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RESUMO 

 

 

BARBOSA, N. S. V. Equação de Poisson-Boltzmann e teoria do funcional da densidade 

clássica aplicadas a sistemas eletrolíticos: desde sistemas biológicos até recuperação avançada de 

petróleo. 2019. 204 f. Tese (Doutorado em Ciências em Engenharia Química) – Instituto de 

Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2019. 

 

As interações eletrostáticas desempenham um papel fundamental nos processos 

físicos, biológicos e químicos. Logo, o estudo de tais interações propicia um melhor 

entendimento de fenômenos contraintuitivos, além de nortear o desenvolvimento de novas 

soluções e estratégias em nível industrial. As técnicas utilizadas na modelagem de sistemas 

contendo eletrólitos podem ser classificadas em métodos implícitos, equações integrais e 

teoria do funcional da densidade clássica, métodos explícitos, e métodos híbridos. Nesta tese, 

utilizou-se a equação de Poisson-Boltzmann (PBE) e teoria do funcional da densidade clássica 

(DFT). Por meio da PBE, (i) avaliou-se a partição iônica transmembrana em um eritrócito 

com a inclusão das interações não eletrostáticas e do termo de Bohr, sendo possível 

contabilizar o efeito da mudança da constante dielétrica entre os meios intracelular e 

extracelular; (ii) investigou-se o comportamento elétrico da parede celular da bactéria Bacillus 

brevis, com a abordagem de regulação de carga no perfil de densidade volumétrica de carga 

fixa; e (iii) determinou-se o ângulo de contato e molhabilidade de um sistema constituído por 

três fases (dois líquidos e uma superfície sólida). Diferentemente dos dois primeiros sistemas, 

que possuem apelo biológico, o último foi desenvolvido visando a aplicação na recuperação 

avançada de petróleo por meio da injeção de uma solução eletrolítica aquosa. Além disso, um 

modelo baseado na DFT foi desenvolvido em domínio tridimensional com convoluções 

calculadas através da transformada de Fourier rápida e aplicado na análise da molhabilidade e 

ângulo de contato de um sistema caracterizado por salmoura/ hidrocarboneto/ rocha. A 

compreensão dos efeitos da injeção de água projetada é de suma importância para a 

recuperação de petróleo, uma vez que permite a seleção racional da composição desta água. 

Vale ressaltar, que essa aplicação da DFT para sistema líquido/ líquido/ sólido, assim como a 

inclusão do termo de Bohr na PBE e a abordagem volumétrica da regulação de carga são 

inovações na literatura, até onde se pôde rastrear. Conclui-se que o balanceamento das 

aproximações intrínsecas da PBE pode fazer com que as mesmas se anulem, promovendo 

uma excelente reprodução de dados experimentais, dependendo do sistema a ser estudado, 

como demonstrado na predição da partição iônica do íon Cl
‒
, que ocorre passivamente, no 

eritrócito e do potencial zeta da parede celular da bactéria B. brevis. Por outro lado, a DFT é 

primordial para sistemas complexos, tais como: sistemas confinados e com altas 

concentrações iônicas, uma vez que possui um maior nível de detalhamento.  

 

Palavras-chave: Eletrólitos. Equação de Poisson-Boltzmann. Teoria do Funcional da 

Densidade. Interações não eletrostáticas. Teoria de Lifshitz.  

  



 

 

 

ABSTRACT 

 

 

BARBOSA, N. S. V. Poisson-Boltzmann equation and classical Density Functional Theory 

applied to electrolyte systems: from biological systems to enhanced oil recovery. 2019. 204 f. 

Tese (Doutorado em Ciências em Engenharia Química) – Instituto de Química, Universidade 

do Estado do Rio de Janeiro, Rio de Janeiro, 2019. 

 

Electrostatic interactions play an indispensable role in physical, biological, and 

chemical processes. Therefore, the study of such interactions provides a better understanding 

of counterintuitive phenomena, as well as guiding the development of new solutions and 

strategies at the industrial level. The techniques used for modeling electrolyte systems can be 

classified as implicit methods, integral equations and classical density functional theory, 

explicit methods, and hybrid methods. In this thesis, the Poisson-Boltzmann equation (PBE) 

and the classical density functional theory (DFT) were used. At PBE level, (i) the 

transmembrane ion partition of an erythrocyte was evaluated through the inclusion of the non-

electrostatic interactions and Bohr term, being possible to take into account the effects of the 

change in the dielectric constant between intra and extracellular environments; (ii) the 

electrical behavior of the Bacillus brevis cell wall was investigated with the charge-regulated 

volume bounded-charge density approach; and (iii) the contact angle and wetting of a three-

phase system (two liquids and a solid surface) was determined. Unlike the former two 

systems, which have biological appeal, the latter was investigated aiming at the application in 

the enhanced oil recovery through the injection of an aqueous electrolyte solution. 

Furthermore, the DFT was developed in three-dimensional coordinates with convolutions 

calculated by the fast Fourier transform, and applied to the analysis of the wettability and 

contact angle of a system characterized by brine/ hydrocarbon/ rock. Understanding the 

effects of engineered water injection is of paramount importance to the oil recovery as it 

allows the rational selection of the composition of this water. It is worth mentioning that the 

application of DFT to study liquid/liquid/solid substrate system as well as the inclusion of the 

Bohr term in the PBE and the volumetric charge-regulated approach, as far as we could track, 

have not been performed in the literature. Finally, the balancing of the intrinsic 

approximations of the PBE might cancel them out, promoting an excellent reproduction of 

experimental data, depending on the system to be studied, as demonstrated in the prediction of 

the ionic partition of the Cl
‒
 ion that occurs passively in the erythrocyte and zeta potential of 

B. brevis cell wall. On the other hand, the DFT is important to study complex systems, such as 

confined systems with high ionic concentrations, since it has a higher level of detail. 

 

Keywords: Electrolyte. Poisson-Boltzmann Equation. Density Functional Theory. Non-

electrostatic interactions. Lifshitz Theory.  
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INTRODUCTION 

 

 

Electrolyte systems and processes involving charges are ubiquitous. They encompass 

for example, our shampoos, the lithium battery of our cell phones, and even, the mechanism 

of information transfer in the nervous system. Therefore, the study of electrostatic phenomena 

is fundamental to the understanding of biological, chemical, and physical processes specially 

near interfaces.
1,2

 A widespread theory developed to explain the interfacial behavior present in 

these systems is based on the concept of electrical double layer (EDL). 

The EDL is a structure that arises on the surface of a macroparticle when it is exposed 

to an electrolyte solution. It is composed by an ionic layer firmly attached to the macroparticle 

(bounded charge on the surface), called potential determining ions, and an equivalent amount 

of oppositely charged ions from the electrolyte solution, the counterions. Although attracted 

to an oppositely charged surface, the counterions remain dispersed in the liquid medium near 

the interface due to entropic factors. The dispersed ions with the same sign of the potential 

determining ions are called coions. In summary, the charge on the surface of the 

macroparticle influences the ionic distribution near its vicinity: the counterions are attracted 

by the surface and the coions are repulsed from the surface by electrical forces. However, 

there is a dynamic equilibrium between the ions near the surface and the free ions of the same 

sign in the bulk liquid.
3–5

 

Knowledge of microscopic structure and macroscopic properties of electrolyte systems 

is crucial to understand phenomena such as charge inversion, overload, and flocculation; and 

to develop more efficient processes and new products for pharmaceutical,
6–8

 petrochemical,
9–

14
 and electronic

15–19
 industries.  

Different methods can be used to model electrolyte systems such as implicit methods, 

integral equations and classical density functional theory (DFT), and explicit methods, 

depending on the level of detail and the required computational time as shown in Figure 1.
20

 

Implicit models consider the solvent as a continuous medium whose characteristics are 

described by a single parameter: the dielectric constant. With this analysis, the degree of 

freedom of the system is reduced. Example of implicit methods are: Poisson-Boltzmann 

Equation (PBE)
3,21–23

, Coulomb's law and generalized Born methods
24

. 
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Figure 1 – Level of detail and required computational time for implicit methods, integral 

equations and density functional theory, and explicit methods 

 

 

 

The investigation of electrolyte systems using DFT
25,26,35,36,27–34

 and integral equations, 

such as hipernetted chain closure (HCN)
37

, allows the inclusion of other contributions 

conventionally not addressed in the continuous mean-field theories, such as electrostatic 

correlations between ions. The solvent can be treated explicitly as hard spheres, for example, 

or implicitly.  

Whereas the classical Poisson-Boltzmann equation predicts ion distributions 

dependent only on mean electrostatic potential, the classical density functional theory also 

considers electrostatic correlations and non-mean field contributions such as volume 

exclusion effects.
25,26,35,27–34

 Together with the electrostatic correlations, they are responsible 

for many counterintuitive phenomena such as charge inversion,
35,38

 attraction between like 

charged surfaces,
2,39–41

 and long range oscillatory densities – multiple electric layers.
42

 

Non-electrostatic interactions including, for instance, van der Waals interactions, self-

image charge interactions, and hydration of ions, can be introduced in both DFT and modified 

PBE as external potentials.
22,43–45

 

The explicit methods are based on statistical mechanics. They consider the solvent 

explicitly, i.e., as individual molecules interacting among themselves and with solutes 

according to force fields. Although they present more realistic results, the increase in the 

degree of freedom causes a rise in the required computational time which, sometimes, can 

limit the capacity of those methods to generate convergent estimations to thermodynamic 
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Methods 

Explicit 

Methods 
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Equations 

and DFT 
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phenomena.
46–48

 Examples of explicit methods are Monte Carlo simulations (MC) and 

molecular dynamics simulations (MD) – however, both techniques can also be solved with 

implicit solvent, depending on the chosen force field.  

Comparing DFT with MD, the former computes directly ensemble-averaged properties 

of interest, whereas the latter computes those average quantities based on the trajectories of 

the particles over long time simulations. 

To address the time limitation, in recent years, there has been considerable interest in 

hybrid techniques that take advantage of different scale methods in order to improve results 

without an expressive increase in computational time.
43,44,49–51

 For instance, potentials of 

mean force (PMF) from MD have been inserted in the modified PBE reaching better 

agreement with experimental data for the excess interfacial tension.
52–54

 

Especially noteworthy is the numerical efficiency of PBE and DFT in systems with 

symmetry, in which the densities might only be analyzed in one, or even two, space variables. 

On the other hand, the explicit methods are usually performed in three dimensions.  

The purpose of this thesis is the investigation of the interactions in electrolyte systems 

using PBE and DFT, in order to determine macroscopic properties of these systems. 

Basically, the analyzed cases can be divided into two categories: biological and petrochemical 

applications. The specific aims are: 

a) Determination of the zeta potential of a bacterial cell wall into electrolyte 

solutions and its variation with pH using a smoothing function to describe the 

charge-regulated volume charge density; 

b) Inclusion of a contribution due to the ionic hydration as function of dielectric 

constant of media ‒ based on Bohr correction equation ‒ for biological 

systems; 

c) Investigation of ionic distribution confined in an aqueous solution between 

rock and oil using charge regulation at boundary conditions; and  

d) Study of wettability and contact angle in oil/brine/rock systems using 

tridimensional density functional theory (3D-DFT); 

 

In order to guarantee the linearity of this thesis, some studies developed over these 

years are not going to be presented in the next sections. For example: 

a) we investigated the behavior of confined electrolyte systems using classical 

density functional theory;
20,55
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b) an AMBER-compatible transferable force field for poly(ethylene glycol) 

ethers (glymes) was also developed, more specifically during the year in the 

University of Notre Dame;
56

 and  

c) we also have investigated the potential of mean force for some ions at infinite 

dilution close to a graphene sheet, in order to insert into PBE and DFT, 

providing the integration of different scales.  

 

After this introduction which presents the general aspects and objectives of this thesis, 

Chapter 1 describes two methods recurrently used during this work: Poisson-Boltzmann 

equation and classical density functional theory. A section is also reserved to comment about 

the non-electrostatic interactions since they were used in the development of this thesis.  

The next two chapters have a general structure characterized by a brief introduction 

about the applications – biological or petrochemical –, and subsections divided into specific 

introduction, methodology, results and discussion, and partial conclusions applied to the 

research field of each subsection. 

It is important to highlight that the biological applications discussed in this thesis is a 

continuation of the work initially developed in the master dissertation,
3
 which analyzed the 

ionic partitioning in an erythrocyte using the modified PBE, with the addition of the Bohr 

correction.
21

 Following the same line of inquiry, the electrostatic behavior of Bacillus brevis 

cell wall is also modeled in Chapter 2 using the PBE.
57

  

The interest in the wettability of systems involving two liquids and a solid surface is 

well documented in the literature especially in the context of separation processes and oil 

extraction.
14,58–65

 The latter case is the matter of concern of Chapter 3 which is dedicated to 

determining of the contact angle at the equilibrium for the oil/brine/rock systems using either 

PBE or DFT.  

An interesting aspect is that all algorithms used here to solve the Poisson-Boltzmann 

equation and the classical density functional theory have been developed by us over the years 

since the Master. 

Finally, the conclusion section summarizes the main contributions of this thesis to the 

literature and offers some suggestions to future studies.  
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1 THEORY 

 

 

This chapter presents a literature review about the two methods used to investigate 

electrolyte systems in this thesis: Poisson-Boltzmann equation and classical density functional 

theory. As mentioned before, they have different levels of detail as shown in Figure 1. In 

Section 1.1, Gouy-Chapman theory, and classical and modified PBE are described, while 

Section 1.2 elucidates the key concepts of DFT and reviews some of the functionals 

conventionally used to compute the intrinsic Helmholtz energy.  

It is interesting to mention that PBE and DFT were the topic of a chapter wrote to the 

“Reference module in chemistry, molecular sciences and chemical engineering”, published by 

Elsevier.
20

 This chapter can be found in APPENDIX A. 

The last section of this chapter presents the non-electrostatic interactions between 

surfaces and ions that can be applied at PBE and DFT as external potentials.  

 

 

1.1 Poisson-Boltzmann equation (PBE) 

 

 

The DLVO (Derjaguin-Laudau-Verwey-Overbeek) theory provides the basis to model 

quantitatively the interactions between macroparticles in colloid science. It considers the 

action of two different types of electromagnetic forces: pure electrostatic forces from the EDL 

and the van der Waals forces. While the former occurs only in particles with charge, the latter 

occurs in all particles whether they are charged or not.
66,67

 One model conventionally used to 

describe the EDL is treated in this section: the Gouy-Chapman model. On the other hand, the 

van der Waals potential, which is insensitive to the variation of ionic concentration and pH, in 

first approach, is briefly mentioned in Sections 1.3 and 3.1.2.2. 

The presence of a charged surface immersed in an electrolyte solution contributes to 

an inhomogeneous distribution of ions close to that surface, constituting the EDL. Some 

theories have been proposed to describe, quantitatively and/or qualitatively, the structure of 

this layer, such as the Helmholtz-Perrin model, the Gouy-Chapman model, and the Stern 

model.
5,20,68

 The main difference among them is how the structure of the counterion layer is 

considered.  
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According to the Gouy-Chapman theory, the solvent is treated as a continuum 

described by the dielectric constant and the finite dimensions of the ions are ignored. The 

counterions are scattered in the liquid phase within certain distance away from the surface due 

to a balance between the action of the electric field from the surface and the thermal motion. 

In the immediate vicinity of the surface the effect of the electric field is higher; as a result the 

concentration of counterions tends to rise in this region, while the concentration of coions 

decrease; however as the distance from the surface increases, the counterions become more 

scattered due to the thermal motion and the attenuation of the electric field's influence. At 

some distance far from the surface, the concentration of ions is equal to the bulk liquid 

concentration. By hypothesis, all surfaces are considered geometrically smooth and uniformly 

charged.
5,68

 

The PBE, which is a second order elliptic partial differential equation, describes the 

mean electrostatic potential and the ion concentration as function of the distance from an 

interface according to the Gouy-Chapman model. Basically, it is a combination of the Poisson 

equation, which correlates the volumetric charge density 𝜚  with the mean electrostatic 

potential 𝜓, 

 

0∇ ∙ [  ∇𝜓(𝐫)] = −𝜚(𝐫) ≡ −𝑒∑𝑧𝑖 𝜌𝑖(𝐫)

𝑖

 (1) 

 

with the Boltzmann distribution 

 

𝜌𝑖(𝐫) = 𝜌𝑖
𝑏 exp [−

𝑒𝑧𝑖𝜓(𝐫)

𝑘𝐵𝑇
] (2) 

 

yielding  

 

0∇ ∙ [ ∇𝜓(𝐫)] = −𝑒∑𝑧𝑖𝜌𝑖
𝑏 exp (−

𝑒𝑧𝑖𝜓

𝑘𝐵𝑇
)

𝑖

 (3) 

 

where 0 is the permittivity of vacuum,  is the dielectric constant of the solvent, 𝑒 is the 

elementary charge, 𝑘𝐵 is the Boltzmann constant,  𝑇 is the absolute temperature of the system, 

𝜌𝑖 is the density of ion 𝑖 (number of ions per unit volume), 𝜌𝑖
𝑏 is the bulk density of ion 𝑖, and 

𝑧𝑖 is the valence of ion 𝑖. 
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Despite its effectiveness in predicting some thermodynamic properties,
57

 the classical 

PBE fails to explain phenomena such as the ion specificity, the potential inversion, the 

attraction between like-charged colloidal particles, the repulsion between opposite-charged 

particles, and multiple alternating layers of ions. This usually happens in concentrated 

systems and when the surface potential is high, since the Gouy-Chapman model neglects the 

finite size of the ions, the non-ideality of the solution, and any other type of interactions 

except the electrostatic one. These limitations have highlighted the importance of developing 

modifications to the classical version of the PBE in order to take into account several 

important effects such as dispersion forces, hydration, ion size effects, and electric correlation 

between ions.
43,50–52,69

 

These additional contributions may be divided in two distinct classes: external field 

contributions, which are represented by 𝑉𝑖, and contributions depending on the interaction 

among ions – here referred as residual chemical potential, 𝜇𝑖
𝑟𝑒𝑠. These additional terms can be 

included in the description of the ion electrochemical potential 𝜇𝑖 as follows 

 

𝜇𝑖(𝑝, 𝑇, {𝓷}) = 𝜇𝑖
0(𝑝, 𝑇) + 𝑘𝐵𝑇 ln 𝜌𝑖 + 𝑒𝑧𝑖𝜓 + 𝑉𝑖 + 𝜇𝑖

𝑟𝑒𝑠(𝑝, 𝑇, {𝓷}) (4) 

 

where 𝜇𝑖
0 is the standard electrochemical potential of the ion 𝑖 and {𝓷} represents the set of 

the number of mols of all species in the system. The additional contributions can be function 

of the ion's separation from the surface or even functional of the ion densities. At the bulk 

reservoir, the electrochemical potential of ion 𝑖, 𝜇𝑖
𝑏, is given by 

 

𝜇𝑖
𝑏(𝑝, 𝑇, {𝓷}) = 𝜇𝑖

0(𝑝, 𝑇) + 𝑘𝐵𝑇 ln 𝜌𝑖
𝑏 + 𝑒𝑧𝑖𝜓

𝑏 + 𝑉𝑖
𝑏 + 𝜇𝑖

𝑏,𝑟𝑒𝑠(𝑝, 𝑇, {𝓷}) (5) 

 

here, 𝜓𝑏 , 𝑉𝑖
𝑏 , and 𝜇𝑖

𝑏,𝑟𝑒𝑠  stand, respectively, for the electrostatic potential, the external 

potential of the ion 𝑖, and the residual chemical potential at the bulk reservoir. The two first 

contributions (𝜓𝑏  and 𝑉𝑖
𝑏 ) usually are null. The modified Boltzmann distribution can be 

obtained by the combination of Eqs. (4) and (5), yielding
20

 

 

𝜌𝑖 = 𝜌𝑖
𝑏 exp [−

𝑧𝑖𝑒(𝜓 − 𝜓𝑏) + 𝑉𝑖 − 𝑉𝑖
𝑏 + 𝜇𝑖

𝑟𝑒𝑠 − 𝜇𝑖
𝑏,𝑟𝑒𝑠

𝑘𝐵𝑇
] (6) 

 



29 

 

 

 

Whereas the Boltzmann distribution of the ions is obtained solely on the basis of the 

electrical potential energy in the classical PBE, the extended version presented in Eq. (6) 

allows the inclusion of non-electrostatic energy contributions at the same level of the 

electrostatic potential.
20,50,69

 

Another possible modification of the Gouy-Chapman model is the consideration of 

volumetric density of fixed charges, 𝜚𝑏𝑛, in the Poisson equation as follows 

 

0∇ ∙ [ (𝐫) ∇𝜓(𝐫)] = −𝑒∑𝑧𝑖 𝜌𝑖(𝐫)

𝑖

− 𝜚𝑏𝑛(𝐫) ≡ 𝜚(𝐫) (7) 

 

Here the term “fixed” denotes charges that are fixed in space (immobile), but not necessarily 

with a constant value. In addition, the dielectric constant may be uniform, as in the Gouy-

Chapman model, or a function of the position. The scale integration can provide useful 

information for the definition of the local dielectric constant function.
20

 

Consequently, the modified PBE is given by the combination of Eqs. (6) and (7): 

 

0∇ ∙ [ (𝐫) ∇𝜓(𝐫)]

= −𝑒∑𝑧𝑖 𝜌𝑖
𝑏 exp [−

𝑧𝑖𝑒(𝜓 − 𝜓𝑏) + 𝑉𝑖 − 𝑉𝑖
𝑏 + 𝜇𝑖

𝑟𝑒𝑠 − 𝜇𝑖
𝑏,𝑟𝑒𝑠

𝑘𝐵𝑇
]

𝑖

− 𝜚𝑏𝑛(𝐫) 
(8) 

 

It is important to highlight that the modified PBE is also applicable to uncharged 

surfaces or interfaces. 

The boundary conditions usually associated with Eq. (8) can be of three types: 

Dirichlet boundary (potential specified at the boundary), Neumann boundary (derivative of 

the potential specified at the boundary), and Robin boundary (a weighted combination of 

Dirichlet boundary conditions and Neumann boundary conditions).
20

 

The Dirichlet boundary is straightforward and the electrostatic potential at the 

specified boundary is set a priori. On the other hand, the Neumann boundary condition is 

related to the surface charge density 𝑄 by 

 

[ (𝐫) ∇𝜓(𝐫)]|surface ∙ 𝐧 = −
𝑄

0
 (9) 
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where 𝐧 is the unit normal vector to the corresponding surface. In a distance far from the 

surface or interface, the electrostatic potential or the surface charge density is usually set to 

zero. 

Nevertheless, constant potential or constant surface charge density boundary 

conditions are rarely found in real surfaces. To address this problem, Robin boundary 

conditions described by charge regulation can be used especially for systems with surface 

charge density susceptible to pH or the presence of other ions close to the surface. Examples 

of such surfaces are proteins,
70–72

 carbonate rocks, sandstone rocks,
73

 some ionic 

membranes,
74

 etc.  

For Cartesian coordinates with one planar surface, uniform dielectric constant, 

symmetrical electrolyte, and Dirichlet boundary conditions, the classical PBE can be solved 

analytically.
68

 For other coordinate systems or conditions, different numerical techniques can 

be used to solve the PBE equation such as finite difference method,
75,76

 finite volume 

method,
4,77

 second order spline finite elements method,
3,78

 and finite element method.
73,75

  

Even with such modifications, the PBE fails sometimes to predict some structural and 

thermodynamics properties particularly in concentrated systems and/or with high surface 

charge density. In this context, models with higher level of details based on explicit 

consideration of the ion and/or the solvent structures may be an option to overcome these 

limitations. One of the methods that can be used to consider a higher level of detail, beyond 

PBE, is the classical density functional theory, presented in the next section. For instance, in 

Figure 3 of the APPENDIX A, the density profiles of monovalent ions as a function of the 

distance from a flat wall with surface charge equal to ‒0.35C/m² are presented. For a bulk 

concentration of 2.0 M, DFT predicts an inversion in the volumetric charge density agreeing 

with Monte Carlo simulation,
79

 whereas PBE is unable to predict this inversion as expected.
20

 

 

 

1.2 Classical density functional theory (DFT) 

 

 

Similar to the PBE, the classical DFT – also known as statistical mechanics DFT since 

it is based on statistical mechanics – provides information about the microscopic behavior and 

thermodynamic properties of the system of interest, making possible the connection with 

well-established phenomenological equations to model macroscopic phenomena. Using 

classical DFT, besides electrolyte and colloidal systems (treated in this thesis), it is also 
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possible to model systems with uncharged particles (or molecules) explicitly. Indeed the 

classical DFT is a versatile tool able to analyze multiple length scales ranging, for example, 

from molecular events to macroscopic phase transitions.
32,33

 

The main concept of the classical DFT comes from the electronic density functional 

theory (also called quantum mechanics DFT), which was established by the works of 

Hohenberg, Kohn and Sham.
80,81

 Based on the observation of Thomas
82

 and Fermi
83

, in which 

the energy of an electronic system can be directly computed by the electron density profile, 

Hohenberg and Kohn
80

 proved mathematically that the intrinsic ground-state molecular 

energy is a unique functional of the ground-sate electron probability density. Following that 

work, Kohn and Sham
81

 proposed a method to compute the electronic density considering a 

fictitious reference system without interactions among electrons, under the same external 

potential energy for all of them. Therefore, the ground-state electronic energy is defined by 

the nuclear attraction potential energy for the electrons, the Coulombic repulsions, the average 

kinetic energy of the reference system, and the so called exchange-correlation energy.
81,84

 The 

latter term encompasses the kinetic correlation energy, the exchange energy, the Coulombic 

correlation energy, and a self-interaction correction. 

Whereas the density of the electronic DFT refers to the electrons, in the classical 

approach it refers to the atoms, ions, molecules or even the unit of polymers. Unfortunately, in 

the literature, the same acronym is used to both theories. For the purpose of this thesis, the 

acronym DFT, without explicit denomination of being electronic or classical, will be adopted 

as a reference to the classical DFT. 

According to the Hohenberg–Kohn theorem applied to the classical DFT, in an open 

system with specified temperature 𝑇, total volume 𝒱, and chemical potential of all constituent 

species 𝜇𝑖 , the external potential is uniquely determined by the equilibrium density of the 

species 𝜌𝑖(𝐫) .
33,85–87

 Additionally, the intrinsic Helmholtz energy 𝐹[{𝜌𝑘(𝐫)}] , which is 

independent of the external potential, is uniquely defined as a functional of the densities. 

Here, {𝜌𝑘(𝐫)} is the set of the density functions of all species in the system. More information 

about the Hohenberg–Kohn theorem can be found in APPENDIX B.  

The first studies of the DFT for classical systems were conducted in 1976 to model the 

liquid-vapor surface tension and the wettability of a Lennard-Jones fluid
88,89

 and since then 

much progress has been made for more accurate formulation of the Helmholtz energy 

functional applicable not only to simple but also to complex fluids, such as polymers, 

polyelectrolytes and biomacromolecules.
32,90,99,91–98
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1.2.1 Grand canonical potential 

 

 

In order to correlate thermodynamic properties of an open system to the density 

profiles 𝜌(𝒓), some features and definitions of the statistical thermodynamics are necessary. 

The grand canonical ensemble, in which the phase space is defined by the union of phase 

spaces corresponding to all values of the variable 𝑁 with 𝑇 and 𝒱 given, is adopted. Hence, 

the number of molecules 𝑁 in a system can range over all possibilities since the systems of 

the ensemble are allowed to come to equilibrium with a reservoir with which they can 

exchange both heat and matter.
100,101

 

For a one-component open system in the absence of external field, the thermodynamic 

state is defined by specifying the values of 𝒱 , 𝑇 , and 𝜇 , in which the corresponding 

thermodynamics function is the grand potential Ω defined by:
100,101

 

 

Ω = 𝐹 − 𝑁𝜇 (10) 

 

Moreover, the grand potential is related to the total volume 𝒱  and total pressure 𝑝 of the 

system in a uniform fluid by 

 

Ω = −(𝑝𝒱) = −
1

𝛽
ln Ξ (11) 

 

where Ξ is the grand-canonical partition function. 

According to classical thermodynamics, the change in internal energy arising from 

infinitesimal changes in 𝑁, 𝒱  and 𝒮  for an open isothermal system that can perform only 

mechanical work is given by
102

 

 

d𝑈 = 𝑇d𝒮 − 𝑝d𝒱 + 𝜇d𝑁 (12) 

 

where 𝒮 is the entropy of the system. Since 𝐹 = 𝑈 − 𝑇𝒮, the differential form of the grand 

potential is expressed as  
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dΩ = d𝐹 − 𝜇d𝑁 − 𝑁d𝜇 = d𝑈 − 𝑇d𝒮 − 𝒮d𝑇 − 𝜇d𝑁 − 𝑁d𝜇 (13) 

 

By substituting Eq. (12) into Eq. (13) we have
100,101

 

 

dΩ = −𝑝d𝒱 − 𝒮d𝑇 − 𝑁d𝜇 (14) 

 

After, this brief definition of the grand canonical ensemble, we expand the analysis to 

a heterogeneous, multicomponent system in the presence of external potentials. For the 

classical approach, the grand-canonical partition function for an 𝑛 -component mixture 

containing 𝑁𝑖 spherical particles of type 𝑖 is given by
103,104

 

 

Ξ = ∑
1

ℎ3𝑁
[∏

1

𝑁𝑖!
exp(𝛽𝜇𝑖𝑁𝑖)

𝑛

𝑖=1

]

𝑁1,𝑁2…𝑁𝑛

 ∫ exp[−𝛽ℋ(𝐫𝑁, 𝐩𝑁)] d𝐫𝑁d𝐩𝑁  (15) 

 

where ℎ is the Planck's constant, ℋ(𝐫𝑁, 𝐩𝑁) is the Hamiltonian of the 𝑛-component mixture 

in the configuration 𝐫𝑁, 𝐩 is the momentum, 𝛽 = 1/(𝑘𝐵𝑇), and 𝑁 ≡ ∑ 𝑁𝑖𝑖 . The Hamiltonian 

in the presence of an external potential considers the contributions from the kinetic energy 

𝐾(𝐩𝑁), the total interatomic potential energy 𝒰(𝐫𝑁), and the one-body external potential 

𝑣(𝐫) as
105

 

 

ℋ(𝐫𝑁, 𝐩𝑁) = 𝐾(𝐩𝑁) + 𝒰(𝐫𝑁) +∑𝑣(𝐫𝑗)

𝑁

𝑗=1

 (16) 

 

where 𝐫𝑗 is the position vector of the 𝑗th particle, 

 

𝐾(𝐩𝑁) =∑
|𝐩𝑗|

2

2𝑚𝑗

𝑁

𝑗=1

 (17) 

 

and 𝑚𝑗 is the mass of the 𝑗th particle. Combining Eqs. (15) – (17) and solving the integration 

over momenta,
87

 the grand-canonical partition function can be written as 
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Ξ = ∑ [∏
1

 𝑁𝑖! Λ𝑖
3𝑁𝑖

𝑛

𝑖=1

]

𝑁1,𝑁2…𝑁𝑛

 ∫ exp [−𝛽(𝒰(𝐫) +∑𝜑(𝐫𝑗)

𝑁

𝑗=1

)]d𝐫𝑁   (18) 

 

where Λ𝑖 = (
h2

2𝜋𝑚𝑖𝑘𝐵𝑇
)
0,5

 is the thermal de Broglie wavelength and the one-body potential is 

defined by 𝜑(𝐫𝑗) ≡ 𝑣(𝐫𝑗) − 𝜇(𝐫𝑗). Hence the density function of the component 𝑖  can be 

written as
106,107

 

 

𝜌𝑖(𝐫) =
1

Ξ
∑ [∏

1

 𝑁𝑘! Λ𝑘
3𝑁𝑘

𝑛

𝑘=1

]

𝑁1,𝑁2…𝑁𝑛

 ∫ [∑𝛿(𝐫 − 𝐫𝑗
(𝑖))

𝑁𝑖

𝑗=1

] exp [−𝛽𝒰(𝐫) − 𝛽∑𝜑(𝐫𝑗)

𝑁

𝑗=1

] d𝐫𝑁

= −
1

𝛽Ξ

𝛿Ξ

𝛿𝜑𝑖(𝐫)
   

(19) 

 

in which 𝐫𝑗
(𝑖)

 is the vector position of the 𝑗th particle of type 𝑖,  

 

𝜑𝑖(𝐫) ≡ ∫∑𝜑(𝐫𝑗
(𝑖))𝛿(𝐫 − 𝐫𝑗

(𝑖))

𝑁𝑖

𝑗=1

d𝐫𝑁 (20) 

 

and 
𝛿Ξ

𝛿𝜑𝑖(𝐫)
 is a functional derivative of Ξ. For more details about the definition of the density 

as a functional derivative of Ξ, see APPENDIX B. The density function can also be derived 

from the grand potential Ω as
86,107

 

 

𝜌𝑖(𝐫) =
𝛿Ω

𝛿𝜑𝑖(𝐫)
 (21) 

 

Using the Legendre transformation to correlate the grand potential Ω and the intrinsic 

Helmholtz energy, yields
20,86,87

 

 

Ω = 𝐹 +∫∑𝜌𝑖
𝑒𝑞(𝐫)𝜑𝑖(𝒓)d𝐫

𝑛

𝑖=1

 (22) 
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where 𝜌𝑖
𝑒𝑞

 is the equilibrium number density of ion 𝑖. As a matter of fact, according to the 

Hohenberg–Kohn theorem (discussed in Section 1.2 and presented in APPENDIX B), the 

one-body potential 𝜑𝑖(𝒓) can be uniquely determined by the density function 𝜌𝑖(𝐫). Based on 

this definition, we can expand the concept to every system independently of being at 

equilibrium or not, using the variational grand potential functional Ω[{𝜌𝑘(𝐫)}]  and the 

variational intrinsic Helmholtz energy functional 𝐹[{𝜌𝑘(𝐫)}]:
20,86,87,107

 

 

Ω[{𝜌𝑘(𝐫)}] = 𝐹[{𝜌𝑖(𝐫)}] + ∫∑𝜌𝑖(𝐫)𝜑𝑖(𝐫)

𝑛

𝑖=1

d𝐫 (23) 

 

For equilibrium density profiles, Eq. (23) reduces to the grand potential of the system 

expressed by Eq. (22); conversely, for any other density profiles, the functional Ω[{𝜌𝑘(𝐫)}] 

reduces to a value that is larger than the grand potential. In other words, in an open system, 

the grand potential is a minimum at equilibrium; hence, 𝜌𝑖
𝑒𝑞(𝐫)  must satisfy the Euler-

Lagrange equation,
20,86,87,107

 

 

𝛿Ω[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)
|
𝜌𝑖
𝑒𝑞

= 0 (24) 

 

for the inhomogeneous density profile 𝜌𝑖(𝐫) of all species 𝑖, which is equivalent to 

 

𝜇𝑖 − 𝑣𝑖(𝐫) =
𝛿𝐹[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)
 (25) 

 

with the constraining 

 

∇𝜇𝑖(𝐫) = 0 (26) 

 

i.e. the electrochemical potential for each species 𝜇𝑖 is constant and equal to its value at the 

bulk solution, 𝜇𝑖
𝑏. The intrinsic Helmholtz energy can be split into two contributions: ideal 

𝐹𝑖𝑑 and excess 𝐹𝑒𝑥. In addition, the functional derivative of the ideal Helmholtz energy is 

equivalent to the ideal chemical potential 𝜇𝑖
𝑖𝑑, while the functional derivative of the excess 
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Helmholtz energy is related to the first-order direct correlation function (DCF) 𝑐(1) , as 

follows 

 

𝑐𝑖
(1)(𝐫) ≡ −𝛽

𝛿𝐹𝑒𝑥[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)
 (27) 

 

For each contribution considered in the computation of the intrinsic Helmholtz energy 

functional, there must be an equivalent contribution to the chemical potential. Replacing these 

definitions into Eq. (25), we obtain 

 

𝜇𝑖 = 𝑣𝑖(𝐫) − 𝛽−1𝑐(1)(𝐫) + 𝜇𝑖
𝑖𝑑(𝐫) (28) 

 

The term −𝛽−1𝑐(1)(𝐫) can be interpreted as the local excess chemical potential due to the 

intermolecular interactions, which are absent in the ideal gas. 

By solving the functional derivative of the ideal Helmholtz energy, we obtain
107

 

 

𝜌𝑖
𝑒𝑞(𝐫) =

1

Λ𝑖
3 exp [𝛽𝜇𝑖 − 𝛽𝑣𝑖(𝐫) −

𝛽𝛿𝐹𝑒𝑥

𝛿𝜌𝑖
𝑒𝑞(𝐫)

] =
1

Λ𝑖
3 exp[𝛽𝜇𝑖 − 𝛽𝑣𝑖(𝐫) + 𝑐(1)(𝐫)] (29) 

 

Consequently, given the external potential and the excess Helmholtz energy functional 

– or the first-order direct correlation function -, the equilibrium density profile can be 

obtained. At equilibrium 𝜇𝑖 , which can also be split into ideal (𝜇𝑖
𝑏,𝑖𝑑

) and excess (𝜇𝑖
𝑏,𝑒𝑥

) 

contributions, is equivalent to the bulk chemical potential of the species 𝑖. Furthermore, the 

ideal chemical potential of the species 𝑖 at the bulk reservoir is given by 

 

𝜇𝑖
𝑏,𝑖𝑑 = 𝛽−1 ln(Λ𝑖

3𝜌𝑖
𝑏) (30) 

 

Replacing Eq. (30) into Eq. (29), we have  

 

𝜌𝑖
𝑒𝑞(𝐫) = 𝜌𝑖

𝑏 exp[𝛽𝜇𝑖
𝑏,𝑒𝑥 − 𝛽𝑣𝑖(𝐫) + 𝑐(1)(𝐫)] (31) 

 

The different versions of DFT reflect some of the assumptions made about the 

calculation of the excess intrinsic Helmholtz energy, since, in the DFT calculation, there is no 
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generic procedure in order to compute 𝐹𝑒𝑥 . Thus, many approximations are available; 

however, all the versions are generally based on the minimization of the grand potential Ω, 

which can be denominated as free minimization or parameterized minimization. In the former, 

the density profile is discretized and, in the latter, it is a parameterized function form, e.g. 

Gaussians.
20,86,108,109

 

Two methods are commonly described in the literature to solve Eq. (29): Picard 

method and Newton method. The Picard method has no guarantee to converge, nevertheless 

for many choices of external potentials, it does converge to a solution with the inclusion of a 

mixing parameter 𝛼𝑃 ∈ {0,… ,1}. Therefore, the input density profile of the new iteration 𝑘, 

𝜌𝑖,𝑖𝑛
(𝑘)(𝐫) is a weighted combination between the input density profile 𝜌𝑖,𝑖𝑛

(𝑘−1)(𝐫) and the output 

density profile 𝜌𝑖,𝑜𝑢𝑡
(𝑘−1)(𝐫) of the previous iteration:

110
 

 

𝜌𝑖,𝑖𝑛
(𝑘)(𝐫) = 𝛼𝑃 𝜌𝑖,𝑜𝑢𝑡

(𝑘−1)(𝐫) + (1 − 𝛼𝑃) 𝜌𝑖,𝑖𝑛
(𝑘−1)(𝐫) (32) 

 

According to Knepley et al., Picard iteration requires more iteration steps to converge 

compared to Newton method (which has a quadratic convergence); however, the latter needs 

more computer storage and each iteration usually takes longer than a Picard iteration.
108

 Even 

with variable mixing parameters along the simulation, there are some cases in which Picard 

presents difficulty to converge. Oettel and co-works suggested a procedure based in a Picard-

DIIS (discrete inversion in iterative subspace) hybrid algorithm for such situations.
111

 

Edelmann and Roth recently proposed a Picard-Broyden-hybrid algorithm, in which, 

for the initial steps, Picard method is applied and, after a certain threshold is reached, a switch 

to the Broyden method is performed.
112

 Thus, the main idea is to execute the Picard iteration 

until the density profiles are sufficiently close to their equilibrium values and take the 

advantage of the convergence speed of the Broyden method, which is a quasi-Newton 

method.
112

 

It is worthwhile to note that the equilibrium point corresponding to the minimum of 

the grand potential is obtained by the necessary condition represented by Eq. (24). 
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1.2.2 Ideal gas contribution to the intrinsic Helmholtz energy functional  

 

 

The intrinsic Helmholtz energy functional of an ideal gas can be expressed as a 

functional of the density profile. For an open system with 𝑛-component mixture containing 𝑁𝑖 

spherical particles of type 𝑖, the ideal grand-canonical partition function is given by  

 

Ξ𝑖𝑑 = ∑ [∏
1

 𝑁𝑖! Λ𝑖
3𝑁𝑖

𝑛

𝑖=1

]

𝑁1,𝑁2…𝑁𝑛

 ∫ exp [−𝛽∑𝜑(𝐫𝑗)

𝑁

𝑗=1

] d𝐫𝑁

= exp [∑∫
exp[−𝛽𝜑𝑖(𝐫)]

Λ𝑖
3 d𝐫

𝑛

𝑖=1

] 

(33) 

 

in which the concept of power series to define the exponential (exp 𝑥 = ∑
𝑥𝑚

𝑚!𝑚 ) is used. 

Thus, the ideal grand potential can be written as  

 

𝛽Ω𝑖𝑑 = − ln Ξ𝑖𝑑 = −∑∫
exp[−𝛽𝜑𝑖(𝐫)]

Λ𝑖
3 d𝐫

𝑛

𝑖=1

 (34) 

 

while the equilibrium density profile of an ideal gas is 

 

𝜌𝑖(𝐫) = −
1

𝛽

𝛿 ln Ξ𝑖𝑑

𝛿𝜑𝑖(𝐫)
=
exp[−𝛽𝜑𝑖(𝐫)]

Λ𝑖
3  (35) 

 

Applying Eq. (23) for the ideal system and combining with the definitions in Eqs. (34) 

and (35), the ideal gas contribution to the intrinsic Helmholtz energy functional 𝐹𝑖𝑑 is given 

by
86

 

 

𝛽𝐹𝑖𝑑[{𝜌𝑘(𝐫)}] = 𝛽Ω𝑖𝑑 − 𝛽∫∑𝜌𝑖(𝐫)𝜑𝑖(𝐫)

𝑛

𝑖=1

d𝐫 =∑∫𝜌𝑖(𝐫){ln[𝜌𝑖(𝐫)Λ𝑖
3] − 1}d𝐫 

𝑛

𝑖=1

  (36) 

 

and depends only on the local density of the species.  

The functional derivative of 𝐹𝑖𝑑[{𝜌𝑘(𝐫)}] with respect to 𝜌𝑖(𝐫) is given by 
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𝛿𝛽𝐹𝑖𝑑[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)
= ln[𝜌𝑖(𝐫)Λ𝑖

3] (37) 

 

Thus, the ideal gas contribution of the component 𝑖  to the chemical potential in the bulk 

solution can be deduced resulting in Eq. (30).  

 

 

1.2.3 Short-range repulsion 

 

 

The short-range repulsion among molecules can be conveniently represented by a hard 

sphere model, in which the overlap of the atoms/molecules is prohibited.  

A notable class of methods based on the fundamental geometric measures of the hard 

particle has been highlighting over the years: the fundamental measure theory (FMT)
113,114

, 

which was first introduced by Rosenfeld
113

 in 1989. Since then, numerous modifications have 

been proposed in order to improve the determination of the structure and thermodynamic 

properties especially of condensed systems.
115–118

 

The FMT was constructed on physical foundation combining the ideas from the 

scaled-particle theory (SPT) and the Percus-Yevick (PY) compressibility equation of state. 

According to this theory, the excess Helmholtz energy functional due to the hard sphere 

exclusion volume 𝐹ℎ𝑠 is defined by 
113

 

 

𝛽𝐹ℎ𝑠[{𝜌𝑘(𝐫)}] = ∫Φℎ𝑠({𝑛𝛼(𝐫)})d𝐫 (38) 

 

where Φℎ𝑠 is the reduced Helmholtz energy density and {𝑛𝛼(𝐫)} is the set of the weighted 

densities for the 𝑛-component mixture given by  

 

𝑛𝛼(𝐫) =∑𝑛𝛼,𝑖(𝐫)

𝑛

𝑖=1

= ∑∫𝜌𝑖(𝐫
′)𝜔𝑖

(𝛼)(𝐫 − 𝐫′) d𝐫′
𝑛

𝑖=1

 (39) 
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where the integral is taken over all the space and 𝛼 ∈ {0,1,2,3, 𝑉1, 𝑉2}. The indexes 𝑉1 and 

𝑉2 refer to the vector-like weighted densities. The dimension of 𝑛𝛼 is equal to [volume]
(𝛼−3)

3 . 

The weighting functions 𝜔𝑖
(𝛼)(𝐫) are related to the fundamental geometric measures of the 

hard spheres by
113,114

 

 

𝜔𝑖
(0)(𝐫) =

𝜔𝑖
(2)(𝐫)

𝜋𝜎𝑖2
 (40) 

𝜔𝑖
(1)(𝐫) =

𝜔𝑖
(2)(𝐫)

2𝜋𝜎𝑖
 (41) 

𝜔𝑖
(2)(𝐫) = 𝛿 (

𝜎𝑖
2
− |𝐫|) (42) 

𝜔𝑖
(3)(𝐫) = 𝜃 (

𝜎𝑖
2
− |𝐫|) (43) 

𝝎𝑖
(𝑉1)(𝐫) =

𝝎𝑖
(𝑉2)(𝐫)

2𝜋𝜎𝑖
 (44) 

𝝎𝑖
(𝑉2)(𝐫) =

𝐫

|𝐫|
𝛿 (

𝜎𝑖
2
− |𝐫|) (45) 

 

Here 𝜎𝑖 is the hard sphere diameter of the component 𝑖 in the mixture, 𝜃(𝑟) is the Heaviside 

step function, and 𝛿(𝑟)  is the Dirac-delta function. Integrations over 𝜔𝑖
(3)(𝐫) , 𝜔𝑖

(2)(𝐫) , 

𝜔𝑖
(1)(𝐫), and 𝜔𝑖

(0)(𝐫) give respectively the volume (𝒱𝑖), the surface area, the mean radius of 

curvature, and the Euler characteristics (equal to 1) of the sphere. The vector function 

𝝎𝑖
(𝑉2)(𝐫) refers to the variance across the particle surface. Moreover, the integrals over the 

vector-like weighting functions vanish.
113,114

 Particularly interesting is that the weighting 

functions are independent of the density distributions. 

In the limit of the homogeneous system, the scalar weighted densities are equivalent to 

the SPT variables 𝜉𝛼 in which
113,114

 

 

𝑛0 ≡ 𝜉0 =∑𝜌𝑖
𝑏

𝑖

 (46) 

𝑛1 ≡ 𝜉1 =
1

2
∑𝜌𝑖

𝑏𝜎𝑖 

𝑖

 (47) 

𝑛2 ≡ 𝜉2 = 𝜋∑𝜌𝑖
𝑏 𝜎𝑖

2 
𝑖

 (48) 
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𝑛3 ≡ 𝜉3 =
𝜋

6
∑𝜌𝑖

𝑏𝜎𝑖
3 

𝑖

 (49) 

 

𝜉3 is also denominated the total packing fraction.  

Regarding the reduced Helmholtz energy density Φℎ𝑠, a dimensional analysis defines 

that 

 

Φℎ𝑠 = 𝑓1(𝑛3)𝑛0 + 𝑓2(𝑛3)𝑛1𝑛2 + 𝑓3(𝑛3) 𝐧1 ∙ 𝐧2 + 𝑓4(𝑛3)𝑛2
3 + 𝑓5(𝑛3)𝑛2𝐧2 ∙ 𝐧2 (50) 

 

here, the coefficients {𝑓0, … , 𝑓5} are functions of 𝑛3 and each term in Eq. (50) has dimension 

of [length]
-3

. The difference between the original FMT proposed by Rosenfeld
113

 and its 

modifications
116–120

 is related to these coefficients. The reduced Helmholtz energy densities 

for some versions of FMT are presented in Table 1. 

The original FMT (RF) failed to account for the freezing transition of the hard-sphere 

fluid into a solid or in systems with strong-confining external potentials due to a divergence in 

the excess Helmholtz energy density. The first attempts to overcome this problem consist in 

the dimensional crossover whereby the three dimensional functional was used to model two-, 

one-, and zero-dimensional densities, such as hard sphere confined in a slit pore, cylindrical 

pore or even, a cavity.
119–122

 Examples are the antisymmetrized version of the original FMT 

(RF*)
119

 and the approach developed by Tarazona,
122

 which considers the inclusion of an 

additional tensorial weight function.  

Furthermore, some modifications of the FMT involve the introduction of other 

equations of state (EoS) instead of the PY, like EoS developed for mixtures. The White-Bear 

(WB) version of the FMT is based on the Boublik-Mansoori-Carnahan-Starling-Leland 

equation of state (BMCSL) and presents more agreement to data from computer simulation 

mainly for confined fluids.
115,117,118

 However the SPT differential equation,  

 

lim
𝜎𝑖→∞

𝛽𝜇𝑖
𝑏,ℎ𝑠

𝒱𝑖 
=
𝜕Φℎ𝑠

𝜕𝑛3
= 𝛽𝑝 (51) 

 

which plays an important role to the derivation of the original FMT, cannot be satisfied in the 

WB version, leading to a slight inconsistency. Here, 𝜇𝑖
𝑏,ℎ𝑠

 refers to the excess chemical 

potential due to the hard sphere exclusion volume at bulk reservoir. 
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In Table 1, it is possible to observe the difference between the pressures estimated by 

the FMT and the EoS by comparing the columns 
𝜕Φℎ𝑠

𝜕𝑛3
 and “Bulk Pressure based on the EoS”.  

Since 𝐧𝑉1 and 𝐧𝑉2 vanish at the bulk solution, it is rather clear that the original FMT and the 

antisymmetrized version presented in Table 1 satisfy Eq. (51). In order to take advantage of 

like- BMCSL equation of state and keeping the consistency for pressure, Hansen-Goos and 

Roth
123

 proposed the White-Bear mark II version of the FMT (WBII), whereby the expansion 

of the logarithm term of the 
𝜕Φℎ𝑠

𝜕𝑛3
 in a series 

 

ln(1 − 𝑛3) = −𝑛3 −
𝑛3
2

2
− 𝒪(𝑛3

3) (52) 

 

leads to the reproduction of the pressure defined by the CSIII (modified version of the 

BMCSL), where 𝒪(𝑛3
3) refers to terms of order 𝑛3

3 or smaller.  

The FMT has also been developed to geometries different from the hard sphere, such 

as hard platelets and hard rods.
114,124,125

  

Moreover, a method based on the Carnahan-Starling equation of state applied to 

simple fluids
126

 and on the integration of the generalized Flory equation of state
127

 with the 

addiction of the hard sphere interaction to characterize polymeric fluids has been used in the 

literature especially to model the exclusion volume in polymeric solutions: the so-called 

Forsman, Woodward and Freasier method (FWF).
128

 

The hard-sphere contribution to the first-order direct correlation function is equal to  

 

𝑐𝑖
(1)ℎ𝑠(𝐫) = −

𝛿𝛽𝐹ℎ𝑠[Φℎ𝑠({𝑛𝛼})]

𝛿𝜌𝑖(𝐫)
= −∑∫

𝜕Φℎ𝑠({𝑛𝛼})

𝜕𝑛𝛼

𝛿𝑛𝛼(𝐫
′)

𝛿𝜌𝑖(𝐫)
d𝐫′

𝛼

 (53) 

 

in which, for Cartesian coordinates, the functional derivative of 𝑛𝛼(𝐫
′) with respect to 𝜌𝑖(𝐫) 

reduces to 

 

𝛿𝑛𝛼(𝐫
′)

𝛿𝜌𝑖(𝐫)
=

𝛿

𝛿𝜌𝑖(𝐫)
∑∫𝜌𝑖(𝐫

′′)𝜔𝑖
(𝛼)(𝐫′ − 𝐫′′) d𝐫′′

𝑖

= 𝜔𝑖
(𝛼)(𝐫′ − 𝐫) (54) 
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It is worthwhile to note that the argument in the weighting function in Eq. (39) is different 

from Eq. (53). For the scalar weighting functions, it is irrelevant since they are even 

functions; however the vector weighting functions are odd functions, resulting in
117

 

 

𝝎𝑖
(𝛼)(𝐫′ − 𝐫) = −𝝎𝑖

(𝛼)(𝐫 − 𝐫′) (55) 

 

The partial derivative of Φℎ𝑠({𝑛𝛼}) with respect to {𝑛𝛼} for some versions of the FMT 

are shown in Table 2. In addition, the hard-sphere contribution to the chemical potential at the 

bulk fluid is 

 

𝛽𝜇𝑖
𝑏,ℎ𝑠 =∑

𝜕Φℎ𝑠

𝜕𝑛𝛼

𝜕𝑛𝛼

𝜕𝜌𝑖
𝑏

𝛼

=
𝜕Φℎ𝑠

𝜕𝑛0
+
𝜕Φℎ𝑠

𝜕𝑛1

𝜎𝑖
2
 +

𝜕Φℎ𝑠

𝜕𝑛2
𝜋𝜎𝑖

2 +
𝜕Φℎ𝑠

𝜕𝑛3

𝜋𝜎𝑖
3

6
  (56) 

 

The integrals in Eqs. (39) and (54) are convolutions; therefore, they can be evaluated 

in the real or reciprocal space. Writing the weighted densities and the hard-sphere 

contribution to first-order direct correlation function using the Fourier transform and the 

convolution theorem yields, respectively, 

 

𝑛𝛼(𝐫) =∑ℱ−1 [ℱ(𝜌𝑖) ∙ ℱ(𝜔𝑖
(𝛼))]

𝑛

𝑖=1

= ℱ−1 [∑ℱ(𝜌𝑖) ∙ ℱ(𝜔𝑖
(𝛼))

𝑛

𝑖=1

] (57) 

𝑐𝑖
(1)ℎ𝑠(𝐫) = −∑ℱ−1 {ℱ [

𝜕Φℎ𝑠[{𝑛𝛼}] 

𝜕𝑛𝛼
] ∙ ℱ[±𝜔𝑖

(𝛼)]}

𝛼

 (58) 

 

where ℱ and ℱ−1 denote, respectively, the Fourier transform and its inverse.
108,114,117

 

The calculation of these convolutions in reciprocal space has a couple of advantages 

compared to real space, including computational speed and numerical accuracy.
108,129–131

 The 

former is justified by the reduction of the number of operations from 𝒪(𝒩2) in the real space 

to 𝒪(𝒩 log𝒩) using fast Fourier transform (FFT), where 𝒩 is the number of grid points.
132

 

Furthermore, the convolutions of densities inside and at the surface of the spheres are not 

computed with sufficient accuracy in real-space, mainly in two- and three-dimensional 

systems, even with very fine discretization.
108

 For example, if bulk concentrations are used in 

Eq. (39), the geometric measures of the sphere are not recovered with usual real methods. 

However, specialized quadrature might reverse this scenario.
108,117

 On the other hand, since 
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ℱ(𝜔𝑖
(𝛼)) are distributions, it is not trivial to represent them on the rectangular grid using FFT 

with excellent accuracy. To address this problem, Knepley et al.
108

 suggested the calculation 

of each weighting function analytically on the same mesh as the fast Fourier transform (in 

order to be consistent with �̂�𝑖 computed by the FFT). This alternative is able to reproduce the 

geometric measures of the spheres when the weighting functions are convoluted with constant 

densities. Moreover real space methods are more sensitive to grid size than reciprocal space 

methods.
108,131
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1.2.4  Electrostatics 

 

 

The electrostatic contribution to the intrinsic Helmholtz energy functional can be 

divided into two parts: one is related to the direct Coulomb interactions (𝐹𝐶), which is similar 

to the electrostatic interactions in the PBE, and the other one refers to the charge distribution 

correlations (𝐹𝑒𝑙). The latter is an attractive van der Waals-like interaction that gives rise to 

attraction between equally charged particles, for example.  

The interaction potential 𝓊𝑖𝑗  between any pair of spheres 𝑖  and 𝑗  in the system is 

usually represented by 

 

𝛽𝓊𝑖𝑗(𝐫) = {

∞ |𝐫| < 𝜎𝑖𝑗
𝜆𝐵𝑧𝑖𝑧𝑗
|𝐫|

|𝐫| ≥ 𝜎𝑖𝑗
 (59) 

 

where 𝜎𝑖𝑗 is the arithmetic average between the diameters of particles 𝑖 and 𝑗, and 𝜆𝐵 is the 

so-called Bjerrum length, defined as 

 

𝜆𝐵 =
𝛽𝑒2

4𝜋 0
  (60) 

 

which represents the distance between the centers of two elementary charges in a medium 

with dielectric constant  and with Coulomb potential equal to the thermal energy – 𝑘𝐵𝑇. 

Consequently, the direct Coulomb contribution 𝐹𝐶 is defined by
25,34

 

 

𝛽𝐹𝐶[{𝜌𝑘(𝐫)}] =
𝜆𝐵
2
∑∑∬

𝑧𝑖𝑧𝑗𝜌𝑖(𝐫)𝜌𝑗(𝐫
′)

|𝐫 − 𝐫′|
d𝐫d𝐫′

𝑗𝑖

 (61) 

 

and the local first-order direct correlation function due to the direct Coulomb contribution, 

𝑐𝑖
(1)𝐶(𝐫) is109

 

 

𝑐𝑖
(1)𝐶(𝐫) = −𝜆𝐵𝑧𝑖∑∫

𝑧𝑗𝜌𝑗(𝐫
′)

|𝐫 − 𝐫′|
d𝐫′

𝑗

 (62) 
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Furthermore the interaction Ψ𝑖  between the charged sphere 𝑖  and a charged planar 

surface is usually equivalent to
25,109

 

 

𝛽Ψ𝑖(𝐫) = {
∞ 𝐫⊥ <

𝜎𝑖
2

−
2𝜋𝜆𝐵𝑧𝑖𝑄

𝑒
𝐫⊥ 𝐫⊥ ≥

𝜎𝑖
2

 (63) 

 

where 𝐫⊥ is the perpendicular distance from the surface to the center of the sphere 𝑖. The 

combination of the direct Coulomb interaction and the external electric potential due to the 

charged surface gives the mean electrostatic potential:
25

 

 

𝑧𝑖𝑒𝜓(𝐫) = Ψ𝑖(𝐫) +
𝛿𝐹𝐶[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)
 (64) 

 

To avoid divergence during the computation, the mean electrostatic potential is 

calculated by Poisson equation – Eq. (1) – instead of the explicit contributions from 

𝐹𝐶[{𝜌𝑘(𝐫)}] and Ψ.  

Neglecting the size and electrostatic correlations effects and considering only the 

contributions due to the direct Coulomb interactions, Eq. (31) reduces to the well-known 

Boltzmann Equation, Eq. (2). 

For Cartesian coordinates with symmetry in �̂�  and �̂�  directions and boundary 

conditions equal to d𝜓(𝑥) d𝑥⁄ |𝑥→∞ = 0 e 𝜓(𝑥 → ∞) = 0, the mean electrostatic potential 

can be written as
25

 

 

𝛽𝑒𝜓(𝑥) = 4𝜋𝜆𝐵∫ (𝑥 − 𝑥′)∑𝑧𝑖𝜌𝑖(𝑥
′)

𝑖

d𝑥′
∞

𝑥

  (65) 

 

based on the Poisson equation. More information about the derivation of Eq. (65) is presented 

in the APPENDIX D.  

Since the electrostatic correlations play an important role in systems with electric 

double layers, many approaches have been developed in order to quantify these effects such 

as perturbation methods,
34,114,133–135

 one-component plasma (OCP) model,
98,136–139

 energy 



49 

 

 

 

route MSA-based solution (MSA-ER),
140–143

 and functional integration with the DCFs from 

the MSA.
109,144

  

The bulk fluid density perturbation (BFD) is the most traditional method to take into 

account the ion-ion correlation.
34,114,133

 It is based on a quadratic functional expansion in 

Taylor series around the densities at the bulk solution applied only to the long-range 

component of the ionic interactions: 

 

𝛽𝐹𝑒𝑙[{𝜌𝑘(𝐫)}] =  𝛽𝐹𝑒𝑙[{𝜌𝑘
𝑏}] −∑∫𝑐𝑖

(1)𝑒𝑙[{𝜌𝑘
𝑏}]Δ𝜌𝑖(𝐫)d𝐫

𝑖

 

−
1

2
∑∑∬𝑐𝑖𝑗

(2)𝑒𝑙[{𝜌𝑘
𝑏}; |𝐫 − 𝐫′|]Δ𝜌𝑖(𝐫)Δ𝜌𝑗(𝐫

′)d𝐫d𝐫′

𝑗𝑖

 

(66) 

 

where Δ𝜌𝑖(𝐫) = 𝜌𝑖(𝐫) − 𝜌𝑖
𝑏 and the bulk DCFs are defined by 

 

𝑐𝑖
(1)𝑒𝑙[{𝜌𝑘

𝑏}] ≡ −
𝛿𝛽𝐹𝑒𝑙[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)
|
𝑏

= −𝛽𝜇𝑖
𝑏,𝑒𝑙

 (67) 

𝑐𝑖𝑗
(2)𝑒𝑙[{𝜌𝑘

𝑏}; |𝐫 − 𝐫′|] ≡ −
𝛿2𝛽𝐹𝑒𝑙[{𝜌𝑘(𝐫)}]

𝛿𝜌𝑖(𝐫)𝛿𝜌𝑗(𝐫′)
|
𝑏

 (68) 

 

whereas the local first-order direct correlation function due to the electrostatic screening 

interactions is represented by  

 

𝑐𝑖
(1)𝑒𝑙(𝐫) = −𝛽𝜇𝑖

𝑏,𝑒𝑙 +∑∫𝑐𝑖𝑗
(2)𝑒𝑙[{𝜌𝑘

𝑏}; |𝐫 − 𝐫′|]Δ𝜌𝑗(𝐫
′)d𝐫′

𝑗

 (69) 

 

Here 𝜇𝑖
𝑏,𝑒𝑙

 is the excess chemical potential due to the ion-ion correlation at the bulk solution. 

According to Eq. (69), 𝑐𝑖
(1)𝑒𝑙(𝐫) is linearly proportional to the local density deviation. The 

second-order direct correlation function is conventionally calculated on the basis of the mean-

spherical approximation (MSA).
145–147

 For more information about MSA, see APPENDIX E. 

In contrast with typical mean-field theory based on modifications of the PBE, the 

quadratic expansion is able to detect some counterintuitive phenomena as, for example, the 

charge inversion near a macroparticle and attraction between same like-charged 

particles.
26,133,148

 Even so, this approach has some limitations especially for systems weakly 
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inhomogeneous as those with neutral or slightly charged surfaces.
27,29,133

 In light of these 

unexpected findings, new approaches have been proposed in order to improve the contact 

densities in systems where the BFD fails.  

Patra e Gosh
149,150

 were the pioneers to implement a perturbation expansion around 

position-dependent weighted densities; nevertheless the behavior was similar to the BFD. 

Almost one decade after this first attempt, Gillespie and coworkers
134,135

 successfully 

proposed the reference fluid density perturbation (RFD) method, which is very similar to the 

BFD; however, instead of the expansion around a uniform value of density equivalent to the 

bulk, a reference fluid profile is chosen: 

 

𝜌𝑖
𝑟𝑒𝑓[{𝜌𝑘(𝐫)}; 𝐫] =

3

4𝜋𝑅𝑒𝑙
3 (𝐫)

∫𝛼𝑖
𝑒𝑙(𝐫′)𝜌𝑖(𝐫

′)𝜃(|𝐫′ − 𝐫| − 𝑅𝑒𝑙(𝐫))d𝐫
′ (70) 

 

in which 𝑅𝑒𝑙 is the local electrostatic length scale and {𝛼𝑖
𝑒𝑙} are chosen in order to guarantee 

that the fluid with densities {𝛼𝑖
𝑒𝑙(𝐫)𝜌𝑖(𝐫)} is electroneutral and has the same ionic strength of 

the original fluid over the whole space.  

According to the RFD approach, the intrinsic Helmholtz energy functional due to the 

charge distribution correlations is 

 

𝛽𝐹𝑒𝑙[{𝜌𝑘(𝐫)}] =  𝛽𝐹𝑒𝑙[{𝜌𝑘
𝑟𝑒𝑓(𝐫)}] −∑∫𝑐𝑖

(1)𝑒𝑙[{𝜌𝑘
𝑟𝑒𝑓(𝐫)}; 𝐫]Δ𝜌𝑖

𝑟𝑒𝑓(𝐫)d𝐫

𝑖

 

−
1

2
∑∑∬𝑐𝑖𝑗

(2)𝑒𝑙[{𝜌𝑖
𝑟𝑒𝑓(𝐫)}; |𝐫 − 𝐫′|]Δ𝜌𝑖

𝑟𝑒𝑓(𝐫)Δ𝜌𝑗
𝑟𝑒𝑓(𝐫′)d𝐫d𝐫′

𝑗𝑖

 

(71) 

 

while the local first-order direct correlation function is described by
134,135

 

 

𝑐𝑖
(1)𝑒𝑙(𝐫) = 𝑐𝑖

(1)𝑒𝑙[{𝜌𝑘
𝑟𝑒𝑓};  𝐫] +∑∫𝑐𝑖𝑗

(2)𝑒𝑙[{𝜌𝑘
𝑏}; |𝐫 − 𝐫′|]Δ𝜌𝑗

𝑟𝑒𝑓(𝐫′)d𝐫′

𝑗

 (72) 

 

where Δ𝜌𝑖
𝑟𝑒𝑓(𝐫) = 𝜌𝑖(𝐫) − 𝜌𝑖

𝑟𝑒𝑓(𝐫)  and the direct correlation functions in a point of the 

reference fluid is defined analogously to Eqs. (67) and (68). Since the local electroneutrality is 

satisfied everywhere in the whole system, the DCFs can also be computed by the MSA.
145–147
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Gillespie, Valiskó and Boda
135

 reported an improvement in the density profiles using 

RFD compared to the BFD for systems with uncharged or slightly charged surfaces; however, 

both methods are unable to predict the liquid-vapor phase transition.
151,152

 

Similar to the BFD and RFD approaches, the weighted correlation approach (WCA) 

defines the local first-order DFC as a linear response of the density deviation, even though it 

is a non-perturbative method based on weighted second-order DCF 𝑐𝑖𝑗
(2)𝑒𝑙

.
109,144

 

According to the WCA, which follows the integration path, the local first-order direct 

correlation function is described by
109,144

 

 

𝑐𝑖
(1)𝑒𝑙(𝐫) = −𝛽𝜇𝑖

𝑏,𝑒𝑙 +∑∫𝑐𝑖𝑗
(2)𝑒𝑙[{𝜌𝑘}; 𝐫, 𝐫

′]Δ𝜌𝑗(𝐫
′)d𝐫′

𝑗

 (73) 

 

where  

 

𝑐𝑖𝑗
(2)𝑒𝑙[{𝜌𝑘}; 𝐫, 𝐫

′] =
∫𝜅2(𝐫′′) 𝑐𝑖𝑗

(2)𝑒𝑙[{𝜌𝑘(𝐫
′′)}; |𝐫 − 𝐫′|] 𝜃(|𝐫 − 𝐫′′| − 𝜎𝑖𝑗) d𝐫

′′

∫𝜅2(𝐫′′)  𝜃(|𝐫 − 𝐫′′| − 𝜎𝑖𝑗) d𝐫′′
 (74) 

 

and the local Debye length 𝜅−1(𝐫) defined as  

 

𝜅2(𝐫) = 4𝜋𝜆𝐵∑𝑧𝑖
2𝜌𝑖(𝐫)

𝑖

 (75) 

 

Although the electroneutrality at every point of the local densities {𝜌𝑘(𝐫)}  is not 

guaranteed, Wang and coworkers
109,144

 compute the second-order DCF using MSA and, 

surprisingly, they showed that WCA predicts with good agreement the densities close to 

surfaces and the pressure between charged surfaces compared to molecular simulation data. 

At this point, it is important to highlight that MSA was developed for bulk electrolytes 

(APPENDIX E). 
145–147

  

The contact-corrected approach
152,153

 (CCA) is based on the framework of the WCA; 

however, instead of using the original density profiles to compute the 𝑐𝑖𝑗
(2)𝑒𝑙

 and the local 

Debye length, it uses the local reference densities defined by Gillespie and coworkers.
134

 

Therefore, according to the CCA, the local first-order direct correlation function can be 

written as
152,153
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𝑐𝑖
(1)𝑒𝑙(𝐫) = 𝑐𝑖

(1)𝑒𝑙[{𝜌𝑘
𝑟𝑒𝑓};  𝐫] +∑∫𝑐𝑖𝑗

(2)𝑒𝑙
[{𝜌𝑘

𝑟𝑒𝑓(𝐫′)}; 𝐫, 𝐫′]Δ𝜌𝑗
𝑟𝑒𝑓(𝐫′)d𝐫′

𝑗

 (76) 

 

Another improvement of this model is the incorporation of an empirical nonlinear 

interpolation that modifies the ion density profiles from the standard DFT calculation in order 

to assure the contact value theorem.
152,153

 For electrolytes in contact with a planar surface, the 

contact-value theorem establishes that the sum of the ion densities at the minimum distance 

from surface, 𝜌𝑖 (
𝜎𝑖

2
), is related to the bulk osmotic pressure 𝑝EDL  and the surface charge 

density as
67,107,154

 

 

𝑘𝐵𝑇∑𝜌𝑖 (
𝜎𝑖
2
) = 𝑝EDL  +

𝑄2

2 0
𝑖

 (77) 

 

In contrast with the BFD, RFD, and WCA, CCA presents a consistency between the 

bulk osmotic pressure described by MSA
155

, 𝑝MSA, and the one computed from the contact-

value theorem. As a matter of fact, this is expected since the methodology involves a mixing 

step between the density profiles 𝜌𝑖
𝐷𝐹𝑇  calculated from the Euler-Lagrange using standard 

DFT and the deviation Δ𝜌𝑐 of the contact-value theorem: 

 

𝜌𝑖(𝑥) = 𝜌𝑖
𝐷𝐹𝑇(𝑥) + 𝑓𝑖(𝑥)Δ𝜌𝑐 (78) 

 

where 

 

𝛥𝜌𝑐 ≡ 𝛽𝑝MSA +
𝛽𝑄2

2 0
−∑𝜌𝑖

𝐷𝐹𝑇 (
𝜎𝑖
2
)

𝑖

 (79) 

 

and 𝑓𝑖(𝑥) is the empirical interpolation function given by
152

 

 

𝑓𝑖(𝑥) = 𝜙𝑖
𝐷𝐹𝑇(𝑥) exp

[
 
 
 
 

1 − (
𝑥

𝜎𝑖
− 0.5)

𝛽(𝑝EDL+
𝑄2

2 0
)

∑ 𝜌𝑖
𝑏

𝑖

]
 
 
 
 

 (80) 

 



53 

 

 

 

Here, 𝜙𝑖
𝐷𝐹𝑇 is the local ionic volume fraction according to the standard DFT. It is worthwhile 

to note that the CCA was developed to one-dimensional systems in the presence of a planar 

surface. For other geometries, this theory is not straightforward; one possibility of 

generalization would involve Maxwell equations and the pressure tensor. 

Following a different route from the previous methods, the contributions from the 

electrostatic interactions in the intrinsic Helmholtz functional can be evaluated on the basis of 

the hole corrected Debye–Hückel theory (DHH) to one-component plasma (OCP), given 

by
98,136–139

 

 

𝛽𝐹𝑒𝑙[{𝜌𝑘(𝐫)}] =  𝛽∑∫𝜌𝑖(𝐫)𝑓𝑖
𝑒𝑙  (𝜌𝑖

𝑟𝑒𝑓(𝐫))d𝐫
𝑖

 (81) 

 

where 𝑓𝑖
𝑒𝑙 is the electrostatic correlation Helmholtz energy of the 𝑖th particle, given by 

 

𝑓
𝑖
𝑒𝑙
 (𝜌

𝑖

𝑟𝑒𝑓
(𝐫)) =

1

4
[1 +

2π

3√3
− ln3 + ln(𝜔𝑖

2+𝜔𝑖 + 1)−𝜔𝑖
2 −

2

√3
tan−1  

2𝜔𝑖+ 1

√3
 ] (82) 

 

with 

 

𝜔𝑖(𝐫) = (1 + |𝑧𝑖|
3(3𝜆𝐵)

3 2⁄ √
4𝜋𝜌𝑖

𝑟𝑒𝑓(𝐫)

3
)

1 3⁄

 (83) 

 

The density of the reference fluid is defined by Eq. (70) with constant 𝛼𝑖
𝑒𝑙(𝐫) = 1. Here the 

local electrostatic length scale is equivalent to the diameter of the correlation hole and can be 

approximated by the particle diameter or computed by an iterative method according to 

DHH.
136

  

It should be pointed out that DHH assumes an approximate constant range of the ions 

correlations in the whole system, which in turn is governed by high density regimes where 

like-charged ions are packed relatively close together. 
136

 Thus, at high densities, some 

corrections due to steric effects should be included; however, they are usually neglected. 

Besides, it presents some deviations regarding the contact-value theorem. 
136
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Notwithstanding its limitations, DHH is able to reproduce satisfactorily the molecular 

simulation data of bulk pressure, differential capacitance and density profiles for some 

complex systems, like confined ionic liquids.
98,136,137

 

The framework of the energy route is similar to the FMT. Hence, the intrinsic 

Helmholtz functional is related to the reduced Helmholtz energy density as
143,147

 

 

𝛽𝐹𝑒𝑙[{𝜌𝑘(𝐫)}] = ∫Φ𝑒𝑙({𝜌𝑘
𝑟𝑒𝑓(𝐫)})d𝐫 (84) 

 

where Φ𝑒𝑙  is the reduced Helmholtz energy density due to electrostatic correlations, given 

by
143,147

 

 

Φ𝑒𝑙({𝜌𝑘
𝑟𝑒𝑓(𝐫)}) = −𝜆𝐵∑𝑧𝑖𝜌𝑖

𝑟𝑒𝑓(𝐫)

𝑖

Γ(𝐫)

1 + Γ(𝐫)𝜎
+
Γ(𝐫)3

3𝜋
 (85) 

 

for restricted primitive model (RPM), where Γ is defined in the context of the mean-spherical 

approximation (APPENDIX E).  

 

 

1.3 Non-electrostatic interactions between ions and surface 

 

 

For the purpose of this thesis, non-electrostatic interactions refer to all non-Coulomb 

interactions, i.e. except the interactions from purely electrostatic forces.
3,4

 Such interactions 

are responsible for the ionic specificity observed, for example, when two ions of the same 

valence affect differently the stability of colloidal systems. The first systematic research to 

study this effect was conducted by Hofmeister in 1887, who observed the precipitation of egg 

lysozyme in an aqueous dispersion by different salts at different concentrations.
66,67,156

 

In the context of ions-surface interactions, the main approaches conventionally used to 

take into account this contribution in PBE and/or DFT are the inclusion of dispersion 

potentials from: Lifshitz theory,
21,65,157,158

 potential of mean force (PMF) from molecular 

simulation,
43,50,52

 and insertion of a direct potential, such as hard-wall,
109,118,141

 Yukawa,
159,160

 

and Lennard-Jones.
97,98,161–164
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The Lifshitz theory ignores the atomic structure and the discrete nature of the solvent. 

As a consequence, the forces between particles are treated in a continuous medium described 

by the dielectric constant and the refractive index of the solvent and macroparticles (or 

surfaces).
67

 The behavior of the particles is more appropriate represented by this theory when 

surfaces are farther away than molecular dimensions. The importance of this theory is related 

to the ability to calculate the Hamaker constant.
67,165

 

For the calculation of the non-electrostatic potential between an ion 𝑖 and a planar 

surface on the basis of the Lifshitz theory, we have
4,21,66,157

 

 

𝑉𝑖(𝐫) = −
𝐵𝑖
𝐫⊥3

       𝐫⊥ ≥
𝜎𝑖
2

 (86) 

 

where 𝐵𝑖  is the dispersion parameter of the 𝑖th ion, given by
165

 

 

𝛽𝐵𝑖 =
𝛼𝑖
∗(0)

4 3(0)
[
2(0) − 3(0)

2(0) + 3(0)
] +

ℎ

4𝜋𝑘𝐵𝑇
∫

𝛼𝑖
∗(𝜈)

𝑤(𝜈)
[
2(𝜈) − 3(𝜈)

2(𝜈) + 3(𝜈)
] 𝑑𝜈

∞

𝜈𝑚𝑖𝑛

 (87) 

 

where 𝑗(0)  and 𝑗(𝜈)  are the dielectric spectra of the 𝑗  at the frequencies 0 and 𝜈 , 

respectively, 𝛼𝑖
∗(0) and 𝛼𝑖

∗(𝜈) are the excess polarizabilities of the ion 𝑖 at the frequency 0 

and 𝜈, and 𝜈𝑚𝑖𝑛 is the first non-null frequency (𝜈𝑚𝑖𝑛 = 2𝜋𝑘𝐵𝑇 ℎ⁄ ). The subscript 2 refers to 

the surface or macroparticle and 3 is the solvent. The polarizability and dielectric constant 

vary with frequency much in the same way as a harmonic-oscillator model:
66,157

 

 

𝛼𝑖
∗(𝜈) =

𝛼𝑖
∗(0)

1 + (𝜈2 𝜈𝐼,𝑖
2⁄ )

 (88) 

𝑗(𝜈) = 1 +
𝑛𝑅𝐼,𝑗
2 − 1

1 + (𝜈2 𝜈𝑒,𝑗
2⁄ )

 (89) 

 

where 𝜈𝐼,𝑖 is the ionization frequency of the 𝑖th ion, and 𝜈𝑒,𝑗 is the main electronic absorption 

frequency in the UV and 𝑛𝑅𝐼,𝑗 is the refractive index in the visible of the 𝑗th medium. The 

ionization energy of ions in solution can be estimated based on the hydration Gibbs energy of 

these ions.
157
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By a closer look at Eq. (87), we can attest that the influence on the stability of 

colloidal systems by different salts in the same medium is directly related to the polarizability 

of the ions in solution.
4
 

According to Ninham and Lo Nostro,
66

 Eq. (86) is valid when the center of the ion is 

at least one or two diameters away from the surface. For positive values of 𝐵𝑖 , the interaction 

is attractive, promoting, in general, an adsorption of the ion at the interface. On the other 

hand, negative values of 𝐵𝑖  indicate a repulsion, and, consequently, an ion depletion on the 

surface.  

The use of hybrid techniques, such as the insertion of PMF obtained from molecular 

simulation data in PBE and DFT, can improve considerably the prediction of both density 

profiles and thermodynamic properties. The PMF may account for the self-image potential, 

van der Waals interactions between ions, water and surface, ionic hydration effects, and 

effects from preferential orientation of water molecules.
52

 

Horinek and Netz
52,53

 obtained the PMF for some ions at infinite dilution in the 

vicinity of the interface between the aqueous solution and air or self-assembled monolayers of 

C20H42, using umbrella sampling and the weighted histogram analysis method. The PMFs 

were interpolated, and the provided functions were used to calculate the excess interfacial 

tension,
52,53

 density profiles,
43,52,53

 and double layer pressure between two surfaces.
50,51

 

Especially for DFT, the hard wall potential is widely used and defines the minimum 

distance from the center of the ion to the surface as
109,118,141

 

 

𝑉𝑖(𝐫) = {
∞ 𝐫⊥ <

𝜎𝑖
2

0 𝐫⊥ ≥
𝜎𝑖
2

 (90) 

 

Other famous potentials were also applied in DFT based on force fields from 

molecular simulation, such as the 9−3 and 12−6 Lennard-Jones potentials.
97,98,161–164,166
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2 APPLICATIONS TO BIOLOGICAL SYSTEMS 

 

 

One important feature of biological systems is the ion partitioning observed between 

two different environments (e.g. intra- and extracellular environments), which originates the 

Donnan potential. Many important mechanisms for life, such as muscular contractions and 

synapses, only exist due to this difference.
167

  

The Donnan potential occurs  

a) in the presence of a selectively permeable membrane, which promotes an 

unequal distribution of ions between two electrolyte solutions, i.e., it allows 

certain ions to move freely between the two solutions, whereas others are 

not allowed; 

b) between two regions characterized by a solution with free ions and a 

charged membrane (or charged macromolecules).  

The former situation is illustrated in Figure 2A by a lipid bilayer separating two 

different environments. The left compartment has some negatively charged proteins 

represented by “Ptn”; the membrane in the scheme is impermeable to these polyelectrolytes, 

while it is permeable to K
+
 and Cl

-
 due to the presence of the ion channels. On the other hand, 

Figure 2B exemplifies the latter case with one region defined by polyelectrolyte brushes, 

solvent and free ions; whereas the other region only contains the solvent and mobile ions.  

 

Figure 2 – Ion partitioning in biological systems: the Donnan potential 

 

Legend: In (A), a lipid bilayer, which is impermeable to the polyelectrolyte “Ptn” with negative charge and 

permeable to K
+
 (red circle) and Cl

–
 (blue circle), is separating two different compartments. In (B), the 

difference between the two compartments is due to the presence of polyelectrolyte brushes in one of 

them. The figure is not drawn to scale.  

 

A                                                                                                           B 

Ptn 

Ptn 

Ptn 

Ptn 

Ptn 
Ptn 
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In other words, the Donnan potential occurs not only in the membrane equilibria but 

also in any situation in which there is a tendency to produce an ion partitioning.
57

 It is 

worthwhile to note that the distribution of ions obeys the laws of thermodynamics and the 

principle of electroneutrality between the two compartments.
168,169

 

According to the classical approach of the Donnan potential, there is a discontinuous 

potential gap between the two regions of interest, which can be computed by the Nernst 

equation as
102,170

 

 

𝜓𝐷 =
𝑘𝐵𝑇

𝑒𝑧𝑖
ln
𝑎𝑖
𝛽

𝑎𝑖
𝛼  (91) 

 

where 𝜓𝐷 is the Donnan potential and 𝑎𝑖 is the activity of ion 𝑖 in a phase (𝛼 or 𝛽). 

Mauro
169

 proposed a continuous Donnan potential using the PBE applied to two 

compartments adjacent to each other: one containing fixed charge completely ionized and 

another one without fixed charge. The Donnan potential calculated via PBE for remote 

regions is equal to the potential difference predict by the Nernst equation.
169,171

 The strategy 

often found in the literature consists of solving the PBE for each side of the interface with 

boundary conditions that ensure the continuity of the electrostatic potential between the two 

phases.
169,170,172–174

 For more information about the common boundary conditions reported in 

the literature, see APPENDIX F.
57

  

The PBE was used to study two different biological systems. In the first (subsection 

2.1), the potential profile across the Bacillus brevis cell wall was evaluated as a function of 

the solution pH, depending on the ionization of the cell wall functional groups (APPENDIX 

F). We introduced the concept of charge-regulated volume charge density to model the 

bacterial cell wall. For the second system, which is a continuation of the work developed 

during the Master, the membrane potential and ion partitioning in an erythrocyte were 

analyzed (subsection 2.2). The innovation refers to the inclusion of the Born correlation 

contribution in the PBE (APPENDIX G). 
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2.1 Electrostatic behavior of Bacillus brevis cell wall 

 

 

2.1.1 Introduction 

 

 

The electrical properties of bacterial cells are determined by a set of factors such as the 

type and the concentration of specific functional groups on the cell walls, the pH value, the 

composition and the ionic strength of electrolytes, and the separation distance from nearby 

surfaces.
74,175,176

  

The presence of acidic and basic functional groups in the bacterial cell, including 

carboxyl, phosphoryl, hydroxyl and amine groups, is responsible for the charge on the 

surface.
177–179

 In the cell walls of Gram-positive bacteria, these functional groups are 

associated with rigid and relatively thick layer of peptidoglycan and anionic polymers
180

 – e.g. 

teichoic acid and theichuronic acid – as in the schematic structure presented in Figure 3. 

 

Figure 3 – Scheme of the cell wall of Gram-positive bacteria 

 

Note: The figure is not drawn to scale.  

Source: Adapted from Barbosa, Lima and Tavares (2015).
57

 

 

In the literature, some usual approximations to model the charge of the cell wall (or 

even, membrane or polyelectrolyte brushes) are: (i) charge regulation on the surface,
74

 and (ii) 

constant volume charge density (i.e. charge uniformly distributed) for cell wall thickness 

much greater than the Debye length.
170,181

 In the former assumption, the layer is treated as a 
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surface, neglecting its thickness, and the latter ignores the acid-base and (di)association 

reactions that can occur within the layer. In this thesis, we address these problems by the 

introduction of the charge-regulated volume charge density concept, which is characterized by 

bounded charges with uniform volume density of sites spread out in a part of the domain 

considering the dependence on the ionization of the functional groups as a function of the 

local concentration of free ions. Moreover, to avoid the resolution of the PBE for each 

adjacent compartment, we propose the use of a smoothing function to describe charged-

regulated volume charge density profile in systems containing polyelectrolytes dispersed 

distinctively between two phases. In this context, the Donnan potential automatically arises 

from the resolution of the PBE for the two environments (with and without the 

polyelectrolytes) simultaneously. To evaluate the proposed strategy, the electrostatic potential 

profile across the Bacillus brevis (a gram-positive bacteria) cell wall is analyzed and the zeta 

potential is compared to experimental data.  

 

 

2.1.2 Methodology 

 

 

As previously mentioned, instead of solving the PBE twice (one for each side of the 

interface), we proposed the use of a smoothing function to describe the fixed volume charge 

density profile. 

Smoothing functions – also known as regularization functions – are used to join two 

different functions of the same independent variable in order to generate a continuous 

function over the entire range of the spatial variable.
20,182

 Considering two generic 

functions 𝑔(𝑥) and ℎ(𝑥), such that  

 

𝑓(𝑥) = {
𝑔(𝑥), for  𝑥 < 𝑥∗

ℎ(𝑥), for  𝑥 > 𝑥∗
 (92) 

 

the goal is to convert the discontinuous function 𝑓(𝑥) into a continuous function  𝐹(𝑥) using, 

e.g., a hyperbolic tangent function, as follows
182

 

 

𝐹(𝑥, 𝜂) = 𝑡(𝑥, 𝜂)ℎ(𝑥) + [1 − 𝑡(𝑥, 𝜂)]𝑔(𝑥) (93) 
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where 

 

𝑡(𝑥, 𝜂) =
1 + tanh (

𝑥 − 𝑥∗

𝜂
)

2
 

(94) 

 

The parameter 𝜂 is a positive factor related to the smoothness of the curve. High values of 𝜂 

generate smoother curves, while low values generate steep curves. 

The cell wall is modeled implicitly as a fixed polyelectrolyte layer in which charges 

vary as a function of the ionization of their functional groups – carboxyl, phosphoryl, 

hydroxyl, and amino groups – being, consequently, dependent on pH.
57

  

Considering both acid and base sites of the cell wall, the volume charge density of 

fixed sites 𝜚𝑏𝑛 is related to the following dissociation reactions:
178,179

 

 

> R𝑎𝑗H       ⇌     > R𝑎𝑗
−    +   H+ (95) 

> R𝑏𝑚H
+    ⇌     > R𝑏𝑚   +    H+ (96) 

 

where > R𝑎𝑗  are the acid ionizable sites of type 𝑗, which can be represented by phosphoryl, 

carboxyl or hydroxyl groups; and > R𝑏𝑚 is the base ionizable sites of type 𝑚, represented by 

the amine group. Considering the activity of H+ and the functional groups of the cell wall 

equal to their concentrations, the dissociation constants (𝐾𝑒𝑞 ) for each reaction can be 

expressed as
183,184

 

 

𝐾𝑒𝑞,𝑎𝑗 =
�̃�𝑅𝑎𝑗

− �̃�𝐻+

�̃�𝑅𝑎𝑗𝐻
 (97) 

𝐾𝑒𝑞,𝑏𝑚 =
�̃�𝑅𝑏𝑚�̃�𝐻+

�̃�𝑅𝑏𝑚𝐻+
 (98) 

 

where �̃�𝑖 is the molar concentration of the 𝑖th species.  

By the assumption of uniformly distributed sites within the wall (i.e., the number of 

acid sites of type 𝑗 and base sites of type 𝑚 per unit of volume are constant inside the bacteria 

cell wall) the volume charge density of fixed sites can be written as
57
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𝜚𝑏𝑛(𝑥) = 𝑒[1 − 𝑡(𝑥)] [∑
10−pH𝜌𝑚

s,max(𝑥)

10−pH + 𝐾𝑒𝑞,𝑏𝑚 exp [
𝑒𝑧H+𝜓(𝑥)

𝑘𝐵𝑇
]𝑚

−∑
𝐾𝑎𝑗𝜌𝑗

s,max(𝑥)

𝐾𝑒𝑞,𝑎𝑗 + 10−pH exp [−
𝑒𝑧H+𝜓(𝑥)

𝑘𝐵𝑇
]𝑗

] 

(99) 

 

where 10−pH is considered equal to the concentration of H+  at an infinitely large distance 

from the interface, 𝜌𝑗
s,max

 and 𝜌𝑚
s,max

 are defined, respectively, as the maximum number 

density of acid sites of type 𝑗 and base sites of type 𝑚, and 𝑧H+ is equal to 1 (valence of H
+
). 

It is worthwhile to note that the distribution of sites over the whole space is described by the 

smoothing function ‒ within the wall it is positive and constant and, in the surrounding, it is 

null. More details can be found in APPENDIX F.
57

 

 

 

2.1.3 Results and discussion 

 

 

The PBE together with the volume charge density function – Eq.(99) – and Neumann 

boundary conditions at 𝑥 →  ± ∞ were solved using a second order spline finite elements 

method in a one-dimensional Cartesian coordinate system for various bulk pH values. We 

took advantage of the symmetry in the non-perpendicular directions to the interface cell wall/ 

extracellular media. The four site model proposed by Hong and Brown
185

 was adopted (Table 

3). They analyzed potentiometric titration data from a washed suspension of B. brevis in 0.1 

M NaCl solution. Bacterial cultures were grown in a minimal media consisted of 5.44 g 

KH2PO4 and 0.6 ml of salt solution (10.0 g/L MgSO4·7H2O, 0.1 g/L CaCl2·2H2O, 0.4 g/L 

FeSO4·7H2O, and 1.0 g/L MnCl2·2H2O) in 1L of water with the addition of 2.0 g glucose and 

0.5 g NH4Cl. Three p𝐾𝑒𝑞 values (3.81, 5.31, and 7.01) are associated with functional groups 

that can be negatively charged, whereas the fourth (9.81) is associated with functional groups 

that can be either negatively charged (hydroxyl) or positively charged (amine). On the basis of 

the isoelectric point (IEP) of B.brevis – approximately 4.0 – it was possible to estimate the 
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concentration of hydroxyl and amine groups related to these p𝐾𝑒𝑞.
74

 The values of p𝐾𝑒𝑞 and 

site concentrations are shown in Table 3. 

We assumed that the acid and base sites are uniformly smeared out over the cell wall 

with thickness of 75 nm.
176

 The cell wall thickness was used to estimate the cell wall volume 

together with the cell dimensions: 1.60±0.31 μm length and 0.60±0.05 μm width.
74

 To 

calculate the site concentration in mol per m³ (Table 3), we used the cell wall volume and the 

ratio of cell numbers to dry mass,
74

 which, for B. brevis, is equal to 4.0 × 10
12

 cell per g.
57

 

 

Table 3 – Dissociation constants and site concentrations for the cell surface of B. brevis 

 𝑎1
a
 𝑎2

a
 𝑎3

a
 𝑎4

a,b
 𝑏a,b

 

Dissociation Constant (p𝐾𝑒𝑞) 3.81 5.31 7.01 9.81 9.81 

Site concentrations (10
-4 

mol/g) 3.77 1.53 2.19 1.14 2.36 

Site concentrations (10² mol/m³) 2.94 1.19 1.71 0.89 1.84 

Legend: 
a𝑎𝑖 refers to acid site 𝑖 and 𝑏 refers to base site.

 b𝜌𝑎4
max + 𝜌𝑏

max = 𝜌4
max and p𝐾𝑒𝑞,𝑎4 = p𝐾𝑒𝑞,𝑏  =  p𝐾𝑒𝑞,4, 

in which 𝜌4
max is the overall site concentrations for the fourth p𝐾𝑒𝑞 value given by Hong and Brown

185
. 

𝜌𝑎4
max and 𝜌𝑏

max were calculated through the IEP of B.brevis.  

Source: Hong and Brown (2006)
185

 and Barbosa, Lima and Tavares (2015)
57

.
 

 

Figure 4 shows the electrostatic potential as a function of the distance from the cell 

surface for bulk ionic strength equal to 0.1 M. The solutions were obtained by a mixture of 

NaCl, HCl, and NaOH. At pH values lower than IEP, the potential inside the cell wall is 

positive. On the other hand, at pH values greater than IEP, the potential is negative inside cell 

wall.
57

 Because the thickness of bacterial wall is much greater than the Debye length 𝜅−1, the 

potential deeply inside the surface layer becomes the Donnan potential.
186

 

A similar study has been carried out by Wasserman and Felmy
187

 These authors 

analyzed the electrostatic potential profile for some bacteria and the theoretical impact of 

trace amounts of divalent and trivalent cations at very low concentrations (10
-6 

M) in the 

electrostatic profile. To obtain the electrostatic profile, they solved Poisson–Boltzmann 

equation (without considering the fixed charge of cell wall as a function of the ionization of 

the functional groups) for the membrane and solution, using continuity conditions in the 

boundary of the two environments (membrane and surrounding electrolyte solution).  
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Figure 4 – Electrostatic potential as a function of the distance from the cell surface for B. 

brevis at bulk pH ranging from 2.0 to 9.0  

 

Legend: The cell surface is located at x = 0 nm. Bulk ionic strength is equal to 0.1 M. Negative values of x are 

located inside the cell wall and positive values outside the cell. 

Source: Barbosa, Lima and Tavares (2015).
57

 

 

On the other hand, Hong and Brown
74

 proposed the location of all sites on the surface 

of the cell and they found the effective site numbers by an iterative method: the real density of 

the acid/base groups has been uniformly reduced until the surface potential was equal to the 

zeta potential (ζ), which is the potential at the surface of the shear plane also known as the 

region of rapidly viscosity change. 

In Figure 5, we show that the zeta potential computed with the methodology proposed 

here is in good agreement with the zeta potential estimated by the Smoluchowski equation 

based on experimental electrophoretic mobility data.
74

 We consider that the shear plane is 

located 0.4 nm from the interface. As a matter of fact, we introduced no parameter such as 

effective site number coefficient to enforce the experimental ζ, unlike the Hong and Brown's 

approach.
74

 However it is important to highlight that Smoluchowski equation is based on a 

simple DLVO model to correlate mobility to ζ potential.
5,188
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Figure 5 – Zeta Potential of B. brevis as a function of bulk pH ranging from 2.0 to 9.0 and 

bulk ionic strength of 0.1 M 

 

Legend: Circles refer to ζ estimated by the Smoluchowski equation based on experimental electrophoretic 

mobility data
74

 and line refers to the model. Bulk ionic strength  equal to 0.1 M. 

Source: Barbosa, Lima and Tavares (2015).
57

 

 

 

2.1.4 Conclusion 

 

 

We have successfully developed a membrane ion charge model based on the Poisson-

Boltzmann description of charge density profiles, including a volume charge density inside 

the membrane together with an electrolyte solution outside the membrane. With this 

methodology, the zeta potential of B. brevis cell wall for various pH values was predicted in 

good agreement with experimental data. Information about the zeta potential of a bacteria 

immersed in an electrolyte solution is useful in the investigation of the metal uptake from 

solution, the biofilm and biofouling formations, the biocorrosion process, and even in the 

development of new drugs. The model proposed here allows the estimation of the stability of 

Gram positive bacteria in various electrolyte solutions without the need for numerous 

experimental measures. 

Typically charge density profiles are only calculated in the electrolyte region between 

surfaces. Less commonly two calculations can be coupled to obtain the diffuse layer profiles 

on either side of a membrane in which the charge of the membrane itself is routinely handled 
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as a simple surface charge density. Any distribution of charges inside a surface (or membrane) 

is commonly ignored. These distributions of charges are modelled here and, as consequence, 

the Donnan potential is naturally obtained in this model, rather than having to be artificially 

imposed. Moreover, the membrane charge is not simply treated as a fixed volume charge 

density, but varies with the specific local conditions (the electrostatic potential) inside the 

membrane, smoothing out the transition of the electrostatic potential and the charge densities 

across the interface between the membrane and electrolyte solution. This is analogous to the 

charge regulation condition often applied to surface charges.  

 

 

2.2 Membrane potential and ion partitioning in an erythrocyte 

 

 

2.2.1 Introduction 

 

 

In virtually all mammal cells, a much higher concentration of potassium ions inside 

the cell and vice versa for sodium ions is observed.
189

 Usually, this difference in the ion 

partitioning across a cell membrane is attributed exclusively to a balance between active and 

passive transport processes.
167

 In this context, an active ion transporter stands out: the 

Na
+
K

+
ATPase. It couples the phosphorylation and dephosphorylation of an amino acid 

residue to the simultaneous movement of two K
+
 ions inward and three Na

+
 ions outward 

across the plasma membrane (the ions are moved against their electrochemical 

gradients).
190,191

 

However, the classical theories ignore the specific ion effects and the difference in the 

thermodynamic reference states between intracellular and extracellular environments.
21

 

Considering that both phenomena – active transport by Na
+
K

+
ATPase and specific ion effects 

– occur in mammal cells, the aim of this subsection is to investigate how much the specific 

ion effects and solvation energy contribute to ion partitioning in human erythrocytes.  

Erythrocytes, also denominated red blood cells, are responsible for carrying almost all 

the oxygen required by the cells from the lungs to the tissues.
167

 Due to the absence of nucleus 

and other organelle, they are considered classical models for studying how ions and other 

compounds are distributed between intra and extracellular environments. Their cytoplasm 

comprises nearly close-packed hemoglobin, which is one of the most soluble proteins in the 
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cell and constitutes more than 98% of the erythrocyte protein by mass.
66,192

 It is also 

important to highlight that hemoglobin is a protein of high surface area.
66

  

 

 

2.2.2 Methodology 

 

 

The system containing an erythrocyte was analyzed using a modified PBE in Cartesian 

coordinates. The Lifshitz theory was used to quantify the dispersion interactions between ions 

and macromolecules, while the Born theory was used to change the reference state from the 

intracellular composition to extracellular environment. Moreover, an extra potential that takes 

into account the difference in ion permeability of the erythrocyte membrane and the presence 

of active transporters at the plasma membrane was included in the modified PBE as a residual 

chemical potential.  

The main assumptions used to model the erythrocyte in the plasma were
21

  

 

a) temperature equal to 310.15 K; 

b) erythrocyte described by a sphere with equivalent radius of 2.673 μm;  

c) thickness of the plasma membrane plus glycocalyx equal to 10 nm; 

d) surface charge density on the outer surface (glycocalyx) equal to 0.02 

C/m
2
;
193

 

e) surface charge density on the inner membrane surface equal to that of outer 

membrane plus glycocalyx; 

f) intracellular dielectric constant equal to 65.22
194

 or 57.0;
195

 

g) extracellular dielectric constant equal to the aqueous dielectric constant at 

the system's temperature; 

h) only Na
+
, K

+
 and Cl

–
 ions presented in the system; 

i) the plasma membrane considered as a flat plane; 

j)  the average distance between ions and cytoplasm proteins equal to 5Å; and  

k) equilibrium between intracellular and extracellular environments. 

 

The main contribution of the paper presented in APPENDIX G to this thesis comprises 

the inclusion of the Born correction in the analysis; thus, this topic is covered in some detail 
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here, whereas other information about the methodology, as well as other results, can be found 

in the paper.
21

 

 

 

2.2.2.1 Born Correction 

 

 

In situations in which two different liquid phases containing electrolytes are in 

equilibrium, special attention must be given to the reference states. The total environment 

effect on the transfer of an ion from a finite concentration in one liquid phase to a similar 

concentration in another phase takes into account two main contributions. One results from a 

difference in ion-ion interactions in the two solvents, while the other one results from a 

difference in ion-medium interactions. In implicit models, the different environments are 

characterized mainly by their dielectric response; thus the ion-solvent interactions, which can 

be described by the Born energy, should be largely dependent on the dielectric 

constant.
21,196,197

 

The Born energy is equivalent to the electrostatic contribution for the solvation 

energies and can be calculated by a hypothetic process characterized by: (i) the discharging of 

a sphere (represented by an ion) in the reference medium with dielectric constant 𝑟𝑒𝑓, in 

which  

 

𝜇𝑟𝑒𝑓,𝑖
𝐵𝑜𝑟𝑛 = ∫

𝑞

4𝜋 0 𝑟𝑒𝑓𝑟𝐵,𝑖
d𝑞

0

𝑒𝑧𝑖

= −
𝑒2𝑧𝑖

2

8𝜋 0𝑟𝐵,𝑖

1

𝑟𝑒𝑓
 (100) 

 

(ii) the transference of this neutral sphere to another environment with dielectric constant 

𝑚𝑖𝑥; and, subsequent, (iii) charging up to its full charge: 

 

𝜇𝑚𝑖𝑥,𝑖
𝐵𝑜𝑟𝑛 = ∫

𝑞

4𝜋 0 𝑟𝑒𝑓𝑟𝐵,𝑖
d𝑞

𝑒𝑧𝑖

0

=
𝑒2𝑧𝑖

2

8𝜋 0𝑟𝐵,𝑖

1

𝑚𝑖𝑥
 (101) 

 

Therefore the change in the chemical potential on transferring an ion from a medium of 

dielectric constant 𝑟𝑒𝑓 to one of dielectric constant 𝑚𝑖𝑥 is given by
67,196–198
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Δ𝜇𝑖
𝐵𝑜𝑟𝑛 = −

𝑒2𝑧𝑖
2

8𝜋 0𝑟𝐵,𝑖
 

1

𝑟𝑒𝑓
−

1

𝑚𝑖𝑥
  (102) 

 

where 𝑟𝐵,𝑖 is the Born radius of ion 𝑖. The Born model implicitly accounts for the molecular 

nature of the solvent and it can predict the partition of ions in different solvents; however, the 

explicit features of the medium defined by its structural and dynamic molecular properties are 

not included. 

Considering the problem studied here, if the extracellular solution is chosen as the 

reference state, we need to correct the change of the reference state from the intracellular 

composition to extracellular solution. To this end, we assumed that the Born radii of the ions 

are equal in both solutions.
21

 

 

 

2.2.3 Results and Discussion 

 

 

In the literature, the difference in the ion partitioning of Na
+
 and K

+
 is generally 

attributed to the action of the Na
+
K

+
ATPase pump. In order to analyze the potential required 

to describe the experimental ion partitioning, the inclusion of a residual chemical potential 

𝜇𝑖
𝑟𝑒𝑠 in the modified Boltzmann equation was proposed.

21
 Here, the 𝜇𝑖

𝑟𝑒𝑠 potential takes into 

account the difference in reference states between intracellular and extracellular environments 

Δ𝜇𝑖
𝐵𝑜𝑟𝑛 (Born effects), the difference in ion permeability of the erythrocyte membrane, and 

short-range hydration forces. It is computed by an iterative procedure aiming the reproduction 

of the experimental intracellular concentration
199–201

 values. The modified Poisson-Boltzmann 

equation with the inclusion of this term was presented in Eq. (8). More information about the 

iterative process is presented in APPENDIX G. 

Using the modified PBE with Neumann boundary conditions in a discontinuous 

system that mimics an erythrocyte immersed in an infinite bath with bulk concentrations 

equivalent to extracellular medium, it is possible to obtain the electrostatic potential and 

concentrations profiles as functions of the distance from the membrane (Figure 6). As 

expected, inside the cell there is more K
+
 than Na

+
 and outside cell inverse occurs. 

Extracellular 𝜇𝑖
𝑟𝑒𝑠 for all ions are considered equal to zero. Intracellular values of 𝜇𝑖

𝑟𝑒𝑠 for 

each ion can be seen in Table 4. 
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Figure 6 – Electrostatic behavior of an erythrocyte using discontinuous approach 

 

Legend: (A) Electrostatic potential profile and (B) ion concentration profile near erythrocyte plasma membrane 

in a discontinuous system between intracellular and extracellular environment considering 𝜇𝑖
𝑟𝑒𝑠

 

potential. Surface charge densities equal to -0.02 C/m². Plasma membrane plus glycocalyx are 

represented by hatching. 

Source: Barbosa et al. (2015).
21

  

 

Since the dielectric constants of intracellular and extracellular environments are not 

the same, it is necessary to introduce a correction due to the change of the reference state, 

which can be described by the Born correction. Table 4 shows the values of Born term for 

Na
+
, K

+
 and Cl

–
 using two different values of intracellular dielectric constant for normal 

erythrocytes reported in the literature.
194,195

 Di Biasio and Cametti obtained the dielectric 

spectra measures using a Hewlett–Packard precision impedance analyzers
202

 and the dielectric 

constant was estimated by a fitting procedure based on the Levenberg–Marquardt method for 

complex functions.
194

 On the other hand, Gascoyne and coworkers used the Nelder-Mead 

simplex method to fit the single-shell oblate-spheroid dielectric model to electrorotation 

spectra measures obtained experimentally, and then they computed the cytoplasmic dielectric 

constant of the normal erythrocyte.
195

 

Comparing Born correction terms for each ion for both intracellular dielectric constant 

values, it is possible to note that despite the influence of the dielectric constant in the 

correction terms, the orders of magnitude are the same (Table 4). The values of the 𝜇𝑖
𝑒𝑥 

potential and Δ𝜇𝑖
𝐵𝑜𝑟𝑛 for Cl

–
 are similar with respect to order of magnitude, suggesting that 

the difference between intracellular concentration of Cl
–
 observed experimentally in the 

literature and theoretically in this work can be assigned to the change of the thermodynamic 

reference state.
21

 It is important to note that the active transport of Cl
–
 across the plasmatic 

membrane is irrelevant in agreement with experimental evidences.
167
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Table 4 – Intracellular values of 𝑈𝑖 , 𝜇𝑖
𝑟𝑒𝑠 and Born term for Na

+
, K

+
 and Cl

–
 

Ion 𝛽𝑉𝑖 𝛽𝜇𝑖
𝑟𝑒𝑠 

βΔ𝜇𝑖
𝐵𝑜𝑟𝑛 

𝑖𝑛 = 65.22a
 𝑖𝑛 = 57b

 

Na
+ 

0.009 2.484 0.296 0.651 

K
+
 0.036 -3.191 0.230 0.503 

Cl
– 

0.067 0.531 0.257 0.564 

Legend: 𝑖𝑛  is the dielectric constant of intracellular environment.
 a

Dielectric constant from Di Biasio and 

Cametti
194. b

Dielectric constant from Gascoyne et al.
195

 

Source: Barbosa et al. (2015).
21

  

 

Indeed, this conclusion confirms the statement of Bernhardt and Weiss,
203

 in which, 

under physiological condition, the net ion movement of K
+
 and Na

+
 in comparison to Cl

–
 

across the erythrocyte membrane is very small (about 2 orders of magnitude lower), i.e. net 

Cl
–
 permeability across membrane is larger than K

+
 and Na

+
 permeability. The difference 

between 𝜇𝑖
𝑟𝑒𝑠 and Δ𝜇𝑖

𝐵𝑜𝑟𝑛 for Cl
–
 can be attributed to the consideration of all anions present in 

the extracellular environment as chloride (including bicarbonates, sulfates, organic 

phosphates, proteins, etc.), as well as, the real value of the intracellular dielectric constant.
21

 

Table 4 also shows the contribution of the non-electrostatic potential to the ion 

partitioning of sodium and potassium; however, it is very small compared to 𝜇𝑖
𝑟𝑒𝑠 (0.4% for 

Na
+
, 1.1% for K

+
). The contribution of Born correction term is more evident than non-

electrostatic interaction, at least with respect to Cl
–
. On the other hand, neither non-

electrostatic interactions nor Born correction term can explain intracellular K
+
 and Na

+
 

concentrations. Then, the presence of the pump Na
+
K

+
ATPase is clear.  

 

 

2.2.4 Conclusion 

 

 

The study developed to analyze the electric behavior of an erythrocyte is briefly 

commented here, since it is a continuation of the Master dissertation. However the 

introduction of the Born correction, proposed for this thesis, could explain the partition of Cl
–
 

observed experimentally.  

The inclusion of the Born term in the same level of electrostatic potential in the PBE is 

an important contribution to the investigation of the total mean field potential in systems with 

an implicit local variation of the dielectric constant.  
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3 APPLICATIONS TO ENHANCED OIL RECOVERY 

 

 

The oil recovery refers to the displacement of petroleum from the reservoir toward and 

out the production oil well due to a gradient of pressure between the reservoir and the 

borehole. According to the producing life of a reservoir, the oil recovery can be classified as 

primary, secondary, and tertiary recovery. In the primary recovery, this process happens 

naturally; whereas, in the secondary recovery, a fluid is injected (e.g. water or gas) to keep the 

pressure of the reservoir above the saturation pressure, aiding or driving an efficient recovery. 

Tertiary recovery is characterized by the recovery after secondary recovery and encompasses 

the injection of special fluids such as chemicals, gases, and/or the injection of thermal 

energy.
204–206

 On the other hand, enhanced oil recovery (EOR) is not restricted to a particular 

phase in the producing life of the reservoir, i.e. it can be applied at any moment of the 

production in order to increase the recovery of a reservoir by advanced techniques that 

improve the oil displacement.
205

 However, the term is sometimes used interchangeably with 

tertiary recovery.
204,206

 

The EOR techniques can be classified as thermal recovery,
61,62,207

 gas injection
208–210

 

and chemical injection.
14,60,62–64

 Of particular interest is the injection of aqueous electrolyte 

solutions with a different composition from the connate water. During this process, the pre-

established chemical equilibrium due to precipitation, dissolution and/or adsorption reactions 

that occur in bulk solution and on rock/fluid interface might be modified, providing favorable 

conditions to the oil recovery. The simplest composition of water to be injected is the sea 

water, mainly in offshore productions due to its abundance. A closer look at the physical and 

chemical mechanisms behind this improvement, reveals a possible correlation with oil 

expansion, decrease of oil viscosity, fines migration, multicomponent ion exchange, and/or 

alteration of surface properties such as interfacial tension, elasticity of interfaces, double layer 

expansion, and ζ potential. There is not a unique composition of water that enhances the oil 

recovery for all reservoirs, independently of the rock, oil and connate water compositions, 

temperature, and pressure. This statement gives origin to the concept of engineered water 

(EW) waterflooding, which is characterized by the injection of water with a specific 

composition of electrolyte into the oil reservoir in order to enhance the oil recovery.
14,60,61

 

Hence, it is crucial to understand the phenomena to predict the composition of the EW 

for each reservoir of interest. While several mechanisms have been proposed to explain the 

EOR using EW, alteration of the wettability seems to be one of most prevalence. It refers to 
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the relative preference of one liquid over another to spread on a surface due to the interplay of 

molecular and ionic interactions among three phases and it is often expressed as the 

macroscopic contact angle.
211

 

The first picture that usually comes to mind when we study the wettability among 

three phases is similar to Figure 7A, in which all three phases are in contact with each other. 

The situation illustrated in Figure 7A may happen when the brine film collapse due to 

unfavorable conditions on the surface.
212

 Nevertheless, especially noteworthy in reservoir 

engineering field, is the consensus in which the pores of rock saturated with oil have a 

residual thin brine film between the oil and the rock as represented in Figure 7B. It has origin 

in the formation of the oil and in the geological evidence that the reservoir was originally 

occupied by water before the migration of the oil.
213,214

 

For the wettability regime, in both situations, we consider the contact angle between 0º 

and 70º as water-wet, from 70º to 110º as neutral and from 110º to 180º as oil-wet, following 

the definition adopted by Santos and coworkers.
215

 

 

Figure 7 – Sketch of the oil droplet immersed in brine resting on a flat solid surface 

 

Legend: In (B), there is an aqueous film between the rock and oil droplet, unlike (A). 𝜃 is the contact angle 

among the three phases. The figures are not drawn to scale.  

Source: Adapted from Barbosa, Lima and Tavares (2019).
65

  

 

We used two different strategies to analyze the wettability and contact angle in three-

phase contact systems. In Section 3.1, the capillary pressure, the contact angle and the 

disjoining pressure are correlated by the thermodynamics of thin films. The electric 

component of the disjoining pressure was calculated by the PBE. For validation, the surface 

charge density, electrostatic potential, and the disjoining pressure for a system characterized 

by a thin brine film between sandstone and oil were studied. Furthermore, the contact angle 

and wettability for carbonates were investigated. On the other hand, 3D-DFT was the method 

chosen in Section 3.2. At the level of reservoir engineering, the object of study is simpler than 
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the one in Section 3.1 due to the absence of the film, similar to Figure 7A. However, 3D-DFT 

gives a greater possibility to understand some phenomena that are limited by a mean-field 

approach. It is worthwhile to note that the study in Section 3.2 is the first step in a bigger 

scenario, in which we start to work with 3D-DFT and Fourier transforms to compute the 

innumerous convolutions in the density functional theory. Results of this initial study were 

recently published  in “Fluid Phase Equilibria” (APPENDIX H). 

 

 

3.1 Charge-regulation models using PBE 

 

 

3.1.1 Introduction 

 

 

The EW waterflooding can alter the wettability of sandstone and carbonates. However, 

unlike sandstone rocks, carbonates are highly reactive and can dissolve in brine to produce, 

for instance, Ca2+, Mg2+, CO3
2−, HCO3

−, H2CO3 , and SO4
2− depending on the composition of 

the rock, which consists mainly of crystalline calcite (CaCO3), nevertheless it can also include 

smaller amounts of dolomite (CaMg(CO3)2) and anhydrite (CaSO4).
214,216

 Hence, the 

composition of the injected brine is considerably shifted by dissolution/precipitation reactions 

and the pH of the solution is buffered toward basic values quite independent of the engineered 

water pH.
216,217

 According to Yutkin and coworkers,
216

 the kinetic of rock dissolution is fast 

(order of seconds) for both high and low permeability zones. Moreover, the carbon dioxide 

content of the reservoir, which can be originated from CO2-rich crude oil and gas cap, also 

plays an important role in the composition of the equilibrated engineered water (EEW). 

Depending on the concentration and type of electrolytes, the EEW might have 

meaningful effects on the wetting state, expanding, for example, the two electrical double 

layers in the film (one at the brine/oil interface and another at the brine/rock interface), 

increasing the electrostatic repulsion between these two interfaces of the brine film, and, 

finally, releasing the oil previously bounded to the rock surface. In other words, the rock 

becomes less oil wet, in direction to a more hydrophilic condition.
214,218–220

 

In this work, we are especially interested in carbonate systems, since more than 50% 

of the known oil reservoirs are composed by this rock, and, in most of them, the wettability 

ranges from neutral to oil-wet.
204,211

 In Brazil, with the exploration of the pre-salt layer, an 
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exponential increase of carbonate reservoirs has happened. Some examples of predominantly 

carbonaceous fields are:
221

 

a) “Tartaruga verde”, “tubarão azul”, and “tubarão martelo” in Campos Basin; 

b) “Lula”, “Sapinhoá”, and “Mero” in Santos Basin; 

c) “Harpia” and “Guará” in Sergipe-Alagoas Basin; 

d) “Lagoa Piabanha” in Espírito Santo Basin. 

 

In order to investigate the wettability on carbonates, we modeled the disjoining 

pressure and with the augmented Young-Laplace equation, we computed the contact angle. 

The electrostatic potential was described by the PBE with charge regulation at the boundary 

conditions, whereas the van der Waals interaction between the surfaces was described by the 

Lifshitz theory. For the sake of simplicity, we assumed that the carbonate rock is exclusively 

composed by calcite. 

The plan of this chapter is as follows. Section 3.1.2 describes some backgrounds about 

chemical equilibria, electrolyte solution, and thermodynamics of thin films. Moreover, it 

presents a brief review about the surface complexation model for carbonaceous rock in the 

vicinity of brine. In Section 3.1.3 a theoretical methodology is constructed which is designed 

to capture the wettability of calcite/brine/oil system. The proposed strategy is validated for a 

sandstone rock, and after is applied to calcite rocks in Section 3.1.4. Finally, Section 3.1.5 

presents the more remarkable conclusions and offers some suggestions for improvement.  

 

 

3.1.2 Background 

 

 

3.1.2.1 Chemical equilibria and activity coefficients 

 

 

One criterion of equilibrium for chemical reactions indicates that the sum of products 

of the chemical potential of each component multiplied by its stoichiometric number (𝜐𝑖,𝑗) for 

a reaction 𝑗 is zero:
222
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∑𝜐𝑖,𝑗𝜇𝑖
𝑖

= 0     ∀𝑗 (103) 

 

The chemical potential of any component 𝑖  as function of the fugacity can be expressed 

by
102,222

 

 

𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln

f̂𝑖
f𝑖
0 = 𝜇𝑖

0 + 𝑅𝑇 ln 𝑎𝑖 (104) 

 

where 𝜇𝑖
0 is standard state chemical potential of 𝑖, f𝑖

0 is the fugacity of pure component 𝑖 in 

this standard state, f̂𝑖 is the fugacity of the component 𝑖 in a mixture, and 𝑎𝑖  is the activity 

coefficient of 𝑖.  

Substituting Eq. (104) into Eq. (103), we have
222

 

 

𝐾𝑒𝑞,𝑗(𝑇) =∏𝑎𝑖
𝑖

𝜐𝑖,𝑗
 (105) 

 

where 𝐾𝑒𝑞,𝑗(𝑇) is the equilibrium constant of the 𝑗th reaction at temperature 𝑇. For the solute 

𝑖 in the liquid phase, except for high pressure, the activity can be approximated by the product 

between the molal activity coefficient, γ𝑖
(𝓂)

, and the bulk molal concentration of the species 𝑖 

in the solution, 𝓂𝑖
𝑏, as 

 

𝑎𝑖 =
γ𝑖
(𝓂)

𝓂𝑖
𝑏

𝓂0
 (106) 

 

in which the unsymmetrical normalization convention for the activity coefficient is used. 

Here, 𝓂0 is equal to 1 mol of solute 𝑖 per kilogram of water and ensures the dimensionless of 

the activity 

The molal activity coefficient of ions may be computed based on an extended Debye-

Hückel model with the inclusion of a linear term as
102,196,222,223

 

 

ln γ𝑖
(𝓂)

= −
ADH𝑧𝑖

2√𝐼(𝓂)

1 + BDHå𝑖√𝐼
(𝓂)

+ 𝑏𝑖𝐼
(𝓂) (107) 
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where  

 

ADH[√kg/mol ] = √500 𝑁𝑎𝑣𝜆𝐵
3𝜌𝑤

(𝑚)
  (108) 

BDH[√kg/mol Å
−1] = √8𝜋 𝑁𝑎𝑣𝜆𝐵𝜌𝑤

(𝑚)
10−17 (109) 

 

𝑁𝑎𝑣 is the Avogadro constant, å𝑖 and 𝑏𝑖 are ion-specific parameters with units equal to 10
–10

 

m and kilogram of water (kgw) per mol, respectively, 𝐼(𝓂) is the ionic strength in mol/kgw, 

and 𝜌𝑤
(𝑚)

 is the volumetric mass density of water at 𝑇. For ion-pair and low ionic strength, the 

Setschenow equation can be used:
224

 

 

ln γ𝑖
(𝓂)

= 𝑏𝑖𝐼
(𝓂) (110) 

 

The activity of water can be estimated by an approximation based on Raoult's law:
223

 

 

𝑎H2O = 1 − 0.017∑
𝓂𝑖

𝑏

𝓂0
𝑖

  (111) 

 

where the sum is over all the charged and uncharged solutes in liquid phase.  

 

 

3.1.2.2 Thermodynamics of thin liquids 

 

 

There are two common approaches to represent thin films: single diving surface or two 

Gibbs dividing surfaces. In the former, the differential of the energy (𝑑𝑈) of the open film 

system is given by
213,218

 

 

d𝑈𝑓 = 𝑇d𝑆𝑓 − 𝑝𝑓d𝒱𝑓 +∑𝜇𝑖d𝓃𝑖,𝑓

𝑖

+ 𝛾𝑓d𝐴𝑓 (112) 
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where 𝑆 is the entropy, 𝓃𝑖,𝑓 is the number of mols of 𝑖 in the film, 𝛾 is the interfacial tension, 

𝐴 is the area, and the superscript 𝑓 indicates that the variables are applied to the film as a 

whole. On the other hand, for the later approach, the film thickness  ℓ appears explicitly and 

the differential of the energy of the film is equal to the sum of the contributions from the brine 

phase and the surface excess quantities as 

 

d𝑈𝑓 = 𝑇(d𝑆𝑏 + d𝑆𝑠𝑏,𝑜𝑏) − 𝑝𝑏d𝒱𝑏 +∑𝜇𝑖(d𝓃𝑖,𝑏 + d𝓃𝑖,𝑠𝑏 + d𝓃𝑖,𝑜𝑏)

𝑖

+ (𝛾𝑠𝑓 + 𝛾𝑜𝑓)d𝐴𝑓 − 𝐴𝑓Πdℓ 

(113) 

 

where the subscripts 𝑏, 𝑜, and 𝑠 indicate, respectively, brine, oil and rock surface, and Π is the 

total disjoining pressure. The relation between thickness, volume and area of the film can be 

expressed as 

 

d𝒱𝑏 = 𝐴𝑓dℓ + ℓd𝐴𝑓 (114) 

 

Eliminating dℓ of Eq. (113) using Eq. (114) yields 

 

d𝒰𝑓 = 𝑇(d𝑆𝑏 + d𝑆𝑠𝑏,𝑜𝑏) − (𝑝𝑏 + Π)d𝒱𝑏 +∑𝜇𝑖(d𝓃𝑖,𝑏 + d𝓃𝑖,𝑠𝑏 + d𝓃𝑖,𝑜𝑏)

𝑖

+ (𝛾𝑠𝑓 + 𝛾𝑜𝑓 + Πℓ)d𝐴𝑓 

(115) 

 

which in turn can be compared to Eq. (112) resulting in the following relationships: 

 

d𝑆𝑓 = d𝑆𝑏 + d𝑆𝑠𝑏,𝑜𝑏 (116) 

d𝒱𝑓 = d𝒱𝑏 (117) 

𝑝𝑓 = 𝑝𝑏 + Π (118) 

d𝓃𝑖,𝑓 = d𝓃𝑖,𝑏 + d𝓃𝑖,𝑠𝑏 + d𝓃𝑖,𝑜𝑏 (119) 

𝛾𝑓 = 𝛾𝑠𝑓 + 𝛾𝑜𝑓 + Πℓ (120) 

 

According to Churaev, Dergajin and Muller
225

 the disjoining pressure is equal to the 

difference between the normal component of the pressure tensor within the film and the bulk 

pressure of the phase from which the film has been formed by thinning out at mechanical 



79 

 

 

 

equilibrium. The relation between Π and a flat film thickness at constant 𝑇  and chemical 

potential of all species in the system is defined by
213,226

 

 

Π = −[
𝜕(𝛾𝑠𝑓 + 𝛾𝑜𝑓)

𝜕ℓ
]
𝑇,𝜇𝑖

 (121) 

 

For a film thickness large enough, the interfacial tensions 𝛾𝑠𝑓 and 𝛾𝑜𝑓 are equal to the 

bulk interfacial tensions, 𝛾𝑠𝑏 and 𝛾𝑜𝑏, (i.e. film acts exclusively as a bulk brine fluid) and the 

disjoining pressure is null. 

Integrating Eq. (121) from ∞ to an equilibrium thickness, ℓ𝑒𝑞, we have 

 

𝛾𝑠𝑓 + 𝛾𝑜𝑓 = 𝛾𝑠𝑏 + 𝛾𝑜𝑏 −∫ Π(ℓ)dℓ
ℓ𝑒𝑞

∞

  (122) 

 

Combining Eq. (120) with Eq. (122) yields 

 

𝛾𝑓 = 𝛾𝑠𝑏 + 𝛾𝑜𝑏 + (Πℓ)𝑒𝑞 −∫ Π(ℓ)dℓ
ℓ𝑒𝑞

∞

  (123) 

 

In an extrapolated situation where ℓ = 0, the interfacial tension of the film can be 

written by the Young's equation as
213

  

 

𝛾𝑓 = 𝛾𝑜𝑏 cos 𝜃 + 𝛾𝑠𝑏  (124) 

 

Finally, combining Eq. (123) with Eq. (124) , we obtain
213,227,228

 

 

cos 𝜃 = 1 +
(Πℓ)𝑒𝑞 − ∫ Π(ℓ)dℓ

ℓ𝑒𝑞
∞

 

𝛾𝑜𝑏
 (125) 

 

that expresses the relation between the contact angle and the disjoining pressure. 

For three-phase systems, the disjoining pressure is usually decomposed into 

contributions from the electric double layer (Π𝐸𝐷𝐿), the van der Waals interaction between the 

surfaces (Π𝑣𝑑𝑊) and the structural forces (Π𝑠). 
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Π(ℓ) = Π𝐸𝐷𝐿(ℓ) + Π𝑣𝑑𝑊(ℓ) + Π𝑠(ℓ) (126) 

 

The electric component of the disjoining pressure is the difference between the 

pressure of two charged surfaces (or interfaces) at a distance ℓ and the pressure when these 

surfaces are far from each other (ℓ′ → ∞). The pressure due to the electric double layer at any 

position 𝑥 between the two surfaces is 

 

(
∂𝑝

𝜕ℓ′
)
𝑥,𝑇,𝓃

= 𝜌𝑖(𝑥) (
𝜕𝜇𝑖
𝜕ℓ′

)
𝑥,𝑇,𝓃

 (127) 

 

where ℓ′  is the distance between the surfaces varying from ℓ  to ℓ′ → ∞ . The chemical 

potential is described by Eq. (4) and the ideal solution approximation is used, except by the 

non-ideality of the ion charge. Thus, the disjoining pressure can be estimated by bringing two 

plates from an infinity separation distance between them to a distance equal to ℓ as
67

 

 

Π𝐸𝐷𝐿(𝑥, ℓ) = −∫ ∑𝜌𝑖(𝑥) (
𝜕𝜇𝑖
𝜕ℓ′

)
𝑥,𝑇,𝓃

𝑖

dℓ′
∞

ℓ

= [−
1

2 0 (
d𝜓

d𝑥
)
𝑥,ℓ

2

+
1

𝛽
∑𝜌𝑖(𝑥, ℓ)

𝑖

] − [−
1

2 0 (
d𝜓

d𝑥
)
𝑥,∞

2

+
1

𝛽
∑𝜌𝑖(𝑥,∞)

𝑖

] 

(128) 

 

Here, we disregarded the contributions of the external potential and residual chemical 

potential. The term inside the parentheses with subscript 𝑥  means that the values are 

calculated at 𝑥 when the distance between the surfaces is ℓ or ∞. The first term inside the 

bracket of Eq. (128) is the contribution from the electrostatic field, whereas the second term 

refers to the entropic (osmotic) contribution.  

In addition, at equilibrium, the disjoining pressure should be independent of the 

position 𝑥.
67

 Considering 𝑥 located at the midplane (𝑥𝑚) of the slit pore, we have 

 

Π𝐸𝐷𝐿(ℓ) = −
1

2 0 (
d𝜓

d𝑥
)
𝑥𝑚,ℓ

2

+
1

𝛽
∑[𝜌𝑖(𝑥𝑚, ℓ) − 𝜌𝑖

𝑏]

𝑖

 (129) 

 

When the two surfaces have the same charge, Eq. (129) is reduced to 
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Π𝐸𝐷𝐿(ℓ) =
1

𝛽
∑[𝜌𝑖(𝑥𝑚, ℓ) − 𝜌𝑖

𝑏]

𝑖

 (130) 

 

The van der Waals interaction between two surfaces in a medium can be described on 

the basis of the Lifshitz theory.
229

 For two planar surfaces, Π𝑣𝑑𝑊 is defined as function of the 

distance ℓ between them and the Hamaker constant 𝐻 as
67

 

 

Π𝑣𝑑𝑊(ℓ) =
d

dℓ
(

𝐻

12𝜋ℓ2
) (131) 

 

For a system characterized by two phases 1 and 2 interacting across a medium 3, the 

nonretarded Hamaker constant (𝐻non−ret) can be approximated as
67

 

 

𝐻non−ret = 𝐻𝜈=0 +𝐻𝜈>0

≈
3

4𝛽
(

1 − 3

1 + 3
) (

2 − 3

2 + 3
)

+
3ℎ𝜈𝑒

8√2

(𝑛𝑅𝐼,1
2 − 𝑛𝑅𝐼,3

2 )(𝑛𝑅𝐼,2
2 − 𝑛𝑅𝐼,3

2 )

√(𝑛𝑅𝐼,1
2 + 𝑛𝑅𝐼,3

2 )(𝑛𝑅𝐼,2
2 + 𝑛𝑅𝐼,3

2 ) [√(𝑛𝑅𝐼,1
2 + 𝑛𝑅𝐼,3

2 ) + √(𝑛𝑅𝐼,2
2 + 𝑛𝑅𝐼,3

2 )]

  

(132) 

 

assuming the same absorption frequencies for all three phases, where 𝑗  and 𝑛𝑅𝐼,𝑗  are the 

dielectric constant and refractive index of the 𝑗th phase, and the subscript 𝜈 refers to the 

frequency.  

The presence of electrolytes in the medium 3 affects the Hamaker constant by 

screening the entropic contribution, i.e. 𝐻𝜈=0 . Hence, the screened nonretarded Hamaker 

constant 𝐻scris given by
67

 

 

𝐻scr(ℓ) ≈ 𝐻non−ret
𝜈=0

exp(−𝜅ℓ) + 𝐻non−ret
𝜈>0

  (133) 

 

The retardation effects are significant at distance greater than 5nm, approximately, 

where the contribution from 𝜈 > 0 to the van der Walls force begins to decay more intensely. 

The resolution of the full Lifshitz theory considering the retarded effects is not trivial, 

particularly for the interactions across a dielectric media. This fact stimulated the 
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development of some approximations as the one proposed by Gregory (1981),
230

 which 

calculates the Hamaker constant in the transition region from nonretarded to retarded forces 

by 

 

𝐻 ret
𝜈>0

(ℓ) ≈

𝐻non−ret
𝜈>0

1 + 5.3 𝜆𝑙𝑤
−1 ℓ

 (134) 

 

where 𝜆𝑙𝑤
−1 is the London wavelength, usually set to 100 nm.  

Combining Eqs. (131) – (134), the van der Waals interaction between two flat surfaces 

in a medium can be written as 

 

Π𝑣𝑑𝑊(ℓ) = −
𝐻𝜈=0 exp(−𝜅ℓ) (2 + 𝜅ℓ)

12𝜋ℓ3
−

𝐻𝜈>0(2 + 15.9 𝜆𝑙𝑤
−1 ℓ)

12𝜋ℓ3(1 + 5.3 𝜆𝑙𝑤
−1 ℓ)2

 (135) 

 

The last contribution, but not least important, to total disjoining pressure is due to the 

structural forces, i.e. the short-range solvation forces between the two surfaces, which is 

represented by an exponential function as
213,227

 

 

Π𝑠(ℓ) = 𝐴𝑠exp (−
ℓ

ℓ𝑠
) (136) 

 

where 𝐴𝑠 is a coefficient associated with the magnitude of the structural forces and ℓ𝑠 is a 

characteristic length. Typical values for these parameters are, respectively, 1.5 ×10
5
 bar and 

0.5 Å.
213

  

 

 

3.1.2.3 Surface complexation models  

 

 

The equilibrium reactions at solid/liquid interfaces have been frequently described in 

the literature by the surface complexation model (SCM), characterized by the bond between 

species dissolved in the liquid phase with ions exposed on the surface of the solid phase. This 

model has been successfully applied in the literature to describe the thermodynamic 
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equilibrium between carbonaceous surfaces – such as calcite, magnesite and dolomite – and 

aqueous electrolyte solutions.
231,232,241,233–240

 

Van Cappellen and coworkers
231

 developed a SCM for divalent metal carbonates 

(rhodochrosite, siderite and calcite) based on the protonation and the deprotonation of 

hydrated surface sites using 1:1 stoichiometry between the carbonate and metal sites on the 

surface. The equilibrium constant values for rhodochrosite (MnCO3) and siderite (FeCO3) 

were derived from the optimization of the SCM based on the constant capacitance model to 

reproduce surface charge data obtained experimentally by acid/base titration. The equilibrium 

constants for calcite (CaCO3) were estimated to reproduce the IEP equal to 8.2 for a 

suspension of calcite at 298.15 K and partial pressure of carbon dioxide equal to 3.3×10
-4

.
231

 

According to Van Cappellen and coworkers the suggested hydration of species corroborated 

with the findings obtained by X-ray photoelectron spectroscopy
242

 and diffuse reflectance 

infrared Fourier transform spectroscopy.
232,235

 

Pokrovcky and coworkers
232–234,236

 applied the same set of reactions proposed by Van 

Cappellen et al.
231

 to a large set of divalent metal carbonates (Ca, Mg, Sr, Ba, Mn, Fe, Co, Ni, 

Zn, Cd, and Pb) and dolomite [CaMg(CO3)2]. For all of the aforementioned crystals, except 

calcite, the equilibrium constants were estimated based on a constant capacitance model using 

surface charge data obtained from potentiometric titration at 25±0.2°C in a limited residence 

time reactor, and ζ potential obtained as a function of pH and ionic strength.
232–234,236

 On the 

other hand, the equilibrium constants for calcite were determined based on ζ potential and IEP 

data in solutions with different compositions
232,243

 due to the fast kinetics of dissolution of 

CaCO3 and the buffering effect of the carbonate ions in solution, which would affect the 

acid/base titration results. 

Brady, Krumhansl and Mariner
238

 used the same reactions proposed by Van Cappellen 

et al.
231

 and Pokrovcky et al.
232–234,236

; however, motivated by the Pierre's findings
244

 ‒ in 

which the sulfate decreases the surface charge of the calcite, particularly near the IEP ‒ they 

added reactions involving this ion.  

The dissolution and dissociation constants involving calcite at high temperatures, 

pressures, and salinity were predicted by Hiorth, Cathles e Madland
237

 using the Helgeson-

Kirkham-Flowers equation of state.
245

 One of the hypotheses adopted consisted in the same 

dependence on the temperature between the equilibrium constants at the surface and in 

analogous reactions in bulk phase. The ζ potential values obtained by the model were 

compared to experimental data, and a good agreement was observed.
237
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Recently, Eftekhari et al. (2017)
241

 optimized the equilibrium constants of the surface 

complexation reactions to adjust the theoretical surface charge density to ζ potential data of 

pulverized Stevns Klint chalk (canyon located southwest of Store Heddinge on the Danish 

island of Zealand).
61,246,247

 The theoretical ζ potential was calculated according to the Debye-

Hückel equation from the linearization of the analytical solution of the Poisson-Boltzmann 

equation for the electric double layer model of Gouy-Chapman.
67

 The shear plane was 

considered 3 Å away from surface.
248

 In order to correctly predict the ζ potential signal, the 

restriction ζi
calc

ζi
exp

 ≥ 0 was imposed for all 𝑖, ranging over the experimental data ζi
exp

 and 

computed ζ potentials (ζi
calc

).
241

 The optimized parameters were used to model the single-

phase multicomponent reactive flow of the brine through the Stevns Klint rock and the results 

obtained were compared to the concentration history of a chromatographic experiment.
246

 

There was a divergence between the values analyzed, which can be explained by an 

undesirable modification in the surface properties of the Stevns Klint rock during the 

pulverization (remembering that the ζ potential measurements were obtained on the 

pulverized rock). Thus, Eftekhari and coworkers
241

 proposed a new set of equilibrium 

constants in order to reproduce the history concentration obtained by chromatography. 

Heberling et al. (2011)
240

 developed a SCM related to the Stern electric double layer 

model. A set of ζ potentials as a function of the pH at different partial CO2 pressures and of 

streaming potential as a function of pH and calcium concentration (added as CaCl2) were 

measured. In addition, it was possible to evaluate the 3D crystal structure of the calcite (1 0 

4)/brine interface in situ at similar conditions to those used to measure the ζ potential by 

surface diffraction measurements.
240

 Thus, the Stern EDL was used to calculate the 

equilibrium constants of the reactions, capacitance of the Stern layer, and the shear plane 

distances (for each ionic strength) based on experimental data of ζ and streaming potentials, 

and structurally consistent with the results of the surface diffraction experiments.
240

 In the 

first plane, in contact with the surface, only protonation and deprotonation reactions were 

considered. It was assumed that all other ion-surface interactions occur in the transition plane 

between the adsorption layer and the diffuse layer. Moreover, it is known that the calcium 

atom exposed on the surface of the calcite crystal ideally has +1/3 charge instead of +1 due to 

the calcite structure ‒ Ca atoms are octahedrally coordinated by O from six different CO3 

groups ‒when the bonds between the Ca atom and the oxygen atoms of the neighbors CO3
2− 

are purely ionic.
249

 However, according to bond valence calculations based on surface 

diffraction measurements, the exposed calcium atom on the calcite surface has a partial 

charge of +0.25.
240
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Song et al. (2017)
239

 expanded the reactions of the SCM of the synthetic calcite 

proposed by Heberling et al.
240

 by the inclusion of reactions with Ca2+ , CO3
2− , Mg2+  and 

SO4
2−; however, they considered that all reactions occur in the outer layer of the model, i.e. the 

surface potential is equivalent to the potential in the outer Helmholtz plane in which all the 

ions were considered adsorbed. For the model of the diffuse layer, the Debye-Hückel equation 

was considered with a fixed distance from the shear plane equal to 0.33 nm for ionic strength 

of 0.1 M.
239

 

Wolthers et al.
250

 proposed a more sophisticated SCM by the charge distribution 

multisite ion complexation (CD-MUSIC), which considers three planes to describe the charge 

distribution at the rock/brine interface. This model allows the inclusion of different 

crystallographic coordination sites on the surface, and it is necessary to specify which crystal 

face is exposed and which types of site are present on the mineral surface. The charges on the 

mineral surface are described by the valence bond theory.
250

 

 

 

3.1.3 Methodology 

 

 

3.1.3.1 Bulk equilibria reactions 

 

 

The equilibrium reactions for the EW/calcite/oil system include the reactions that 

occur in the bulk phase and those on the interfaces. For the former, there are some databases 

available in the literature, such as PHREEQC,
224

 WATEQ4F,
251

 SC-Database,
252

 JESS,
253

 and 

EQ3/6.
254

 The set of reactions at the bulk phase is fundamental to define the species and their 

concentrations in the EEW, which in turn is used to calculate the electrical component of the 

disjoining pressure. 

Numerous aqueous species and reactions are involved in the equilibrium chemistry of 

the EW. Considering the ions in their totally ionized form, the EW studied here may have 

Ca2+ , Mg2+ , Na+ , H+ , CO3
2− , SO4

2− , Cl− , and OH− . Thus, a set of sixteen equilibrium 

reactions in the aqueous phase were specified, totalizing the possibility of occurrence of 

twenty two aqueous species as shown in Table 5, besides Cl− that was considered inert for the 

reactions.  
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Table 5 – Reactions and equilibrium constants in bulk phase at 298.15 K 

 Reaction p𝐾𝑒𝑞
a 

1 CO2(aq) + H2O ⇌ CO3
2− + 2H+ 16.681 

2 CO3
2− + H+ ⇌ HCO3

− ‒10.329 

3 Ca2+ + CO3
2− + H+ ⇌ CaHCO3

+ ‒11.435 

4 Ca2+ + CO3
2− ⇌ CaCO3(aq) ‒3.224 

5 Mg2+ + CO3
2− + H+ ⇌ MgHCO3

+ ‒11.399 

6 Mg2+ + CO3
2− ⇌ MgCO3(aq) ‒2.98 

7 Na+ + HCO3
− ⇌ NaHCO3 0.25 

8 Na+ + CO3
2− ⇌ NaCO3

− ‒1.27 

9 H2O ⇌ OH− + H+ 14.0 

10 Ca2+ + H2O ⇌ CaOH+ + H+ 12.78 

11 Mg2+ + H2O ⇌ MgOH+ + H+ 11.44 

12 SO4
2− + H+ ⇌ HSO4

− ‒1.988 

13 Ca2+ + SO4
2− ⇌ CaSO4(aq) ‒2.30 

14 Ca2+ + HSO4
− ⇌ CaHSO4

+ ‒1.08 

15 Mg2+ + SO4
2− ⇌ MgSO4(aq) ‒2.37 

16 Na+ + SO4
2− ⇌ NaSO4

− ‒0.7 

17
b CaCO3(s) ⇌ Ca2+ + CO3

2− 8.48 

18
b CO2(g) ⇌ CO2(aq) 1.468 

Source: 
a
Equilibrium constants from Nordstrom et al (1990).

255
 

b
The last two reactions are only considered for 

the EEW. 

 

In the beginning, we should specify the temperature, pressure, composition, and 

concentration of the injected EW; and check whether the reactions are at equilibrium or not.  

If Eq. (105) is not satisfied for all possible reactions in the EW based on the specified 

species, then the composition and molalities referred to the equilibrium condition should be 

computed. For this end, we chose the stoichiometric formulation: for each independent 

reaction, we have one non-linear equation described by Eq. (105). The molalities of the 

solutes at equilibrium, 𝓂𝑖
𝑒𝑞

, are defined by
222,256

 

 

𝓂𝑖
𝑒𝑞 = 𝓂𝑖

𝑖𝑛 +∑𝜐𝑖,𝑗
𝑗

ξ𝑗  (137) 

 



87 

 

 

 

where the sum is over all the independent reactions and ξj is the extent of reaction for the 𝑗th 

reaction. The set of non-linear reactions was solved for 𝛏 using the multivariate Newton-

Raphson method.
256

 

The ion-specific parameters of the extended Debye-Hückel equation, which have been 

estimated based on the mean salt activity coefficient and MacInnes assumption,
223

 are 

summarized in Table 6. For uncharged species, a constant value of 2.303×10
-1

 kgw/mol was 

considered for 𝑏𝑖.
224

 

Given the composition and concentration of the EW at equilibrium, the next step 

consists in the estimation of the EEW composition. Since calcite is highly reactive, the EEW 

might be quite different from the injected EW. Besides the reactions in Table 5, in this step, 

the precipitation/dissolution reaction of calcite (𝐾𝑠𝑝 = 10−8.48)
255

 and dissolution of carbon 

dioxide in the liquid phase (𝐾𝑒𝑞 = 10−1.468)
255

 are considered for the equilibrium state. We 

should also pay attention to the possibility of precipitation of solid species not initially present 

in the system, such as dolomite, aragonite, gypsum, anhydrite, and halite.  

 

Table 6 – Ion-specific parameters of the extended Debye-Hückel model 

Species 𝒶𝑖 𝑏𝑖 Species 𝒶𝑖 𝑏𝑖 

H+ 9.00 0.0 MgOH+ 6.50
a
 0.0 

Na+ 4.00 1.727×10
-1 MgHCO3

+ 4.00 0.0 

NaHCO3(aq) ‒ 2.303×10
-1

 MgCO3(aq) ‒ 2.303×10
-1

 

NaCO3
− 5.40 0.0 MgSO4(aq) ‒ 2.303×10

-1
 

NaSO4
− 5.40 0.0 Cl− 3.50 3.453×10

-2
 

Ca2+ 5.00 3.779×10
-1

 OH− 3.50 0.0 

CaOH+ 6.00 0.0 CO2(aq) ‒ 2.303×10
-1

 

CaHCO3
+ 6.00 0.0 HCO3

− 5.40 0.0 

CaCO3(aq) ‒ 2.303×10
-1

 CO3
2− 5.40 0.0 

CaHSO4
+ 3.04

a
 0.0 HSO4

− 4.50 0.0 

CaSO4(aq) ‒ 2.303×10
-1

 SO4
2− 5.00 -9.210×10

-2
 

Mg2+ 5.50 4.605×10
-1

    

Source: Parameters from Truesdell and Jones (1974)
223

 and Parkhurst and Appelo (2013)
224

.  

 

After the estimation of the molalities in the EEW, it is necessary to compute the 

density of the electrolyte solution. We used the methodology proposed by Appelo and 
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coworkers, 
257

 in which the density of the electrolyte solution is related to the density of the 

pure water at the same pressure and temperature of the system and to the apparent molar 

volume of the dissolved salt, which in turn was obtained according to the Redlich equation 

expanded to the modified Debye-Hückel theory.
257,258

 Then, with the density of the electrolyte 

solution, it is possible to determine the molarities, which in turn are the input data to solve the 

PBE, whose solution is used to calculate the disjoining pressure due to the EDL. 

It is worthwhile to note that the composition of the connate water was neglected in the 

equilibrium reactions, as well as, the existence of tracer of Ba
+2

.  

 

 

3.1.3.2 Surface complexation reactions 

 

 

We adopted the charge regulation boundary condition for both the surfaces of calcite 

and oil. Two models were used for the calcite: Eftekhari's model
241

 and Song's model.
239

  

According to the model proposed by Eftekhari et al.
241

, the maximum surface densities 

of carbonaceous (𝜍CO3
max) and calcium (𝜍Ca

max) sites are described by 

 

𝜍CO3
max = 𝜍CO3𝐻 + 𝜍CO3− + 𝜍CO3Ca+ + 𝜍CO3Mg+ = 2 nm−2  (138) 

𝜍Ca
max = 𝜍CaOH + 𝜍CaHCO3 + 𝜍CaOH2

+ + 𝜍CaO− + 𝜍CaCO3− + 𝜍CaSO4− = 2 nm−2 (139) 

 

where 𝜍𝑚 is the number surface density of the 𝑚th site on the surface. Moreover, the reactions 

and equilibrium constants for the model are summarized in Table 7, where > represents the 

mineral surface.  

The charge density on the calcite surface is determined by the surface densities of the 

charged sites and their charge number. Thus we have 

 

𝑄𝐶𝑎𝑙𝑐𝑖𝑡𝑒 = 𝑒[𝜍CO3Ca+ + 𝜍CO3Mg+ − 𝜍CO3− + 𝜍CaOH2
+ − 𝜍CaO− − 𝜍CaCO3− − 𝜍CaSO4−] (140) 

 

Here, unlike in the bulk equilibria, we assume that the activity of the species 𝑖 in the 

solution is equal to its local molar density at the surface (�̃�𝑖
𝑐𝑎𝑙 = 𝜌𝑖(𝑥)|𝑥→calcite); and, for the 

surface sites, the activity is equivalent to its molar surface density.  
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Table 7 – Reactions and equilibrium constants for the Eftekhari's model 

 Reactions p𝐾𝑒𝑞
a
 

E1 > CO3H ⇌  > CO3
− + H+ 4.5

 

E2 > CO3H + Ca2+ ⇌  > CO3Ca
+ + H+ 1.29

 

E3 > CO3H +Mg2+ ⇌  > CO3Mg
+ + H+ 2.04

 

E4 > CaOH ⇌  > CaO− + H+ 17.09
 

E5 > CaOH + H+ ⇌  > CaOH2
+ –14.08

 

E6 > CaOH2
+ + CO3

2− ⇌  > CaCO3
− + H2O –3.33

 

E7 > CaOH2
+ + HCO3

− ⇌  > CaHCO3 + H2O –0.48
 

E8 > CaOH2
+ + SO4

2− ⇌  > CaSO4
− + H2O –1.45

 

Source: 
a
Equilibrium constants from Eftekhari et al. (2017).

241
 

 

Combining Eqs. (105) and (140) yields 

 

𝑄𝐶𝑎𝑙𝑐𝑖𝑡𝑒 = 𝑒 [𝜍CO3𝐻 (
𝐾𝑒𝑞,𝐸2�̃�Ca2+

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸3�̃�Mg2+
𝑐𝑎𝑙 − 𝐾𝑒𝑞,𝐸1

𝜌H+
)

+ 𝜍CaOH (−
𝐾𝑒𝑞,𝐸4

�̃�H+
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸5�̃�H+

𝑐𝑎𝑙 (1 − 𝐾𝑒𝑞,𝐸6�̃�CO32−
𝑐𝑎𝑙 − 𝐾𝑒𝑞,𝐸8�̃�SO42−

𝑐𝑎𝑙 ))] 

(141) 

 

Expressing 𝜍CO3𝐻  and 𝜍CaOH  as functions of 𝜍CO3
max  and 𝜍Ca

max  and substituting these 

variables in Eq.(141), we obtain the surface charge density on the calcite as function of the 

local densities of the free ions at the surface, the maximum surface density of the sites and the 

equilibrium constant of the surface reactions: 

 

𝑄𝐶𝑎𝑙𝑐𝑖𝑡𝑒 = 𝑒 [𝜍CO3
max

𝐾𝑒𝑞,𝐸2�̃�Ca2+
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸3�̃�Mg2+

𝑐𝑎𝑙 − 𝐾𝑒𝑞,𝐸1

𝐾𝑒𝑞,𝐸2�̃�Ca2+
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸3�̃�Mg2+

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸1 + �̃�H+
𝑐𝑎𝑙

+
𝜍Ca
max

𝐷
(𝐾𝑒𝑞,𝐸5(�̃�H+

𝑐𝑎𝑙)
2
(1 − 𝐾𝑒𝑞,𝐸6�̃�CO32−

𝑐𝑎𝑙 − 𝐾𝑒𝑞,𝐸8�̃�SO42−
𝑐𝑎𝑙 ) − 𝐾𝑒𝑞,𝐸4)] 

(142) 

 

where  
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𝐷 = 𝐾𝑒𝑞,𝐸5(�̃�H+
𝑐𝑎𝑙)

2
(1 + 𝐾𝑒𝑞,𝐸6�̃�CO32−

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸7�̃�HCO3−
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝐸8�̃�SO42−

𝑐𝑎𝑙 ) + 𝐾𝑒𝑞,𝐸4 + +�̃�H+
𝑐𝑎𝑙 (143) 

 

For the complexation model proposed by Song et al.
239

 the site densities on the surface 

are  

 

𝜍CO3
max = 𝜍CO3𝐻+0.75 + 𝜍CO3−0.25 + 𝜍CO3H⋯CO3−1.25 + 𝜍CO3H⋯SO4−1.25 + 𝜍CO3H⋯HCO3

−0.25

+ 𝜍CO3H⋯Cl−0.25 = 4.95 nm−2  
(144) 

𝜍Ca
max = 𝜍CaOH−0.75 + 𝜍CaOH2

+0.25 + 𝜍CaOH⋯Ca+1.25 + 𝜍CaOH⋯Mg+1.25 + 𝜍CaOH⋯Na+0.25

= 4.95 nm−2 
(145) 

 

Note that the valences of the sites are fractioned numbers. The reactions and 

equilibrium constants can be found in Table 8. Hence, following the same procedure made for 

Eftekhari's model, we can obtain the surface charge density on the calcite as function of 𝜍CO3
max, 

𝜍Ca
max, equilibrium constants and local densities of the free ions: 

 

𝑄𝐶𝑎𝑙𝑐𝑖𝑡𝑒 = 0.25𝑒 [3 𝜍CO3𝐻+0.75 − (𝜍CO3−0.25 + 𝜍CO3H⋯HCO3−0.25 + 𝜍CO3H⋯Cl−0.25)

− 5 (𝜍CO3H⋯CO3−1.25 + 𝜍CO3H⋯SO4−1.25) + 𝜍CaOH2
+0.25 + 𝜍CaOH⋯Na+0.25

+ 5(𝜍CaOH⋯Ca+1.25 + 𝜍CaOH⋯Mg+1.25) − 3 𝜍CaOH−0.75] 

(146) 

𝑄𝐶𝑎𝑙𝑐𝑖𝑡𝑒 = 0.25𝑒 [
𝜍CO3
max

𝐷1
((3 − 5 𝐾𝑒𝑞,𝑆2�̃�CO32−

𝑐𝑎𝑙 − 5 𝐾𝑒𝑞,𝑆3�̃�SO42−
𝑐𝑎𝑙 − 𝐾𝑒𝑞,𝑆4�̃�HCO3−

𝑐𝑎𝑙  

−𝐾𝑒𝑞,𝑆5�̃�Cl−
𝑐𝑎𝑙) − 𝐾𝑒𝑞,𝑆1) 

+
𝜍Ca
max

𝐷2
(−3 + 𝐾𝑒𝑞,𝑆6�̃�H+

𝑐𝑎𝑙 + 5 𝐾𝑒𝑞,𝑆7�̃�Ca2+
𝑐𝑎𝑙 + 5 𝐾𝑒𝑞,𝑆8�̃�Mg2+

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆9�̃�Na+
𝑐𝑎𝑙 )] 

(147) 

 

where  

 

𝐷1 = 𝐾𝑒𝑞,𝑆1 + �̃�H+
𝑐𝑎𝑙 (1 + 𝐾𝑒𝑞,𝑆2�̃�CO32−

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆3�̃�SO42−
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆4�̃�HCO3−

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆5�̃�Cl−
𝑐𝑎𝑙) (148) 

𝐷2 = 1 + 𝐾𝑒𝑞,𝑆6�̃�H+
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆7�̃�Ca2+

𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆8�̃�Mg2+
𝑐𝑎𝑙 + 𝐾𝑒𝑞,𝑆9�̃�Na+

𝑐𝑎𝑙  (149) 
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Table 8 – Reactions and equilibrium constants for the Song's model 

 Reactions p𝐾𝑒𝑞
a
 

S1 > CO3H
+0.75 ⇌ > CO3

−0.25 + H+ 13.5
 

S2 > CO3H
+0.75 + CO3

2− ⇌ > CO3H⋯CO3
−1.25 –2.23

 

S3 > CO3H
+0.75 + SO4

2− ⇌ > CO3H⋯SO4
−1.25 –1.00

 

S4 > CO3H
+0.75 + HCO3

− ⇌ > CO3H⋯HCO3
−0.25 –0.09

 

S5 > CO3H
+0.75 + Cl− ⇌ > CO3H⋯Cl−0.25 0.64

 

S6 > CaOH−0.75 + H+ ⇌ > CaOH2
+0.25 –0.30

 

S7 > CaOH−0.75 + Ca2+ ⇌> CaOH⋯Ca+1.25 –1.74
 

S8 > CaOH−0.75 +Mg2+ ⇌> CaOH⋯Mg+1.25 –1.62
 

S9 > CaOH−0.75 + Na+ ⇌> CaOH⋯Na+0.25 –0.14
 

Source: 
a
Parameters from Song et al. (2017).

239
 

 

For the oil/brine interface, we adopted the SCM proposed by Brady and coworkers, 

which considers the interaction of the basic and acidic sites of the oil with the ions H+, Ca2+, 

and Mg2+ (Table 9).
12,238,259

 

 

Table 9 – Reactions and equilibrium constants for the oil/brine interface 

 Reactions p𝐾𝑒𝑞
a
 

B1 −NH+ ⇌ −N+ H+ 6.0
 

B2 −COOH ⇌ −COO− + H+ 5.0
 

B3 −COOH + Ca2+ ⇌ −COOCa+ + H+ 3.8
 

B4 −COOH + Mg2+ ⇌ −COOMg+ + H+ 4.0
 

Source: 
a
Parameters from Brady et al. 

12,238,259
 

 

Following the same procedure as for the brine/rock surface, the surface charge density 

on the oil/brine interface, 𝑄𝑂𝑖𝑙, can be described by 

 

𝑄𝑂𝑖𝑙 = 𝑒 [𝜍COO
max

𝐾𝑒𝑞,𝐵3�̃�Ca2+
𝑜𝑖𝑙 + 𝐾𝑒𝑞,𝐵4�̃�Mg2+

𝑜𝑖𝑙 − 𝐾𝑒𝑞,𝐵2

𝐾𝑒𝑞,𝐵3�̃�Ca2+
𝑜𝑖𝑙 + 𝐾𝑒𝑞,𝐵4�̃�Mg2+

𝑜𝑖𝑙 + 𝐾𝑒𝑞,𝐵2 + �̃�H+
𝑜𝑖𝑙

+ 𝜍N
max

�̃�H+
𝑜𝑖𝑙

�̃�H+
𝑜𝑖𝑙 + 𝐾𝑒𝑞,𝐵1

] (150) 
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where �̃�𝑖
𝑜𝑖𝑙 is the molar density of the 𝑖th species at the closest distance from the oil surface.  

 

 

3.1.3.3 Wettability and Contact angle 

 

 

From Eq. (125), we observe that it is necessary the profile of the disjoining pressure as 

function of the film thickness from a long distance until the equilibrium thickness to calculate 

the contact angle. The van der Waals and structural components of the disjoining pressure are 

straightforward, since both are computed directly from Eqs. (135) and (136), respectively. On 

the other hand, the electric component is computed using the solution of the PBE for various 

thickness of the film. In practice, we solved the PBE, with a distance increment Δℓ of 0.02 

nm, from ℓ0 = 100 nm until reach the equilibrium thickness, i.e., the distance in which the 

total disjoining pressure is equal to the capillary pressure (𝑝𝑐 ) defined as input data, as 

outlined in Figure 8. 

 

Figure 8 – Computational strategy used to compute the disjoining pressure and the contact 

angle 

 

 

Sadeqi-Moqadam, Riahi, and Bahramian
219

 reported that capillary pressure does not 

have any significant effect on the predicted contact angle even for capillary pressures 
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differing by two orders of magnitude, e.g. 0.02 bar to 2 bar. On the basis of these findings, we 

adopted an input capillary pressure equal to 0.3 bar.  

 

3.1.4 Results and Discussion 

 

 

3.1.4.1 Validation of the methodology to compute the disjoining pressure  

 

In order to validate the program to obtain the total disjoining pressure, especially the 

electric component, we reproduced the results reported by Lima, Murad and Domingues.
73

 

The system consists of a clay surface located at 𝑥 = 0 and an oil/brine interface located at the 

end of the space domain, which is variable for each case analyzed. The brine between these 

two interfaces is composed by Na+ , H+ , Ca2+ , Cl− , and OH− . For sandstones, the bulk 

equilibria between the rock and the injected EW is not relevant, since the kinetic of 

dissolution/precipitation reactions is not fast; in other words, the clay surface is not highly 

reactive. Thus the composition and concentrations of the EEW are considered equal to the 

injected EW. The set of reactions on the clay and oil surfaces, as well as the surface charge 

equations for the regulation charge boundary conditions, can be found in the original paper of 

Lima, Murad and Domingues.
73

 

In Figure 9, the impact of the bulk concentration of Ca
2+

 in the electric potential 

profile is investigated for two different values of pH for a film of 5 nm. Unless otherwise 

specified, the bulk concentration of Na
+
 is 0.1 M, while the concentration of Cl

–
 is set to 

guarantee the electroneutrality. For pH equal to 4.0, the calcite and oil interfaces have 

opposite surface electric potential, whereas, in Figure 9B, both surfaces have the same sign 

for the surface electric potential, except for bulk concentration of Ca
2+

 equal to 0.1 M.  
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Figure 9 – Effect of the bulk Ca
2+

 concentration in the electric potential profile for sandstones 

systems 

 

Legend: In A, bulk pH equal to 4.0, whereas, in B, it is 7.0 Film thickness equal to 5 nm and bulk concentration 

of ion sodium is 0.1 M.  

 

Figure 10 shows that pH has a notable influence in the surface charge of the oil/brine 

interface, since for acidic pH it presents positive charge; and near to neutral pH, slightly 

positive or negative surface charges are observed depending on the bulk concentration of 

Ca
2+

. On the other hand, for the clay surface, only values of pH close to 3.0 are able to change 

the surface charge towards positive values for the brine compositions analyzed. Unlike Figure 

9, the film thickness in Figures 10 and 11 is equal to 3 nm, following the results provided by 

Lima, Murad and Domingues.
73

 

 

Figure 10 – Effect of the bulk Ca
2+

 concentration in the surface charge of the clay and the oil 

as a function of pH for a film thickness of 3 nm 

 

Legend: Surface charge density of clay, in A; whereas, in B, the surface charge density of the oil is presented. 

Bulk concentration of ion sodium is 0.1 M.  

 

A          B 

A          B 
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For Ca
2+

 concentration equal to 0.01, 0.1, and 1.0 mM, the entropic contributions to 

the electric disjoining pressure is dominant for pH >5.5, and, therefore, the disjoining pressure 

is positive. In other words, the contributions from the electrostatic field are always attractive 

independently of the system and, since the result disjoining pressures for pH >5.5 are 

repulsive (i.e. positive), the entropic contributions prevail over the electrostatic (Figure 11). 

The same behavior happens for pH values lower than 3.4. It is worthwhile to note that the 

non-entropic contribution to the electric disjoining pressure is always attractive, contributing 

to decrease the value of Π𝐸𝐷𝐿.  

 

Figure 11 – Effect of the bulk Ca
2+

 concentration in the electric double layer disjoining 

pressure as a function of pH for a film thickness of 3 nm 

 

Legend: Bulk concentration of ion sodium is 0.1 M.  

 

Finally, we evaluated the electric, van der Waals, and structural components of the 

disjoining pressure as function of the log ℓ  for pH equal to 4.0 and 7.0, and bulk Ca
2+

 

concentration equal to 0.1 mM and 0.01 mM. All the results displayed in Figure 12 

reproduced with excellent agreement those reported by Lima, Murad and Domingues.
73

  

They considered only the nonretarded van der Waals interaction, without the screening 

effects. Thus, Π𝑣𝑑𝑊 exhibits the same profile for all conditions, independently of the brine 

composition. The same is valid to Π𝑆. However, the structural forces are always repulsive and 

short-ranged forces. Moreover, they are dominant over the other components of the disjoining 

pressure for very small film thickness.  
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Figure 12 – Electric, van der Waals, and structural components of the disjoining pressure for 

different values of pH and bulk Ca
2+

 concentration for sandstones systems 

 

Legend: In A and B, the bulk Ca
2+ 

concentration is 0.1 mM, whereas in C and D, it is 0.01 mM. The pH is equal 

to 4.0 for the graphics A and C. On the other hand C and D represent the neutral pH. 
 

 

 

3.1.4.2 Wettability of calcite/brine/oil systems 

 

 

The IEP of the calcite in pure water varies from 7 to 12, depending on the analyzed 

condition of the mineral; consequently, the calcite surface has a strong tendency to be 

positively charged compared to sandstone.
214,239

 On the other hand, as exposed in the previous 

section, the oil has a tendency to be negatively charged particularly in pH greater than 5.5. 

Since the surface charge density of the oil is very sensitive to pH and the calcite promotes a 

buffering toward basic pH (favoring a negative oil/water interface), it would be interesting to 

inject an electrolyte solution that changes the surface charge density of calcite to more 

negative values in order to increase the electrostatic repulsion between both surfaces. 

Following the experimental observations, in which the calcite surface charge decreases 

with the increase in the concentration of SO4
2−,

61,239
 we analyzed the interfacial properties over 

A          B 

C          D 

log(ℓ[𝑚]) log(ℓ[𝑚]) 

log(ℓ[𝑚]) log(ℓ[𝑚]) 
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different concentrations of sulfate in the EW for different values of ionic strength at 298.15 K. 

Thus, for each curve in Figures 13 – 19, the ionic strength is kept constant and for a specified 

initial concentration of Na2SO4, we calculated the corresponding concentration of NaCl to be 

added to the mixture. The pH was determined to maintain the electroneutrality of the EW. As 

can be seen in Figure 13, an increase in the injection of SO4
2− causes a rise in pH. Moreover, 

for the same concentration of SO4
2−  in the injected EW, the pH is greater at lower ionic 

strength. Both behaviors are strongly related to the equilibrium reaction between sulfate and 

bisulfate; additionally, the latter observation is also related to the equilibrium reaction 

involving Na+, SO4
2−, and NaSO4

− ions. 

 

Figure 13 – Variation of the engineered water pH as function of the initial SO4
2− concentration 

for different ionic strengths 

 
Legend: In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

Here, we do consider a fast kinetics between the EW and the calcite as reported by 

some authors.
216,232

 Therefore, the pH of the injected EW is quite different from the EEW pH 

as shown in Figure 14. It varies more than 1.3 units in the scale. Besides, a CO2  partial 

pressure of 10
–3.4

 atm ‒ equivalent to atmospheric CO2 ‒ was adopted.
239,241
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Figure 14 – Variation of the equilibrated engineered water pH as function of the initial SO4
2− 

concentration for different ionic strengths 

 
Legend: In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

After the bulk equilibrium between calcite and engineered water (dissolution/ 

precipitation reactions), we could calculate the surface charge density on the calcite in the 

EEW by PBE with charge regulation, as presented in Figure 15 for the two sets of reactions 

used in this work (Song's model
239

 and Eftekhari's model
241

), observing that the adsorption of 

SO4
2− places negative charges near the calcite surface. 

The range of variation of the calcite surface charge is larger for the Song's model
239

 

compared to the Eftekhari's model
241

 (Figure 15), what does not mean that one model is better 

than other. They were reported for different samples of rock using different complexation 

reactions and methodologies, as mentioned in section 3.1.2.3. However, qualitatively, both 

models exhibit similar behaviors.  

For comparison, Figure 16 shows the surface charge density of the oil for the same 

electrolyte compositions of Figure 15 and, as expected, the surface charge is negative in this 

case. Besides, the profiles are almost constant or with a slight inclination, reflecting the 

buffering effects of calcite over the EW solution since the oil surface is highly sensitive to pH. 

In other words, since the absolute variation of the EEW pH is not pronounced, then, the oil 

surface charge does not vary considerably.  
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Figure 15 – Surface charge density on the calcite as function of the initial SO4
2− concentration 

for Song's and Eftekhari's reactions model 

 

Legend: Surface charge density of calcite using charge regulation with set of reactions reported by Eftekhari et 

al. (Eftekhari's model)
241

 in A; whereas, in B, the set of reactions are those reported by Song et al. 

(Song's model)
239

. In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

 

Figure 16 – Surface charge density on oil as function of the initial SO4
2− concentration 

 

Legend: Surface charge density of oil using charge regulation with set of reactions reported by Brady et al. 

(2012, 2015).
12,238,259

 In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

In order to evaluate the contact angle, it is necessary to know the Hamaker constant of 

the interaction between calcite and oil across the electrolyte solution. As demonstrated in Eq. 

(132), the non-retarded Hamaker constant depends on the refractive index and dielectric 

constant of the phases. For calcite, due to its anisotropy, instead of a singular value of 

dielectric constant, we have a tensor with diagonal components equal to 8.67, 8.69, and 

A        B 
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8.31;
260

 and, for the refractive index, calcite has two components: one from the ordinary rays 

(1.6584) 
260

 and other from extraordinary rays (1.4864).
260

  

Specifically for the dielectric constant of the calcite, single values ( 11, 22, or 33) or 

combinations of them do not impact considerably the entropic contribution of the Hamaker 

constant. Thus, we adopted a value of 8.68. However, Figure 17 reveals that the refractive 

index of calcite has a considerable impact on the contact angle. For the Eftekhari's model, a 

decrease of the contact angle is observed using the extraordinary refractive index to compute 

the Hamaker constant (Figure 17A). The same is valid for the Song's model with the 

difference that the ionic strength of 900 mM using the extraordinary refractive index changes 

the wettability toward completely water wet (Figure 17B), with an increase of the film 

thickness as displayed in Figure 18B. 

 

Figure 17 – Effect of the calcite refractive index and ionic strength on the contact angle 

 

Legend: Surface charge density of calcite using charge regulation with set of reactions reported by Eftekhari et 

al. (Eftekhari's model)
241

 in A; whereas, in B, the set of reactions are those reported by Song et al. 

(Song's model)
239

. In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

Regarding the oil, both parameters are dependent on the composition, varying from 

one sample to another. Here we considered the dielectric constant and refractive index of the 

oil equal to 1.925 and 1.455, respectively.
261

 

In the literature, the EW is frequently referred as low-salinity water;
13,14,214,216

 

however, as can be seen in Figures 17 and 18, moderate-salinity water was able to modify 

completely the wettability toward water-wet. Here, the effect is directly related to the 

concentration of SO4
2− which acts as a potential determining ion. 

 

 

A        B 
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Figure 18 – Impact of the calcite refractive index and ionic strength on the equilibrium film 

thickness 

 

Legend: Surface charge density of calcite using charge regulation with set of reactions reported by Eftekhari et 

al. (Eftekhari's model)
241

 in A; whereas, in B, the set of reactions are those reported by Song et al. 

(Song's model)
239

. In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

Figure 19 shows the electric potential profile as a function of the distance to a width 

pore of 1.1 nm for both 100 mM and 900 mM ionic strengths with initial sulfate concentration 

equal to 2.66 mM and 239 mM, respectively, and charge regulation on calcite described by 

Song's model. 

 

Figure 19 – Electric potential profile as function of the distance for a film thickness equal to 

1.1 nm 

 

Legend: Surface charge density of calcite using charge regulation with set of reactions reported by (Song's 

model).
239

 In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

A        B 
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In order to analyze the electric disjoining pressure, let us consider the distance of 

about 0.32 nm, where the electric potential profile, for an ionic strength equal to 900 mM, has 

a maximum. At this point, for 900 mM ionic strength, the non-entropic contribution to Π𝐸𝐷𝐿 

is zero; whereas, for 100 mM, it is negative. Regarding the entropic component, it is repulsive 

for both cases; however, for ionic strength of 100 mM, the contribution is lower, not being 

enough to overcome the attractive contribution of the non-entropic term. Consequently, the 

resulting electric disjoining pressure is attractive for ionic strength equal to 100 mM with 

initial sulfate concentration equal to 2.66 mM (Figure 20). On the other hand, it is repulsive 

for ionic strength equal to 900 mM with initial sulfate concentration equal to 239 mM (Figure 

20).  

 

Figure 20 – Effect of ionic strength in the electric double layer disjoining pressure as a 

function of the initial SO4
2− concentration for a film thickness of 1.1 nm 

 

Legend: Surface charge density of calcite using charge regulation with set of reactions reported by (Song's 

model).
239

 In the key I is the ionic strength of the initial composition expressed in mol/m³. 

 

 

3.1.5 Conclusion 

 

 

This is a broad work that involves thermodynamics of electrolytes, chemical equilibria 

in bulk phase and on surfaces, thermodynamics of thin films, and interfacial phenomena. With 

this methodology it is possible to compute the contact angle at equilibrium and the wetting 

behavior of a rock surface. The wetting properties have a considerable influence on the oil 
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displacement by water since they are correlated to the capillary pressure, interfacial tensions, 

and electrical properties in the pores.  

We could observe a higher tendency toward water-wet calcite with the injection of 

EW containing sulfate. In the literature, the EW is frequently referred as low-salinity water; 

however, this is not always true, as reported here. It is important to highlight that at 

temperature of about 60°C, it was experimentally verified that the rock tends to be more water 

wet.
262

 Thus it would be interesting to expand this analysis to higher temperatures besides 

room temperature. At this point, we have the limitation of the unknown surface reactions 

enthalpies or reaction equilibrium constants at higher temperatures.  

Therefore, with this methodology, we could reassure some hypotheses that have been 

made over the years to explain the enhanced oil recovery by EW. 

 

 

3.2 Contact angle of rock/brine/oil system using 3D-DFT 

 

 

3.2.1 Introduction 

 

 

DFT has been used to investigate the wettability in vapor/liquid/solid substrate 

systems because of its versatility to determine the equilibrium structure and corresponding 

thermodynamic quantities of systems subjected to external potentials.
159–161,263–266

 However, 

the application of DFT to study the wettability and contact angle of liquid/liquid/solid 

substrate as far as we could track has not been performed. 

Moreover, in systems with little or no symmetry, the resolution of DFT in 

tridimensional coordinate is required. However, the high number of convolutions has impact 

ion the efficiency of the 3D-DFT; thus, it is interesting to use the fast Fourier transform (FFT) 

in an attempt to overcome this limitation.
65,108

  

The aim of this work, which is fully presented in APPENDIX H, is the determination 

of the most probable contact angle of a system characterized by an oil phase, ionic aqueous 

solution and an uncharged planar solid surface using 3D-DFT. More than expose a 

quantitative value, we are interested in providing a different approach to study these kinds of 

system using classical tridimensional DFT. Here the characteristics of the oil and the solid 

surface are defined by external potentials between them and the ions in solution. Two 
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strategies were used to describe the external potential: hard-surfaces and non-electrostatic 

interactions with the dispersion constant described by the Lifshitz theory. For the latter, a 

hypothetical rock surface of silica and an oil phase composed by pure pentane were 

considered, in order to compute the dispersion parameters between the ions and the surfaces.
65

 

 

 

3.2.2 Methodology 

 

 

In the following derivations, we consider a liquid droplet of oil resting on a flat solid 

surface surrounded by ionic aqueous solution as presented in Figure 7B. It is assumed that the 

chemical and physical characteristics of the substrate are not changed because of the contact 

with the fluid molecules. Neglecting the gravitational field, the shape of the droplet may be 

visualized rather close to a spherical cap. If 𝜃 is the contact angle between the droplet of 

volume 𝒱𝑑  and the solid, then the radius 𝑅𝑑 , the height ℎ𝑑  of the cap and the area of the 

droplet in contact with the solid (𝐴𝑠𝑜) can be written as
263,267

 

 

𝑅𝑑
3 =

3𝒱𝑑
𝜋(1 + cos 𝜃)2(2 − cos 𝜃)

 (151) 

ℎ𝑑 = 𝑅𝑑(1 + cos 𝜃) (152) 

𝐴𝑠𝑜 = 𝜋𝑅𝑑
2 sin2 𝜃 (153) 

 

The geometric representation of these measures is found in Figure 21. 

 

Figure 21 – Geometric measure representation of spherical cap 

 

Legend: The spherical cap is in blue. 𝜃, 𝑅𝑑, and ℎ𝑑 are the contact angle, the radius and the height, respectively. 

The hatched area corresponds to the area of the base circle of the cap, 𝐴𝑠𝑜.  

Source: Adapted from Barbosa, Lima and Tavares (2019).
65

 

𝑅𝑑  

ℎ𝑑 

𝑅𝑑 sin𝜃 



105 

 

 

 

 

For the sake of simplicity, we consider the mean density inside the droplet to be 

uniform, i.e., the oil droplet is incompressible. We also assume, a priori, the absence of thin 

brine film between the solid surface and the oil.  

Given an infinitesimal change in area d𝐴, the change in the surface energy d𝐸 of the 

system in Figure 7B is given  

 

d𝐸 = (𝛾𝑠𝑜 − 𝛾𝑠𝑏 − 𝛾𝑜𝑏 cos 𝜃)d𝐴 (154) 

 

where 𝛾𝑠𝑏 , 𝛾𝑠𝑜 , and 𝛾𝑜𝑏  are the solid/brine, solid/oil, and oil/brine interfacial tensions, 

respectively. The balance of forces in the �̂� direction correlates the interfacial tensions with 

the contact angle by the Young equation
211

 

 

cos 𝜃 =
𝛾𝑠𝑜 − 𝛾𝑠𝑏

𝛾𝑜𝑏
 (155) 

 

The nature of the contact angle is determined by the relative affinity of the two liquid 

phases for the solid, expressed by their interfacial tensions.
65

  

 

 

3.2.2.1 Simulation Details 

 

 

Our approach is based on a classical DFT of inhomogeneous fluids in three 

dimensions
65,108,129

 which treats the rock and the oil as external potentials acting on the ions in 

the brine. The convergence criterion for the grid was based on the analysis of the density 

profiles. 

For the hard sphere contribution, we used the WB version of the FMT.
117,118

 The 

convolutions were solved in reciprocal space as presented in Eqs. (57) and (58). 

As mentioned before, several approaches are available in the literature to take into 

account the contributions from electrostatic correlations.
134,135,144,136–143

 However, for the sake 

of simplicity, here we use the BFD model,
114

 although it presents well-known 

limitations.
27,29,133,152

 It is a classical approximation and we are interested in presenting a 

strategy to calculate the contact angle of a liquid/liquid/solid system, independently of the 
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functionals used to describe the excess Helmholtz energy. The second order DCFs were 

computed based on the equations developed by Blum and Rosenfeld.
147

 

As well as the contributions from hard sphere interactions, the convolutions of 

𝛿𝐹𝑒𝑙/𝛿𝜌𝑖  and the Poisson equation were calculated in the Fourier domain, following the 

strategy proposed by Knepley and coworkers.
108

 

The dielectric constant was treated as uniform in each phase, in order to determine the 

Hamaker constant between the ions and interfaces. However, the image effects were 

neglected. 

The oil droplet and the brine adopt the configuration that minimizes the grand 

potential 

 

Ω = −𝑝𝒱 + 𝛾𝑠𝑏𝐴𝑠𝑏 + 𝛾𝑠𝑜𝐴𝑠𝑜 + 𝛾𝑜𝑏𝐴𝑜𝑏 (156) 

 

which is conveniently divided into bulk and surface contributions, where 𝐴𝑖𝑗 is the surface 

area between phases 𝑖 and 𝑗, and the subscripts 𝑠, 𝑏, and 𝑜 correspond to the solid, brine and 

oil phases, respectively. The line tension was neglected. In order to provide the equilibrium 

contact angle 𝜃𝑒𝑞  among the three phases, we simulated a set of systems with a constant 

droplet volume varying the contact angle 𝜃′ (Figure 22). 

 

Figure 22 – Variation of the radius with the contact angle for a constant droplet volume 

 

Legend: The upper and lower figures in each column are equivalent, only the perspective of the observer 

changes. The contact angles are 0º, 45º, 90º, and 135º, respectively. 

Source: Barbosa, Lima and Tavares (2019).
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An increase in the droplet radius with increasing 𝜃′  is observed to maintain the 

constant volume. Thus, 𝜃′ is an input data for each simulation in a set, along with the volume, 

temperature, dielectric constant, bulk densities, ionic valences, ionic diameters, and droplet 

volume, whereas the density distribution of ions outside the droplet and the grand potential 

provided by DFT are the output data. The latter does not include the contribution to the total 

grand potential due to the interaction between solid/oil (𝛾𝑠𝑜𝐴𝑠𝑜), which in turn is added a 

posteriori, as shown in Figure 23. We assume, for the sake of simplicity, that the density of 

the oil inside the droplet is uniform for all the systems in a set. With this information, 𝜃𝑒𝑞 is 

calculated by the analysis of the angle that minimizes Ω. 

 

Figure 23 – Computational strategy used to compute the equilibrium contact angle 

 

Source: Barbosa, Lima and Tavares (2019).
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3.2.3 Results and Discussion 

 

 

For our simulations, we examined an aqueous NaCl solution (1:1) at 298.15 K. The 

ionic diameters are equal to 0.198 nm and 0.362 nm for cation (𝜎+ ) and anion (𝜎− ), 

respectively.
260

 The simulation cell has the dimensions of 6 × 6 × 6 nm
3
 and the flat surface is 

placed at z equal to 0 nm. The volume of the droplet was set to 3.0 nm
3
. The dielectric 

constant of the solvent is equal to 78.5. Periodic boundary conditions were considered in �̂� 

and �̂� directions, whereas in �̂� direction both boundaries are delimited by the presence of 

planar surfaces.  

Figures 24 and 25 present the density profiles of cations and anions, respectively, near 

to the droplet and solid surface with contact angle equal to 34.4° and bulk ionic strength, 𝜌𝑏, 

of 1.0 M. To evidence the vicinity of the droplet, only half of z axis is shown. The distances 

are adimensionalized by the cationic diameter. We used the hard wall potential to take into 

account the interactions between brine/solid surface and brine/oil droplet. The discrete 

increase of the cation concentration close to the interfaces (see Figure 24) is due to the BFD 

theory used to describe the electrostatic correlation. Comparatively with data from molecular 

simulation, this increase is qualitatively incorrect and has motivated the development of other 

theories to compute the electrostatic correlations.
134,135,144,136–143

 It is interesting to note that 

because the cation is smaller than the anion by a factor of 0.55, the former can get closer to 

the interfaces. Consequently, a more pronounced increase in concentration of anions can be 

observed in the vicinity of the interfaces (Figure 25), attracted by the first layer composed by 

the cations. It is important to remember that in this study both surfaces are supposed to be 

neutral, so there is no electrostatic interaction between ions and surfaces. 

We analyzed a range of contact angle from 0.1 to 2.4 rad (5.7° to 137.5º) for bulk ionic 

strength equal to 0.5 and 1.0 M, and the grand potential provided by DFT (Ω𝐷𝐹𝑇 ) was 

determined in this process. In order to find the contact angle, it is necessary to add the 

contribution of oil/solid surface to the grand potential given by 

 

Ω[{𝜌𝑘(𝐫)}] = ΩDFT[{𝜌𝑘(𝐫)}] + 𝛾𝑆𝑂𝐴𝑆𝑂 (157) 
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Figure 24 – Density profile of cations near a droplet for a bulk ionic strength of 1.0 M 

 

Legend: Contact angle between the rock and droplet equal to 0.6 rad (34.4°). 

Source: Barbosa, Lima and Tavares (2019).
65

 

 

 

Figure 25 – Density profile of anions near a droplet for a bulk ionic strength of 1.0 M 

 

Legend: Contact angle between the rock and droplet equal to 0.6 rad (34.4°). 

Source: Barbosa, Lima and Tavares (2019).
65

 

 

Increasing the contact angle increases the basal area of the spherical cap; therefore, 

depending on the magnitude of 𝛾𝑠𝑜, the profile of Ω[{𝜌𝑘(𝐫)}] presents a minimum within the 

range of contact angle analyzed. The impact of different values of 𝛾𝑠𝑜 (0.5, 1.0 and 2.0 mN/m) 

is shown in Figures 26 and 27 and Table 10 for bulk ionic strength equal to 0.5 and 1.0 M, 

respectively.  
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Table 10 – Summary of equilibrium contact angle (in degrees) for different concentrations 

and external potentials 

𝛾𝑠𝑜 [mN/m] 
Hard Wall Lifshitz 

0.5 M 1.0 M 0.5 M 1.0 M 

0.5 103 126 103 130 

1.0 69 103 66 105 

2.0 < 5 69 < 5 69 

Source: Barbosa, Lima and Tavares (2019).
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Figure 26 – Grand potential for the oil/brine ( �̃�𝑏 = 0.5 M )/rock system with hard-wall 
interaction between brine and rock 

 

Legend: The arrows refer to the equilibrium contact angle. 

Source: Barbosa, Lima and Tavares (2019).
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Not surprisingly, considerable differences are observed between systems with different 

𝛾𝑠𝑜, however the impact of this contribution is much more pronounced than the contribution 

between solid/brine and brine/oil interfaces. Considering 𝛾𝑠𝑜 equal to 2.0 mN/m the system is 

completely water-wet for 𝜌𝑏 equal to 500 mol/m
3
 as observed in Figure 26. Thus, for the 

estimation of the wettability following the methodology proposed here, it is necessary to 

know 𝛾𝑠𝑜. However, with the experimental measure of this property, it is possible to predict 

the effect of different electrolyte solutions on the wettability of the system rock/brine/oil. 
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Figure 27 – Grand potential for the oil/brine ( �̃�𝑏 = 1.0 M )/rock system with hard-wall 

interaction between brine and rock 

 

Legend: The arrows refer to the equilibrium contact angle. 

Source: Barbosa, Lima and Tavares (2019).
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Table 11 gives the constants necessary to calculate the Hamaker constant by Lifshitz 

theory for Na
+
 and Cl

–
 interacting with silica and n-pentane. According to the value of 

Hamaker constant both ions are attracted by silica. However, this effect is about 7 times 

stronger for chloride. Dispersion coefficients are presented in Table 12.  

Nevertheless, as it can be seen in Table 10, the dispersion interactions have little 

influence on the equilibrium contact angle compared to the hard wall potential, considering 

the ions, solid and oil analyzed. Other salt components could provide different results. 

 

Table 11 – Physical properties for water, silica, n-pentane and ions 

 Dielectric 

constant 
Refractive index 

Polarizability 

[Å
3
] 

Ionization energy 

[10
12

 erg] 

Water 78.5
a 

1.333
a
 – 20

a
 

n-pentane 1.84
a
 1.349

a
 – 20

a
 

Silica 3.8
a
 1.448

a
 – 20

a
 

Na
+ 

– – 0.1485
b 

54.7
b,c

 

Cl
– 

– – 3.764
b
 9.15

b,c
 

Legend: 
a
Physical properties from Israelachvili

67. b
 Physical properties from Tavares et al.

157
 
c
Ionization energy 

in water. 
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Table 12 – Hamaker coefficients for ions 

 𝛽𝐵𝑖𝑜𝑛−𝑝𝑒𝑛𝑡𝑎𝑛𝑒 [Å
3
] 𝛽𝐵𝑖𝑜𝑛−𝑠𝑖𝑙𝑖𝑐𝑎 [Å

3
] 

Na
+ 

0.0678 0.578 

Cl
– 

0.552 4.248 

Source: Barbosa, Lima and Tavares (2019). 

 

 

3.2.4 Conclusion 

 

 

There are also several avenues for improvement of the model here proposed. The 

assumption of constant density and, hence, of a constant volume of oil droplet containing a 

given number of molecules was employed, however it is possible to refine the model aiming 

to consider the oil molecules explicitly inside the droplet. In such analysis the contribution 

due to the oil/solid surface interactions would be automatically included into the 3D-DFT. 

Another important contribution is the inclusion of charge on the solid surface, or even, on the 

oil surface. 

The description of electrostatic correlation by more sophisticated theories is 

straightforward. Nevertheless it is important to evaluate the advantages of this change for 

each particular system, because, in general, they demand more computation time, especially 

for 3D-DFT. We conclude that the approach presented here is promising to investigate the 

contact angle of different electrolyte solutions and the impact of the bulk concentration and 

ionic valence on the wettability. The tridimensional treatment turns the method versatile and 

provides options for inclusion of some peculiarities such as roughness on the solid surface and 

the presence of a thin film of brine between the oil and the solid as represented by Figure 7B.  
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GENERAL CONCLUSIONS 

 

 

On the basis of the results obtained on this thesis, it is possible to conclude that the 

Poisson-Boltzmann equation is a useful tool to analyze systems in which the Donnan potential 

is present, as well as, the wettability of systems containing two liquid phases and a solid 

surface.  

Regarding the biological line of this thesis, two papers were published. The first, 

published in “The Journal of Physical Chemistry B”, addressed the ionic partitioning across 

an erythrocyte, evaluating the contribution of non-electrostatic interactions and the difference 

in dielectric constant between the intracellular and extracellular media for this partition.
21

 A 

new modification was developed for the PBE by the insertion of the Born correction term due 

to the dielectric constant difference between the two media involved. This last modification 

was implemented during the doctoral research, being an important advance of this thesis, 

which also complemented the study realized in the master.  

The second paper, which analyses the electric behavior of the B. brevis, was submitted 

to the journal “Colloids and Surfaces B: Biointerfaces”. The cell wall was treated by a charge 

regulation method applied to the volumetric charge density profile. The zeta potential profile 

as a function of pH within the fluid phase was evaluated, showing a good agreement with 

experimental data.
57

 

Part of the results obtained by the application of PBE to investigate the wettability of 

rock/brine/oil was presented in the “XI Iberoamerican Conference on Phase Equilibria and 

Fluid Properties for Process Design” in 2018
268

 and a paper involving this theme is being 

written. We showed that engineered water is a better denomination over low salinity water to 

characterize the electrolyte solution to be injected in the reservoir in order to enhance the oil 

recovery. Besides, we reassured the dominant role of the sulfate in this process.  

The balancing of the intrinsic approximations of the PBE might cancel them out, 

promoting an excellent reproduction of experimental data, depending on the system to be 

studied. However, especially for concentrated systems, polyelectrolytes, and/or highly 

confined systems, a method with a higher level of detail, such as DFT, should be considered.  

In this context, we also studied the wettability using the classical density functional 

theory. It has been used to investigate the wettability in vapor/liquid/solid substrate systems 

over the years because of its versatility to determine the equilibrium structure and 

corresponding thermodynamic quantities of systems subjected to external potentials. 
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However, the application of DFT to study the wettability and contact angle of 

liquid/liquid/solid substrate as far as we could track had not been performed until the 

publication of our paper “Wettability of rock, oil and brine system based on density functional 

theory” in the journal “Fluid Phase Equilibria”.
65

 This topic was also presented in the “IX 

Congresso Brasileiro de Termodinâmica Aplicada”, in 2017.
269

 

As mentioned before, in order to guarantee the linearity of this thesis, the fundamental 

results obtained for confined electrolyte systems using classical density functional theory 

were only mentioned briefly in the introduction. However, this thematic was also studied 

during these years and a work entitled “Estudo de sistemas eletrolíticos através da teoria do 

funcional da densidade clássica” was presented in the “XXI Congresso Brasileiro de 

Engenharia Química”.
55

 

Following the same argument, only now we comment about a paper developed during 

the year in the University of Notre Dame. There, an AMBER-compatible transferable force 

field for poly(ethylene glycol) ethers (glymes) was developed.
56

 The initial plan was to apply 

this force field to the development of potential electrochemical devices using a mixture of 

ionic liquid and glyme; what we will be done soon, in future works. The paper in fully 

presented in APPENDIX I.
56

  

We also have investigated the potential of mean force for some ions at infinite dilution 

close to a graphene sheet, in order to insert into PBE and DFT, providing the integration of 

different scales. This is fantastic since allows taking advantage of the high level of detail of 

sophisticated methods such as MD, which are more demanding, and use this information in 

methods that require low computational time such as PBE and DFT.  

Other future perspectives include the development of an algorithm to optimize the 

engineered water composition and concentration, the inclusion of charged surfaces in the 3D-

DFT, and the parallelization of the 3D-DFT code in order to study larger systems without the 

limitation of the grid size.  
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Errata:  

 

The Figure 1 of the paper should be: 

 

 

Additionally: 

 

In page 7, lines 4 –5 of the chapter, where it is written: 

“In the uniform fluid limit, the scalar weighted densities are reduced to variables of the scaled 

particle theory, 𝑛𝛼(𝐑) = ∑ 𝑐𝑖𝑟𝑖
𝛼𝑁

𝑖=1 , while the vector weighted densities vanish.”, 

read: 

“In the uniform fluid limit, the vector weighted densities vanish and the scalar weighted 

densities are reduced to variables of the scaled particle theory, 𝑛𝛼 = ∑ 𝑐∞,𝑖𝑅𝑖
(𝛼)𝑁

𝑖=1 , where 

𝑅𝑖
(𝛼) = 1, 𝑟𝑖 , 4𝜋𝑟𝑖

2, 4𝜋𝑟𝑖
3/3 for 𝛼 equal to 0, 1, 2 and 3, respectively.” 

 

In page 9, equation 48, where it is written: 

“ℒ(𝐪�̇�, 𝑡) ≡  𝐾(𝐪�̇�, 𝑡) +  Γ(𝐪�̇�, 𝑡)” 

read: 

“ℒ(𝐪, �̇�, 𝑡) ≡  𝐾(𝐪, �̇�, 𝑡) −  Γ(𝐪, �̇�, 𝑡)” 
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APPENDIX B – Hohenberg-Kohn Theorem  

 

 

The Hohenberg-Kohn theorem was originally developed for quantum mechanics
80,81

 

and was later adapted by Evans to classical systems.
33,85

 According to this theorem, the one 

body potential can be determined uniquely by the density profile that minimizes the grand 

potential. 

In order to demonstrate the Hohenberg-Kohn theorem, we define a functional of the 

normalized phase space probability density as
85,270

  

 

 

here, for the sake of simplicity, we consider a one-component system, where 𝒫  is the 

probability of finding 𝑁 molecules at temperature 𝑇, independently of the state energy. For a 

system at equilibrium, the density probability 𝒫𝑒𝑞 for the grand canonical ensemble is
100

  

 

 

As a result, the functional of the normalized phase space probability density at equilibrium is 

equal to the grand potential: 

 

Ω[𝒫𝑒𝑞] = −∑
1

𝑁! ℎ3𝑁
∫𝒫0(β

−1ln Ξ)d𝐫𝑁 d𝐩𝑁

𝑁

= −β−1ln Ξ ≡ Ω (160) 

 

In order to proof the theorem, we consider a test density 𝜌′(𝐫) ≠ 𝜌𝑒𝑞(𝐫) associated 

with a probability distribution equal to 𝒫′, in which the one body potential 𝜑′(𝐫) originates 

the density profile 𝜌′(𝐫). Thus, we can write that
85,87

 

 

Ω[𝒫′] − Ω[𝒫𝑒𝑞]

= β−1 [∑
1

𝑁! ℎ3𝑁
∫𝒫′ ln 𝒫′ d𝐫𝑁 d𝐩𝑁

𝑁

−∑
1

𝑁! ℎ3𝑁
∫𝒫′ ln 𝒫𝑒𝑞 d𝐫𝑁 d𝐩𝑁

𝑁

] 
(161) 

 

Ω[𝒫] =∑
1

𝑁! ℎ3𝑁
∫𝒫[ℋ(𝐫𝑁, 𝐩𝑁) − 𝑁𝜇 + β−1ln 𝒫]d𝐫𝑁 d𝐩𝑁

𝑁

 (158) 

𝒫𝑒𝑞 =
exp{−𝛽[ℋ(𝐫𝑁, 𝐩𝑁) − 𝑁𝜇]}

Ξ
 (159) 
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which is equivalent to  

 

Ω[𝒫′] − Ω[𝒫𝑒𝑞] = β−1 [∑
1

𝑁! ℎ3𝑁
∫𝒫𝑒𝑞 [

𝒫′

𝒫𝑒𝑞
ln  

𝒫′

𝒫𝑒𝑞
 −

𝒫′

𝒫𝑒𝑞
+ 1] d𝐫𝑁 d𝐩𝑁

𝑁

] ≥ 0 (162) 

 

The right hand side is always non-negative, since 𝑥 ln 𝑥 ≥ 𝑥 − 1 for any 𝑥 > 0. Therefore, 

the grand potential at equilibrium is always the minimum of  Ω[𝒫].  

Now, let us assume that a specific density profile 𝜌𝑒𝑞(𝐫) can be obtained by two 

different external potentials, 𝑣′(𝐫) ≠ 𝑣(𝐫) for an open system with temperature and volume 

specified. For the external potential 𝑣′(𝐫), we have the Hamiltonian ℋ′(𝐫𝑁, 𝐩𝑁) = 𝐾(𝐩𝑁) +

𝒰(𝐫𝑁) + ∑ 𝑣′(𝐫𝑗)
𝑁
𝑗=1  which is associated with the probability distribution 𝒫′𝑒𝑞 and the grand 

potential  

 

Ω′ ≡ Ω′[𝒫′𝑒𝑞] =∑
1

𝑁! ℎ3𝑁
∫𝒫′𝑒𝑞[ℋ′ −𝑁𝜇 + β−1ln𝒫′𝑒𝑞] d𝐫𝑁d𝐩𝑁

𝑁

  (163) 

 

According to the Gibbs-Bogoliubov inequality – Eq. (162) – we find
85,87

 

 

Ω′[𝒫′𝑒𝑞] ≤ ∑
1

𝑁! ℎ3𝑁
∫𝒫𝑒𝑞[ℋ′ −𝑁𝜇 + β−1ln 𝒫𝑒𝑞] d𝐫𝑁d𝐩𝑁

𝑁

= Ω + ∑
1

𝑁! ℎ3𝑁
∫𝒫𝑒𝑞 [∑𝑣′(𝐫𝑗)

𝑁

𝑗=1

−∑𝑣(𝐫𝑗)

𝑁

𝑗=1

] d𝐫𝑁d𝐩𝑁

𝑁

 

(164) 

 

which in turn can be expressed as function of the one body potential, yielding 

 

Ω′ ≤ Ω +∫𝜌𝑒𝑞(𝐫)[𝜑′(𝐫) − 𝜑(𝐫)]d𝐫 (165) 

 

Interchanging prime and unprimed quantities, we have 

 

Ω ≤ Ω′ +∫𝜌𝑒𝑞(𝐫)[𝜑(𝐫) − 𝜑′(𝐫)]d𝐫 (166) 
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Consequently, the hypothesis that two different external potentials give rise to a given 

equilibrium density is false, since Ω′ must be equal to Ω to satisfy both equations, i.e. for a 

given chemical potential there is a unique external potential to a specific density profile at 

equilibrium. Since 𝒫𝑒𝑞 is a functional of 𝜑(𝐫), it follows that it is also a functional of the 

equilibrium density. Hence, the equilibrium density corresponds to the minimum of the 

functional Ω[𝜌(𝒓)], as presented in Eq. (24). 

 

 

B.1 Density as a functional derivative of the Grand canonical partition function 

 

 

An integral part of the relation between the density and the grand partition function is 

the formal definition of the functional derivative of ℱ as 

 

∫
𝛿ℱ({𝑦})

𝛿𝑦(𝐫)
𝜙(𝐫)d𝐫 ≡ [

dℱ({𝑦 + 𝜖𝜙})

d𝜖
]
𝜖=0

 (167) 

 

which can be evaluate to give the functional derivative of exp [−𝛽𝜑(𝐫𝑗
(𝑖))] with respect to 

𝜑𝑖(𝐫) as 
107

 

 

𝛿 exp [−𝛽𝜑(𝐫𝑗
(𝑖))]

𝛿𝜑𝑖(𝐫)
= −𝛽 exp [−𝛽𝜑(𝐫𝑗

(𝑖))] 𝛿(𝐫 − 𝐫𝑗
(𝑖))  (168) 

 

Applying Eq. (168) to get 𝛿Ξ/𝛿𝜑𝑖(𝐫), it results in 

 

𝛿 Ξ

𝛿𝜑𝑖(𝐫)
= −𝛽 ∑ [∏

1

 𝑁𝑘! Λ𝑘
3𝑁𝑘

𝑛

𝑘=1

]

𝑁1,𝑁2…𝑁𝑛

 ∫ [∑𝛿(𝐫 − 𝐫𝑗
(𝑖))

𝑁𝑖

𝑗=1

] × 

exp [−𝛽 (𝒰(𝐫) +∑𝜑(𝐫𝑗)

𝑁

𝑗=1

)]  d𝐫𝑁 

(169) 

 

Comparing to Eq. (19), it is possible to verify that 𝜌𝑖(𝐫) = −
1

𝛽Ξ

𝛿Ξ

𝛿𝜑𝑖(𝐫)
.  
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APPENDIX C – Weighting functions in the real and reciprocal space 

 

 

The one-dimensional weight functions in Cartesian coordinates and real space are: 

 

𝜔𝑖
(0)(𝑥) =

𝜔𝑖
(2)(𝑥)

𝜋𝜎𝑖2
 (170) 

𝜔𝑖
(1)(𝑥) =

𝜔𝑖
(2)(𝑥)

2𝜋𝜎𝑖
 (171) 

𝜔𝑖
(2)(𝑥) = 𝜋𝜎𝑖 𝜃 (

𝜎𝑖
2
− |𝑥|) (172) 

𝜔𝑖
(3)(𝑥) = 𝜋 [(

𝜎𝑖
2
)
2

− 𝑥2] 𝜃 (
𝜎𝑖
2
− |𝑥|) (173) 

𝝎𝑖
(𝑉1)(𝑥) =

𝝎𝑖
(𝑉2)(𝑥)

2𝜋𝜎𝑖
 (174) 

𝝎𝑖
(𝑉2)(𝑥) = 2𝜋𝑥 𝜃 (

𝜎𝑖
2
− |𝑥|) �̂� (175) 

 

Regarding the weighting functions in reciprocal space, first, it is important to define 

the correlation between the discrete Fourier transform and the continuous Fourier transform, 

since we are interested in the computation of the Fourier transform of the weighting functions 

�̂�𝑖
(𝛼)

 analytically to multiply them a posteriori by the Fourier transform of the densities 

obtained by FFT. Herein we assume the definitions proposed by Brigham
271

, Frigo and 

Johnson
272

, in which the continuous Fourier transform 𝐻 of a function 𝒽 is equal to 

 

𝐻(𝒻) = ∫ 𝒽(𝑥) exp(−2𝜋𝒾𝒻𝑥)d𝑥
∞

−∞

 (176) 

 

where 𝒻  is the inverse wavelength and 𝒾 = √−1 . Sampling the function 𝒽(𝑥)  at evenly 

spaced intervals in real domain, we have: 

 

𝒽𝑗 = 𝒽(𝑥𝑗)             𝑥𝑗 = 𝑗Δ          𝑗 = 0, 1, 2,⋯ ,𝒩𝑥 − 1    (177) 

 

where Δ denotes the interval between consecutive samples and 𝒩𝑥  is the total number of 

samples. On the other hand, the reciprocal space grid is characterized by 
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𝒻𝑘 ≡
𝑘

𝒩𝑥Δ
        𝑘 = −

𝒩𝑥

2
,
𝒩𝑥

2
+ 1⋯ ,

𝒩𝑥

2
 (178) 

 

with 𝒩𝑥 + 1 values of 𝒻𝑘; however, the two extremes are equal, reducing the number of 𝒻𝑘 to 

𝒩𝑥. It is worthwhile to note that the discrete Fourier transform of a function is periodic in 𝑘, 

with period 𝒩𝑥 . Therefore, Eq. (178) can be expressed with 𝑘  varying from 0 to 𝒩𝑥 − 1 , 

similar to Eq. (177), with zero frequency corresponding to 𝑘 = 0, positive frequencies in the 

range between 1 ≤ 𝑘 ≤ 𝒩𝑥 2⁄ − 1, negative frequencies between 𝒩𝑥 2⁄ + 1 ≤ 𝑘 ≤ 𝒩𝑥 − 1, 

and finally, 𝑘 = 𝒩𝑥/2  corresponding to both positive and negative frequencies. For a system 

with 𝑑 dimensions, 𝒻𝑘𝑑 is given by 

 

𝒻𝑘𝑑 =

{
 
 

 
 𝑘𝑑
𝒩𝑑Δ𝑑

               for       𝑘𝑑 ≤
𝒩𝑑

2

−(𝒩𝑑 − 𝑘𝑑)

𝑁𝑑Δ𝑑
   for        𝑘𝑑 >

𝒩𝑑

2

 (179) 

 

This convention is used in the FFTW algorithm developed by Frigo and Johnson
272

.  

Approximating the integral in Eq. (176) by a discrete sum yields 

 

𝐻(𝒻𝑘) ≈ ∑ 𝒽𝑗 exp(−2𝜋𝒾𝒻𝑘𝑥𝑗) Δ

𝒩𝑥−1

𝑗=0

= Δ ∑ 𝒽𝑗 exp(−2𝜋𝒾𝑘𝑗/𝒩𝑥)

𝒩𝑥−1

𝑗=0

 (180) 

 

in which the final summation is called the discrete Fourier transform (𝐻𝑘) of the 𝒩𝑥 points ℎ𝑗:  

 

𝐻𝑘 ≡ ∑ 𝒽𝑗 exp(−2𝜋𝒾𝑘𝑗/𝒩𝑥)

𝒩𝑥−1

𝑗=0

 (181) 

 

The formula for the discrete inverse Fourier transform, which recovers the set of 𝒽𝑗 

exactly from 𝐻𝑘 is
271

 

 



157 

 

 

 

ℎ𝑗 =
1

𝒩𝑥
∑ 𝐻𝑘 exp(2𝜋𝒾𝑘𝑗/𝒩𝑥)

𝒩𝑥−1

𝑘=0

 (182) 

 

After these brief comments about Fourier transform, we are able to compute the 

analytical Fourier transform of the weighting functions, represented here with a hat �̂�𝑖
(𝛼)

.  

We start with the Fourier transform of 𝜔𝑖
(2)

 by applying Eq. (42) in Eq. (176):
108,124

 

 

�̂�𝑖
(2) = ∫ d𝜙∫ d𝜃 sin 𝜃∫ d𝑟𝑟2𝛿 (

𝜎𝑖
2
− |𝐫|) exp(−2𝜋𝒾𝐫 ∙ 𝓯)

∞

0

𝜋

0

2𝜋

0

=2𝜋∫ d𝜃 sin 𝜃 (
𝜎𝑖
2
)
2

exp (−2𝜋𝒾
𝜎𝑖
2
�̂� ∙ 𝓯)

𝜋

0

 

(183) 

where �̂�  is the versor. In order to facilitate the integration, we adopted the spherical 

coordinates. The dot product �̂� ∙ 𝓯  is equal to sin 𝜃 cos 𝜙 𝒻𝑥 + sin 𝜃 sin𝜙 𝒻𝑦 + cos 𝜃 𝒻𝑧 ; 

however, taking advantage of the rotational symmetry, we can consider that 𝓯 points purely in 

�̂�′ direction, resulting in �̂� ∙ 𝓯 = cos 𝜃′ 𝒻𝑧
′, where prime indicates the hypothetical coordinate 

system. Performing this assumption in Eq. (183) and integrating by parts, we obtain  

 

�̂�𝑖
(2) = 2𝜋∫ d𝜃′ sin 𝜃′ (

𝜎𝑖
2
)
2

exp (−2𝜋𝒾
𝜎𝑖
2
cos 𝜃′ 𝒻𝑧

′)
𝜋

0

=
𝜎𝑖
𝑓𝑧′
sin(𝜋𝜎𝑖𝒻𝑧

′) (184) 

 

which, in the original coordinate system is 

 

�̂�𝑖
(2) =

𝜎𝑖
|𝓯|

sin(𝜋𝜎𝑖|𝓯|) (185) 

 

The two first weighting functions can be obtained straightforwardly through Eqs. (40) 

and (41) as 

 

�̂�𝑖
(0) =

sin(𝜋𝜎𝑖|𝓯|)

𝜋𝜎𝑖|𝓯|
 (186) 

�̂�𝑖
(1) =

sin(𝜋𝜎𝑖|𝓯|)

2𝜋|𝓯|
 (187) 
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For �̂�𝑖
(3)

 we use the property that the Heaviside function can be obtained as the 

integral of the Dirac delta function, thus: 

 

�̂�𝑖
(3) = ∫ d𝑟�̂�𝑖

(2)|𝜎𝑖
2
=𝑟

𝜎𝑖
2

0

 =
sin(𝜋𝜎𝑖|𝓯|)

2𝜋2|𝓯|3
−
𝜎𝑖 cos(𝜋𝜎𝑖|𝓯|)

2𝜋|𝓯|2
 (188) 

 

For the vector weighting functions, a procedure similar to �̂�𝑖
(2)

 is followed, keeping in 

mind, however, the vector nature of these functions.
108

 Applying Eq. (45) in Eq. (176) yields 

 

�̂�𝑖
(𝑉2) = ∫ d𝜙∫ d𝜃 sin 𝜃∫ d𝑟

𝐫

|𝐫|
𝑟2𝛿 (

𝜎𝑖
2
− |𝐫|) exp(−2𝜋𝑖𝐫 ∙ 𝓯)

∞

0

𝜋

0

2𝜋

0

= ∫ d𝜙∫ d𝜃 sin 𝜃 (
𝜎𝑖
2
)
2

exp (−2𝜋𝑖
𝜎𝑖
2
�̂� ∙ 𝓯) �̂�

𝜋

0

2𝜋

0

 

(189) 

 

In addition, for the integration over the polar angle, it is necessary to expand �̂� on its vector 

form: 

 

�̂� = sin 𝜃 cos 𝜙 �̂� + sin𝜃 sin𝜙 �̂� + cos 𝜃 �̂� (190) 

 

and consider a hypothetical rotate coordinate system in which 𝓯 points purely in �̂� direction, 

resulting in 

 

�̂�𝑖
(𝑉2) = 2𝜋 (

𝜎𝑖
2
)
2

∫ d𝜃′ sin 𝜃′ cos 𝜃′ exp[−𝜋𝑖𝜎𝑖 cos 𝜃
′ 𝒻𝑧

′]
𝜋

0

�̂� (191) 

 

Finally, the integration over the azimuth gives 

 

�̂�𝑖
(𝑉2) = −

𝑖

𝜋𝒻𝑧′
2
[sin(𝜋𝜎𝑖𝒻𝑧

′) − 𝜋𝜎𝑖𝒻𝑧
′ cos(𝜋𝜎𝑖𝒻𝑧

′)]�̂� (192) 

 

which, in the original coordinate system, is 

 

�̂�𝑖
(𝑉2) = −

𝑖

𝜋|𝓯|2
[sin(𝜋𝜎𝑖|𝓯|) − 𝜋𝜎𝑖|𝓯| cos(𝜋𝜎𝑖|𝓯|)]�̂� (193) 
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Here, �̂� is the versor of 𝓯. As shown in Eq. (44), the �̂�𝑖
𝑉1 weighting function can be obtained 

from Eq. (193) as 

 

�̂�𝑖
(𝑉1) = −

𝑖

2𝜋2𝜎𝑖|𝓯|2
[sin(𝜋𝜎𝑖|𝓯|) − 𝜋𝜎𝑖|𝓯| cos(𝜋𝜎𝑖|𝓯|)]�̂� (194) 

 

When |𝓯| → 0, the weighting functions in reciprocal space are evaluated using the 

L'Hôpital's rule in order to obtain: 

 

lim
|𝓯|→0

�̂�𝑖
(0) = lim

|𝓯|→0

1

𝜋𝜎𝑖|𝓯|
sin(𝜋𝜎𝑖|𝓯|) =

𝜋𝜎𝑖 cos(0)

𝜋𝜎𝑖
= 1 (195) 

lim
|𝓯|→0

�̂�𝑖
(1) = lim

|𝓯|→0

1

2𝜋|𝓯|
sin(𝜋𝜎𝑖|𝓯|) =

𝜋𝜎𝑖 cos(0)

2𝜋
=
𝜎𝑖
2

 (196) 

lim
|𝓯|→0

�̂�𝑖
(2) = lim

|𝓯|→0

𝜎𝑖
|𝓯|

sin(𝜋𝜎𝑖|𝓯|) = 𝜋𝜎𝑖
2 cos(0) = 𝜋𝜎𝑖

2 (197) 

lim
|𝓯|→0

�̂�𝑖
(3)  = lim

|𝓯|→0
[
sin(𝜋𝜎𝑖|𝓯|)

2𝜋2|𝓯|3
−
𝜎𝑖 cos(𝜋𝜎𝑖|𝓯|)

2𝜋|𝓯|2
] =

𝜋𝜎𝑖
3

6
 (198) 

lim
|𝓯|→0

�̂�𝑖
(𝑉1) = lim

|𝓯|→0
{−

𝑖

2𝜋2𝜎𝑖|𝓯|2
[sin(𝜋𝜎𝑖|𝓯|) − 𝜋𝜎𝑖|𝓯| cos(𝜋𝜎𝑖|𝓯|)]�̂�} = 0 (199) 

lim
|𝓯|→0

�̂�𝑖
(𝑉2) = lim

|𝓯|→0
{−

𝑖

𝜋|𝓯|2
[sin(𝜋𝜎𝑖|𝓯|) − 𝜋𝜎𝑖|𝓯| cos(𝜋𝜎𝑖|𝓯|)]�̂�} = 0 (200) 

 

Note that these are the limits expected, since the fundamental measures of the sphere 

are recovery, i.e. the Euler characteristic, radius, surface area, and volume of the sphere.  
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APPENDIX D – Mean electrostatic potential close to a charged surface  

 

 

The Poisson equation in its differential form can be solved semi-analytically for a 

system containing a charged wall in one or both boundaries at the same direction. For this 

case, we consider the symmetry and solve the one-dimension Poisson equation in Cartesian 

coordinate.  

For the presence on a single wall located at 𝑥 = 0, we take advantage of the Neumann 

boundary condition at 𝑥 → ∞ 

 

d𝜓

d𝑥′
|
𝑥′→∞

=  0 (201) 

 

and integrate the Poisson equation from 𝑥′′ to ∞, yielding 

 

d𝜓(𝑥′′)

d𝑥′′
=

𝑒

0
∑∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
∞

𝑥′′𝑖

 (202) 

 

The resulting equation can be integrated again; but now from 𝑧 to ∞ and using the 

Dirichlet boundary condition 𝜓|𝑥→∞ = 0: 

 

𝜓(𝑥) = −
𝑒

0
∑∫ ∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
∞

𝑥′′
d𝑥′′

∞

𝑥𝑖

 (203) 

 

In addition, a change in the integration order is made to get a better numerical 

convenience. Thus, we can write 

 

𝜓(𝑥) = −
𝑒

0
∑∫ ∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′′
𝑥′

𝑥

d𝑥′
∞

𝑥𝑖

= −
𝑒

0
∑∫ (𝑥′ − 𝑥)𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
∞

𝑥𝑖

 (204) 

 

For 𝑥 = 0, the mean electrostatic potential is given by: 
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𝜓(0) = −
𝑒

0
∑∫ 𝑥′𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
∞

0𝑖

 (205) 

 

which in turn can be combined with Eq. (204) yielding  

 

𝜓(𝑥) = 𝜓(0) +
𝑒𝑥

0
∑∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
∞

𝑥𝑖

+
𝑒

0
∑∫ 𝑥′𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥

0𝑖

 (206) 

 

Eq. (206) might be integrated numerically resulting in the mean electric potential. 

For an electrolyte confined within a slit pore, we integrate the Poisson equation in two 

different domains: one from the surface on the left to the midplane (𝑥𝑚) and other from the 

midplane to the surface on the right. For 𝑥 < 𝑥𝑚, we integrate the Poisson equation from 𝑥′′ 

to 𝑥𝑚, with the boundary condition: 

 

d𝜓

d𝑥′
|
𝑥𝑚

=  𝓀 (207) 

 

yielding: 

 

𝓀 −
d𝜓(𝑥′′)

d𝑥′′
= −

𝑒

0
∑∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑚

𝑥′′𝑖

 (208) 

 

Now, Eq. (208) is integrated from 𝑥 to 𝑥𝑚 with Dirichlet boundary condition 𝜓|𝑥𝑚 = 𝜓𝑚: 

 

𝜓𝑚 − 𝜓(𝑥) = ∫ 𝓀d𝑥′′
𝑥𝑚

𝑥

+
𝑒

0
∑∫ ∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑚

𝑥′′
d𝑥′′

𝑥𝑚

𝑥𝑖

 (209) 

 

Similar to the system with one surface, we chance the integration order as 

 

𝜓(𝑥) = −(𝑥𝑚 − 𝑥)𝓀 + 𝜓𝑚 −
𝑒

0
∑∫ ∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′′
𝑥′

𝑥

d𝑥′
𝑥𝑚

𝑥𝑖

= −(𝑥𝑚 − 𝑥)𝓀 + 𝜓𝑚 −
𝑒

0
∑∫ (𝑥′ − 𝑥)𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑚

𝑥𝑖

 

(210) 
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Assuming that the surface on the left is located at the origin (𝑥 = 𝑥𝑠1 = 0), we have: 

 

𝜓(𝑥𝑠1) = −𝑥𝑚𝓀 + 𝜓𝑚 −
𝑒

0
∑∫ 𝑥′𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑚

0𝑖

 (211) 

 

which in turn can be combined with Eq. (210) yielding  

 

𝜓(𝑥) = 𝜓(𝑥𝑠1) + 𝑥𝓀 +
𝑒𝑥

0
∑∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑚

𝑥𝑖

+
𝑒

0
∑∫ 𝑥′𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥

0𝑖

 (212) 

 

The second half of the domain can be treated in analogous fashion providing: 

 

𝜓(𝑥) = 𝜓(𝑥𝑠2) + (𝑥 − 𝑥𝑠2)𝓀 +
𝑒

0
∑∫ (𝑥𝑠2 − 𝑥)𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥

𝑥𝑚𝑖

+
𝑒

0
∑∫ (𝑥𝑠2 − 𝑥′)𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑠2

𝑥𝑖

 

(213) 

 

The constant 𝓀 is determined by the combination of Eqs. (212) and (213) at 𝑥 = 𝑥𝑚: 

 

𝓀 =
𝜓(𝑥𝑠2) − 𝜓(𝑥𝑠1)

𝑥𝑠2
−

𝑒

0  
∑∫

𝑥′

𝑥𝑠2
𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑠2

0𝑖

+
𝑒

0
∑∫ 𝑧𝑖𝜌𝑖(𝑥

′)d𝑥′
𝑥𝑠2

𝑥𝑚𝑖

 (214) 
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APPENDIX E – Mean-Spherical Approximation 

 

 

The mean spherical approximation (MSA), which was initially developed by Lebowitz 

and Percus,
273

 considers the core exclusion i.e., the ions are not allowed to overlap. It has the 

advantage of being analytically solvable.
146,147,274

 However, the only restriction is the 

electroneutrality condition.  

Here, we used the MSA to compute the second order direct correlation function due to 

the electrostatic screening, which can be written as 

 

𝑐𝑖𝑗
(2)𝑒𝑙(𝐫) = 𝑐𝑖𝑗

(2)(𝐫) +
𝜆𝐵𝑧𝑖𝑧𝑗
|𝐫|

− 𝑐𝑖𝑗
(2)ℎ𝑠(𝐫) (215) 

 

According to Hiroike,
146

 when 𝜎𝑖 < 𝜎𝑗 and 0 ≤ |𝐫| <
𝜎𝑖+𝜎𝑗

2
, the difference between the 

total direct correlation function and the DCF due the hard sphere exclusion volume is  

 

𝑐𝑖𝑗
(2)(𝐫) − 𝑐𝑖𝑗

(2)ℎ𝑠(𝐫) = −2𝜆𝐵 [−𝑧𝑖N𝑗 + 𝑋𝑖(N𝑖 + Γ𝑋𝑖) −
𝜎𝑖
3
(N𝑖 + Γ𝑋𝑖)

2] (216) 

 

On the other hand, when |
𝜎𝑗−𝜎𝑖

2
| ≤ |𝐫| <

𝜎𝑗+𝜎𝑖

2
, we have

146
 

 

𝑐𝑖𝑗
(2)(𝐫) − 𝑐𝑖𝑗

(2)ℎ𝑠(𝐫)

= 𝜆𝐵

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 (𝜎𝑖 − 𝜎𝑗)

|𝐫|
[

(𝑋𝑖 + 𝑋𝑗)

4
[(N𝑖 + Γ𝑋𝑖) − (N𝑗 + Γ𝑋𝑗)]

−
𝜎𝑖 − 𝜎𝑗

16
[(N𝑖 + Γ𝑋𝑖 + N𝑗 + Γ𝑋𝑗)

2
− 4N𝑖N𝑗]

]

− [
(𝑋𝑖 − 𝑋𝑗)(N𝑖 − N𝑗) + (𝑋𝑖

2 + 𝑋𝑗
2)Γ + (𝜎𝑖 + 𝜎𝑗)N𝑖N𝑗

−
1

3
[𝜎𝑖(N𝑖 + Γ𝑋𝑖)

2 + 𝜎𝑗(N𝑗 + Γ𝑋𝑗)
2
]

]

+|𝐫|

[
 
 
 
𝑋𝑖
𝜎𝑖
(N𝑖 + Γ𝑋𝑖) +

𝑋𝑗

𝜎𝑗
(N𝑗 + Γ𝑋𝑗) + N𝑖N𝑗

−
1

2
[(N𝑖 + Γ𝑋𝑖)

2 + (N𝑗 + Γ𝑋𝑗)
2
] ]

 
 
 

+|𝐫|3 [
(N𝑖 + Γ𝑋𝑖)

2

6𝜎𝑖2
+
(N𝑗 + Γ𝑋𝑗)

2

6𝜎𝑗2
]

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
(217) 

 



164 

 

 

 

where 𝑋𝑖, N𝑖 and Γ are computed numerically as 

 

𝑋𝑖 =
𝑧𝑖

1 + Γ𝜎𝑖
−

𝑐𝜎𝑖
2

1 + Γ𝜎𝑖

∑ 𝜌𝑗𝜎𝑗𝑧𝑗(1 + Γ𝜎𝑗)
−1

𝑗

1 + 𝑐 ∑ 𝜌𝑗𝜎𝑖3(1 + Γ𝜎𝑗)
−1

𝑗

 (218) 

𝑋𝑖 = 𝑧𝑖 + N𝑖𝜎𝑖 (219) 

Γ2 =
𝛽𝜋𝑒2

∑𝜌𝑖𝑋𝑖
2

𝑖

 (220) 

 

and  

 

𝑐 =
𝜋

2 [1 −
𝜋
6
]∑ 𝜌𝑖𝜎𝑖3𝑖

 (221) 

 

Blum and Rosenfeld
147

 reported a different derivation path and arrived in a DCF 

similar to the one proposed by Hiroike, nevertheless, simpler: 

 

𝑐𝑖𝑗
(2)(𝐫) − 𝑐𝑖𝑗

(2)ℎ𝑠(𝐫) = −
𝜆𝐵
2
[
𝒷𝑖 +𝒷𝑗

𝒷𝑖𝒷𝑗
−

|𝐫|

2𝒷𝑖𝒷𝑗
−
(𝒷𝑖 −𝒷𝑗)

2

2𝒷𝑖𝒷𝑗
] (222) 

 

where 𝒷𝑖 is the effective characteristic radius defined by
147

 

 

𝒷𝑖 =
𝜎𝑖 + Γ−1

2
 (223) 
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APPENDIX F – The electrostatic behavior of the bacterial cell wall using a smoothing 

function to describe the charge-regulated volume charge density profile 

 

 

 

 

 

 

BARBOSA, N. S. V.; LIMA, E. R. A.; TAVARES, F. W. The electrostatic behavior of the 

bacterial cell wall using a smoothing function to describe the charge-regulated volume charge 

density profile. Colloids Surf. B , v. 134, p. 447–452, 2015. doi: 10.1016/j.colsurfb.2015.06.066. 
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APPENDIX G – Membrane potential and ion partitioning in an erythrocyte using the 

Poisson–Boltzmann equation 

 

 

 

 

 

 

BARBOSA, N. S. V. et al. Membrane potential and ion partitioning in an erythrocyte using 

the Poisson–Boltzmann equation. J. Phys. Chem. B, v. 119, n. 21, p. 6379–6388, 2015. doi: 

10.1021/acs.jpcb.5b02215 
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APPENDIX H – Wettability of rock, oil and brine system based on density functional 

theory 

 

 

 

 

 

 

BARBOSA, N. S. V.; LIMA, E. R. A.; TAVARES, F. W. Wettability of rock, oil and brine 

system based on density functional theory. Fluid Phase Equilib., v. 479, n. 1, p. 99–105, 

2019. doi: 10.1016/j.fluid.2018.09.01 
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APPENDIX I – Development of an AMBER-compatible transferable force field for 

poly(ethylene glycol) ethers (glymes) 
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Development of an AMBER-compatible transferable force field for poly(ethylene glycol) 

ethers (glymes). J. Mol. Model., v. 23, n. 6, p. 194, 2017. 
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