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RESUMO

COELHO, Daniel Lessa. Análise não linear e investigações numéricas de efeitos de orientação
na dinâmica de Swift-hohenberg . 93 f. Dissertação (Mestrado em Engenharia Mecânica) -
Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro,
2020.

A formação de padrões espaço-temporais em sistemas naturais origina-se de uma dinâmica
não linear rica, que pode levar ao surgimento de estruturas periódicas fora do equilíbrio. Uma das
equações demaior sucesso, atualmente disponíveis, para investigar teoricamente o comportamento
dessas estruturas é a Swift-Hohenberg (SH), que contém um parâmetro de bifurcação (forçagem)
que controla a dinâmica alterando o nível energético do sistema. Embora uma grande parte da
literatura sobre formação de padrões aborde sistemas uniformemente forçados, as forçagens não
uniformes também são observadas em vários sistemas naturais, como por exemplo, em biologia
do desenvolvimento e em aplicações de matéria condensada mole. Nesses casos, um efeito de
orientação devido a um gradiente da forçagem é um novo fator desempenhando um papel no
desenvolvimento dos padrões, particularmente na classe de padrões de listras, que investigamos
por meio da dinâmica SH não uniformemente forçada. O presente trabalho aborda a estabilidade
da orientação das listras e a competição entre o efeito de orientação do gradiente e outros efeitos
de bulk, de borda e geométricos que participam da seleção dos padrões emergentes. Uma análise
do fracamente não linear mostra que as listras tendem a se alinhar com o gradiente e se tornam
instáveis quando perpendiculares à direção preferida. Esta análise é complementada por um
trabalho numérico que leva em conta outros efeitos concorrentes. A abordagem numérica adotada
consiste em um esquema semi-implícito de diferenças finitas com precisão de segunda ordem no
tempo e no espaço, que é revisado e estendido com sucesso para as equações quadrática-cúbica
(SH23) e cúbica-quíntica (SH35). As simulações mostram que as listras se alinham ou mesmo
se reorientam a partir de condições preexistentes. No entanto, observamos que este efeito de
orientação nem sempre prevalece em face de outros efeitos concorrentes.

Palavras-chave: Formação de padrões; Equação de Swift-Hohenberg; Método das diferenças
finitas; Métodos Pseudo-espectrais.



ABSTRACT

COELHO, Daniel Lessa. Nonlinear analysis and numerical investigations of orientational
effects in Swift-hohenberg dynamics . 93 f. Dissertação (Mestrado em Engenharia Mecânica) -
Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro,
2020.

Spatio-temporal pattern formation in natural systems originates from rich nonlinear
dynamics, which may lead to the emergence of periodic nonequilibrium structures. One of the
most successful equations currently available for theoretically investigating the behavior of these
structures is the Swift-Hohenberg (SH), which contains a bifurcation parameter (forcing) that
controls the dynamics by changing the energy landscape of the system. Though a large part
of the literature on pattern formation addresses uniformly forced systems, nonuniform forcings
are also observed in several natural systems, for instance, in developmental biology and in soft
matter applications. In these cases, an orientation effect due to a forcing gradient is a new factor
playing a role in the development of patterns, particularly in the class of stripe patterns, which
we investigate through the nonuniformly forced SH dynamics. The present work addresses the
stability of stripes orientation, and the competition between the orientation effect of the gradient
and other bulk, boundary, and geometric effects taking part in the selection of the emerging
patterns. A weakly nonlinear analysis shows that stripes tend to align with the gradient, and
become unstable when perpendicular to the preferred direction. This analysis is complemented
by a numerical work that accounts for other competing effects. The adopted numerical approach
consists of a semi-implicit finite-difference scheme with second order accuracy in both time
and space, which is successfully reviewed and extended for the quadratic-cubic (SH23) and
cubic-quintic (SH35) equations. Simulations show that stripes align, or even reorient from
preexisting conditions. However, we observe that this orientation effect does not always prevail
in face of further competing effects.

Keywords: Pattern formation; Swift-Hohenberg equation; Finite difference methods;
Pseudo-spectral methods.
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INTRODUCTION

Nonlinear phenomena are commonly observed throughout nature. In many social and
natural systems, matter and energy are continuously exchanged with their environment, as they are
out of equilibrium. The emergence of order in such systems may be unexpected, but it definitely
surprises the common sense by manifesting rich, vastous, and intriguing spatio-temporal pattern
formation. From biology to materials science, one observes patterns in vegetation, climatic
phenomena, human anatomy, animal coating, natural convection, materials microstructure, etc.
The constant exchange with the environment allows the occurrence of instabilities characteristic
of such nonequilibrium physical systems.

The instability mechanisms underlying spatio-temporal pattern formation in nature
share some common and interesting features. The spontaneous appearance and evolution of
organized states of matter out of equilibrium were described, in 1971, by Prigogine and Nicolis
as dissipative structures (GLANSDORFF; PRIGOGINE, 1971). Following this investigation,
Haken developed, in 1983, the concept of synergy to express the effects of cooperation resulting
from nonlinearities (HAKEN, 1983), which was also named by Krinsky in 1984 as self-
organization (KRINSKY, 1984). Synergy was the most accepted of these terms, and today it is
well known in many other fields of knowledge, especially in developmental biology.

Before his death, Turing (1952) addressed the chemical basis of morphogenesis, predicting
oscillating chemical reactions such as the Belousov-Zhabotinski (BZ) reaction (ZHABOTINSKI,
1964) originating from reaction-diffusion systems. Turing’s developments went beyond scientific
computing and today, reaction-diffusion systems still form an important class of systems capable
of exhibiting self-organization phenomena and producing various types of spatio-temporal
patterns from the diffusion of reacting species. In chemistry and developmental biology, there are
further examples of Turing structures described by reaction-diffusion systems. One of them is the
Brusselator reaction-diffusion mechanism, proposed by Prigogine and Lefever (1968), which has
been studied as a toy model for pattern formation due to its analytical accessibility. It contains
the basic ingredients which lead to destabilization of a uniform steady state towards an intriguing
pattern formation (stripes, hexagons, e.g.). These Turing structures were first experimentally
observed, in 1990, in the reaction with iodide-malonic chlorite acid (CASTETS et al., 1990),
from the development of gel reactors in the laboratory. Figure 1 shows three examples of natural
systems and a copolymer–homopolymer blend microstructure displaying commonly observed
spatio-temporal patterns. They illustrate how self-organization phenomena is present in very
distinct physical systems, and how their instabilities trigger similar intricate patterns.

Several physical problems in hydrodynamics, chemistry, nonlinear optics or in materials
science, are related to the determination of instability mechanisms and the formation, selection
and stability of the associated spatio-temporal patterns. These systems are usually described
by nonlinear partial differential equations, and it is either impossible or impracticable to obtain
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Figure 1 - Pattern formation in a copolymer–homopolymer blend, and in distinct natural systems. Self-
organization of spatially periodic patterns can be observed in several physical systems, from
materials microstructure to zebra coating. These phenomena are driven by similar instability
mechanisms, and can produce particular stripes orientations and topological defects.

(a) Copolymer blend microstructure (DO-
ERK; YAGER, 2017).

(b) Cloudy sky (COLEMAN, 2009).

(c) Anna the Grevy’s Zebra (GRUBB,
2020).

(d) Murzuq desert, Libya (SALVADOR,
2020).

Source: Authors indicated.

analytical solutions for them. However, some techniques guarantee an approximate solution
(easier to achieve) in the vicinity of instability, based on, e.g., perturbation and bifurcation
theories, or even asymptotic analysis (amplitude equation formalism). In the past fifty years,
these methods have been successfully implemented to study some of these problems involving
the transition from uniform states to nonuniform ones, which can be periodic, chaotic, etc. In
materials science, these states are not necessarily induced by microscopic properties, but due
to the collective behavior of a large number of atoms, molecules and cells, as they are result of
phase transitions, defect dynamics, etc.

Swift and Hohenberg (1977) proposed a reduced model (equation) to study pattern
formation in Rayleigh-Bénard convection. This type of natural convection takes place when a
horizontal layer of fluid is heated from below, and the fluid develops a pattern of convection
cells or of two-dimensional rolls (from planform view). They performed this reduction near the
vicinity of their instability point. Around this point, the emergence of a particular pattern is
expected, and its evolution is dominated by the dynamics of the first unstable modes. This is
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Figure 2 - Rayleigh-Bénard convection (a) experimental (MEYER; CANNELL; AHLERS, 1992), and (b)
numerical (Original work by the author, 2020) results for a small circular domain with rigid
boundary conditions (k = m=k = 0, where = is the unit outward normal vector).

(a) Shadowgraph image of
a convective pattern.

(b) Dynamics simulated by
the SH equation.

Source: Authors indicated.

known as the weakly nonlinear regime, where these modes play the role of an order parameter
under an asymptotic dynamics of the Ginzburg-Landau type. In this regime (only), it’s possible to
capture the main features from the whole dynamics by studying the reduced dynamics involving
these order parameters, which are linear combinations of the original variables. This reduction is
performed by adiabatically eliminating the stable modes, and, therefore, is referred to as adiabatic
elimination. Such technique was also performed for many systems featuring Turing instability
modeled by reaction-diffusion equations (HAKEN, 1981; WALGRAEF, 1997).

The Swift-Hohenberg (SH) equation (SWIFT; HOHENBERG, 1977) has been widely
used as a mathematical framework for modeling pattern formation in many physical systems
presenting symmetry breaking instabilities. The classical example where this symmmetry
breaking occurs is found in the emergence of convection stripes in a thin layer of fluid heated from
below, illustrated in Fig. 2. Roughly speaking, the SH equation has three basic pattern-forming
mechanisms, related to each term of the equation (CROSS, 2009):

mk

mC
= Yk −

(
∇2 + @2

0

)2
k − k3 .

Basically, the nonlinear term saturates the linear growth promoted by the linear terms. Any
positive value for the control (or bifurcation) parameter Y “allows” the emergence of a periodic
structure with a wavenumber close to @0, i.e., this parameter corresponds to the exponential
growth, the quadratic operator is a wavenumber filter of the pattern, and the negative cubic term is
related to the saturation of the dynamics. The linear term is accompanied by a control parameter
(related to temperature in the case of Rayleigh Bénard convection) and will be addressed as a
forcing parameter. It represents how far from the onset of the instability the system is. Secondly,
the wavelength filter contains all the equation spatial derivatives and tends to lead the pattern to
have the chosen critical wavelength. Finally the nonlinear terms allow for interactions between
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the modes involved in the dynamics. There are versions of the SH equation, that are applied to
further applications. In the SH3, the cubic term is responsible for saturating the linear growth.
In the SH35, for example, the cubic term destabilizes the dynamics while the quintic one is
responsible for the saturation. This extension of the original SH equation has been used to study
the evolution of smectic-A (SmA) liquid crystal interfaces (VITRAL; LEO; VIÑALS, 2019), and
the free energy functional associated with SH35 equation has been applied to the study of lamellar
block copolymer microstructures for composition patterns in the weak segregation limit (WSL)
using mean-field theory (AMUNDSON; HELFAND, 1993). In the Phase Field Crystal (PFC)
framework, the SH equation is also considered as the “model A” of periodic systems (PROVATAS
et al., 2005; ELDER et al., 2002; ELDER; GRANT, 2004), and its structure has been largely
used to describe pure materials and their dynamics.

Although the SH equation and its similar versions have been extensively applied for the
study of nonequlibrium pattern formation, not many works are found, addressing the orientation
effect of gradients on a structure of stripes. More recently, Hiscock and Megason (2015)
conducted analytical and numerical studies on the preferred orientation of stripe patterns in
biological systems, using the Swift-Hohenberg equation. They concluded that gradients of the
bifurcation parameter can induce stripe orientation in the Swift-Hohenberg dynamics and this was
also verified by other analytical (SRULJES, 1970; WALTON, 1983) and numerical (PONTES,
1994; PONTES; WALGRAEF; CHRISTOV, 2008) investigations. However, this gradient effect
faces competition from boundary, bulk and geometric effects, and stripes orientation becomes an
intricate question. Since the SH equation can be used to study stripe patterns (Fig. 3), and many
physical applications of interest demand oriented structures in order to realize or optimize some
kind of electrical, mechanical, or chemical processing, it is interesting to tackle the question of
how control parameter gradients affect their orientation under distinct forcings and boundary
conditions.

This work extends Hiscock & Megason’s work for the SH3 equation by initially studying
the stability of stripes orientation in the direction of the gradient of the control parameter, in
absence of other competing effects. For that purpose, we perform a weakly nonlinear analysis
which suggests that the stripes tend to align in the gradient direction. A pair of Newell-Whitehead-
Segel (NWS) equations is derived, from which we propose the amplitude instability induced by
forcing gradients. In order to account for other competitive effects, we complement the previous
analysis with a numerical work.

In the present work, a finite differences scheme, known as Stabilizing Correction (YA-
NENKO; HOLT, 1971; CHRISTOV; PONTES, 2002), developed to integrate the cubic Swift-
Hohenberg equation in two dimensions, is implemented. We extend their work, by employing
rigid and periodic boundary conditions (PBC), distinct distributions of the control parameter
(ramps, sinusoidal, gaussian), strict implementation of the associated Lyapunov functional, and
second order representation of all derivatives, for both SH3 and SH35 equations.
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Figure 3 - Microstructural zoology obtained by SH-like equations. (a) System forcedwith a constant control
parameter (Y = 0.1), (b) System forced with a ramp of the control parameter (0 6 Y 6 0.2), (c)
System with the addition of an anisotropic term (m2

Gk) into the dynamics, and (d) System forced
with a gaussian distribution of the control parameter. Applying the PFC approach, considering
free energy functional of SH type, where the order parameter k follows a conserved dynamics,
(e) a single crystal is obtained departing from a initial hexagonal seed, and (f) multiple grains are
obtained starting with random initial conditions, both subjected to a constant control parameter.
In (a), (b), (c), and (d), the system is subjected to rigid boundary conditions, and in (e) and (f),
periodic boundary conditions (PBC).

(a) Uniformly forced system (b) Ramped system (c) Anisotropic system

(d) Gaussian forcing (e) Single crystal (f) Multiple crystals and grain
boundaries

Source: Original work by the author, 2020.

The main objective of the thesis is to address what is the preferred orientation of
stripes in a nonuniformly forced system using Swift-Hohenberg dynamics (both analytically and
numerically). A second goal of this work is to provide a stable and easily adaptable splitting
scheme framework for the nonuniformly forced SH3 and SH35 equations that strictly respects
the Lyapunov functional (“free energy”) decay.

This thesis is organized as follows:
Chapter 1 covers the relevantworks addressing orientation effects due to control parameter

gradient in Swift-Hohenberg dynamics, found in the literature.
Chapter 2 contains the mathematical formalism regarding the Swift-Hohenberg equation

and its features. The linear stability analysis is able to show some of these features, but the
nonlinear behavior is better explained by the amplitude equation formalism in the weakly nonlinear
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regime. The stability of horizontal and vertical stripes orientation is addressed and discussed for
the respective considerations.

Chapter 3 introduces the numerical framework of the thesis. A semi-implicit finite-
difference scheme, with second order accuracy in time and space, is reviewed and extended for
the quadratic-cubic and cubic-quintic Swift-Hohenberg equations. The scheme strictly respects
the Lyapunov functional monotonic decay, which is expected for the considered relaxational
dynamics.

Chapter 4 contains the verification of the code implementation for numerically solving
the SH equation. For this purpose, a scheme stability and a convergence analysis are performed,
and the scheme is shown to be stable and second order accurate in space.

Chapter 5 show the numerical results obtained for the Swift-Hohenberg equation. The
two-dimensional simulations account for bulk, boundary and geometric effects involved in ‘real’
systems, and complement the analytical predictions derived in chapter 2.

Supplemental materials and informations are provided in the appendices as indicated
throughout the thesis.
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1 LITERATURE REVIEW

The Swift-Hohenberg (SH) equation (SWIFT; HOHENBERG, 1977) is a widely accepted
mathematical framework for modeling pattern formation in many physical systems presenting
symmetry breaking instabilities. A classical example where this symmmetry breaking occurs is
found in the emergence of convection stripes in a thin layer of fluid heated from below, illustrated
in Fig. 4a below:

Figure 4 - Rayleigh-Bénard convection rolls scheme.

x

yz

Planform view

d

(a) Experimental set-up

q

0

(b) Neutral stability curve

Source: Original work by the author.

Since there is a density gradient between the top and the bottom plates, the cooler (denser)
liquid is pulled from top to bottom due to the gravitational force, which is opposed by the viscous
damping force in the fluid. The balance of these two forces can be expressed by a dimensionless
group known as the Rayleigh number ('0), defined as:

'0 =
V6 |Δ) |33

Ua
(1)

where the properties of the fluid are: V, the coefficient of thermal expansion; U, the diffusivity
coefficient; and a, the cinematic viscosity. The gravitational acceleration is denoted by 6, and 3
is the distance between the two plates (or the height of the fluid layer). Whenever the temperature
gradient, |Δ) |, exceeds a critical value, |Δ)2 |, i.e. '0 > '02, the conductive profile turns
into the convective profile (Rayleigh instability). Therefore, a pattern of rolls (or stripes) is
observed from the planform view, illustrated in Fig. 4a. Several experimental works introduce a
control (bifurcation) parameter to mesaure the distance of the system from the onset of instability,
commonly denoted as Y = |Δ) |/|Δ)2 | − 1. This is equivalent to the definition used in many
theoretical works, Y = ('0 − '02)/'02, which is more convenient considering the scope of the
present work. In the vicinity of the instability, a control parameter greater than zero (Y > 0)
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defines a bandwidth of wavenumbers close to the critical one, @0, for which the linear growth
is positive. Therefore, the spacing between the emerging rolls (or stripes) is also close to the
critical wavelength, _0 = 2c/@0. This feature is illustrated in the Fig. 4b.

The classical mathematical approach for describing the emergence of convection rolls
consists of the Oberbeck-Boussinesq (OB) equations, and is outlined in appendix A following
some classic literature (CHANDRASEKHAR, 1961; SWIFT; HOHENBERG, 1977; HAKEN,
1981; PONTES et al., 2018).

Swift and Hohenberg (1977) addressed the instability mechanism underlying Rayleigh-
Bénard convection, proposing a simplifiedmodel, and also pointed out analogies with Brazovskii’s
model (BRAZOVSKII; DMITRIEV, 1975), for studying the condensation of a liquid (disordered
phase) to a nonuniform state (periodic).. They derived a nonlinear equation for a scalar field,
k ≡ k(x⊥, C), where x⊥ = (G, H), that holds on the onset of Rayleigh instability and captures
the main features from the full dynamics. This scalar field is considered an order parameter as
it characterizes the transition from the uniform to the nonuniform (periodic) state. In order to
achieve this, they considered a reduction of the full dynamics, led by the OB equations, to the
slow modes dynamics, on the onset of instability, '0 ∼ '02. Considering the order parameter k,
the two-dimensional SH equation describing dynamics in the vicinity of this transition can be
expressed as:

mk

mC
= Yk −

(
∇2
⊥ + @2

0

)2
k − k3 . (2)

where the Laplacian operator in the horizontal dimensions is: ∇2
⊥ = m

2
G + m2

H . It’s clear that the
trivial solution, k ≡ 0, and the periodic solution correspond to the uniform and nonuniform
states, respectively. The periodic solution displays a stripe pattern with a wavenumber close to
@0 for small Y, according with the linear growth rates given by the dispersion relation, in Fourier
space, l = Y − (@2 − @2

0)
2. The SH equation admits a Lyapunov functional or a ‘free energy’

potential in the form

F =

∫
Ω

3x
1
2

{
−Yk2 +

[(
∇2 + @2

0

)
k

]2
− 1

2
k4

}
, (3)

and is derived by taking the variational derivative of Eq. 3 in !2 norm,

mk

mC
= −XF

Xk
. (4)

In many cases, it is possible to derive a similar dynamical equation from a potential,
which leads to a relaxational gradient dynamics that has been explored in materials science and
soft matter. This potential is often associated with the system’s energy, allowing for non-local
diffusive dynamics, pattern selection and emergence of dissipative structures. In this context,
the SH model is part of the phase-field theory, which originates from statistical mechanics
principles, and whose goal is to obtain governing equations for an order parameter evolution
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(e.g. composition, some microstructural feature); it connects thus thermodynamic and kinetic
properties with microstructure via a mathematical formalism (PROVATAS et al., 2005; ELDER
et al., 2002; ELDER; GRANT, 2004).

An extension of the original Swift-Hohenberg equation (SH3) consists in adopting a
destabilizing cubic term and in adding a quintic one. The resulting quintic equation (SH35)
admits the coexistence of stable uniform and structured solutions, so that localized patterns may
exist under a uniform control parameter (SAKAGUCHI; BRAND, 1996; BURKE; KNOBLOCH,
2006). This becomes a desirable physical feature in systems that allow for the coexistence of
phases of distinct symmetry (VITRAL; LEO; VIÑALS, 2019). While localized states have
been extensively studied through SH35, such states can also appear as solutions for SH3 and
SH23. The issue for SH3 is that at the Turing point, Y = 0, we have a supercritical bifurcation
representing the transition from trivial to modulated solutions. This means that the amplitude of
the stripes emerging at Y > 0 increases with Y, and coexistence between the stripes and the trivial
solution is not possible under uniform forcing. However, by allowing a spatial dependency on
the control parameter Y, localized states become possible by varying Y between values above and
below the Turing point. In turn, this poses the question of what are the consequences of control
parameter gradients to pattern selection. While such gradients have been known to induce pattern
orientation, we here propose a comprehensive numerical study of these orientation effects, how
they affect state localization, and how does gradient orientation fare against other competing
orientation effects.

Though extensively used for the study of nonequlibrium pattern formation, not many
works are found before the turn of the century, addressing the orientation effect of gradients on a
structure of stripes. One of the pioneers in the subject was Walton (1983)(WALTON, 1983), who
considered the onset of convection in the Rayleigh-Bénard problem, with stress-free upper and
lower surfaces, and perfect insulating sidewalls. Walton assumed a Rayleigh number weakly
above the critical value at one of the sidewalls, and monotonically decreasing towards the bulk of
the convection cell. Two cases were identified: if the hotter sidewall1 was mantained sufficiently
above the critical temperature a structure of stripes perpendicular to the sidewall appears. The
result was latter confirmed by the theoretical works of Cross (1982)(CROSS, 1982a; CROSS,
1982b) and several others (CROSS; HOHENBERG, 1993; GREENSIDE; COUGHRAN, 1984;
MANNEVILLE, 1990). On the opposite, if the hotter sidewall was mantained slightly above
or below the critical temperature, a week structure of stripes parallel to the walls emerges.
The existence of this weak structure had already been noted by the experimental work of
Sruljes (1979)(SRULJES, 1970). However, the following step, concerning the interaction of the
subcritical stripes with a supecritical structure, in the case where a positive horizontal gradient of
temperaure is imposed, was not accomplished. One of the purposes of the present thesis consists

1 The side corresponding to a greater value of the control parameter, Y
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in mathematically analyzing this problem.
At the end of the eighties and the beginning of the nineties a group at the Free University

of Brussels, pointed to the tendency of stripes to align to the gradient of the control parameter and
also, to competing effects that, in many cases, dominate the orientation tendency created by the
gradient (PONTES, 1994; PONTES; WALGRAEF; CHRISTOV, 2008). A coexistence between
hexagons with opposite phases, and between hexagons with stripes perpendicular to the gradient
of the control parameter was identified by Hilali et al. (1995)(HILALI et al., 1995), using a Swift-
Hohenberg equation with a quadratic term. Malomed & Nepomnyashchy (1993)(MALOMED;
NEPOMNYASHCHY, 1993) showed that the Lyapunov functional associated with a Newell-
Whitehead-Segel equation governing the evolution of a structure of stripes depends on the
angle between the stripes and the gradient. These authors showed that the Lyapunov potential
is minimized whenever the stripes are parallel to the gradient and attain a maximum when
perpendicular to it. More recently, Hiscock & Megason (2015)(HISCOCK; MEGASON, 2015)
considered the orientation of stripe patterns in biological systems, using the Swift-Hohenberg
equation. They derived Ginzburg-Landau type equations for the amplitudes of a structure of two
perpendicular modes, one of them being oriented along the direction of gradient. Analytically,
the steady state amplitude of both modes was perturbed and it was found that the mode with
stripes perpendicular to gradient is unstable, and the resulting structure is made of stripes parallel
to the gradient. In addition, these authors added a reaction term to the Swift-Hohenberg equation
and found patterns of stripes perpendicular to the gradient of the control parameter. Only periodic
boundary conditions (PBC) were considered by the authors.

The present thesis extends Hiscock and Megason’s work. We initially address the
orientation effect of the gradient of the control paramenter, in absence of other competing effects.
We show that whenever a preexisting structure of stripes perpendicular to the gradient is perturbed
in the direction of the gradient, the original structure becomes unstable, and is eventually replaced
by stripes parallel to the gradient. The analysis was made using weakly nonlinear theory, from
which we derive a pair of Newell-Whitehead-Segel equations. In sequence, we report the results
of our numerical simulations with the SH equation with different nonlinearities, in presence of
nonuniform forcings. Forcings were assumed in the form of spatial ramps, sinusoidal and gaussian
distributions of the control parameter. We considered Generalized Dirichlet (GDBC) and Periodic
Boundary conditions (PBC), and the cubic (SH3), quadratic-cubic (SH23) and cubic-quintic
versions (SH35) of the Swift-Hohenberg equation. While we investigate orientation effects due to
local nonlinearities outside the forcing term, there is also a recent interest (MORGAN; DAWES,
2014) on the nonlocal terms that could introduce a new lengthscale into the problem (short or
long-ranged). These nonlocal nonlinearities significantly modify the coefficients of the amplitude
equations, and open the opportunity for future studies on their effects for pattern selection and
orientation in two-dimensional systems.

The analytical results from the weakly nonlinear analysis are compared with the numerical
experiments. Now, due to restriction on finite or periodic domain, the gradient faces the competing
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effect of other bulk and the boundaries effects, as well as possible discontinuities of Y (e.g. ramp
in a periodic domain).

Competing bulk effects appear in the level of forcing, and in the interaction with modes in
all directions, either existing in pseudo-random initial conditions or generated by the nonlinearity
of the dynamics. If the forcing is sufficiently high, patterns with a high density of defects
emerge and dominate the orientation effect of the gradient. Another bulk effect appears in
nonuniform forcings, when Y = 0 somewhere in the domain. This situation occurs, for example,
in configurations of the control parameter resulting in domains where both subcritical and
supercritical regions coexist. In this case, the coherence length of the structure, b ∼ Y−1/2,
diverges at Y = 0, making the domain “short”, in the sense of that critical regions are affected by
the boundaries, no matter how far they are.

Boundary effects consist of the well known tendency of stripes to approach supercritical
sidewalls perpendicularly to walls (CROSS, 1982a; CROSS, 1982b; GREENSIDE; COUGHRAN,
1984; CROSS; HOHENBERG, 1993; MANNEVILLE, 1990), and of the less known effect of
approaching subcritical sidewalls in parallel to the walls (WALTON, 1982; WALTON, 1983;
PONTES; WALGRAEF; CHRISTOV, 2008). We call this last one by subcritical boundary effect
or subcritical effect for short.

Though none of these competing effects are taken into account in the weakly nonlinear
analysis, they can be investigated by a complementary numerical study. There are many works
presenting fruitful numerical frameworks for the Swift-Hohenberg equation. In the beginning of
this endeavor, Greenside and Coughran (1984) achieved relevant results through a finite differences
approach by using a backward Euler time-integration scheme with rigid (CROSS, 1982b; CROSS,
1982a) and periodic boundary conditions (PBC). Those types of boundary conditions were also
explored by Manneville (1990) and Cross and Hohenberg (1993). These works considered
uniform control parameters. Other authors employed nonuniform distributions (ramps and
gaussians) for the control parameter and presented very interesting results as well, displaying rich
competition between bulk and boundary effects. A ramped control parameter mostly appears in
the context of rigid boundaries (CHRISTOV et al., 1997; PONTES; WALGRAEF; CHRISTOV,
2008), which will be addressed here as rigid, or Generalized Dirichlet boundary conditions
(GDBC), following Christov et al. (1997), Christov and Pontes (2002), Pontes, Walgraef and
Christov (2008).

The SH model has a potential form such that we can associate its dynamics to a free
energy functional, usually called the Lyapunov functional. In the last years, this potential nature
has been explored in the materials science framework as a physical feature associated with the
system’s free energy and can be related to the description of materials patterning. In this context,
the SH model is part of the phase-field theory, which was developed from statistical mechanics
principles, and whose goal is to obtain governing equations for microstructure evolution; it
connects thus thermodynamic and kinetic properties with microstructure via a mathematical
formalism (PROVATAS; ELDER, 2010; PROVATAS et al., 2005; ELDER et al., 2002; ELDER;
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GRANT, 2004). The phase-field theory is a descendant of the van der Waals, Cahn-Hilliard and
Landau type classical field theoretical approaches, originating from a single order parameter
gradient theory of Langer (LANGER; MÜLLER-KRUMBHAAR, 1978; LANGER, 1980). In
the phase-field theory, the local state of matter is characterized by an order parameter k(x, C),
called the phase-field variable, which monitors the transition between phases of distinct order of
property. It can represent the structural order parameter that measures local crystallinity, the
composition of a phase, the degree of a molecular ordering, etc. In the case of the phase-field
crystal (PFC) approach, a conserved dynamics is assumed for this order parameter. Although
this formalism will not be addressed in this paper, it is worth mentioning that many interesting
numerical works explored the SH equation in a PFC framework (ELSEY; WIRTH, 2013; LEE;
KIM, 2016; LI; KIM, 2017).

Spectral methods have become largely used due to their highly spatial accurate solu-
tions (LEE, 2019; VITRAL; LEO; VIÑALS, 2019; WANG; ZHAI, 2020). They usually treat
the nonlinear terms explicitly in the physical space and therefore are called pseudo-spectral
methods. Fully explicit schemes leads to severe stability restrictions on the time step, because
of the fourth-order nonlinear partial differential equation originated from the non-conserved
dynamics. In the case of the phase-field crystal (PFC) approach (conserved dynamics), one
derives a six-order nonlinear partial differential equation, which is even more restrictive for the
time step selection. While PFC is not a subject of this work, our proposed scheme can be readily
translated into a numerical framework for many PFC problems.

The present work is also a continuation of the work presented by Christov and Pontes
(2002) where those authors employed a finite differences scheme originally introduced by Douglas
& Rachford in the framework of the temperature equation, for solving the cubic Swift-Hohenberg
equation (SH3) in two dimensions, with uniform forcing, GDBC, and strict implementation of the
associated functional. The scheme is known as StabilizingCorrection (DOUGLAS;RACHFORD.,
1956; YANENKO; HOLT, 1971). Here, we expand this study for additional nonlinearities,
boundary conditions and a spatially dependent control parameter. This includes the quintic
version of the Swift-Hohenberg equation (SH35) with both GDBC and PBC, nonuniform gaussian
distributions of the control parameter in addition to ramps, and also a strict implementation of
the associated Lyapunov functional. The scheme features a semi-implicit time splitting with
second order representation of time and space derivatives. Some other works also used stabilizing
correction scheme for similar fourth-order nonlinear differential equations, such as the anisotropic
damped Kuramoto-Sivashinsky equation (VITRAL et al., 2018).
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2 MATHEMATICAL MODELING

2.1 The Swift-Hohenberg equation

The SH equation has the so-called gradient dynamics, which means there is a potential,
known as a Lyapunov functional, F ≡ F [k], associated with the order parameter field k(x, C)
that has the property of decreasing monotonically during the evolution (SWIFT; HOHENBERG,
1977; CROSS, 1982b; GREENSIDE; COUGHRAN, 1984; CROSS; HOHENBERG, 1993;
CHRISTOV; PONTES, 2002). It can be derived by using the !2-gradient flow of the Lyapunov
energy functional:

F =

∫
Ω

3x
1
2

{
−Y(x)k2 + U

[(
∇2 + @2

0

)
k

]2
− 2Z

3
k3 − V

2
k4 + W

3
k6

}
, (5)

mF
mC

= −
∫
Ω

3x
(
mk

mC

)2
6 0 , (6)

where Ω represents the domain whose size is commensurate with the length scales of the patterns.
We consider a regular domain Ω : {G ∈ [0, !G], H ∈ [0, !H]}. As discussed, Y is a control
parameter (forcing) that measures the distance from the onset of instability, and it may present a
spatial dependency. The constants Z , V and W control the energy structure of the system, which
describes the energy of phases of distinct symmetry and their stability (with implications to
the bifurcation diagram). The constant U may present different physical interpretations (e.g.
elastic constant), but it is typically scaled to U = 1. Also, Eq. 6 denotes the nonincreasing
behaviour of the Lyapunov functional, which monotonically decreases until steady state is
reached (CHRISTOV; PONTES, 2002). By taking the variational derivative of Eq. 5 in !2 norm,
the following Swift-Hohenberg equation is obtained:

mk

mC
= −XF

Xk
, (7)

mk

mC
= Y(x)k − U

(
∇2 + @2

0

)2
k + Zk2 + Vk3 − Wk5 . (8)

Choosing different values for Z , V and W, we obtain the SH3, SH23 and SH35 equations, which we
numerically solve in two dimensional square domains, i.e.’, computational domains Ω = [0, !]2,
where ! is the domain length.We adopted Generalized Dirichlet Boundary Conditions (GDBC),
and Periodic Boundary Conditions (PBC) k = ∇k · n = 0 (on mΩ) and k(x) = k(x + x!)
(∀x ∈ Ω), respectively, where x! = (!G , !H).

Figure 5 - Parameters assumed for the governing equations studied in this work.
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Equation Nonlinearity U V W Z @0

SH23 quadratic-cubic 1 -1 0 ±1 1

SH3 cubic 1 -1 0 0 1

SH35 cubic-quintic 1 1 1 0 1

Source: Original work by the author.

By analyzing the polynomials from the Lyapunov functional, we can define a function of
k,

� = −Y
2
k2 − Z

3
k3 − V

4
k4 + W

6
k6 (9)

and plot it in a range of the order parameter. The obtained curves shown in Fig. 6 allows us to
observe that for a Y > 0, the periodic phase is favoured, and otherwise (Y 6 0), the uniform phase
(k ≡ 0) prevails.

Figure 6 - Potential from the Lyapunov functional for the following parameters: (Z, V, W) = (0,−1, 0).
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Source: Original work by the author.

The phase transition from uniform state to a periodic state appears in many physical
systems (LANDAU; LIFSHITZ, 1980), specially in materials science, where it’s usually addressed
as crystallization (formation of a highly organized solid from liquid) in the Phase Field Crystal
(PFC) framework (ELDER et al., 2002; ELDER; GRANT, 2004; PROVATAS; ELDER, 2010),
for example.
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2.2 Linear stability analysis

For simple purposes, the linear stability analysis of the uniformly forced SH3 equation is
carried out in this section (CROSS, 2009). We denote the base state solution as k1, and define
the original order parameter field as

k(x, C) = k1 + k? (x, C) , (10)

where k? is the perturbation field. The original equation can be cast in form:

mk

mC
= #̂ [k] , (11)

where the nonlinear operator #̂ is defined by considering the right-hand side of Eq. (8) to be a
function of the field k, such that

#̂ [k] = Yk − U
(
∇2 + @2

0

)2
k + Vk3 . (12)

where U = 1, and V = −1, typically. In order to obtain an equation for the perturbation k?, we
linearize the nonlinear operator #̂ by taking its Taylor expansion up to first order only (truncating
at second order), around k1:

#̂ [k1 + k?] = #̂ [k1] +
X#̂

Xk

����
k1

k? . (13)

Since #̂ [k?] = #̂ [k1 + k?] − #̂ [k1], we have that

mk?

mC
=
X#̂

Xk

����
k1

k? , (14)

where

X#̂

Xk

����
k1

= Y −
(
∇2 + @2

0

)2
− 3k2

1 . (15)

Assuming the particular case where the base state is uniform k1 = 0, and that the perturbation
depends on time and space as

k? (x, C) = � exp(lC − 8q · x) , (16)

we readily obtain

l(@) = Y −
(
@2 − @2

0

)2
(17)



29

Figure 7 - Linear stability analysis of the Swift-Hohenberg equation.
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Source: Original work by the author.

where l(@) corresponds to the linear growth rate associated with mode q for a particular set of
the parameters Y, U, and the fundamental wavenumber @0. A plot of the linear growth rate as
a function of @ modes is illustrated in Fig.7a, and the neutral stability curve, corresponding to
l = 0 is plotted n Fig.7b.
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2.3 Weakly nonlinear analysis

The stability of preexisting patterns can be investigated through the amplitude equations
derived from the Swift-Hohenberg equation. These equations describe themotion of the amplitude
that envelopes the oscillating order parameter k, and from this coarse-grained description we
can evaluate how perturbations evolve depending on the orientation of the initial pattern and of
the gradient of the control parameter (MANNEVILLE, 1990; CROSS; HOHENBERG, 1993;
HOYLE, 2006). Since the derivation of the amplitude equations is relatively similar for SH3,
SH23 and SH35, in terms of scaling and considerations between coefficients, we will only provide
derivation details for the SH3 case (Z = W = 0). The SH3 has the form

mk

mC
k = Y k − U (∇2 + @2

0)
2k + V k3 (18)

where V < 0 and U > 0 (generally U = 1).
The solution for a two-dimensional stripe or square pattern can be written in terms of a

superposition between a sinusoidal function in G and another in H

k(x, C) = �(x, C) 4 8@0G + �(x, C) 4 8@0H + 2.2.

where � and � are complex amplitudes. To perform a multiscale expansion, we introduce
slow variables {-,., )} which are distinct from the fast variables {G, H, C}. The amplitudes are
modulated along the slow variables as �(-,., )) and �(-,., )), while oscillation of the order
parameter in the vicinity of the fundamental wavevector of the pattern, q0, lie in the scale of the
fast variables.

Assume we have an initial pattern of perfectly aligned stripes in the G direction, that is,
stripes presenting a wavenumber q0 = @0j (unit vector in the H direction). By introducing small
perturbations to the wavenumber in Eq. 18, such as @ = @0 + X@H and comparing terms, we find
that for consistency the slow variables should scale as

- = Y1/4G, . = Y1/2H, ) = YC .

From this scaling, we note that derivatives in Eq. 18 should follow the chain rule accounting for
slow and fast variables, so that

mG → Y1/4 m- , mH → mH + Y1/2 m. , mC → Y m) . (19)

For small Y, the order parameter k can be expanded about the trivial solution as

k = Y1/2 k1 + Y k2 + Y3/2 k3 + . . .
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By substituting the expanded k into Eq. 18 with derivatives acting in multiple scales as
defined in Eq. 19, we are able to collect terms from SH3 in powers of Y. This way, we obtain
equations from each order of Y that should be independently satisfied, from which we can derive
the functions k8 and the equations governing the evolution of �(-,., )) and �(-,., )). At
orders O(Y1/2) and O(Y), using the notation !2 = (∇2 + q2

0)
2, we find

O(Y1/2) : !2k1 = 0⇒ k1 = �11 4
8@0H + 2.2. , �11 = 0

O(Y) : !2k2 + !2k1 = 0⇒ k2 = �21 4
8@0H + 2.2. , �21 = 0

The contribution from the nonlinear cubic term appears starting from the next order. This
term expands as

k3 = Y3/2k3
1 + 3Y2k2

1k2 + 3Y5/2(k2
1k3 + k1k

2
2) + . . . ,

and k1 expand as

k3
1 = �

3
11 4

38@0H + 3�2
11 4

28@0H�∗11 4
−8@0H + 3�11 4

8@0H (�∗11)
2 4 −28@0H + (�∗11)

3 4 −38@0H .

Therefore, at order O(Y3/2) we find

!2k3 = (−m) + 1 + 4U@2
0m

2
. − Um4

- − 48U@0m.m
2
- + 3V |�11 |2)�114

8@0H + (. . . )4 83@0H + 2.2.

By rewriting Eq. 20 as !2k3 = \, the solvability condition associated to this equation is
that \ must be perpendicular to the null space of !∗2: \ ⊥ 6 ∈ #D(!∗2). This is the Fredholm’s
Alternative, the condition under which the inner product (\, 6) = (k, !∗26) = 0 is satisfied, and
the implication for Eq. 20 is that the right-hand side must be orthogonal to the eigenfunctions
48@0H, and 4−8@0H. Therefore, by enforcing solvability we obtain the amplitude equation for
�11(-,., )),

m)�11 = �11 + U(2@0m. − 8m2
-)2�11 + 3V |�11 |2�11 .

We can similarly find the amplitude equation for �(-,., )). Since �11 = �21 = 0, we
need to gather terms up to order O(Y5/2), so that from the Fredholm’s Alternative we obtain,

m) �31 = �31 + U(2@0m. − 8m2
-)2�31 + 6V |�11 |2�31 .

In order to rewrite these amplitude equations in terms of the original variables, we first
note that both amplitudes � and � can be expanded in the same form as k, that is

� = Y3/2�31 + Y2�41 + . . . ,

� = Y1/2�11 + Y�21 + . . .
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Therefore, accounting for the possibility of a control parameter with spatial dependence, the pair
of amplitude equations for the two-dimensional SH3 with stripes perpendicular to the H direction
is

mC� = Y(x)� + U(2@0mH − 8m2
G )2� + 6V |� |2� , (20)

mC� = Y(x)� + U(2@0mH − 8m2
G )2� + 3V |� |2� . (21)

That is, we obtain a system of coupled Newell-Whitehead-Segel (NWS) equations (MALOMED;
NEPOMNYASHCHY, 1993).

The amplitude equations allow us to evaluate a preexisting pattern stability in the presence
of perturbations, and the role played by ∇Y in such stability. Note that while � and � are complex
amplitudes, it can be shown that the phase becomes a constant for steady state solutions of
parallel stripes (MANNEVILLE, 1990), so that we focus on the equation for the real part of the
amplitude in the following analysis.

Assume Y = Y(G) is an increasing ramp in G only, and that stripes are initially perpendicular
to H, with a steady state amplitude �0 = 0. The steady real amplitude �0 satisfies

Y(G)�0 − Um4
G �0 + 3V�3

0 = 0 .

Away from the Turing point (n = 0), the steady state solution is approximately

�0 ≈
(
Y(G)
−3V

)1/2
.

By introducing small perturbations X� and X� to the steady state solutions, we find from
Eqs. 20 and 21 that these perturbations evolve as

mC (X�) = −Y(G)X� + U(4@2
0m

2
H − m4

G )X�

mC (X�) = −2Y(G)X� + U(4@2
0m

2
H − m4

G )X�.

Since the existence of the solution (�0 = 0, �0) requires Y > 0, this implies that when
stripes are parallel to ∇Y, the solution (0, �0) is stable with respect to small perturbations X�
and X�.

For the case of stripes perpendicular to the ∇Y, we keep the ramp Y(G) in the G direction
but change the preexisting pattern to stripes aligned in the H direction. The consequence to Eqs.
20 and 21 is that �, � and space derivatives swap, and the following coupled NWS equations are
found

mC� = Y(x)� + U(2@0mG − 8m2
H )2� + 3V |�|2� , (22)

mC� = Y(x)� + U(2@0mG − 8m2
H )2� + 6V |�|2� . (23)
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Therefore, now we have a steady state solution �0 = 0 and �0 ≠ 0. Due to the m2
G �

derivative in Eq. 22, near the Turing instability at Y = 0, �0 will not behave as (Y(G)/−3V)1/2.
The �0 solution satisfying

Y(G)�0 + 4U@2
0m

2
G �0 + 3V�3

0 = 0

should also satisfy boundary conditions �0(G = 0) = 0 and �(G →∞) = (Y(G)/−3V)1/2. Note
that we set the Turing point at G = 0 for simplicity. For constant Y, the solution is of the type
�0 ∼

√
Y tanh(G

√
Y/2), which behaves as �0 ∼ GY for small G and Y. Since for Y(G) = 2 G, where

2 is a positive constant, there is no analytic solution �0, so we assume that �0 ∼ 2G2 for small G.
For stripes perpendicular to the control parameter gradient, perturbations X� evolve as

mC (X�) = (Y(G) + 6V |�|2)X� . (24)

Taking into account Y(G) = 2G, V < 0 and �0 ∼ 2G2 for small G, we conclude the solution
(�0, �0 = 0) is unstable. Therefore, while stripes with wavevector q0 ⊥ ∇Y are stable with
respect to small perturbations (X�, X�), we find that stripes with q0 ‖ ∇Y are unstable in the
vicinity of the Turing point.

In the following chapters, we address to the asymptotic height of the amplitude as

ℎ =

(
Y(G)
−3V

)1/2
. (25)

This quantity, which appears from the weakly nonlinear analysis for the two studied orientation
of stripes, will be addressed to as an analytical result, and used for comparison with the attained
steady state amplitudes of the numerical results.
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3 COMPUTATIONAL METHODOLOGY

3.1 Governing equations

Themathematical description of the dimensionless governing equations is briefly discussed
in the beginning of this section. Then, the details of the numerical framework are exposed as an
extension of Christov and Pontes (2002) work. For both SH3 and SH35 discretizations, a finite
difference semi-implicit scheme of second order accuracy in time and space is presented. Finally,
the choices for the operator splitting method, spatial discretizations and mesh types are clarified.

We expand Eq. 8 by considering the following Laplacian operator in cartesian coordinates:
∇2 ≡ m2/mG2 + m2/mH2, we have:

mk

mC
= Y(x)k − U@4

0k − 2U@2
0∇

2k − U∇4k + Zk2 + Vk3 − Wk5

= Y(x)k − U@4
0k − 2U@2

0
m2k

mG2 − 2U@2
0
m2k

mH2 − U
m4k

mG4 − 2U
m4k

mG2mH2 − U
m4k

mH4

+ Zk2 + Vk3 − Wk5 .

(26)

In the following sections, the time-stepping scheme ,and the spatial discretization implemented
for discretizing Eq.(26) are addressed.

3.2 The target scheme

In order to construct a Crank-Nicolson second order in time numerical scheme, we adopt
the following representation proposed by Christov and Pontes (2002) for the time derivative of
Eq. 8, where the RHS is evaluated at the middle of the time step ΔC. The updated scheme, now
including a quintic term takes the form:

k=+1 − k=
ΔC

=

[
Y(x) − U@4

0 − 2U@2
0
m2

mG2 − 2U@2
0
m2

mH2 − U
m4

mG4 − 2U
m4

mG2mH2 − U
m4

mH4

+Z k
=+1 + k=

2
+ V

(
k=+1

)2 + (k=)2

2
− W

(
k=+1

)4 + (k=)4

2

] (
k=+1 + k=

2

)
. (27)

The superscript (= + 1) refers to the next time to be evaluated and =, to the current one. The
parameter values for U, V, W and @0 are chosen according to Tab. 5.

The RHS terms of Eq. 27 are grouped in three parts, the first and the second ones containing
the semi-implicit operators Λ=+1/2G and Λ=+1/2H that will act on the variable

(
k=+1 + k=

)
/2, and a

function 5 =+1/2, evaluated at the middle of the time step ΔC. This function will contain explicit
terms only, in the final discrete form of Eq. 27. Space derivatives are represented by centered
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second order formulæ. Implicit terms are chosen having in mind to construct negative definite
operators that will assure the stability of the scheme. The factor 1/2 multiplying

(
k=+1 + k=

)
in the RHS of the above equation is included in the operators Λ=+1/2G and Λ=+1/2H , leading to the
following target scheme:

k=+1 − k=
ΔC

=

(
Λ
=+1/2
G + Λ=+1/2H

) (
k=+1 + k=

)
+ 5 =+1/2 . (28)

For the SH23 (Z = ±1) and SH3 (Z = 0, V = −1) equations, the operators Λ=+1/2G , Λ=+1/2H

and 5 =+1/2 are defined as:

Λ
=+1/2
G =

1
2

[
−U

(
m4

mG4 +
@4

0
2

)
+ V

(
k=+1

)2 + (k=)2

2

]
;

Λ
=+1/2
H =

1
2

[
−U

(
m4

mH4 +
@4

0
2

)
+ V

(
k=+1

)2 + (k=)2

2

]
;

5 =+1/2 =
1
2

[
Y(x) − U

(
2@2

0
m2

mG2 + 2@2
0
m2

mH2 + 2
m4

mG2mH2

)
+ Z k

=+1 + k=
2

] (
k=+1 + k=

)
,

(29)

and for the SH35 (Z = 0, V = 1):

Λ
=+1/2
G =

1
2

[
−U

(
m4

mG4 +
@4

0
2

)
− W

(
k=+1

)4 + (k=)4

2

]
;

Λ
=+1/2
H =

1
2

[
−U

(
m4

mH4 +
@4

0
2

)
− W

(
k=+1

)4 + (k=)4

2

]
;

5 =+1/2 =
1
2

[
Y(x) − U

(
2@2

0
m2

mG2 + 2@2
0
m2

mH2 + 2
m4

mG2mH2

)
+ V

(
k=+1

)2 + (k=)2

2

] (
k=+1 + k=

)
.

(30)

3.3 Internal iterations

Since the operators Λ=+1/2G , Λ=+1/2H and the function 5 =+1/2 in Eqs. 28, 29 and 30 contain
implicit terms due to the time discretization and linearization of the nonlinear terms, we do
internal iterations. They are required to secure the approximation of the nonlinearities in the
scheme (Eq. 28) at each time step. The internal iterations scheme reads:

k=+1,?+1 − k=
ΔC

=

(
Λ
=+1/2,?
G + Λ=+1/2,?H

) (
k=+1,?+1 + k=

)
+ 5 =+1/2,?, (31)

where the index (?) refers to the internal iteration number. The superscript (=+1, ?+1) identifies
the new iteration, while (=) are the values of the previous time step. The superscript (= + 1) for
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the nonlinear term in the function 5 =+1/2 will be replaced by (=, ?), which stands for the values
obtained from the previous iteration.

The operators Λ=+1/2,?G , Λ=+1/2,?H function 5 =+1/2,? are redefined as follows, for the SH3
equation:

Λ
=+1/2,?
G =

1
2

[
−U

(
m4

mG4 +
@4

0
2

)
− V

(
k=+1,?

)2 + (k=)2

2

]
,

Λ
=+1/2,?
H =

1
2

[
−U

(
m4

mH4 +
@4

0
2

)
− V

(
k=+1,?

)2 + (k=)2

2

]
,

5 =+1/2,? =
1
2

[
n (x) − U

(
2@2

0
m2

mG2 + 2@2
0
m2

mH2 + 2
m4

mG2mH2

)] (
k=+1,? + k=

)
, (32)

and for the SH35:

Λ
=+1/2,?
G =

1
2

[
−U

(
m4

mG4 +
@4

0
2

)
− W

(
k=+1,?

)4 + (k=)4

2

]
,

Λ
=+1/2,?
H =

1
2

[
−U

(
m4

mH4 +
@4

0
2

)
− W

(
k=+1,?

)4 + (k=)4

2

]
,

5 =+1/2,? =
1
2

[
n (x) − U

(
2@2

0
m2

mG2 + 2@2
0
m2

mH2 + 2
m4

mG2mH2

)
+V

(
k=+1,?

)2 + (k=)2

2

] (
k=+1,? + k=

)
. (33)

The iterations loop proceed until the following criterion for the !∞ norm is satisfied with
X = 1.0 × 10−8:

!∞ =
max | k=+1,?+1 − k=+1,? |

max | k=+1,?+1 |
≤ X; (34)

so that the last iteration gives the sought function k in the new time k=+1 ≡ k=+1,?+1.

3.4 Stabilizing correction

Although employing sparse matrices for the operators, computationally solving Eq. 31
still represents a costly procedure. In order to reduce such computational effort and errors (from
discretization and floating-point operations), the operators splitting method was adopted. The
splitting of Eq. 28 is made according to the Douglas second scheme (also known as scheme of
stabilizing correction, shown by (CHRISTOV et al., 1997),(CHRISTOV; PONTES, 2002)), and
is briefly reviewed. The following equations represent a consistent approximation of the original
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scheme:

k̃ − k=
ΔC

= Λ
=+1/2,?
G k̃ + Λ=+1/2,?H k= + 5 =+1/2,? + (Λ=+1/2,?G + Λ=+1/2,?H )k=, (35)

k=+1,?+1 − k̃
ΔC

= Λ
=+1/2,?
H (k=+1,?+1 − k=), (36)

where k̃ is an intermediary estimation of k at the new time step. In order to show that the
splitting represents the original scheme, we rewrite Eqs. 35 and 36 in the form:(

� − ΔCΛ=+1/2,?G

)
k̃ =

(
� + ΔCΛ=+1/2,?G

)
k= + 2ΔCΛ=+1/2,?H k= + ΔC 5 =+1/2,? ;(

� − ΔCΛ=+1/2,?H

)
k=+1,?+1 = k̃ − ΔCΛ=+1/2,?H k= ;

where � is the unity operator. Rearranging these equations, the intermediate variable k̃ is
eliminated and the result may be rewritten as:(
� − ΔCΛ=+1/2,?G

) (
� − ΔCΛ=+1/2,?H

)
k=+1,?+1 =

(
� + ΔCΛ=+1/2,?G

)
k= + 2ΔCΛ=+1/2,?H k= +

+ΔC 5 =+1/2,? −
(
� − ΔCΛ=+1/2,?G

)
ΔCΛ

=+1/2,?
H k= .

This result may be rewritten as:

(
� + ΔC2Λ=+1/2,?G Λ

=+1/2,?
H

) k=+1,?+1 − k=
ΔC

= (Λ=+1/2,?G + Λ=+1/2,?H ) (k=+1,?+1 + k=) + 5 =+1/2,? ,
(37)

where � is the unity operator. A comparison with Eq. 28 shows that Eq. 37 is actually equivalent
to the former except by the positive definite operator having a norm greater than one:

� ≡ � + ΔC2Λ=+1/2,?G Λ
=+1/2,?
H = � +$ (ΔC2), (38)

which acts on the term (k=+1,?+1 − k=)/ΔC. This means that this operator does not change the
steady state solution. Furthermore, since | |� | | > 1, the scheme given by Eqs. 37, and 37 is more
stable than the target one (Eq. 28).

3.5 Spatial discretization and boundary conditions

We solve numerically the SH equation with GDBC and PBC. For the case of rigid
boundary conditions we adopt a staggered grid, as illustrated in Fig. 8. Consider a staggered
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mesh in both spatial directions, namely

G8 = −
ΔG

2
+ 8 ΔG , ΔG ≡ !G

=G − 2
, H 9 = −

ΔH

2
+ 9 ΔH , ΔH ≡

!H

=H − 2
,

where =G and =H are the number of points in G-and H-directions, respectively. The mesh pattern
is shown in Fig. 8. Let k8, 9 be an arbitrary set function defined on the above described mesh.
We confine ourselves to the case of constant coefficients. The PBC, which is less restrictive
than the GDBC, borrows the crystallography concept of unit cell, which is a repeating pattern
representative of the material. That is, using PBC we have a domain that would also act as a unit
cell for a infinite two-dimensional surface, with cells being periodically repeated all around the
bidimensional domain.

The centered difference approximations of the spatial derivatives are obtained by Taylor
developments of the function k at the points of the uniform grid:

k8+1 = k8 + ΔGmGk +
ΔG2

2!
m2
Gk +

ΔG3

3!
m3
Gk +

ΔG4

4!
m4
Gk + O

(
ΔG5

5!

)
;

k8+2 = k8 + 2ΔGmGk +
4ΔG2

2!
m2
Gk +

8ΔG3

3!
m3
Gk +

16ΔG4

4!
m4
Gk + O

(
32ΔG5

5!

)
;

k8−1 = k8 − ΔGmGk +
ΔG2

2!
m2
Gk −

ΔG3

3!
m3
Gk +

ΔG4

4!
m4
Gk − O

(
ΔG5

5!

)
;

k8−2 = k8 − 2ΔGmGk +
4ΔG2

2!
m2
Gk −

8ΔG3

3!
m3
Gk +

16ΔG4

4!
m4
Gk − O

(
32ΔG5

5!

)
. (39)

Considering k in the bidimensional domains (Fig. 8), we can define the derivatives by truncating
the following Taylor expansions (39). Then, second derivatives of k with second order spatial
accuracy can be written as:

m2
Gk ≡

m2k8, 9

mG2 =
k8, 9−1 − 2k8, 9 + k8, 9+1

ΔG2 + O
(
2ΔG2

4!

)
;

m2
Hk ≡

m2k8, 9

mH2 =
k8−1, 9 − 2k8, 9 + k8+1, 9

ΔH2 + O
(
2ΔH2

4!

)
. (40)

Following the same procedure, fourth derivatives of k with second order spatial accuracy are
written as:
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Figure 8 - The grids and boundary conditions used in this work. (a) The “staggered” grid. In the case
of GDBC, values of k in the first two lines and in the two last ones, and also in the first two
columns and in the last two ones are assigned to zero. (b) The periodic grid.
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m4
Gk ≡

m4k8, 9

mG4 =
k8−2, 9 − 4k8−1, 9 + 6k8, 9 − 4k8+1, 9 + k8+2, 9

ΔG4 + O
(
120ΔH2

6!

)
;

m4
Hk ≡

m4k8, 9

mH4 =
k8, 9−2 − 4k8, 9−1 + 6k8, 9 − 4k8, 9+1 + k8, 9+2

ΔH4 + O
(
120ΔH2

6!

)
;

m2
G m

2
Hk ≡

m4k8, 9

mG2mH2 =
1

ΔG2ΔH2

(
k8−1, 9−1 − 2k8, 9−1 + k8+1, 9−1 − 2k8−1, 9 + 4k8, 9 − 2k8+1, 9 +

+k8−1, 9+1 − 2k8, 9+1 + k8+1, 9+1

)
+ O

(
4ΔGΔH

6!

)
. (41)

Standard second order representations of spatial derivatives are adopted in uniform
and structured grids. In order to verify the correctness of the implementation, we conducted
convergence tests using the method of manufactured solutions (MMS) (ROACHE, 2002; ROY,
2005).
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4 CODE VERIFICATION

One important issue concerning the simulations is the time and mesh size selection, such
that we seek reasonable choices inside the stable region of the proposed numerical scheme,
keeping accuracy in the numerical solutions. The governing equation (8) can be rewritten in
the form %k(x, C) = 0, where % is an operator containing all the partial derivatives and terms
acting on the order parameter k(x, C). The consistency of the numerical scheme can be easily
verified since %k(x, C) − %ΔC,ΔG,ΔHk(x, C) −→ 0 as ΔC,ΔG,ΔH −→ 0, where %ΔC,ΔG,ΔH is the finite
difference discretization of %. In this section, scheme stability, free energy functional decay and
convergence tests are performed to verify the code implementation.

4.1 Linear growth analysis

The linear stability analysis performed in section 2.3 provided the linear growth rates for
the unstable modes in the bandwidth associated with a particular Y value. Therefore, we have
the analytical prediction of the linear growth for each wavenumber @ by means of the following
dispersion relation:

l(@) = Y − U
(
@2 − @2

0

)2
. (42)

Numerically, we can obtain this linear growth by starting a simulation from a preexisting
initial condition of stripes, with a wavenumber @, in the form

k< (G, 0) = � cos(@ G) , (43)

where � = 10−8√n is assumed. Considering that at earlier time steps, the dynamics is dominated
by the linear terms, one can numerically obtain l@, by evaluating it as

l@ =
1
ΔC

(
k=+12

k=2
− 1

)
. (44)

For the sake of simplicity, the values of the order parameter used in Eq. (44) correspond to
those extracted from the center of the domain, � (!G/2, !H/2), for which the notation, k=+12 , k=2 ,
holds. In order to compare with the theoretical l(@), the numerical linear growth l@ is evaluated
after five time steps. Figure 9 shows the comparison between the results for the linear growths,
considering two different domain sizes (8 × 8 wavelengths, and 64 × 64 wavelengths), and three
numerical set ups. Firstly, using the finite-difference scheme outlined in the previous chapter with
GDBC and PBC, and secondly using the pseudo-spectral scheme for PBC outlined in appendix C.
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Figure 9 - Numerical linear growth rates compared to linear stability analysis prediction for the Swift-
Hohenberg dynamics
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(a) 8 × 8 wavelengths domain (128 × 128 nodes)
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(b) 64 × 64 wavelengths domain (1024 × 1024 nodes)

Source: Original work by the author.
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Figure 10 - Pattern developed with the SH3 model, GDBC, forced with a spatial ramp of the control
parameter given by 0.0 ≤ Y(x) ≤ 0.2, and six different time steps. Top row: transient states
at C = 100. Bottom: the steady state for the six time steps. All tests started from the exactly
same initial condition (pseudo-randomly generated) for a 64 × 64 nodes domain. Note that the
use of larger time steps results in smaller number of required steps to attain the same “time”
(C = 100 for instance). Errors with larger time steps result in delay in the emergence of the
pattern and thus later steady states is expected.

Source: Original work by the author.

4.2 Scheme Stability

Here, following Christov and Pontes (2001)(CHRISTOV; PONTES, 2002), we study the
effect of the time step in the structure evolution by assessing the rate of change in time of the
pattern during the simulation. We do this by monitoring ¤!1, the relative norm rate of change
defined as:

¤!1 =
1
ΔC

©­­­­«
=G∑
8=1

=H∑
9=1
| k=+1

8, 9
− k=

8, 9
|

=G∑
8=1

=H∑
9=1
| k=+1

8, 9
|

ª®®®®¬
, (45)

which roughly corresponds to the ratio between the spatial average of the modulus of time
derivative mk/mC and the spatial average of the modulus of the function itself. The calculations
begin from a random initial condition and proceeded until ¤!1 ≤ 5 × 10−7, which is our criterion
for reaching the steady state. Following this implementation, Fig. 10 shows the system state at
C = 100 and the steady state attained in six simulations run with different time steps ΔC. Fig. 11
shows the evolution of the associated ¤!1 and the curves of the accomplished internal iterations at
each time step. This group of simulations is run with GDBC.
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Figure 11 - Scheme stability analysis from the numerical integration of the Swift-Hohenberg equation.
(a) ¤!1 and (b) internal iterations are shown as a function of time C for a 64 × 64 nodes domain
for all six tests are presented in Fig. 10. The same steady pattern is reached for all six analyzed
cases independently of the time step. The simulations started from the same random initial
conditions.
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Table 1 - Computational time spent for each of the simulations presented in Fig. 10 on the computer
outlined in appendix D.

Time Minimum Maximum Steady Computational
step iterations iterations state time spent (min/min)

ΔC = 0.01 1 23 C = 3062 234.4

ΔC = 0.1 2 15 C = 3066 6.6

ΔC = 0.5 4 18 C = 3142 1.7

ΔC = 1.0 5 22 C = 3412 1.4

ΔC = 2.0 7 23 C = 4522 1.2

ΔC = 10.0 7 16 C = 30230 1

Source: Original work by the author.

Since the semi-implicit scheme is unconditionally stable for any time step, the CPU time
to reaching the desired numerical solutions can be be optimized without major restrictions to
selected time step, as shown by Tab. 1. A conservative choice for all simulations would be
ΔC = 0.1, which presents the same ¤!1 decay curve as for ΔC = 0.01. The choice for the remainder
of this work is ΔC = 0.5 for the SH3 simulations and ΔC = 0.1 for the SH35, so that lower
computational time is required without losing physically consistent transient results given the
numerical scheme stability.

4.3 Convergence analysis

The adopted method to verify the order of accuracy of the code is the method of
manufactured solutions (MMS). It provides a convenient way of verifying the implementation
of nonlinear numerical algorithms by using a manufactured (artificial) solution (MS) for such
purpose (ROACHE, 2002; ROY, 2005; VITRAL et al., 2018). In terms of the proposed problem,
we take all the members of the SH equation 8 and consider the following differential equation:

� (k) = 0 , (46)

where k is the order parameter function that satisfies Eq. 46 and therefore is the PDE
solution. The MMS consists of adopting an arbitrary function to be the manufactured solution,
k< (x, C), and since this function is not likely to solve the PDE, a source term is expected, B<.
This term can be seen as an additional forcing function, leading to a modified operator with this
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Table 2 - Parameters assumed for the governing equations studied in this work.

MS Parameters Value SH Parameters Value

@1 0.25
√

2@0 Y -0.1

@∗1
√

2@0 @0 1.0

k0 0.0 U 1.0

kGH
√
|Y | V -1.0

0 0.0 W, Z 0.0

Source: Original work by the author.

new source:

�̄ (k) ≡ � (k) − B< . (47)

For the previous equation, �̄ (k<) = 0 and �̄ (k) = −B<. Following this new approach to the
problem, we find an approximate numerical solution, k: , for the discretized problem so that
�̄ (k: ) = 0 or � (k: ) = B<. This source term is a minimal intrusion to the code’s formulation.
The chosen function is periodic with a wavenumber @1 and is defined as:

k< (x, C) = k0 + kGH cos[@1(G + H)]40C , (48)

where all parameters employed in the manufactured solution and in the differential
equation are present on Tab. 2.

The global discretization error is examined by the !2 norm, defined as follows:

!2 =

©­­­­«
=G∑
8=1

=H∑
9=1
| (k: )=8, 9 − (k<)=8, 9 |2

=G∑
8=1

=H∑
9=1
| (k<)=8, 9 |2

ª®®®®¬
1/2

. (49)

In the previous section, a second-order scheme is presented and therefore the formal order
of accuracy is two. The observed order of accuracy of the code can be acquired from the global
discretization error for meshes with different grid spacing, and can described by the following
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Table 3 - Meshes employed for the code verification by MMS. The chosen domain for the test has 4 × 4
critical wavelengths. The observed order of accuracy of the code in Fig. 12 can be calculated
using Eq. (50) for two cases: @1 = 0.25

√
2@0 and @∗1 =

√
2@0. In the first case the formal order

of accuracy is achieved, ? ≈ 2.0, while in the second case ?∗ ≈ 4.0 due to discretization error
canceling.

Mesh Number Grid Convergence rate (?)

of nodes resolution (6A)
(
@1 = 0.25

√
2@0

) (
@∗1 =

√
2@0

)
Mesh A 16 × 16 4 - -

Mesh B 32 × 32 8 1.99514004 3.95294357

Mesh C 64 × 64 16 1.99862314 3.98876043

Mesh D 128 × 128 32 1.99964767 3.99722721

Mesh E 256 × 256 64 1.99991139 3.99916624

Source: Original work by the author.

relation:

? =
ln

(
!�2 /!

�
2
)

ln(A) , (50)

where !�2 and !�2 are the !2 norm for meshes A and B respectively, and A is the ratio of
the grid resolution, 6A , given in number of mesh nodes per critical wavelength of mesh B to A.
The meshes employed for the present tests, the number of nodes, and grid resolutions are shown
in Tab. 3, and the !2 curves for the numerical experiments can be seen in Fig. 12.

A truncation error canceling could be seen when the choice for the manufactured solution
wavenumber is @1 =

√
2@0. The latter modifies the expected convergence rate up to fourth-order,

which is consistent with the analytical development of the manufactured solution in Eq. 47. To
verify the general case, we construct a manufactured solution with @1 ≠

√
2@0. Following this

approach, a second-order convergence rate is recovered as theoretically expected.
The numerical scheme has been proven to be consistent, unconditionally stable and truly

second-order accurate in space, in the general case. The chosen grid resolution for the numerical
experiments, presented in the next section, is 6A = 16, which has a good trade-off between
resolution and computational cost in order to represent periodic solutions.



48

Figure 12 - !2 norm of the k function for the manufactured solution. The observed order of accuracy of
the code using Eq. 50 for both cases shown in Tab. 3. In first case, the !2 norm is parallel to
the (a) second-order slope and in the second case it is parallel to the (b) fourth-order slope.
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Figure 13 - Evolution in time of the !2 norm comparing different grid resolutions. The resulting curves
for the !2 norm evolution in time are shown for the (a) first and (b) second case. Both !2

norm evolutions start from values close to the machine precision (10−16), since we start the
convergence analysis simulations from the exact solution. In the first case the formal order of
accuracy is achieved, ? ≈ 2.0, while in the second case ?∗ ≈ 4.0 due to discretization error
canceling.
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4.4 Lyapunov functional decay

The decay of the Lyapunov functional (‘free energy’) is monitored so that we can confirm
it is always monotonically decreasing until a minimum value is reached in the steady state. In
order to take into account the assumed boundary conditions adopted in this work, we expand the
bulk integrals to show that boundary integrals vanish, leading to a new expression for the free
energy functional, which is going to be discretized. Using integration by parts and the 2D Gauss
theorem (first Green identity), we have:∫
Ω

3x
(
k∇2k

)
=

∮
mΩ

k
mk

m=
3; −

∫
Ω

3x(∇k)2, (51)

where the first integral from RHS vanishes for the assumed GDBC, above mentioned. Now Eq.
5 can be rewritten as:

F [k] =
∫
Ω

3x
1
2

{
−n (x)k2 + U

[
@4

0k
2 − 2@2

0(∇k)
2 + (∇2k)2

]
− V

2
k4 + W

3
k6

}
. (52)

The Lyapunov functional associated to the SH equation is implemented through the discrete
formula derived by Christov and Pontes (2002) for the cubic version, and now extended for the
quintic one. The formula presents a O

(
ΔC2 + ΔG2 + ΔH2) approximation of the functional given

by Eq. 6. As pointed by those authors, the monotonic decay of the finite differences version is
enforced, provided that the internal iterations converge. The decay is monitored by:

F =+1 − F =
ΔC

= −
=G∑
8=1

=H∑
9=1

(
k=+1
8, 9
− k=

8, 9

ΔC

)2

, (53)

and

F = =
=G∑
8=1

=H∑
9=1

[
−n

2

(
k=8, 9

)2
− Z

3

(
k=8, 9

)3
− V

4

(
k=8, 9

)4
+ W

6

(
k=8, 9

)6
+
U@4

0
2

(
k=8, 9

)2
]

−
U@2

0
2

=G∑
8=1

=H∑
9=1

[
k=
8+1, 9 − k

=
8, 9

ΔG

]2

+
[
k=
8, 9
− k=

8−1, 9

ΔG

]2

+
[
k=
8, 9+1 − k

=
8, 9

ΔH

]2

+
[
k=
8, 9
− k=

8, 9−1

ΔH

]2

+ U
2

=G∑
8=1

=H∑
9=1

[
k=8+1, 9 − 2k=8, 9 + k=8−1, 9ΔG

2 + k=8, 9+1 − 2k=8, 9 + k=8, 9−1ΔH
2
]2
. (54)

In order to check if the Lyapunov functional is correctly implemented, we ran two
simulations with the cubic SH (with ramped n) and four with the quintic one (both uniformly and
ramped n), and monitored the evolution of the functional, of ¤!1 and of the patterns observed
through the order parameter k(x, C). The patterns evolution and the associated ¤!1 and Lyapunov
potentials are presented in Figs. 14, 20. The simulations were run with ramps of the control
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parameter n (x) along the G-direction for both GDBC and PBC. The two simulations with the
SH3 model started from the same pseudo-random initial condition. The four simulations with
the SH35 model started from a squared localized patch in the center of the cell. This pre-existing
structure of stripes parallel to the H-direction were constructed by:

k(x, 0) = �0 cos(@0G), (55)

where �0 =
{
(V/(2W)) [1 +

√
1 + nW/V2]

}1/2
, which is compatible with the expected field k

amplitude for a stable spatially homogeneous states, for the SH35 (SAKAGUCHI; BRAND,
1996). The results of these six simulations confirm the correct implementation of the Lyapunov
functional for both equations, with a monotonic decay in all cases.
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Figure 14 - The results of two simulations run to verify the correctness of the implementation of the
Lyapunov functional for the SH3 model. First and second rows: SH3 pattern evolution for
a ramped system forced with 0.0 ≤ n ≤ 0.2 GDBC (a) and PBC (b), respectively, until the
indicated steady state.. Both simulations started with the same pseudo-random initial condition.
¤!1 and the Lyapunov potential evolutions are showed below.

Source: Original work by the author.
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Figure 15 - The results of two simulations run to verify the correctness of the implementation of the
Lyapunov functional for the SH35 model. First and second rows: SH35 pattern evolution for
a ramped system forced with −1.4 ≤ n ≤ −1.2, GDBC (a) and PBC (b), respectively, until
the indicated steady state.. Both simulations started from the same pre-existing structure of
rolls perpendicular to the gradient of the control parameter. ¤!1 and the Lyapunov potential
evolutions are showed below.

Source: Original work by the author.
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5 RESULTS

In this chapter numerical results are shown for stripes pattern behavior in the presence
of the orientation effect, due to gradients of the control parameter, and of competing effects,
complementing the stability analysis presented in Sec. 2.3. The study is made through a numerical
integration of the SH3 equation, using the semi-implicit finite-difference scheme, outlined in
Chapter 3 that has been previously adopted for Swift-Hohenberg (CHRISTOV et al., 1997;
COELHO et al., 2020) and other nonlinear parabolic equations (VITRAL et al., 2018). Just as
remainder, the common parameters used are U = 1, and @0 = 1. Unless otherwise noted, the
computational domain is 128 × 128 grid points, which corresponds to a physical domain of
8 × 8 critical wavelengths considering a grid resolution of 16 points per wavelength. Therefore,
the grid size is ΔG = ΔH ≈ 1.016[2c/(16@0)] when using GDBC and ΔG = 2c/(16@0) when
using PBC. We employ a second order accurate time integration scheme using a Crank-Nicolson
approach and the time steps used are ΔC = 0.5 (SH3) and ΔC = 0.1 (SH23/SH35).

All patterns shown are at the steady state, with the exceptions of the initial conditions,
and of those shown during the evolution. We consider a pattern at the steady state when its
velocity of evolution, ¤!1, falls below 5 × 10−7. All simulations starting from a pseudo-random
distribution of k use the same distribution as an initial condition.

5.1 Competition between the gradient, boundary and bulk effects – SH3

The results are organized in five sections 5.1.1, 5.1.2, 5.1.3, and 5.1.4. Section 5.1.1
shows the results of simulations starting from preexisting stripes, with forcings in the form of
spatial ramps of Y along the G direction. Both Generalized Dirichlet (GDBC) and Periodic (PBC)
boundary conditions are considered. Cross sections of selected steady state patterns are shown,
along with the envelopes obtained as the steady state solution of Eqs. 21, 22 and 25. Section
5.1.2 presents the results of simulations starting from a pseudo-random initial condition, forced
with ramps of Y along the G direction. In Secs. 5.1.3 and 5.1.4 we describe the results obtained
with sinusoidal and Gaussian forcings, respectively, both cases starting from pseudo-random
initial conditions.

5.1.1 Spatial ramps of Y and preexisting patterns

This section presents results of eight simulations whose initial conditions consist of
preexisting structures of straight stripes parallel or perpendicular to the ∇Y. The forcing takes the
form of spatial ramps along the G direction, submitting the dynamics to this spatial variation of
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Table 4 - Parameters adopted for the simulations.

Parameter Formulæ Value Description

@0 - 1.0 Critical wavenumber

_0 2c/@0 2c Critical wavelength

FG , FH - 8 Wavelengths

per domain length

6A - 16 Grid resolution

=G , =H FG × 6A , 128 Nodes per mesh side

FH × 6A
# =G × =H 128 × 128 Total mesh nodes

!G , !H FG_0, FH_0 ≈ 50.2655 Domain length (!)

ΔG,ΔH !/(= − 2) ≈ 0.3989 Space step (GDBC)

ΔG,ΔH !/= ≈ 0.3927 Space step (PBC)

ΔC - 0.5 Time step (SH3)

ΔC - 0.1 Time step (SH23/SH35)

� - 0.2 Gaussian maximum

value (peak)

'1 =−1
G - Configs. 04 and 09

'2 0.2=−1
G - Configs. 05 and 10

G0,H0 !G/2,!H/2 - Gaussian center

Source: Original work by the author.
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Y. The results are shown in Figs. 16 and 18. Figure 16 presents the initial conditions and the
steady state of the simulations. Figure 18 shows the one dimensional profile of four patterns from
Fig. 16, taken along the G direction, at the middle height (H-direction) of the domain. For these
profiles, we compared the envelopes of modes either parallel or perpendicular to the gradient, to
analytic and numerical estimates based on the weakly nonlinear analysis detailed in Sec. 2.3.

Results shown in the first two rows of Fig. 16 are run from an initial condition consisting
of stripes parallel to the gradient, while the last two rows started from stripes perpendicular to
the gradient. GDBC is adopted for the simulations in the first and the third rows, and those in the
second and fourth rows are obtained adopting PBC. The preexisting structure of stripes is shown
in the first column of Fig. 16. The configurations (steady states) shown in the second and third
column are numbered for reference.

Configuration 1, with a Y ramp increasing from 0 to 0.1, evolved from stripes parallel to
the G axis to a bent structure of stripes approaching the upper and the right sidewalls, oriented
perpendiculally to the walls. At the left sidewall, this structure is parallel to wall, a result that
complies with the work of Walton (1982)(WALTON, 1982), who identified the onset of a weak
structure of stripes parallel to a slightly subcricrical or supercritical sidewall, in presence of a
negative gradient of the Rayleigh number pointing to the bulk of a Rayleigh-Bénard cell. A weak
structure of stripes perpendicular to the lower wall is visible close to that wall, since GDBC
favors this orientation due to the zero normal derivative. Boundary effects dominate both the
bulk effects represented by the initial condition, and ∇Y.

A different situation occurs in the case of configuration 2. The gradient, along with
orientation of the initial condition, forces the preexisting structure to remain parallel to it, and
stripes are kept straightly aligned up to the steady state. This result is attributed to the increase in
slope and magnitude of the Y ramp, which now increases from 0 up to 0.5.

The cases represented by configurations 3 and 4 of Fig. 16 are run with PBC. In both cases,
the gradient orientation effect, along with the initial condition and the lack of the competition
with boundary effects, result in stripes that remained parallel to the gradient, independently of
the forcing magnitude.

Configuration 5 presents a result similar to the one obtained in configuration 1, while
in configurations 6, 7 and 8, the preexisting initial conditions persist, even with PBC, where
boundary effects are suppressed. The resulting orientation is, in these cases, dominated by the
preexisting pattern and boundary effects, opposite to the orientation favored by ∇Y. The results
of configurations 6, 7 and 8 suggest that without a certain level of perturbation, the presence of
the gradient is not enough to destabilize stripes in finite or periodic domains, in the sense that
no reorientation by the gradient is observed. While ∇Y is not sufficient to reorient a preexisting
pattern with initial wavevector q0 parallel to it (without perturbing the system), Fig. 17 shows
through the evolution of the Lyapunov functional from Eq. 5. The orientation of the pattern with
respect to the gradient strongly affects the relaxational dynamics and energy of the steady state
structures. The top panel of Fig. 17 follows the energy for the dynamics leading to configurations
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Figure 16 - The results of eight simulations with the SH3 equation, preexisting structures, and forced
with a spatial ramp of the control parameter. The first column presents the prescribed initial
condition. Columns 2 and 3 show the attained steady state. The ramp of the control parameter
is given by the diagrams of first row. Rows two and three correspond to simulations with rigid
boundary conditions (GDBC), while results presented in rows four and five are obtained with
periodic boundary conditions (PBC).

0

0.1

0

0.5

0 Lx0 Lx

Initial

Condition

01 02

03 04

05 06

07 08

Source: Original work by the author.



58

Figure 17 - Lyapunov functional curves of configurations with ramped forcings with each configuration
indicated. It roughly corresponds to the “normalized” modulus of the time derivative mk/mC
and therefore is sensitive not only to the growth of the amplitude, but also to the pattern phase
dynamics.
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3 and 7 in Fig. 16, and the bottom panel follows the energy evolution leading to the patterns
in configurations 4 and 8. For both comparisons it is evident that the configuration of stripes
parallel to the ∇Y is the one of minimum energy (among the two), whose amplitude quickly
relaxes to satisfy the control parameter ramp. However, for q0 ‖ ∇Y, the relaxation towards the
steady state is much slower, since this orientation is penalized by the gradient and the steady state
pattern presents a higher associated energy.

We also observe that for higher forcing levels and higher ramp slope (bottom panel), the
system achieves the steady state faster than for lower forcing levels (top panel). Moreover, the
energy ratio between q0 ⊥ ∇Y and q0 ‖ ∇Y decreases from 1.080 between the two steady states
in the top panel to 1.015 in the bottom panel. The previous two observations suggest that the
orientational effects due to ∇Y weaken as the forcing level increases.

Figure 18 shows cross sections of configurations 1, 2, 3 and 6 of Fig. 16. The cross sections
are taken along the G direction, at the middle height (H-direction) of the domain. The obtained
profiles are superposed with the patterns envelope, estimated using two approaches, based on the
weakly nonlinear analysis presented Sec. 2.3. The first approach consists of an analytic estimation
of the envelope height, using the steady state solution of the NWS equation given by Eq. 21,
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Figure 18 - Cross sections along the G-direction, taken at the middle of the height of the domain (H-
direction), and envelopes obtained by the two methods based on the weakly analysis described
in Sec. 2.3. The pattern profiles extracted directly from the integration of the SH3 equation
are represented by dotted lines. The envelopes estimated with Eq. 25 are shown in dashed
lines, and the envelope obained as the steady state solutions of the NWS Eqs.20 and 21 are
represented in continuous lines. Eq. 25 gives a good estimation of the enveleope, except close
to the boundaries, since this equation does not take boundary conditions into account. Note
that the so obtained envelopes in case (0) shoud not necessarily fit the crests of the pattern,
since these curves refer to single mode stripes, either parallel or perpendicular to the gradient,
and not to bended stripes, where the angle of the wavevector with the gradient continuous
varies across the domain. Nevertheless, the envelope estimated with Eq. 25 matches well the
pattern crests, except at the boundaries.

(a) Configuration 01 (GDBC): (b) Configuration 02 (GDBC):

(c) Configuration 03 (PBC): (d) Configuration 06 (GDBC):

Source: Original work by the author.

obtained away from the Turing point assuming small spatial variations. The amplitude solution
is given by Eq. 25, which depends only parametrically on G in this approximation. Note that no
subcritical solutions are possible with this equation. The second approach consists in solving the
NWS Eq. 21 at the steady state with a pseudo-spectral method described in Appendix B.

For case (0) of Fig. 18 we acquired the profile from configuration 1 of Fig. 16, which
adopts GDBC. Strictly speaking, the envelopes for this case should not necessarily fit the crests
of the pattern, since these envelopes refer to single mode stripes, either parallel or perpendicular
to the gradient, and not to bent stripes, where the angle of the wavevector with the gradient
continuously varies across the domain. Nevertheless, the envelope estimated with Eq. 25 matches
well the pattern crests, except at the boundaries. The amplitude obtained as the steady solution of
Eq. 21 matches well the crests of the pattern. This satisfactory agreement suggests that the local
amplitude depends, in this case, on the local value of Y, and not on the local orientation of the
wavevector.

Cases (1) and (2) of Fig. 18 refer to structures of stripes � parallel to the gradient, with
GDBC (configuration 02) and PBC (configuration 03), respectively. The cross sections capture
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Figure 19 - The results of eight simulations with the SH3 equation, preexisting structures, forced with a
spatial ramp of the control parameter and PBC. The ramp of the control parameter is given
by the diagrams of first row. In the first row are shown (a) steady patterns obtained from the
indicated initial condition of preexisting vertical stripes without pseudo-random perturbation.
In the second row are shown (b) Steady patterns obtained from the steady states above with
the exact same pseudo-random perturbation Xk ∈ (−10−4, 10−4). Periodic domains (PBC)
are chosen in order to observe “only” interactions between bulk and ∇Y effects without the
rigid imposition on the boundary (GDBC). Since in the weakly nonlinear analysis we find that
vertical stripes are unstable in the presence of the ∇Y, a small perturbation is sufficient to the
system evolve into a new steady pattern where stripes align to the ∇Y direction (Configurations
13 and 15). Configuration 14 does not present such behavior and the preexisting stripes
orientation prevails.

10-3

11 12

15 16

0.1

0.3

0 Lx
-

0.1

-

0

0.1

0.3

0 Lx
-

0.1

10-2-

0

0 Lx

10-2

0 Lx

Initial

Condition

09 10

13 14

10-3

Steady States:

Pseudo-random
Perturbation:

+

09, 10, 11, 12

(a)

(b)

Source: Original work by the author.



61

the amplitude of the stripes along the direction of the gradient. The envelope given by Eq. 25 fits
well the amplitude of the pattern away from the boundaries. Moreover, an excellent matching
exists between the envelope obtained as the solution of the NWS Eq. 21, and the one extracted
directly from the pattern, with both boundary conditions. Finally, case (3) of Fig. 18 is obtained
from a preexisting structure of stripes �, perpendicular to the gradient (configuration 06). As in
case (0), the crests of the pattern fit well the envelopes, and reinforces the observation that away
from the boundaries ∇Y dictates the behavior of the amplitude.

To evaluate possible reorientation effects due to ∇Y, as suggested by Sec. 2.3, we
perturb the steady state configuration that originally have a monomodal pattern with q0 ‖ ∇Y.
The orientation effect can be seen in some of the configurations from Fig. 19, using PBC, so
that we avoid effects from the rigid imposition on the boundary in the GDBC case. From a
monomodal initial condition, we first obtain steady states under different ramps of Y, as seen
in configurations 9, 10, 11, and 12, which preserve the original preexisting vertical stripes. By
imposing a pseudo-random perturbation of Xk ∈ (−10−4, 10−4) to these steady states, the cases
with a ramp of Y crossing the Turing point at Y = 0 reorient into horizontal stripes, as observed
in configurations 13, 14, and 15, independently of the slope and magnitude used for the ramp
in Y. This result agrees with the conclusion from the stability analysis (Eq. 24) as in face
of perturbation, the neighborhood of the Turing point should become unstable when q0 ‖ ∇Y,
leading the pattern to reorient. However, when the Y ramp stays in the supercritical regime, Y > 0,
the initial pattern did not reorient, as shown in configuration 16.

5.1.2 Spatial ramps of Y and pseudo-random initial conditions

In this section we present the results of four simulations run from the same pseudo-random
initial condition, and the cross section for two of the obtained configurations. Two simulations
are performed with GDBC, and the other two with PBC. The results are sumarized in Fig. 20.

In the case of configuration 17, the orientation effect of the gradient is dominated by the
boundary and the subcritical effects: a bent structure of stripes perpendicular to the right and to
the upper sidewalls emerges. This structure persists in the subcritical region, with weak stripes
approaching the left sidewall in parallel orientation. The result is in agreement with the works of
Sruljes (1979)(SRULJES, 1970) an Walton (1982)(WALTON, 1982).

The steady state pattern developed in configuration 17 is similar to the one appearing in
configuration 1 of Fig. 16, with the orientation effect of the gradient dominated by the boundary
and the subcritical effects. The structure developed in configuration 18 is similar to the one of
configuration 17, with stripes perpendiculars to the supercritical lower and right sidewalls, and
paplelels to the critical left sidewall. Additionally an weak structure of stripes perpendiculars to
the upper supercritical sidewall is visible.

In the case of PBC, configurations 19 and 20, no boundary effects are present and the
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Figure 20 - The results of four simulations with the SH3 equation, forced with a spatial ramp of the
control parameter Y. All simulations started from the same pseudo-random initial conditions,
shown in the first column. The remaining columns present the steady state. First row: the
prescribed profile of the control parameter Y. Second and third rows: GDBC, and PBC
boundary conditions, respectively. Simulations of the second row show that boundary effects
dominate the orientaion effect when GDBC are prescribed. In the third row, the absence of
boundary effects allows the dominance of the orientation effect of the gradient.
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Source: Original work by the author.

resulting structure selects a direction almost parallel to the the gradient, even with the presence
of modes in every directions in the initial condition. A Benjamin-Feir instablility appears at the
left limit of the periodic structure of configuration 20.

Figure 21 shows in the first row the cross section of configuration 17 from Fig. 20. In
the second row, we move the Turing point from 1/2 to 1/4 of the domain length, to evaluate if a
translation of the forcing may result in any pulling of reorientation of the pattern. We use the
steady pattern of configuration 17 as the initial condition, for the configuration shown in the
second row. In both cases, the cross section is taken at the middle height (H-direction) of the
domain. We compare the k profile with the estimated amplitude of mode �, evaluated by the
steady state solution of the NWS Eq.21, and also with the analytic approximation from Eq. 25.

As in configuration 1 profile from Fig. 18, the evaluated envelopes refer to modes
parallel to the gradient and not to bent stripes of the pattern, where the angle between the local
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Figure 21 - Cross section of configuration 17 of Fig. 20, and of the pattern obtained from the same
configuration as initial condition, now run with a ramp of Y where the Turing point is located
at 1/4 of the domain length. The same maximum value of Y prescribed for configuration 1 is
adopted for the simulation shown in the second row of the present figure. Though associated
to straight stripes aligned to the gradient, the envelopes fit well the crests of the patterns,
which consist of bended stripes, with the angle between the local wavevector and the gradient
continuously varying across the domain.

(a) Configuration 17 with a Turing point located at L/2. 

(b) Configuration 17 with a Turing point located at L/4. 

Source: Original work by the author.

wavevector and the gradient continuously varies across the domain. In spite of this fact, the
envelopes qualitatively fit the peaks of the pattern, suggesting that the height of the envelope far of
boundaries depends primarily on the local value of Y and not on the direction of the wavevector.

Note that the solution of the NWS Eq. 21 presents an estimate for the envelope on the
subcritical region. The results show that a translation of the forcing ramp expands the pattern
towards the new location of the Turing point, keeping the original bent form of the pattern in
configuration 17. Therefore, bulk and boundary effects still win over gradient effects, and no
reorientation is observed.

5.1.3 Sinusoidal forcings

This section presents the results of eigth simulations run from pseudo-random initial
conditions with sinusoidal forcings in G. Both GDBC and PBC are prescribed. Sinusoidal
forcings are of interest because they allow for multiple subcritical and supercritical regions in
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Figure 22 - The results of eight simulations with the SH3 equation, forced with a spatial sinusoidal profile
of the control parameter Y. All simulations started from the same pseudo-random initial
conditions, shown in the first column. The remaining columns present the steady state, attained
when ¤!1 ≤ 5 × 10−7. First row: the prescribed profile of the control parameter Y. Second and
third rows: GDBC (a), and PBC (b) boundary conditions, respectively.
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a single domain, with multiple Turing points in G. Also, when compared to ramps, periodic
forcings better accommodate PBC, so that undesired effects due to a jump of Y at the boundary
are not an issue. The results are summarized in Fig. 22, where we present the resulting steady
state patterns (labeled as configurations 13-22). The first row displays the distribution of Y
forcings, the second patterns obtained by prescribing GDBC, and the third those obtained by
prescribing PBC.

Results shown in configurations 21 to 25 (GDBC) and 26 to 30 (PBC) of Fig. 22 evolved
either to patterns parallel to gradient, or at least, with regions where the stripes are parallel to the
gradient. The orientation effect clearly appears in these simulations, even when the restrictive
GDBC are prescribed.

To obtain configuration 21, we used a low amplitude sinusoidal distribution of Y with
subcritical regions (−0.1 ≤ Y ≤ 0.1). Due to GDBC, we observe the existence of supercritical
regions close to the right and left walls where no pattern emerges. A higher amplitude of the
forcing, as depicted in configuration 30, leads to the emergence of stripes aligned to the gradient
in all supercritical regions, so that a higher Y allows to overcome energy penalizations due to
boundary conditions. Configuration 23 of Fig. 22 is run with a sinusoidal forcing added to a
constant, so that Y > 0. No subcritical regions are present in this simulation. A weak structure of
small stripes perpendicular to the upper and lower walls emerges at the center of these walls.
Several Benjamin-Feir instabilities are also observed. Configuration 24 is run with a similar
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sinusoidal forcing, but of higher amplitude. Due to the higher forcing, the structure can more
easily accommodate defects. A pattern of winding stripes appear at the central region, with two
focus defects showing at the top and at the bottom of this region. We note that the winding form
of these stripes comes from the fact that they anchor perpendicularly to the upper and lower walls,
while approaching regions of Y close to zero with a parallel alignment. This is in agreement with
our previous observation from Fig. 17, that orientational effects due to ∇Y become less prevailing
as the magnitude of the forcing increases.

Configuration 25 is obtained by increasing the minimum Y even further, so that we have a
fluctuating forcing of high magnitude and GDBC. The orientational effect of the gradient is fully
dominated by the bulk and boundary effects. A pattern of diagonal stripes with a high density of
defects emerges.

The results presented in the third row of Fig. 22 are run with PBC. In the case of
configuration 26, a low forcing and the lack of boundaries prevent the emergence of defects.
The orientational effect of the gradient prevails and a structure of stripes parallel to the gradient
emerges in all supercritical regions. Configuration 27 is similar to the previous, but the sinusoidal
forcing presents a higher amplitude. This higher forcing in supercritical regions allows for
stripes that deviate from the gradient alignment, and we observe columns of stripes that alternate
between parallel and inclined alignments. The steady state for this case strongly depends on
the initial distribution of k, and once a column of inclined stripes is formed, it is unable to
completely reorient in the gradient direction.

Configuration 28 of Fig. 22 presents again a case where the forcing consists of a low
amplitude with zero minimum Y. The absence of sidewalls and the relatively low forcing weakens
competing effects and pattern aligns accordingly to the gradient. The resulting structure is parallel
to the gradient and Benjamin-Feir instabilities are observed at the neighborhood of the Turing
point. For configuration 29 we use the same forcing as in configuration 24. The steady state
pattern is similar the one of configuration 27, but with stripes occupying the entire domain, as
the forcing is non-negative. Lastly, configuration 30 starts from the same forcing as configuration
25, and the resulting winding pattern shows that, even for PBC, ∇Y fails to orient the stripes
whenever the magnitude of the force remains at large magnitude.

Fig. 23 shows a cross section of the steady state pattern from configuration 30 of Fig. 22.
The cross section profile is taken at the middle of the height (H-direction) and is represented by a
a line with small circles. To this profile we superposed the pattern envelope of mode � estimated
from two approaches: the first one consisted in the steady state solution of Eqs. 22 and 23, for the
amplitude �, using a sinusoidal distribution of Y. The so evaluated envelope is represented by a
continuous line in Fig. 23. The second evaluation of the envelope is done by using Eq. 25 also
adopting a sinusoidal distribution of Y. The envelope is represented by a dashed line in Fig. 23.
The two estimated envelopes fit the central part of the pattern cross section, and deviate at the
boundaries, which are not taken into account in the derivation of those two curves.

Fig. 24 presents the result of a configuration consisting of a pseudo-random distribution
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Figure 23 - Cross section along the G-direction, of the pattern shown in configuration 22 of Fig. 22 (dotted
line). The cross section is taken at the middle of the height (H-direction). To the profile
obtained directly from the pattern we superpose the envelope of mode �, obtained by two
methods: as the steady state solution of Eqs. 22 and 23, adopting a sinusoidal distribution of Y
along the G direction and as an estimation of the envelope profile, using Eq. 25.

Source: Original work by the author.

Figure 24 - Pattern evolution from pseudo-random initial conditions, subjected to PBC and a diagonal
sinusoidal distribution of the control parameter, given by: Y(x) = 0.1 cos [@1(G + H)]. The
structure evolve into stripes aligned in the ∇Y direction until the steady state is reached.

Source: Original work by the author.

Figure 25 - Comparison between ¤!1 curves of configurations 22 (GDBC) and 27 (PBC) with sinusoidal
forcings. It roughly corresponds to the “normalized” modulus of the time derivative mk/mC
and therefore is sensitive not only to the growth of the amplitude, but also to the pattern phase
dynamics.
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of k as the initial condition, a sinusoidal forcing along the domain diagonal, and PBC. Lack of
boundary effects along with the orientation effect of the gradient, and existence of modes along
all direction in the initial condition lead to a pattern of stripes parallel to the diagonal.

Figure 25 shows the ¤!1 × C curves of selected configurations shown in Fig. 22. These
curves present an irregular region at the very begining of the simulations, when the patterns
emerges from the pseudo-random initial condition. Most of the pattern growth occurs at this
phase. As a result, ¤!1 decreases by some orders of magnitude. The evolution proceeds with
changes in the phase, and with the amplitude essentially saturated. ¤!1 evolves irregularly at much
lower level, with peaks occuring at the collapse of defects. This phase is followed, in all cases, by
a linear (exponential) decrease of ¤!1. We assume that the pattern reached a steady state when ¤!1

attains the value 5 × 10−7. We mention that also the Lyapunov potential decreases exponentially
at this phase.

Fig. 26 presents a case of a preexisting structure of stripes along the H-direction and
a sinusoidal profile of Y along the diagonal of the domain, using PBC. Despite lacking the
restrictive effect of boundary conditions, the gradient is dominated by the initial condition,
and the preexisting structure persists. Upon adding a noise Xk ∈ (−10−2, 10−2) to the initial
condition, the preexisting structures is destabilized and replaced by a sinusoidal distribution of
stripes parallels to the gradient.

5.1.4 Gaussian forcings, and pseudo-random initial conditions

By imposing Gaussian forcings we observe another bulk effect that competes with
the gradient in orienting the stripes. Fig. 27 shows the steady state patterns obtained in four
simulations, two of them run with a sharper circular gaussian distributions of the control
parameter, centered at the middle of the domain and two, with a wider gaussian forcing. GDBC
and PBC are considered for each configuration of Y. The four simulations started from the same
pseudo-random initial condition adopted in all cases presented in Secs. 5.1.2 and 5.1.3. The
adopted Gaussian distribution is given by:

Y (x) = �4−'((G−G0)2+(H−H0)2) . (56)

In the first case, configurations 31 (GDBC) and 25 (PBC), we used a sharper distribution
of Y with parameters ' given in Tab. 4 ('1 and '2). For both, the resulting pattern takes the form
of a target, with stripes presenting a wavevector parallel to the gradient, q ‖ ∇Y, a completely
opposite situation with respect to several other cases run from pseudo-random initial conditions
using forced with ramps or sinusoidal distributions of Y. The orientation effect of the gradient
does not appear in this case, and orientation is dominated by a geometric bulk effect. Due to the
disk-form of Y in the two-dimensional domain, a target pattern is the one that fills the supercritical
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Figure 26 - Pattern evolution from preexisting vertical stripes, subjected to PBC and a diagonal sinusoidal
distribution of the control parameter, given by: Y(x) = � cos [@1(G + H)], where @1 = 0.125@0.
For (a) � = 0.1 and (b) � = 0.5, the preexisting structure persists, and dominates the orientation
effect of the gradient. (c) Upon adding a perturbation in the form of a uniform distribution
ranging from −10−2 to 10−2 to the initial condition, the preexiting structure collapses and is
replaced by stripes parallels to the gradient. (d) The time evolution of ¤!1 for the latter is shown
and this simulation proceeded until ¤!1 6 5 × 10−9.
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Figure 27 - The results of four simulations with the SH3 equation, forced with a Gaussian distribution
of Y. All simulations started from the same pseudo-random initial conditions, shown in the
first column. Configurations 31 and 32 are run with GDBC, while PBC are prescribed for
configurations 33 and 33.
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Source: Original work by the author.

region while minimizing defects, which is a geometric compatibility effects. Otherwise, if stripes
are to orient accordingly to the ∇Y, the resulting pattern would cointain a large ammount of
defects (dislocations) to accomodate such orientation, increasing significantly the energy of the
configuration. Therefore, target patterns minimizes the Lyapunov potential, in spite of being
penalized by the control parameter gradient.

A second case with a wider Gaussian forcing is shown in Fig. 27, configurations 32
(GDBC) and 33 (PBC), with parameters ' given in Tab. 4 ('1 and '2). This case corresponds
to a forcing with a sharper distribution of Fourier modes, therefore a smaller range of modes
persists in the steady state pattern. We observe that a pattern of stripes with wavevector aligned
with the diagonal of the domain appears. The pattern extends for a longer distance in this
diagonal direction, even invading the subcritical region, for both GDBC nad PBC. The effect is
due to the fact that the hardest direction for modulation of the amplitude occurs in the direction
of the wavevector, whereas the easiest direction is the perpendicular one. This property of
periodic patterns results in amplitudes modulated in compliance with Newell-Whitehead-Segel
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equations (NEWELL; WHITEHEAD, 1969; SEGEL, 1969).

5.2 Competition between the gradient, boundary and bulk effects – SH23 and SH35

In this section, we briefly explore two other forms of the SH equation with additional
nonlinearities, in order to numerically evaluate the effects of altering a bifurcation diagram on
the orientation of resulting patterns. As mentioned before, Eq. 8 can be addressed to as SH23 for
W = 0, and Z, V ≠ 0. Analogously, we refer to it as SH35 for Z = 0, and W, V ≠ 0. The numerical
scheme follows the semi-implicit approach described in Appendix 3 with minor modifications
depending on which nonlinear terms are present.

Accordingly to the simulations presented in the previous sections and Refs. (PONTES,
1994; CHRISTOV et al., 1997; CHRISTOV; PONTES, 2002; PONTES; WALGRAEF; CHRIS-
TOV, 2008), GDBC introduces additional restraints for the patterns, i.e, stripes anchoring
perpendicularly to sidewalls. We adopt PBC to study interacting bulk effects for SH23 in
the presence of a nonzero ∇Y. For small positive Y, hexagonal patterns are the minimum
energy state, which destabilizes when Y is increased and stripe patterns become energetically
favored. The coexistence of both structures with a nonuniform forcing is addressed by Hilali et
al. (HILALI et al., 1995), where stripes formed with q ‖ ∇Y, contrary to our results for SH3.
To clarify if such effect observed for SH23 is induced by initial conditions (an initial ramp in
k, in their case), and assess how ∇Y interferes in the hexagon to stripe transition, we perform
simulations for SH23 using different initial conditions and ramps for Y. Numerical results are
shown in Fig. 28, using Z = 0.65 and V = 1, in which we observe the possibility of coexistence
between hexagons and stripes. The nonuniform forcings considered are the following ramps:
−0.5 6 Y(x) 6 0.5 and 0.0 6 Y(x) 6 0.5. Three configurations for each forcing are considered,
starting from pseudo-random initial conditions and preexisting patterns (horizontal and vertical
stripes, respectively).

Configurations 43 and 44 started from pseudo-random initial conditions, and configura-
tions 37, 38, 39 and 40 had their preexisting condition perturbed with a pseudo-random noise
ranging from −10−6 to 10−6 with an uniform distribution. In the absence of perturbations, the
initial condition is preserved, i.e, hexagon patterns do not emerge. The results show that, in the
presence of a ∇Y ≠ 0, the preexisting patterns are unstable, and we observe regions where stripes
decay to k = 0 or evolve towards hexagons.

First, we compare configurations 43, 37 and 39, where a ramp ranging from Y = −0.5 to
Y = 0.5 is employed. Starting from a pseudo-random initial condition, we observe that stripes
with q ⊥ ∇Y appear in the region of positive Y, with a weakly formed hexagonal structure close
to Y = 0. Configuration 37 show that when a preexisting structure of stripes with q ⊥ ∇Y
is perturbed, stripes in the positive Y region remain perfectly aligned to the gradient, and no
transition to hexagons is observed. In configuration 39 we see that by perturbing an initial
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condition of stripes with q ‖ ∇Y, the remaining stripes did not reorient according to ∇Y, and
(opposite to configuration 37) a well formed column of hexagons appeared for regions of small Y.
This is a consequence of the higher energy associated to stripes when q ‖ ∇Y, as compared in
Fig. 17, so that for small Y a stripe to hexagon transition is promoted. For configurations 44, 38
and 40, where the ramp ranges from Y = 0 to Y = 0.5, we note that due to the smaller ∇Y this
gradient has a weaker effect on inducing stripe pattern alignment. In configuration 44, we do
not see alignment starting from a pseudo-random initial condition, while in configuration 38,
even though the preexisting pattern is made of stripes with q ⊥ ∇Y, hexagons still emerged in the
0 < Y < 0.25 region (opposite to configuration 37).

Finally, we present numerical results for the SH35 equation in the presence of a control
parameter gradient, using V = 3, and W = 1. The k = 0 to stripe transition in SH35 is associated
to a subcritical bifurcation, so that there is a jump of the amplitude in this transition. Due to
the symmetry in the energy structure associated to SH35, the bifurcation parameter presents a
coexistence value Y2 = −27V2/160W for which both stripes and k = 0 states have approximately
zero energy density (SAKAGUCHI; BRAND, 1996; VITRAL; LEO; VIÑALS, 2019). For
Y > Y2, stripes are energetically favored, while for Y < Y2 the equilibrium state is k = 0. A
consequence of the subcritical bifurcation is that even in Y > Y2 regions, stripes do not form from
a pseudo-random initial condition for finite values of Y2. Therefore, in the SH35 case we adopt a
square pattern as initial condition, of the type k = �cos(@0G) + �cos(@0H), in order to evaluate
the ∇Y effect on filtering the pattern.

For obtaining configurations 41 and 42, we use GDBC, while for configurations 43 and
44, we use PBC. For the chosen set of parameters Y2 ≈ −1.52. With a ramp ranging from Y = −3
up to Y = 0, for both GDBC (away from the boundary) and PBC the H direction mode is filtered,
and the resulting structures present stripes with q ⊥ ∇Y for Y > Y2, and k = 0 for Y < Y2. By
changing the ramp to Y = −1.8 up to Y = 0, we see in configuration 44 (PBC) that away from the
boundaries the structure perfectly aligns according to ∇Y. However, in configuration 42 we note
that by decreasing the ramp inclination, orientation effects due to boundary conditions become
stronger in comparison to ∇Y, as they mostly dictate the resulting pattern. From our simulations
using SH35 with PBC, we observed that patterns tend to orient more strongly according to ∇Y
than in the case of SH3 or SH23, which is presumably associated to the subcritical nature of the
bifurcation.
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Figure 28 - The results of six simulations with the SH23 equation, forced with a spatial ramp of the
control parameter Y indicated in the first row. The parameters of the SH23 are: Z = 0.65, V = 1
and W = 1. Initial conditions for configurations 37, 38, 39 and 40 are perturbed so that the
remaining stripes share the domain with hexagons, as expected for this range of parameters.
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Figure 29 - The results of four simulations with the SH35 equation, forced with a spatial ramp of
the control parameter Y. All simulations started from the same preexisting square pattern
(k = �cos(@0G) + �cos(@0H)), shown in the first column. The remaining columns present
the steady state. First row: the prescribed profile of the control parameter Y. Second and
third rows: results for GDBC, and PBC, respectively. Results of the second row show that
boundary effects dominate the orientaion effect when GDBC are prescribed. In the third row,
the absence of boundary effects allows the dominance of the orientation effect of the gradient.
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CONCLUSIONS

In this thesis, we extended a numerical scheme proposed by Christov & Pontes (PONTES;
WALGRAEF; CHRISTOV, 2008) to investigate pattern formation modeled by the cubic Swift-
Hohenberg equation SH3 in two dimensions. The original scheme presents second order
representation of all derivatives, strict implementation of the associated Lyapunov functional,
rigid boundary conditions (GDBC), and a semi-implicit assignment of the terms.

The present work includes the quintic version of the Swift-Hohenberg equation and
periodic boundary conditions (PBC) for both the cubic and the quintic versions of the model. The
scheme retains all characteristics of the original one, namely strict representation of the Lyapunov
functional, unconditional stability, and second order representation of all derivatives. In addition,
we also included a convergence analysis, new verification tests, and an initial evaluation of the
effect of nonuniform forcings in the form of spatial ramps and of gaussian distributions of the
control parameter n . Among the verification tests, the convergence analysis confirmed the truly
second-order accuracy of the scheme both in space and time and the existence of localized
structures developed in the framework of the SH35 equation even with nonuniform forcings. The
numerical experiments conducted in this work suggest the existence of effects and the onset of
patterns not addressed in the literature. Both questions will be the object of a forthcoming paper.

The conducted tests confirmed the robustness of the developed tool for pursuing the
investigation of the pattern formation through the parabolic Swift-Hohenberg equation presenting
various nonlinear terms, including nonuniform forcings.

This work also addressed the orientation effect due to gradients of the control parameter Y
in stripe patterns using the Swift-Hohenberg dynamics, and how it fares against competing effects.
A weakly nonlinear analysis confirms and extends existing results showing that stripes tend to
align to the gradient. We show that stripes with wavevector q perpendicular to ∇Y are stable
and correspond to a lower energy state than stripes with q parallel to ∇Y, which are unstable
near the Turing point. However, our main numerical results show that the orientation effect of
the gradient, though existing, does not always prevail when facing competition with other bulk,
boundary, geometric, and periodic effects due to computational domains. This competition leads
to the emergence of a rich dynamics, as apparent in our results, which strongly depends on the
magnitude of the forcing and initial conditions (preexisting patterns or pseudo-random). In this
sense, the various forms of forcing and initial conditions addressed in this work, while extensive,
do not cover the full range of possible cases.

Among our most representative results, we cite simulations where, starting from a structure
of stripes with wavevector q perpendicular to ∇Y, the initial pattern is preserved, and cases where
this orientation is compromised by competing effects. Even starting from a structure of stripes
with q parallel to the gradient, we found cases where the initial pattern persists. However, upon
introducing a finite pseudo-random perturbation on the initial conditions, either ∇Y fully reorients
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the stripes or competing effects interfere, reshaping the pattern (e.g. introducing defects). Forcing
with a gaussian distribution of Y resulted, in one case, in a target structure of stripes perpendicular
to the gradient (q ‖ ∇Y) and, in other, in straight stripes perpendicular to the domain main
diagonal. In the former, the target pattern results from a geometric constraint, as a pattern with
q ⊥ ∇Y would imply in a large density of defects (higher energy). In the latter, the elongated
pattern along the domain main diagonal complies with a well known effect, which states that the
most difficult direction for modulation is the one of the wavevector (NEWELL; WHITEHEAD,
1969; SEGEL, 1969).

An estimation for the local amplitude of the patterns could was derived in the form
of a NWS equation, function of the nonuniform forcing n (x). Its steady state solution, ℎ =
[Y(x)/−3V]1/2(Eq. 25), neglects diffusion of the amplitude and still represents a satisfactory
approximation of its envelope far from the boundaries and the Turing point. This estimation is
more accurate when the pattern preserves a dominant mode in the G (or H) direction, but even
when there are other modes present, the approximation is satisfactory.

In summary, we observed that the orientation effect of the gradient prevailed in many, but
not all, of the explored configurations, either starting from a preexisting structure of stripes parallel
or perpendicular to the gradient, or with a pseudo-random initial condition. The orientation effect
is relevant for many physical systems presenting periodic patterns, such as in developmental
biology (HISCOCK;MEGASON, 2015; RUPPERT; ZIEBERT; ZIMMERMANN, 2020), smectic
mesophases (VITRAL; LEO; VIÑALS, 2019), and localized sand patterns (AUZERAIS et al.,
2016), whose dynamics have been studied by Swift-Hohenberg type equations, but present
mechanisms of stripe orientation that are not well understood.
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APPENDIX A – Pattern formation in Rayleigh-Bénard systems: an overview of the Rayleigh
instability mechanism

An example of pattern formation in hydrodynamical systems is the Rayleigh-Bénard
convection. It is a type of natural convection, occurring in a plane horizontal thin layer of fluid
heated from below, in which the fluid develops a regular pattern of convection cells known as
Bénard cells. An experimental set up is illustrated below:

Figure 30 - Schematic convection rolls in the Rayleigh-Bénard experiment.

x
z

y
d

λ

T1

T0 > T1

Source: Original work by the author.

The classical mathematical approach for describing the emergence of convection rolls
consists of the Oberbeck-Boussinesq (OB) equations. The mathematical formalism shown
in this appendix follows some classical notation and derivations from the literature (CHAN-
DRASEKHAR, 1961; SWIFT; HOHENBERG, 1977; HAKEN, 1981; PONTES et al., 2018).
Furthermore, some useful insights about the instability mechanism will be provided along with
the reduction of the full dynamics to a simplified model performed by Swift and Hohenberg
(1977).

A.1 Boussinesq equations

Rayleigh-Bénard convection is mathematically modeled by continuity, Navier-Stokes, and
heat equations. They are derived from the mass, momentum, and energy balance (conservation)
principles, respectively. For the sake of simplicity, and accordingly to the classical literature, we
consider the Boussinesq approximation, i.e., we adopt a incompressible fluid, and that variations
in fluid properties other than density d are ignored, and the density only appears when it is
multiplied by the gravitational acceleration (g). Therefore, the Boussinesq approximation states
that the density variation is only important in the buoyancy term. Furthermore, we consider that
density variations are assumed to have a fixed part and another part that has a linear dependence
on temperature. It is worth noting that density variations are not sufficient to significantly change
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Table 5 - Variables and fluid properties for the Boussinesq equations (SI base unit
adopted).

Variables Description Fluid properties Description

v(x, C) velocity vector a cinematic viscosity

) (x, C) temperature field U diffusivity coefficient

? pressure d density

- - V coefficient of thermal expansion

Source: Original work by the author.

a particle’s mass and, consequently, the inertial term. Considering the stated hypothesis, the
model consists of the following continuity, Navier-Stokes, and heat equations, respectively:

∇ · v = 0 , (57a)

d0
�v
�C

= −∇? + d0a∇2v + d0 [1 − V() − )0)] g , (57b)

�)

�C
= U∇2) , (57c)

where the variables and fluid properties are described in Table 5, and the material derivative
(operator) can be expressed as: �/�C = (m/mC + v · ∇) . For convenience, we rewrite the
Boussinesq Eqs. (57) with index notation (Einstein’s convention):

mE8

mG8
= 0 ; (58a)

d0

(
mE8

mC
+ E 9

mE8

mG 9

)
= − m?

mG8
+ d0a

m2E8
mG 9mG 9

+ d0 [1 − V() − )0)] 68 ; (58b)

m)

mC
+ E 9

m)

mG 9
= U

m2)

mG 9mG 9
. (58c)

The variables from equations can be scaled as

C =
32

U
C∗ , G8 = 3 G

∗
8
, E8 =

V6 |Δ)0 |32

a
E∗
8
,

? = d0

(
V6 |Δ)0 |32

a

)2

?∗ , ) = )0 + |Δ)0 | ()∗ − 1) .
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Now we write a dimensionless form of the Boussinesq equations:

mE8

mG8
= 0 ; (59a)

1
%A

(
mE8

mC
+ '0 E 9

mE8

mG 9

)
= −'0

%A

m?

mG8
+ m2E8
mG 9mG 9

+
[

1
V |Δ)0 |

− () − 1)
]
^8 ; (59b)

m)

mC
+ '0 E 9

m)

mG 9
= U

m2)

mG 9mG 9
. (59c)

We now write the dimensionless evolution equations, eliminating the pressure field. For
this purpose, we apply the Laplacian operator, ∇2, on the Eq. (59b) of EI from Navier-Stokes
equation, which yields:(
∇2 − 1

%A

m

mC

)
∇2EI + ∇2) − '0

%A

m

mI
∇2? =

'0

%A
∇2

(
E 9
mEI

mG 9

)
. (60)

Now, we derive an equation for the vertical component of the curl, or vorticity (Z = mEH/mG −
mEG/mH) by applying the first derivative m/mH on the equation for EG , the first derivative m/mG on
the equation for EH, from NS equation, and subtracting the first from the second one:(
∇2 − 1

%A

m

mC

)
Z =

'0

%A

[
m

mG

(
EG
mEH

mG
+ EH

mEH

mH
+ EI

mEH

mI

)
− m

mH

(
EG
mEG

mG
+ EH

mEG

mH
+ EI

mEG

mI

)]
(61)

Applying the divergence operator, ∇· , to NS equation, we have:

1
%A

m

mC

mE8

mG8
+ '0
%A

(
mE 9

mG8

mE8

mG 9
+ E 9

m

mG 9

mE8

mG8

)
= −'0

%A
∇2? − ^8

m)

mG8
+ ∇2 mE8

mG8
(62)

Since the velocity field is divergence free, we readily obtain

−'0
%A
∇2? =

'0

%A

mE 9

mG8

mE8

mG 9
+ ^8

m)

mG8
(63)

Plugging this result in Eq.(60), we get the equation for the vertical component of the velocity
field, from NS equation, without the pressure field,(
∇2 − 1

%A

m

mC

)
∇2EI + ∇2) + '0

%A

m

mI

(
mE 9

mG8

mE8

mG 9

)
− m)
mI

=
'0

%A
∇2

(
E 9
mEI

mG 9

)
, (64)

which can be rewritten as(
∇2 − 1

%A

m

mC

)
∇2EI + ∇2

⊥) =
'0

%A

[
∇2

(
E 9
mEI

mG 9

)
− m

mI

(
mE 9

mG8

mE8

mG 9

)]
, (65)
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where ∇2
⊥ = m

2/mG2 + m2/mH2. The Boussinesq equations, without pressure, now read

mE8

mG8
= 0 (66a)(

∇2 − 1
%A

m

mC

)
Z =

'0

%A

[
m

mG

(
E 9
mEH

mG 9

)
− m

mH

(
EG
mEG

mG 9

)]
(66b)(

∇2 − 1
%A

m

mC

)
∇2EI + ∇2

⊥) =
'0

%A

[
∇2

(
E 9
mEI

mG 9

)
− m

mI

(
mE 9

mG8

mE8

mG 9

)]
(66c)

m)

mC
+ '0 E 9

m)

mG 9
= U∇2) . (66d)

Since we are interested in the vertical velocity and in the temperature field, we can rewrite the
equations in matrix form with just these two fields, i.e.,

m

mC

[
∇2ẼI

)̃

]
=

[
%A∇4 %A∇2

⊥
'0 ∇2

] [
ẼI

)̃

]
+ '0

[
∇I∇8∇ 9

(
E 9E8

)
− ∇8∇8∇ 9

(
EIE 9

)
v⊥ · ∇⊥)

]
, (67)

such that the linear and nonlinear terms are easily spotted.

A.2 Linearized problem

Following Pontes et al. (2018), we linearize Eq. (67), and obtain decoupled equations for
ẼI and )̃ , which can be solved separately. It’s straightfoward that we end up with just the linear
terms from Eq. (67), such that

m

mC

[
∇2ẼI

)̃

]
=

[
%A∇4 %A∇2

⊥
'0 ∇2

] [
ẼI

)̃

]
, (68)

where: ∇2
⊥ = m

2/mG2 + m2/mH2. Assuming solutions in the form

�

[
ẼI

)̃

]
= �

[
+@=

Θ@=

]
4lC+8qx sin (=cI) + c.c. , (69)

we reach the following dispersion relation:

0l2 + 02(%A + 1) l + %A
(
03 − '0 @2

)
= 0 . (70)

where: 0 = @2 + =2c2 . The Rayleigh number for which the growth rate l vanishes is determined
by the condition that the product of roots from the dispersion relation is zero. Then,

'0 =
03

@2 =

(
@2 + =2c2)3

@2 . (71)

The critical Rayleigh number ('02) corresponds to the minimum of the curve in the last
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term of RHS in eq. (70), such that

3'0

3@
=

6@
(
@2 + =2c2)2

@2 −
2
(
@2 + =2c2)3

@3 = 2@6 + 3@4=2c2 − =6c6 = 0 (72)

yields the positive real solution @ = =c/
√

2 . The instability threshold is given by the minimum
of the lowest curve corresponding to first unstable mode (= = 1). We get

'02 =

(
@2

0 + c
2
)3

@2
0

=
27c4

4
; @2

0 =
c2

2
. (73)

A.3 Instability mechanism

A.3.1 Linear domain

Since we are only insterest in the real roots close to the threshold, we find it preferable to
search for their approximate values from order of magnitude comparison. Rewritting eq. (70),
we have:

l2 + 0(%A + 1) l + %A
(
02 − '0 @2/0

)
= 0 . (74)

In the vicinity of instability, we perform a Taylor expansion of the above equation around
('02, @2

0), using the relations: '02 = 03
0/@

2
0 ; @2

0 = c
2/2. Now the dispersion relation associated

to the linear evolution matrix becomes:

l2 + 00(%A + 1) l + 00 %A
[
−00('0 − '02)/'02 + (@2 − @2

0)
2/@2

0
]
= 0 . (75)

On the onset of instability ('0 ∼ '02), one of the eigenvalues stays negative (l2) while
the other becomes slightly positive, close enough to zero (l1 ∼ 0). Therefore, by considering
l2 ∼ 0 in eq. (75), we obtain l1. The negative eigenvalue l2 is then obtained by neglecting
the last term in RHS of eq. (75) (l1l2 ∼ 0). The first (l1) and the second (l2) eigenvalues
correspond to the unstable modes and stable modes, respectively. Since 00 = @

2
0 + c

2, we can
write both eigenvalues as:

l1 =
%A (@2

0 + c
2)

%A + 1


(
'0 − '02
'02

)
−

(
@2 − @2

0

)2

@2
0(@

2
0 + c2)

 ; (76)

l2 = −(@2
0 + c

2) (%A + 1) . (77)

For high Prandtl values (%A � 1), F2 is strongly negative and, consequently, the separation
between stable and unstable modes is even more evident. This instability mechanism appears in
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Rayleigh-Bénard convection and similar ones are observed in many distinct physical, chemical,
and biological systems.

A.3.2 Nonlinear domain

In the linear domain we obtained the eigenvalues corresponding to eigenmodes of interest
in the onset of the instability. The positive eigenvalues defines a band of wavenumbers for which
the corresponding modes are the unstable ones. Now, we address how these modes interact
in the weakly nonlinear regime, i.e., when the first nonlinearity effects rise beyond instability
threshold. It is expected that such interactions are compatible with the nonlinear terms present in
the governing equations. For this purpose we may write the nonlinear equations of interest (for
EI and )̃) in matrix form, after eliminating the pressure field (Eq. 59):

L	 + N (	) = 0 , (78)

where the two-component column vector 	 and the linear operator matrix L are defined as

	 =

[
EI

)

]
, L =


%A∇4 −

m

mC
∇2 %A∇2

⊥

−'0
m

mC
− ∇2


, (79)

respectively. The symbol N (	) is used to denote the two-component vector

N (	) = '0

[
∇I∇8∇ 9

(
E 9E8

)
− ∇8∇8∇ 9

(
EIE 9

)
v⊥ · ∇⊥)

]
, (80)

that represents the (quadratic) nonlinearity in which we are expanding, and where the subscript
(·)⊥ corresponds to the two dimensional catersian components, G and H. By adopting a discrete
spectrum, i.e, ignoring finite band perturbations, and imposing periodic boundary conditions in G
and H directions, we can express 	 as:

	(x, I, C) =
∑
q,=
bq,= (C) 	̃q,= (x, I) , (81)

where bq,= (C) are unknown time-dependent amplitudes. The sumation runs over all q and =.
Plugging this definition into Eq. 78 and rearranging terms, we have

mbq,= (C)
mC

[
1 0
0 1

]
	̃q,= +

[
0%A −@2%A/0
−'0 0

]
bq,= (C)	̃q,= + Nq,= (	) = 0 (82)



87

where:

Nq,= (	) =
'0

0

[
∇I∇8∇ 9

(
E 9E8

)
− ∇8∇8∇ 9

(
EIE 9

)
0 v⊥ · ∇⊥)

]
. (83)

In order to obtain equations for the amplitudes bq,= (C), we multiply both sides of Eq. 82
by one of the eigenmodes 	̃∗q,= (x, I) and integrate over the normalization volume, such that∫

3x
∫ 1

0
3I

{
�2

q,=	̃
∗
q,=	̃q,=

}
= Xq,q′X=,=′ , (84)

where �2
q,= = | |Ψq,= | |−2 is a normalization constant. Eq. 82 can then be rewritten as:

mbq,= (C)
mC

+ Lq,=bq,= (C) +
∫

3x
∫ 1

0
3I

{
�2

q,=〈 	̃∗q,= ,Nq,= (	)〉
}
= 0 , (85)

where 〈·, ·〉 represents the inner product and:

Lq,= =

[
0%A −@2%A/0
−'0 0

]
. (86)

The linear evolution matrix from the linear domain analysis has a second row with opposite sign
when compared to Lq,=. However, the absolute values of l are exactly the same and both satisfy
Lq,=bq,= (C) = −l(q, =)bq,= (C). Because the corresponding calculations reagarding the last term
from the left hand side of Eq. 85 are simple in principle but somewhat lengthy, we quote only the
final result. Considering the latter, now we can write equations for the amplitudes b’s with the
following structure:

mbq,= (C)
mC

= l(q, =)bq,= (C) −
∑
q′,=′

∑
q′′,=′′

�q,= ;q′,=′ ;q′′,=′′bq′,=′ (C)bq′′,=′′ (C) = 0 . (87)

where l(q, =) represents the eigenvalues found in the linear domain analysis. The equation for
the unstable mode then reads

mbq0,1

mC
=
%A (@2

0 + c
2)

%A + 1


(
'0 − '02
'02

)
−

(
@2 − @2

0

)2

@2
0(@

2
0 + c2)

 bq0,1 + �1bq0,1b0,2 . (88)

As a second step, we must consider the equation for the stable mode b0,2:

mb0,2

mC
= −(@2

0 + c
2) (%A + 1)b0,2 − �2 |bq0,1 |2 . (89)

We now invoke the principle of adiabatic elimination, i.e., since |l2 | � |l1 |, the stable
mode b0,2 adapts rapidly to any change in the unstable mode bq0,1. Accordingly we put

mbb0,2

mC
= 0 (90)
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and readily obtain

mbb0,2

mC
= − �2

(@2
0 + c2) (%A + 1)

· |bq0,1 |2 , (91)

which allow us to eliminate b0,2 in the equation for the unstable modes, which now become the
order parameters. The final equation reads

mbq0,1

mC
=
%A (@2

0 + c
2)

%A + 1


(
'0 − '02
'02

)
−

(
@2 − @2

0

)2

@2
0(@

2
0 + c2)

 bq0,1 −
�1�2

(@2
0 + c2) (%A + 1)

|bq0,1 |2bq0,1 .(92)

Since all the wave numbers from the unstable modes are close to q0, one obtains, in scaled
variables, the equivalent equation in Fourier space,

mkq

mC
=

[
Y −

(
@2 − @2

0

)2
]
kq −

∫ ∫
3q′3q′′kq−q′kq′−q′′kq . (93)

which reads, in real space,

mk(x, C)
mC

=

[
Y −

(
∇2 − @2

0

)2
]
k(x, C) − k(x, C)3 , (94)

where Y = ('0 − '02)/'02 is the bifurcation or control parameter. Since this equation is derived
for describing the planform view of Rayleigh-Bénard convection cells, we have a two-dimensional
Laplacian operator, which, in cartesian coordinates, reads: ∇2 = m2/mG2 + m2/mH2. This last
equation is known as the Swift-Hohenberg (SH) equation and a similar mathematical procedure
was performed by Jack Swift and Pierre Hohenberg, in 1977 (SWIFT; HOHENBERG, 1977), to
derive their model.
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APPENDIX B – Pseudo-spectral schemes for solving the one-dimensional
Newell-Whitehead-Segel equation

In the weakly nonlinear analysis section, a pair of coupled Newell-Whitehead-Segel
(NWS) equations (Eqs. (20) and (21)) is derived for the modes �(x, C) and �(x, C) via the multiple
scale formalism. In order to compare the amplitude envelopes from SH simulations and the
ones described by those amplitude equations, we develop numerical solutions for the NWS. The
one-dimensional (G-direction) NWS equation has the form,

mCD = Y(x)D − Um4
G D + 3VD3 , (95)

where U = 1, V = −1, C > 0 and D = D8ED(G, C) is a real function described in the regular
domain Ω : {G ∈ [0, !G]} with periodic boundary conditions (PBC) and generalized Dirichlet
boundary conditions (GDBC). Since an analytical study is not trivial for this equation, we develop
a numerical study using a semi-implicit pseudo-spectral method with first-order accuracy in
time. The Fourier approach is adopted for the configurations with periodic boundary conditions
(PBC). The Chebyshev approach is adopted for the configurations subjected to generalized
Dirichlet boundary conditions (GDBC), for dealing with the imposed boundary conditions. Both
approaches are briefly discussed in the following sections.

B.1 Fourier pseudo-spectral scheme

The eigenfunctions of the fourth-order differential operator over the domain with periodic
boundary conditions (PBC) are the Fourier modes 48: ·G (: ∈ Z#). Since m4

G 4
8: ·G = |: |448: ·G ,

Eq. (95) can be written as

mC D̂: = Y(x)D̂: − U |: |4D̂: + 3VD̂3
: , (96)

where D̂: is the Fourier coefficient associated with the mode : . The fourth order derivative
term is treated implicitly since it has a numerical stabilizing property (denoted by index = + 1).
The control parameter linear term is explicit since it is destabilizing in the scheme (denoted by
index =). The nonlinear terms are computed in real space in order to avoid computing Fourier
mode convolutions (higher computational effort) and therefore are treated explicitly. Since we
are interested in the steady state solution, a semi-implicit first order accurate in time scheme is
employed, that can be expressed as follows:

D̂=+1: = `:

(
D̂=
:
+ ΔC 5̂ =

)
, (97)
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where `: =
(
1 + UΔC:4)−1 and 5̂ = = F ( 5 (D=)) is the Fourier transform of the nonlinear

and variable coefficient terms 5 (D=) = Y(x)D= + 3V(D=)3. This transformation is performed via a
fast Fourier transform (FFT)-based code without dealiasing, using Octave FFT library.

B.2 Chebyshev pseudo-spectral scheme

Equation (95) is solved using Chebyshev spectral collocation method (BOYD, 2001).
Chebyshev polynomials of degree = have = zeros in the interval b ∈ [−1, 1] that should be
mapped to the physical domain G ∈ [0, !G]. For that purpose, a simple mapping is chosen:
G = 0.5(b + 1)!G . The numerical scheme can be expressed as(
� + UΔC�4

G

)
D=+1 = D= + ΔC 5 = , (98)

where 5 = = Y(x)D=+3V(D=)3 and �4
G is the Chebyshev collocation for the fourth-order differential

operator on the mapped domain. This system of linear equations is solved subjected to the
boundary conditions for the amplitude �. For such purpose we adopted � = m�/mG = 0, for the
boundary points G = 0 and G = !G . These conditions are consistent with the GDBC used in the
SH equation simulations, for the order parameter k.
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APPENDIX C – Pseudo-spectral scheme for solving the two-dimensional Swift-Hohenberg
equation in periodic domains

Larger computational domains tend to become expensive in terms of computing power
and time, since it corresponds to dealing with very large matrices within the code. Spectral
methods are usually employed to partially overcome this issue, and their implementation is very
straightforward for regular geometries using periodic boundary conditions, which are the main
focus here. For the sake of the completeness of this work, in this Appendix, a semi-implicit
pseudo-spectral scheme has second-order accuracy in time is presented. The order parameter D
is computed after each time step using a combination of Crank-Nicolson and Adams-Bashforth
schemes in Fourier space. For such task, we respectively define the linear operator !@, and the
Fourier transform #@ of the nonlinear terms as

!@ = lD̂@ =
[
−(@2 − @2

0)
2] D̂@ ,

#@ = F
(
n (x)D − D3) .

We then use a combination of the implicit Crank-Nicolson (CN) scheme for the linear
terms with an explicit, second-order Adams-Bashforth (AB) scheme for the nonlinear terms in
Fourier space to integrate eq. (8),

D̂=+1@ − D̂=@
ΔC

=
1
2

[
(lD̂@)=+1 + (lD̂@)=

]
+ 1

2
[
3#=@ − #=−1

@

]
.

Then, we obtain D for the new time,

D̂=+1@ =

(
1 + ΔC

2
l=

)
D̂=@ +

ΔC

2

(
3#=@ − #=−1

@

)
(
1 − ΔC

2
l=+1

) .

Returning to physical space by using the iFFT then reads

D=+1 = F −1(D̂=+1@ ) .

Since l = −(@2 − @2
0)

2, the quantity (1 − (ΔC/2)l=) > 1, which is required for numerical
stability of the linear part, at least. Note that l=+1 ≡ l=, so a single l can be evaluated before the
main loop, which is desired for implementing parallel code processing, allow higher performance
computing.
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APPENDIX D – Computational implementation

The code solves the Swift-Hohenberg evolution equation for the order parameter through
an inhouse developed Python code which relies on the Numpy, Scipy library, and other standard
libraries for data processing. Sparse matrices are implemented in order to reduce computational
cost in the simulations. This code is available on github.com/dancoelho/swifthohenberg.

Most of the numerical simulations were carried out on the computers of the Laboratory
of Numerical Tests (LEN) from the Group for Environmental Studies in Reservoirs (GESAR),
and a personal computer with the following configuration, respectively:

★ AMD FX-8350 4GHz with 8 Cores, 32GB of RAM memory. HDD: 1TB. Operational
system: LINUX Ubuntu 18.04 LTS, with Python 3.5.

★ Intel(R) Core(TM) i5-3330 CPU @ 3.00GHz, 4 Cores, 16GB of RAM memory. SSD:
120GB; HDD: 1TB. Operational system: Windows 10 Professional, with Python 3.5.

https://github.com/dancoelho/swifthohenberg
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APPENDIX E – Conference Proceeding and Journal Publications

During the development of the present master thesis, a conference proceeding was
produced, submitted, and accepted for oral presentation at the 25th International Congress of
Mechanical Engineering (COBEM). The event, that started on October 20th, 2019, took place in
Uberlândia Federal University (UFU), Uberlândia MG, Brazil.

★ COELHO, D. L., VITRAL E., PONTES, J., MAGIAVACCHI, N. Pattern formation
survey on nonuniformly forced Swift-Hohenberg equation. 25th International Congress of
Mechanical Engineering (COBEM), 2019. [ResearchGate]

Some manuscripts containing developments and results from the present work were
produced and submitted to two Journals. They are already considered for publication and are
currently under review process. The first manuscript contains the numerical framework exposed
in Chapter 3 and was submitted to Journal of Computational and Applied Mathematics (JCAM)
on March 25th, 2020:

★ COELHO, D. L., VITRAL E., PONTES, J., MAGIAVACCHI, N. Numerical scheme for
solving the nonuniformly forced cubic and quintic Swift-Hohenberg equations strictly
respecting the Lyapunov functional. Submitted to Journal of Computational and Applied
Mathematics, Elsevier Science, 2020. [arXiv]

The second manuscript addresses questions about the preferred orientation of stripe
patterns (using SH equation) in the presence of a gradient of the bifurcation/control parameter
exposed in Chapter 2 and was submitted to Physical D: Nonlinear Phenomena on February 26th,
2021:

★ COELHO, D. L., VITRAL E., PONTES, J., MAGIAVACCHI, N. Stripe patterns orientation
resulting from nonuniform forcings and other competitive effects in the Swift-Hohenberg
dynamics. Submitted to Physica D, Elsevier Science, 2021. [arXiv]

Both submitted manuscripts are available on https://arxiv.org/, and are attached
by the end of this appendix, respectively.

https://www.researchgate.net/publication/336956293_Pattern_Formation_Survey_on_Non_Uniformly_Forced_Swift-Hohenberg_Equation
https://arxiv.org/abs/2007.16080
https://arxiv.org/abs/2008.00319
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