

)(
∂Na

∂y

)
µrθ

)
/Re

+αρr

(
∂un
∂y

+
∂uin+1

∂y
θ − ∂un

∂y
θ

)
NbNa

+0

+0

+0

+0

+αρr

(
∂un
∂y

(θ − 1)−
∂uin+1

∂y
θ

)
τSUPGNb((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

)
+0

) dΩ

APPENDIX A. APPENDIX 66

Kvueab =

∫
Ω

(

+0

+

((
∂Nb

∂y

)(
∂Na

∂x

)
µrθ

)
/Re

+αρr

(
∂vn
∂x

+
∂vin+1

∂x
θ − ∂vn

∂x
θ

)
NbNa

+0

+0

+0

+0

+αρr

(
∂vn
∂x

(θ − 1)−
∂vin+1

∂x
θ

)
τSUPGNb((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

)
+0

) dΩ

Kvveab =

∫
Ω

(

+ (ρrNbNa) / (∆t)

+

(((
∂Nb

∂x

)(
∂Na

∂x

)
+ 2

(
∂Nb

∂y

)(
∂Na

∂y

))
µrθ

)
/Re

+ρr

(
−
(
α
∂vn
∂y

(θ − 1)Nb

)
+

θ

((
∂Nb

∂x

)
un +

(
∂Nb

∂y

)
vn + α

((
∂Nb

∂x

)
(u− un) +

(
∂Nb

∂y

)
v+

∂vin+1

∂y
Nb −

(
∂Nb

∂y

)
vn

)))
Na

+0

+0

+

(
ρrτSUPGNb

((
∂Na

∂x

)
(αu+ un − αun) +(

∂Na

∂y

)
(αv + vn − αvn)

))
/ (∆t)

APPENDIX A. APPENDIX 67

+

((
∂2Nb

∂x2
+
∂2Nb

∂y2

)
µrθτSUPG((

∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

))
/Re

+ρrτSUPG

((
∂Na

∂x

)
(− (αu) + (α− 1)un) +(

∂Na

∂y

)
(− (αv) + (α− 1) vn)

)(
α
∂vn
∂y

(θ − 1)Nb−

αθ

((
∂Nb

∂x

)
(u− un) +

∂vin+1

∂y
Nb +

(
∂Nb

∂y

)
(v − vn)

)
−

θ

((
∂Nb

∂x

)
un +

(
∂Nb

∂y

)
vn

))
+0

) dΩ

Kupeab =

∫
Ω

(

+0

+−
((

∂Na

∂x

)
Mb

)
+0

+0

+0

+0

+

(
∂Mb

∂x

)
τSUPG

((
∂Na

∂x

)
(αu+ un − αun) +(

∂Na

∂y

)
(αv + vn − αvn)

)
+0

+0

) dΩ

Kvpeab =

∫
Ω

(

APPENDIX A. APPENDIX 68

+0

+−
((

∂Na

∂y

)
Mb

)
+0

+0

+0

+0

+

(
∂Mb

∂y

)
τSUPG

((
∂Na

∂x

)
(αu+ un − αun) +(

∂Na

∂y

)
(αv + vn − αvn)

)
+0

+0

) dΩ

Kpueab =

∫
Ω

(

+0

+0

+0

+

(
∂Nb

∂x

)
θMa

+0

+0

+0

+0

+0

) dΩ

Kpveab =

∫
Ω

(

+0

+0

APPENDIX A. APPENDIX 69

+0

+

(
∂Nb

∂y

)
θMa

+0

+0

+0

+0

+0

) dΩ

Kppeab = 0

REFERENCES

BRACKBILL, J.; KOTHE, D.; ZEMACH, C. A continuum method for modeling surface
tension. Journal of computational physics, Elsevier, v. 100, n. 2, p. 335–354, 1992.

BROOKS, A.; HUGHES, T. Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations.
Computer methods in applied mechanics and engineering, Elsevier, v. 32, n. 1-3, p. 199–259,
1982.

DONEA, J.; HUERTA, A. Finite Element Methods for Flow Probelms. Wiley Online Library,
2003.

ERTURK, E. Numerical solutions of 2-D steady incompressible flow over a backward-facing
step, Part I: High Reynolds number solutions. Computers & Fluids, Elsevier, v. 37, n. 6, p.
633–655, 2008. ISSN 0045-7930.

ESMAEELI, A.; TRYGGVASON, G. Direct numerical simulations of bubbly flows. Part
1. Low Reynolds number arrays. Journal of Fluid Mechanics, Cambridge University Press,
v. 377, p. 313–345, 1998.

GROSS, S.; REICHELT, V.; REUSKEN, A. A finite element based level set method for
two-phase incompressible flows. Computing and Visualization in Science, Springer, v. 9, n. 4,
p. 239–257, 2006.

HACHEM, E. et al. Stabilized finite element method for incompressible flows with high
Reynolds number. Journal of Computational Physics, Elsevier, 2010. ISSN 0021-9991.

HAUKE, G. An introduction to fluid mechanics and transport phenomena. [S.l.]: Springer
Verlag, 2008. ISBN 1402085362.

REFERENCES 71

HEINRICH, J.; PEPPER, D. Intermediate finite element method: fluid flow and heat transfer

applications. [S.l.]: Taylor & Francis Group, 1999.

HUGHES, T.; MALLET, M. A new finite element formulation for computational fluid
dynamics: III. The generalized streamline operator for multidimensional advective-diffusive
systems* 1. Computer Methods in Applied Mechanics and Engineering, Elsevier, v. 58, n. 3, p.
305–328, 1986.

KELLY, D. W. et al. A posteriori error analysis and adaptive processes in the finite element
method: Part I Error analysis. Int. J. Num. Meth. Engng., v. 19, p. 1593–1619, 1983.

KIRK, B. Adaptive finite element simulation of flow and transport applications on parallel
computers. D., THE UNIVERSITY OF TEXAS AT AUSTIN, 2007.

KIRK, B. et al. libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening
Simulations. Engineering with Computers, v. 22, n. 3–4, p. 237–254, 2006.

LAMB, H. Hydrodynamics. [S.l.]: Dover Publications, New York, 1945.

OSHER, S.; FEDKIW, R. Level set methods and dynamic implicit surfaces. [S.l.]: Springer
Verlag, 2003.

OSHER, S.; SETHIAN, J. Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. Journal of computational physics, Elsevier, v. 79, n. 1,
p. 12–49, 1988.

PENG, D. et al. A PDE-Based Fast Local Level Set Method. Journal of Computational

Physics, Elsevier, v. 155, n. 2, p. 410–438, 1999.

RABELLO, G. et al. An ALE finite element method for the simulation of 3D multiphase flows.
12th Brazilian Congress of Thermal Engineering and Sciences, 2008.

SOUSA, F.; MANGIAVACCHI, N. A Lagrangian level-set approach for the simulation of
incompressible two-fluid flows. International Journal for Numerical Methods in Fluids, John
Wiley & Sons, v. 47, n. 10-11, p. 1393–1401, 2005.

SOUSA, F. D. et al. A front-tracking/front-capturing method for the simulation of 3D
multi-fluid flows with free surfaces. Journal of Computational Physics, Elsevier, v. 198, n. 2, p.
469–499, 2004.

SUSSMAN, M.; FATEMI, E. An efficient, interface-preserving level set redistancing algorithm
and its application to interfacial incompressible fluid flow. SIAM Journal on Scientific

Computing, Citeseer, v. 20, n. 4, p. 1165–1191, 1999.

SUSSMAN, M.; SMEREKA, P.; OSHER, S. A level set approach for computing solutions
to incompressible two-phase flow. Journal of computational Physics, New York, Academic
Press., v. 114, n. 1, p. 146–159, 1994.

TEZDUYAR, T.; OSAWA, Y. Finite element stabilization parameters computed from element
matrices and vectors. Comput. Methods Appl. Mech. Engrg, v. 190, n. 3-4, p. 411–430, 2000.

TORNBERG, A.; ENGQUIST, B. A finite element based level-set method for multiphase flow
applications. Computing and Visualization in Science, Springer, v. 3, n. 1, p. 93–101, 2000.

72

	Pre_Nestor
	Listas
	Table of Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Objectives
	Overview

	MATHEMATICAL MODEL
	Introduction
	Governing Equations
	Mass Conservation
	Conservation of Momentum
	Navier Stokes Equations
	Newtonian fluids
	Surface Tension

	Nondimensionalization
	Level-Set Equations
	Level-Set Advection
	Level-Set Reinitialization
	Mean Curvature

	Model Summary

	TIME AND SPACE DISCRETIZATION
	Preliminary definitions
	Convection-Diffusion equation
	Strong form of the problem
	Weak Formulation and Spatial Discretization
	Stabilized Finite Element Formulation
	Time discretization

	Navier-Stokes equations
	Strong form of the problem
	Weighting functions and trial solutions
	Weak Formulation and Spatial Discretization
	Stabilized Finite Element Formulation
	Time discretization
	Linearization

	NUMERICAL IMPLEMENTATION
	Solution Methodology
	Convection-Diffusion Problem
	System Assembly

	Navier-Stokes equations
	System Assembly

	Boundary Conditions
	Adaptive Mesh Refinement
	Solution Algorithm
	Main Algorithm
	Reinitialization Algorithm
	Level Set Advection.
	Heaviside and Curvature Calculation
	Navier Stokes Algorithm
	Convection Diffusion Algorithm
	Refinement Algorithm

	VALIDATION AND RESULTS
	Navier Stokes Solver
	Plane Poiseuille Flow
	Driven cavity flow

	Capillary Pressure Evaluation
	Frequency of Oscillation
	Numerical experiments
	Rising bubble
	Bubble Coalescence

	SUMMARY
	Future Works

	APPENDIX
	Generalized Navier-Stokes element matrices and vectors

	REFERENCES

	Nestor
	Table of Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Objectives
	Overview

	MATHEMATICAL MODEL
	Introduction
	Governing Equations
	Mass Conservation
	Conservation of Momentum
	Navier Stokes Equations
	Newtonian fluids
	Surface Tension

	Nondimensionalization
	Level-Set Equations
	Level-Set Advection
	Level-Set Reinitialization
	Mean Curvature

	Model Summary

	TIME AND SPACE DISCRETIZATION
	Preliminary definitions
	Convection-Diffusion equation
	Strong form of the problem
	Weak Formulation and Spatial Discretization
	Stabilized Finite Element Formulation
	Time discretization

	Navier-Stokes equations
	Strong form of the problem
	Weighting functions and trial solutions
	Weak Formulation and Spatial Discretization
	Stabilized Finite Element Formulation
	Time discretization
	Linearization

	NUMERICAL IMPLEMENTATION
	Solution Methodology
	Convection-Diffusion Problem
	System Assembly

	Navier-Stokes equations
	System Assembly

	Boundary Conditions
	Adaptive Mesh Refinement
	Solution Algorithm
	Main Algorithm
	Reinitialization Algorithm
	Level Set Advection.
	Heaviside and Curvature Calculation
	Navier Stokes Algorithm
	Convection Diffusion Algorithm
	Refinement Algorithm

	VALIDATION AND RESULTS
	Navier Stokes Solver
	Plane Poiseuille Flow
	Driven cavity flow

	Capillary Pressure Evaluation
	Frequency of Oscillation
	Numerical experiments
	Rising bubble
	Bubble Coalescence

	SUMMARY
	Future Works

	APPENDIX
	Generalized Navier-Stokes element matrices and vectors

	REFERENCES

