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RESUMO

HOLNESS, Elly d'Alcantara Fonseca Controle Extremal Simpli�cado Baseada no Gra-

diente para Mapas Estáticos Multivariáveis com Diferentes Atrasos de Entrada. 65 f.

Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universi-

dade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 2020.

Este estudo aborda a análise e projeto de controle extremal multivariável para

mapas estáticos sujeitos a atrasos arbitrariamente longos. O método do gradiente é con-

siderado. São tratados os sistemas de múltiplas entradas com atrasos diferentes em cada

canal de entrada. No método alternativo, a compensação de fase dos sinais de excitação e

a inclusão de feedback do preditor com uma estimativa da Hessiana baseada em perturba-

ção (baseada na média) permitem obter resultados de convergência exponencial local para

uma pequena vizinhança do ponto ótimo, mesmo na presença de atrasos. A análise de

estabilidade é realizada sem o uso de transformação backstepping, que também elimina

a complexidade do controlador. Em suma, assegura-se um esquema de implementação

mais simples e análise direta sem invocar sucessivas transformações de backstepping. Um

exemplo númerico ilustra o desempenho do controle extremal com compensação de atraso

e sua simplicidade.

Palavras-chave: Controle adaptativo; Método gradiente de controle extremal; Otimização

em tempo real; Realimentação por preditor; Sistemas com atraso.



ABSTRACT

HOLNESS, Elly d'Alcantara Fonseca A Simpli�ed Gradient-Based Extremum Seeking for

Multivariable Static Maps with Di�erent Input Time Delays. 65 f. Dissertação (Mestrado

em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio

de Janeiro (UERJ), Rio de Janeiro, 2020.

This study addresses the design and analysis of multivariable Extremum Seeking for

static maps subject to arbitrarily long time delays. Gradient-based method is considered.

Multi-input systems with di�erent time delays in each individual input channel are dealt

with. In the alternative method the phase compensation of the dither signals and the

inclusion of predictor feedback with a perturbation-based (averaging-based) estimate of

the Hessian allow to obtain local exponential convergence results to a small neighborhood

of the optimal point, even in the presence of delays. The stability analysis is carried

without using backstepping transformation, which also eliminates the complexity of the

controller. In a nutshell, a simpler implementation scheme and direct analysis without

invoking successive backstepping transformation can be assured. A numerical example

illustrates the performance of the proposed delay-compensated extremum seeking scheme

and its simplicity.

Keywords: Adaptive control; Gradient extremum seeking; Real-time optimization; Pre-

dictor feedback; Delay systems.
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INTRODUCTION

Extremum seeking (ES) is a method for real-time non-model based optimization.

The adaptive control method is used for tuning parameters when there is a nonlinearity in

the control problem with a local maximum or minimum. The most popular ES approach

relies on a small periodic excitation, usually sinusoidal, to disturb the parameters being

tuned [2�8]. This approach quanti�es the e�ects of the parameters on the output of the

nonlinear map, then uses that information to generate the search of the optimal values.

This work analyses Extremum Seeking with delays, starting from a review of dif-

ferent approaches for Extremum Seeking schemes with delays in the literature. The �nal

goal is to present an alternative gradient-based extremum seeking control for multiva-

riables static maps with di�erent input time delays. Simulation results based on this

alternative method are also presented.

History

In recent years, there have been a lot of advances in theory and applications of ES.

This list includes the proof of local [2�4] or semi-global [7] stability properties of the search

algorithm even in the presence of local extrema [8], its extension to the multivariable case

[9] and advances in parameter convergence and performance improvement [5,6,10,11]. The

book [12] also presents stochastic versions of the algorithm with �ltered noise perturbation

signals.

A lot of processes in di�erent sectors of industry have to deal with delays that

interfere in the stability and performance of the systems. These delays can be caused by

properties intrinsic to the process, in the input of the control signal (input delays), or in

the measurement of the controlled variables (output delays). Additionally, delays can be

constant of variant in time, known or unknown.

Recently, the in�nite-dimensional backstepping transformation [13] had shed light

on new predictor feedback designs for delay compensation. Such a methodology has

opened the possibility to construct explicit Lyapunov functionals for stability analysis or

to quantify the performance and the robustness of the predictor based control scheme.

The motivation for this study is that there are applications in which post-processing
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of the plant's measured output translates into a considerable delay in generating the

control input to be applied to the plant.

The work in [14] proposes a solution to the problem of multivariable ES algorithms

for output and/or equal input delay systems via predictor feedback, presenting two ap-

proaches to construct a predictor via perturbation-based estimates of the model. The �rst

one is based on gradient optimization where they estimate the Hessian ( [9]; [15]) for the

purpose of implementing a predictor that compensates the delay. The second approach

is based on the Newton optimization where they estimate the Hessian's inverse for the

purpose of making the convergence rate independent of the unknown parameters of the

map.

The publication in [16] extends the result from [14] to multiple and distinct input

delays, for both gradient and Newton methods. In order to compensate multiple distinct

delays in multivariable ES, they have developed an extension of the predictor feedback

approach for the multi-input case with distinct delays through the introduction of a new

successive-backstepping transformation [17]. The result is a very complex predictor de-

sign with stability analysis being carried out by using a novel successive backstepping

transformation and averaging in in�nite dimensions.

The publication [16] extends the result to multiple and distinct input delays, for

both gradient and Newton methods, resulting in a very complex predictor design with sta-

bility analysis being carried out by using a novel successive backstepping transformation

and averaging in in�nite dimensions. On the other hand, [18] proposes new designs for

multivariable extremum seeking for static maps with arbitrarily long time delays. Such a

sequential predictor based approach eliminates the need for distributed terms. However,

in sequential predictors larger delays or higher-dimension maps require smaller values of

the dither excitation frequencies and therefore lead to slower convergence.

In contrast to [16], an alternative gradient-based extremum seeking scheme is pre-

sented in this dissertation that does not require backstepping transformation, which also

leads to a much more simple control feedback structure. Indeed, this is the �rst result

for predictor-feedback extremum seeking (with distributed terms) where the backstepping

transformation is not employed. Moreover, the advantages of this metodology over the

results in [18] seems to be that the delays in our approach are independent of the dither

frequency and system's dimension, which means that we do not need to consider smaller
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delays (or lower-order maps) to achieve faster convergence rates.

Methodology

The methodology used during the development of this study is:

• Statement of the control problem. A static quadratic map will be used for simplicity,

and the general premise is that the delays are known.

• Controller proposal based predictor feedback with perturbation-based estimate of

the Hessian;

• Stability analysis for the average system to conclude local exponential convergence;

• Simulation for R2 → R system. The size of the system was chosen for computational

simplicity, as the controller equations in a R2 → R system is already very complex.

Notation and Norms

Considering a non linear generic systems ẋ = f(t, x, ε), where x ∈ Rn, f(x, t, ε)

is periodic in t period T , which means, f(t + T, x, ε) = f(t, x, ε). Then, for ε > 0

su�ciently small, it is possible to obtain the medium model given by ẋav = fav(xav), with

fav(x) =
1

T

∫ T
0
f(τ, xav, 0)dτ , where xav denotes the medium version of the state x(t) [19].

[19] de�nes a vector function f(t, ε) ∈ R that is said to be of order O(ε) inside the

interval [t1, t2] if there are positive constants k and ε∗ such that |f(t, ε)| ≤ Kε ∀ε ∈ [t1, t2]

and ∀t ∈ [t1, t2] . Sometimes it is possible to estimate k and ε∗ and with that quantify

O(ε). Otherwise O(ε) should be considered the order of magnitude for ε su�ciently small.

Averaging Theorem for FDE [20]

Consider the system with delay

ẋ = f
( t
ε
, xt

)
, para t > 0
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where ε is a real parameter, xt(Θ) = x(t+ Θ) for −r ≤ Θ ≤ 0. Let Ω be a neighbourhood

of 0 in X = C([−r, 0];Rn), the supremum normed Banach space of continuous functions

from [−r, 0] to Rn. Suppose f : R× Ω→ Rn is continuous.

For ϕ ∈ Ω we assume that f(t, ϕ) is almost periodic in t uniformly with respect to

ϕ in compact subsets of Ω and f has a continuous Fréchet derivative ∂(f, ϕ)/∂ϕx in ϕ on

R× Ω.

If y = y0 ∈ Ω is a exponentially stable equilibrium to the averaged system ẏ(t) =

fo(yt), para t > 0, where

f0(ϕ) = lim
T→∞

(1/T )

∫ T

0

f(s, ϕ)ds,

then, for some ε0 > 0 and 0 ≤ ε ≤ ε0, there exists a single periodic solution t 7−→ x∗(t, ε)

to the system with the properties of being continuous in t and ε, satisfying |x∗(t, ε)−y0| ≤
O(ε) para t ∈ R, and there exists ρ > 0 such that, if x(.; ρ) is a periodic solution to the

system with x(s) = ϕ and |ϕ− y0| < ρ, then |x(t)− x∗(t, ε)| ≤ Ce−γ(t−s), for C > 0 and

γ > 0.

Important Inequalities

In this work the inequalities of Cauchy-Schuarz are frequenty used, therefore they

are de�ned here in the domain [0, D].

Cauchy-Schwarz Inequality

∫ D

0

u(x, t)ω(x, t)dx ≤ ||u(t)|| ||ω(t)|| (1)

Young's Inequality

ab ≤ γ

2
a2 +

1

2γ
b2, γ > 0. (2)

Structure of the Study
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This work is divided in four chapters aiming to review the di�erent approaches of

multivariable Extremum Seeking with delays.

Chapter 1 is a review of the Extremum Seeking method for scalar nonlinear static

maps.

Chapter 2 will review the gradient approach for multivariable Extremum Seeking

with output and/or equal input delays presented in [14], whereas Chapter 3 will present

the extended solution for di�erent input delays proposed in [16]. In both cases stability

analysis is carried out by Lyapunov functionals for predictor feedback via backstepping

transformation.

Chapter 4 will present the alternative scheme proposed by [1] for di�erent input

delays, with stability analysis and simulation results for a R2 → R static map.
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1 EXTREMUM SEEKING REVIEW

Extremum seeking (ES) control is a real-time, model independent adaptive control tech-

nique for tuning parameters to optimize an unknown nonlinear map. The most popular

extremum seeking approach relies on a small periodic excitation, usually sinusoidal, to

disturb the parameters being tuned. This approach quanti�es the e�ects of the parame-

ters on the output of the nonlinear map, then uses that information to generate the search

of the optimal parameter values.

Figure 1 shows the simplest perturbation-based Extremum Seeking scheme for a

quadractic multivariable map y = Q(θ) = Q∗+ 1
2
(θ− θ∗)TH(θ− θ∗), where θ is the input

vector θ = [θ1, θ2, · · · , θn]T and Q∗ is the extremum.

K

Figure 1 Simple perturbation-based Extremum Seeking scheme for an unknown multiva-
riable map y = Q(·).

Three types of θ are presented in the control scheme, being θ∗ the unknown opti-

mizer of the map, θ̂(t) the real time estimate of θ∗ and θ(t) the actual input into the map.

The optimal output y∗ and Hessian H are also unknown. The user has to know whether

the map has a maximum or a minimum i.e. the signal of the Hessian H.

The estimate θ̂(t) is generated by the integrator K/s where the diagonal gain

matrix K controls the speed of estimation for each input.

The dither signals that are used for the estimate the gradient are de�ned as

S(t) =
[
a1 sin(ω1t) ... an sin(ωnt)

]T
(3)
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M(t) =

[
2

a1

sin(ω1t) ...
2

an
sin(ωnt)

]T
(4)

where ai 6= 0. The sine wave was chosen for the perturbation signal, although a lot of other

persistent perturbation could be used instead, from square waives to stochastic noise, as

long as they have zero average. To guarantee convergence, ωi 6= ωj. And for simplicity

in the convergence analysis, user should choose ωi/ωj as rational and ωi + ωj 6= ωk for

distinct i, j, and k.

The Extremum Seeking algorithm is successful if the error θ̃(t) between the esti-

mate θ̂(t) and the unknown θ∗ converges towards zero.

θ̃(t) = θ̂(t)− θ∗ (5)

From Figure 1, ˙̂
θ = KM(t)y(t). Considering the quadratic map, the estimation

error is governed by

˙̃θ = KM(t)

[
Q∗ +

1

2
(θ − θ∗)TH(θ − θ∗)

]
(6)

But θ(t) = θ̂(t) + S(t) so by replacing right side of (6) in terms of θ̃ in (5)we have

˙̃θ = KM(t)Q∗ +
KM(t)

2
(θ̃ + S(t))TH(θ̃ + S(t)) (7)

Considering the sinusoidal components of M(t) and S(t), the averaged system is

given by

˙̃θav = KHθ̃av. (8)

If, for example, the map Q(·) has a maximum that is locally quadratic (which

implies H = HT < 0), and if user chooses the elements of the diagonal gain matrix

K as positive, the gradient-based ES algorithm is guaranteed to be locally convergent.

However, the convergence rate depends on the unknown Hessian H.

In the next chapters this basic scheme for Extremum Seeking Control will be

extended to encompass delays in the control signal (input channels) or measurement of

controlled variables (output channels), considering also multivariable problems.
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1.1 Simulation Results

In order to evaluate the multidimentional version of the delay-free extremum seeking

control, we consider the following static quadratic map, in the diagram of Figure 1 in a

n = 2 example:

Q(θ) = 1 +
1

2

(
2(θ1)2 + 4(θ2 − 1)2 + 4θ1(θ2 − 1)

)
. (9)

The extremum points are θ∗ = (0, 1) and y∗ = 1. Test was performed with diagonal

K = diag{K1, K2} where K1 = 1
100

, K2 = 1
200

, and parameters a1 = a2 = 0.05, ω = 0.5,

ω1 = 17.5ω, ω2 = 12.5ω, and θ̂(0) = (1, 1).

Figure 2 ES with no delays: time response for y(t) and parameter θ(t)

Figure 2 shows the time response for y(t) and θ(t) respectively for the extremum

seeking control with no delays. The control scheme properly stabilise the system.
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2 MULTIVARIABLE GRADIENT ES WITH OUTPUT AND/OR EQUAL

INPUT DELAYS

Multivariable Extremum Seeking control considers applications in which the goal is to

maximize (or minimize) the scalar output y ∈ R of an unknown non-linear static map

y = Q(θ) by varying the input vector θ = [θ1 θ2 · · · θn]T .

In this case we assume that a delayD ≥ 0 is constant and known, and the measured

output is given by

y(t) = Q(θ(t−D)). (10)

The system was assumed to be output delayed, however the results can be extended

to the input-delay case, as long as they are the same in each individual input channel.

The case when input delays Din and output delays Dout occur simultaneously could also

be handled, by assuming that the total delay to be counteract would be D = Din +Dout

with Din, Dout ≥ 0.

Without loss of generality, let us consider the maximum seeking problem such that

the maximizing value of θ is denoted by θ∗. For the sake of simplicity, we also assume

that the non-linear map is quadratic, i.e.,

y(θ) = y∗ +
1

2
(θ − θ∗)TH(θ − θ∗), (11)

where besides the constants θ∗ ∈ Rn and y∗ ∈ R being unknown, H = HT < 0 is the

n× n unknown Hessian matrix of the static map.

Let θ̂ be the estimate of θ∗ and

θ̃(t) = θ̂(t)− θ∗ (12)

be the estimation error. From Figure 3, we obtain

G(t) = M(t)y(t) (13)

θ(t) = θ̂(t) + S(t) (14)

where the vector dither signals are given by
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+

+

+

S(t)

1
s

1
s

c
s+c K ×

×

M(t)

Q(·) e−Ds

e−Ds

× N(t)

θ̂

Q(θ) y

GU

θ

Ĥ

Predictor

−

Figure 3 Block diagram of the basic prediction scheme for output-delay [1] compensation
in multivariable gradient ES.

S(t) =
[
a1 sin(ω1t) ... an sin(ωnt)

]T
(15)

M(t) =

[
2

a1

sin(ω1(t−D)) ...
2

an
sin(ωn(t−D))

]T
(16)

with non-zero perturbation amplitudes ai and frequencies ωi 6= ωj . For simplicity in the

convergence analysis, we should choose ωi/ωj as a rational and ωi + ωj 6= ωk for distinct

i, j, k [9].

Notice that equation (16) is di�erent from the multiplicative vector dither signal

used in classical extremum seeking showed in Chapter 1. The phase shift −ωiD is the

�rst measure employed here to compensate the output delay in (10).

The probing frequencies ωi's can be selected as

ωi = ω′iω = O(ω), i ∈ 1, 2, · · · , n, (17)

where ω is a positive constant and ω′i is a rational number. One possible choice is given

in [9] as

ω′i /∈
{
ω′j,

1

2
(ω′j + ω′k), ω

′
j + 2ω′k, ω

′
j + ω′k ± ω′l

}
, (18)

for all distinct i, j, k and l.
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2.1 Averaging Analysis without Predictor Compensation

If the classical gradient Extremum Seeking control feedback law U(t) = KG(t) was ap-

plied, one could write ˙̃θ(t) =
˙̂
θ(t) = KG(t), where K > 0 is a n × n positive diagonal

matrix. From (10), (13) and (14), the closed loop system would be written as:

˙̃θ = KM(t)Q(θ∗ + S(t) + θ̃(t−D)), (19)

in the parameter error variable (12). For the case of a quadratic map (11), by taking Π

as

Π = 2π × LCM

{
1

ωi

}
, ∀i ∈ {1, 2, · · · , n}, (20)

where LCM stands for the least common multiple and using the following identities

1

Π

∫ Π

0

M(σ)Q∗dσ = 0, (21)

1

Π

∫ Π

0

M(σ)

2
(θ̃ + S(σ))TH(θ̃ + S(σ))dσ = Hθ̃, (22)

to average (19), we would obtain:

dθ̃av(t)

dt
= KHθ̃av(t−D) (23)

From (23), it is clear that the equilibrium θ̃eav = 0 of the average system is not

necessarily stable for arbitrary values of the delay D. This reinforces the necessity of

applying the prediction U(t) = KG(t+D), ∀t ≥ 0 to stabilize the system.

2.2 Preditor Feedback via Hessian Estimation

The idea of the predictor feedback [14] is to compensate for the delay by feeding back

the future state G(t + D), or Gav(t + D) in the equivalent average system. The average

version of the vector signal (13) is given by

Gav = Hθ̃av(t−D), (24)

generated by the following average system
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˙̃θav(t−D) = Uav(t−D), (25)

since

˙̃θ(t−D) = U(t−D) (26)

with U ∈ Rn and Uav ∈ Rn. Consequently,

Ġav(t) = HUav(t−D). (27)

Given the stabilizing diagonal matrix K > 0 for the undelayed system, our wish is

to have a controller that achieves

Uav(t) = KGav(t+D), ∀t ≥ 0, (28)

and it appears to be non implementable since it requires future values of the state. Howe-

ver, by applying the variation of constants formula to (27) we can express the future state

as

Gav(t+D) = Gav(t) +H

∫ t+D

t

Uav(σ −D)dσ (29)

where the current state Gav(t) is the initial condition. Shifting the time variable under

the integral in (29), we obtain

Gav(t+D) = Gav(t) +H

∫ t

t−D
Uav(σ)dσ, (30)

which gives the future state Gav(t+D) in terms of the average control signal Uav(σ) from

the past window [t−D, t]. It yields the following feedback law

Uav(t) = K

[
Gav(t) +H

∫ t

t−D
Uav(σ)dσ

]
. (31)

Hence, from (30) and (31), the average feedback law (28) can be obtained indeed

as desired. Consequently,

˙̃θav(t) = KGav(t+D), ∀t ≥ 0, (32)
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Therefore, from (24), one has

dθ̃av(t)

dt
= KHθ̃av(t), ∀t ≥ D, (33)

with an exponentially attractive equilibrium θ̃eav = 0, since KH < 0. It means that the

delay is perfectly compensated in D seconds, namely, the system evolves as if the delay

were absent after D seconds.

Next, we show that the control objectives can still be achieved if a simple modi-

�cation of the above basic predictor-based controller, which employs a low-pass �lter, is

applied. In this case, we propose the following in�nitedimensional and averaging-based

predictor feedback in order to compensate the delay [21]

U(t) =
c

s+ c

{
K

[
G(t) + Ĥ(t)

∫ t

t−D
U(τ)dτ

]}
, K > 0 (34)

where c > 0 is su�ciently large, i.e., the predictor feedback is of the form of a low-pass

�ltered of the non average version of (31). This low pass �ltering is particularly required

in the stability analysis when the averaging theorem in in�nite dimensions [20] is invoked.

Basically, the output delay is handled as a state delay in the averaging theorem when we

introduce the lag �lter. Note that we mix the time and frequency domains in (34) by using

the braces {·} to denote that the transfer function acts as an operator on a time-domain

function.

The predictor feedback (34) is in�nite-dimensional because the integral involves

the control history over the interval [t − D, t]. On the other hand, it is averaging-base

(perturbation-based) because Ĥ is updated according to the estimate of the unknown

Hessian H:

Ĥ(t) = N(t)y(t) (35)

satisfying the following averaging property

1

Π

∫ Π

0

N(σ)ydσ = H, (36)

demonstrated in [9] if a quadratic map as in (11) is considered. In other words, the average

version Ĥav = (Ny)av = H.
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The elements of the n× n demodulating matrix N(t) for generating the estimate

of the Hessian are given by:

Nij(t) =


16

a2
i

(
sin2(ωi(t−D))− 1

2

)
, i = j

4

aiaj
sin(ωi(t−D)) sin(ωj(t−D)), i 6= j

(37)

2.3 Stability Analysis

The feedback law (34) seems to be implicit since U is present on both sides. However, the

input memory U(σ), where σ ∈ [t − D, t], is part of the state of an in�nite-dimensional

system, and thus the control law is e�ectively a complete-state-feedback controller.

However, the analysis sketched previously does not capture the entire system con-

sisting of the ODE in (27) and the in�nite-dimensional subsystem of the input delay. The

developments in [13] make it possible to address these concerns due to the availability of

Lyapunov functions for predictor feedback via backstepping transformation. The backs-

tepping construction permits a stability analysis of the complete feedback system with

the cascade PDE-ODE described below and the in�nite-dimensional control law (34),

resulting in an exponential stability estimate in the appropriate norm of this system.

By applying averaging theorem in in�nite dimensions [20], we can state the fol-

lowing stability result for gradient Extremum Seeking control in the presence of output

delays.

Theorem 1. Consider the control system in Figure 3 with delayed output (10)

and non-linear map (11). There exists c∗ > 0 such that, ∀c ≥ c∗, ∃ω∗(c) > 0 such

that, ∀ω > ω∗, the closed-loop delayed system (26) and (34) with state θ̃(t − D), U(τ),

∀τ ∈ [t−D, t], has a unique exponentially stable periodic solution in t of period Π, denoted

by θ̃Π(t−D), UΠ(τ), ∀τ ∈ [t−D, t], satisfying, ∀t ≥ 0:

(∣∣∣θ̃Π(t−D)
∣∣∣2 +

∣∣UΠ(t)
∣∣2 +

∫ t

t−D

∣∣UΠ(τ)
∣∣2 dτ)1/2

≤ O(1/ω). (38)

Furthermore,

lim sup
t→+∞

|θ(t)− θ∗| = O(|a|+ 1/ω), (39)

lim sup
t→+∞

|y(t)− y∗| = O(|a|2 + 1/ω2), (40)
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where a = [a1 a3 · · · an]T .

Proof: The demonstration follows the Steps 1 to 8 below.

Step 1: Transport PDE for Delay Representation

˙̃θ(t−D) = u(0, t), (41)

ut(x, t) = ux(x, t), x ∈ [0, D], (42)

u(D, t) = U(t), (43)

with solution

u(x, t) = U(t+ x−D) (44)

Step 2: Equations of the Closed-loop System

First, plug (12) and (14) into (11) so that the output is given in term of θ̃:

y(t) = y∗ +
1

2
(θ̃(t−D) + S(t−D))TH(θ̃(t−D) + S(t−D)) (45)

By plugging (13) and (35) into (34), and representing the integrand in (34) using

the transport PDE state, one has

U(t) =
c

s+ c

{
K

[
M(t)y(t) +N(t)y(t)

∫ D

0

u(σ, t)dσ

]}
. (46)

Finally, substituting (46) into (43), we can rewrite (41)-(43) as

˙̃θ(t−D) = u(0, t), (47)

∂tu(x, t) = ∂xu(x, t), x ∈ [0, D], (48)

u(D, t) =
c

s+ c

{
K

[
M(t)y(t) +N(t)y(t)

∫ D

0

u(σ, t)dσ

]}
, (49)

with solution
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uav(x, t) = Uav(t+ x−D). (50)

Step 3: Average Model of the Closed-loop System

Analogously to the computation carried out in [9], the following two averaging

properties can be obtained if a quadratic map as in (46) is considered:

1

Π

∫ Π

0

M(λ)ydλ = Hθ̃av(t−D), (51)

and

1

Π

∫ Π

0

N(λ)yūdλ = H

∫ D

0

uav(σ, t)dσ (52)

where ū(t) =
∫ D

0
u(σ, t)dσ, whereas θ̃av(t − D) and uav(σ, t) denote the average

versions of θ̃(t−D) and u(σ, t) respectively.

Now denoting

ϑ̃(t) = θ̃(t−D) (53)

and using (34), the average version of system (47)-(49) is:

˙̃ϑav(t) = uav(0, t), (54)

∂tuav(x, t) = ∂xuav(x, t), x ∈ [0, D], (55)

d

dt
uav(D, t) = −cuav(D, t) + cKH

[
ϑ̃av(t) +

∫ D

0

uav(σ, t)dσ

]
, (56)

where the �lter c/s+ c is also in the state-space form.

Step 4: Backstepping transformation, its inverse and the target system

Now, consider the following backstepping transformation [13]

w(x, t) = uav(x, t)−KH
[
ϑ̃av(t) +

∫ x

0

uav(σ, t)dσ

]
, (57)

with which we want to map the system (54)-(56) into the target system:
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˙̃ϑav(t) = KHϑ̃av(t) + w(0, t), (58)

wt(x, t) = wx(x, t), x ∈ [0, D], (59)

w(D, t) = −1

c
∂tuav(D, t) (60)

which is the cascade of the transport PDE subsystem (59) with boundary condition (60)

and the exponentially stable system ˙̃ϑav = KHϑ̃av in (58), reminding that KH < 0. Note

that, using (57) for x = D and the fact that uav(D, t) = Uav(t), from (60) we get (56),

i.e., the explicit equation of the average control version of (34)

Uav(t) =
c

s+ c

{
KH

[
ϑ̃av(t) +

∫ D

0

uav(σ, t)dσ

]}
. (61)

It is easily seen that

wt(D, t) = ∂tuav(D, t)−KHuav(D, t), (62)

where ∂tuav(d, t) = U̇av(t). The inverse of (61) is given by

uav(x, t) = w(x, t) +KH

[
eKHxϑ̃av(t) +

∫ x

0

eKH(x−σ)w(σ, t)dσ

]
. (63)

Applying (60) and (63) into (62) we get

wt(D, t) = −cw(D, t)−KHw(D, t)− (KH)2

[
eKHDϑ̃av(t) +

∫ D

0
eKH(D−σ)w(σ, t)dσ

]
. (64)

Step 5: Lyapunov-Krasovskii Funcional

Since the transport PDE (59)-(60) is an exponentially stable system for c > 0

su�ciently large [21], the overall cascade (58)-(60) is exponentially stable. This fact is

established with the Lyapunov functional [14]
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V (t) = ϑ̃av(t)TPϑ̃av(t) +
a

2

∫ D

0

(1 + x)w(x, t)Tw(x, t)dx+
1

2
w(D, t)Tw(D, t), (65)

where P = P T > 0 is the solution of the Lyapunov equation

P (KH) + (KH)TP = −Q, (66)

for some Q = QT > 0, and the parameter a > 0 is to be chosen later. We have

V̇ (t) = ϑ̃Tav((KH)TP + P (KH))ϑ̃av + 2ϑ̃TavPw(0, t)

+a

∫ D

0

(1 + x)w(x, t)Twx(x, t)dx+ w(D, t)Twt(D, t)

= −ϑ̃TavQϑ̃av + 2ϑ̃TavPw(0, t) +
a(1 +D)

2
w(D, t)Tw(D, t)− a

2
w(0, t)Tw(0, t)

−a
2

∫ D

0

w(x, t)Tw(x, t)dx+ w(D, t)Twt(D, t)

≤ −ϑ̃TavQϑ̃av +
2

a

∣∣∣ϑ̃TavP
∣∣∣2 − a

2

∫ D

0

w(x, t)Tw(x, t)dx

+w(D, t)T
[
wt(D, t) +

a(1 +D)

2
w(D, t)

]
.

Let us choose

a = 4
λmax(P 2)

λmin(Q)
. (67)

where λmin and λmax are minimum and maximum eigenvalues of the corresponding ma-

trices. Then,

V̇ (t) ≤ −1

2
λmin(Q)

∣∣∣ϑ̃av(t)
∣∣∣2 − a

2

∫ D

0

w(x, t)Tw(x, t)dx

+w(D, t)T
[
wt(D, t) +

a(1 +D)

2
w(D, t)

]
. (68)

Now we consider (68) along with (64). With a completion of squares, we obtain
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V̇ (t) ≤ −1

4
λmin(Q)

∣∣∣ϑ̃av(t)
∣∣∣2 − a

4

∫ D

0

w(x, t)Tw(x, t)dx

+

∣∣(KH)2eKHD
∣∣2

λmin(Q)
|w(D, t)|2 +

1

a

∥∥(KH)2eKH(D−σ)
∥∥2 |w(D, t)|2

+

[
a(1 +D)

2
+ |KH|

]
|w(D, t)|2 − c |w(D, t)|2 . (69)

To obtain (69), we have used:

−w(D, t)T
〈
(KH)2eKH(D−σ) , w(σ, t)

〉
≤ |w(D, t)|

∥∥(KH)2eKH(D−σ)
∥∥ ‖w(t)‖ (70)

≤ a

4
‖w(t)‖2 +

1

a

∥∥(KH)2eKH(D−σ)
∥∥2 |w(D, t)|2 ,

where the �rst inequality is the Cauchy-Schwartz and the second is Young's, the notation

〈· , ·〉 denotes the inner product in the spatial variable σ ∈ [0 , D], on which both eKH(D−σ)

and w(σ, t) depend, and ‖ · ‖ denotes the L2 norm in σ, i.e.,

∥∥(KH)2eKH(D−σ)
∥∥2

= (KH)2

∫ D

0

e2KH(D−σ)dσ (71)

‖w(t)‖2 =

∫ D

0

w(σ, t)Tw(σ, t)dσ =

∫ D

0

|w(σ, t)|2dσ .

Then, from (69), we arrive at

V̇ (t) ≤ −1

4
λmin(Q)

∣∣∣ϑ̃av(t)
∣∣∣2 − a

4(1 +D)

∫ D

0

(1 + x)w(x, t)Tw(x, t)dx

−(c− c∗)w(D, t)Tw(D, t) , (72)

where

c∗ =
a(1 +D)

2
+ |KH|+

∣∣(KH)2eKHD
∣∣2

λmin(Q)
+

1

a

∥∥(KH)2eKH(D−σ)
∥∥2

. (73)

Hence, from (72), if c is chosen such that c > c∗, we obtain



28

V̇ (t) ≤ −µV (t) , (74)

for some µ > 0. Thus, the closed-loop system is exponentially stable in the sense of the

full state norm

(
|ϑ̃av(t)|2 +

∫ D

0

w(x, t)Tw(x, t)dx+ w(D, t)Tw(D, t)

)1/2

, (75)

i.e., in the transformed variable (ϑ̃av , w).

Step 6: Exponential Stability Estimate (in L2 norm) for the Average System

(54)-(56)

To obtain exponential stability in the sense of
(
|ϑ̃av(t)|2 +

∫ D
0
|uav(x, t)|2dx+

|uav(D, t)|2
)1/2

L2 norm for the average system, we need to show that there exist positive

numbers α1 and α2 such that

α1

(
|ϑ̃av(t)|2+

∫ D

0

|uav(x, t)|2dx+|uav(D, t)|2
)
≤V (t)≤α2

(
|ϑ̃av(t)|2+

∫ D

0

|uav(x, t)|2dx+|uav(D, t)|2
)
.

(76)

This is straightforward to establish by using (57), (63), (65) and employing the

Cauchy-Schwartz inequality and other calculations, as in the proof of Theorem 2.1 from

[13].

Hence, with (63), we get

|ϑ̃av(t)|2+
∫ D

0
|uav(x, t)|2dx+|uav(D, t)|2≤ α2

α1
e−µt

(
|ϑ̃av(0)|2+

∫ D

0
|uav(x, 0)|2dx+|uav(D, 0)|2

)
,

(77)

which completes the proof of exponential stability.

Step 7: Invoking Averaging Theorem

To invoke the averaging theorem, �rst note that the closed-loop system (26) and
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(34) can be rewritten as:

˙̃θ(t−D) = U(t−D) , (78)

U̇(t) = −cU(t) + c

{
K

[
G(t) + Ĥ(t)

∫ t

t−D
U(τ)dτ

]}
, (79)

where z(t) = [θ̃(t − D), U(t)]T is the state vector. Moreover, from (13) and (35),

one has

ż(t) = f(ωt, zt) , (80)

where zt(Θ) = z(t + Θ) for −D ≤ Θ ≤ 0 and f is an appropriate continuous functional,

such that the averaging theorem by [20] and [22] can be directly applied considering

ω = 1/ε.

Moreover, from (77), the origin of the average closed-loop system (54)�(56) with

transport PDE for delay representation is exponentially stable since there exist positive

constants α and β such that all solutions satisfy

Ψ(t) ≤ αe−βtΨ(0) , ∀t ≥ 0 , (81)

where Ψ(t) , |ϑ̃av(t)|2 +
∫ D

0
|uav(x, t)|2dx+ |uav(D, t)|2, or equivalently,

Ψ(t) , |θ̃av(t−D)|2 +

∫ t

t−D
|Uav(τ)|2 dτ + |Uav(t)|2 , (82)

using (53) and (50).

Then, according to the averaging theorem [20], for ω su�ciently large, (47)�(49) has

a unique exponentially stable periodic solution around its equilibrium (origin) satisfying

(38).

Step 8: Asymptotic Convergence to a Neighborhood of the Extremum (θ∗, y∗)

By using the change of variables (53) and then integrating both sides of (41) within

the interval [t, σ +D]:

ϑ̃(σ +D) = ϑ̃(t) +

∫ σ+D

t

u(0, s)ds . (83)
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From (44), we can rewrite (83) in terms of U , namely

ϑ̃(σ +D) = ϑ̃(t) +

∫ σ

t−D
U(τ)dτ . (84)

Now, note that

θ̃(σ) = ϑ̃(σ +D) , ∀σ ∈ [t−D, t] . (85)

Hence,

θ̃(σ) = θ̃(t−D) +

∫ σ

t−D
U(τ)dτ , ∀σ ∈ [t−D, t] . (86)

By applying the supremum norm in both sides of (86), we have

sup
t−D≤σ≤t

∣∣∣θ̃(σ)
∣∣∣ = sup

t−D≤σ≤t

∣∣∣θ̃(t−D)
∣∣∣+ sup

t−D≤σ≤t

∣∣∣∣∫ σ

t−D
U(τ)dτ

∣∣∣∣
≤ sup

t−D≤σ≤t

∣∣∣θ̃(t−D)
∣∣∣+ sup

t−D≤σ≤t

∫ t

t−D
|U(τ)| dτ

≤
∣∣∣θ̃(t−D)

∣∣∣+

∫ t

t−D
|U(τ)| dτ (by applying Cauchy-Schwarz inequality)

≤
∣∣∣θ̃(t−D)

∣∣∣+

(∫ t

t−D
1 · dτ

)1/2

×
(∫ t

t−D
|U(τ)|2 dτ

)1/2

≤
∣∣∣θ̃(t−D)

∣∣∣+
√
D

(∫ t

t−D
|U(τ)|2 dτ

)1/2

. (87)

Now, it is easy to check

∣∣∣θ̃(t−D)
∣∣∣ ≤ (∣∣∣θ̃(t−D)

∣∣∣2 +

∫ t

t−D
|U(τ)|2 dτ

)1/2

, (88)(∫ t

t−D
|U(τ)|2 dτ

)1/2

≤
(∣∣∣θ̃(t−D)

∣∣∣2 +

∫ t

t−D
|U(τ)|2 dτ

)1/2

. (89)

By using (88) and (89), one has
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∣∣∣θ̃(t−D)
∣∣∣+
√
D

(∫ t

t−D
|U(τ)|2 dτ

)1/2

≤ (1 +
√
D)

(∣∣∣θ̃(t−D)
∣∣∣2 +

∫ t

t−D
|U(τ)|2 dτ

)1/2

.

(90)

From (87), it is straightforward to conclude that

sup
t−D≤σ≤t

∣∣∣θ̃(σ)
∣∣∣ ≤ (1 +

√
D)

(∣∣∣θ̃(t−D)
∣∣∣2 +

∫ t

t−D
|U(τ)|2 dτ

)1/2

(91)

and, consequently,

∣∣∣θ̃(t)∣∣∣ ≤ (1 +
√
D)

(∣∣∣θ̃(t−D)
∣∣∣2 +

∫ t

t−D
|U(τ)|2 dτ

)1/2

. (92)

Inequality (92) can be given in terms of the periodic solution θ̃Π(t − D), UΠ(σ),

∀σ ∈ [t−D, t] as follows

∣∣∣θ̃(t)∣∣∣ ≤ (1 +
√
D)

(∣∣∣θ̃(t−D)− θ̃Π(t−D) + θ̃Π(t−D)
∣∣∣2

+

∫ t

t−D

∣∣U(τ)− UΠ(τ) + UΠ(τ)
∣∣2 dτ)1/2

. (93)

By applying Young's inequality and some algebra, the right-hand side of (93) and∣∣∣θ̃(t)∣∣∣ can be majorized by

∣∣∣θ̃(t)∣∣∣ ≤ √
2 (1 +

√
D)

(∣∣∣θ̃(t−D)− θ̃Π(t−D)
∣∣∣2 +

∣∣∣θ̃Π(t−D)
∣∣∣2

+

∫ t

t−D

∣∣U(τ)− UΠ(τ)
∣∣2 dτ +

∫ t

t−D

∣∣UΠ(τ)
∣∣2 dτ)1/2

. (94)

According to the averaging theorem [20] and [22], we can conclude that
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θ̃(t−D)− θ̃Π(t−D) → 0 , (95)∫ t

t−D

∣∣U(τ)− UΠ(τ)
∣∣2 dτ → 0 , (96)

exponentially. Hence,

lim sup
t→+∞

|θ̃(t)| =
√

2 (1 +
√
D)

(∣∣∣θ̃Π(t−D)
∣∣∣2 +

∫ t

t−D

∣∣UΠ(τ)
∣∣2 dτ)1/2

. (97)

From (38) and (97), we can write

lim sup
t→+∞

|θ̃(t)| = O(1/ω) . (98)

From (12) and reminding that θ(t) = θ̂(t)+S(t) with S(t) = [a1 sin(ω1t) · · · an sin(ωnt)]
T ,

one has that

θ(t)− θ∗ = θ̃(t) + S(t) . (99)

Since the �rst term in the right-hand side of (99) is ultimately of order O(1/ω) and the

second term is of order O(|a|), then

lim sup
t→+∞

|θ(t)− θ∗| = O(|a|+ 1/ω) . (100)

Finally, from (10),(11) and (100), we get (40).

Thus, the average closed-loop system consisting of the plant (48), (49) and (50)

with the average control (61) is exponentially stable at the origin.

For the user, inequalities (39) and (40) guarantee that, if ai in (15) are chosen small

and ω in (17) is large, the input θ(t) converges to a small interval around the unknown

θ∗ and y(t) converges to the vicinity of the optimal output y∗.
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2.3.1 Simulation Results

In order to illustrate the result of proposed controller to compensate delays, simulation

is presented using the static quadratic map (11) with the Hessian H =
[ −100 −30
−20 −20

]
and its

inverse given by H−1 =
[ −0.0182 0.0273

0.0273 −0.0909

]
. The input-output map is subject to an output

delay D = 5s according to (10). This value of delay induces instability in the closed

loop system if no prediction action is adopted. The extremum point is Q∗ = 100 and its

maximizer is given by θ∗ = [2 4]T . The parameters used for simulation are the following:

a = [0.1 0.1]T , ω = 0.2 rad/s, ω1 = 70ω, ω2 = 50ω , ωh = 0.08 rad/s, ωl = 0.1 rad/s and

θ̂(0) = [2.5 5]T .

The update law (35) is applied to Hessian's inverse estimation and the gain matrix

K = 10−4 diag{0.25, 0.25}. The speed convergence is dictated by the Hessian H. Despite

the slow response result showed in Figure 4, one can note that the deleterious delay could

be counteract and the elements of the Hessian estimate Ĥ converge to the actual values

of H, as depicted in Figure 5. Moreover, the extremum Q∗ = 100 is ultimately achieved

as well as its maximizer θ∗ = [2 4]T

Figure 4 Gradient-based ES under output delay D = 5s: Time response of the delayed
output y(t) converging to the extremum Q∗ = 100.
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Figure 5 Time evolution of the elements of Hessian's estimator Ĥ(t) converging to the
unknown values (H)11 = −100, (H)12 = (H)21 = −20, and (H)22 = −30.
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3 GRADIENT-BASED ES WITH MULTIPLE AND DISTINCT INPUT

DELAYS

In chapter 2 we reviewed the implementation of extremum seeking control for multivariable

static maps subjected to output delays that, without loss of generality, can be extrapolated

to multiple equal input delays.

In this chapter we will focus on multiple and distinct input delays, and the predictor

from [16] will be presented.

We will assume the input-output representation (10) for the quadratic non-linear

map (11). Thus, the locally quadratic static map with delay is given by

y(t) = y∗ +
1

2
(θ(t−D)− θ∗)TH(θ(t−D)− θ∗), (101)

where the the delayed input vector can be represented by

θ(t−D) :=


θ1(t−D1)

θ2(t−D2)
...

θn(t−Dn)

 . (102)

Without loss of generality we assume that the inputs have distinct delays which are

ordered so that

D = diag{D1, · · · , Dn}, 0 ≤ D1 ≤ D2 ≤ · · · ≤ Dn. (103)

In addition we consider that the constants Di are known for all i ∈ 1, 2, · · · n.

3.1 Gradient-Based ES with Multiple and Distinct Input Delays

From Figure 6 and θ̃(t) de�ned in (12), we can easily write

˙̃θ(t−D) =


U1(t−D1)

U2(t−D2)
...

Un(t−Dn)

 , ˙̃θi(t−Di) = Ui(t−Di) , (104)
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Figure 6 Block diagram of Gradient-based ES for multiple-input delay compensation

and the average model below by using (24):

Ġav(t) =
n∑
i=1

HiU
av
i (t−Di) = H


Uav

1 (t−D1)

Uav
2 (t−D2)

...

Uav
n (t−Dn)

 , (105)

since

˙̃θav(t−D) =


Uav

1 (t−D1)

Uav
2 (t−D2)

...

Uav
n (t−Dn)

 . (106)

In (105), Uav
i (t) ∈ R for all i ∈ {1, 2, . . . , n} are the elements of the average control

Uav(t) ∈ Rn and the Hessian matrix H = (H1, H2, . . . , Hn) ∈ Rn×n. In this case, there

always exists a positive diagonal matrix K = (K1, K2, . . . , Kn)T ∈ Rn×n such that HK is

Hurwitz. For the sake of clarity, we say that Hi are column vectors of H and Ki are row

vectors of K, ∀i = 1, . . . , n.

Henceforth, the purpose of this section is to �nd a control feedback which has

to perform prediction of the cross-coupling of the channels in (105). By applying the

variation of constants formula to (105) gives

Gav(t+Di) = Gav(t) +
n∑
j=1

∫ t−(Dj−Di)

t−Dj

HjU
av
j (τ)dτ , (107)
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such that the predictor feedback realizes

Uav
i (t) = KT

i Gav(t+Di) . (108)

From (103), each control input Uav
i arrives at the plant at a di�erent time. Since

the system is causal, values of Uav
j with j > i on the interval (t − (Dj − Di) , t) provide

no information for prediction of Gav(t+Di). On the other hand, values of Uav
j with j < i

on the interval (t , t+Di −Dj) are necessary to calculate (107), but they are unavailable

future values. For i , j ∈ {1 , . . . , n} with i < j, we have

∫ t−(Dj−Di)

t−Dj

(∗)dτ =

∫ t

t−Dj

(∗)dτ +

∫ t+Di−Dj

t

(∗)dτ . (109)

Di�erently from the results in Chapter 2, the variation of constants formula con-

tains an extra term
∫ t+Di−Dj

t
(∗)dτ .

In what follows, we will provide a predictor based controller that is more consistent

with (107). To derive it, we have had to extend the backstepping approach [13] introducing

a new successive backstepping-like transformation [17]. The explicit equation of this

transformation of the delay state is given in the proof of the main theorem.

First of all, let us de�ne the following notation:

Ai :=
i∑

j=1

HjK
T
j , i ∈ {0, 1, 2, . . . , n} , (110)

being obvious that A0 = 0n×n and An = HK. In addition, the matrix-valued function Φ

can be represented as [17]

Φ(x, ζ) = eAi−1(x−Di−1)eAi−2(Di−1−Di−2) · · · eAj−1(Dj−ζ),

Di−1 ≤ x < Di, Dj−1 ≤ ζ < Dj, (111)

for any i, j ∈ {1, 2, . . . , n} satisfying i > j, and

Φ(x, ζ) = eAi−1(x−ζ), Di−1 ≤ ζ ≤ x ≤ Di, (112)

i ∈ {1, 2, . . . , n}, where we need to treat D0 as 0.
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In a few words, Φ can be seen as the state-transition matrix of the time varying

system Ẋ(t) = A(t)X(t), ∀t ≥ 0, where A(t) ∈ Rn×n is a piecewise constant function

de�ned by

A(t) =


0n×n, t ≤ D1,

Ai, Di < t ≤ Di+1, i = 1, . . . , n− 1,

An, t > Dn .

(113)

As it will be shown in the next section, the following predictor-based controller

Ui(t)=
c

s+ c

{
KT
i Φ̂(Di, 0)G(t)

+KT
i

 i∑
j=1

∫ t

t−Dj

Φ̂(Di, τ − t+Dj)ĤjUj(τ)dτ

+

n∑
j=i+1

∫ t

t−Di

Φ̂(Di, τ−t+Di)ĤjUj(τ−(Dj−Di))dτ

 , (114)

guarantees exponential stability for the closed-loop system, with Φ̂ de�ned as in (111)

and (112) but replacing Ai in (110) by Âi(t) :=
∑i

j=1 Ĥj(t)K
T
j , vector G(t) given in (13)

and Ĥ being the columns of the Hessian estimate Ĥ = (Ĥ1, Ĥ2, . . . , Ĥn) ∈ Rn×n given

by (35). For ω in (17) su�ciently large and ai in (15)-(16) su�ciently small, the average

version of the predictor-feedback form (114) can be numerically approximated by

Uav
i (t)=

c

s+ c

{
KT
i Φ(Di, 0)Gav(t)

+KT
i

 i∑
j=1

∫ t

t−Dj

Φ(Di, τ − t+Dj)HjU
av
j (τ)dτ

+
n∑

j=i+1

∫ t

t−Di

Φ(Di, τ−t+Di)HjU
av
j (τ−(Dj−Di))dτ

 (115)

From (113), it is possible to show the term between braces in (115) by itself, if

applied to (105), is enough to conclude that the closed-loop system Ġav(t) =AnGav(t) is

totally delay-compensated ∀t ≥ Dn, since An=HK is Hurwitz. However, due to technical

limitations involving averaging results in in�nite dimensions, we must include a low-pass

�lter c/(s+ c) in the predictor control loop, as was done in (114) and (115).
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3.2 Stability Analysis

The availability of Lyapunov functionals for predictor feedback via backstepping transfor-

mation [13] permits the stability analysis of the complete feedback system under delays

with a cascade representation of ODE�PDE equations and the in�nite-dimensional control

law.

The resulting exponential stability estimate in L2-norm of the closed-loop in�nite-

dimensional system is stated in the next theorem for Gradient ES subject to multiple and

distinct input delays.

Theorem 2. Consider the control system in Figure 6 with multiple and distinct

input delays according to (10) and (104) and locally quadratic nonlinear map (11). There

exists c∗ > 0 such that, ∀c ≥ c∗, ∃ ω∗(c) > 0 such that, ∀ω > ω∗, the closed-loop delayed

system (104) and (114) with state θ̃i(t−Di), Ui(τ), ∀τ ∈ [t−Di, t] and ∀i ∈ 1, 2, . . . , n,

has a unique locally exponentially stable periodic solution in t of period Π, denoted by

θ̃Π
i (t−Di), U

Π
i (τ), ∀τ ∈ [t−Di, t] and ∀i ∈ {1, 2, . . . , n}, satisfying, ∀t ≥ 0:

(
n∑
i=1

[
θ̃Π
i (t−Di)

]2

+
[
UΠ
i (t)

]2
+

∫ t

t−Di

[
UΠ
i (τ)

]2
dτ

)1/2

≤O(1/ω) . (116)

Furthermore,

lim sup
t→+∞

|θ(t)− θ∗| = O(|a|+ 1/ω) , (117)

lim sup
t→+∞

|y(t)− y∗| = O(|a|2 + 1/ω2) , (118)

where a = [a1 a2 · · · an]T .

Proof: The demonstration follows the Steps 1 to 7 below.

Step 1: Transport PDE for Delay Representation

Each individual delay Di in equation (104) can be represented using a transport

PDE as

˙̃θi(t−Di) = ui(0, t) , (119)

∂tui(x, t) = ∂xui(x, t) , x ∈ [0, Di] , (120)

ui(Di, t) = Ui(t) , i = 1, 2, . . . , n , (121)
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where the solution of (120)�(121) is

ui(x, t) = Ui(t+ x−Di) (122)

and u(x, t) = [u1(x, t), . . . , un(x, t)]T is the state of the total delay in�nite-dimensional

subsystem.

Step 2: Average Model of the Closed-loop System

From (119)�(121), we can rewrite (105) as

Ġav(t) =
n∑
i=1

Hiu
av
i (0, t), (123)

∂tu
av
i (x, t) = ∂xu

av
i (x, t), x ∈ [0, Di], (124)

uav
i (Di, t) = Uav

i (t), i = 1, 2, . . . , n , (125)

where the solution of (124)�(125) is

uav
i (x, t) = Uav

i (t+ x−Di) (126)

and the PDE state is uav(x, t) = [uav
1 (x, t), . . . , uav

n (x, t)]T .

By representing the integrand in (115) using the transport PDE state, one has the

average control law

Uav
i (t) =

c

s+ c

{
KT
i

(
Φ(Di, 0)Gav(t)

+
n∑
j=1

∫ φj(Di)

0

Φ(Di, σ)Hju
av
j (σ, t)dσ

)}
, (127)

with φj : [0, Dn]→ [0, Dj], j ∈ {1, 2, . . . , n} being the function de�ned by

φj(x) =

x, 0 ≤ x ≤ Dj,

Dj, Dj < x < Dn .

(128)
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Finally, substituting (127) into (125), we have

Ġav(t) =
n∑
i=1

Hiu
av
i (0, t), (129)

∂tu
av
i (x, t) = ∂xu

av
i (x, t), x ∈ [0, Di], (130)

d

dt
uav
i (Di, t) = −c uav

i (Di, t) + cKT
i

(
Φ(Di, 0)Gav(t)

+
n∑
j=1

∫ φj(Di)

0

Φ(Di, σ)Hju
av
j (σ, t)dσ

)
. (131)

Step 3: Successive Backstepping-like transformation, its inverse and the target

system

Consider the new in�nite-dimensional backstepping-like transformation [17] of the

delay state

wi(x, t) = uav
i (x, t)−KT

i

Φ(x, 0)Gav(t)+

n∑
j=1

∫ φj(x)

0
Φ(x, σ)Hju

av
j (σ, t)dσ

 (132)

which maps the system (129)�(131) into the target system:

Ġav(t) = AnGav(t) +
n∑
i=1

Hiwi(0, t) , (133)

∂twi(x, t) = ∂xwi(x, t)−
i−1∑
j=1

λij(x)wj(Dj , t), x ∈ [0, Di] , (134)

wi(Di, t) = −1

c
∂tu

av
i (Di, t) , i = 1, 2, . . . , n , (135)

where An = HK and the coe�cients λij : [0, Di]→ R are

λij(x) =

0, 0 ≤ x ≤ Dj,

KT
i Φ(x,Dj)Hj, Dj < x ≤ Di.

(136)

Note that the PDE for wi is not a simple transport equation unless wi vanishes at

the right boundary. Using (132) for x = Di and the fact that uav
i (Di, t) = Uav

i (t), we can

directly obtain (131) and (127) from (135).
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On the other hand, the inverse of (132) is given by

uav
i (x, t)=wi(x, t)+KT

i

eAnxGav(t)+

n∑
j=1

∫ φj(x)

0
eAn(x−σ)Hjwj(σ, t)dσ

 . (137)

For later use, now we �nd an expression for ∂twi(Di, t). Di�erentiating (137) with

respect to x on the interval x ∈ (Di−1, Di), gives

∂xu
av
i (x, t) = ∂xwi(x, t) +

n∑
j=i

KT
i Hjwj(x, t)

+KT
i An

eAnxGav(t) +
n∑
j=1

∫ φj(x)

0
eAn(x−σ)Hjwj(σ, t)dy

 . (138)

In light of (130)�(131) and (134)�(136), we arrive at

∂twi(Di, t) = −cwi(Di, t)−
i∑

j=1

KT
i Φ(Di, Dj)Hjwj(Dj, t)

−
n∑

j=i+1

KT
i Hjwj(Di, t)− γi(0)TGav(t)

−
n∑
j=1

∫ φj(Di)

0

γi(σ)THjwj(σ, t)dσ, (139)

where γi(x) := eA
T
n (Di−x)ATnKi for each i ∈ {1, 2, . . . , n}.

Note that the right-hand side contains wj(Di, t) for each j greater than i, which

is not a boundary value of wj. For this reason, a key feature of the Lyapunov functional

is the necessity of breaking the domain of integration for the terms (1 + x)wi(x, t)
2, as

shown in the next step.

Step 4: Lyapunov-Krasovskii Functional

Let V be the candidate of Lyapunov function de�ned by

V (t) = Gav(t)TPGav(t) +

n∑
i=1

i∑
j=1

āj
2

∫ Dj

Dj−1

(1 + x)wi(x, t)
2dx+

1

2

n∑
i=1

wi(Di, t)
2, (140)

where P = P T ∈Rn×n is the solution of the Lyapunov equation PAn + ATnP = −Q for

some Q = QT > 0. The real constant ā1 > 0 is determined later. The other constants

ā2, . . . , ān are arbitrary real numbers satisfying ā1 < ā2 < · · · < ān. To shorten notation,
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we de�ne a function w : [0, 1]× [0,+∞)→ Rn by

w(ξ, t) =
(
w1(D1ξ, t) w2(D2ξ, t) · · · wn(Dnξ, t)

)T
, (141)

for 0 ≤ ξ ≤ 1. In addition, we omit the dependence on the temporal variable t for

simplicity. For instance, we write V and wi(x) instead of V (t) and wi(x, t). Di�erentiating

V with respect to t yields

V̇ = −GTavQGav + 2GTavPHw(0)

+

n∑
i=1

i∑
j=1

āj
2

∫ Dj

Dj−1

(1 + x)2wi(x)∂twi(x)dx+ w(1)T∂tw(1)

= −GTavQGav + 2GTavPHw(0)− ā1

2
w(0)Tw(0)

−
n∑
i=2

i−1∑
j=1

αj
2
wi(Dj)

2 + w(1)T∂tw(1)

−
n∑
i=1

i−1∑
`=1

i∑
j=`+1

ājw`(D`)

∫ Dj

Dj−1

(1+x)KT
i Φ(x,D`)H`wi(x)dx

+
1

2
w(1)T∆w(1)−

n∑
i=1

n∑
j=i

āi
2

∫ Di

Di−1

wj(x)2dx, (142)

where αj > 0 and ∆ ∈ Rn×n are de�ned by

αj = (āj+1 − āj)(1 +Dj), j ∈ {1, 2, . . . , n− 1}, (143)

∆ = diag {ā1(1 +D1), ā2(1 +D2), . . . , ān(1 +Dn)} . (144)

In what follows we estimate the terms in each line of (142).

For the terms in the �rst line, we have

−GavQGav + 2GTavPHw(0)− ā1

2
w(0)Tw(0) ≤ −Gav

(
Q− 2

ā1
PHHTP

)
Gav. (145)

Setting ā1 = 4λmax(PHHTP )/λmin(Q) leads to

−GavQGav + 2GTavPHw(0)− ā1

2
w(0)Tw(0) ≤ −1

2
GTavQGav. (146)
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Considering the second line of (142). It follows from (139) that

−
n∑
i=2

i−1∑
j=1

αj
2
wi(Dj)

2 + w(1)T∂tw(1)

= −cw(1)Tw(1)− w(1)TLw(1)

−
n∑
i=2

i−1∑
j=1

αj
2

(
wi(Dj)

2 +KT
j Hiwj(Dj)wi(Dj)

)
− w(1)TΓ(0)TGav−

n∑
i=1

wi(Di)

n∑
j=1

∫ φj(Di)

0
γi(σ)THjwj(σ)dσ, (147)

where L = (Lij) is the n× n lower triangular matrix whose (i, j)th entry Lij is given by

Lij =

0, i < j,

KT
i Φ(Di, Dj)Hj. i ≥ j.

(148)

The matrix-valued function Γ : [0, Dn]→ Rn×n is de�ned to be Γ(σ) = (γ1(σ), γ2(σ), . . . , γn(σ)).

By completing the square, we see that

(147) ≤ −cw(1)Tw(1) +
1

4
GT

avQGav

− 1

2
w(1)

(
L+ LT +B − 2Γ(0)TQ−1Γ(0)

)
w(1)

−
n∑
i=1

wi(Di)
n∑
j=1

∫ φj(Di)

0

γi(σ)THjwj(σ)dσ, (149)

where B ∈ Rn×n is the diagonal matrix whose ith diagonal entry is

1

αi
KT
i

(
n∑

j=i+1

HjH
T
j

)
Ki, i = 1, 2, . . . , n. (150)
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Substituting (146) and (149) into (142) leads to

V̇ ≤− 1

4
GTavQGav −

ā1

2

n∑
i=1

∫ Di

0
wi(x)2dx− cw(1)Tw(1)

− 1

2
w(1)T

(
L+ LT +B + ∆− 2Γ(0)TQ−1Γ(0)

)
w(1)

−
n∑
i=1

wi(Di)
n∑
j=1

∫ φj(Di)

0
γi(σ)THjwj(σ)dσ

−
n∑
i=1

i−1∑
`=1

i∑
j=`+1

ājw`(D`)

∫ Dj

Dj−1

(1 + x)KT
i Φ(x,D`)H`wi(x)dx. (151)

By using the Cauchy-Schwarz and Young's inequalities, we can show there exists a diagonal

matrix Λ ∈ Rn×n such that

−
n∑
i=1

wi(Di)

n∑
j=1

∫ φj(Di)

0
γi(σ)THjwj(σ)dσ

−
n∑
i=1

i−1∑
`=1

i∑
j=`+1

ājw`(D`)

∫ Dj

Dj−1

(1 + x)KT
i Φ(x,D`)H`wi(x)dx

≤ 1

2
w(1)TΛw(1) +

ā1

4

n∑
i=1

∫ Di

0
wi(x)2dx. (152)

Then, we have

V̇ ≤−1

4
GTavQGav−

ā1

4

n∑
i=1

∫ Di

0
wi(x)2dx−w(1)T (cIn×n+R)w(1), (153)

where R := 1
2

(
L+ LT +B + ∆− 2Γ(0)TQ−1Γ(0) + Λ

)
. Hence, if c > λmin(R), there

exists µ > 0 such that

V̇ ≤ −µV . (154)

Thus, the closed-loop system is exponentially stable in the sense of the full state norm

(
Gav(t)TGav(t) +

n∑
i=1

∫ Di

0

wi(x, t)
2dx+ wi(Di, t)

2

)1/2

. (155)

i.e., in the transformed variable (Gav , w).

Step 5: Exponential Stability Estimate (in L2 norm) for the Average System

(129)�(131)
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To obtain exponential stability in the sense of the norm

Υ(t) ,

(
|Gav(t)|2+

n∑
i=1

∫ Di

0
[uav
i (x, t)]2dx+[uav

i (Di, t)]
2

)1/2

, (156)

we must show there exist positive α1 and α2 such that

α1Υ(t)2 ≤ V (t) ≤ α2Υ(t)2 . (157)

This is straightforward to establish by using (132), (137), (140) and employing the Cauchy-

Schwartz inequality and other calculations, as in the proof of [13, Theorem 2.1].

Hence, with (154), we get

|Gav(t)|2 +
n∑
i=1

∫ Di

0
[uav
i (x, t)]2dx+ [uav

i (Di, t)]
2

≤ α2

α1
e−µt

(
|Gav(0)|2+

n∑
i=1

∫ Di

0
[uav
i (x, 0)]2dx+[uav

i (Di, 0)]2

)
, (158)

which completes the proof of exponential stability in the original variable (Gav , uav).

Step 6: Invoking Averaging Theorem

First, note that the closed-loop system (104) and (114) can be rewritten as:

˙̃
θi(t−Di) = Ui(t−Di) , i = 1, . . . , n , (159)

Ui(t) = −cUi(t) + cKT
i

{
Φ̂(Di, 0)G(t)

+

i∑
j=1

∫ t

t−Dj

Φ̂(Di, τ − t+Dj)ĤjUj(τ)dτ

+

n∑
j=i+1

∫ t

t−Di

Φ̂(Di, τ−t+Di)ĤjUj(τ−(Dj−Di))dτ

 (160)

where η(t) = [θ̃(t − D), U(t)]T is the state vector. Moreover, from the de�nitions of Φ̂

in (114) G(t) in (13) and Ĥ(t) in (35), one can conclude they are implicit funcions of ωt

such that (159) and (160) can be given in the next compact form

η̇(t) = f(ωt, ηt) , (161)

where ηt(Θ) = η(t+ Θ) for −Dn ≤ Θ ≤ 0 and f is an appropriate continuous functional,
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such that the averaging theorem by [20,22] in Appendix can be directly applied considering

ω = 1/ε.

From (158), the origin of the average closed-loop system (129)�(131) with transport

PDE for delay representation is locally exponentially stable. Then, from (24) and (25),

we can conclude the same results in the norm(
n∑
i=1

[
θ̃av
i (t−Di)

]2

+

∫ Di

0

[uav
i (x, t)]2dx+[uav

i (Di, t)]
2

)1/2

since H is non-singular, i.e.,
∣∣∣θ̃av
i (t−Di)

∣∣∣ ≤ |H−1| |Gav(t)|.
Thus, there exist positive constants α and β such that all solutions satisfy Ψ(t) ≤

αe−βtΨ(0), ∀t ≥ 0, where Ψ(t) ,
∑n

i=1

[
θ̃av
i (t−Di)

]2

+
∫ Di

0
[uav
i (x, t)]2 dx + [uav

i (Di, t)]
2,

or equivalently,

Ψ(t) ,
n∑
i=1

[
θ̃av
i (t−Di)

]2

+

∫ t

t−Di

[Uav
i (τ)]2 dτ + [Uav

i (t)]2 , (162)

using (126). Then, according to the averaging theorem by [20, 22] in Appendix, for ω

su�ciently large, (119)�(121) or (104) and (114), has a unique locally exponentially stable

periodic solution around its equilibrium (origin) satisfying (116).

Step 7: Asymptotic Convergence to the Extremum (θ∗, y∗)

By using the change of variables ϑ̃i(t) := θ̃i(t−Di) and then integrating both sides

of (119) within [t, σ +Di], we have:

ϑ̃i(σ +Di) = ϑ̃i(t) +

∫ σ+Di

t

ui(0, s)ds , i = 1, . . . , n . (163)

From (122), we can rewrite (163) in terms of U , namely

ϑ̃i(σ +Di) = ϑ̃i(t) +

∫ σ

t−Di

Ui(τ)dτ . (164)

Now, note that

θ̃i(σ) = ϑ̃i(σ +Di) , ∀σ ∈ [t−Di, t] . (165)
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Hence,

θ̃i(σ) = θ̃i(t−Di) +

∫ σ

t−Di

Ui(τ)dτ , ∀σ ∈ [t−Di, t] . (166)

Applying the supremum norm to both sides of (166), we have

sup
t−Di≤σ≤t

∣∣∣θ̃i(σ)
∣∣∣

≤ sup
t−Di≤σ≤t

∣∣∣θ̃i(t−Di)
∣∣∣+ sup

t−Di≤σ≤t

∫ t

t−Di

|Ui(τ)| dτ

≤
∣∣∣θ̃i(t−Di)

∣∣∣+∫ t

t−Di

|Ui(τ)| dτ (by Cauchy-Schwarz)

≤
∣∣∣θ̃i(t−Di)

∣∣∣+(∫ t

t−Di

dτ

)1/2

×
(∫ t

t−Di

|Ui(τ)|2 dτ
)1/2

≤
∣∣∣θ̃i(t−Di)

∣∣∣+√Di

(∫ t

t−Di

U2
i (τ)dτ

)1/2

. (167)

Now, it is easy to check

∣∣∣θ̃i(t−Di)
∣∣∣ ≤ (∣∣∣θ̃i(t−Di)

∣∣∣2 +

∫ t

t−Di

U2
i (τ)dτ

)1/2

, (168)(∫ t

t−Di

U2
i (τ)dτ

)1/2

≤
(∣∣∣θ̃i(t−Di)

∣∣∣2 +

∫ t

t−Di

U2
i (τ)dτ

)1/2

. (169)

By using (168) and (169), one has

∣∣∣θ̃i(t−Di)
∣∣∣+
√
Di

(∫ t

t−Di

U2
i (τ)dτ

)1/2

≤ (1 +
√
Di)

(∣∣∣θ̃i(t−Di)
∣∣∣2 +

∫ t

t−Di

U2
i (τ)dτ

)1/2

. (170)

From (167), it is straightforward to conclude that

sup
t−Di≤σ≤t

∣∣∣θ̃i(σ)
∣∣∣≤(1+

√
Di)

(∣∣∣θ̃i(t−Di)
∣∣∣2+

∫ t

t−Di

U2
i (τ)dτ

)1/2

(171)

and, consequently,

∣∣∣θ̃i(t)∣∣∣≤(1+
√
Di)

(∣∣∣θ̃i(t−Di)
∣∣∣2+

∫ t

t−Di

U2
i (τ)dτ

)1/2

. (172)

Inequality (172) can be given in terms of the periodic solution θ̃Π
i (t − Di), UΠ

i (τ), ∀τ ∈
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[t−Di, t] as follows

∣∣∣θ̃i(t)∣∣∣ ≤ (1+
√
Di)

(∣∣∣θ̃i(t−Di)−θ̃Π
i (t−Di)+θ̃Π

i (t−Di)
∣∣∣2 +

∫ t

t−Di

[
Ui(τ)−UΠ

i (τ)+UΠ
i (τ)

]2
dτ

)1/2

.

(173)

By applying Young's inequality and some algebra, the right-hand side of (173) and
∣∣∣θ̃i(t)∣∣∣

can be majorized by

∣∣∣θ̃i(t)∣∣∣ ≤ √2 (1+
√
Di)

(∣∣∣θ̃i(t−Di)−θ̃Π
i (t−Di)

∣∣∣2+
∣∣∣θ̃Π
i (t−Di)

∣∣∣2
+

∫ t

t−Di

[
Ui(τ)−UΠ

i (τ)
]2
dτ+

∫ t

t−Di

[
UΠ
i (τ)

]2
dτ

)1/2

. (174)

According to the averaging theorem by [20, 22], we can conclude that the actual state

converges exponentially to the periodic solution, i.e., θ̃i(t − Di) − θ̃Π
i (t − Di) → 0 and∫ t

t−Di

[
Ui(τ)− UΠ

i (τ)
]2
dτ → 0, exponentially. Hence,

lim sup
t→+∞

|θ̃i(t)| =
√

2
(

1 +
√
Di

)
×
(∣∣∣θ̃Π

i (t−Di)
∣∣∣2 +

∫ t

t−Di

[UΠ
i (τ)]2dτ

)1/2

.

Then, from (116), we can write lim supt→+∞ |θ̃(t)|=O(1/ω). From (12) and reminding

that θ(t) = θ̂(t) + S(t) with S(t) in (15), one has that θ(t)− θ∗ = θ̃(t) + S(t). Since the

�rst term in the right-hand side is ultimately of order O(1/ω) and the second term is of

order O(|a|), then we state (117). From (101) and (117), we get (118).

Corollary 1: It is easy to show that the controller (114) becomes (34) in the case of

output delays or equal inputs delays. Hence, the local stability/convergence results of the

multiparameter Gradient ES in Figure 3 with delayed output (10) and (11), and D ≥ 0

being simply a scalar can be directly stated for the closed-loop delayed system (26) and

(34) from Theorem 2.
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3.3 Simulation Results

In this example, multivariable ES is used for �nding a source of a signal (chemical, acous-

tic, electromagnetic, etc.) of unknown concentration �eld as in (101) with Hessian:

H =

−2 −2

−2 −4

 .
The strength of this �eld decays with the distance and has a local maximum at

y∗ = 1 and unknown maximizer θ∗ = (θ∗1 , θ
∗
2) = (0 , 1). This is achieved without the

measurement of the position vector θ = (θ1 , θ2) and using only the measurement of the

output scalar signal y with delay Dout = 5 s. The two actuator paths of the vehicle are also

under distinct delays Din
1 = 10 s and Din

2 = 20 s. Thus, the total delays to be compensated

by the predictors are D1 = 15 s and D2 = 25 s.

The proposed schemes are slightly modi�ed for the stated task in Figure 7 by

observing that the integrator, a key adaptation element, is already present in vehicle

models where the primary forces or moments acting on the vehicle are those that provide

thrust/propulsion [23]. Thus, an application of our result for single and double integrators

in control of autonomous vehicles modeled as point mass in the plane is shown to be

possible. However, due to lack of space, we consider the simplest case of a velocity-

actuated point mass only, where the additive dither in (15) is changed by Ṡ(t) since the

integrator of the vehicle dynamics can be moved to the ES loop for analysis purposes.

For the double integrator case, it would be needed to replace the lag �lter used in (114)

by lead compensator of the form sc/(s+ c), whose role is to recover some of the phase in

feedback loop lost due to the addition of the second integrator [23].

The predictor feedback based ES controllers drive the autonomous vehicle modeled

by

θ̇1 = v1 , θ̇2 = v2 (175)

to (θ∗1 , θ
∗
2), whereas the ES automatically tunes v1, v2 to lead the vehicle to the peak of

Q(θ).

Tests were performed with the following parameters: a1 = a2 = 0.05, ω = 5,

ω1 = 7ω, ω2 = 5ω, θ̂(0) = (−1 , 2), K = 10−2 diag{1, 0.5} and c = 20.

Figure 8 shows the system output y(t) in 3 situations: (a) free of delays, (b) in
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Figure 7 Source seeking under delays for velocity-actuated point mass with additive
dither Ṡ(t) = [a1ω1 cos(ω1(t + D1)) a2ω2 cos(ω2(t + D2))]T . The signals M(t) and N(t)
are chosen according to (16) and (37). The predictor-based controller (114) is used in the
ES loop to compensate the total delay D1 = Din

1 +Dout and D2 = Din
2 +Dout.

the presence of input-output delays but without any delay compensation and (c) with

input-output delays and predictor based compensation.

Figure 9 presents relevant variables for ES. It is clear the remarkable evolution of

the new prediction scheme in searching the maximum and the Hessian's Ĥ.

For the case n = 2 (two control inputs), equation (114) is:

U1(t) =
c

s+ c

{
KT

1

(
G(t) +

∫ t

t−D1

Ĥ1U1(τ)dτ

+

∫ t

t−D1

Ĥ2U2(τ − (D2 −D1))dτ

)}
, (176)

U2(t) =
c

s+ c

{
KT

2

(
eA1(D2−D1)G(t)

+ eA1(D2−D1)

∫ t

t−D1

Ĥ1U1(τ)dτ

+ eA1(D2−D1)

∫ t

t−D1

Ĥ2U2(τ − (D2 −D1))dτ

+

∫ t

t−(D2−D1)
eA1(t−τ)Ĥ2U2(τ)dτ

)}
. (177)
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Figure 8 Time response of y(t)): (a) basic ES works well without delays; (b) ES goes
unstable in the presence of delays (Dtotal = D2 = Din

2 + Dout is the longest delay); (c)
predictor �xes this.

Figure 9 (a) parameter θ(t); (b) the control signal U(t)
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4 AN ALTERNATIVE GRADIENT-BASED ES SCHEME FOR

MULTIPLE AND DISTINCT INPUT DELAYS

The Extremum Seeking scheme for multiple and distinct input delays presented in Chapter

3 results in a di�cult to implement controller, in which the stability analysis involve the

use of backstepping transformation and averaging in in�nite dimensions (3.2 - step 4). In

contrast to this, the alternative gradient-based extremum seeking scheme presentend in

this chapter does not require backstepping transformation, which also leads to a much

more simple control feedback structure.

4.1 Alternative Gradient-Based Predictor

Throughout this chapter, ei ∈ Rn stands for the ith column of the identity matrix In ∈
Rn×n for each i ∈ {1, 2, ..., n}. Without loss of generality we assume that the inputs have

distinct known delays which are ordered so that

D = diag{D1, D2, · · · , Dn}, 0 ≤ D1 ≤ · · · ≤ Dn. (178)

Given an Rn -valued signal f , the notation fD denotes

fD(t) =
[
f1(t−D1) f2(t−D2) ... fn(t−Dn)

]T
(179)

Let Q : Rn → R be a convex static map with a maximum at θ∗ ∈ Rn. We assume

that the point θ∗ is unknown but the output of Q is available for the past input signal.

More precisely, the measurable signal is given by

y(t) = Q(θD(t)) (180)

The purpose of the Extremum Seeking control is to estimate θ∗ from the output

y. To this end, de�ne perturbation signals S(t) and M(t) ∈ Rn by

S(t) =
[
a1 sin(ω1(t+D1)) · · · an sin(ωn(t+Dn))

]T
(181)

M(t) =

[
2

a1

sin(ω1t) · · ·
2

an
sin(ωnt)

]T
(182)
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The delayed signal SD of S is a conventional perturbation signal. We also set the

matrix-valued signal N(t) ∈ Rn×n as

Nij(t) =


16

a2
i

(
sin2(ωit)−

1

2

)
, i = j

4

aiaj
sin(ωit) sin(ωjt), i 6= j.

(183)

The probing frequencies ωi's can be selected as

ωi = ω′iω = O(ω) , i ∈ 1, 2, . . . , n , (184)

where ω is a positive constant and ω′i is a rational number. One possible choice is given

in [9] as

ω′i 6∈
{
ω′j ,

1

2
(ω′j + ω′k) , ω

′
j + 2ω′k , ω

′
j + ω′k ± ω′l

}
, (185)

for all distinct i, j, k and l.

By using the above signals, we develop an Extremum Seeking scheme in the pre-

sence of input delays. Let the input signal be constructed as

θ(t) = θ̂(t) + S(t), (186)

where θ̂ is an estimate of θ∗. Then, the corresponding output signal becomes

y(t) = Q(θD(t)) = Q
(
θ̂D(t) + SD(t)

)
. (187)

We introduce the estimation error θ̃ := θ̂D(t) − θ∗. Note that the error is de�ned
with θ̂D rather than θ̂. With this error variable, the output signal y(t) can be rewritten

as

y(t) = Q
(
θ∗ + θ̃(t) + SD(t)

)
. (188)

To compensate the delays, we propose the following predictor-based update law:

˙̂
θ = U(t) , (189)
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U̇(t) = −cU(t) + cK

(
M(t)y(t) +N(t)y(t)

n∑
i=1

ei

∫ t

t−Di

Ui(τ)dτ

)
(190)

for some positive constant c > 0 and diagonal matrix K ∈ Rn×n with positive entries.

Since ˙̂
θD(t) = UD(t), di�erentiating the error variable θ̃ with respect to t yields

˙̃θ(t) = UD(t) =
n∑
i=1

eiUi(t−Di), (191)

which is in a standard form of a system with input delays. As we will see later, the terms

in the parentheses in the right-hand side of (190) corresponds to a predicted value of Hθ̃

at some time in the future in the average sense.

4.2 Stability Analysis

Theorem 3. Consider the control system in Figure 10 with multiple and distinct input

delays according to (178) and locally quadratic nonlinear map (180). There exists c∗ > 0

such that, ∀c ≥ c∗, ∃ ω∗(c) > 0 such that, ∀ω > ω∗, the closed-loop delayed system (190)

and (191) with state θ̃i(t−Di), Ui(τ), ∀τ ∈ [t−Di, t] and ∀i ∈ 1, 2, . . . , n, has a unique

locally exponentially stable periodic solution in t of period Π, denoted by θ̃Π
i (t−Di), U

Π
i (τ),

∀τ ∈ [t−Di, t] and ∀i ∈ {1, 2, . . . , n}, satisfying, ∀t ≥ 0:

(
n∑
i=1

[
θ̃Π
i (t−Di)

]2

+
[
UΠ
i (t)

]2
+

∫ t

t−Di

[
UΠ
i (τ)

]2
dτ

)1/2

≤O(1/ω) . (192)

Furthermore,

lim sup
t→+∞

|θ(t)− θ∗| = O(|a|+ 1/ω) , (193)

lim sup
t→+∞

|y(t)− y∗| = O(|a|2 + 1/ω2) , (194)

where a = [a1 a2 · · · an]T .

Proof. A PDE representation of the closed-loop system (190), (191) is given by

˙̃θ(t) = u(0, t), (195)
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ut(x, t) = D−1ux(x, t), x ∈ (0, 1), (196)

u(1, t) = U(t) (197)

U̇(t) = −cU(t) + cK

(
M(t)y(t) +N(t)y(t)

∫ 1

0

Du(x, t)dx

)
, (198)

where u(x, t) = (u1(x, t), u2(x, t), · · · , un(x, t))T ∈ Rn. It is easy to see that the solution

of (196) under the condition (197) is represented as ui(x, t) = Ui(Dix + t −Di) for each

i ∈ {1, 2, · · · , n}. Hence, we have

∫ 1

0

Diui(x, t)dx =

∫ t

t−Di

ui(
τ − t+Di

Di

, t)dτ =

∫ t

t−Di

Ui(τ)dτ. (199)

This means that

∫ 1

0

Du(x, t)dx =
n∑
i=1

ei

∫ 1

0

Diui(x, t)dx =
n∑
i=1

ei

∫ t

t−Di

Ui(τ)dτ. (200)

Thus, we can recover (191) from (196)-(198). The average system associated with

(195)-(198) is given by

˙̃θav(t) = uav(0, t), (201)

uav,t(x, t) = D−1uav,x(x, t), x ∈ (0, 1) (202)

uav(1, t) = Uav(t) (203)

U̇av(t) = −cUav(t) + cKH

(
θ̃av(t) +

∫ 1

0

Duav(x, t)dx

)
, (204)

where we have used the fact that the averages of M(t)y(t) and N(t)y(t) are calculated

as Hθ̃av(t) and H. For simplicity of notation, let us introduce the following auxiliary

variables
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ϑ(t) := H

(
θ̃av(t) +

∫ 1

0

Duav(x, t)dx

)
, (205)

Ũ = Uav −Kϑ. (206)

With this notation, (204) can be represented simply as U̇av = −cŨ . In addition,

di�erentiating (205) with respect to t yields

ϑ̇ = HUav(t). (207)

We prove the exponential stability of the closed-loop system by using the Lyapunov

functional de�ned by

V (t) = ϑ(t)TKϑ(t) +
1

4
λmin(−H)

∫ 1

0

(1 + x)uav(x, t)
TDuav(x, t)dx+

1

2
Ũ(t)T (−H)Ũ(t).

(208)

Recall that K and D are diagonal matrices with positive entries and that H is a

negative-de�nite matrix. Hence, all of K, D, and −H are positive-de�nite matrices. For

simplicity of notation, we omit explicit dependence of variables on t. The time derivative

of V is given by

V̇ = 2ϑTKHUav +
1

2
λmin(−H)UT

avUav −
1

4
λmin(−H)u(0)Tu(0)

− 1

4
λmin(−H)

∫ 1

0

uav(x)Tuav(x)dx+ ŨT (−H)
(
U̇av −KHUav

)
≤ 2ϑTKHUav +

1

2
UT
av(−H)Uav

− 1

8Dmax

λmin(−H))

∫ 1

0

(1 + x)uav(x)TDuav(x)dx

+ ŨT (−H)U̇av + ŨT (−H)K(−H)Uav. (209)

Applying Young's inequality to the last term leads to

ŨT (−H)K(−H)Uav ≤
1

2
ŨT (−HKHKH)Ũ +

1

2
UT
av(−H)Uav. (210)
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Then, completing the square yields

V̇ ≤ ŨT (−H)Ũ − ϑTK(−H)Kϑ

− 1

8Dmax

λmin(−H)

∫ 1

0

(1 + x)uav(x)TDuav(x)dx

+ ŨT (−H)U̇av +
1

2
ŨT (−HKHKH)Ũ

= ŨT (−H)
(
U̇av + c∗Ũ

)
− ϑTK(−H)Kϑ

− 1

8Dmax

λmin(−H)

∫ 1

0

(1 + x)uav(x)TDuavdu, (211)

where c∗ := 1 + λmax(−HKHKH)/λmin(−H). Hence, by setting U̇av = −cŨ for some

c > c∗, we see that there exists µ > 0 such that V̇ ≤ µV . Finally, it is not di�cult to �nd

positive constants α, β > 0 such that

α

(
|θ̃av(t)|2 +

∫ 1

0

|u(x, t)|2dx+ |Ũav(t)|2
)
≤ V (t) ≤ β

(
|θ̃av(t)|2 +

∫ 1

0

|u(x, t)|2dx+ |Ũav(t)|2
)
.

(212)

Therefore, the average system (201)-(204) is exponentially stable as long as c > c∗.

The remaining steps of the proof follow exactly the steps 6 and 7 of chapter 3.

4.3 Simulation Results

In order to evaluate the multidimentional version of the delay-compensated extremum

seeking, we consider the following static quadratic map:

Q(θ) = 1 +
1

2

(
2(θ1)2 + 4(θ2 − 1)2 + 4θ1(θ2 − 1)

)
, (213)

subject to an input delay of D = (35, 40). The extremum points are θ∗ = (0, 1) and

y∗ = 1, and the Hessian of the map is

H = −

2 2

2 4

 . (214)

For this case (n = 2), the predictor controller equation is given by
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U̇(t) =− cU(t) + c

K1 0

0 K2

(M(t)y(t)

+N(t)y(t)

(1

0

∫ t

t−D1

U1(τ)dτ +

0

1

∫ t

t−D2

U2(τ)dτ

))
. (215)

Since M(t) and N(t) are

M(t) =

M1(t)

M2(t)

 =

 2
a1
sin(ω1t)

2
a2
sin(ω2t)

 (216)

N(t) =

N11(t) N12(t)

N21(t) N22(t)

 =

 16
a21

(
sin2(ω1t)− 1

2

)
4

a1a2
sin(ω1t)sin(ω2t)

4
a2a1

sin(ω2t)sin(ω1t)
16
a22

(
sin2(ω2t)− 1

2

)
 , (217)

The predictor's equation (215) can be written as U1(t) and U2(t) as follows:

U1(t) =
cK1

s+ c

{
Ĝ(t) + Ĥ1

1

0

∫ t

t−D1

U1(τ)dτ +

0

1

∫ t

t−D2

U2(τ)dτ

} (218)

U2(t) =
cK2

s+ c

{
Ĝ(t) + Ĥ2

1

0

∫ t

t−D1

U1(τ)dτ +

0

1

∫ t

t−D2

U2(τ)dτ

} (219)

When comparing (218) and (219) with the predictor's equations (176) and (177)

in the n = 2 example in Chapter 3, it is possible to notice that the new algorithm results

in a simpli�ed controller with easier implementation.

The proposed alternative gradient-based ES under multiple-input delays is shown

in the block diagram of Figure 10. For this n = 2 example, D = diag{D1, D2} and

K = diag{K1, K2}. The predictor feedback is implemented according to (218) and (219),

the additive dither signal is S(t) =
[
a1sin(ω1(t+D1)) a2sin(ω2(t+D2))

]T
and M(t)

and N(t) are given by (216) and (217) respectively.

In our simulations, we use low-pass and washout �lters with corner frequencies ωh
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Figure 10 Block diagram of the prediction scheme for multiple-input delay compensation.
Ĝ and Ĥ are, respectively, the Gradient and Hessian estimates. D = diag{D1, D2} and
K = diag{K1, K2}

and ωl to improve the controller performance as usual in extremum seeking designs.

In what follows, we present numerical simulations of the predictor (215). We

performed our tests with c = 20, K1 = 1
100

, K2 = 1
200

, a1 = a2 = 0.05, ω = 0.5,

ω1 = 17.5ω, ω2 = 12.5ω, ωh = ωl = ω
5
, and θ̂(0) = (1, 1).

Figure 11 shows the system output y(t) in 3 situations: (a) free of input delays,

(b) in the presence of multiple and distinct input-delays without any delay compensation

and (c) with input-delays and predictor-based compensation.

Figure 12 presents relevant variables for ES: (a) the time response of the parameter

θ(t), (b) the control signal U(t) and (c) the Hessian's estimate Ĥ. It is clear the remarkable

evolution of the new prediction scheme in searching the maximum and the Hessian's

parameters of H−1. This ultimate exact perturbation based estimation allows the perfect

delay compensation.
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Figure 11 Alternative gradient-based ES under input-output delays (time response of
y(t): (a) basic ES works well without delays; (b) ES goes unstable in the presence of
delays; (c) predictor �xes this.
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Figure 12 Alternative gradient-based ES under multiple input-delays: (a) parameter θ(t);
(b) the control signal U(t); (c) Hessian's estimate Ĥ(t). The elements of Ĥ(t) converge
to the unknown elements of H(t).
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CONCLUSION

A new gradient extremum seeking controller was developed for multiparameter

real-time optimization in the presence of distinct actuator delays. The control scheme

introduced here for delay compensation uses prediction feedback with perturbation-based

estimate of the Hessian associated with an adequate tune of the dither signals. The novel

predictor feedback is much simpler than the previous gradient case found in the literature.

The generalization for multi-input-single-output maps with distinct input delays has to

perform prediction of the cross-coupling of the channels. As a further advance in this

challenging scenario is that the contributions are achieved without invoking the backs-

tepping methodology usually employed in the publications concerning extremum seeking

under delays.

As future work, suggestion to continue developing extremum seeking theory with

a stochastic version of the proposed algorithm, application to dynamic maps rather than

static ones, and unknown and distributed delays.
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