

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Química

Fábio Pedro do Nascimento

Estudo teórico e experimental da velocidade do som em sistemas contendo hidrocarbonetos

Rio de Janeiro 2012 Fábio Pedro do Nascimento

Estudo teórico e experimental da velocidade do som em sistemas contendo hidrocarbonetos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Química, da Universidade do Estado do Rio de Janeiro. Área de concentração: Processos Químicos, Petróleo e Meio Ambiente.

Orientadores:

Prof. Dr. André Luiz Hemerly Costa Prof. Dr. Fernando Luiz Pellegrini Pessoa

Rio de Janeiro

2012

CATALOGAÇÃO NA FONTE UERJ/REDE SIRIUS/CTC/Q

N244 Nascimento, Fábio Pedro do. Estudo teórico e experimental da velocidade do som em sistemas contendo hidrocarbonetos / Fábio Pedro do Nascimento. – 2012. 128 f.
Orientador: André Luiz Hemerly Costa. Orientador: Fernando Luiz Pellegrini Pessoa. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Instituto de Química.
1. Som - Propagação – Teses. 2. Ultra-som – Teses. 3. Pressão alta (Tecnologia) – Teses. 4. Densidade - Medição – Teses. 5. Compressibilidade. I. Costa, André Luiz Hemerly. II. Pessoa, Fernando Luiz Pellegrini. III. Universidade do Estado do Rio de Janeiro. Instituto de Química. IV. Título.

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação.

Jahi Pedu de Maimento. Assinatura Assinatura

13/04/2012

Data

Fábio Pedro do Nascimento

Estudo teórico e experimental da velocidade do som em sistemas contendo hidrocarbonetos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Química, da Universidade do Estado do Rio de Janeiro. Área de concentração: Processos Químicos, Petróleo e Meio Ambiente.

Aprovada em 16 de fevereiro de 2012.

Orientadores:

andi h Munn

Prof. Dr. André Luiz Hemerly Costa Instituto de Química - UERJ

Prof. Dr. Fernando Luiz Pellegrini Pessoa Universidade Federal do Rio de Janeiro

Banca Examinadora:

Eduardo R. d. A. dima Prof. Dr. Eduardo Rocha de Almeida Lima Instituto de Química - UERJ

CHR

blaredes. Mariok

Prof¹ Dr. Márcio Luis Lyra Paredes Instituto de Química - UERJ

Prof. Dr. Eduardo Mach Queiroz Universidade Federal do Rio de Janeiro

Prof. Dr. Marco Antônio Gomes Teixeira Universidade Federal Fluminense

>6--

Rio de Janeiro

2012

DEDICATÓRIA

Aos meus pais, por todo o aprendizado e pelo exemplo de amor e fé.

AGRADECIMENTOS

A Deus;

A todos os meus familiares, em especial aos meus pais;

Aos professores André Hemerly e Fernando Pellegrini pela sabedoria, experiência e orientação concedidas;

Aos professores do Programa de Pós-Graduação em Engenharia Química da UERJ por todo o aprendizado;

A Ana Mehl, por sua orientação, confiança, sabedoria, companheirismo, liderança e pela ousadia de enfrentar novos desafios a cada momento, sendo estas características essenciais para o sucesso desta dissertação;

Ao Renan e ao Diego, por toda a ajuda dada no laboratório;

Aos colegas do GIPQ, por tornarem nosso local de trabalho um ambiente agradável;

À professora Silvia da Escola de Química da UFRJ pelo empréstimo do densímetro digital, indispensável na elaboração desta dissertação;

Ao Marco Antônio da Secretaria de Pós-Graduação em Engenharia Química da UERJ por ter ajudado com toda a burocracia ao longo do curso de mestrado;

À PETROBRAS por ter cedido a amostra de condensado utilizada nos experimentos;

A CAPES, CNPq e FAPERJ pelo apoio financeiro;

Aos demais companheiros que de alguma forma colaboraram durante todo o curso de mestrado.

RESUMO

NASCIMENTO, Fábio Pedro do. *Estudo teórico e experimental da velocidade do som em sistemas contendo hidrocarbonetos, Brasil.* 2012. 128f. Dissertação (Mestrado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012.

A descoberta de reservatórios de petróleo na camada do pré-sal abriu novas perspectivas para a economia brasileira. A grandes profundidades, com elevado teor de CO₂ e submetidos a altas pressões e temperaturas, a exploração de petróleo das camadas de pré-sal constitui um considerável desafio tecnológico. Neste contexto, o conhecimento dos coeficientes de compressibilidade são fundamentais para o estudo do comportamento termodinâmico e escoamento dos fluidos destes campos de produção. Com este objetivo, foram determinadas experimentalmente nesta dissertação a massa específica e a velocidade do som de sistemas envolvendo quatro hidrocarbonetos puros: n-decano, n-hexadecano, decalina e tetralina, assim como para sistemas multicompostos envolvendo estes hidrocarbonetos e para uma amostra de condensado de petróleo. Os resultados obtidos permitiram o cálculo dos coeficientes de compressibilidade isentrópica, isotérmica e isentálpica. É apresentada uma avaliação sobre a capacidade de se correlacionar dados experimentais de velocidade do som aos dados calculados pelas equações de estado de Peng-Robinson e Lee-Kesler com regras de mistura: (i) Spencer e Danner e (ii) Lee-Kesler.

Palavras-chave: Ultra-som. Velocidade do som. Alta pressão. Massa específica. Coeficientes de compressibilidade. Pré-sal.

ABSTRACT

The discovery of oil reservoirs in the pre-salt layer has opened new perspectives for Brazilian economy. In deep waters, with high levels of CO₂ and subjected to high pressures and temperatures, the oil exploration in the pre-salt layer is a considerable technological challenge. In this context, knowledge of compressibility coefficients and phase equilibrium data are essential for studying the thermodynamic behavior and flow in these oil fields. With this objective, experimental data were obtained for density and sound velocity in systems involving four pure hydrocarbons: n-decane, n-hexadecane, decalin and tetralin, as well as in multi-component systems involving these hydrocarbons, and in a sample of oil condensate. The results obtained allowed the calculation of isentropic, isothermal and isenthalpic compressibility coefficients. An evaluation on the ability to correlate experimental data of sound velocity with data calculated from Peng-Robinson and Lee-Kesler equations of state with mixing rules: (i) Spencer and Danner and (ii) Lee-Kesler is presented.

Keywords: Ultra-sound. Speed of sound. High pressure. Density. Compressibility coefficients. Pre-salt.

LISTA DE FIGURAS

Figura 2.1	Fluxograma do aparato experimental28			
Figura 2.2	Célula de equilíbrio para US29			
Figura 2.3	Osciloscópio Tektronix modelo 1001B31			
Figura 2.4	Foto do aparato experimental34			
Figura 2.5	Densímetro Anton Paar DMA 450036			
Figura 3.1	Vista frontal e dimensões da célula de equilíbrio			
Figura 3.2	Velocidade do US vs. Pressão para o n-decano42			
Figura 3.3	Velocidade do US vs. Pressão para o n-hexadecano43			
Figura 3.4	Velocidade do US vs. Pressão para o sistema n-decano			
	(50% molar) / n-hexadecano (50% molar)44			
Figura 3.5	Velocidade do US vs. Pressão para o sistema n-decano			
	(25% molar) / n-hexadecano (75% molar)45			
Figura 3.6	Velocidade do US vs. Pressão para o sistema n-decano			
	(75% molar) / n-hexadecano (25% molar)46			
Figura 3.7	Velocidade do US vs. Pressão para o n-decano48			
Figura 4.1	Algoritmo para o cálculo dos coeficientes de compres-			
	sibilidade55			
Figura 4.2	Comparativo entre os coeficientes de compressibilidade isentrópica			
	calculados e disponíveis na literatura para o 3-pentanol58			
Figura 4.3	Comparativo entre os coeficientes de compressibilidade isotérmica			
	calculados e disponíveis na literatura para o 3-pentanol58			
Figura 4.4	Compressibilidade isentrópica para o n-decano59			
Figura 4.5	Compressibilidade isotérmica para o n-decano60			
Figura 4.6	Compressibilidade isentálpica para o n-decano60			
Figura 5.1	Algoritmo para o cálculo da velocidade do som67			
Figura 5.2	Velocidades experimental e calculadas para o n-decano,			
	T = 40 °C69			
Figura 5.3	Velocidades experimental e calculadas para o n-decano,			
	$T = 50 \ ^{\circ}C$			
Figura 5.4	Velocidades experimental e calculadas para o n-decano,			

$T = 60 ^{\circ}C$	70
	.10

Figura 5.5	Velocidades	experimental	е	calculadas	para	а	decalina	a,
	$T = 40 ^{\circ}C$					•••••		70
Figura 5.6	Velocidades	experimental	е	calculadas	para	а	decalina	a,
	T = 50 °C							71
Figura 5.7	Velocidades	experimental	е	calculadas	para	а	decalina	à,
	T = 60 °C							71
Figura 5.8	Velocidades	experimental	е	calculadas	para	а	tetralina	à,
	T = 40 °C							72
Figura 5.9	Velocidades	experimental	е	calculadas	para	а	tetralina	à,
	T = 50 °C							72
Figura 5.10	Velocidades	experimental	е	calculadas	para	а	tetralina	a,
	T = 60 °C							73
Figura 5.11	Velocidades	experimental	e ca	llculadas p	ara o r	n-he>	adecand	D,
	T = 40 °C							73
Figura 5.12	Velocidades	experimental	e ca	llculadas p	ara o r	n-he>	adecand	D,
	T = 50 °C							74
Figura 5.13	Velocidades	experimental	e ca	llculadas p	ara o r	n-he>	adecand	D,
	T = 60 °C							74
Figura 5.14	Velocidades	experimental	e c	alculadas	para a	am	ostra d	е
	condensado, 7	Γ = 40 °C						75
Figura 5.15	Velocidades	experimental	e c	alculadas	para a	am	ostra d	е
	condensado, 7	Γ = 50 °C						75
Figura 5.16	Velocidades	experimental	e c	alculadas	para a	am	ostra d	е
	condensado, 7	Γ = 60 °C						76

LISTA DE TABELAS

Tabela 1.1	Sistemas avaliados por referência para velocidade do som em				
	meios líquidos25				
Tabela 3.1	Composição dos sistemas				
Tabela 3.2	Tempo de voo da onda de US nas paredes de aço40				
Tabela 3.3	Velocidade do US para o n-decano - T = 40 $^{\circ}$ C41				
Tabela 3.4	Velocidade do US para o n-decano - T = 60 $^{\circ}$ C41				
Tabela 3.5	Velocidade do US para o n-hexadecano - T = 40 $^{\circ}$ C42				
Tabela 3.6	Velocidade do US para o n-hexadecano - T = $60 \degree C$ 43				
Tabela 3.7	Velocidade do US para o sistema n-decano (50% molar) /				
	n-hexadecano (50% molar) - T = $60 \degree C$				
Tabela 3.8	Velocidade do US para o sistema n-decano (25% molar) /				
	n-hexadecano (75% molar) - T = 60 $^{\circ}$ C45				
Tabela 3.9	Velocidade do US para o sistema n-decano (75% molar) /				
	n-hexadecano (25% molar) - T = $60 \degree C$ 46				
Tabela 3.10	Massas específicas do n-decano e n-hexadecano47				
Tabela 3.11	Massas específicas dos sistemas avaliados48				
Tabela 4.1	Propriedades dos componentes puros54				
Tabela 4.2	Capacidades caloríficas dos componentes puros54				
Tabela 4.3	Curva de destilação para a amostra de condensado (metodologia				
	ASTM D2887 estendida)56				
Tabela 4.4	Propriedades da amostra de condensado57				
Tabela 5.1	Constantes de Lee-Kesler para as Equações 5.7 a 5.1164				

LISTA DE ABREVIATURAS E SIGLAS

Latinas	
Símbolo	Descrição
k	Coeficiente de compressibilidade
V	Volume molar
Р	Pressão
<i>c</i> ₀	Velocidade do som
u	Velocidade do ultra-som
v_{am}	Velocidade do som na amostra
d	Distância percorrida pelo sinal de ultra-som
t _{am}	Tempo de voo na amostra
t_m	Tempo de voo medido
t_p	Tempo de voo nas paredes de aço da célula
$v_{itterature}$	Velocidade do som disponível na literatura
$v_{presente\ estudo}$	Velocidade do som obtida no presente estudo
Т	Temperatura
Cp	Capacidade calorífica a pressão constante
C_{Patm}	Capacidado calorífica a proceão atmosfórica
	Capacidade calornica a pressao aunosienca
MM	Massa molar
MM W	Massa molar Fator acêntrico
MM w R	Massa molar Fator acêntrico Constante universal dos gases perfeitos
MM w R Gregas	Massa molar Fator acêntrico Constante universal dos gases perfeitos
MM w R Gregas Símbolo	Massa molar Fator acêntrico Constante universal dos gases perfeitos Descrição
ΜΜ w R Gregas Símbolo ρ	Massa molar Fator acêntrico Constante universal dos gases perfeitos Descrição Massa específica

ρ_{atm}

Massa específica a pressão atmosférica

Subscritos

Símbolo	Descrição
S	Isentrópico(a)
Т	Isotérmico(a)
H	Isentálpico(a)
С	Crítico(a)
r	Reduzido(a)
m	Mistura

SUMÁRIO

	INTRODUÇÃO15
1	REVISÃO BIBLIOGRÁFICA18
1.1	Fundamentos do uso de medidas da velocidade do ultra-som na
	caracterização termofísica de sistemas líquidos18
1.2	Estudo da velocidade do ultra-som em meios líquidos19
2	MATERIAIS E MÉTODOS26
2.1	Materiais
2.2	Métodos
2.2.1	Medida da velocidade do ultra-som em meios líquidos
2.2.1.1	Aparato experimental28
2.2.1.2	Procedimento experimental34
2.2.2	Medida da massa específica de misturas líquidas
3	RESULTADOS EXPERIMENTAIS
3.1	Validação do experimento de determinação da velocidade do
	ultra-som
3.1.1	Determinação experimental do tempo de voo nas paredes de
	<u>aço</u> 39
3.1.2	Determinação experimental da velocidade do ultra-som em
	hidrocarbonetos40
3.2	Validação do equipamento de medida de massa específica46
3.3	Resultados das medidas de velocidade do ultra-som em meios
	líquidos47
3.4	Resultados das medidas de massa específica em meios
	líquidos48
4	CÁLCULO DOS COEFICIENTES DE COMPRESSIBILIDADE50
4.1	Fundamentos
4.2	Metodologia de cálculo dos coeficientes54
4.3	Validação da metodologia de cálculo dos coeficientes
4.4	Resultados
5	AVALIAÇÃO DE MODELOS TERMODINÂMICOS61

5.1	Equações de Estado	61
5.1.1	Equação de Estado de Peng-Robinson	61
5.1.2	Equação de Estado de Lee-Kesler	62
5.2	Regras de mistura	64
5.2.1	Regra de mistura de Spencer e Danner (1972)	64
5.2.2	Regra de mistura de Lee-Kesler (1975)	65
5.3	Estratégia de cálculo para a velocidade do som	65
5.4	Resultados	67
6	CONCLUSÕES E SUGESTÕES	77
	REFERÊNCIAS	79
	ΑΝΕΧΟΙ	85
	ANEXO II	
	ANEXO III	91
	ANEXO IV	101

INTRODUÇÃO

A indústria petrolífera brasileira está passando por uma fase sem precedentes. Segundo Braga (2010), o anúncio da descoberta de reservatórios de petróleo na camada do pré-sal, entre os anos de 2006 e 2007, abriu novas perspectivas para a economia brasileira. As reservas provadas somavam 14 bilhões de barris de petróleo, sendo que, somente o Campo de Tupi pode conter de 5 a 8 bilhões de barris. Nos últimos meses, a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) confirmou a descoberta do Campo de Libra, cuja estimativa varia entre 3,7 a 15 bilhões de barris.

Esses reservatórios foram formados há cerca de 122 milhões de anos, quando existia um ambiente lacustre em uma pequena faixa de mar que se abriu entre a América e a África. Com a separação das placas tectônicas americana e africana, começou intensa entrada de água do mar que, em um ambiente quente, vaporizou-se e o sal passou a se depositar sobre os sedimentos orgânicos. Com a contínua separação dessas placas, esses sedimentos foram sendo enterrados a grandes profundidades e submetidos a elevada pressão e temperatura, o que propiciou a geração do petróleo e do gás natural do pré-sal (FERRO et al., 2009).

O conhecimento dos coeficientes de compressibilidade isentrópica, isotérmica e isentálpica de líquidos são fundamentais para o projeto de processos de escoamento a altas pressões, como no caso da recuperação de petróleo das camadas de pré-sal.

Estes coeficientes também podem ser vistos como fundamentais na caracterização do comportamento de fluidos de petróleo durante os vários estágios da produção: (i) dentro do próprio reservatório, onde os fenômenos são praticamente isotérmicos, (ii) ao nível dos *chokes* (estranguladores), onde a expansão é isentálpica (efeito Joule-Thompson) e (iii) nos compressores e turboexpansores, onde o processo é isentrópico de primeira ordem. A relação simples que existe entre a velocidade do som e os vários coeficientes de compressibilidade torna fácil identificar a vantagem oferecida pelas medidas de velocidade do som na predição do comportamento desses coeficientes de compressibilidade (YE et al., 1992a).

Além disso, a velocidade do som assume valores consideravelmente diferentes nos três estados da matéria: sólido, líquido e gasoso. Portanto, é possível

pensar que ela pode ser significativamente afetada por mudanças de fase que ocorram dentro do fluido. Como resultado, a velocidade do som pode ser utilizada para detectar estes fenômenos (que são por vezes difíceis de serem observados com os métodos pVT clássicos, particularmente em fluidos de reservatórios altamente opacos) (YE et al., 1992a).

Em vista disso, os objetivos gerais desta dissertação são: (i) determinação experimental da velocidade do som em sistemas contendo hidrocarbonetos e (ii) cálculo dos coeficientes de compressibilidade isentrópica, isotérmica e isentálpica. Os objetivos específicos compreendem:

- Montagem e operação de um aparato experimental para estudo da velocidade do som;
- o Determinação da velocidade do som em sistemas de interesse;
- Medida da massa específica de sistemas de interesse;
- Elaboração de rotina computacional para cálculo dos coeficientes de compressibilidade;
- Avaliação de modelos termodinâmicos para representar o comportamento da velocidade do som;

O presente trabalho está estruturado da seguinte forma:

No capítulo 1 é apresentada a revisão bibliográfica, cujo foco é o resumo atualizado de trabalhos disponíveis na literatura sobre o estudo da velocidade do som em meios líquidos.

No Capítulo 2 estão descritos os equipamentos, materiais e metodologias experimentais empregadas para: (i) medidas experimentais de velocidade do som em meios líquidos e (ii) determinação experimental da massa específica de sistemas líquidos.

Os resultados experimentais de velocidade do som e massa específica são apresentados no Capítulo 3, assim como as respectivas análises e discussões.

No Capítulo 4 é apresentada a metodologia de cálculo dos coeficientes de compressibilidade, os resultados obtidos e as respectivas análises e discussões.

Os resultados e discussões sobre a avaliação de modelos termodinâmicos para representar o comportamento da velocidade do som são apresentados no Capítulo 5.

As conclusões e sugestões para trabalhos futuros estão expostas no Capítulo 6 e, finalmente, no Capítulo 7 estão apresentadas as referências bibliográficas consultadas na elaboração desta dissertação.

1 REVISÃO BIBLIOGRÁFICA

Este capítulo apresenta a revisão bibliográfica do uso do ultra-som (US) para caracterização termofísica de sistemas químicos. São abordados os seguintes tópicos: (i) Fundamentos do uso de medidas da velocidade do ultra-som na caracterização termofísica de sistemas líquidos e (ii) Estudo da velocidade do ultra-som em meios líquidos.

1.1 Fundamentos do uso de medidas da velocidade do ultra-som na caracterização termofísica de sistemas líquidos

Os coeficientes de compressibilidade isentrópica, isotérmica e isentálpica são definidos pelas Equações 1.1, 1.2 e 1.3, respectivamente (ROWLINSON e SWINTON, 1982):

$$k_{s} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{s} \qquad (1.1)$$

$$k_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$
 (1.2)

$$k_{H} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{H} \qquad (1.3)$$

O ponto de partida para a determinação da compressibilidade isentrópica (k_{g}) de líquidos, utilizando a velocidade do som (c_{Q}) e a massa específica (ρ), é a equação de Newton-Laplace (Equação 1.4) (ROWLINSON e SWINTON, 1982; HIRSCHFELDER et al., 1964):

$$c_0^2 = \frac{1}{\rho k_s}$$
(1.4)

A velocidade do som definida pela Equação 1.4 é, claramente, uma grandeza puramente termodinâmica, sendo igual à velocidade do som experimental em um amplo domínio de freqüências e amplitudes, para a maioria dos fluidos. A medida da velocidade do ultra-som (*w*) corresponde à velocidade do som, definida pela Equação 1.4, quando o fluido não apresenta efeitos dispersivos. Segundo Lamb (1965) e Hakim e Comley (1965), para os sistemas em análise na presente dissertação (hidrocarbonetos parafínicos, naftênicos e aromáticos), esta condição é válida. Sendo assim, a velocidade do ultra-som pode ser correlacionada ao coeficiente de compressibilidade isentrópica pela Equação 1.5 (DARIDON et al., 1998b):

$$k_{S} = \frac{1}{\rho u^2} \tag{1.5}$$

1.2 Estudo da velocidade do ultra-som em meios líquidos

Wilson (1959) utilizou a técnica pulso-eco para determinar a velocidade do som em água destilada em temperaturas variando de 0,9 a 91,2 °C e pressões de 1 a 965 bar. Nesta técnica, um único transdutor de ultra-som é responsável tanto pela emissão do sinal para o meio, como pela recepção do sinal ultrassônico propagado. Os resultados experimentais foram ajustados na forma de um polinômio do quarto grau pelo método dos mínimos quadrados.

Davis e Gordon (1967) descreveram um método experimental para a determinação de mudanças de volume em altas pressões, a partir de medidas acústicas de velocidade. Para ilustrar a aplicabilidade da metodologia, medidas de velocidade ultrassônica foram realizadas em mercúrio a pressões de até 13 kbar, em três temperaturas diferentes. Os dados foram utilizados para calcular o volume como função da pressão e da temperatura. O volume foi determinado com precisão de 0,01% para cada pressão e temperatura. Uma expressão para a dependência do

volume em relação à pressão foi proposta, na qual todos os termos são expressos em função dos coeficientes de compressibilidade e de suas derivadas.

Williamson (1968) descreveu uma técnica em que o tempo de atraso entre ecos consecutivos de uma seqüência de ecos é determinado pela comparação da fase de um sinal contínuo com a fase dos ecos. Foi determinada a velocidade do som a 1 MHz em água destilada nas temperaturas de 23 °C a 75 °C e os dados mostraram-se de acordo com os disponíveis na literatura na época.

Ye et al. (1990) descreveram um aparato utilizado para a medida da velocidade do ultra-som e do coeficiente de atenuação em líquidos em pressões de até 100 MPa em diferentes temperaturas. Foram medidos dados para as seguintes substâncias puras: água, n-decano e n-hexadecano.

Ye et al. (1992a) compararam resultados experimentais de velocidade do som, disponíveis na literatura para hidrocarbonetos puros, em diferentes pressões e temperaturas, com dados de velocidade do som calculados por seis equações de estado amplamente utilizadas no cálculo de processos: SRK (SOAVE, 1972), PR (PENG e ROBINSON, 1976), PR-RP (PENELOUX et al., 1982), SBR (BEHAR et al., 1985), LK (LEE e KESLER, 1975) e COR (CHIEN et al., 1983). A base de dados investigada abrangia alcanos lineares (n-C₃ a n-C₁₆), benzeno, tolueno e ciclohexano. A análise dos resultados revelou que, para a base de dados estudada, a equação de Lee-Kesler apresentou a melhor correlação entre os dados calculados e medidos experimentalmente, com desvio relativo médio para todos os 2077 pontos inferior a 3,8%. Já em Ye et al. (1992b) os autores realizaram estudo semelhante, para misturas binárias moderadamente assimétricas (n-C₆ / n-C₁₆) ou muito assimétricas (C1 / n-C16, CO2 / n-C16) em diferentes concentrações. As velocidades do som para cada sistema foram calculadas utilizando as mesmas seis equações de estado testadas em Ye et al. (1992a), mas desta vez associadas a nove regras de misturas diferentes: três regras de mistura internas (aplicadas a coeficientes específicos de cada equação de estado) e seis regras de mistura externas (aplicadas às coordenadas críticas dos componentes). As regras de mistura externas avaliadas foram: Pendersen et al. (1984), Spencer e Danner (1972), Teja (1980), Hankinson e Thomson (1979), Lee-Kesler (LEE e KESLER, 1975) e Plocker-Knapp-Prausnitz (PLOCKER et al., 1978). Para misturas moderadamente assimétricas, a equação de estado de Lee-Kesler apresentou os melhores resultados, já as misturas muito assimétricas tiveram melhores resultados com a

equação de estado SBR. Para todos os sistemas avaliados, as regras de mistura exerceram pouca influência nos resultados.

Tikhonov et al. (1995) descrevem um método para avaliar propriedades termodinâmicas de líquidos puros e solutos em solução, a partir de dados de velocidade do som. A metodologia parte da equação de Newton-Laplace que relaciona a velocidade do som com o coeficiente de compressibilidade isentrópica. O método foi validado através do cálculo de parâmetros termodinâmicos da água, glicerina e alanina em soluções aquosas a diluição infinita.

Daridon et al. (1996) determinaram a velocidade do ultra-som em fluidos armazenados a pressões de 110 MPa e temperatura de 186 °C com precisão de ±0,2 %. Os dados experimentais foram comparados aos preditos por diferentes equações de estado. A equação que melhor representou os dados foi a de Lee-Kesler, com regra de mistura de Hankinson-Thomson e desvio de 1,1 %. Já em Daridon et al. (1998a), os autores determinaram a velocidade do som em três amostras de reservatórios sob pressão, diferentes em composição e natureza, com precisão de ±0,2 %. Novamente, os dados experimentais foram comparados aos preditos por diferentes equações de estado. A equação que melhor representou os dados foi a de Lee-Kesler. Usando este mesmo aparato experimental, em Daridon et al. (1998b) os autores realizaram medidas experimentais de velocidade do som em duas misturas sintéticas representativas de cortes de destilação com elevado ponto de bolha (247 °C e 300 °C, respectivamente), em temperaturas de 20 a 100 °C e pressões de 0,1 a 150 MPa. Medidas adicionais de massa específica foram realizadas em um densímetro digital Anton Paar (modelo DMA 60) nas mesmas condições de temperatura e pressão. Os autores apresentaram uma metodologia de cálculo para a massa específica e coeficientes de compressibilidade isentrópica e isotérmica dos sistemas avaliados, baseado nos dados medidos de velocidade do som e massa específica.

Utilizando o aparato desenvolvido por Daridon et al. (1996), os seguintes trabalhos foram desenvolvidos: (i) Dutour et al. (2001) determinaram a velocidade do som em n- $C_{23}H_{48}$ e n- $C_{24}H_{50}$ a pressões de até 150 MPa em faixas de temperatura de 20 a 100 °C com incerteza de ±0,2 %, massas específicas a pressão atmosférica, na mesma faixa de temperatura, também foram medidas, com precisão de ±0,1 %. Os resultados foram utilizados no cálculo de propriedades termofísicas como o coeficiente de compressibilidade isentrópica, isotérmica e massas específicas a

pressões de até 150 MPa, apresentando desvios de ±0,3 %, ±1 % e ±0,5 % respectivamente. (ii) Em Dutour et al. (2003) foi determinada a velocidade do som em pentadecilciclohexano e nonadecilciclohexano líquidos e em Dutour et al. (2004), os autores mediram a velocidade do som em heptadecilbenzeno e octadecilbenzeno líquidos. As medidas de velocidade do som foram realizadas a pressões de até 150 MPa em faixas de temperatura de 30 a 110 °C com incerteza de ±0,2 %. Medidas de massa específica adicionais foram realizadas a pressões de até 60 MPa na mesma faixa de temperatura com precisão de ± 0,1 kg m⁻³. Para o cálculo da compressibilidade isotérmica, os dados de massa específica foram representados por uma equação do tipo Tait (TAIT, 1898) modificada. A massa específica foi calculada a pressões de até 150 MPa com precisão de ±0,1 %. Os coeficientes de compressibilidade isentrópica e isotérmica foram determinados nas mesmas condições de pressão e temperatura com acurácia de ±0,3 % e ±2,0 %, respectivamente. (iii) Plantier e Daridon (2005) determinaram a velocidade do som em 2-metilpentano, 2,3-dimetilpentano e 2,2,4-trimetilpentano a pressões de até 150 MPa em faixas de temperatura de 20 a 100 °C com incerteza de ±0,2 %. Neste trabalho os autores utilizaram dados de massa específica a pressão ambiente disponíveis na literatura para calcular a massa específica a pressões de até 150 MPa por meio de uma equação do tipo Tait modificada. Os resultados foram utilizados no cálculo do coeficiente de compressibilidade isentrópica e isotérmica e apresentaram resultados semelhantes ao de Dutour et al. (2001). (iv) González-Salgado et al. (2006) mediram a velocidade do som em 3-pentanol, 3-metil-3pentanol e 3-etil-3-pentanol a pressões de até 100 MPa em faixas de temperatura de 30 a 100 °C. Novamente, foram usados os valores de massa específica a pressão ambiente disponíveis na literatura para calcular a massa específica a pressões de até 100 MPa por meio de uma equação do tipo Tait modificada. Os dados foram utilizados no cálculo do coeficiente de compressibilidade isentrópica e isotérmica e apresentaram resultados semelhantes ao de Dutour et al. (2001).

Meng et al. (2006) realizaram um estudo experimental baseado na técnica do tempo de voo para caracterizar misturas heterogêneas (emulsões) de óleos crus e água de processo. Nesta técnica, dois transdutores de ultra-som são utilizados. O primeiro transdutor envia o pulso de ultra-som para o meio, enquanto o segundo recebe o sinal que se propaga através do sistema. Os resultados mostraram que estes transdutores podem ser utilizados como um método simples e confiável para a

medição da composição de misturas heterogêneas relevantes. Também é apresentada uma pequena revisão sobre os modelos teóricos de propagação do ultra-som e uma análise de suas relevâncias em predizer a velocidade do ultra-som nos sistemas estudados. Dos cinco modelos considerados, o modelo proposto por Urick (1947) e o modelo proposto por Kuster e Toksöz (1974) conseguem predizer a velocidade do som com melhor acurácia.

Zevnik et al. (2006) descreveram um aparato para a determinação experimental da velocidade e atenuação do som em fluidos densos. O aparato utiliza dois transdutores de ultra-som, sendo um o transdustor emissor e o outro o receptor. O equipamento construído suporta altas pressões e permite que a distância entre os transdutores seja aumentada sem que se faça necessária a desmontagem do aparato. A técnica permite determinar o coeficiente de absorção do som, necessário para a determinação da composição de gases via método acústico. Para validação do experimento mediram-se velocidade e amplitude do som no CO₂ em faixas de temperatura de 25 a 70 °C e pressões de 6 a 14 MPa. As medidas da amplitude do som no CO₂ permitiram a determinação precisa do ponto crítico, uma vez que na vizinhança deste ponto a queda do sinal de amplitude do som é mais significante do que o decréscimo da velocidade.

Mehta et al. (2007) determinaram experimentalmente a massa específica, viscosidade e velocidade do ultra-som (2 MHz) dos solventes puros etanol, metil-etilcetona e *N-N'*-dimetil-formamida e de soluções de resina bisfenol-C-formaldeídoacrilato (0,5-4 % em peso) nas temperaturas de 30, 35 e 40 °C. Foram calculados o coeficiente de compressibilidade isentrópica, pressão osmótica, volume livre, livre percurso médio e número de solvatação. Estes dados foram correlacionados com a concentração, observando-se relação linear nas três temperaturas.

Plantier et al. (2008) desenvolveram uma metodologia que combina medidas acústicas, volumétricas e calorimétricas para a caracterização termofísica de óleos pesados em condições parecidas às encontradas durante sua produção e/ou transporte. Foram realizadas medidas de velocidade do som em dois óleos pesados nas temperaturas de 10 a 100 °C em pressões de até 20 MPa. Medidas volumétricas adicionais como, por exemplo, de massa específica, foram realizadas nas mesmas condições, enquanto a capacidade calorífica foi determinada apenas na pressão atmosférica. Os autores também compararam os dados medidos de velocidade do

som com dados calculados de velocidade do som a partir das definições termodinâmicas, que envolvem as medidas volumétricas e calorimétricas.

Khasanshin et al. (2008) descrevem o aparato experimental projetado para a medição da velocidade do som em líquidos. Foram determinadas as velocidades do som em n-hexano, n-octano, n-decano e n-hexadecano no intervalo de temperatura de 25 a 160 °C e pressão de 0,1 a 100 MPa. Os resultados mostraram-se de acordo com os disponíveis na literatura, apresentando desvios menores do que 0,1%. Já em Khasanshin et al. (2009), os autores utilizaram o aparato validado em 2008, e o método de medição direta do tempo de transmissão de um pulso, para investigar a velocidade do som em misturas líquidas binárias de n-alcanos, especificamente, n-hexano + n-hexadecano, n-octano + n-hexadecano e n-decano + n-hexadecano em faixas de temperatura de 25 a 160 °C e pressões que variam de 0,1 a 100,1 MPa. Os resultados apresentam erro máximo de 0,1% e mostram que a velocidade do som é dependente da concentração de forma não aditiva.

Castier (2011) descreve um procedimento para calcular a velocidade do som a partir da definição termodinâmica em sistemas com inúmeras fases líquidas. O procedimento utiliza equações de conservação de volume, entropia e quantidade de matéria de cada componente, além das definições de diversas propriedades termodinâmicas e da solução de um sistema de equações lineares. Foi utilizado um programa computacional para calcular automaticamente as derivadas das definições termodinâmicas. As velocidades do som termodinâmicas calculadas relatadas neste artigo apresentaram boa concordância com resultados publicados recentemente.

Paredes et al. (2012) determinaram experimentalmente velocidade do som, massa específica e índices de refração para o n-decano, tetralina e sistema binário formado por n-decano e tetralina nas temperatura de 20, 30, 40, 50, 60, e 70 °C. As medidas foram realizadas na pressão atmosférica, ao longo de toda faixa de composição do sistema binário. Os dados de massa específica e velocidade do som foram obtidos através de um densímetro digital (Anton Paar DAS 5000), enquanto as medidas de índice de refração foram realizadas em um refratômetro digital (Rudolph J357). A partir destes dados, os autores calcularam: compressibilidade isentrópica, refratividade molar, volume de excesso, compressibilidade isentrópica de excesso, desvios da refratividade molar e coeficiente de expansão térmica. Regras de mistura para velocidade do som foram testadas, sendo que a regra de mistura de Nomoto (1958) apresentou os melhores resultados. Os dados de massa específica e velocidade do som para os componentes puros foram correlacionados com o modelo Prigogine-Flory-Patterson (PRAUSNITZ et al., 1999). O parâmetro de interação binária para esse modelo foi obtido a partir de correlações de volumes de excesso e compressibilidade isentrópica. Segundo os autores, o modelo representou muito bem os dados de massa específica. Para os dados de velocidade do som e coeficiente de expansão térmica, o modelo apresentou correlação razoável.

A Tabela 1.1 apresenta as referências encontradas com os respectivos sistemas avaliados para velocidade do som em meios líquidos.

Referência	Sistema(s)
Wilson (1959)	Água
Davis e Gordon (1967)	Mercúrio
Williamson (1968)	Água
Ye et al. (1990)	Água, n-decano e n-hexadecano
Ye et al. (1992a)	Hidrocarbonetos puros
Ye et al. (1992b)	Misturas binárias: n-C ₆ / n-C ₁₆ , C ₁ / n-C ₁₆ e CO ₂ / n-C ₁₆
Tikhonov et al. (1995)	Água, glicerina e alanina
Daridon et al. (1996)	Fluidos hiperbáricos
Daridon et al. (1998a)	Amostras de reservatório
Daridon et al. (1998b)	Misturas sintéticas
Dutour et al. (2001)	n-C ₂₃ H ₄₈ e n-C ₂₄ H ₅₀
Dutour et al. (2003)	Pentadecilciclohexano e nonadecilciclohexano líquidos
Dutour et al. (2004)	Heptadecilbenzeno e octadecilbenzeno líquidos
Plantier e Daridon (2005)	2-metilpentano, 2,3-dimetilpentano e 2,2,4-
	trimetilpentano
González-Salgado et al. (2006)	3-pentanol, 3-metil-3-pentanol e 3-etil-3-pentanol
Meng et al. (2006)	Óleos crus e água de processo
Zevnik et al. (2006)	CO ₂
Mehta et al. (2007)	Etanol, metil-etil-cetona, N-N'-dimetil-formamida e
	bisfenol-C-formaldeído-acrilato
Plantier et al. (2008)	Óleos pesados
Khasanshin et al. (2008)	n-hexano, n-octano, n-decano e n-hexadecano
Khasanshin et al. (2009)	Misturas binárias: n-hexano + n-hexadecano, n-octano

Tabela 1.1 - Sistemas avaliados por referência para velocidade do som

em meios líquidos

	+ n-hexadecano e n-decano + n-hexadecano
Castier (2011)	Misturas: C_1 / n- C_3 , C_1 / n- C_{10} e amostras de
	reservatório
Paredes et al. (2012)	n- C_{10} , tetralina e mistura n- C_{10} / tetralina

2 MATERIAIS E MÉTODOS

Este capítulo apresenta a descrição do aparato experimental utilizado para o uso do ultra-som (US), as metodologias usadas, bem como os materiais utilizados.

São descritos os seguintes procedimentos: (i) medida da velocidade do ultrasom em meios líquidos através do acompanhamento do sinal de ultra-som e (ii) metodologia empregada para a medida da massa específica.

2.1 Materiais

Os produtos químicos utilizados nos experimentos foram: dióxido de carbono (CO₂) AP fornecido pela Lynde Gás em cilindros, com concentração mínima, na fase líquida, de 99,99% de CO₂ e concentrações máximas de 80 ppm de nitrogênio, 5 ppm de água e 10 ppm de oxigênio; n-hexadecano fornecido pela VETEC Química em frascos de 500 e 1000 mL, com teor mínimo de 99,0%; n-decano fornecido pela VETEC Química em frascos de 500 e 1000 mL, com teor mínimo de 99,0%; 1,2,3,4 tetrahidronaftaleno (tetralina) fornecido pela VETEC Química em frascos de 1000 mL, com teor mínimo de 98,0%; decahidronaftaleno (decalina) fornecido pela VETEC Química em frascos de 1000 mL, com dosagem mínima de 99,0% (mistura dos isômeros *cis* e *trans* com composição determinada por cromatografia (MEHL, 2009) - 40% (massa) do isômero *cis* e 60% (massa) do isômero *trans*); amostra de condensado de petróleo fornecido pela PETROBRAS, com respectiva curva de destilação obtida pela metodologia ASTM D2887 estendida e água destilada no laboratório, por meio da utilização do destilador tipo Pilsen/Quimis. Os produtos químicos usados não sofreram tratamento de purificação prévio.

2.2 Métodos

2.2.1 Medida da velocidade do ultra-som em meios líquidos

A velocidade da onda de ultra-som no meio é a razão entre a distância percorrida pela onda de ultra-som e o tempo decorrido. Uma vez conhecida a distância, é determinado experimentalmente o tempo de voo, que é função da composição e da condição de temperatura e de pressão do meio no qual a onda é propagada.

A mistura líquida em análise, com composição química conhecida, é mantida dentro da célula de equilíbrio em condição de pressão e temperatura conhecidas e controladas.

A esta célula de equilíbrio são conectados dois transdutores de ultra-som, sendo um o transdutor emissor e o segundo o transdutor receptor.

O sinal de ultra-som, emitido pela placa geradora de sinais SR9000/MATEC instalada no microcomputador, é dividido em dois, sendo esta divisão realizada com uma peça divisora tipo "T" cuja conexão é do tipo BNC (*Bayonet Neil Concelman*). Uma saída do "T" correspondente à primeira porta é ligada ao primeiro transdutor de ultra-som, sendo este responsável pela emissão da onda ultrassônica. A segunda saída do "T", correspondente a outra porta, é ligada ao canal dois (CH2) do osciloscópio Tektronix - Modelo 1001B.

O sinal da onda de ultra-som que atravessa o meio é captado pelo segundo transdutor de ultra-som e "lida" no primeiro canal (CH1) do osciloscópio. O *trigger* do osciloscópio é configurado de tal forma que o sinal do CH2 dispara o início da leitura do CH1. Desta forma, no mesmo instante que o sinal é emitido pela placa SR9000 o CH1 começa a registrar o sinal captado pelo segundo transdutor de ultra-som.

O registro do sinal de US captado no osciloscópio é transferido por meio de *pendrive* para um computador onde o tempo de propagação da onda ultrassônica através do meio (tempo de voo) é determinado. Os dados retirados do osciloscópio são analisados em planilha eletrônica (Anexo I) revelando o tempo de voo da onda.

A velocidade do som no meio pode ser calculada diretamente pela razão entre a distância que o sinal de ultra-som percorre e o tempo que o sinal leva para atravessar o meio em análise (Equação 2.1).

$$v_{am} = \frac{d}{t_{am}} \tag{2.1}$$

onde v_{am} é a velocidade do som na amostra obtida, d é a distância percorrida pelo sinal de ultra-som e t_{am} é o tempo de voo na amostra, medido na própria célula.

2.2.1.1 Aparato experimental

O fluxograma apresentado na Figura 2.1 representa o aparato experimental utilizado formado pelos seguintes equipamentos e instrumentos:

Figura 2.1 - Fluxograma do aparato experimental (adaptado de MEHL et al., 2011)

- CO₂ Cilindro de CO₂: utilizado para armazenamento do CO₂.
- BU Banho Ultratermostato (Nova Ética Modelo 521-3D): o banho de resolução ± 0,1 °C utiliza uma mistura água/etanol mantida na temperatura de 15 °C. É utilizado para: (i) resfriar a corrente de CO₂ antes que a mesma entre na bomba de alta pressão e (ii) circular na camisa de refrigeração em volta do cilindro da bomba mantendo o CO₂ à temperatura constante. O mesmo foi calibrado no laboratório da CTJ

(credenciado junto à CGCRE/Inmetro) com certificado de calibração número T-0369/11 (Anexo II).

- BS Bomba de Alta Pressão (Bomba Seringa ISCO modelo 260D): possui um cilindro com volume de 260 mL, pressão de operação máxima de 500 bar, resolução de ± 0,1 bar e fluxo máximo de 107 mL/min. Permite a quantificação do volume de CO₂ deslocado do cilindro da bomba para a célula de equilíbrio. Pode ser operada a pressão constante além de permitir a programação do gradiente a ser utilizado, definindo-se: pressão inicial, pressão final e taxa de variação da pressão.
- CE Célula de equilíbrio para uso com ultra-som (Figura 2.2): construída em aço inox 304. Composta de duas partes: (i) parte frontal de geometria plana de forma a permitir que os dois transdutores de ultra-som fiquem localizados perfeitamente alinhados em duas paredes planas, paralelas e opostas e (ii) parte cilíndrica com um pistão móvel no seu interior responsável pela pressurização e despressurização da mistura; esta parte da célula possui um limitador (dispositivo de segurança) no seu interior junto da conexão à parte frontal que impede que o pistão passe para a parte frontal. Possui três entradas, localizadas na parte superior da parte frontal: (i) sensor de temperatura, (ii) injeção de CO₂ e (iii) transdutor de pressão e dois visores de safira (um superior para iluminação e outro frontal para captura da imagem do interior da célula).

Figura 2.2 - Célula de equilíbrio para US

- Placa Geradora de Sinais (MATEC Pulser/Receiver card SR9000) instalada no microcomputador, faz a integração entre a geração dos pulsos através da excitação do transdutor e de um circuito temporizador.
- Par de transdutores de US da General Electric modelo MB4S 57749 freqüência de até 4 MHz e diâmetro de 10 mm acoplados externamente a célula através de uma rosca, são posicionados por fora de uma parede de aço inox entre os quais é colocado um gel acoplante (General Electric Multi Range Coupling Paste ZGT Order No. 50472). O transdutor de ultra-som emissor (T_US_E) recebe o sinal elétrico vindo do computador transformando-o em uma onda de ultra-som na freqüência de trabalho. O transdutor de ultra-som receptor (T_US_R) recebe a onda ultrassônica que se propagou através do fluido em estudo e a transforma em sinal elétrico. Ambas as ondas são analisadas em tempo real no osciloscópio. A distância entre os dois transdutores de ultra-som é fixa e conhecida e corresponde ao caminho da onda ultrassônica.
- Osciloscópio digital Tektronix modelo 1001B (Figura 2.3) osciloscópio digital com dois canais. É utilizado para monitorar as ondas acústicas transmitidas e recebidas nos dois canais separadamente e simultaneamente. O atraso de tempo entre o início da transmissão do pulso e o início do recebimento do sinal no transdutor receptor é utilizado para o cálculo da velocidade do som no fluido nas condições de temperatura e pressão estabelecidas. O disparador externo do osciloscópio monitora a placa geradora de sinais de forma a garantir o sincronismo das ações.

Figura 2.3 - Osciloscópio Tektronix modelo 1001B

- Visores de Safira (*Swiss Jewel Company*): a célula de equilíbrio possui uma janela frontal (Modelo nº W51.00 com diâmetro = 1,998/2,002 in e espessura = 0,245/0,255 in) para a visualização do interior da célula e uma janela superior, para a iluminação do interior da célula (modelo nº W26.90 com diâmetro = 0,995/1,005 in e espessura = 0,370/0,380 in).
- AM Placa de Agitação Magnética (IKA modelo C-MAG HS 7): o sistema de agitação é utilizado para que o equilíbrio seja atingido mais rapidamente. Uma pequena barra magnética com anel central e coberta com teflon, de 8 x 25 mm, é inserida no interior da célula. A mesma é acionada pela placa de agitação.
- SV Sistema de vácuo composto por: Kitasato de 1 litro e Bomba de Vácuo (EXIPUMP) com capacidade de 37 L/min e vácuo máximo de 600 mbar. Este equipamento é utilizado para retirar o ar contido dentro da célula de equilíbrio.
- VCL Válvula de Abertura do Cilindro: quando aberta permite o fluxo do CO₂ do cilindro para a bomba seringa.
- IP Indicador de pressão do cilindro de CO₂.
- VEB Válvula de Entrada da Bomba válvula agulha High Pressure 15-11AF2: sua abertura permite o fluxo do CO₂ armazenado no cilindro para dentro da bomba seringa.

- VVU Válvula de Via Única Check Valve High Pressure SS-CHS2: a função desta válvula é permitir o fluxo em apenas um sentido, tendo sido colocada na entrada da bomba seringa por questão de segurança, evitando que as altas pressões de trabalho fossem aplicadas na "cabeça" do cilindro de armazenamento de CO₂.
- VSB Válvula de Saída da Bomba válvula agulha High Pressure 15-11AF2: sua abertura permite o fluxo de CO₂ da bomba seringa até a entrada do quadro de válvulas.
- VQ Válvula Quadro válvula agulha Autoclave Engineers MVE2001: sua abertura permite o fluxo de CO₂ da bomba até as válvulas de injeção: da célula, do pistão e de saída.
- VP Válvula Pistão válvula agulha Autoclave Engineers MVE1001: através da manipulação desta válvula o CO₂ é alimentado para movimentar o pistão e pressurizar o sistema.
- VC Válvula Célula válvula agulha Autoclave Engineers MVE1001: utilizada no carregamento da célula. Esta válvula garante uma manipulação precisa da vazão de alimentação, permitindo uma alta confiabilidade na quantidade de CO₂ transferida para a célula.
- VS Válvula Saída válvula agulha Autoclave Engineers MVE2001: utilizada para pressurizar o sistema até as válvulas micrométrica e de vácuo.
- VM Válvula Micrométrica SS-22RS4: utilizada para despressurizar o sistema quando a pressão fica abaixo da pressão mínima de operação da bomba, geralmente 40 bar com CO₂. Esta válvula garante uma manipulação precisa da vazão de saída do pistão.
- VV Válvula Vácuo válvula agulha Autoclave Engineers MVE2001: utilizada para fazer vácuo na parte frontal da célula.
- P Sensor de Pressão (GEFRAN modelo TK-E-1-E-B35D-M-V): transmissor de pressão modelo TK, pressão de trabalho de 0 a 350 bar, sinal de saída de 4 a 20 mA e erro de 0,25% e resolução ± 0,1 bar. O sensor de pressão foi colocado diretamente na célula evitando a ocorrência de volume morto. O mesmo foi calibrado no laboratório da

CTJ (credenciado junto à CGCRE/Inmetro) com certificado de calibração número P-0468/11 (Anexo II).

- T Sistema de aquecimento/controle e indicação de temperatura, calibrado no laboratório da CTJ (credenciado junto à CGCRE/Inmetro) com certificado de calibração número T-0342/11 (Anexo II), composto de:
 - Fita de aquecimento (FISATOM Modelo 5 com 1,3 cm de espessura e 1,2 m de comprimento - 110 Volts) enrolada em volta da célula de equilíbrio responsável pelo aquecimento do sistema.
 - o Termopar tipo J (ECIL modelo MS11 TERMOPAR ISOL MINER COM POTE) - termopar de isolação mineral com pote, tipo "J", simples, haste em inox 316, Ø1,5mm, comprimento "U" = 100 mm, pote liso em inox, com rabicho flexível de comprimento "R" = 1500 mm) responsável pela medida da temperatura no interior da célula.
 - Indicador/Controlador de Temperatura Microprocessado (Coel Modelo K 49) de resolução ± 0,1 °C e Relé de Estado Sólido c/ Dissipadores responsáveis pela indicação da temperatura da célula e controle do aquecimento através da fita de aquecimento.
- Webcam (Modelo Logitech Quickcam Orbit AF) utilizada para visualização do interior da célula. Esta webcam, com resolução HD (High Definition), está ligada a um computador onde a visualização do experimento é realizada em tempo real e gravada para futura análise.
- Módulo de aquisição de dados LR Informática Industrial modelo M-7019R - ligado ao microcomputador, faz a aquisição dos dados de pressão e temperatura através do software EZ Data Logger.

A Figura 2.4 apresenta uma foto dos principais equipamentos do aparato experimental utilizado.

Figura 2.4 - Foto do aparato experimental

2.2.1.2 Procedimento experimental

O procedimento experimental consiste das seguintes etapas:

- Em função da composição da mistura a ser estudada, uma determinada quantidade de cada hidrocarboneto é pesada em balança analítica (Toledo - AR2140, ± 0,0001 g) devidamente calibrada pela CTJ com certificado de calibração número M-0059/11 (Anexo II).
- 2. Inicia-se o preparo da célula alimentando-a com a mistura líquida previamente preparada. O volume interior da célula é preenchido até sua totalidade a fim de garantir a composição da mistura na célula, ou seja, a retirada do ar presente. Após fechamento da célula os dois transdutores de US são conectados por um gel acoplante, externamente à sua parede, através de uma rosca.
- O conteúdo da célula é mantido sob agitação através da ação do agitador magnético e placa de agitação magnética ligada na velocidade 1 (baixa).
- 4. Inicia-se o aquecimento da célula até a temperatura de estudo através sistema de aquecimento/controle e indicação de temperatura. O
aquecimento é feito sob agitação, com a ajuda de barra de agitação magnética e placa de agitação magnética a fim de garantir homogeneidade de temperatura. Verifica-se a pressão interna da célula. Caso haja alguma alteração, em relação à pressão ambiente, a mesma é corrigida para o valor de pressão ambiente através do descarte de excesso da mistura.

- 5. O sinal de US é emitido pela placa geradora de sinais SR9000 instalada no microcomputador. Este sinal é dividido em dois, um ligado ao TD_US_E, sendo este responsável pela emissão da onda de ultra-som. A segunda saída é ligada ao CH2 do osciloscópio.
- 6. O sinal da onda de US que atravessa o meio é captado pelo TD_US_R e "lida" no CH1 do osciloscópio. O *trigger* do osciloscópio é configurado de tal forma que o sinal do CH2 dispara o início da leitura do CH1. Desta forma, no mesmo instante que o sinal é emitido pela placa SR9000, o CH1 começa a registrar o sinal captado pelo segundo transdutor de ultra-som.
- 7. Feita a medição do tempo de voo da onda ultrassônica no meio a pressão atmosférica (três vezes), inicia-se a medição nas demais pressões. Utilizando a bomba seringa, o sistema é pressurizado com injeção de CO₂ na parte traseira da célula, ou seja, movimentando o pistão, e aumentando a pressão do sistema.
- 8. Após a estabilização da pressão, os itens 5 e 6 são repetidos. O sinal de ultra-som captado no osciloscópio é transferido por meio de um *pendrive* para um computador. Os dados retirados do osciloscópio são analisados em planilha de eletrônica determinando-se o tempo de voo da onda de US no meio. Esta etapa é repetida três vezes.
- Para cada isoterma em estudo, uma nova pressão é estabelecida para a medida do tempo de voo da onda ultrassônica no meio e a etapa 8 é refeita.
- O procedimento é repetido em uma faixa de pressão de 1 bar até 250 bar em incrementos de 50 bar.
- 11. O sistema é despressurizado, ajustado para a próxima temperatura de estudo e o procedimento repetido.

2.2.2 Medida da massa específica de misturas líquidas (CAVALCANTE, 2010)

A massa específica dos sistemas estudados foi determinada experimentalmente no densímetro digital da marca Anton Paar, modelo DMA 4500 instalado na Escola de Química da UFRJ. O densímetro digital (Figura 2.5) é constituído de um tubo de amostra oscilante em forma de U e um sistema para excitação eletrônica, freqüência contínua e visor. O equipamento fornece medidas precisas da temperatura da amostra durante a medição e controla a temperatura da mesma.

As medidas foram realizadas segundo a norma ASTM D 4052 sempre em triplicata, calculando-se a média e o desvio absoluto referente a cada mistura.

Figura 2.5 - Densímetro Anton Paar DMA 4500

3 RESULTADOS EXPERIMENTAIS

São apresentados a validação das metodologias experimentais e os resultados obtidos tanto para a velocidade do ultra-som nas temperaturas de 40, 50 e 60 °C e pressão na faixa de 1 a 250 bar em intervalo de 50 bar, como os valores da massa específica de cada sistema nas temperaturas de 40, 50 e 60 °C e pressão atmosférica. A composição de cada sistema avaliado é apresentada na Tabela 3.1. Além destes sistemas, também foi realizada a medida da velocidade do som em uma amostra de condensado de petróleo cedida para estudo pela PETROBRAS.

Sistema		Hidrocarbone	eto (% molar)	
Sistema	n-decano	n-hexadecano	decalina	tetralina
1	100	-	-	-
2	-	100	-	-
3	-	-	100	-
4	-	-	-	100
5	50	50	-	-
6	-	-	50	50
7	-	50	50	-
8	50	-	-	50
9	50	-	50	-
10	-	50	-	50
11	25	75	-	-
12	75	25	-	-
13	33,3	33,3	33,3	-
14	-	33,3	33,3	33,3
15	33,3	-	33,3	33,3
16	33,3	33,3	-	33,3
17	25	25	25	25

Sistemas	Hidrocarboneto (% molar)				
Oisteinas	n-decano	n-hexadecano	decalina	tetralina	
18	25	-	75	-	
19	25	-	-	75	
20	-	-	25	75	
21	-	25	75	-	
22	-	25	-	75	
23	75	-	25	-	
24	75	-	-	25	
25	-	-	75	25	
26	-	75	25	-	
27	-	75	-	25	

Tabela 3.1 (Continuação)

3.1 Validação do experimento de determinação da velocidade do ultra-som

A partir da Equação 2.1, para a determinação experimental da velocidade de propagação do ultra-som em misturas líquidas é necessário conhecer o tempo de voo da onda de ultra-som na amostra em análise.

A célula onde o experimento é conduzido possui parede de aço espessa para suportar as elevadas pressões do teste. Desta forma, o tempo de voo medido (t_{m}) é a soma entre o tempo de voo na amostra (t_{am}) e o tempo de voo nas paredes de aço da célula (t_{p}) . A Figura 3.1 apresenta as dimensões da célula de equilíbrio, tendo sido determinadas com um paquímetro de precisão de 0,05 mm.

Figura 3.1 - Vista frontal e dimensões da célula de equilíbrio

De acordo com o aparato experimental montado, só é possível a determinação de t_m . O tempo de voo nas paredes de aço foi determinado comparando-se dados de velocidade do som na água destilada medidos na célula de equilíbrio, com dados da literatura disponibilizados por Wilson (1959).

3.1.1 Determinação experimental do tempo de voo nas paredes de aço

Após o preenchimento da célula com água destilada, foram determinados os tempos de voo nas temperaturas de 40, 50 e 60 °C e pressões de 1, 50, 100, 150, 200 e 250 bar. Os resultados obtidos no presente trabalho foram então comparados aos reportados por Wilson (1959), permitindo a determinação do tempo de voo da onda ultrassônica nas paredes de aço. Os resultados são apresentados na Tabela 3.2.

Temperatura (°C)	t_p (s)
40	4,857 · 10 ⁻⁶
50	4,912 · 10 ⁻⁶
60	4,952 · 10 ⁻⁶

Tabela 3.2 - Tempo de voo da onda de US nas paredes de aço

3.1.2 Determinação experimental da velocidade do ultra-som em hidrocarbonetos

Para validação do aparato experimental bem como da metodologia implementada foram reproduzidos dados disponíveis na literatura aberta para o n-decano e o n-hexadecano previamente publicados por Ye et al. (1990) e para o sistema composto da mistura formada por n-decano e n-hexadecano previamente publicado por Khasanshin et al. (2009).

Os resultados obtidos no presente estudo comparativamente aos reportados na literatura são apresentados nas Tabelas 3.3 a 3.9 e Figuras 3.2 a 3.6, verificandose a concordância entre os mesmos, a partir dos valores encontrados para os desvios relativos (Equação 3.1), inferiores a 0,1%. Segundo Meng et al. (2006) a técnica do tempo de voo não utiliza a análise de ecos múltiplos, empregada na técnica pulso-eco, que pode melhorar a precisão das medidas de velocidade. Os valores positivos e negativos encontrados para o desvio absoluto (Equação 3.2) indicam que a metodologia empregada não apresenta erros sistemáticos.

$$Desvio \ relativo = \left| \frac{v_{iiteratura} - v_{presente \ estudo}}{v_{iiteratura}} \right| \cdot 100 \tag{3.1}$$

 $Desvio\ absoluto = v_{presente\ estudo} - v_{literatura} \tag{3.2}$

	Velocidade (m/s)		Desvio	
Pressao (bor)	Ye et al.	Presente	Absoluto	Relativo
(bar)	(1990)	estudo	(m/s)	(%)
1	1176,3	1177,3	1,0	0,09
50	1209,1	1208,6	-0,5	0,04
100	1242,2	1243,6	1,4	0,11
150	1273,1	1274,3	1,2	0,09
200	1301,1	1303,1	2,0	0,15
250	1328,3	1327,3	-1,0	0,08
			Média	0,09

Tabela 3.3 - Velocidade do US para o n-decano - T = 40 $^{\circ}$ C

Tabela 3.4 - Velocidade do US para o n-decano - T = 60 $^{\rm o}{\rm C}$

Prossão	Velocidade (m/s)		Desvio	
(bor)	Ye et al.	Presente	Absoluto	Relativo
(bar)	(1990)	estudo	(m/s)	(%)
1	1099,1	1099,4	0,3	0,03
50	1134,9	1134,3	-0,6	0,05
100	1170,5	1171,5	1,0	0,09
150	1203,2	1204,4	1,2	0,10
200	1234,3	1234,2	-0,1	0,01
250	1263,7	1264,3	0,6	0,05
			Média	0,05

Figura 3.2 - Velocidade do US vs. Pressão para o n-decano

Droccão	Velocidade (m/s)		Desvio	
(bor)	Ye et al.	Presente	Absoluto	Relativo
(Dal)	(1990)	estudo	(m/s)	(%)
1	1283,0	1283,0	0,0	0,00
50	1311,9	1311,0	-0,9	0,07
100	1339,8	1340,3	0,5	0,04
150	1366,4	1366,0	-0,4	0,03
200	1391,4	1391,3	-0,1	0,01
250	1416,0	1416,3	0,3	0,02
			Média	0,03

Tabela 3.5 - Velocidade do US para o n-hexadecano - T = $40 \degree C$

Prossão	Velocidade (m/s)		Desvio	
riessau (hor)	Ye et al.	Presente	Absoluto	Relativo
(bar)	(1990)	estudo	(m/s)	(%)
1	1212,1	1211,2	-0,9	0,07
50	1242,5	1242,3	-0,2	0,02
100	1272,6	1272,9	0,3	0,02
150	1300,7	1300,5	-0,2	0,02
200	1327,4	1328,1	0,7	0,05
250	1353,6	1354,5	0,9	0,07
			Média	0,04

Tabela 3.6 - Velocidade do US para o n-hexadecano - T = $60 \degree C$

Figura 3.3 - Velocidade do US vs. Pressão para o n-hexadecano

Dressão	Velocidade (m/s)		Desvio	
(bor)	Khasanshin	Presente	Absoluto	Relativo
(bar)	et al. (2009)	estudo	(m/s)	(%)
1	1166,6	1166,1	-0,5	0,04
100	1231,8	1231,1	-0,7	0,06
200	1290,7	1290,4	-0,3	0,02
			Média	0,04

Tabela 3.7 - Velocidade do US para o sistema n-decano (50% molar) / n-hexadecano (50% molar) - T = 60 $^{\circ}$ C

Figura 3.4 - Velocidade do US vs. Pressão para o sistema n-decano (50% molar) / n-hexadecano (50% molar)

Dragaão	Velocidade (m/s)		Desvio	
(hor)	Khasanshin	Presente	Absoluto	Relativo
(bar)	et al. (2009)	estudo	(m/s)	(%)
1	1191,3	1191,2	-0,1	0,01
100	1254,4	1254,8	0,4	0,03
200	1311,4	1310,7	-0,7	0,05
			Média	0,03

Tabela 3.8 - Velocidade do US para o sistema n-decano (25% molar) / n-hexadecano (75% molar) - T = 60 $^{\circ}$ C

Figura 3.5 - Velocidade do US vs. Pressão para o sistema n-decano (25% molar) / n-hexadecano (75% molar)

	Velocidade (m/s)		Desvio	
Pressão	Khasanshin	Presente	Absoluto	Relativo
(bar)	et al. (2009)	estudo	(m/s)	(%)
1	1136,7	1136,4	-0,3	0,03
100	1204,7	1204,1	-0,6	0,05
200	1265,4	1265,0	-0,4	0,03
			Média	0,04

Tabela 3.9 - Velocidade do US para o sistema n-decano (75% molar) / n-hexadecano (25% molar) - T = 60 °C

Figura 3.6 - Velocidade do US vs. Pressão para o sistema n-decano (75% molar) / n-hexadecano (25% molar)

3.2 Validação do equipamento de medida de massa específica

Com o objetivo de avaliar a precisão e reprodutibilidade das medidas realizadas no densímetro, foram realizados experimentos preliminares com substâncias de massa específica conhecida. Os resultados podem ser observados na Tabela 3.10 demonstrando a adequação do equipamento e da metodologia empregada.

Subatância	Massa específica (Desvio absoluto	
Substancia	DIPPR ¹	Presente estudo	(g/cm ³)
n-decano	$0,73021 \pm 0,00730$	0,73008	1,3 .10 ⁻⁴
n-hexadecano	$0,77295 \pm 0,00773$	0,77340	4,5·10 ⁻⁴
1 –	nta: Danaa da dadaa Di		

Tabela 3.10 - Massas específicas do n-decano e n-hexadecano

Fonte: Banco de dados DIPPR (DIADEM Public v. 1.2)

3.3 Resultados das medidas de velocidade do ultra-som em meios líquidos

De acordo com a metodologia apresentada no Capítulo 2, foram medidas as velocidades do som dos sistemas apresentados na Tabela 3.1 e para a amostra de condensado nas temperaturas de 40, 50 e 60 °C e pressões de 1, 50, 100, 150, 200 e 250 bar.

As tabelas com os resultados detalhados de velocidade do ultra-som são apresentadas no Anexo IV. Para todos os sistemas avaliados observa-se uma diminuição da velocidade do ultra-som com o aumento da temperatura a pressão constante e um aumento da velocidade do ultra-som com o aumento da pressão para cada isoterma.

Os resultados para o n-decano são apresentados na Figura 3.7 e representam o comportamento qualitativo da velocidade do ultra-som para todos os sistemas avaliados. Para cada isoterma, dentro da faixa de pressão avaliada, a velocidade do ultra-som apresenta comportamento aproximadamente linear.

Figura 3.7 - Velocidade do US vs. Pressão para o n-decano

3.4 Resultados das medidas de massa específica em meios líquidos

Conforme a metodologia apresentada no Capítulo 2, foram medidas as massas específicas dos sistemas apresentados na Tabela 3.1 e para a amostra de condensado nas temperaturas de 40, 50 e 60 °C e pressão atmosférica.

Os resultados detalhados obtidos para a massa específica são apresentados na Tabela 3.11. Para todos os sistemas avaliados observa-se uma diminuição da massa específica com o aumento da temperatura à pressão atmosférica.

Sistema	Mas	sa específica (g/	cm ³)
Sistema	40 °C	50 °C	60 °C
1	0,71497	0,70730	0,69957
2	0,75958	0,75265	0,74574
3	0,86544	0,85790	0,85034
4	0,95377	0,94584	0,93788
5	0,74086	0,73365	0,72644

Tabela 3.11 - Massas específicas dos sistemas avaliados

Sistema	Mas	ssa específica (g/	cm ³)
JISICIIIA	40 °C	50 °C	60 °C
6	0,90603	0,89831	0,89056
7	0,79793	0,79088	0,78380
8	0,81768	0,80590	0,79416
9	0,78317	0,77565	0,76792
10	0,82359	0,81634	0,80907
11	0,75147	0,74448	0,73742
12	0,73007	0,72272	0,71529
13	0,77123	0,76404	0,75680
14	0,83172	0,82447	0,81720
15	0,82941	0,82168	0,81399
16	0,78738	0,78005	0,77268
17	0,80382	0,79648	0,78910
18	0,82464	0,81714	0,80958
19	0,87843	0,87061	0,86276
20	0,92851	0,92066	0,91280
21	0,82468	0,81746	0,81024
22	0,87608	0,86857	0,86104
23	0,74802	0,74039	0,73273
24	0,76098	0,75327	0,74550
25	0,88520	0,87760	0,86997
26	0,77590	0,76896	0,76197
27	0,78704	0,77999	0,77294
Amostra de condensado	0,74376	0,73723	0,72918

Tabela 3.11 (Continuação)

4 CÁLCULO DOS COEFICIENTES DE COMPRESSIBILIDADE

Este capítulo apresenta a descrição da metodologia adotada para o cálculo dos coeficientes de compressibilidade, resultados obtidos e discussão dos resultados.

4.1 Fundamentos

Conforme apresentado no Capítulo 1, a velocidade do ultra-som pode ser correlacionada a diversas propriedades termofísicas por meio do coeficiente de compressibilidade isentrópica k_{c} definido na Equação 1.5:

$$k_s = \frac{1}{\rho u^2}$$
 (1.5)

As relações termodinâmicas que correlacionam este coeficiente aos coeficientes de compressibilidade isotérmica e isentálpica são apresentadas nas Equações 4.1 e 4.2, respectivamente (DARIDON et al., 1998b; YE et al. 1992a):

$$k_T = k_S + \frac{T\alpha^2}{\rho C_P} \qquad (4.1)$$

$$k_{H} = k_{S} + \frac{\alpha}{\rho C_{p}} \qquad (4.2)$$

onde C_p é a capacidade calorífica a pressão constante e α representa o coeficiente isobárico de expansão térmica, definido de acordo com a Equação 4.3 (DARIDON et al., 1998b):

$$\alpha = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p \qquad (4.3)$$

Substituindo o produto ρk_s por $1/u^2$ na Equação 4.1, obtém-se uma relação que pode ser utilizada para expressar a variação da massa específica com a pressão, em um processo isotérmico, em termos de velocidade do ultra-som como descrito pela Equação 4.4 (DARIDON et al., 1998b):

$$\left(\frac{\partial \rho}{\partial P}\right)_{T} = \frac{1}{u^{2}} + \frac{T\alpha^{2}}{C_{P}} \qquad (4.4)$$

que, integrada em relação à pressão, fornece a Equação 4.5 que relaciona massa específica e velocidade do som (DARIDON et al., 1998b):

$$\rho(P,T) = \rho(P_0,T) + \int_{P_0}^{P} \frac{1}{u^2} dP + T \int_{P_0}^{P} \frac{a^2}{C_p} dP \qquad (4.5)$$

onde P₀ representa a pressão atmosférica.

A massa específica com pressão e temperatura é definida por uma soma de três termos. O primeiro termo, que corresponde à maior contribuição, pode ser obtido diretamente pela medida da massa específica à pressão atmosférica. O segundo termo, que corresponde à contribuição aditiva predominante, pode ser avaliado diretamente através da velocidade do som nas isotermas estudadas. O terceiro termo, que numericamente representa apenas uma pequena porcentagem do segundo termo, pode ser calculado iterativamente pelo método de Davis e Gordon (1967), no qual o comportamento do parâmetro C_p com a pressão é descrito pela relação termodinâmica representada pela Equação 4.6 (DARIDON et al., 1998b):

$$C_{p}(P,T) = C_{p}(P_{0},T) - \int_{P_{0}}^{P} T[\alpha^{2} + (\partial \alpha / \partial T)_{p}] / \rho \, dP \qquad (4.6)$$

onde P₀ corresponde a pressão atmosférica. Desta forma, torna-se possível através deste método, determinar a massa específica em domínios de pressão acessíveis através do uso do ultra-som.

Como uma estimativa inicial dos dados de massa específica em pressões elevadas, considera-se o coeficiente de expansão térmica e a capacidade calorífica como constantes em relação à pressão. Desta forma, a Equação 4.5 pode ser

aproximada pela Equação 4.7 (DARIDON et al., 1998b):

$$\rho(P,T) = \rho(P_0,T) + \int_{P_0}^{P} \frac{1}{u^2} dP + \frac{T\alpha^2}{C_{\mu}} (P - P_0) \qquad (4.7)$$

Ainda segundo Daridon et al. (1998b), os dados de velocidade do ultra-som podem ser correlacionados, com um alto grau de precisão e sem erros sistemáticos, por uma equação racional com o denominador limitado ao primeiro grau, para descrever o comportamento do termo $1/u^2$ de acordo com a Equação 4.8:

$$\frac{1}{u^2} = \frac{A + BP + CP^2 + DP^3}{E + FP}$$
(4.8)

onde os coeficientes A e E dependem da temperatura:

$$A = A_0 + A_1 T + A_2 T^2 + A_3 T^3 \qquad (4.9)$$
$$E = 1 + E_1 T \qquad (4.10)$$

A forma simples do denominador da Equação 4.8 permite que a integral de $1/u^2$ possa ser representada pela forma analítica da Equação 4.11:

$$\int \frac{1}{u^2} dP = P\left(\frac{B}{F} - \frac{CE}{F^2} + \frac{DE^2}{F^3}\right) + \frac{P^2}{2}\left(\frac{C}{F} - \frac{DE}{F^2}\right) + \frac{P^3}{3}\left(\frac{D}{F}\right) + \left(\frac{A}{F} - \frac{BE}{F^2} + \frac{CE^2}{F^3} - \frac{DE^3}{F^4}\right)\ln(E + FP)$$
(4.11)

que representa a maior variação da massa específica em relação à pressão.

Segundo González-Salgado et al. (2006), a massa específica obtida através deste método pode ser correlacionada a uma equação do tipo Tait modificada, Equação 4.12:

$$\rho(P,T) = \frac{1}{\frac{1}{\rho(P_0,T)} + AA \cdot \ln\left(\frac{P+BB}{P_0+BB}\right)}$$
(4.12)

onde:

$$AA = AA_0 + AA_1T + AA_2T^2$$
 (4.13)
 $BB = BB_0 + BB_1T + BB_2T^2$ (4.14)

que reproduz os valores de massa específica com desvios menores do que 0,1%.

Como apresentado no Capítulo 3, as medidas ultrassônicas foram realizadas em intervalos regulares de pressão e temperatura, fornecendo uma representação do comportamento isobárico e isotérmico da velocidade do ultra-som no fluido. Todos os sistemas são formados por uma única fase líquida à pressão atmosférica, e as medidas foram realizadas de 1 bar até 250 bar, em intervalos de 50 bar nas temperaturas de 40, 50 e 60 °C.

Os dados de velocidade do ultra-som obtidos podem ser utilizados para determinar massa específica e vários coeficientes termoelásticos sob pressão. Contudo, como o método é baseado na integração de $(\partial \rho / \partial P)_{r}$, é essencial que se conheça o comportamento da massa específica em relação à temperatura em uma pressão de referência. Por esta razão, foram realizadas medidas de massa específica a pressão atmosférica com o densímetro Anton Paar (modelo DMA 4500). Para cada sistema, medidas de massa específica foram realizadas nas temperaturas

de 40, 50 e 60 °C a pressão atmosférica. Os resultados foram ajustados em um polinômio de segundo grau expresso pela Equação 4.15:

$\rho_{atm} = \rho_0 + \rho_1 T + \rho_2 T^2 \qquad (4.15)$

A capacidade calorífica à pressão atmosférica (C_{Potem}) dos hidrocarbonetos puros pode ser encontrada no banco de dados DIPPR (*DIADEM Public v. 1.2*). Para C_{Patem} de mistura de hidrocarbonetos, foi considerada a média molar dos C_{Patem} de cada hidrocarboneto puro. Segundo Daridon et al. (1998b) o termo dependente da capacidade calorífica representa apenas uma pequena porcentagem da massa específica, desta forma esta aproximação não exerce influência significativa sobre o valor final da massa específica. Os resultados foram ajustados a um polinômio de segundo grau descrito pela Equação 4.16:

$C_{Patm} = C_{P0} + C_{P1}T + C_{P2}T^2 \qquad (4.16)$

4.2 Metodologia de cálculo dos coeficientes

Com o objetivo de se calcular as propriedades termofísicas dos sistemas estudados, tomou-se como base uma modificação das metodologias propostas por Davis e Gordon (1967) e Daridon et al. (1998b), proposta por González-Salgado et al. (2006). Para tanto, foi escrita uma rotina em MATLAB[®] para o cálculo dos coeficientes de compressibilidade isentrópica, isotérmica e isentálpica. O algoritmo de cálculo da metodologia é apresentado na Figura 4.1.

As Tabelas 4.1 e 4.2 apresentam propriedades de interesse dos compostos utilizados nas corridas experimentais: pressão crítica (P_c), temperatura crítica (T_c), volume crítico (V_c), massa molar (*MM*), fator acêntrico (w) e capacidade calorífica (C_p).

Tabela 4.1 - Propriedades dos componentes puros¹

Componente	₽ _ (bar)	<i>т_с</i> (К)	v ℯ (m³/kmol)	<i>MM</i> (g/mol)	w
n-decano	21,1	617,7	0,6	142,285	0,49233
n-hexadecano	14,1	723	0,944	226,446	0,7174
<i>cis</i> -decalina	32	703,6	0,48	138,253	0,27096
<i>trans</i> -decalina	32	687	0,48	138,253	0,2993
tetralina	36,5	720	0,944	132,205	0,33526

¹ Fonte: Banco de dados DIPPR (*DIADEM Public v. 1.2*)

Tabela 4.2 - Capacidades caloríficas dos componentes puros¹

Componente		<i>C_P</i> (kJ/kg.⁰C)	
Componente	40 °C	50 °C	60 °C
n-decano	2,2626	2,2967	2,3323
n-hexadecano	2,2528	2,2823	2,3124
<i>cis</i> -decalina	1,7453	1,7888	1,8333
<i>trans</i> -decalina	1,7232	1,7678	1,8129
tetralina	1,6971	1,7315	1,7660

¹ Fonte: Banco de dados DIPPR (*DIADEM Public v. 1.2*)

Para a determinação das propriedades da amostra de condensado de petróleo fornecido pela PETROBRAS foi utilizado o *software Unisim Design R400*. Para tanto, os dados da curva de destilação obtida pela metodologia ASTM D2887 estendida (Tabela 4.3) foram inseridos no ambiente de caracterização de óleo tendo sido selecionada a equação de estado de Peng-Robinson como pacote termodinâmico. Os resultados das propriedades para a amostra de condensado são apresentados na Tabela 4.4.

% Massa	Ponto de	% Massa	Ponto de
recuperada	ebulição (°C)	recuperada	ebulição (°C)
5	22,2	55	180,4
10	50,2	60	204,0
15	68,4	65	228,8
20	81,6	70	254,2
25	97,8	75	280,0
30	102,0	80	308,8
35	117,2	85	344,2
40	127,4	90	387,2
45	143,6	95	445,8
50	161,8	99	537,0

Tabela 4.3 - Curva de destilação para a amostra de condensado (metodologia ASTM D2887 estendida)

Amostra de condensado				
P _c (bar)	44,61			
T_{ε} (K)	650,95			
V _a (m ³ /kmol)	0,5221			
MM (g/mol)	129,9			
w	0,3987			
<i>C</i> ,₅ (kJ/kg.°C), 40 °C	2,043			
<i>C</i> _₽ (kJ/kg.°C), 50 °C	2,091			
<i>C</i> _₽ (kJ/kg.°C), 60 °C	2,139			

Tabela 4.4 - Propriedades da amostra de condensado¹

¹ Calculadas através do *software Unisim Design R400*

4.3 Validação da metodologia de cálculo dos coeficientes

Para validação da metodologia de cálculo proposta foram reproduzidos dados da literatura disponibilizados por González-Salgado et al. (2006) para o sistema 3-pentanol. Os resultados mostraram-se de acordo com os disponíveis na literatura, apresentando desvios inferiores a 0,01% para o coeficiente de compressibilidade isentrópica (Figura 4.2) e 0,03% para o coeficiente de compressibilidade isotérmica (Figura 4.3).

Figura 4.3 - Comparativo entre os coeficientes de compressibilidade isotérmica calculados e disponíveis na literatura para o 3-pentanol

4.4 Resultados

De acordo com a metodologia apresentada neste capítulo, foram calculados os coeficientes de compressibilidade isentrópica, isotérmica e isentálpica para os sistemas apresentados na Tabela 3.1 e para a amostra de condensado nas temperaturas de 40, 50 e 60 °C e pressões de 1, 50, 100, 150, 200 e 250 bar. As tabelas com os resultados detalhados dos coeficientes de compressibilidade são apresentadas no Anexo III. Para todos os sistemas avaliados observa-se um aumento dos coeficientes com o incremento da temperatura a pressão constante e uma diminuição dos coeficientes com o aumento da pressão para cada isoterma. Os resultados para o n-decano são apresentados nas Figuras 4.4 a 4.6 e representam o comportamento qualitativo dos coeficientes de compressibilidade para todos os sistemas avaliados.

Figura 4.4 - Compressibilidade isentrópica para o n-decano

Figura 4.5 - Compressibilidade isotérmica para o n-decano

Figura 4.6 - Compressibilidade isentálpica para o n-decano

5 AVALIAÇÃO DE MODELOS TERMODINÂMICOS

A utilização de equações de estado na caracterização de fluidos no estado gasoso e/ou líquido tem sido assunto de interesse para muitos pesquisadores nas últimas décadas. Melhorar a recuperação de produtos de interesse em reservas naturais, através da predição do comportamento evolutivo da reserva durante a produção, requer modelos termodinâmicos cada vez mais precisos. Como conseqüência, novas equações foram propostas ao longo dos anos para alcançar este objetivo, como por exemplo, as equações de Carnahan-Starling (CARNAHAN e STARLING, 1970), Soave-Redlich-Kwong (SOAVE, 1972), Lee-Kesler (LEE e KESLER, 1975), Peng-Robinson (PENG e ROBINSON, 1976), Patel-Teja (PATEL e TEJA, 1982), Adachi-Lu-Sugie (ADACHI et al., 1983), entre outras. Esta lista é, na verdade, um indicativo da dificuldade enfrentada na busca de uma formulação satisfatória para a descrição do equilíbrio líquido-vapor e predição das principais propriedades termofísicas (massa específica, compressibilidade, calor específico, expansão térmica, entalpia, etc.) de fluidos (YE et al., 1992a).

5.1 Equações de Estado

A escolha das equações de estado Peng-Robinson (PENG e ROBINSON, 1976) e Lee-Kesler (LEE e KESLER, 1975) selecionadas para o estudo baseou-se nos resultados disponíveis na literatura aberta e apresentados na revisão bibliográfica.

5.1.1 Equação de Estado de Peng-Robinson

A equação de estado cúbica de Peng-Robinson (1976) é representada pela Equação (5.1):

$$P = \frac{RT}{V-b} - \frac{a(T)}{V^2 + 2bV - b^2}$$
(5.1)

Para componentes puros a função a(T) é calculada a partir das propriedades críticas do componente e da temperatura (Equações 5.2 e 5.3). O parâmetro f_{W} é calculado a partir do fator acêntrico (Equação 5.4) e o parâmetro **b** é calculado a partir das propriedades críticas do componente (Equação 5.5).

$$a(T) = 0.45724 \frac{R^2 T_c^2}{P_o} a(T)$$
 (5.2)

$$\alpha(T) = \left[1 + fw\left(1 - \sqrt{\frac{T}{T_{\sigma}}}\right)\right]^2 \qquad (5.3)$$

$$fw = 0,37464 + 1,54226w - 0,26992w^2$$
(5.4)

$$b = 0.07780 \frac{RT_c}{P_c}$$
(5.5)

onde T_{g} é a temperatura crítica, P_{g} a pressão crítica e w é o fator acêntrico.

5.1.2 Equação de Estado de Lee-Kesler

A correlação de Lee-Kesler (1975) é uma aplicação do princípio de estados correspondentes envolvendo três parâmetros (T_{r} , P_{r} e w) e expressa o fator de compressibilidade Z de uma substância pura como função do fator acêntrico da substância pura (w) e os fatores de compressibilidade $Z^{(0)}$ do fluido simples e $Z^{(2)}$

do fluido de referência (respectivamente metano e n-octano) e escrita segundo a Equação (5.6):

$$Z = Z^{(0)} + \frac{w}{w^{(R)}} [Z^{(R)} - Z^{(0)}]$$
(5.6)

onde $w^{(R)} = 0,3978$. Os fatores de compressibilidade $z^{(0)}$ e $z^{(R)}$ são calculados pelas Equações 5.7 e 5.8:

$$Z^{(R)} = \frac{P_r V_r^{(R)}}{T_r} = \mathbf{1} + \frac{B}{V_r^{(R)}} + \frac{C}{\left(V_r^{(R)}\right)^2} + \frac{D}{\left(V_r^{(R)}\right)^5} + \frac{c_4}{T_r^3 \left(V_r^{(R)}\right)^2} \left(\beta + \frac{\gamma}{\left(V_r^{(R)}\right)^2}\right) \exp\left(\frac{-\gamma}{\left(V_r^{(R)}\right)^2}\right)$$
(5.7)

$$Z^{(0)} = \frac{P_{r}V_{r}^{(0)}}{T_{r}} = 1 + \frac{B}{V_{r}^{(0)}} + \frac{C}{\left(V_{r}^{(0)}\right)^{2}} + \frac{D}{\left(V_{r}^{(0)}\right)^{5}} + \frac{c_{4}}{T_{r}^{3}\left(V_{r}^{(0)}\right)^{2}} \left(\beta + \frac{\gamma}{\left(V_{r}^{(0)}\right)^{2}}\right) \exp\left(\frac{-\gamma}{\left(V_{r}^{(0)}\right)^{2}}\right)$$
(5.8)

onde P_r é a pressão reduzida e T_r é a temperatura reduzida. Os coeficientes B, C e D são calculados com as Equações 5.9 a 5.11:

$$B = b_1 - \frac{b_2}{T_r} - \frac{b_3}{T_r^2} - \frac{b_4}{T_r^3}$$
(5.9)

$$C = c_1 - \frac{c_2}{T_p} + \frac{c_3}{T_p^2} \tag{5.10}$$

$$D = d_1 + \frac{d_2}{T_r}$$
(5.11)

A Tabela 5.1 apresenta os parâmetros de Lee-Kesler para os fluidos simples e de referência.

Tabela 5.1 - Constantes de Lee-Kesler para as Equações 5.7 a 5.11

Constante	Fluido	Fluido de	Constante	Fluido	Fluido de
	simples	referência	Constante	simples	referência
<i>b</i> ₁	0,11811963	0,2026579	<i>c</i> ₃	0,0	0,016901
\boldsymbol{b}_2	0,265728	0,311511	<i>C</i> ₄	0,042724	0,041577
b_3	0,154790	0,027655	$d_1 imes 10^4$	0,155488	0,48736
b_4	0,030323	0,203488	$d_2 \times 10^4$	0,623689	0,0740336
<i>c</i> 1	0,0236744	0,0313385	β	0,65392	1,226
<i>c</i> ₂	0,0186984	0,0503618	γ	0,060167	0,03754

5.2 Regras de mistura

As equações de estado são adaptadas para uso em misturas através das regras de mistura. Neste caso, a predição das principais propriedades termofísicas torna-se mais complexa pela necessidade de se adotar regras de misturas que possam ser adequadamente associadas às equações de estado testadas. Com base nos resultados disponíveis na literatura aberta e apresentados na revisão

bibliográfica, foram testadas duas regras de mistura externas: Spencer e Danner (1972) e Lee-Kesler (1975). As duas regras de mistura estimam parâmetros pseudocríticos para a mistura, através da combinação das propriedades críticas de cada substância.

5.2.1 Regra de mistura de Spencer e Danner (1972)

A regra de mistura de Spencer e Danner é apresentada nas Equações 5.12 e 5.13.

$$T_{om} = \frac{\sum_{t=1}^{n} x_t V_{ot} T_{ot}}{\sum_{t=1}^{n} x_t V_{ot}}$$
(5.12)

$$P_{om} = \frac{T_{om}}{\sum_{t=1}^{n} x_t \left(\frac{T_{ot}}{P_{ot}}\right)}$$
(5.13)

5.2.2 Regra de mistura de Lee-Kesler (1975)

A regra de mistura de Lee-Kesler é apresentada nas Equações 5.14 a 5.16.

$$V_{om} = \frac{1}{8} \sum_{t=1}^{n} \sum_{j=1}^{n} x_t x_j \left(V_{ot}^{1/2} + V_{oj}^{1/2} \right)^8$$
(5.14)

$$T_{om} = \frac{1}{8V_{om}} \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \left(V_{oi}^{1/3} + V_{oj}^{1/3} \right)^3 \left(T_{oi} T_{oj} \right)^{1/2}$$
(5.15)

$$P_{om} = (0.2905 - 0.085w) \frac{RT_{cm}}{V_{om}}$$
(5.16)

Para as duas regras de mistura, tanto o fator acêntrico como a massa molar da mistura são calculadas com base na média molar e apresentados nas Equações 5.17 e 5.18:

$$w_m = \sum_{i=1}^n x_i w_i$$
 (5.17)

$$MM_m = \sum_{i=1}^n x_i MM_i \tag{5.16}$$

5.3 Estratégia de cálculo para a velocidade do som

Com o objetivo de se avaliar a capacidade das equações de estado e regras de mistura na predição de propriedades termofísicas, tomando-se como base a metodologia de Ye et al. (1992a), foi escrita uma rotina em MATLAB[®] para o cálculo da velocidade do som a partir das equações de estado e regras de mistura já descritas.

O ponto de partida para o cálculo da velocidade do ultra-som é a Equação 5.19, obtida substituindo-se a Equação 1.5 na Equação 4.1 (YE et al. 1992a):

$$u^{2} = \frac{1}{\rho \left(k_{T} - \frac{\alpha^{2}T}{\rho C_{p}} \right)}$$
(5.19)

onde os termos ρ , k_T e α podem ser calculados por uma equação de estado. Os testes numéricos realizados basearam-se na Equação 5.19, que deixa claro que para se determinar de forma satisfatória a velocidade do ultra-som u, se faz necessária uma descrição coerente das propriedades volumétricas (ρ , k_T e α) e da propriedade entálpica (C_p).

O procedimento adotado consiste em, para cada condição de pressão (P) e temperatura (T) em que a velocidade do som foi medida experimentalmente, a equação de estado foi solucionada para o volume molar (V) desconhecido. Com os dados de V, calcula-se a massa específica (ρ). O coeficiente de compressibilidade isotérmica (k_T) é calculado com base na relação clássica, apresentada na Equação 5.20:

$$k_T = -\frac{1}{V\left(\frac{\partial P}{\partial V}\right)_T} \quad (5.20)$$

A massa específica calculada através da equação de estado pode ser correlacionada à Equação 5.21:

$\rho(P,T) = A + BP + CT + DP^2 + ET^2 + FPT$ (5.21)

que reproduz os valores de massa específica com desvios menores do que 0,1%.

A forma simples da Equação 5.21 permite que a Equação 4.3 seja resolvida de forma analítica para a determinação do coeficiente isobárico de expansão térmica (α). A capacidade calorífica a pressão constante (C_p) é calculada segundo a Equação 4.6. O algoritmo da metodologia de cálculo é apresentado na Figura 5.1.

Figura 5.1 - Algoritmo para o cálculo da velocidade do som

5.4 Resultados

Com o intuito de avaliar a capacidade de cada um dos modelos termodinâmicos apresentados, na predição da velocidade de propagação da onda de ultra-som nos hidrocarbonetos puros, misturas de hidrocarbonetos e amostra de condensado, comparou-se a velocidade calculada pelas equações de estado com as velocidades medidas. As tabelas com todos os resultados detalhados de cálculo da velocidade do som com equações de estado são apresentadas no Anexo IV. Os resultados para os hidrocarbonetos puros e amostra de condensado são apresentados nas Figuras 5.2 a 5.16 e representam o comportamento qualitativo da velocidade do som calculada com as equações de estado para todos os sistemas avaliados.

Dentro da faixa de pressão avaliada, tanto os resultados obtidos pela equação de Peng-Robinson como os obtidos pela equação de Lee-Kesler apresentaram comportamento linear, sendo que os resultados encontrados com a equação de Peng-Robinson apresentaram maior inclinação quando comparados aos de Lee-Kesler.

A análise dos desvios relativos revela que, para os hidrocarbonetos puros e misturas sintéticas, os resultados obtidos pela equação de Peng-Robinson foram melhores que os de Lee-Kesler quantitativamente, apresentando desvios relativos

inferiores a 6% para a maior parte dos sistemas avaliados, enquanto a equação de Lee-Kesler apresentou desvios de aproximadamente 12%. Porém, do ponto de vista qualitativo, a equação de Lee-Kesler representou melhor a dependência da velocidade do som com a pressão, uma vez que os desvios mantiveram-se aproximadamente constantes quando comparados aos dados experimentais. A amostra de condensado foi o único sistema avaliado em que a equação de Peng-Robinson conseguiu representar bem a dependência da velocidade do som com a pressão.

As duas regras de mistura investigadas influenciaram pouco no cálculo das velocidades, quando comparadas à influência exercida pelas equações de estado. Para uma mesma equação de estado, as velocidades do som calculadas com as diferentes regras de mistura tiveram desvios relativos inferiores a 1%.

Componentes puros:

Figura 5.2 - Velocidades experimental e calculadas para o n-decano, T = 40 °C

Figura 5.3 - Velocidades experimental e calculadas para o n-decano, T = 50 °C

Figura 5.4 - Velocidades experimental e calculadas para o n-decano, T = 60 °C

Figura 5.5 - Velocidades experimental e calculadas para a decalina, T = 40 °C

Figura 5.6 - Velocidades experimental e calculadas para a decalina, T = 50 °C

Figura 5.7 - Velocidades experimental e calculadas para a decalina, T = 60 °C

Figura 5.8 - Velocidades experimental e calculadas para a tetralina, T = 40 $^{\circ}$ C

Figura 5.9 - Velocidades experimental e calculadas para a tetralina, T = 50 $^{\circ}$ C

Figura 5.10 - Velocidades experimental e calculadas para a tetralina, T = 60 °C

Figura 5.11 - Velocidades experimental e calculadas para o n-hexadecano, T = 40 °C

Figura 5.12 - Velocidades experimental e calculadas para o n-hexadecano, T = 50 °C

Figura 5.13 - Velocidades experimental e calculadas para o n-hexadecano, T = 60 °C

Amostra de condensado:

Figura 5.14 - Velocidades experimental e calculadas para a amostra de condensado, T = 40 $^{\circ}$ C

Figura 5.15 - Velocidades experimental e calculadas para a amostra de condensado,

Figura 5.16 - Velocidades experimental e calculadas para a amostra de condensado, T = 60 $^{\rm o}{\rm C}$

6 CONCLUSÕES E SUGESTÕES

A relação existente entre a velocidade do som e os coeficientes de compressibilidade são de interesse na modelagem termodinâmica de poços de petróleo situados na camada de pré-sal.

O principal desafio da presente dissertação de mestrado consistiu na montagem e operação de um aparato experimental para o estudo da velocidade do som em hidrocarbonetos líquidos.

Desta forma, foram determinadas as velocidades do som (nas temperaturas de 40, 50 e 60 °C e pressões de 1, 50, 100, 150, 200 e 250 bar) para sistemas envolvendo quatro hidrocarbonetos puros: n-decano, n-hexadecano, decalina e tetralina, assim como para sistemas multicompostos envolvendo estes hidrocarbonetos e para uma amostra de condensado de petróleo. Também foi medida experimentalmente a massa específica destes mesmos sistemas à pressão atmosférica, nas temperaturas de 40, 50 e 60 °C.

A metodologia experimental empregada foi eficiente para a determinação da velocidade do som em meios líquidos, sendo capaz de reproduzir dados disponíveis na literatura, com desvios relativos inferiores a 0,1%. A análise dos resultados experimentais revela que: (i) a velocidade do som aumenta conforme a pressão é elevada, mas diminui com o aumento de temperatura e (ii) a massa específica diminui com o aumento da temperatura.

De posse dos dados de velocidade do som e massa específica, foi escrita em MATLAB[®] uma rotina de cálculo para os coeficientes de compressibilidade. A rotina foi validada reproduzindo-se dados disponíveis na literatura aberta. Foi possível calcular os coeficientes de compressibilidade isentrópica, isotérmica e isentálpica de todos os sistemas avaliados experimentalmente. A análise dos resultados revela que os coeficientes de compressibilidade aumentam conforme a temperatura é elevada, mas diminuem com o aumento de pressão.

A partir das definições termodinâmicas para os coeficientes de compressibilidade, utilizando as equações de estado de Peng-Robinson e Lee-Kesler com regras de mistura: Spencer e Danner e Lee-Kesler, foi escrita em MATLAB[®] uma rotina de cálculo para a velocidade do som. Dentro da faixa de

pressão avaliada, os resultados obtidos pela equação de Peng-Robinson foram melhores que os de Lee-Kesler quantitativamente, apresentando desvios relativos inferiores a 6% para a maior parte dos sistemas avaliados. Porém, qualitativamente a equação de Lee-Kesler representou melhor a dependência da velocidade do som com a pressão, apresentando desvios aproximadamente constantes quando comparados com os dados experimentais. As regras de mistura exerceram pouca influência no cálculo das velocidades.

São apresentas algumas sugestões para a continuidade da linha de pesquisa:

- Melhorar a precisão do sistema projetado para a determinação experimental da velocidade do som;
- Determinar a incerteza dos experimentos utilizados para a determinação da velocidade do som, que pode ser realizada com ensaios de reprodutibilidade, avaliando-se os erros associados aos instrumentos e aos métodos experimentais empregados;
- Realizar a aquisição de dados de massa específica a altas pressões, que permitiriam o cálculo dos coeficientes de compressibilidade com maior acurácia;
- 4. Investigar modelos termodinâmicos mais robustos que consigam representar com maior precisão a velocidade do som nestes sistemas.

REFERÊNCIAS

Adachi, Y., Lu, B. C. Y., Sugie, H. (1983). A four-parameter equation of state. *Fluid Phase Equilibria*, *11* (1), p. 29-48.

Behar, E., Simonet, R., Rauzy E. (1985). A new non-cubic equation of state. *Fluid Phase Equilibria*, *21*, p. 237-255.

Braga, L. (2010). ANP Anuncia Descoberta de Superpoço de Petróleo. *Jornal O Dia, Rio de Janeiro, 30 outubro de 2010. Economia*, p. 30.

Carnahan, N. F., Starling, K. E. (1970). Analytical Equation for Rigid Spheres: Application to the Model of Longuet-Higgins and Widom for the Melting of Argon. *Phys. Rev. A, 1,* p. 1672-1673.

Castier, M. (2011). Thermodynamic speed of sound in multiphase systems. *Fluid Phase Equilibria, 306,* p. 204-211.

Cavalcante, R. M. (2010). Predição da densidade de biodiesel proveniente de diferentes matérias-primas. Dissertação de Mestrado. *Universidade Federal do Rio de Janeiro, Escola de Química,* Rio de Janeiro.

Chien, C. H., Greenkorn, R. A., Chao, K. C. (1983). Chain of rotators. Equation of state. *AIChE J., 29,* p. 560-571.

Daridon, J. L., Lagourette, B., Gaubert, J. F., Xans, P., Montel, F. (1996). Ultrasonic velocity in a hyperbaric reservoir fluid. *Ultrasonics, 34,* p. 447-449.

Daridon, J. L., Lagourette, B., Xans, P., Montel, F. (1998a). Petroleum characterization from ultrasonic measurement. *Journal of Petroleum Science and Engineering*, *19*, p. 281-293.

Daridon, J. L., Lagrabette, A., Lagourette, B. (1998b). Speed of sound, density, and compressibilities of heavy synthetic cuts from ultrasonic measurements under pressure. *J. Chem. Thermodynamics, 30*, p. 607-623.

Davis, L. A., Gordon, R. B. (1967). Compression of mercury at high pressure. *The Journal of Chemical Physics, 46 (7),* p. 2650-2660.

Dutour, S., Lagourette, B., Daridon, J. L. (2001). High-pressure speed of sound and compressibilities in heavy normal hydrocarbons: $n-C_{23}H_{48}$ and $n-C_{24}H_{50}$. *J. Chem. Thermodynamics*, 33, p. 765-774.

Dutour, S., Carrier, H., Daridon, J. L. (2003). Compressibilities of liquid pentadecylcyclohexane and nonadecylcyclohexane from high pressure speed of sound and density measurements. *J. Chem. Thermodynamics*, *35*, p. 1613-1622.

Dutour, S., Carrier, H., Lagourette, B., Gao, G. H., Daridon, J. L. (2004). Speed of sound, density, and compressibility of alkyl-benzenes as a function od pressure and temperature: heptadecylbenzene and octadecylbenzene. *J. Chem. Eng. Data, 49,* p. 983-987.

Ferro, F., Teixeira, P., Lima, P. C. R., Filho, A. P. Q., Nazareno, C., Tavares, W. M.
L. (2009). Os desafios do pré-sal. *Centro de Documentação e Informação, Edições Câmara, Brasília*.

González-Salgado, D., Troncoso, J., Plantier, F., Daridon, J. L., Bessières, D. (2006). Study of the volumetric properties of weakly associated alcohols by means of highpressure speed of sound measurements. *J. Chem. Thermodynamics*, *38*, p. 893-899.

Hakim S. E. A., Comley, W. J. (1965). Acoustic Velocity Dispersion in some Nonassociated Organic Liquids. *Nature, 208,* p. 1082-1083.

Hankinson, R. W., Thomson., G. N. (1979). A new correlation for saturated densities of liquids and their mixtures. *AIChE J., 25,* p. 653-663.

Hirschfelder, J. O., Curtis, C. F., Bird, R. B. (1964). Molecular Theory of Gases and Liquids. *Wiley, New York,* Capítulos 5 e 11.

Khasanshin, T. S., Samuilov, V. S., Shchemelev, A. P. (2008). Speed of Sound In n-Hexane, n-Octane, n-Decane, and n-Hexadecane In The Liquid State. *Journal of Engineering Physics and Thermophysics*, *81 (4)*, p. 760-765.

Khasanshin, T. S., Samuilov, V. S., Shchemelev, A. P. (2009). The Sound Velocity in Liquid Binary Mixtures of n-Alkanes. *High Temperature, 87 (4),* p. 527-532.

Kuster, G. T., Toksöz, M. N. (1974). Velocity and attenuation of seismic waves in two-phase media. Part I. Theoretical formulations. *Geophysics, 39,* p. 587-606.

Lamb, J. (1965). Physical Acoustics, Principles and Methods, Vol. 2. Academic Press, New York. 203 páginas.

Lee, B. I., Kesler, M. G., (1975). A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. *AIChE J., 21 (3),* p. 510-527.

Mehl, A. (2009). Estudo do equilíbrio de fases de hidrocarbonetos e CO₂ supercrítico. Tese de Doutorado. *Universidade Federal do Rio de Janeiro, Escola de Química,* Rio de Janeiro.

Mehl, A., Nascimento, F. P., Falcão, P. W., Pessoa, F. L. P., Cardozo-Filho, L. (2011). Vapor-Liquid Equilibrium of Carbon Dioxide + Ethanol: Experimental Measurements with Acoustic Method and Thermodynamic Modeling. *Journal of Thermodynamics*, *2011*, p. 1-11.

Mehta, N. M., Karia, F. D., Parsania, P. H. (2007). Effect of temperature on ultrasonic velocity and thermodynamic parameters of bisphenol-C-formaldehyde-acrylate resin solutions. *Fluid Phase Equilibria*, *262*, p. 61-68.

Meng, G., Jaworski, A. J., Neil, M. W. (2006). Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers. *Chemical Engineering and Processing, 45,* p. 383-391.

Nomoto, O. (1958). Empirical formula for sound velocity in liquid mixture. *J. Phys. Soc. Jpn., 13,* p. 1528-1532.

Paredes, M. L. L., Reis, R. A., Silva, A. A., Santos, R. N. G., Santos, G. J., Ribeiro, M. H. A., Ximango, P. B. (2012). Densities, sound velocities, and refractive indexes of (tetralin + n-decane) and thermodynamic modeling by Prigogine-Flory-Patterson model. *J. Chem. Thermodynamics, 45,* p. 35-42.

Patel, N. C., Teja A. S. (1982). A new cubic equation of state for fluids and fluid mixtures. *Chem. Eng Sci.,* 37, p. 463-473.

Pendersen, K. S., Fredenslund, A., Christensen, P.L., Thomassen, P. (1984). Viscosity of crude oils. *Chem. Eng. Sci.,* 39 (6), p. 1011-1016.

Peneloux, A. E., Rauzy, E., Freze, R. (1982). A Consistent Correction for Redlich-Kwong-Soave Volumes. *Fluid Phase Equilibria, 8,* p. 7-27.

Peng, D. Y., Robinson, D. B. (1976). A New Two-Constant Equation of State. *Industrial and Engineering Chemistry: Fundamentals, 15,* p. 59-64.

Plantier, F., Daridon, J. L. (2005). Speed of Sound of 2-Methylpentane, 2,3-Dimethylpentane, and 2,2,4-Trimethylpentane from (293.15 to 373.15) K and up to 150 MPa. *J. Chem. Eng. Data, 50*, p. 2077-2081.

Plantier, F., Bessières, D., Daridon, J. L., Montel, F. (2008). Structure and thermodynamic consistency of heavy oils: A study on the basis of acoustic measurements. *Fuel, 87,* p. 196-201.

Plocker, U., Knapp, H., Prausnitz, J. (1978). Calculation of high pressure vapor-liquid equilibria from a corresponding states correlation with emphasis on asymmetric mixtures. *Ind. Eng. Chem. Process. Des. Dev., 17 (3),* p. 324-332.

Poling, B. E., Prausnitz, J. M., O'Connell, J. P. (2000). The Properties of Gases and Liquids. 5th Edition. McGraw-Hill Professional, 768 páginas.

Prausnitz, J. M., Lichtenthaler, E. G., Azevedo, E. G. (1999). Molecular Thermodynamics of Fluid-Phase Equilibria. *3rd Edition*. *Prentice Hall*, 864 páginas.

Rowlinson, J. S., Swinton, F. L. (1982). Liquid and Liquid Mixtures. 3rd Edition, Butterworths, London, p. 16-17.

Smith, J. M., Van Ness, H. C., Abbott, M. M. (2007). Introdução à Termodinâmica da Engenharia Química. 7^a Edição. Editora LTC. 640 páginas.

Soave, G. (1972). Equilibrium Constants from a Modified Redlich-Kwong Equation of State. *Chem. Eng. Sci.*, *27*, p. 1197-1203.

Spencer, C. F., Danner, R. P. (1972). Improved equation for prediction of saturated liquid density. *J. Chem. Eng. Data, 17,* p. 236-241.

Tait, P. G. (1898). Scientific Paper. Cambridge University Press, New York, Vol. 2.

Teja, A.S. (1980). A corresponding states equation for saturated liquid densities. *AIChE J.*, *26* (*3*), p. 337-345.

Tikhonov, D. A., Kiselyov, O. E., Sarvazyan, A. P., Sarkisov, G. N. (1995). Ultrasonic approach to obtaining partial thermodynamic characteristics of solutions. *Ultrasonics*, *33 (4)*, p. 301-310.

Urick, R. J. (1947). A sound velocity method for determining the compressibility of finely divided substances. *J. Appl. Phys., 18,* p. 983-987.

Williamson, R. C. (1968). Echo Phase-Comparison Technique and Measurement of Sound Velocity in Water. *The Journal of the Acoustical Society of America, 37,* p. 325-328.

Wilson, W. D. (1959). Speed of Sound in Distilled Water as a Function of Temperature and Pressure. *The Journal of The Acoustical Society of America, 31 (8),* p. 1067-1072.

Ye, S., Alliez, J., Lagourette, B., Saint-Guirons, H., Arman, J., Xans, P. (1990). Réalisation d'un dispositif de mesure de la vitesse et de l'atténuation d'ondes ultrasonores dans des liquides sous pression. *Revue de Physique Appliquée, 25,* p. 555-565.

Ye, S., Lagourette, B., Alliez, J., Saint-Guirons, H., Xans, P. (1992a). Comparison with experimental data of ultrasound velocity in pure hydrocarbons calculated from equations of state. *Fluid Phase Equilibria*, *74*, p. 157-175.

Ye, S., Lagourette, B., Alliez, J., Saint-Guirons, H., Xans, P. (1992b). Speed of sound in binary mixtures as a function of temperature and pressure. *Fluid Phase Equilibria*, *74*, p. 177-202.

Zevnik, L., Babic, M., Levec, J. (2006). Ultrasound speed and absorption study in near-critical CO₂: A sensor for high-pressure application. *J. of Supercritical Fluids, 36*, p. 245-253.

ANEXO I

Exemplo de registro do sinal de US captado pelo osciloscópio

ID	Tempo (s)	Amplitude (V)
1	-0,000039	0,0014
2	-0,00003898	0,0014
3	-0,00003896	0,0014
4	-0,00003894	0,0014
5	-0,00003892	0,0014
6	-0,0000389	0,0014
7	-0,00003888	0,0014
8	-0,00003886	0,0014
9	-0,00003884	0,0014
10	-0,00003882	0,0014
11	-0,0000388	0,0014
12	-0,00003878	0,0016
13	-0,00003876	0,0014
14	-0,00003874	0,0014
15	-0,00003872	0,0014
2486	0,00001066	0,0008
2487	0,00001068	0,001
2488	0,0000107	0,0014
2489	0,00001072	0,0018
2490	0,00001074	0,002
2491	0,00001076	0,0022
2492	0,00001078	0,0022
2493	0,0000108	0,002
2494	0,00001082	0,0018
2495	0,00001084	0,0014
2496	0,00001086	0,0012
2497	0,00001088	0,0008
2498	0,0000109	0,0008
2499	0,00001092	0,0006
2500	0,00001094	0,0008

1. A primeira oscilação de sinal captada pelo osciloscópio indica o instante de tempo em que o pulso de ultra-som é emitido.

2. A segunda oscilação de sinal captada pelo osciloscópio indica o instante de tempo em que o pulso de ultra-som que percorre o meio é captado.

ANEXO II

Certificados de calibração de equipamentos

Banho Ultratermostato Sensor de Pressão (GEFRAN) Sistema de Aquecimento Balança Analítica

Laboratório de Calibração Acreditado pela CGCRE/Inmetro de acordo com a ABNT NBR ISO/IEC 17025, sob o nº CAL 0477

Identificação do Certificado / Certificate Date

CAL 0477

CL-0270

Number

Certificado de Calibração / Certificate Number: T-0369/11 Ordem de Serviço nº / Service Order Number: OST-0098/11 Data da Calibração / Calibration Date: 24/03/2011 Página / Pager: 01/02

Identificação do Cliente / Customer's Data:

Razão Social: UFRJ-Escola de Química Código: Nome Endereço: Av. Athos da Silveira Ramos - 149 Address: Ilha do Fundão - Rio de Janeiro - RJ - 21941-909

Identificação do Instrumento/ Mensurando Identification:

Instrumento: Instrument:	Indicador de	Temperatura			
Fabricante Manufacturer:	Nova Ética		Modelo / Tipo: Model / Type:	Não	consta
Número de Série: Serial Number:	Não consta		Cód. de Identificação: Identification Code:	Não	consta
Faixa de Calibração: Range of Calibration:	10 a 20 °C		Valor de uma divisão: Scale Interval:	0,1	°C
Padrão Utilizado / Star	ndart Utilized:				
Descrição / Descrition		Código / Code	Nº Certificado / Nº Certificate		Validade / validity
Calibrador Dig	ital	CTJ-E-026	IMI-RBC-R15692-10 novembro		
Termoresistência tipo PT 100		CTJ-T-004	ECIL-RBC-6202/10 setembro		

Observação / Observation:

A Temperatura ambiente durante a calibração (e suficientemente antes) foi de $23^{\circ}C \pm 3^{\circ}C$.

A Umidade relativa do ar durante a calibração (e suficientemente antes) foi de 35% ur a 75 % ur.

As conversões deste certificado foram realizadas conforme Escala Internacional de Temperatura de 1990. A incerteza expandida de medição relatada é declarada como incerteza padrão de medição multiplicada pelo fator de abrangência k=kp, que para uma distribuição normal corresponde a uma probabilidade de abrangência de aproximadamente de 95%.

Calibração efetuada nas instalações do cliente.

O instrumento em referência faz parte do Banho Termostático Nova Ética, modelo: 521 - 30, Série: 21317/10

Procedimento de Calibração / Calibration Procedure:

O instrumento em referência foi calibrado por comparação direta a instrumentos de características padrão, através de um meio termostático. No sentido crescente.

Os resultados obtidos são médias de três leituras.

A calibração foi realizada conforme procedimento interno . PR-CTJ-035 Revisão 0

28/03/2011 Data da Emissão Issued on

André Augusto do Amara Técnico Metrologista Metrological Technician

>> Este certificado atende aos requisitos de acreditação pela CGCRE/Inmetro, que avaliou a competência do laboratório e comprovou a sua rastreabilidade a padrões nacionais (ou ao Sistema Nacional de Unidades - SI). O resultado deste certificado se refere apenas ao equipamento calibrado e nas condições especificadas.

>> A reprodução total ou parcial deste certificado depende de prévia autorização do CTJ.

>> Caso este instrumento seja regulamentado, esta calibração não isenta o mesmo do controle metrológico estabelecido na regulamentação metrológica.

Calibration Certificate issued by CTJ

Laboratório de Calibração Acreditado pela CGCRE/INMETRO de acordo com a ABNT NBR ISSO/IEC 17025, sob o Nº CAL 0477

Certificado de Calibração / Contructiva Marko: OSF-0086/11 Ordende de Serviço nº /	Identificação do Cliente / Castan Razão Social: UFF Endereço: Av. Idérea: Ilha Identificação do Instrumento / Instrumento: Mari Fabricante Gefi Número de Série: D08 Fabra de Calibração: Range of Calibration Manômetro Digital (13000) Observação / Observation: A temperatura ambiente durante a calibra A lunidade ambiente durante a calibra A temperatura ambiente durante a calibra A lunidade ambiente durante a calibra A temperatura ambiente durante a calibra A lunidade ambiente durante a calibra Calibrado em conjunto com o indicador Procedimento de Calibração / / O instrumento foi calibrado por compare Negación do compare	ers Data: U-Escola de Quí Athos da Silveira do Fundão - Rie Instrument Lientifican ômetro Digital an 410023 350 bar ed: 281)	Certificad Ordem E imica a Ramos - 149 io de Janeiro - RJ iom: <u>Código (Code</u> CTJ-P-020	io de Calibração / Centicate Ni de Serviço nº / Service Order Ni Data da Calibração / Catibration Página / I Cód - 21941-909 Modelo / Tipo Nodel Ta Cód. de Identificação Identification Cod Valor de uma divisão Seale Intervi Nº Certificado / Nº Certulico ABSI-RBC-CAL-73239/	Inther: P-0468/11 Inther: OSP-0089/11 Date: 23/03/2011 Pager: 01 / 02 figo: CL-0270 Inther: CL-0270 TK-E-1-E-B36D-1 Não Consta D: Não Consta D: 0.1 bar Inther: Validade / valuti 10 junho-11	0 M-V	
Orden de Serviço nº / Serviço notar Subreto SSR-0089/11 Data da Calibração / Serviço 11/02 Identificação do Cliente 1 / valores v Iváci. Razão Social: Urreg. CL-0270 Padaro: V. Matos da Silveira Ramos - 149 Endereço: AV. Athos da Silveira Ramos - 149 Estern: Ilha do Fundão - Rio de Janeiro - RJ - 21941-909 Identificação do Instrumento / Janemarch Likothvanue: Instrumento: Name: Instrumento: Name: Bendereço: AV. Athos da Silveira Ramos - 149 Estern: Ilha do Fundão - Rio de Janeiro - RJ - 21941-909 Identificação do Instrumento: Name: Instrumento: Name: Instrumento: Name: Bendereço: AV. Athos da Silveira Ramos - 149 Estern: Instrumento: Name: Instrumento: Name: Bendereço: AV. Athos da Silveira Ramos - 149 Estern: Instrumento: Name: Instrumento: Name: Bendereço: Instrumento: Name: Instrumento: Name: Descreço: Instrumento: Name: Padrão Utilizado I Stanklart (Lifficad: Descreção I (Pacenturia): Observação I (Descrevida: Name: Vinidade antilente duranta a calibração (e sufficientemente antes) for de 20°C + 2°C. Vinidade antilente duranta a calibração (e sufficientemente antes) for de 20°C + 2°C. Vinidade antilente duranta a calibração (e sufficientemente antes) for de 20°C + 2°C. Vinidade antilente duranta a calibração (e sufficientemente antes) for de 20°C + 2°C.	Identificação do Cliente I Custon Razão Social: UFF Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Instrumento: Mandatanov Rance de Calibração Calibration Manômetro Digital (15000) Observação I Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Conservação I Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Calibrado em conjunto com o indicador Procedimento de Calibração / / Distrumento foi calibrado por compare Na Calibrado por compare	ers Data: U-Escola de Quí Athos da Silveira do Fundão - Rio Instrument Lientifican ômetro Digital an 410023 350 bar ed:	Ordem E imica a Ramos - 149 io de Janeiro - RJ ton: ton: <u>Código / Code</u> CTJ-P-020	de Serviço nº / service Order Na hata da Calibração / Calibration Página / 1 Côc - 21941-909 Modelo / Tipu Modelo / No Cód. de Identificação Identificado Cod Valor de uma divisão Scale Intervo Mº Certificado / Nº Certulico ABSI-RBC-CAL-73239/	mber: OSP-0089/11 Date: 23/03/2011 Pager: 01 / 02 figo: CL-0270 D: TK-E-1-E-B35D-1 D: Não Consta D: O.1 bar d: Validade / valuti 10 junho-11	0 M-V	
Data da Calibração / Cabbanana Due: 2303/2011 Página / Exper: 01/02 Identificação do Cliente I / valores vivas: Rado Social: Varie: UFRU-Escola de Química Name: Enderço: Av. Athos da Silveira Ramos - 149 stature: Instrumento: Name: Mandhetro: Instrumento: Name: Mandhetro: Name: Name: Mandhetro: Name: Name: Mandhetro: Name: Name: Mandhetro: Name: Name: Descrição Instrumento: Name: Name: Obalitation: None: Obalitation: Name: Name: Statu Name: Name: Obalitation: None: Obalitation: Name: Obalitation: None: Obalitation: Noci:	Identificação do Cliente I Custom Razão Social: UFF Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Instrumento: Mari Pabricante Gefi Mandatosoci Serial Nualher Falxa de Calibração: 0 a C Range of Clibration Manômetro Digital (15000) Observação I Observation: A temperatura ambiente durante a calibra A toneteza expandida de medição relata A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Calibrado em conjunto com o indicador Proceedimento de Calibração / / Distrumento foi calibrado por compare Na Descrição / /	ers Data: U-Escola de Quí Athos da Silveira do Fundão - Riu Instrument Lientifican ômetro Digital an 410023 350 bar ted: 2081)	L imica a Ramos - 149 io de Janeiro - RJ ten: ten: Código / Code CTJ-P-020	lata da Calibração / Calibration Página / 1 Cóc 1 21941-909 Modelo / Tipi Modelo / Tipi Model Tipi Cód. de Identificação Identificação Valor de uma divisão Sede Interio Nº Certificado / Nº Certifico ABSI-RBC-CAL-73239/	Dute : 23/03/2011 lager : 01 / 02 figo: CL-0270 miter: CL-0270 TK-E-1-E-B35D-1 Não Consta D: Não Consta D: 0.1 bar te Validade / valuti 10 junho-11) M-V	
Pigfin / Norm: 01/02 Identificação do Cliente / Cadonex France Rezes Social: UFRU-Escola de Química Código: Vauebor: CL-0270 Nation: Codigo: Vauebor: CL-0270 Nation: Codigo: Vauebor: CL-0270 Vauebor: Codigo: Vauebor: CL-0270 Vauebor: Codigo: Vauebor: CL-0270 Vauebor: Codigo (Locatone: Modelo / Tipo: Trk: E-1-E-B35D-M-V Modelo / Tipo: Trk: E-1-E-B35D-M-V Modelo / Tipo: Trk: E-1-E-B35D-M-V Valore de subscription: Modelo / Tipo: Trk: E-1-E-B35D-M-V Modelo / Tipo: Trk: E-1-E-B35D-M-V Modelo / Tipo: Trk: E-1-E-B35D-M-V Valore de utilizado / Tipo	identificação do Cliente I Caston Razão Social: UFF Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Endereço: Av. Instrumento: Marie Fabricante Serial Number Palva de Calibração: Caston Range of Calibration Manômetro Digital (15000) Observação I Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Calibrado em conjunto com o indicador Procedimento de Calibração / / D instrumento foi calibrado por compare	ers Duta: U-Escola de Quí Athos da Silveira do Fundão - Rit Instrument Lientifican ômetro Digital an 410023 350 bar ted: 201)	imica a Ramos - 149 io de Janeiro - RJ nan: Código / Code CTJ-P-020	Página / / Cóc N - 21941-909 Modelo / Tipi Nodel Tip Cód. de Identificação Identificação Valor de uma divisão Sede Interv Nº Certificado / Nº Certulico ABSI-RBC-CAL-73239/	Inger: 01 / 02 figo: CL-0270 (mifer: CL-0270 TK-E-1-E-B35D-1 Não Consta 0: 0.1 bar (Não Consta 0: 0.1 bar (Não Consta 0: 0.1 bar) M-V	
Identificação do Cliente / clusteres visual: Razão Social: UFRJ-Escola de Química Vanter: Codigo: Vanter: CL-0270 Name: Enderço: Av. Athos da Silveira Ramos - 149 Esterço: Ilha do Fundão - Rio de Janeiro - RJ - 21941-909 Codigo: Vanter: CL-0270 Manêmetro: Instrumento: Manêmetro: Digital Manêmetro: Digital Manêmetro: Digital Codi de Identificação: Name de Sirie: Do8410023 Codi de Identificação: Não Consta Manêmetro: Manêmetro: Do8410023 Codi de Identificação: Não Consta Valor de Calibração: De a 350 bar Valor de Instrumento: Não Consta Padrão Utilizado / Standurt Cluttocd: Descrição / Descritorio Razgo d'Calibração: Da 350 bar Valor de Instrumento du Silveira State Econadi Descrição / Ohservathon: Padrão Utilizado / Standurt Cluttocd: Descrição / Oscitoritorio Valor de atilização (e suficientemente antes) foi de 20°C + 2°C. Valor de atilização (e suficientemente antes) foi de 20°C + 2°C. Valor de atilização (e suficientemente antes) foi de 20°C + 2°C. Valor de atilização (e suficientemente antes) foi de 20°C + 2°C. Valor de atilização (e suficien	Identificação do Cliente I Caston Razão Social: UFF Sonic UFF Enderço: Av. Identificação do Instrumento / Instrumento: Mari Fabricante Gefi Númejostoso: D08 Serial Number Palxa de Calibração: 0 a 3 Range of Calibration Manômetro Digital (15000) Observação I Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Quincidade ambiente durante a calibra A temperatura ambiente durante a calibra Calibrado em conjunto com o indicador Procedimento de Calibração / / Distrumento foi calibrado por compare Ne procedimento durante a calibra Calibrado em conjunto com o indicador	ers Duta: U-Escola de Quí. Athos da Silveira do Fundão - Rit Instrument Lientifican ômetro Digital an 410023 350 bar red:	imica a Ramos - 149 io de Janeiro - RJ ion: Código / Code CTJ-P-020	Cóc N - 21941-909 Modelo / Tipe Model Typ Cód. de Identificação Identificação Valor de uma divisão Scale Interv Nº Certificado (Nº Certulico ABSI-RBC-CAL-73239/	figo: CL-0270 CL-0270 TK-E-1-E-B35D-1 TK-E-1-E-B35D-1 Não Consta 0.1 bar 0.1 bar 10 junho-11) M-V	
Razdo Social: Vance UFRJ-Escola de Química Código: Vanher: CL-0270 Endereço: Av. Athos da Silveira Ramos - 149 Starveiri Ilha do Fundão - Rio de Janeiro - RJ - 21941-909 Starveiri Ilha do Fundão - Rio de Janeiro - RJ - 21941-909 dentificação do Instrumento / Instrumento Distantificatura: Instrumento Instrumento Instrumento Digital Madeito: Tipo: Starveiri Ilha do Fundão: Digital Modelo / Tipo: Starveiri Ilha do Fundão: Digital Reductor: Destrumento: Manômetro Digital Starveiri Ilha do Consta Madeito: Tipo: Starveiri Ilha do Consta Número de Starie: D08410023 Codu de Identificação: Distrumento: Não Consta Patra de Calibração: 0 a 350 bar Vator de uma divisão: State barriatio 0.1 bar Padrão Utilizado / Standard Utilized: Descrição / Descritori Código / Cuáte Nº Certificado / Nº Certificado	Razão Sociai: UFF Vonc Endereço: Av. Adves Ilha dentificação do Instrumento / Instrumento: Mar. Batroaner Fabricante Número de Série: D08 Seral Number Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Dbservação / Observation: Nemeratura ambiente durante a calibra A unidade ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Calibrado em conjunto com o indicador Procedimento de Calibração / / Distrumento foi calibrado por compara	IJ-Escola de Quí Athos da Silveira do Fundão - Rie Instrument Identifican ômetro Digital an 410023 350 bar ed: 281 }	imica a Ramos - 149 io de Janeiro - RJ ion: Código (Code CtJ-P-020	Cód N - 21941-909 Modelo / Tipo Model To Cód. de Identificação Identificação Valor de uma divisão Scale Intern Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/	Igo: CL-0270 miher: CL-0270 p: TK-E-1-E-B35D-1 p: Não Consta p: 0.1 bar d: Validade / vuluti 10 junho-11) M-V	
UFR-J-Escola de Química Nanter: CL-0270 Endereço: Av. Athos da Silveira Ramos - 149 Nanter: CL-0270 Edereço: Av. Athos da Silveira Ramos - RJ - 21941-909 Identificação do Instrumento / Instrumenti Léonthication: Manômetro Digital Nanter: Manômetro Digital Note: Instrumento: Manômetro Digital Note: Instrumento: Manômetro Digital Note: Instrumento: Manômetro Digital Note: Instrumento: Note: Instrumento: Manômetro Digital (112cd: Cod. de Identificação (112cd): Nate: Exercite Nate: Exercite Nate: Exercite Valor de Umañom: Valor de Umañom: Valor de Umañom: Valor de Calibração Valor de Calibração Valor de Calibração Valor de Identificação Valor de Identificação Valor de Identificação <td c<="" td=""><td>Vonce Endereço: Av. Iddres: Ilha dentificação do instrumento / Instrumento: Mar. Fabricante Númetation: Mar. Fabricante Serial Number Balva de Calibração: 0 a S Serial Number Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Niemperatura ambiente durante a calibra Umidade ambiente durante a calibra Nomereta expandida de medição relate ara uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador Procedimento de Calibração / /</td><td>U-Escola de Qui Athos da Silveira do Fundão - Rie Instrument Lientifican ômetro Digital an 410023 350 bar ed:</td><td>imica a Ramos - 149 io de Janeiro - RJ ion: Código (Code CTJ-P-020</td><td>- 21941-909 Modelo / Tipo Modelo / Tipo Cód. de Identificação Identificação Valor de uma divisão Scale Interv Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/</td><td>CL-0270 TK-E-1-E-B35D-1 TK-E-1-E-B35D-1 Não Consta 0: 0.1 bar 10 junho-11</td><td>0 M-V</td></td>	<td>Vonce Endereço: Av. Iddres: Ilha dentificação do instrumento / Instrumento: Mar. Fabricante Númetation: Mar. Fabricante Serial Number Balva de Calibração: 0 a S Serial Number Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Niemperatura ambiente durante a calibra Umidade ambiente durante a calibra Nomereta expandida de medição relate ara uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador Procedimento de Calibração / /</td> <td>U-Escola de Qui Athos da Silveira do Fundão - Rie Instrument Lientifican ômetro Digital an 410023 350 bar ed:</td> <td>imica a Ramos - 149 io de Janeiro - RJ ion: Código (Code CTJ-P-020</td> <td>- 21941-909 Modelo / Tipo Modelo / Tipo Cód. de Identificação Identificação Valor de uma divisão Scale Interv Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/</td> <td>CL-0270 TK-E-1-E-B35D-1 TK-E-1-E-B35D-1 Não Consta 0: 0.1 bar 10 junho-11</td> <td>0 M-V</td>	Vonce Endereço: Av. Iddres: Ilha dentificação do instrumento / Instrumento: Mar. Fabricante Númetation: Mar. Fabricante Serial Number Balva de Calibração: 0 a S Serial Number Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Niemperatura ambiente durante a calibra Umidade ambiente durante a calibra Nomereta expandida de medição relate ara uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador Procedimento de Calibração / /	U-Escola de Qui Athos da Silveira do Fundão - Rie Instrument Lientifican ômetro Digital an 410023 350 bar ed:	imica a Ramos - 149 io de Janeiro - RJ ion: Código (Code CTJ-P-020	- 21941-909 Modelo / Tipo Modelo / Tipo Cód. de Identificação Identificação Valor de uma divisão Scale Interv Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/	CL-0270 TK-E-1-E-B35D-1 TK-E-1-E-B35D-1 Não Consta 0: 0.1 bar 10 junho-11	0 M-V
Endereço: Av. Athos da Silveira Ramos - 149 Itaren: Ilha do Fundão - Rio de Janeiro - RJ - 21941-909 Identificação do Instrumento / Instrument Lónthicutou: Instrumento: Rabicante Rabicante Gefran Instrumento:	Endereço: Av. titires: Ilha Identificação do Instrumento / Instrumento: Mar. Fabricante Gefi Número de Série: D08 Falxa de Calibração: 0 a . Range of Calibration: Padrão Utilizado / Standart Utilit Descrição (Descrition Manômetro Digital (13000) Observação / Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Disservação / Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Disservação / Observation: Calibrado em conjunto com o indicador Procedimento de Calibrado por compara	Athos da Silveira do Fundão - Rie Instrument Identifican ômetro Digital an 410023 350 bar ed: 2081)	a Ramos - 149 io de Janeiro - RJ ion: Código / Code CTJ-P-020	 21941-909 Modelo / Tipo Model Tar Cód. de Identificação Identificação Valor de uma divisãe Scale Interno Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/ 	2: TK-E-1-E-B36D-1 2: Não Consta 2: 0.1 bar 4: Validade / valuti 10 junho-11	M-V	
Iterative line do Fundão - Rio de Janeiro - RJ - 21941-909 dentificação do Instrumento / Instrument Lécentheatem: Instrumento: Insterito: In	Addresse Ilha dentificação do Instrumento / Instrumento: Mar. Fabricante Mandactorse Múmero de Série: Serial Number Padrão Utilizado / Standart Utilit Descrição / Descrition Manômetro Digital (15000) Deservação / Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Conservação / Observation: A temperatura ambiente durante a calibra A temperatura ambiente durante a calibra Conservação / Observation: Conservação / Descrution: Proceedimento de Calibração / / D instrumento foi calibrado por compare	do Fundão - Riu Instrument Identifican ômetro Digital an 410023 350 bar ted: 2081)	io de Janeiro - RJ ten: Código / Code CTJ-P-020	 21941-909 Modelo / Tipu Model Tan Cód. de Identificação Identification Cod Valor de tima divisão Sede Interno Nº Certificado / Nº Certifico ABSI-RBC-CAL-73239/ 	2: TK-E-1-E-B35D-1 2: Não Consta 2: 0.1 bar 4: Validade / valuti 10 junho-11	M-V	
dentificação do Instrumento / Instrumento / Instrumento / Instrumento / Manômetro Dígital Instrumento / Revisione de Sóries / D08410023 Maine de Sóries / D08410023 Sarral Naméro Sarral Naméro Patricating Gertran Sarral Naméro Sarral Naméro OB410023 Sarral Naméro Sarral Naméro O a 350 bar Sarral Naméro O a 350 bar Sarral Naméro O a 350 bar Sarral Naméro Sarral Naméro O a 350 bar Sarral Naméro O a 350 bar Sarral Naméro Descrição / Descritoni Descrição / Descritoni Codigo / Code Mº Contificado / Nº Continal (Nº Concelarospondente a uma probabilidado de abrangência apro	dentificação do Instrumento / Instrumento: Mari Fabricante Gefi Manajactasse Serial Namber Palxa de Calibração: Calibração: Padrão Utilizado / Standart Critil Descrição / Descriton Manômetro Digital (15000) Observação / Observation: Nemperatura ambiente durante a calibra Unidade ambiente durante a calibra Unidade ambiente durante a calibra Unidade ambiente durante a calibra Concerteza expandida de medição relativa incerteza	Instrument I dentifican ômetro Digital an 410023 350 bar 850 bar ecd: 281 }	ton: Código / Code CTJ-P-020	Modelo / Tipo Model Tsp Cód. de Identificação Identification Cod Valor de uma divisão Scale Interso Nº Certificado / Nº Certulico ABSI-RBC-CAL-73239/	2: TK-E-1-E-B35D-I 3: Não Consta 4: 0.1 bar 10: junho-11	M-V	
dentificação do Instrumento / Instrumento / Instrumento Instrumento Instrumento: Manômetro Dígital Fabricana Gefran Numero do Série: Do8410023 Serial Number O a 350 bar Serial Number O a 350 bar Serial Sumber O a 350	dentificação do Instrumento / Instrumento: Instrumento: Fabricante Fabricante Send Numero de Série: DOB Falxa de Calibração: Range of Calibração: Calibração do a servicio Padrão Utilizado / Standart Utilit Descrição / Descrition Manômetro Digital (15000) Observação / Observation: tremperatura ambiente durante a calibra umidade ambiente durante a calibra incerteza expandia de medição relate ara uma distribuição normal correspon Vão foi realizado ajuste antes da calibra calibrado em conjunto com o indicador Proceedimento de Calibração / / Instrumento foi calibrado por compara	Instrument I dentifican ômetro Digital an 410023 850 bar 850 bar eed: 281 }	código / Code CTJ-P-020	Modelo / Tipi Model Tip Cód. de Identificação Identification Cod Valor de uma divisão Scale Interio Nº Certificado / Nº Certulico ABSI-RBC-CAL-73239/	2: TK-E-1-E-B35D-I 2: Não Consta 2: 0.1 bar 4: Validade / valuti 10: junho-11	M-V	
Instrumento Instrumento Instrumento Statumento Mandontero Digital Mandontero Digital Fabricante Mandonterio Sereit Numero de Serie: Sereit Numero de Serie: Do8410023 Gefran Seriet Namero Seriet Numero Seriet Numero Seriet Numero Research Calibração: O a 350 bar Cód. de Identificação: Não Consta Não Consta Padrão Utilizado I Standart Utilized: Descrição I Descritori Código I Code Nº contificado (Nº Contructor Sede Daterio) Valor de uma divisão: O a 350 bar Padrão Utilizado I Standart Utilized: Descrição I Descritori Código I Code Nº contificado (Nº Contructor Sede Daterio) Validade I valuting Padrão Utilizado I Standart Utilized: Descrição I Descritori Codalgo I Code Nº contificado (Nº Contructor Sede Daterio) Validade I valuting Descrição I Observação I Observação I Observação I Observação (e suficientemente antes) foi de 20°C ± 2°C. Unidade embilida de medição multiplicado pelo fator de abrangência k=kp. que ara uma distribuição normal correspondente a uma probabilidade de abrangência aproximudamente 95%. Unidade pelo fator de abrangência k=kp. que ara uma distribuição normal correspondente a uma probabilidade de abrangência aproximudamente 95%. Itao de medição multiplicado pelo fator de calibração I Calibração Bara PR-CTJ-027 Data 05/04/2010	Instrumento: Mar. Instrumento: Mar. Fabricante Minuclation: Serial Number Falxa de Calibração: Range of Calibração: Calibração I de Calibração Padrão Utilizado I Standart Utili Descrição I Descrition Manômetro Digital (15000) Observação I Observation: temperatura ambiente durante a calibr Umidade ambiente durante a calibração incerteza expandida de medição relata ra uma distribuição normal correspon dão foi realizado ajuste antes da calibra dão foi realizado ajuste antes da calibra	ômetro Digital an 410023 350 bar ed: 2081)	Código / Code CTJ-P-020	Modelo / Tipo Model - Tsp Cód. de Identificação Identificanon Cod Valor de uma divisão Scale Inters Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/	2: TK-E-1-E-B35D-I c: Não Consta 1: 0.1 bar 1: Validade / valuti 10 junho-11	M-V	
Interformer Digital Fabricante Managenetioner Gefran Stand Jumber Steld There Minimer de Série Sterad Jumber D08410023 Sterad Jumber 0 a 350 bar Padrão Utilizado I Standard ('tilized: Descrição ('Descritoin) Código ('Code N° Certificado (N° Certificado (N° Certificado ('N° Certif	Instrumenti Instrumenti Fabricante Minimipaction Número de Série: Serial Number Falxa de Calibração; Range of Calibração; Descrição Descrition Manômetro Digital (15000) Observação Observation: Lemperatura ambiente durante a calibra Quincerteza expandida de medição relata ara uma distribuição normal correspon dão foi realizado ajuste antes da calibra dato foi realizado ajuste antes da calibra calibrado em conjunto com o indicador Proceedimento de Calibração //	an 410023 350 bar ed: 2081)	Código / Code CTJ-P-020	Modelo / Tipo Model - Ta Cód. de Identificação Identificação Valor de uma divisão Scale Intern Nº Certificado / Nº Certufico ABSI-RBC-CAL-73239/	2: TK-E-1-E-B35D-I 2: Não Consta 3: 0.1 bar 4: Validade / valuti 10 junho-11	M-V	
Fabricantic Minimeta fairer Gefran Modelo / Tipo: Stadd Top: Stadd Top: D08410023 TK-E-1-E-B35D-M-V Stadd Top: Cod. de Identificação: Identificação: Identificação: Data de Calibração: 0 a 350 bar Não Consta Padrão Utilizado / Standart Utilized: Descrição / Descrition 0 a 350 bar Valor de uma divisão: 0.1 bar Padrão Utilizado / Standart Utilized: Descrição / Descrition Código / Code Nº Certificado / Descrition Descrição / Observațion: Código / Code Nº Certificado / Serie a 70% ur. Unidade ambiente durante a calibração (e suficientemente antes) foi de 30°C ± 2°C. Codida o amedição relatada como inourteza padrão da medição multiplicada pelo fator de abrangência k=kp. que ara uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Vião do aguste antes da calibração / Calibração f Calibração f Calibração f Calibração f deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento de Calibração / Calibração daste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento de calibração deste laboratorio, segundo instruções do	Fabricante Gefi Manajactores Número de Série: D08 Serial Number Falxa de Calibração: 0 a - Padrão Utilizado / Standart (tritti Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Nemperatura ambiente durante a calibração incerteza expandida de medição relata incerteza expandida de medição relativa incerteza expandida de medição relativa espandimento de Calibrado por compare Não foi realizado ajuste antes da calibrado de compare Procedimento de Calibrado por compare Não foi realizado a calibrado por compare Não foi realizado a calibrado por compare Não foi realizado a calibrado por compare Não foi realibrado por compare	an 410023 350 bar wed: 581 }	Código / Code CTJ-P-020	Modelo / Tipo Model - Tsp Cód. de Identificação Identification Cod Valor de uma divisão Sede Interso Nº Certificado / Nº Certulico ABSI-RBC-CAL-73239/	2: TK-E-1-E-B35D-1 2: Não Consta 3: 0.1 bar 4: Validade (vululi 10 junho-11	M-V	
Manufactor Statul The FR-E-T-E-B30D-M-V Numero de Sorie: D08410023 Send Number D08410023 Send Number 0 a 350 bar Padrão Utilizado / Standart Utilizad: 0 a 350 bar Descrição / Descritori Código / Code Mandometero Digital (15000 psi) CfJ-P-020 ABSI-RBC-CAL-73239/10 junho-11 Descrição / Descritori Código / Code Manômetro Digital (15000 psi) CfJ-P-020 ABSI-RBC-CAL-73239/10 junho-11 Descrição / Descritori Código / Code Composition: Codido 2010 + 220. Unemperatura ambiente durante a calibração (e suficientemente antes) foi de 2010 + 220. Numidade ambiente durante a calibração (e suficientemente antes) foi de 2010 + 220. Numidade ambiente durante a calibração (e suficientemente antes) foi de 2010 + 220. Numidade ambiente durante a calibração (e suficientemente antes) foi de 2010 + 220. Numidade ambiente durante a calibração (e suficientemente antes) foi de 2010 + 220. Numida de medição nomai correspondente a uma probabilidade de abrangência aproximadamente 96%. Nafo in ensilizado ajuste antes da calibração / Calibration Procedure: Distervação / Calibration Procedure: Strate de missão <td>Manchactorse Número de Série: Seral Number: D08 Faixa de Calibração: C a . Padrão Utilizado / Standart Utili Descrição / Descrution Manômetro Digital (15000) Dbservação / Observation: Atemperatura ambiente durante a calibra Cunidade ambiente durante Cunidade ambiente durante Cunidade ambiente Cunidade ambiente Cunidade ambiente</td> <td>an 410023 350 bar wed: 581 }</td> <td>Código / Code CTJ-P-020</td> <td>Model Tap Cód, de Identificação Identificação Valor de uma divisão Scale Interv Nº Certificado (Nº Certulico ABSI-RBC-CAL-73239/</td> <td>r - E- I-E-B30D-I p; Não Consta p; 0.1 bar d; 0.1 bar d; Validade (vululi 10 junho-11</td> <td>0. M-A</td>	Manchactorse Número de Série: Seral Number: D08 Faixa de Calibração: C a . Padrão Utilizado / Standart Utili Descrição / Descrution Manômetro Digital (15000) Dbservação / Observation: Atemperatura ambiente durante a calibra Cunidade ambiente durante Cunidade ambiente durante Cunidade ambiente Cunidade ambiente Cunidade ambiente	an 410023 350 bar wed: 581 }	Código / Code CTJ-P-020	Model Tap Cód, de Identificação Identificação Valor de uma divisão Scale Interv Nº Certificado (Nº Certulico ABSI-RBC-CAL-73239/	r - E- I-E-B30D-I p; Não Consta p; 0.1 bar d; 0.1 bar d; Validade (vululi 10 junho-11	0. M-A	
Número de Série: D08410023 Cód. de Identificação: Não Consta Paixa de Calibração: 0 a 350 bar Valor de uma divisão: 0.1 bar Padrão Utilizado / Standart Utilized: 0.1 bar State Internation 0.1 bar Padrão Utilizado / Standart Utilized: 0.1 bar Valor de uma divisão: 0.1 bar Padrão Utilizado / Standart Utilized: Nº Certificado (Nº Certicado (Nº Certificado (Nº Certificado (Nº Certificado (Número de Série: Serial Number D08 Faixa de Calibração: Range of Calibração: D a - Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Unidade ambiente durante a calibra Umidade ambiente durante a calibra Umidade ambiente durante a calibra Umidade ambiente durante a calibra Conservação / Observation: Conservação de Calibração / Observação /	410023 850 bar ved: 281 }	Código / Code CTJ-P-020	Cód. de Identificação Identification Cod Valor de uma divisão Scale Interv Nº Certificado (Nº Certufico ABSI-RBC-CAL-73239)	p: Não Consta p: 0.1 bar d: Validade (vuluti 10 junho-11	0'	
Serial Number DOO-10023 Mail Collibração Padrão Utilizado : 0 a 350 bar Valor de uma divisão: 0.1 bar Padrão Utilizado : Descrição : 0.1 bar Padrão Utilizado : Descrição : 0.1 bar Padrão Utilizado : Código : Nº Certificado : Valor de uma divisão: Manômetro Digital (15000 psi) CTJ-P-020 ABSI-RBC-CAL-73239/10 Junho-11 Descrição : Manômetro Digital (15000 psi) CTJ-P-020 ABSI-RBC-CAL-73239/10 Junho-11 Descrição : Descrição : Validade : Validade : Validade : Validade : Observação : Observação : Calibração (e suficientemente antes) foi de 20°C ± 2°C. Validade ambiente durante a colibração (e suficientemente antes) foi de 30% ur a 70% ur. No certaze expandida de medição relatada e declarada como incoteza padrão da medição multiplicada pelo fator de abrangência k=kp, que ara uma divisição noma correspondente a uma probabilidade de abrangencia aproximadamente 95%. Não foi realizado ajuste antes da calibração Validade em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Descrições direta ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento de Calibração / Calibration Procedure: Data Data Data Cal	Serial Number Falxa de Calibração: Range of Calibração: 0 a - Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Competencia ambiente durante a calibra Umidade ambiente durante a calibração Umidade ambiente durante a calibra incerteza expandida de medição relate ara uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador (Procedimento de Calibração / () Instrumento foi calibrado por compara Nº Brocedimento :	+10023 150 bar red: 281 }	Código / Code CTJ-P-020	Identitication Cod Valor de uma divisão Scale Interv Nº Certificado / № Certifico ABSI-RBC-CAL-73239/	ivao consta o: 0.1 bar di Validade (vuluti 10 junho-11	o. f	
Paka de Calibração: 0 a 350 bar Socie Jaternal 0.1 bar Padrão Utilizado / Standart Utilized: Descrição (Joscriton) Código / Code Nº Certificado (Nº Continente de l'vidiade / vidiade	Faixa de Calibração: Range of Calibration 0 a - Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000 j Observação / Observation: Competation ambiente durante a calibra Umidade ambiente durante a calibra Concedimento de Calibração / / Procedimento foi calibração procompara Na procedimento /	350 bar vd:	Código / Code CTJ-P-020	Valor de uma divisão Scale Interes Nº Certificado / № Certifico ABSI-RBC-CAL-73239/	o: 0.1 bar d Validade / valudi 10 junho-11	a. 1	
Padrão Utilizado / Stankart Utilized: Descrição / Descritioni Código / Code Nº Certificado / Nº Ce	Range of Calibration Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000) Observação / Observation: Observação / Observation: Observação / Observation: Observação / Observation: Observação / Observation: Concerteza expandida de medição relate ara uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador Procedimento de Calibração / / O instrumento foi calibrado cor compara	oo bar ved: osi)	Código Feade CTJ-P-020	. Scale Interv № Certificado / № Certifica ABSI-RBC-CAL-73239/	d ^{, I, Dar} National (1997) National (1997) Na	o. I	
Padrão Utilizado / Standart Utilized: Descrição / Descrition Código / Code Mº Certificado / Nº Certificado a pelos fator de abrangência k=kp. que ara uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Vão foi realizado ajuste antes da calibração Certificado filos / Calibradion Procedure: Orocedimento lo calibrado por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s). Nº Procedimento: Revisão / Data 23/03/2011 Data Data Data Descricon Metrologista Metrologista Casterior Metrologista Metrologista Metrologis	Padrão Utilizado / Standart Utili Descrição / Descrition Manômetro Digital (15000 , Observação / Observation: Observação / Observațion: Observação	ved: DSI }	Código / Code CTJ-P-020	№ Certificado / № Certifica ABSi-RBC-CAL-73239/	ne Validade / voludi 10 junho-11	o. 1	
Deservação 1 Observation: temperatura ambiente durante a calibração (e suficientemente antes) foi de 20°C ± 2°C. Umidade ambiente durante a calibração (e suficientemente antes) foi de 30% ur a 70% ur. incerteza expandida de medição nelatada e declarada como incerteza padrão da medição multiplicada pelo fator de abrangência k=kp, que ara uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. tão foi realizado ajuste antes da calibração alibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. recedimento de Calibração / Calibration Procedure: Instrumento foi calibração / Calibration Procedure: Instrumento foi calibração / Calibration Procedure: 23/03/2011 Data da Emissão Lsued on	Deservação / Observation: temperatura ambiente durante a calibi- Umidade ambiente durante a calibra incerteza expandida de medição relata ara uma distribuição normal correspon tão foi realizado ajuste antes da calibra alibrado em conjunto com o indicador roccedimento de Calibração // Instrumento foi calibrado por compara Nº Brecodimentor						
Observação / Observation: A temperatura ambiente durante a calibração (e suficientemente antes) foi de 20°C ± 2°C. A Umidade ambiente durante a calibração (e suficientemente antes) foi de 30% ur a 70% ur. A incerteza expandida de medição relatada e declarada como incerteza padrão da medição multiplicada pelo fator de abrangência k=kp, que para uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Não foi realizado ajuste antes da calibração Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração / Calibration Procedure: D instrumento foi calibração o comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão PR-CTJ-027 REV.A 05/04/2010 Valorada da Emissão Issued on Ketriço F. A. Danelion Costa Tecnica Irechnictan	Observação / Observation: A temperatura ambiente durante a calibraçi A Umidade ambiente durante a calibraçi a incerteza expandida de medição relate para uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador (Procedimento de Calibração /) D instrumento foi calibrado por compara N® Encodimento (
Observação / Observation: A remperatura ambiente durante a calibração (e suficientemente antes) foi de 20°C + 2°C. A Umidade ambiente durante a calibração (e suficientemente antes) foi de 30% ur a 70% ur. A incerteza expandida de medição relatada e declarada como incorteza padrão da medição multiplicada pelo fator de abrangência k=kp, que para ruma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Não foi realizado ajuste antes da calibração Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração / Calibration Procedure: O Instrumento foi calibração por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão PR-CTJ-027 REV.A 05/04/2010 Z3/03/2011 Calibrat da Emissão Lisued on Suedon	Observação / Observation: A temperatura ambiente durante a calibr A Umidade ambiente durante a calibra; A incerteza expandida de medição relata para uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador i Procedimento de Calibração / / O instrumento foi calibrado por compara N® procedimento						
A Umidade ambiente durante a calibração (e suficientemente antes) foi de 20° er 27°C. A Umidade ambiente durante a calibração (e suficientemente antes) foi de 30% ur a 70% ur. A incerteza expandida de medição relatada e declarada como incorteza padrão da medição multiplicada pelo fator de abrangência k=kp, que para uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Não foi realizado ajuste antes da calibração Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração <i>I Calibration Procedure:</i> D Instrumento foi calibração <i>I Calibration Procedure:</i> D Instrumento foi calibração <i>I Calibration Data</i> <i>PR-CTJ-027</i> REV.A D5/04/2010 <i>Lisued on</i> <i>Calibra da Emissão</i> <i>Lisued on</i> <i>Calibra da Emissão</i> <i>Lisued on</i>	A lemperatura ambiente durante a calibraçi A Umidade ambiente durante a calibraçi A loceteza expandida de medição relati- para uma distribuição normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador i Procedimento de Calibração / - D Instrumento foi calibrado por compara Nº Procedimento ;	soda i a guliaiantam	anto antos) fui da 20%	1.220			
A incerteza expandida de medição relatada e declarada como incorteza padrão da medição multiplicada pelo fator de abrangência k=kp, que para uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Não foi realizado ajuste antes da calibração Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração / Calibration Procedure: D Instrumento foi calibração / Calibration Procedure: D Instrumento foi calibração direfa ao padrão desle laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 Calibrat da Emissão Issued on REV.A 05/04/2010 Calibrat da Emissão Issued on REV.A 05/04/2010 Calibrat da Emissão	A incerteza expandida de medição relati para uma distribulção normal correspon Não foi realizado ajuste antes da calibra Calibrado em conjunto com o indicador Procedimento de Calibração / D Instrumento foi calibrado por compara Nº Procedimento	io (e suficientement	te antes) foi de 30% ur	a 70% ur			
Ara uma distribuição normal correspondente a uma probabilidade de abrangência aproximadamente 95%. Não foi realizado ajuste antes da calibração Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração / Calibration Procedure: Distrumento foi calibrado por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 Calibrado da Emissão Issued on Revisão Data Calibra da Emissão Issued on Revisão Data Calibra da Emissão Data Calibra da Emissão	para uma distribuição normal correspon Não foi realizado ajuste antes da calibri Calibrado em conjunto com o indicador Procedimento de Calibração / D Instrumento foi calibrado por compara Nº Brocodimento	da e declarada com	io incerteza padrão da n	nedição multiplicada pelo fator de a	ibrandêncîa k≖ko, que		
Não foi realizado ajuste antes da calibração Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração / Calibration Procedure: Distrumento foi calibrado por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Revisão Data Contra da Emissão Contra da Emissão Contra da Emissão Contra da Emissão Contra da Emissão	Não foi realizado ajuste antes da calibri Calibrado em conjunto com o indicador Procedimento de Calibração / D Instrumento foi calibrado por compara	tente a uma probabil	ilidade de abrangência :	aproximadamente 95%.	annan na dao		
Calibrado em conjunto com o indicador marca Gefran, modelo 600. serie B08450018. Procedimento de Calibração <i>I Calibration Procedure:</i> Distrumento foi calibrado por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data <i>PR-CTJ-027 REV.A 05/04/2010</i> 23/03/2011 Data da Emissão <i>Issued on</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo instruções do (s) procedimento (s):</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Data</i> <i>Revisão Calibrado deste laboratorio, segundo deste laborator</i>	Calibrado em conjunto com o indicador Procedimento de Calibração / D instrumento foi calibrado por compara	ção					
Calibrado em conjunto com o indicador marca Gefran, modelo 600, serie B08450018. Procedimento de Calibração / Calibration Procedure: Distrumento foi calibrado por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Revisão Redrigo F. A. Danelon Costa Tecnico Metrologista Metrological Technictan	Calibrado em conjunto com o indicador Procedimento de Calibração / / D Instrumento foi calibrado por compara						
Procedimento de Calibração I Calibration Procedure: Distrumento foi calibrado por comparação direte ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Revisão Redrigo F. A. Danelon Costa Tecnico Metrologista Metrological Technician	Procedimento de Calibração /	narca Gefran, mode	elo 600, serie 80845001	8.			
Procedimento de Calibração / Calibration Procedure: Distrumento foi calibrado por comparação direta ao padrão deste laboratorio, segundo instruções do (s) procedimento (s): № Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Rodrigo F. A. Danelon Costa Tecnico Metrologista Metrological Technician	Procedimento de Calibração / Dinstrumento foi calibrado por compara						
Distrumento foi calibrado por comparação direte ao padrão desie laboratorio, segundo instruções do (s) procedimento (s): Nº Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Redrigo F. A. Danelon Costa Tecnico Metrologista Metrological Technictan	D Instrumento foi calibrado por compara	alibration Procee	dure:				
N° Procedimento: Revisão Data PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Redrigo F. A. Danelon Costa Tecnico Metrologista Metrological Technician	Nº Drocodimento: D	ção direta ao padrão	o deste laboratório, segu	indo instruções do (s) procediment	0 (S):		
PR-CTJ-027 REV.A 05/04/2010 23/03/2011 Data da Emissão Issued on Rodrigo F. A. Danelon Costa Técnico Metrologista Metrological Technician	N Procedimento. R	evisão Da	nta				
23/03/2011 Data da Emissão Issued on Rodrigo F. A. Danelon Costa Técnico Metrologista Metrological Technician	PR-CTJ-027	REV.A 05/04/	/2010				
23/03/2011 Data da Emissão Issued on Rodrigo F. A. Danelon Costa Técnico Metrologista Metrological Technician			tx				
23/03/2011 Data da Emissão Issued on Rodrigo F. A. Danelon Costa Tecnico Metrologista Metrological Technician			(t))			
Data da Emissão Issued on Rodrigo F. A. Danelon Costa Técnico Metrologista Metrological Technician	23/03/2011		XII	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Issued on Técnico Metrologísta Metrological Technician	Data da Emissão		Rodrigo F. A	. Danelon Costa			
Metrological Lechnician	Issued on		Tecnico.	Metrologista			
			Metrologic	at Leennician			
Fits correlated wave registring de according a pela CSS/REINMETRO que avaliera a comprisiona do informa vir e comprova a ma controbilidade a pelaber nacionalis) en interno funços una de la condita. SL - Unambrid, dans controbicamento adorador a comprisión de activitador de conditivitador de la conditividade en esta a constructividade en esta a enterno funços conditividades SL - Unambrid, dans controbicamento adorador conservação da constructividade en esta a constructividade enterno de la construcción de la construcción de la construcción de la constru-	Este contribudo atende aos requirinos de acrea o strans interna tonal de Conductor St.		ETRO que avalieu a competé refere avaliar 1, competé	neta do laboratorio e comprovou a sua rasti addinado e una canto sua canto de comprovente de comp	reabilidade a padrões naciona Exemplificado dante con 17	us i ou	
• A construction construction of the constr	er ferta na suo totalidade	ttação pela CGCRE INMI todo domo contribuid	reserve apparation of equipaments	 s aura mos contras contratevos especiale daleis, a 	ereprosançare azar vertilledde	are stra	
- Caso este instrumento seta regulamentado esta calibração não porta o momo do controle metrologico atstabelecido na regulamentação metrológica	Caso este instrumento seta regulamentado, est	ttação pela CGCRE INMI tado deste certificado se i					

WWWWW affill avoid

Calibration Certificate issued by CIJ

Laboratório de Calibração Acreditado pela CGCRE/Inmetro de acordo com a ABNT NBR ISO/IEC 17025, sob o nº CAL 0477

Identificação do Certificado / Certificate Date:

Calibração NER ISONICO 17028

Cortificado do Calibração / Certificate Number : T-0342/11 Ordem de Serviço nº / Service Order Number : OST-0086/11 Data da Calibração / Calibration Date : 15/03/2011 Página / Pager : 01 / 03

Código:

Number

CL-0270

identificação do Cliente / Customer's Data:

Razão Social: UFRJ-Escola de Química _{Nome}: Endereço: Av. Alhos da Silveira Ramos - 149 _{Addrass}: Ilha do Fundão - Rio de Janeiro - RJ - 21941-909

Identificação do Instrumento/ Mensurando Identification:

Instrumento:	Indicador de 7	emperatura			
Fabricante Manufacurer:	Coel		, Modelo / Tipo: Model / Type:	K49	
Número de Série: Secial Number-	Vão Consta		Cód. de Identificação: Identification Code.	Não Co	onsta
Faixa de Calibração: Ranze of Calibration:	0a100 °C		Valor de uma divisão: Scale Interval:	0,1 °C	
Padrão Utilizado/ Star	idart Utilized:		45		
Descrição / Descri	tion	Código / Codz	Nº Certificado / Nº Certif	lcate	Validade / validity
Calibrador Dig	ital	CTJ-E-026	IMI-RBC-R15692-	10	novembro-11
Termoresistência tipe	PT 100	CTJ-T-005	ECIL-RBC-7421/1	0	outubro-11

Observação / Observation.

A Temperatura ambiente durante a calibração (e suficientemente antes) foi de 23°C ± 3°C.

A Umidade relativa do ar durante a calibração (e suficientemente antes) foi de 35% ur a 75 % ur.

As conversões deste certificado foram realizadas conforme Escala Internacional de Temperatura de 1990. A incerteza expandida de medição relatada é declarada como incerteza padrão de medição multiplicada pelo fator de abrangência k=kp, que para una distribuição normal corresponde a una probabilidade de abrangência de aproximadamente de 95%.

Calibração efetuada nas instalações do cliente.

Localização: LADEQ/ Lab. de Extração e Purificação de Produtos Naturais/Biomoléculas.

Procedimento de Calibração / Calibration Procedure:

O instrumento em referência foi calibrado por comparação direta a instrumentos de características padrão, através de um meio termostático. No sentido crescente.

Os resultados obtidos são médias de três leituras.

A calibração foi realizada conforme procedimento interno . PR-CTJ-035 Revisão 0.

16/03/2011 Data da Emissão Issued on

Andre Augusto do Ama Técnico Metrologista

Metrological Technician

en 42, São ludeo Tadou Dunio do Cavias, R.L. CER 25743,020, Tal/Fax (55,21) 3656-5723, cti@onuncti.com hi

>> Este certificado atende aos requisitos de acreditação pela CGCRE/Inmeiro, que avalidu a competência do laboratório e comprovou a sua rastreabilidade a padrões nacionais (ou ao Sistema Nacional de Unidades - SI). O resultado ceste certificado se refere apenas ao equipamento calibrado e nas condições especificadas.

>> A reprodução total ou parcial deste certificado depende de prévia autorização do CTJ.

>> Caso este instrumento seja regulamentado, esta calibração não isenta o masmo do controle metrológico estabelecido na regulamentação metrológica.

E COARARE PARALATA ATA ATA A

Calibration Certificate issued by CTJ

Identificação do Certificado / Certificate Date:

	Ordem de Serviço nº / Service Order Number; OSM-0020/1 Data da Calibração / Calibration Date; 15/03/2011 Página / Pager; 01 / 02				
dentificação do Cliente / Customer's Data:	<u> </u>				
Razao Social: UFRJ - Escola de Química	Cbaigo: CL-0270				
Fordereco: Av. Athos da Silveira Ramo	s - 149				
Address: Ilha do Fundão - Rio de Jan	eiro - RJ - 21941-909				
dentificação do Instrumento / Mensurando Identification:					
Instrumento: Instrument: Balança Digital					
Fabricante Ohaus	Modelo / Tipo: AR 2140				
Manufacturer:	Model Type:				
Numero de Serie: Social Number: 10348179	Cod. de indentificação: Identification Code: Não Consta				
Faixa de Indicacão:	Valor de uma divisão:				
Range of Identification: 0 a 210g	Scale Interval: 0,0001 g				
Padrão Utilizado / Standart Utilized:					
Descrição / Descrition Código	1 Code Nº Certificado 1 Nº Certificate Validade 1 valid				
Conjunto de pesos padrão CTJ-M	-002 MA045_02_11 fevereiro-1				
Conjunto de pesos padrão CTJ-M	-003 MA046_02_11 fevereiro-1				
Temperatura ambiente durante a calibração (e suficiente a 1 Umidade realativa do ar é igual a 70±10% ncerteza combinada e expandida com intervalo de confiança 7 alibração efetuada nas instalações do cliente.	ntes) foi de 20 ± 5 °C 1 de 94.45% e K = Kp.				
ocalização: LADEQ / 1º Andar / St. 210 Procedimento de Calibração / Calibration Procedure:) instrumento em referência foi calibrado em diversos pontos ao longo ireta em comparação com pesos padrão, sendo o ciclo repetido três u conforme procedimento interno . <u>PR-CTJ-062</u>)s resultados obtidos encontran-se nas folhas seguintes.	o da amplitude da faixa da escala, no sentido crescente através de leitura vezes.				
	And I know I				
23/03/2011	André Augusto do Amaral				
23/03/2011 Data da Emissão	100000				
23/03/2011 Data da Emissão Issued on	Técnico Metrologista				
23/03/2011 Data da Emissão Issued on	Técnico Metrologista Metrological Technician				

- Caller Di CED SENS AND Talifar - EE DA 9856 5799 ali@aniporti com br

WINDOW STREET, STATE

ANEXO III

Os resultados detalhados dos coeficientes de compressibilidade calculados são apresentados nas Tabelas III.1 a III.28.

• Componentes puros:

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa ⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	1,0100	1,0920	1,1830	1,2311	1,3277	1,4342	1,6706	1,7621	1,8628	
50	0,9486	1,0208	1,1001	1,1518	1,2362	1,3280	1,5810	1,6603	1,7465	
100	0,8946	0,9587	1,0283	1,0824	1,1567	1,2367	1,5015	1,5708	1,6451	
150	0,8478	0,9052	0,9671	1,0224	1,0885	1,1590	1,4320	1,4931	1,5578	
200	0,8071	0,8590	0,9143	0,9702	1,0296	1,0923	1,3709	1,4251	1,4821	
250	0,7716	0,8187	0,8686	0,9246	0,9783	1,0346	1,3168	1,3654	1,4160	

Tabela III.1 - Sistema n-decano

Pressão	k _S (GPa⁻¹)				k _⊤ (GPa⁻¹)			k _H (GPa⁻¹)		
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,8001	0,8533	0,9146	0,9529	1,0123	1,0800	1,3340	1,3885	1,4512	
50	0,7616	0,8091	0,8639	0,9055	0,9577	1,0170	1,2789	1,3256	1,3790	
100	0,7272	0,7701	0,8195	0,8631	0,9096	0,9619	1,2291	1,2695	1,3152	
150	0,6964	0,7355	0,7806	0,8253	0,8670	0,9138	1,1843	1,2195	1,2589	
200	0,6683	0,7042	0,7457	0,7910	0,8289	0,8710	1,1434	1,1744	1,2086	
250	0,6424	0,6757	0,7141	0,7596	0,7942	0,8325	1,1059	1,1332	1,1631	

Tabela III.3 - Sistema decalina

-									· · · · · · · · · · · · · · · · · · ·	
	Pressão	I	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	I	< _H (GPa⁻¹))
	(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
	1	0,6450	0,6902	0,7392	0,8032	0,8545	0,9097	1,2255	1,2678	1,3141
	50	0,6182	0,6599	0,7050	0,7677	0,8146	0,8649	1,1819	1,2198	1,2610
	100	0,5935	0,6322	0,6738	0,7350	0,7783	0,8242	1,1414	1,1756	1,2123
	150	0,5712	0,6072	0,6458	0,7055	0,7456	0,7878	1,1044	1,1354	1,1682
	200	0,5509	0,5845	0,6205	0,6787	0,7159	0,7549	1,0704	1,0987	1,1281

Tabela III.4 - Sistema tetralina

Pressão	k _S (GPa⁻¹)				k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,5250	0,5602	0,5980	0,6582	0,6995	0,7434	1,0377	1,0731	1,1114	
50	0,5077	0,5404	0,5753	0,6348	0,6729	0,7133	1,0080	1,0402	1,0748	
100	0,4919	0,5223	0,5546	0,6132	0,6485	0,6858	0,9804	1,0097	1,0412	
150	0,4774	0,5058	0,5358	0,5935	0,6263	0,6608	0,9548	0,9817	1,0104	
200	0,4637	0,4904	0,5184	0,5750	0,6057	0,6378	0,9308	0,9555	0,9818	
250	0,4506	0,4756	0,5019	0,5575	0,5863	0,6163	0,9080	0,9308	0,9549	

• Misturas binárias equimolares:

Tabela III.5 - Sistema n-decano (50% molar) / n-hexadecano (50% molar)

Pressão	k _S (GPa⁻¹)			[k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,8830	0,9468	1,0139	1,0603	1,1326	1,2084	1,4649	1,5319	1,6022	
50	0,8361	0,8931	0,9534	1,0013	1,0656	1,1333	1,3968	1,4557	1,5180	
100	0,7933	0,8448	0,8994	0,9477	1,0054	1,0664	1,3345	1,3868	1,4424	
150	0,7553	0,8023	0,8522	0,9003	0,9527	1,0081	1,2788	1,3257	1,3757	
200	0,7220	0,7653	0,8112	0,8587	0,9065	0,9572	1,2293	1,2716	1,3170	
250	0,6932	0,7332	0,7758	0,8224	0,8663	0,9131	1,1855	1,2240	1,2654	

Tabela III.6 - Sistema decalina (50% molar) / tetralina (50% molar)

Pressão	k _S (GPa⁻¹)				k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,5871	0,6274	0,6708	0,7329	0,7795	0,8294	1,1345	1,1739	1,2167	
50	0,5659	0,6032	0,6432	0,7042	0,7471	0,7927	1,0986	1,1344	1,1727	
100	0,5459	0,5805	0,6176	0,6773	0,7170	0,7589	1,0647	1,0972	1,1317	
150	0,5274	0,5597	0,5940	0,6525	0,6894	0,7280	1,0332	1,0629	1,0941	
200	0,5102	0,5404	0,5724	0,6296	0,6640	0,6998	1,0038	1,0312	1,0594	
250	0,4941	0,5224	0,5524	0,6083	0,6406	0,6739	0,9764	1,0017	1,0274	

Pressão	ł	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,7446	0,7944	0,8491	0,8978	0,9551	1,0176	1,2994	1,3511	1,4078	
50	0,7105	0,7561	0,8057	0,8546	0,9065	0,9626	1,2478	1,2940	1,3441	
100	0,6792	0,7209	0,7662	0,8150	0,8623	0,9128	1,2001	1,2415	1,2858	
150	0,6511	0,6895	0,7310	0,7795	0,8227	0,8687	1,1569	1,1942	1,2337	
200	0,6259	0,6615	0,6997	0,7476	0,7875	0,8295	1,1178	1,1516	1,1869	
250	0,6035	0,6365	0,6719	0,7192	0,7561	0,7947	1,0824	1,1132	1,1451	

Tabela III.7 - Sistema n-hexadecano (50% molar) / decalina (50% molar)

Tabela III.8 - Sistema n-decano (50% molar) / tetralina (50% molar)

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,7640	0,8240	0,8895	1,1668	1,2479	1,3354	1,6554	1,7230	1,7964	
50	0,7274	0,7823	0,8414	1,1091	1,1827	1,2612	1,5942	1,6550	1,7201	
100	0,6943	0,7445	0,7980	1,0567	1,1238	1,1945	1,5379	1,5927	1,6508	
150	0,6646	0,7107	0,7594	1,0098	1,0713	1,1354	1,4870	1,5367	1,5887	
200	0,6378	0,6804	0,7248	0,9676	1,0241	1,0826	1,4406	1,4858	1,5326	
250	0,6134	0,6528	0,6934	0,9291	0,9814	1,0350	1,3980	1,4393	1,4816	

Tabela III.9 - Sistema n-decano (50% molar) / decalina (50% molar)

Pressão	I	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,8243	0,8866	0,9538	1,0035	1,0842	1,1713	1,4292	1,5088	1,5937	
50	0,7819	0,8374	0,8974	0,9478	1,0197	1,0972	1,3637	1,4348	1,5104	
100	0,7441	0,7942	0,8482	0,8982	0,9629	1,0324	1,3046	1,3687	1,4366	
150	0,7108	0,7564	0,8054	0,8544	0,9132	0,9763	1,2518	1,3101	1,3717	
200	0,6812	0,7229	0,7678	0,8155	0,8694	0,9270	1,2042	1,2577	1,3141	
250	0,6547	0,6931	0,7345	0,7807	0,8304	0,8834	1,1612	1,2106	1,2626	

Pressão	ł	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,7025	0,7506	0,8016	0,8509	0,9065	0,9652	1,2424	1,2932	1,3472	
50	0,6720	0,7156	0,7617	0,8119	0,8620	0,9148	1,1954	1,2407	1,2888	
100	0,6446	0,6844	0,7262	0,7767	0,8221	0,8701	1,1526	1,1931	1,2364	
150	0,6200	0,6564	0,6948	0,7451	0,7865	0,8304	1,1138	1,1502	1,1894	
200	0,5974	0,6310	0,6664	0,7163	0,7544	0,7947	1,0781	1,1111	1,1469	
250	0,5764	0,6076	0,6404	0,6897	0,7248	0,7621	1,0451	1,0751	1,1078	

Tabela III.10 - Sistema n-hexadecano (50% molar) / tetralina (50% molar)

• Misturas binárias 25% / 75%:

Tabela III.11 - Sistema n-decano (25% molar) / n-hexadecano (75% molar)

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹)	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,8335	0,8922	0,9555	0,9918	1,0613	1,1360	1,3796	1,4467	1,5185	
50	0,7909	0,8441	0,9012	0,9383	1,0010	1,0679	1,3173	1,3775	1,4416	
100	0,7529	0,8013	0,8531	0,8906	0,9474	1,0078	1,2610	1,3153	1,3728	
150	0,7193	0,7637	0,8110	0,8484	0,9003	0,9552	1,2107	1,2600	1,3120	
200	0,6893	0,7303	0,7737	0,8108	0,8584	0,9086	1,1653	1,2104	1,2577	
250	0,6623	0,7002	0,7403	0,7769	0,8209	0,8671	1,1241	1,1655	1,2087	

Tabela III.12 - Sistema decalina (25% molar) / tetralina (75% molar)

Pressão	I	k _s (GPa⁻¹)		k⊤ (GPa⁻¹)	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,5729	0,6121	0,6544	0,7140	0,7588	0,8067	1,1063	1,1439	1,1848	
50	0,5522	0,5886	0,6276	0,6865	0,7275	0,7715	1,0719	1,1056	1,1427	
100	0,5328	0,5666	0,6026	0,6607	0,6984	0,7389	1,0395	1,0697	1,1032	
150	0,5148	0,5462	0,5797	0,6370	0,6717	0,7091	1,0095	1,0365	1,0670	
200	0,4980	0,5274	0,5587	0,6150	0,6471	0,6818	0,9816	1,0057	1,0334	
250	0,4824	0,5100	0,5392	0,5947	0,6244	0,6566	0,9556	0,9771	1,0024	

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,7266	0,7799	0,8369	0,8937	0,9561	1,0225	1,3157	1,3715	1,4311	
50	0,6934	0,7415	0,7930	0,8501	0,9061	0,9656	1,2632	1,3127	1,3654	
100	0,6634	0,7072	0,7540	0,8106	0,8615	0,9152	1,2152	1,2596	1,3064	
150	0,6366	0,6767	0,7197	0,7754	0,8219	0,8709	1,1718	1,2119	1,2540	
200	0,6124	0,6494	0,6891	0,7436	0,7865	0,8316	1,1323	1,1689	1,2071	
250	0,5904	0,6248	0,6617	0,7148	0,7546	0,7964	1,0962	1,1298	1,1646	

Tabela III.13 - Sistema n-decano (25% molar) / decalina (75% molar)

Tabela III.14 - Sistema n-decano (25% molar) / tetralina (75% molar)

Pressão		k _s (GPa⁻¹)	k _⊤ (GPa ⁻¹)			k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,6425	0,6886	0,7381	0,7956	0,8492	0,9064	1,1927	1,2406	1,2921	
50	0,6171	0,6591	0,7039	0,7616	0,8102	0,8616	1,1512	1,1941	1,2396	
100	0,5941	0,6324	0,6732	0,7308	0,7752	0,8217	1,1129	1,1517	1,1922	
150	0,5731	0,6084	0,6458	0,7028	0,7437	0,7861	1,0780	1,1133	1,1497	
200	0,5537	0,5864	0,6209	0,6771	0,7149	0,7539	1,0456	1,0780	1,1109	
250	0,5355	0,5658	0,5977	0,6530	0,6883	0,7244	1,0152	1,0453	1,0753	

Tabela III.15 - Sistema n-hexadecano (25% molar) / decalina (75% molar)

Pressão	l	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,7061	0,7555	0,8096	0,8624	0,9176	0,9775	1,2762	1,3233	1,3753	
50	0,6750	0,7202	0,7691	0,8222	0,8722	0,9258	1,2274	1,2693	1,3147	
100	0,6468	0,6882	0,7326	0,7857	0,8311	0,8794	1,1827	1,2199	1,2598	
150	0,6215	0,6596	0,7002	0,7530	0,7946	0,8383	1,1422	1,1755	1,2107	
200	0,5986	0,6337	0,6709	0,7234	0,7616	0,8014	1,1052	1,1352	1,1663	
250	0,5775	0,6101	0,6443	0,6963	0,7317	0,7681	1,0712	1,0983	1,1260	

Pressão	I	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,6292	0,6709	0,7148	0,7719	0,8201	0,8708	1,1614	1,2041	1,2494	
50	0,6048	0,6432	0,6836	0,7400	0,7842	0,8306	1,1223	1,1610	1,2019	
100	0,5820	0,6175	0,6548	0,7103	0,7510	0,7936	1,0855	1,1208	1,1579	
150	0,5612	0,5942	0,6288	0,6832	0,7209	0,7603	1,0517	1,0840	1,1179	
200	0,5423	0,5730	0,6054	0,6585	0,6937	0,7304	1,0206	1,0504	1,0815	
250	0,5252	0,5540	0,5843	0,6362	0,6692	0,7034	0,9921	1,0198	1,0485	

Tabela III.16 - Sistema n-hexadecano (25% molar) / tetralina (75% molar)

• Misturas binárias 75% / 25%:

Tabela III.17 - Sistema n-decano (75% molar) / n-hexadecano (25% molar)

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,9308	1,0025	1,0819	1,1210	1,2063	1,3001	1,5376	1,6194	1,7092	
50	0,8798	0,9433	1,0132	1,0557	1,1306	1,2124	1,4625	1,5339	1,6116	
100	0,8340	0,8907	0,9528	0,9974	1,0637	1,1357	1,3947	1,4574	1,5253	
150	0,7935	0,8445	0,9002	0,9459	1,0053	1,0693	1,3344	1,3899	1,4497	
200	0,7572	0,8036	0,8539	0,9001	0,9537	1,0112	1,2802	1,3298	1,3830	
250	0,7247	0,7670	0,8129	0,8592	0,9079	0,9600	1,2314	1,2760	1,3236	

Tabela III.18 - Sistema decalina (75% molar) / tetralina (25% molar)

Pressão	ł	k _s (GPa⁻¹)		k⊤ (GPa⁻¹))	k _H (GPa⁻¹)			
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,6149	0,6593	0,7071	0,7656	0,8164	0,8707	1,1766	1,2195	1,2660	
50	0,5914	0,6322	0,6760	0,7339	0,7802	0,8297	1,1370	1,1754	1,2170	
100	0,5694	0,6071	0,6473	0,7044	0,7469	0,7920	1,1000	1,1343	1,1717	
150	0,5493	0,5843	0,6214	0,6776	0,7166	0,7581	1,0659	1,0967	1,1305	
200	0,5308	0,5633	0,5977	0,6530	0,6890	0,7273	1,0345	1,0622	1,0928	
250	0,5137	0,5441	0,5761	0,6304	0,6638	0,6993	1,0054	1,0304	1,0582	

Pressão		k _s (GPa ⁻¹)			k⊤ (GPa⁻¹))	k _H (GPa⁻¹)		
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,9138	0,9878	1,0671	1,1175	1,2026	1,2934	1,5528	1,6315	1,7156
50	0,8639	0,9286	0,9978	1,0524	1,1265	1,2050	1,4776	1,5454	1,6172
100	0,8194	0,8767	0,9379	0,9945	1,0599	1,1289	1,4100	1,4692	1,5314
150	0,7801	0,8315	0,8864	0,9436	1,0022	1,0637	1,3499	1,4024	1,4571
200	0,7452	0,7917	0,8414	0,8984	0,9515	1,0070	1,2960	1,3432	1,3919
250	0,7139	0,7565	0,8019	0,8582	0,9068	0,9574	1,2476	1,2905	1,3345

Tabela III.19 - Sistema n-decano (75% molar) / decalina (25% molar)

Tabela III.20 - Sistema n-decano (75% molar) / tetralina (25% molar)

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹)		к _н (GPa⁻¹)
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,8924	0,9627	1,0357	1,0900	1,1728	1,2590	1,5176	1,5955	1,6763
50	0,8447	0,9064	0,9704	1,0278	1,1004	1,1761	1,4457	1,5137	1,5843
100	0,8021	0,8569	0,9138	0,9723	1,0369	1,1042	1,3808	1,4410	1,5035
150	0,7643	0,8135	0,8647	0,9232	0,9814	1,0420	1,3228	1,3767	1,4330
200	0,7303	0,7750	0,8216	0,8794	0,9323	0,9875	1,2706	1,3195	1,3706
250	0,6997	0,7407	0,7833	0,8401	0,8886	0,9394	1,2233	1,2680	1,3150

Tabela III.21 - Sistema n-hexadecano (75% molar) / decalina (25% molar)

Pressão	l	k _s (GPa ⁻¹)			k⊤ (GPa⁻¹))		k _H (GPa⁻¹)
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,7748	0,8277	0,8848	0,9258	0,9876	1,0540	1,3159	1,3741	1,4366
50	0,7376	0,7858	0,8376	0,8790	0,9350	0,9948	1,2606	1,3128	1,3686
100	0,7045	0,7487	0,7961	0,8372	0,8883	0,9425	1,2105	1,2578	1,3079
150	0,6752	0,7159	0,7595	0,8002	0,8470	0,8966	1,1656	1,2086	1,2539
200	0,6487	0,6864	0,7267	0,7667	0,8099	0,8555	1,1246	1,1640	1,2052
250	0,6242	0,6594	0,6968	0,7359	0,7760	0,8182	1,0868	1,1230	1,1607

Pressão	ł	k _s (GPa⁻¹)	l	k⊤ (GPa⁻¹))	ł	κ _н (GPa⁻¹))
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,7542	0,8051	0,8635	0,9052	0,9629	1,0283	1,2926	1,3454	1,4058
50	0,7196	0,7661	0,8192	0,8618	0,9137	0,9720	1,2412	1,2878	1,3405
100	0,6883	0,7310	0,7794	0,8226	0,8694	0,9216	1,1943	1,2354	1,2814
150	0,6605	0,6997	0,7441	0,7876	0,8302	0,8772	1,1522	1,1885	1,2288
200	0,6353	0,6716	0,7125	0,7562	0,7950	0,8376	1,1139	1,1461	1,1815
250	0,6125	0,6462	0,6839	0,7277	0,7633	0,8020	1,0790	1,1076	1,1387

Tabela III.22 - Sistema n-hexadecano (75% molar) / tetralina (25% molar)

• Misturas ternárias equimolares:

Tabela III.23 - Sistema n-decano / n-hexadecano / decalina (equimolar)

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))		к _н (GPa⁻¹)
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,8153	0,8749	0,9399	0,9838	1,0530	1,1280	1,3941	1,4585	1,5283
50	0,7743	0,8277	0,8855	0,9315	0,9930	1,0595	1,3326	1,3891	1,4505
100	0,7382	0,7865	0,8383	0,8854	0,9405	0,9998	1,2778	1,3275	1,3818
150	0,7065	0,7504	0,7972	0,8450	0,8946	0,9479	1,2290	1,2731	1,3215
200	0,6778	0,7180	0,7605	0,8086	0,8535	0,9018	1,1849	1,2241	1,2674
250	0,6512	0,6881	0,7270	0,7752	0,8160	0,8599	1,1441	1,1791	1,2180

Tabela III.24 - Sistema n-hexadecano / tetralina / decalina (equimolar)

Pressão		k _s (GPa ⁻¹)			k⊤ (GPa⁻¹))	l	k _H (GPa⁻¹)
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,6898	0,7389	0,7913	0,8405	0,8964	0,9558	1,2424	1,2923	1,3456
50	0,6605	0,7051	0,7526	0,8023	0,8527	0,9063	1,1959	1,2403	1,2875
100	0,6336	0,6743	0,7178	0,7673	0,8132	0,8618	1,1529	1,1927	1,2348
150	0,6093	0,6468	0,6869	0,7357	0,7779	0,8223	1,1137	1,1497	1,1876
200	0,5873	0,6220	0,6592	0,7072	0,7461	0,7871	1,0779	1,1107	1,1451
250	0,5673	0,5996	0,6342	0,6813	0,7175	0,7554	1,0451	1,0752	1,1066

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))		k _H (GPa⁻¹)		
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	
1	0,7283	0,7801	0,8388	0,9020	0,9591	1,0230	1,3221	1,3704	1,4255	
50	0,6954	0,7422	0,7954	0,8595	0,9102	0,9668	1,2716	1,3130	1,3603	
100	0,6657	0,7084	0,7569	0,8212	0,8666	0,9171	1,2255	1,2613	1,3020	
150	0,6389	0,6782	0,7227	0,7867	0,8278	0,8733	1,1838	1,2148	1,2500	
200	0,6144	0,6507	0,6920	0,7553	0,7927	0,8341	1,1456	1,1726	1,2031	
250	0,5916	0,6254	0,6639	0,7264	0,7607	0,7985	1,1102	1,1338	1,1603	

Tabela III.25 - Sistema n-decano / tetralina / decalina (equimolar)

Tabela III.26 - Sistema n-decano / n-hexadecano / tetralina (equimolar)

Pressão		k _s (GPa⁻¹)		k⊤ (GPa⁻¹))		k _H (GPa⁻¹)
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	0,7858	0,8460	0,9082	0,9513	1,0208	1,0928	1,3551	1,4202	1,4874
50	0,7484	0,8024	0,8583	0,9027	0,9648	1,0296	1,2975	1,3550	1,4156
100	0,7147	0,7636	0,8142	0,8591	0,9148	0,9737	1,2451	1,2961	1,3512
150	0,6846	0,7292	0,7754	0,8202	0,8706	0,9245	1,1979	1,2435	1,2939
200	0,6574	0,6984	0,7409	0,7854	0,8312	0,8807	1,1552	1,1961	1,2424
250	0,6327	0,6707	0,7100	0,7538	0,7957	0,8414	1,1162	1,1530	1,1958

• Mistura multicomponente equimolar:

Tabela III.27 - Sistema n-decano / n-hexadecano / tetralina / decalina

					(,				
	Pressão	k_{s} (GPa ⁻¹) k_{T} (GPa ⁻¹)			к _н (GPa⁻¹)				
	(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
_	1	0,7555	0,8090	0,8665	0,9182	0,9804	1,0469	1,3259	1,3829	1,4439
	50	0,7211	0,7695	0,8216	0,8737	0,9295	0,9895	1,2730	1,3232	1,3779
	100	0,6892	0,7333	0,7809	0,8328	0,8831	0,9376	1,2239	1,2684	1,3176
	150	0,6603	0,7009	0,7448	0,7960	0,8417	0,8916	1,1793	1,2190	1,2635
	200	0,6343	0,6719	0,7126	0,7630	0,8048	0,8506	1,1390	1,1744	1,2149
	250	0,6112	0,6462	0,6841	0,7335	0,7719	0,8142	1,1025	1,1343	1,1711

(equimolar)

• Amostra de condensado:

Tabela III.28 - Sistema amostra de condensado	

Pressão	I	k _s (GPa⁻¹)	I	k⊤ (GPa⁻¹))	I	κ _н (GPa⁻¹)
(bar)	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C	40 °C	50 °C	60 °C
1	1,0016	1,0839	1,1761	1,1257	1,2889	1,4879	1,5122	1,7253	1,9508
50	0,9404	1,0118	1,0911	1,0447	1,1873	1,3568	1,4124	1,6103	1,8121
100	0,8867	0,9493	1,0182	0,9742	1,1001	1,2463	1,3227	1,5085	1,6912
150	0,8400	0,8955	0,9562	0,9135	1,0258	1,1538	1,2429	1,4193	1,5868
200	0,7991	0,8488	0,9027	0,8608	0,9619	1,0752	1,1713	1,3405	1,4955
250	0,7632	0,8079	0,8563	0,8148	0,9064	1,0079	1,1066	1,2703	1,4152

ANEXO IV

Os resultados detalhados de velocidade do som medidos experimentalmente e calculados com as equações de estado são apresentados nas Tabelas IV.1 a IV.84.

• Componentes puros:

Tabela IV.1 - Velocidade do som para o sistema n-decano, T = 40 °C

Pressão		Velocidade (m/s)		Desvio relativo (%)					
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK				
1	1177,3	1108,2	1033,0	5,9	12,3				
50	1208,6	1177,1	1067,7	2,6	11,7				
100	1243,6	1244,2	1100,3	0,0	11,5				
150	1274,3	1308,4	1130,5	2,7	11,3				
200	1303,1	1370,1	1158,5	5,1	11,1				
250	1327,3	1429,5	1184,7	7,7	10,7				
			Média	4,0	11,4				

Tabela IV.2 - Velocidade do som para o sistema n-decano, T = 50 °C

Pressão		Velocidade (m/s)			elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1138,6	1055,5	1007,9	7,3	11,5
50	1174,3	1125,1	1044,6	4,2	11,0
100	1207,3	1192,7	1079,1	1,2	10,6
150	1238,2	1257,3	1110,9	1,5	10,3
200	1268,6	1319,3	1140,4	4,0	10,1
250	1296,0	1378,9	1167,9	6,4	9,9
			Média	4,1	10,6

Tabela IV.3 - Velocidade do som para o sistema n-decano, T = 60 $^{\circ}$ C

Pressão		Velocidade (m/s)			elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1099,4	1005,0	982,4	8,6	10,6
50	1134,3	1075,3	1021,4	5,2	10,0
100	1171,5	1143,5	1057,8	2,4	9,7
150	1204,4	1208,6	1091,4	0,3	9,4
200	1234,2	1270,9	1122,4	3,0	9,1
250	1264,3	1330,8	1151,3	5,3	8,9

Média	4,1	9,6
-------	-----	-----

Pressão		Velocidade (m/s)		Desvio relativo (%)	
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1283,0	1364,3	903,6	6,3	29,6
50	1311,0	1448,7	935,7	10,5	28,6
100	1340,3	1532,2	966,4	14,3	27,9
150	1366,0	1613,5	995,2	18,1	27,1
200	1391,3	1692,8	1022,4	21,7	26,5
250	1416,3	1770,2	1048,3	25,0	26,0
			Média	16,0	27,6

Tabela IV.4 - Velocidade do som para o sistema n-hexadecano, T = 40 $^{\circ}$ C

Tabela IV.5 - Velocidade do som para o sistema n-hexadecano, T = 50 $^{\circ}$ C

Pressão		Velocidade (m/s)			elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1247,5	1305,6	889,4	4,7	28,7
50	1278,3	1390,0	923,2	8,7	27,8
100	1307,3	1473,4	955,3	12,7	26,9
150	1335,2	1554,4	985,4	16,4	26,2
200	1360,7	1633,3	1013,9	20,0	25,5
250	1387,1	1710,4	1041,0	23,3	25,0
			Média	14,3	26,7

Tabela IV.6 - Velocidade do som para o sistema n-hexadecano, T = $60 \degree C$

Pressão		Velocidade (m/s)			elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1211,2	1249,7	875,5	3,2	27,7
50	1242,3	1334,0	911,1	7,4	26,7
100	1272,9	1417,3	944,8	11,3	25,8
150	1300,5	1498,2	976,5	15,2	24,9
200	1328,1	1576,8	1006,3	18,7	24,2
250	1354,5	1653,6	1034,7	22,1	23,6
			Média	13,0	25,5

Pressão		Velocidade (m/s)			elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1338,6	1192,2	1240,0	10,9	7,4
50	1364,5	1243,3	1261,6	8,9	7,5
100	1389,2	1293,7	1282,2	6,9	7,7
150	1414,4	1342,5	1301,5	5,1	8,0
200	1437,4	1389,8	1319,6	3,3	8,2
250	1460,7	1435,7	1336,6	1,7	8,5
			Média	6,1	7,9

Tabela IV.7 - Velocidade do som para o sistema decalina, T = 40 $^{\circ}\text{C}$

Tabela IV.8 - Velocidade do som para o sistema decalina, T = 50 $^{\circ}\text{C}$

Pressão	Velocidade (m/s)			Desvio relativo (%)	
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1299,6	1143,3	1209,1	12,0	7,0
50	1326,5	1194,8	1232,0	9,9	7,1
100	1352,8	1245,5	1253,8	7,9	7,3
150	1377,4	1294,5	1274,2	6,0	7,5
200	1401,1	1342,0	1293,3	4,2	7,7
250	1424,2	1388,0	1311,2	2,5	7,9
			Média	7,1	7,4

Tabela IV.9 - Velocidade do som para o sistema decalina, T = 60 $^{\circ}\text{C}$

Pressão	Velocidade (m/s)			Desvio relativo (%)	
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1260,9	1096,5	1178,4	13,0	6,5
50	1288,7	1148,3	1202,6	10,9	6,7
100	1315,6	1199,3	1225,6	8,8	6,8
150	1341,4	1248,6	1247,1	6,9	7,0
200	1365,1	1296,3	1267,3	5,0	7,2
250	1388,6	1342,5	1286,2	3,3	7,4
			Média	8,0	6,9

Pressão		Velocidade (m/s)		Desvio relativo (%)	
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1413,3	1363,8	1327,8	3,5	6,0
50	1433,9	1409,9	1346,3	1,7	6,1
100	1454,7	1455,7	1364,3	0,1	6,2
150	1475,3	1500,3	1381,3	1,7	6,4
200	1495,0	1543,7	1397,4	3,3	6,5
250	1513,1	1586,1	1412,8	4,8	6,6
			Média	2,5	6,3

Tabela IV.10 - Velocidade do som para o sistema tetralina, T = 40 $^{\circ}$ C

Tabela IV.11 - Velocidade do som para o sistema tetralina, T = 50 $^{\circ}$ C

Pressão	Velocidade (m/s)			Desvio relativo (%)	
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1373,9	1309,2	1301,3	4,7	5,3
50	1397,4	1355,6	1320,9	3,0	5,5
100	1418,6	1401,6	1339,9	1,2	5,5
150	1439,0	1446,5	1357,9	0,5	5,6
200	1459,2	1490,1	1374,9	2,1	5,8
250	1479,6	1532,6	1391,2	3,6	6,0
			Média	2,5	5,6

Tabela IV.12 - Velocidade do som para o sistema tetralina, T = 60 $^{\circ}$ C

Pressão		Velocidade (m/s)			elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1335,0	1256,9	1274,7	5,8	4,5
50	1358,7	1303,7	1295,5	4,0	4,7
100	1382,2	1350,0	1315,5	2,3	4,8
150	1401,6	1395,1	1334,5	0,5	4,8
200	1424,5	1438,9	1352,5	1,0	5,1
250	1445,4	1481,6	1369,6	2,5	5,2
			Média	2,7	4,8
• Misturas binárias equimolares:

Tabela IV.13 - Velocidade do som para o sistema 50% n-decano / 50% n-hexadecano (% molar), T = 40 $^{\circ}$ C

Pressão		Velocidade (m/s)					Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK		
1	1235,9	1148,0	1152,8	1125,8	1128,9	7,1	6,7	8,9	8,7		
50	1267,8	1208,0	1212,0	1153,6	1156,2	4,7	4,4	9,0	8,8		
100	1298,3	1266,8	1270,1	1179,9	1182,2	2,4	2,2	9,1	8,9		
150	1327,3	1323,4	1326,0	1204,5	1206,4	0,3	0,1	9,3	9,1		
200	1354,1	1378,0	1380,0	1227,5	1229,0	1,8	1,9	9,4	9,2		
250	1379,3	1430,8	1432,3	1249,0	1250,3	3,7	3,8	9,4	9,4		
					Média	3,3	3,2	9,2	9,0		

Tabela IV.14 - Velocidade do som para o sistema 50% n-decano /

Pressão		Veloci	dade (m/s))		Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1199,8	1097,1	1102,1	1099,1	1102,3	8,6	8,1	8,4	8,1
50	1232,3	1157,7	1161,9	1128,5	1131,2	6,1	5,7	8,4	8,2
100	1263,7	1216,9	1220,4	1156,3	1158,6	3,7	3,4	8,5	8,3
150	1293,3	1273,8	1276,7	1182,2	1184,1	1,5	1,3	8,6	8,4
200	1320,7	1328,7	1330,9	1206,4	1208,0	0,6	0,8	8,7	8,5
250	1347,0	1381,6	1383,4	1229,0	1230,3	2,6	2,7	8,8	8,7
					Média	3,8	3,7	8,6	8,4

50% n-hexadecano (% molar), T = 50 °C

Tabela IV.15 - Velocidade do som para o sistema 50% n-decano /

50% n-hexadecano	(% m	nolar),	T =	60	°C
------------------	------	---------	-----	----	----

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1166,1	1048,4	1053,6	1072,2	1075,4	10,1	9,7	8,1	7,8	
50	1196,6	1109,5	1113,9	1103,3	1106,0	7,3	6,9	7,8	7,6	
100	1231,1	1169,2	1172,9	1132,7	1135,0	5,0	4,7	8,0	7,8	
150	1259,0	1226,5	1229,5	1159,9	1161,8	2,6	2,3	7,9	7,7	
200	1290,4	1281,6	1284,1	1185,3	1186,9	0,7	0,5	8,1	8,0	
250	1314,6	1334,8	1336,7	1209,0	1210,3	1,5	1,7	8,0	7,9	
					Média	4,5	4,3	8,0	7,8	

Pressão		Velocidade (m/s)						Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK		
1	1244,5	1148,0	1152,8	1125,8	1128,9	7,8	7,4	9,5	9,3		
50	1274,3	1208,0	1212,0	1153,6	1156,2	5,2	4,9	9,5	9,3		
100	1304,0	1266,8	1270,1	1179,9	1182,2	2,9	2,6	9,5	9,3		
150	1331,0	1323,4	1326,0	1204,5	1206,4	0,6	0,4	9,5	9,4		
200	1357,1	1378,0	1380,0	1227,5	1229,0	1,5	1,7	9,6	9,4		
250	1381,6	1430,8	1432,3	1249,0	1250,3	3,6	3,7	9,6	9,5		
					Média	3,6	3,4	9,5	9,4		

Tabela IV.16 - Velocidade do som para o sistema 50% n-decano / 50% decalina (% molar), T = 40 $^{\rm o}{\rm C}$

Tabela IV.17 - Velocidade do som para o sistema 50% n-decano / 50% decalina

(% molar), T = 50 °C

Pressão		Velocidade (m/s)						Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK		
1	1206,4	1097,1	1102,1	1099,1	1102,3	9,1	8,6	8,9	8,6		
50	1238,2	1157,7	1161,9	1128,5	1131,2	6,5	6,2	8,9	8,6		
100	1267,5	1216,9	1220,4	1156,3	1158,6	4,0	3,7	8,8	8,6		
150	1296,7	1273,8	1276,7	1182,2	1184,1	1,8	1,5	8,8	8,7		
200	1321,8	1328,7	1330,9	1206,4	1208,0	0,5	0,7	8,7	8,6		
250	1347,2	1381,6	1383,4	1229,0	1230,3	2,6	2,7	8,8	8,7		
					Média	4,1	3,9	8,8	8,6		

Tabela IV.18 - Velocidade do som para o sistema 50% n-decano / 50% decalina

(%	mol	ar),	Т	=	60	°C
----	-----	------	---	---	----	----

Pressão		Velocidade (m/s)						Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK		
1	1168,2	1048,4	1053,6	1072,2	1075,4	10,3	9,8	8,2	7,9		
50	1201,0	1109,5	1113,9	1103,3	1106,0	7,6	7,3	8,1	7,9		
100	1232,3	1169,2	1172,9	1132,7	1135,0	5,1	4,8	8,1	7,9		
150	1261,1	1226,5	1229,5	1159,9	1161,8	2,7	2,5	8,0	7,9		
200	1289,1	1281,6	1284,1	1185,3	1186,9	0,6	0,4	8,1	7,9		
250	1315,3	1334,8	1336,7	1209,0	1210,3	1,5	1,6	8,1	8,0		
					Média	4,6	4,4	8,1	7,9		

Pressão		Velocidade (m/s)						Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK			
1	1265,3	1211,2	1224,4	1155,6	1162,9	4,3	3,2	8,7	8,1			
50	1293,4	1268,8	1279,7	1182,0	1188,1	1,9	1,1	8,6	8,1			
100	1319,3	1325,5	1334,2	1207,2	1212,1	0,5	1,1	8,5	8,1			
150	1345,6	1380,2	1386,9	1230,8	1234,7	2,6	3,1	8,5	8,2			
200	1370,4	1433,1	1437,8	1253,0	1256,0	4,6	4,9	8,6	8,3			
250	1393,6	1484,3	1487,3	1273,9	1276,2	6,5	6,7	8,6	8,4			
					Média	3,4	3,4	8,6	8,2			

Tabela IV.19 - Velocidade do som para o sistema 50% n-decano / 50% tetralina (% molar), T = 40 $^{\rm o}{\rm C}$

Tabela IV.20 - Velocidade do som para o sistema 50% n-decano / 50% tetralina

(%	mol	ar),	T =	= 50	°C
----	-----	------	-----	------	----

Pressão		Velocidade (m/s)						Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK		
1	1227,7	1158,0	1170,9	1130,2	1137,8	5,7	4,6	7,9	7,3		
50	1255,2	1216,1	1226,7	1158,1	1164,4	3,1	2,3	7,7	7,2		
100	1283,2	1273,2	1281,6	1184,8	1189,8	0,8	0,1	7,7	7,3		
150	1309,6	1328,2	1334,6	1209,7	1213,7	1,4	1,9	7,6	7,3		
200	1335,5	1381,4	1385,8	1233,0	1236,1	3,4	3,8	7,7	7,4		
250	1360,7	1432,8	1435,5	1255,0	1257,3	5,3	5,5	7,8	7,6		
					Média	3,3	3,0	7,7	7,4		

Tabela IV.21 - Velocidade do som para o sistema 50% n-decano / 50% tetralina

(% m	olar),	T =	60	°C
------	--------	-----	----	----

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1189,2	1107,0	1119,7	1104,5	1112,4	6,9	5,8	7,1	6,5	
50	1219,7	1165,7	1176,0	1134,1	1140,6	4,4	3,6	7,0	6,5	
100	1249,0	1223,2	1231,3	1162,3	1167,5	2,1	1,4	6,9	6,5	
150	1276,4	1278,6	1284,6	1188,5	1192,6	0,2	0,6	6,9	6,6	
200	1302,1	1332,0	1336,2	1213,1	1216,3	2,3	2,6	6,8	6,6	
250	1327,4	1383,7	1386,0	1236,2	1238,5	4,2	4,4	6,9	6,7	
					Média	3,4	3,1	6,9	6,6	

Dragaão		Veloci	dade (m/s		1	Desvio re	lativo (%)	
Pressao		VEIOCI)		L)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1297,0	1287,3	1279,3	1052,0	1048,5	0,8	1,4	18,9	19,2
50	1324,9	1357,2	1344,4	1080,2	1074,9	2,4	1,5	18,5	18,9
100	1352,4	1426,2	1408,8	1107,2	1100,3	5,5	4,2	18,1	18,6
150	1378,8	1493,2	1471,4	1132,6	1124,4	8,3	6,7	17,9	18,5
200	1403,0	1558,3	1532,3	1156,7	1147,2	11,1	9,2	17,6	18,2
250	1426,8	1621,7	1591,6	1179,6	1168,8	13,7	11,6	17,3	18,1
					Média	6,9	5,7	18,0	18,6

Tabela IV.22 - Velocidade do som para o sistema 50% n-hexadecano / 50% decalina

(% molar), T = 40 $^{\circ}$ C

Tabela IV.23 - Velocidade do som para o sistema 50% n-hexadecano / 50% decalina (% molar), T = 50 $^{\rm o}{\rm C}$

Pressão		Velocidade (m/s)						Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK			
1	1262,2	1233,3	1225,6	1034,6	1031,0	2,3	2,9	18,0	18,3			
50	1291,1	1303,3	1290,8	1064,1	1058,7	0,9	0,0	17,6	18,0			
100	1318,1	1372,5	1355,3	1092,4	1085,3	4,1	2,8	17,1	17,7			
150	1346,3	1439,4	1417,9	1119,0	1110,5	6,9	5,3	16,9	17,5			
200	1371,4	1504,5	1478,8	1144,1	1134,2	9,7	7,8	16,6	17,3			
250	1394,6	1567,8	1538,0	1167,9	1156,8	12,4	10,3	16,3	17,1			
					Média	6,1	4,9	17,1	17,6			

Tabela IV.24 - Velocidade do som para o sistema 50% n-hexadecano / 50% decalina

(% molar), T = $60 \degree C$

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1225,3	1181,7	1174,2	1017,0	1013,3	3,6	4,2	17,0	17,3	
50	1255,7	1252,0	1239,7	1048,0	1042,5	0,3	1,3	16,5	17,0	
100	1283,8	1321,2	1304,3	1077,7	1070,4	2,9	1,6	16,1	16,6	
150	1311,0	1388,2	1366,9	1105,5	1096,7	5,9	4,3	15,7	16,3	
200	1338,1	1453,2	1427,8	1131,7	1121,5	8,6	6,7	15,4	16,2	
250	1362,7	1516,4	1487,0	1156,5	1145,0	11,3	9,1	15,1	16,0	
					Média	5,4	4,5	16,0	16,6	

Dressão		Veloci	dade (m/s		1	Desvio re	lativo (%)	
Pressao		VEIOCI)		L)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1314,5	1352,6	1352,2	1070,0	1069,6	2,9	2,9	18,6	18,6
50	1341,5	1420,6	1413,7	1097,0	1094,1	5,9	5,4	18,2	18,4
100	1366,5	1487,8	1474,9	1122,9	1117,8	8,9	7,9	17,8	18,2
150	1390,8	1553,2	1534,4	1147,5	1140,3	11,7	10,3	17,5	18,0
200	1414,1	1616,9	1592,4	1170,9	1161,8	14,3	12,6	17,2	17,8
250	1437,7	1679,0	1649,1	1193,1	1182,4	16,8	14,7	17,0	17,8
					Média	10,1	9,0	17,7	18,1

Tabela IV.25 - Velocidade do som para o sistema 50% n-hexadecano / 50% tetralina

(% molar), T = 40 °C

Tabela IV.26 - Velocidade do som para o sistema 50% n-hexadecano / 50% tetralina (% molar), T = 50 $^{\circ}$ C

Pressão		Desvio relativo (%)							
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1277,7	1296,8	1295,9	1053,6	1053,2	1,5	1,4	17,5	17,6
50	1305,9	1364,9	1357,6	1081,9	1078,9	4,5	4,0	17,2	17,4
100	1332,6	1432,3	1418,8	1109,1	1103,7	7,5	6,5	16,8	17,2
150	1358,2	1497,8	1478,4	1134,8	1127,3	10,3	8,8	16,4	17,0
200	1383,0	1561,4	1536,4	1159,2	1149,8	12,9	11,1	16,2	16,9
250	1406,1	1623,4	1593,0	1182,4	1171,3	15,5	13,3	15,9	16,7
					Média	8,7	7,5	16,7	17,1

Tabela IV.27 - Velocidade do som para o sistema 50% n-hexadecano / 50% tetralina

Pressão		Veloci	dade (m/s))		Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1241,7	1243,5	1242,2	1037,1	1036,7	0,1	0,0	16,5	16,5
50	1270,8	1311,8	1304,1	1066,9	1063,8	3,2	2,6	16,0	16,3
100	1298,3	1379,4	1365,4	1095,4	1089,9	6,2	5,2	15,6	16,1
150	1324,6	1444,9	1425,0	1122,4	1114,6	9,1	7,6	15,3	15,9
200	1349,7	1508,5	1483,0	1147,9	1138,1	11,8	9,9	15,0	15,7
250	1374,1	1570,5	1539,6	1172,1	1160,5	14,3	12,0	14,7	15,5
					Média	7,5	6,2	15,5	16,0

Pressão		Veloci	dade (m/s))	Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1369,7	1272,3	1273,7	1283,0	1284,0	7,1	7,0	6,3	6,3
50	1393,9	1320,9	1321,2	1303,1	1303,5	5,2	5,2	6,5	6,5
100	1417,9	1369,0	1368,1	1322,3	1322,2	3,4	3,5	6,7	6,7
150	1439,4	1415,7	1413,7	1340,5	1340,0	1,6	1,8	6,9	6,9
200	1460,4	1461,1	1458,1	1357,6	1356,7	0,0	0,2	7,0	7,1
250	1481,7	1505,3	1501,3	1373,8	1372,6	1,6	1,3	7,3	7,4
					Média	3,2	3,2	6,8	6,8

Tabela IV.28 - Velocidade do som para o sistema 50% decalina / 50% tetralina

(% molar), T = 40 °C

Tabela IV.29 - Velocidade do som para o sistema 50% decalina / 50% tetralina
--

(% molar)	, T = 50 °C
-----------	-------------

Pressão		Velocidade (m/s)						Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK			
1	1332,9	1220,6	1222,1	1254,1	1255,0	8,4	8,3	5,9	5,8			
50	1357,2	1269,6	1269,8	1275,3	1275,7	6,5	6,4	6,0	6,0			
100	1380,2	1318,0	1317,1	1295,7	1295,6	4,5	4,6	6,1	6,1			
150	1402,7	1364,9	1362,9	1314,9	1314,3	2,7	2,8	6,3	6,3			
200	1425,3	1410,5	1407,5	1333,0	1332,0	1,0	1,3	6,5	6,5			
250	1447,3	1454,8	1450,8	1350,0	1348,8	0,5	0,2	6,7	6,8			
					Média	3,9	3,9	6,3	6,3			

Tabela IV.30 - Velocidade do som para o sistema 50% decalina / 50% tetralina

Pressão		Veloci	dade (m/s)		[Desvio re	lativo (%)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1293,8	1171,2	1172,6	1225,1	1226,1	9,5	9,4	5,3	5,2
50	1318,8	1220,5	1220,7	1247,6	1248,0	7,5	7,4	5,4	5,4
100	1341,7	1269,2	1268,3	1269,1	1269,0	5,4	5,5	5,4	5,4
150	1365,9	1316,4	1314,4	1289,4	1288,8	3,6	3,8	5,6	5,6
200	1390,7	1362,2	1359,1	1308,5	1307,5	2,0	2,3	5,9	6,0
250	1412,7	1406,7	1402,7	1326,5	1325,1	0,4	0,7	6,1	6,2
					Média	4,7	4,8	5,6	5,6

• Misturas binárias 25% / 75%:

Tabela IV.31 - Velocidade do som para o sistema 25% n-decano /

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1263,5	1319,4	1303,6	940,4	934,6	4,4	3,2	25,6	26,0
50	1294,1	1400,1	1380,9	972,8	966,0	8,2	6,7	24,8	25,4
100	1323,8	1479,7	1457,4	1003,7	996,0	11,8	10,1	24,2	24,8
150	1350,5	1557,1	1531,6	1032,7	1024,3	15,3	13,4	23,5	24,2
200	1377,2	1632,4	1603,9	1060,2	1051,0	18,5	16,5	23,0	23,7
250	1401,2	1705,8	1674,3	1086,2	1076,5	21,7	19,5	22,5	23,2
					Média	13,3	11,6	23,9	24,5

75% n-hexadecano (% molar), T = 40 °C

Tabela IV.32 - Velocidade do som para o sistema 25% n-decano /

Pressão	Desvio relativo (*)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1227,1	1262,0	1246,8	925,2	919,3	2,8	1,6	24,6	25,1
50	1258,0	1342,7	1324,2	959,3	952,3	6,7	5,3	23,7	24,3
100	1287,8	1422,4	1400,7	991,7	983,8	10,4	8,8	23,0	23,6
150	1316,5	1499,6	1474,8	1022,1	1013,5	13,9	12,0	22,4	23,0
200	1344,6	1574,7	1547,0	1050,8	1041,5	17,1	15,0	21,9	22,5
250	1370,4	1647,8	1617,2	1078,0	1068,0	20,2	18,0	21,3	22,1
					Média	11,9	10,1	22,8	23,4

r = 5/0 model $r = 50$	75% n-hexadecano	(% molar),	$T = 50^{\circ}$	С
------------------------	------------------	------------	------------------	---

Tabela IV.33 - Velocidade do som para o sistema 25% n-decano /

75% n-hexadecano (% molar), T = 60 °C

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1191,2	1207,2	1192,5	910,1	904,0	1,3	0,1	23,6	24,1
50	1223,5	1288,1	1270,2	946,0	938,9	5,3	3,8	22,7	23,3
100	1254,8	1367,7	1346,7	980,1	972,0	9,0	7,3	21,9	22,5
150	1282,7	1444,9	1420,8	1012,0	1003,2	12,6	10,8	21,1	21,8
200	1310,7	1519,8	1492,8	1042,1	1032,5	16,0	13,9	20,5	21,2
250	1336,4	1592,7	1562,9	1070,6	1060,3	19,2	16,9	19,9	20,7
					Média	10,6	8,8	21,6	22,3

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1291,6	1169,5	1173,4	1179,1	1181,6	9,5	9,2	8,7	8,5
50	1320,0	1225,0	1228,5	1203,7	1205,9	7,2	6,9	8,8	8,6
100	1345,9	1279,6	1282,7	1227,1	1229,1	4,9	4,7	8,8	8,7
150	1370,9	1332,3	1335,0	1249,0	1250,8	2,8	2,6	8,9	8,8
200	1395,2	1383,3	1385,6	1269,5	1271,1	0,9	0,7	9,0	8,9
250	1419,5	1432,7	1434,6	1288,8	1290,2	0,9	1,1	9,2	9,1
					Média	4,4	4,2	8,9	8,8

Tabela IV.34 - Velocidade do som para o sistema 25% n-decano / 75% decalina

(% molar), T = 40 °C

Tabela IV.35 - Velocidade do som para o sistema 25% n-decano / 75% decalin	۱a
(% molar), T = 50 °C	

Pressão		Veloci	dade (m/s)	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1252,5	1119,6	1123,4	1150,8	1153,4	10,6	10,3	8,1	7,9
50	1281,8	1175,6	1178,9	1176,9	1179,1	8,3	8,0	8,2	8,0
100	1311,2	1230,5	1233,5	1201,6	1203,6	6,2	5,9	8,4	8,2
150	1336,4	1283,5	1286,1	1224,7	1226,5	4,0	3,8	8,4	8,2
200	1361,4	1334,7	1336,9	1246,3	1247,9	2,0	1,8	8,5	8,3
250	1384,5	1384,3	1386,1	1266,5	1268,0	0,0	0,1	8,5	8,4
					Média	5,2	5,0	8,3	8,2

Tabela IV.36 - Velocidade do som para o sistema 25% n-decano / 75% decalina

(% molar), T = $60 \,^{\circ}C$

Pressão	velocidade (m/s)							lativo (%)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1215,4	1071,8	1075,6	1122,4	1125,1	11,8	11,5	7,6	7,4
50	1244,2	1128,3	1131,6	1150,0	1152,3	9,3	9,1	7,6	7,4
100	1273,4	1183,6	1186,5	1176,1	1178,1	7,1	6,8	7,6	7,5
150	1300,1	1236,9	1239,4	1200,4	1202,2	4,9	4,7	7,7	7,5
200	1327,7	1288,4	1290,4	1223,1	1224,8	3,0	2,8	7,9	7,8
250	1350,6	1338,1	1339,8	1244,4	1245,8	0,9	0,8	7,9	7,8
					Média	6,2	5,9	7,7	7,6

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1330,8	1279,3	1290,5	1233,1	1239,4	3,9	3,0	7,3	6,9
50	1355,8	1331,2	1339,8	1255,5	1260,6	1,8	1,2	7,4	7,0
100	1380,0	1382,5	1388,7	1277,0	1280,9	0,2	0,6	7,5	7,2
150	1401,7	1432,2	1436,1	1297,4	1300,2	2,2	2,5	7,4	7,2
200	1423,8	1480,4	1482,2	1316,5	1318,5	4,0	4,1	7,5	7,4
250	1444,6	1527,3	1527,1	1334,7	1335,9	5,7	5,7	7,6	7,5
					Média	3,0	2,9	7,5	7,2

Tabela IV.37 - Velocidade do som para o sistema 25% n-decano / 75% tetralina

(% molar), T = 40 $^{\circ}$ C

Tabela IV.38 - Velocidade do som para o sistema 25% n-decano / 75% tetralir	າa
(% molar), T = 50 °C	

Pressão		Veloci	dade (m/s)		[Desvio re	lativo (%)	
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1291,1	1225,5	1236,5	1207,4	1213,9	5,1	4,2	6,5	6,0
50	1317,2	1277,8	1286,2	1231,1	1236,3	3,0	2,3	6,5	6,1
100	1342,2	1329,5	1335,4	1253,9	1257,9	0,9	0,5	6,6	6,3
150	1365,4	1379,5	1383,1	1275,3	1278,2	1,0	1,3	6,6	6,4
200	1388,6	1427,9	1429,5	1295,5	1297,5	2,8	2,9	6,7	6,6
250	1410,8	1475,0	1474,5	1314,6	1315,8	4,6	4,5	6,8	6,7
					Média	2,9	2,6	6,6	6,3

Tabela IV.39 - Velocidade do som para o sistema 25% n-decano / 75% tetralina

Pressão		Veloci	Desvio relativo (%)						
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1253,8	1174,1	1184,8	1181,4	1188,2	6,4	5,5	5,8	5,2
50	1280,5	1226,8	1235,0	1206,5	1211,9	4,2	3,6	5,8	5,4
100	1306,2	1278,8	1284,5	1230,6	1234,7	2,1	1,7	5,8	5,5
150	1330,5	1329,1	1332,5	1253,2	1256,2	0,1	0,2	5,8	5,6
200	1355,8	1377,8	1379,1	1274,5	1276,5	1,6	1,7	6,0	5,9
250	1379,4	1425,1	1424,4	1294,6	1295,7	3,3	3,3	6,1	6,1
					Média	2,9	2,6	5,9	5,6

Pressão		Veloci		Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1310,8	1242,9	1235,6	1140,2	1136,4	5,2	5,7	13,0	13,3
50	1337,7	1304,1	1293,5	1165,5	1160,4	2,5	3,3	12,9	13,3
100	1363,2	1364,6	1350,7	1189,7	1183,5	0,1	0,9	12,7	13,2
150	1387,9	1423,1	1406,2	1212,6	1205,3	2,5	1,3	12,6	13,2
200	1412,3	1479,9	1460,0	1234,1	1225,9	4,8	3,4	12,6	13,2
250	1435,2	1535,2	1512,5	1254,4	1245,4	7,0	5,4	12,6	13,2
					Média	3,7	3,3	12,7	13,2

Tabela IV.40 - Velocidade do som para o sistema 25% n-hexadecano / 75% decalina (% molar), T = 40 $^{\circ}\text{C}$

Tabela IV.41 - Velocidade do som para o sistema 25% n-hexadecano / 75% decalina (% molar), T = 50 $^{\circ}\text{C}$

Pressão		Veloci	dade (m/s)		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1272,3	1191,4	1184,3	1118,0	1114,1	6,4	6,9	12,1	12,4
50	1300,3	1252,9	1242,5	1144,6	1139,4	3,6	4,4	12,0	12,4
100	1327,7	1313,5	1299,9	1170,1	1163,7	1,1	2,1	11,9	12,4
150	1353,6	1372,2	1355,5	1194,0	1186,5	1,4	0,1	11,8	12,3
200	1377,7	1429,1	1409,4	1216,5	1208,0	3,7	2,3	11,7	12,3
250	1402,4	1484,3	1461,9	1237,7	1228,4	5,8	4,2	11,7	12,4
					Média	3,7	3,4	11,9	12,4

Tabela IV.42 - Velocidade do som para o sistema 25% n-hexadecano / 75% decalina

(% molar), T = $60 \degree C$

Pressão		Veloci	Desvio relativo (%)						
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1234,8	1142,2	1135,3	1095,7	1091,7	7,5	8,1	11,3	11,6
50	1263,3	1204,0	1193,7	1123,7	1118,3	4,7	5,5	11,1	11,5
100	1292,7	1264,8	1251,3	1150,4	1143,8	2,2	3,2	11,0	11,5
150	1319,0	1323,6	1307,1	1175,5	1167,7	0,3	0,9	10,9	11,5
200	1344,3	1380,6	1361,1	1199,0	1190,2	2,7	1,3	10,8	11,5
250	1368,6	1435,9	1413,6	1221,2	1211,5	4,9	3,3	10,8	11,5
					Média	3,7	3,7	11,0	11,5

Pressão		Veloci		Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1346,3	1354,2	1353,2	1180,9	1180,4	0,6	0,5	12,3	12,3
50	1370,7	1412,2	1405,7	1204,2	1201,5	3,0	2,6	12,1	12,3
100	1395,2	1469,6	1457,9	1226,7	1222,1	5,3	4,5	12,1	12,4
150	1417,9	1525,5	1508,7	1248,1	1241,6	7,6	6,4	12,0	12,4
200	1440,5	1579,9	1558,2	1268,4	1260,3	9,7	8,2	11,9	12,5
250	1461,2	1632,9	1606,6	1287,8	1278,1	11,7	9,9	11,9	12,5
					Média	6,3	5,3	12,0	12,4

Tabela IV.43 - Velocidade do som para o sistema 25% n-hexadecano / 75% tetralina

(% molar), T = 40 $^{\circ}$ C

Tabela IV.44 - Velocidade do som para o sistema 25% n-hexadecano /	′ 75%	tetralina
(% molar), T = 50 °C		

Pressão		Veloci	dade (m/s)	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1311,0	1298,9	1298,0	1161,2	1160,8	0,9	1,0	11,4	11,5
50	1336,7	1357,1	1350,7	1185,7	1183,0	1,5	1,0	11,3	11,5
100	1360,9	1414,7	1403,0	1209,4	1204,6	4,0	3,1	11,1	11,5
150	1384,8	1470,7	1453,9	1231,8	1225,1	6,2	5,0	11,0	11,5
200	1407,7	1525,1	1503,6	1253,1	1244,6	8,3	6,8	11,0	11,6
250	1428,6	1578,2	1552,0	1273,3	1263,3	10,5	8,6	10,9	11,6
					Média	5,2	4,3	11,1	11,5

Tabela IV.45 - Velocidade do som para o sistema 25% n-hexadecano / 75% tetralina

(% molar), T = $60 \degree C$

Pressão		Veloci	Desvio relativo (%)						
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1274,2	1246,0	1245,2	1141,3	1140,9	2,2	2,3	10,4	10,5
50	1300,1	1304,5	1298,2	1167,1	1164,4	0,3	0,1	10,2	10,4
100	1325,6	1362,3	1350,7	1192,0	1187,1	2,8	1,9	10,1	10,5
150	1350,4	1418,4	1401,7	1215,5	1208,6	5,0	3,8	10,0	10,5
200	1373,9	1473,0	1451,5	1237,8	1229,1	7,2	5,6	9,9	10,5
250	1396,1	1526,1	1500,0	1258,9	1248,6	9,3	7,4	9,8	10,6
					Média	4,5	3,5	10,1	10,5

Pressão		Veloci	dade (m/s)	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1369,7	1316,4	1317,6	1305,2	1305,9	3,9	3,8	4,7	4,7
50	1393,9	1363,8	1363,2	1324,5	1324,4	2,2	2,2	5,0	5,0
100	1417,9	1410,7	1408,4	1343,1	1342,3	0,5	0,7	5,3	5,3
150	1439,4	1456,4	1452,4	1360,6	1359,3	1,2	0,9	5,5	5,6
200	1460,4	1500,8	1495,3	1377,3	1375,4	2,8	2,4	5,7	5,8
250	1481,7	1544,1	1537,1	1393,1	1390,7	4,2	3,7	6,0	6,1
					Média	2,5	2,3	5,4	5,4

Tabela IV.46 - Velocidade do som para o sistema 25% decalina / 75% tetralina

(% molar), T = 40 °C

Tabela IV.47 - Velocidade do som para o sistema 25% decalina / 75% tetralin

(% molar)	, T = 50 °C
-----------	-------------

-

Pressão		Veloci	dade (m/s)	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1332,9	1263,3	1264,5	1277,4	1278,2	5,2	5,1	4,2	4,1
50	1357,2	1311,0	1310,4	1297,8	1297,8	3,4	3,4	4,4	4,4
100	1380,2	1358,2	1355,9	1317,5	1316,7	1,6	1,8	4,5	4,6
150	1402,7	1404,1	1400,1	1336,1	1334,7	0,1	0,2	4,7	4,9
200	1425,3	1448,7	1443,2	1353,7	1351,7	1,6	1,3	5,0	5,2
250	1447,3	1492,2	1485,2	1370,3	1367,8	3,1	2,6	5,3	5,5
					Média	2,5	2,4	4,7	4,8

Tabela IV.48 - Velocidade do som para o sistema 25% decalina / 75% tetralina

(% molar), T = 60 °C

Pressão		Veloci	dade (m/s)		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1293,8	1212,5	1213,7	1249,5	1250,3	6,3	6,2	3,4	3,4	
50	1318,8	1260,6	1259,9	1271,2	1271,1	4,4	4,5	3,6	3,6	
100	1341,7	1308,1	1305,7	1292,0	1291,2	2,5	2,7	3,7	3,8	
150	1365,9	1354,2	1350,2	1311,6	1310,1	0,9	1,1	4,0	4,1	
200	1390,7	1399,0	1393,5	1330,1	1328,0	0,6	0,2	4,4	4,5	
250	1412,7	1442,7	1435,6	1347,7	1345,0	2,1	1,6	4,6	4,8	
					Média	2,8	2,7	3,9	4,0	

• Sistemas binários 75% / 25%:

Tabela IV.49 - Velocidade do som para o sistema 75% n-decano /

	Velocidade (m/s)						Desvio relativo (%)				
Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK			
1212,5	1197,3	1176,0	1010,5	1000,7	1,3	3,0	16,7	17,5			
1244,7	1270,1	1246,7	1043,9	1033,6	2,0	0,2	16,1	17,0			
1274,7	1341,6	1316,0	1075,7	1064,9	5,2	3,2	15,6	16,5			
1303,7	1410,4	1382,7	1105,3	1094,1	8,2	6,1	15,2	16,1			
1331,5	1476,9	1447,3	1133,1	1121,5	10,9	8,7	14,9	15,8			
1358,3	1541,4	1509,8	1159,3	1147,3	13,5	11,2	14,7	15,5			
				Média	6,9	5,4	15,5	16,4			
	Experimental 1212,5 1244,7 1274,7 1303,7 1331,5 1358,3	VelociExperimentalPR-SD1212,51197,31244,71270,11274,71341,61303,71410,41331,51476,91358,31541,4	Velocidade (m/s) Experimental PR-SD PR-LK 1212,5 1197,3 1176,0 1244,7 1270,1 1246,7 1274,7 1341,6 1316,0 1303,7 1410,4 1382,7 1331,5 1476,9 1447,3 1358,3 1541,4 1509,8	Velocidade (m/s)ExperimentalPR-SDPR-LKLK-SD1212,51197,31176,01010,51244,71270,11246,71043,91274,71341,61316,01075,71303,71410,41382,71105,31331,51476,91447,31133,11358,31541,41509,81159,3	Velocidade (m/s) Experimental PR-SD PR-LK LK-SD LK-LK 1212,5 1197,3 1176,0 1010,5 1000,7 1244,7 1270,1 1246,7 1043,9 1033,6 1274,7 1341,6 1316,0 1075,7 1064,9 1303,7 1410,4 1382,7 1105,3 1094,1 1331,5 1476,9 1447,3 1133,1 1121,5 1358,3 1541,4 1509,8 1159,3 1147,3	Velocidade (m/s) I Experimental PR-SD PR-LK LK-SD LK-LK PR-SD 1212,5 1197,3 1176,0 1010,5 1000,7 1,3 1244,7 1270,1 1246,7 1043,9 1033,6 2,0 1274,7 1341,6 1316,0 1075,7 1064,9 5,2 1303,7 1410,4 1382,7 1105,3 1094,1 8,2 1331,5 1476,9 1447,3 1133,1 1121,5 10,9 1358,3 1541,4 1509,8 1159,3 1147,3 13,5 Média 6,9	Velocidade (m/s) Desvio relevance Experimental PR-SD PR-LK LK-SD LK-LK PR-SD PR-LK 1212,5 1197,3 1176,0 1010,5 1000,7 1,3 3,0 1244,7 1270,1 1246,7 1043,9 1033,6 2,0 0,2 1274,7 1341,6 1316,0 1075,7 1064,9 5,2 3,2 1303,7 1410,4 1382,7 1105,3 1094,1 8,2 6,1 1331,5 1476,9 1447,3 1133,1 1121,5 10,9 8,7 1358,3 1541,4 1509,8 1159,3 1147,3 13,5 11,2 Média 6,9 5,4 144 145,9 144,9 <t< td=""><td>VelociJate (m/s) Derimental PR-SD PR-LK LK-SD LK-LK PR-LK LK-SD 1212,5 1197,3 1176,0 1010,5 1000,7 1,3 3,0 16,7 1244,7 1270,1 1246,7 1043,9 1033,6 2,0 0,2 16,1 1274,7 1341,6 1316,0 1075,7 1064,9 5,2 3,2 15,6 1303,7 1410,4 1382,7 1105,3 1094,1 8,2 6,1 15,2 1331,5 1476,9 1447,3 1133,1 1121,5 10,9 8,7 14,9 1358,3 1541,4 1509,8 1159,3 1147,3 13,5 11,2 14,7</td></t<>	VelociJate (m/s) Derimental PR-SD PR-LK LK-SD LK-LK PR-LK LK-SD 1212,5 1197,3 1176,0 1010,5 1000,7 1,3 3,0 16,7 1244,7 1270,1 1246,7 1043,9 1033,6 2,0 0,2 16,1 1274,7 1341,6 1316,0 1075,7 1064,9 5,2 3,2 15,6 1303,7 1410,4 1382,7 1105,3 1094,1 8,2 6,1 15,2 1331,5 1476,9 1447,3 1133,1 1121,5 10,9 8,7 14,9 1358,3 1541,4 1509,8 1159,3 1147,3 13,5 11,2 14,7			

25% n-hexadecano (% molar), T = 40 °C

Tabela IV.50 - Velocidade do som para o sistema 75% n-decano /

Pressão		Velocidade (m/s)						Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK			
1	1175,9	1142,8	1122,4	990,2	980,1	2,8	4,6	15,8	16,7			
50	1207,5	1216,1	1193,5	1025,5	1014,9	0,7	1,2	15,1	16,0			
100	1239,5	1287,8	1263,2	1058,9	1047,8	3,9	1,9	14,6	15,5			
150	1269,7	1356,8	1330,2	1090,1	1078,5	6,9	4,8	14,1	15,1			
200	1298,3	1423,4	1394,9	1119,2	1107,3	9,6	7,4	13,8	14,7			
250	1325,8	1487,9	1457,4	1146,6	1134,3	12,2	9,9	13,5	14,4			
					Média	6,0	5,0	14,5	15,4			

25% n-hexadecano ((% mola	ar), T	= 50	°C
--------------------	---------	--------	------	----

Tabela IV.51 - Velocidade do som para o sistema 75% n-decano /

25% n-hexadecano (% molar), T = 60 °C

Pressão		Veloci	dade (m/s		Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1136,4	1090,7	1071,1	969,7	959,2	4,0	5,7	14,7	15,6	
50	1170,8	1164,4	1142,8	1007,1	996,1	0,5	2,4	14,0	14,9	
100	1204,1	1236,5	1212,8	1042,3	1030,8	2,7	0,7	13,4	14,4	
150	1235,6	1305,7	1280,1	1075,0	1063,1	5,7	3,6	13,0	14,0	
200	1265,0	1372,4	1344,9	1105,6	1093,2	8,5	6,3	12,6	13,6	
250	1293,3	1436,9	1407,6	1134,2	1121,5	11,1	8,8	12,3	13,3	
					Média	5,4	4,6	13,3	14,3	

Pressão		Veloci	dade (m/s)		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1209,4	1127,7	1131,3	1077,6	1079,7	6,8	6,5	10,9	10,7	
50	1241,0	1192,1	1195,0	1108,7	1110,4	3,9	3,7	10,7	10,5	
100	1270,4	1255,0	1257,1	1138,2	1139,4	1,2	1,0	10,4	10,3	
150	1298,8	1315,5	1316,9	1165,5	1166,4	1,3	1,4	10,3	10,2	
200	1325,9	1373,6	1374,4	1191,0	1191,6	3,6	3,7	10,2	10,1	
250	1351,9	1429,8	1429,9	1214,8	1215,1	5,8	5,8	10,1	10,1	
					Média	3,8	3,7	10,4	10,3	

Tabela IV.52 - Velocidade do som para o sistema 75% n-decano / 25% decalina

(% molar), T = 40 °C

Tabela IV.53 - Velocidade do som para o sistema	75% n-decano / 25% decalina
(% molar), T = 50 $^{\circ}$	C

Pressão		Veloci	dade (m/s))	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1169,7	1075,8	1079,4	1051,9	1054,1	8,0	7,7	10,1	9,9	
50	1202,3	1140,9	1143,7	1084,8	1086,5	5,1	4,9	9,8	9,6	
100	1234,4	1204,3	1206,3	1115,9	1117,2	2,4	2,3	9,6	9,5	
150	1264,8	1265,1	1266,4	1144,7	1145,6	0,0	0,1	9,5	9,4	
200	1292,4	1323,6	1324,2	1171,5	1172,1	2,4	2,5	9,4	9,3	
250	1319,7	1379,9	1380,0	1196,5	1196,8	4,6	4,6	9,3	9,3	
					Média	3,8	3,7	9,6	9,5	

Tabela IV.54 - Velocidade do som para o sistema 75% n-decano / 25% decalina

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1130,7	1026,2	1029,7	1025,8	1028,1	9,2	8,9	9,3	9,1	
50	1165,9	1091,9	1094,6	1060,8	1062,5	6,3	6,1	9,0	8,9	
100	1199,2	1155,9	1157,8	1093,6	1094,9	3,6	3,5	8,8	8,7	
150	1229,9	1217,1	1218,3	1123,9	1124,8	1,0	0,9	8,6	8,5	
200	1259,5	1275,8	1276,4	1152,1	1152,7	1,3	1,3	8,5	8,5	
250	1286,0	1332,4	1332,4	1178,3	1178,6	3,6	3,6	8,4	8,4	
					Média	4,2	4,1	8,8	8,7	

		Voloci	dada (m/c))			Docivio ro	lativa (%	\
Pressao		VEIOCI	uaue (m/s)		1		ialiv0 (/0)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1213,9	1155,1	1164,0	1090,0	1094,9	4,8	4,1	10,2	9,8
50	1243,6	1218,4	1225,6	1120,4	1124,4	2,0	1,4	9,9	9,6
100	1272,6	1280,3	1286,0	1149,3	1152,4	0,6	1,1	9,7	9,4
150	1301,9	1339,8	1344,1	1176,2	1178,6	2,9	3,2	9,7	9,5
200	1328,9	1397,1	1400,1	1201,4	1203,1	5,1	5,4	9,6	9,5
250	1354,1	1452,5	1454,3	1225,0	1226,1	7,3	7,4	9,5	9,5
					Média	3,8	3,8	9,8	9,5

Tabela IV.55 - Velocidade do som para o sistema 75% n-decano / 25% tetralina

(% molar), T = 40 $^{\circ}$ C

Tabela IV.56	- Velocidade	do som pa	ra o sistema	a 75% n-o	decano / 2	25% tetralir	າa

Pressão		Velocidade (m/s)						Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK			
1	1174,5	1102,2	1110,9	1064,7	1069,8	6,2	5,4	9,3	8,9			
50	1206,6	1166,1	1173,1	1097,0	1101,1	3,4	2,8	9,1	8,7			
100	1238,2	1228,6	1234,0	1127,6	1130,7	0,8	0,3	8,9	8,7			
150	1267,5	1288,5	1292,4	1156,0	1158,3	1,7	2,0	8,8	8,6			
200	1295,8	1346,1	1348,7	1182,4	1184,1	3,9	4,1	8,7	8,6			
250	1321,4	1401,7	1403,1	1207,2	1208,3	6,1	6,2	8,6	8,6			
					Média	3,7	3,5	8,9	8,7			

(% molar), T = 50 °C

Tabela IV.57 - Velocidade do som para o sistema 75% n-decano / 25% tetralina

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1137,2	1051,7	1060,1	1039,2	1044,5	7,5	6,8	8,6	8,2	
50	1173,7	1116,2	1122,9	1073,4	1077,6	4,9	4,3	8,5	8,2	
100	1204,4	1179,2	1184,3	1105,7	1108,9	2,1	1,7	8,2	7,9	
150	1234,4	1239,5	1243,1	1135,6	1138,0	0,4	0,7	8,0	7,8	
200	1262,8	1297,5	1299,7	1163,5	1165,2	2,7	2,9	7,9	7,7	
250	1291,8	1353,3	1354,3	1189,5	1190,6	4,8	4,8	7,9	7,8	
					Média	3,7	3,5	8,2	7,9	

Pressão		Veloci	dade (m/s))	Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1289,8	1327,5	1322,4	973,9	972,0	2,9	2,5	24,5	24,6
50	1318,4	1405,0	1395,3	1004,3	1000,7	6,6	5,8	23,8	24,1
100	1346,1	1481,7	1467,5	1033,4	1028,3	10,1	9,0	23,2	23,6
150	1372,5	1556,1	1537,8	1060,8	1054,4	13,4	12,0	22,7	23,2
200	1397,5	1628,7	1606,2	1086,7	1079,1	16,5	14,9	22,2	22,8
250	1421,9	1699,4	1673,0	1111,4	1102,7	19,5	17,7	21,8	22,5
					Média	11,5	10,3	23,1	23,5

Tabela IV.58 - Velocidade do som para o sistema 75% n-hexadecano / 25% decalina (% molar), T = 40 $^{\circ}\text{C}$

Tabela IV.59 - Velocidade do som para o sistema 75% n-hexadecano / 25% decalina (% molar), T = 50 $^{\rm o}{\rm C}$

Pressão		Veloci	dade (m/s))	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1254,0	1271,1	1266,2	958,8	956,8	1,4	1,0	23,5	23,7	
50	1284,0	1348,7	1339,2	990,7	987,0	5,0	4,3	22,8	23,1	
100	1311,9	1425,3	1411,4	1021,2	1015,9	8,6	7,6	22,2	22,6	
150	1339,5	1499,6	1481,5	1049,8	1043,2	12,0	10,6	21,6	22,1	
200	1364,9	1572,0	1549,7	1076,9	1069,0	15,2	13,5	21,1	21,7	
250	1390,4	1642,5	1616,3	1102,6	1093,5	18,1	16,2	20,7	21,4	
					Média	10,0	8,9	22,0	22,4	

Tabela IV.60 - Velocidade do som para o sistema 75% n-hexadecano / 25% decalina

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1217,3	1217,3	1212,5	943,8	941,7	0,0	0,4	22,5	22,6	
50	1248,3	1295,0	1285,6	977,3	973,5	3,7	3,0	21,7	22,0	
100	1278,1	1371,6	1357,8	1009,3	1003,8	7,3	6,2	21,0	21,5	
150	1305,3	1445,9	1427,9	1039,2	1032,4	10,8	9,4	20,4	20,9	
200	1330,0	1518,0	1496,0	1067,5	1059,4	14,1	12,5	19,7	20,3	
250	1356,0	1588,3	1562,4	1094,4	1085,0	17,1	15,2	19,3	20,0	
					Média	8,8	7,8	20,8	21,2	

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1297,7	1357,2	1356,3	980,2	979,9	4,6	4,5	24,5	24,5	
50	1326,1	1433,9	1427,4	1010,0	1007,6	8,1	7,6	23,8	24,0	
100	1352,2	1509,8	1498,0	1038,6	1034,4	11,7	10,8	23,2	23,5	
150	1378,3	1583,6	1566,7	1065,5	1059,7	14,9	13,7	22,7	23,1	
200	1403,0	1655,4	1633,7	1091,2	1083,8	18,0	16,4	22,2	22,8	
250	1426,5	1725,6	1699,2	1115,5	1106,8	21,0	19,1	21,8	22,4	
					Média	13,0	12,0	23,0	23,4	

Tabela IV.61 - Velocidade do som para o sistema 75% n-hexadecano / 25% tetralina (% molar), T = 40 $^{\circ}$ C

Tabela IV.62 - Velocidade do som para o sistema 75% n-hexadecano / 25% tetralina (% molar), T = 50 $^{\circ}$ C

Pressão		Veloci	dade (m/s)	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1262,2	1299,8	1299,2	965,3	965,0	3,0	2,9	23,5	23,5	
50	1291,3	1376,5	1370,4	996,6	994,2	6,6	6,1	22,8	23,0	
100	1318,6	1452,3	1441,0	1026,6	1022,2	10,1	9,3	22,1	22,5	
150	1345,3	1526,0	1509,6	1054,8	1048,7	13,4	12,2	21,6	22,0	
200	1368,9	1597,7	1576,5	1081,5	1073,9	16,7	15,2	21,0	21,6	
250	1392,5	1667,6	1641,9	1106,9	1097,9	19,8	17,9	20,5	21,2	
					Média	11,6	10,6	21,9	22,3	

Tabela IV.63 - Velocidade do som para o sistema 75% n-hexadecano / 25% tetralina

(% molar), T = $60 \degree C$

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1224,1	1244,9	1244,7	950,6	950,3	1,7	1,7	22,3	22,4	
50	1252,9	1321,7	1316,1	983,5	981,0	5,5	5,0	21,5	21,7	
100	1282,3	1397,6	1386,7	1014,9	1010,4	9,0	8,1	20,8	21,2	
150	1309,4	1471,1	1455,3	1044,5	1038,2	12,4	11,1	20,2	20,7	
200	1335,2	1542,7	1522,2	1072,5	1064,6	15,5	14,0	19,7	20,3	
250	1360,7	1612,4	1587,3	1099,1	1089,7	18,5	16,7	19,2	19,9	
					Média	10,4	9,4	20,6	21,0	

Pressão		Veloci	dade (m/s))	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1355,3	1231,0	1232,0	1261,3	1262,0	9,2	9,1	6,9	6,9	
50	1379,5	1280,9	1281,3	1282,1	1282,5	7,2	7,1	7,1	7,0	
100	1404,3	1330,1	1330,0	1302,0	1302,2	5,3	5,3	7,3	7,3	
150	1426,5	1377,9	1377,2	1320,7	1320,7	3,4	3,5	7,4	7,4	
200	1448,2	1424,2	1423,0	1338,4	1338,1	1,7	1,7	7,6	7,6	
250	1470,1	1469,2	1467,6	1355,0	1354,6	0,1	0,2	7,8	7,9	
					Média	4,5	4,5	7,4	7,3	

Tabela IV.64 - Velocidade do som para o sistema 75% decalina / 25% tetralina

(% molar), T = 40 $^{\circ}$ C

Tabela IV.65 - Velocidade do som para o sis	stema 75% decalina / 25% tetralina
---	------------------------------------

(% molar), T = 50 $^{\circ}$ C	
--------------------------------	--

Pressão		Veloci	dade (m/s))	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1315,1	1180,7	1181,7	1231,3	1232,0	10,2	10,1	6,4	6,3	
50	1338,8	1230,9	1231,3	1253,4	1253,8	8,1	8,0	6,4	6,4	
100	1364,4	1280,5	1280,3	1274,4	1274,6	6,1	6,2	6,6	6,6	
150	1388,4	1328,5	1327,8	1294,2	1294,2	4,3	4,4	6,8	6,8	
200	1411,9	1375,0	1373,8	1312,8	1312,6	2,6	2,7	7,0	7,0	
250	1434,3	1420,2	1418,6	1330,4	1329,9	1,0	1,1	7,2	7,3	
					Média	5,4	5,4	6,7	6,7	

Tabela IV.66 - Velocidade do som para o sistema 75% decalina / 25% tetralina

Pressão		Veloci	dade (m/s)		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1274,9	1132,6	1133,6	1201,4	1202,1	11,2	11,1	5,8	5,7	
50	1301,6	1183,2	1183,6	1224,7	1225,1	9,1	9,1	5,9	5,9	
100	1327,2	1233,1	1232,9	1247,0	1247,2	7,1	7,1	6,0	6,0	
150	1352,1	1281,3	1280,6	1267,9	1267,8	5,2	5,3	6,2	6,2	
200	1375,6	1328,1	1326,9	1287,5	1287,2	3,5	3,5	6,4	6,4	
250	1398,7	1373,4	1371,8	1306,0	1305,5	1,8	1,9	6,6	6,7	
					Média	6,3	6,3	6,2	6,2	

Misturas ternárias equimolares:

Velocidade (m/s) Desvio relativo (%) Pressão (bar) PR-LK PR-LK LK-SD LK-LK Experimental PR-SD LK-SD LK-LK PR-SD 1 1319,3 1304,1 1299,7 1125,1 1123,1 1,2 1,5 14,7 14,9 50 1347,3 1367,0 1357,6 1150,6 1146,7 1,5 0,8 14,6 14,9 100 1372,2 1429,1 1414,9 1175,1 1169,4 4,2 3,1 14,4 14,8 150 1489,5 1470,6 1198,3 14,7 1397,0 1191,0 6,6 5,3 14,2 200 1420,5 1548,2 1524,8 1220,3 1211,5 9,0 7,3 14,1 14,7 250 1441,3 1605,3 1577,7 1241,1 1231,0 11,4 9,5 13,9 14,6 Média 5,6 4,6 14,3 14,8

Tabela IV.67 - Velocidade do som para o sistema decalina / tetralina / n-hexadecano (equimolar), T = 40 $^{\circ}$ C

Tabela IV.68 - Velocidade do som para o sistema decalina / tetralina / n-hexadecano

(equimolar),	T =	50	°C
--------------	-----	----	----

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1281,6	1250,2	1245,9	1105,8	1103,7	2,5	2,8	13,7	13,9
50	1308,5	1313,2	1304,0	1132,6	1128,5	0,4	0,3	13,4	13,8
100	1335,2	1375,6	1361,4	1158,3	1152,3	3,0	2,0	13,2	13,7
150	1360,7	1436,0	1417,3	1182,6	1174,9	5,5	4,2	13,1	13,7
200	1384,5	1494,7	1471,5	1205,5	1196,3	8,0	6,3	12,9	13,6
250	1408,2	1551,8	1524,4	1227,3	1216,7	10,2	8,3	12,8	13,6
					Média	4,9	4,0	13,2	13,7

Tabela IV.69 - Velocidade do som para o sistema decalina / tetralina / n-hexadecano

(equimolar), T = 60 °C

Pressão		Veloci	dade (m/s))		Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1244,0	1198,6	1194,5	1086,3	1084,1	3,6	4,0	12,7	12,9
50	1272,1	1262,0	1252,8	1114,5	1110,1	0,8	1,5	12,4	12,7
100	1299,4	1324,4	1310,5	1141,5	1135,2	1,9	0,9	12,2	12,6
150	1325,6	1385,0	1366,4	1166,9	1158,8	4,5	3,1	12,0	12,6
200	1350,9	1443,7	1420,7	1190,9	1181,2	6,9	5,2	11,8	12,6
250	1375,4	1500,8	1473,7	1213,6	1202,5	9,1	7,1	11,8	12,6
					Média	4,5	3,6	12,1	12,7

Pressão		Veloci	dade (m/s)		[Desvio re	lativo (%)
(bar)	Experimental	PR-SD	PR-LK	, LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1286,3	1206,9	1215,8	1182,9	1188,2	6,2	5,5	8,0	7,6
50	1314,3	1262,3	1269,6	1207,6	1212,0	4,0	3,4	8,1	7,8
100	1340,1	1316,9	1322,7	1231,1	1234,8	1,7	1,3	8,1	7,9
150	1365,5	1369,6	1374,0	1253,2	1256,2	0,3	0,6	8,2	8,0
200	1389,5	1420,6	1423,7	1274,0	1276,4	2,2	2,5	8,3	8,1
250	1413,1	1470,0	1472,0	1293,5	1295,5	4,0	4,2	8,5	8,3
					Média	3,1	2,9	8,2	8,0

Tabela IV.70 - Velocidade do som para o sistema n-decano / decalina / tetralina (equimolar), T = 40 $^{\circ}$ C

Tabela IV.71 - Velocidade do som para o sistema n-decano / decalina / tetralina (equimolar), T = 50 $^{\circ}$ C

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%)
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1249,2	1155,0	1163,7	1156,2	1161,6	7,5	6,8	7,4	7,0
50	1277,5	1210,9	1218,0	1182,3	1186,9	5,2	4,7	7,5	7,1
100	1305,0	1265,8	1271,5	1207,2	1211,0	3,0	2,6	7,5	7,2
150	1330,5	1318,8	1323,1	1230,5	1233,6	0,9	0,6	7,5	7,3
200	1355,8	1370,1	1373,1	1252,4	1254,8	1,1	1,3	7,6	7,4
250	1380,2	1419,7	1421,5	1272,9	1274,8	2,9	3,0	7,8	7,6
					Média	3,4	3,1	7,6	7,3

Tabela IV.72 - Velocidade do som para o sistema n-decano / decalina / tetralina

(equimolar), T = 60 °C

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1210,5	1105,4	1113,9	1129,3	1134,9	8,7	8,0	6,7	6,2
50	1239,5	1161,8	1168,7	1156,9	1161,6	6,3	5,7	6,7	6,3
100	1267,8	1217,1	1222,5	1183,2	1187,0	4,0	3,6	6,7	6,4
150	1294,4	1270,4	1274,5	1207,8	1210,9	1,9	1,5	6,7	6,5
200	1320,4	1321,9	1324,7	1230,8	1233,2	0,1	0,3	6,8	6,6
250	1345,5	1371,8	1373,3	1252,4	1254,3	2,0	2,1	6,9	6,8
					Média	3,8	3,5	6,7	6,5

Pressão		Veloci	dade (m/s))		[Desvio relativo (%)			
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1261,4	1240,0	1225,7	1052,6	1045,9	1,7	2,8	16,6	17,1	
50	1291,0	1309,2	1291,4	1082,2	1074,4	1,4	0,0	16,2	16,8	
100	1320,0	1377,3	1356,2	1110,6	1101,6	4,3	2,7	15,9	16,5	
150	1346,1	1443,3	1418,9	1137,2	1127,2	7,2	5,4	15,5	16,3	
200	1370,9	1507,2	1479,7	1162,2	1151,4	9,9	7,9	15,2	16,0	
250	1395,4	1569,3	1538,8	1185,9	1174,3	12,5	10,3	15,0	15,8	
					Média	6,2	4,9	15,7	16,4	

Tabela IV.73 - Velocidade do som para o sistema n-decano / decalina /

n-hexadecano (e	equimolar),	Γ = 40 °C
-----------------	-------------	-----------

Tabela IV.74 - Velocidade do som para o sistema n-decano / decalina /

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1222,5	1186,3	1172,3	1033,2	1026,3	3,0	4,1	15,5	16,1
50	1253,6	1255,8	1238,3	1064,4	1056,2	0,2	1,2	15,1	15,7
100	1282,9	1324,1	1303,3	1094,1	1084,9	3,2	1,6	14,7	15,4
150	1311,0	1390,1	1366,1	1122,0	1111,7	6,0	4,2	14,4	15,2
200	1336,7	1454,1	1427,0	1148,2	1137,0	8,8	6,8	14,1	14,9
250	1364,1	1516,1	1486,1	1172,9	1160,9	11,1	8,9	14,0	14,9
					Média	5,4	4,5	14,6	15,4

n-hexadecano (equimolar), T = 50 $^{\circ}$ C

Tabela IV.75 - Velocidade do som para o sistema n-decano / decalina /

n-hexadecano	(equimolar),	T =	60	°C
--------------	--------------	-----	----	----

Pressão		Veloci	dade (m/s]	Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	, LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	, LK-LK
1	1186,3	1135,0	1121,3	1013,5	1006,4	4,3	5,5	14,6	15,2
50	1217,9	1204,8	1187,7	1046,4	1038,0	1,1	2,5	14,1	14,8
100	1249,8	1273,3	1252,9	1077,7	1068,1	1,9	0,2	13,8	14,5
150	1277,5	1339,5	1315,9	1106,9	1096,3	4,9	3,0	13,4	14,2
200	1305,0	1403,5	1376,8	1134,3	1122,7	7,5	5,5	13,1	14,0
250	1331,9	1465,5	1436,0	1160,1	1147,7	10,0	7,8	12,9	13,8
					Média	5,0	4,1	13,6	14,4

Pressão		Veloci	dade (m/s))		[Desvio re	lativo (%))
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1270,8	1281,0	1271,6	1065,3	1061,1	0,8	0,1	16,2	16,5
50	1299,7	1348,9	1334,9	1094,2	1088,2	3,8	2,7	15,8	16,3
100	1327,5	1415,8	1397,4	1121,8	1114,2	6,7	5,3	15,5	16,1
150	1353,4	1480,7	1458,0	1147,8	1138,8	9,4	7,7	15,2	15,9
200	1377,5	1543,6	1516,9	1172,4	1162,2	12,1	10,1	14,9	15,6
250	1401,4	1604,8	1574,2	1195,8	1184,3	14,5	12,3	14,7	15,5
					Média	7,9	6,4	15,4	16,0

Tabela IV.76 - Velocidade do som para o sistema n-decano / tetralina / n-hexadecano (equimolar), T = 40 $^{\circ}$ C

Tabela IV.77 - Velocidade do som para o sistema n-decano / tetralina /

Pressão		Desvio relativo (%)							
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1231,3	1225,8	1216,6	1046,6	1042,3	0,4	1,2	15,0	15,3
50	1261,1	1293,9	1280,2	1077,0	1070,8	2,6	1,5	14,6	15,1
100	1289,8	1361,0	1342,9	1106,0	1098,2	5,5	4,1	14,2	14,9
150	1317,2	1426,0	1403,6	1133,3	1124,0	8,3	6,6	14,0	14,7
200	1342,9	1489,0	1462,6	1159,1	1148,4	10,9	8,9	13,7	14,5
250	1367,9	1550,1	1519,9	1183,4	1171,6	13,3	11,1	13,5	14,4
					Média	6,8	5,6	14,2	14,8

n-hexadecano (equimolar), T = 50 $^{\circ}$ C

Tabela IV.78 - Velocidade do som para o sistema n-decano / tetralina /

n-hexadecano (equimolar),	T =	60	°C
----------------	-------------	-----	----	----

Pressão		Veloci	Desvio relativo (%)						
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1194,1	1173,0	1164,1	1027,7	1023,3	1,8	2,5	13,9	14,3
50	1224,3	1241,5	1228,0	1059,8	1053,4	1,4	0,3	13,4	14,0
100	1253,8	1308,8	1290,9	1090,3	1082,2	4,4	3,0	13,0	13,7
150	1281,8	1373,9	1351,8	1118,9	1109,3	7,2	5,5	12,7	13,5
200	1308,7	1436,9	1410,8	1145,9	1134,9	9,8	7,8	12,4	13,3
250	1334,3	1498,1	1468,2	1171,4	1159,1	12,3	10,0	12,2	13,1
					Média	6,1	4,8	13,0	13,6

Mistura multicomponente equimolar:

Tabela IV.79 - Velocidade do som para o sistema n-decano / decalina / tetralina / n-hexadecano (equimolar), T = 40 $^{\circ}$ C

Pressão		Veloci	dade (m/s))	Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1283,0	1259,6	1252,9	1105,2	1101,9	1,8	2,3	13,9	14,1
50	1311,0	1323,6	1312,9	1132,4	1127,6	1,0	0,1	13,6	14,0
100	1337,9	1386,8	1372,3	1158,6	1152,3	3,7	2,6	13,4	13,9
150	1364,7	1448,0	1429,8	1183,1	1175,6	6,1	4,8	13,3	13,9
200	1387,9	1507,3	1485,6	1206,4	1197,7	8,6	7,0	13,1	13,7
250	1412,0	1564,9	1539,9	1228,3	1218,6	10,8	9,1	13,0	13,7
					Média	5,3	4,3	13,4	13,9

Tabela IV.80 - Velocidade do som para o sistema n-decano / decalina / tetralina /

Pressão		Veloci	dade (m/s))		Desvio relativo (%)				
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK	
1	1245,4	1205,9	1199,4	1084,7	1081,3	3,2	3,7	12,9	13,2	
50	1274,0	1270,2	1259,7	1113,4	1108,4	0,3	1,1	12,6	13,0	
100	1302,5	1333,6	1319,3	1140,8	1134,3	2,4	1,3	12,4	12,9	
150	1329,8	1394,9	1376,9	1166,6	1158,8	4,9	3,5	12,3	12,9	
200	1354,8	1454,3	1432,9	1190,9	1181,9	7,3	5,8	12,1	12,8	
250	1379,4	1512,0	1487,2	1213,8	1203,8	9,6	7,8	12,0	12,7	
					Média	4,6	3,9	12,4	12,9	

n-hexadecano (equimolar), T = 50 $^{\circ}$ C

Tabela IV.81 - Velocidade do som para o sistema n-decano / decalina / tetralina /

n-hexadecano (equimolar), T = 60 °C

Pressão		Veloci	dade (m/s	Desvio relativo (%)					
(bar)	Experimental	PR-SD	PR-LK	LK-SD	LK-LK	PR-SD	PR-LK	LK-SD	LK-LK
1	1210,3	1154,6	1148,2	1063,9	1060,5	4,6	5,1	12,1	12,4
50	1238,2	1219,3	1208,9	1094,2	1089,0	1,5	2,4	11,6	12,0
100	1267,3	1282,9	1268,7	1123,0	1116,3	1,2	0,1	11,4	11,9
150	1294,9	1344,4	1326,6	1150,1	1142,0	3,8	2,4	11,2	11,8
200	1321,1	1403,9	1382,6	1175,5	1166,2	6,3	4,7	11,0	11,7
250	1345,8	1461,6	1437,1	1199,5	1189,0	8,6	6,8	10,9	11,6
					Média	4,3	3,6	11,4	11,9

• Amostra de condensado:

Pressão		Velocidade (m/s)		Desvio r	elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1158,5	1202,8	1175,4	3,8	1,5
50	1192,2	1238,3	1191,9	3,9	0,0
100	1225,0	1273,6	1208,0	4,0	1,4
150	1255,1	1308,0	1223,4	4,2	2,5
200	1284,1	1341,6	1238,1	4,5	3,6
250	1311,0	1374,4	1252,3	4,8	4,5
			Média	4,2	2,2

Tabela IV.82 - Velocidade do som para o sistema amostra de condensado, T = 40 $^{\circ}$ C

Tabela IV.83 - Velocidade do som para o sistema amostra de condensado, T = 50 $^{\circ}$ C

Pressão		Velocidade (m/s)		Desvio r	elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1118,7	1149,5	1147,6	2,8	2,6
50	1154,2	1185,4	1165,2	2,7	1,0
100	1189,9	1221,1	1182,3	2,6	0,6
150	1220,9	1255,8	1198,6	2,9	1,8
200	1250,4	1289,7	1214,2	3,1	2,9
250	1279,9	1322,7	1229,2	3,3	4,0
			Média	2,9	2,1

Tabela IV.84 - Velocidade do som para o sistema amostra de condensado, T = 60 $^{\circ}\text{C}$

Pressão		Velocidade (m/s)		Desvio r	elativo (%)
(bar)	Experimental	Peng-Robinson	Lee-Kesler	PR	LK
1	1080,1	1098,5	1119,7	1,7	3,7
50	1116,9	1134,8	1138,3	1,6	1,9
100	1151,7	1170,8	1156,5	1,7	0,4
150	1186,2	1205,9	1173,8	1,7	1,0
200	1216,7	1240,1	1190,3	1,9	2,2
250	1245,6	1273,4	1206,1	2,2	3,2
			Média	1,8	2,1