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RESUMO  

 

ARAUJO, Ana Cristina Corrêa. Estudo teórico do comportamento eletrostático da levedura 

Saccharomyces cerevisiae usando a equação de Poisson-Boltzmann. 2020. 68 f. Dissertação 

(Mestrado em Engenharia Química) – Instituto de Química, Universidade do Estado do Rio 

de Janeiro, 2020. 

 

A investigação do comportamento eletrostático e das propriedades de superfície de 

células e sistemas biológicos é de grande importância para o entendimento de processos 

biotecnológicos como captação de metais pesados de solução, formação de biofilmes, 

processos de biocorrosão, entre outros. Leveduras estão presentes na natureza e em inúmeros 

processos científicos e industriais onde as forças eletrostáticas são predominantes, como 

processos de adesão, flotação e coagulação. A superfície da parede celular das leveduras 

contém grupos funcionais ácidos e básicos – e.g. carboxila, fosforila, hidroxila, e amino – que 

sob diferentes condições podem estar ionizados. A protonação e desprotonação desses grupos 

influencia a carga na superfície da célula e promove uma distribuição entre o meio e a 

superfície da célula, criando uma superfície regulada pela carga. Nesse trabalho, o potencial 

eletrostático da levedura Saccharomyces cerevisiae foi estudado e a partir dele um valor para 

o potencial zeta foi estimado. Os cálculos foram feitos usando dois modelos baseados na 

equação de Poisson-Boltzmann, um modelo de regulação de cargas e um modelo de 

densidade de carga volumétrica. Os dois modelos diferem em como eles descrevem a carga na 

superfície da célula de levedura, o primeiro considera a carga variando na área superficial da 

célula e o segundo modelo considera a carga variando dentro de um volume na parede celular. 

Os potenciais zeta estimados pelos dois modelos foram comparados a resultados 

experimentais para checar a acurácia dos modelos. Cálculos foram feitos para soluções 

aquosas com duas forças iônicas diferentes, 1 mM e 10 mM. Resultados mostram que os dois 

modelos conseguem descrever bem os ponto experimentais de potencial zeta para diferentes 

valores de pH, com o modelo de densidade de carga volumétrica se aproximando um pouco 

mais dos pontos que o modelo de regulação de carga na superfície. Em geral, os resultados 

para a força iônica de 10 mM dos dois modelos conseguem descrever melhor o formato dos 

pontos. Alguns parâmetros dos modelos relacionados a caracterização da superfície da parede 

celular da levedura (grupos funcionais) foram estimados usando o método de mínimos 

quadrados, e os resultados dos modelos usando os parâmetros estimados mostraram grande 

melhoria na maioria dos casos. Além disso, estes mesmos parâmetros foram analisados 

usando uma simulação de Monte Carlo e uma decomposição QR da matriz de sensibilidade 

do modelo de regulação de cargas para melhor entendimento da relação entre os parâmetros e 

o modelo. Nas análises foram encontrados aonde estão localizados os valores de parâmetros 

que melhor representam os pontos experimentais e também a quais parâmetros o modelo 

parece ser mais ou menos sensível.  

 

 

Palavras-chave: Levedura. Potencial zeta. Regulação de carga. Equação de Poisson-

Boltzmann. 

 

  



 

 

ABSTRACT  

 

ARAUJO, Ana Cristina Corrêa. Theoretical Study of the electrostatic behavior of 

Saccharomyces cerevisiae yeast cell using Poisson-Boltzmann equation. 2020. 68 f. 

Dissertação (Mestrado em Engenharia Química) – Instituto de Química, Universidade do 

Estado do Rio de Janeiro, 2020. 

 

 

The investigation of the electrostatic behavior and surface properties of cell surfaces in 

biological systems is of great importance for understanding biological process as metal uptake 

from solution, biofilm formations, biocorrosion processes, among others. Yeast cells are 

present in nature and in a number of scientific and industrial processes where electrostatic 

forces are predominant, such as adhesion processes, flotation and aggregation. The cell wall 

surface of yeast cells is composed of proteins and glycoproteins that contain many acid-base 

functional groups – e.g. carboxyl, phosphoryl, hydroxyl, and amine – that under different 

conditions can be ionized. The protonation or deprotonation of these groups influences the 

surface charge and promotes a charge distribution between the medium and the cell surface, 

creating a charge regulated surface. In this work, the electrostatic potential of the 

Saccharomyces cerevisiae yeast cell was studied and a value for the zeta potential was 

estimated. Calculations were performed using two models based on the Poisson-Boltzmann 

equation, the charge regulation on the surface model and the charge regulated volumetric 

density charge model. The two models differ in the way they describe the charge on the yeast 

cell surface, while the first considers a charge on the cell wall surface area the second model 

considers the charge varying over the volume of the cell wall. The zeta potential calculated 

using both models were then compared to experimental results to check for the accuracy of 

the models. Calculations were performed for aqueous solutions with two different ionic 

strengths, 1 mM and 10 mM. Results show that both models are able to describe experimental 

zeta potential points for different pH values, with the volumetric charge density model 

showing a slightly better fit than the charge regulation on the surface model. In general, the 

results for ionic strength of 10 mM for both models could describe better the shape of 

experimental points than the results for 1 mM. Some important parameters of the model 

related to the characterization of the yeast cell wall (functional groups) were estimated using 

the least-squares method, and results of the model with the estimated parameters showed great 

improvement in most cases. The same parameters were then further analyzed using a Monte 

Carlo simulation and a QR decomposition of the sensitive matrix of the charge regulation 

model to check the relation between the parameters and the model. In the analysis it was 

found a range for which the parameters can best describe experimental points and it was also 

possible to identify which parameters the model are most and least sensitive to.  

 

 

Keywords: Yeast cell. Zeta potential. Charge regulation. Poisson-Boltzmann equation. 
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INTRODUCTION 

 

The DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, although not originally 

designed to explain the behavior of biological colloids, has been extensively used in 

biological studies. It has been used to explain many bioprocesses in which surface interactions 

play a key role such as adhesion of microbials to surfaces, formation of biofilm, aggregation 

and flocculation, heavy metal biosorption, among others (ARAÚJO et al., 2009; RAO; 

SUBRAMANIAN, 2007; ASRI et al., 2017; ROGOWSKA et al., 2018).  

In biological colloids, the DLVO theory has been used in both qualitative and 

quantitative models for predicting surface properties, forces and free energy. While qualitative 

results have shown some success, quantitative models have often failed to describe 

microbiological systems adequately (HERMANSSON, 1999). Biological cell surfaces usually 

are more complex and heterogeneous than the surface of non-biological colloidal particles and 

this can have an impact on the results predicted by the classical DLVO theory. For instance, 

interactions involving macromolecules attached to the cell surface can influence both surface 

charge distribution and steric interactions (RIJNAARTS et al., 1999). To account for other 

types of effects an extended DLVO theory was developed considering other types of 

interactions besides the ones described in the classical theory (van der Waals and double layer 

interactions) with the most relevant interaction being the Lewis acid-base interactions 

(SHARP; DICKINSON, 2005). The acid-base interactions are based on electron-donating and 

electron-accepting energies and, according to van Oss (1989), can be 10-100 times stronger 

than the van der Waals interaction. 

Experimental studies have shown the importance of the electric double layer in 

microbial adhesion interactions. However, models considering only double layer interactions 

often fail to reproduce accurately experimental observations (HERMANSSON, 1999). By 

introducing an acid-base interaction term, some models have shown improvement in 

describing electrical properties in biological system (POORTINGA et al., 2002). Regarding 

the zeta potential of biological surfaces, an important measure in indicating the stability of 

colloids, it is possible to point out two models that have been successful in predicting 

experimental zeta potential results: (i) a charge regulation model, used by Hong and Brown 

(2008), was able to portray the experimental zeta potential results of two bacteria, Escherichia 

coli and Bacillus brevis, in different ionic strengths; (ii) Barbosa, Lima and Tavares (2015) 

using a different model, which considers the cell wall with a volumetric charge density, was 

also able to describe experimental zeta potential points of the B. brevis bacteria.  
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With this knowledge in mind, the goal of this study was to analyze the electrostatic 

behavior of the Saccharomyces cerevisiae yeast cell using the same models as Hong and 

Brown (2008) and Barbosa, Lima and Tavares (2015). The zeta potential of the S. cerevisiae 

yeast cell was modeled and compared to experimental zeta potential data. The two models 

used in this study apply the Poisson-Boltzmann equation to describe the double layer 

interactions; however, the main difference is in the way they describe the acid-base 

interactions that happen within the macromolecules present on the cell wall. While the first 

model studied considers the contribution of acid-base interactions only on the surface area of 

the cell wall, the second model considers this contribution not only on the surface area, but in 

the volume of the cell wall. When solving both models, parameters of the S. cerevisiae cell 

surface were necessary to complete the acid-base interactions calculations. Data for these 

parameters were taken from experiments found in the literature and values for the parameters 

were estimated and analyzed by different methods that will be discussed further on.  

S. cerevisiae was chosen as the object of the study first to check if the models could 

accurately describe yeast surfaces as well as they did for bacterial surfaces, given that the cell 

wall of bacteria and yeast cells shows some similarities. As in bacteria, yeast cell walls also 

possess ionizable functional groups that under different circumstances can be protonated or 

deprotonated, creating a charge on the surface that varies with the ionization rate of these 

groups (DENGIS; ROUXHET, 1997). Another good reason for studying the S. cerevisiae cell 

is the fact that this yeast is widely present in natural surfaces and industrial processes. This 

way it can be easily incorporated in new technologies, showing an interesting potential in the 

wastewater treatment area, where some yeast strains have shown a good capacity for the 

biosorption of heavy metals, for example (NAEEM; WOERTZ; FEIN, 2006; ASRI et al., 

2017). And last but not least, another factor that played an important role in the choice of S. 

cerevisiae for this study was the amount of experimental data available for it in the literature. 

Since experiments were not performed during this work, it was important to find a 

microorganism with plenty of experimental data available to help obtain parameters and 

evaluate results calculated by the models. Due to its abundance and relevance, the S. 

cerevisiae yeast cell has been greatly studied and for this reason a numerous amount of 

experimental data on it is available in the literature. 

In summary, the objective of the study is: 
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A) Calculate the electrostatic potential profile on the S. cerevisiae yeast cell using two 

different models based on the Poisson-Boltzmann equation: (i) charge regulation 

on the surface model; (ii) charge-regulated volumetric charge density model. 

B) Estimate zeta potential values for the S. cerevisiae from the calculated electrostatic 

potential profile. 

C) Compare the calculated zeta potential with experimental zeta potential values for 

the S. cerevisiae available in literature. 

 

After this introduction presenting the general idea and objectives of the study, in 

chapter 1, the literature review, essential parts of the studied system will be described, they 

are the yeast cell surface and acid-base interactions that configures the cell surface charge, the 

Poisson-Boltzmann equations used in the models, the definition of the so-called zeta potential 

and a description of the methods used in the parameter estimation and analysis. In the second 

chapter, models and methods, the information provided in the literature review chapter are 

connected to develop the models used in the study in order to calculate the electric potential 

of S. cerevisiae. The third chapter is focused on analyzing the results obtained by the models 

to describe the electric behavior of S. cerevisiae. Also, in this chapter results for parameter 

estimation are presented and analyzed. To finish, a conclusion is presented to summarize the 

most relevant observations made during the study.  
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1 LITERATURE REVIEW 

 

 

1.1 Saccharomyces cerevisiae cell wall 

 

 

Cell walls are complex and dynamic structures that involve the cytoplasmatic 

membrane and give the cell support and protection from changes in the environment. 

Moreover, they allow the cells to interact with other components. In order to protect the cell 

from physical stress, the cell wall must possess enough mechanical strength, and to be able to 

interact with other components it is fundamental to bind to particles on its surroundings. 

Many molecules are involved in performing these functions and that is why the cell wall is a 

complex structure. The yeast cell wall is primarily composed of glycoproteins and 

polysaccharides such as chitin, glucans and mannans (BOWMAN; FREE, 2006). 

In Figure 1 we can see a simplified schematic representation of the Saccharomyces 

cerevisiae yeast cell wall characterized by a thin layer of chitin on the inner part of the cell 

wall, above it a thicker layer of glucans is found and on the most outer surface of the cell 

there is a layer of glycoproteins, which are proteins highly modified with polysaccharides 

chains. 

 

Figure 1 – The yeast cell wall 

 

Source: The author, 2019. 

Cytoplasmatic   

membrane 

Chitin 

Glucans 

Glycoproteins 
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The chitin component, although representing only about 2% of the cell wall dry 

weight, is structurally very important as it is responsible for giving the cell wall strength and 

flexibility. The glucan component is also important for the structure of the cell wall. Besides 

providing mechanical strength and integrity to the cell wall, this component is responsible for 

linking the chitin layer to the glycoproteins. The glycoproteins components of the cell wall are 

located on the most outer surface. They are the ones responsible for the interaction of the cell 

wall with other particles, their functions vary from mediating adhesion to surfaces and 

absorption of molecules to transmitting signals and even protecting the cell against foreign 

substances (BOWMAN; FREE, 2006). Also, it is mainly on the glycoproteins that very 

important components responsible for surface charge on the cell wall are located ‒ they are 

called functional groups (DENGIS; ROUXHET, 1997). 

Comparing the yeast cell wall to the cell wall of bacteria some differences and some 

similarities are noticed. For instance, while the yeast cell wall has a chitin and glucan inner 

layer, bacteria cell walls have a peptidoglycan inner layer, which can be thin as in the Gram-

negative or thick as in the Gram-positive bacteria (POORTINGA et al., 2002). At the same 

time, when it comes to the outer layer of bacteria and yeast cell walls, both seem to be 

composed by glycoproteins (POORTINGA et al., 2002). So, when talking about the 

electrostatic behavior of both yeast and bacteria cells, they seem to be related to the same 

components. With this in mind it seems reasonable that we use the same relations applied in 

describing the functional groups of bacteria cells to yeast cells. 

The functional groups are structures that can be ionized under different conditions and 

this creates a charge on the cell surface that is dependent on the ionization rate of the groups. 

The functional group types present on a cell surface may differ from one organism to another, 

but all of them contribute in a similar way to the cell surface charge: an acidic group (> AH)  

can donate a proton to the medium contributing negatively to the surface charge, and a basic 

group (> B)  can accept a proton from the medium contributing positively to the charge 

(HONG; BROWN, 2008). Relations describing acidic and basic functional group can be seen 

in equations (1) and (2), respectively. 

 

> AH   ⇄    > A− + H+ (1) 

 

> BH+  ⇄    > B + H+ (2) 
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The main functional groups present on the yeast cell wall are the carboxyl, 

phosphoryl, hydroxyl and amine groups. The carboxyl and amine groups are mainly linked to 

the protein part of the glycoproteins while the hydroxyl and phosphoryl are related to the 

glycans part, mostly to mannan and phosphorylated mannan (ZHANG et al, 2010). Only the 

amine group on the yeast cell is a basic functional group, the other three groups are acidic, so 

unless the amount of the amine group is much higher than the other groups, we expect the 

surface charge on the yeast cell to be mainly negative. 

When calculating the surface charge on a yeast or bacteria cell, it is important to 

determine which groups are in their ionized state and which are not, the groups that are 

ionized contribute to the cell surface charge and the groups in their neutral state do not. A 

frequently calculated property for describing a strongly ionized system is the dissociation 

constant (Ka). The dissociation constant of the basic and acidic groups related to the 

descriptions in equations (1) and (2) are represented on equations (3) and (4). 

 

𝐾𝑎,𝑎𝑐𝑖𝑑 =
𝐶𝐻𝑠

+  𝐶𝐴−

𝐶𝐴𝐻
 (3) 

 

𝐾𝑎,𝑏𝑎𝑠𝑖𝑐 =
𝐶𝐻𝑠

+  𝐶𝐵

𝐶𝐵𝐻+
 (4) 

 

Where 𝐶𝐴− and 𝐶𝐵 are the concentrations of acidic and basic groups that are deprotonated, 

𝐶𝐴𝐻 and 𝐶𝐵𝐻+  are the concentrations of acidic and basic groups that are protonated and 𝐶𝐻𝑠
+ is 

the local concentration of protons at the surface. 

Looking at equations (3) and (4) it is possible to notice that the dissociation constant 

of the functional groups is a function of the local proton concentration at the surface (𝐶𝐻𝑠
+). 

This concentration is not the same as the proton concentration in the bulk solution, given that 

the charge on the cell surface has influence over all ionic concentrations near it.  

Estimations for the dissociation constant of the functional groups can be obtained 

through potentiometric titration experiments, and their values can provide valuable insight 

into how the functional groups influence the surface charge and consequently other surface 

properties, as for example, the zeta potential (HONG; BROWN, 2006, 2008).     
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1.2 Poisson-Boltzmann equation 

 

 

The Poisson equation, that relates the volumetric charge density (𝜌) with the 

electrostatic potential (𝜓) can be written in the form of (LIMA, 2008): 

 

𝜀0∇. (𝜀∇𝜓) =  −𝜌 (5) 

 

where 𝜀0 is the vacuum permittivity and 𝜀 is the dielectric constant of the medium. When 

there are ions involved, the volumetric charge density can be written as: 

 

𝜌 = 𝑒 ∑ 𝑧𝑖𝑐𝑖

𝑖

 (6) 

 

with e as the elementary charge, 𝑧𝑖 and 𝑐𝑖 as the charge and concentration of the ion i, 

respectively.  

By applying the Boltzmann distribution to represent the ion concentration and 

considering the dielectric constant uniform throughout the space, the following Poisson-

Boltzmann equation (PBE) is obtained for a flat surface (LIMA, 2008): 

 

d2𝜓

d𝑥2
= − 

𝑒

𝜀0𝜀
 ∑ 𝑧𝑖𝑐𝑖,0exp (

−𝑒𝑧𝑖𝜓

𝑘𝐵𝑇
 )

𝑖

    (7) 

 

where 𝑐𝑖,0 is the bulk concentration of ion i, 𝑘𝐵 is the Boltzmann constant and T is the 

temperature.  

The Poisson-Boltzmann equation relates how the electrostatic potential varies with 

distance from a charged surface to bulk conditions of the medium. To solve the one-

dimensional PBE, two boundary conditions are necessary to complete the system of 

equations, one at each boundary. Two boundary conditions normally used are: 

 

d𝜓

d𝑥
|

𝑥=0
= − 

𝜎

𝜀0𝜀
 (8) 
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d𝜓

d𝑥
|

𝑥→∞
= 0 

 

 

(9) 

 

These are referred to as Neumann boundary conditions and they specify the derivative 

of the potential at the boundaries (CONSTANTINIDES; MOSTOUFI, 1999). For the first 

one, when 𝑥 = 0 (at the surface), the derivative of the potential is assumed to be equal to the 

surface charge density (𝜎) of the object studied, in the case of this work, the surface of the 

yeast cell. For the second boundary condition, when x→∞ (far away from the surface), we 

assume that the derivative is equal to zero, which means that there is no more variation of the 

potential and properties reach bulk values.  

 

 

1.3 Poisson-Boltzmann equation with fixed charges 

 

 

In some cases, fixed charges can be included in the system studied, e.g., proteins and 

other charged macromolecules that are present in specific positions. To account for the impact 

of these charges, a term can be added into the Poisson-Boltzmann equation, describing the 

charge density of the fixed charges. The modified Poisson-Boltzmann equation that accounts 

for the presence of fixed charges is (BARBOSA; LIMA; TAVARES, 2015): 

 

d2𝜓

d𝑥2
= − 

𝑒

𝜀0𝜀
 ∑ 𝑧𝑖𝑐𝑖,0exp (

−𝑒𝑧𝑖𝜓

𝑘𝐵𝑇
 )

𝑖

 − 𝜌𝑓    (10) 

 

The term that represents the fixed charges (𝜌𝑓) can be a number if the charge density is 

constant or it can be a function that describes the fixed charge profile throughout the space, if 

it varies with any given parameter.  

This equation can be useful for systems that are made of a thick and permeable 

surface/membrane, where instead of the charges being all present on the boundary of a 

surface, they are spread out over the thickness of the penetrable surface. For the case of a 

penetrable surface with a considerable thickness inserted in a medium, the boundary 

conditions appropriate for the resolution of the Poisson-Boltzmann equation with fixed 

charges are (BARBOSA; LIMA; TAVARES, 2015): 
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d𝜓

d𝑥
|

𝑥→−∞
= 0 (11) 

 

d𝜓

d𝑥
|

𝑥→∞
= 0 (12) 

 

meaning that the potential stabilizes deep inside the permeable surface (x→-∞) and far away 

from the surface (x→∞), when properties reach bulk values of the medium. This last one is 

the same as for the Poisson-Boltzmann without fixed charges.   

Despite of the boundary conditions necessary for resolution, in the case where the 

fixed charges are only present in one half of the domain, there are other two conditions that 

need to be satisfied as well. These conditions are shown in equations (13) and (14). They state 

that the potential and its derivative need to be equal at the center of the domain (𝑥 = 0), the 

plane where the medium and penetrable surface meet. These conditions guarantee the 

continuity of the electrostatic potential (BARBOSA; LIMA; TAVARES, 2015).  

 

𝜓|𝑥→0+ =  𝜓|𝑥→0−  

 

 
(13) 

d𝜓

d𝑥
|

𝑥→0+
=  

d𝜓

d𝑥
|

𝑥→0−
 

 
(14) 

 

By solving the Poisson-Boltzmann equation with or without fixed charges we obtain 

the electrostatic potential profile near a charged surface. Analyzing the results for the 

electrostatic potential over the domain of 𝑥, it is possible to obtain an estimate for the zeta 

potential of the particle. The zeta potential is a measurable parameter that can obtained from 

electrophoretic experiments, and by comparing the calculated results to experimental results 

we can check for the accuracy of our calculations.  

 

 

1.4 Zeta potential 

 

 

Most colloidal particles existing in natural waters and industrial effluent streams have 

negative charged surfaces and the stability of these particles can change depending on 
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solution pH, ion concentration among other factors. The stability of colloidal particles is 

usually investigated in terms of the zeta potential, as it is a widely used experimental measure 

that can help to characterize the double layer of particles (NARONG; JAMES, 2006). In this 

experiment the use of electrolyte solutions as a polarizable solvent is necessary 

(NANOCOMPOSIX, c2020) 

The zeta potential is a key parameter in a variety of biological applications, such as, 

characterization of biomedical polymers, membrane separation, mineral processing, water 

treatment, protein separation and purification, among others (SALGIN S.; SALGIN U.; 

BAHADIR, 2012).  

The zeta potential is a parameter that is obtained from experimental electrophoretic 

mobility data by using equations that correlates both. For large particles like biological cells, 

the Helmholtz-Smoluchowski equation is the most used. Regarding the mobility of particles, 

when a colloidal particle moves it carries along with it a layer of ions attached on its surface 

that moves with the same velocity as the particle. The location of this moving surface is called 

the slipping plane and the value of the electrostatic potential at this plane is referred as the 

zeta potential (OHKI; OHSHIMA, 1995).  

Figure 2 shows how the electrostatic potential is expected to vary with distance from a 

charged surface. The liquid layer surrounding the particle is usually divided into two regions: 

the Stern layer (𝛿) which is the layer where are located the ions that are adsorbed to the 

surface, and the diffuse layer (𝜅−1) where the ions are less firmly attached to the particle 

(SALGIN; SALGIN; BAHADIR, 2012). Located somewhere in between the extent of those 

two regions is where lies the slipping plane, where the zeta potential is measured (𝜁). In this 

way, the value of the zeta potential is expected to be smaller in magnitude than the value of 

the potential at the Stern plane (𝜓𝛿), that for its turn is smaller than the value at the surface 

(𝜓0) (OHKI; OHSHIMA, 1995). 

A challenging task in dealing with biological surfaces is where to consider the distance 

of the slipping plane. For smooth particles, the location of this plane is usually close to the 

Stern plane, but for some biological surfaces containing different groups of macromolecules 

the location of this plane is not well define and it can extend quite a distance from the surface 

(OHKI; OHSHIMA, 1995).  
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Figure 2 - Components of the electrical double layer 

 

Source: The author, 2020. 

 

For the S. cerevisiae yeast cell many zeta potential experimental data are available in 

the literature (AMORY; ROUXHET, 1988; NARONG; JAMES, 2006; THONART; 

CUSTINNE; PAQUOT, 1982; SCHWEGMANN; FEITZ; FRIMMEL, 2010). Analyzing 

some works, one experiment that stood out was the experiment of Narong and James (2006) 

in which they measured the zeta potential of S. cerevisiae for two different ionic 

concentrations of NaCl (1 mM e 10 mM) in a range of pH values varying from 3.0 to 10.0 ‒ 8 

experimental points were obtained for each ionic concentration. These data are used later in 

Chapter 3 for comparison with the results calculated using theoretical models.  

 

 

1.5 Parameter estimation  

 

 

 Parameter estimation methods are techniques that estimate values of parameters based 

on measured experimental data. One of the most common methods for estimating parameters 

is the least-squares fitting, in which the parameters (𝜃𝑗) are estimated by minimizing the 
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squared difference between experimental values (𝑦𝑒𝑥𝑝𝑖
) and values predicted by the model 

(𝑦𝑚𝑜𝑑𝑒𝑙𝑖
) (ZHAO et al., 2015). The objective function of least-squares method can be seen in 

equation (15). 

 

𝐹𝑜𝑏𝑗(𝜃𝑗) =  ∑ (𝑦𝑒𝑥𝑝𝑖
− 𝑦𝑚𝑜𝑑𝑒𝑙𝑖

(𝜃𝑗))
2

𝑁𝑒𝑥𝑝

𝑖

 (15) 

 

where 𝑁𝑒𝑥𝑝 is the total number of experimental data; 𝑦𝑒𝑥𝑝 are the experimental variables and 

𝑦𝑚𝑜𝑑𝑒𝑙𝑖
(𝜃𝑗) are the variables calculated by the model using the parameters 𝜃𝑗 . 

To minimize the objective function (𝐹𝑜𝑏𝑗) an optimization method is necessary, as for 

example, the sequential least squares programming and the Nelder-Mead simplex (BOGGS; 

TOLLE, 1995; NELDER; MEAD, 1965).  

Both methods are deterministic, available in the Scipy library of Python, and can be 

used in solving nonlinear problems. Each of the methods have different features that are of 

interest in this study: the sequential least squares programming algorithm uses both the first 

and second derivative of the function and is a method  for constrained optimization, while the 

Nelder-Mead simplex algorithm does not require the use of any derivatives but it is a method 

that does not admit any constrains. Because it uses derivatives and admits constrains, the 

sequential quadratic programming is an optimization method that finds the solution much 

faster than the Simplex method, nevertheless on situations where we can encounter problems 

obtaining the derivatives of the function, the Simplex method is a better option. 

 

 

1.6 Parameter analysis methods  

 

 

1.6.1 Monte Carlo method 

 

 

One method that can be used for parameter estimation and analysis is the Monte Carlo 

method (CHO et al., 2003). This method is based on calculating values of the model or 

objective function using many random sets of parameters. By analyzing its results it is 

possible to infer which region seems to have the best sets of parameters for the model studied.  
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Despite being theoretically simple, this method can provide valuable information on 

how the parameters are related to the model. However, because this method provides 

information by mapping out random regions, many calculations are performed during the 

application of the method, and the computational effort required may be elevated.  

 

 

1.6.2 Sensitive parameter analysis  

 

 

The matrix of the derivatives of the model in relation to the parameters is called the 

sensitivity matrix (𝑆𝑖,𝑗) (BATZEL; BACHAR; KAPPEL, 2013).  

 

𝑆𝑖,𝑗 =  
𝑑𝑦𝑖

𝑑𝜃𝑗
 ∈ ℝ𝑖𝑥𝑗 (16) 

 

with 𝑦𝑖 being the variable calculated by model at point 𝑖, and 𝜃𝑗  being the parameter 𝑗 in the 

set of parameters of the model. For better analysis of the sensitivity matrix, especially if the 

parameters analyzed have different orders of magnitude, we can normalize the sensitivity 

matrix by multiplying each derivative by 𝜃𝑗/𝑦𝑖. 

This matrix can provide information on the most sensitive and the least sensitive 

parameters, with the most sensitive parameters being the one that most influence the model 

and least sensitive the ones the have little influence in the model’s results.  

An easy and effective way to analyze the parameters using this matrix is to perform a 

QR decomposition on it (DEUFLHARD; ROBLITZ, 2015). The QR decomposition is a 

method that divides the original matrix into two new matrices easier to analyze (Q and R), 

besides obtaining the decomposed matrices this decomposition can also be performed with the 

additional features of column pivoting and rank determination that are very helpful in the 

sensitive parameter analysis. 

The rank number of a matrix indicates the number of columns that are independent 

and column pivoting of the matrix rearranges the order of the columns of the matrix R from 

the one with the biggest norm to the one with the smallest. This is helpful because by 

analyzing the rank of the sensitivity matrix it is possible to determine if all parameters are 

independent or if there is any dependency among them. Moreover, the columns pivoting can 
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indicate the most sensitive parameters (highest norm) and least sensitive ones (lowest norm) 

(DEUFLHARD; ROBLITZ, 2015). 

In Scilab software it is possible to find an implemented algorithm for the QR 

decomposition with the additional features of column pivoting and rank determination. 
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2 MODEL AND METHODS 

 

 

2.1 Yeast surface charge regulation function 

 

 

To be able to calculate the electric potential near the yeast cell wall it is essential to 

know the surface charge of the cell. As shown in Section 1.1, the structures responsible for the 

cell surface charge are the ionizable functional groups present on the cell wall, so, in order to 

calculate the total charge on the cell surface, it is necessary to take into account the 

contribution these groups.  

Considering that the groups can be in their ionized form or not, the total amount of 

basic (𝑁𝑏) and acidic (𝑁𝑎) groups are: 

 

𝑁𝑎 = 𝐶𝐴𝐻 +  𝐶𝐴− (17) 

 

𝑁𝑏 = 𝐶𝐵𝐻+ + 𝐶𝐵 (18) 

 

The surface groups that contribute to the cell surface charge are the ones in their 

ionized state, acidic groups that lost a proton and basic groups that gained one, so it is 

important to know which groups are ionized and which are not.  

A previously mentioned parameter that can describe the ionization rate of the 

functional groups is the dissociation constant (Ka), the relations for the Ka of basic and acidic 

groups can be seen in equations (3) and (4). It should be noted that the dissociation constant is 

a function of the local proton concentration at the surface (𝐶𝐻𝑠
+) which in its turn is influenced 

by the surface charge. Due to the surface charge influence, the local concentration of protons 

is expected to follow the Boltzmann distribution and it can be expressed as a function of the 

electrostatic potential as: 

 

𝐶𝐻𝑠
+ = 𝐶𝐻𝐵𝑢𝑙𝑘

+ exp (−𝑒𝜓𝑠 𝑘𝐵𝑇⁄ ) (19) 

 

where 𝜓𝑠 is the electrostatic potential at the surface, and 𝐶𝐻𝐵𝑢𝑙𝑘
+  is the bulk concentration of 

H+.  
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By combining equations (3), (4), (17), (18) and (19), and rearranging them to obtain a 

function of number of groups (𝑁𝑎 and 𝑁𝑏), dissociation constants (𝐾𝑎_𝑎𝑐 and 𝐾𝑎_𝑏𝑎𝑠), and 

bulk proton concentration 𝐶𝐻𝐵𝑢𝑙𝑘
+ , or pH, the following function is obtained (POORTINGA et 

al., 2002): 

 

𝜎

𝑒
= ∑

𝑁𝑏,𝑙𝐶𝐻𝐵𝑢𝑙𝑘
+ exp (

−𝑒𝜓
𝑘𝐵𝑇

)

𝐶𝐻𝐵𝑢𝑙𝑘
+ exp (

−𝑒𝜓
𝑘𝐵𝑇

) + 𝐾𝑎_𝑏𝑎𝑠,𝑙𝑙

 − ∑
𝑁𝑎,𝑘𝐾𝑎_𝑎𝑐,𝑘

𝐾𝑎_𝑎𝑐,𝑘 + 𝐶𝐻𝐵𝑢𝑙𝑘
+ exp (

−𝑒𝜓
𝑘𝐵𝑇

)𝑘

  (20) 

 

where the subscript 𝑙 refers to the basic sites of type 𝑙, whereas 𝑘 is related to the acidic sites 

of type 𝑘. 

The parameters selected to represent the charge surface function were chosen due to 

the fact that they can be either measured or calculated using other measurable parameters. 

Potentiometric titration experiments can provide values on both the dissociation constant and 

the amount of ionizable sites available (HONG; BROWN, 2006; ZHANG et al., 2010).  

 

 

2.2 Charge regulation on the surface model 

 

 

Considering the yeast cell wall a charged surface that is impenetrable by ions, when 

yeast cells are inserted in a medium containing ions the Poisson-Boltzmann equation can be 

used to describe its electrostatic potential.  

By combining the Poisson-Boltzmann equation and boundary conditions described in 

equations (7), (8) and (9) with the yeast surface charge function presented in equation (20), 

the charge regulation on the surface model is obtained. In this model, the surface charge 

function enters in the place of the surface charge density (𝜎) in the boundary condition in 

equation (8), the one at the surface. In Figure 3 is possible to see a drawing of the electrostatic 

potential described by this model, this illustration will be useful for comparison to the 

expected profile of the volumetric charge density model.  
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Figure 3 ‒ Expected curve of the electrostatic potential for the charge regulation model 

 

Source: The author, 2019. 

 

The denomination “charge regulation” in the model is related to the fact that both the 

surface charge function and the PBE are functions of the electrostatic potential, and therefore 

they need to be solved simultaneously (HONG; BROWN, 2008).  

To solve the model the finite volume method was used. This method is based on 

physical laws and relies on linear approximations of the differential equation (LIMA; 

TAVARES; BISCAIA JR, 2007). More about the finite volume method can be seen in 

appendix A.  

Figure 4 summarizes the algorithm for the resolution of the model. It starts by setting up 

the initial parameters which can be divided into three sections: parameters of the model, of the 

method and of the functional groups. The parameters of the model are temperature (T), 

dielectric constant of the medium (𝜀), initial and final position (𝑥0 and 𝑥𝑓), bulk concentration 

of ions (𝐶𝑖0), valency of ions (𝑧𝑖) and pH. 

The parameters for the numerical method are number of volumes (n) and tolerance 

(tol). Finally parameters of the cell wall functional groups are number of acid functional 

groups (𝑁𝑎,𝑘), number of basic functional groups (𝑁𝑏,𝑙), dissociation constant of acid 

functional groups (𝐾𝑎_𝑎𝑐,𝑘) and dissociation constant of basic functional groups (𝐾𝑎_𝑏𝑎𝑠,𝑙). 

After setting up initial parameters, the next step is to propose an initial guess for the 

vector of electrostatic potential profile (𝜓0) near the cell wall. For this vector it was assumed 

a linear variation from 𝜓1 at the surface (initial position) to 0 mV at the bulk (final position), 

where 𝜓1 is an expected value taken from the literature. With the initial guess for the 
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electrostatic potential an initial surface charge density is calculated, and the program is ready 

to enter the finite volume method. 

Figure 4 ‒ Algorithm for the charge regulation model 

 

Source: The author, 2020. 

 

Entering the finite volume method, it calculates new electrostatic potential profile at 

each iteration until the “while criterium” is met, which refers to norm of the vector for the 

electrostatic potential of the latest iteration minus the one of the previous iteration being 

smaller than the defined tolerance (tol) of the method. Furthermore, with each iteration and 

new potential calculated, the surface charge densities need to be updated, due to their 

dependency. When the while criterium is satisfied the method converges and the final value 

for the electrostatic potential is obtained.  

The algorithm for the charge regulation model was validated using data and results for 

the E. coli and B. brevis bacteria from the work of Hong and Brown (2008). 

Set up initial parameters 

and initial guess for 𝜓0 

Calculate surface charge 

density using the yeast 

surface charge function for 

initial guess 𝜓0 

While 

ห𝜓𝑗+1 − 𝜓𝑗ห > 𝑡𝑜𝑙 

Solve for  𝜓𝑗+1 using the 

finite volume algorithm  

Recalculate surface charge 

density for new 𝜓𝑗+1 

true  false  

Solution for 𝜓 

encountered 
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2.3 Charge-regulated volume charge density model 

 

 

 Considering the yeast cell wall a penetrable layer with a considerable thickness, a 

more appropriate equation to describe its electrostatic potential profile is the Poisson-

Boltzmann equation with fixed charges (POORTINGA et al., 2002). If the cell wall has a 

significant thickness than it is possible to assume that the functional groups are spread out 

over the volume of the cell wall, and, in the case where ions can penetrate this layer and cause 

variation of the charge inside the cell wall, the charges of the functional groups are better 

described as fixed charges in the space of the penetrable cell wall (POORTINGA et al., 2002).  

Figure 5 illustrates the expected electrostatic potential profile considered by the 

volumetric charge density model. Comparing Figure 5 to Figure 3 from the previous model, 

we can see that now the electrostatic potential is allowed to vary inside the cell wall. 

 

Figure 5 – Expected electrostatic potential for the volumetric charge density model 

 

Source: The author, 2019. 

 

In this model, the yeast surface charge function described by equation (20) enters not 

as a surface charge density in a boundary condition, but as volumetric charge density (𝜌𝑓) in 

the Poisson-Boltzmann equation with fixed charges described by equation (10). For surfaces 

with a significant thickness, this equation can be solved with the use of the boundary 

conditions presented in equations (11) and (12). 

Because the fixed charges in this case are only present in one part of the domain, the 

function that describes the fixed charges (𝜌𝑓) is discontinuous over the spatial domain. To 
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solve for the electrostatic potential in the space of the cell wall and the medium together we 

need to ensure the continuity of the electrostatic potential mentioned in equations (13) and 

(14). In the work of Barbosa, Lima and Tavares (2015) that used the charge-regulated 

volumetric charge density model to calculate the electrostatic potential on the B. brevis 

bacterial surface, the use of smoothing function was made to guarantee continuity over the 

transition of the regions.  

In this work, the same smoothing function used by Barbosa, Lima and Tavares (2015)  

was used to calculate the electrostatic potential on the S. cerevisiae yeast cell wall. The 

function used is base on the hyperbolic tangent of the spatial domain and it is presented in 

equation (21). 

 

𝜐(𝑥, 𝜂) =
1 + tanh (

𝑥 − 𝑥∗

𝜂 )

2
 

(21) 

 

The parameter 𝜂 is related to the smoothness of the function, and 𝑥∗ indicated the 

point of transition between the two regions. The way this function makes a smooth transition 

from one region to another is the following:  

 

𝜌𝑓(𝑥, 𝜂) = 𝜐(𝑥, 𝜂)𝜌𝑟𝑒𝑔𝑖𝑜𝑛1 + [1 − 𝜐(𝑥, 𝜂)]𝜌𝑟𝑒𝑔𝑖𝑜𝑛2 (22) 

 

In this function, when 𝑥 is smaller than 𝑥∗ the function of the fixed charges is 

activated (𝜌𝑟𝑒𝑔𝑖𝑜𝑛2), and when 𝑥 is greater than 𝑥∗ another function of the fixed charges is 

activated (𝜌𝑟𝑒𝑔𝑖𝑜𝑛1). In the case of the system studied, the function activated when 𝑥 is 

smaller than 𝑥∗ is the yeast surface charge function, but for 𝑥 greater than 𝑥∗ there is no 

function to be activated since the medium does not possess fixed charges. Consequently, the 

function of  𝜌𝑓 for the system here studied is reduced to: 

 

𝜌𝑓(𝑥, 𝜂) = (1 − 𝜐(𝑥, 𝜂))𝜌𝑦𝑒𝑎𝑠𝑡 𝑐𝑒𝑙𝑙 𝑤𝑎𝑙𝑙 (23) 

 

The algorithm for solving this model is not so different from the one for the charge 

regulation model as demonstrated by Figure 6. The difference between them is that in the 

solution for the volumetric charge density model it is not necessary to recalculate the surface 

charge density in every iteration, since the surface volumetric charge density is solved 
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together with the potential in the PBE for this model. The initial parameters and initial guess 

for the electrostatic potential (𝜓0) used for this model were the same as the ones described for 

the charge regulation model with the only difference in the unit of the number of groups 

parameters (𝑁𝑎,𝑘 and 𝑁𝑏,𝑙) that are now given in number of groups per unit of volume instead 

of area.  

The method used in solving the model was once again the finite volume method, and 

criterium and tolerance for convergence of the method were also the same as in the surface 

charge regulation model.  

 

Figure 6 ‒ Algorithm for the volumetric charge density model 

 

 

Source: The author, 2020. 

 

The algorithm for the charge regulated volumetric charge density model was validated 

using data and results for the B. brevis bacteria from the work of Barbosa, Lima and Tavares 

(2015). 
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ห𝜓𝑗+1 − 𝜓𝑗ห > 𝑡𝑜𝑙 
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Solution for 𝜓 
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2.4 Parameters of the model 

 

 

In the resolution of the model, some parameters were kept fixed, while others could 

vary. In this section we will comment and explain the values of some parameters.  

First, it’s worth mentioning that when solving the finite volume method it is a good 

practice to write all parameters and variables in a dimensionless form, so before starting the 

method we made sure to make all variables dimensionless. 

The parameters that were kept fixed during the calculations can be seen in Table 1. 

Commenting on the value of a few parameters, since the goal of this study was to compare 

results of the model with experimental ones, the conditions in the calculations needed to be 

the same as the conditions used in obtaining the experimental results. The experimental zeta 

potential data of Narong and James (2006) were obtained in a medium composed of water and 

different concentrations of salt (NaCl) at room temperature at 25 °C. Hence, it was necessary 

to set up the parameters 𝑧𝑖, 𝑇 and 𝜀 according with these conditions.  

It is also worth pointing out that the values of 𝑥0 and 𝑥𝑓 in Table 1 are in terms of the 

Debye length and they are dimensionless. The value chosen for 𝑥𝑓 is one where we expect 

properties to reach bulk values. The value for the parameter 𝜂 used was taken from the work 

of Barbosa, Lima and Tavares (2015). 

For the parameters of the numerical method the tolerance was fixed in 10−7 and the 

number of volumes (n) used for each model was one that guaranteed grid convergence for the 

bulk ionic concentration of 1 mM (case with longest x vector). For grid convergence, we 

looked at the value of the electrostatic potential at the stern layer, it was considered converged 

when the difference of the values with change in n was smaller than 0.1. 

 

Table 1 – Fixed parameters of charge regulation model 

Model’s parameters: 

𝑧𝑖 [1, −1] 

𝜀 78.5 

𝑇 298.15 (K) 

𝑥0 0  

𝑥𝑓 5  

𝜂 0.1 
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Numerical method parameters: 

𝑛 (𝑐ℎ𝑎𝑟𝑔𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 300 

𝑛 (𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) 600 

𝑡𝑜𝑙 1 × 10−7 

Source: The author, 2020. 

 

Some parameters that were allowed to vary and are worth mentioning due to their 

importance and influence in the results of both models are the functional groups parameters. 

The number and the dissociation constant of each functional group are necessary to 

characterize the cell surface and these parameters can be obtained through potentiometric 

titration experiments. Since experiments were not performed during this work, a literature 

review was carried out to find experimental potentiometric titration data for the S. cerevisiae 

yeast cell. 

Several potentiometric titration experiments for the S. cerevisiae yeast cell have been 

reported, mainly for works involving the study of its electrophoretic behavior and heavy metal 

biosorption. A few studies identified 3 groups on the cell wall (PARVATHI; 

NARESHKUMAR; NAGENDRAN, 2007; DI CAPRIO et al., 2014), but more reports 

showed 4 groups present on the yeast cell wall (NAEEM; WOERTZ; FEIN, 2006; ZHANG et 

al., 2010; LIU et al., 2017; ROGOWSKA et al., 2018). Analyzing experiments conditions and 

results of all studies, we concluded that the work of Zhang et al. (2010) would be the best to 

characterize the yeast cell surface. Their experimental results for the S. cerevisiae yeast cell 

identified 4 groups on the cell surface (carboxyl, phosphoryl, hydroxyl and amine) and 

determined the dissociation constant (pKa) and site density for each group. These results can 

be seen in Table 2. 

In order to be applied into the models these data have to be treated, e. g., for the case 

of the pKa, only one value can be incorporated in our calculations, so a specific value  for 

each functional group in the ranges reported in Table 2 has to be chosen or estimated.  

 

Table 2 – Potentiometric titration data of S. cerevisiae 

Groups: pKa 

Site density 

(mmol/g) 

Carboxyl 3.52 – 5.34 0.45 ± 0.07 

Phosphoryl 6.24 – 7.30 0.35 ± 0.04 
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Amine 8.86 – 10.92 0.25 ± 0.02 

Hydroxyl 9.47 – 10.13 0.85 ± 0.01 

Source: ZHANG et. al, 2010. 

 

In relation to the site density, this value was used to calculate the model’s required 

parameter that is the number of groups (per area or volume). For this calculation, data of cell 

weight and surface area/volume for the S. cerevisiae yeast cell are also necessary. In the work 

of Klis et al. (2014) it is possible to find information on the weight and dimension of the S. 

cerevisiae yeast cell. Data for the S. cerevisiae haploid cell indicates that its biomass dry 

weight is of 16.5 pg, its surface area is 60 µm² and the thickness of the cell wall appears to be 

of 115 nm at late exponential phase cells.   
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3 RESULTS AND DISCUSSION 

 

 

3.1 Charge regulation on the surface 

 

 

The first results for charge regulation applied to the surface model described in the 

previous chapter can be seen in Figure 7. They refer to pH 7.0 and ionic strengths of 10 mM 

and 1 mM (NaCl). The functional groups parameters used in the calculations are displayed in 

Table 3, they were obtained based on the potentiometric titration data available Table 2.  

 

 

Figure 7 ‒ Electrostatic potential of the S. cerevisiae yeast cell wall calculated by the charge 

regulation on the surface model at pH=7.0.  

 

Legend: The dashed black line represents the Stern layer. 

Source: The author, 2020. 
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Table 3 – Functional groups parameters 

 Carboxyl Phosphoryl Hydroxyl Amine 

pKa 4.43 6.77 9.80 9.89 

𝑵 (#/nm²) 74.50 57.94 140.7 41.39 

Source: The author, 2019. 

 

In Table 3, for the dissociation constant (pKa) parameters the average values of the 

respective reported range for each group were used, the number of groups (N) were calculated 

using the site density values of Table 2 together with data of cell weight (16.5 pg) and surface 

area (60 µm²) of Saccharomyces cerevisiae haploid cell, taken from Klis, de Koster and Brul 

(2014). 

Observing Figure 7 we can see how the potential varies for different ionic strengths. 

Both curves show relatively close surface potential values, it appears that for this system and 

ionic strengths tested, the ionic strength does not have much influence on the value of 

potential at the surface. From there on, the curve decline for 10mM is faster than for 1mM and 

they show different electrostatic potential results for all distances from the surface. The 

calculated surface potential is around of -146 mV. Analyzing the model’s values at the Stern 

layer (layer of adsorbed ions), considered here to be of 0.3 nm of distance (one hydrated ion 

diameter) and indicated in Figure 7 by the black dashed line, we find that the potential varies 

from -115 mV for 10 mM to -134 mV for 1 mM, decreasing in magnitude with increasing 

ionic strength. 

An important measure in colloidal systems is the zeta potential, which is the value of 

the electrostatic potential at the so-called slipping plane. According to the definition of 

slipping plane, the ions and molecules located closer the surface than this plane are bind to 

surface and move with the same velocity as the particle. The exact location of this plane is 

unknown, but it is usually a few Å away from the surface for smooth particles (OHKI; 

OHSHIMA, 1995). A commonly used approximation for the zeta potential in mathematical 

models is the potential at the Stern plane (HONG; BROWN, 2008; BARBOSA; LIMA; 

TAVARES, 2015). In this work the Stern potential will be used in comparisons with 

experimental zeta potential results.  

Comparing the model’s results with experimental zeta potential of the S. cerevisiae 

yeast cell reported by Narong and James (2006) we can observe that the results are quite 

different: while the experimental zeta potential values at pH 7.0 are around -15.4mV and        

-26.3mV for ionic strength of 10mM and 1mM respectively, the model predicts much more 
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negative potential values, about 100mV more negative. A possible explanation for the 

disparity of these results could be related to the structure of the yeast cell surface. The yeast 

cell surface is not a smooth surface, instead its complex surface composed by a layer of 

macromolecules containing ionizable groups, and because this layer can have a significant 

thickness, the charges on this surface are most likely distributed over the extent of this layer. 

Taking this into consideration, Hong and Brown (2008) supposed that only the groups on the 

most outer surface of this layer would affect the cell surface charge, and to compensate for 

this effect, they proposed the use of an effectiveness coefficient (𝜆𝑒𝑓𝑓) to correct the total 

number of groups present on the surface.  

 

𝑁𝑖
𝑒𝑓𝑓

= 𝑁𝑖𝜆𝑒𝑓𝑓 

 
(24) 

By inserting this coefficient into the model and calculating the surface charge for the 

effective number of groups (𝑁𝑖
𝑒𝑓𝑓

) better results are expected to be achieved. To find a good 

value for this parameter (𝜆𝑒𝑓𝑓), an estimation was performed using the least-squares method 

that compared our model potentials at the Stern layer with the experimental zeta potential 

results of Narong and James (2006) over a range of pH (3 ‒ 10). One effectiveness coefficient 

was estimated for each ionic strength (10 mM and 1 mM) as it has been shown to vary with 

ionic strength (HONG; BROWN, 2008). The functional groups parameters used were the 

ones in Table 3 and the optimization algorithm used to solve the estimation problem was the 

Nelder-Mead Simplex algorithm implemented in the Python SciPy library. 

Results of the estimation for initial guess of 0.5 returned effectiveness coefficients 

values of 3.05×10-4 for 10 mM and 1.57×10-4 for 1 mM. The order of magnitude is consistent 

with the ones encountered by Hong and Brown (2008) for the E. coli bacteria.  

Results for the electrostatic potential calculated using the optimized effective number 

of groups can be seen in Figure 8, where it’s visible that the calculated potential is a lot more 

compatible with experimental results. Electrostatic potential values at the Stern layer are -

11.82mV and -19.08mV for 10 mM and 1 mM respectively, a deviation of 3 and 7 mV, 

respectively, from the experimental values. Because we are correcting the number of groups 

with a different coefficient for each ionic strength, results at the surface (𝑥 = 0 nm) in Figure 

8 are not as close as in Figure 7. 

 



37 

 

 

Figure 8 − Electrostatic potential of S. cerevisiae yeast cell calculated by the charge 

regulation on the surface model using the effective number of groups at pH=7.0 

 

Legend: The dashed black line represents the Stern layer. 

Source: The author, 2020. 

 

In Figure 9 we can see how zeta potential varies as a function of pH for ionic strength 

of 10 mM. Results of the charge regulation on the surface model using the effectiveness 

coefficient estimated previously (𝜆𝑒𝑓𝑓 = 3.05×10-4) are represented by the curve; black dots 

represent the experimental results of Narong and James (2006).  

Comparing the curve to experimental data, one can see that for basic pH values (8 - 

10) the model can quantitatively reproduce experimental results, but for other points the 

model predicts lower values (in magnitude) for the potential than those experimentally 

measured, specially at pH 5.0, where the model’s prediction is more than 10 mV different. For 

pH 3.0 the model matches the experimental result, but from there on the model cannot catch 

the quick drop that occurs in experimental values around pH 4.0 and 5.0. 
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Figure 9 – Modeled zeta potential of S. cerevisiae as a function of pH for 10 mM with 

effectiveness coefficient equal to 3.05×10-4 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 

 

Figure 10 shows the model’s zeta potential as a function of pH for ionic strength of 1 

mM. Similar to Figure 9, the model was compared with experimental results of Narong and 

James (2006). The curve for 1 mM exhibits a similar shape to the one reported for 10mM, but 

unlike that curve, this one cannot describe the experimental results of basic pH values. For 

these concentrations, experimental zeta potential results exhibit an unexpected behavior: the 

potential seems to stabilize around a value (-26/-28mV) when it hits pH 8.0.  

One hypothesis that could explain this behavior seen on experimental data is that there 

may be happening a saturation of ionizable sites around pH 8.0 for this ionic strength, 

implicating that probably all the surface available sites are already deprotonated when 

reaching pH 8.0, resulting on the potential hitting the most negative value it possibly can.  
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Figure 10 – Modeled zeta potential of S. cerevisiae as a function of pH for 1 mM with 

effectiveness coefficient equal to 1.57×10-4  

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 

 

Looking at the curves of the model for both ionic strengths we can see that results do 

not provide a good fitting for experimental points. Considering this, the next step was to 

analyze the influence of other important parameters in the model: the dissociation constants 

(pKa). In Table 2 a range of values for the pKa is provided and maybe other values in these 

ranges besides the ones chosen previously can better describe the system. 

With that in mind it was decided to include the pKa parameters in the parameter 

estimation procedure; therefore, a new parameter estimation was performed, this time for the 

effectiveness coefficient and the pKa parameters. Estimations were carried out in similar 

conditions to the previous one for only the effectiveness coefficient. The pKa parameters 

ranges of Table 2 were used as boundaries in the estimation. Because the Nelder-Mead 

algorithm does not accept boundaries, another algorithm had to be selected to solve the 

minimization problem, like the Sequential Least Squares Programming (SLSQP) algorithm 
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implemented in the Python SciPy. The initial guesses for the parameters were 0.5 for the 

effectiveness coefficient, and the average range values for the pKa of each group that are 

displayed in Table 3. Results for the new parameter estimation are indicated in Table 4.  

In Figure 11 one can see the results of the model with estimated parameters of Table 4 

for 10 mM and, and in Figure 12, the results for 1 mM are displayed. 

 

Table 4 – Estimated functional groups parameters (effectiveness coefficient and pKa) 

 𝐩𝐊𝐚,𝐜𝐚𝐫𝐛𝐨𝐱𝐲𝐥 𝐩𝐊𝐚,𝐩𝐡𝐨𝐬𝐩𝐡𝐨𝐫𝐲𝐥 𝐩𝐊𝐚,𝐡𝐢𝐝𝐫𝐨𝐱𝐲𝐥 𝐩𝐊𝐚,𝐚𝐦𝐢𝐧𝐞 𝝀𝒆𝒇𝒇 

10 mM 3.52 6.24 10.13 10.92 3.34×10-4 

1 mM 3.52 6.24 10.13 10.92 1.54×10-4 

Source: The author, 2020. 

 

Figure 11 – Modeled zeta potential for 10 mM with estimation of effectiveness coefficient 

and pKa 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 
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It is possible to notice that for both curves the fitting has improved considerably. 

Specially from pH 3.0 - 7.0, curves for both ionic strengths got significantly closer to 

experimental points. When it comes to the decline that happens between pH 4.0 and 5.0, both 

curves still cannot capture that behavior and the potential at pH 5.0 is still the one with the 

largest error, 4.46 mV for 10 mM and 7.56 mV for 1 mM, while the mean errors to 

experimental points are of 1.9 mV for 10 mM and 3.7 for 1 mM. 

For 10 mM, when the curve approached the points on the first half and middle of the 

curve, it ended up losing a bit of the fitting for higher pH values. The curve for 1 mM still 

does not describe the stagnation of the electrostatic potential that happens around pH 8.0. 

These observations reflect on the objective functions that for 10 mM the value found was of 

41, whereas for 1 mM the value was of 164. 

 

Figure 12 – Modeled zeta potential for 1 mM with estimation of the effectiveness coefficient 

and pKa 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 
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Results for the effectiveness coefficient were not exactly the same as the ones 

encountered in the first optimization (only for the coefficient), but the values were relatively 

close.  

Analyzing the results of the estimation in Table 4 it is possible to notice a common 

aspect in all estimated parameter: their values all lie in one of the boundaries specified when 

solving the estimation. This indicates that optimization with wider bounds can yield better 

results. With this in mind it was decided to carry out further research into the pKa range of the 

functional groups present on the S. cerevisiae cell wall. 

Research shows that the wider pKa range encountered for the carboxyl group on 

microbial surfaces is between 2.0-6.0, for the hydroxyl group it is 8.0-12.0, for the amine 

group 9.0-11.0, while the phosphoryl group actually appears to have more than one 

dissociation constant, one at 0.2-2.9 and another at 5.6-7.2 (OHKI; OHSHIMA, 1995; 

HONG; BROWN, 2006; BARKLEIT; MOLL; BERNHARD, 2008). Table 5 shows the wider 

ranges encountered for pKa of groups.  

In the publication of Ohki and Ohshima (1995) it is possible to obtain further detailing 

on the pKa of the biomolecules that these functional groups can be inserted in, explaining the 

extent of the ranges.  

 

Table 5 – Wider pKa range found in literature of the functional groups 

Groups: pKa 

Carboxyl 2.0 – 6.0 

Phosphoryl 0.2 – 2.9; 5.6 – 7.2 

Amine 9.0 – 11.0 

Hydroxyl 8.0 – 12.0 

Source: BARKLEIT; MOLL; BERNHARD, 2008. HONG; BROWN, 2006. OHKI; OHSHIMA, 1995. 

 

Comparing this research to the values in Table 2, we can note that the amine group 

range seems compatible with the literature, while the ranges for the carboxyl and hydroxyl 

groups in Table 2 are a little narrower than the ones encountered on the research, and when it 

comes to the phosphoryl group, results in Table 2 are only accounting for the second pKa of 

this group (5.6 - 7.2). If the phosphoryl groups present on the cell wall exhibits dissociation at 

its first pKa (0.2 - 2.9), then maybe this contribution can be appearing on the first inflection 

point of the curve, together with the carboxyl group, explaining why the estimation returns 

lower values for the pKa of the first group.  
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Considering all the reports on the ranges of the functional groups, it was decided to 

carry out another parameter estimation for the broader ranges encountered in the literature. 

For the carboxyl group it was used a range of 2.0 - 6.0, for the phosphoryl group 5.6 - 7.2 and 

for the hydroxyl group a range of 8.0 - 12.0. For the amine group the range in Table 2 is in 

more agreement with the wider ranges found in literature, for this reason it was not changed. 

The initial guess and minimization method used were the same as for the previous estimation.  

Table 6 displays the results for the new estimation. For ionic strength of 10 mM, 

optimization with broader ranges achieved little difference regarding the first optimization. 

The pKa of carboxyl was 3.51, very close to last estimation that yielded a value of 3.52; 

hydroxyl’s pKa went from 10.13 to 10.39, a slightly larger variation but also not very 

different; the pKa of the phosphoryl group again landed on the lower boundary, that is now 

even lower, at a value of 5.6; and for the amino group, pKa matched the new hydroxyl at 

10.39 and left the boundary. The objective function had a considerable gain compared with 

the previous one, as it went from 41.97 to 32.09. 

For the ionic strength of 1 mM, optimization with broader ranges appears to show 

more improvement. Commenting on the new pKa results, the value for the carboxyl group 

again did not vary much from the previous value (3.52); for the phosphoryl group, once more 

the estimation threw the value for this group at the lower boundary of 5.6, decreasing the 

distance to the experimental points for pH 4.0 and 6.0 but still missing pH 5.0. Physically 

speaking, a high value like 12.0 is not expected for the pKa of the hydroxyl group on the yeast 

cell wall. The pKa of a group is not expected to change much with ionic strength and we can 

see that a high value as 12.0 was not obtained for ionic strength of 10 mM. 

 

Table 6 – Results for optimization with broader pKa ranges 

 𝐩𝐊𝐚,𝐜𝐚𝐫𝐛𝐨𝐱𝐲𝐥 𝐩𝐊𝐚,𝐩𝐡𝐨𝐬𝐩𝐡𝐨𝐫𝐲𝐥 𝐩𝐊𝐚,𝐡𝐢𝐝𝐫𝐨𝐱𝐲𝐥 𝐩𝐊𝐚,𝐚𝐦𝐢𝐧𝐞 

10 mM 3.51 5.6 10.39 10.39 

1 mM 3.46 5.6 12.0 10.92 

Source: The author, 2020. 

 

With the new parameters, new curves for the zeta potential as a function of pH were 

obtained. In Figure 13 it is possible to see that for the ionic strength of 10 mM the curve for 

parameters reported in Table 6 the potential comes closer to experimental points for pH 6.0 

and 8.0, but on the other hand get farther from the point of pH 7.0. For pH 5.0, although 

coming a little closer, the model still cannot capture the drop that happens in the zeta potential 
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experimental values. Overall, some improvement was achieved with the new estimation 

results, but the fitting is still not perfect.  

 

Figure 13 – Zeta potential of S. cerevisiae as a function of pH for 10 mM with estimation of 

effectiveness coefficient and pKa using a wider range 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 

 

Figure 14 presents a curve for the zeta potential as a function of pH calculated using 

the parameters on Table 6 for the ionic strength of 1mM. In it we can observe that from pH 

5.0 to 8.0 the curve approached the experimental points, and from pH 8.0 to 10.0 the curve 

was able to reproduce the stagnation seen on experimental points. It appears that the reason 

why this curve is able to describe the stagnation of the experimental points is because of the 

high value of the pKa of the hydroxyl group. 

As said before, physically speaking a value high like 12.0 is not expected for the 

hydroxyl group, but mathematically speaking, what the method really does when it returns 



45 

 

 

this high value is that it disregards the dissociation of this group for the pKa range of our 

calculations (pH 3.0 - 10.0). In fact, if we use the pKa values of the first estimation and 

progressively diminish the amount of the hydroxyl group in our calculations, it is possible to 

see the curve approaching the experimental points and stabilizing near pH 8.0 (around -28 

mV), just like for the high pKa value obtained in the new estimation. A possible explanation 

for the experimental results of pH 8.0 - 10.0 is that the hydroxyl group may not be easily 

accessible at this ionic strength due to the conformation of the cell wall and hence cannot 

contribute to the cell surface charge (ABU-LAIL; CAMESANO, 2003). Other hypothesis 

could be that as the surface becomes more negative, the resulting surface potential increases 

the pKa of the remaining acid groups (AMORY; ROUXHET, 1988). 

 

Figure 14 – Zeta potential of S. cerevisiae as a function of pH for 1 mM with estimation of 

effectiveness coefficient and pKa using a wider range 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 
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3.2 Constant volume charge density model 

 

 

In an attempt to better describe the surface charge on the cell wall, another model was 

tested to calculate the zeta potential of the Saccharomyces cerevisiae cell, the charge-

regulated volume charge density model.  

As mentioned before, the yeast cell surface is not smooth, in fact it is composed of 

many macromolecules that contain ionizable groups. As this layer can have significant 

thickness, these groups may be distributed anywhere inside the volume of the cell wall. 

Considering that ions can penetrate this volume of the cell wall, the charge-regulated volume 

charge density model proposes that the ionizable groups can be accounted for as being fixed 

charges distributed over the cell wall. With the fixed and mobile charges now being solved 

together in space, some assumptions were made in the resolution process. They were: the 

fixed charges are uniformly distributed over the cell wall; and the cell wall has an infinitely 

ion-penetrable layer (this assumption can be used when the thickness of the cell wall is much 

higher than the thickness of the double layer, usually the case for microbial cells).  

Using this model, Barbosa, Lima and Tavares (2015) could successfully compute the 

zeta potential of the B. brevis bacteria without having to use an effectiveness coefficient to 

correct the number of functional groups. Knowing this, in this work we calculated the 

electrostatic potential for the S. cerevisiae using the charge-regulated volume density of 

charge model to check if we could achieve similar results.  

Before computing the zeta potential, first the number of groups per volume was 

calculated. For this, the knowledge of the thickness of the cell wall was necessary. According 

to the study of Klis, de Koster and Brul (2014) the thickness of S. cerevisiae cell wall is 115 

nm; hence dividing the numbers obtained in Table 3 (number of groups per surface area) by 

the thickness we can find the number of groups per volume. The corresponding results can be 

seen in Table 7.  

 

Table 7 – Number of groups parameters for the charge-regulated volume charge density 

model 

 Carboxyl Phosphoryl Hydroxyl Amine 

𝑵 (#/nm3) 0.6478 0.5038 1.223 0.3599 

Source: The author, 2019. 

 



47 

 

 

With the numbers in Table 7 the model was solved, and new electrostatic potential 

profiles were obtained for the two ionic strengths (1 mM and 10 mM). The first pKa values 

used were the ones displayed in Table 2 (mean range values).  

Results of the electrostatic potential as a function of distance for the new model can be 

seen in Figure 15 and Figure 16 for 10 mM and 1 mM (NaCl), respectively, for different pH 

values. The dashed black line in the graphs indicates the limit between the cell wall and the 

medium. We can notice for both figures that the potential varies a few nanometers into the 

cell wall (approximately 2 nm) until stabilizing and reaching the Donnan potential, that is the 

potential at the location where the fixed charges are fully compensated by the local diffuse 

charge density (POORTINGA et al., 2002).  

 

Figure 15 − Electrostatic potential profile computed by the charge-regulated volume charge 

density model for ionic strength of 10 mM (NaCl). 

 

Legend: The dashed black line represents the limit between the cell wall and the medium. 

Source: The author, 2020. 
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Figure 16 – Electrostatic potential profile computed by the charge-regulated volume charge 

density model for ionic strength of 1 mM (NaCl). 

 

Legend: The dashed black line represents the limit between the cell wall and the medium. 

Source: The author, 2020. 

 

Analyzing the values obtained in Figure 15 and Figure 16, it is possible to notice that 

the surface potential predicted by this model is lower (in magnitude) than for the charge 

regulation on the surface model: results for 10 mM and 1 mM at pH 7.0 are -73.8 mV and -

116 mV, respectively, while the ones obtained in the previous model for the same system’s 

conditions are around -146mV for both ionic strengths.  

Another interesting observation we can make is that the potential calculated at the 

surface for this model is different for the different ionic strengths, something the other model 

could not predict. Comparing values at the Stern layer, the potential for 10 mM is -65.2mV 

and for 1 mM the value is -111mV, indicating that although calculated electrostatic potential 

values improved with this more sophisticated model, results in general are still significantly 

higher than experimental zeta potential values for the S. cerevisiae cell, not only for pH 7.0, 

but for all the range tested as well.  
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Unfortunately, this work could not achieve for S. cerevisiae the same success as 

Barbosa, Lima and Tavares (2015) for the B. brevis and in order to calculate a surface 

potential compatible with experimental results the use of the effectiveness coefficient was still 

necessary.  

Comparing the cell walls of S. cerevisiae and B. brevis we notice that the S. cerevisiae 

yeast cell wall (115nm) is thicker than the one of the B. brevis bacteria (75nm). And maybe 

because of its larger thickness some groups deep inside the cell may not have a strong effect 

on the overall surface charge.  

It is also worth pointing out one difference between this work and the work of Barbosa 

et al. (2015), the potentiometric titration experimental data (ZHANG et al., 2010) and zeta 

potential data (NARONG; JAMES, 2006) used here were taken from different sources, , 

while in the study of Barbosa et al. (2015) these data were taken from the same  research 

group (HONG; BROWN, 2006; 2008). Since different isolates with different surfaces can 

exist for the same strain or species (POORTINGA et al, 2002), we do not know what 

influence taking experimental results from different sources can have in our results. 

Looking at the results for the first model, estimating all parameters together seemed 

more efficient, so we decided to estimate all parameters for this model as well, the 

effectiveness coefficient and the pKa of the groups were estimated using the same conditions 

and same optimization method as before, the Sequential Least Squares Programming 

(SLSQP) algorithm implemented in the Python Scipy library. The ranges used as constrains 

for the pKa values were the ranges found by Zhang et al. (2010) reported on Table 1.  

Table 8 shows the results of the estimation for this model. Results for the pKa 

parameters in general were not very different from the ones encountered in the estimation of 

the previous model, but the value for the effectiveness coefficient increased.  

 

Table 8 – Estimation results for the volumetric charge density model 

 𝐩𝐊𝐚,𝐜𝐚𝐫𝐛𝐨𝐱𝐲𝐥 𝐩𝐊𝐚,𝐩𝐡𝐨𝐬𝐩𝐡𝐨𝐫𝐲𝐥 𝐩𝐊𝐚,𝐡𝐢𝐝𝐫𝐨𝐱𝐲𝐥 𝐩𝐊𝐚,𝐚𝐦𝐢𝐧𝐞 𝝀𝒆𝒇𝒇 

10 mM 3.52 6.24 10.13 10.13 0.0301 

1 mM 3.52 6.24 10.13 10.92 0.0053 

Source: The author, 2020. 

 

For 10 mM, the pKa of the carboxyl and phosphoryl groups again landed at the lower 

boundary, but the pKa of the hydroxyl and amine groups left the boundaries and their values 

matched at 10.13. The effectiveness coefficient value increased by a factor of 100, which 
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seems to be related to the fact we divided the number of groups by the cell wall thickness that 

is about 100 nm. Dividing the new coefficient value by the thickness of the cell wall (115nm), 

we find that the old and new values are quite comparable, around 3×10-4.  

For 1 mM, all pKa values remained the same, values for the carboxyl and phosphoryl 

groups landed at the lower boundaries and for the hydroxyl and amine groups landed at the 

upper boundaries. Having in view that the shape of experimental points for this ionic strength 

appears hard to describe using both models, this result does not come as a surprise since the 

optimization tries to push these values to the boundaries in order to obtain the best fit 

possible. The effectiveness coefficient value increased for this model, but not by a factor of 

100 as observed for the ionic strength of 10 mM, and dividing the new value by the thickness 

of the cell wall a value three times smaller than the one encountered in the optimization for 

the first model is found.   

Concerning the objective functions, the estimation for both ionic strengths showed 

gain in the minimization. For 10 mM, the value of the objective function went from 41 in the 

first model to 30 in this model, for 1 mM the gain was even larger, going from 164 in the 

previous model’s estimation to 73 in this one.  

With these values new calculations were performed. For each ionic strength, new 

graphs of the electrostatic potential as a function of distance were obtained and curves of the 

zeta potential as a function of pH were calculated using the charge-regulated volume density 

charge model with the effectiveness coefficient (Model 2) and the results were compared with 

the ones obtained using the charge regulation on the surface model (Model 1). 

Figure 17 shows the electrostatic potential profile for the model with the estimated 

effectiveness coefficient for 10 mM. It is possible to observe that results at the surface and 

Stern layer are more consistent with experimental zeta potential values. One difference we 

can point in this curve compared to the previous one presented in Figure 15 is the distance 

from which the potential varies inside the cell wall, that now is of more than 5 nm, larger than 

the one predicted before (2 nm). 
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Figure 17 – Electrostatic potential profile computed by the charge-regulated volume charge 

density model with the effectiveness coefficient for ionic strength of 10 mM 

(NaCl). 

 

Legend: The dashed black line represents the limit between the cell wall and the medium. 

Source: The author, 2020. 

 

In Figure 18 we can see the curve for the zeta potential as a function of pH and how 

the results of the second model compare with the first one. Looking at the graph, neither 

curves can exactly capture the full shape of experimental points, but the second model seems 

to approach more the points on the first half of the curve, especially at pH 5.0 and 6.0. The 

first model comes closer to experimental points on the second half of the curve, but not by 

much. Overall, the second model provided a slight better fit for the experimental points than 

the first model. This was expected since the optimization for the second model had gain in the 

minimization of the objective function when compared to the one of the first model.  
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Figure 18 – Electrostatic potential of S. cerevisiae as a function of pH for ionic strength of 10 

mM for the two models studied in this work. 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 

 

The results for 1 mM are displayed in Figure 19 and Figure 20. Figure 19 shows the 

electrostatic potential as a function of distance and, just like for 10 mM, it is possible to notice 

that there was an increase in the distance from which the potential varies inside the cell wall. 

In Figure 16 this distance was around 2 nm and now in Figure 19 for the model with an 

effectiveness coefficient the distance is near 20 nm, an even higher increase than in the case 

for ionic strength of 10 mM.  

As for the results of zeta potential as a function of pH in Figure 20, the curve for the 

volumetric charge density model (Model 2) clearly shows a higher compatibility with 

experimental results than the first model. The curve for the second model comes closer to 

experimental values for practically all the pH range and for high pH values this curve shows a 

smoother decline in potential values that is more in agreement with the experimental values 

for that range.   
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Figure 19 – Electrostatic potential profile computed by the charge-regulated volume charge 

density model with the effectiveness coefficient for ionic strength of 10 mM 

(NaCl). 

 

Legend: The dashed black line represents the limit between the cell wall and the medium. 

Source: The author, 2020. 
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Figure 20 – Electrostatic potential of S. cerevisiae as a function of pH for ionic strength of 

1mM for the two models studied in this work. 

 

Legend: Modeled zeta potentials of S. cerevisiae are portrayed by the curve, whereas dots represent the 

experimental results of Narong and James (2006). 

Source: The author, 2020. 

 

 

3.3 Parametric analysis results 

 

 

Given that five parameters were estimated for the model, further analyses were 

performed to ensure that the best values were achieved on the estimation, such as. (i) an 

analysis of the sensitivity matrix to check for any parameter dependency and for more 

sensitive parameters; and (ii) a Monte Carlo test to analyze the relation of the pKa parameters 

and the effectiveness coefficient.  

These parametric analyses were conducted only for the first model, the charge 

regulation on the surface.  
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3.3.1 Monte Carlo simulation 

 

 

In this analysis a Monte Carlo simulation was performed for the pKa parameters 

together with parameter estimation for the effectiveness coefficient. This strategy was used to 

obtain information on the relation of the pKa parameters with the effectiveness coefficient. 

Random values used in the calculations were taken from the ranges reported by Zhang et al. 

(2010) presented on Table 2 and the effectiveness coefficient was estimated using the least-

squares method and solve using the sequential linear squares programming algorithm 

implemented on Python.  

Because some sets of pKa parameters and estimated effectiveness coefficient returned 

large values of the objective function, only parameters that provide a value of 72 or less for 

this function were considered, meaning that the model had a mean error of 3 mV for each 

point. In Figure 21 it is possible to see the random pKa parameters values that that achieved 

the best results and in Figure 22 we can see that effectiveness coefficient values that were 

found in the estimations for the random pKa parameters. In the figures, the x axis indicates the 

number of points and the y axis the value of the property analyzed.  

Analyzing the pKa parameters in Figure 21 we can observe where in the ranges 

reported in Table 2 lie the parameters that minimize the objective function. For the pKa of the 

carboxyl and phosphoryl groups most values are located close to the lower boundaries; 

however, this happens more intensively for the carboxyl group. For the pKa of the amine and 

hydroxyl groups, most values are located in the upper half of the range, being in general more 

dispersed than the values for the carboxyl and phosphoryl groups. For the effective coefficient 

in Figure 22 values vary mainly between 3.0×10-4 and 3.5×10-4. 
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Figure 21 – pKa parameters of Monte Carlo simulation 

 

Source: The author, 2020. 
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Figure 22 – Estimated effectiveness coefficient for the pKa parameters 

 

Source: The author, 2020. 

 

 

3.3.2 Sensitivity matrix analysis 

 

 

The sensitivity matrix, i. e., the matrix of the derivatives of the model in relation to the 

parameters, can provide information about how each parameter influences the model’s results. 

By analyzing this matrix, it is possible to discover sensitive parameters and to determine if 

there is any dependency among the parameters.  

In this analysis, the sensitivity matrix was calculated using the central finite difference 

numerical derivative for the zeta potential, and because there were different parameters with 

different orders of magnitude all values were normalized in order to perform a better analysis 

of the parameters.  

The derivatives shown on Table 9 were calculated for ionic strength of 10 mM and pH 

values from 3.0 to 10.0 for the charge regulation model.  
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Table 9 – Normalized sensitivity matrix of the charge regulation on the surface model 

𝒚(𝒑𝑯𝒊) 𝐩𝐊𝐜𝐚𝐫𝐛𝐨𝐱𝐲𝐥 𝐩𝐊𝐩𝐡𝐨𝐬𝐩𝐡𝐨𝐫𝐲𝐥 𝐩𝐊𝐡𝐢𝐝𝐫𝐨𝐱𝐲𝐥 𝐩𝐊𝐚𝐦𝐢𝐧𝐞 𝝀𝒆𝒇𝒇 

𝒚(𝟑. 𝟎) 3.474095 0.011762 0.000014 0.000004 0.901983 

𝒚(𝟒. 𝟎) -17.08109 -0.303270 -0.000360 -0.000106 0.870493 

𝒚(𝟓. 𝟎) -1.150951   -0.638129   -0.000791   -0.000233    0.947955 

𝒚(𝟔. 𝟎) -0.096952   -2.719776   -0.004767   -0.001402    0.916519 

𝒚(𝟕. 𝟎) -0.007187   -2.500931   -0.022125   -0.006508   0.869798 

𝒚(𝟖. 𝟎) -0.000701   -0.530697   -0.157993    -0.046477    0.919161 

𝒚(𝟗. 𝟎) -0.000066  -0.055876   -1.170382   -0.344294     0.886057 

𝒚(𝟏𝟎. 𝟎) -0.000005   -0.004422   -3.169017   -0.932236    0.716114 

Source: The author, 2020. 

 

As mentioned previously in section 1.6.2, by using the QR decomposition on the 

sensitivity matrix is possible to check the model for any dependency between parameters and 

also analyze which are the most sensitive parameters and least sensitive ones.  

In Table 10 it is possible to see the diagonal elements of the pivoted matrix R and the 

rank result for both the default tolerance and for an established tolerance of 10-7 (same 

tolerance of the numerical method). The QR decomposition with column pivoting and rank 

determination was performed using an algorithm implemented in the Scilab software. 

 

Table 10 – Results of the QR decomposition of the sensitivity matrix 

Diagonal element of pivoted matrix R 

pKcarboxyl pKphosphoryl pKhidroxyl 𝜆𝑒𝑓𝑓  pKamine 

-17.4689 3.78265 -3.38144 1.51941 2.3×10-8 

Rank (default tolerance) 5 Rank (tolerance =10-7) 4 

Source: The author, 2020. 

 

Analyzing the results of the rank determination, to check if all of the parameters are 

uncorrelated, the rank calculated by the method for a default tolerance of Scilab algorithm 

was 5, the same number of columns/parameters. Nevertheless, when changing the tolerance to 

10-7 we see the rank number change to 4, suggesting that one parameter may be correlated: the 

pKa of the amine group. 
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After checking the rank, the results of the diagonal elements of the pivoted matrix R 

were analyzed. The pivoting orders the columns of the matrix from most sensitive parameters 

(highest diagonal values) to least sensitive (lower diagonal values). Examining the results, it 

is possible to notice that the most sensitive parameter is the pKa of the carboxyl group and 

second comes the pKa of the phosphoryl group. Considering a rank equal to 5, the least 

sensitive parameter is the pKa of the amine group, but when considering a rank of 4 and 

removing the pKa of the amine group from the analysis, the parameter that shows the least 

sensitivity is the effectiveness coefficient.  

Considering the questionable correlation of the amine’s group pKa parameter and the 

fact that correlated and least sensitive parameters are harder to be estimated, it was decided to 

carry out another parameter estimation, this time taking this group out of the estimation. 

Unfortunately, it was not possible to achieve any improvement in the fitting even taking the 

amine group out of the estimation.  
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CONCLUSION 

 

In this work, a study of the electrostatic behavior of the S. cerevisiae yeast cell wall 

was performed by using two theoretical models based on the Poisson-Boltzmann equation, the 

charge regulation model and the volumetric charge density model. The study showed that it 

was possible to reproduce values of experimental zeta potential over a range of pH, but this 

could only be achieved by using an effectiveness coefficient to correct the number of 

functional groups present on the cell wall. Without correcting the number of groups on the 

cell wall both models predicted values of zeta potential greater in magnitude than the values 

observed in experiments. 

Another procedure that helped improve the fitting of both models was the parameter 

estimation of the pKa of the functional groups. Since data for these parameters are usually 

reported as a range of values, a parameter estimation was it was conducted to find the best 

values to represent the yeast cell wall.   

Both models yielded their best fitting for the experimental points when having all 

parameters estimated together. And, comparing the surface charge regulation model’s results 

with the results of the volumetric density charge model, the latter seems to provide a better fit 

for the shape of experimental points, especially for the case of low concentration (1 mM), 

which was expected since the volumetric density charge model is a more adequate model for 

this system than the charge regulation model.  

By performing parameter analysis, it was possible to obtain information on how the 

parameters are related to the charge regulation model. A Monte Carlo simulation for the pKa 

groups revealed where in the pKa ranges lie the values than can minimize the objective 

function. As result, parameters of the carboxyl and phosphoryl groups seem closer to the 

lower bounds of the ranges, while values for the hydroxyl and amine groups appears closer to 

the upper boundaries. Analyzing the sensitive matrix of the model using the QR 

decomposition we were able to identify the most and least sensitive parameters of the model. 

The most sensitive parameter identified was the pKa of the carboxyl group, followed by the 

phosphoryl group. The least sensitive and probably dependent parameter was the pKa of the 

amine group. 

One difference from this work to the work of Hong and Brown (2008) and Barbosa et 

al. (2015) is that the results for the zeta potential and potentiometric titration experiments 

were taken from different sources while in the cited works they were taken from the same 
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source. This can have an impact in the study since the cell wall characteristics of different 

isolates may be different.  

One suggestion for future works is the use of both zeta potential and potentiometric 

titration experiments for the same culture of S. cerevisiae, in order to improve the 

performance of the theoretical model.  

Other good ideas for future works are the study of different effectiveness coefficients 

for the different groups and the study of the position of the slipping plane.  

In this work, we had information about the functional groups that are present on the S. 

cerevisiae cell wall, but not on how they are arranged in the cell wall. It’s possible that some 

types of groups may be more exposed on the surface while others may be located more on the 

inner part of the cell wall. A study on different effectiveness coefficients could help us 

understand more about how these groups are arranged and how they influence the surface 

charge.   

About the slipping plane, it has been stated before that the position of the slipping 

plane in biological surfaces is uncertain. Further studies on the position of this plane can help 

model’s achieve better results.  
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APPENDIX A – Finite Volume Method 

 

 

 In developing the Finite Volume Method for the Poisson Boltzmann equation in one 

dimension, we start by dividing the domain into a number of volumes (n) and then we 

calculate the value of the desired property in the middle of the elementary volume, at the 

central point (P) using values from the volumes at east (W) and west (E). 

 

Figure 23 – Elementary volume 

 

Source: Adapted from LIMA; TAVARES; BISCAIA JR, 2007. 

 

The following form will be used to develop the finite volume method for a generic 

unidimensional PB equation with uniform dielectric constant (𝜀). Here S, the font term, is the 

right side of the PB equations, presented in equations (7) and (10) in the literature review 

chapter and y is the dimensionless electrostatic potential.  

 

𝜕

𝜕𝑥
(𝜀 

𝜕𝑦

𝜕𝑥
 ) =  −𝑆 (25) 

 

To start the method, we integrate the equation in x, from the west boundary (w) of the 

elementary volume to the east boundary (e). After, we approximate the derivatives left using 

the central differences approximation. 

 

∫
𝜕

𝜕𝑥
(𝜀 

𝜕𝑦

𝜕𝑥
 )

𝑒

𝑤

𝑑𝑥 =  − ∫ 𝑆

𝑒

𝑤

𝑑𝑥 (26) 

 

Γ𝑒

𝑦𝐸 − 𝑦𝑃

Δ𝑥
− Γ𝑤

𝑦𝑃 − 𝑦𝑊

Δ𝑥
=  −𝑆Δ𝑥 (27) 
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Multiplying both sides by Δ𝑥 and rearranging the terms for 𝜑: 

 

Γ𝑒𝑦𝐸 − (Γ𝑒 + Γ𝑤)𝑦𝑃 + Γ𝑤𝑦𝑊 =  −𝑆Δ𝑥2 (28) 

 

Because the font term S is not a linear function, it is necessary to linearize it in order to 

achieve a linear system of algebraic equations. The linearization of the font term is obtained 

by using the Taylor series approximation truncated on the first order term. 

 

Γ𝑒𝑦𝐸 − (Γ𝑒 + Γ𝑤)𝑦𝑃 + Γ𝑤𝑦𝑊 =  −𝑦𝑃𝑆𝑝Δ𝑥2 − 𝑆𝑐Δ𝑥2  (29) 

 

Rearranging again for 𝑦 we get the final form of the equation: 

 

Γ𝑒𝑦𝐸 − (Γ𝑒 + Γ𝑤−𝑆𝑝Δ𝑥2)𝑦𝑃 + Γ𝑤𝑦𝑊 =  −𝑆𝑐Δ𝑥2 (30) 

 

Each elementary volume generates an equation like equation (30), so as a result we are 

left with a tridiagonal system of n linear equations to solve. In which A is a tridiagonal 

matrix, b is the vector of independent terms and y is the term we want to solve for. 

 

𝐴. 𝑦 = 𝑏 (31) 

 

The resulting terms for the diagonals of matrix A (d main diagonal, l lower diagonal 

and u upper diagonal) and b (independent vector) are: 

 

𝑙 = Γ𝑤 (32) 

𝑢 = Γ𝑒 (33) 

𝑑 = −(Γ𝑒 + Γ𝑤−𝑆𝑝Δ𝑥2) (34) 

𝑏 = −𝑆𝑐Δ𝑥2 (35) 

 

The terms for the upper and lower diagonal (Γ𝑒 and  Γ𝑤) for both models have a value 

of 1. The terms obtained in the linearization of the font term (𝑆𝑝 and 𝑆𝑐) for each model can 

be seen in Table 11, they were calculated for the dimensionless form of the PB equation.   
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Table 11 – Linearized font terms for the dimensionless PB equations 

𝑆𝑝 −𝑑𝑆(𝑦∗) 

𝑆𝑐 𝑆(𝑦∗) − 𝑦∗𝑑𝑆(𝑦∗) 

 

With 𝑑𝑆 being the derivative of the font term 𝑆, and  𝑦∗ being the value of 𝑦 for the 

previous iteration. 

The dimensionless form of the PB equation and the PB equation with fixed charges 

are: 

 

𝑆 =  −
∑ 𝑧𝑖𝑐𝑖,0exp(−𝑧𝑖𝑦 )𝑖

∑ 𝑧𝑖𝑐𝑖,0𝑖
 (36) 

 

𝑆 =  −
∑ 𝑧𝑖𝑐𝑖,0exp(−𝑧𝑖𝑦 )𝑖

∑ 𝑧𝑖𝑐𝑖,0𝑖
−

𝜌𝑓

∑ 𝑧𝑖𝑐𝑖,0𝑖
 (37) 

 

With 𝜌𝑓 being the yeast surface charge function presented in equation (19). 

To solve the Poisson-Boltzmann equation in the dimensionless form, the variables 

used on the method also need to be dimensionless. The dimensionless potential (𝑦) and the 

Debye length (𝜅), factor used to transform the spatial variables into dimensionless variables, 

are:  

 

𝑦 =  𝜓𝑒/𝑘𝐵𝑇 (38) 

 

𝜅 =  
𝑁𝐴𝑒2∑𝑧𝑖

2𝑐𝑖,0

𝜀0𝜀𝑤𝑘𝐵𝑇
 (39) 

 

For the unidimensional case two boundary conditions are necessary, one for the first 

volume and one for the last. The boundary condition type used in the resolution of both 

models described the value of the derivative of the property at the boundary. 

 

Γ𝑒

𝑦𝐸 − 𝑦𝑃

Δ𝑥
− (

d𝑦

d𝑥
|

𝑥→𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) =  −𝑆Δ𝑥 (40) 
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(
d𝑦

d𝑥
|

𝑥→𝑓𝑖𝑛𝑎𝑙
) − Γ𝑤

𝑦𝑃 − 𝑦𝑊

Δ𝑥
=  −𝑆Δ𝑥 (41) 

 

Inserting the derivatives at the boundary for each model and rearranging the equations 

in terms of 𝑦, we find the values of the main, upper and lower diagonals of matrix A and the 

independent vector b, for the first and last volumes of the method. 

For the charge regulation model, the derivative at the boundary of the first volume is 

the yeast surface charge function described in equation (19) of chapter 2. This function is non-

linear and to enter the method it also must be linearized, for this the expansion using the 

Taylor series truncated on the first-order term was again used. In this linearized equation, the 

term part multiplies 𝑦 enters as a contribution to the main diagonal (d) term and the other part 

of the term enters as contribution to the independent term (b).  

For the last volume in this model the derivative is equal to zero, making the deduction 

of the term for this volume quite simple.  

For the volumetric charge density model both derivates are zero, so for this model the 

deduction both terms are rather simple.  

 


