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ABSTRACT

JUSTO, I. F. Aspects of the Gribov problem in Euclidean Yang-Mills theories. 2016. 176 f.
Tese (Doutorado em Física) – Instituto de Física Armando Dias Tavares, Universidade do
Estado do Rio de Janeiro, Rio de Janeiro, 2016.

The present thesis is devoted to the study of aspects of the Gribov problem in Euclidean
Yang-Mills theories coupled to matter fields. We present some formal (mathematical and phy-
sical) evidences that point to a similar dynamic behavior of the matter field in comparison with
the gauge field in regimes of sufficiently low energy (i.e. the infrared regime). In other words,
we claim that an effect of the Gribov problem in the gauge sector is refleted in the matter sector,
by means of an unknown mechanism. Such reflection is treated as a non-local term in the matter
sector, similar to the non-local Gribov horizon term for the gluons, which seems to account for
non-perturbative aspects of the matter field at infrared regime.

Keywords: Quantum field theory. Gribov problem. Confinement. Gauge theory.



RESUMO

JUSTO, I. F. Aspectos do problema de Gribov em teorias de Yang-Mills Euclideana. 2016.
176 f. Tese (Doutorado em Física) – Instituto de Física Armando Dias Tavares, Universidade
do Estado do Rio de Janeiro, Rio de Janeiro, 2016.

A presente tese dedica-se ao estudo dos aspectos do problema de Gribov nas teorias de
Yang-Mills euclidianas acopladas a campos de matéria. Nós apresentamos algumas evidências
formais (matemáticas e físicas) que apontam para um comportamento dos campos de matéria
similar ao comportamento dos campos de calibre em regimes de energias suficientemente bai-
xas (ou seja, no limite infra-vermelho). Em outras palavras, argumentamos que os efeitos do
problema de Gribov no setor de calibre do Modelo Padrão é refletido no setor de matéria, por
meio de um mecanismo ainda desconhecido. Esse reflexo é abordado por um termo não linear,
semelhante ao termo não-local do horizonte de Gribov, que aparenta dar conta dos aspectos
não-perturbativos dos campos de matéria no regime infra-vermelho.

Palavras-chave: Teoria de campos. Problema de Gribov. Confinamento. Teoria de calibre.
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INTRODUCTION

The content of the present thesis is based on the papers [1–7] and is devoted to the study
of aspects of the Gribov problem in Euclidean Yang-Mills theories coupled to matter fields.
Here, we present some, mathematical and physical, evidences that point to the existence of a
possible interplay between the gauge sector and the matter sector, in regimes of sufficiently low
energy (known as the infrared regime). In other words, we claim that an effect in the vector
boson sector of Nature due to strong interactions (cf. the Standard Model), at low energies,
may be reflected in the matter sector, in the same regime. Specifically, we propose that the
Gribov horizon function of the gauge sector may be felt by the matter field, and that it would be
described by an effective non-local mass term attached to the matter field. Such a term seems
to be dynamically generated and accounts for non-perturbative aspects of the matter field.

General introduction

Up to the present day confinement still is one of the most intriguing features of strong
interactions: why do quarks and gluons, being the fundamental excitations of fields of the the-
oretical model that describes the strong interactions, widely known as QCD (Quantum Chro-
modynamics), not appear in the spectrum of asymptotic physical particles? Or else, the me-
chanism by which confinement happens in nature is another not answered question concerning
strong coupling effects.

The strong interaction is one of the four fundamental interactions of Nature, next to the
gravitational, electromagnetic and weak interaction. Together, these four interactions reside at
the heart of the Standard Model (SM), which ought to theoretically describe all known ele-
mentary particle physics processes, but neglecting quantized gravitational effects. For a recent
pedagogical review about the Standard Model (also referred to as a ‘Standard Theory’) take a
look at [9].

Despite the existence of some open questions surrounding the Standard Model (SM),
such as too many free parameters to fix, the not yet explained dark matter and the quantization
of gravity, its success in describing and foreseeing innumerable physical process and particles,
in scales of 10−15cm and smaller than that, makes the SM the most accepted theory to describe
the physics of the fundamental particles, up to the present day [10].

In particular, the present thesis is devoted to the study of effects of strong interactions,
more precisely those related to the interaction of fundamental colored particles (or color sour-
ces), by making use of the QCD framework. Quantum chromodynamics (QCD) is a theoretical
model based on the theory of quantized relativistic fields, more widely known as Quantum Field
Theory, where particles are described by scalar fields, such as the Higgs one, and by fermionic
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fields, accounting for the quarks, while the interaction between those particles is mediated by
gauge particles, which are described by vector fields belonging to the adjoint representation of
non-Abelian gauge groups such as the SU(3).

Physically we may cite two typical characteristic features of strong interactions: confi-
nement and chiral symmetry breaking. Let us give a close look into these features.

The confinement problem

The modern understanding of confinement, in its physical sense, developed historically
from a more strict view of quark confinement to a more general sense of color confinement.
By color we mean a charge carried by particles described by QCD, which has nothing to do
with visual color, due to global gauge symmetry. The point is that quarks cannot be found as
free particles, but only confined in hadrons (= composite state of quarks). At the same time,
gluons, or gauge particles, which are responsible for the mediation of strong interactions, can
also not be found as free particles in the physical spectrum of the theory but, instead of that, only
trapped inside glueballs (= composite states of gluons)1. A hybrid composition of quarks and
gluons is also possible, leading to the state of quark-gluon plasma. Then, the modern concept of
confinement arises as only particles, or composition of particles, carrying neutral color charge
can be seen as asymptotic free particles. Examples of hadrons are easy to find out, such as
protons and neutrons that belong to the set of composite states made up of three quarks called
baryons.

Describing confinement is one of the tricky points of QCD. The fundamental particles
of nature are described in this framework as small excitations of quantum fields around the
vacuum, with these fields obeying specific rules of (local) gauge transformation of non-Abelian
groups, such as the SU(3). Such gauge transformation leaves invariant the QCD action, so that
the theory is said to be gauge invariant.

Theoretically, it is widely believed that the phase transition “confinement/deconfine-
ment” is intimately related to the spontaneous breaking of a symmetry, or else, due to the
existence (or not) of a remnant symmetry. A spontaneously broken symmetry is meant to be
a symmetry of the system that does not leave invariant a physical state of the theory, such as the
vacuum state. In other words, suppose that s stands for the (infinitesimal) transformation of a
certain symmetry of the theory (i.e. sS = 0, where S is the classical action of the theory, but
also sΓ[ϕ] = 0, where Γ[ϕ] is the quantum action of the theory, as a function of the fields); and

1 Up to the day of closing this thesis, there is no a definite particle to be called glueball. However, the authors
of [11] claim that the resonance “ f 0(1710)” is the prefered candidate for a glueball. Further experimental results
are still expected to confirm (or not) the “ f 0(1710)” as the glueball.
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also suppose that ϕ0 stands for the vacuum configuration of that system (i.e. Γ[ϕ0] assumes its
minimal value). Therefore, the s symmetry is said to be spontaneously broken if sϕ0 6= ϕ0. That
is, in this case Γ[ϕ0] 6= Γ[sϕ0]: the vacuum is said to be degenerated in such cases, since there
are two distinct vacuum configurations, ϕ0 and sϕ0 [12–14].

A famous and simple example of phase transition due to spontaneous symmetry breaking
can be found in the Linear Sigma model, where a continuous symmetry group O(N) is broken
down to O(N − 1); a more complex example is the Yang-Mills theory coupled to the Higgs
field, known as the Higgs mechanism, where the framework of spontaneous symmetry breaking
is applied to the theory of gauge fields. Times before the proposal of the Higgs mechanism, a
similar procedure had been applied by Ginzburg and Landau to the study of superconductors,
although being a classic (or statistical) model, where they plugged an external magnetic field
into the model so that the electromagnetic field could penetrate into the material only down
to m−1

A depth; mA is the acquired mass by the electromagnetic field due to the spontaneous
symmetry breaking [12–15].

Two important theorems concerning symmetry breaking should be discussed in order to
better understand the link between the phase transition “confinement/deconfinement” and the
spontaneous symmetry breaking: one of them is the Goldstone theorem, while the other one is
the Elitzur’s theorem.

• The Goldstone theorem:

There exists a spinless massless particle for every spontaneously broken continuous sym-

metry, [12–15].

That is, in the case of the SO(N) global transformations, for instance, there are N(N−
1)/2 independent symmetries. It means that, in a theory with ϕi real scalar fields, with
i = 1,2, · · · ,N and obeying an specific rule of transformation of the SO(N) group, leaving
invariant the theory, there are N(N− 1)/2 independent transformations. The number of
massless particles is,

N(N−1)
2

− (N−1)(N−2)
2

=
2N−2

2
= N−1 , (1)

which is exactly the number of broken symmetries; N(N−1)/2 comes form the original
SO(N) group symmetry, whilst (N−1)(N−2)/2 comes form the remaining SO(N−1)
group of symmetry after the breaking.

Still in the instance of real scalar fields, let us consider a particular configuration of its
potential energy, which is given by

V [ϕi] = −1
2

µ2
ϕϕϕ ·ϕϕϕ+

λ

4
[ϕϕϕ ·ϕϕϕ]2 , (2)

called the Mexican hat potential. In this case the vacuum expectation value (vev) of the
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scalar field is not zero, but rather is degenerated 〈ϕi〉= νδi0 around one chosen direction.
Supposing that this theoretical model has a global SO(N) symmetry, one can easily see
that, by performing a perturbation of the scalar field around its vacuum configuration, in
the chosen direction δi0 [12–15],

ϕϕϕ(x) = (πk(x), ν+σ(x)) , (3)

the potential becomes,

V [ϕi] = −1
2
(2µ2)σ2− λ

2
π

2
σ

2−µ
√

λπ
2
σ−
√

λµσ
3− λ

4
(σ2)2− λ

4
(π2)2 , (4)

regarding that ν2 = µ2/λ. Gathering the kinetic therm, the Lagrangian reads,

L = (∂µπ)2 +(∂µσ)2−V [πk, σ] . (5)

So, it is not difficult to see that, at the end one gets one massive mode, the σ one, and
N−1 massless and spinless modes, the πk(x) fields, corresponding to the foreseen N−1
Goldstone bosons.

• Elitizur’s theorem:

It is not possible to spontaneously break a local (gauge) symmetry, [16].

In other words, the vacuum expectation value (vev) of a gauge non-invariant local operator
must vanish, and one should be careful when dealing with gauge theories coupled to Higgs
fields.

Let us provide again, but in other words, the concept of spontaneous symmetry breaking.
A symmetry is said to be spontaneously broken in the sense that the vacuum configuration
is not symmetric under such (global) transformation. That is, if ϕ0 is the vacuum confi-
guration of the scalar field and δglϕ0 6= ϕ0, with δgl standing for the variation of a global
transformation, then we say that the global symmetry δglΓ[ϕ] = 0 is spontaneously bro-
ken, since δglΓ[ϕ0] 6= 0 (again Γ[ϕ] stands for the quantum action of the theory) [12–14].

In the above example of the scalar field, where the theory is symmetric under global
SO(N) group transformations, the vacuum configuration before breaking the symmetry
was the trivial vacuum, ϕ0 = 0. But after, when the potential acquires the Mexican hat

potential form, the vacuum configuration is not symmetric anymore, but rather it is dege-
nerated out of ϕ0 = 0.

Even though Elitzur’s theorem forbids spontaneous symmetry breaking of local symme-
tries, it seems that there exist in Nature exceptions to this rule: e.g. the mechanism of
mass generation of the gauge field, such as in the Electroweak model, called Higgs me-
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chanism. Frequently we use to say that the gauge symmetry is spontaneously broken, but
what exactly we mean by this expression? In order to answer, let us analyze one easy
example, known as the Georgi-Glashow model.

In the Georgi-Glashow model the Lagrangian reads,

L = −1
4

Fa
µνFa

µν +DµϕϕϕDµϕϕϕ+
λ

4
(ϕϕϕ ·ϕϕϕ−ν

2)2 , (6)

where Dµ = ∂µ− igAa
µta stands for the covariant derivative, and Fa

µν stands for the field
strength tensor:

Fa
µν = ∂µAa

ν−∂νAa
µ +g2 f abcAb

µAc
ν . (7)

Regarding the fact that the Lagrangian (6) is invariant under the gauge transformation
SU(N), let us choose the direction of the broken symmetry as being

〈ϕi〉= νδ
iN , (8)

with the scalar field in the fundamental representation. Expanding once again around the
vacuum configuration

ϕϕϕ = (ϕ̃k, ν+σ) (9)

and defining ϕ̃ rotated, so that it is perpendicular to ta〈ϕi〉,

ϕ̃
k(ta)ki〈ϕi〉 = 0 , (10)

one ends up with a massive term for the gauge field of the form 1
2Aa

µAb
µµ2

ab, with [12–14]

µ2
ab = (ta)iN(tb)iNν

2 . (11)

Let us now make some important remarks concerning this massive term. The first remark
concerns the importance of the condition (10): this is the called unitary gauge condition

and is nothing more than a rotation of the scalar field so as to end up with ϕ̃k perpendi-
cular to the broken directions ta〈ϕi〉. The second remark concerns the spontaneous gauge

symmetry breaking: the realization of the spontaneous symmetry breaking, in the sense
that 〈ϕi〉 6= 0, leads to the breaking of the (local) gauge symmetry, through the appea-
rance of the quadratic term 1

2Aa
µAb

µµ2
ab. However, it is clear that this induced breaking in

the gauge sector does not lead to the appearance of a vector Goldstone boson. Instead of
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that, there exist 2N− 1 massive vector bosons. Note that the massive term (11) depends
on the modes of the scalar fields associated to the broken symmetries, ta〈ϕi〉, and since
there exist

(N2−1)− [(N−1)2−1] = 2N−1 (12)

broken symmetries, then that is the number of massive vector bosons.

The Georgi-Glashow model is recovered for N = 2 and, as mentioned before, with the
Higgs field in the fundamental representation the gauge group is said to be completely
broken, yielding to 3 massive gauge bosons; another example is the electroweak gauge
theory, where the SU(2)×U(1) gauge symmetry is broken down to U(1), providing
mass to the W± and Z0 gauge bosons and to the matter field, leaving massless the photon
and an (approximate) massless pion [12–15].

The point here is that, the breaking of a local gauge symmetry happens when the unitary
gauge is applied, (9) and (10), in the Mexican hat potential configuration of the scalar
field, which induces the breaking. However, in this local symmetry breaking, there is
no Goldstone boson associated. Otherwise, massive excitations of the vector boson field
appear, accounting for the “missing” Goldstone bosons degrees of freedom.

In order to probe for the existence of such global symmetry one should make use of
gauge invariant local operators that shall be sensible to the realization (or not) of that sym-
metry. We call this operator an order parameter. Two well known order parameters are the
Wilson and the Polyakov loops. Both of them are related to the potential energy between two
color static sources. More precisely, the Wilson loop can be seen as a measure of the pro-
cess of creation-interaction-annihilation of a pair of static quark-antiquarks, [17]. Namely, its
continuum expression is given by [15]

W =

〈
P exp

[
ig
∮

C
dxµAµ(x)

]〉
∼ e−V (R)T , (13)

whence T stands for the length in the time direction, and V (R) is the quark-antiquark potential,
depending on their spacial distance R. In its discrete space-time version, i.e. on the lattice, the
existence of such quark-antiquark creation (annihilation) operator is evident, together with the
creation operator of a gauge flux tube, mediating the interaction between the quark-antiquark
pair. We should emphasise the fact that the vev (13) may be computed in a pure Yang-Mills
theory, that is, in the absence of any matter field, at all. Physically, this is a gauge theory in
the presence of heavy quark matter, which is theoretically achieved in the limit of infinite quark
mass.

The Wilson loop is sensible to the existence of three possible phases, concerning the
potential between the static quarks [15]:
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• “Yukawa, or massive phase”, where the potential is given by

V (R) = −g2 e−mR

R
+2V0 , (14)

where V0 stands for the self-energy of the system. The Wilson loop exhibit a perimeter

law falloff, for a sequence of non self-intersecting loops,

W ∼ exp[−V0P(Γ)] , (15)

for situations where R is large enough, in front of 1/m; P(C) is the perimeter of the loop
Γ 2.

• “Coulomb, or massless phase” phase, where the potential is proportional to the Coulomb
potential,

V (R) = −g2

R
+2V0 . (16)

Also in this phase, if the self-energy contribution is considerably greater then the 1/R

rule potential, i.e. R�V−1
0 , then the Wilson loop will also fall-off as

W ∼ exp[−V0P(Γ)] , (17)

also when the loops do not intersect with themselves.

• “Disordered, or Magnetic disordered” phase, where the potential goes as

V (R) = σR+2V0 . (18)

In this case, the Wilson loop exhibit an area law fall-off, for non self-intersecting loops,

W = exp[−σRT −2V0T ] . (19)

Note that the potential energy grows as ∼ R, that is, the bigger the distance between the
static quarks, the greater is the self-energy of the system. We use to attach a confinement-

like interpretation to this scenario. On the other hand, in the first two cases the potential
behaves as ∼V0, at the best, configuring a short-distance interaction behaviour, and char-

2 At this point do not mistake Γ for the quantum action.
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ged free particles can be found, such as the W± vector bosons in the gauge + Higgs theory.

The expression “magnetic disordered”, of the third regime of the Wilson loop, stems from
the fact that we are considering large enough loops Γ, so that its vev equals the product of
vacuum expectation value of n smaller loops (Γ1, Γ2, · · · , Γn) that lies inside the biggest
one Γ (cf. [15]). Then we say that these n loops are uncorrelated, as much the same as the
disordered phase of the Ising model, whence the term was inspired.

The Polyakov loop [18] is, in its turn, sensible to a very important global symmetry,
intrinsic to gauge theories, called the center symmetry. This symmetry group is an intrinsic
subgroup of a gauge group, let us say G, and is a set of elements that commute with every
elements of G. Said in other way, if zn belongs to the center symmetry of a gauge group G, then
zn commutes with every single element of G — so, it is an element of the center of the group G.
Therefore, considering the SU(N) gauge group, its associated center symmetry ZN is composed
by elements of the following type, [15, 19, 20]

zn = exp
(

2inπ

N

)
1 , (20)

whence 1 stands for the unity N×N matrix; n = 0, 1, 2, · · · , N−1. Since ZN is a subgroup of
SU(N), then it is straightforward to see that a pure gauge theory is invariant under ZN transfor-
mations. However, that is not true in the Yang-Mills + matter field theory, with the matter field
in any of its non-trivial group representation, such as the fundamental one: the center symmetry
is explicitly broken in this case. For the matter field in the adjoint representation, which is an
example of a trivial representation of the gauge group, this center symmetry is still preserved,
so that it may be spontaneously broken afterwards (cf. [15] for further details) 3.

The Polyakov loop may be defined in the continuum space-time as

P =

〈
P exp

[
ig
∮

C
A0dx0

]〉
∼ e−FT , (21)

and can be interpreted as an Euclidean space-time finite temperature torus circling around, and
accounts for the temporal component of the Wilson loop, [19, 20]. In equation (21), F is the
free energy between the static quarks, and T is the temperature. As can be seen from (21), the
Polyakov loop, akin to the Wilson loop, is a measure of the self-energy between static quarks. It
is straightforward to see that if P 6= 0, then the free energy between static quarks is finite, while
that when P = 0, there is an infinite free energy between them. So, one may classify as confined

and deconfined regimes situations of infinite binding energy between static quarks (P = 0) and

3 Take a look at the Chapter 2 to see that in the theory of Yang-Mills + Higgs field in its fundamental representation
two distinct regimes, namely the confinement-like and the Higg-like, coexiste in the same phase of the theory,
corresponding to the explicitly broken center symmetry (cf. Fradkin & Shenker [8]).



20

situation of finite binding energy between static quarks (P 6= 0), respectively.
The sensibility of the Polyakov loop to the realization of the center symmetry can be

seen from its transformation under an element zn of ZN , intrinsic to the gauge group SU(N).
The vev of the Polyakov loop is understood to be computed in a pure Yang-Mills theory, or
coupled to an adjoint matter field. Namely, one has [19, 20]

P → zn

〈
P exp

[
ig
∮

C
A0dx0

]〉
= znP . (22)

Thus, the Polyakov loop is clearly not invariant under the center symmetry transformation, in
the specified situation. The Polyakov loop may, then, be seen as a suitable order parameter for
the center symmetry breaking. Then, one has:

i. The symmetric phase, where

P = 0 , (23)

which corresponds, as mentioned above, to the confined phase, of infinite energy between
static quarks;

ii. The broken phase, where

P 6= 0 , (24)

which corresponds to the deconfined phase, with finite energy between the static quarks
4.

In both expressions (13) and (21) P accounts for the path ordering of the (gauge field)
operator Aµ as it appears in the closed path. At first order in perturbation theory this path
ordering operator is meaningless.

What happens if one has a gauge field theory coupled to a matter field in the fundamental
representation? In this case, the center symmetry is explicitly broken and no phase transition
occurs, [8, 15].

In the specific case of Yang-Mills theories coupled to scalar fields, in the adjoint repre-
sentation, whose potential energy is of the Mexican hat type, the gauge symmetry is said to be
spontaneously broken after fixing the unitary gauge. However, it is not fully broken, by leaving
intact the global center symmetry (which does not happen in the fundamental representation of
the scalar field). Thus, phase transition may still be probed by means of the Polyakov loop.

4 The reader is pointed to [15, 19, 20, 22–24] for a detailed study on the Polyakov loop and the center symmetry
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Another point of great interest is the order of the phase transition. In general, it can
be probed by measuring derivatives of the free energy with respect to thermodynamic order
parameters: divergences on the first derivative would correspond to first order phase transitions;
divergences on the second derivative corresponds to a second order phase transition (we refer
to [21] for a pedagogical approach to this matter). Precisely, for pure gauge field theory it has
been found that for the SU(2) gauge theory a second order phase transition takes place at a
temperature of Tc = 295MeV; and for SU(N) gauge theories, with N ≥ 3, a first order phase
transition is found to occur at Tc = 270MeV, [19, 20, 22–25].

But, what about the phase transition in the presence of dynamical quarks? In these cases
things get overcomplicated since the usual order parameters, (13) and (21), cannot be used
anymore. Physically the scenario is that a threshold value for the dynamical quark separation
is reached, so that beyond this value the potential between them goes flat, instead of growing
linear with the separation length R, as happened in the static quark scenario. It indicates a
dynamical screening mechanism for the gauge field known as the string breaking effect. A
possible interpretation is that the potential energy between the quarks grows (linearly) up to a
level high enough to create a pair of quark-antiquarks. Theoretically the following happens:
the traditional order parameter (21) work by measuring the existence of the center symmetry,
Z(N), which is associated to the gauge symmetry. However, the presence of dynamical quarks
explicitly breaks the center symmetry, preventing the Polyakov loop from measuring any phase
transition (this is similar to what happens in the Georgi-Glashow model with the Higgs field in
the fundamental representation). Furthermore, with dynamical quarks the Wilson loop is not
sensible to the disordered phase anymore, since due to the string breaking dynamical effect, at
some point (i.e. at some distance R from the quarks) the potential energy between the quarks
will not grows linear with R but rather becomes flat.

Something similar happens in the Yang-Mills + Higgs theory: for the scalar field in
its fundamental representation the global (center) symmetry is explicitly broken, so that no
Goldstone boson is present and no phase transition takes place; for the scalar field in the adjoint
representation the global (center) symmetry is not explicitly broken, and then a phase transition
is allowed to occur and to be measured (further details on subsection 2.1.1 and in [15]).

The present thesis is mainly devoted to add a small piece to this big puzzle called con-
finement by attacking the problem with an alternative approach. Instead of searching for an
order parameter and analytically probing it — which is far from being an easy task — we do
apply the framework of Gribov (and Gribov-Zwanziger) to investigate the existence of gauge
field confinement. As it is introduced on chapter 1, confinement in Gribov’s framework is
not (clearly) related to the breaking of the global symmetry, neither with the potential energy
between quarks. The way to probe for confinement, however, relies on the alternative criterion
firstly proposed by Gribov, where the existence of complex conjugate poles in the gauge field
propagator must indicate the gauge confinement. The point is that in such cases the gauge fi-
eld is deprived of any physical particle interpretation. Inspired by what happens in the gauge
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sector and expecting a confinement behaviour also for the quark sector, we will propose in this
thesis an effective action for the matter field where the matter propagator exhibit a similar non-
physical interpretation. That is not the first time that (gauge) confinement and the Gribov issue
are linked to each other. However, that is the first time that the Gribov issue is investigated in
the presence of matter fields, or else, that the quark sector presents a Gribov-type structure.

Chiral symmetry breaking

As mentioned before, the modern concept of fundamental physics is based on the exis-
tence/breaking of symmetries. We have been discussing that confinement can be understood
as the symmetric, or magnetic disordered, phase of a gauge theory. However, nothing have
been said about the existence of approximate symmetries in nature. One famous approximate
symmetry is the SU(2) isotopic symmetry, related to the mass of quarks u and d: from the
most recent Particle Data Group’s (PDG) data [10], at the mass scale of µ ≈ 2GeV and in a
mass-independent subtraction scheme called MS, quark-u’s mass is about 1.8 – 3.0MeV, while
quark-d’s mass is 4.5 – 5.3MeV, so the rate between their mass is mu/md = 0.35 – 0.58.

Therefore, it is clear that both of the quarks have masses of the same order of magnitude,
allowing us to formulate a(n) (approximate) symmetric theory, where quarks u and d belong to
the same doublet,

ψ =

(
u

d

)
, (25)

and with the corresponding action symmetric under SU(2) gauge transformations,(
u

d

)
→ exp{iϑata}

(
u

d

)
. (26)

In the above equation ϑ is a real parameter; ta accounts for the three SU(2) generators, i.e. the
Pauli matrices. We use to say that quarks u and d (approximately) belong to the same isospin.
The same approximation is not so good regarding the quark s; his mass is about 90 – 100MeV,
so it is an order of magnitude grater than quarks u and d masses and such an approximation leads
to inaccurate results. For a realistic model, where the mass of quarks u, d and s are considered as
being different from each other, we say that the isotopic symmetry is explicitly broken [12–14].

Besides the isotopic symmetry there may also be another approximate symmetry, if one
notice that the quarks u and d masses are relatively small enough to put it to zero, regarding
that the energy scale is µ ≈ 2GeV. One should also recall that the mass of protons (composed
of three quarks), ∼ 938MeV, is much higher than the mass of its constituents, as mentioned
before (check for the most recent particle data at [10]). So, it is reasonable to make the quark
massless approximation, and one ends up with an SU(2)×SU(2) symmetric theory, known as
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the chiral symmetry, χS. At this point, of massless quarks u and d, the fermionic doublet ψ must
transform as(

u

d

)
→ exp{iϑata + iγ5θ

ata}

(
u

d

)
, (27)

leaving invariant the action. In the equation above, (26), γ5 is the pseudo scalar Dirac matrix,
defined in terms of the four Dirac matrices (take a look at Appendix B for details),

γ5 = iγ0
γ

1
γ

2
γ

3 =
i

4!
ε

µνρσ
γµγνγργσ , (28)

and θa stands for a global real parameter related to the conserved axial-vector current

Ja µ
γ5 = iψ̄γ

µ
γ5ta

ψ . (29)

Of course, the isotopic (approximate) symmetry does also have an associated conserved current,
which can be read as

Ja µ = iψ̄γ
µta

ψ . (30)

So, what we have seen is that for a massless u- and d-quark the theory enjoys an appro-
ximate chiral symmetry, with conserved current given by (29) 5.

Despite the fact that u- and d-quarks appear as (almost) massless particles in the QCD
action, related to an (approximate) chiral symmetry, the composite states of quarks, such as
protons and neutrons, are not found as (almost) massless particles in Nature. Instead of that
they are considerably heavier (mp = 938.272046±2.1×10−5 MeV) in contrast to quarks, [10,
26]. Thus we are forced to ask if the approximate chiral symmetry is indeed a reasonable
approximation. If it is so, the chiral symmetry SU(2)× SU(2) must be spontaneously broken
down to the isotopic symmetry SU(2), by means of a dynamical process of mass generation
for quarks, and with the rising of massless Goldstone (we point the reader to [25, 27] for a
historical reference on this subject). Indeed, the pion meson (π) seems to (approximately) fulfill
these requirements, displaying the smallest mass of the known particles, thus being identified
with an (approximate) Goldstone boson and, then, pointing to the effective existence of an
spontaneous chiral symmetry breaking (SχSB), [12–14]. To prove that nature really undergoes
an spontaneous chiral symmetry breaking is not an easy task, and as such has not been done,
yet. Despite this difficulty, it became clear that we do not need to fully comprehend the whole
process by which the chiral symmetry is broken to SU(2), but rather that interesting process of
nature can be analyzed by just considering the existence of an approximate symmetry that is

5 For a detailed analysis the reader is pointed to standard textbooks [12–14] where this topic is fully covered.
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spontaneously broken down to SU(2), [12–14, 25, 27, 28].
In order to probe the breaking/restoration of the chiral symmetry one should measure

the existence, or not, of a non-zero chiral condensate 〈ψ̄ψ〉, which can be done analytically,
up to a certain accuracy (or energy level) in perturbation theory. As effective theories we may
cite some well known models, such as the Nambu-Jona-Lasino model [19,29–31]; the MIT bag
model [31–35]; and also a quite new proposal by D. Dudal, et al. [36] of introducing into the
quark sector a nonlocal structure similar to the Gribov-Zwanziger horizon of the gluon sector,
leading to a renormalizable, confining and broken chiral symmetric theory. General properties
of introducing such a nonlocal term in the matter sector will be discussed on chapter 3, while
issues concerning UV divergences of such effective model will be treated on chapter 4.

Outline of the thesis

We beging with an introduction to the concept of confinement, where the most recent
and diverse approaches to this effect are discussed.

On chapter 2 we present an analytical study of the Yang-Mills theory coupled to the
scalar Higgs field, in the framework of Gribov quantization scheme. In this framework the
propagator of the gauge field may be profoundly modified, depending on the values of the
parameters of the theory, presenting complex conjugate poles. Such scenario prevents us from
attaching any physical particle interpretation to gauge propagator, since it violates the positivity
principle of Osterwalder-Schrader. Our study, thus, concerns the analysis of the gauge field
propagator in the configuration space of parameters of the model. The scalar field is accounted
in its fundamental and adjoint representations, in a 3- and 4-dimensional Euclidean space-time.
At the end we try to make a parallel between our study, of gauge field confinement, and the work
by Fradkin-Shenker [8], where the Wilson loop is measured in a (mostly) equivalent scenario.

This chapter is based on the works [4–7]
On the chapters 3 and 4 we propose, and analyze, an effective model for the matter sec-

tor that leads to a soft breaking of the BRST symmetry, by plugging in a non-local term to this
sector, equivalent to the Gribov-Zwanziger horizon of the gauge field. We will show that such
construction may be consistently implemented and that it leads to a confinement interpretation
of the matter field, according to the Gribov’s conception of confinement. By fitting our effec-
tive matter propagator, said to be of the Gribov-type, to the most recent lattice data, we could
verify that, indeed, the BRST symmetry is soft broken, by measuring a local gauge invariant
operator that is BRST exact. Furthermore, this new matter field propagator is found to violate
the positivity principle, according to the lattice fit. Besides, the UV safety of such effective
model is studied: there we prove that such confinement mechanism, which resembles Gribov’s
procedure, does not lead to new divergences other than those from the original (non-effective)
theory.
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These chapters are based on the works [1] and [3].
The chapter 5 is devoted to the analysis of the finite temperature theory of static quarks,

within the Gribov-Zwanziger framework. To probe for confinement phases transition in this
model the Polyakov loop is introduced by means of a background field framework, so that the
quark phase transition can be analysed by a single parameter of the theory. This gauge invariant
order parameter, related to the Polyakov loop, is accounted in different circumstances so that the
interplay between this one and the Gribov parameter could be probed. As an interesting outcome
we could see that the behavior of the Gribov parameter is clearly sensible to the quark phase
transition, while an unavoidable region of instability is present. A brief discussion/analysis is
made towards the refined-Gribov-Zwanziger approach to this model.

This chapter is based on the results of the work [2].
On Appendex A we develop a proof of all order UV stability, and an example is presented

on Appendex C.
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1 BACKGROUNDS: GRIBOV, GRIBOV-ZWANZIGER AND A BIT OF REFINED
GRIBOV-ZWANZIGER

The understanding of nonperturbative aspects of non-Abelian gauge theories is one of
the main challenging problems in quantum field theories. As an example, we may quote the
transition between the confined and the Higgs regimes in an Yang-Mills theory coupled to a
scalar Higgs field. See refs. [37–39] for analytical investigations and [8, 15, 40–44] for results
obtained through numerical lattice simulations.

Non-perturbative effects can be accounted perturbatively by considering ambiguities in
the gauge-fixing process, first noted by Gribov in [45]. These ambiguities, also referred to as
Gribov copies, are unavoidably present in the Landau gauge, since the (Hermitian) Faddeev-
Popov operator admits the existence of zero modes. The widely accepted mechanism to get
rid of these ambiguities was firstly proposed by Gribov, in his famous work [45], where the
domain of integration of the gauge field should be restricted to a closed region that satisfy
specific requirements. As a consequence, the gauge propagator does not belong to the physical
spectrum of the theory anymore and the ghost propagator is enhanced in the deep IR regime.
This framework is an effective model of the Yang-Mills theory, and as such is useful in analytical
analysis of the gauge field theory.

This chapter is devoted to the introduction of the Gribov, Gribov-Zwanziger (GZ) and
of the refined version of the Gribov-Zwanziger (RGZ) frameworks, give the central role these
approaches play in this thesis. However, given the existence of a vast bibliography covering
this topic, hanging from scientific papers to pedagogical reviews [45–48], this chapter is not
meant to be one more detailed pedagogical review, but rather it will provide the most important
concepts and equations that are useful to the comprehension of this thesis. For example, the
main idea of the Gribov mechanism to get rid of (infinitesimal) gauge copies and the consequent
violation of positivity by the gauge field propagator will be presented in the first section of
this chapter, while the horizon function, developed by Zwanziger, is presented in the section
1.2 together with the refined version. At the end, the important concept of BRST symmetry
breaking will be introduced and a brief discussion will be developed.

1.1 An introduction to Gribov’s issue

This section is organized in a way to provide a brief introduction to Gribov’s ambigui-
ties by following his seminal work [45]. We do not intend to provide the final word on this
matter and as such we would refer to [47] for a more complete and pedagogical reference. The
Faddeev-Popov quantization procedure is reproduced in the subsection 1.1.1, while the Gribov
problem will be introduced and implemented on the path integral formalism in the two subse-
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quent subsections, 1.1.2 and 1.1.3. At the end of this section we will present one of the most
important outcomes of the Gribov issue: a possible interpretation of gluon confinement, which
is encoded in the poles of the gluon propagators. We should say, to clarify matters, that our
present work concerns computations up to one-loop order in perturbation theory.

1.1.1 Quantization of non-Abelian gauge field

The gauge-invariant action of a non-Abelian gauge field, or the Yang-Mills (YM) action,
is given by

SYM =
∫

ddx
1
4

Fa
µνFa

µν , (31)

with Fa
µν = ∂µAa

ν− ∂νAa
µ + g f abcAb

µAc
ν being the field strength tensor. The action (31) enjoys

the feature of being symmetric under gauge transformation, which is defined for the gauge field
as

A′µ = U†AµU− i
g

U†(∂µU) , (32)

with U(x) ∈ SU(N) and N being the number of colors. A geometrical representation of this
symmetry can be seen in Figure 1, where each orbit, representing equivalent gauge fields, is
crossed by a gauge curve F . It means that, the YM action is invariant under transformations
that keep the transformed gauge field on the same gauge orbit.

As is well known, the gauge invariance of the action induces inconsistencies in the quan-
tization of the gauge field reflecting the existence of infinite physically equivalent configura-
tions. To get rid of those spurious configurations from the system one has to fix the gauge,
which is, in the geometrical view, to choose a convenient curve F that crosses only once each
gauge orbit. In the path integral formalism, the gauge-fixing procedure is carried out by the
Faddeev-Popov’s procedure.

The (Euclidean) gauge fixed partition function reads

ZYM(J) =
∫

F
[dA] e−SYM+

∫
dxJa

µ Aa
µ , (33)

where
∫

F denotes the path integral restricted to the curve F , which can be recast in the form

ZYM(J) = V
∫
[dA] ∆F (A)δ(F (A′))e−SYM+

∫
dxJa

µ Aa
µ . (34)

The V factor accounts for the (infinite) orbit’s volume, while ∆F (A) stands for the Jacobian of
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Figure 1 - Gauge orbits of a system with rotational symmetry in a plane and a function F which
picks one representative from each gauge orbit.

F(x,y)

Source: VANDERSICKEL; ZWANZIGER, 2012, p.15.

infinitesimal gauge transformations

A′µ = Aµ−Dµθ(x) . (35)

The Jacobian is there since we are working with the gauge transformed integration measure.
The θ(x) = θa(x)τa stands for the infinitesimal gauge transformation parameter, while τa are
the SU(N) generators. δ(F (A)) is the delta function ensuring the gauge condition F (A) = 0.
It is worthwhile to emphasize that the Jacobian of a given transformation (e.g. the infinitesimal
gauge transformation) is defined as the absolute value of the determinant of the derivative —
with respect to the transformation parameter (θ) — of the transformed field. In our gauge-fixing
case we have

∆F (A) = |detMab(x,y)| with Mab(x,y) =
δF a(A′µ(x))

δθb(y)

∣∣∣∣
F (A′)=0

. (36)

The delta function can be written as

δ(F ) ∝ exp
{
− i

2ξ

∫
ddxF 2

}
, (37)

so that performing a sort of functional Fourier transformation, with the introduction of an auxi-
liary field named “Nakanishi-Lautrup field”. Firstly, let us take the example of a real function,
in order to clarify things:

f̂ (b) =
∫

ddx e−ibx f (x) =
∫

ddx e−ibxe−
i

2ξ
x2
, (38)
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which leads to the following Fourier transformed function,

f̂ (b) ∝ ei ξb2
2 . (39)

Thus, returning to the gauge-fixing, one ends up with an equivalent expression,

δ(F ) ∝

∫
[dba]exp

{
i
∫

ddxbaF a
}

exp
{

iξ
2

∫
ddxbaba

}
. (40)

Note that the Nakanishi-Lautrup field works as a Lagrange multiplier field, ensuring the gauge
fixing condition. The Landau gauge is recovered in the limit ξ→ 0.

In order to introduce the Gribov issue in its original form, the Landau gauge condition
will be chosen. Namely,

F a(A′µ(x)) = ∂µA′aµ (x) . (41)

The A′µ stands for the infinitesimal gauge transformation, given by the equation (35). After
choosing the gauge condition, the Jacobian operator, named the Faddeev-Popov operator, reads

Mab(x,y) = −∂µDab
µ δ(y− x)

∣∣∣
F (A)=0

, (42)

while the delta function (40) amounts to

δ(F ) ∝

∫
[dba]exp

{
iba

∂µAa
µ +

iξ
2

baba
}

. (43)

In order to obtain the final expression of the gauge fixed Yang-Mills partition function, the
Jacobian must be rewritten as “the exponential of something”, in order to be added into the
action. This will be achieved by introducing a couple of anticommuting real Grassmann vari-
ables, named the “Faddeev-Popov ghosts” (c̄a, ca). The point is that, the integration rule of a
Gaussian-like functional of Grassmann variables is given by∫

[dc̄] [dc]exp
{

c̄aMabcb
}

= det[Mab] . (44)

Therefore, replacing Mab for the Faddeev-Popov operator M ab, one ends up with the following
generating function,

Z[J] =
∫
[dA][dc][dc]exp

[
−SYM +

∫
dx
(

ca
∂µDab

µ cb− 1
2ξ

(∂µAa
µ)

2
)
+

∫
dxJa

µ Aa
µ

]
. (45)

Let us emphasize two important (not so clear) assumptions made in the process to obtain
(45):

• The gauge condition F a is said to pick up only one field configuration from each gauge
orbit, representing the physical equivalent configurations related by gauge transformati-
ons;
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Figure 2 - The gauge condition curve can cross each orbit of equivalence once, more then once
and at no point at all. The horizontal axes denotes the transversal gluon propagator,
while the vertical axis represents the longitudinal one.

2 V.N. Gribov / Quatzlization of non-Abelim gauge theories 

to an additional limitation on the integration range in the functional space of non- 

Abelian fields, which consists in integrating only over the fields for which the 
Faddeev-Popov determinant is positive. This additional limitation is not significant 
for high-frequency oscillations, but substantially reduces the effective oscillation 
amplitudes in the low-frequency region. This in turn results in the fact that the 
“effective” charge interaction does not tend to infinity at finite distances as occurs 
in perturbation theory, but goes to infinity at infinitely large distances between 
charges, if at all. 

2. Non-uniqueness of gauge conditions 

The difficulties in the quantization of gauge fields are caused by the fact that 
the gauge field Lagrangian 

F,, = a,4 - b+ + k4~,1 I (2) 
where A,, are antihermitian matrices, Sp A, = 0, being invariant with respect to the 
transformation 

A, = S+A;S + S+a,S , s+ = s-1 7 (3) 

contains non-physical variables which must be eliminated before quantization. A 
conventional method of relativistic invariant quantization [3 ] is as follows. Let us 

consider a functional integral 

in Euclidean space-time and imagine the functional space A, in the form shown in 

Fig. 1 Source: GRIBOV, 1978, p.5.

• The determinant of Mab(x,y) is supposed to be always positive.

These assumptions were considered to be true during the quantization procedure developed by
Faddeev-Popov and described above. Gribov showed in his work [45] that the failure of these
assumptions are closed related to the existence of zero-modes of the Faddeev-Popov operator
M ab. The problem surrounding the failure of these assumptions defines the Gribov issue. In
the next subsection the Gribov issue will be described and subsequently the mechanism pro-
posed by Gribov to fix these these quantization inconsistencies will be presented. Important
consequences of such mechanism will be discussed in the subsection (1.1.4).

1.1.2 Gribov’s issue

As stated before, one of the most important hypotheses required to derive the gauge fixed
Yang-Mills partition function is that: once the gauge-fixing condition is chosen, one should be

able to find out only one gauge field configuration Aµ that fulfils the gauge condition, F = 0,

and that is related to another configuration A′µ through a gauge transformation. This situation
is represented in Figure 2 by the curve L (where the Landau gauge is chosen). In other words, it
means that in principle one should not be able to find out two gauge-equivalent configurations,
let us say Aµ(x) and A′µ(x), that satisfy, both of them, the gauge condition. Such hypothetically
forbidden situation is graphically depicted in Figure 2 by the curve L′. Another forbidden
configuration is the one described in Figure 2 by the curve L′′. This curve describes the situation
where no gauge-equivalent configuration satisfy the gauge condition, at all.

While there is no examples of situations depicted by the curve L′′, the situation described
by the curve L′ is quite typical in non-Abelian gauge theories and, therefore, is worth analysing
[45–48]. To this end, let us consider two gauge-equivalent configurations, A′µ and Aµ, related
by an infinitesimal gauge transformation (35) and, both of them, satisfying the Landau gauge
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condition. That is,

A′µ = Aµ−Dµα(x) , ∂µAµ = 0 & ∂µA′µ = 0 . (46)

Therefore, one should end up with

−∂µDµα = 0 , (47)

whence Dµ stands for the covariant derivative,

Dµ = ∂µδ
ab− igAµ . (48)

Such equation points to the existence of zero-modes, that are eigenstates of the FP operator
associated to null eigenvalues. Therefore, one may conclude that if there are (at least) two
infinitesimally gauge-equivalent fields satisfying the Landau gauge, defining gauge copies, the
Faddeev-Popov operator has zero-modes (eigenstates associated to zero eigenvalues). Note that
for the Abelian case the equation (47) reduces to the Laplace equation,

∂
2
α = 0 . (49)

Since it defines plane waves, which are not normalisable, we will not consider this case, restric-
ting ourselves to the analysis of fields that smoothly vanish at infinity. It becomes quite evident
that a closer look at the space of eigenvalues of the FP operator is of great importance for a
better comprehension of the problem. Besides, let us regard that the FP operator is Hermitian in
the Landau gauge, which allows us to sort its eigenvalues in the real axes. Therefore, let us start
by considering a gauge configuration that is close enough to the trivial vacuum. In this case the
eigenvalue equation,

−∂µDµψ = εψ , (50)

reduces to

−∂
2
µψ = εψ . (51)

Notice that this equation is solvable only for positive ε, since in the momentum space we have
p2 = ε > 0. Then, for small enough field configurations there is no zero-mode issues anymore.
Otherwise, if Aµ turns out to be large, but still not too large, one reaches the zero-mode solution
ε = 0, since a higher potential of the gauge field tends to decrease the eigenvalue of the FP
operator in the Landau gauge. Thus, for even large amplitudes of Aµ the eigenvalue turns to
be negative; if it keeps growing the ε reaches zero again. Note that, in the Landau gauge, it
is possible to identify a threshold value for the squared norm of the gauge field, ‖A‖2

c , below
which the eigenvalue of the FP operator is positive, and for amplitudes whose squared norm is
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greater than such critical value the eigenvalue is negative.
In his work [45] Gribov showed that the domain of functional integration should be

restricted to the first region, named “first Gribov region” Ω, where ε > 0, in order to avoid
gauge copies. It is, however, known that this region is actually not completely free of copies.
Besides, it has being analytically motivated that the existence of those copies inside Ω do not
influence physical results (see [49] and references therein). Furthermore, until today there is no
way to analytically implement the restriction of the partition function to the region actually free
of copies, known as the Fundamental Modular Region, Λ.

The first Gribov region Ω enjoys some useful properties that have mathematical proof
still only in the Landau gauge, which justifies our interest in this gauge (see [47] and references
therein) 6. Namely,

• For every field configuration infinitesimally close to the border δΩ and belonging to the
region immediately out side Ω (called Ω2), there exist a gauge-equivalent configuration
belonging to Ω and infinitesimally close to the border δΩ as well [45]. It was also proven
that every gauge orbit intersects the first Gribov region Ω [54, 55].

• The Gribov region is convex [56]. This means that for two gluon fields A1
µ and A2

µ be-
longing to the Gribov region, also the gluon field Aµ = αA1

µ + βA2
µ with α,β ≥ 0 and

α+β = 1, is inside the Gribov region.

• One may also show that the Gribov region is bounded in every direction [56].

For more details concerning (proofs of) properties of Gribov regions see [47] and refe-
rences therein.

1.1.3 Implementing the restriction to the first Gribov region Ω

As was discussed before, our aim is to restrict the domain of the functional integration
to the region where the FP operator has positive eigenvalues. Therefore, let us define the first
Gribov region as the region where the FP operator is positive definite. Namely,

Ω ≡ {Aa
µ, ∂µAa

µ = 0, M ab > 0} . (52)

Once again, M ab stands for the Faddeev-Popov operator, defined innumerable times and given
once more,

M ab(x,y) = −∂µDab
µ δ(x− y) = −∂µ

(
∂µδ

ab−g f abcAc
µ

)
δ(x− y) . (53)

6 cf. [50–53] for recent developments on the Gribov issue in the wider class of Linear Covariant Gauges.
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The condition defines a positive definite operator, which means that only gauge field configu-
rations associated with positive eigenvalues of the FP operator will be considered.

One should notice that, since the FP operator is the inverse of the ghost propagator,
thus the ghost propagator plays a central role in the Gribov issue. Therefore, the propagator
of the ghost field is worthwhile to compute, which will be done up to the first loop order, by
following [45]. The positive definite condition imposed on the FP operator can be implemented
into the partition function by means of the ghost propagator, which can be read as〈

ca(k)cb(−k)
〉

= G(k2,A)ab . (54)

The effective computation of the equation (54) shall be performed with the partition function
(45) and treating the gauge field as an external classical field. Namely, one gets,

G(k2,A) =
1

N2−1
δabG(k2,A)ab =

1
k2 +

1
V

1
k4

Ng2

N2−1

∫ ddq
(2π)d A`

µ(−q)A`
ν(q)

(k+q)µkν

(k+q)2

=
1
k2 (1+σ(k,A)) , (55)

whereby

σ(k,A) =
1
V

1
k2

Ng2

N2−1

∫ ddq
(2π)d A`

µ(−q)A`
ν(q)

(k+q)µkν

(k+q)2 . (56)

Making use of the property

Aa
µ(q)A

a
ν(−q) =

(
δµν−

qµqν

q2

)
ω(A)(q)

⇒ ω(A)(q) =
1

d−1
Aa

λ
(q)Aa

λ
(−q) , (57)

which follows from the transversality of the gauge field, qµAa
µ(q) = 0, we will have

σ(k,A) =
1
V

1
k2

Ng2

(N2−1)(d−1)

∫ ddq
(2π)d A`

µ(−q)A`
µ(q)

(
δµν−

qµqν

q2

)
(k+q)µkν

(k+q)2 ,

=
1
V

1
k2

Ng2

(N2−1)(d−1)

∫ ddq
(2π)d

A`
µ(q)A

`
µ(−q)

(k+q)2

(
(k+q)µkµ−

qµ(k+q)µkνqν

q2

)
.

(58)

Such expression may be rewritten as follows,

σ(k,A) =
1
V

1
k2

Ng2

(N2−1)(d−1)

∫ ddq
(2π)d

A`
µ(q)A

`
µ(−q)

(k+q)2

(
k2−

qµkµkνqν

q2

)
,

=
1
V

Ng2

(N2−1)(d−1)

∫ ddq
(2π)d

A`
µ(q)A

`
µ(−q)

(k+q)2
kµkν

k2

(
δµν−

qµqν

q2

)
. (59)
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Now, reminding the property

∫ dd p
(2π)d F (p2)

(
δµν−

pµ pν

p2

)
=

(
d−1

d

)∫ dd p
(2π)d F (p2)δµν , (60)

the ghost form factor becomes

σ(k,A) =
1
V

Ng2

d(N2−1)

∫ ddq
(2π)d

A`
µ(q)A

`
µ(−q)

(k+q)2 . (61)

The ghost propagator (55) can be perturbatively approximated by

G(k2,A) ≈ 1
k2

1
(1−σ(k,A))

(62)

whereby we can see that for σ(k,A) < 1 the domain of integration is safely restricted to Ω,
characterising the no-pole condition. It is not so dificult to see that σ(k,A) is a decreasing
function of k, from (61), which means that the largest value of σ is obtained at k = 0. Therefore,
if the condition σ(0,A) < 1 is ensured, the system is (or would be) completely safe of gauge
copies for any non zero value of k. Note that the only allowed pole is at k2 = 0, which has
the meaning of approaching the boundary of the region Ω. At the end, the ghost form may be
computed by taking the limit k2→ 0, which reads

σ(0,A) =
1
V

1
d

Ng2

N2−1

∫ ddq
(2π)4 A`

α(−q)A`
α(q)

1
q2 . (63)

The partition function restricted to Ω then becomes,

ZG =
∫

Ω

[dA]exp [−SFP]

=
∫
[dA][dc][dc]V (Ω)exp

[
−SYM−

∫
dx
(

ca
∂µDab

µ cb− 1
2ξ

(∂µAa
µ)

2
)]

, (64)

with

V (Ω) = θ(1−σ(0,A)) , (65)

where θ(1−σ(0,A)) is the Heaviside step function ensuring the no-pole condition. Considering
the transversality of the gauge field in the Landau gauge and by making use of the integral
representation of the Heaviside step function, one gets the following expression of the partition
function restricted to the first Gribov region Ω,

ZG = N
∫ dβ

2πiβ

∫
DAeβ(1−σ(0,A))e−SFP . (66)

The final expression for the gauge fixed Yang-Mills action accounting for the Gribov copies
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reads

SG = SYM +Sgf +Sβ , (67)

with Sβ = β(σ(0,A)−1).
Roughly speaking, the Gribov restriction to the first Gribov region has already been

implemented into the partition function. However, notice that a new parameter has been in-
troduced, named the Gribov parameter β, which still deserves some analysis. As will become
clear, this new parameter is not a free parameter of the theory, but rather it is dynamically de-
termined by its gap equation, which amounts to ensure the no-pole condition. Akin to the mass
gap equation, the Gribov parameter gap equation will be derived from the vacuum energy of
the theory, computed up to the first loop order in perturbation theory. To that end, only terms
quadratic in the fields, from the Gribov action (67), must be taken into account. Doing so, one
should get

Zquad =
∫∫ dβeβ

2πiβ
[dA] exp

{
−1

2

∫ ddq
(2π)d Aa

µ(q)P ab
µν Ab

ν(−q)
}

, (68)

with

P ab
µν = δ

ab
(

q2
δµν +

(
1
ξ
−1
)

qµqν +
2Ng2β

(N2−1)V d
δµν

q2

)
. (69)

It is straightforward to compute the functional integration on the gauge field, since a Gaussian
integration, leading to the functional determinant of P ab

µν :

Zquad =
∫ dβ

2πi
e(β−lnβ)

[
detP ab

µν

]− 1
2
. (70)

This functional determinant may be exponentiated by making use of the relation

[
detP ab

µν

]− 1
2
= e−

1
2 lndetP ab

µν = e−
1
2 Tr lnP ab

µν . (71)

Thus, after taking the trace of lnP ab
µν , whose technicalities is detailed in [47], one may finally

get

Zquad =
∫ +i∞+ε

−i∞+ε

dβ

2πi
e f (β) , (72)

with

f (β) = β− lnβ− (d−1)(N2−1)
2

V
∫ ddq

(2π)d ln
(

q2 +
βNg2

N2−1
2

dV
1
q2

)
. (73)

The factors (N2− 1) and (d− 1) in front of the integral came from the trace over the SU(N)



36

gauge group indices and from the trace over the Euclidean space-time indices, respectively7.
Note that the factor (d−1) is obtained only after the Landau gauge limit is taken.

In the thermodynamic limit (when V → ∞) the saddle-point approximation becomes
exact, and the integral (72) can be easily computed, resulting in

e−V Ev = e f (β∗) . (74)

One should notice now that the vacuum energy has effectively been computed up to first loop
order, since

Ev = − 1
V

f (β∗) , (75)

within the thermodynamic limit. The saddle-point approximation, that becomes exact within
the thermodynamic limit, states that the integral (72) equals the integrated function evaluated at
its maximum value. Thus, the stared parameter β∗ accounts for the value of β that maximizes
the integrated function, which amounts to computing the Gribov parameter gap equation,

∂ f
∂β

∣∣∣∣
β=β∗

= 0 , (76)

which lead us to

d−1
d

Ng2
∫ ddq

(2π)d
1(

q4 + 2β∗Ng2

(N2−1)dV

) = 1 . (77)

Note that the Gribov parameter β, introduced to get rid of gauge ambiguities by restricting the
path integral to the first Gribov region Ω, is not in fact a free parameter of the theory. Otherwise,
it is dynamically determined by its gap equation (77). Besides, it has dimension of [mass]4 and
is proportional to the space-time volume V . Consequently, in the thermodynamic limit the
logarithmic term of equation (73) becomes zero, leading to the equation (77).

1.1.4 The gauge propagator

In the present subsection we motivate that a possible sign of confinement could be read
off from the poles of the gluon propagator, putting this quantity at the centre of any further
discussion in the present work. At one-loop order only quadratic terms of the action (67) really
matter, so that one can read off the two point function of the gauge field from the inverse of the
operator (69), setting ξ→ 0 at the very end of the computation. Notice that the computation

7 A careful computation of the functional trace of lnP ab
µν can be found in [47]
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is performed within the thermodynamic limit, so that the Gribov parameter must satisfy its gap
equation. Namely,

〈
Aa

µ(q)A
b
ν(−q)

〉
=

q2

q4 + 2Ng2β∗

(N2−1)dV

(
δµν−

qµqν

q2

)
δ

ab . (78)

Things become easier to analyze if we redefine the Gribov parameter as,

λ
4 =

2β∗Ng2

(N2−1)dV
. (79)

Consequently, the gauge propagator can be decomposed as,〈
Aa

µ(q)A
b
ν(−q)

〉
=

1
2

(
1

q2 + iλ2 +
1

q2− iλ2

)(
δµν−

qµqν

q2

)
δ

ab . (80)

Observe from (80) that the gluon propagator is suppressed in the infrared (IR) regime, while
displaying two complex conjugate poles, m2

± = ±iλ2. That feature does not allow us to attach
the usual physical particle interpretation to the gluon propagator, since such type of propagator
is deprived of a spectral representation [57–59, 61, 62]. From the analytic point of view the
gluon propagator (80) has not a(n) (always) positive Källén-Lehmann spectral representation,
which is necessary to attach a probabilistic interpretation to the propagator8. These features
lead us to interpret the gauge field as being confined.

As already mentioned in this thesis, our concept of confinement, throughout this work,
will always be concerned with the existence of a Gribov-kind of propagator. Particularly, not
only the gauge field will be susceptible to present such a Gribov-type propagator, but also the
quark field.

1.2 A brief summary of the Gribov–Zwanziger framework

About ten years after Gribov’s seminal paper has been published [45], a generalization to
the mechanism of getting rid of a leftover gauge ambiguity after fixing the gauge was proposed
by D. Zwanziger [65]. The main idea of his work is to take the trace of every positive eigenvalue
of the Faddeev-Popov operator,

M = −∂µDµ = −∂µ
(
∂µ− igAµ

)
, (81)

8 See [63, 64] and references therein for more details on the confinement interpretation of gluons, i-particles
and the existence of local composite operators, related to these i-particles, displaying positive Källén-Lehmann
spectral representation. For lattice results pointing to the same confinement interpretation see [57–59, 61, 62].



38

starting from the smallest eigenvalue. Regard that negative eigenvalues shall be avoided since it
is linked to the existence of gauge copies configurations — and zero-modes —, as was presented
in the previous section. Note that constant fields may also be eigenstates of the FP operator in
the Landau gauge related to zero eigenvalues. Since there is no gauge configurations associated
to negative eigenvalues with constant eigenstates (the constant fields), we will not consider such
configurations.

Zwanziger did show that restricting the domain of integration of the gauge field to the
first Gribov region Ω is equivalent to take into account only gauge field configurations that
minimize the squared norm of the gauge field with respect to the gauge orbit [55, 65],

‖A‖2
min = min

U∈SU(N)

∫
d4x

(
AU)2

. (82)

In other words, it means that the allegedly gauge physical configurations are those that satisfy
the (Landau) gauge condition and, furthermore, that minimizes the functional (82). It should be
clear that such minimized squared norm (82) is, in fact, a gauge-invariant quantity, and that, at
the same time, it is nonlocal 9 (cf. [47, 55, 65–68] and references therein).

For the sake of clarity, let us give once again the definition of the first Gribov region,
firstly introduced in Gribov’s paper [45] as

Ω = {Aa
µ ; ∂µAa

µ = 0 ; M ab =−(∂2
δ

ab−g f abcAc
µ∂µ) > 0 } . (83)

Although we have already mentioned the important features of this region, let us state it again,
as a matter of completeness [47, 55, 65, 66, 71, 72]:

i. Ω is convex and bounded in all direction in field space. Its boundary, ∂Ω, is the Gribov
horizon, where the first vanishing eigenvalue of the Faddeev-Popov operator shows up;

ii. every gauge orbit crosses at least once the region Ω.

In order to implement the restriction to this first Gribov’s region, D. Zwanziger proposed
an all order procedure, by computing the FP operator’s eigenvalue perturbatively, stating from
the lowest eigenvalue of the “nonperturbative term” of the FP operator,

M ab = M ab
0 +M ab

1 = −∂
2
δ

ab +g f abcAc
µ∂µ . (84)

Note that, it is straightforward to see that the lowest considered eigenvalue of the FP operator
must be always greater than zero. Thus, after perturbatively deriving the space of positive

9 The reader is pointed to a list of recent publications concerning the nonlocality of such dimension 2 gauge field
composite operator (82), [50–52, 69, 70].
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eigenvalues, he took the trace over all of them obtaining, at the end, a positive quantity, namely,

dV (N2−1)−H(A) > 0 , (85)

where the functional H(A) was identified with horizon function (cf. [47, 55, 65, 66]),

H(A) = g2
∫

d4x d4y f abcAb
µ(x)

[
M −1]ad

(x,y) f decAe
µ(y) . (86)

Therefore, the idea is to restrict the Yang-Mills path integral to the domain of integration of
the gauge field where the positivity condition (85) is satisfied. It amounts to make use of the
following partition function, hereinafter called the Gribov-Zwanziger partition function,

ZGZ =
∫

DΦθ(dV (N2−1)−H(A))e−SFP . (87)

The existence of such horizon function reflects the existence of a critical value for the
squared norm of the gauge field, ‖A‖c, beyond which the gauge configuration corresponds to a
negative eigenvalue of the FP operator.

The effect of the θ-function into the Faddeev-Popov action will be derived in the ther-
modynamic limit, where the θ-function amounts to a δ-function reflecting the concept that in
the limit V → ∞ the volume of a d-dimensional sphere is directly proportional to the surface of
the border of this sphere. Thus, within the thermodynamic limit the partition function (87) can
be rewritten as

ZGZ =
∫

DΦδ(dV (N2−1)−H(A))e−SFP . (88)

Finally, one may use the same integral representation of the δ-function, or even, may use the
equivalence between the microcanonical ensemble and the canonical ensemble in order to obtain
the GZ partition function,

ZGZ =
∫

DA Dc D c̄ Db e−[SFP+γ4H(A)−V γ44(N2−1)] , (89)

The parameter γ has the dimension of a mass and is known as the Gribov parameter 10. It is not
a free parameter of the theory; instead of that, it is a dynamical quantity, being determined in a
self-consistent way through a gap equation called the horizon condition [47, 55, 65–68], given
by

〈H(A)〉= 4V
(
N2−1

)
, (90)

10 Up to this point no relation exists between the former Gribov parameter β and the just derived γ parameter. The
authors of [73] showed that the Gribov’s mechanism amounts the Zwanziger’s mechanism when computed at
first-order.
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where the vacuum expectation value 〈H(A)〉 has to be evaluated with the measure defined in
eq.(89). The gap equation becomes exact due to the equivalence between the microcanonical
and canonical ensemble in the thermodynamic limit.

It is worth mentioning that most recently an all order proof has been published on the
equivalence between the Gribov’s procedure and Zwanziger’s one, [73]. Regarding that the Gri-
bov’s approach relies on the perturbative expansion of the ghost propagator, accounting up to
the first non-null term of the expansion, and that the Zwanziger’s one is an all order compu-
tation of the FP operator’s spectrum, the referred work computed the full ghost propagator in
perturbation theory, concluding at the end that both approaches are equivalent at first order in
perturbation theory.

1.2.1 The local formulation of the Gribov-Zwanziger action

Being able to construct a partition function for Yang-Mills theories that takes into ac-
count the Gribov ambiguities, related to the gauge-fixing procedure, is a big achievement in the
direction of better comprehending the quantization procedure of non-Abelian fields. However,
equation (89) is not actually useful to compute physical quantities, not analytically at least. The
point is that one needs the action to be local in order to be able to compute useful quantities,
such as the two point function of the gauge field.

In this subsection we are going to present a localized version of the GZ action. Note,
however, that no details concerning its derivation will be provided, since such procedure has
been already extensively treated, [47]. Rather, we will just mention the mechanism with which
one would obtain the same local expression.

Although the horizon function H(A) is a nonlocal quantity, it can be recast in a local form
by means of the introduction of a set of auxiliary fields (ω̄ab

µ ,ωab
µ , ϕ̄ab

µ ,ϕab
µ ), where (ϕ̄ab

µ ,ϕab
µ ) are

a pair of bosonic fields, and (ω̄ab
µ ,ωab

µ ) are a pair of anti-commuting fields. It turns out that the
Gribov-Zwanziger partition function ZGZ , in equation (89), can be rewritten as [47, 65, 66, 68]

ZGZ =
∫

Dφ e−SGZ , (91)

with φ accounting for every single field of the theory, {A, c, c̄, b, ω, ω̄, ϕ, ϕ̄}. The Faddeev-
Popov action SGZ is then given by the local expression

SGZ = SY M +Sg f +S0 +Sγ , (92)

with

S0 =
∫

d4x
(

ϕ̄
ac
µ (∂νDab

ν )ϕbc
µ − ω̄

ac
µ (∂νDab

ν )ωbc
µ −g f amb(∂νω̄

ac
µ )(Dmp

ν cp)ϕbc
µ

)
, (93)
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and

Sγ = γ
2
∫

d4x
(

g f abcAa
µ(ϕ

bc
µ + ϕ̄

bc
µ )
)
−4γ

4V (N2−1) . (94)

Let us now make some comments on the terms of the above action and about the mechanism one
should follow to obtain such an action. We are not going to provide a step-by-step construction
of the localized action (92). Otherwise, we will provide a backward construction. Note that the
term g f amb(∂νω̄ac

µ )(Dmp
ν cp)ϕbc

µ has no physical meaning, in the sense that it is not possible to
construct any Feynman diagram with entering c̄ and ω fields, so that the vertex with ω̄ and c

would influence. This term is introduced into the action by means of a shift in the ω field with
the aim of writing the action S0 as an exact BRST quantity. Namely,

S0 = s
∫

d4x
(

ω̄
ac
µ ∂νDνϕ

bc
µ

)
. (95)

To check that the contribution S0, given in equation (95), to the GZ action is indeed BRST exact,
consider the following BRST transformation rule of the fields,

sAa
µ = −Dab

µ cb ,

sca =
1
2

g f abccbcc ,

sc̄a = ba , sba = 0 ,

sω̄
ab
µ = ϕ̄

ab
µ , sϕ̄

ab
µ = 0 ,

sϕ
ab
µ = ω

ab
µ , sω

ab
µ = 0 . (96)

Therefore, an equivalent shift may be performed in order to remove the referred term. After
that, one should ends up with the expression∫

d4x
[
ϕ̄

ac
µ (∂νDab

ν )ϕbc
µ − ω̄

ac
µ (∂νDab

ν )ωbc
µ + γ

2g f abcAa
µ(ϕ

bc
µ + ϕ̄

bc
µ )
]
, (97)

where the ω field must be regarded as being the shifted one. The functional integration of the
fermionic fields (ω̄,ω) can easily be computed, leading to det [∂νDν]. In order to integrate out
the fields (ϕ̄,ϕ) one has to define the sources J̄ and J as

J̄bc
µ = Jbc

µ = γ
2g f abcAa

µ , (98)

so that the integral (97) may be rewritten as∫
d4x
[
ϕ̄

ac
µ (∂νDab

ν )ϕbc
µ + J̄bc

µ ϕ
bc
µ + Jbc

µ ϕ̄
bc
µ

]
. (99)

The couple of fields (ω̄,ω) were already integrated in the above expression. Summing and
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subtracting the term J̄bc
µ (∂νDab

ν )−1Jac
µ we can rewrite this integral as following,∫

d4x
{[

ϕ̄
ac
µ +(∂νDab

ν )−1J̄bc
µ

]
(∂νDab

ν )
[
ϕ

bc
µ +(∂νDab

ν )−1Jac
µ

]
− J̄bc

µ (∂νDab
ν )−1Jac

µ

}
. (100)

Performing the shifts ϕ̄ac
µ +(∂νDab

ν )−1J̄bc
µ → ϕ̄′ac

µ and ϕbc
µ +(∂νDab

ν )−1Jac
µ → ϕ′bc

µ one ends up
with∫

d4x
[
ϕ̄
′ac
µ (∂νDab

ν )ϕ′bc
µ − J̄bc

µ (∂νDab
ν )−1Jac

µ

]
. (101)

After all, one ends up with a Gaussian integration of the bosonic fields (ϕ̄′,ϕ′), whose integral
leads to det [∂νDν]

−1, and with the horizon function in its nonlocal version. Therefore, in order
to obtain the localized version of the GZ action, starting from the GZ action of equation (88),
one should perform the process just described in the backward direction.

1.2.1.1 The gap equation, or horizon condition:

Back to the local formulation of the Gribov-Zwanziger action, the horizon condition (90)
takes the simpler form

∂Ev

∂γ2 = 0 , (102)

where Ev(γ) is the vacuum energy defined by,

e−V Ev = ZGZ . (103)

The local action SGZ in eq.(92) is known as the Gribov-Zwanziger action. It has been shown to
be renormalizable to all orders [65, 66, 68].

1.2.1.2 The gauge propagator:

Finally, with the local version of the generating functional, the gluon and ghost propa-
gator could be computed. At first order in loop expansion, only quadratic terms in the fields of
the GZ action eq.(92) have to be kept, while terms of great order will be ignored. Therefore,
performing the same step-by-step of the previous section, one would be able to compute the
gauge and ghost propagators, ending up with

〈Aa
µ(k)A

b
ν(−k)〉 = k2

k4 +2Ng2γ4 δ
ab
(

δµν−
kµkν

k2

)
, (104)
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for the gluon field, and〈
ca(k)cb(−k)

〉
= G(k2)ab , (105)

with

G(k2) =
1
k2 +

1
V

1
k4

Ng2

N2−1

∫ ddq
(2π)d

q2

q4 +2Ng2γ4

(
δµν−

qµqν

q2

)
(k−q)µkν

(k−q)2

=
1
k2 (1+σ(k)) , (106)

for the ghost fields. Let us make, at this point, a brief analysis of (104) and (106) in the IR
regime. It is not difficult to see that in the deep IR regime the gauge field propagator is strongly
suppressed and tends to zero in the limit k2 → 0. As can be checked in (78), this behavior is
shared by Gribov and Gribov-Zwanziger approaches.

1.2.1.3 The ghost propagator:

Since we are performing a perturbative computation up to one-loop order, one must
follow the same step-by-step of the previous chapter in order to compute the ghost form factor.
Therefore, one should ends up with

σ(k) =
1
V

1
k2

Ng2

N2−1

∫ ddq
(2π)d

q2

q4 +2Ng2γ4

(
δµν−

qµqν

q2

)
(k−q)µkν

(k−q)2 . (107)

Note that the term linear in qµ is zero, due to the transversal projector. Making use of the identity∫
ddq f (q)qµqν/q2 = 1/d

∫
ddq f (q)δµν, one ends up with,

σ(k) =
1
V

Ng2(d−1)
d(N2−1)

∫ ddq
(2π)d

q2

q4 +2Ng2γ4
1

(k−q)2 . (108)

Taking the limit k→ 0, we have

σ(0) =
1
V

Ng2(d−1)
d(N2−1)

∫ ddq
(2π)d

1
q4 +2Ng2γ4 , (109)

which is a divergent integral and the ghost propagator is enhanced, just as in the Gribov ap-
proach. However, before effectively solving the integral one has to fix the Gribov parameter γ2

dynamically, through the horizon condition (90) computed with the quadratic generating func-
tional.
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1.3 A brief introduction to the refined version of GZ

Recently, a refinement of the Gribov-Zwanziger action has been worked out by the
authors [74–77], by taking into account the existence of certain dimension two condensates11.
The Refined Gribov-Zwanziger (RGZ) action reads [74–77]

SRGZ = SGZ +
∫

d4x
(

m2

2
Aa

µAa
µ−µ2

(
ϕ̄

ab
µ ϕ

ab
µ − ω̄

ab
µ ω

ab
µ

))
, (110)

where SGZ stands for the Gribov-Zwanziger action, eq.(92). As much as the Gribov parameter
γ2, the massive parameters (m2,µ2) have a dynamical origin, being related to the existence of
the dimension two condensates 〈Aa

µAa
µ〉 and 〈ϕ̄ab

µ ϕab
µ − ω̄ab

µ ωab
µ 〉, [74–77]. The gluon propagator

obtained from the RGZ action turns out to be suppressed in the infrared region, attaining a
non-vanishing value at zero momentum, k2 = 0, i.e.

〈Aa
µ(k)A

b
ν(−k)〉 = δ

ab
(

δµν−
kµkν

k2

)
D(k2) , (111)

D(k2) =
k2 +µ2

k4 +(µ2 +m2)k2 +2Ng2γ4 +µ2m2 . (112)

One should note that the gluon propagator obtained in the Gribov-Zwanziger approach differ
from the refined one by the terms proportional to µ2 and m2. So, putting these parameters to
zero the GZ gluon propagator is recovered, with the well known suppressed behavior in the IR
regime, going to zero for k2→ 0. Also, unlike the case of the GZ action, the ghost propagator
stemming from the Refined theory is not enhanced in the deep infrared:

Gab(k2) = 〈c̄a(k)cb(−k)〉
∣∣∣
k∼0
∼ δab

k2 . (113)

The infrared behaviour of the gluon and ghost propagators obtained from the RGZ action turns
out to be in very good agreement with the most recent numerical lattice simulations on large
lattices [57, 61, 62]. Moreover, the numerical estimates [57] of the parameters (m2,µ2,γ2) show
that the RGZ gluon propagator (111) exhibits complex poles and violates reflection positivity.
This kind of two-point function lacks the Källén-Lehmann spectral representation and cannot be
associated with the propagation of physical particles. Rather, it indicates that, in the nonpertur-
bative infrared region, gluons are not physical excitations of the spectrum of the theory, i.e. they
are confined. It is worth mentioning here that the RGZ gluon propagator has been employed
in analytic calculation of the first glueball states [80, 81], yielding results which compare well
with the available numerical simulations as well as with other approaches, see [82] for an ac-

11 See [78, 79] for a recent detailed investigation on the structure of these condensates in color space.
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count on this topic. The RGZ gluon propagator has also been used in order to study the Casimir
energy within the MIT bag model [32]. The resulting energy has the correct expected confining
behaviour. Applications of the RGZ theory at finite temperature can be found in [83, 84].

1.4 The BRST breaking

One important aspect of both GZ and RGZ theories is that they exhibit a soft breaking
of the BRST symmetry. Indeed, it has been extensively studied that the breaking of the BRST
symmetry is intimately connected with the restriction of the domain of integration of the gauge
field to the region inside the Gribov horizon [64, 85–94].

In fact, considering either the GZ action (92) or the RGZ action (110), one should be
able to prove that the BRST variation of both of these actions is not zero, but rather it equals an
integrated polynomial of order smaller than 4 (i.e. the space-time dimension) and proportional
to γ2 [74–77]. Namely,

sSGZ = sSRGZ = γ
2
∆ , (114)

with

∆ =
∫

d4x
(
−g f abc(Dam

µ cm)(ϕbc
µ + ϕ̄

bc
µ )+g f abcAa

µω
bc
µ

)
. (115)

To check the above statement, one has to consider the BRST variation rule of each field as the
one given in (96).

Notice that the breaking term ∆ is of dimension two in the fields and, as such, is said to be
a soft breaking. Equation (114) can be translated into a set of softly broken Slavnov-Taylor iden-
tities which ensure the all order renormalizability of both GZ and RGZ actions. The presence of
the soft breaking term ∆ turns out to be necessary in order to have a confining gluon propagator
which attains a non-vanishing value at zero momentum, eqs.(111),(112), in agreement with the
lattice data [57, 61, 62]. It is worth underlining that this property is deeply related to the soft
breaking of the BRST symmetry. In fact, the non-vanishing of the propagator at zero momen-
tum relies on the parameter µ2, which reflects the existence of the BRST-exact dimension-two
condensate [74–77]. Recently, the breaking of the BRST symmetry in the IR regime was firstly
observed on the lattice, as can be checked in [59], by making use of the possibility of fixing
the (minimal) Landau gauge on the lattice. To that end, the authors investigated if the so-called
Bose-ghost propagator, at zero temperature, is zero or not. Such Bose-ghost propagator can be
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read as

Q abcd
µν (x,y) =

〈
ω

ab
µ ω̄

cd
ν +ϕ

ab
µ ϕ̄

cd
ν

〉
=

〈
s
(

ϕ
ab
µ ω̄

cd
ν

)〉
. (116)

Note that this is a BRST exact quantity and as such shall be zero for a BRST symmetric the-
ory. Otherwise, if the Bose-ghost propagator is not zero, then it is an evidence that the BRST
symmetry is broken. This Bose-ghost propagator has been proposed as a carrier of long-range
confining force in the minimal Landau gauge [85]. In order to investigate the Bose-ghost pro-
pagator the authors of [59] noticed that the quantity (116) may be written as

Q abcd
µν (x,y) =

〈
R ab

µ R cd
ν

〉
, (117)

where

R ab
µ = −g

∫
d4z

(
M −1)ab

f abcAc
µ . (118)

Such quantity may be accessed by taking the inverse of the FP operator for the gauge propa-
gator within the Gribov restriction. One must be careful to interpret these results: there is no
consistent proof of the equivalence of the minimal Landau gauge on the lattice and the usual
analytical Landau gauge, so far.



47

2 THE YANG-MILLS + HIGGS FIELD THEORY

2.1 Introduction

As mentioned in the Introduction, the confinement feature of QCD seems to be directly
linked to the existence of a (remnant) global symmetry: in the Linear Sigma model (LSM) that is
the SO(N) symmetry, with N standing for the number of flavors of the scalar field; in the Yang-
Mills theory coupled to a (static) matter field, such as the Higgs field, the center symmetry ZN

is the remaining global symmetry that has to be checked.
In this chapter we are going to discuss the specific model of Yang-Mills theory coupled

to the Higgs field. Specifically, the SU(2)+ Higgs and the Electroweak SU(2)×U(1)+ Higgs
gauge theory will be analyzed. Here we adopt a perturbative analytical approach, by accounting
for non-perturbative effects through the quantization mechanism proposed by Gribov12. Of
course, this is not the first time that such a model is studied. Instead of that, there exist a
vast bibliography concerning this topic, hanging from lattice works [8, 15, 42, 44, 95–99] to the
mean-field approach [100–102].

Before effectively entering into details of our approach, we would like to briefly discuss
the work by Fradkin-Shenker on the lattice [8], where the gauge field was considered to be
coupled to the Higgs field frozen in its state of vacuum configuration. For such an end, in the
next subsection we are going to present a summary of their work, with details that may help
us to understand differences between their discrete and our analytical approach, leaving us in
comfortable position to compare both results. Our results are shortly exposed at the end of each
section of this chapter. At the end of the chapter our conclusions are exposed with a comparison
between the referred lattice work of Fradkin-Shenker.

2.1.1 Fradkin & Shenker’s results

By making use of a discrete space-time, called lattice, Fradkin & Shenker reported a
work on the study of phase diagrams of gauge theories coupled to Higgs fields, [8]. In order to
properly address the feature of phase transition of gauge-Higgs theories, the radial part of the
scalar fields is considered to be frozen at its vacuum configuration state,

φ
2 = ν

2 , (119)

12 For details about the Gribov and Gribov-Zwanziger approaches the reader is pointed to chapter 1 and advised to
read references cited therein.
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by imposing the unitary gauge. The action describing this lattice Yang-Mills + Higgs fields
theory is given by

S[φ(~r);Uµ(~r)] =
K
2 ∑

(~r,µν)

Tr
[
Uµ(~r)Uν(~r+ êµ)U†

µ (~r+ êν)U†
ν (~r)

]
+ c.c.+

β

2 ∑
~r,µ

[
φ(~r) ·D

{
Uµ(~r)

}
·φ†(~r+ êµ)+ c.c.

]
, (120)

making use of their notation, where K stands for the inverse of the squared coupling constant,
K = 1/g2, and β stands for the squared fixed norm of the scalar fields, β = ν2. The lattice is
composed of sites, labeled by~r, and of links, whose starting point is on the lattice site~r with
ending point on~r+ êµ, with êµ denoting the fundamental direction vector. So a link is labeled by
(~r, µ). In the action (120), Uµ(~r) denotes the gauge group element that lives on the lattice link
(~r, µ), while φ(~r) accounts for the scalar fields living on the lattice site~r; D

{
Uµ(~r)

}
accounts

for the group representation of the gauge link Uµ(~r), and summation is taken over the plaquette
(~r, µν), which is defined as

Uµ(~r)Uν(~r+ êµ)U†
µ (~r+ êν)U†

ν (~r) . (121)

In the example case of the (compact) Electromagnetism quantum field theory, QED, the
gauge link is given by

Uµ(~r) = exp
[
iaeAµ(~r)

]
, (122)

with a denoting the lattice spacing — the size of the link between two neighbor sites — and
e the electromagnetic coupling constant. The continuum limit is recovered for a→ 0 and the
gauge sector of the action (120) goes as

S[A] =
∫

d4x
1
2

Tr
[

FµνFµν

]
, (123)

with Fµν standing for the electromagnetic field strength: Fµν = ∂µAν−∂νAµ.
For the general case, the gauge group link Uµ(~r) should transform under the SU(N)

gauge transformation as

Uµ(~r) → G(~r)Uµ(~r)G†(~r) , (124)

while the scalar field transforms as

φ(~r) → D{G(~r)}φ(~r) , (125)

for G(~r) ∈ SU(N). The lattice action (120) is left invariant under such gauge transformation,
(124) and (125). Particularly, the trace taken over any gauge link Uµ(~r) of the SU(2) gauge
group is real. In the general case of SU(N) gauge group the complex conjugate term (c.c.) has



49

to be added to the action, so to end up with a real trace [8, 15, 103].
When the unitary gauge is imposed, by choosing configurations of the scalar fields

obeying 13 (119), the gauge symmetry is broken down to a local group of symmetry, named
the center symmetry ZN . This is a subgroup of the broken gauge group SU(N) and whose ele-
ments commute with every element of SU(N). For instance, in the Georgi-Glashow model the
SU(2) gauge group is spontaneously broken to the Abelian U(1) group, after fixing the unitary
gauge, leaving the center symmetry Z2 unbroken. As mentioned in the Introduction, the confi-
nement phase transition is to be understood as the ordered/disordered magnetic phase transition
related to the center symmetry ZN .

Fradkin & Shenker make use of the Wilson loop in order to probe for phase transition,
although such obsevable is not sensible to the center symmetry breaking at infinite volume. The
Wilson loop is, in fact, an order parameter (as discussed in the introduction) in the sense that it
is a gauge invariant quantity and is sensible to the existence of three different phases, since it is
a measure of the self-energy of static quarks. Namely, the Wilson loop is defined on the lattice
by

W =

〈
Tr

[
∏

(~r,µ)∈Γ

Uµ(~r)

]〉
, (126)

where Γ is the set of links forming closed loops.
Fradkin & Shenker could find that for the Higgs fields in a trivial representation of the

SU(N) gauge group, such as the adjoint representation, the gauge symmetry is broken after
fixing the unitary gauge, with the Higgs field frozen in its vacuum configuration. However, the
center symmetry ZN will always be left intact [8]. By varying the parameters of the theory, β =

ν2 and K = 1/g2, they could find three possible phases, by probing the Wilson loop. Namely,

i. A Higgs-mechanism-type phase, with massive gauge bosons and a perimeter law fall-off

for the Wilson loop. This region corresponds to large β and K values;

ii. An intermediate phase, called free-charge or Coulomb phase, where the Wilson loop
indicates a finite-energy between two static sources, and massless gauge bosons;

iii. A confined phase, where the Wilson loop develops an area law fall-off, the gauge bosons
are massive with no free charges.

It should be emphasized that such spectrum concerns the Higgs fields in the adjoint representa-
tion, see Figure 3.

For the Higgs filds in the fundamental representation, which is a non-trivial represen-
tation of the gauge group, the situation is completely different. As they say, the unitary gauge

13 The unitary gauge is not necessarily given by (119). Take a look at the next subsection 2.1.2 for more details
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Figure 3 - This phase diagram corresponds to the non-Abelian gauge theory coupled to Higgs
fields in the adjoint representation. It also corresponds to the spectrum of the compact
Abelian scenario.

Source: FRADKIN; SHENKER, 1979, p.12.

completely breaks the gauge symmetry, so that the center symmetry does not survive [8]. In this
case they found that the confinement-like regime and the Higgs-like regime belong to the same

phase of the theory, on the whole configuration space of the parameters. That is, there is no
phase transition between the confinement- and Higgs-like regimes. Furthermore, the transition
between any two points of the confined regime and of the Higgs-like regime are smoothly con-
nected, which means that the vev of local composite operators develops continuously throughout
the entire configuration space (some care should be taken to the vicinity of β = K = ∞). By
means of the Osterwalder-Seiler’s proof to the special case of fixed length of the Higgs field,
they could prove the analyticity of the whole configuration space. Those results were obtained
for non-Abelian gauge fields coupled to Higgs fileds in the fundamental representation. Things
are considerably different for the Abelian + Higgs gauge theory (for details, see [8]).

2.1.2 A suitable gauge choice, but not the unitary one

Before properly starting to analyze the proposed model, let us state a few words on
general features that are useful in this work. As mentioned before, the considered SU(2) and
SU(2)×U(1) Yang-Mills gauge theories are coupled to a scalar Higgs field. The Higgs field is
considered in either the fundamental and the adjoint representation: in the SU(2) case both the
fundamental and the adjoint representation are analysed; while in the SU(2)×U(1) case only
the the fundamental representation will be considered.

Usually the unitary gauge arises as a good choice when the Higgs mechanism is being
treated, since in this gauge physical excitations are evident. However, instead of fixing the
unitary gauge, we are going to choose the more general Rξ gauge, whereby the unitary gauge
is a special limit, ξ→ ∞, and the Landau gauge can be recovered when ξ→ 0. In the case of
interest, the Landau gauge is imposed at the end of each computation.
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The Rξ gauge condition reads,

f a = ∂µAa
µ− iξ ∑

m,n
ϕm(x)(τa)mnνn . (127)

Note that in eq. (127) iϕm(x)(τa)mnνn is a possible form for the ba field, defined in (41). The ϕ

field is defined as a small fluctuation around the vacuum configuration of the Higgs field Φ,

Φ(x) = ϕ(x)+ν , (128)

with vacuum expectation value 〈ϕ〉= 0. In order to apply the gauge condition (127) we should
follow the standard process described in many text books, [12, 13, 104]. Rather than a Dirac
delta function, as in eq. (34), one should put a Gaussian function,

δ( f a(A))→ exp
(
− 1

2ξ

∫
ddx f a f a

)
. (129)

In the limiting case of ξ→ 0 the Gaussian term (129) oscillates very fast around f a = 0 so
that the Gaussian term (129) behaves like a delta function, ensuring the desired Landau gauge.
On the other side, if ξ→ ∞ then we have the unitary gauge. Needless to say, the limit ξ→ 0,
recovering the Landau gauge, should be applied at the very end of each computation14.

In the present work we should deal with the Higgs field frozen at its vacuum confi-
guration — i.e., Φ = ν. It is equivalent to replacing every Higgs field Φ in the action with
its vacuum expectation value ν. Since the Rξ gauge fixing condition (127) only depends on
the vector gauge field Aµ and on the fluctuation of the scalar field ϕ multiplied by the gauge
parameter ξ, the Gribov procedure remains valid for the limit case ξ→ 0.

2.2 SU(2)+Higgs field in the Fundamental representation

In the present section nonperturbative effects of the SU(2)+Higgs model will be consi-
dered, by taking into account the existence of Gribov copies. The fundamental representation of
the Higgs field, in d = 3 and d = 4, will be studied first. Subsequently, its adjoint representation,
in d = 3 and d = 4, will be considered.

14 It is perhaps worthwhile pointing out here that the Landau gauge is also a special case of the ’t Hooft Rξ gauges,
which have proven their usefulness as being renormalizable and offering a way to get rid of the unwanted
propagator mixing between (massive) gauge bosons and associated Goldstone modes, ∼ Aµ∂µφ. The latter term
indeed vanishes upon using the gauge field transversality. The upshot of specifically using the Landau gauge is
that it allows to take into account potential non-perturbative effects related to the gauge copy ambiguity.
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Working in Euclidean spacetime, the starting action of the current model reads

S =
∫

ddx

(
1
4

Fa
µνFa

µν +(Di j
µ Φ

j)†(Dik
µ Φ

k)+
λ

2

(
Φ

†
Φ−ν

2
)2
−

(∂µAa
µ)

2

2ξ
+ c̄a

∂µDab
µ cb

)
, (130)

where the covariant derivative is given by

Di j
µ Φ

j = ∂µΦ
i− ig

(τa)i j

2
Aa

µΦ
j , (131)

and the vacuum expectation value of the scalar field is
〈
Φi〉 = νδ2i, with i = 1,2, so that all

components of the gauge field acquire the same mass, m2 = g2ν2

2 .
By following the procedure described in the subsection 1.1.2, the restriction to the first

Gribov region Ω relies on the computation of the ghost form factor, given by equation (63), and
on the enforcement of the no-pole condition, (62)–(65). Since the presence of the scalar Higgs
field does not influence the procedure of quantizing the gauge field, due to the Landau gauge
chosen with the Higgs field frozen at its vacuum configuration15, the non-local Gribov term,
which is proportional to β, is not affected and one ends up with the action

S ′ = S+β
∗
σ(0,A)−β

∗ , (132)

with S given by eq.(130), the ghost form factor given by (63) and β∗ stands for the Gribov
parameter that solves the gap equation (76), where the function f (β) is given in the following
subsection.

2.2.1 The gluon propagator and the gap equation

In order to compute the gluon propagator up to one-loop order in perturbation theory let
us follow the steps described in the subsection 1.1.4. The condition of freezing the scalar field
to its vacuum configuration is equivalent to considering λ large enough, so that the potential
term of the scalar field becomes a delta function of

(
Φ†Φ−ν2): the quadratic terms of the

action (130) reads,

S quad =
∫

ddx

(
1
4
(
∂µAa

ν−∂νAa
µ
)2−

(∂µAa
µ)

2

2ξ
+

g2ν2

4
Aa

µAa
µ

)
. (133)

After implementing the Gribov’s restriction of the gauge field configuration space to the
first Gribov region Ω, and changing to the Fourier momentum space, one gets the following

15 Take a look at the subsection 2.1.2.
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partition function

Zquad =
∫ dβeβ

2πiβ
[dA] exp

{
−1

2

∫ ddq
(2π)d Aa

µ(q)P ab
µν Ab

ν(−q)
}

, (134)

with

P ab
µν = δ

ab
[

δµν

(
q2 +

ν2g2

2

)
+

(
1
ξ
−1
)

qµqν +
4g2β

3dV
1
q2 δµν

]
. (135)

Computing the inverse of (135) and taking ξ→ 0 at the very end, so recovering the
Landau gauge, only the transversal component of will survive and the gauge propagators may
be identified as

〈
Aa

µ(q)A
b
ν(−q)

〉
= δ

ab q2

q4 + g2ν2

2 q2 + 4g2β∗

3dV

(
δµν−

qµqν

q2

)
, (136)

whereby β∗ solves the gap equation, which is obtained by the means of the subsection 1.1.3.
After computing the Gaussian integral of the partition function and taking the trace over all
indices, one ends up with the following partition function,

Zquad =
∫ dβ

2πi
e f (β) = e−V Ev , (137)

whereby one reads the free-energy,

f (β) = β− lnβ− 3(d−1)V
2

∫ ddk
(2π)d ln

(
k2 +

g2ν2

2
+

4g2β

3dV
1
k2

)
, (138)

which is equivalent to (73). In the thermodynamic limit the integral of equation (137) may be
solved through the saddle-point approximation (76) leading to the gap equation16

2(d−1)
d

g2
∫ ddq

(2π)d
1

q4 + g2ν2

2 q2 + 2g2β∗

3dV

= 1 . (139)

In what follows the special case of d = 3 and d = 4 Euclidean space-time will be con-
sidered, and the gap equation will be solved in both situations with a subsequent analysis of
the gauge field propagator, paying special attention to their pole: the applicability of Gribov’s
confinement criterion (e.g. the existence of complex conjugate poles) will be studied in each

16 We remind here that the derivative of the term lnβ in expression (138) will be neglected, for the derivation of
the gap equation, eq.(139), when taking the thermodynamic limit.
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space-time situation.

2.2.2 The d = 3 case

Now, let us proceed with the solution of the gap equation (139). Since we are working
in d = 3, the gap equation contain a finite integral, easy to be computed, leading to

4g2

3dV
β
∗ =

1
4

(
g2ν2

2
− g4

9π2

)2

. (140)

As done in the previous section, the analysis of the gluon propagator could be simplified by
making explicit use of its poles. Namely,

〈
Aa

µ(q)A
b
ν(−q)

〉
=

δab

m2
+−m2

−

(
m2
+

q2 +m2
+

−
m2
−

q2 +m2
−

)(
δµν−

qµqν

q2

)
, (141)

with

m2
+ =

1
2

(
g2ν2

2
+

√
g6

9π2

(
ν2− g2

9π2

))
, m2

− =
1
2

(
g2ν2

2
−

√
g6

9π2

(
ν2− g2

9π2

))
.

(142)

In this way, we may distinguish two regions in the (ν2,g2) plane:

i) when g2 < 9π2ν2 both masses (m2
+,m

2
−) are positive, as well as the residues. The gluon

propagator, eq.(141), decomposes into two Yukawa modes. However, due to the relative
minus sign in expression (141) only the heaviest mode with mass m2

+ represents a physical
mode. We see thus that, for g2 < 9π2ν2, all components of the gauge field exhibit a
physical massive mode with mass m2

+. This region is what can be called a Higgs phase.

Let us also notice that, for the particular value g2 = 9π2

2 ν2, corresponding to a vanishing
Gribov parameter β = 0, the unphysical Yukawa mode in expression (141) disappears, as
m2
− = 0. As a consequence, the gluon propagator reduces to that of a single physical

mode with mass 9π2

4 ν4.

ii) when g2 > 9π2ν2, the masses (m2
+,m

2
−) become complex. In this region, the gluon pro-

pagator, eq.(141), becomes of the Gribov type, displaying complex conjugate poles. All
components of the gauge field become thus unphysical. This region corresponds to the
confining phase.
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2.2.3 The d = 4 case

With quite the same process as for the d = 3 case, let us analyse the poles of the gauge
field propagator by solving the gap equation for d = 4. To that end the following decomposition
becomes useful

q4 +
g2ν2

2
q2 +

g2

3
β = (q2 +m2

+)(q
2 +m2

−) , (143)

with

m2
+ =

1
2

(
g2ν2

2
+

√
g4ν4

4
− 4g2

3
β∗

)
, m2

− =
1
2

(
g2ν2

2
−
√

g4ν4

4
− 4g2

3
β∗

)
. (144)

Making use of the MS renormalization scheme in d = 4− ε the gap equation (139) becomes[
1+

m2
−

m2
+−m2

−
ln
(

m2
−

µ2

)
−

m2
+

m2
+−m2

−
ln
(

m2
+

µ2

)]
=

32π2

3g2 . (145)

After a suitable manipulation we get a more concise expression for the gap equation

2
√

1−ζ ln(a) =−
(

1+
√

1−ζ

)
ln
(

1+
√

1−ζ

)
+
(

1−
√

1−ζ

)
ln
(

1−
√

1−ζ

)
, (146)

where we have introduced the dimensionless variables

a =
g2ν2

4µ2e
(

1− 32π2

3g2

) , ζ =
16
3

β∗

g2ν4 ≥ 0 , (147)

with 0≤ ζ < 1 in order to have two real, positive, distinct roots (m2
+,m

2
−). For ζ > 1, the roots

(m2
+,m

2
−) become complex conjugate, and the gap equation takes the form

2
√

ζ−1 ln(a) =−2 arctan
(√

ζ−1
)
−
√

ζ−1 ln ζ . (148)

Moreover, it is worth noticing that both expressions (146),(148) involve only one function, i.e.

they can be written as

2 ln(a) = g(ζ) , (149)

where for g(ζ) we might take

g(ζ) =
1√

1−ζ

(
−
(

1+
√

1−ζ

)
ln
(

1+
√

1−ζ

)
+
(

1−
√

1−ζ

)
ln
(

1−
√

1−ζ

))
,

(150)
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which is a real function of the variable ζ ≥ 0. Expression (148) is easily obtained from (146)
by rewriting it in the region ζ > 1. In particular, it turns out that the function g(ζ)≤−2ln2 for
all ζ≥ 0, and strictly decreasing. As consequence, for each value of a < 1

2 , equation (149) has
always a unique solution with ζ > 0. Moreover, it is easy to check that g(1) = −2. Therefore,
we can distinguish ultimately three regions, namely

(a) when a> 1
2 , eq.(149) has no solution for ζ. Since the gap equation (139) has been obtained

by applying the saddle point approximation in the thermodynamic limit, we are forced to
set β∗ = 0. This means that, when a > 1

2 , the dynamics of the system is such that the
restriction to the Gribov region cannot be consistently implemented. As a consequence,
the standard Higgs mechanism takes place, yielding three components of the gauge field
with mass m2 = g2ν2

2 . Note that, for sufficiently weak coupling g2, a will unavoidably be
larger than 1

2 .

(b) when 1
e < a < 1

2 , equation (149) has a solution for 0 ≤ ζ < 1. In this region, the roots
(m2

+,m
2
−) are real and the gluon propagator decomposes into the sum of two terms of the

Yukawa type:

〈
Aa

µ(q)A
b
ν(−q)

〉
=

δab

m2
+−m2

−

(
m2
+

q2 +m2
+

−
m2
−

q2 +m2
−

)(
δµν−

qµqν

q2

)
. (151)

Moreover, due to the relative minus sign in eq.(151) only the component proportional to
m2
+ represents a physical mode.

(c) for a < 1
e , equation (149) has a solution for ζ > 1. This scenario will always be realized

if g2 gets sufficiently large, i.e. at strong coupling. In this region the roots (m2
+,m

2
−) be-

come complex conjugate and the gauge boson propagator is of the Gribov type, displaying
complex poles. As usual, this can be interpreted as the confining region.

In summary, we clearly notice that at sufficiently weak coupling, the standard Higgs mechanism
will definitely take place, as a > 1

2 , whereas for sufficiently strong coupling, we always end up
in a confining phase because then a < 1

2 .
Having obtained these results, it is instructive to go back where we originally started.

For a fundamental Higgs, all gauge bosons acquire a mass that screens the propagator in the in-
frared. This effect, combined with a sufficiently small coupling constant, will lead to a severely
suppressed ghost self energy, i.e. the average of (63) (to be understood after renormalization,
of course). If the latter quantity will a priori not exceed the value of 1 under certain conditions
— i.e., satisfying the no-pole condition — the theory is already well inside the Gribov region
and there is no need to implement the restriction. Actually, the failure of the Gribov restriction
for a > 1

2 is exactly because it is simply not possible to enforce that σ(0) = 1. Perturbation
theory in the Higgs sector is in se already consistent with the restriction within the 1st Gribov
horizon. Let us verify this explicitly by taking the average of (63) with, as tree level input pro-
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pagator, a transverse Yukawa gauge field with mass m2 = g2ν2

2 . Using that there are 3 transverse
directions17 in 4d, we have

σ(0) = 1− 3g2

32π2 ln(2a) . (152)

For a > 1
2 , the logarithm is positive and it is then evident that σ(0) will not cross 1, indicating

that the theory already is well within the first Gribov horizon.
Another interesting remark is at place concerning the transition in terms of a varying

value of a. If a crosses 1
e , the imaginary part of the complex conjugate roots becomes smoothly

zero, leaving us with 2 coinciding real roots, which then split when a grows. At a = 1
2 , one of

the roots and its accompanying residue vanishes, to leave us with a single massive gauge boson.
We thus observe that all these transitions are continuous, something which is in qualitative
correspondence with the theoretical lattice predictions of the classic work [8] for a fundamental
Higgs field that is “frozen” (λ→ ∞). Concerning the somewhat strange intermediate phase,
i.e. the one with a Yukawa propagator with a negative residue, eq.(151), we can investigate in
future work in more detail the asymptotic spectrum based on the BRST tools developed in [89]
when the local action formulation of the Gribov restriction is implemented. Recent works on
the lattice confirm the existence of a cross-over region, where there is no line separating the
“phases”, as e.g. [106, 107] where the authors work in the non-aligned minimal Landau gauge
and observe the transition between a QCD-like phase and a Higgs-like phase, in a region away
from the cross-over region.

2.2.4 The vacuum energy in the fundamental representation

Let us look at the vacuum energy Ev of the system, which can easily be read off from
expression (137), namely

Ev =−β
∗+

9
2

∫ d4k
(2π)4 ln

(
k2 +

g2ν2

2
+

β∗

3
g2

k2

)
, (153)

where β∗ is given by the gap equation (139). Making use of the MS renormalization scheme,
the vacuum energy may be written as:

17 We have been a bit sloppy in this paper with the use of dimensional regularization. In principle, there are
3− ε transverse polarizations in d = 4− ε dimensions. Positive powers in ε can (and will) combine with the
divergences in ε−1 to change the finite terms. However, as already pointed out before, a careful renormalization
analysis of the Gribov restriction is possible, see e.g. [47, 105] and this will also reveal that the “1” in the
Gribov gap equation will receive finite renormalizations, compatible with the finite renormalization in e.g. σ(0),
basically absorbable in the definition of a.
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• for a < 1
2 , we have

8
9g4ν4 Ev =

1
32π2

(
1− 32π2

3g2

)
− 1

2
ζ

32π2 +
1
4

1
32π2

(
(4−2ζ)

(
ln(a)− 3

2

))
(154)

+
1
4

1
32π2

((
1+
√

1−ζ

)2
ln
(

1+
√

1−ζ

)
+
(

1−
√

1−ζ

)2
ln
(

1−
√

1−ζ

))
,

where ζ is obtained through eqs.(149),(150).

• for a > 1
2 ,

8
9g4ν4 Ev =

1
32π2

(
1− 32π2

3g2

)
+

1
32π2

((
ln(a)− 3

2

))
+

1
32π2 ln2 . (155)

From these expressions we could check that the vacuum energy Ev(a) is a continuous function
of the variable a, as well as its first and second derivative, and that the third derivative develops
a jump at a= 1

2 . We might be tempted to interpret this is indicating a third order phase transition
at a = 1

2 . The latter value actually corresponds to a line in the (g2,ν) plane according to the
functional relation (147). However, we should be cautious to blindly interpret this value. It is
important to take a closer look at the validity of our results in the light of the made assumptions.
More precisely, we implemented the restriction to the horizon in a first order approximation,
which can only be meaningful if the effective coupling constant is sufficiently small, while
simultaneously emerging logarithms should be controlled as well. In the absence of propagating
matter, the expansion parameter is provided by y≡ g2N

16π2 as in pure gauge theory. The size of the
logarithmic terms in the vacuum energy (that ultimately defines the gap equations) are set by
m2
+ ln m2

+

µ2 and m2
− ln m2

−
µ2 . A good choice for the renormalization scale would thus be µ2 ∼ |m2

+|:
for (positive) real masses, a fortiori we have m2

−<m2
+ and the second log will not get excessively

large either because m2
− gets small and the pre-factor is thus small, or m2

− is of the order of m2
+

and the log itself small. For complex conjugate masses, the size of the log is set by the (equal)
modulus of m2

± and thus both small by our choice of scale.
Let us now consider the trustworthiness, if any, of the a = 1

2 phase transition point. For
a ∼ 1

2 , we already know that ζ ∼ 0, so a perfect choice is µ2 ∼ m2
+ ∼

g2ν2

2 . Doing so, the
a-equation corresponds to

1
2
∼ e−1+ 4

3y (156)

so that y∼ 4. Evidently, this number is thus far too big to associate any meaning to the “phase
transition” at a = 1

2 . Notice that there is no problem for the a small and a large region. If
ν2 is sufficiently large and we set µ2 ∼ g2ν2

2 we have a small y, leading to a large a, i.e. the
weak coupling limit without Gribov parameter and normal Higgs-like physics. The logs are
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also well-tempered. For a small ν2, the choice µ2 ∼
√

g2θ∗ will lead to

a∼ (small number)e−1+ 4
3y (157)

so that a small a can now be compatible with a small y, leading to a Gribov parameter domina-
ting the Higgs induced mass, the “small number” corresponds to g2ν2√

g2θ∗
. Due to the choice of

µ2, the logs are again under control in this case.
Within the current approximation, we are thus forced to conclude that only for suffici-

ently small or large values of the parameter a we can probe the theory in a controllable fashion.
Nevertheless, this is sufficient to ensure the existence of a Higgs-like phase at large Higgs con-
densate, and a confinement-like region for small Higgs condensate. The intermediate a-region
is more difficult to interpret due to the occurrence of large logs and/or effective coupling. No-
tice that this also might make the emergence of this double Yukawa phase at a = 1

e ≈ 0.37 not
well established at this point.

2.3 The SU(2)+Higgs field in the ajoint representation

The Yang-Mills + Higgs action with the scalar field in its adjoint representation may be
written as

S =
∫

ddx
[

1
4

Fa
µνFa

µν +Dab
µ Φ

bDac
µ Φ

c +
λ

2

(
Φ

†
Φ−ν

2
)2
− (∂A)2

ξ
+ c̄a

∂Dabcb
]
. (158)

In the adjoint case the vacuum configuration that minimizes the energy is achieved by a constant
scalar field satisfying

〈Φa〉 = νδ
a3 , (159)

leading to the standard Higgs mechanism. One should pay attention that the condition of dege-
nerated vacuum, 〈Φa〉 6= 0, (159) does not automatically means that the unitary gauge is being
adopted. As has been emphasized through out this chapter, the Higgs field is being considered
to be frozen in its vacuum configuration, which allows us to choose, under such hypothesis, the
Landau gauge. Details concerning this statement can be found in standard textbooks [12–14] as
well as in the section 2.1.2.

Just as in the fundamental case, fixing the scalar field in its vacuum configuration is
equivalent to consider a large enough value for the self-coupling λ, so that the potential energy
amounts to a delta function of

(
Φ†Φ−ν2). Thus, for the quadratic terms of the action, we have

Squad =
∫

ddx
(

1
4
(
∂µAa

ν−∂νAa
µ
)2

+ba
∂µAa

µ +
g2ν2

2
(
A1

µA1
µ +A2

µA2
µ
))

. (160)
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Following the standard procedure, before implementing the Gribov framework, one
should notice that the action (160) has two independent sector, the diagonal and the off-diagonal

ones, corresponding respectively to the quadratic terms of A3
µ and Aα

µ , with α = 1,2 (Greek let-
ters should account for 1 and 2 in the colour space). The existence of such split in the gauge
sector reflects the breaking of the gauge field, due to the gauge fixing after freezing the scalar
field as

〈Φa〉 = νδ
a3 ,

leading to the existence of two massive vector modes, and a massless one. These massive vector
bosons and massless one may inferred from the following propagators,

〈
Aα

µ (p)Aβ

ν(−p)
〉
=

δαβ

p2 +m2
H

(
δµν−

pµ pν

p2

)
, (161)

from what, m2
H = g2ν2 is the acquired mass after the symmetry breaking. The massless mode

amounts to the third component A3
µ, namely,

〈
A3

µ(p)A3
ν(−p)

〉
=

1
p2

(
δµν−

pµ pν

p2

)
. (162)

However, as was pointed out by Polyakov [37], the theory exhibits a different behaviour.
The action (130) admits classical solitonic solutions, known as the ’t Hooft-Polyakov monopo-
les18 which play a relevant role in the dynamics of the model. In fact, it turns out that these
configurations give rise to a monopole condensation at weak coupling, leading to a confine-
ment of the third component A3

µ, rather than to a Higgs type behaviour, eq.(162), a feature also
confirmed by lattice numerical simulations [40, 41].

Since our aim is that of analysing the nonperturbative dynamics of the Georgi-Glashow
model by taking into account the Gribov copies, let’s follow the procedure described in the
subsection 1.1.3. Due to the presence of the Higgs field in the adjoint representation, causing
a breaking of the global gauge symmetry, the ghost two-point function has to be decomposed
into two sectors, diagonal and off-diagonal:

Gab(k,A) =

(
δαβGo f f (k;A) 0

0 Gdiag(k;A)

)
(163)

18 These configurations are instantons in Euclidean space-time.
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where

Go f f (k;A) =
1
k2

(
1+σo f f (k;A)

)
≈ 1

k2

(
1

1−σo f f (k;A)

)
, (164)

Gdiag(k;A) =
1
k2

(
1+σdiag(k;A)

)
≈ 1

k2

(
1

1−σdiag(k;A)

)
. (165)

As we know, the quantities σo f f (k;A), σdiag(k;A) turn out to be decreasing functions of
the momentum k and making use of the gauge field transversality, we have

σo f f (0;A) =
g2

V d

∫ ddq
(2π)d

(
A3

µ(q)A
3
µ(−q)+ 1

2Aα
µ (q)A

α
µ (−q)

)
q2 ,

σdiag(0;A) =
g2

V d

∫ ddq
(2π)d

(
Aα

µ (q)A
α
µ (−q)

)
q2 . (166)

Once again, these expressions were obtained by taking the limit k→ 0 of eqs.(164),(165), and
by making use of the property

Aa
µ(q)A

a
ν(−q) =

(
δµν−

qµqν

q2

)
ω(A)(q)

⇒ ω(A)(q) =
1
2

Aa
λ
(q)Aa

λ
(−q) (167)

which follows from the transversality of the gauge field, qµAa
µ(q) = 0. Also, it is useful to

remind that, for an arbitrary function F (p2), we have

∫ d3 p
(2π)3

(
δµν−

pµ pν

p2

)
F (p2) = A δµν . (168)

Therefore, the no-pole condition for the ghost function Gab(k,A) is implemented by imposing
that [45–47]

σo f f (0;A) ≤ 1 ,

σdiag(0;A) ≤ 1 . (169)

After that two different parameters are needed in order to implement the no-pole condi-
tion in the action, so restricting the path integral to the first Gribov region. Thus, we are led to
the following action accounting for the Gribov ambiguities,

S ′ = S+β
∗ (

σo f f (0,A)−1
)
+ω

∗ (
σdiag(0,A)−1

)
. (170)

In the action (170) β∗ and ω∗ are given dynamically through its own gap equation.



62

2.3.1 The gluon propagator and the gap equation

In order to obtain the partition function associated to the action (170), the first step is to
consider the standard Yang-Mills partition function within the first Gribov region, Ω. Namely,
this restricted partition function reads [45–47],

Z =
∫

[DAµ]δ(∂A)(detM )θ(1−σdiag(A))θ(1−σo f f (A))e−SY M . (171)

Since we are interested in the study of the gluon propagators, we shall consider the quadratic
approximation for the partition function, namely

Zquad =
∫ dβ

2πiβ
dω

2πiω
DAµeβ(1−σdiag(0,A))eω(1−σo f f (0,A))

× e−
1
4
∫

ddx(∂µAa
ν−∂νAa

µ)
2− 1

2ξ

∫
ddx(∂µAa

µ)
2− g2ν2

2
∫

ddxAα
µ Aα

µ , (172)

where use has been made of the integral representation

θ(x) =
∫ i∞+ε

−i∞+ε

dβ

2πiβ
eβx . (173)

The partition function accounting only for quadratic terms of the action (170) can be written as

Zquad =
∫ dβeβ

2πiβ
dωeω

2πiω
[dAα][dA3] e

− 1
2
∫ ddq

(2π)d
Aα

µ (q)P
αβ

µν Aβ

ν(−q)− 1
2
∫ ddq

(2π)d
A3

µ(q)QµνA3
ν(−q)

, (174)

with

P αβ

µν = δ
αβ

(
δµν

(
q2 +ν

2g2)+(1
ξ
−1
)

qµqν +
2g2

V d

(
β+

ω

2

) 1
q2 δµν

)
, (175)

and

Qµν = δµν

(
q2− 2ωg2

V d
1
q2

)
+

(
1
ξ
−1
)

qµqν . (176)

The parameter ξ stands for the usual gauge fixing parameter, to be put to zero at the end in order
to recover the Landau gauge. Evaluating the inverse of the expressions (176) and taking the
limit ξ→ 0, the gluon propagators become

〈
A3

µ(q)A
3
ν(−q)

〉
=

q2

q4 + 2ωg2

V d

(
δµν−

qµqν

q2

)
, (177)

〈
Aα

µ (q)A
β

ν(−q)
〉

= δ
αβ q2

q2 (q2 +g2ν2)+ 2g2

V d

(
β+ ω

2

) (δµν−
qµqν

q2

)
. (178)
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The off-diagonal sector of the gluon propagator can be put in a more convenient form, where
its poles are explicitly written,〈

Aα
µ (q)A

β

ν(−q)
〉

=
δαβ

m2
+−m2

−

(
m2
+

q2 +m2
+

−
m2
−

q2 +m2
−

)(
δµν−

qµqν

q2

)
, (179)

with

m2
+ =

g2ν2 +
√

g4ν4−4τ

2
, m2

− =
g2ν2−

√
g4ν4−4τ

2
, τ =

2g2

V d

(
β+

ω

2

)
. (180)

Since the Gribov parameters (β,ω) are fixed dynamically through the gap equation, now
we should integrate out the gauge field from equation (174) and make use of the saddle-point
approximation, in the thermodynamic limit, which will gives us two gap equations, enabling us
to express β and ω in terms of the parameters of the starting model, i.e. the gauge coupling
constant g and the vev of the Higgs field ν. That is, firstly, we integrate out the gauge fields,
obtaining

Zquad =
∫ dβ

2πiβ
dω

2πiω
eβeω

(
detQµν

)− 1
2
(

detP αβ

µν

)− 1
2
. (181)

By making use of the following property of functional determinants,

(
detAab

µν

)− 1
2
= e−

1
2 lndetAab

µν = e−
1
2 Tr lnAab

µν , (182)

for those determinants in expression (181), one gets

(
detQµν

)− 1
2 = exp

[
−
∫ ddq

(2π)d ln
(

q2 +
2ωg2

V d
1
q2

)]
,(

detP αβ

µν

)− 1
2

= exp
[
−2

∫ ddq
(2π)d ln

(
(q2 +g2

ν
2)+

g2

V d
(2β+ω)

1
q2

)]
. (183)

At the end, we have

Zquad =
∫ dβ

2πi
dω

2πi
e f (ω,β) , (184)

with

f (ω,β) = β+ω− lnβ− lnω− (d−1)V
2

∫ ddq
(2π)d ln

(
q2 +

2ωg2

V d
1
q2

)
− 2(d−1)V

2

∫ ddq
(2π)d ln

(
(q2 +g2

ν
2)+

g2

V d
(2β+ω)

1
q2

)
. (185)

Since in the thermodynamic limit, as mentioned in the section 1.1.3, the integral (184) can be



64

solved through the saddle point approximation,

∂ f
∂β∗

=
∂ f

∂ω∗
= 0 , (186)

leading to [45–47]

Zquad ≈ e f (β∗,ω∗) , (187)

one gets the following two gap equations

4(d−1)g2

2d

∫ ddq
(2π)d

1

q4 + 2ω∗g2

d

= 1 , (188)

4(d−1)g2

2d

∫ ddq
(2π)d

 1

q2(q2 +g2ν2)+g2
(

2β∗

d + ω∗
d

)
 = 1 . (189)

Therefore, β∗ and ω∗ can be expressed in terms of the parameters ν,g. To solve the gap equations
the denominator of eq.(189) can be decomposed into its poles, which is similar to (178)–(180).

Let us assume the particular cases of d = 3 and d = 4 Euclidean space-times. In the
light of the gap equation in each situation, we will analyse what happens to the diagonal and
off-diagonal propagators.

2.3.2 The d = 3 case

In the three-dimensional case both gap equations cause not many difficulties to be sol-
ved, as there are no divergences to be treated. Namely, the first gap equation, eq.(188), leads to
the following result,

ω
∗(g) =

3
211π4 g6 , (190)

while the second one, given by eq.(189), leads to

τ = β
∗2g2

3
+ω

∗g2

3
=

[
1
2

g2
ν

2− g4

32π2

]2

. (191)

Now we can look at the gluon propagators, (177) and (178), and analyse the different
regions in the (g,ν) plane. Let us start by the diagonal component A3

µ. Namely, we have

〈
A3

µ(q)A
3
ν(−q)

〉
=

q2

q4 + 2ω∗g2

3

(
δµν−

qµqν

q2

)
. (192)
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One observes that expression (192) turns out to be independent from the vev ν of the Higgs
field, while displaying two complex conjugate poles. This gauge component is thus of the
Gribov type. In other words, the mode A3

µ is always confined, for all values of the parameters
g,ν. Concerning now the off-diagonal gluon propagator (178), after decomposing it into two
Yukawa modes (179), we could find the following regions in the (g,ν) plane:

i) when g2 < 32π2ν2, corresponding to τ < g2ν2

4 , both masses m2
+,m

2
− are real, positive and

different from each other. Moreover, due to the presence of the relative minus sign in
expression (179), only the heaviest mode with mass m2

+ represents a physical excitation
— i.e., despite the existence of two real positive poles, m2

+ and m2
−, only the contribution

related to the m2
+ pole has physical meaning.

It is also worth observing that, for the particular value g= 16π2ν2, corresponding to τ= 0,
the unphysical mode in the decomposition (179) disappears. Thus, for that particular
value of the gauge coupling, the off-diagonal propagator reduces to a single physical
Yukawa mode with mass 16π2ν4.

ii) when g2 > 32π2ν2, corresponding to τ > g2ν2

4 , all masses become complex and the off-
diagonal propagator becomes of the Gribov type with two complex conjugate poles. This
region, called Gribov region since all modes are of Gribov type, corresponds to a phase
in which all gauge modes are said to be confined.

In summary, when the Higgs field is in the adjoint representation we could find two distinct re-
gions. For g2 < 32π2ν2 the A3 mode is confined while the off-diagonal propagator displays
a physical Yukawa mode with mass m2

+. This phase is referred to as the U(1) symmetric
phase [40, 41]. When g2 > 32π2ν2 all propagators are of the Gribov type, displaying com-
plex conjugate poles leading to a confinement interpretation. According to [40, 41] this regime
is referred to as the SU(2) confined phase.

Since our results were obtained in a semi-classical approximation (i.e., lowest order in
the loop expansion), let us comment on the validity of such approximation. In general, the
perturbation theory is reliable when the effective coupling constant is sufficiently small. The
effective coupling depends, in 3d, on the factor g2

(4π)3/2 . However, since g2 has mass dimension
1 the effective coupling is not complete yet. In the presence of a mass scale M, the perturbative
series — for e.g. the gap equation — will organize itself automatically in a series in G2/M.
Let us analyse, for example, the case where g2 < 32π2ν2, the called the “Higgs phase”. In
this case the effective coupling will be sufficiently small when g2

ν2(4π)3/2 is small compared19 to

1. Such condition is not at odds with the retrieved condition g2 < 32π2ν2. Next, assuming the
coupling g2 to get large compared to ν2, thereby entering the confinement phase with cc masses,

19 The Higgs mass ν2 is then the only mass scale entering the game.
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g2 dominates everything, leading to a Gribov mass scale τ ∝ g8, and an appropriate power
of the latter will secure a small effective expansion parameter consistent with the condition
g2 > 32π2ν2. We thus find that at sufficiently small and large values of g2

ν2 our approximation
and results are trustworthy.

2.3.3 The d = 4 case

Let us start by considering the second gap equation, eq.(189). Performing the decom-
position described in eq.(180) the referred gap equation becomes of the same form as the one
obtained in the fundamental d = 4 case, eq.(145). The difference between the fundamental
and adjoint d = 4 cases appears in the definition of the mass parameter m2

± (see eq.(144) and
eq.(180), respectively). Namely,(

1+
m2
−

m2
+−m2

−
ln
(

m2
−

µ2

)
−

m2
+

m2
+−m2

−
ln
(

m2
+

µ2

))
=

32π2

3g2 . (193)

Introducing now the dimensionless variables20

b =
g2ν2

2µ̄2 e
(

1− 32π2

3g2

) =
1

2 e
(

1− 272π2

21g2

) g2ν2

Λ2
MS

, and ξ =
4τ

g4ν4 ≥ 0 , (194)

with 0 ≤ ξ < 1 . Proceeding as in the fundamental d = 4 case, eq. (193) can be recast in the
following form

2
√

1−ξ ln(b) =−
(

1+
√

1−ξ

)
ln
(

1+
√

1−ξ

)
+
(

1−
√

1−ξ

)
ln
(

1−
√

1−ξ

)
. (195)

or compactly,

2lnb = g(ξ) . (196)

Also here, in the adjoint d = 4 case, eq.(196) remains valid also for complex conjugate roots,
viz. ξ > 1. We are then led to the following cases.

20 We introduced the renormalization group invariant scale ΛMS.
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2.3.3.1 When b < 1
2

Using the properties of g(ξ), it turns out that eq.(195) admits a unique solution for ξ,
which can be explicitly constructed with a numerical approach. More precisely, when the mass
scale g2ν2 is sufficiently smaller than Λ2

MS, i.e.

g2
ν

2 < 2 e
(

1− 272π2

21g2

)
Λ

2
MS , (197)

we have what can be called the U(1) confined phase. In fact, in this regime the gap equation
(188) leads to a non-null ω∗, so that the diagonal component of the gauge field is said to be of
the Gribov type, i.e. with confinement interpretation.

On the other side, the second gap equation (195) splits this region in the two subregions:

(i) when 1
e < b < 1

2 equation (195) has a single solution with 0 ≤ ξ < 1. In this region, the
roots (m2

+,m
2
−) are thus real and the off-diagonal propagator decomposes into the sum of

two Yukawa propagators.

However, due to the relative minus sign in eq.(179), only the component with m2
+ pole

can be associated to a physical mode, analogously as in the fundamental case. Due to the
confinement of the third component A3

µ, this phase is recognized as the U(1) confining
phase. It is worth observing that it is also present in the 3d case, with terminology coined
in [40], see also [7].

(ii) for b < 1
e , equation (195) has a solution for ξ > 1. In this region the roots (m2

+,m
2
−)

become complex conjugate and the off-diagonal gluon propagator is of the Gribov type,
displaying complex poles. In this region all gauge fields display a propagator of the
Gribov type. This is recognized as the SU(2) confined-like regime.

Similarly, the above regions are continuously connected when b varies. In particular, for b <→ 1
2 ,

we obtain ξ = 0 as solution.

2.3.3.2 The case b > 1
2

Let us consider now the case in which b > 1
2 . Here, there is no solution of the equation

(195) for the parameter ξ, as it follows by observing that the left hand side of eq.(195) is always
positive, while the right hand side is always negative. This has a deep physical consequence. It
means that for a Higgs mass m2

Higgs = g2ν2 sufficiently larger than Λ2
MS, i.e.

g2
ν

2 > 2 e
(

1− 272π2

21g2

)
Λ

2
MS , (198)
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the gap equation (189) is inconsistent. It is then important to realize that this is actually the gap
equation obtained by acting with ∂

∂β
on the vacuum energy Ev = − f (ω,β). So, we are forced

to set β∗ = 0, and confront the remaining ω-equation, viz. eq.(188), which can be transformed
into

4 ln(b) =
1√

1−ξ

[
−
(

1+
√

1−ξ

)
ln
(

1+
√

1−ξ

)
+
(

1−
√

1−ξ

)
ln
(

1−
√

1−ξ

)
−
√

1−ξ lnξ−
√

1−ξ ln2
]
≡ h(ξ) (199)

after a little algebra, where ξ = ω∗

g4ν4 . The behaviour of h(ξ) for ξ≥ 0 is more complicated than
that of g(ξ). Because of the − lnξ contribution, h(ξ) becomes more and more positive when ξ

approaches zero. In fact, h(ξ) strictly decreases from +∞ to −∞ for ξ ranging from 0 to +∞.
It is interesting to consider first the limiting case b >→ 1

2 , yielding ξ≈ 1.0612. So, there
is a discontinuous jump in ξ (i.e. the Gribov parameter for fixed v) when the parameter b crosses
the boundary value 1

2 .
We were able to separate the b > 1

2 region as follows:

(a) For 1
2 < b < 1√√

2e
≈ 0.51, we have a unique solution ξ > 1, i.e. we are in the confining

region again, with all gauge bosons displaying a Gribov type of propagator with complex
conjugate poles.

(b) For 1√√
2e

< b < ∞, we have a unique solution ξ < 1, indicating again a combination of

two Yukawa modes for the off-diagonal gauge bosons. The “photon” is still of the Gribov
type, thus confined.

Completely analogous as in the fundamental case, it can be checked by addressing the averages
of the expressions (166) that for b > 1

2 and ω obeying the gap equation with β = 0, we are
already within the Gribov horizon, making the introduction of the second Gribov parameter β

obsolete.
It is obvious that the transitions in the adjoint case are far more intricate than in the ear-

lier studied fundamental case. First of all, we notice that the “photon” (diagonal gauge boson)
is confined according to its Gribov propagator. There is never a Coulomb phase for b < ∞. The
latter finding can be understood again from the viewpoint of the ghost self-energy. If the diago-
nal gluon would remain Coulomb (massless), the off-diagonal ghost self-energy, cfr. eq.(166),
will contain an untamed infrared contribution from this massless photon21, leading to an off-
diagonal ghost self-energy that will cross the value 1 at a momentum k2 > 0, indicative of
trespassing the first Gribov horizon. This crossing will not be prevented at any finite value

21 The “photon” indeed keeps it coupling to the charged (= off-diagonal) ghosts, as can be read off directly from
the Faddeev-Popov term ca∂µDab

µ cb.
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of the Higgs condensate ν, thus we are forced to impose at any time a nonvanishing Gribov
parameter ω. Treating the gauge copy problem for the adjoint Higgs sector will screen (rather
confine) the a priori massless “photon”.

An interesting limiting case is that of infinite Higgs condensate, also considered in the
lattice study of [108]. Assuming ν→ ∞, we have b→ ∞ according to its definition (194).
Expanding the gap equation (199) around ξ = 0+, we find the limiting equation b4 = 1

ξ
, or

equivalently ω∗ ∝ Λ8
MS
/g4ν4. Said otherwise, we find that also the second Gribov parameter

vanishes in the limit of infinite Higgs condensate. As a consequence, the photon becomes truly
massless in this limit. This result provides —in our opinion— a kind of continuum version
of the existence of the Coulomb phase in the same limit as in the lattice version of the model
probed in [108]. It is instructive to link this back to the off-diagonal no pole function, see
Eq. (166), as we have argued in the proceeding paragraph that the massless photon leads to
σo f f (0) > 1 upon taking averages. However, there is an intricate combination of the limits
ν→ ∞, ω∗→ 0 preventing such a problem here. Indeed, we find in these limits, again using
dimensional regularization in the MS scheme, that

σo f f (0) =
3g2

4

(∫ d4q
(2π)4

1

q4 + ω∗g2

2

+
∫ d4q

(2π)4
1

q2(q2 +g2ν2)+ ω∗g2

4

)

=− 3g2

128π2

(
1
2 ln

ω∗g2

2µ4 + ln
g2ν2

µ2 −2
)

=− 3g2

128π2

(
1
2 ln

ω∗g6ν4

2µ8 −2
)

b4=ξ−1

−→ − 3g2

64π2 ln8g2 +
1
2
. (200)

The latter quantity is always smaller than 1 for g2 positive, meaning that we did not cross the
Gribov horizon. This observation confirm in an explicit way the intuitive reasoning also found
in section 3.4 of [109], at least in the limit ν→ ∞. The subtle point in the above analysis is that
it is not allowed to naively throw away the 2nd integral in the first line of (200) for ν→∞. There
is a logarithmic lnν (ν→ ∞) divergence that conspires with the lnω∗ (ω∗→ 0) divergence of
the 1st integral to yield the final reported result. This displays that, as usual, certain care is
needed when taking infinite mass limits in Feynman integrals.

2.3.4 The vacuum energy in the adjoint representation

As done in the case of the fundamental representation, let us work out the expression of
the vacuum energy Ev, for which we have the one loop integral representation given by eq.(185)
multiplied by −1. Making use of the MS renormalization scheme in d = 4− ε the vacuum
energy becomes
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Figure 4 - Plot of the vacuum energy in the adjoint representation as a function of the parameter
b. The discontinuity at b = 1

2 is evident.

Source: The author, 2016.

Ev

g4ν4 = − 1
g2 −

3ξ′

128π2

(
ln(2b2

ξ
′)−1

)
+

3(4−2ξ)

128π2

(
lnb− 1

2

)
+

3
128π2

[(
1−
√

1−ξ

)2
ln
(

1−
√

1−ξ

)
+
(

1+
√

1−ξ

)2
ln
(

1+
√

1−ξ

)]
, (201)

where b was introduced via its definition (194), while

ξ
′ =

4τ′

g4ν4 , ξ =
4τ

g4ν4 and τ
′ =

g2ω∗

4
, τ = g2

(
β∗

2
+

ω∗

4

)
. (202)

Since we found scenarios completely different for b < 1/2 and b > 1/2 with the scalar
Higgs field in its adjoint representation, it becomes of great importance analysing the plot of
the vacuum energy as a function of b. From Figure 4 one can easily find out a clear jump for
b = 1/2, which can be seen as a reflection of the discontinuity of the parameter ξ.

Investigating the functional (201) in terms of ξ and ξ′, it is numerically (graphically) ra-
pidly established there is always a solution to the gap equations ∂Ev

∂ξ
= ∂Ev

∂ξ′ = 0 for b < 1
2 , but the

solution ξ∗ is pushed towards the boundary ξ = 0 if b approaches 1
2 , to subsequently disappear

for b > 1
2

22. In that case, we are forced to return on our steps as in the fundamental case and
conclude that β = 0, leaving us with a single variable ξ = ξ′ and a new vacuum functional to
extremize. There is, a priori, no reason for these 2 intrinsically different vacuum functionals

22 The gap solutions correspond to a local maximum, as identified by analysing the Hessian matrix of 2nd deriva-
tives.
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be smoothly joined at b = 1
2 . This situation is clearly different from what happens when a po-

tential has e.g. 2 different local minima with different energy, where at a first order transition
the two minima both become global minima, thereafter changing their role of local vs. global.
Evidently, the vacuum energy does not jump since it is by definition equal at the transition.

Nevertheless, a completely analogous analysis as for the fundamental case will learn that
b = 1

2 is beyond the range of validity of our approximation23. The small and large b results can
again be shown to be valid, so at large b (∼ large Higgs condensate) we have a mixture of off-
diagonal Yukawa and confined diagonal modes and at small b (∼ small Higgs condensate) we
are in a confined phase. In any case we have that the diagonal gauge boson is not Coulomb-like,
its infrared behaviour is suppressed as it feels the presence of the Gribov horizon.

2.4 SU(2)×U(1)+Higgs field in the fundamental representation

From now on in this work only the fundamental case of the Higgs field will be treated,
for reasons relying on the physical relevance of the fundamental representation of this field. As
a first step, we are going to present, as in the previous sections, general results for d-dimension.
Afterwards, the 3 and 4-dimensional cases will be considered in the subsections 2.4.2 and 2.4.3.
The starting action of the SU(2)×U(1)+Higgs field reads

S =
∫

ddx
(

1
4

Fa
µνFa

µν +
1
4

BµνBµν + c̄a
∂µDab

µ cb−
(∂µAa

µ)
2

2ξ
+ c̄∂

2c−
(∂µBµ)

2

2ξ
+

+(Di j
µ Φ

j)†(Dik
µ Φ

k)+
λ

2

(
Φ

†
Φ−ν

2
)2
)
, (203)

where the covariant derivative is defined by

Di j
µ Φ

j = ∂µΦ
i− ig′

2
BµΦ

i− ig
(τa)i j

2
Aa

µΦ
j . (204)

and the vacuum expectation value (vev) of the Higgs field is 〈Φi〉 = νδ2i. The indices i, j = 1,2
refer to the fundamental representation of SU(2) and τa,a = 1,2,3, are the Pauli matrices. The
coupling constants g and g′ refer to the groups SU(2) and U(1), respectively. The field strengths

23 A little more care is needed as the appearance of two Gribov scales complicate the log structure. However, for
small b the Gribov masses will dominate over the Higgs condensate and we can take µ of the order of the Gribov
masses to control the logs and get a small coupling. For large b, we have β∗ = 0 and a small ω∗: the first log
will be kept small by its pre-factor and the other logs can be managed by taking µ of the order of the Higgs
condensate.
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Fa
µν and Bµν are given by

Fa
µν = ∂µAa

ν−∂νAa
µ +gε

abcAb
µAc

ν , Bµν = ∂µBν−∂νBµ . (205)

In order to obtain the boson propagators only quadratic terms of the starting action are
required and, due to the new covariant derivative, this quadratic action is not diagonal any more.
To diagonalize this action one could introduce a set of new fields, related to the standard ones
by

W+
µ =

1√
2

(
A1

µ + iA2
µ
)
, W−µ =

1√
2

(
A1

µ− iA2
µ
)
, (206a)

Zµ =
1√

g2 +g′2
(
−gA3

µ +g′Bµ
)

and Aµ =
1√

g2 +g′2
(
g′A3

µ +gBµ
)
. (206b)

The inverse relation can be easily obtained. With this new set of fields the quadratic part of the
action reads,

Squad =
∫

d3x
(

1
2
(∂µW+

ν −∂νW+
µ )(∂µW−ν −∂νW−µ )+

g2ν2

2
W+

µ W−µ

)
+

∫
d3x
(

1
4
(∂µZν−∂νZµ)

2 +
(g2 +g′2)ν2

4
ZµZµ +

1
4
(∂µAν−∂νAµ)

2
)

, (207)

from which we can read off the masses of the fields W+, W−, and Z:

m2
W =

g2ν2

2
, m2

Z =
(g2 +g′2)ν2

2
. (208)

The restriction to the Gribov region Ω still is needed and the procedure here becomes
quite similar to what was carried out in the section 2.3. Due to the breaking of the global gauge
invariance, caused by the Higgs field (through the covariant derivatives), the ghost sector can
be split up in two different sectors, diagonal and off-diagonal. Namely, the ghost propagator
reads,

Gab(k;A) =

(
δαβGo f f (k;A) 0

0 Gdiag(k;A)

)
. (209)

By expliciting the ghost form factor we have

Go f f (k;A) ' 1
k2

(
1

1−σo f f (k;A)

)
, (210)

and

Gdiag(k;A) ' 1
k2

(
1

1−σdiag(k;A)

)
, (211)
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where

σo f f (0;A) =
g2

dV

∫ dd p
(2π)d

1
p2

(
1
2

Aα
µ (p)Aα

µ (−p)+A3
µ(p)A3

µ(−p)
)

, (212a)

and

σdiag(0;A) =
g2

dV

∫ dd p
(2π)d

1
p2 Aα

µ (p)Aα
µ (−p) . (212b)

In order to obtain expressions (212a) and (212b), where V denotes the (infinte) space-time
volume, the transversality of the gluon field and the property that σ(k;A)o f f and σ(k;A)diga are
decreasing functions of k were used24. From equations (210) and (212a) one can easily read off
the two no-pole conditions. Namely,

σo f f (0;A)< 1 , (213a)

and

σdiag(0;A)< 1 . (213b)

At the end, the partition function restricted to the first Gribov region Ω reads,

Z =
∫ dω

2πiω
dβ

2πiβ
[dA][dB] eω(1−σo f f ) eβ(1−σdiag)e−S . (214)

2.4.1 The gluon propagator and the gap equation

The perturbative computation at the semi-classical level requires only quadratic terms
of the full action, defined in eq.(214) (with S given by eq.(203)), yielding a Gaussian integral
over the fields. Inserting external fields to obtain the boson propagators, one gets, after taking
the limit ξ→ 0, the following propagators,

24 For more details concerning the ghost computation see [4–6, 47]
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〈Aα
µ (p)Aβ

ν(−p)〉 = p2

p4 + ν2g2

2 p2 + 2g2β

dV

δ
αβ

(
δµν−

pµ pν

p2

)
, (215a)

〈A3
µ(p)A3

ν(−p)〉 =
p2
(

p2 + ν2

2 g′2
)

p6 + ν2

2 p4 (g2 +g′2)+ 2ωg2

dV

(
p2 + ν2g′2

2

) (δµν−
pµ pν

p2

)
, (215b)

〈Bµ(p)Bν(−p)〉 =

(
p4 + ν2

2 g2 p2 + 2ωg2

dV

)
p6 + ν2

2 p4 (g2 +g′2)+ 2ωg2

dV

(
p2 + ν2g′2

2

) (δµν−
pµ pν

p2

)
, (215c)

〈A3
µ(p)Bν(−p)〉 =

ν2

2 gg′p2

p6 + ν2

2 p4 (g2 +g′2)+ 2ωg2

dV

(
p2 + ν2g′2

2

) (δµν−
pµ pν

p2

)
. (215d)

Moving to the fields W+
µ ,W−µ ,Zµ,Aµ, one obtains

〈W+
µ (p)W−ν (−p)〉 = p2

p4 + ν2g2

2 p2 + 2g2β

dV

(
δµν−

pµ pν

p2

)
, (216a)

〈Zµ(p)Zν(−p)〉 =

(
p4 + 2ω

dV
g2g′2

g2+g′2

)
p6 + ν2

2 p4 (g2 +g′2)+ 2ωg2

dV

(
p2 + ν2g′2

2

) (δµν−
pµ pν

p2

)
, (216b)

〈Aµ(p)Aν(−p)〉 =

(
p4 + ν2

2 p2(g2 +g′2)+ 2ω

dV
g4

g2+g′2

)
p6 + ν2

2 p4 (g2 +g′2)+ 2ωg2

dV

(
p2 + ν2g′2

2

) (δµν−
pµ pν

p2

)
, (216c)

〈Aµ(p)Zν(−p)〉 =
2ω

dV
g3g′

g2+g′2

p6 + ν2

2 p4 (g2 +g′2)+ 2ωg2

dV

(
p2 + ν2g′2

2

) (δµν−
pµ pν

p2

)
. (216d)

As expected, all propagators get deeply modified in the IR by the presence of the Gribov para-
meters β and ω. Notice, in particular, that due to the parameter ω a mixing between the fields Aµ

and Zµ arises, eq.(216d). As such, the original photon and the boson Z loose their distinct par-
ticle interpretation. Moreover, it is straightforward to check that in the limit β→ 0 and ω→ 0,
the standards propagators are recovered.

Let us now proceed by deriving the gap equations which will enable us to (dynamically)
fix the Gribov parameters, β and ω, as function of g, g′ and ν2. Thus, performing the path
integral of eq.(214), in the semi-classical level, we get

f (ω,β) =
ω

2
+β− 2(d−1)

2

∫ dd p
(2π)d log

(
p2 +

ν2

2
g2 +

2g2β

dV
1
p2

)
−

−(d−1)
2

∫ dd p
(2π)d logλ+(p,ω)λ−(p,ω) . (217)
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In eq.(217), f (ω,β) is defined according to eq.(184) and

λ± =

(
p4 + ν2

4 p2(g2 +g′2)+ g2ω

dV

)
±
√[

ν2

4 (g
2 +g′2)p2 + g2ω

dV

]2
− ω

3 ν2g2 g′2 p2

p2 . (218)

Making use of the thermodynamic limit, where the saddle point approximation takes place, we
have the two gap equations given by25

4(d−1)
2d

g2
∫ dd p

(2π)d
1

p4 + g2ν2

2 p2 + 2g2β∗

dV

= 1 , (219)

and

2(d−1)
d

g2
∫ dd p
(2π)d

p2 + ν2

2 g′2

p6 + ν2

2 (g
2 +g′2)p4 + 2ω∗g2

dV p2 + ν2g2 g′2ω∗

dV

= 1 . (220)

Given the difficulties in solving the gap equations (219) and (220), we propose an al-
ternative approach to probe the gluon propagators in the parameter space ν, g and g′. Instead
of explicitly solve the gap equations, let us search for the necessity to implement the Gribov
restriction. For that we mean to compute 〈σo f f (0)〉 and 〈σdiag(0)〉 with the gauge field propa-
gators unchanged by the Gribov terms, i.e., before applying the Gribov restriction. Therefore,
if 〈σo f f (0;A)〉< 1 and 〈σdiag(0;A)〉< 1 already in this case (without Gribov restrictions), then
we would say that there is no need to restrict the domain of integration to Ω. In that case we
have, immediately, β∗ = ω∗ = 0 and the standard Higgs procedure takes place. Namely, the
expression of each ghost form factor is

〈σo f f (0)〉 =
(d−1)g2

d

∫ dd p
(2π)d

1
p2

(
1

p2 + ν2

2 g2
+

1

p2 + ν2

2 (g
2 +g′2)

)
. (221)

and

〈σdiag(0)〉 =
2(d−1)g2

d

∫ dd p
(2π)d

1
p2

(
1

p2 + ν2

2 g2

)
. (222)

25 For more details see [4–6].
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2.4.2 The d = 3 case

In the three-dimensional case things become easier since there is no divergences to treat.
Therefore, computing the ghost form factors (221) and (222) we led to the following conditions

(1+ cos(θW ))
g
ν

< 3
√

2π (223a)

2
g
ν

< 3
√

2π , (223b)

where θ(W ) stands for the Weinberg angle,

cos(θW ) =
g√

g2 +g′2
. (224)

These two conditions make phase space fall apart in three regions, as depicted in Figure 5.

• If g/ν < 3π/
√

2, neither Gribov parameter is necessary to make the integration cut off at
the Gribov horizon. In this regime the theory is unmodified from the usual perturbative
electroweak theory.

• In the intermediate case 3π/
√

2 < g/ν < 3
√

2π/(1+cosθW ) only one of the two Gribov
parameters, β, is necessary. The off-diagonal (W ) gauge bosons will see their propagators
modified due to the presence of a non-zero β, while the Z boson and the photon A remain
untouched.

• In the third phase, when g/ν > 3
√

2π/(1+ cosθW ), both Gribov parameters are needed,
and all propagators are influenced by them. The off-diagonal gauge bosons are confined.
The behaviour of the diagonal gauge bosons depends on the values of the couplings, and
the third phase falls apart into two parts, as detailed in section 2.4.2.2.

Note that here in the 3-dimensional SU(2)×U(1)+Higgs case, as well as in the 3d SU(2)+Higgs
treated in section 2.3.2, an effective coupling constant becomes of utmost importance when dis-
cussing the trustworthiness of the our semi-classical results.

2.4.2.1 The off-diagonal (W ) gauge bosons

Let us first look at the behaviour of the off-diagonal bosons under the influence of the
Gribov horizon. The propagator (216a) only contains the β Gribov parameter, meaning that ω

need not be considered here.
In the regime g/ν < 3π/

√
2 (region I in Figure 5) the parameter β is not necessary, due

to the ghost form factor 〈σdiag(0)〉 always being smaller than one. In this case, the off-diagonal
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Figure 5 - There appear to be four regions in phase space. The region I is defined by condition
(223b) and is characterized by ordinary Yang–Mills–Higgs behaviour (massive W and
Z bosons, massless photon). The region II is defined by (223a) while excluding all
points of region I — this region only has electrically neutral excitations, as the W
bosons are confined (see Section 2.4.2.1); the massive Z and the massless photon are
unmodified from ordinary Yang–Mills–Higgs behaviour. Region III has confined W
bosons, while both photon and Z particles are massive due to influence from the
Gribov horizon; furthermore there is a negative-norm state. In region IV all SU(2)
bosons are confined and only a massive photon is left. Mark that the tip of region III is
hard to deal with numerically — the discontinuity shown in the diagram is probably an
artefact due to this difficulty. Details are collected in Section 2.4.2.2.
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boson propagator is simply of massive type, with mass parameter ν2

2 g2.
In the case that g/ν> 3π/

√
2 (regions II, III, and IV in Figure 5), the relevant ghost form

factor is not automatically smaller than one any more, and the Gribov parameter β becomes
necessary. The value of β∗ is determined from the gap equations (219). After rewriting the
integrand in partial fractions, the integral in the equation becomes of standard type, and we
readily find the solution

β
∗ =

3g2

32

(
g2

2π2 −ν
2
)2

. (225)

Mark that, in order to find this result, we had to take the square of both sides of the equation
twice. One can easily verify that, in the region g/ν > 3π/

√
2 which concerns us, no spurious

solutions were introduced when doing so.
Replacing this value of β∗ in the off-diagonal propagator (216a) one can immediately

check that it clearly displays two complex conjugate poles. As such, the off-diagonal propagator
cannot describe a physical excitation of the physical spectrum, being adequate for a confining
phase. This means that the off-diagonal components of the gauge field are confined in the
region g/ν > 3π/

√
2.
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2.4.2.2 The diagonal SU(2) boson and the photon field

The other two gauge bosons — the A3
µ and the Bµ — have their propagators given by

(215b), (215c), and (215d) or equivalently — the Zµ and the Aµ — by (216b), (216c) and (216d).
Here, ω is the only one of the two Gribov parameters present.

In the regime g/ν < 3
√

2π/(1+ cosθW ) (regions I and II) this ω is not necessary to
restrict the region of integration to within the first Gribov horizon. Due to this, the propagators
are unmodified in comparison to the perturbative case.

In the region g/ν > 3
√

2π/(1+ cosθW ) (regions III and IV) the Gribov parameter ω

does become necessary, and it has to be computed by solving its gap equation, eq. (220). Due
to its complexity it seems impossible to do so analytically. Therefore we turn to numerical
methods. Using Mathematica the gap equation can be straightforwardly solved for a list of
values of the couplings. Then we determine the values where the propagators have poles.

The denominators of the propagators are a polynomial which is of third order in p2.
There are two cases: there is a small region in parameter space where the polynomial has three
real roots, and for all other values of the couplings there are one real and two complex conjugate
roots. In Figure 5 these zones are labelled III and IV respectively. Let us analyze each region
separately.

2.4.2.3 Three real roots (region III)

Region III is defined by the polynomial in the denominators of (215b), (215c), and
(215d) having three real roots. This region is sketched in Figure 5. (Mark that the tip of the
region is distorted due to the difficulty in accessing this part numerically.)

The residues of related to these poles were computed numerically. Only the two of the
three roots have positive residue and can correspond to physical states. Those are the one with
highest and the one with lowest mass squared. The third of the roots, the one of intermediate
value, has negative residue and thus belongs to some negative-norm state, which cannot be
physical.

All three states have non-zero mass for non-zero values of the electromagnetic coupling
g′, with the lightest of the states becoming massless in the limit g′→ 0. In this limit we recover
the behaviour found in this regime in the pure SU(2) case [7] (the Z-boson field having one
physical and one negative-norm pole in the propagator) with a massless fermion decoupled
from the non-Abelian sector.
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Figure 6 - The residue of the pole of the photon propagator. It turns out to be positive for all
values of the couplings within the region IV.
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2.4.2.4 One real root (region IV)

In the remaining part of the parameter space, there is only one state with real mass-
squared. The two other roots of the polynomial in the denominators of (215b), (215c), and
(215d) have non-zero imaginary part and are complex conjugate to each other. In order to deter-
mine whether the pole coming from the real root corresponds to a physical particle excitation,
we computed its residue, which can be read off in the partial fraction decomposition (the result
is plotted in Figure 6). It turns out the residue is always positive, meaning that this excitation
has positive norm and can thus be interpreted as a physical, massive contributions. The poles
coming from the complex roots cannot, of course, correspond to such physical contributions.

In the limit g′→ 0 we once more recover the corresponding results already found in the
pure SU(2) case [7] (two complex conjugate poles in the propagator of the non-Abelian boson
field) plus a massless photon not influenced by the non-Abelian sector.

We shall emphasise here the complexity of the found “phase spectrum” in the 3d case.
For the most part of the (g′/ν,g/ν) plane we found the diagonal component of the bosonic
field displaying a mix of physical and non-physical contributions, regarding the regions III
and IV. The off-diagonal component was found to have physical meaning only in the region I.
The transition between those regions was found to be continuous with respect to the effective
perturbative parameter ∼ g/ν.
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2.4.3 The d = 4 case

In the 4-dimensional case the diagonal and off-diagonal ghost form factors read, using
the standard MS renormalization procedure,

〈σoff(0)〉= 1− 3g2

32π2 ln
2a

cos(θW )
, 〈σdiag(0)〉= 1− 3g2

32π2 ln(2a) , (226)

where

a =
ν2g2

4µ̄2 e
1− 32π2

3g2

, a′ =
ν2(g2 +g′2)

4µ̄2 e
1− 32π2

3g2

= a
g2 +g′2

g2 =
a

cos2(θW )
(227)

and θW stands for the Weinberg angle. With expression (226) we are able to identify three
possible regions, depicted in Figure 7:

• Region I, where 〈σdiag(0)〉< 1 and 〈σoff(0)〉< 1, meaning 2a > 1. In this case the Gribov
parameters are both zero so that we have the massive W± and Z, and a massless photon.
That region can be identified with the “Higgs phase”.

• Region II, where 〈σdiag(0)〉 > 1 and 〈σoff(0)〉 < 1, or equivalently cosθW < 2a < 1. In
this region we have ω = 0 while β 6= 0, leading to a modified W± propagator, and a free
photon and a massive Z boson.

• The remaining parts of parameter space, where 〈σdiag(0)〉 > 1 and 〈σoff(0)〉 > 1, or 0 <

2a < cosθW . In this regime we have both β 6= 0 and ω 6= 0, which modifies the W±, Z

and photon propagators. Furthermore this region will fall apart in two separate regions
III and IV due to different behaviour of the propagators (see Figure 7).

2.4.3.1 The off-diagonal gauge bosons

Let us first look at the behaviour of the off-diagonal bosons under the influence of the
Gribov horizon. The propagator (216a) only contains the β Gribov parameter, meaning ω does
not need be considered here.

As found in the previous section, this β is not necessary in the regime a > 1/2, due to
the ghost form factor 〈σdiag(0)〉 always being smaller than one. In this case, the off-diagonal
boson propagator is simply of the massive type.

In the case that a < 1/2, the relevant ghost form factor is not automatically smaller than
one anymore, and the Gribov parameter β becomes necessary. The value of β is given by the
gap equations (219), which has exactly the same form as in the case without electromagnetic
sector. Therefore the results will also be analogous. As the analysis is quite involved, we just
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Figure 7 - Left is a plot of the region a′ < 1/2 (the region a′ > 1/2 covers all points with higher
ν). In red are points where the polynomial in the denominator of (215b) - (215d) has
three real roots, and in blue are the points where it has one real and two complex
conjugate roots. At the right is a slice of the phase diagram for g = 10. The region
a > 1/2 and a′ > 1/2 is labelled I, the region a < 1/2 and a′ > 1/2 is II, and the region
a < 1/2 and a′ < 1/2 is split into the regions III (polynomial in the denominator of
(215b) - (215d) has three real roots, red dots in the diagram at the left) and IV (one real
and two complex conjugate roots, blue dots in the diagram at the left). The dashed line
separates the different regimes for off-diagonal SU(2) bosons (two real massive poles
above the line, two complex conjugate poles below).
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quote the results here.
For 1/e < a < 1/2 the off-diagonal boson field has two real massive poles in its two-

point function. One of these has a negative residue, however. This means we find one physical
massive excitation, and one unphysical mode in this regime. When a< 1/e the two poles acquire
a non-zero imaginary part and there are no poles with real mass-squared left. In this region the
off-diagonal boson propagator is of Gribov type, and the W boson is completely removed from
the spectrum. More details can be found in [6].

2.4.3.2 The diagonal SU(2) boson and the photon

The two other gauge bosons — the diagonal SU(2) boson and the photon, Zµ and the Aµ

— have their propagators given by (216b), (216c) and (216d). Here, ω is the only of the two
Gribov parameters present.

In the regime a′ > 1/2, ω is not necessary to restrict the region of integration to Ω. Due
to this, the propagators are unmodified in comparison to the perturbative case.

In the region a′ < 1/2 the Gribov parameter ω does become necessary, and it has to
be computed by solving its gap equation. Due to its complexity it seems impossible to com-
pute analytically. Therefore we turn to numerical methods. Once the parameter ω has been
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(numerically) determined, we look at the propagators to investigate the nature of the spectrum.
As the model under consideration depends on three dimensionless parameters (g, g′

and ν/µ̄), it is not possible to plot the parameter dependence of these masses in a visually
comprehensible way. Therefore we limit ourselves to discussing the behaviour we observed.

In region III, when there are three real poles in the full two-point function, it turns out
that only the two of the three roots we identified have a positive residue and can correspond to
physical states, being the one with highest and the one with lowest mass squared. The third one,
the root of intermediate value, has negative residue and thus belongs to some negative-norm
state, which cannot be physical. All three states have non-zero mass for non-zero values of
the electromagnetic coupling g′, with the lightest of the states becoming massless in the limit
g′→ 0. In this limit we recover the behaviour found in this regime in the pure SU(2) case [6]
(the Z-boson field having one physical and one negative-norm pole in the propagator) with a
massless boson decoupled from the non-Abelian sector.

In region IV there is only one state with real mass squared — the other two having
complex mass squared, conjugate to each other — and from the partial fraction decomposition
follows that it has positive residue. This means that, in this region, the diagonal-plus-photon
sector contains one physical massive state (becoming massless in the limit g′ → 0), and two
states that can, at best, be interpreted as confined.

2.5 Discussions about the results

In this chapter we presented results achieved during the study of Yang-Mills models,
in the Landau gauge, coupled to a Higgs field, taking into account non-perturbative effects.
More specifically, the SU(2) and SU(2)×U(1) models were analysed in 3- and 4-dimensional
Euclidean space-time, while the Higgs field was considered in its fundamental and adjoint re-
presentation. The non-perturbative effects were taken into account by considering the existence
of Gribov ambiguities, or Gribov copies, in the (Landau) gauge fixing process. In order to
get rid of those ambiguities we followed the procedure developed by Gribov in his seminal
work [45], which consists in restricting the configuration space of the gauge field into the first
Gribov region Ω. As found by Gribov, that restriction of the path integral domain leads to a
modification of the gluon propagator in a way that it is not possible to attach any physical par-
ticle interpretation to it. The gauge field propagator develops, after the Gribov restriction, two
complex conjugate poles, preventing any physical particle interpretation, since it presents posi-
tivity violation, which is a reality condition of Osterwalder-Schrader. This may be interpreted
as a sign of confinement of the gauge field. In the same sense we could observe similar modifi-
cations of the gluon propagator in the Yang-Mills + Higgs models. In general, the poles of the
gauge field propagator are functions of the parameters in each Yang-Mills model (including the
Gribov parameter γ and the Higgs self mass parameter ν), so that we could identify regions in
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the parameter space where the gauge propagator has contributions coming from Yukawa type
modes (with real poles) and/or contributions from Gribov-like modes (presenting cc poles). Re-
gions where only Yukawa contribution exists are called Higgs-like regimes. On the other hand,
regions where there is only Gribov type contributions are named confined regimes or confined-

like regions. Note that contributions with negative residue, despite being of the Yukawa type,
have no physical particle interpretation as well.

In general we could find that the Higgs-like regime corresponds to the region of weak
coupling, i.e. small g and sufficiently large ν, reached in the UV regime. In that region of
the parameter space (coupling constant and Higgs vacuum expectation value), where we expect
perturbation theory to works, we do recover the standard perturbative Yang-Mills-Higgs pro-
pagators. This is an important observation, since it means that the Gribov ambiguity does not
spoils the physical vector boson interpretation of the gauge sector where it is relevant. On the
other side, the confined-like regime corresponds to the strong coupling region in the parameter
space, characterized by large values of g and sufficiently small ν, but still keeping logarithmic
divergences under control. For higher values of the non-Abelian coupling constant the Gribov
horizon lets its influence be felt and the propagators become modified. In general, for the SU(2)
and for the SU(2)×U(1) cases we could find an intermediate region where contributions from
physical modes (with real poles) mix with contributions from non-physical modes (with cc poles
or negative residues).

It is very important to emphasise that the whole analysis strongly depends on the group
representation of the Higgs field, just as in Fradkin & Shenker’s work [8].

For the fundamental representation of the Higgs field, either in the SU(2) or in the
SU(2)×U(1) model, we could find that the two detected regimes, Higgs- and confined-like,
may be continuously connected, in the sense that the parameters of the theory are allowed to
continuously vary from one region to another, without leading to any discontinuity or singularity
of the vacuum energy or the two-point Green function. However, we have to be careful when
talking about analyticity region in our perturbative approach, since we could not rigorously
prove such property, since there exist a region of the parameter space where our perturbative
approximation is not reliable.

Something quite different happens in the adjoint representation of the scalar field. There
we could explicitly show (cf. the section 2.3) the existence of an specific configuration in the
parameter space where the vacuum energy develops a jump discontinuity. However, at the very
point of the jump our approximation is beyond its range of validity, and we cannot make any
statement for sure about analyticity.

In the adjoint representation of the Higgs field the scenario looks quite different. Besi-
des the confined-like regime, in which the gluon propagator is of the Gribov-type, our results
indicated the existence of what can be called a U(1) confined-like regime for finite values of the
Higgs condensate. This is a regime in which the third component A3

µ of the gauge field displays a
propagator of the Gribov-type, while the remaining off-diagonal components Aα

µ , α = 1,2, exhi-
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bit a propagator of the Yukawa type. Interestingly, something similar to this has been already
detected on lattice studies of the three-dimensional Georgi-Glashow model [40, 41]. A second
result is the absence of a Coulomb regime for finite Higgs condensate. For an infinite value of
the latter, we were able to clearly reveal the existence of a massless photon, in agreement with
the lattice suggestion, e.g. the [108].

One should keep in mind that in our analytic non-perturbative model, where Gribov
ambiguities where taken into account, we cannot properly speak about physical phases, at all.
The non-local Gribov term leads to a soft breaking of the BRST symmetry, forbidding us from
defining in the usual sense physical states. At the same time, there is no obvious gauge invariant
order parameter available in our model, which would be useful for probing phase transition.

Keeping safe the due difference between Fradkin & Shenker’s approach to the Yang-
Mills + Higgs theory and ours perturbative approach, it is fair enough to acknowledge the mat-
ching of a couple of remarkable results. Fradkin & Shenker clearly say that in the fundamental
representation of the Higgs field there is no phase transition to occur, being the theory in the
symmetric (or ordered) phase in the (almost) entire parameter space, despite of the particular
case of null Higgs coupling constant, ν = 0, where the theory is found to be in the disordered
phase [8]. Besides, they did show that there exist two different regimes in the configuration
space, called confinement-like regime and Higgs-like regime, and that any point of these regi-
ons of the configuration space are smoothly connected to each other. In other words, the system
is allowed to smoothly hang from one point in the confined-like regime to another point in the
Higgs-like regime. It should be emphasized that in their case a phase transition is properly defi-
ned, since they work on the lattice, measuring the gauge invariant Wilson loop order parameter.
They could also prove the existence of the analyticity region.
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3 QUARK CONFINEMENT AND BRST SOFT BREAKING

Being restricted to the matter sector of Nature, the directly observed particles are called
hadrons, which are colorless composition of quarks. For instance, protons are elements of the
baryon set of particles (composed of three quarks) whose mass is about 938MeV, while quark’s
mass is of order ∼ 1MeV. So, where does come from the huge difference of mass? How
does it happen? Nature gives us clues of an spontaneous symmetry breaking (of an approximate
symmetry), known as chiral symmetry breaking, with a mass term being dynamically generated.

Besides chiral symmetry breaking, there exists the confinement scenario, where quarks
cannot be asymptotically detected as free particles or, in other words, they do not belong to
the physical particle spectrum of Nature. In a general sense, the chiral phase transition is not
directly related to the deconfinement transition; it is known that for the two-flavors and three
colors scenario the chiral phase transition takes place at a critical temperature of about 170MeV,
while the deconfinement second order phase transition occur at a temperature around 270MeV,
[19, 20, 22–25].

In this chapter we propose, and analyze, an effective model to the matter sector, by
means of introducing a non-local mass term to the matter field, leading to a soft breaking of the
BRST symmetry, in analogy to what happens in the gauge sector. In a sense, this non-local mass
term would represent a generalization of the horizon function of the GZ scheme of the gauge
field applied to the matter field. We provide a general analysis of this procedure by specializing
the matter sector to the scalar field and to the quark field. A comparison is made with the
most recent lattice data of the matter field and we could find a clear agreement between them.
The matter field, in this scenario, is deprived of an asymptotic physical particle interpretation,
since its propagator displays positivity violation, so not satisfying every reality condition of
Osterwalder-Schrader, just the same as the gauge field. The N = 1 supersymmetric case is
presented at the of the chapter as an example.

The content of the second chapter, concerning the Gribov and Gribov-Zwanziger me-
chanism of quantizing the gauge field, is useful to the comprehension of the present one. More
precisely, the fate of BRST symmetry breaking due to the non-local horizon function must be
kept in mind. Therefore, to the benefit of the reader, some recurrent expressions will be rewrit-
ten here, preventing going back and forth to the second chapter from being repeated overmuch.
The first one is the GZ action, which reads

SGZ = SY M +Sg f +S0 +Sγ , (228)

with

S0 =
∫

d4x
(

ϕ̄
ac
µ (∂νDab

ν )ϕbc
µ − ω̄

ac
µ (∂νDab

ν )ωbc
µ −g f amb(∂νω̄

ac
µ )(Dmp

ν cp)ϕbc
µ

)
, (229)
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and

Sγ = γ
2
∫

d4x
(

g f abcAa
µ(ϕ

bc
µ + ϕ̄

bc
µ )
)
−4γ

4V (N2−1) . (230)

The RGZ action can written as

SRGZ = SGZ +
∫

d4x
(

m2

2
Aa

µAa
µ−µ2

(
ϕ̄

ab
µ ϕ

ab
µ − ω̄

ab
µ ω

ab
µ

))
. (231)

The soft breaking of the BRST symmetry can be directly seen from the aplication of the BRST
transformation s on the (R)GZ action, given by the BRST transformation of each field that is
given in (96). At the end one gets

sSGZ = γ
2
∆ , (232)

with

∆ =
∫

d4x
(
−g f abc(Dam

µ cm)(ϕbc
µ + ϕ̄

bc
µ )+g f abcAa

µω
bc
µ

)
. (233)

Finally, the gluon and ghost propagators read as,

〈Aa
µ(k)A

b
ν(−k)〉 = δ

ab
(

δµν−
kµkν

k2

)
D(k2) , (234)

D(k2) =
k2 +µ2

k4 +(µ2 +m2)k2 +2Ng2γ4 +µ2m2 . (235)

and

Gab(k2) = 〈c̄a(k)cb(−k)〉
∣∣∣
k∼0
∼ δab

k2 . (236)

Moreover, despite the soft breaking, eq.(232), a set of BRST invariant composite opera-
tors whose correlation functions exhibit the Källén-Lehmann spectral representation with posi-
tive spectral densities can be consistently introduced [63].

Although a satisfactory understanding of the physical meaning of the soft breaking of
the BRST symmetry in presence of the Gribov horizon and of its relationship with confinement
is still lacking, it is worth underlining here that the first concrete numerical lattice evidence of
the existence of such breaking has been provided by the authors of [59], where the Bose-ghost
propagator

Q abcd
µν = 〈ωab

µ ω̄
cd
ν +ϕ

ab
µ ϕ̄

cd
ν 〉 (237)

has being numerically computed on the lattice formulation, since it can be written as

Q abcd
µν = 〈sϕ

ab
µ ω̄

cd
ν 〉 , (238)
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which is evidently a BRST exact correlation function. So, if it is non-zero, it is a signal of the
(soft) BRST symmetry breaking. As (ω̄,ω) and (ϕ̄,ϕ) are localizing auxiliary fields of the GZ
framework, thus there must be a non-local version of the Boson-ghost propagator, and indeed
there is. Evaluating (238) is equivalent to measuring

〈R ab
µ (x)R cd

ν (y)〉 , (239)

with

R ac
µ (x) =

∫
d4z (M −1)ad(x,z) g f decAe

µ(z) , (240)

where M accounts for the inverse of the Faddeev-Popov operator. The relation of the correla-
tion function (239) with the breaking of the BRST symmetry can be understood by observing
that, within the local formulation of the Gribov-Zwanziger framework, expression (239) corres-
ponds exactly to the Bose-ghost propagator (238). In fact, integrating out the auxiliary fields
(ω̄ab

µ ,ωab
µ , ϕ̄ab

µ ,ϕab
µ ) in expression

∫
[DΦ]

(
ω

ab
µ (x)ω̄cd

ν (y)+ϕ
ab
µ (x)ϕ̄cd

ν (y)
)

e−SGZ , (241)

one ends up with

∫
[DΦ]

(
s
(
ϕab

µ (x)ω̄cd
ν (y)

))
e−SGZ∫

[Dφ] e−SGZ
= γ

4

∫
DA δ(∂A) (detM ) R ab

µ (x)R cd
ν (y) e−(SY M+γ4H(A))∫

DA δ(∂A) (detM ) e−(SY M+γ4H(A))
.

(242)

This equation shows that the investigation of the correlation function (239) with a cutoff at the
Gribov horizon is directly related to the existence of the BRST breaking. This is precisely what
has been done in [59], where the correlator (239) has been shown to be non-vanishing, see Fig.1
of [59]. Moreover, from [59], it turns out that in the deep infrared the Fourier transform of the
correlation function (239) is deeply enhanced, see Fig.2 of [59], behaving as 1

k4 , namely

〈R̃ ab
µ (k)R̃ cd

ν (−k)〉 ∼ 1
k4 . (243)

As observed in [59], this behaviour can be understood by making use of the analysis [110], i.e.

of the cluster decomposition

〈R̃ ab
µ (k)R̃ cd

ν (−k)〉 ∼ g2G2(k2)D(k2) , (244)

where D(k2) and G(k2) correspond to the gluon and ghost propagators, eqs.(235),(236). A
non-enhanced ghost propagator, i.e. G(k2)

∣∣∣
k∼0
∼ 1

k2 , and an infrared finite gluon propagator,
i.e. D(0) 6= 0, nicely yield the behaviour of eq.(243).
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Thus, we are going to show in this chapter that the quantity R , eq.(240), and the cor-
relation function 〈R (x)R (y)〉, eq.(239), can be consistently generalized to the case of matter
fields, e.g. for the quarks and scalar fields.

3.1 A horizon-like term to the matter field: the 〈R̃ (k)R̃ (−k)〉 in the light of lattice data

Let F i denote a generic matter field in a given representation of SU(N), specified by the
generators (T a)i j, a = 1, ..,(N2−1), and let R ai(x) stand for the quantity

R ai(x) = g
∫

d4z [M −1]ab(x,z) (T b)i j F j(z) , (245)

which is a convolution of the inverse Faddeev-Popov operator with a given colored matter field,
being clearly the matter counterpart of the operator R ab

µ in the pure gauge case. We shall be able
to prove that, in analogy with the case of the gauge field Aa

µ, a non-trivial correlation function

〈R ai(x)R b j(y)〉 , (246)

can be obtained from a local and renormalizable action which is constructed by adding to the
starting conventional matter action a non-local term which shares great similarity with the ho-
rizon function H(A), eq.(86), namely

g2
∫

d4x d4y F i(x)(T a)i j [M −1]ab
(x,y)(T b) jkFk(y) . (247)

The introduction of such horizon-like functional into the sector of the matter field of the action
has the physical meaning of a non-local mass term, due to the inverse of the FP operator, which
would account for non-perturbative features of the matter sector. Therefore, the proposed non-
local effective action would looks like,

Snon−loc =
∫∫

d4xd4y

{
1
4

Fa
µν(x)F

a
µν(y)+ba(x)∂µAa

µ(y)+ c̄a(x)∂µDab
µ (x,y)cb(y)

+ T[F i](x,y)−U [F i](x,y)+g2
γ

4 f abcAb
µ(x)

[
M −1]ad

(x,y) f decAe
µ(y)

+ g2
σ

4F i(x)(T a)i j [M −1]ab
(x,y)(T b) jkFk(y)− γ

44(N2−1)

}
, (248)

whence T[F i](x,y) accounts for the kinetic term of the matter sector, and U [F i](x,y) stands for
the potential term. The by-hand introduced parameter σ2 has dimension of [mass][mass][mass]2, just as the
GZ parameter γ2, although being a free parameter of the theory.

As it happens in the case of the Gribov-Zwanziger theory, the non-local action (248) can
be cast in a local form by means of the introduction of suitable auxiliary fields. The resulting
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local action enjoys a large set of Ward identities which guarantee its renormalizabilty (take
a look at the next chapter). The introduction of the term (247) deeply modifies the infrared
behavior (IR) of the correlation functions of the matter fields, while keeping safe the well known
UV perturbative results. One of the most interesting outcomes of this procedure is that the
matter’s propagators are of the confining type, displaying positivity violation, while being in
good agreement with the available lattice data, as in the case of the scalar matter fields, [43,44],
and of quarks [111, 112].

Moreover, relying on the numerical data for the two-point correlation functions of quark
and scalar fields, the vev (246) turns out to be non-vanishing and, interestingly enough, it ap-
pears to behave exactly as the Boson-ghost propagator (243) of the gauge sector in the deep IR,
i.e.

〈R̃ ai(k)R̃ b j(−k)〉 ∼ 1
k4 . (249)

Furthermore, just as in the case of the gauge sector, expression (246) signals the existence of a
(soft) BRST breaking in the matter field sector of the theory.

In the next section we shall show how the correlation function 〈R ai(x)R b j(y)〉 can be
obtained from a local and renormalizable action exhibiting a soft breaking of the BRST invari-
ance in the matter sector.

3.2 The local version of the proposed model and the analysis of 〈R̃ (k)R̃ (−k)〉

Useful quantities in QFT can only be obtained through a local (and renormalizable)
action, such as the n-point correlation functions, vev of composite operators and the vacuum
energy. Therefore, since we have proposed an effective non-local action for the matter field, in
order to describe non-perturbative features of matter, it is very important to check, and prove,
that the proposed action can be recast in a local form. To achieve this goal, a couple of auxiliary
fields must be introduced, just as in the gauge sector. Furthermore, after properly localizing the
action, the propagator of the matter field will be derived in a Refined theory, where dynamical
condensates of the auxiliary fields are taken into account. Naturally, the existence — energe-
tically favorable — of such condensates is also checked. This procedure will be developed in
both example cases, for the scalar field and for the quark field.
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3.2.1 The scalar field in the adjoint representation

We start by considering the following non-local action

Sφ =
∫

d4x

(
1
2
(Dab

µ φ
b)2 +

m2
φ

2
φ

a
φ

a +
λ

4!
(φa

φ
a)2

)
+

+ g2
σ

4
∫

d4x d4y f abc
φ

b(x)
[
M −1]ad

(x,y) f dec
φ

e(y) , (250)

where, once again, σ is a massive parameter which, to some extent, plays a role akin to that
of the Gribov parameter γ2 of the Gribov-Zwanziger action. eq.(92). It should be noticed
that, despite of any mathematical similarity with the Gribov-Zwanziger’s parameter, γ2, σ2 has
no dynamical origin, nor geometrical interpretation, until now. However, they indeed share
algebraic similarities, so that most of the tools already known from GZ framework can be used
here for the matter sector.

Following, then, the same procedure adopted in the case of the Gribov-Zwanziger action,
it is not difficult to show that the non-local action (250) can be cast in a local form. This
is achieved by introducing a set of auxiliary fields (η̃ab,ηab), (θ̃ab,θab), where (η̃ab,ηab) are
commuting fields while (θ̃ab,θab) are anti-commuting. For the local version of (250) one gets

Sφ

loc = Sφ

0 +Sσ , (251)

with

Sφ

0 =
∫

d4x
(

1
2
(Dab

µ φ
b)2 +

m2
φ

2
φ

a
φ

a +
λ

4!
(φa

φ
a)2 + η̃

ac(∂µDab
µ )ηbc−

−θ̃
ac(∂µDab

µ )θbc−g f abc(∂µθ̃
ae)(Dbd

µ cd)ηce
)

(252)

and

Sσ = σ
2g

∫
d4x f abc

φ
a(ηbc + η̃

bc) . (253)

As in the case of the Gribov-Zwanziger action, the auxiliary fields (η̃ab,ηab), (θ̃ab,θab) ap-
pear quadratically, so that they can be easily integrated out, giving back precisely the non-local
starting expression (250). Moreover, in full analogy with the Gribov-Zwanziger case, the local
action Sφ

loc exhibits a soft breaking of the BRST symmetry. In fact, making use of eqs.(??) and
of

sφ
a =−g f abc

φ
bcc ,

sθ̃
ab = η̃

ab , sη̃
ab = 0 ,

sη
ab = θ

ab , sθ
ab = 0 , (254)
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it follows that

sSφ

loc = σ
2
∆

φ , (255)

where

∆
φ = g

∫
d4x f abc

(
−g f amn

φ
mcn(ηbc + η̃

bc)+φ
a
θ

bc
)
. (256)

Being of dimension two in the fields (smaller than the space-time dimension 4, in general), the
breaking term ∆φ (256) is in fact a soft breaking.

Now the local action (251) is added to the Gribov-Zwanziger action (92), obtaining

Sloc =
∫

d4x

{
1
4

Fa
µνFa

µν +ba
∂µAa

µ + c̄a
∂µDab

µ cb +
1
2
(Dab

µ φ
b)2 +

m2
φ

2
φ

a
φ

a +
λ

4!
(φa

φ
a)2

+ϕ
ac
ν ∂µDab

µ ϕ̄
bc
ν −ω

ac
ν ∂µDab

µ ω̄
ac
ν + γ

2g f abcAa
µ(ϕ

bc
µ + ϕ̄

bc
µ )−g f abc(∂µω̄

ae
ν )(Dbd

µ cd)ϕce
ν

−γ
44(N2−1)+ η̃

ac(∂µDab
µ )ηbc− θ̃

ac(∂µDab
µ )θbc +σ

2g f abc
φ

a(ηbc + η̃
bc)

−g f abc(∂µθ̃
ae)(Dbd

µ cd)ηce

}
. (257)

As it happens in the case of the Gribov-Zwanziger action, the local action Sloc can be proven to
be renormalizable to all orders. This important property follows from the existence of a large
set of Ward identities which can be derived in the matter scalar sector and which restrict very
much the possible allowed counterterms. For the sake of completeness, the Appendix A has
been devoted to the detailed algebraic proof of the renormalizability of the local action (257).

As in the case of the Gribov-Zwanziger action, expression (257) is well suited to inves-
tigate the correlation function

〈R ab(x)R cd(y)〉 , (258)

R ab(x) = g
∫

d4z (M −1)ac(x,z) f cdb
φ

d(z) , (259)

and its relation with the soft BRST breaking in the scalar field sector, eq.(255). In fact, repeating
the same reasoning of eqs.(253), (241),(242), one is led to consider the exact BRST correlation
function in the matter scalar field sector

〈 s(ηab(x)θ̃cd(y) )〉Sloc = 〈θ
ab(x)θ̃cd(y)+η

ab(x)η̃cd(y)〉Sloc . (260)
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Integrating out the auxiliary fields (θ̃ab,θab, η̃ab,ηab) in expression∫
[DΦ]

(
θ

ab(x)θ̃cd(y)+η
ab(x)η̃cd(y)

)
e−Sloc , (261)

gives

∫
[DΦ]

(
s
(
ηab(x)θ̃cd(y)

))
e−Sloc∫

[DΦ] e−Sloc
=σ

4
∫

DADφ δ(∂A) (detM ) R ab(x)R cd(y) e−(SY M+γ4H(A)+Sφ)∫
DADφ δ(∂A) (detM ) e−(SY M+γ4H(A)+Sφ)

,

(262)

showing that, in analogy with the case of the gauge field, the correlation function (258) with
a cutoff at the Gribov horizon is directly related to the existence of the BRST breaking in the
matter sector.

We can now have a look at the two-point correlation function of the scalar field. Ne-
vertheless, before that, an additional effect has to be taken into account. In very strict ana-
logy with the case of the Refined Gribov-Zwanziger action, eq.(110), the soft breaking of the
BRST symmetry occurring in the scalar matter sector, eq.(255), implies the existence of a non-
vanishing BRST exact dimension two condensate, namely

〈s(θ̃ab(x)ηab(x))〉= 〈(η̃ab(x)ηab(x)− θ̃
ab(x)θab(x))〉 6= 0 . (263)

In order to show that expression (263) in non-vanishing, we couple the operator (η̃ab(x)ηab(x)−
θ̃ab(x)θab(x)) to the local action Sloc, eq.(257), by means of a constant external source J,

Sloc− J
∫

d4x (η̃ab(x)ηab(x)− θ̃
ab(x)θab(x)) , (264)

and we evaluate the vacuum energy E(J) in the presence of J, namely

e−V E(J) =
∫

DΦ e−(Sloc−J
∫

d4x (η̃ab(x)ηab(x)−θ̃ab(x)θab(x))) . (265)

Thus, the condensate 〈(η̃ab(x)ηab(x)− θ̃ab(x)θab(x))〉 is obtained by differentiating E(J) with
respect to J and setting J = 0 at the end, i.e.

∂E(J)
∂J

∣∣∣
J=0

=−〈(η̃ab(x)ηab(x)− θ̃
ab(x)θab(x))〉 . (266)

Employing dimensional regularisation, to the first order, we have

E(J) =
(N2−1)

2

∫ ddk
(2π)d log

(
k2 +m2

φ +
2Nσ4g2

k2 + J

)
+ Ê , (267)

where Ê stands for the part of the vacuum energy which is independent from J. Differentiating
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eq.(267) with respect to J and setting J = 0, we get

〈(η̃ab(x)ηab(x)− θ̃
ab(x)θab(x))〉= (N2−1)Nσ

4g2
∫ ddk

(2π)d
1
k2

1
k4 +m2

φ
k2 +2Nσ4g2

6= 0 .

(268)

Notice that the integral in the right hand side of eq.(268) is ultraviolet convergent in d = 4.
Expression (268) shows that, as long as the parameter σ in non-vanishing, the condensate
〈(η̃ab(x)ηab(x)− θ̃ab(x)θab(x))〉 is dynamically generated. The effect of the condensate (263)
can be taken into account by adding to the action Sloc the novel term

µ2
φ

∫
d4x s(θ̃ab

η
ab) = µ2

φ

∫
d4x (η̃ab

η
ab− θ̃

ab
θ

ab) , (269)

giving rise to the Refined action

S̃Re f = Sloc +
∫

d4x
(

m2

2
Aa

µAa
µ−µ2

(
ϕ̄

ab
µ ϕ

ab
µ − ω̄

ab
µ ω

ab
µ

))
−µ2

φ

∫
d4x

(
η̃

ab
η

ab− θ̃
ab

θ
ab
)
.

(270)

Finally, for the propagator of the scalar field, we get

〈φa(k)φb(−k)〉= δ
ab k2 +µ2

φ

k4 +(µ2
φ
+m2

φ
)k2 +2Ng2σ4 +µ2

φ
m2

φ

. (271)

In the subsection 3.3 we are going to fit this perturbative propagator to the correspondent
lattice data, so that the free parameters of the theory can be estimated.

3.2.2 The quark field

In this subsection we generalise the previous construction to the case of quark fields.
The starting non-local action (250) is now given by

Sψ =
∫

d4x
(
ψ̄

i
γµDi j

µ ψ
j−mψψ̄

i
ψ

i)
− M3g2

∫
d4x d4y ψ̄

i(x)(T a)i j [M −1]ab
(x,y)(T b) jk

ψ
k(y) , (272)

where the massive parameter M is the analogue of the parameter σ of the scalar field and

Di j
µ = δ

i j
∂µ− ig(T a)i jAa

µ , (273)
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is the covariant derivative in the fundamental representation, specified by the generators (T a)i j.
As in the previous case, the non-local action (272) can be cast in local form through the in-
troduction of a suitable set of auxiliary fields: (λ̄ai,λai) and (ξ̄ai,ξai). The fields (λ̄ai,λai) are
Dirac spinors with two color indices (a, i) belonging, respectively, to the adjoint and to the
fundamental representation. Similarly, (ξ̄ai,ξai) are a pair of spinor fields with ghost number
(−1,1). The spinors (λ̄ai,λai) are anti-commuting, while (ξ̄ai,ξai) are commuting. For the local
version of the action, we get

Sψ

loc = S0 +SM , (274)

where

S0 =
∫

d4x
(

ψ̄
i
γµDi j

µ ψ
j−mψψ̄

i
ψ

i + λ̄
ai(−∂µDab

µ )λbi + ξ̄
ai(−∂µDab

µ )ξbi

−(∂µξ̄
ai)g f acb(Dcm

µ cm)λbi
)
, (275)

and

SM = gM3/2
∫

d4x
(
λ̄

ai(T a)i j
ψ

j + ψ̄
i(T a)i j

λ
a j) . (276)

The non-local action Sψ is easily recovered by integrating out the auxiliary fields (λ̄ai,λai) and
(ξ̄ai,ξai). As in the case of the scalar field, the term SM induces a soft breaking of the BRST
symmetry. In fact, from

sψ
i = −igca(T a)i j

ψ
j ,

sψ̄
i = −igψ̄

jca(T a) ji ,

sξ̄
ai = λ̄

ai , sλ̄
ai = 0 ,

sλ
ai = ξ

ai , sξ
ai = 0 , (277)

one easily checks that

sSψ

loc = sSM = M3/2
∆

M , (278)

where

∆
M =

∫
d4x

(
ig2

λ̄
ai(T a)i jcb(T b) jk

ψ
k− ig2

ψ̄
kcb(T b)ki(T a)i j

λ
a j−gψ̄

i(T a)i j
ξ

a j
)
. (279)
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Again, being of dimension 5/2 in the fields, ∆M is a soft breaking. In the present case, for the
quantity (245) we have

R ai
α (x) = g

∫
d4z (M −1)ab(x,z) (T b)i j

ψ
j
α(z) ,

R̄ b j
β
(x) = g

∫
d4z (M −1)bc(x,z)ψ̄k

β
(z) (T c)k j , (280)

where we have explicitated the Dirac indices α,β = 1,2,3,4.
As in the case of the scalar field, the action Sψ

loc can be added to the Gribov-Zwanziger
action. The resulting action, (SGZ +Sψ

loc), turns out to be renormalizable. Although we shall not
give here the details of the proof of the renormalizability of the action (SGZ +Sψ

loc), it is worth
mentioning that it can be given by following the framework already outlined in [113], where a
similar non-local spinor action has been considered.

Proceeding now as in the case of the scalar field, one finds

∫
[DΦ]

[
s
(

ξ̄ai
α (x)λ

b j
β
(y)
)]

e−(SGZ+Sψ

loc)∫
[DΦ] e−(SGZ+Sψ

loc)
=

= M3

∫
DADψDψ̄ δ(∂A)(detM )R ai

α (x)R̄ b j
β
(y) e−(SY M+γ4H(A)+Sψ)∫

DADψDψ̄ δ(∂A) (detM ) e−(SY M+γ4H(A)+Sψ)
, (281)

showing that the correlation function 〈R ai
α (x)R̄ b j

β
(y)〉 with a cutoff at the Gribov horizon is

related to the existence of the BRST breaking, eq.(278).
Let us end this section by discussing the two-point correlation function of the quark field.

As before, an additional effect has to be taken into account. Also here, the soft breaking of the
BRST symmetry, eq.(278), implies the existence of a non-vanishing BRST exact dimension two
condensate, namely

〈s(ξ̄ai(x)λai(x))〉= 〈(λ̄ai(x)λai(x)+ ξ̄
ai(x)ξai(x))〉 6= 0 , (282)

whose effect can be taken into account by adding to the action Sψ

loc the term

µ2
ψ

∫
d4x s(ξ̄ai(x)λai(x)) = µ2

ψ

∫
d4x (λ̄ai(x)λai(x)+ ξ̄

ai(x)ξai(x)) . (283)

Therefore, including the dimension two condensates, we end up with the Refined action

S̃ψ

Re f = SRGZ +Sψ

loc +µ2
ψ

∫
d4x

[
λ̄

ai(x)λai(x)+ ξ̄
ai(x)ξai(x)

]
. (284)

Finally, for the propagator of the quark field, we get

〈ψi(k)ψ̄ j(−k)〉= δ
i j −ikµγµ +A(k2)

k2 +A2(k2)
, (285)
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where

A(k2) = mψ +
g2M3CF

k2 +µ2
ψ

, (286)

and

(T a)i j(T a) jk = δ
ikCF , CF =

N2−1
2N

. (287)

In the following section 3.3 we are going to fit our perturbative Refined matter propa-
gators (271) and (285) with the most recent curves of scalar and quark propagators from the
lattice data. As will be shown, for the fitted parameters of the theory both, the scalar and
quark, propagators exhibit positivity violation, so that they do not belong to the spectrum of the
asymptotically free physical particles of the theory; they are said to be confined.

3.3 Analysis of 〈R̃ (k)R̃ (−k)〉 in the light of the available lattice data

In the present section we present a discussion of the correlation function (246) in the
case of quark and scalar fields, relying on the available lattice data for the quark and scalar
propagators. This will be done by working out in detail the case of a scalar field in the adjoint
representation. We shall also discuss how 〈R ai(x)R b j(y)〉 encodes information on the soft
breaking of the BRST symmetry. In the same section we generalize the previous construction
to the case of quark fields. The final Appendix collects the details of the algebraic proof of the
renormalizability of the local action obtained by the addition of the term (247) in the case of a
scalar matter field in the adjoint representation.

Let us, then, investigate the correlation function 〈R̃ (k)R̃ (−k)〉, that signals soft BRST
breaking in the matter sector, in light of available lattice data for gauge-interacting matter pro-
pagators in the Landau gauge.

As in the pure gauge case, one may rely on the general cluster decomposition property
in order to obtain the leading behavior in the deep infrared region. The point is that, in one side
we have the highly non-local operator

R ai(x)R b j(y) = g2
∫∫

d4zd4z′ [M −1]ad(x,z) (T d)il F j(z) (T e) jl F j(z′) [M −1]be(y,z′) , (288)

whose non-locality stems from the squared inverse of the FP operator. In the other side we have

〈ca(y)c̄b(x)〉 = [M −1]ab(x,y) , (289)

so that the non-local operator may be rewritten as,

R ai(x)R b j(y) =
∫∫

d4zd4z′〈ca(z)c̄d(x)〉〈ce(z′)c̄b(y)〉 (T d)il F j(z) (T e) jl F j(z′) . (290)
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Therefore, the vev of this operator can be written as

〈R ai(x)R b j(y)〉 = g2
∫

d4z d4z′ 〈c̄a(x)ca′(z)F i′(z)(T a′)i′ic̄b(y)cb′(z′)(T b′) j′ jF j′(z′)〉 (291)

whence the cluster decomposition principle applies to the ghost and matter propagators, yielding
to

〈R ai(x)R b j(y)〉 = g2(T a)i′i(T b)i′ j
∫

d4keik(x−y)G(k2)D(k2)+

+ g2
∫

d4z d4z′ 〈c̄a(x)ca′(z)F i′(z)(T a′)i′ic̄b(y)cb′(z′)(T b′) j′ jF j′(z′)〉1PI .(292)

The cluster decomposition principle could be seen as a reflection of the non-locality of the ope-
rator R ai(x)R b j(y). Notice that the operator (290) depends on two non-local quantities,〈ca(z)c̄d(x)〉
and 〈ce(z′)c̄b(y)〉, measured in two unrelated points x and y.

On equation (292) G(k2) is the ghost propagator, while D(k2) now stands for the propa-
gator of the associated matter field. The one-particle-irreducible (1PI) contribution above (the
second term) becomes subleading in the IR limit, since in this case the points x and y are largely
separated and the cluster decomposition applies. This can also be seen diagrammatically: since
the external legs are ghosts, these corrections will involve at least two ghost-gluon vertices, that
carry a derivative coupling. In fact, as a consequence of the transversality of the gluon propa-
gator, factorization of the external momentum takes place, implying the subleading character of
the 1PI contributions.

Therefore, in the limit k→ 0, the (full) ghost and matter propagators alone dictate the
momentum-dependence of the correlation function 〈R̃ (k)R̃ (−k)〉, i.e.

〈R̃ ai(k)R̃ b j(−k)〉 ∼ g2G2(k)D(k2) . (293)

Having in mind the non-enhanced ghost propagator, G(k2)∼ 1/k2 (as observed in high-precision
pure gauge simulations in the Landau gauge [57, 61, 62]), it is straightforward to conclude that
a finite zero-momentum value for the matter propagators is a sufficient condition for a ∼ 1/k4

behavior of the correlation function 〈R̃ (k)R̃ (−k)〉 in the deep IR.
As we shall see in the following subsections, both scalar and fermion propagators dis-

play, when coupled to non-Abelian gauge fields, a shape compatible with a finite zero-momentum
value in the currently available lattice data. We expect thus a∼ 1/k4 behavior of the correlation
function 〈R̃ (k)R̃ (−k)〉 in the matter sector, being in this sense a universal property associated
with the Faddeev-Popov operator – when coupled to any colored field – in confining Yang-Mills
theories that can be easily probed in the future via direct lattice measurements.

Moreover, fits of the lattice data are presented for adjoint scalars in subsection 3.3.1 and
for fermions in subsection 3.3.2. This analysis shows that the propagators for gauge-interacting
scalars and fermions are compatible not only with a finite zero-momentum limit, but also with a
complete analytical form that can be extracted from an implementation of soft BRST breaking
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Figure 8 - Unrenormalized propagator for different bare masses of the scalar field: mbare = 0(top,
black), 1 and 10 GeV (bottom, red). The points are preliminary and unpublished lattice
data from quenched simulations (for lattice cutoff a−1 = 4.54 GeV, N = 30 and
β = 2.698; cf. also [44] for more details on the lattice setup and measurements) and the
curves are the corresponding fits, whose parameter values can be found in Table 7.
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in the matter sector to be presented below, in Sect.3.

3.3.1 The scalar field in the adjoint representation

In this subsection we consider real scalar fields coupled to a confining Yang-Mills the-
ory:

L =
1
4

Fa
µνFa

µν +
1
2
[Dab

µ φ
b]2 +

m2
φ

2
φ

a
φ

a +
λ

4!
[φa

φ
a]2 +LGF , (294)

where LGF is the Landau gauge fixing term and φ is a real scalar field in the adjoint representa-
tion of SU(N) and there is no Higgs mechanism, namely 〈φ〉= 0.

We are interested in analyzing the infrared non-perturbative regime, focussing especi-
ally on the adjoint scalar propagator. We resort to the lattice implementation of this system:
currently available in the quenched approximation with the specific setup described in [44].
Preliminary and unpublished data points for larger lattice sizes (with lattice cutoff a−1 = 4.94
GeV and N = 30 lattice sites) [114] are displayed in Fig. 8 for different values of the bare scalar
mass (mbare = 0, 1, 10 GeV). It should be noticed that this data is unrenormalized in the lattice
sense. The renormalization procedure that fixes the data to a known renormalization scheme
and the resulting points will be discussed below.

First of all, the data tends to show a finite zero-momentum value for the scalar pro-
pagator, irrespective of its bare mass. This indicates – together with the well-stablished non-
enhanced ghost propagator – that the correlation function 〈R̃R̃〉k is indeed non-vanishing in the
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Table 1 - Fit parameters for the unrenormalized propagator in powers of GeV.

mbare µ2
φ

m2
φ

σ4 Z χ2/dof

0 120 0 4913 1.137 0.31
1 46 34 644 1.28 1.84

10 88 158 1267 1.26 0.10
Source: The author, 2016

IR limit, presenting the power-law enhancement ∼ 1/k4 that we have anticipated above.
The curves in Fig. 8 further show that the data is compatible with fits of a propagator of

the same type as the one we found in (271),

D(p) = Z
p2 +µ2

φ

p4 + p2(m2
φ
+µ2

φ
)+σ4 +m2

φ
µ2

φ

, (295)

where Z,µφ,mφ,σ are the fit parameters, whose values are presented in Table 7. In this case
we may extrapolate the fits in order to obtain the specific values at zero momentum: D(p =

0) ≈ 0.028, 0.027, 0.0073 GeV−2, for the bare mass mbare = 0,1,10GeV, respectively, so that
the non-trivial IR limit is clear. Moreover, the σ parameter – which is directly related to the
non-vanishing of the vev of an exact BRST local operator, 〈s(ηab(x)θ̃cd(x))〉 6= 0 (262) – seems
to be non-vanishing. It is also interesting to point out that the obtained fits correspond to a
combination of two complex-conjugate poles for all values of bare scalar mass, indicating the
absence of a Källén-Lehmann spectral representation for this two-point function and the pre-
sence of positivity violation. In this sense the adjoint scalar propagators consistently represent
confined degrees of freedom, that do not exhibit a physical propagating pole.

An important issue to be addressed is the possibility of scheme dependence of those
findings. To check for this, we have also analyzed the scalar propagators after renormalization
in another scheme. As usual, renormalization is implemented through the inclusion of mass
δmφ and wave-function renormalization δZ counterterms:

D−1
ren(p) = D−1(p)+δm2

φ +δZ(p2 +m2
bare) , (296)

where the counterterms are obtained by imposing the following renormalization conditions (for
Λ = 2 GeV):

i) ∂p2D−1
ren(p = Λ) = 1;

ii) D−1
ren(p = Λ) = Λ2 +m2

bare.

The fit functions were used to compute the counterterms and the renormalized points are ob-
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Figure 9 - Renormalized propagator for different bare masses of the scalar field: mbare = 0(top,
black), 1 and 10 GeV (bottom, red). The points are obtained from the unrenormalized
lattice data [44, 114] displayed in Figure 8.
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Table 2 - Counterterms, redefined fit parameters and zero-momentum values of the renormalized
propagator in powers of GeV.

mbare δm2
φ

δZ m′2
φ

σ′4 Z′ Dren(p = 0)

0 -35.98 0.40 -28.09 3374.32 0.781 26.7
1 -36.49 0.416 -8.18 420.84 0.834 0.94

10 -69.69 0.322 79.19 902.23 0.894 0.01
Source: The author, 2016

tained from the original lattice data by adding the same counterterms26. Results are shown in
Figure 9 and Table 2.

The renormalized propagator may be rewritten in the form (295), with redefined para-
meters m′

φ
,σ′,Z′:

Dren(p) = Z′
p2 +µ2

φ

p4 + p2(m′2
φ
+µ2

φ
)+σ′4 +m′2

φ
µ2

φ

(297)

All the interesting qualitative properties observed in the unrenormalized data remain
valid, namely: (i) finite IR limit, (ii) compatibility with 4-parameter fits of the same form,
with non-trivial σ values, (iii) the fit parameters yield complex-conjugate poles, so that the
renormalized propagator is still compatible with positivity violation and confinement.

26 Direct renormalization of lattice data was avoided, since we did not have access to the measurement of ∂p2D
and the number of data points available was not sufficient for a reliable numerical derivative to be computed.
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Figure 10 - Lattice quark mass function [112] with its fit A(p2). Fit obtained by O.
Oliveira [115].

Source: DUDAL; GUIMARAES; PALHARES; SORELLA, 2016, p.6.

We underline that the present analysis for the scalar fields is meant to be a preliminary
study of the propagator. As such, the results are still at the qualitative level. A more quantitative
analysis would require further simulations with improved statistics and even larger lattices.

3.3.2 The quark field

Now we consider the case of gauge-interacting fermionic fields coupled to a confining
Yang-Mills theory. Of course, the case of QCD is the emblematic example. We will verify
that the same qualitative properties shown above for scalar fields can also be found in this
case, indicating that the IR enhancement of the correlation function 〈R̃ R̃ 〉 ∼ 1/k4 seems to be
universally present in the confined matter sector.

The fermionic propagator is decomposed as usual,

S(p) = Z(p2)
−ipµγµ +A(p2)

p2 +A(p2)
, (298)

and our interest resides solely on the mass function A(p2), whose lattice data will be analyzed
here.

As already discussed and shown in [36], the data of [112] for the mass function of the
propagator of degenerate up (u) and down (d) quarks with current mass µ = 0.014 GeV can be
fitted excellently with

A(p2)=
M3

p2 +m2 +µ with M3 = 0.1960(84) GeV3 ,m2 = 0.639(46) GeV2 (χ2/d.o.f. = 1.18) .

(299)
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as can be seen in Fig. 3.
The quark propagator presents clearly a finite IR limit. This is, in fact, well-known

in QCD as dynamical mass generation and is intimately related to chiral symmetry breaking.
Interestingly enough, this is also a sufficient condition – supposing a non-enhanced ghost pro-
pagator – for the soft BRST breaking in the quark sector through the IR enhancement of the
correlation function 〈R̃ R̃ 〉. Again, we predict a ∼ 1/k4 IR scaling for this observable, now in
the quark sector. This suggests a close relation between soft BRST breaking and chiral symme-
try breaking, and may provide an interesting underlying connection between confinement and
chiral symmetry breaking.

3.4 Discussions about the results

One of the striking features of the (R)GZ formulation of non-perturbative Euclidean
continuum Yang-Mills theories is the appearance of the soft breaking of the BRST symmetry,
which seems to be deeply related to gluon confinement. Recently, direct lattice investigations
[59] have confirmed the existence of such a breaking, through the analysis of the Boson-ghost
correlation function:

〈R̃ ab
µ (k)R̃ cd

ν (−k)〉 k→0∼ 1
k4 , (300)

with

R ac
µ (x) = g

∫
d4z(M −1)ad(x,z) f decAe

µ(z) . (301)

As pointed in [59], the non-vanishing of such correlator signals the breaking of the BRST
invariance, since it is related with the vev of an exact BRST local operator,

〈s(ϕab
µ (x)ω̄cd

ν (y))〉GZ = γ
4〈R ab

µ (x)R cd
ν (y)〉GZ . (302)

Interestingly enough, the behavior (300), in the gauge sector, is in quite good agreement with
the RGZ framework.

Inspired by the gauge sector, we proposed an effective model for the matter sector, where
a similar structure to that one of the gauge sector can be consistently implemented. It must
be clear that we had no geometrical motivation, or any ambiguity issues in the matter field
quantization procedure, that would have led us to this effective model. However, it seems to
be reasonable that, in some sense, non-perturbative features of the gauge field play any role in
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the non-perturbative feature of the matter field 27. Therefore, within the framework of (R)GZ
quantization procedure, the fate of restricting the space of configuration of the gauge field to
the first Gribov region, Ω, may be reflected in the matter sector.

Two main interesting cases were considered in this chapter, the adjoint scalar and the
quark fields. In these cases we could show that it is possible to construct an analogous operator
R ai

F for matter field,

R ai
F(x) = g

∫
d4z (M −1)ab(x,z) (T b)i j F j(z) , (303)

so that the correlation function 〈R FR F〉 is non-vanishing and, from the available lattice data,
seems to behave like the Boson-ghost propagator in the IR regime, (300), namely

〈R̃ ai
F(k)R̃

b j
F (−k)〉 k→0∼ 1

k4 . (304)

Again, the non-vanishing of 〈R FR F〉 indicates the soft breaking of the BRST symmetry in the
matter sector, since the vev of R FR F can be written in terms the vev of a BRST exact local
operator of the localizing fields,

〈s(ηab(x)θ̄cd(y))〉 = γ
4〈R ab(x)R cd(y)〉 . (305)

In this sense, the correlation function 〈R FR F〉 could be regarded as a direct signature for BRST
breaking, being accessible both analytically as well as through numerical lattice simulations.

Concerning the analytic side, we have been able to construct a local and renormaliza-
ble action including matter fields which accommodates the non-trivial correlation functions
〈R FR F〉. Our analysis further suggests that the inverse of the Faddeev-Popov operator M −1,
whose existence is guaranteed by the restriction to the first Gribov region Ω of the gauge field,
couples in a universal way to any coloured field Gi (e.g. gluon and matter fields),

R ai
G(x) = g

∫
d4z (M −1)ab(x,z) (T b)i j G j(z) , (306)

giving rise to a non-vanishing correlation function

〈R̃ G(k)R̃ G(−k)〉 k→0∼ 1
k4 . (307)

The construction carried out here was restricted to the Landau gauge, although so-
mething similar could be developed in other gauges, e.g. the Maximal Abelian Gauge [116],
or even in the wider class of Linear Covariant Gauges, in a framework that lives invariant the
action under a non-perturbative version of the BRST symmetry [50, 51, 53].

27 More on the interplay between non-perturbative features of the gauge sector and quark confinement will be
treated in the chapter 5.
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4 THE UV SAFETY OF ANY GRIBOV-LIKE CONFINED THEORY

In the present Chapter we are going to continue the analysis started in the previous Chap-
ter, concerning general effective models presenting non-local terms in the action à la Gribov.
Precisely, here we present some interesting observations about the UV behavior of such models,
guided by the already known UV safety of Yang-Mills models within the Gribov horizon, and
prove to all orders the renormalizability of such general models.

The feature that we want to explore is the fact that both the GZ and the RGZ tree-level
propagators hold the key for the good UV behavior of the theory. More precisely, notice that
the gluon propagator D(k2) (112) can be rewritten as a sum of its UV perturbative term plus an
effective non-perturbative contribution,

D(k2) =
k2 +µ2

k4 +(µ2 +m2)k2 +2Ng2γ4 +µ2m2 .

=
1

k2 +m2 −
2Ng2γ4

(k2 +m2)
(
k2 +M2

+

)(
k2 +M2

−
) (308)

where

M2
± =

µ2 +m2

2
± 1

2

√
(µ2 +m2)

2−8Ng2γ4 . (309)

The first term in (308) represents the usual propagator of a massive vector boson. The second
term is the contribution coming from the restriction to the Gribov region. Notice the negative
sign that points to an unphysical contribution that violates positivity requirements. The im-
portant feature we want to emphasize is the subleading contribution of the second term in the
UV : it presents a ∼ 1/k4 suppression with respect to the standard first term, which will always
produce a UV convergent loop contribution in dimension 4. The renormalization of the RGZ
and GZ (which corresponds to µ = m = 0) follows from this important property and, as alre-
ady mentioned, it is well known that γ does not renormalize independently and thus cannot be
considered as an independent dynamically generated scale.

One is thus led to conjecture that this is a general property of theories displaying such
confining propagators, with γ standing for a general mass scale associated with confinement
of the fundamental fields; γ must be understood as a scale determined by other dynamically
generated scales of the theory. More precisely, the second term in (308) cannot generate any new
UV divergences in the theory and therefore cannot change the renormalization properties of the
theory, which must be the same as with γ= 0. In a diagrammatic approach, only positive powers
of propagators appear, so that it is clear that the highly-suppressed Gribov contribution (cf.
(308), e.g.) will not influence the deep UV behavior of the theory. Furthermore, it follows that
if the theory with γ = 0 does not generate a mass scale , then, since there can be no divergences
proportional to γ, no mass scale will be generated in the γ 6= 0 theory. This in turn means that
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it is not possible to assign a dynamical meaning to the γ parameter in this case, i.e., the only
possible solution is to have γ = 0 in these cases.

In the following sections we will study a variety of examples that support these claims.
In section 4.1 we discuss the case of an interacting scalar field theory displaying a confining
propagator. In section 4.2 we consider the inclusion of confined fermions interacting with the
confined scalars through a Yukawa term. In section 4.3 we discuss the case of Super Yang-Mills
with N = 1 supersymmetries and show to all orders via the algebraic renormalization approach
that the adoption of Gribov-type propagators does not produce any new UV divergences, with
the renormalization of the IR parameters being completely defined by the UV renormalization
of the parameters of the original theory.

4.1 The confined scalar field

Let us begin with the theory of a scalar field φ, whose action is given by (250) with a
decoupled gauge field. In this situation we have

S =
∫

d4x

[
1
2
(∂φ ·∂φ)2 +

1
2

m2
φ φ ·φ+

λ

4
(φ ·φ)2 +

σ4

2

(
φ ·φ
−∂2

)]
, (310)

The parameter m2
φ

is the mass of the scalar field in the deconfined (σ→ 0) theory and λ is the
quartic coupling constant. Here, σ is the confining parameter, or infrared parameter, that shall
play a similar role for the scalars as the Gribov mass does for the confined gluons, as detailed in
the previous Chapter. Our claim in this case is that for the case that the parameter σ is non-zero
the deep UV behavior of the theory is not affected, at all.

One should notice that the model considered here follows the construction of the previ-
ous Chapter, 3. Since the action (310) is equivalent to the action (250) defined in the previous
Chapter, for a decoupled gauge field, and we are interested in computing the corresponding
propagators, we have just to follow the same procedure as developed therein: introduce a couple
of auxiliary fields in order to localize the action; change to the Fourier space, obtaining

Squad =
∫ d4k

(2π)4

{
1
2

φ

(
k2 +m2

φ

)
φ − η̃k2

η + θ̃k2
θ + σ

2
φ(η+ η̃

}
; (311)

and integrating out the auxiliary fields. One should end up, afterwards, with

Squad =
∫ d4k

(2π)4

{
1
2

φ

[
k4 +m2

φ
k2−σ4

k2

]
φ

}
. (312)

Finally, from the functional generator, one can identify the inverse of the momentum dependent
factor of the quadratic term φ2 of equation (312) as the tree-level confining propagator of the



106

scalar field:

D(k2) =
k2

k4 +m2
φ
k2 +σ4

.

=
1

k2 +m2
φ

− σ4(
k2 +m2

φ

)(
k2 +M2

+

)(
k2 +M2

−
)

=
1

k2 +m2
φ

−σ
4
∆(k2) (313)

where we have isolated the confining contribution to the scalar propagator, σ4∆, with

∆(k2) =
1(

k2 +m2
φ

)(
k2 +M2

+

)(
k2 +M2

−
) , (314)

which is highly suppressed in the UV: ∆∼ 1/k6. The mass parameters M2
± are written in terms

of σ and mφ:

M2
± =

m2
φ

2
± 1

2

√
m4

φ
−4σ4 . (315)

Note that M2
± may become complex for large enough σ/mφ. The complexity of these IR mass

parameters is closely related to positivity violation and, then, with the absence of a physical par-
ticle interpretation for these excitations, leading to the Gribov-kind confinement interpretation.

It is not difficult to see that there are no new UV divergences associated with the non-
local contribution (i.e. proportional to σ4) to the action (310) by looking at the diagrams of
primitive divergences of the theory.

In fact, the one-loop scalar selfenergy is

cfff ∝

∫
d4 pD(p) =

∫
d4 p

1
p2 +m2

φ

+σ
4
∫

d4 p∆(p2)

=
∫

d4 p
1

p2 +m2
φ

+σ
4(UV finite) . (316)

The correction to the quartic coupling at one loop reads:

d
k−p

l
p

n ee d ∝

∫
d4 pD(k− p)D(p) =

∫
d4 p

1
p2 +m2

φ

1
(k− p)2 +m2

φ

+

+σ
4
∫

d4 p∆(p2)
1

(k− p)2 +m2
φ

+σ
4
∫

d4 p
1

p2 +m2
φ

∆((k− p)2)

+σ
8
∫

d4 p∆(p2)∆((k− p)2)

=
∫

d4 p
1

p2 +m2
φ

1
(k− p)2 +m2

φ

+O(σ4,σ8)(UV finite ) (317)
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As a representative example at two-loop order, we may look at the scalar selfenergy
sunset diagram:

k−p−q

l
p

nff qff ∝

∫
d4 p

∫
d4qD(k− p−q)D(q)D(p)

=
∫

d4 p
∫

d4q
1

p2 +m2
φ

1
q2 +m2

φ

1
(k− p−q)2 +m2

φ

+

+σ
4
∫

d4 p
∫

d4q∆(p2)
1

q2 +m2
φ

1
(k− p−q)2 +m2

φ

+

+σ
4
∫

d4 p
∫

d4q
1

p2 +m2
φ

∆(q2)
1

(k− p−q)2 +m2
φ

+

+σ
4
∫

d4 p
∫

d4q
1

p2 +m2
φ

1
q2 +m2

φ

∆((k− p−q)2)+O(σ8)

=
∫

d4 p
1

p2 +m2
φ

1
q2 +m2

φ

1
(k− p−q)2 +m2

φ

+

+O(σ4,σ8,σ12)(UV finite) . (318)

In all examples above, the appearance of a general form for the contributions of the con-
fining scale with increasingly UV convergent momentum integrals is clear. It is straightforward
to realize then that this pattern will spread throughout all orders of the diagrammatic expansion,
so that we are led to infer that contributions proportional to σ cannot give rise to new primitive
divergences, besides the ones coming from the standard theory (that one with σ = 0).

4.2 The confined fermion and scalar fields interacting

The same reasoning can be applied when Dirac fermions are added to the theory, with
an Yukawa coupling and a fermionic Gribov-type term rendering the fermionic excitations also
confined.

We consider here the theory in the absence of scalar condensates. In this case, the full
action reads

S =
∫

d4x

[
1
2

φ

(
−∂

2 +m2
φ

)
φ++

λ

4
(φ ·φ)2 +

σ4

2

(
φ ·φ
−∂2

)
+

ψ̄
(
∂/+mψ

)
ψ+gφψ̄ψ+

1
2

φ

(
γ4

−∂2

)
φ+ ψ̄

(
M3

−∂2

)
ψ

]
, (319)

where mψ is the mass of the original fermion field (i.e. for M→ 0) and g is the Yukawa coupling.
In the fermionic sector the IR mass scale analogous to the Gribov parameter is M, such as in the
previous Chapter.

Analogously to the previous purely scalar case, the tree-level propagators of both the
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Figure 11 - One-loop diagrams containing fermion (dashed) lines for the fermion and scalar
selfenergies and cubic, quartic and Yukawa couplings, respectively.

Source: The author, 2016.

scalar and fermion fields are obtained through the insertion of auxiliary fields, different doublets
to each sector, and the subsequent integration of such fields in the Fourier space. After all,
it is not difficult to see that there are no UV divergences associated to the non-local terms
proportional to σ and M. The scalar excitations display the same confining propagator as the
one derived in the last section, (313), while for fermion field we have

S(k2) =
ik/+mψ + M3

k2

k2 +(mψ + M3

k2 )2
.

=
ik/+M
k2 +m2

ψ

+M3 (k
2 +m2

ψ)k
2− (ik/+mψ)(2Mk2 +M3)

(k6 +(mψk2 +M3)2)(k2 +m2
ψ)

=
ik/+mψ

k2 +m2
ψ

+M3
Σ(k2) , (320)

Again, the isolated confining contribution to the propagator is highly suppressed in the UV with
respect to the standard massive Dirac term (∼ 1/k):

Σ(k) =
(k2 +m2

ψ)k
2− (ik/+mψ)(2mψk2 +M3)

(k6 +(mψk2 +M3)2)(k2 +m2
ψ)

∼ 1/k4 , (321)

and we anticipate that the primitive divergences of the theory with confined propagators will
be exactly the ones coming from terms of the original (local) theory, since any contribution
proportional to σ or M will be strongly suppressed in the UV regime.

At one loop order, besides the diagrams already analyzed in the previous section, new
diagrams contributing to primitive divergences appear, due to the presence of fermion lines
(dashed ones):

It should be noticed that the Yukawa coupling breaks the discrete symmetry φ→ −φ

originally present in the scalar sector, generating at the quantum level a cubic scalar interaction.
This means that the renormalizable version of this theory requires a counterterm for the cubic
scalar interaction, even if the physical value of this coupling is set to zero. In the case of a
pseudoscalar Yukawa coupling (i.e. gφψ̄ψ→ gφψ̄γ5ψ), parity symmetry guarantees that the
cubic terms vanish identically. We emphasize, however, that our statement concerning the UV
properties of Gribov-type confining propagators remains valid in any case, as will be made
explicit below via the whole set of primitive divergences at one loop order.

In order to investigate the influence of the confining propagators in the UV regime, we
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may isolate the free fermion and scalar propagators from the confining contributions, namely
Σ(k)UV∼ 1/k4 and ∆(k2)

UV∼ 1/k6, being both highly suppressed in the UV. Writing down explici-
tly the momentum integrals in the corresponding expressions for the one-loop diagrams in Fig.
11, we have, respectively:

(a) the one-loop fermion self energy:

∫
d4 pD(k− p)S(p) =

∫
d4 p

1
(k− p)2 +m2

φ

ip/+mψ

p2 +m2
ψ

+

+σ
4
∫

d4 p∆((k− p)2)
ip/+mψ

p2 +m2
ψ

+M3
∫

d4 p
1

(k− p)2 +m2
φ

Σ(p)+

+σ
4M3

∫
d4 p∆((k− p)2)Σ(p)

=
∫

d4 p
ip/+mψ

p2 +m2
ψ

1
(k− p)2 +m2

φ

+

+O(σ4,M3,σ4M3)(UV finite) (322)

(b) the fermion loop contributing to the scalar self energy:

∫
d4 pTr[S(p)S(k− p)] =

∫
d4 pTr

[ ip/+mψ

p2 +m2
ψ

i(k/− p/)+mψ

(k− p)2 +m2
ψ

]
+

+O(M3,M6)(UV finite) (323)

(c) the triangular diagram contributing to the scalar cubic interaction:

∫
d4 pTr[S(p)S(p− k)S(p− k− k′)] =

=
∫

d4 pTr
[ ip/+mψ

p2 +m2
ψ

i(p/− k/)+mψ

(p− k)2 +m2
ψ

i(p/− k/− k/′)+mψ

(p− k− k′)2 +m2
ψ

]
+

+O(M3,M6,M9)(UV finite) (324)

(d) the fermion loop correction to the φ4 vertex:

∫
d4 pTr

[
S(p)S(p− k)S(p− k− k′)S(p− k− k′− k′′)

]
=

=
∫

d4 pTr
[ ip/+mψ

p2 +m2
ψ

i(p/− k/)+mψ

(p− k)2 +m2
ψ

i(p/− k/− k/′)+mψ

(p− k− k′)2 +m2
ψ

i(p/− k/− k/′− k/′′)+mψ

(p− k− k′− k′′)2 +m2
ψ

]
+

+O(M3,M6,M9,M12)(UV finite) (325)
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(e) the modification of the Yukawa coupling:

∫
d4 p

[
S(p)D(p− k)S(p− k− k′)

]
=

=
∫

d4 pTr
[ ip/+mψ

p2 +m2
ψ

1
(p− k)2 +m2

φ

i(p/− k/− k/′+mψ)

(p− k− k′)+m2
ψ

]
+O(σ4,M3,M6,σ4M3,σ4M6)(UV finite) (326)

As already occurred for the confining scalar theory in the previous section, the highly
suppressed UV behavior of the confining pieces Σ(k) UV∼ 1/k4 and ∆(k2)

UV∼ 1/k6 enforces the
convergence of all terms proportional to the new massive parameters introduced (σ and M). The
divergent integrals in all diagrams above are exactly the ones coming from the original action,
i.e. the one obtained in the limit σ→ 0 and M → 0. In the theory including the confining
quadratic non-local terms, the absence of new primitive divergences then guarantees that the
parameters σ and M can be consistently related to dynamically generated scales and do not
affect the UV regime of the theory.

Realizing that any diagrammatic expression at higher loops will involve higher powers
of the propagators, it becomes straightforward to envision the generalization of our claim in the
full diagrammatic expansion of this general Yukawa theory. Therefore, given the renormaliza-
bility of the original theory, one concludes that the resulting action with confining, Gribov-type
propagators is renormalizable and the IR confining parameters in both fermionic and bosonic
sectors do not display an independent renormalization, being thus consistent with dynamically
generated mass scales.

4.3 N = 1 Super Yang–Mills within the Gribov–Zwanziger approach

Let us now investigate a more intricate theory with confining propagators, including
gauge interactions as well as Majorana fermions. We consider here Yang-Mills theory in D =

4 spacetime dimensions with N = 1 supersymmetry in the presence of the Gribov horizon.
We shall use this (most complicated) example to prove, to all-orders in the loop expansion,
our claim concerning the good UV behavior of Gribov-type propagators. The IR parameters
introduced will be shown to have renormalization parameters that are completely determined
by the renormalization of the original theory.

This theory has already been put forward and investigated in [60]. There, the extension
of the Gribov-Zwanziger framework to N = 1 Super-Yang-Mills (SYM) theories quantized in
the Wess-Zumino gauge by imposing the Landau gauge condition was presented. The resulting
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effective action is

SN=1
SGZ = SN=1

SY M +Q
∫

d4x
(

c̄a
∂µAa

µ + ω̄
ac
µ (−∂νDab

ν )ϕbc
µ

)
+Sγ +SG̃ , (327)

where Q is the full transformation accounting for the supersymmetryc transformation and the
BSRT transformation, and is defined in the appendix so that the action (327) results in (476);
Sγ is the horizon term in its local form, eq.(94), namely

Sγ = γ
2
∫

d4x
(

g f abcAa
µ(ϕ

bc
µ + ϕ̄

bc
µ )
)
−4γ

4V (N2−1) . (328)

and the term SG̃ is given by

SG̃ =−1
2

M3
∫

d4x
(

λ̄
aα

δαβ

∂2 λ
aβ

)
, (329)

which also has a new massive constant M. This quantum action takes into account the existence
of Gribov copies in the path-integral quantization of the theory. It encodes the restriction to
the first Gribov horizon while keeping full compatibility with non-perturbative supersymmetric
features, such as the exactly vanishing vacuum energy.

Even though this non-perturbative framework has been constructed through the intro-
duction of two massive parameters γ,M which are not present in the classical action, those
new parameters are determined in a dynamical, self-consistent way via two non-perturbative
conditions: (i) the Gribov gap equation, that fixes γ by imposing the positivity of the Faddeev-
Popov operator and eliminating a large set of Gribov copies from the functional integral, and
(ii) the vanishing of the vacuum energy, which determines the parameter M that plays the role
of a supersymmetric counterpart of the Gribov parameter γ, guaranteeing a consistent non-
perturbative fermion sector. Interestingly, the appearance of the dynamical fermionic scale M

has been shown to be directly related to the formation of a gluino condensate, a well-known
non-perturbative property of N = 1 SYM theories. For further details, the reader is referred
to [60]. A brief summary of the notation adopted may also be found in the Appendix B.

The propagators of the theory (327) can be straightforwardly shown to be of the Gribov
type. The gauge field propagator is:

〈Aa
µ(p)Ab

ν(−p)〉= δ
ab
(

δµν−
pµ pν

p2

)
p2

p4 +2Ng2γ4 , (330)

which, apart from the more complicated tensorial structure, is equivalent to the Gribov scalar
propagator studied above in section 4.1. The gauge field propagator in this Gribov-extended
N = 1 SYM theory displays thus a confining contribution that is suppressed by an extra 1/p4

factor in the UV as compared to the free term.
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For gluino fields we have:

〈λ̄a
α(p)λb

β
(−p)〉 = δ

ab ipµ(γµ)αβ +m(p2)δαβ

p2 +m2(p2)
, (331)

〈λaρ(p)λb
β
(−p)〉 = −

(
ipµ(γµ)αβ +m(p2)δαβ

)
δabCαρ

p2 +m2(p2)
, (332)

〈λ̄a
α(p)λ̄bτ(−p)〉 =

(
ipµ(γµ)αβ +m(p2)δαβ

)
δabCβτ

p2 +m2(p2)
, (333)

where Cαβ is the charge conjugation matrix and

m(p2) =
M3

p2 . (334)

The presence of three two-point correlation functions involving gluino fields is a result of the
lack of charge conservation for Majorana fermions. One verifies however that all of them have
the form of Gribov propagators with M playing an analogous role as the Gribov parameter in
the gluino sector. In particular, one can easily check that the same structure observed for the
Gribov fermion propagator in the previous section (cf. Eq.(320)) is found here:

〈λ̄a
α(k)λ

b
β
(−k)〉 =

ik/+ M3

k2

k2 + M6

k4

=
ik/
k2 +M3

Σλ(k
2) , (335)

where the isolated confining contribution Σλ to the gluino propagator is again highly suppressed
in the UV with respect to the leading term (∼ 1/k):

Σλ(k
2) =

k4− ik/M3

(k6 +M6)k2
UV∼ 1/k4 . (336)

The same reasoning applied in the scalar and Yukawa theories above may be followed
here in order to prove that the UV regime of the theory remains the same even after the inclu-
sion of nonlocal confining terms in the propagators. One may compute the one-loop primitive
divergences and show that the confining parameters γ,M will not affect the UV divergent pie-
ces, due to the high suppression observed in the Gribov-type propagators. We shall, however,
use this most complicated theory analyzed in the current section to present an all-order alge-
braic proof of renormalizability and of the fact that the confining parameters γ,M do not display
independent renormalization.
The non-local action (327) is, however, not helpful in the algebraic renormalization procedure.
Fortunately we are able to write its local form with the insertion of auxiliary fields.
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The whole action which describes our model can then be written in its local form as,

S = SSY M +Sg f +SGZ′+SLG̃

=
∫

d4x
{

1
4

Fa
µνFa

µν +
1
2

λ̄
aα(γµ)αβDab

µ λ
bβ +

1
2
DaDa +ba

∂µAa
µ

+ča
[
∂µDab

µ cb− ε̄
α(γµ)αβ∂µλ

aβ

]
+ ϕ̃

ac
µ ∂νDab

ν ϕ
bc
µ − ω̃

ac
µ ∂νDab

ν ω
bc
µ

−g f abc(∂νω̃
ad
µ )(Dbk

ν ck)ϕcd
µ +g f abc(∂νω̃

ad
µ )(ε̄α(γν)αβλ

βb)ϕcd
µ

+γ
2g f abcAa

µ(ϕ
bc
µ + ϕ̃

bc
µ )− γ

44(N2
c −1)+ ζ̂

aα(∂2−µ2)ζa
α

−θ̂
aα(∂2−µ2)θa

α−M3/2(λ̄aα
θ

a
α + θ̂

aα
λ

a
α)
}
. (337)

Applying the algebraic renormalization procedure to the local action above we are able
to prove that: (i) the Gribov-extended SYM theory is renormalizable; and (ii) the massive pa-
rameters γ,M introduced in the infrared action do not renormalize independently, meaning that
they are consistent with dynamically generated mass scales, produced by nonperturbative inte-
ractions in the original theory. All details of the proof were developed in the Appendix (C).

The final results for the renormalization factors related to the confining parameters M,γ

may be read off from the renormalization of external sources conveniently introduced in the
algebraic procedure (developed in the Appendix (C)). The renormalization of the sources mψ

and m̃ψ give us the renormalization factor of the Gribov parameter γ2, while the renormalization
of V and V̂ give us the renormalization of m3/2

ψ , when every source assumes its physical value
stated at (483). We have:

ZM̃ = ZM = Z−1/2
g Z−1/4

A ,

ZV̂ = ZV = Z−1/2
λ

, (338)

which clearly prove that the renormalization of the infrared parameters mψ,γ is fixed by the
renormalization factor of the original SY M theory: the renormalization of the gauge coupling,
Zg, the wave function renormalization of the gauge field, ZA, and and the wave function renor-
malization of the gluing field, Zλ.

Therefore we conclude that this action is indeed a suitable nonperturbative infrared ac-
tion for N = 1 SYM theories, reducing consistently to the ultraviolet original action. Moreover,
even in this very intricate non-Abelian gauge theory with matter fields, the good UV behavior
in the presence of confining propagators of the Gribov type shows up at all orders.

4.4 Discussions about the results

Carrying on the analysis started on Chapter 3, we have studied the UV behavior of
quantum field theory models in which the two-point correlation functions of the elementary
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fields are described by confining propagators of the Gribov type. Our analysis was not restricted
to the gauge sector of the theory, but it concerns general properties in the UV regime of any kind
of fields that is said to be confined in the Gribov sense.

We could show that, order by order, the UV divergent behavior of the Feynman diagrams
is not affected by the infrared parameters of the theory. By infrared parameters we mean those
associated to the non-local term of the action, which accounts for non-perturbative effects of
the theory: σ for the scalar field sector, and M for the fermion field sector. More precisely,
we observed that contributions to Feynman diagrams stemming from the non-local terms of the
action, which are those proportional to σ or M, are always finite, being, thus, highly suppressed
in the UV regime by the standard ultraviolet tree-level propagator.

As a consequence, no new UV divergences in the infrared parameters can arise. Otherwise
said, the only UV divergences affecting the 1PI Green’s functions of the theory are those pre-
sent when the infrared parameters are set to zero (and no non-perturbative effect is taken into
account). Therefore, the infrared parameters do not renormalize independently.

An all order proof was also presented, which can be checked in the Appendix C, in
the case of N = 1 Super Yang-Mills model within the Gribov horizon and with a horizon-

like term in the super-partner sector. We could explicitly show that both infrared parameters,
γ2, for the gauge sector, and M3, for the fermion sector, do not renormalize independently,
i.e. their renormalization factor depends on the renormalization factor of fundamental fields
and parameters of the original theory (out of Gribov horizon). Namely, their renormalization
factors can be read out of

ZM̃ = ZM = Z−1/2
g Z−1/4

A ,

ZV̂ = ZV = Z−1/2
λ

. (339)
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5 THE FINITE TEMPERATURE CASE: THE INTERPLAY BETWEEN POLYAKOV
AND GRIBOV

Until now we have dealt with Yang-Mills theories in the framework of Gribov quanti-
zation procedure, coupled to a matter field, either being scalar, playing as the Higgs field or
just as a toy-model confined field, or being the confined quark field. We have shown that it
is possible, and perhaps reasonable, to consistently construct an effective theory for a confined
matter, inspired by the Gribov confinement mechanism in the gauge field sector. Therefore, we
have claimed that it may be possible that non-perturbative effects of the gauge sector play some
influence on the IR behavior of the matter sector.

Now, in this chapter, we are going to check in a finite temperature scenario if there
exist any interplay between gauge and matter fields in the IR regime, at all. In order to do
that, we will compute the vacuum expectation value of the Polyakov loop, implemented in an
gauge theory restricted to the Gribov horizon, using the Gribov-Zwanziger approach. Related
computations are available using different techniques to cope with non-perturbative propagators
at finite temperature, see e.g. [117–127]. In [83, 128, 129], it was already pointed out that
the Gribov–Zwanziger quantization offers an interesting way to illuminate some of the typical
infrared problems for finite temperature gauge theories.

In the following section the Polyakov loop is introduced into the GZ theory via the
background field method, based on the works [118, 119, 123]. Next, section 5.2 handles the
technical computation of the leading order finite temperature effective action, while in section
5.3 we discuss the gap equations, leading to our estimates for both Polyakov loop and Gribov
mass. The key finding is a deconfinement phase transition at the same temperature at which
the Gribov mass develops a cusp-like behavior. Subsequently, we also discuss the pressure and
energy anomaly. Due to a problem with the pressure in the GZ formalism (regions of negativity),
we take a preliminary look at the situation upon invoking the more recently developed Refined
Gribov–Zwanziger approach. On section 5.4 the refined-GZ is briefly analyzed. We summarize
in section 5.5.

5.1 The Polyakov loop and the background field formalism

In this section we shall investigate the confinement/deconfinement phase transition of
the SU(2) gauge field theory in the presence of two static sources of (heavy) quarks. The
standard way to achieve this goal is by probing the Polyakov loop order parameter,

P =
1
N

Tr
〈

Peig
∫ β

0 dt A0(t,x)
〉
, (340)
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with P denoting path ordering, needed in the non-Abelian case to ensure the gauge invariance
of P . This path ordering is not relevant at one-loop order, which will considerably simplify
the computations of the current work. In analytical studies of the phase transition involving
the Polyakov loop, one usually imposes the so-called “Polyakov gauge” on the gauge field, in
which case the time-component A0 becomes diagonal and independent of (imaginary) time.
This means that the gauge field belongs to the Cartan subalgebra. More details on the Polyakov
gauge can be found in [19, 119, 130]. Besides the trivial simplification of the Polyakov loop,
when imposing the Polyakov gauge it turns out that the quantity 〈A0〉 becomes a good alternative
choice for the order parameter instead of P . This extra benefit can be proven by means of
Jensen’s inequality for convex functions and is carefully explained in [119], see also [118, 120–
123]. For example, for the SU(2) case we have the following: if 1

2gβ〈A0〉= π

2 then we are in the
“unbroken symmetry phase” (confined or disordered phase), equivalent to 〈P 〉= 0; otherwise, if
1
2gβ〈A0〉< π

2 , we are in the “broken symmetry phase” (deconfined or ordered phase), equivalent
to 〈P 〉 6= 0. Since P ∝ e−FT with T the temperature and F the free energy of a heavy quark, it is
clear that in the confinement phase, an infinite amount of energy would be required to actually
get a free quark. The broken/restored symmetry referred to is the ZN center symmetry of a pure
gauge theory (no dynamical matter in the fundamental representation).

A slightly alternative approach to access the Polyakov loop was worked out in [123].
In order to probe the phase transition in a quantized non-Abelian gauge field theory, we use,
following [123], the Background Field Gauge (BFG) formalism, detailed in general in e.g. [12].
Within this framework, the effective gauge field will be defined as the sum of a classical field
Āµ and a quantum field Aµ: aµ(x) = aa

µ(x)t
a = Āµ +Aµ, with ta the infinitesimal generators of

the SU(N) symmetry group. The BFG method is a convenient approach, since the tracking of
breaking/restoration of the ZN symmetry becomes easier by choosing the Polyakov gauge for
the background field.

Within this framework, it is convenient to define the gauge condition for the quantum
field,

D̄µAµ = 0 , (341)

known as the Landau–DeWitt (LDW) gauge fixing condition, where D̄ab
µ = δab∂µ−g f abcĀc

µ is
the background covariant derivative. After integrating out the (gauge fixing) auxiliary field ba,
we end up with the following Yang–Mills action,

SBFG =
∫

ddx

{
1
4

Fa
µνFa

µν−
(D̄A)2

2ξ
+ c̄aD̄ab

µ Dbd
µ (a)cd

}
. (342)

Notice that, concerning the quantum field Aµ, the condition (341) is equivalent to the Landau
gauge, yet the action still has background center symmetry. The LDW gauge is actually recove-
red in the limit ξ→ 0, taken at the very end of each computation.
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As explained for the simple Landau gauge in the previous section, the Landau back-
ground gauge condition is also plagued by Gribov ambiguities, and the Gribov–Zwanziger pro-
cedure is applicable also in this instance. The starting point of our analysis is, therefore, the GZ
action modified for the BFG framework (see [55]):

SGZ+PLoop =
∫

ddx

{
1
4

Fa
µνFa

µν−
(D̄A)2

2ξ
+ c̄aD̄ab

µ Dbd
µ (a)cd + ϕ̄

ac
µ D̄ab

ν Dbd
ν (a)ϕdc

µ

−ω̄
ac
µ D̄ab

ν Dbd
ν (a)ωdc

µ −gγ
2 f abcAa

µ

(
ϕ

bc
µ + ϕ̄

bc
µ

)
− γ

4d(N2−1)
}

. (343)

As mentioned before, with the Polyakov gauge imposed to the background field Āµ, the time-
component becomes diagonal and time-independent. In other words, we have Āµ(x) = Ā0δµ0,
with Ā0 belonging to the Cartan subalgebra of the gauge group. For instance, in the Cartan
subalgebra of SU(2) only the t3 generator is present, so that Āa

0 = δa3Ā3
0 ≡ δa3Ā0. As explained

in [123], at leading order we then simply find, using the properties of the Pauli matrices,

P = cos
r
2
, (344)

where we defined

r = gβĀ0 , (345)

with β the inverse temperature. Just like before, r = π corresponds to the confinement phase,
while 0 ≤ r < π corresponds to deconfinement. With a slight abuse of language, we will refer
to the quantity r as the Polyakov loop hereafter.

Here we are limited to one-loop order, then only terms quadratic in the quantum fields
in the action (343) shall be considered. One then immediately gets an action that can be split in
term coming from the two color sectors: the 3rd color direction, called Cartan direction, which
does not depend on the parameter r; and one coming from the 2×2 block given by the 1st and
2nd color directions. This second 2× 2 color sector is orthogonal to the Cartan direction and
does depend on r. The scenario can then be interpreted as a U(1) symmetric system where the
vector field is coupled to a chemical potential irT and has isospins +1 and −1 related to the
2×2 color sector and one isospin 0 related to the 1×1 color sector.
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5.2 The finite temperature effective action at leading order

Considering only the quadratic terms of (343), the integration of the partition function
gives us the following vacuum energy at one-loop order,

βV Ev = −d(N2−1)
2Ng2 λ

4 +
1
2
(d−1)Trln

D4 +λ4

−D2 −
1
2

Tr ln(−D2) , (346)

according to the definition

eβV Ev = Z . (347)

In the vacuum energy expression (346), V stands here, only in this Chapter, for the spacial
volume. Here, D is the covariant derivative in the adjoint representation in the presence of
the background A3

0 field and λ4 = 2Ng2γ4. Throughout this work, it is always tacitly assumed
we are working with N = 2 colors, although we will frequently continue to explicitly write N

dependence for generality. Using the usual Matsubara formalism, we have that D2 = (2πnT +

rsT )2 +~q2, where n is the Matsubara mode, ~q is the spacelike momentum component, and s is
the isospin, given by −1, 0, or +1 for the SU(2) case28.

The general trace is of the form

1
βV

Trln(−D2 +m2) = T ∑
s

+∞

∑
n=−∞

∫ d3−εq
(2π)3−ε

ln
(
(2πnT + rsT )2 +~q2 +m2) , (348)

which will be computed immediately below.

5.2.1 The sum-integral: 2 different computations

We want to compute the following expression:

I = T
+∞

∑
n=−∞

∫ d3−εq
(2π)3−ε

ln
(
(2πnT + rT )2 +~q2 +m2) . (349)

One way to proceed is to start by deriving the previous expression with respect to m2. Then,
one can use the well-known formula from complex analysis

+∞

∑
n=−∞

f (n) =−π∑
z0

R es
z=z0

cot(πz) f (z) (350)

28 The SU(3) case was handled in [123] as well (see also [131]).
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where the sum is over the poles z0 of the function f (z). Subsequently we integrate with respect
to m2 (and determine the integration constant by matching the result with the known T = 0 case).
Finally one can split off the analogous T = 0 trace (which does not depend on the background
field) to find

I =
∫ d4−εq

(2π)4−ε
ln(q2 +m2)+T

∫ d3q
(2π)3 ln

(
1+ e−2

√
~q2+m2

T −2e−
√
~q2+m2

T cosr
)

. (351)

where the limit ε→ 0 was taken in the (convergent) second integral. The first term in the r.h.s. is
the (divergent) zero temperature contribution.

Another way to compute the above integral is by making use of Zeta function regula-
rization techniques, which are particularly useful in the computation of the Casimir energy in
various configurations see [132, 133]. The advantage of this second technique is that, although
it is less direct, it provides one with an easy way to analyze the high and low temperature limits
as well as the small mass limit, as we will now show. Moreover, within this framework, the
regularization procedures are often quite transparent. One starts by writing the logarithm as
lnx =− lims→0 ∂sx−s, after which the integral over the momenta can be performed:

I =−T lim
s→0

∂s

(
µ2s

∞

∑
n=−∞

Γ(s−3/2)

8π
3
2 Γ(s)

[
(2πnT + rT )2 +m2] 3

2−s
)

, (352)

where the renormalization scale µ has been introduced to get dimensional agreement for s 6= 0,
and where we already put ε = 0, as s will function as a regulator — i.e. we assume s > 3/2 and
analytically continuate to bring s→ 0. Using the integral representation of the Gamma function,
the previous expression can be recast to

I = −T lim
s→0

∂s

(
µ2s

∞

∑
n=−∞

1

8π
3
2 Γ(s)

∫
∞

0
ts−5/2e−t((2πnT+rT )2+m2)dt

)

= − lim
s→0

∂s

(
µ2s T 4−2s

4sπ2s−3/2Γ(s)

∫
∞

0
dyys−5/2e−

m2y
4π2T 2

∞

∑
n=−∞

e−y(n+ r
2π
)2

)
, (353)

where the variable of integration was transformed as y = 4π2T 2t ≥ 0 in the second line. Using
the Poisson rule (valid for positive ω):

+∞

∑
n=−∞

e−(n+x)2ω =

√
π

ω

(
1+2

∞

∑
n=1

e−
n2π2

ω cos(2nπx)

)
, (354)
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we obtain that

I =− lim
s→0

∂sµ2s

[
Γ(s−2)T 4−2s

4sπ2s−2Γ(s)

(
m2

4π2T 2

)2−s

+

T 4−2s

4s−1πsΓ(s)

(
m2

4π2T 2

)1−s/2 ∞

∑
n=1

ns−2 cos(nr)K2−s

(nm
T

)]
, (355)

where Kν(z) is the modified Bessel function of the second kind. Simplifying this, we find

I =
m4

2(4π)2

[
ln
(

m2

µ2

)
− 3

2

]
−

∞

∑
n=1

m2T 2 cos(nr)
π2n2 K2

(nm
T

)
, (356)

where the first term is the T = 0 contribution, and the sum is the finite-temperature correction.
Using numerical integration and series summation, it can be checked that both results (351)
and (356) are indeed identical. Throughout this paper, we will mostly base ourselves on the
expression (351). Nonetheless the Bessel series is quite useful in obtaining the limit cases
m = 0, T → ∞, and T → 0 by means of the corresponding behaviour of K2(z). Observing that

lim
m→0

(
−

m2T 2K2
(mn

T

)
cos(nrs)

π2n2

)
=−2T 4 cos(nrs)

π2n4 , (357)

we obtain

Im=0 =−
T 4

π2

[
Li4
(
e−irs)+Li4

(
eirs)] , (358)

where Lis(z) = ∑
∞
n=1

zn

ns is the polylogarithm or Jonquière’s function.
Analogously,

lim
T→∞

K2

(mn
T

)
∼ 2T 2

m2n2 −
1
2
,

so that

IT→∞ =
m4

2(4π)2

[
ln
(

m2

µ2

)
− 3

2

]
+

T 2

4π2

{
m2 [Li2

(
e−irs)+Li2

(
eirs)]−4T 2 [Li4

(
e−irs)+Li4

(
eirs)]} .

(359)

Finally for T → 0 we can use the asymptotic expansion of the Bessel function [134]:

Kν(z)∼
√

π

2z
e−z

(
∞

∑
k=0

ak(ν)

zk

)
, |Arg(z)| ≤ 3

2
π , (360)
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where ak(ν) are finite factors. So, at first order (k = 0),

IT→0 =
m4

2(4π)2

[
ln
(

m2

µ2

)
− 3

2

]
− m3/2T 5/2

2
√

2π3/2

[
Li 5

2

(
e−

m
T −irs

)
+Li 5

2

(
e−

m
T +irs

)]
. (361)

5.2.2 The result for further usage

Making use of the result (351) we may define

I(m2,r,s,T ) = T
∫ d3q

(2π)3 ln
(

1+ e−2
√
~q2+m2

T −2e−
√
~q2+m2

T cosrs
)
, (362)

so that the vacuum energy (346) can be rewritten as

Ev =−
d(N2−1)

2Ng2 λ
4 +

1
2
(d−1)(N2−1)TrT=0 ln

∂4 +λ4

−∂2 −
1
2
(N2−1)TrT=0 ln(−∂

2)

+∑
s

(
1
2
(d−1)(I(iλ2,r,s,T )+ I(−iλ2,r,s,T )− I(0,r,s,T ))− 1

2
I(0,r,s,T )

)
,

(363)

where TrT=0 denotes the trace taken at zero temperature.

5.3 Minimization of the effective action, the Polyakov loop and the Gribov mass

5.3.1 Warming-up exercise: assuming a T -independent Gribov mass λ

As a first simpler case, let us simplify matters slightly by assuming that the temperature
does not influence the Gribov parameter λ. This means that λ will be supposed to assume its
zero-temperature value, which we will call λ0, given by the solution of the gap equation (90) (or
horizon condition) at zero temperature,

〈H(A)〉= 4V
(
N2−1

)
. (364)

In this case, only the terms with the function I really matter in (363), since the other terms do
not explicitly depend on the Polyakov line r. Plotting this part of the potential (see Figure 12),
one finds by visual inspection that a second-order phase transition occurs from the minimum
with r = π to a minimum with r 6= π. The transition can be identified by the condition

d2

dr2 Ev

∣∣∣∣
r=π

= 0 . (365)
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Figure 12 - The effective potential (363) at the temperatures (from below upwards at r = π) 0.42,
0.44, 0.46, and 0.48 times λ as a function of r, with the simplifying assumption that λ

maintains its zero-temperature value λ0 throughout. It can be seen that the minimum
of the potential moves away from r = π in between T = 0.44γ and 0.46γ.
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Using the fact that

∂2I
∂r2 (m

2,r = π,s,T ) =−2T
∫ d3q

(2π)3
e−
√
~q2+m2

T(
1+ e−

√
~q2+m2

T

)2 (366)

when s =±1 and zero when s = 0, the equation (365) can be straightforwardly solved numeri-
cally for the critical temperature. We find

Tcrit = 0.45λ0 . (367)

5.3.2 The T -dependence of the Gribov mass λ

Let us now investigate what happens to the Gribov parameter λ when the temperature is
nonzero. Taking the derivative of the effective potential (363) with respect to λ2 and dividing
by d(N2−1)λ2/Ng2 (as we are not interested in the solution λ2 = 0) yields the gap equation for
general number of colors N:

1 =
1
2

d−1
d

Ng2Tr
1

∂4 +λ4 +
1
2

d−1
d

Ng2

N2−1
i

λ2 ∑
s

(
∂I

∂m2 (iλ
2,r,s,T )− ∂I

∂m2 (−iλ2,r,s,T )
)

,

(368)
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Figure 13 - The Gribov parameter λ as a function of the temperature T at r equals to zero (upper
line) and π (lower line), in units of the zero-temperature Gribov parameter λ0.
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where the notation ∂I/∂m2 denotes the derivative of I with respect to its first argument (written
m2 in (362)). If we now define λ0 to be the solution to the gap equation at T = 0:

1 =
1
2

d−1
d

Ng2Tr
1

∂4 +λ4
0
, (369)

then we can subtract this equation from the general gap equation (368). After dividing through
(d−1)Ng2/2d and setting d = 4 and N = 2, the result is

∫ d4q
(2π)4

(
1

q4 +λ4 −
1

q4 +λ4
0

)
+

i
3λ2 ∑

s

(
∂I

∂m2 (iλ
2,r,s,T )− ∂I

∂m2 (−iλ2,r,s,T )
)
= 0 , (370)

where now all integrations are convergent. This equation can be easily solved numerically to
yield λ as a function of temperature T and background r, in units λ0. This is shown in Figure
13.

5.3.3 Absolute minimum of the effective action

As λ does not change much when including its dependence on temperature and back-
ground, the transition is still second order and its temperature is, therefore, still given by the
condition (365). Now, however, the potential depends explicitely on r, but also implicitely due
to the presence of the r-dependent λ. We therefore have

d2

dr2 Ev

∣∣∣∣
r=π

=
∂2Ev

∂r2 +2
dλ

dr
∂2Ev

∂r∂λ
+

d2λ

dr2
∂Ev

∂λ
+

(
dλ

dr

)2
∂2Ev

∂λ2

∣∣∣∣∣
λ=λ(r),r=π

. (371)

Now, dλ/dr|r=π = 0 due to the symmetry at that point. Furthermore, as we are considering
λ 6= 0, ∂Ev/∂λ= 0 is the gap equation and is solved by λ(r). Therefore, we find for the condition
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of the transition:

∂2Ev

∂r2 (r,λ,T )
∣∣∣∣
r=π

= 0 , (372)

where the derivative is taken with respect to the explicit r only.
We already solved equation (372) in the subsection 5.3.1, giving (367):

T = 0.45λ(r,T ) . (373)

As we computed λ as a function of r and T in the subsection 5.3.2 already, it is again straight-
forward to solve this equation to give the eventual critical temperature:

Tcrit = 0.40λ0 , (374)

as expected only slightly different from the simplified estimate (367) found before.

5.3.4 The T -dependence of the Polyakov loop r and the equation of state

5.3.4.1 Deconfinement transition and its imprint on the Gribov mass

Let us now investigate the temperature dependence of r. The physical value of the back-
ground field r is found by minimizing the vacuum energy:

d
dr

Ev = 0 . (375)

From the vacuum energy (363) we have

∂Ev

∂r
= (d−1)

[
∂I
∂r

(iγ2,r,T )+
∂I
∂r

(−iγ2,r,T )− d
(d−1)

∂I
∂r

(0,r,T )
]
= 0 . (376)

The expression (376) was obtained after summation over the possible values of s. Furthermore,
we used the fact that I(m2,r,+1,T ) = I(m2,r,−1,T ) and that s = 0 accounts for terms inde-
pendent of r, which are cancelled by the derivation w.r.t. r. From (362) one can get, whenever
s =±1:

∂I(m2,r,T )
∂r

= T
∫ d3q

(2π)3
2e−

√
~q2+m2

T sinr(
1+ e−2

√
~q2+m2

T −2e−
√
~q2+m2

T cosr
) . (377)

Since (376) is finite, we can numerically obtain r as a function of temperature. From the dotted
curve in Figure 14 one can easily see that, for T > Tcrit ≈ 0.40λ0, we have r 6= π, pointing to
a deconfined phase, confirming the computations of the previous section. In the same figure,



125

Figure 14 - The dotted line curve represents r(T ), while the continuous line is λ(T ). At
T ≈ 0.40λ0, both curves clearly have a discontinuous derivative.
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λ(T ) is plotted in a continuous line. We observe very clearly that the Gribov mass λ(T ) develops
a cusp-like behaviour exactly at the critical temperature T = Tcrit.

5.3.4.2 Equation of state

Following [135], we can also extract an estimate for the (density) pressure p and the in-
teraction measure I/T 4, shown in Figure 15 (left and right respectively). As usual the (density)
pressure is defined as

p =
1

βV
lnZGZ , (378)

which is related to the free energy by p = −Ev. Here the plot of the pressure is given relative
to the Stefan–Boltzmann limit pressure: pSB = κT 4, where κ = (N2−1)πT 4/45 is the Stefan–
Boltzmann constant accounting for all degrees of freedom of the system at high temperature. We
subtract the zero-temperature value, such that the pressure becomes zero at zero temperature:
p(T ) = −[Ev(T )−Ev(T = 0)]. Namely, after using the MS renormalization prescription and
choosing the renormalization parameter µ̄ so that the zero temperature gap equation is satisfied,

µ̄2 = λ
2
0e
−
(

5
6−

32π2

3g2

)
, (379)



126

we have the following expression for the pressure (in units of λ4
0),

− p(T )
λ4

0
= 3

[
I(iλ′2,r,T ′)+ I(−iλ′2,r,T ′)− 4

3
I(0,r,T ′)

]
+

3
2

[
I(iλ′2,0,T ′)+ I(−iλ′2,0,T ′)− 4

3
I(0,0,T ′)

]
− 9λ′4

32π2

(
lnλ
′2− 1

2

)
− 9

64π2 . (380)

In (380) prime quantities stand for quantities in units of λ0, while λ and λ0 satisfy their gap
equation. The last term of (380) accounts for the zero temperature subtraction, so that p(0) = 0,
according to the definition of I(m2,r,T ) in (362). Note that the coupling constant does not
explicitly appear in (380) and that λ0 stands for the Gribov parameter at T = 0.

The interaction measure I is defined as the trace anomaly in units of T 4, and I is nothing
less than the trace of the of the stress-energy tensor, given by

θµν = (p+ ε)uµuν− pηµν , (381)

with ε being the internal energy density, which is defined as ε = Ev +T s (with s the entropy
density), u = (1,0,0,0) and ηµν the (Euclidean) metric of the space-time. Given the thermody-
namic definitions of each quantity (energy, pressure and entropy), we obtain

I = θµµ = T 5 ∂

∂T

( p
T 4

)
. (382)

Both quantities display a behavior similar to that presented in [83] (but note that in they plot
the temperature in units of the critical temperature (Tc in their notation), while we use units λ0).
Besides this, and the fact that we included the effect of Polyakov loop on the Gribov parame-
ter, in [83] a lattice-inspired effective coupling was introduced at finite temperature while we
used the exact one-loop perturbative expression, which is consistent with the order of all the
computations made here.

However, we notice that at temperatures relatively close to our Tc, the pressure beco-
mes negative. This is clearly an unphysical feature, possibly related to some missing essential
physics. For higher temperatures, the situation is fine and the pressure moreover displays a beha-
viour similar to what is seen in lattice simulations for the nonperturbative pressure (see [136] for
the SU(3) case). A similar problem is present in one of the plots of [Fig. 4] of [83], although no
comment is made about it. Another strange feature is the oscillating behaviour of both pressure
and interaction measure at low temperatures. Something similar was already observed in [137]
where a quark model was employed with complex conjugate quark mass. It is well-known that
the gluon propagator develops two complex conjugate masses in Gribov–Zwanziger quantiza-
tion, see e.g. [57, 63, 80, 81] for some more details, so we confirm the findings of [137] that,
at least at leading order, the thermodynamic quantities develop an oscillatory behaviour. We
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Figure 15 - Left: GZ pressure (relative to the Stefan-Boltzmann limit pressure ∼ T 4). Right: GZ
trace anomaly.
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expect this oscillatory behaviour would in principle also be present in [83] if the pressure and
interaction energy were to be computed at lower temperatures than shown there. In any case,
the presence of complex masses and their consequences gives us a warning that a certain care is
needed when using GZ dynamics, also at the level of spectral properties as done in [138, 139],
see also [90, 140].

These peculiarities justify giving an outline in the next Section of the behaviours of the
pressure and interaction measure in an improved formalism, such as in the Refined Gribov-
Zwanziger one.

5.4 Outlook to the Refined Gribov–Zwanziger formalism

The previous results can be slightly generalized to the case of the Refined Gribov–
Zwanziger (RGZ) formalism studied in [74–76, 78, 79]. In this refined case, additional non-
perturbative vacuum condensates such as 〈A2

µ〉 and 〈ϕ̄ab
µ ϕab

µ 〉 are to be introduced. The corres-
ponding mass dimension two operators get a nonzero vacuum expectation value (thereby further
lowering the vacuum energy) and thus influence the form of the propagator and effective action
computation. The predictions for the RGZ propagators, see also [141–143], are in fine agree-
ment with ruling T = 0 lattice data, see e.g. also [61, 62, 144–150]. This is in contrast with the
original GZ predictions, such that it could happen that the finite temperature version of RGZ
is also better suited to describe the phase transition and/or thermodynamical properties of the
pure gauge theory.

Due to the more complex nature of the RGZ effective action (more vacuum condensates),
we will relegate a detailed (variational) analysis of their finite temperature counterparts29 to

29 From [151–153], the nontrivial response of the d = 2 condensate 〈A2〉 to temperature already became clear.
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future work, as this will require new tools. Here, we only wish to present a first estimate of the
deconfinement critical temperature Tc using as input the T = 0 RGZ gluon propagator where
the nonperturbative mass parameters are fitted to lattice data for the same propagator. More
precisely, we use [57]

∆
ab
µν(p) = δ

ab p2 +M2 +ρ1

p4 + p2(M2 +m2 +ρ1)+m2(M2 +ρ1)+λ4

(
δµν−

pµ pν

p2

)
. (383)

where we omitted the global normalization factor Z which drops out from our leading order
computation30. In this expression, we have that

〈Aa
µAa

µ〉 → −m2 , 〈ϕ̄ab
µ ϕ

ab
µ 〉 →M2 ,

1
2
〈ϕab

µ ϕ
ab
µ + ϕ̄

ab
µ ϕ̄

ab
µ 〉 → ρ1 . (384)

The free energy associated to the RGZ framework can be obtained by following the same steps
as in section 5.2, leading to

Ev(T ) = (d−1)
[

I(r2
+,r,T )+ I(r2

−,r,T )− I(N2,r,T )− 1
d−1

I(0,r,T )
]

+
(d−1)

2

[
I(r2

+,0,T )+ I(r2
−,0,T )− I(N2,0,T )− 1

d−1
I(0,0,T )

]
+
∫ dd p

(2π)d ln
(

p4 +(m2 +N2)p2 +(m2N2 +λ4)

p2 +N2

)
− 3λ4d

4g2 , (385)

with r2
± standing for minus the roots of the denominator of the gluon propagator (383), N2 =

M2 +ρ1, and I(m2,r,T ) given by (362). Explicitly, the roots are

r2
± =

(m2 +N2)±
√

(m2 +N2)2−4(m2N2 +λ4)

2
. (386)

The (central) condensate values were extracted from [57]:

N2 = M2 +ρ1 = 2.51GeV2 , (387a)

m2 =−1.92GeV2 , (387b)

λ
4 = 5.3GeV4 . (387c)

Once again the vacuum energy will be minimized with respect to the Polyakov loop expectation
value r. For the analysis of thermodynamic quantities, only contributions coming from terms
proportional to I(m2,r,T ) will be needed. Therefore, we will always consider the difference
Ev(T )−Ev(T = 0). Since in the present (RGZ) prescription the condensates are given by the

30 This Z is related to the choice of a MOM renormalization scheme, the kind of scheme that can also be applied
to lattice Green functions, in contrast with the MS scheme.
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zero temperature lattice results (387) instead of satisfying gap equations, the divergent contri-
butions to the free energy are subtracted, and no specific choice of renormalization scheme is
needed. Furthermore, explicit dependence on the coupling constant seems to drop out of the
one-loop expression, such that no renormalization scale has to be chosen. Following the steps
taken in Section 5.3.1, we find a second order phase transition at the temperature:

Tcrit = 0.25GeV , (388)

which is not that far from the value of the SU(2) deconfinement temperature found on the
lattice: Tc ≈ 0.295GeV, as quoted in [154, 155].

In future work, it would in particular be interesting to find out whether —upon using the
RGZ formalism— the Gribov mass and/or RGZ condensates directly feel the deconfinement
transition, similar to the cusp we discovered in the Gribov parameter following the exploratory
restricted analysis of this paper. This might also allow to shed further light on the ongoing
discussion of whether the deconfinement transition should be felt at the level of the correla-
tion functions, in particular the electric screening mass associated with the longitudinal gluon
propagator [155–158].

Let us also consider the pressure and interaction measure once more. The results are
shown in Figure 16 and Figure 17, respectively. The oscillating behaviour at low temperature
persists at leading order, while a small region of negative pressure is still present — see the
right plot of Figure 16. These findings are similar to [159] (low temperature results are not
shown there), where two sets of finite temperature RGZ fits to the SU(3) lattice data were
used [160,161], in contrast with our usage of zero temperature SU(2) data. In any case, a more
involved analysis of the RGZ finite temperature dynamics is needed to make firmer statements.
As already mentioned before, there is also the possibility that important low temperature physics
is missing, as for instance the proposal of [159] related to the possible effect of light electric
glueballs near the deconfinement phase transition [162,163]. Obviously, these effects are absent
in the current treatment (or in most other treatments in fact).
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Figure 16 - Right and left plots refer to the RGZ pressure in terms of T/Tc and in units of T 4. In
the left plot, a wide temperature range of is shown. In the right plot, a zoom is made
for temperatures around 1.10 Tc to show the existence of negative pressure.
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Figure 17 - The RGZ interaction measure I/T 4 in units T/Tc.
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5.5 Discussions about the results

In this chapter we studied the Gribov–Zwanziger (GZ) action for SU(2) gauge theories
with the Polyakov loop coupled to it via the background field formalism. Doing so, we were
able to compute in a simultaneous fashion the finite temperature value of the Polyakov loop and
Gribov mass to the leading one-loop approximation. The latter dynamical scale enters the theory
as a result of the restriction of the domain of gauge field integration to avoid (infinitesimally
connected) Gribov copies. Our main result is that we found clear evidence of a second order
deconfinement phase transition at finite temperature, an occurrence accompanied by a cusp in
the Gribov mass, which thus directly feels the transition. It is perhaps worthwhile to stress here
that at temperatures above Tc, the Gribov mass is nonzero, indicating that the gluon propagator
still violates positivity and as such it rather describes a quasi- than a “free” observable particle,
see also [117, 164] for more on this.

We also presented the pressure and trace anomaly, indicating there is a problem at tem-
peratures around the critical value when using the original GZ formulation. We ended with a
first look at the changes a full-fledged analysis with the Refined Gribov–Zwanziger (RGZ) for-
malism might afflict, given that the latter provides an adequate description of zero temperature
gauge dynamics, in contrast to the GZ predictions. This will be studied further in upcoming
work. Note that, even not considering finite temperature corrections to the condensates in the
RGZ formalism, the region of negative pressure is considerably smaller than the region found
with the GZ formalism.

A further result, interesting from the methodological point of view, is that it shows expli-
citly that finite-temperature computations (such as the computation of the vacuum expectation
value of the Polyakov loop) are very suitable to be analyzed using analytical Casimir-like techni-
ques. The interesting issue of Casimir-style computations at finite temperatures is that, although
they can be more involved, they provide one with easy tools to analyze the high and low tem-
perature limits as well as the small mass limit. Moreover, within the Casimir framework, the
regularization procedures are often quite transparent. Indeed, in the present paper, we have
shown that the computation of the vacuum expectation value of the Polyakov loop is very simi-
lar to the computation of the Casimir energy between two plates. We believe that this point of
view can be useful in different contexts as well.
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FINAL WORDS

The present thesis was devoted to the study of aspects of the Gribov problem in Eucli-
dean Yang-Mills theories coupled to matter field. We presented some evidences that point to
the existence of a possible interplay between the gauge sector and the matter sector, in regimes
of sufficiently low energy (known as the infrared (IR) regime). Our work is analytic, based on
the quantization procedure of Gribov where (infinitesimal) gauge fixing ambiguities are taken
into account by getting rid of nonzero modes of the Faddeev-Popov operator. This framework
was briefly introduced in the second chapter, where some fundamental concepts were discus-
sed, and some important quantities were derived. We presented that, to get rid of such gauge
ambiguities a nonlocal term must be added to the Faddeev-Popov action, which leads to two im-
portant consequences: the soft BRST breaking and a deeply modified gauge field propagator,
whose expression displays complex conjugate poles. Such behaviour of the gauge field may be
interpreted as a sign of confinement, providing us an alternative tool to analytically investigate
gauge confinement.

Our study of Yang-Mills theories coupled to matter field started with the analysis of
Yang-Mills models coupled to the Higgs field, in Euclidean space-time with dimensionality d =

3 and d = 4. Two different representations of the scalar field was considered, the fundamental
one, which is an example of a nontrivial representation, and the adjoint representation, which is
an example of a trivial one. The scalar Higgs field was considered to be frozen in its vacuum
configuration. Our analysis concern the direct observation of the propagator of the gauge field:
if it presents or not complex conjugate poles, or negative residues. We use to say that the
gauge propagator is of the Gribov-type when it presents cc poles, and the Gribov’s alternative
confinement criterion applies. We could generally notice that the representation of the scalar
field is of great importance to the analysis.

The point we would like to emphasise here is that our work shares remarkable similari-
ties with the seminal paper of Fradkin & Shenker [8] and others lattice works [40, 41], despite
the existence of fundamental differences between them. The authors of [8] made use of the
lattice formalism to investigate the structure of gauge theories coupled to the Higgs field. In
particular, the Wilson loop was measured, as a suitable order parameter of (static quark) confi-
nement, in mainly two different scenarios, for the scalar field in its fundamental configuration,
and for the scalar field in its adjoint representation. In the other side, our work was made in the
continuum space-time, by means of the Gribov effect model, to probe for gauge field confine-
ment in Yang-Mills + Higgs theories.

Therefore, when we say that both works share some similarities, we do not mean we are
measuring the same thing, or else, that we are obtaining the same results. But rather, we mean
that the structure of the confinement spectrum of the gauge field, in the light of Gribov’s appro-
ach, is quite similar to the structure of (static) quark confinement, à la Wilson loop. Namely,
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for the Higgs field in the fundamental representation we could find: 1) the existence of two dis-
tinct regimes, the Higgs-like and the confined-like, corresponding to weak and strong coupling
regions, respectively; 2) these two detected regimes, Higgs- and confined-like, were found to
be continuously connected, in the sense that the parameters of the theory are allowed to con-
tinuously vary from one region to another, without leading to any discontinuity or singularity
of the vacuum energy or the two-point Green function. The similarity with Fradkin & Shenker
indeed exists, although we could not properly talk about the existence of an analyticity region

in our work. Besides being a perturbative work, we could also find out a region in our model
where perturbation theory is not trustworthy anymore. Such unreliable region lies in between
the Higgs- and confined-regions and prevents us from proving the existence of an analyticity
region.

Similarities are still present in the adjoint Higgs field case: 1) in both works, the connec-
tion between the two distinct regimes is not a smooth connection anymore. In our work we could
find a point of discontinuity in the vacuum energy, although our perturbative computations are
not reliable at precisely this point. Perhaps, this feature may be a sign, in the gauge sector, of the
phase transition associated with the breaking of the center symmetry, since this kind of phase
transition is only possible for the matter field in the adjoint representation (or in its absence); 2)
we could also find the existence of a third regime, besides the confined- and Higgs-like ones.
We could detect a kind of U(1) confined-like regime, where the third component of the gauge
field has a propagator of the Gribov-type and the off-diagonal sector is massive. Interestingly,
something similar to this has been already detected on lattice studies of the three-dimensional
Georgi-Glashow model [40, 41].

Finally, we may conclude that, by means of the Gribov’s approach to the quantization
of the gauge field, leading to an alternative criterion of gauge field confinement, the structure
of the Yang-Mills + Higgs field’s spectrum shares some resemblances with what is find out by
works on the lattice, where order parameters of (static quark) confinement is measured, such as
the Wilson loop. Thus, we obtained our first indicative sign that IR features of the gauge sector
may be reflected, in some sense, in the IR behaviour of the matter sector.

Subsequently, we proposed an effective model to the matter sector, inspired by the
Gribov-Zwanziger structure of the gauge sector that leads to the confinement interpretation
of the gauge field, where a kind of horizon-function is consistently plugged to the matter field.
By consistently we mean that we could show that such implementation does not lead to any new
UV divergences, but only to those already present in the standard, noneffective, Yang-Mills +
matter theory. Such UV safety was order by order analysed in the fifth chapter, by means of a
careful analysis of the Feynman diagrams. An all order renormalizability proof has been pro-
vided in the Appendix, together with the example of the N = 1 supersymmetric Yang-Mills
model within the Gribov horizon.

The matter field was considered in its adjoint representation, so that we could show that
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it is possible to construct an operator R ai
F for matter field,

R ai
F(x) = g

∫
d4z (M −1)ab(x,z) (T b)i j F j(z) , (389)

in analogy with the gauge field restricted to the first Gribov region. Furthermore, we could also
show that the correlation function 〈R FR F〉 is nonvanishing and, from the available lattice data,
seems to behave like the Boson-ghost propagator in the IR regime, (300), namely

〈R̃ ai
F(k)R̃

b j
F (−k)〉 k→0∼ 1

k4 . (390)

After constructing such effective nonlocal model to the matter sector we could show that, the
nonvanishing of 〈R FR F〉 indicates the soft breaking of the BRST symmetry in the matter
sector, since the vev of R FR F can be written in terms the vev of a BRST exact local operator.
Therefore, the correlation function 〈R FR F〉 could be regarded as a direct signature for BRST
breaking, being accessible both analytically as well as through numerical lattice simulations.

Another important outcome of this effective model is that, by fitting our effective matter
propagator to the most recent lattice data we could find that, in this scenario, the matter field
is deprived of an asymptotic physical particle interpretation, since its propagator displays po-
sitivity violation, so not satisfying every reality condition of Osterwalder-Schrader (just as the
gauge field). In this sense the adjoint scalar propagators consistently represent confined degrees
of freedom, that do not exhibit a physical propagating pole. We could also qualitatively show
that our results are renormalization scheme independent. A more quantitative analysis would
require further simulations with improved statistics and even larger lattices.

Subsequently, we studied the Gribov-Zwanziger (GZ) action for SU(2) gauge theories
with the Polyakov loop coupled to it via the background field formalism. Doing so, we were
able to compute simultaneously the finite temperature value of the Polyakov loop and of the
Gribov mass parameter, up to the leading order. Within this formalism we could confirm the
existence of a second order deconfinement phase transition of static quarks. Besides, we could
also observe that the GZ mass parameter evidently feels the effects of quark confinement: such
a mass parameter develops a cusp-like behaviour precisely at the critical temperature of quark
confinement, probed by the Polyakov loop parameter. It is perhaps worthwhile to stress here
that at temperatures above Tc, the Gribov mass is nonzero, indicating that the gluon propagator
still violates positivity and as such it rather describes a quasi- than a “free” observable particle.
It would means that the gauge sector is, indeed, sensible to IR effects of the matter sector. In a
sense, it may corroborate our feelings that the IR structure of the gauge sector may be transferred
to the matter sector.

Besides that, we could also find that our model is plagued by the existence of an insta-
bility region in the vicinity of the critical temperature. To investigate such region we computed
the pressure and the trace anomaly, so that we could find out a region of negative pressure. It
is worthwhile to emphasise that those results were obtained in the GZ formalism. The RGZ
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formalism was adopted with the status of a first computation, while a full finite-temperature ap-
proach of the RGZ in the presence of the Polyakov loop is currently being carried out. The main
outcome of the RGZ formalism is that the instability region is considerably smaller, possibly
because the RGZ framework provides an adequate description of the zero-temperature gauge
dynamics. One should also keep in mind that we are dealing with a perturbative effective the-
ory, so that higher loop order computations, within the RGZ framework, should be carried out
in order to make any reliable assertion about the existence of instability regions.

Finally, we close this thesis stating that a lot of work still has to be done in the direction
of a deeper understanding of nonperturbative effects of QCD. Precisely, the concept of gauge
confinement is not as clear as the one of quark confinement, regarding that a definite understan-
ding of confinement is lacking, at all. A step towards the reconciliation of Gribov’s mechanism
and BRST breaking has been made, so that the possibility to define physical states even in the
(R)GZ framework still exists [50, 51, 53]. Concomitantly, the same construction of a nonlocal
effective model of the matter field that still keeps the action invariant under a nonperturbative
BRST transformation has been worked out [50]. Equally, there are currently efforts of carrying
on investigations on finite temperature Yang-Mills theory, within the RGZ framework, in order
to better understand our earlier results. It is becoming clear for us that a nonlocal horizon-like
term in the matter sector sufficiently describes some IR features of this sector. However, fun-
damental arguments that would justify the existence of that horizon-like term in matter are still
lacking. We hope that further work would point us to the right answer.
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APPENDIX A – General effective action with soft BRST symmetry breaking: algebraic
renormalization

In order to prove the renormalizability of the action Sloc, eq.(257), we proceed as in
[65, 66, 68, 74–76] and we embed the theory into an extended action Σ enjoying exact BRST
symmetry, given by

Σ =
∫

d4x

{
1
4

Fa
µνFa

µν +ba
∂µAa

µ + c̄a
∂µDab

µ cb +
1
2
(Dab

µ φ
b)2 +

m2
φ

2
φ

a
φ

a +
λ

4!
(φa

φ
a)2

+ϕ̄
ac
ν ∂µDab

µ ϕ
bc
ν − ω̄

ac
ν ∂µDab

µ ω
bc
ν −g f abc(∂µω̄

ae
ν )(Dbd

µ cd)ϕce
ν −Nac

µν Dab
µ ω̄

bc
ν

−Mae
µν

[
Dab

µ ϕ̄
be
ν −g f abc(Dbd

µ cd)ω̄ce
ν

]
− M̄ac

µν Dab
µ ϕ

bc
ν + N̄ae

µν

[
Dab

µ ω
be
ν −g f abc(Dbd

µ cd)ϕce
ν

]
−M̄ac

µνMac
µν + N̄ac

µνNac
µν + η̃

ac(∂µDab
µ )ηbc− θ̃

ac(∂µDab
µ )θbc−g f abc(∂µθ̃

ae)(Dbd
µ cd)ηce

+g f abcṼ ad
φ

b
η

cd +g f abcV ad
(
−g f bde

φ
dce

θ̃
cd +φ

b
η̃

cd
)
+ρ

(
Ṽ abV ab−ŨabUab

)
+g f abcŨal

(
g f bde

φ
dce

η
cl−φ

b
θ

cl
)
+g f abcUad

φ
b
θ̃

cd−Ka
µ Dab

µ cb +
g
2

f abcLacbcc

−g f abcFa
φ

bcc

}
, (391)

where
(
Mab

µν,M̄
ab
µν,N

ab
µν , N̄

ab
µν ,V

abc,Ṽ abc,Uabc,Ũabc) are external sources. The original local ac-
tion Sloc, (257), can be re-obtained from the extended action Σ by letting the external fields to
assume their physical values namely

Mab
µν

∣∣∣
phys

= M̄ab
µν

∣∣∣
phys

= γ
2
δ

ab
δµν ;

V ab
∣∣∣

phys
= Ṽ ab

∣∣∣
phys

= σ
2
δ

ab ;

Nab
µν

∣∣∣
phys

= N̄ab
µν

∣∣∣
phys

=Uab
∣∣∣

phys
= Ũab

∣∣∣
phys

= 0 .

Ka
µ = La = Fa = 0 , (392)

so that

Σ

∣∣∣
phys

= Sloc +V ρ σ
4g2N(N2−1) , (393)

where the parameter ρ has been introduced in order to take into account possible divergences in
the vacuum energy associated to the term σ4. This term stems from the source term ρṼ abcV abc,
which is allowed by power counting. In the physical limit the vertex φcθ̃ remains non-vanishing.
Though, it is harmless, due to the absence of mixed propagators 〈c θ̃〉 and 〈c̄ θ〉.

It is easy to check that the extended action Σ enjoys exact BRST invariance, i.e.

sΣ = 0 , (394)
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where

sAa
µ = −Dab

µ cb ,

sφ
a = −g f abc

φ
bcc ,

sca =
1
2

g f abccbcc ,

sc̄a = ba , sba = 0 ,

sω̄
ab
µ = ϕ̄

ab
µ , sϕ̄

ab
µ = 0 ,

sϕ
ab
µ = ω

ab
µ , sω

ab
µ = 0 ,

sθ̃
ab = η̃

ab , sη̃
ab = 0 ,

sη
ab = θ

ab , sθ
ab = 0 , (395)

and

sMab
µν = Nab

µν ; sNab
µν = 0 ;

sN̄ab
µν = M̄ab

µν ; sM̄ab
µν = 0 ;

sŨab = Ṽ ab , sṼ ab = 0 ;

sV ab =Uab , sUab = 0 ;

sKa = sLa = sFa = 0 . (396)

As noticed in [65,66,68,74–76], it is useful introducing a multi-index notation for the localizing
auxiliary fields (ϕ̄ab

µ ,ϕab
µ , ω̄ab

µ , ω̄ab
µ )= (ϕ̄a

i ,ϕ
a
i , ω̄

a
i , ω̄

a
i ) where the multi-index i=(b,µ) runs from

1 to 4(N2−1). The important reason in order to introduce the multi-index notation is related to
the existence of a global symmetry U(4(N2−1)) in the index i, which plays an important role in
the proof of the algebraic renormalization. Analogously, one can introduce a second index I for
the localizing fields of the matter scalar sector (η̃ab,ηab, θ̃ab,θab) = (η̃aI,ηaI, θ̃aI,θaI), where
I = 1, ..,(N2−1). Again, the introduction of the index I is related to the existence of a second
global symmetry U(N2−1). In the multi-index notation, the action (391) reads

Σ =
∫

d4x

{
1
4

Fa
µνFa

µν +ba
∂µAa

µ + c̄a
∂µDab

µ cb +
1
2
(Dab

µ φ
b)2 +

m2
φ

2
φ

a
φ

a +
λ

4!
(φa

φ
a)2 + ϕ̄

a
i ∂µDab

µ ϕ
b
i

−ω̄
a
i ∂µDab

µ ω
b
i −g f abc(∂µω̄

a
i )(D

bd
µ cd)ϕc

i −Na
µi Dab

µ ω̄
b
i −Ma

µi

[
Dab

µ ϕ̄
b
i −g f abc(Dbd

µ cd)ω̄c
i

]
−M̄a

µi Dab
µ ϕ

b
i + N̄a

µi

[
Dab

µ ω
b
i −g f abc(Dbd

µ cd)ϕc
i

]
− M̄a

µiM
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µi + N̄a

µiN
a
µi + η̃

aI(∂µDab
µ )ηbI

−θ̃
aI(∂µDab

µ )θbI−g f abc(∂µθ̃
aI)(Dbd

µ cd)ηcI +g f abcṼ aI
φ

b
η

cI +g f abcV aI
(
−g f bde

φ
dce

θ̃
cI +φ

b
η̃

cI
)

+ρ
(
Ṽ aIV aI−ŨaIUaI)+g f abcŨaI

(
g f bde

φ
dce

η
cI−φ

b
θ

cI
)
+g f abcUaI

φ
b
θ̃

cI−Ka
µ Dab

µ cb

+
g
2

f abcLacbcc−g f abcFa
φ

bcc

}
, (397)
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We are now ready to write down the large set of Ward identities fulfilled by the action (397).
These are given by:
• The Slavnov-Taylor identity:

S(Σ) = 0 , (398)

where

S(Σ) =
∫

d4x

{
δΣ

δKa
µ

δΣ

δAa
µ
+

δΣ

δFa
δΣ

δφa +
δΣ

δLa
δΣ

δca +ba δΣ

δc̄a +ω
a
i

δΣ

δϕa
i
+ ϕ̄

a
i

δΣ

δω̄a
i

+η̃
aI δΣ

δθ̃aI
+θ

aI δΣ

δηaI +Na
µi

δΣ

δMa
µi
+ M̄a

µi
δΣ

δN̄a
µi
+Ṽ aI δΣ

δŨaI +UaI δΣ

δV aI

}
. (399)

For future convenience, let us also introduce the so-called linearized Slavnov-Taylor operator
BΣ, given by

BΣ =
∫

d4x

{
δΣ

δKa
µ

δ

δAa
µ
+

δΣ

δAa
µ

δ

δKa
µ
+

δΣ

δFa
δ

δφa +
δΣ

δφa
δ

δFa +
δΣ

δLa
δ

δca +
δΣ

δca
δ

δLa +ba δ

δc̄a

+ω
a
i

δ

δϕa
i
+ ϕ̄

a
i

δ

δω̄a
i
+ η̃

aI δ

δθ̃aI
+θ

aI δ

δηaI +Na
µi

δ

δMa
µi
+ M̄a

µi
δ

δN̄a
µi
+Ṽ aI δ

δŨaI +UaI δ

δV aI

}
.

(400)

The operator BΣ enjoys the important property of being nilpotent

BΣBΣ = 0 . (401)

• The gauge-fixing and anti-ghost equations:

δΣ

δba = ∂µAa
µ ,

δΣ

δc̄a +∂µ
δΣ

δKa
µ
= 0 . (402)
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• The linearly broken Ward identities:

δΣ

δϕ̄a
i
+∂µ

δΣ

δM̄a
µi
= 0 , (403)

δΣ

δωa
i
+∂µ

δΣ

δNa
µi
−g f abc δΣ

δbc ω̄
b
i = 0 , (404)

δΣ

δω̄a
i
+∂µ

δΣ

δN̄a
µi
−g f abcMb

µi
δΣ

δKc
µ
= 0 , (405)

δΣ

δϕa
i
+∂µ

δΣ

δMa
µi
−g f abc

(
δΣ

δbc ϕ̄
b
i +

δΣ

δc̄b ω̄
c
i − N̄c

µi
δΣ

δKb
µ

)
= 0 , (406)

∫
d4x

[
ca δ

δωa
i
+ ω̄

a
i

δ

δc̄a + N̄a
µi

δ

δKa
µ

]
Σ = 0 , (407)

∫
d4x

[
ca δ

δθaI + θ̃
aI δ

δc̄a −ŨaI δ

δFa

]
Σ = 0 , (408)∫

d4x
[

δ

δηbI −g f abcŨaI δ

δFc −g f abe
(

η̃
aI δ

δbe − θ̃
aI δ

δc̄e

)]
Σ =

∫
d4x g f abcV aI

φ
c , (409)∫

d4x
[

δ

δθbI −g f abe
θ̃

aI δ

δbe

]
Σ =−

∫
d4x g f abcŨaI

φ
c , (410)∫

d4x
[

δ

δθ̃aI
−g f abcV cI δ

δFb

]
Σ =

∫
d4xg f abcUcI

φ
b , (411)∫

d4x
δΣ

δη̃bI =−
∫

d4x g f abcV aI
φ

c . (412)

• The ghost equation:

Ga(Σ) = ∆
a
class , (413)

where

Ga =
∫

d4x

[
δ

δca +g f abc

(
c̄b δ

δbc + ω̄
b
i

δ

δϕc
i
+ϕ

b
i

δ

δωc
i
+Mb

µi
δ

δNc
µi
+ N̄b

µi
δ

δM̄c
µi
+ θ̃

bI δ

δη̃cI

η
bI δ

δθcI +ŨbI δ

δṼ cI +V bI δ

δUcI

)]
(414)

and

∆
a
class =

∫
d4xg f abc

(
Kb

µ Ac
µ−Lbcc +Fb

φ
c
)
. (415)
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Table 3 - Table of quantum numbers (“B"is for bosonic fields and “F"is for fermionic fields)

A φ c c̄ b ϕ ϕ̄ ω ω̄ η η̃ θ θ̃

Dim 1 1 0 2 2 1 1 1 1 1 1 1 1

Ghost# 0 0 1 −1 0 0 0 1 −1 0 0 1 −1

Charge-q f 0 0 0 0 0 1 −1 1 −1 0 0 0 0

Charge-q f ′ 0 0 0 0 0 0 0 0 0 1 −1 1 −1

Nature B B F F B B B F F B B F F

Source: The author, 2016

Table 4 - Table of quantum numbers for classical fields (“B"is for bosonic fields and “F"is for
fermionic fields)

M M̄ N N̄ U Ũ V Ṽ K L F

Dim 2 2 2 2 2 2 2 2 3 4 3

Ghost# 0 0 1 −1 1 −1 0 0 −1 −2 −1

Charge-q f 1 −1 1 −1 0 0 0 0 0 0 0

Charge-q f ′ 0 0 0 0 1 −1 1 −1 0 0 0

Nature B B F F F F B B F B F

Source: The author, 2016

• The global symmetry U( f = 4(N2−1)):

Li j(Σ) =
∫

d4x

[
ϕ

c
i

δ

δϕc
j
− ϕ̄

c
i

δ

δϕ̄c
j
+ω

c
i

δ

δωc
j
− ω̄

c
i

δ

δω̄c
j
+Mc

µi
δ

δMc
µ j
− M̄a

µi
δ

δM̄a
µ j

+Na
µi

δ

δNa
µ j
− N̄a

µi
δ

δN̄a
µ j

]
Σ = 0 . (416)

• The global symmetry U( f ′ = (N2−1)):

L IJ(Σ) =
∫

d4x
[

θ
bI δ

δθbJ − θ̃
bI δ

δθ̃bJ
+η

bI δ

δηbJ − η̃
bI δ

δη̃bJ +V aI δ

δV aJ −Ṽ aI δ

δṼ aJ

+UaI δ

δUaJ −ŨaI δ

δŨaJ

]
Σ = 0 . (417)

Let us also dispslay below the quantum numbers of all fields and sources
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A.1 Algebraic characterisation of the invariant counter-term and renormalizability

In order to determine the most general invariant counter-term which can be freely added
to each order of perturbation theory, we follow the Algebraic Renormalization framework [165]
and perturb the complete action Σ by adding an integrated local polynomial in the fields and
sources with dimension bounded by four and vanishing ghost number, Σct , and we require that
the perturbed action, (Σ+ εΣct), where ε is an infinitesimal expansion parameter, obeys the
same Ward identities fulfilled by Σ to the first order in the parameter ε. Therefore, in the case
of the Slavnov-Taylor identity (398), we have

S (Σ+ εΣct) = 0+O(ε2) , (418)

which leads to

BΣ (Σct) = 0 , (419)

implying that Σct belongs to the cohomology of the linearized Slavnov-Taylor operator in the
sector of the local integrated polynomials of dimension bounded by four. From the general
results on the cohomology of Yang-Mills theories, see [165], the counter-term Σct can be para-
metrized as follows

Σct = a0SYM +a1
λ

4!
(φa

φ
a)2 +a2

m2
φ

2
φ

a
φ

a +BΣ(∆
−1) , (420)

where a0,a1,a2 are free arbitrary coefficients and ∆−1 is an integrated polynomial in the fi-
elds and sources with dimension bounded by 4 and with ghost number −1. The most general
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expression for ∆−1 is given by

∆
−1 =

∫
d4x

{
a3(∂µc̄a +Ka

µ )A
a
µ +a4Laca +a5φ
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a
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a
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+a13m2
φη
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b
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c
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b
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c
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b
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c
i
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µMb
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c
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µiϕ

c
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3 η
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a
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i θ
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, (421)

where
(

Cabcd
1 ,Cabcd

2 ,CabcdIJKL
3 ,CabcdIJKL

4 ,Cabcd
5 ,Cabcd

6 ,Cabcd
7 ,Cabcd

8 ,Cabcdi jkl
9 ,Cabcdi jkl

10

)
are ar-

bitrary coefficients. After imposition of all other Ward identities it turns out that the non-
vanishing parameters which remain at the end of a lengthy algebraic analysis are:

a3 = a6 = a7 = a8 = a9 = a10 = a17 =−a18 = a19 = a22 6= 0 , (422)

as well as

−a5 = a16 = a17 6= 0 , a11 6= 0 . (423)

Therefore, for the final expression of the invariant counter-term one finds

Σct =
∫

d4x

{
a0Fa

µνFa
µν +a1
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−∂µca
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i −∂µcaN̄b

µiϕ
c
i +∂µcaMa

µiω̄
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i −∂µca
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∂µθ̃
cI
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+a5

[
g f abcFa

φ
bcc +Dab

µ φ
bDac

µ φ
c +m2

φφ
a
φ

a +
λ

3!
(φa

φ
a)2
]

+a11
(
Ṽ aIV aI−ŨaIUaI)} . (424)
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It remains now to check that the counter-term Σct can be reabsorbed into the initial action Σ,
through a redefinition of the fields, sources and parameters, according to

Σ(F,S,ξ)+ εΣct(F,S,ξ) = Σ(F0,S0,ξ0)+O(ε2) , (425)

with

F0 = Z1/2
F F , S0 = ZSS and ξ0 = Zξξ , (426)

where {F} stands for all fields, {S} for all sources and {xi} for all parameters, i.e. ξ =

g,mφ,λ,ρ.

Therefore, by direct application of (425) we get

Z1/2
A = 1+ ε

(a0

2
+a3

)
(427)

Z1/2
φ

= 1+ εa5 (428)

Z1/2
b = Z−1/2

A (429)

Z1/2
c̄ = Z1/2

c = Z−1/2
g Z−1/4

A (430)

Z1/2
ϕ̄

= Z1/2
ϕ = Z−1/2

g Z−1/4
A (431)

Z1/2
ω̄

= Z−1
g (432)

Z1/2
ω = Z−1/2

A (433)

Z1/2
θ

= Z−1/2
A (434)

Z1/2
θ̄

= Z−1
g (435)

Z1/2
η = Z1/2

η̄
= Z−1/2

g Z−1/4
A (436)

ZN = Z−1/2
A (437)

Z1/2
N̄ = Z−1

g (438)

ZM = ZM̄ = Z−1/2
g Z−1/4

A (439)

ZV = ZV̄ = Z−1/2
φ

Z1/2
g Z1/4

A (440)

ZU = Z−1/2
φ

(441)

ZŪ = Z−1
g Z1/2

A Z−1/2
φ

(442)

ZK = Z1/2
c̄ (443)

ZF = Z−1
φ

Z1/4
A Z−1/2

g . (444)
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and

Zg = 1− ε
a0

2
(445)

Zmφ
= 1+ εa2 (446)

Zλ = 1+ εa1 (447)

Zρ = (1+ εa11)Z−1
g Z1/2

A Z−1
φ

. (448)

These equations show that the invariant counter-term Σct , eq.(424), can be reabsorbed into the
initial action Σ through a multiplecative redefinition of the fields, sources and parameters. This
concludes the algebraic proof of the all order renormalizability of Σ.
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APPENDIX B – Notations, conventions and identities of SUSY theories in Euclidean
space-time

Units: ~= c = 1.
Euclidean metric: δµν = diag(+,+,+,+).
Wick rotations: X0→−iX4⇒ ∂0→+i∂4, A0→+iA4

Gamma matrices:

γ4 =

(
0 1

1 0

)
, γk =−i

(
0 σk

−σk 0

)

Pauli matrices:

σ4 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)

The Gamma matrices obey the following properties:

γµ = γ
†
µ (449)

{γµ,γν} = 2δµν (450)

We also define the γ5 matrix as:

γ5 = γ4γ1γ2γ3 =

(
1 0
0 −1

)

with the following properties:

{γ5,γµ}= 0, (γ5)
2 = 1, γ

†
5 = γ5 (451)

The charge conjugation matrix is:

C = γ4γ2 = i

(
σ2 0
0 −σ2

)
(452)

with the following properties:

C−1 =−C = C T , C−1
γµC =−γ

T
µ (453)

The σµν tensor is defined as

(σµν)
β

α ≡
1
2
[γµ,γν]

β

α (454)
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Table 5 - Indices notations

• The Lorentz indices: µ,ν,ρ,σ,λ ∈ {1,2,3,4} ;

• The Spinor indices: α,β,γ,δ,η ∈ {1,2,3,4} ;

• The SU(N) group indices: a,b,c,d,e ∈ {1, . . . ,N2−1} ;

• The multi-index (a,µ): i, j,k, l ∈ {1, . . . , f = 4(N2−1)} ;

• The multi-index (a,α): I,J,K,L ∈ {1, . . . , f ′ = 4(N2−1)} .

Source: The author, 2016

Table 6 - Table of quantum numbers: “C"is for commutating and “A"is for anti-commutating

A λ D c č b ϕ ϕ̃ ω ω̃ ζ ζ̂ θ θ̂ ε ε̄

Dim 1 3
2 2 1 1 2 1 1 2 0 0 2 1 1 1

2
1
2

Ghost# 0 0 0 1 −1 0 0 0 1 −1 −1 1 0 0 1 1

Charge-q f 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0

Charge-q f ′ 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0

Nature C A C A A C C C A A C C A A C C

Source: The author, 2016

and has the property σ
†
µν =−σµν.

Majorana fermions:
The Majorana condition reads:

λ
C = λ = C λ̄

T ⇐⇒ λ̄ = λ
T C , (455)

leading to the following relations

λ̄γµε = ε̄γµλ and λ̄γµγ5ε =−ε̄γµγ5λ . (456)

Fierz identity (in Euclidean space-time):

ε1ε̄2 =
1
4
(ε̄2ε1)1+

1
4
(ε̄2γ5ε1)γ5 +

1
4
(ε̄2γµε1)γµ−

1
4
(ε̄2γµγ5ε1)γµγ5

−1
8
(ε̄2σµνε1)σµν . (457)
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Table 7 - Table of quantum numbers for classical fields: “C"is for commutating and “A"is for
anti-commutating

U Û V V̂ M M̃ N Ñ K Ω L Λ T J Y X

Dim 1
2

1
2

3
2

3
2 2 2 3 1 2 3 2 3 1 2 3

2
5
2

Ghost# −1 −1 0 0 0 0 1 −1 −1 0 −2 −1 −1 0 −1 0

Charge-q f 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0

Charge-q f ′ 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

Nature A A C C C C A A A C C A A C C A

Source: The author, 2016
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APPENDIX C – Algebraic renormalization of N = 1 Super Yang–Mills in Wess–Zumino
gauge within the Gribov–Zwanziger approach

In order to apply the algebraic renormalization procedure to study the renormalizability
of the Gribov-extended SYM theory, we must first write down a local action and the associated
set of symmetries and Ward identities. We shall proceed by first analyzing the theory with a
Gribov gauge sector and then including the confining gluino term to obtain the final action to
be studied.
The N = 1 Euclidean super Yang–Mills action with Majorana fermions in the superfield com-
ponents and within the Wess–Zummino gauge, without a matter field, is

SSYM =
∫

d4x
[

1
4

Fa
µνFa

µν +
1
2

λ̄
aα(γµ)αβDab

µ λ
bβ +

1
2
DaDa

]
, (458)

where λα is a four component Majorana spinor.
This action is left invariant under the the usual SUSY transformations εαδα = εαδα + ε̄α̇δ̄α̇,
where the right-hand-side is in terms of the Weyl spinors, however, to avoid the infinite chain
of new generators we also include the BRST transformation, s, so that the full transformation
Q = s+ εαδα applied to the superfield components gives

QAa
µ =−Dab

µ cb + ε̄
α(γµ)αβλ

aβ ,

Qλ
aα = g f abccb

λ
cα− 1

2
(σµν)

αβ
εβFa

µν +(γ5)
αβ

εβD
a ,

QDa = g f abccbDc + ε̄
α(γµ)αβ(γ5)

βηDab
µ λ

b
η , (459)

Qca =
1
2

g f abccbcc− ε̄
α(γµ)αβε

βAa
µ ,

Qc̄a = ba ,

Qba = ∇c̄a ,

Q2 = ∇ , (460)

where we define the translation operator

∇ := ε̄
α(γµ)αβε

β
∂µ . (461)

With the above transformations we can show that the starting action (458) is Q invariant or have
a super-BRST symmetry (S-BRST).
In order to fix the gauge freedom of the Yang–Mills field, let us chose the Landau gauge, with
which we ensure the existence of the Gribov copies,

Sgf = Q
∫

d4x(ča
∂µAa

µ) , (462)
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so that, according to (459), we have

Sgf =
∫

d4x
[
ča

∂µDab
µ cb +ba

∂µAa
µ− ča

ε̄
α(γµ)αβ∂µλ

aβ

]
. (463)

Therefore, the Yang–Mills action in the Landau gauge can be written as

S′ = SSY M +Sg f

=
∫

d4x
{

1
4

Fa
µνFa

µν +
1
2

λ̄
aα(γµ)αβDab

µ λ
bβ +

1
2
D2

+ba
∂µAa

µ + ča
[
∂µDab

µ cb− ε̄
α(γµ)αβ∂µλ

aβ

]}
. (464)

One can easily check the invariance of the S′ action under the set of transformations (459), as
well as the nilpotency of Q under spacetime integration. In other words, making use of some
relations given at the Appendix, one can show that

QS′ = 0 (465)

and that

Q2 ≡ ∇ = ε̄
α(γµ)αβε

β
∂µ (466)

for all fields.
The Gribov problem, inherent to the Yang–Mills fields, will be considered here in a kind of
extended localized Gribov–Zwanziger (GZ) action, namely

SGZ’ = Q
∫

d4x
[
ω̃

ac
µ ∂νDab

ν ϕ
bc
µ

]
+

∫
d4x
[
γ

2g f abcAb
µ(ϕ

ac
µ + ϕ̃

ac
µ )− γ

44(N2
c −1)

]
, (467)

where, making use of the set of transformations (459), one can easily see that

SGZ’ =
∫

d4x
[
ϕ̃

ac
µ ∂νDab

ν ϕ
bc
µ − ω̃

ac
µ ∂νDab

ν ω
bc
µ −g f abc(∂νω̃

ad
µ )(Dbk

ν ck)ϕcd
µ

+ g f abc(∂νω̃
ad
µ )(ε̄α(γν)αβλ

βb)ϕcd
µ

]
+ γ

2
∫

d4x
[
g f abcAa

µ(ϕ
bc
µ + ϕ̃

bc
µ )

−γ
24(N2

c −1)
]
. (468)

The above GZ′ action is said to be extended as it is related to the BRST algebra, as it must be,
and also to the SUSY algebra in addition.
In order to keep the supersymmetric algebra as well as the BRST one, the localizing fields
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(ω, ω̃) and (ϕ, ϕ̃) must transform under Q as

Qϕ
ac
µ = ω

ac
µ

Qω
ac
µ = ∇ϕ

ac
µ

Qω̃
ac
µ = ϕ̃

ac
µ

Qϕ̃
ac
µ = ∇ω̃

ac
µ ,

(469)

With this term added to S′ an explicit super-BRST breaking is observed, which comes from the
term proportional to γ in (468), and can be easily checked making use of (469). As we saw that
QS′ = 0, we just need to verify the invariance of the Gribov–Zwanziger action, which is said to
be

QS = Q2
∫

d4x
[
ω̃

ac
µ ∂νDab

ν ϕ
bc
µ

]
+Q

∫
d4x
[
γ

2g f abcAb
µ(ϕ

ac
µ + ϕ̃

ac
µ )
]

=
∫

d4x
(

γ
2g f abc

[
(QAb

µ)(ϕ
ac
µ + ϕ̃

ac
µ )+Ab

µ(Qϕ
ac
µ +Qϕ̃

ac
µ )
])

= γ
2
∫

d4xg f abc
[(
−Dab

µ cb− ε̄
α(γµ)αβλ

βa
)
(ϕac

µ + ϕ̃
ac
µ )+

+ Ab
µ

(
ω

ac
µ −2ε

α(γµ)αβε̄
β
∂µω̃

ac
µ

)]
. (470)

Summarizing, we have

QS = γ
2
∆ , (471)

with ∆ being a dimension two integrated polynomial of the fields, known as composite operator,
characterizing then a soft breaking. We may now proceed by including the confining term in
the gluino sector,

SG̃ =−1
2

∫
d4x

(
λ̄

aα
M3δαβ

(∂2−µ2)
λ

aβ

)
, (472)

leading to the following non-local action,

S = SSYM +Sgf +SGZ’−
1
2

∫
d4x

(
λ̄

aα
M3δαβ

(∂2−µ2)
λ

aβ

)
, (473)

with M and µ having dimension of mass. That subscribed G̃ is not a index, it stands for the
Gluino field. One can write this term in a local form with the insertion of two more fields.
Namely,

SLG̃ =
∫

d4x
[
ζ̂

aα(∂2−µ2)ζa
α− θ̂

aα(∂2−µ2)θa
α−M3/2(λ̄aα

θ
a
α + θ̂

aα
λ

a
α)
]
. (474)
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The non-local version can be easily recovered after integration over the new Dirac spinor fi-
elds. The localizing fields ζ̂aα, ζaα are bosonic while θ̂aα and θaα are fermionic and they form
doublets under Q transformation, (θ̂aα, ζ̂aα) and (θaα, ζaα).
Equivalently to the gluon sector, the Q-symmetry is also broken by the gluino term with the
breaking coming from the term proportional to M3/2. According to the Q transformation of the
localizing fields (θ̂aα, ζ̂aα) and (θaα, ζaα), namely

Qθ̂
a
α = ζ̂

a
α ;

Qζ̂
a
α = ∇θ̂

a
α ;

Qζ
a
α = θ

a
α ;

Qθ
a
α = ∇ζ

a
α , (475)

it is not hard to see that the breaking is soft and thus can be restored by insertions of external
fields. The whole action which describes our model can then be written in its local form as,

S = SSY M +Sg f +SGZ′+SLG̃

=
∫

d4x
{

1
4

Fa
µνFa

µν +
1
2

λ̄
aα(γµ)αβDab

µ λ
bβ +

1
2
DaDa +ba

∂µAa
µ

+ča
[
∂µDab

µ cb− ε̄
α(γµ)αβ∂µλ

aβ

]
+ ϕ̃

ac
µ ∂νDab

ν ϕ
bc
µ − ω̃

ac
µ ∂νDab

ν ω
bc
µ

−g f abc(∂νω̃
ad
µ )(Dbk

ν ck)ϕcd
µ +g f abc(∂νω̃

ad
µ )(ε̄α(γν)αβλ

βb)ϕcd
µ

+γ
2g f abcAa

µ(ϕ
bc
µ + ϕ̃

bc
µ )− γ

44(N2
c −1)+ ζ̂

aα(∂2−µ2)ζa
α

−θ̂
aα(∂2−µ2)θa

α−M3/2(λ̄aα
θ

a
α + θ̂

aα
λ

a
α)
}
. (476)

It is straightforward to see that the action (474) is not Q invariant, with the Q transformation
of the localizing fields given by (475). More preciselly there is a softy symmetry breaking
which comes from the GZ term and from the non-local proposed term in the gluino sector.
Hence, in order to prove the renormalizability with the algebraic renormalization approach we
have to include external sources to restore the Q invariance of the local action ensuring thus the
Slavnov-Taylor identity. These source will be included as doublets, namely

(V̂ abαβ,V abαβ); (Ûabαβ,Uabαβ); (M̃ab
µν, Mab

µν); (Ñab
µν , Nab

µν) , (477)
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whose Q transformation of each field is given by

QUabαβ = V abαβ ;

QV abαβ = ∇Uabαβ ;

QÛabαβ = V̂ abαβ ;

QV̂ abαβ = ∇Ûabαβ ;

QMab
µν = Nab

µν ;

QNab
µν = ∇Mab

µν ;

QÑab
µν = M̃ab

µν ;

QM̃ab
µν = ∇Ñab

µν .

Thus, the local action invariant under the Q transformation is

S =
∫

d4x
[

1
4

Fa
µνFa

µν + λ̄
aα(γµ)αβDab

µ λ
bβ +

1
2
D2 + ča

∂µDab
µ cb +ba

∂µAa
µ

+ča
ε̄

α(γµ)αβ∂µλ
aβ + ϕ̃

ac
µ ∂νDab

ν ϕ
bc
µ − ω̃

ac
µ ∂νDab

ν ω
bc
µ −g f abc(∂νω̃

ad
µ )(Dbk

ν ck)ϕcd
µ

+g f abc(∂νω̃
ad
µ )(ε̄α(γν)αβλ

βb)ϕcd
µ −Nab

µν Dac
µ ω̃

cb
ν −Mab

µνDac
µ ϕ̃

cb
ν +g f adcMab

µνDdl
µ cl

ω̃
cb
ν

−g f adc
ε̄

α(γµ)αβMab
µνλ

dβ
ω̃

cb
ν − M̃ab

µνDac
µ ϕ

cb
ν + Ñab

µν Dac
µ ω

cb
ν −g f adcÑab

µν Ddl
µ cl

ϕ
cb
ν

+g f adc
ε̄

α(γµ)αβÑab
µν λ

dβ
ϕ

cb
ν − M̃ab

µνMab
µν + Ñab

µν Nab
µν + ζ̂

aα(∂2−µ2)ζa
α− θ̂

aα(∂2−µ2)θa
α

−V̂ abαβ
λ̄

a
αθ

b
β
−g f adcÛabαβcd

λ̄
c
αθ

b
β
+

1
2

Ûabαβ
ε̄

γ(σµν)γαFa
µνθ

b
β
−Ûabαβ

ε̄
γ(γ5)γαD

a
θ

b
β

+ε
γ(γµ)γηε̄

ηÛabαβ
λ̄

a
α∂µζ

b
β
−V abαβ

θ̂
b
β
λ

a
α−Uabαβ

ζ̂
b
β
λ

a
α +g f adcUabαβ

θ̂
b
β
cd

λ
c
α

−1
2

Uabαβ
θ̂

b
β
(σµν)αγε

γFa
µν +Uabαβ

θ̂
b
β
(γ5)αγε

γDa
]
. (478)

This external sources must assume a physical value in the future so that one must fall back to
the original local and explicitly broken action. Due to the behavior Q2 = εα(γµ)αβε̄β∂µ over all
fields, as given by the set of equations (459), this action is left Q invariant, for a given boundary
condition, i.e.

QS = 0 . (479)

One should also put sources coupled to the non-linear transformations, as QAa
µ, Qλaβ, QDa and

Qca, in order to take a well defined vacuum expectation value of these quantities. Thus, let us
add the following doublets of sources, QKa

µ = Ωa
µ

QΩa
µ = ∇Ka

µ

,

 QLa = Λa

QΛa = ∇La
,

 QT a = Ja

QJa = ∇T a
,

 QY aα = Xaα

QXaα = ∇Y aα .
(480)
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The action which must be added to the action (478) is∫
d4x
[
−Q(Ka

µ Aa
µ)+Q(Laca)−Q(T aDa)+Q(Y aα

λ
a
α)
]
. (481)

Therefore the action in its full glory is31

Σ =
∫

d4x
{

1
4

Fa
µνFa

µν +
1
2

λ̄
aα(γµ)αβ Dab

µ λ
bβ +

1
2
DaDa +ba

∂µAa
µ + ča

[
∂µDab

µ cb− ε̄
α(γµ)αβ∂µλ

aβ

]
+ϕ̃

a
i ∂µDab

µ ϕ
b
i − ω̃

a
i ∂µDab

µ ω
b
i −g f abc(∂µω̃

a
i )
[
(Dbd

µ cd)− ε̄
α(γµ)αβλ

bβ

]
ϕ

c
i

−Na
µi Dab

µ ω̃
b
i −Ma

µi

[
Dab

µ ϕ̃
b
i −g f abc(Dbd

µ cd)ω̃c
i +g f abc

ε̄
α(γµ)αβλ

bβ
ω̃

c
i

]
−M̃a

µi Dab
µ ϕ

b
i + Ña

µi

[
Dab

µ ω
b
i −g f abc(Dbd

µ cd)ϕc
i +g f abc

ε̄
α(γµ)αβλ

bβ
ϕ

c
i

]
−M̃a

µiM
a
µi + Ña

µiN
a
µi + ζ̂

I(∂2−µ2)ζI− θ̂
I(∂2−µ2)θI +V̂ Iaα

λ̄
a
αθI

−Û Iaα

[
g f abccb

λ̄
c
αθI− λ̄

a
α∇ζI−

1
2

ε̄
γ(σµν)γαFa

µνθI + ε̄
γ(γ5)γαD

a
θI

]
+V Iaα

θ̂Iλ
a
α +U Iaα

[
−ζ̂Iλ

a
α +g f abc

θ̂Icb
λ

c
α−

1
2

θ̂I(σµν)αγε
γFa

µν + θ̂I(γ5)αγε
γDa

]
−Ω

a
µAa

µ−Ka
µ

[
Dab

µ cb− ε̄
α(γµ)αβλ

aβ

]
+Λ

aca +La
[g

2
f abccbcc− ε̄

α(γµ)αβε
βAa

µ

]
−JaDa +T a

[
g f abccbDc + ε̄

α(γµ)αβ(γ5)
βηDab

µ λ
b
η

]
+Xaα

λ
a
α +Y aα

[
g f abccb

λ
c
α−

1
2
(σµν)αβFa

µνε
β +(γ5)αβε

βDa
]
−Xaα(γ5)αβε

βT a

−V̂ Iaα
ε̄

β(γ5)βαθIT a +Û Iaα
ε̄

β(γ5)βα∇ζIT a−V Iaα(γ5)αβε
β
θ̂IT a +U Iaα(γ5)αβε

β
ζ̂IT a

−Ja
(

Y aα(γ5)αβε
β +Û Ia

αCβα
θI(γ5)βηε

η +U Iaα
θ̂I(γ5)αβε

β

)}
. (482)

In the above action the quadratic terms in the source−Q(Y γ5εT ),−Q(Û ε̄γ5θT ) and−Q(Uγ5εθ̂T )

were introduced by hand without really change the physical content of the model. These terms
are needed in order to account for new terms which appear in the renormalized action due to the
matrix renormalization method.
When all the external fields reach its respective physical value we fall back to the original broken
local action (476). Namely, its physical values are

Mab
µν

∣∣∣
phy

= M̃ab
µν

∣∣∣
phy

= γ
2
δ

ab
δµν ;

V abαβ

∣∣∣
phy

= V̂ abαβ

∣∣∣
phy

=−M3/2
δ

ab
δ

αβ ;

Nab
µν

∣∣∣
phy

= Ñab
µν

∣∣∣
phy

=Uabαβ

∣∣∣
phy

= Ûabαβ

∣∣∣
phy

= 0 . (483)

31 For the index notation and about the quantum number of each field take a look at the notations in the Appendix
B.
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C.1 Symmetry content of the model

Ward identities

• The Slavnov-Taylor identity:

S(Σ) =
∫

d4x
{(

δΣ

δAa
µ
+Ω

a
µ

)
δΣ

δKa
µ
+

(
δΣ

δλaα
+Xaα

)
δΣ

δY aα
+

(
δΣ

δca +Λ
a
)

δΣ

δLa

+

(
δΣ

δDa + Ja
)

δΣ

δT a +ba δΣ

δča +ω
a
i

δΣ

δϕa
i
+ ϕ̃

a
i

δΣ

δω̃a
i
+ ζ̂

I δΣ

δθ̂I
+θ

I δΣ

δζI

+V Iaα δΣ

δU Iaα
+V̂ Iaα δΣ

δÛ Iaα
+Na

µi
δΣ

δMa
µi
+ M̃a

µi
δΣ

δÑa
µi

+(∇U Iaα)
δΣ

δV Iaα
+(∇Û Iaα)

δΣ

δV̂ Iaα
+(∇Ma

µi)
δΣ

δNa
µi

+(∇Ña
µi)

δΣ

δM̃a
µi
+(∇Ka

µ )
δΣ

δΩa
µ
+(∇Y aα)

δΣ

δXaα
+(∇T a)

δΣ

δJa +(∇La)
δΣ

δΛa

+(∇ča)
δΣ

δba +(∇ϕ
a
i )

δΣ

δωa
i
+(∇ω̃

a
i )

δΣ

δϕ̃a
i
+(∇θ̂

I)
δΣ

δζ̂I
+(∇ζ

I)
δΣ

δθI

}
= 0 . (484)

• The linearized Slavnov-Taylor operator:

BΣ =
∫

d4x
{(

δΣ

δAa
µ
+Ω

a
µ

)
δ

δKa
µ
+

δΣ

δKa
µ

δ

δAa
µ
+

(
δΣ

δλaα
+Xaα

)
δ

δY aα
+

δΣ

δY aα

δ

δλaα

+

(
δΣ

δca +Λ
a
)

δ

δLa +
δΣ

δLa
δ

δca +

(
δΣ

δDa + Ja
)

δ

δT a +
δΣ

δT a
δ

δDa +ba δΣ

δča

+ω
a
i

δΣ

δϕa
i
+ ϕ̃

a
i

δΣ

δω̃a
i
+ ζ̂

I δΣ

δθ̂I
+θ

I δΣ

δζI +V Iaα δΣ

δU Iaα
+V̂ Iaα δΣ

δÛ Iaα
+Na

µi
δΣ

δMa
µi

+M̃a
µi

δΣ

δÑa
µi
+(∇U Iaα)

δΣ

δV Iaα
+(∇Û Iaα)

δΣ

δV̂ Iaα
+(∇Ma

µi)
δΣ

δNa
µi
+(∇Ña

µi)
δΣ

δM̃a
µi

+(∇Ka
µ )

δΣ

δΩa
µ
+(∇Y aα)

δΣ

δXaα
+(∇T a)

δΣ

δJa +(∇La)
δΣ

δΛa +(∇ča)
δΣ

δba

+(∇ϕ
a
i )

δΣ

δωa
i
+(∇ω̃

a
i )

δΣ

δϕ̃a
i
+(∇θ̂

I)
δΣ

δζ̂I
+(∇ζ

I)
δΣ

δθI

}
. (485)

• The gauge-fixing and anti-ghost equations:

δΣ

δba = ∂µAa
µ ,

δΣ

δča +∂µ
δΣ

δKa
µ
= 0 . (486)
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• The equations of motion of the auxiliary fields:

δΣ

δϕ̃a
i
+∂µ

δΣ

δM̃a
µi
−g f abcMb

µi
δΣ

δΩc
µ
= 0 , (487)

δΣ

δωa
i
+∂µ

δΣ

δNa
µi
−g f abc

(
δΣ

δbc ω̃
b
i +

δΣ

δΩc
µ

Ñb
µi

)
= 0 , (488)

δΣ

δω̃a
i
+∂µ

δΣ

δÑa
µi
−g f abc

(
Mb

µi
δΣ

δKc
µ
−Nb

µi
δΣ

δΩc
µ

)
= 0 , (489)

δΣ

δϕa
i
+∂µ

δΣ

δMa
µi
−g f abc

(
δΣ

δbc ϕ̃
b
i +

δΣ

δΩc
µ

M̃b
µi +

δΣ

δčb ω̃
c
i − Ñc

µi
δΣ

δKb
µ

)
= 0 , (490)

δΣ

δζI
= (∂2−µ2)ζ̂I−∇(Û Iaα

λ̄
a
α) , (491)

δΣ

δζ̂I
= (∂2−µ2)ζI−U Iaα

λ
a
α , (492)

δΣ

δθ̂I
−U Iaα δΣ

δY aα
=−(∂2−µ2)θI +V Iaα

λ
a
α , (493)

δΣ

δθI
−
(

δΣ

δY a

)T

β

C β

α Û Iaα = (∂2−µ2)θ̂I− λ̄
a
α V̂ Iaα , (494)

δΣ

δDa =−Da− Ja +g f abccbT c−Y aα(γ5)αβ ε
β +Û Iaα

ε̄β(γ5)
βα

θI

−U Iaα
θ̂I (γ5)

αβ
εβ . (495)

• The equations of motion of the external BRST sources:

δΣ

δΩa
µ
= Aa

µ ,
δΣ

δΛa = ca ,
δΣ

δJa =−Da ,
δΣ

δXaα
= λ

a
α . (496)

• The U( f = 4(N2−1)) invariance and the multi-index i≡ (a,µ):

Lab
µν(Σ) = −

∫
d4x

(
ϕ̃

ca
µ

δΣ

δϕ̃cb
ν

−ϕ
cb
ν

δΣ

δϕca
µ
+ ω̃

ca
µ

δΣ

δω̃cb
ν

−ω
cb
ν

δΣ

δωca
µ
+ M̃ca

σµ
δΣ

δM̃cb
σν

−Mcb
σν

δΣ

δMca
σµ

+Ñca
σµ

δΣ

δÑcb
σν

−Ncb
σν

δΣ

δNca
σµ

)
= 0 . (497)

These fields has a q charge and this relation defines a (c,µ) : i, j,k, l multi-index.
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• The U( f ′ = 4(N2−1)) invariance and the multi-index I ≡ (a,α):

Lab β

α
(Σ) =

∫
d4x
(

ζ
a
α

δΣ

δζb
β

− ζ̄
b
β

δΣ

δζ̄aα
+θ

a
α

δΣ

δθb
β

− θ̄
b
β

δΣ

δθ̄aα
+ Ṽ ca

γα

δΣ

δṼ cb β

γ

−V cb β

γ

δΣ

δV ca α

γ

+ Ũca
γα

δΣ

δŨcb β

γ

−Ucb β

γ

δΣ

δUca α

γ

)
= 0 . (498)

These fields has a q′ charge and this relation define a (a,α) : I,J,K,L multi-index.

• The ghost equation:

Ga(Σ) = ∆
a
class , (499)

where

Ga :=
∫

d4x
[

δ

δca +g f abc
(

čb δ

δbc +ϕ
b
i

δ

δωc
i
+ ω̃

b
i

δ

δϕ̃c
i
+ Ñb

µi
δ

δM̃c
µi
+Mb

µi
δ

δNc
µi

+Û Ibα δ

δV̂ Icα
−U Ibα δ

δV Icα

)]
, (500)

and

∆
a
class =

∫
d4x

[
g f abc

(
Kb

µ Ac
µ−Lbcc +T bDa−Y bα

λ
c
α

)
−Λ

a
]
. (501)

• The equation of the source T a:

δΣ

δT a +
δΣ

δλa
α

(γ5)αβ ε
β +g f abccb δΣ

δDc +g f abcT b δΣ

δLc = ∆̃
a
class , (502)

where

∆̃
a
class = 3g f abc

ε̄
α(γµ)αβε

βT bAc
µ +∇T b−g f abccbJc

−ε
β(γ5)βαXaα− ε̄

α(γµ)αη(γ5)
ηβ

εβ

(
∂µc̄a +Ka

µ
)
. (503)

This equation can also be obtained from the commutation relation between the linearized
Slavnov-Taylor operator and δ/δDa.
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Table 8 - Set of transformation that let Σ invariant

First set Second set Third set
γµ→ enπiγµ γµ→ enπiγµ γµ→ enπiγµ

λ→ e−
nπi
2 λ λ→ e

nπi
2 λ λ→ e−

3
2 nπi

λ

λ̄→ e−
nπi
2 λ̄ λ̄→ e

nπi
2 λ̄ λ̄→ e

1
2 nπi

λ̄

ε̄→ e−
nπi
2 ε̄ ε̄→ e

nπi
2 ε̄ ε̄→ e−

3
2 nπi

ε̄

ε→ e−
nπi
2 ε ε→ e

nπi
2 ε ε→ e−

3
2 nπi

ε

θ→ e
nπi
2 m

θ θ→ e
nπi
2 θ θ→ e−

3
2 nπi

θ

θ̂→ e−
nπi
2 m

θ̂ θ̂→ e
3nπi

2 θ̂ θ̂→ e−
1
2 nπi

θ̂

ζ→ e
nπi
2 m

ζ ζ→ e
nπi
2 ζ ζ→ e−

3
2 nπi

ζ

ζ̂→ e−
nπi
2 m

ζ̂ ζ̂→ e
3nπi

2 ζ̂ ζ̂→ e
3
2 nπi

ζ̂

V̂ → e(1−m) nπi
2 V̂ V̂ → enπiV̂ V̂ → enπiV̂

V → e(1+m) nπi
2 V V →V V →V

Û → e(1−m) nπi
2 Û Û → enπiÛ Û → enπiÛ

U → e(1+m) nπi
2 U U →U U →U

Y → e
nπi
2 Y Y → e

3nπi
2 Y Y → e−

1
2 nπiY

X → e
nπi
2 X X → e

3nπi
2 X X → e−

1
2 nπiX

Source: The author, 2016

Discrete symmetries

Let the γ matrices change as γµ → enπi γµ, with n positive integer. In this case γ5, C , σµν and
{γµ,γν} remain unchanged and the action Σ is left invariant under the following sets of transfor-
mations,

where m ∈ℜ in the first set. Unmentioned fields are known to be transformed in itself.
It is important to note the existence of particular cases where n = 1 and when n is even.

Now, let x4→−x4 (the same is possible for x2→−x2). In this case we can transform
the γ matrices as

γ4→−γ4 , γk→ γk, k = 1,2,3 . (504)

Notice that the anti-commutation relation {γµ,γν} = 2δµν remains unchanged by the transfor-
mations above, but

γ5→−γ5 , C →−C , σ4k→−σ4k , σkl → σkl , k, l = 1,2,3 . (505)

In this case we have two sets of transformations that let the action Σ invariant:
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Table 9 - Set of discrete transformation

First set Second set
A4→−A4 A4→−A4
λ→+iλ λ→+iλ
λ̄→−iλ̄ λ̄→−iλ̄
ε→+iε ε→+iε
ε̄→−iε̄ ε̄→−iε̄

M̃ab
4ν
→−M̃ab

4ν
M̃ab

4ν
→−M̃ab

4ν

Mab
4ν
→−Mab

4ν
Mab

4ν
→−Mab

4ν

Ñab
4ν
→−Ñab

4ν
Ñab

4ν
→−Ñab

4ν

Nab
4ν
→−Nab

4ν
Nab

4ν
→−Nab

4ν

Ka
4 →−Ka

4 Ka
4 →−Ka

4
Ωa

4→−Ωa
4 Ωa

4→−Ωa
4

D→−D D→−D
T →−T T →−T
J→−J J→−J

Y →−iY Y →−iY
X →−iX X →−iX
V̂ →+iV̂ θ→+iθ
V →−iV θ̂→−iθ̂
Û →+iÛ ζ→+iζ
U →−iU ζ̂→−iζ̂

Source: The author, 2016
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Table 10 - Set of discrete transformation

A1→−A1
D→−D
T →−T
J→−J

M̃ab
1ν
→−M̃ab

1ν

Mab
1ν
→−Mab

1ν

Ñab
1ν
→−Ñab

1ν

Nab
1ν
→−Nab

1ν

Ka
1 →−Ka

1
Ωa

1→−Ωa
1

Source: The author, 2016

Finally, let x1→−x1 (or x3→−x3). In this case we have:

γ1→−γ1 , γk→ γk , k = 2,3,4 . (506)

Also in this case the anti-commutation relation between the γ matrices remains unchanged, but

γ5→−γ5 , C → C , σ1k→−σ1k , σkl → σkl , k, l = 2,3,4 . (507)

One can show in this case that the action Σ is then invariant by the following set of transforma-
tions:

C.2 Determining the counter-term

Σcount = a0 SSYM +BΣ∆
(−1) . (508)

Here, ∆(−1) is an integrated polynomial in the fields and in the sources of dimension 3, ghost
number −1, and q f = q f ′ = 0. Taking into account some symmetries, the most general ∆(−1)

with 39 terms is given by32

32 The most general ∆(−1), with 350 terms, was found by M. Capri
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∆
−1 =

∫
d4x
{

a1(∂µča +Ka
µ )A

a
µ +a2caLa +a3(∂µω̃

a
i )M

a
µi +a4g f abcAc

µMa
µiω̃

b
i +a5(∂µω̃

a
i )∂µϕ

a
i

+a6g f abcAc
µω̃

a
i ∂µϕ

b
i +a7g f abcAc

µ(∂µω̃
a
i )ϕ

b
i +a8κM̃a

µiM
a
µi +a9Ña

µi∂µϕ
a
i +a10g f abcAc

µÑa
µiϕ

b
i

+a12g f abcT aT bcc +a13ϒ
aα

λ
a
α +a19ϒ

aα(γ5)αβε
βT a +a22JaT a +a23D

aT a

+a35g f abcU Ibα(γ5)αβÛcγ

I ε̄
β
εβT a +a36g f abcU IbαÛcβ

I (γ5)βηε̄αε
ηT a

+a41g f abcU Ibα(γ5)αβÛcγ

I ε
β
ε̄γT a +a42g f abcU IbαÛcβ

I (γ5)βηεαε̄
ηT a

+a47g f abcU IbαÛ c
I αε̄

β(γ5)βηε
ηT a +a48g f abcU Ibα(γ5)αβÛcβ

I ε̄
η
εηT a

+a50g f abcU Ibα(γ5)αβCβγÛ c
I γε

η
εη +a51g f abcU IbαCαβÛ cβ

I ε
η(γ5)ηδε

δT a

+a68g2 f abe f ecd
ω̃

a
i ϕ

b
i ϕ̃

c
jϕ

d
j +a69g2 f abe f ecd

ω̃
a
i ϕ

b
j ϕ̃

c
i ϕ

d
j +a70g2 f abe f ecd

ω̃
a
i ϕ

b
jω̃

c
i ω

d
j

+a71g2 f abe f ecd
ω̃

a
i ϕ

b
jω̃

c
i ω

d
j +a72µ2

ω̃
a
i ϕ

a
i +a76g3 f abn f lcd f nle

ω̃
a
i ϕ

b
i ω̃

c
jϕ

d
j c

e

+a77g3 f abn f lcd f nle
ω̃

a
i ϕ

b
jω̃

c
i ϕ

d
j c

e +a78g f abc(Y aα−Û Ia
β

Cαβ
θI−U Iaα

θ̂I)εαω̃
b
i ϕ

c
i

+a118g2 f abe f ecdU IaαÛ bβ

I ε̄αεβω̃
c
i ϕ

d
i +a119g2 f abe f ecdU IaαÛ bβ

I εαε̄βω̃
c
i ϕ

d
i

+a122g2 f abe f ecdU IaαÛ b
I αε̄

β
εβω̃

c
i ϕ

d
i +a123g2 f abe f ecdU IaαCαβÛ bβ

I ε
η
εηω̃

c
i ϕ

d
i

+a130g2 f abe f ecdU Iaα(γ5)αβÛ bγ

I (γ5)γηε̄
β
ε

η
ω̃

c
i ϕ

d
i

+a136g2 f abe f ecdU Iaα(γ5)αβÛ bγ

I (γ5)γηε
β
ε̄

η
ω̃

c
i ϕ

d
i

+a142g2 f abe f ecdU Iaα(γ5)αβÛ bβ

I ε̄
η(γ5)ηδε

δ
ω̃

c
i ϕ

d
i

+a145g2 f abe f ecdU Iaα(γ5)αβCβγÛ b
I γε

η(γ5)ηδε
δ
ω̃

c
i ϕ

d
i

}
. (509)

After applying the stated Ward Identities we end up with only three parameters, which are

a23 =−
a0

2
, a19 =

a0

2
−a13 and −a4 = a3 = a5 = a7 = a8 = a9 = a10 = a1 . (510)

All the others are null. Note that we can write all the non-null parameters as a0, a1 and a13.
This result is in full agreement with the more simple case where the Gribov ambiguity was not
took into account, and can be checked just by turning off all the auxiliary fields, or even taking
γ2 = M3/2 = 0.
Therefore, for the exact part of the counter-term, which is obtained applying the linearized
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Slavnov-Taylor over ∆(−1), we get

BΣ(∆
(−1)) =

∫
d4x

{
a0

2

[(
δΣ

δDa + Ja
)(

Y aα(γ5)αηε
η−Û Ia

β
Cαβ(γ5)αηε

η
θI−U Iaα(γ5)αηε

η
θ̂I−Da

)
+

(
δΣ

δλa
α

+Xaα−V̂ Ia
β
Cαβ

θI +Û Ia
β
Cαβ(∇ζI)−V Iaα

θ̂I +U Iaα
ζ̂I

)
(γ5)αηε

ηT a

− δΣ

δT a T a
]
+a1

[(
δΣ

δAa
µ
+Ω

a
µ

)
Aa

µ +
δΣ

δKa
µ
(∂µča +Ka

µ )−ba
∂µAa

µ− ϕ̃
a
i ∂µ∂µϕ

a
i

+ω̃
a
i ∂µ∂µω

a
i + M̃a

µi∂µϕ
a
i − Ña

µi∂µω
a
i +κMa

µiM̃
a
µi +κNa

µiÑ
a
µi− ϕ̃

a
i ∂µMa

µi +Na
µi∂µω̃

a
i

+g f abcAc
µ

(
−(∂µϕ̃

a
i )ϕ

b
i +(∂µω̃

a
i )ω

b
i − M̃a

µiϕ
b
i + Ña

µiω
b
i −Na

µiω̃
b
i −Ma

µiϕ̃
b
i

)
−g f abc δΣ

δKc
µ

(
(∂µω̃

a
i )ϕ

b
i +Ma

µiω̃
b
i + Ña

µiϕ
b
i

)]
+a13

[(
δΣ

δλa
α

+Xaα−V̂ Ia
β
Cαβ

θI

+Û Ia
β
Cαβ(∇ζI)−V Iaα

θ̂I +U Iaα
ζ̂I

)
(λa

α− (γ5)αηε
ηT a)

+
(

Y aα−Û Ia
β
Cαβ

θI−U Iaα
θ̂I

)(
δΣ

δY aα
− (γ5)αηε

η

(
δΣ

δDa + Ja
))]}

. (511)

One sees that Σcount contains three arbitrary coefficients, a0,a1,a13, which will identify the
renormalization factors of all fields, sources and coupling constant. To complete the analysis of
the algebraic renormalization of the model, we need to show that the counter-term Σcount can be
reabsorbed into the starting action Σ through a redefinition of the fields and parameters {φ}, of
the sources {S} and coupling constant g, namely

Σ(φ,S,g)+ωΣcount(φ,S,g) = Σ(φ0,S0,g0)+O(ω2) , (512)

where (φ0,S0,g0) stand for the so-called bare fields, sources and coupling constant:

φ0 = Z1/2
φ

φ , S0 = ZS S , g0 = Zgg , (513)

and the renormalization factors Z can be written as

Z1/2
φ

= (1+ωzφ)
1/2 = 1+ω

zφ

2
+O(ω2) , ZS = 1+ωzS , Zg = 1+ωzg . (514)

Moreover, in the present case, a little care has to be taken with the potential mixing of quantities
which have the same quantum numbers. In fact, from equation (511) one can easily notice
that the field λaα and the combination γ5εT a have the same dimension and quantum numbers
as well as the field Da and the combination

(
Y a−Û IaCθI−U Iaθ̂I

)
γ5ε, as it can be checked

from Table 1. As a consequence, these quantities can mix at the quantum level, a well known
property of renormalization theory. This feature can be properly taken into account by writing
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the renormalization of the fields λ and D in matrix form, i.e.

λ
aα
0 = Z1/2

λ
λ

aα +ωz1 T a(γ5)
αβ

εβ (515)

and

Da
0 = Z1/2

D Da +ω

(
z2Y aα(γ5)αβε

β + z3Û Ia
β
Cαβ

θI(γ5)αηε
η + z4U Ia

β
θ̂I(γ5)αηε

η

)
, (516)

while the remaining fields, sources and parameters still obey (513).
By just applying the definition of the bare fields as well as the counter-term (508), with (458)
and (511), in eq. (512) we can find the respective renormalization parameters as follows,

Z1/2
A = 1+ω

(a0

2
+a1

)
,

Z1/2
λ

= 1+ω

(a0

2
−a13

)
,

Zg = 1−ω
a0

2
. (517)

Z1/2
D = 1 ,

Z1/2
ϕ̄

= Z1/2
ϕ = Z1/2

c = Z1/2
č = ZK = Z−1/2

g Z−1/4
A ,

Z1/2
ω̄

= Z−1
g ,

Z1/2
ω = Z−1/2

A

Z1/2
θ

= Z1/2
θ̂

= 1 ,

Z1/2
ζ

= Z−1/2
ζ̂

= Z1/2
g Z−1/4

A (518)

The renormalization of M and M̃ give us the renormalization factor of the Gribov parameter γ2,
while the renormalization of V and V̂ give us the renormalization of M3/2, when every source
assume its physical value stated at (483). Namely,

ZM̃ = ZM = Z−1/2
g Z−1/4

A ,

ZV̂ = ZV = Z−1/2
λ

. (519)
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The other sources renormalize as

ZN = Z−1/2
A ,

ZN̄ = Z−1
g ,

ZÛ = Z−1/2
g Z1/4

A Z−1/2
λ

,

ZU = Z−1/2
g Z1/4

A Z−1/2
λ

,

ZY = Z−1/2
g Z1/4

A Z−1/2
λ

,

ZL = Z1/2
A ,

ZΩ = Z−1/2
A ,

ZT = Z−1/2
g Z1/4

A ,

ZΛ = Z1/2
g Z1/4

A ,

ZX = Z−1/2
λ

,

ZJ = 1 (520)

The renormalization parameter of the SUSY parameter ε

Zε = Z1/2
g Z−1/4

A , (521)

−z1 = z2 = z3 = z4 =
a0

2
−a13 ,
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