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RESUMO 

 

GONÇALVES, C. de O. Otimização do projeto de trocadores de calor casco-e-tubo 

empregando programação matemática. 2019. 148f. Tese (Doutorado em Engenharia 

Química) – Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 

2019. 

 

Trocadores de calor são equipamentos largamente empregados na indústria de 

processos, sendo responsáveis pelo aquecimento, resfriamento, vaporização ou condensação 

de correntes materiais. A abordagem clássica de projeto de um trocador de calor consiste em 

um procedimento de tentativa e erro, onde o projetista, baseado na sua experiência, avalia de 

forma sequencial as diferentes alternativas de equipamentos, buscando identificar uma 

solução que atenda às especificações do serviço térmico da melhor forma possível. Entretanto, 

tal abordagem é fortemente dependente da experiência do engenheiro responsável. Por esta 

razão, mais modernamente, um grande número de trabalhos de pesquisa foi publicado 

propondo procedimentos de projeto baseados em algoritmos de otimização capazes de 

identificar a melhor solução dentro do espaço de busca disponível automaticamente, sem a 

intervenção direta do projetista. Diante deste quadro, esta tese apresenta uma contribuição 

inédita à literatura na aplicação de técnicas de otimização via programação matemática para a 

determinação do ótimo global no projeto de trocadores de calor. Do ponto de vista do escopo, 

esta proposta de tese será focada em serviços sem mudança de fase. Através da aplicação de 

técnicas de programação matemática, são propostas formulações do problema levando em 

conta os métodos de cálculo de Kern e de Bell-Delaware. A primeira formulação resulta em 

um problema de Programação Linear Inteira (ILP) e a segunda formulação corresponde a um 

problema de Programação Linear Inteira Mista (MILP). O caráter linear de ambas as 

formulações permite a identificação do ótimo global, mesmo utilizando algoritmos de 

otimização convencionais. As formulações propostas são capazes de identificar soluções 

viáveis para o projeto de trocadores de calor com menor custo que aquelas obtidas através da 

formulação convencional do projeto. 

 

 

 

Palavras-chave: Trocador de calor. Otimização global. Programação matemática. 



 

 

ABSTRACT 

 

GONÇALVES, C. de O. Design optimization of shell-and-tube heat exchangers using 

mathematical programming. 2019. 148f. Tese (Doutorado em Engenharia Química) – 

Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2019. 

 

Heat exchangers are widely used equipment in the process industry and are 

responsible for heating, cooling, vaporizing or condensing material streams. The classic 

design of a heat exchanger consists of a trial and error procedure, where the designer, based 

on his experience, evaluates in a sequential way different equipment alternative, aiming to 

identify a solution that fulfils the specifications of the thermal service in the best possible 

way. However, such approach is heavily dependent on the experience of the responsible 

engineer. For this reason, most currently, many research works have been published 

proposing design procedures based on optimization algorithms capable of identifying the best 

solution within the available search space automatically, without the direct intervention of the 

designer. According to this context, this thesis presents an unprecedented contribution to the 

literature for the application of optimization techniques through mathematical programming 

for the determination of global optimum in the design of heat exchangers. From the point of 

view of scope, this thesis proposal will be focused on services without phase change. Through 

the application of mathematical programming techniques, formulations of the problem are 

proposed, taking into account the Kern and Bell-Delaware calculation methods. The first 

formulation results in an integer linear programming (ILP) problem and the second 

formulation correspond to a mixed integer linear programming (MILP) problem. The linear 

character of both formulations allows the identification of the global optimum, even using 

conventional optimization algorithms. The proposed formulations are capable of identifying 

feasible solutions for the design of heat exchangers with lower costs than those obtained 

through the conventional design formulation. 

 

 

Keywords: Heat exchanger. Global optimization. Mathematical programming. 
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INTRODUCTION 

 

Heat exchangers are widely used equipment in the process industry and are 

responsible for heating, cooling, vaporizing or condensing material streams. There are 

numerous examples of services involving heat exchangers in the chemical process industry, 

such as heating raw material streams until reaction conditions are reached, separating 

components of interest through the condensation of vapour streams, supplying energy to 

fractionation by distillation, cooling of product streams for storage, etc. Faced with the 

increase in energy costs over the last decades, the interest in the analysis of processes 

involving thermal exchange has increased considerably. 

The classic design of a heat exchanger consists of a trial and error procedure, where 

the designer, based on his experience, evaluates in a sequential way different equipment 

alternative, seeking to identify a solution that meets the specifications of the thermal service 

of the best (KERN, 1950). However, such approach is heavily dependent on the experience of 

the responsible engineer. 

Due to their wide use in various functions, a considerable part of the investment to be 

made in a process plant is consumed in the acquisition of heat exchangers. In this way, the 

development of procedures to optimize the design of this type of equipment can bring 

considerable economic gains. For this reason, most currently, many research works have been 

published proposing design procedures based on optimization algorithms capable of 

identifying the best solution within the available search space automatically, without the 

direct intervention of the designer. 

Due to the large diversity of different thermal services, there are several alternatives of 

types of heat exchangers available, such as, shell-and-tube heat exchangers, double pipe heat 

exchangers, gasketed-and-plate heat exchangers, etc. However, despite the increasing 

development of new solutions, the chemical process industry is still heavily based on the use 

of shell and tube heat exchangers due to their robustness, versatility and reliability. 

According to this scenario, this thesis presents the development of optimization 

algorithms for the minimization of costs in the design of shell-and-tube heat exchangers. For 

this, we chose to use mathematical programming tools, with special attention to issues 

involving global optimization. Each solution candidate is described by a set of standard values 

of the design variables, coherent with industrial practice; each allows the conversion of all the 

original Mixed Integer Nonlinear Programming (MINLP) models into linear ones.  



18 

 

This thesis is organized as follows: Chapter 1 brings a brief review of the literature 

with the works that have been developed around the subject of this thesis; Chapter 2 presents 

the development of the MILP heat exchanger design model, employed with Kern Method; 

Chapter 3 contains the alternative formulations for shell and tube heat exchanger optimal 

design with Kern method; Chapter 4 encompasses the mixed integer linear programming 

considering the Bell Delaware method; and finally, the conclusions and suggestions are 

presented. 
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1 LITERATURE REVIEW 

 

The review of the literature will encompass the following subjects: heat exchangers 

calculation and optimization of heat exchanger design.  

 

 

1.1 Heat exchanger calculation 

 

1.1.1 Logarithmic mean temperature difference method 

 

The Logarithmic Mean Temperature Difference method (LMTD) is the main method 

to describe the steady-state behavior of shell-and-tube heat exchangers. The main variable for 

design purposes is the heat transfer area and for that, we must know the inlet and outlet 

temperatures of both streams that are exchanging heat. However, the temperature difference 

can be not uniform inside the equipment and a solution is to use an average temperature 

difference. According to the LMTD method, the heat transfer area can be calculated by 

(INCROPERA and DE WITT, 2006):  

 

                                   (1) 

 

where   is the heat transfer rate, A is the heat transfer area, U is the overall heat transfer 

coefficient,       is the logarithmic mean temperature difference for the equivalent 

countercurrent configuration, and F is a correction factor. 

The expression of the logarithmic mean temperature difference is: 

 

     
(       ) (       )

   (
(       )

(       )
)

                       (2) 

 

where T represent the temperature, the subscript h refers to the hot stream, subscript c to the 

cold stream, o to the outlet and i to the inlet. 

 The logarithmic temperature difference concept can be directly applied to the 

countercurrent or the cocurrent flow configurations. The application of the LMTD method for 

other configurations demands the utilization of the correction factor, F. For example, for 
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shell-and-tube heat exchangers with multiple even tube-side passes, the expression of the 

correction factor is: 

 

 

    
(     )      .

(   )

(    )
/

(   )   (
   (     (     )

   
)

   (    (     )
   
)
)

                                             (3) 

where: 

  
       

        
                             (4) 

 

  
       

       
                                       (5) 

 

 

1.1.2 Tube-side convective heat transfer coefficient and pressure drop 

 

The dimensionless representation of the convective heat transfer coefficient (ht) 

corresponds to the Nusselt number (Nut) (INCROPERA and DE WITT, 2006):  

 

     
      

   
                                      (6) 

 

where     is the tube-side fluid thermal conductivity and dti is the inner tube diameter.  

 The Nusselt number is a dimensionless parameter determined by theoretical models or 

empirical correlations. The specific model to be applied depends on the flow regime.  

One of the correlations that can be used for calculating the Nusselt number for 

turbulent flow is the Gnielinski correlation (INCROPERA and DE WITT, 2006), that can also 

be used for the transition region (2300 < Ret < 510
6
): 

 

         
. 
  
 ⁄ /(        )    

      . 
  
 ⁄ /
   
(        )

                                                      (7) 

 

where ft is the friction factor for the tube-side, Ret is the Reynolds number and     is the 

Prandlt number. For the laminar flow (Ret  2300), the effects related to the entry region may 

be relevant. Therefore for         , the Hausen correlation is employed: 
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      (    ⁄ )        

      [ (    ⁄ )        ]
                                                           (8) 

For          , we use the Sieder and Tate correlation: 

           (
       
 
   ⁄
)
   

                                               (9) 

However, when the Nusselt falls lower than 3.66 (theoretical result for fully developed flow), 

then this limit value is used:               

Another correlation used for turbulent flow is Dittus-Boelter (INCROPERA and DE 

WITT, 2006): 

 

                                                                                       (10) 

 

where n is a parameter equal to 0.3, if the tube-side fluid is being cooled, and 0.4 if it is being 

heated.  

Despite the Gnielinski correlation gives more accurate results, Dittus-Boelter 

correlation is simpler, allowing its use in more complex problems, like heat exchanger design 

optimization problems (MIZUTANI et al., 2003). 

 

 

1.1.3 Shell-side convective heat transfer coefficient 

 

The flow of the shell-side is a complex combination of different flow paths, where the 

main transversal flow path between adjacent baffles is combined with a set of secondary 

streams that flows through the constructional clearances and gaps. The next paragraphs 

describe the main methods available for evaluation of the thermo-fluid dynamic behavior of 

the shell-side flow: Kern method (KERN, 1950), Bell-Delaware method (BELL, 1960) and 

the streams method.  

  

1.1.3.1 Kern method (KERN, 1950) 

 

The Kern method is one of the most popular and traditional methods of calculation 

proposed. It has been used extensively in the design of heat exchangers; however, the error 

can be high in some cases. 
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The Kern method has easy application but has limited accuracy. The Kern method 

analysis does not describe the leakage and bypass streams in its equation. 

This method is restricted to baffles that have a 25% window cut-off percentage and is 

not applicable to laminar flow; however, the method allows a rapid estimation of the pressure 

drop and the heat transfer coefficient on the shell-side (KERN, 1950). The detailed model and 

its equations will be shown later. 

 

1.1.3.2 Bell-Delaware method (BELL, 1960) 

 

 

The Bell-Delaware method arises in the early 60's and is considered a more accurate 

procedure than the Kern method, since it already recognizes the division of the flow into 

several streams as shown in Figure 1 in a schematic representation of the shell-side flow. The 

Bell-Delaware method addresses the effects of flow through windows and by-pass streams 

and leakage through multiplicative factors applied to cross-flow results. This method uses 

several correction factors for the transversal flow to consider flow through the windows, leak 

flows and bypass flows. 

 

Figure  1 - Shell-side flow 

 

Source: TABOREK, 2008a.  

 

In Figure 1, Stream B is the ideal one, the one that most favors heat transfers. If only 

stream B existed, the correction factors, shown in Equation 11, would not be necessary:  

 

                                                                        (11) 
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In Equation 11, hideal is the one calculated for a cross flow through a tube bundle, in 

which all the stream flows perpendicularly to the tubes. The correction factor Jc is related to 

the baffle cut and spacing, Jl is the correction factor that considers the shell-baffle and baffle-

tube leak streams (streams A and E in Figure 1), Jb is the correction factor due to the different 

baffle spacing in the inlet and outlet regions of the equipment and Jr is the correction factor 

for the adverse temperature gradient in laminar flow. 

 

 

1.1.3.3 Stream analysis method 

 

In the stream analysis method, a hydraulic model is used to calculate the pressure drop 

and flows in the shell of heat exchangers. These flows are used to calculate the coefficient of 

heat transfer on the shell-side. This approach, although dependent on empirical parameters, is 

considered more fundamental than the Bell method because it is based on hydraulic principles 

that take into account the interactions between the streams on the shell side. 

The first approach related to this method was proposed by Tinker (1947) and 

developed later by others. Due to its more complex structure, computational routines are 

necessary for its implementation. Wills and Johnston (1984) published a simplified and more 

complete version of this method, however, the complete version of this method is not 

available in open literature. The use of this method is only possible through a commercial 

software.  

 

 

1.2 Optimization of the exchanger design 

 

Shell and tube heat exchangers are the most common type of thermal equipment in 

chemical process industries. The wide use of shell-and-tube heat exchangers can be explained 

by its robustness, versatility and reliability (SAUNDERS, 1988). 

The traditional approach for the design of shell-and-tube heat exchangers involves a 

trial-and-verification procedure where, at each solution candidate, a skilled engineer must 

identify the constraint violations (e.g. shell-side pressure-drop higher than the allowable 

value, etc.) and propose modifications to attain a feasible solution (e.g. increase the baffle 

spacing). The time consumed in the design and the performance of the resulting solution is 
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highly dependent on the experience of the designer. Because the trial-and-error procedure 

stops when a feasible exchanger is obtained, the resulting solution is not necessarily optimal 

and depends on the initial choices.  

Modern textbooks
 
(SERTH, 2007; BELL, 2008; CAO, 2010) also presents in essence 

the same trial-and-error design procedure: first an initial tentative heat exchanger is proposed, 

then the heat exchanger is rated, and the results are checked to verify if the heat exchanger is 

acceptable, considering the excess area and the allowable pressure drop. If the proposed heat 

exchanger does not satisfy the task demands, alterations in the design must be made and 

followed by a new rating and further examination. The procedure must be repeated until an 

acceptable solution is found. This traditional approach involves the direct intervention of a 

skilled engineer and remained somewhat unaltered for a long time. Alternatively, algorithms 

based on heuristic rules, which could be implemented in a computer code, were also proposed 

for the identification of a design solution
 
(BELL, 2008; CAO, 2010). However, the heuristic 

nature of these schemes does not guarantee that the area or the cost are optimal. 

More recently, heat exchanger design was considered as an optimization problem with 

cost being minimized. However, for a given heat transfer task, an accurate assessment of the 

heat exchanger capital cost would require elaborate costing of parts as well as assembly costs. 

For this reason, previous works usually employed some substitutes: heat exchanger area or a 

simplified cost function in relation to the area. Therefore, the objective function used 

normally is the minimization of the heat exchanger area or the total annualized cost, including 

capital (area based) and operating costs (pumping costs). 

The techniques for design optimization of shell and tube heat exchangers can be 

organized in three mains classes: heuristic rules based on thermofluidynamic relations, 

metaheuristic methods and mathematical programming. 

The utilization of heuristic rules involves different techniques for the exploration of 

the search space, such as, graphical analysis and systematic screening of the counting table. 

Muralikrishna and Shenoy
 
(2000) proposed the analysis of the feasible region of the design 

problem through a pressure drop graph using geometrical and operational constraints. The 

insertion of objective function curves in the proposed graph allowed the identification of the 

best design alternative. Ravagnani et al.
 
(2003) proposed the application of a heuristic 

algorithm to a crescent sequence of shell diameters in the counting table aiming to identify the 

smallest heat exchanger according to the pressure drop constraints. Eryener
 
(2006) presented 

several graphs associated to the baffle spacing aiming to identify the optimal value of this 

design parameter. Costa and Queiroz
 
(2008) applied a systematic screening of the counting 
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table, based on discrete alternatives, seeking to identify the heat exchanger with the smallest 

area for a given thermal task. 

Different metaheuristic algorithms were used to solve the optimal design problem: 

simulated annealing (CHAUDHURI, 1997), genetic algorithms (TAYAL et al., 1999; 

WILDI-TREMBLAY et al., 2007; PONCE-ORTEGA et al., 2009), particle swarm 

(RAVAGNANI et al., 2009; PATEL and RAO, 2010), imperialist competitive algorithm 

(HADIDI et al., 2013), cuckoo-search algorithm (ASADI et al., 2014), firefly algorithm 

(MOHANTY, 2016), etc. However, there is a lack of organized comparative studies that 

allow a clear assessment of the best options among the existent alternatives. In addition, none 

of these techniques guarantees global optimality.  

The utilization of mathematical programming based on a more rigorous treatment of 

optimality conditions was also investigated. Because of the nature of the problem variables, 

involving continuous (e.g. heat transfer coefficients, pressure drops, etc.) and discrete 

variables (e.g. tube diameter, number of the tubes, etc.), and the nonlinearity of the thermal 

and hydraulic model equations, all works use a mixed-integer nonlinear optimization 

(MINLP) formulation. Mizutani et al. (2003) formulated the design optimization based on 

general disjunctive programming, which structure is organized as a MINLP problem. The 

objective function encompasses capital and operating costs, and the heat exchanger model is 

based on the Bell-Delaware method (TABOREK, 2008c). Ponce-Ortega et al.
 

(2006) 

employed an MINLP formulation to the design of series of shell and tube heat exchangers 

with 1 shell pass and 2 tube passes. The dimensioning of the heat exchanger components, 

however, is not discussed. Ravagnani and Caballero (2007) organized the MINLP problem 

describing the set of heat exchanger design variables associated to the mechanical 

components according to their corresponding discrete values and the remaining model 

variables as continuous ones.  

A common feature of all mathematical programming papers in the literature of heat 

exchanger design is the nonconvexity of the formulations proposed, which does not guarantee 

global optimality when using local solvers. An exception of all these string of articles in 

mathematical programming is the early work of Jegede and Polley
 
(1992), who propose a 

simplified model consisting of three equations involving the heat transfer coefficients of both 

tube and shell side and the area, as well as the pressure drops on both sides. For fixed pressure 

drops these equations can be solved and then other parameters can be obtained. Unfortunately, 

some parameters as the number of tubes may not be integers. In addition, if the diameters of 

tubes and lengths are standardized and limited to discrete values, the procedure may also 
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render values that do not match these discrete options. There is no procedure suggested as of 

how large these mismatches are and how they ought to be handled. When pressure drops are 

to be optimized in addition to area, the procedure includes pumping/compression costs. 

Finally, if the pressure drops are to be subject just to a maximum limit, the procedure ought to 

be different.  
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2 SHELL AND TUBE HEAT EXCHANGER DESIGN USING MIXED-INTEGER 

LINEAR PROGRAMMING WITH KERN METHOD 

 

This chapter presents the formulation of the optimization design problem of shell-and-

tube heat exchanger in a linear form. The analysis is focused on shell and tube heat exchanger 

without phase change. We use an E-shell type and the service must be executed in a single 

shell without loss of generality. The flow regime considered is a turbulent one, as it is 

common in industrial equipment. The physical properties are assumed constant, according to 

average values. Because we are focusing on the design procedure and not on the model, we 

chose the simpler Kern formulation for the shell-side equations (KERN, 1950) and the Dittus-

Boelter as well as the Darcy-Weisbach for the tube-side (SAUNDERS, 1988; INCROPERA 

and DE WITT, 2006).
 
  

In this section, the problem parameters, which are fixed prior the optimization, are 

represented with the symbol “^”. 

 

2.1 Heat Exchanger Model 

 

Fluid Allocation: The selection of the tube-side and shell-side streams depends on several 

factors, e.g., fouling, temperature, pressure, flow rate, etc. Therefore, it will be considered that 

the stream allocation is established prior the optimization. Thus, the values of the physical 

properties in the tube-side and shell-side streams are fixed parameters.  

Shell-Side Thermal and Hydraulic Equations: The flow velocity in the shell-side (vs) 

depends on the flow area between adjacent baffles (Ar): 

    
  ̂

  ̂   
                                                                             (12) 

where   ̂ and   ̂ are the shell-side stream flow rate and density, respectively. 

This flow area corresponds to the area delimited by the shell diameter (Ds) and baffle 

spacing (lbc) multiplied by the free area ratio (FAR): 

                                                                                          (13) 
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The free area ratio between baffles is given by: 

 

     
(         )

   
   

   

   
   

 

  
                                               (14) 

where ltp is the tube pitch, dte is the outer tube diameter, and rp is the ratio between the tube 

pitch and the tube diameter. 

 The Reynolds number associated to the shell-side velocity (Res) is given by: 

     
         ̂

  ̂
                                                                            (15) 

where Deq is the equivalent diameter, and   ̂ is the shell-side fluid viscosity. 

The equivalent diameter present in the Reynolds number depends on the tube layout. 

For a square and triangular pattern, respectively: 

     
      

     
        (Square pattern)                                                                     (16) 

     
         

     
        (Triangular pattern)                                                              (17) 

The Nusselt number for the shell-side flow (Nus) is a function of the Reynolds and 

Prandtl numbers (Res and    ̂) (KERN, 1950): 

                    ̂                                                                   (18) 

where the dimensionless groups Nusselt and Prandtl are defined by: 

     
      

  ̂
                                                                             (19) 

   ̂   
   ̂   ̂

  ̂
                                                                             (20) 
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where hs is the shell-side convective heat transfer coefficient,   ̂ is the thermal conductivity, 

and     ̂ is the heat capacity. 

 The head loss in the shell-side flow, dismissing nozzle pressure drop, can be 

calculated by (KERN, 1950): 

   

  ̂  ̂
    

  (     ) 

    
.
   

   ̂
/                                                                 (21) 

where Ps is the shell-side stream pressure drop, fs is the shell-side friction factor and Nb is 

the number of baffles. 

The expression for evaluation of the shell-side friction factor is: 

                                                                                               (22) 

The number of baffles is directly related to the baffle spacing and tube length: 

    
 

   
                                                                                (23) 

Tube-Side Thermal and Hydraulic Equations: The flow velocity in the tube-side (vt) 

depends on the number of tubes per pass (Ntp) and the inner tube diameter (dti): 

    
    ̂ 

        ̂     
                                                                            (24) 

where   ̂ and   ̂ are the tube-side stream flow rate and density, respectively. 

The equation of the Reynolds number related to the tube-side flow rate (Ret) is: 

     
         ̂

  ̂
                                                                             (25) 

where dti is the inner tube diameter, and   ̂ is the tube-side fluid viscosity. 
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The Prandtl number for the tube-side fluid (   ̂) is: 

   ̂   
   ̂   ̂

 ̂ 
                                                                             (26) 

where   ̂ and    ̂ are the tube-side fluid thermal conductivity, and heat capacity, respectively. 

The Reynolds and Prandtl numbers allow the evaluation of the tube-side Nusselt 

number (Nut) through the Dittus-Boelter correlation (INCROPERA and DE WITT, 2006): 

                    ̂                                                                 (27) 

where the parameter n is equal to 0.4 for heating services and 0.3 for cooling services. 

The definition of the Nusselt number is: 

     
      

  ̂
                                                                             (28) 

where ht is the tube-side convective heat transfer coefficient. 

 The head loss in the tube-side flow, dismissing nozzle pressure drop and the variation 

of the physical properties, is given by (SAUNDERS, 1988): 

   

  ̂   ̂
  

                

   ̂    
  

            

   ̂
                                                               (29) 

where Pt is the tube-side stream pressure drop, and ft is the tube-side friction factor. The 

first term in the RHS (right hand side) corresponds to the head loss in the tube bundle and the 

second corresponds to the head loss in the front and rear headers. The parameter K is equal to 

0.9 for one tube pass and 1.6 for two or more tube passes (SAUNDERS, 1988). 

 The expression for the Darcy friction factor for turbulent flow can be expressed by 

(SAUNDERS, 1988):
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                                                                             (30) 

Overall Heat Transfer Coefficient:  The expression of the overall heat transfer coefficient 

(U) is: 

   
 

   

      
  
   ̂    

   
  
     (

   
   

)

       ̂      ̂   
 

  

                                                                           (31) 

where the      ̂ is the thermal conductivity of the tube wall, and    ̂ and    ̂ are the fouling 

factors of the tube-side and shell-side streams, respectively. 

Heat Transfer Rate Equation: According to the LMTD method, the heat transfer rate 

expression is: 

 ̂            ̂                                                                               (32) 

where  ̂ is the heat load, Areq is the required area,     ̂ is logarithmic mean temperature 

difference (LMTD), and F is the LMTD correction factor. 

The LMTD is given by: 

    ̂  
(   ̂     ̂) (   ̂    ̂)

   (
(   ̂     ̂)

(   ̂    ̂ )
)

                                                                           (33) 

The LMTD correction factor is equal to 1 for one tube pass, and is equal to the 

following expression for an even number of tube passes: 

    
( ̂    )      (

(   ̂)

(    ̂  ̂)
)

( ̂  )   (
   ̂( ̂    ( ̂    )

   
)

   ̂( ̂   ( ̂    )
   
)
)

                                                                          (34) 

where: 
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 ̂  
   ̂     ̂

   ̂    ̂
                                                                                         (35) 

 ̂  
   ̂    ̂

   ̂     ̂
                                                                                                    (36) 

The heat transfer area (A) is represented by the sum of the area of the surface of each 

tube: 

                                                                                           (37) 

where Ntt is the total number of tubes. 

In order to guarantee an adequate design margin, the exchanger area must be higher 

than the required area according to a certain “excess area” (    ̂), specified by the design 

engineer: 

  .  
    ̂

   
/                                                                                 (38) 

Therefore, the heat transfer rate equation is reorganized using actual heat exchanger 

area: 

   .  
    ̂

   
/

 ̂

    ̂   
                                                                            (39) 

Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers: During the process 

design, allowable pressure drops are imposed according to the pressure profile of the unit. 

These parameters are related to a trade-off between capital and operating costs. The 

corresponding constraints are: 

            ̂                                                                                  (40) 

            ̂                                                                             (41) 
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Additionally, lower and upper bounds on flow velocities are also established: 

        ̂                                                                             (42) 

        ̂                                                                               (43) 

        ̂                                                                             (44) 

        ̂                                                                              (45) 

Flow velocity lower bounds seek to avoid fouling susceptible conditions. 

Corresponding upper bounds aims to avoid erosional conditions that could damage the heat 

exchanger during its operational life. 

According to the application range of the convective heat transfer coefficient 

correlations, there are bounds on the Reynolds numbers in the shell-side and tube-side: 

                                                                                     (46) 

                                                                                    (47) 

Geometric Constraints: The baffle spacing must be limited between 20% and 100% of the 

shell diameter (TABOREK, 2008d): 

                                                                                         (48) 

                                                                                        (49) 

 The ratio between the tube length and shell diameter must be between 3 and 15 

(TABOREK, 2008b):
  

                                                                                    (50) 
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                                                                                     (51) 

 

Objective function: The optimization problem seeks to minimize the heat transfer area, which 

has a direct impact in the exchanger cost: 

                                                                                                  (52) 

Other objective functions can be constructed. Normally, capital cost is monotone with 

area, so minimizing area is somehow equivalent to minimizing the capital cost.  

 

2.2 Model Reformulation Using Discrete Variables 

 

In the proposed problem formulation, each discrete design variable (x) is represented 

according to their respective standard indexed values. That is,   is now represented by several 

discrete options   ̂ , of which one and only one will be chosen. Thus, we introduce a set of 

binary variables yi, and write x as follows: 

  ∑   ̂                                                                                           (53) 

∑                                                                                    (54) 

 According to the engineering practice and Tubular Exchangers Manufactures 

Association (TEMA) standards (TABOREK, 2008d; TEMA, 2007),
 
these design variables 

are: inner and outer tube diameter (dti and dte), tube length (L), number of baffles (Nb), 

number of tube passes (Npt), pitch ratio (rp), shell diameter (Ds), and tube layout (lay). 

 Therefore, for our discrete variables, we write:  

 

    ∑     ̂       
     
                                                                    (55) 
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    ∑     ̂       
     
                                                                    (56) 

∑     
     
                                                                                     (57) 

  ∑   ̂       
     
                                                                        (58) 

∑     
     
                                                                                    (59) 

    ∑    ̂          
      
                                                                    (60) 

∑        
      
                                                                                     (61) 

    ∑     ̂             
       
                                                                    (62) 

∑         
       
                                                                                      (63) 

   ∑    ̂         
      
                                                                     (64) 

∑       
      
                                                                                      (65) 

   ∑    ̂          
      
                                                                    (66) 

∑       
      
                                                                                      (67) 

    ∑   ̂               
       
                                                                     (68) 

∑         
       
                                                                                      (69) 

Instead of leaving this discrete representation as additional equations to the model, we 

substitute them in the rest of the equations.  After the substitution of the discrete variables by 

its binary representation, mathematical expressions appear in the heat exchanger model in the 

form            that are replaced as follows: 
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           ,∑   ̂     -
  

 ,∑   ̂     -
  

 ,∑   ̂     -
  

                                         (70) 

Because all binary variables assume a value 1 only once in the corresponding set (see 

Equation 54), it is easy to see that Equation 70 becomes: 

           ∑   ̂ 
  
  ̂ 

  
     ̂ 

  
                                                            (71) 

Therefore, the reformulated model is now composed by several expressions containing 

multiple summations of products of binary variables and a few continuous variables.  We now 

show the reformulated model. 

Shell-side Thermal and Hydraulic Equations: After the substitution of the discrete variables 

by their representation through correspondent binaries, the expression of the shell-side flow 

velocity obtained from Equation 12 becomes: 

    
  ̂

  ̂ ∑ ∑ ∑ ∑
   ̂       ̂     ̂  

(   ̂     )
                       

      
     

     
    

      
     

      
     

                      (72) 

This equation (Equation 72) is derived from the following expression of the flow area 

originally present in Equation 13: 

   ∑ ∑ ∑ ∑        
     

   ̂       ̂     ̂  

(   ̂     )
                       

     
    

      
     

      
          (73) 

where: 

    ̂      
 

   ̂   
                                                                               (74) 

The equivalent diameter corresponding to Equations (16) and (17) is given by: 

    ∑ ∑ ∑     ̂                             
       
      

     
           

                              (75) 
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where: 

 

     ̂            
           ̂   

     ̂  
 

     ̂  
     ̂                                                     (76) 

             if slay = 1 (square pattern)                                                  (77) 

              if slay = 2 (triangle pattern)                                                  (78) 

 The Reynolds number equation, associated to the shell-side flow velocity and 

equivalent diameter, becomes, after reformulation of Equation (15): 

    

  ̂

  ̂
 (∑ ∑ ∑     ̂                             

       
      

     
           

     )  

(∑ ∑ ∑ ∑
(   ̂     )

   ̂       ̂     ̂  
                       

      
     

     
    

      
     

      
     )  (79) 

Substituting the expression above of the Reynolds number in to Equation (79), the 

reformulated form of the Nusselt number for the shell-side flow becomes: 

          .
  ̂

  ̂
/
    

                             ̂
                                                    (80) 

where SNussrp,sd,slay,sDs,sL,sNb represents the following sum of binary variables: 

                           

 ∑ ∑ ∑ ∑ ∑ ∑ (
    ̂           (   ̂     )

   ̂       ̂     ̂  
)
    

       
      
     

     
    

      
     

       
      

     
    

      
     

                                (81) 

The substitution of Equation (80) in the definition of the Nusselt number in Equation 

(19) yields the following equation related to the shell-side heat transfer coefficient: 
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  ̂

  ̂
/
    

                             ̂
   

∑ ∑ ∑     ̂                             
       
      

     
     

      
     

                                             (82) 

 The reformulation of Equation (21) of the head loss in the shell-side flow yields: 

     

∑ ∑ ∑ ∑ ∑ ∑     ̂                      
       
      

      
                 

     
    

      
     

      
     

      
     

                         (83) 

where: 

    ̂                       

      
  ̂       ̂     

  ̂
(
  ̂

  ̂
)     (

(   ̂     )
     

   ̂   
     

(    ̂     ̂  )
     

(    ̂           )
     )                   (84) 

Tube-side Thermal and Hydraulic Equations: The reformulation of the flow velocity in the 

tube-side is obtained from Equation (24): 

        ̂ (    ̂ ∑ ∑ ∑ ∑ ∑
    ̂                        ̂  
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                                   )                (85) 

 The Reynolds number expression (Equation (25)) is now as follows: 

     
    ̂ 

    ̂ 
∑ ∑ ∑ ∑ ∑

    ̂    

    ̂                        ̂  
 

       
      

      
     

       
      

     
    

      
     

                                              (86) 

The insertion of Equation (86) into Equation (27) yields the reformulated form of the 

Nusselt number for tube-side flow: 

           .
    ̂

    ̂
/
   

                           ̂
                                                  (87) 
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where SNutsrp,sd,slay,sDs,sNpt represents a sum of binary variables: 

                           

 ∑ ∑ ∑ ∑ ∑ ∑ (
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    ̂                        ̂  
)
   

       
     

     
    

      
     

       
      

     
    

      
     

                                                          (88) 

According the definition of the Nusselt number in Equation (28), the tube-side heat 

transfer coefficient equation becomes: 

    
  ̂      .

    ̂

    ̂
/
   

                           ̂
 

∑     ̂       
     
    

                                                          (89) 

The reformulation of Equation 29 of the head loss in the tube-side flow yields: 
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Overall Heat Transfer Coefficient: The reformulation of the overall heat transfer coefficient 

in Equation (31) yields: 

 
 

 
 

 

.∑ ∑ ∑ ∑ ∑    ̂                                                       
       
        

      
     

       
      

     
    

      
     /

 

 
∑     ̂       
     
    

∑     ̂       
     
    

     ̂  
 ∑     ̂       
     
    

∑     ̂       
     
    

  
∑     ̂       
     
      (

∑     ̂       
     
    

∑     ̂       
     
    

)

       ̂  
      ̂  

 

.∑ ∑ ∑ ∑ ∑ ∑     ̂                                                         
      
     

     
    

      
     

       
      

     
    

      
     /

 (91) 

Heat Transfer Rate Equation: The heat transfer area related to Equation (37) is given by: 

     ∑ ∑ ∑ ∑ ∑ ∑     ̂                    
     
    

       
             

     
       
      

     
    

      
     

     ̂    ̂                                                                  (92) 

 

The correction factor of the LMTD assumes the following form: 

                ̂ (           )                                                              (93) 

where    ̂ is the value of the correction factor of the LMTD for a configuration with a single 

shell pass and an even number of tube passes (Equation (34)). 

The substitution of these expressions in Equation (39) yields the reformulated form of 

the heat transfer rate equation: 

 

 

 



41 

 

 

.∑ ∑ ∑ ∑ ∑    ̂                                                       
       
        

      
     

       
      

     
    

      
     /

  

∑     ̂       
     
    

∑     ̂       
     
    

    ̂  
 ∑     ̂       
     
    

∑     ̂       
     
    

  
∑     ̂       
     
      (

∑     ̂       
     
    

∑     ̂       
     
    

)

       ̂  
      ̂  

 

.∑ ∑ ∑ ∑ ∑ ∑     ̂                                                         
      
     

     
    

      
     

       
      

     
    

      
     /

 

 

 ̂(  
    ̂

   
)
( ∑ ∑ ∑ ∑ ∑ ∑     ̂                    

     
    

       
          ̂  

      
     

       
        ̂   

     
    

      
     

                                      )     ̂  (             ̂ (           )) (94) 

 

Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers: These inequality 

constraints become: 
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Geometric Constraints: These constraints are modified according to the discrete nature of the 

design variables: 
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∑   ̂       
     
        ∑    ̂          

      
                                                     (105) 

∑   ̂       
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Objective function: The objective function in relation to the binary variables assumes the 

following form: 
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2.3 Conversion to a Linear Model 

 

The previous reformulation of the heat exchanger model using binary variables 

contains several expressions with products of binaries. Therefore, at this stage, the problem is 

a nonlinear one, which could present multiple local optima with different values of objective 

function.  

Aiming at providing a linear formulation of the optimization problem, thus 

suppressing the nonconvexity drawback, a rigorous linear alternative for these binary 

expressions is used, according to the procedure shown as follows. It is important to mention 

that the proposed procedure does not involve any numerical approximation, i.e., the solution 

of the resultant formulation rigorously guarantees the global optimum of the design problem. 

The product of binary variables in an expression like the one shown in equation (71) 

can be grouped in a continuous variable           as follows: 

                                                                           (108) 
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Then (Equation 71) can be rewritten as follows 

           ∑   ̂ 
  
  ̂ 

  
     ̂ 

  
                                                                  (109) 

Besides (Equation 108) can be substituted by  

                                                                                                                                    (110) 

                                                                                                                                    (111) 

∙∙∙                           

                                                                                                                                    (112) 

                          (   )                                                                     (113) 

where m is the number of binary variables in the product. Consequently, the original nonlinear 

term related to the product of binaries is substituted by linear constraints.  

 

2.4 Final Linear Model 

 

After the application of the technique described above, the problem becomes a mixed-

integer linear programming (MILP). Aiming to decrease the computational effort, additional 

constraints are included to reduce the search space, as described at the end of this section. 

The MILP equations of the heat exchanger design problem are shown below. 

Binary Variables Equality Constraints:  The following constraints guarantee that in the 

solution only one of the integer values will be selected: 

∑     
     
                                                                                              (114) 
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∑        
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∑         
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∑       
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∑       
      
                                                                                               (119) 

∑         
       
                                                                                               (120) 

Heat Transfer Rate Equation: The heat transfer rate equation in the MILP 

formulation contains all the expressions related to the heat transfer coefficients and heat 

transfer area: 
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The constraint in Equation (121) has continuous variables: wvtsDs,sd,sNpt,srp,slay , 

whssDs,srp,sL,sNb,sd,slay, wA1PsDs,sd,sNpt,srp,slay,sL and wAsDs,sd,sNpt,srp,slay,sL. The relations of these 

variables and the corresponding binary variables are: 

                                                                                                                         (122) 

                                                                                                                          (123) 

                                                                                                                       (124) 

                                                                                                                          (125) 

                                                                                                                         (126) 

                                                                                 (127) 

                                                                                                                         (128) 

                                                                                                                          (129) 

                                                                                                                        (130) 

                                                                                                                        (131) 

                                                                                                                          (132) 

                                                                                                                       (133) 

                                                                         5         (134) 

                                                                                                                (135) 

                                                                                                                   (136) 
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                                                                                               (137) 

                                                                                                                        (138) 

                                                                                                                          (139) 

                                                                                                                      (140) 

                                                                                                                         (141) 

                                                                                                                        (142) 

                                                                                                                          (143) 

                                                                                 (144) 

 

Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers: The linear form of the 

bound on the shell-side pressure drop is: 
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The constraints relating the wDPssDs,sNb,srp,sL,sd,slay continuous variable and the respective 

binary variables are: 

                                                                                                      (146) 

                                                                                                             (147) 
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The tube-side pressure drop constraint is: 
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 The constraints relating the wvtturbsDs,sd,sNpt,srp,slay,sL and wvt1PsDs,sd,sNpt,srp,slay 

continuous variables and the respective binary variables are: 

                                                                                                              (154) 

                                                                                                                  (155) 

                                                                                                                      (156) 
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                                                                                                                      (157) 

                                                                               (158) 

                                                                                                                (159) 

                                                                                                                    (160) 

                                                                                               (161) 

The linear form of the bounds on the shell-side flow velocity is: 

     ̂  
  ̂

  ̂ 
∑ ∑ ∑ ∑

(   ̂     )

   ̂       ̂     ̂  

      
     

     
    

      
     

      
                                 (162) 

     ̂   
  ̂

  ̂ 
∑ ∑ ∑ ∑

(   ̂     )

   ̂       ̂     ̂  

      
     

     
    

      
     

      
                               (163) 

 The constraints relating the wvssDs,srp,sL,sNb continuous variable and the corresponding 

binary variables are: 

                                                                                                                          (164) 

                                                                                                                           (165) 

                                                                                                                             (166) 

                                                                                                                          (167) 

                                                                                            (168) 

 The bounds on the tube-side flow velocity are: 
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The bounds on the Reynolds numbers are: 
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Geometric Constraints: The constraints related to the maximum and minimum baffle spacing 

are: 

∑ ∑
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 The constraints relating the wlbcsL,sNb continuous variable and the corresponding 

binary variables are: 

                                                                                                     (175) 

                                                                                               (176) 
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                                                                                                 (177) 

 The constraints associated to ratio between the tube length and shell diameter are: 

∑   ̂       
     
        ∑    ̂          

      
                                                                     (178) 

∑   ̂       
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                                                                   (179) 

 

Objective function: The objective function is: 

      ∑ ∑ ∑ ∑ ∑ ∑     ̂                    
     
    

       
             

     
       
      

     
    

      
     

     ̂    ̂                              (180) 

Additional Constraints to Convergence Acceleration 

Velocity bounds: The analysis of the feasible set allows the introduction of additional 

constraints, which can accelerate the solution algorithm. Bounds on flow velocities are 

imposed by the constraints in the Equations (162), (163), (169) and (170), but the analysis of 

these conditions indicates that an extra set of constraints can also be added to the problem 

formulation: 

                                 for (              )  (                   )     (181) 

                               for (              )  (                   )     (182) 

The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are established prior to the 

optimization, based on the values of the set of problem parameters, as follows: 

          *(              )      ̂                     ̂   ̂+                      (183) 
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          *(              )      ̂                     ̂   ̂+                         (184) 

          *(                    )      ̂                           ̂   ̂+           (185) 

          *(                    )      ̂                           ̂   ̂+          (186) 

where  ̂ is a small positive number. 

Shell-side pressure upper bound: The same logic can be employed in relation to the 

upper bound on the shell-side pressure drop in Equation (145), thus yielding: 

                                        for (                      )              (187) 

           *(                      )       ̂                               ̂   ̂+      (188) 

Baffle spacing: The baffle spacing constraints in Equations (173) and (174) yield the 

following additional constraints: 

                        for (          )  (                     ) (189) 

           *(          )   
  ̂  

   ̂     
        ̂      ̂+                                      (190) 

           *(          )   
  ̂  

   ̂     
        ̂      ̂+                                      (191) 

Tube length / shell diameter: The ratio between the tube length and shell diameter in 

Equations (180) and (181) yield the following additional constraints: 

                            for (      )  (                    )                    (192) 

          *(      )     ̂        ̂      ̂+                                                 (193) 

          *(      )     ̂         ̂      ̂+                                                      (194) 
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Heat transfer area: The heat transfer area is the objective function and, a priori, does 

not have a bound constraint. However, based on maximum velocity limits, it is possible to 

determine maximum values for the convective heat transfer coefficients and, therefore, to 

evaluate a maximum value for the overall heat transfer coefficients. Finally, based on this 

parameter, it is possible to establish a minimum value for the heat transfer area. The 

expression of the additional constraint is: 

                                        for (                       )                  (195) 

where the set of heat exchangers with area lower than the minimum possible is given by: 

         *(                       )        ̂                        ̂    ̂       ̂   ̂+            (196) 

The lower bound on the heat transfer area can be determined through the following set 

of equations: 

      
 ̂

    ̂     ̂
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      ̂      ̂      ̂      ̂   
    ̂     (     

̂ )

       ̂      ̂   
 

     ̂

                           (198) 
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     ̂      (    ̂                       )                                                   (200) 

     ̂      (    ̂       ̂  )                                                    (201) 

 

2.5 Results 

 

The application of the proposed MILP approach is illustrated by its utilization in the 

solution of a typical design task described in Table 1. The physical properties of the streams 
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are shown in Table 2. The standard values of the design variables are displayed in Table 3; 

related to a fixed tubesheet type exchanger with E-shell, single segmental baffles, tube wall 

thickness of 1.65 mm (BWG 16) and thermal conductivity of the tube wall equal to 50 W/m 

K. The minimum excess area is 11% and the tube count data is based on Kakaç et al. (2012). 

 

 

Table 1 - Design Data 

 Hot stream Cold stream 

Fluid Crude oil Cooling water 

Stream allocation Shell side Tube side 

Mass flow rate (kg/s) 110 228.8 

Inlet temperature (ºC) 90 30 

Outlet temperature (ºC) 50 40 

Fouling factor (m
2
K/W) 0.0002 0.0004 

Allowable pressure drop (kPa) 100 100 

Flow velocity bounds (m/s) [1.0  3.0 ] [0.5  2.0 ] 

 

 

 

Table 2 - Physical Properties of the Streams 

 Hot stream Cold stream 

Density (kg/m
3
) 786.4 995 

Heat capacity (J/(kgK)) 2177 4187 

Viscosity (Pas) 1.8910
-3

 0.7210
-3 

Thermal conductivity 

(W/(mK)) 
0.122 0.59 

  

 

 

 



55 

 

Table 3 - Standard Values of the Discrete Design Variables 

Variable Values 

  

Outer tube diameter     ̂   (m) 0.019, 0.025, 0.032, 0.038, 0.051 

  

Tube length,   ̂   (m) 1.220, 1.829, 2.439, 3.049, 3.659, 4.877, 6.098 

  

Number of baffles,    ̂    1, 2, … , 20 

  

Number of tube passes,     ̂     1, 2, 4, 6 

  

Tube pitch ratio,    ̂    1.25, 1.33, 1.50 

  

Shell diameter,    ̂    (m) 
0.787, 0.838, 0.889, 0.940, 0.991, 1.067, 1.143, 1.219, 

1.372, 1.524 

  

Tube layout,   ̂       1 = square, 2 = triangular 

 Source: The author. 

 

The design task was solved using the MILP formulation implemented in the 

optimization software General Algebraic Modelling System (GAMS) using the solver 

CPLEX. The objective function and the design and thermo-fluid dynamic variables in the 

solution obtained are shown in Tables 4 and 5. 
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Table 4 - Heat Exchanger Design Results 

 MILP 

Area (m
2
) 624 

Outer tube diameter (m) 0.019 

Tube length (m) 4.9 

Number of baffles 7 

Number of tube passes 4 

Tube pitch ratio 1.25 

Shell diameter (m) 1.219 

Tube layout triangular 

Total number of tubes 2139 

Baffle spacing (m) 0.610 

Tube pitch (m) 0.024 

 

Table 5 - Thermo-fluid dynamic Results 

 MILP 

Shell-side flow velocity (m/s) 0.94 

Tube-side flow velocity (m/s) 2.2 

Shell-side heat transfer coefficient (W/m
2
K) 1163 

Tube-side heat transfer coefficient (W/m
2
K) 9206 

Overall heat transfer coefficient (W/m
2
K) 584 

Shell-side pressure drop (kPa) 84.9 

Tube-side pressure drop (kPa) 91.9 

 

 The analysis of the results indicates that the optimal solution is coherent with general 

optimization trends employed in heat exchanger design. The pressure drops in the shell and 

tube sides are close to the allowable values, i.e. the optimal solution promotes a good 

exploration of the available pressure drop aiming to increase the overall heat transfer 

coefficient and, consequently, to diminish the heat transfer area. 
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Performance Analysis:  Aiming to provide a clearer assessment of the performance of the 

proposed approach when compared to conventional nonlinear alternatives (MINLP), a set of 

10 different design tasks were tested (the problem discussed previously is the first example of 

the sample). These tasks involve streams typically found in heat exchanger design problems: 

methanol, ethanol, acetone, sucrose solution, crude oil, cooling water, and hot water (KAKAÇ 

etl al., 2012; TOWLER and SINNOT, 2008). The standard values of the design variables are 

equal to the data displayed in Table 3 and the properties and flows of the fluids for each 

example are shown in Table 6, 7 and 8. 

Table 6 - Heat Exchanger Examples 

Example 1 2 3 4 5 

Service 
Crude oil 

cooler 

Crude oil 

cooler 

Methanol 

cooler 

Methanol 

cooler 

Methanol 

heater 

Hot stream Crude oil Crude oil Methanol Methanol Hot water 

Cold stream 
Cooling 

water 

Cooling 

water 

Cooling 

water 

Cooling 

water 
Methanol 

Tube-side 

stream 
Cold Cold Hot Hot Hot 

Example 6 7 8 9 10 

Service 
Ethanol 

cooler 

Sucrose 

solution 

heater 

Sucrose 

solution 

cooler 

Acetone 

ethanol 

exchanger 

Acetone 

ethanol 

exchanger 

Hot stream Ethanol Hot water 
Sucrose 

solution 
Ethanol Ethanol 

Cold stream 
Cooling 

water 

Sucrose 

solution 

Cooling 

water 
Acetone Acetone 

Tube-side 

stream 
Cold Hot Cold Cold Hot 
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Table 7 - Hot Stream Data 
Example 1 2 3 4 5 6 7 8 9 10 

 ̂  (kg/s) 110.0 50.0 27.8 69.4 40.0 55.6 40.0 83.3 111.1 111.1 

Inlet  ̂ 

(C) 
90.0 100.0 70.0 100.0 220.0 150.0 220.0 90.0 190.0 190.0 

Outlet  ̂ 

(C) 
50.0 50.0 40.0 40.0 110.2 60.0 80.8 40.0 120.0 120.0 

max P 

(kPa) 
100 60 70 70 70 70 70 100 100 100 

 (kg/m
3
) 786 786 750 750 888 789 888 1080 789 789 

 ̂  (mPas) 1.89 1.89 0.34 0.34 0.15 0.67 0.15 1.30 0.67 0.67 

  ̂  

(J/kgK) 
2177 2177 2840 2840 4312 2470 4312 3601 2470 2470 

 ̂ 

(W/mK) 
0.12 0.12 0.19 0.19 0.70 0.17 0.70 0.58 0.17 0.17 

  ̂ 

(m
2
K/W) 

0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 
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Table 8 - Cold Stream Data 
Example 1 2 3 4 5 6 7 8 9 10 

 ̂  (kg/s) 228.8 130.0 56.6 353.3 133.3 295.0 133.3 358.3 166.7 166.7 

Inlet  ̂ 

(C) 
30.0 30.0 30.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 

Outlet  ̂ 

(C) 
40.0 40.0 40.0 40.0 80.0 40.0 80.0 40.0 79.7 79.7 

max P 

(kPa) 
100 50 100 70 70 70 70 100 100 100 

 (kg/m
3
) 995 995 995 995 750 995 1080 995 736 736 

 ̂  (mPas) 0.72 0.72 0.72 0.72 0.34 0.72 1.30 0.80 0.21 0.21 

  ̂  

(J/kgK) 
4187 4187 4187 4187 2840 4187 3601 4187 2320 2320 

 ̂ (W/mK) 0.59 0.59 0.59 0.59 0.19 0.59 0.58 0.59 0.14 0.14 

  ̂ 

(m
2
K/W) 

0.0004 0.0003 0.0002 0.0004 0.0001 0.0004 0.0001 0.0004 0.0002 0.0002 

 

The problem sample was solved using the MILP formulation and compared to the 

original nonlinear model (Equations 12-52, 55-69) using an MINLP approach with two 

different solvers: DICOPT and SBB. The DICOPT algorithm is the outer approximation with 

equality relaxation and augmented penalty algorithm (OA/ER/AP) and the SBB is a branch-

and-bound algorithm (BB). The MINLP formulation employed for the performance analysis 

is composed of the constraints in Equations (12) through (51), objective function in Equation 

(52), and the description of the discrete variables in Equations (55) to (69). An initialization 

procedure was provided for initial estimates of the thermal variables based on the flow 

velocity bounds in the MINLP algorithms. No initial estimates were employed in the MILP 

runs. 
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The heat transfer area of the solutions and the computational time employed are 

displayed in Table 9. The computational times were measured using a computer with a 

processor Intel Core i7 3.40 GHz with 12.0 GB RAM memory. 

 

 

Table 9 - Performance Comparison 

  Heat transfer area (m
2
)  Solution time (s) 

Example 
 
MILP 

MINLP 

DICOPT 

MINLP 

SBB 

 
MILP 

MINLP 

DICOPT 

MINLP 

SBB 

1  624 NC NC  1772 NC NC 

2  319 319 319  1606 8.8 1.3 

3  199  NC NC  211 NC NC 

4  872 872 872  153 87 0.4 

5  144 NC NC  931 NC NC 

6  332 355 341  2824 5061 1.8 

7  207 225 207  2529 1.5 0.9 

8  914 914 914  171 19 0.7 

9  287 287 287  2058 9.3 0.9 

10  327 NC NC  2329 NC NC 

Note: NC = non-convergence 

 

The results displayed in Table 9 indicate a considerable number of occasions where 

the MINLP algorithms failed to converge. This problem has occurred in 40% of the problems 

when using the solvers DICOPT and SBB. The analysis of the converged results also 

indicates that the MINLP algorithms may be trapped in local optima. This problem has 

occurred in 33% of the converged runs of the DICOPT solver and 17% of the solutions when 

using the SBB solver. The comparison of the solution time (evaluated using the elapsed time 

command in GAMS) indicates that the MILP approach is usually much slower than the 
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MINLP algorithms. However, the observed solution times of the MILP approach do not 

compromise its use in practical applications, varying between about 3 min to 45 min. 

Effect of Pressure Drop:  As mentioned before, the objective function can be formulated 

differently. One of the issues is the pressure drop as it is associated to pumping costs. In this 

case one could construct an objective function that is a linear combination of the amortized 

cost of area, and the pressure drops. Because the coefficients of such cost function depend a 

lot on the context, that is, whether the exchanger is alone needing (or not) pumping for a 

source pressure to a delivery pressure, or is part of a network, we believe that it is better to 

study the effect of the pressure drop on the final design. To do this we prepared three runs 

related to the design task described in Table 1, one limiting the pressure drop on tubes to an 

80% smaller value. We do the same for the shell and finally, for completeness we add both. 

The results of these runs, together with the original design are shown in Table 10. 
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Table 10 - Effect of the Allowable Pressure Drop in the Optimal Design 

 

MILP 

without 

changes  

Lower 

pressure 

drop on 

tubes 

Lower 

pressure 

drop on 

shell 

Lower 

pressure 

drop on 

tubes and 

shell 

Area (m
2
) 624 684 855 855 

Tube length (m) 4.9 4.9 6.1 6.1 

Number of baffles 7 8 5 5 

Number of tube passes 4 2 4 2 

Shell diameter (m) 1.219 1.372 1.372 1.372 

Tube layout triangular square square square 

Total number of tubes 2139 2344 2344 2344 

Baffle spacing (m) 0.610 0.542 1.016 1.016 

Shell-side flow velocity (m/s) 0.94 0.94 0.50 0.50 

Tube-side flow velocity (m/s) 2.2 1.0 2.0 1.0 

Shell-side heat transfer coefficient 

(W/m
2
K) 

1163 1009 714 714 

Tube-side heat transfer coefficient 

(W/m
2
K) 

9206 4914 8556 4914 

Overall heat transfer coefficient 

(W/m
2
K) 

584 511 442 422 

Shell-side pressure drop (kPa) 84.9 73.7 15.7 15.7 

Tube-side pressure drop (kPa) 91.9 10.9 93.8 13.3 

 

 The analysis of the results indicates that the reduction of the allowable pressure drop 

determined a reduction in the flow velocity, which causes a decrease of the corresponding 

heat transfer coefficient. Consequently, the smaller value of the overall heat transfer 

coefficient implies an increase of the area necessary to fulfill the design task. Because the heat 

transfer coefficient in the shell-side is lower than in the tube-side, the area increase is more 

pronounced when the allowable shell-side pressure drop is reduced. The allowable tube-side 

pressure drop reduction determines an area increase of 10% and the equivalent shell-side 
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pressure drop reduction determines an increase of 40%, equivalent to the increase when both 

parameters are reduced. 

 

2.6 Partial Conclusions 

 

A MILP model for the design of shell and tube heat exchangers was presented. The 

model is linear, thanks to the fact that several geometric design variables are discrete and 

therefore amenable to be expressed in terms of binary variables. When these expressions are 

substituted in the model, the resulting equations are nonlinear expressions containing binary 

variables. We therefore reformulate the problem as a linear one without losing any rigor. 

The comparison of the MILP model with an MINLP formulation through the solution 

of the same sample of heat exchanger design problems shows drawbacks in the MINLP 

approach in relation to non-convergence and local optima. Due to its linear nature, the MILP 

model proposed here is immune to these obstacles, always reaching the global optimum. 

The computational time for the MILP model is remarkable higher than the required by 

others, but it is still satisfactory for its use in practice. In the next chapter, it is explored 

alternative techniques to reduce the computational effort. An important aspect that must also 

be noted is that the linear nature of the proposed model makes it amenable to be easier to add 

to other broader models (i.e. HEN synthesis with simultaneous heat exchanger design). 
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3 ALTERNATIVE MILP FORMULATIONS FOR SHELL AND TUBE HEAT 

EXCHANGER OPTIMAL DESIGN 

 

This chapter presents the exploration of alternative techniques to reduce the 

computational effort for the identification of the global optimum of the design of shell-and-

tube heat exchangers. The scope and the original nonlinear model employed corresponds to 

the same set of equations presented in the previous chapter. 

MILP Model: After the substitution of the discrete variables is made, the model 

results in a complex mixed integer nonlinear programming (MINLP) model that contains 

products of binaries and continuous variables. In the previous chapter,
 
we converted this 

rigorous MINLP model into a rigorous linear model (MILP), making no simplifying 

assumptions. Thus, a rigorous solution of the MILP is also a rigorous solution of the MINLP. 

Moreover, because of its linearity, the MILP model renders a global solution. As we shown, 

solving the MINLP model using local solvers many times rendered a non-global local 

solution.  

 

MILP Model Performance: After testing several options of binary variable 

prioritizations in the MILP branch and bound, we came up with one option that rendered 

solutions in the range from 153 to 2824 seconds, with an average of 1458 seconds for 10 test 

problems (computer with a processor Intel Core i7 3.40 GHz with 12.0 GB RAM memory). 

This performance time is more than acceptable for a stand-alone run, even if the number of 

geometric options is increased. However, this computational time is high when, for example, 

repeated runs are needed to handle uncertainty, and when the model becomes a sub-model of 

others, like the simultaneous design of a heat exchanger network with detailed heat exchanger 

design. We now explore different rigorous alternatives of binary variable aggregation, all 

having different computational efficiency still rendering the same result. 
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3.1 Alternatives of binary variables organization 

 

We present five different aggregations of binary variables leading to MILP 

formulations, which render the same result each with its own computational efficiency.  

 

Alternative 1: This alternative corresponds to the linear formulation presented in the 

previous chapter.  

 

Alternative 2: A counting table structure can be employed to organize the discrete 

values of the shell diameter, tube diameter, tube layout, number of tube passes, and tube pitch 

ratio, where only one set of binary variables, yrowsrow, is employed to represent these discrete 

values. In this context, srow is a multi-index set, i.e. srow = (sd, sDs, slay, sNpt, srp). The 

tube length and the number of baffles remain represented by the original sets of binary 

variables yLsL and yNbsNb. 

 

Alternative 3: This alternative represents the discrete values in two tables. The first 

one corresponds to the counting table, as shown in the previous alternative, where the 

corresponding set of binaries is yrow1srow1 with srow1 = (sd, sDs, slay, sNpt, srp). The second 

table contains all pairs of discrete values of tube length and number of baffles. The set of 

binaries which represent these discrete values is yrow2srow2 with srow2 = (sNb sL). 

 

Alternative 4: Another possible combination was the use of two set of binary 

variables: yrow1srow1 with srow1 = (sd, sDs, slay, sNpt, srp, sL), representing all variables but 

the number of baffles, which is represented by the original binary yNbsNb. 

 

Alternative 5: The last alternative investigated in this work is the use of a unique set of 

binary variables, yrowsrow, which corresponds to all discrete variables, srow = (sd, sDs, slay, 

sNpt, srp, sL, sNb). 

Table 11 contains an overview of the different combinations between binary variables 

and the original discrete variables. 
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Table 11 - Alternatives investigated of binary variables 
 

 

 

 

 

 

 

 

 

 

 

 

Source: The author.  

 

 

3.2 Development of The Alternative Linear Formulations 

 

The new linear formulations are built starting from the MINLP model (Equations 13-

53 through three main steps: the organization of the data table of the discrete variables, the 

model reformulation, and the conversion to a linear model. For reasons of space and because 

the procedure is very similar when aggregates of binary variables is made, we only illustrate 

Alternative 5 in detail (this alternative is associated to the highest reduction of the 

computational time consumed by the MILP solver, as it will be shown in the results). 

Alternative 1 is identical of the original proposal presented in the previous chapter and the 

equations of Alternatives 2, 3 and 4 can be found in the Appendix A. 

 

Organization of the Data Table of the Discrete Variables: The original relation 

between the discrete variables and the corresponding binaries is given by (as it is employed in 

Alternative 1):  

 

    ∑     ̂       
     
                                            (202) 

alternative binary variable {original discrete variable} 

1 
     *  +,        *  +          *   +,          *   + 

        *  +,      * +,       *  + 

2          *                +,      * +,        *  + 

3            *                +,            *    + 

4          *                  +,       *  + 

5          *                     + 
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    ∑     ̂       
     
                                            (203) 

   ∑    ̂          
      
                                            (204) 

    ∑   ̂               
       
                                             (205) 

    ∑     ̂             
       
                                            (206) 

   ∑    ̂         
      
                                  (207) 

  ∑   ̂       
     
                                                        (208) 

    ∑    ̂          
      
                                            (209) 

with the following equations needed to guarantee only one choice among many:  

∑     
     
                                                             (210) 

∑       
      
                                                              (211) 

∑         
       
                                                              (212) 

∑         
       
                                                              (213) 

∑       
      
                                                              (214) 

∑     
     
                                                            (215) 

∑        
      
                                                             (216) 

According to the aggregation strategy employed in the development of the new MILP 

formulations, the parameters that represent the discrete values can be grouped in one or more 

tables. Therefore, several discrete values of the design variables are identified by the same 

index (a multi-index related to the corresponding original indices). For example, in 

Alternative 5, the multi-index srow represents the discrete values of all design variables. The 

corresponding set of parameters which compose the table are defined from the original ones, 

as follows 

    ̂         ̂                                           (217) 

    ̂         ̂                                           (218) 
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   ̂         ̂                                            (219) 

  ̂         ̂                                    (220) 

    ̂          ̂                                            (221) 

   ̂        ̂                                 (222) 

  ̂       ̂                                           (223) 

   ̂         ̂                                            (224) 

Consequently, different discrete variables become associated to the same set of 

binaries. In Alternative 5, all discrete variables are described by the set of binaries yrowsrow, 

thus yielding: 

    ∑     ̂                                                        (225) 

    ∑     ̂                                                        (226) 

   ∑    ̂                                                         (227) 

    ∑   ̂                                                          (228) 

    ∑     ̂                                                        (229) 

   ∑    ̂                                            (230) 

  ∑   ̂                                                         (231) 

   ∑    ̂                                                         (232) 

∑                                                                                 (233) 

 

Model Reformulation: In this step, the model equations are modified through the 

substitution of the discrete variables by their binary representation. This reformulation step 

also involves a procedure for the organization of the resultant expressions containing binary 

variables, as described in Chapter 2. 
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3.3 MILP Formulation with a Single Set of Binaries 

 

This section presents the complete linear formulation of the optimal heat exchanger 

design problem based on a unique set of binary variables to represent the discrete options of 

the design variables (Alternative 5). 

Binary Variables Equality Constraints: This constraint imposes that only one design 

alternative must be chosen: 

∑                                                                                     (234) 

Heat Transfer Rate Equation: The expressions of all heat transfer coefficients and 

the heat transfer area are inserted into the heat transfer equation, thus yielding: 

 ̂ (∑
    ̂    

   ̂          ̂    
                 ̂  ∑

    ̂    

     ̂    
             

 
∑     ̂                   (

    ̂    
     ̂    

)

       ̂  
      ̂  ∑

 

   ̂     
            )  

.
   

        ̂
/ (   ∑     ̂         ̂       ̂                )     ̂   ̂            (235) 

where     ̂    is the total number of tubes and: 

   ̂      
  ̂       .
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    ̂
/
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                                              (236) 

   ̂      
  ̂     .

  ̂

  ̂
/
    

   ̂   

    ̂    
    .

(   ̂      )

   ̂         ̂       ̂    
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                                 (237) 
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   ̂    
                                                              (238) 

    ̂     
    ̂       ̂    

     ̂    
 

     ̂    
     ̂                                               (239) 

    ̂     {

    

    

      

     ̂        

     ̂                

                         (240) 
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       ̂       
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                       (241) 

 

Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers: The bounds on 

the shell-side and tube-side pressure drops are expressed by: 

∑     ̂                          ̂                            (242) 

∑          ̂
                 ∑         ̂                   

 ∑        ̂
     ̂                        ̂      (243) 

where: 

    ̂           
  ̂       ̂     

  ̂
(

(   ̂      )
     

   ̂    
     

(    ̂      ̂    )     (    ̂    )     
)               (244) 

        ̂       .
         ̂   

    
/ (

    ̂    
   ̂    

    ̂    
     ̂    

 )                                                     (245) 

        ̂       (     ) .
        ̂       ̂     

        ̂ 
/
     ̂    

      ̂    

    ̂    
        ̂    

                                              (246) 

       ̂
      .

    ̂  

     ̂ 
/

    ̂    
 

    ̂    
     ̂    

                                                                            (247) 

The bounds on the shell-side and tube-side flow velocities are: 

     ̂  
  ̂

  ̂ 
∑

(   ̂      ) 

   ̂         ̂       ̂    
                              (248) 

     ̂   
  ̂

  ̂ 
∑

(   ̂      ) 

   ̂         ̂       ̂    
                                        (249) 

     ̂   
    ̂ 

    ̂ 
∑

    ̂    

    ̂         ̂    
                                                  (250) 

     ̂   
    ̂ 

    ̂ 
∑

    ̂    

    ̂         ̂    
                                                 (251) 

The bounds on the Reynolds numbers are: 

  ̂

  ̂
∑

    ̂    (   ̂      ) 

   ̂         ̂       ̂    
                                              (252) 
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    ̂ 

    ̂
 ∑

    ̂    

    ̂         ̂    
                                  (253) 

 

Geometric Constraints: The maximum and minimum baffle spacing constraints are: 

∑
  ̂     

(   ̂      )
                   ∑    ̂                                               (254) 

∑
  ̂     

(   ̂      )
                   ∑    ̂                                             (255) 

The constraints related to the ratio between the tube length and the shell diameter are: 

∑   ̂                      ∑    ̂                                                    (256) 

∑   ̂                     ∑    ̂                                                   (257) 

 

Objective Function: The expression of the objective function in relation to the binary 

variables is given by: 

       ∑     ̂         ̂       ̂                                                     (258) 

 

Additional Constraints for the Convergence Acceleration: These extra sets of 

constraints aim to accelerate the search and are derived from the bounds on velocities, shell-

side pressure drop, and tube length/shell diameter ratio. A lower bound on the heat transfer 

area is also included based on maximum flow velocities (see Chapter 2 for further details). 

 

Flow Velocities Bounds. 

                      for      (                   )                                        (259) 

                      for      (                   )                                     (260) 

The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are given by: 

          *      
  ̂

  ̂ 
 

(   ̂      ) 

   ̂         ̂       ̂    
       ̂   ̂+                                   (261) 
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(   ̂      ) 

   ̂         ̂       ̂    
       ̂   ̂+               (262) 

          *       
    ̂ 

    ̂ 

    ̂    

    ̂         ̂    
        ̂   ̂+                                           (263) 

          *      
    ̂ 

    ̂ 

    ̂    

    ̂         ̂    
        ̂   ̂+                      (264) 

where ̂ is a small positive number. 

  

Shell-Side Pressure Upper Bound. 

                      for                                                          (265) 

where the set SDPsmaxout is given by: 

           *           ̂             ̂   ̂+                                      (266) 

 

 Baffle Spacing. 

                       for      (                     )                           (267) 

where the sets SLNbminout and SLNbmaxout are given by: 

           *       
  ̂    

   ̂      
        ̂       ̂+                                              (268) 

           *       
  ̂    

   ̂      
        ̂       ̂+                             (269) 

 

Tube Length / Shell Diameter Ratio.  

           for      (                    )                          (270) 

where the sets SLDminout and SLDmaxout are given by: 

          *         ̂          ̂       ̂+                                            (271) 

          *         ̂           ̂       ̂+                                               (272) 
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Heat Transfer Area.  

                       for                                                (273) 

where the set of heat exchangers with area lower than the minimum possible is: 

         *            ̂        ̂      ̂         ̂   ̂+                          (274) 

The lower bound on the heat transfer area can be determined by: 

    ̂   
 ̂

    ̂     ̂
                                                                 (275) 

    ̂   
 

 

      ̂      ̂      ̂      ̂   
    ̂      (     ̂ )

       ̂      ̂   
 

     ̂

                                  (276) 

     ̂      (   ̂    )                                                      (277) 

     ̂      (    ̂    )                                           (278) 

     ̂      (    ̂         ̂    )                              (279) 

 

3.4 Results 

 

The five aggregation alternatives of the discrete variables were applied to the sample 

of ten thermal tasks proposed in Chapter 2, involving different heating and cooling services. 

The complete description of each problem is available at the Tables 6, 7 and 8. The standard 

values of the discrete variables employed in the solutions are shown in Table 3, related to a 

fixed tubesheet type exchanger with tube thickness of 1.65 mm (BWG 16) and thermal 

conductivity of the tube wall equal to 50 W/m K. The minimum excess area is 11% and the 

tube count data is based on Kakaç et al. (2012). 

These problems were solved using the five alternatives of MILP formulations 

described in Table 8, implemented in the optimization software GAMS using the solver 

CPLEX. 

The comparison of the solution time demanded by each alternative (elapsed time) and 

the time consumed by the solver itself are shown in Table 12, together with the optimal value 
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of the objective function (since all alternatives are MILP problems, the solution found is 

always the same, corresponding to the global optimum). The computational times were 

measured using a computer with a processor Intel Core i7 3.40 GHz with 12.0 GB RAM 

memory. The details of each design solution are available at the Tables 13, 14, 15 and 16. 

 

Table 12 - Performance Comparison 

  
solution time (s) 

solver time (s) 

example 
heat 

transfer 

area (m
2
) 

1 2 3 4 5 

1 624 
1730 

1726 

19 

13 

13 

6 

11 

4 

12 

3 

2 319 
1574 

1571 

44 

39 

12 

6 

10 

4 

11 

3 

3 199  
212 

208 

10 

5 

11 

5 

9 

3 

11 

3 

4 872 
139 

136 

11 

5 

11 

5 

9 

3 

12 

3 

5 144 
869 

865 

19 

13 

11 

6 

10 

4 

12 

3 

6 332 
2755 

2751 

49 

44 

12 

6 

9 

4 

11 

3 

7 207 
2535 

2532 

15 

9 

12 

5 

9 

4 

12 

3 

8 914 
173 

169 

11 

6 

13 

7 

9 

3 

12 

3 

9 287 
2077 

2073 

53 

47 

31 

25 

11 

6 

12 

3 

10 327 
2342 

2338 

43 

37 

25 

19 

10 

4 

12 

3 

Average - 
1440.6 

1436.9 

27.4 

21.8 

15.1 

9.0 

9.7 

3.9 

11.7 

3.0 

Source: The author.  
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Table 13 - Heat Exchanger Results – Examples 1 to 5 
 Example 1 Example 2 Example 3 Example 4 Example 5 

Area (m
2
) 624 319 199 872 144 

Tube diameter (m) 0.019 0.019 0.019 0.019 0.019 

Tube length (m) 4.877 6.098 4.877 6.098 3.049 

Number of baffles 7 12 18 5 5 

Number of tube 

passes 
4 2 6 6 6 

Tube pitch ratio 1.25 1.25 1.33 1.33 1.33 

Shell diameter (m) 1.219 0.838 0.787 1.372 0.787 

Tube layout triangular square square triangular triangular 

Total number of tubes 2139 875 682 2391 788 

Baffle spacing (m) 0.610 0.469 0.257 1.016 0.508 

Tube pitch (m) 0.024 0.024 0.025 0.025 0.025 

Source: The author.  
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Table 14 - Heat Exchanger Results – Examples 6 to 10 
 Example 6 Example 7 Example 8 Example 9 Example 10 

Area (m
2
) 332 207 914 287 327 

Tube diameter (m) 0.019 0.019 0.025 0.019 0.019 

Tube length (m) 4.877 3.049 6.098 4.877 4.877 

Number of baffles 10 4 15 8 7 

Number of tube 

passes 
2 6 4 2 4 

Tube pitch ratio 1.25 1.25 1.25 1.25 1.33 

Shell diameter (m) 0.889 0.889 1.524 0.889 0.940 

Tube layout triangular triangular triangular square triangular 

Total number of tubes 1137 1137 1880 985 1122 

Baffle spacing (m) 0.443 0.610 0.381 0.542 0.610 

Tube pitch (m) 0.024 0.024 0.032 0.024 0.025 

Source: The author.  
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Table 15 - Thermo-fluid Dynamic Results – Examples 1 to 5 
 Example 1 Example 2 Example 3 Example 4 Example 5 

Shell-side flow velocity 

(m/s) 
0.941 0.809 1.133 1.027 1.791 

Tube-side flow velocity 

(m/s) 
2.208 1.534 1.673 1.193 1.761 

Shell-side heat transfer 

coefficient (W/m
2
K) 

1163 928 4902 5262 3039 

Tube-side heat transfer 

coefficient (W/m
2
K) 

9206 6877 2928 2234 14846 

Overall heat transfer 

coefficient (W/m
2
K) 

584 561 913 709 1498 

Shell-side pressure drop 

(kPa) 
84.88 49.46 97.41 62.36 66.41 

Tube-side pressure drop 

(kPa) 
91.87 28.48 57.93 37.54 46.48 

Source: The author.  
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Table 16 - Thermo-fluid Dynamic Results – Examples 6 to 10 
 Example 6 Example 7 Example 8 Example 9 Example 10 

Shell-side flow velocity 

(m/s) 
0.893 1.139 0.664 1.462 1.593 

Tube-side flow velocity 

(m/s) 
2.678 1.221 1.999 2.361 2.578 

Shell-side heat transfer 

coefficient (W/m
2
K) 

1845 5579 3644 2098 2388 

Tube-side heat transfer 

coefficient (W/m
2
K) 

10299 11072 7616 4162 2723 

Overall heat transfer 

coefficient (W/m
2
K) 

725 1833 980 803 746 

Shell-side pressure drop 

(kPa) 
63.89 65.91 96.73 87.61 76.91 

Tube-side pressure drop 

(kPa) 
66.65 23.19 67.08 33.89 99.39 

Source: The author.  

 

The solution times in Table 12 for the Alternative 1 differs slightly of those reported in 

Chapter 2, due to eventual computer performance fluctuations (the registered times are wall 

times from new independent runs conducted for the same problems). 

The analysis of Table 12 indicates that the proposed procedure of aggregation of the 

binary variables (Alternatives 2 to 5) allows large reductions of the computational effort in 

relation to the original formulation (Alternative 1). The average time consumed by the solver 

is associated to reductions ranging from 98.50% to 99.79%. The corresponding reductions of 

the total elapsed time are similar, ranging from 98.10% to 99.33%. 

Comparing the time consumed by the solver in the different alternatives, it is possible 

to observe that there is a reduction trend from Alternative 1 to Alternative 5, i.e. the increase 

of the binary variables aggregation decreases the solver time. The behavior of the total 
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elapsed time is similar, but the demand for processing larger data sets associated to the 

variable aggregation procedure implies in slightly higher computing times before the solver 

starts in these alternatives. Therefore, the lowest solver time is associated to the Alternative 5, 

but the lowest elapsed time corresponds to Alternative 4 (however, the difference is only 2 s). 

 

3.5 Partial Conclusions 

 

This chapter presented an investigation aiming at the reduction of the computational 

effort for the solution of the MILP problem for the design of shell and tube heat exchangers. 

Several linear formulations were proposed based on different alternatives of aggregation of 

the discrete values of the design variables in relation to the binary variables. 

In the original MILP formulation developed in Chapter 2, each discrete value 

corresponds to a binary variable. The alternatives explored here tried to aggregate the discrete 

alternatives in tables, where each group of discrete values becomes an individual binary 

variable. 

The results showed that the aggregation of the binary variables allows a considerable 

reduction of the computational effort to solve the MILP problem. Considering a sample of 10 

design problems, the best aggregation alternative demanded only 0.21% of the total solver 

time in comparison of the original MILP. 

This performance gain is important because it allows further investigations for the 

inclusion of this model into more complex problems, such as, the insertion of the detailed heat 

exchanger design into the heat exchanger network synthesis problem. 
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4 LINEAR METHOD FOR THE DESIGN OF SHELL AND TUBE HEAT 

EXCHANGERS USING THE BELL-DELAWARE METHOD  

 

This chapter presents the optimization of shell-and-tube heat exchanger design using 

the Bell-Delaware method. This model is the most accurate method available in the open 

literature, but its mathematical structure is quite complex, which demands additional 

mathematical techniques for the presentation of a linear model. The proposed formulation also 

extends the tube-side heat transfer model including correlations to encompass laminar, 

transitional and turbulent flows. 

 

4.1 Non-linear Heat Exchanger Design Model 

 

We consider single E-type shell, single phase on both sides, single segmental baffles 

uniformly distributed without sealing strips and several tube passes, fixed fouling factors and 

we ignore pressure drops in the nozzles and the tube lane partition bypass stream. Eight 

design variables characterize each candidate solution: number of passes on the tube-side 

(Npt), tube diameter (outer and inner: dte and dti), tube layout (lay), tube pitch ratio (rp), 

number of baffles (Nb), shell diameter (Ds), tube length (L), and baffle cut ratio (Bc). The 

tube pitch ratio is the ratio between the tube pitch and the outer tube diameter. The baffle cut 

ratio is the ratio between the baffle cut and the inner shell diameter. We show model 

parameters using the symbol “^” on the top. The discrete nature of the design variables is 

represented by the following generic constraints for dte.  

    ∑     ̂       
     
                                            (280) 

∑     
     
                                                             (281) 

The rest of the discrete variables are dti, Ds, lay, Npt, rp, L, Nb and Bc. The 

corresponding parameters are     ̂  ,    ̂   ,   ̂           ̂    ,    ̂   ,   ̂  ,    ̂   , 
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and    ̂    respectively. The set of constraints is accompanied by a summation of binaries 

(                                                      ) equal to 1 so that only one 

option is chosen.  

The clearances and diameters are illustrated by Figure 2: Dctl is the diameter of the 

circle delimited by the centers of the outer tubes of the bundle, and Dotl is the tube bundle 

diameter. They are related to other variables by:  

                                                                                                     (282) 

                                                                       (283) 

where Lbb is the diametral clearance between the shell and the tube bundle. Two angles 

associated to the model are also defined:     is the central angle defined by the intercession 

of the baffle cut edge with the shell and      is the central angle delimited by the intercession 

between the baffle cut edge and the circle associated to the centers of the outer tubes. They 

are related to other variables as follows:  

           ,  (   )-                                                                                                (284) 

            2
  

    
,  (    )-3                                                                                     (285) 

 

Figure  2 - Geometry for (a) diameters Dctl, Dotl, and Ds and (b) angles     and      
 

                       

(a)                                                                    (b) 
Source: The author.  
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The total number of tubes in a given shell (Ntt) and their relation to diameters and 

other variables are available in tube count tables with mathematical equations and algorithms 

for its evaluation (LUDWIG, 2001). In the proposed formulation, we use a set of equations 

from Taborek (2008d), organized as mathematical constraints of the optimization problem, as 

follows: 

    
         

       
(    )                                                           (286) 

The parameter C1 is equal to 0.866 for a 30
o
 layout or 1.00 for 45

o
 and 90

o
 layouts. 

Therefore: 

                  (           )                                                 (287) 

The correction factor    represents the omission of tubes inside the shell due to the 

presence of multiple tube passes. Based on a graph published by Taborek (2008d), this 

parameter can be represented by a set of values, which depends on the number of tube passes 

and the shell diameter (for the sake of simplification the dependence on the tube diameter was 

dismissed): 

   ∑ ∑ (   ̂)                      
      
     

       
                                (288) 

where the values of the parameter (   ̂)         are displayed in the Appendix B. 

Next, Ntcc is the number of tube rows crossed between baffle tips and Ntcw is the 

effective number of tube rows crossed in the baffle window:  

     
  

   
,  (    )-                                                                                                      (289) 

      
   

   
0(     )  

(       )

 
1                                                                                      (290) 

where Lpp is equal to 0.866ltp for 30
o
 layout (slay = 1), ltp for 90

o
 layout (slay = 2), and 

0.707ltp for 45
o
 layout (slay = 3). This relation is represented by: 

                                                                      (291) 

The total number of rows crossed along the entire heat exchanger (Nc) is given by: 
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   (         )(    )                                                                                           (292) 

where Nb is the number of baffles. For a uniform distribution of the baffles along the tube 

length, the relation between the baffle spacing (lbc) and the number of baffles is: 

                                                                                                            (293) 

The fraction of the number of tubes inside one window (Fw) is: 

   
            

  
                                                                   (294) 

Consequently, the fraction of the number of tubes in pure cross flow between baffle 

tips (Fc) is: 

                                                            (295) 

The cross-flow area is delimited between adjacent baffles and it is evaluated at the 

shell center line: 

      [    
    

      
(       )]                                                                                   (296) 

where ltp is the tube pitch, and ltpeff is the distance between tubes along the rows 

perpendicular to the flow. The value of ltpeff depends on the tube layout, it is equal to ltp for 

30
o
 and 90

o
 layouts and it is equal to 0.707ltp for 45

o
 layout: 

           (                       )                                                                    (297) 

According to the definition of the tube pitch ratio: 

                                                                            (298) 

The flow through the baffle window is associated to the free flow area in that region 

(Sw), that is calculated by the difference between the gross window flow area (Swg), i.e. 

excluding the presence of the tubes, and the area occupied by the tubes (Swt): 

                                                                                                                           (299) 

     
 

 
   .

          

  
/                                                                                                 (300) 

        .
 

 
    /                                                                                                           (301) 
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where Ntw is the number of tubes in the window, which is equivalent by the total number of 

tubes (Ntt) multiplied by the fraction of the number of tubes in one window (Fw): 

                                                                      (302) 

The flow area between the shell and the baffle (Ssb) is: 

       .
   

 
/ .  

   

  
/                                                                                                 (303) 

where Lsb is the shell-to-baffle diametral clearance. 

The area of the flow through the hole leakage area of the baffle (Stb) is: 

       (    ) 2
 

 
,(       )      -3                                            (304) 

where Ltb is the tube-to-baffle clearance. The bypass flow area between the tube bundle and 

the shell is given by: 

      ,(       )     -                                                                                             (305) 

where Lpl expresses the effect of the tube lane partition bypass width (in the proposed model, 

this gap was dismissed, then Lpl = 0). 

The model also contains factors related to the area ratios: rs is the ratio of the shell-to-

baffle leakage area to the sum of this area and the tube-to-baffle leakage area, rlm is the ratio 

of both leakage areas to the cross-flow area, Fsbp is the ratio of the bypass area between the 

tube bundle and the shell to the cross-flow area: 

   
   

       
                                                                                                                          (306) 

    
       

  
                                                                                                                       (307) 

     
  

  
                                                                                                                            (308) 

Expressions for evaluation of the clearances Lbb (for fixed tubesheet or U tubes) and 

Lsb (based on TEMA standards
 
(TEMA, 2007)) are given by Taborek

 
(2008d), respectively: 

                                                         (309) 

                                                               (310) 
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The diametral clearance between the outer tube diameter and the baffle hole is also 

established by TEMA standards, as follows: 

                                                          (311) 

                                                                                       (312) 

                                                                                        (313) 

where lbmax is the maximum unsupported span of the tubes, calculated according to TEMA 

recommended values (see Equation 372). In the optimization problem, the relations related to 

Equations 311-313 are represented by a set of values that can be calculated previously 

depending on the design alternatives: 

    ∑ ∑ ∑     ̂                           
      
     

     
    

     
                                       (314) 

 

Shell-side thermal and hydraulic equations 

There are some slightly different variations in the literature of the Bell-Delaware 

method (SERTH, 2007). We employ equations based on Taborek (2008d). 

The heat transfer coefficient is calculated using the Reynolds (Res=         ̂ ) and 

Prandtl numbers (   ̂     ̂   ̂   ̂) for the shell-side stream, associated to the mass flux 

     ̂      The shell-side heat transfer coefficient corresponds to the ideal tube bank 

coefficient (hi) multiplied by a series of factors that account the by-pass and leakage streams: 

     (            )                                                                                             (315) 

where Jc is the segmental baffle window correction factor, Jl is the correction factor for baffle 

leakage effects, Jb is the correction factor for bundle to shell bypass effects, Jr is the 

correction factor for adverse temperature gradient in laminar flow. The original Bell Delaware 

method also uses a correction factor for unequal baffle spacing at the inlet or outlet (we do not 

include it here; we use uniform distribution of the baffle spacing). In turn, the shell-side heat 

transfer coefficient for ideal tube bank is given by: 
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           ̂       ̂                                 (316) 

where ji is the Colburn’s heat transfer factor for ideal tube bank flow: 

   =   .
    

  
/
 

                                    (317) 

 The parameters a, a1, a2, and a3 are given by: 

  
  

           
                                                                                                                     (318) 

   ∑ ∑    ̂                         
       
      

       
                                  (319) 

   ∑ ∑    ̂                         
       
      

       
                                  (320) 

   ∑ ∑    ̂                         
       
      

       
                                  (321) 

   ∑ ∑    ̂                         
       
      

       
                                  (322) 

where the values of the parameters    ̂              ̂              ̂           and    ̂          

are displayed in the Appendix B. 

The binary variables yRessRes allow the regime choice through: 

                      
         

         
       +  

                 (323) 

                      
         

         
        ̂                        (324) 

∑          
       
                                               (325) 

where  ̂ is a small positive number and is required to identify when the variable is related to 

another range. 

The correction factors that contribute to calculate hs are given by:  

                                                                                                                           (326) 

       (    )  ,      (    )-    (       )                                                   (327) 

      ,         -                                            (328) 

       (           )                (                 )                      (329) 

where Cbh is equal to 1.35 for laminar flow (Res  100) and 1.25 for turbulent and transition 

flow (Res > 100), thus Cbh corresponds to: 
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        (                 )      (                 )                       (330) 

The different values of the heat transfer correction factor for adverse temperature 

gradient in laminar flow is given by: 

    .
  

  
/
    

                for Res ≤ 20                                                      (331) 

        .
      

  
/ ,     -                 for 20 < Res ≤ 100                                            (332) 

                       for Res > 100                                                   (333) 

The shell-side pressure drop (Ps) includes the pressure drop in the flow through the 

tube bundle between adjacent baffles in cross flow (Pc), the pressure drop in the baffle 

windows (Pw), and the pressure drop at the end zones (Pe): 

                                                                                                                  (334) 

 In turn, the pressure drop of the cross flow between baffle tips is given by: 

          (    )                                                                     (335) 

where Pbi is the ideal bank pressure drop delimited by one central baffle spacing, Rb is the 

by-pass correction factor, and Rl is the leakage correction factor. Finally, the ideal bank 

pressure drop between baffle tips is given by: 

               
   

 ̂ 
                             (336) 

where fs is the friction factor for ideal tube bank flow, given by:  

     .
    

  
/
 

                                  (337) 

The values of b, b1, b2, b3, and b4 are represented by the following expressions: 

  
  

           
                                        (338) 

   ∑ ∑    ̂                         
       
      

       
                                  (339) 

   ∑ ∑    ̂                         
       
      

       
                                  (340) 

   ∑ ∑    ̂                         
       
      

       
                                  (341) 
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   ∑ ∑    ̂                         
       
      

       
                                  (342) 

where the values of the parameters    ̂              ̂              ̂           and    ̂          

are displayed in the Appendix B. 

The correction factor Rb is given by, considering the hypothesis that there is no 

sealing strips, is given by: 

       ,         -                                  (343) 

where Cbp is equal to 4.5 for laminar flow and is equal to 3.7 for transition and turbulent flow 

and, for the optimization problem, is expressed by: 

       (                  )       (                  )                        (344) 

The correction factor Rl is given by: 

       ,     (    )(   ) -                                           (345) 

where: 

        (    )                                                                                      (346) 

 The pressure drop in the baffle windows depends on the mass flux in relation to the 

geometric mean of the cross-flow area and the window area (      ̂ √    ). Therefore, 

the pressure drop expression (Res < 100) for laminar flow is equal to: 

             2  
     ̂

 ̂ 
0
    

       
 

   

   
1  0 

   

 ̂ 
13                                    (347) 

where the hydraulic diameter (Dw) is equal to: 

   
    

              .
   

   
/
                                   (348) 

The corresponding expression for turbulent flow (Res≥ 100) is: 

              0(         )
   

  ̂ 
1                                                            (349) 

 Thus, the pressure drop in the baffle windows for the optimization problem is: 

            (                 )     
    (                 )       (350) 

The pressure drop at both end zones is equal to: 
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        .  
    

    
/                                      (351) 

where Rs is the end zone correction factor: 

    .
   

   
/
   

 .
   

   
/
   

                                      (352) 

where n = 1 for laminar (Res < 100) and n = 0.2 for turbulent (Res ≥ 100). However, 

according to the assumption that all baffle spacings are equal, this expression becomes equal 

to 2. 

 

Tube-side thermal and hydraulic equations 

  The Reynolds (             ̂     ̂) and Prandtl numbers (   ̂      ̂   ̂    ̂) of the 

tube-side flow compose the heat transfer correlations for the determination of the Nusselt 

number (               ̂ ), where   ̂  is the density,    ̂  is the heat capacity,    ̂  is the 

viscosity, and   ̂ is the thermal conductivity. The flow velocity is given by: 

    
    ̂

        ̂    
                                         (353) 

where   ̂ is the mass flow rate and Ntp is the number of tubes per pass (calculated by the 

ratio between the total number of tubes, Ntt, and the number of passes in the tubes, Npt). 

The adopted modelling for the evaluation of the convective heat transfer coefficient in 

the tube-side contemplates laminar, transitional, and turbulent flow according to the proposal 

of Incropera and De Witt
 
(2006). The evaluation of the Nusselt number for the turbulent and 

transition regimes employs the Gnielinski correlation (2300 < Ret < 510
6
): 

       
.
  
 ⁄ /(        )   ̂

      .
  
 ⁄ /
   
(   ̂     )

                            (354) 

where ft is tube-side Darcy friction factor. For the laminar flow (Ret  2300), the effects 

related to the entry region may be relevant. Therefore for     ̂    , the Hausen correlation is 

employed: 
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      .    ⁄ /        ̂

      0 .    ⁄ /        ̂ 1
                                                       (355) 

For        ̂   , for the calculation of the number of Nusselt we use the Sieder and 

Tate correlation: 

           (
      ̂
 
   ⁄
)
   

                                           (356) 

However, when the Nusselt falls lower than 3.66 (theoretical result for fully developed 

flow), then this limit value is used (            )  

The head loss in the tube-side flow is (SAUNDERS, 1988): 

       ̂   
     

   

   

 
 
  ̂          

 
                            (357) 

where the parameter K, associated with the head loss in the heads, is equal to 0.9 for one tube 

pass and 1.6 for multiple passes. Considering all flow regimes, the friction factor is given by 

(SAUNDERS, 1988):
 

      
  

   
                                                                                             (358) 

                                                                                                 (359) 

             
     

       
                                                                                (360) 

  The evaluation of the Nusselt number and the friction factor associated to the selection 

of the proper regime can be expressed using binary variables: 

           (           )          
   (           )      ̂        

      (           )(       ̂
 )         

   (           )(361) 

                
     (           )    

                                                    (362) 

where the parameter      ̂  is equal to 1 if     ̂   , otherwise it is zero. The ranges of the 

Reynolds number associated to the binary variables are: < 1311 (sRet = 1), 1311 to 2300 (sRet 

= 2), 2300 to 3380 (sRet = 3), and > 3380 (sRet = 4). Thus,  

                                          ̂                                          (363) 
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                                     ̂                                             (364) 

∑          
       
                                                 (365) 

                    ̂                                                                                          (366) 

                 ̂                                                                                                       (367) 

where  ̂ is a small positive number. The parameter     ̂  510
6
 is an upper bond on the 

Reynolds number, consistent with the validity range of the Gnielinski correlation. The upper 

bound parameter     ̂ is assumed equal to 410
4
, calculated accordingly the value of     ̂. 

 

Heat transfer rate equation and overall heat transfer coefficient 

For the area equation, we use a design margin (“excess area”,     ̂): 

   .  
    ̂

   
/

 ̂

    ̂  
                             (368) 

The overall heat transfer coefficient is: 

   
 

   

      
  
   ̂    

   
  
      (

   
   

)

       ̂      ̂   
 

  

                            (369) 

The area of the heat exchanger is the sum of the area of each individual tube: 

                                              (370) 

where      ̂ is the thermal conductivity of the tube wall, and    ̂ and    ̂ are the tube-side 

and shell-side fouling factors. The LMTD correction factor is 1 for countercurrent flow and, 

for an even number of tube passes, depends on the end temperatures (   ̂) (see Equation 394 

for the corresponding expression): 

             ̂∑         
       
                                            (371) 

 

Bounds on pressure drops, flow velocities and geometric constraints 

Lower and upper bounds constraints on pressure drops and flow velocities are added 

and because design recommendations impose that the baffle spacing must be between 20% 
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and 100% of the shell diameter
 
(TABOREK, 2008d) we use

               and     

          

We use TEMA standards upper bound on the maximum unsupported span of the tubes 

(lbmax), which prevents sagging and vibration, is dependent on the nature of the material and 

the outer tube diameter
 
(TEMA, 2007): 

            ̂             ̂                                         (372) 

where, for tube diameters higher than 19 mm (3/4 in),         ̂       and        ̂   

       m for steel and steel alloys, and        ̂       and        ̂          m, for 

aluminum and copper alloys. 

The maximum unsupported span is related to the window region, then the constraint 

involving the baffle spacing is               Finally, the ratio between  exchanger length 

and shell diameter must be between 3 and 5
 
(        and         ) (TABOREK, 2008d).

 
 

 

Objective function 

Two alternative objective functions are considered: the first is the minimization of the 

area associated to given values of maximum pressure drops, and the second is the 

minimization of the total annualized cost (capital and operating costs in a yearly basis). 

According to Mizutani et al.
 
(2003), this alternative of objective function can be represented 

by: 

         ̂ 
     ̂                                    (373) 

where      ̂ and      ̂are parameters for the evaluation of the annualized capital cost of the 

heat exchanger and Pcost is the pumping cost: 

           ̂ .
      ̂

  ̂
 
      ̂

  ̂
/                                    (374) 
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4.2 Development of the MILP Formulation 

 

 

The same technique employed in Chapter 3 was use to obtain a MILP formulation. 

Instead of representing each discrete alternative of each variable by an individual index, a 

single index, srow, is associated to each set of discrete values which compose a candidate 

solution.  

 

4.3 MILP Formulation 

This section presents the complete linear formulation of the optimal heat exchanger 

design problem resultant of the application of the techniques described before. 

Heat transfer rate equations   

 ̂ [∑
    ̂    

  ̂
 *

 

     ̂
                  

     ̂

     ̂     
                  

       
      

       ̂

     ̂     
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     ̂     
                  

       ̂

     ̂     
                  

 

     ̂     
              

 

     ̂     
             +   

 ∑
   ̂      ̂    

    ̂    
        

       
        ∑

    ̂      (
    ̂    
    ̂    

)

       ̂
        

       
           ̂  

∑ ∑
 

   ̂         
                 

       
      

       
      ]  

∑      ̂        ̂      ̂    
       
      .

   

        ̂
/    ̂  ( ̂    )        ) (375) 

where     ̂     is the total number of tubes that can be calculated prior to the optimization 

using Equations 286-288. The expressions related to the other parameters are: 

     ̂
        ̂          ̂         ̂                                                                     (376) 
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     ̂     
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       ̂   = 0.866   if lay = 30º                                                                                            (380) 

 

        ̂   = 1          if lay = 45º or 90º                                                                                  (381) 
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             ̂        if lay = 30º                                                                                        (386) 
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             ̂         if lay = 45º                                                                                       (388) 
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  if sNpt >1                              (394) 
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             ̂                  ̂             ̂  .  
         ̂  

         ̂
/                                     (473) 

 

 

Binary variables 

This constraint imposes that only one design alternative must be chosen: 

∑                                                                                            (474) 

The representation of the Reynolds number ranges are:  

∑                                                                                                                             (475) 

∑                                                                                                                             (476) 

 Similarly, for the Nusselt number in the tube-side:  

                                                                                                                          (477) 

 

Constraints relating continuous and binary variables 

The linear constraints presented below depict the relations employed to eliminate the 

nonlinearities associated to the product of a continuous and a binary variable.  

Product of the variables         ,      , and      : 

                                                                                                              (478) 

                                                                                                                (479) 

                                                                                                                 (480) 

                                                                                       (481) 

Product of variables         ,     , and      : 

                                                                                                              (482) 
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                                                                                       (485) 
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Product of variables         ,      , and      : 
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Product of variables         ,      , and      : 
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                                                                                       (493) 

Product of variables         ,  and      : 

                                                                                                                   (494) 

                                                                                                                      (495) 

                                                                                                     (496) 

Product of variables         ,  and      : 

                                                                                                                   (497) 

                                                                                                                      (498) 

                                                                                                     (499) 

Product of variables         ,  and         : 

                                                                                                                   (500) 

                                                                                                                    (501) 

                                                                                                   (502) 

Product of variables         , and         : 

                                                                                                                  (503) 
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                                                                                                                    (504) 

                                                                                                   (505) 

 

Constraints associated to the Reynolds and Nusselt numbers ranges 

The formulation developed involving different flow regimes in the tube-side and in the 

shell-side yields the constraints represented as follows: 

∑     ̂            
       
                             

         
       

           
         (506) 

∑     ̂            
       
                            

         
       

          ̂     (507) 

∑     ̂            
       
                                              ̂       

(508) 

∑     ̂            
       
                                         ̂             (509) 

∑      ̂
            

       
                        ̂                                              (510) 

∑      ̂
            

       
                    ̂                                                           (511) 

 

Bounds on pressure drops and flow velocities 

The set of constraints presented as follows represents bounds on pressure drops and 

velocities. Instead of representing the velocity bounds in a conventional way, we have 

rewritten it based on an analysis of the search space, where it is possible to delimit the design 

alternatives that violate these constraints. Souza et al.
 
(2018) have concluded that this form of 

representation allows to reach a better computational performance (i.e. differently from the 

previous chapters, the original constraints are not included). 

Shell-side pressure upper bound: 

∑ ∑              ̂                  
       
      

       
               ̂                           (512) 
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where              ̂                ̂                ̂                ̂ .                                                                                 

Tube-side pressure upper bound: 

∑ ∑     ̂                           
       
      

       
               ̂                                   (513) 

 

where     ̂                 ̂
                 ̂

         . 

Flow velocities bounds: 

           for      (                   )                                                    (514) 

           for      (                   )                                               (515) 

where the sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are given by: 

          *         ̂          ̂   ̂+                                                           (516) 

          *          ̂          ̂   ̂+                                                           (517) 

          *          ̂          ̂   ̂+                                                           (518) 

          *         ̂          ̂   ̂+                                                (519) 

where  ̂ is a small positive number. 

 

Geometric constraints 

The same approach described before is applied to the geometric constraints, as 

follows: 

Baffle spacing: 

           for      (                     )                                   (520) 

where the sets SLNbminout and SLNbmaxout are given by: 

           *           ̂           ̂       ̂+                                               (521) 

           *           ̂           ̂       ̂+                                               (522) 

The constraint related to lbcmax is: 
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∑ (    ̂    )        
       
          ∑ (      ̂       ̂           ̂  )        

       
       

(523) 

Tube length / shell diameter ratio: 

           for      (                   )                                                  (524) 

where the sets SLDminout and SLDmaxout are given by: 

          *         ̂         ̂       ̂+                                                           (525) 

          *         ̂          ̂       ̂+                                                         (526) 

 

Objective function 

The heat transfer area when reformulated into the linear model is given by: 

     ∑     ̂        ̂      ̂                                          (527) 

 

The corresponding linear form of the total annualized cost is given by: 

        ̂  ∑ (     ̂        ̂      ̂    )
     ̂̂

              

     ̂∑
    ̂           ̂

  ̂
                           

     ̂∑
    ̂            ̂

  ̂
                               (528) 

 

4.4 Model Validation 

 

The MILP model presented above was implemented in the GAMS software using the 

solver CPLEX. The example described and solved by Taborek (2008d)
 
(section B of chapter 

3.3.9) was used to validate this MILP model by fixing the geometric choices and then 

comparing different results.  We fix the carrying error effect of rounding in the example by 
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using a larger number of significant figures. Results differ lower than 0.012% (corresponding 

to Sb), as shown in Table 17. 

 

Table 17 - Validation results 

Variable Handbook 
Our 

revision 

Our Numerical 

Model 

Deviation 

(%) 

hi (W/m
2
 
o
C) 2133.50 2130.6418 2130.6418 0 

hs (W/m
2
 
o
C) 1252.00 1249.3178 1249.3178 0 

Pc (kPa) 3.90 3.9173 3.9173 0.0011 

Pw (kPa) 6.40 6.3726 6.3727 0.0007 

Pe (kPa) 3.40 3.5014 3.5014 0.0011 

Ps (kPa) 13.70 13.7915 13.7915 0.0009 

Source: The author.  

 

4.5 Comparison with Results from the Literature 

Example 1, originally proposed by Shenoy (1995), is based on the minimization of 

heat transfer area, and Example 2, originally presented by Mizutani et al. (2003), involves the 

minimization of the total annualized cost. Both examples were solved by Ravagnani and 

Caballero
 
(2007) and Onishi et al.

 
(2013) using an MINLP formulation. The comparison of 

our results and Ravagnani and Caballero
 
(2007) and Onishi et al.

 
(2013) must consider some 

differences: 

- The tube-side correlations in our model are different from the correlations used by 

Ravagnani and Caballero
 
(2007) and Onishi et al.

 
(2013). Our model for the evaluation 

of the tube-side convective heat transfer coefficient encompasses all flow regimes. In 

particular, in the turbulent regime, we use the Gnielinski correlation, but Ravagnani and 

Caballero (2007)  as well as Onishi et al. (2013), limited their analysis to turbulent flow 

and employed the Sieder and Tate correlation. According to Incropera and De Witt 

(2006), the Sieder and Tate correlation may yield errors up to 25%, while the errors of 

the Gnielinski correlation are lower than 10%; 

 -  There are some differences between the equations used by Ravagnani and Caballero
 

(2007) and Onishi et al. (2013) and the equations used by Taborek
 
(2008d); 
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 -   Ravagnani and Caballero
 
(2007) and Onishi et al.

 
(2013) used baffle spacing as a 

variable, while we use the number of baffles as an integer variable. As a result, they 

obtain a spacing that leads to a non-integer number of baffles, which they round up to 

the nearest integer afterwards. They also include tube thickness as an optimization 

variable, but in our approach the tube thickness is defined by the user prior to the 

optimization; 

 -   Ravagnani and Caballero
 
(2007) and Onishi et al.

 
(2013) formulations are nonconvex 

MINLP problems and they use a local solver that does not guarantee global optimality. 

Instead, our linear formulation guarantees the identification of the global optimum. 

 

We compare the results from the original references of the corresponding examples 

(MIZUTANI et al., 2003; SHENOY, 1995) with the solutions found by Ravagnani and 

Caballero
 
(2007) and Onishi et al.

 
(2013) and two sets of results generated with our model. 

The first set of our results corresponds to the rating of the previous solutions using our model 

and the second set contains the optimization results obtained using our MILP formulation. 

Table 18 describes the search space. All the results were generated considering tube-side 

velocities between 1 m/s and 3 m/s and shell-side velocities between 0.5 m/s and 2 m/s. All 

elapsed times reported here associated to the optimization runs were measured using a 

computer with a processor Intel Core i7 3.41 GHz with 16.6 GB RAM memory. 
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Table 18 - Standard values of the discrete design variables 
Variable Values 

Outer tube diameter,     ̂
  

 (m) 0.01590, 0.01905, 0.02540 

Tube length,   ̂
  

 (m) 2.438, 3.658,4.877,6.096,6.706 

Number of baffles,    ̂
   

 7, 8, … , 25 

Number of tube passes,     ̂
    

 1, 2, 4, 6, 8 

Tube pitch ratio,    ̂
   

 1.25, 1.33, 1.50 

Shell diameter,    ̂
   

 (m) 

0.2050, 0.3048, 0.3366, 0.3874, 0.4382, 0.4890, 

0.5398, 0.5906, 

0.6350, 0.6858, 0.7366, 0.7874, 0.8382, 0.8890, 

0.9398, 0.9906, 

1.0668, 1.1430, 1.2192, 1.3716, 1.5240 

Tube layout,   ̂  
    

 1 = triangular 30
o
, 2 = square 90º 

Baffle cut ratio,    ̂
   

 0.20, 0.25, 0.30 

Source: The author.  

 

Example 1 

 This problem was first presented by Shenoy
 
(1995). The data of the problem streams 

are presented in Table 19. The thermal conductivity of the tube material is 50 W/mºC, both 

fouling resistances are 0.00015 m
2
ºC/W, and the available pressure drops are 42 kPa and 7 

kPa for the cold and hot streams, respectively. The minimum excess area is 0%. The 

allocation of the streams and the determination of the tube thickness are not variables in our 

optimization procedure, so we employed the values reported in the Ravagnani and Caballero 

solution (2007): the cold stream flows in the tube-side and the tube thickness is 1.225 mm. 

The rating of the results of Shenoy
 
(1995) and Caballero and Ravagnani

 
(2007) employed the 

reported values of shell-bundle clearances: 33 mm and 44 mm, respectively, but in the 

optimization using our model, this dimension was modelled according to Equation 309. The 

other clearances were determined according to Equation 310 and Equation 314. 
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Table 19 - Example 1 - Streams data 

Stream 
 ̂ 

(kg/s) 
Inlet  ̂ 

(C) 

Outlet  ̂ 

(C) 

 ̂  
(kg/m

3
) 

 ̂  

(mPas) 
  ̂  

(J/kgºC) 
 ̂ 

(W/mºC) 

Hot 14.90 98.0 65.0 777 0.23 2684 0.11 

Cold 31.58 15.0 25.0 998 1.00 4180 0.60 

Source: The author.  

 

 The comparison of the results is displayed in Table 20 and 21. The most relevant 

deviations in the rating of the literature solutions are for the pressure drops in the shell-side in 

relation to Ravagnani and Caballero (2007)
 
and the pressure drop in the tube-side in relation 

to Shenoy (1995). The optimal solution of our model, using a fixed baffle cut ratio equal to 

the previous references (0.25), has an area 16.8% lower than Shenoy
 
(1995) and 38.6.1% 

lower than Ravagnani and Caballero (2007). When including the baffle cut ratio in the 

optimization, the same value fixed in the previous reference was obtained. The elapsed time 

of the optimization using our model was 24 minutes. However, when the same problem was 

solved using a fixed baffle cut ratio the computational time was reduced to 4.1 minutes. 

The same problem was also solved by Onishi et al. (2013), using available pressure 

drops of 45 kPa for the cold stream and 10 kPa for the hot stream. Table 21 contains the 

solution reported by Onishi et al. (2013), the rating of this solution using our model with a 

shell bundle clearance of 31 mm, and the optimal solution found by our MILP formulation. 

Our solution obtained an optimal baffle cut ratio of 0.20 and rendered a reduction of the 

objective function equal to 19.91% with respect to that of Onishi et al. (2013), as shown in 

Table 21. The computational time to solve this problem was 22 minutes. If the baffle cut is 

fixed to 0.25, as it was adopted in Onishi et al. (2013), the reduction of the objective function 

is the same, but the computational time is reduced to 3.9 minutes. 
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Table 20 - Example 1 – Results comparison with Shenoy (1995) and Ravagnani and Caballero 

(2007) 

Variable 

Shenoy’s
 

(1995) 

solution 

Shenoy 

(1995) 

Rating 

using our  

model 

Ravagnani 

and 

Caballero’

s
 
(2007) 

solution 

Ravagnani  

and 

Caballero
 

(2007) 

Rating 

using our  

model 

Our MILP 

model 

Original 

available 

pressure 

drops 

Area (m
2
) 28.40 28.40 38.52 38.52 23.64 

    (m) 0.01910 0.01910 0.01905 0.01905 0.01905 

    (m) 0.01540 0.01540 0.01660 0.01660 0.01660 

   (m) 0.549 0.549 0.533 0.533 0.387 

    Square Square Square Square Square 

    6 6 2 2 2 

   1.33 1.33 1.33 1.33 1.25 

  (m) 1.286 1.286 2.438 2.438 2.438 

   6 6 19 19 7 

Ntt 368 368 264 264 162 

vt (m/s) - 2.770 1.108 1.108 1.805 

vs (m/s) - 0.668 1.162 0.980 0.737 

ht 

(W/m
2
ºC) 

8649.6 10145.8 4087.1 5484.6 8506.8 

hs 

(W/m
2
ºC) 

1364.5 1321.4 1308.4 1418.4 1700.3 

Pt (kPa) 42.000 86.637 7.706 7.551 18.540 

Ps (kPa) 3.600 3.195 7.000 10.434 6.491 

Source: The author.  
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Table 21 - Example 1 – Results comparison with Onish et al. (2013) 

Variable 
Onishi et al.

 
(2013) 

solution 

Onishi et al.
 
(2013) 

Rating using our  

model 

Our MILP model 

Higher available 

pressure drops 

Area (m
2
) 28.89 28.90 23.14 

    (m) 0.01905 0.01905 0.01590 

    (m) 0.01660 0.01660 0.01345 

   (m) 0.387 0.387 0.387 

    Square Square Triangular 

    2 2 2 

   1.33 1.33 1.50 

  (m) 3.658 3.658 2.438 

   9 9 9 

Ntt 132 132 190 

vt (m/s) 2.215 2.215 2.344 

vs (m/s) 0.517 0.457 0.589 

ht (W/m
2
ºC) 7283.9 10216.3 10989.2 

hs (W/m
2
ºC) 2096.0 1249.0 1762.8 

Pt (kPa) 43.040 36.738 36.249 

Ps (kPa) 10.000 4.233 8.856 

             Source: The author.  

 

 We conclude that the differences in results are for the most part due to the fact that all 

previous works find local solutions whereas our is the global one. The differences do not stem 

from the usage of different correlations. 

 

Example 2 

 This problem was first presented by Mizutani et al.
 
(2003). The data of the problem 

streams are presented in Table 22. The thermal conductivity of the tube material is 50 W/mºC, 

the fouling resistance of both streams is 0.00017 m
2
ºC/W, and the maximum pressure drops 

are 68.95 kPa for both fluids. The minimum excess area is 0%. The economic parameters of 

the objective function are      ̂ = 123,      ̂ = 0.59, and      ̂ = 1.31. The allocation of the 

streams assumes that the cold stream flows in the tube-side and the tube thickness is equal to 

1.675 mm. The rating of the results of Mizutani et al.,
18

 Caballero and Ravagnani
19

 and 
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Onishi et al. (2013) employed the reported values of shell-bundle clearances: 15 mm, 42 mm 

and 41 mm, respectively, but in the optimization this dimension was calculated accordingly. 

 

Table 22 - Example 2 - Streams data 

Stream 
 ̂ 

(kg/s) 
Inlet  ̂ 

(C) 

Outlet  ̂ 

(C) 

 ̂ 
(kg/m

3
) 

 ̂  

(mPas) 

  ̂  
(J/kgºC) 

 ̂ 
(W/mºC) 

Hot 27.78 95.0 40.0 750 0.34 2840 0.19 

Cold 68.88 25.0 40.0 995 0.80 4200 0.59 
Source: The author.  

 

 Table 23 and 24 presents the results. The costs found by Mizutani et al. (2003), 

Ravagnani and Caballero
 
(2007) and Onishi et al.

 
(2013) are similar, but the tradeoff between 

capital and operating costs is considerably different in each case: the capital cost found by 

Mizutani et al.
 
(2003) corresponds to 53.8% of the total cost, while according to Ravagnani 

and Caballero
 
(2007) it is 70.5%. The total annualized cost of Onishi et al. (2013) is slightly 

smaller than Mizutani et al.
 
(2003) and Ravagnani and Caballero

 
(2007).  The rating of the 

solution found by Ravagnani and Caballero (2007) using our model yielded similar results. 

The differences in relation to the pressure drops and heat transfer coefficients are not higher 

than 10%. The solution of Onishi et al. (2013) and Mizutani et al.
 
(2003) showed maximum 

deviations of 20%, except the shell-side pressure drop. The optimal solutions of Mizutani et 

al. (2003),
 
Ravagnani and Caballero (2007), and Onishi et al.

 
(2013) are based on a fixed 

baffle cut ratio of 0.25 and the inclusion of this parameter as a variable in our model yielded 

an optimal baffle cut ratio of 0.30. The elapsed time of the optimization was 48 minutes. 

 Our MILP solution presents a total annualized cost that is considerably lower when 

compared to the results of Mizutani et al. (2003), Ravagnani and Caballero (2007), and Onishi 

et al. (2013). When comparing our solution to the other cited works, we find that the main 

reason for this large cost reduction is the decrease of the total number of tube passes to 1, 

which allowed a reduction of the pumping costs, through the decrease of the total length of 
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the hydraulic path, and an increase of the mean temperature difference (the correction factor 

for the multipass configuration is 0.812 and is increased to 1 in the countercurrent 

configuration). 

As in Example 1, we believe the large differences in results are mostly due to the fact 

that the solutions obtained in previous work are local solutions. Since we checked the issue, 

we think that they are not attributable to the differences in correlations and/or modeling. 

 

Table 23 - Example 2 – Results comparison with Mizutani et al. (2003) and Ravagnani and 

Caballero (2007) 

Variable 

Mizutani 

et al.’s 

(2003) 

solution 

Mizutani 

et al. 

(2003) 

Rating 

using our  

model 

Ravagnani 

and 

Caballero’

s
 
(2007) 

solution 

Ravagnani 

and 

Caballero
 

(2007) 

Rating 

using our  

model 

Total cost ($/y) 5250.00 5279.56 5191.47 5137.78 

Area cost ($/y) 2826.00 2825.45 3663.23 3461.77 

Pumping 

cost($/y) 
2424.00 2454.11 1528.24 1676.02 

Area (m
2
) 202.00 202.81 286.15 286.15 

    (m) 0.01590 0.01590 0.01905 0.01905 

    (m) 0.01260 0.01260 0.01570 0.01570 

   (m) 0.687 0.687 0.838 0.838 

    Square Square Square Square 

    2 2 2 2 

   1.25 1.25 1.33 1.33 

  (m) 4.877 4.877 6.706 6.706 

   8 8 18 18 

Ntt 832 832 713 713 

vt (m/s) - 1.334 1.003 1.003 

vs (m/s) - 0.467 0.500 0.447 

ht (W/m
2
ºC) 6480.0 7400.0 4186.2 5599.4 

hs (W/m
2
ºC) 1829.0 1951.7 1516.5 1558.8 

Pt (kPa) 22.676 23.553 13.404 14.701 

Ps (kPa) 7.494 6.558 6.445 7.065 

Source: The author.  
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Table 24 - Example 2 – Results comparison with Onishi et al. (2013) 

Variable Onishi et al.
 
(2013) 

solution 

Onishi et al. (2013)
 

Rating using our  

model 

 

Our MILP 

Model 

Total cost ($/y) 5134.21 4853.40 3754.01 

Area cost ($/y) 3175.61 3175.61 2510.14 

Pumping 

cost($/y) 
1958.59 1677.79 1243.86 

Area (m
2
) 247.22 247.22 165.95 

    (m) 0.01905 0.01905 0.01590 

    (m) 0.01660 0.01660 0.01255 

   (m) 0.787 0.787 0.591 

    Square Square Square 

    2 2 1 

   1.33 1.33 1.33 

  (m) 6.706 6.706 6.096 

   17 17 12 

Ntt 616 616 545 

vt (m/s) 1.039 1.039 1.027 

vs (m/s) 0.500 0.449 0.512 

ht (W/m
2
ºC) 4356.7 5743.4 5846.7 

hs (W/m
2
ºC) 1880.2 1591.6 1972.0 

Pt (kPa) 15.921 14.729 8.650 

Ps (kPa) 10.609 7.049 9.467 

Source: The author.  

 

 

4.6 Partial Conclusions 

 

 

By recognizing that the geometric variables have discrete representations, we 

rigorously reformulated the entire MINLP problem of the design optimization of shell-and-

tube heat exchangers using the Bell-Delaware method in a form of a MILP problem. Our 

reformulation is not an approximation or a linearization by truncating Taylor series. Rather, it 

is rigorous, in the sense that the feasible solutions of the MINLP model are also feasible in the 

MILP model and vice-versa. We validated our implemented approach through its comparison 

with a literature result (TABOREK, 2008d). The proposed approach can identify solutions 

that are significantly better, the most relevant reason for the significant improvement is the 

local nature of the optimum found by other approaches.   
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CONCLUSIONS 

 

A MILP model for the design of shell and tube heat exchangers was presented. The 

comparison of the MILP model with an MINLP formulation through the solution of the same 

sample of heat exchanger design problems shows drawbacks in the MINLP approach in 

relation to non-convergence and local optima. Due to its linear nature, the MILP model 

proposed here is immune to these obstacles, always reaching the global optimum. 

It is explored alternative techniques to reduce the computational effort. Several linear 

formulations were proposed based on different alternatives of aggregation of the discrete 

values of the design variables in relation to the binary variables. The results showed that the 

aggregation of the binary variables allows a considerable reduction of the computational 

effort to solve the MILP problem. Considering a sample of 10 design problems, the best 

aggregation alternative demanded only 0.21% of the total solver time in comparison of the 

original MILP. 

This performance gain is important because it allows further investigations for the 

inclusion of this model into more complex problems, such as, the insertion of the detailed heat 

exchanger design into the heat exchanger network synthesis problem. 

 The entire MINLP problem of the design optimization of shell-and-tube heat 

exchangers using the Bell-Delaware method was rigorously reformulated in a form of a MILP 

problem. Our reformulation is not an approximation or a linearization by truncating Taylor 

series. Rather, it is rigorous, in the sense that the feasible solutions of the MINLP model are 

also feasible in the MILP model and vice-versa. The proposed approach can identify solutions 

that are significantly better, the most relevant reason for the significant improvement is the 

local nature of the optimum found by other approaches and the global nature of the optimum 

found. 
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SUGGESTIONS FOR FUTURE WORKS 

 

 Apply this linear model developed for series of heat exchanger and the synthesis of 

heat exchanger networks; 

 Investigation of different objective function alternatives to solve the problem of 

optimum design of heat exchangers; 

 Insertion of the uncertainty issue regarding the information about the project in the 

optimization. 
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APPENDIX A – Alternative MILP formulations with different aggregations of the 

binary variables. 

 

We describe here the alternative MILP formulations with different aggregations of the 

binary variables. 

 

Alternative 1. This alternative is described in detail in Chapter 2.  

 

Alternative 2.  

 

Binary Variables Equality Constraints. This constraint imposes tree binary 

variables: 
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Heat Transfer Rate Equation. The expressions of all heat transfer coefficients and 

the heat transfer area are inserted into the heat transfer equation, thus yielding: 
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where     ̂    is the total number of tubes and: 
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The constraint in Equation (A4) has continuous variable:                and 

          . The relations of these variables and the corresponding binary variable are: 

                                                                                                                       (A11) 

                                                                                                                            (A12)                                                                                                             
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                                                                                                               (A17) 

  

Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers.  The 

bounds on the shell-side and tube-side pressure drops are expressed by: 
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The bounds on the shell-side and tube-side flow velocities are: 
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The bounds on the Reynolds numbers are: 
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Geometric Constraints. The maximum and minimum baffle spacing constraints 

are: 
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The constraints in Equations (A30) and (A31) has continuous variable:           . 

The relations of this variable and the corresponding binary variable are: 
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The constraints associating the ratio between the tube length and the shell diameter 

are: 
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Objective Function. The expression of the objective function in relation to the 

binary variables is given by: 
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Additional Constraints for the Reduction of the Search Space. These extra 

sets of constraints aim to accelerate the search and are derived from the bounds on velocities, 

shell-side pressure drop, and tube length/shell diameter ratio. A lower bound on the heat 

transfer area is also included based on maximum flow velocities (see Gonçalves et al. (2016) 

for further details). 

Flow velocities Bounds. 
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The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are given by: 
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where   is a small positive number. 

  

Shell-side Pressure Upper Bound. 

                            for (           )                                                   (A44) 

where the set SDPsmaxout is given by: 
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 Baffle Spacing. 
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where the sets SLNbminout and SLNbmaxout are given by: 
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Tube length / shell diameter ratio.  
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where the sets SLDminout and SLDmaxout are given by: 
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Heat Transfer Area.  

                        for (       )                                             (A52) 

where the set of heat exchangers with area lower than the minimum possible is: 
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The lower bound on the heat transfer area can be determined by: 
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Alternative 3.  

 

Binary Variables Equality Constraints. This constraint imposes two binary 

variables: 
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Heat Transfer Rate Equation. The expressions of all heat transfer coefficients and 

the heat transfer area are inserted into the heat transfer equation, thus yielding: 
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where     ̂     is the total number of tubes and: 
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The constraint in Equation (A61) has continuous variable:               . The 

relations of this variable and the corresponding binary variable are: 
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                                                                                                 (A70) 
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Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers.  The 

bounds on the shell-side and tube-side pressure drops are expressed by: 
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The bounds on the shell-side and tube-side flow velocities are: 
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The bounds on the Reynolds numbers are: 
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Geometric Constraints. The maximum and minimum baffle spacing constraints 

are: 
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The constraints associating the ratio between the tube length and the shell diameter 

are: 
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Objective Function. The expression of the objective function in relation to the 

binary variables is given by: 
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Additional Constraints for the Reduction of the Search Space. These extra 

sets of constraints aim to accelerate the search and are derived from the bounds on velocities, 

shell-side pressure drop, and tube length/shell diameter ratio. A lower bound on the heat 

transfer area is also included based on maximum flow velocities (see Gonçalves et al. (2016) 

for further details). 

 

Flow velocities Bounds. 
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The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are given by: 
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where  ̂  is a small positive number. 

  

Shell-side Pressure Upper Bound. 
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where the set SDPsmaxout is given by: 
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 Baffle Spacing. 
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where the sets SLNbminout and SLNbmaxout are given by: 
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Tube length / shell diameter ratio.  
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where the sets SLDminout and SLDmaxout are given by: 
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Heat Transfer Area.  

                             for (           )                                 (A102) 

where the set of heat exchangers with area lower than the minimum possible is: 
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The lower bound on the heat transfer area can be determined by: 
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Alternative 4.  

 

Binary Variables Equality Constraints. This constraint imposes two binary 

variables: 

∑         
       
                                                                                                             (A109) 

 

∑        
      
                                                                                                                (A110) 

  

  

Heat Transfer Rate Equation. The expressions of all heat transfer coefficients and 

the heat transfer area are inserted into the heat transfer equation, thus yielding: 
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where     ̂    is the total number of tubes and: 
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The constraint in Equation (A111) has continuous variable:            . The relations 

of this variable and the corresponding binary variable are: 
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Bounds on Pressure Drops, Flow Velocities and Reynolds Numbers.  The 

bounds on the shell-side and tube-side pressure drops are expressed by: 
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The bounds on the shell-side and tube-side flow velocities are: 
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The bounds on the Reynolds numbers are: 

  ̂

  ̂
 .∑ ∑

    ̂    (   ̂     ) 

   ̂         ̂       ̂    
           

      
     

       
      /                                  (A131) 

    ̂ 

    ̂
∑

    ̂    

    ̂         ̂    
         

       
                                             (A132) 

 



134 

 

Geometric Constraints. The maximum and minimum baffle spacing constraints 

are: 
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The constraints associating the ratio between the tube length and the shell diameter 

are: 
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Objective Function. The expression of the objective function in relation to the 

binary variables is given by: 
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Additional Constraints for the Reduction of the Search Space. These extra 

sets of constraints aim to accelerate the search and are derived from the bounds on velocities, 

shell-side pressure drop, and tube length/shell diameter ratio. A lower bound on the heat 

transfer area is also included based on maximum flow velocities (see Gonçalves et al. (2016) 

for further details). 

 

Flow velocities Bounds. 
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The sets Svsminout, Svsmaxout, Svtminout, and Svtmaxout are given by: 
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where  ̂ is a small positive number. 

  

Shell-side Pressure Upper Bound. 
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where the set SDPsmaxout is given by: 
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 Baffle Spacing. 
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Tube length / shell diameter ratio.  

                  for (    )  (                    )                                 (A149) 

where the sets SLDminout and SLDmaxout are given by: 

          *(    )     ̂          ̂       ̂+                         (A150) 

          *(    )     ̂           ̂       ̂+                                            (A151) 
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Heat Transfer Area.  

                       for (    )                                         (A152) 

where the set of heat exchangers with area lower than the minimum possible is: 

         *(    )        ̂        ̂      ̂         ̂   ̂+           (A153) 

The lower bound on the heat transfer area can be determined by: 

    ̂   
 ̂

    ̂     ̂
                                                              (A154) 

    ̂   
 

 

      ̂      ̂      ̂      ̂   
    ̂      (     ̂ )

       ̂      ̂   
 

     ̂

                               (A155) 

     ̂      (   ̂    )                                                   (A156) 

     ̂      (    ̂        )                                      (A157) 

     ̂      (    ̂         ̂    )                           (A158) 

  

Alternative 5. This alternative was described in detail in the main text. 
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APPENDIX B – Parameters of the Bell-Delaware method. 

 

 

Table B 1 - Values of the parameter    

Npt 

(number of tube passes) 
Ds (m) ψn 

2 0.2050 0.18 

2 0.3048 0.09 

2 0.3366 0.075 

2 0.3874 0.06 

2 0.4382 0.048 

2 0.4890 0.046 

2 0.5398 0.044 

2 0.5906 0.042 

2 0.6350 0.038 

2 0.6858 0.036 

2 0.7366 0.035 

2 0.7874 0.034 

2 0.8382 0.033 

2 0.8890 0.032 

2 0.9398 0.03 

2 0.9906 0.028 

2 1.0668 0.025 

2 1.1430 0.024 

2 1.2192 0.0235 

2 1.3716 0.02 

2 1.5240 0.018 

4 0.2050 0.30 

4 0.3048 0.20 

4 0.3366 0.18 

4 0.3874 0.16 

4 0.4382 0.13 

4 0.4890 0.125 

4 0.5398 0.12 

4 0.5906 0.118 

4 0.6350 0.114 

4 0.6858 0.11 

4 0.7366 0.10 

4 0.7874 0.095 

4 0.8382 0.09 

4 0.8890 0.085 

4 0.9398 0.08 

4 0.9906 0.075 

4 1.0668 0.073 

4 1.1430 0.071 

4 1.2192 0.065 

4 1.3716 0.06 

4 1.5240 0.05 
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6 0.2050 0.40 

6 0.3048 0.22 

6 0.3366 0.20 

6 0.3874 0.18 

6 0.4382 0.17 

6 0.4890 0.168 

6 0.5398 0.16 

6 0.5906 0.158 

6 0.6350 0.15 

6 0.6858 0.148 

6 0.7366 0.135 

6 0.7874 0.122 

6 0.8382 0.118 

6 0.8890 0.11 

6 0.9398 0.105 

6 0.9906 0.098 

6 1.0668 0.09 

6 1.1430 0.088 

6 1.2192 0.087 

6 1.3716 0.08 

6 1.5240 0.074 

8 0.2050 0.80 

8 0.3048 0.30 

8 0.3366 0.22 

8 0.3874 0.20 

8 0.4382 0.20 

8 0.4890 0.18 

8 0.5398 0.17 

8 0.5906 0.16 

8 0.6350 0.15 

8 0.6858 0.14 

8 0.7366 0.13 

8 0.7874 0.125 

8 0.8382 0.12 

8 0.8890 0.115 

8 0.9398 0.11 

8 0.9906 0.105 

8 1.0668 0.10 

8 1.1430 0.098 

8 1.2192 0.095 

8 1.3716 0.09 

8 1.5240 0.08 

 

Note 1: The value of ψn for Npt = 1 is equal to 0 for any Ds 

Note 2: This table was evaluated considering for the sake of simplification the utilization of a 

fixed tube diameter of 0.01905 m, however these values can be employed for any tube 

diameter without significant loss of accuracy. 
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Table B 2 - Values of the parameters of the Bell-Delaware method for evaluation of the 

convective heat transfer coefficient for an ideal tube bank 

 

Layout 

angle 

Reynolds 

Number 

   ̂             ̂             ̂             ̂          

30
o
 <10 1.400 -0.667 1.450 0.519 

10-20 1.360 -0.657 

20-10
2
 1.360 -0.657 

10
2
-10

3
 0.593 -0.477 

10
3
-10

4
 0.321 -0.388 

10
4
-10

5
 0.321 -0.388 

      

45
o
 <10 1.550 -0.667 1.930 0.500 

10-20 0.498 -0.656 

20-10
2
 0.498 -0.656 

10
2
-10

3
 0.730 -0.500 

10
3
-10

4
 0.370 -0.396 

10
4
-10

5
 0.370 -0.396 

      

90
o
 <10 0.970 -0.667 1.187 0.370 

10-20 0.900 -0.631 

20-10
2
 0.900 -0.631 

10
2
-10

3
 0.408 -0.460 

10
3
-10

4
 0.107 -0.266 

10
4
-10

5
 0.370 -0.395 
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Table B 3 - Values of the parameters of the Bell-Delaware method for evaluation of the 

friction factor for an ideal tube bank 

Layout 

angle 

Reynolds 

Number 

   ̂             ̂             ̂             ̂          

30
o
 <10 35.000 -1.000 7.00 0.500 

10-20 32.1000 -0.973 

20-10
2
 32.1000 -0.973 

10
2
-10

3
 6.0900 -0.476 

10
3
-10

4
 0.0815 -0.152 

10
4
-10

5
 0.391 -0.123 

      

45
o
 <10 32.000 -1.000 6.59 0.520 

10-20 26.200 -0.913 

20-10
2
 26.200 -0.913 

10
2
-10

3
 3.500 -0.476 

10
3
-10

4
 0.333 -0.136 

10
4
-10

5
 0.303 -0.126 

      

90
o
 <10 35.000 -1.000 6.30 0.378 

10-20 32.1000 -0.963 

20-10
2
 32.1000 -0.963 

10
2
-10

3
 6.0900 -0.602 

10
3
-10

4
 0.0815 -0.022 

10
4
-10

5
 0.391 -0.148 
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Linear Method for the Design of Shell 

and Tube Heat Exchangers using the 

Bell-Delaware Method 

Caroline de O. Gonçalves 
School of Science and Technology, Unigranrio University, Av. Perimetral Prof. José de Souza 

Herdy, 1160 – Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ, CEP 25071-202 Brazil 
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524, Maracanã, Rio de Janeiro, RJ, CEP 20550-900 Brazil 

Miguel J. Bagajewicz 
School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman 

Oklahoma 73019 EUA 

 

In this article, we present a rigorous reformulation of the Bell-Delaware model for the design 

optimization of shell and tube heat exchanger to obtain a linear model. We extend a 

previously presented methodology1,2 of rigorously reformulate the MINLP Kern model and 

we add disjunctions to automatically choose the different correlations to calculate heat 

transfer coefficients and pressure drop under different flow regimes. The linear character of 

the formulation allows the identification of the global optimum, even using conventional 

optimization algorithms. The proposed MILP formulation with the Bell-Delaware method is 

able to identify feasible solutions for the design of heat exchangers at a lower cost than those 

obtained through conventional design formulations in the literature. Comparisons with the 

Kern method also indicate an average 22% difference (usually lower) in area. 


