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Final-State Approximate Control for the Heat Equation

Rio de Janeiro
2018



Marlon Michael López Flores
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moriam) e Rodolfo López Durón (in memoriam). Por terem me mostrado o caminho e o

valor da educação.



AGRADECIMENTOS

Quero agradecer a DEUS, por ter me permitido completar um desafio a mais

na vida e me proporcionar o conhecimento, a sabedoria e o apoio para continuar novos

desafios que enfrentarei antes de voltar para ELE.

Aos meus orientadores, os professores Gilberto e Rogério, pelo apoio durante todo
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À Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de
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RESUMO

FLORES, Marlon Michael López. Controle Aproximado do Estado Final para a Equação

de Calor. Brasil. 2018. 124 f. Tese (Doutorado em Engenharia Mecânica) Faculdade de

Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.

Neste trabalho, dois tipos de problemas de controle em malha aberta são abordados

em conexão com a equação linear de calor em domı́nios retangulares com condições de

contorno tipo Dirichlet na qual a função de controle (dependendo apenas do tempo)

constitui um termo de fonte. Em ambos os casos, o objetivo principal é impor um estado

prescrito (distribuição de temperatura) no instante final de um dado intervalo de tempo.

Sinais de controle serão selecionados com base em dois problemas de otimização, um

sem restrições e outro envolvendo restrições nas magnitudes máximas dos valores obtidos

pelos sinais de controle no intervalo de tempo em questão. Ambos os problemas têm

o mesmo custo-funcional quadrático. Aproximações para os sinais de controle ótimo

são obtidos com base na aproximação de Galerkin, de dimensão finita, para a equação

linear de calor. Como consequência, os sinais de controle ótimos resultantes podem ser

calculados de forma eficaz. Resultados numéricos para as equações de calor lineares 1D

e 2D são apresentados para ilustrar os resultados mencionados acima. Com base nos

resultados obtidos para a equação de calor linear, um esquema de linearização heuŕıstica

é introduzido para tratar problemas de controle de estado final para a equação de calor

não-linear. Este esquema baseia-se numa linearização por partes das ODEs não-lineares

de dimensão finita correspondentes às aproximações de Galerkin da equação de calor não-

linear. Alguns resultados numéricos também são apresentados para ilustrar este esquema

de linearização heuŕıstica para a equação de calor não-linear 1D.

Palavras-chave: Controle ótimo; equações diferenciais parciais; soluções aproximadas.



ABSTRACT

FLORES, Marlon Michael López. Final-State Approximate Control for the Heat Equa-

tion. Brasil. 2018. 124 f. Tese (Doutorado em Engenharia Mecânica) Faculdade de

Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.

In this work, two types of open-loop control problems are addressed in connection with

the linear heat equation in rectangular domains with Dirichlet type boundary conditions

in which the control function (depending only on time) constitutes a source term. In both

cases, the main objective is to impose a prescribed state (temperature distribution) at

the final instant of a given time-interval. Control signals are to be selected on the basis of

two optimization problems, one unconstrained and the other one involving constraints on

the maximum magnitudes of the values taken by the control signals on the time-interval

in question. Both problems have the same quadratic cost-functional. Approximations

for the optimal control signals are obtained on the basis of finite-dimensional Galerkin

approximation for the linear heat equation. As a consequence, the resulting optimal

control signals can be effectively computed. Numerical results for the 1D and 2D linear

heat equations are presented to illustrate the results mentioned above. On the basis of the

results obtained for the linear heat equation, a heuristic linearization scheme is introduced

to address final-state control problems for the non-linear heat equation. This scheme rests

on a piecewise linearization of the finite-dimensional, non-linear ODEs corresponding to

Galerkin approximations of the non-linear heat equation. Some numerical results are

also presented to illustrate this heuristic linearization scheme for the 1D non-linear heat

equation.

Keywords: Optimal control; partial differential equations; approximate solutions.
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INTRODUCTION

The design of equipment and software for temperature control is an important

engineering endeavor for the solution of several technological problems. Amongst them,

the following could be mentioned:

(i) Ambient temperature control for comfort purposes or to ensure adequate operating

conditions for sensitive equipment, cf. (SHAIKH et al, 2018; MAHESH, 2018).

(ii) Heat dissipation or cooling of specific pieces of hardware, cf. (NDAO; PELES;

JENSEN, 2009; AHMED, 2018).

(iii) Thermal processing in the metal industry, cf. (LOTOV, 2005; BLECK et al., 2014).

(iv) Temperature control to ensure satisfactory results of chemical processes, cf. (SLYAD-

NEV et al., 2001; ALVAREZ-RAMIREZ; ALVAREZ, 2005).

(v) Temperature control in the glass and ceramics industry, cf. (CLEVER; LANG,

2012; MOROZKIN; TKACHEV, 2016).

(vi) Food safety and the pharmaceutical industry, cf. (MERCIER et al., 2017; KUMAR;

JHA, 2017).

(vii) Biological tissue management and conservation, cf. (HOFFMANN; BOTKIN; TUR-

OVA, 2011, 2014).

It is worth noting that such a range of potential applications involves different

levels of intended accuracy in the control objectives as well as distinct levels of difficulties

in the way of obtaining “good-enough” mathematical models of the corresponding physical

processes which could be used for the design of control schemes.

Modelling the process of energy transfer in (supposedly) continuous bodies is a

long-standing topic in the scientific literature (at least in the last 200 years). Nevertheless,

several questions have not been satisfactorily answered yet such as, for instance, the fact

that heat is assumed in most models to propagate with infinite speed. Indeed, a realistic

hyperbolic model that yields good accuracy is not available yet.

The major aim of the vast majority of works on heat transfer is to simulate the

behavior of the temperature in the interior of a body on the basis of informations about

inner heat sources and interactions with the (external) environment – the latter being

described by boundary conditions. In other words, to characterize the temperature as a

function of position and time is the most frequent aim of the works in this area.
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In this work, a somewhat more complex and ambitious objective is pursued. Meth-

ods are sought to locally control the temperature of a body so that it is kept within pre-

scribed limits. Actually, although more complex, this is perhaps a greater motivation in

various application areas. In other words, the main interest here is not only to charac-

terize the temperature distribution in a body, but also to devise “what to do” to ensure

that the temperature in question is kept within admissible limits.

To illustrate the importance of this topic, the effect of temperature variation on

semi-conductors (e.g., a computer chip) may be considered. Such devices, usually made

of silicon, suffer internal damage when the temperature exceeds 95oC. It is therefore

necessary to find some kind of control process to avoid such damage, especially when

replacement is not possible (e.g., when such a device is located in an artificial satellite).

A similar problem arises in connection with thermal comfort problems in which

temperature should be confined to a relatively narrow range (in this case, humidity should

also be controlled).

There are other situations in which temperature control plays an even more vital

role such as those involving medicines and foodstuffs. For example, to avoid contamina-

tion due to bacterial proliferation. The National Health Surveillance Agency of Brazil

(ANVISA, as per its Portuguese acronym) guidelines require that foodstuffs should be

subject to one of the following conditions:

• Kept heated above 60oC for up to 6 hours,

• Kept cooled below 5oC for up to 5 days,

• Kept frozen below −18oC for unspecified periods.

These guidelines stem from the fact that between 5oC−60oC in humid environments (high

risk zone), pathogenic bacteria reproduce very quickly. In high risk conditions, a simple

bacterium may generate 130000 off-springs in only 6 hours. It is indeed very necessary to

keep perishable foodstuffs under temperature control.

Similar considerations apply to medicines. However, in addition to the risks of

contamination, effectiveness may be lost with exposure to inappropriate conditions. For

example, HGH (Human Growth Hormone used in cases of growth deficit) ceases to be

effective if it is kept for more than 20 minutes above 8oC (at current prices, each mL of

HGH can cost up to US$1000).

It is worth noting that temperature control should be considered as a “local”

issue, i.e., not only average temperatures should be kept in a prescribed range but the

temperatures at all points of a body should behave likewise.
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In this work, models will not take into account convective transport (it would

be required by more realistic models for situations involving medicines and foodstuffs).

Non opaque bodies (those that allow thermal radiation through) will not be considered

either. Being a preliminary study only models for rigid and opaque bodies (at rest) will

be handled. Nevertheless, problems will be tackled here for models in which thermal

conductivity (and hence, thermal diffusiveness) depends on the temperature – in cases

such as the ones involving silicon, this dependency should not be neglected.

Summing up, a simple (idealized) model of heat propagation/conduction (in solids)

will be considered here as the basic set-up on the basis of which certain temperature control

problems will be studied. The major aim here is to explore computational methods for

obtaining approximate solutions to the corresponding mathematical problems.

Accordingly, the so-called heat equation is taken to be the fundamental mathe-

matical model linking heat sources to temperature evolution for which open-loop control

problems will be formulated and approximate solutions will be sought. More specifi-

cally, for linear (or linearized) versions of the heat equation optimal (open-loop) control

problems will be considered here.

Such optimal control problems have been extensively studied – see for example

(KOGUT; LEUGERING, 2011; TRÖLTZSCH, 2010; ZUAZUA, 2002) and references

therein. Generally speaking, this work has emphasized the possibility of establishing

“abstract” optimality conditions (rather than computational schemes to obtain control

signals) in very general set-ups – for example, general spatial domains with smooth bound-

aries, control functions which vary in time and space and control objectives involving

approximating a desired state-variable trajectory over the whole of a time-interval. Quite

often, results are obtained on the basis of advanced general methods such as the so-called

Hilbert Uniqueness Method introduced by (LIONS, 1988a,b).

In contrast, the main objective here is to exploit a simpler set-up involving ap-

proximation of the final-state of a given time-interval (as the main control objective) and

control functions which depend only on time (“point controls”) and whose spatial ac-

tion is defined by properties of “actuators” reflected in the evolution equations at stake.

Restricting attention to such simpler set-ups, the major aim here is to obtain, by elemen-

tary means, characterizations of approximate optimal control signals which only involve

relatively simple computational tasks and could, therefore, be effectively generated.

The DSc. thesis is organized as follows: Chapter 1 presents basic material about

finite-dimensional Galerkin approximations for the one-dimensional heat equation in which

the diffusion coefficient depends on the temperature (henceforth, referred to as the “non-
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linear heat equation”). In Chapter 2 and 3 attention is restricted to the case in which the

diffusion coefficient is taken to be constant (leading to the “linear heat equation”). In this

simplified set-up, multi-dimensional spatial domains are considered and quadratic optimal

control problems involving multivariable control signals are formulated with (Chapter 3)

and without (Chapter 2) constraints on the maximum modulus allowed for the values

taken by each scalar control signal. Chapter 3 ends with a brief section on the question

of how to choose the location (in the spatial domain) of the “point-controls”. In Chapter

4, numerical examples are presented in which the methods presented in Chapter 2 and

3 for obtaining approximate solutions to constrained and unconstrained optimal control

problems are applied to the 1D and 2D linear heat equation. In Chapter 5, a linearization

scheme is introduced to obtain control signals for finite-dimensional Galerkin approxi-

mations to the non-linear heat equation with the same final objective, namely, to reach

approximately a desired final state over a prescribed time-interval – this scheme essentially

amounts to using the methods of Chapter 2 and 3 in a “piecewise” basis. Numerical exam-

ples are then presented to illustrate the linearization scheme at hand. Chapter 6 presents

some concluding remarks and ideas for future works related to the results presented along

this thesis.

Finally, with a view to facilitate reading, basic material on continuum mechan-

ics, some topics on systems and control problems, semigroups and some information on

numerical methods used in this work is presented in the APPENDIX.



1 THE NON-LINEAR HEAT EQUATION AND GALERKIN APPROXIMATIONS

The heat transfer process in a rigid and opaque body is one of the most studied

phenomena in Mechanics. Usually, the main objective is to determine the temperature

distribution based on a set of given characteristics. This phenomenon, called conduction

heat transfer, for a body represented by a bounded open set Ω, is mathematically described

by the following partial differential equation

ρc
∂θ

∂t
= div(κ(θ) grad θ) + q̇, in Ω× (0, tF ] (1.1)

subject to boundary conditions and to initial data.

In equation (1.1) θ represents the temperature (the unknown), ρ is the mass

density, c is the specific heat, κ is the internal conductivity and q̇ is the thermal heat

supply (per unit time and unit volume). All the above parameters may depend on the

temperature θ. Nevertheless, for real bodies, the most important dependence involves the

thermal conductivity κ and the local temperature θ.

In this work, we shall restrict our attention to one-dimensional phenomena for this

type of equation. In such cases, the above equation reduces to

ρc
∂θ

∂t
=

∂

∂x

[
κ(θ)

∂θ

∂x

]
+ q̇.

In addition, we will assume that the product ρc is a constant and rewrite the

equation as follows

∂θ

∂t
=

∂

∂x

[
α(θ)

∂θ

∂x

]
+ f, with α(θ) =

κ(θ)

ρc

in which α represents the thermal diffusivity and f is a modified heat supply, defined

by f =
q̇

ρc
– the resulting PDE is henceforth referred to as the non-linear heat equation

(NLHEq).

In this work, the main objective goes beyond the determination of the evolution

of the temperature distribution determined by equation (1.1). Starting from a given

temperature distribution at the initial time, we look for an adequate source q̇ which

ensures that the solution of equation (1.1) approximates a desired one in a prescribed

time-horizon. More specifically, for q̇ being an affine function of control signal (time

functions whose values can be imposed), the problem of choosing each control signals

will be addressed with the aim of approximating a desired, pre-specified temperature

distribution at the final instant of a given time-interval. This will be done on the basis

18
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of Galerkin approximation to an initial/boundary condition problem involving equation

(1.1).

To this effect, basic results leading to the construction of Galerkin approximations

for the one-dimensional (1D) NLHEq with a prescribed initial condition and homogeneous

Dirichlet boundary conditions are reviewed in the sequel.

On the basis of these results and the content of the next chapter on final-state,

approximate control of the linear heat equation (LHEq), a linearization scheme will be

introduced in Chapter 5 for tackling similar control problems for the NLHEq under the

conditions mentioned above.

The initial-value/boundary condition problem for the so-called NLHEq is given

in classical form as follows:

For Lx ∈ R+, tF ∈ R+, α : R → R+, f : (0, Lx) × (0, tF ) → R and g : (0, Lx) → R, a

function θ : [0, Lx]× [0, tF ]→ R is sought such that

∂θ

∂t
(x, t) =

∂

∂x

[
α(θ)

∂θ

∂x

]
+ f(x, t) ∀x ∈ (0, Lx), ∀t ∈ (0, tF ), (1.2)

θ (0, t) = θ(Lx, t) = 0 ∀ t ∈ (0, tF ] (Boundary Conditions), (1.3)

θ(x, 0) = g(x) ∀ x ∈ (0, Lx) (Initial Condition). (1.4)

To avoid excessively restrictive hypotheses on the pair (f, g) in the process of

guaranteeing the existence and uniqueness of solutions for equation (1.2) – (1.4), a version

of (1.2) – is considered which involves partial derivatives in the weak sense (EVANS, 2010,

pp. 371 – 380).

This leads to the weak version of this problem which is now stated. To this effect,

take the space of square integrable functions on a domain Ω. In this case take Ω = (0, Lx),

i.e.,

L2(0, Lx) = {f : (0, Lx)→ R : f is measurable and

∫ Lx

0

|f |2 <∞},

then consider the Sobolev spaces (for further details see (BREZIS, 2011, pp. 202 – 219))

H1(0, Lx) =
{
u ∈ L2(0, Lx) : ∃v ∈ L2(0, Lx) such that ∀φ ∈ C1(0, Lx)

with φ(0) = φ(Lx) = 0 and

∫ Lx

0

uφ′ = −
∫ Lx

0

vφ }
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and

H1
0 (0, Lx) =

{
h ∈ H1(0, Lx) such that h(0) = h(Lx) = 0

}
– note that if φ ∈ H1(0, Lx), then φ is continuous. On the basis of test functions φ in

H1
0 (0, Lx) (which satisfy the boundary conditions) the following problem is posed:

Find a function θ : [0, tF ]→ H1
0 (0, Lx) differentiable such that

∀φ ∈ H1
0 (0, Lx),

〈
dθ

dt
(t), φ

〉
=

〈
∂

∂x

[
α(θ(t))

∂θ(t)

∂x

]
, φ

〉
+ 〈f(·, t), φ〉 a.e. in (0, tF ),

Using Green’s first identity (see APPENDIX A.2) then we obtain,

∀φ ∈ H1
0 (0, Lx),

〈
dθ

dt
(t), φ

〉
= −

〈
α(θ(t))

∂θ(t)

∂x
,
∂φ

∂x

〉
+ 〈f(·, t), φ〉 a.e. in (0, tF )

(1.5)

and 〈θ(0), φ〉 = 〈g, φ〉, (1.6)

where 〈·, ·〉 is defined by 〈u, v〉 =

∫ Lx

0

u(x)v(x)dx.

The existence and uniqueness of solutions θ ∈ L2(0, tF ;H1
0 (0, Lx)) for the problem

defined by (1.2) – (1.4) has been ascertained (as pointed out by (BERGAM;BERNARD;

MGHAZLI, 2004)) by (LIONS, 1961, pp. 113 – 116) for any f ∈ L2(0, tF ;L2(0, Lx)),

g ∈ L2(0, Lx) and α(·) a continuously differentiable function from R to R satisfying

∀ξ ∈ R, αmin ≤ α(ξ) ≤ αmax and

∣∣∣∣dα(ξ)

dξ

∣∣∣∣ ≤ αdmax

for some positive constants αmin, αmax and αdmax.

To compute approximate solutions to the problem defined by (1.5) – (1.6) the

so-called Galerkin approximations have considered by (THOMÉE, 2006, and references

therein), (DOUGLAS; DUPONT, 1970) and (WHEELER, 1973).

To define Galerkin approximations of this problem, let {SK}, K = 1, 2, . . . be a

family of finite-dimension subspaces SK ⊂ H1
0 (0, Lx) with the approximation property,

i.e., such that

∀f ∈ H1
0 (0, Lx), lim

K→∞
‖f − f̂K‖L2(0,Lx) = 0,

where f̂K denotes the L2−orthogonal projection of f on SK .
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An approximate problem is then formulated as follows:

Find θK : [0, tF ]→ SK differentiable such that ∀ t a.e. in [0, tF ]

∀φ ∈ SK ,
〈
dθK
dt

(t), φ

〉
= −

〈
α(θK(t))

∂θK(t)

∂x
,
∂φ

∂x

〉
+ 〈f(·, t), φ〉 a.e. in (0, tF )

(1.7)

and 〈θK(0), φ〉 = 〈g, φ〉. (1.8)

Taking a basis {φ1, . . . , φnK} for SK , where nK = dim(SK), θK can be written as

θK(t) =

nK∑
k=1

ck(t)φk so that (1.7) can be written as

∀` = 1, 2, . . . , nK ,

〈
nK∑
k=1

ċk(t)φk, φ`

〉
= −

〈
αK(cK(t))

nK∑
k=1

ck(t)
∂φk
∂x

,
∂φ`
∂x

〉
+ 〈f(·, t), φ`〉,

where ċk(t) =
dck(t)

dt
, cK(t) , [c1(t) . . . cnK (t)]T and αK(cK(t)) , α(θK(t)). Equiva-

lently,

∀` = 1, 2, . . . , nK ,

nK∑
k=1

ċk(t) 〈φk, φ`〉 = −
nK∑
k=1

ck(t)

〈
αK(cK(t))

∂φk
∂x

,
∂φ`
∂x

〉
+ 〈f(·, t), φ`〉.

Thus ∀` = 1, . . . , nK ,

[〈φ1, φ`〉 . . . 〈φnK , φ`〉]ċK(t) =

[
−
〈
αK(cK(t))

∂φ1

∂x
,
∂φ`
∂x

〉
. . . −

〈
αK(cK(t))

∂φnK
∂x

,
∂φ`
∂x

〉]
cK(t) + 〈f(·, t), φ`〉,

i.e.,

Gφ
K ċK(t) = ŘK(cK(t))cK(t) + f̌K(t),

where {Gφ
K}`k = 〈φk, φ`〉,

{
Ř(cK(t))

}
`k

= −
〈
αK(cK(t))∂φk

∂x
, ∂φ`
∂x

〉
and {f̌K}` =

〈f(·, t), φ`〉 . This can be rewritten as

ċK(t) = RK(cK(t))cK(t) + fK(t), (1.9)

where RK(·) = (Gφ
K)−1Ř(·) and fK(t) = (Gφ

K)−1f̌K(t).
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In turn, (1.8) can be written as

∀` = 1, 2, . . . , nK , 〈θK(0), φ`〉 = 〈g, φ`〉 ⇔
nK∑
k=1

ck(0)〈φk, φ`〉 = 〈g, φ`〉.

Thus

Gφ
KcK(0) = ǧ

K
⇒ cK(0) = g

K
, (1.10)

where ǧ
K
, [〈g, φ1〉 · · · 〈g, φnK 〉]T and g

K
, (Gφ

K)−1ǧ
K

.

The Kth–order approximate problem is then posed as follows:

Find cK : [0, tF ]→ RnK such that

ċK(t) = RK(cK(t))cK(t) + fK(t) and cK(0) = g
K
. (1.11)

Once a solution to the problem defined by (1.11) is obtained, the corresponding Kth–

order Galerkin, candidate approximation to a solution of (1.5) – (1.6) is given by θK(t) =∑nK
k=1 ck(t)φk. The first step in this process is, therefore, to establish the existence of a

unique solution to (1.11). To this effect, let h : RnK → RnK be defined as h(z) = RK(z)z.

As RK = (Gφ
K)−1ŘK(z) and {ŘK(z)}`k = −

〈
α (
∑nK

i=1 ziφi)
∂φk
∂x
, ∂φ`
∂x

〉
if α : R → R is

continuously differentiable, then so is ŘK(·), RK(·) and h. This together with the fact

that fK : [0, tF ] → RnK is continuous leads to the existence and uniqueness of solution

of (1.11), see (KELLEY; PETERSON, Theorem 8.13 – The Picard-Lindelöf theorem, p.

350).

The approximation error eK , θK(t)− θo(t) is analyzed in (THOMÉE, 2006) for

a specific family of finite-element subspaces SK . Under the assumption on f , g and α(·)
mentioned above and (implicit) regularity assumptions on the unique solution θo(·) for the

problem defined by (1.5) – (1.6), upper bounds are derived in L2(0, Lx)−norm of eK(t), see

(THOMÉE, 2006, Theorem 13.1, p. 235). As those upper bounds go to zero as K →∞
(making h = 1/K in the theorem mentioned, where h is the finite-element mesh size),

it is then established that θK(t) → θo (uniformly in t ∈ (0, tF ) in the L2(0, Lx)−norm).

A similar convergence result also follows from Theorem 3.1 in (DOUGLAS; DUPONT,

1970).



2 FINITE-STATE APROXIMATE CONTROL FOR THE LINEAR HEAT EQUA-

TION

In this chapter, the problem will be considered of choosing a control signal u :

[0, tF ]→ Rm, where m ∈ N and is defined by the number of scalar control signals chosen

to approximately steer the solution of a LHEq (for a given initial value and homogeneous

boundary Dirichlet condition) towards a prescribed final state. Given the relatively simple

nature of the LHEq (vis-à-vis the NLHEq), a more general set-up will be explored, with m

scalar control signals and spatial domains in Rmx . Accordingly, in Section 2.1, an optimal

control problem is formulated for the LHEq and the optimal solution is characterized

by a linear equation on L2(0, tF )m. Then in Section 2.2, approximations to the optimal

control signal are characterized (by means of linear equations in Rn) as optimal solutions

to an optimal control problem posed on the basis of a Galerkin approximation (of a given

dimension n) for the LHEq. This chapter ends with a summary of the computational

steps required to obtain the desired control signal.

Linear-quadratic optimal control problems have been extensively studied – see,

for example (TRÖLTZSCH, 2010), (ZUAZUA, 2002) and references therein. Very often,

general parabolic equations and more general cost-functional involving state values along

the whole of [0, tF ] are considered. To cope with such general set-ups, results tend to con-

centrate on showing existence of optimal controls and establishing “abstract” optimality

conditions (rather that computational schemes to compute control signals). This is of-

ten achieved invoking advanced general methods such as the so called Hilbert Uniqueness

Method (HUM for short) devised by (LIONS, 1988a), (LIONS, 1988b).

In contrast, the main objective here is to exploit a simpler set-up (the LHEq and

final-state control) to obtain, by elementary means, explicit characterizations of approx-

imate optimal control signals which would only involve relatively simple computational

tasks – with the end result that the desired “approximately-optimal” control signals could

be effectively generated, see (CORRÊA; LÓPEZ–FLORES; MADUREIRA, 2012).

To this effect, consider a initial/boundary condition problem for the parabolic

equation given (“in its classical form”) by

∂θ(x, t)

∂t
= α

mx∑
i=1

∂2θ(x, t)

∂x2
i

+ f(x, t) ∀ x ∈ Ω, ∀ t ∈ (0,∞) (2.1)

θ(x, t) = 0 (Boundary Conditions) ∀ t ∈ (0,∞), ∀x ∈ ∂Ω (2.2)

θ(x, 0) = g(x) (Initial Condition) ∀x ∈ Ω (2.3)

where Ω ∈ Rmx is a bounded, open and connected set, f and g are given functions and
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α ∈ R+. The “weak” version of this problem is then formulated as follows:

Given α ∈ R+, f(t) = f(·, t) ∈ L2(Ω), g ∈ L2(Ω) and Ω ∈ Rmx open and connected

find θ : [0, tF ]→ H1
0 (Ω) such that ∀φ ∈ H1

0 (Ω) and ∀t ∈ (0, tF )〈
dθ

dt
(t), φ

〉
= −α

mx∑
i=1

〈
∂θ(t)

∂xi
,
∂φ

∂xi

〉
+ 〈f(t), φ〉, (2.4)

〈θ(0), φ〉 = 〈g, φ〉. (2.5)

The existence and uniqueness of solutions to this problem follows from the result of

(EVANS, 2010, Theorem 7.1.1, p. 376).

Given that the main interest here is the final-state control problem, the semigroup

representation of the solution to (2.1)–(2.3), see (CURTAIN; ZWART, 1995, Chapter

2, pp. 13–52), will be exploited. To bring in such a representation, let the operator

A : H1
0 (Ω)→ H−1(Ω), the dual space of H1

0 , be defined by

∀φ ∈ H1
0 (Ω),∀ψ ∈ H1

0 (Ω), 〈A[φ], ψ〉 = −B[φ, ψ], (2.6)

where

B[φ, ψ] , α

mx∑
i=1

〈
∂φ

∂xi
,
∂ψ

∂xi

〉
, (2.7)

where 〈·, ·〉 denotes the inner product of L2(Ω).

Then the problem above can be recast as the following Cauchy problem:

Find θ : [0, tF ]→ H1
0 (Ω) such that

θ̇(t) = A[θ(t)] + f(t) , t > 0 , θ(0) = g (2.8)

where g ∈ L2(Ω), f : (0,∞)→ L2(Ω) and θ : [0,∞)→ L2(Ω).

The operator A so defined is the infinitesimal generator of a Co−semigroup

SA(t) : L2(Ω)→ L2(Ω), t ≥ 0 on the basis of which θ(·) is given by

θ(t; f, g) = SA(t)[g] +

∫ t

0

SA(t− τ)[f(τ)]dτ, ∀t ∈ [0, tF ], (2.9)

see (CURTAIN; ZWART, 1995, Chapter 3, pp. 101–107).
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As the operator A is symmetric and elliptic, the eigenvectors of A constitute a

complete orthonormal set for L2(Ω), see (EVANS, 2010, Theorem 6.5.1, p. 355), so that

∀φ ∈ H1
0 (Ω), A[φ] =

∑∞
i=1 λi〈φi, φ〉φi, where {λi}∞i=1 are the corresponding eigenvalues

of A, i.e., A[φi] = λiφi. As a result, SA(t) is given by

∀φ ∈ L2(Ω), SA(t)[φ] =
∞∑
i=1

eλit〈φi, φ〉φi. (2.10)

Remark 2.1. In the case of tensorial spatial domains, i.e., Ω = (0, Lx1)× · · · (0, Lxmx )

the eigenfunctions φk, k = (k1, . . . , kmx) of the operator A are given by

φk(x) =
mx∏
i=1

√
2

Lxi
sin

[
kiπxi
Lxi

]
.

∇

It is now assumed that f(x, t) = fS(x, t)+βS(x)Tu(t), where fS : Ω× [0, tF ]→ R
and βS : Ω → Rm are given functions, where fS would model “disturbances” (i.e.,

control-independent heat sources) and u : [0, tF ]→ Rm is a control signal to be chosen in

such a way as to make θ(tF ; f, g) “close” to a prescribed θr ∈ L2(Ω). This source term

consists of a given “disturbance” term, fS(x, t), and the controlling term with βT
S(x)

which represents the spatial effects (and position), of the different controlled sources

characterized by βSi(x). Thus, the control function can be a vector function u(t) ∈ Rm,

i.e., u(t) = (u1(t), . . . , um(t)), where each element of the vector represents a control signal

for each of the individual sources given by βT
S(x), i.e., βSi(x)ui(t), i = 1, . . . ,m.

Now, let u ∈ L2(0, tF )m, ρu ∈ R+ and define the cost functional

J (u) , ‖θ(tF ; f, g)− θr‖2
L2(Ω) + ρu‖u‖2

L2(0,tF )m (2.11)

(from now on, the “space” subindices of norms and inner products will be omitted when-

ever context information makes them redundant). Each of the terms of this functional

provides us with very important information about the system represented by the heat

equation and and how it behaves under the influence of one or more control signals.

The “energy” that the control u requires to take the system to the desired final

state (objective) in a finite interval of time, (0, tF ), can be studied by analyzing the

behavior of ‖u‖2
L2(0,tF )m . This can be done by varying the parameter ρu that penalizes this

term. This has a direct influence over θ(tF ; f, g) when it approximates to the desired final
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state, θr. This information can be useful in the process of designing a real controller. The

term ‖θ(tF ; f, g)− θr‖2
L2(Ω) provides us with information of the proximity of the system’s

optimal final state under the effect of the control and the desired state (objective) which

we want to approximate.

A control signal is to be chosen on the basis of the optimization problem

Prob. I : min
u∈L2(0,tF )m

J (u). (2.12)

Moreover, the cost functional, J (u), is a convex, continuous and coercive functional and

with the fact that L2(0, tF )m is closed and convex guarantees the existence of a function

u that minimizes it (EKELAND; TÉMAM, 1976, pp. 35–36).

2.1 Final State Positioning with Source Control

In this section, optimality conditions are presented for Prob. I on the basis of

which its solution can be explicitly characterized. To this effect, note first that due to the

linearity of θ(·; f, g) on (f, g),

θ(·; f, g) = θ(·; fS, g) + θ(·; fu, 0), where fu(t) = βT
S(·)u(t), (2.13)

i.e.,

θ(·; f, g) = θ(·; fS, g) + Ťθ[u](·), (2.14)

where Ťθ : L2(0, tF )m → {h : [0, tF ]→ H1
0 (Ω)}

Ťθ[u](t) ,
∫ t

0

SA(t− τ)[fu(τ)]dτ. (2.15)

From (2.10) we see that

Ťθ[u](t) =

∫ t

0

∞∑
i=1

eλi(t−τ)〈φi, fu(τ)〉φidτ. (2.16)

Now J (u) can be rewritten as

J (u) = ‖Tθ[u]− θro‖2
L2(Ω) + ρu‖u‖2

L2(0,tF )m , (2.17)

where θro , θr − θ(tF ; f, g) and Tθ : L2(0, tF )m → L2(Ω) is defined by Tθ[u] = Ťθ[u](tF ).
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Exploiting the specific nature of the cost functional, the existence of an optimal

solution to Prob. I can be ascertained by means of a basic result on minimum-distance

problems pertaining to closed convex sets (LUENBERGER, 1969, p. 69), as stated in the

next proposition in which the optimal solution is also characterized.

Proposition 2.1. There exists uo ∈ L2(0, tF )m such that ∀u ∈ L2(0, tF )m, u 6= uo,

J (uo) < J (u).

Moreover, uo is the unique solution of the linear equation

ρuuo + T ∗θ · Tθ[uo]− T ∗θ [θro] = 0, (2.18)

i.e.,

uo = [ρuI + T ∗θ · Tθ]
−1 [T ∗θ [θro]] , (2.19)

where T ∗θ : L2(Ω)→ L2(0, tF )m is the adjoint of Tθ. ∇

Proof. Let Ta : L2(0, tF )m → L2(0, tF )m × L2(Ω) be defined by Ta[u] , (ρ
1/2
u u, Tθ[u]).

Then J (u) = ‖Ta[u] − (0, θro)‖2
Xa

, where Xa , L2(0, tF )m × L2(Ω), and Prob. I is

seen as the problem of finding the minimum-distance approximation to (0, θro) ∈ Xa in

Ta[L2(0, tF )m] - note that Xa is a Hilbert Space with the inner product

〈(v1, w1), (v2, w2)〉Xa = 〈v1, v2〉L2(0,tF )m + 〈w1, w2〉L2(Ω).

Moreover, Ta[L2(0, tF )m] is closed. Indeed, if Ta[uK ] → x0 = (ûo, θ̂ao) or, equivalently,

(ρ
1/2
u uK , Tθ[uK ]) → (ûo, θ̂ao) then uK → ρ

−1/2
u ûo and (since Tθ is continuous) Tθ[uK ] →

Tθ[ρ−1/2
u ûo] = θ̂ao. Thus, Ta(ρ−1/2

u ûo) = (ûo, Tθ[ρ−1/2
u ûo]) = (ûo, θ̂ao) = x0 ⇒ x0 ∈

Ta[L2(0, tF )m].

As Ta[L2(0, tF )m] is also convex, it follows from (LUENBERGER, 1969, Theorem

3.12.1, p. 69) that Prob. I has a unique solution uo (say).

Note now that uo is a solution to Prob. I ⇔ ∀δu ∈ L2(0, tF )m,

J (uo) ≤ J (uo + δu) ⇔ ∀δu ∈ L2(0, tF )m ,

2ρu〈uo, δu〉L2(0,tF )m + ρu‖δu‖2
L2(0,tF )m + 2〈Tθ[uo]− θro, Tθ[δu]〉+ ‖Tθ[δu]‖2

L2(Ω) ≥ 0

⇔ ∀δu ∈ L2(0, tF )m , 〈ρuuo + T ∗θ · Tθ[uo]− T ∗θ [θro] , δu〉L2(0,tF )m ≥ 0

⇔ ρuuo + T ∗θ · Tθ[uo]− T ∗θ [θro] = 0.

(if vo , ρuuo + T ∗θ ◦ Tθ[uo]−T [θro] is such that vo 6= 0, then it can be seen that δu = −vo
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violates the optimality condition)

Thus, uo is the unique solution of the linear equation (2.18).

Remark 2.2. The final-state error achieved with a given control signal, namely,

‖θ(tF ; fS + βT
Su, g)− θr‖2

2 = ‖Tθ[u]− θro‖2
2

can be written as

‖Tθ[u]− θ̂ro‖2
2 + ‖θro − θ̂ro‖2

2,

where θ̂ro denotes the L2(Ω)–orthogonal projection of θro on the closure of Tθ[L2(0, tF )m]

in L2(Ω). Thus, by appropriately choosing control signals, the final-state error can be

made arbitrarily close to

inf
{
‖Tθ[u]− θ̂ro‖2

2 : u ∈ L2(0, tF )m
}

+ ‖θro − θ̂ro‖2
2 = ‖θro − θ̂ro‖2

2.

In fact, this can be done with the optimal uo(ρu) of Prob. I, for decreasing values of ρu.

Indeed, taking ε > 0 and uε ∈ L2(0, tF )m such that

‖Tθ[uε]− θ̂ro‖2
2 ≤ ε , the fact that J (uo(ρu); ρu) ≤ J (uε; ρu)

implies that

ρu‖uo(ρu)‖2
L2(0,tF )m + ‖Tθ[uo(ρu)]− θ̂ro‖2

2 ≤ ρu‖uε‖2
L2(0,tF )m + ε.

Thus,

∀ε > 0 ,∀ρu > 0 , ‖Tθ[uo(ρu)]− θ̂ro‖ ≤ ρu‖uε‖2
L2(0,tF )m + ε

and, hence, lim
ρu→0

‖Tθ[uo(ρu)]− θ̂ro‖2
2 = 0. ∇

Proposition 2.1 above characterizes the optimal solution uo in terms of the linear

operators Tθ and T ∗θ . However, computing uo involves finding ways of computing the

operator (ρuI + T ∗θ ◦ Tθ)−1 as well as to apply the result to T ∗θ [θro]. To do so, it is natural

to search for explicit approximations to uo, which are to be obtained by considering finite-

dimensional approximations to the operator Tθ and T ∗θ and the corresponding version of

equation (2.18). This is the theme of the next section.
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2.2 Approximate Solutions

In this section, a sequence {uK} is introduced which is defined on the basis of finite-

dimensional approximations to the operator Tθ. It is then shown that under appropriate

conditions this sequence converges to uo in the L2(0, tF )m–norm.

To this effect, let {XK} be a sequence of finite-dimensional subspaces of H1
0 (Ω)

with approximability property, i.e., such that ∀ψ ∈ H1
0 (Ω) there exists a sequence {ψK} ⊂

H1
0 (Ω) such that ψK ∈ XK and

lim
K→∞

‖ψ − ψK‖H1
0 (Ω) = 0. (2.20)

Let AK : XK → XK be such that

∀φ ∈ XK ,∀ψ ∈ XK , 〈AK [φ], ψ〉 = −B[φ, ψ]

or, equivalently, for an orthonormal basis {φ1, . . . , φK} of XK ,

∀φ ∈ XK , AK [φ] = −
n∑
k=1

B[φ, φk]φk ⇔ ∀` = 1, . . . , n, AK [φ`] = −
n∑
k=1

B[φ`, φk]φk.

Let then AK ∈ Rn×n be defined by {AK}`k = −B[φ`, φk], i.e., AK is the matrix

representation of AK in the basis {φ1, . . . , φK} so that for φ =
∑K

k=1 γkφk,

A`K [φ] =
∑K

k=1 γ
`
kφk, where A`K [φ] is the `th-power of AK [φ] and γ̄`K = A`

K γ̄,

γ̄ = [γ1 · · · γK ]T and γ̄` = [γ`1 · · · γ`K ]T.

Remark 2.3. By way of example, consider the one-dimensional heat equation – in this

case Ω = (0, Lx) and B[φ, ψ] = α
〈
∂φ
∂x
, ∂ψ
∂x

〉
and let φk =

√
2
Lx

sin
[
kπx
Lx

]
. Thus,

{AK}`k = −α
〈
∂φ`
∂x
, ∂φk
∂x

〉
, i.e., {AK}`k = α

[
`π
Lx

] [
kπ
Lx

] 〈√
2
Lx

cos
[
`πx
Lx

]
, cos

[
kπx
Lx

]〉
, so

that AK = diag

(
−α
[
π
Lx

]2

· · · − α
[
Kπ
Lx

]2
)

. ∇

Let PK be the orthogonal projection from L2(Ω) onto XK and define

T Kθ : L2(0, tF )m → XK by T Kθ [u] ,

[∫ tF

0

SK(tF − τ)
[
PK
[
βT
Su(τ)

]]
dτ

]
,
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where SK is the semigroup generated by AK , i.e., SK(t) =
∑∞

`=0A`Kt`/`!. Thus,

T Kθ [u] =

∫ tF

0

SK(tF − τ)

[
PK

[
m∑
i=1

βSiui(τ)

]]
dτ ⇔

T Kθ [u] =

∫ tF

0

SK(tF − τ)

[
m∑
i=1

PK [βSi]ui(τ)

]
dτ ⇔

T Kθ [u] =

∫ tF

0

m∑
i=1

{SK(tF − τ) [PK [βSi]]}ui(τ)dτ. (2.21)

Moreover, PK [βSi] =
∑K

k=1〈βSi, φk〉φk.

Now, for φ =
∑K

k=1 γkφk,

SK(t)[φ] =
∞∑
`=0

t`

`!
A`K [φ] =

∞∑
`=0

t`

`!

K∑
q=1

γ̄`Kφq =
∞∑
`=0

K∑
q=1

t`

`!
{eT

q A`
K γ̄}φq

=
K∑
q=1

cSq [φ](t)φq,

where

cSq [φ](t) =
∞∑
`=0

t`

`!
eT
q A`

K γ̄ = eT
q

[
∞∑
`=0

t`

`!
A`
K

]
γ̄

so that the vector of coefficients cS = [cS1 [φ](t) · · · cSK [φ](t)]T is given by cS[φ](t) =

exp [AKt] γ̄.

It then follows that

SK(t) [PK [βSi]] =
K∑
q=1

cSq [PK [βSi]] (t)φq,

where

cS [PK [βSi]] (t) = exp [AKt]


〈βSi, φ1〉

...

〈βSi, φK〉

 . (2.22)
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Thus, taking (2.22) into (2.21) leads to

T Kθ [u] =

∫ tF

0

m∑
i=1

K∑
q=1

eT
q

exp[AK(t− τ)]


〈βSi, φ1〉

...

〈βSi, φK〉

ui(τ)

φqdτ

=
K∑
q=1

eT
q

{∫ tF

0

exp [AK(t− τ)] MK
β u(τ)dτ

}
φq

so that T Kθ [u] =
K∑
q=1

cq(tF ;u)φq, where cK(t;u) = [c1(t;u), . . . , cK(t;u)]T is given by

cK(t;u) =

∫ t

0

exp[AK(t− τ)]MK
β u(τ)dτ , βT

S = [βS1 · · · βSm] and

MK
β ,


〈βS1, φ1〉 · · · 〈βSm, φ1〉

...
...

〈βS1, φK〉 · · · 〈βSm, φK〉

 .
The corresponding version of Prob. I is then defined by

Prob. IK : min
u∈L2(0,tF )m

JK(u), (2.23)

where

JK [u] , ‖T Kθ [u]− θro‖2
L2(Ω) + ρu‖u‖2

L2(0,tF )m .

Similarly to what happens in the case of Prob. I, Prob. IK has a unique solution uK

which is obtained from the optimality condition

ρuuK + (T Kθ )∗[T Kθ [uK ]− θro] = 0, (2.24)

where the adjoint operator (T Kθ )∗ : L2(Ω)→ L2(0, tF )m is such that

∀u ∈ L2(0, tF )m, ∀φ ∈ L2(Ω), 〈φ, T Kθ [u]〉 = 〈(T Kθ )∗[φ],u〉

⇔
n∑
k=1

〈φ, φk〉ck(tF ;u) = φ̄
T
KcK(tF ;u) =

∫ tF

0

(FK(τ)φ̄K)Tu(τ)dτ
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so that (T Kθ )∗[φ] = FK(τ)φ̄K , where φ̄
T
K , [〈φ, φ1〉 · · · 〈φ, φK〉] and

FK(τ) , (MK
β )T exp[AT

K(tF − τ)]. (2.25)

To obtain uK note that it follows from (2.24) that uK belongs to the image of

(T Kθ )∗, i.e., there exists

φ ∈ L2(Ω) such that uK = (T Kθ )∗[φ] = FKφ̄K ,

i.e., there exists ᾱK ∈ Rn such that

uK = FKᾱK . (2.26)

It then follows from (2.24) that

ρuFKᾱK + FKcK(tF ; FKᾱK)− FK θ̄
K
ro = 0 (2.27)

a sufficient condition for which being

ρF ᾱK + cK(tF ; FKᾱK)− θ̄Kro = 0, (2.28)

where θ̄
K
ro , [〈φ1, θro〉 · · · 〈φnK , θro〉]

T.

Thus, as cK(tF ; FKᾱK) = GKᾱK , where GK ,
∫ tF

0

FK(τ)TFK(τ)dτ , (2.27) can

be rewritten as ρuᾱK + GKᾱK = θ̄
K
ro from which it follows that ᾱK = (ρuI + GK)−1θ̄

K
ro

and, hence,

uK(τ) = FK(τ)(ρuI + GK)−1θ̄
K
ro, τ ∈ [0, tF ]. (2.29)

Remark 2.4. It is interesting to notice that GK can be computed form a linear equation

in RnK×nK . Indeed from (2.27) it can be seen that GK can be expressed as

GK =

∫ tF

0

exp [AK(tF − τ)] MK
β

(
exp [AK(tF − τ)] MK

β

)T
dτ. If we define ω = tF − τ we

have that GK =

∫ tF

0

ȞK(ω)dω, where ȞK(ω) , exp [AK(ω)] MK
β

(
exp [AK(ω)] MK

β

)T
.

We see that

d

dω
ȞK(ω) = AK{exp [AK(ω)] MK

β

(
exp[AK(ω)]MK

β

)T}

+{exp [AK(ω)] MK
β

(
exp[AK(ω)]MK

β

)T}AT
K = AKȞK(ω) + ȞK(ω)AT

K .
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By integrating both sides from 0 to ω we have an expression for all ω ∈ [0, tF ] given by

Ȟ(ω)− Ȟ(0) =

∫ ω

0

{AKȞK(σ) + ȞK(σ)AT
K}dσ = AK

∫ ω

0

ȞK(σ)dσ +

∫ ω

0

ȞK(σ)dσAT
K .

Then, for ω = tF we have AKGK + GKAT
K = M̌K, where M̌K = Ȟ(tF ) − Ȟ(0) =

exp[AKtF ]MK
β

(
exp[AKtF ]MK

β

)T −MK
β (MK

β )T . Therefore, GK can be obtained as the

unique solution of the Lyapunov equation, see (LAUB, 2005, pp. 144 – 148), (ZHOU;

DOYLE; GLOVER, 1996, pp.71 – 72). ∇

Remark 2.5. Note that uK : [0, tF ] → Rm is explicitly given by (2.29) in terms of

exp[AT
K(tF − τ)]. Note also that uK can be obtained from the solution of the linear

ordinary differential equation ẋu(τ) = −AT
Kxu(τ), τ ≥ 0 with the initial condition

xu(0) = exp[AT
KtF ] (ρuI + GK)−1 θ̄

K
ro, i.e., u(τ) = (MK

β )Txu(τ). ∇

The next step is to analyze the question of whether the sequence {uK} of ap-

proximate solutions to the optimal control problem converges to the solution uo of the

original problem. To this effect, consider the following proposition (which is proved in

the APPENDIX at the end of this chapter).

Proposition 2.2. There exists a real sequence {ηKT : K ∈ Z+}such that

(a) ∀u ∈ L2(0, tF )m, ‖Tθ[u]− T Kθ [u]‖L2(Ω) ≤ ηKT ‖u‖L2(0,tF )m.

(b) {ηKT } converges to zero. ∇

Note now that JK(u) = ρu‖u‖2
L2(0,tF ) + ‖Tθ[u]− θro − (Tθ[u]− T Kθ [u])‖2

2 ⇐⇒
JK(u) = J (u) + ‖Tθ[u]− T Kθ [u]‖2

2 − 2〈Tθ[u]− θro, Tθ[u]− T Kθ [u]〉.
As a result, with EK

J (u) , J (u)− JK(u), it follows from Proposition 2.2 that

|EK
J (u)| ≤ (ηKT )2‖u‖2

L2(0,tF )m + 2‖Tθ[u]− θro‖2(ηKT )‖u‖L2(0,tF )m . (2.30)

On the other hand,

JK(uK) ≤ JK(uo) = J (uo)− EK
J (uo)⇐⇒ J (uK)− EK

J (uK) ≤ J (uo)− EK
J (uo)

=⇒ J (uK) ≤ J(uo)− EK
J (uo) + EK

J (uK) =⇒

J (uK) ≤ J (uo) + |EK
J (uo)|+ |EK

J (uK)|

=⇒ (since J (uK) ≥ J (uo))

0 ≤ J (uK)− J (uo) ≤ |EK
J (uo)|+ |EK

J (uK)|. (2.31)
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Note also that, as ηKT → 0 (Proposition 2.2(b)), it follows from (2.30) that

|EK
J (uo)| → 0. Moreover, {uK} is a bounded sequence – indeed, ‖uK‖2

L2(0,tF )m ≤
‖θro‖2

L2(Ω)ρ
−1
u for, if ‖uK‖2 > ρ−1

u ‖θro‖2
L2(Ω) then JK(uK) > ‖θro‖2

L2(Ω) = JK(0) in which

case uK would not be optimal for Prob. IK . Thus, as

Tθ[u] =

∫ tF

0

SA(tF −τ){
m∑
i=1

βSiu(τ)}dτ , {Tθ[uK ]} is also bounded and, hence, it follows

from (2.30) that (as ηKT → 0) EK
J (uK)→ 0. Thus,

{
|EK
J (uo)|+ |EK

J (uK)|
}
→ 0 (2.32)

which together with (2.31) implies that J (uK) → J (uo). Thus, the following corollary

of Proposition 2.2 has been established.

Corollary 2.1: J (uK)→ J (uo). ∇

Moreover, as {uK} is bounded and J (uK) → J (uo), the desired convergence of

the approximate solutions {uK} can be established, as stated in the following proposition.

Proposition 2.3. The sequence {uK : K ∈ Z+} of solutions to the approximate problems

Prob. IK converges to the solution uo of Prob. I in the sense of the L2(0, tF )m–norm. ∇

Proof. Note first that (since uo is an optimal solution of Prob. I )

J (uK) = J (uo + (uK − uo)) = J (uo) + ρu‖uK − uo‖2
L2(0,tF )m + ‖Tθ[(uK − uo)]‖2

L2(Ω).

It then follows from (2.31) that

ρu‖uK − uo‖2
L2(0,tF )m + ‖Tθ[(uK − uo)]|2L2(Ω) ≤ |EK

J (uo)|+ |EK
J (uK)| ⇒

ρu‖uK − uo‖2
L2(0,tF )m ≤ |EK

J (uo)|+ |EK
J (uK)|.

Thus, in the light of (2.32), uK → uo in L2(0, tF )m.
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To conclude this chapter, a summary is presented of the steps required to compute

the approximate solution uK for the problem min
u∈L2(0,tF )m

J (u) where J (u) is given by

(2.11).

Given the problem data (f, g, θr, ρu) and a family {SK} of subspaces each with an

orthonormal basis {φ1 . . . φnK}:

(1) Compute θ̄
K
ro = [〈θro, φ1〉 . . . 〈θro, φnK 〉]T, where θro = θr−θ(tF ; f, g) and θ(tF ; f, g)

is given by (2.9).

(2) Compute MK
β ∈ RnK×m, where {MK

β }ki = 〈βSi, φk〉.

(3) For AK ∈ RnK such that {AK}`k = −α
mx∑
i=1

〈
∂φ`
∂xi

,
∂φk
∂xi

〉
compute GK solving the

Lyapunov equation AKGK + GKAT
K = M̌K , where

M̌K = exp[AKtF ]MK
β

(
exp[AKtF ]MK

β

)T −MK
β (MK

β )T.

(4) uK can then be obtained from (2.29) (see also Remark 2.5).

In the case of primary interest here, i.e., with Ω = (0, Lx1)× · · · ×(0, Lxmx ) and SK

the span of the eigenfunctions of A, {φk(x1 . . . xmx) : k = (k1, . . . , kmx), ki ≤ K} where φk

are as in Remark 2.1, i.e., 〈θro, φk〉 = 〈θr, φk〉−〈SA(t)[g], φk〉−〈
∫ tF

0

SA(tF−τ)[f(τ)]dτ, φk〉

⇒ (in the light of (2.10) that)

〈θro, φk〉 = 〈θr, φk〉 − eλktF 〈g, φk〉 −
∫ tF

0

eλk(tF−τ)〈f(τ), φk〉dτ, (2.33)

where λk = −α
∑mx

i=1

[
kiπ
Lx

]2

.

Moreover, in the case AK ∈ RnK is diagonal – in the one-dimensional case (mx =

1), nK = K and {AK}kk = −α
[
kπ
Lx

]2

. This allows for the Lyapunov equation to be solved

term by term,

{AKGK}k` + {GKAT
K}k` = {M̌K}k` ⇔

{AK}kk{GK}k` + {GK}k`{A}`` = {M̌K}k` ⇔

{GK}k` = {M̌K}k`/ ({AK}kk + {AK}``) ⇔

{GK}`` =
1

{AK}kk + {A}``
[1− exp {({AK}kk + {AK}``) tF}]

{
MK
β (M)Kβ )T

}
k`
.
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Thus, in this case, the computations required to obtain uK amount to the numer-

ical evaluation of the integrals 〈θr, φk〉, 〈g, φk〉k and 〈βSi, φk〉 over the spatial domain

Ω, of the (scalar) exponential function over the time-interval (0, tF ) and the last integral

in (2.33) over both time and space – note that if f(x, t) =
m∑
i=1

βSi(x)ui(t), then

∫ tF

0

eλk(tF−τ)〈f(τ), φk〉dτ =
m∑
i=1

{∫ tF

0

eλk(tF−τ)ui(τ)dτ〈βSi, φk〉
}
.

So that computing the last integral in (2.33) is reduced to computing 〈βSi, φk〉 and∫ tF

0

eλk(tF−τ)ui(τ)dτ .

Remark 2.6. It is often necessary to make ρF = ρ−1
u large in order to achieve an ac-

ceptably small value for the final-state error norm (see Remark 2.2). This might make

the conditioning number (with respect to inversion) of the matrix (I + ρFGK) very large

which, in-turn, could give rise to numerical difficulties in the process of computing its

inverse. To cope with this potential problem using the available tools from MATLAB R©,

the symmetric structure of (I + ρFGK) was exploited in the following way:

(a) Choose δS > 0 and put ǦKρ = (1+δS)I+ρFGK (Note that the eigenvalues pf ǦKρ)

are not smaller than 1 + δS).

(b) Take a SVD decomposition ǦKρ = VKρΣ̌KρU
T
Kρ of ǦKρ (note that as ǦKρ is sym-

metric and positive VKρ = UKρ, VKρ and Σ̌Kρ are the eigenvector and eigenvalue

matrices of ǦKρ, respectively).

(c) As ǦKρ = VKρΣ̌KρV
T
Kρ GKρ = ǦKρ − δSI = VKρ

[
Σ̌Kρ − δSI

]
VT
Kρ.

(d) Put G−1
Kρ = VKρ

(
Σ̌Kρ − δSI

)−1
VT
Kρ (Note that as

(
Σ̌Kρ − δSI

)
is diagonal com-

puting its inverse is numerically straightforward).

∇



37

2.3 APPENDIX – PROOFS FROM CHAPTER 2

Proof of Proposition 2.2(a): Proposition 2.2(a) is an immediate consequence of the

following auxiliary propositions

Auxiliary Proposition 1: Tθ[u]− T Kθ [u] = EK
S [u] + EK

T [u] where

EK
S [u] ,

∫ tF

0

m∑
i=1

(SA(tF − τ)− SK(tF − τ)) [PK [βSi]]ui(τ)dτ and

EK
T [u] ,

∫ tF

0

m∑
i=1

SA(tF − τ) [(I− PK)[βSi]]ui(τ)dτ. ∇

Auxiliary Proposition 2: ‖EK
T [u]‖L2(Ω) ≤ ηKT f‖u‖L2(0,tF )m and

‖EK
S [u]‖L2(Ω) ≤ ηKT g‖u‖L2(0,tF )m ,

where

ηKT f ,

{
m∑
i=1

‖fKi (tF − ·)‖2
L2(0,tF )

}1/2

, ηKT g ,

{
m∑
i=1

‖gKi (tF − ·)‖2
L2(0,tF )

}1/2

fKi (tF − σ) , ‖SA(tF − σ) [(I− PK)[βSi]] ‖L2(Ω) and

gKi (tF − σ) , ‖ (SA(tF − σ)− SK(tF − σ)) [PK [βSi]]L2(Ω) . ∇

Proposition 2.2(a) follows immediately from the two statements above, since bringing the

second one to bear on the first leads to

‖Tθ[u]− T Kθ [u]‖L2(Ω) ≤ (ηKT f + ηKT g)‖u‖L2(0,tF )m (i.e., ηKT = ηKT f + ηKT g).

�

Proof of Auxiliary Proposition 1: Recall that

T Kθ [u] =

∫ tF

0

SK(tF − τ)
[
PK [βT

Su(τ)]
]
dτ =

∫ tF

0

m∑
i=1

(SK(tF − τ) [PK [βSiui(τ)]]) dτ

(2.A.1)
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Note now that

Tθ[u] =

∫ tF

0

SA(tF − τ)[βT
Su(τ)]dτ =

∫ tF

0

m∑
i=1

SA(tF − τ) [βSi]ui(τ)dτ.

This, taking the orthogonal projections of βSi on SK and its orthogonal complement (in

L2(Ω)), i.e., βSi = PK [βSi] + (I− PK)[βSi] it follows that

Tθ[u] =

∫ tF

0

m∑
i=1

SA(tF − τ)[PK [βSi]]uidτ,

where EK
T [u] ,

∫ tF

0

m∑
i=1

SA(tF − τ) [(I− PK)[βSiui(τ)]] dτ .

As a result,

Tθ[u]− T Kθ [u] =

∫ tF

0

m∑
i=1

SA(tF − τ) [PK [βSiui(τ)]] dτ + EK
T [u]− T Kθ [u]

⇒ (in the light of (2.A.1)) Tθ[u]− T Kθ [u] = EK
S [u] + EK

T [u],

where EK
S [u] is defined above (in the statement of Auxiliary Proposition 1). �
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Proof of Auxiliary Proposition 2: Note first that

‖EK
T [u]‖L2(Ω) ≤

∫ tF

0

∥∥∥∥∥
m∑
i=1

SA(tF − τ) [(I− PK)[βSi]]ui(τ)

∥∥∥∥∥
L2(Ω)

dτ ⇒

‖EK
T [u]‖L2(Ω) ≤

∫ tF

0

m∑
i=1

‖SA(tF − t)[(I− PK)[βSi]]ui(τ)‖L2(Ω)dτ ⇒

‖EK
T [u]‖L2(Ω) ≤

m∑
i=1

∫ tF

0

‖SA(tF − τ) [(I − PK)[βSi]]ui(τ)‖L2(Ω)dτ ⇒

‖EK
T [u]‖L2(Ω) ≤

m∑
i=1

∫ tF

0

‖SA(tF − τ) [(I − PK)[βSi]] ‖|ui(τ)|dτ ⇒

‖EK
T [u]‖L2(Ω) ≤

m∑
i=1

∫ tF

0

fKi (tF − τ)|ui(τ)|dτ ⇒

‖EK
T [u]‖L2(Ω) ≤

m∑
i=1

‖fKi (tF − ·)‖L2(0,tF )‖u‖L2(0,tF ),

where fKi (tF −τ) , ‖SA(tF −τ) [(I− PK)[βSi]] ‖L2(Ω). Note that

∫ tF

0

fKi (tF −τ)|ui(τ)|dτ

is the inner product in L2(0, tF ) of the function fKi : (tF −·) : [0, tF ]→ R and |ui(·)| :→ R
so that, in the light of the Cauchy-Schwarz (CS) inequality∫ tF

0

fKi (tF − τ)|ui|dτ ≤ ‖fKi (tF − ·)‖L2(0,tF )‖u‖L2(0,tF ).

As a result, ‖EK
T [u]‖L2(Ω) ≤

m∑
i=1

‖fKi (tF − ·)‖L2(0,tF )‖u‖L2(0,tF )m so that (applying

the CS inequality for Rn)

‖EK
T [u]‖L2(Ω) ≤

{
m∑
i=1

‖fKi (tF − ·)‖2
L2(0,tF )

}1/2

‖u‖L2(0,tF )m = ηT f‖u‖L2(0,tF )m .
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Proceeding along the same lines, it follows that

‖EK
S [u]‖L2(Ω) ≤

∫ tF

0

∥∥∥∥∥
m∑
i=1

(SA(tF − τ)− SK(tF − τ)) [PK [βSi]]ui(τ)

∥∥∥∥∥
L2(Ω)

dτ ⇒

‖EK
S [u]‖L2(Ω) ≤

m∑
i=1

∫ tF

0

‖(SA(tF − τ)− SK(tF − τ))[PK [βSi]]ui(τ)‖L2(Ω)dτ ⇒

‖EK
S [u]‖L2(Ω) ≤

m∑
i=1

∫ tF

0

gKi (tF − τ)|ui(τ)|dτ

so that

‖EK
S [u]‖L2(Ω) ≤

{
m∑
i=1

‖gKi (tF − ·)‖2
L2(0,tF )

}1/2

‖u‖L2(0,tF )m = ηKT g‖u‖L2(0,tF )m .

�

Proof of Proposition 2.2(b): Note first that it follows from (CURTAIN; ZWART,

1995, Theorem 2.1.6, p. 18) that there exists µA > 0 and σA ∈ R such that ∀t ≥ 0,

‖SA(t)‖ ≤ µAe
σAt. Hence,

fKi (tF − τ) ≤ µAe
σA(tF−τ)‖(I − PK)[βSi]‖L2(Ω) ⇒

‖fKi (tF − ·)‖2
L2(0,tF ) =

∫ tF

0

[fKi (tF − τ)]2dτ

≤ ‖(I− PK)[βSi]‖2
L2(Ω)

∫ tF

0

{
µAe

σA(tF−τ)
}2
dτ ⇒

‖fKi (tF − ·)‖L2(0,tF ) = µA‖(I− PK)[βSi]‖L2(Ω)‖eσA(tF−·)‖L2(0,tF ).

Thus it follows from the approximation property of {SK}, i.e., (2.20), that

‖fKi (tF − ·)‖L2(0,tF ) → 0 as K →∞ and, hence, ηKT f → 0 as K →∞.

With respect to {ηKT g} note that under the “assumption” that B[φ, ψ] satisfies

Garding’s inequality, see (EVANS, 2010, Theorem 6.2.2, p. 318), it follows from (2.6) and
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(MORRIS, 1994, Theorem 5.2) that

∀θ ∈ L2(Ω), ‖SK(t)[θ]− SA(t)[θ]‖L2(Ω)

converges uniformly on [0, tF ] to zero as K →∞. Hence,

‖gKi (tF − ·)‖2
L2(0,tF ) → 0⇒ ηKT g → 0 as K →∞.

It then follows that ηKT = ηKT f + ηKT g → 0 as K →∞. �



3 PEAK-VALUE CONSTRAINTS ON CONTROL SIGNALS AND ACTUATOR

LOCATION

3.1 Peak-value Constraints on Control Signals

In this chapter, the main concern is that upper bounds on the magnitudes of the

control signals ui have to be imposed in connection with potential application to engineer-

ing problems. Thus, although setting the coefficient ρu at different values may indirectly

contribute to such an objective, it is natural to directly impose upper bound constraints

on the optimal control problem at stake. Accordingly, a constrained optimization prob-

lem is formulated in (3.1) for which optimality conditions are then presented. Then a

truncated version is introduced in (3.2) to generate approximate solutions to the original

constrained problem. The latter is then tackled on the basis of the duality results in

(3.3). To obtain approximate solutions to the dual problem, a class of piecewise-linear

continuous Lagrange multipliers is introduced. The dual functional is explicitly written

as a quadratic functional of the “free” parameters of this class of multipliers which are

their values at a grid on [0, tF ]. To obtain approximate solutions to the dual problem is

then reduced to maximizing this quadratic functional under non-negativeness constraints.

A summary is then provided of the computational steps required to obtain the

desired control signals which satisfy the prescribed peak-value constraints.

Finally, actuator location is discussed in (3.14). Initially, a version of Prob. I with

pointwise (with respect to t) constraints is formulated as follows

Prob. II : min
u∈L2(0,tF )m

J (u)

subject to: ∀i = 1, . . . ,m, ∀t a.e. in [0, tF ],−µi ≤ ui(t) ≤ µi, (3.1)

where µi ∈ R+.

The existence of an optimal solution to Prob. II can be ascertained by means of

an argument entirely similar to the one used in connection with Prob. I. This leads to

the next proposition.

Proposition 3.1. Let IFi(t) , [−µi, µi] and

SuF , {u ∈ L2(0, tF )m : ∀i = 1, . . . ,m, ∀t a.e. in [0, tF ], ui(t) ∈ IFi(t)}

There exists uc ∈ SuF such that ∀u ∈ SuF , u 6= uc, J (uc) < J (u).

42
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Moreover, uc satisfies the following optimality condition:

∀δu such that (uc + δu) ∈ SuF , 〈ρuuc + T ∗θ [Tθ − θro] , δu〉L2(0,tF )m ≥ 0 or, equivalently,

∀u such that (uc + δu) ∈ SuF , ∀t a.e. in [0, tF ],
{

(ρuuc + T ∗θ [Tθ[uc]− θro])Tδu
}

(t) ≥ 0.

∇
Following (TRÖLTZSCH, 2010, p. 16), a simpler characterization of the optimal

solution is now presented for which the following “saturation” operators are required: for

i = 1, . . . ,m define PIi : L2(0, tF )→ L2(0, tF )

PIi[v](t) = v(t) if v(t) ∈ IFi(t)

PIi[v](t) = −µi if v(t) < −µi
PIi[v](t) = µi if v(t) > µi

Proposition 3.2. Let Za[u] , T ∗θ [Tθ[u]− θro]. For i = 1, . . . ,m

{uc}i = PIi[−(1/ρu){Za[uc]}i] a.e. in [0, tF ]. ∇

In the light of Proposition 3.2, the problem of computing (approximations to) uc

is reduced to (approximately) solving a “system” of equations in L2(0, tF ) with respect

to u ∈ L2(0, tF )m, the i − th one of which is based on PIi. Following the approach

pursued in connection with the unconstrained problem Tθ is going to be replaced by an

approximation T Kθ .

To this effect, let JK(u) , ρu‖u‖2
L2(0,tF )m + ‖T Kθ [u]− θro‖2

2 and consider

Prob. IIK : min
u∈SuF

JK(u). (3.2)

Approximate solutions to Prob. II can be obtained on the basis of Prob. IIK , as stated

in the following proposition.

Proposition 3.3. (a) ∀K ∈ Z+ there exists uKc ∈ SuF such that ∀u ∈ SuF , u 6= uKc ,

JK(uKc ) < JK(u).

(b) uKc → uc in L2(0, tF )m, as K →∞. ∇

The solution uKc of Prob. IIK can be characterized along the lines of Proposition

3.1, i.e.,

{uKc }i = PIi[−(1/ρu){ZK
a [u]}i] (3.3)

where ZK
a [u] , (T Kθ )∗[T Kθ [u] − θro]. However, computing uKc on the basis of (3.3) is a

difficult problem. Thus, in order to obtain approximations to uKc , duality considerations

pertaining to Prob. IIK are now introduced.
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To this effect, note first that ui(t) ∈ IFi(t) ⇔ µi − ui(t) ≤ 0 and ui(t) − µi ≤ 0,

so that a Lagrangian functional for Prob. IIK can be defined by

LagK(u,λ) , JK(u) + 2〈λa,ua − u〉L2(0,tF )m + 2〈λb,u− ub〉L2(0,tF )m , (3.4)

where ua = −µi[1 . . . 1]T and ub = µi[1 . . . 1]T, λa ∈ L2(0, tF )m, λb ∈ L2(0, tF )m and

λ = (λa,λb).

The corresponding dual functional and dual problem are given by

ϕDK(λ) , min{LagK(u,λ) : u ∈ L2(0, tF )m} (3.5)

and Prob. IIDK : max
λ∈Sλ

ϕDK(λ),

where

Sλ , {(λa,λb) : λa ∈ L2(0, tF )m,λb ∈ L2(0, tF )m,∀t a.e. in [0, tF ],λai(t) ≥ 0,λbi(t) ≥ 0}.
The use of duality considerations in order to obtain uKc consists of solving the

dual problem Prob. IIDK thereby obtaining λK (say) and then compute the optimal

solution of the unconstrained problem min
u

LagK(u;λK). This is stated in the following

proposition which is a direct consequence of (LUENBERGER, 1969, p. 224).

Proposition 3.4. (a) sup{ϕDK(λ) : λ ∈ Sλ} = min{JK(u) : u ∈ SuF}.
(b) Let uKc (λ) be the unique solution of min

u∈L2(0,tF )m
LagK(u,λ). Then uKc = uKc (λK),

where λK = arg max
λ∈Sλ

ϕDK(λ). ∇

Note that for a given λ the minimization of LagK(u,λ) with respect to u ∈
L2(0, tF )m is a linear-quadratic problem similar to Prob. IK and can thus be solved in a

similar way. The more difficult part in the use of duality to solve Prob. IIK is to solve

the dual problem. Thus, to rely on Proposition 3.4 to obtain approximate solutions to

Prob. IIK explicit characterizations of both uKc (λ) and ϕDK(λ) are presented in the next

proposition.

Proposition 3.5. For any λ = (λa,λb) ∈ Sλ

uKc [λ] = uK − FK(ρ−1
u I− (ρuI + GK)−1)ᾱKλ + ρ−1

u (λa − λb), and

ϕDK(λ) = ‖θro‖2
L2(Ω) + 〈T Kθ [uK ],−θro〉+ ϕ̂DK(λ),

where

ϕ̂DK(λ) , −ρ−1
u 〈λab,λab〉+ρ−1

u 〈ξKλ , (ρuI+GK)−1ξKλ 〉−2〈ξKλ , ᾱK〉+2〈λa,ua〉−2〈λb,ub〉 ,
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λab = λa−λb, ξKλ ,
∫ tF

0

FT
k (τ)(λa(τ)−λb(τ))dτ and GKᾱ

K
λ = ξKλ . ∇

Remark 3.1. Recall that uK = FK (ρuI + GK)−1 θ̄
K
ro and note that (since M(I+M)−1 =

I− (I + M)−1 = (I + M)−1M)

(ρuI + GK)−1 = ρ−1
u (I + ρ−1

u GK)−1 = ρ−1
u

{
I− (I + ρ−1

u GK)−1ρ−1
u GK

}
so that

uKc [λ] = uK − FKρ
−1
u (I + ρ−1

u GK)−1ρ−1
u GKᾱ

K
λ + ρ−1

u (λa − λb)

⇔ uKc [λ] = uK − FKρ
−1
u (ρuI + GK)−1GKᾱ

K
λ + ρ−1

u (λa − λb)

⇔ uKc [λ] = FK(ρuI + GK)−1{θ̄Kro − ρ−1
u ξ

K
λ }+ ρ−1

u (λa − λb)

uKc [λ] = FK(ρuI + GK)−1θ̄
K
r (λ) + ρ−1

u (λa − λb),

where θ̄
K
r (λ) = θ̄

K
ro − ρ−1

u ξ
K
λ . It can thus be seen the optimal solution uKc [λK ] of the

constrained problem is obtained by adding a “correction term” ρ−1
u (λKa −λKb ) to the output

of a linear autonomous system, i.e., uKc [λ](τ) = (MK
β )Txcu(τ) where xcu is solution of the

linear ordinary differential equation

ẋcu(τ) = −AT
Kx

c
u(τ), τ ≥ 0 with initial condition xcu(0) = (ρuI + GK)−1θ̄

K
r (λK).

∇

It follows from Proposition 3.5 that λK = arg max
λ∈Sλ

ϕ̂DK(λ) is the solution of a

quadratic problem in L2(0, tF )m with non-negativeness constraints on the values λ(t)

(a.e. in [0, tF )). This suggests that approximate solutions λ̂K for this problem should

be sought on the basis of which the corresponding approximate solutions uKc [λ̂K ] can be

readily obtained in the light of Proposition 3.5.

The most difficult step in the duality approach described above is the computation

of an approximate solution λ̂K for the dual problem Prob. DK . To accomplish this task,

piecewise-linear continuous classes of Lagrange multipliers are now introduced: let Nλ

be a positive integer, δt , tF/Nλ and take Nλ subintervals Ik of [0, tF ] where Ik =

[(k − 1)δt, kδt]. Piecewise-linear multipliers are then defined by

∀k = 1, . . . , Nλ, ∀t ∈ Ik, ∀i = 1, . . . ,m, λi(t,γi) = γik + (1/δt)∆tk(γi(k+1) − γik),
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where γi , [γi1 . . . γi(Nλ+1)]
T and ∆tk , t−((k−1)δt) – note that γik and γi(k+1) are

the values of λi(·;γi) at the extreme points of Ik. Thus, ∀t ∈ Ik, λi(·;γi) = hT
kEkγi

where ET
k = [ek(Nλ + 1)

... ek+1(Nλ + 1)] and ek(q) is the qth-vector in the canonical

basis for Rq, hT
k , [1 − hkb(t)

... hkb(t)] where hkb(t) , (1/δt)(t − (k − 1)δt). As

a result, λ(t;γ) = [λ1(t;γ
1
) . . . λm(t;γ

m
)]T can be written as a linear function of

γ , [γT
1
. . . γT

m
] as

∀k = 1, . . . , Nλ, ∀t ∈ Ik, λ(t;γ) = Ehk(t)γ, (3.6)

where Ehk(t) , diag
(
hT
k (t)Ek, . . . , h

T
k (t)Ek

)
.

It then follows that, for λa and λb piecewise-linear and defined by the parameters

γ
a

and γ
b
, the dual functional can be written in terms of γ

a
and γ

b
, since (see

Proposition 3.5)

ϕ̂Dk(λ) =

Nλ∑
k=1

∫
Ik

{
−ρ−1

u γ
T

ab
[Ehk(t)]TEhk(t)γ

ab
− 2µu1T

mEhk(t)γ
a
− 2µu1T

mEhk(t)γ
b

}
dt

+ρ−1
u

〈
ξKλ (γ

ab
), (ρuI + GK)−1ξKλ (γ

ab
)
〉
E
− 2ᾱT

Kξ
K
λ (γ

ab
),

or, equivalently,

ϕ̂DK(γ
a
,γ

b
) = −ρ−1

u γ
T

ab
GEhγab − 2µu1mĒh(γ

a
+ γ

b
) (3.7)

(3.8)

+ρ−1
u ξ

K
λ (γ

ab
)T(ρuI + GK)−1ξKλ (γ

ab
)− 2ᾱTξKλ (γ

ab
), (3.9)

where

γ
ab
, γ

a
− γ

b
, ξKλ (γ

ab
) ,

{
Nλ∑
k=1

∫
Ik

[FK(τ)]TEhk(τ)dτ

}
γ
ab
, 1m = [1 . . . 1]T ∈ Rm.

(3.10)

The quadratic functional ϕ̂DK (on (γ
a
,γ

b
)) is then written as

ϕ̂DK(γ
a
,γ

b
) = −ρ−1

u γ
T

ab
(GEh + GFE)γ

ab
− 2ᾱT

KF
T
ξ γab − 2µu1mĒh(γ

a
+ γ

b
), (3.11)

where

GEh ,
Nλ∑
k=1

{∫
Ik

[Ehk(t)]TEhk(t)dt

}
, Ēh ,

Nλ∑
k=1

{∫
Ik

1T
mEhk(t)dt

}
, (3.12)
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F T
ξ ,

Nλ∑
k=1

{∫
Ik

[FK(τ)]TEhk(τ)dτ

}
and GFE , F ξ(ρuI + GK)−1F T

ξ . (3.13)

To maximize the dual functional over this class of piecewise-linear multipliers

amounts to solving the following optimization problem

Prob. DKγ : max
γ
a
∈Rm(Nλ+1),

γ
b
∈Rm(Nλ+1)

ϕ̂DK(γ
a
,γ

b
) subject to: γ

a
≥ 0, γ

b
≥ 0

(note that ∀t ∈ [0, tF ], λi(t;γi) ≥ 0 ⇔ γ
i
≥ 0).

Remark 3.2. Prob. DKγ is a finite-dimensional optimization problem with a quadratic

cost functional and only non-negativity constraints on the decision variables which can be

(numerically) solved in efficient ways. ∇

Once a solution to Prob. DKγ is obtained, say (γo
a
,γo

b
), the approximate solution

λ̂K from the dual problem is given by (3.6) from which uKc [λ̂K ] can be obtained from

Proposition 3.5 and Remark 3.1.

Remark 3.3. Although uKc [λ̂K ] may fail to be in the feasible set SuF , a closely-related

feasible solution uRK [λ̂K ] can also be obtained on the the basis of Proposition 3.5. To this

effect, let ûKc [λ] = uK − FK(I − (ρuI + GK)−1)ᾱKλ so that uKc [λ] = ûKc [λ] + (λa − λb);

define uRK [λ] by:

∀t ∈ [0, tF ] such that
{
ûKc [λ(t)]

}
i
∈ IFi(t),

{
uRK [λ(t)]

}
i

=
{
ûKc [λ(t)]

}
i
,

∀t ∈ [0, tF ] such that
{
ûKc [λ(t)]

}
i
< −µi,

{
uRK [λ(t)]

}
i

= −µi,

∀t ∈ [0, tF ] such that
{
ûKc [λ(t)]

}
i
> µi,

{
uRK [λ(t)]

}
i

= µi.

For any λ, uRK [λ] ∈ SuF ; moreover, due to the so-called KKT optimality conditions

for Prob. IIK, uRK [λK ] = uKc [λK ] ( i.e., at λ = λK, uRK equals the optimal solution

of Prob. IIK). In addition, given λ̂K, the assessment of uRK [λ̂K ] as an approximate

solution to Prob. IIK can be carried out on the basis of the inequality ϕDK(λ̂K) ≤
JK(uc) ≤ J (uRK [λ̂K ]) so that whenever ϕDK(λ̂K) and J (uRK [λ̂K ]) are “close” uRK [λ̂K ]

can be regarded as an “approximate” solution to Prob. IIK. Note also that uoK is simply

the output of an autonomous linear dynamic system (ûKc [λK ]) followed by a “saturation”

operation which replaces its value by the prescribed limits −µi and µi whenever necessary.

In Chapter 5 this approach is illustrated in two simple numerical examples. ∇
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To conclude this chapter, a summary is presented of the steps required to compute

the approximate solutions, uKc [λK ] and uRK [λK ] for the optimal control problem with

peak-value constraints, namely

min
u∈L2(0,tF )m

JK(u) subject to: ∀i = 1, . . . ,m, −µi ≤ ui(t) ≤ µi ∀t a.e. in [0, tF ],

where J (u) is given by (2.11).

Given the problem data (f, g, θr, ρu, {µi : i = 1, . . . ,m}), SK and {φ1, . . . , φn(K)}
(as before) Nλ and subintervals Ik = [(k − 1)δt, kδt], k = 1, . . . , Nλ and δt = tF/Nλ.

(1) Compute θ̄
K
ro, MK

β , AK , GK and (I + ρ−1
u GK)−1 as indicated in the summary of

the computational steps required in the unconstrained problem (see final part of

Chapter 2).

(2) Compute ᾱK = (I + ρ−1
u GK)−1ρ−1

u θ̄
K
ro, compute GEh, Ēh and F ξ given by (3.12) –

(3.13) numerically solving the corresponding integrals over the sub-intervals Ik and

compute GFE = F ξ(I + ρ−1
u GK)−1ρ−1

u F
T
ξ .

(3) Compute an approximate solution (γK
a
,γK

b
) to Prob. DKγ .

(4) Putting λKa (t) = Ehk(t)γK
a

, λKb (t) = Ehk(t)γK
b

and

ξKλ =

∫ tF

0

FK(τ)T
[
λKa (τ)− λKb (τ)

]
dτ and ûKc [λK ] is obtained from

ûKc [λK ] = FK(I + ρ−1
u GK)−1ρ−1

u θ̄
K
rλ, where θ̄

K
rλ = θ̄

K
ro − ρ−1

u ξ
K
λ .

(5) uKc [λK ] and uRK [λK ] are obtained as: uKc [λK ] = ûKc [λK ] + ρ−1
u (λKa − λKb ) and

uRK [λK ] as in Remark 3.3.
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Remark 3.4. The major computations task in steps (1) – (5) above corresponds to nu-

merically obtaining a solution to Prob. DKγ. As the number of decision variables in it

2m(Nλ + 1) may be relatively large a change of variables was considered to make possible

calculations simpler and less susceptible to numerical problems. This goes as follows: first

(γ
a
,γ

b
) are replaced by (σa,σb) where[
σa

σb

]
=

[
γ
a
− γ

b

γ
a

+ γ
b

]
=

[
I −I

I I

][
γ
a

γ
b

] (
⇔

[
γ
a

γ
b

]
=

1

2

[
I I

−I I

][
σa

σb

])

so that ϕ̂DK(·, ·) in (3.11) can be written in terms of σa and σb as

ϕ̂DK(σa,σb) = −ρ−1
u σ

T
aGFHσa − 2ᾱT

KF ξσa − 2µu1mĒhσb.

Then (exploiting the fact that GFH is square and symmetric) an eigenvector decomposition

of GFh (where GFh = GEh + GFE) is obtained, i.e., GFH = V FhΛFhV
T
Fh and a new

decision variable is defined, namely σ̌a = V T
Fhσa (⇔ σa = V Fhσ̌a). The dual

functional is then written in terms of σ̌a and σb as

ϕ̂DK(σ̌a,σb) = −ρ−1
u σ̌

T
aΛFhσ̌a − 2ᾱT

K

(
F T
ξV Fh

)
σ̌a − 2µu1mĒhσb

so that the matrix defining the quadratic form above is diagonal. The dual problem to be

solved is then given by

max
σ̌a,σb

ϕ̂DK (σ̌a,σb) subject to:

[
V Fh I

−I I

][
σ̌a

σb

]
≥ 0.

∇

3.2 Actuator Location

Recall that the control signals ui : [0, tF ] → R appear in the “source” terms

βSi(x)ui(t) of the heat equation (2.1). Thus, the spatial effect of the control signals

{ui} depend on the functions {βSi} which may be viewed as spreading over the spatial

domain the action of the control signals (which, in turn, depend solely on t). As a result,

it is often the case that the spatial effect of the control signals ui, i = 1, . . . ,m, have a

local character due to the functions βSi only having non-zero value on “small” subsets

of the spatial domain Ω. In such cases, the “location” of each ui (i.e., the “centre”
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of the support of βSi) may have significant effects on the magnitude of the final-state

approximation error attained with the optimal u.

The case will now be considered of each βSi being a spatially-displaced version of a

simple function βS which models the way the control action is spatially distributed. More

specifically, assume that Ω is symmetric with respect to xa ∈ Ω, i.e., ∀ x = xa+(x−xa) ∈
Ω, xa−(x−xa) ∈ Ω and let Ωβ ⊂ Ω be an open and connected set also centred on xa. Let

βa : Ω→ R be such that ∀ x ∈ Ω−Ωβ, βa(x) = 0 (i.e., Ωβ is the support of βa) and for a

list X of locations Xi, X = (X1, . . . ,Xm), Xi ∈ Ω and such that Ωβ+(Xi−xa) ⊂ Ω, define

βSi(·;Xi) : Ω→ R by ∀ x ∈ Ω, βSi(x;Xi) , βa(x− (Xi−xa)) – note that Ωβ + (Xi−xa)

is the support of βSi(·;Xi).
Recall that the approximation error magnitude is given by

‖T Kθ [uK ] − θKro‖2 = ‖cK(tF ;uK) − θKro‖2 where uK = FKᾱK , cK(tF ;uK) = GKᾱK and

ᾱK = (ρuI + GK)−1θ
K

ro.

Thus, ‖T Kθ [uK ]− θKro]‖2 = ‖{GK(ρuI + GK)−1 − I}θKro‖2 = ‖(I + ρ−1
u GK)−1θ

K

ro‖2,

since GK(ρuI + GK)−1 = ρ−1
u GK(I + ρ−1

u GK)−1 = I− (I + ρ−1
u GK)−1.

Thus, to choose actuator locations with the purpose of obtaining a good final-state

approximation, a natural formulation for the actuator location problem would be:

Prob. Loc.: min
X=(X1,...,Xm),

Ωβ+(Xi−xa)⊂Ω

ν(X ), (3.14)

where ν(X ) , ‖{I+ρ−1
F GK(MK

β (X ))}−1θ
K

ro‖2
2, GK(M) ,

∫ tF

0

exp[AKt]MMT exp[AT
Kt] dt,

MK
β (X ) =


〈βS1(X1), φ1 · · · 〈βSm(Xm), φ1〉

...
...

〈βS1(X1), φK · · · 〈βSm(Xm), φK〉

 .
Remark 3.5. The problem formulation above hinges upon the approximation error at-

tained with the optimal, unconstrained control signal uk. It is also natural to focus on the

constrained optimal control signal ucK, in which case ν(·) would be replaced by νc(·) in the

formulation of Prob. Loc. by νc(X ) = ‖cK(tF ;uKc )− θKro‖2. ∇

Remark 3.6. Those two choices of cost functional for the actuator location problem are

“tuned” to a given final-state target θ
K

ro. Alternatively, if any final-state in a “broad” class

may be targeted with the same actuator-location arrangement, a natural choice for the cost-

functional of Prob. Loc. would be νs(X ) , ‖(I + ρ−1
u GK(MK

β (X )))−1‖s. This would be

relevant for both uK and ucK for, in the case of uK, it yields an upper bound on ν(X ) for
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any θ
K

ro with euclidean norm smaller or equal to a pre-specified value; whereas, in the case

of ucK, as uK(τ) = FK(τ)ρ−1
u (I + ρ−1

u GK(MK
β (X )))−1θ

K

ro, making νs(X ) “small” tends to

make the values of u(·) smaller thereby mitigating the increase in the approximation error

magnitude due to the enforcement of peak-value constraints. ∇

The possible effect of actuator locations on the controlled final state is illustrated

in Figures 13, 14 and 15 of Chapter 4 for the case of the one-dimensional heat equation

with one scalar control signal (i.e., u(t) ∈ R). Three locations are considered: a central

one and two others symmetrically situated with respect to the centre of Ω = (0, Lx)

(i.e., x = Lx/2) and close to the boundary ∂Ω. In this case, with the desired final state

also symmetric with respect to x = Lx/2 and for the approximating subspaces SK =

span{
√

2/L sin ((π/Lx)x) , . . .,
√

2/L sin ((Kπ/Lx)x)}, it can be shown that X0 = Lx/2

is a local extremum for ν(·). It can be observed that the central location yields significantly

better approximations for the desired final state than those provided by the two other

locations taken into account – this is the case for both uK(X ) and uKc (X ).

In general, solving Prob. Loc. (even for the cost-functional ν(·)) is a difficult

task as global optimization techniques are required to obtain a solution on Ωm and ν(·)
depends on X in an intricate manner (through the inverse of (I + ρ−1

u GK(MK
β (X ))) with

GK(M) depending on MMT and {MK
β (X )}`k = 〈βS`(X`), φk〉). Although a grid search

would seem feasible in the physically motivated cases of n−dimensional spatial domains

with n = 1, 2, 3, it is noted that with Ng points along each dimension, the number of

possible actuator locations arrangement would be (Nn
g )m.

To perform a less demanding search, optimization objectives may be weakened so

that a randomly-generated sample of possible actuator-location arrangements is examined

with the sample size being specified on the basis of probabilistic considerations – this

approach has attracted considerable attention in the control literature, see (TEMPO;

ISHII, 2007 and references therein). In this case, a number of actuator locations {X i, i =

1, . . . , NS} would be randomly generated and a location X o would be chosen so that X o

minimizes ν (or νc) on the sample {X i}, i = 1, . . . , NS. The only “parameter” to be

chosen in this approach is the sample size NS, whose value is determined on the basis of

probabilistic considerations – roughly speaking requiring that with a “high probability”

the chosen location X o is better than “most” possible ones. The sample size calculations

of interest here are presented below.
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3.3 Sample Size for Random Search

Let x be a continuous, n−dimensional random variable with probability density

function (pdf) px the support of which is denoted by Sx ⊂ Rn. Let f : Sx → Rc
+ be

continuous and such that ∀ w ∈ f(Sx) the set {x ∈ Sx : f(x) = w} has zero Lebesgue

measure. Let f∗ be defined as f∗ = inf{f(x) : x ∈ Sx}. For a given ε ∈ (0, 1) define δε > 0

by Pr{x ∈ Sx : f(x) ≥ f∗ + δε} = 1− ε. Note that δε → 0 as ε→ 0.

Let {xi : i = 1, . . . , N} be (a sample of) independent and identically distributed

random variables with pdf px and define fN∗ , min{f(xi) : i = 1, . . . , N}. For a given

α ∈ (0, 1), N is to be chosen so that

Pr{fN∗ < f∗ + δε} ≥ 1− α. (3.15)

To this effect, note that

Pr{fN∗ < f∗ + δε} = 1− Pr{fN∗ ≥ f∗ + δε} = 1− Pr

{
N⋂
i=1

{xi ∈ Sx : f(xi) ≥ f∗ + δε}

}
⇔

= 1−
N∏
i=1

Pr{xi ∈ Sx : f(xi) ≥ f∗ + δε}

= 1− {Pr{x ∈ Sx : f(x) ≥ f∗ + δε}}N

⇔ Pr{fN∗ < f∗ + ε} = 1− (1− ε)N .

Thus, (3.15) holds if and only if

1− (1− ε)N ≥ 1− α ⇔ α ≥ (1− ε)N ⇔ logα ≥ N log(1− ε)

⇔ N ≥ Nαε , logα/ log(1− ε) =
log(1/α)

log(1/(1− ε))
.

Thus, roughly speaking, in the case of a uniform pdf on Sx, for N ≥ Nαε the probability

that fN∗ is smaller than “the values of f(x) on (1−ε)×100% of Sx” is greater that (1−α).
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In Section 4.3, an example is presented to illustrate the potential of such a random

search to choose the locations of two “actuators” in connection with the heat equation on

a two-dimensional spatial domain.

3.4 APPENDIX – PROOFS FROM CHAPTER 3

Proof of Proposition 3.1: Once it is established that SuF is convex and closed, the

argument employed in the proof of Proposition 2.1 also proves Proposition 3.1.

To show that SuF is convex let uj ∈ SuF , j = 1, 2 and define

u(t;σ) = σu1(t) + (1− σ)u2(t), σ ∈ [0, 1]. Then ∀i = 1, . . . ,m, ∀t ∈ [0, tF ] a.e.

ui(t, σ) = σu1i(t) + (1− σ)u2i(t) ∈ IFi(t) (since u1i(t) ∈ IFi(t) , u2i(t) ∈ IFi(t) and IFi(t)
is an interval).

To show that SuF is closed, let u` ∈ SuF be such that u` → u in the sense of the

L2(0, tF )m–norm. Then ∀i = 1, . . . ,m, |ui − u`i | → 0 and, hence,

∀t a.e. in [0, tF ] , |ui(t)− u`i(t)| → 0. (3.A.1)

Now ∀i,∀`, u` ∈ SuF ⇒ ∀t a.e. in [0, tF ],

|u`i(t)| ≤ µi and

|ui(t)− u`i(t)| ≥ |ui(t)| − |u`1(t)|.

Thus ∀t a.e. in [0, tF ], |ui(t)− u`i(t)| ≥ |ui(t)| − µi ⇒ ∀i = 1, . . . ,m, ∀` ∈ Z+

|ui(t)| ≤ µi + |ui(t)− u`i(t)|.

Thus in the light of (3.A.1), ∀t a.e. in [0, tF ], ∀i = 1, . . . ,m, |ui(t)| ≤ µi ⇒ u ∈ SuF .

With respect to the optimality condition, note that

J (u+∆u) = J (u)+2ρu〈u,∆u〉+ρu‖∆u‖2
L2(0,tF )m +2〈Tθ[u]−θro, Tθ[∆u]〉+‖Tθ[∆u]‖2

2

⇐⇒ J (u+ ∆u) = J (u) + 2〈ρuu+ Za[u],∆u〉+ (ρu‖∆u‖2
2 + ‖Tθ[∆u]‖2

L2(0,tF )m),

where Za[u] , T ∗θ [Tθ[u]− θro].
Thus uc ∈ SuF is optimal if and only if ∀∆u ∈ L2(0, tF )m such that (uc + ∆u) ∈ SuF ,

〈ρuuc + Za[uc],∆u〉 ≥ 0.
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Note now that since

〈ρuu+ Za[u],∆u〉 =

∫ tF

0

(ρuu(t) + Za[u](t))T∆u(t)dt ,

the condition

“∀∆u such that (uc + ∆u) ∈ SuF , ∀t a.e. in [0, tF ], (ρuuc(t) + Za[uc](t))
T∆u(t) ≥ 0”

is sufficient for uc to be optimal. To see that it is also necessary, suppose that there

exists ∆u ∈ L2(0, tF )m such that (uc + ∆u) ∈ SuF and for some subset Sa of [0, tF ]

with non-zero measure, (ρuuc(t) + Za[uc](t))
T∆u(t) < 0 for any t ∈ Sa. Then, defining

∆̂u(t) = ∆u(t) for t ∈ Sa and ∆̂u(t) = 0 otherwise,

(uc + ∆̂u) ∈ SuF and 〈ρuuc + Za[uc], ∆̂u〉 =

∫
Sa

(ρuuc(t) + Za[uc](t))
T∆u(t)dt < 0

so that uc cannot be optimal. �

Proof of Proposition 3.2: Consider the following optimization problem for t ∈ [0, tF ] :

min
v∈Rm

‖ρuv + Za[uc](t)‖2
2 subject to ∀i = 1, . . . ,m vi ∈ IFi(t).

As ‖ρu(v+∆v)+Za[uc](t)‖2
2 = ‖ρuv+Za[uc](t)‖2

2 +2〈ρuv+Za[uc](t), ρu∆v〉+‖ρu∆v‖2
2

vt is optimal if and only if vti ∈ IFi(t) and ∀∆v such that vti + ∆vi ∈ IFi(t)

〈ρuvt + Za[uc](t), ρu∆v〉 ≥ 0⇔ 〈ρuvt + Za[uc](t),∆v〉 ≥ 0. (3.A.2)

As the solution of both this problem and of Prob. II are unique it follows from

(3.A.1) and (3.A.2) that ∀t a.e. in [0, tF ], uc(t) = vt(t).

Now, the problem above is equivalent to the problem

min
vi∈R,
i=1,...,m

m∑
i=1

(ρuvi + {Za[uc](t)}i)
2 subject to ∀i = 1, . . . ,m, vi ∈ IFi(t)

which breaks down into m problems (for i = 1, . . . ,m)

min
vi∈R

(vi − (1/ρu) {−Za[uc](t)}i)
2 subject to vi ∈ IFi(t)
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the solution of which is given by

vi = −(1/ρu) {Za[uc(t)]}i if − (1/ρu) {Za[uc(t)]}i ∈ IFi(t)

vi = µi if − (1/ρu) {Za[uc(t)]}i > µi

vi = −µi if − (1/ρu) {Za[uc(t)]}i < −µi.

�

Proof of Proposition 3.3: (a) It was established in the proof of Proposition 3.1 that

SuF is convex and closed. Then, as done in the proof of Proposition 2.1, Prob. IIK is

cast as a minimum distance problem to a convex and closed set so that the existence of

uKc follows from (LUENBERGER, 1969, Theorem 3.12.1, p. 69).

(b)Proceeding as in the proof of Proposition 2.3, write

J (uKc ) = J (uc + (uKc − uc)) = J (uc) + 2〈ρuuc + Za[uc], (u
K
c − uc)〉

+ ‖ρu(uKc − uc)‖2
2 + ‖Tθ[uKc − uc]‖ (3.A.3)

and note that (as in the derivation of (2.30))

JK(uKc ) ≤ JK(uc) = J (uc)− EK
J (uc)⇔

J (uKc )− EK
J (uKc ) ≤ J (uc)− EK

J (uc)⇒ (3.A.4)

J (uKc ) ≤ J (uc)− EK
J (uc) + EK

J (uKc )⇒ (3.A.5)

J (uKc ) ≤ J (uc) + |EK
J (uc)|+ |EK

J (uKc )|. (3.A.6)

Combining (3.A.3) and (3.A.6) leads to

‖ρu(uKc − uc)‖2
2 + ‖Tθ[uKc − uc]‖2

2 + 2〈ρuuc + Za[uc], (u
K
c − uc)〉

≤ |EK
J (uc)|+ |EK

J (uKc )|

⇒ (in the light of the optimality condition of Proposition 3.1)

ρu‖uKc − uc‖2
2 ≤ |EK

J (uc)|+ |EK
J (uKc )|.

Now it follows from (2.30) and the fact that ηKT → 0 as K → ∞ (Propo-

sition 2.2(b)) that |EK
J (uc)| → 0 as K → ∞. Moreover, as uKc is bounded (since
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uKc ∈ SuF and hence ‖uKc ‖L2(0,tF )m ≤ (
∑m

i=1 µ
2
i )

1/2
tF ), (2.30) and “ηKT → 0” also im-

ply that |EK
J (uKc )| → 0 as K →∞. Hence, ‖uKc − uc‖2 → 0 as K →∞. �

Proof of Proposition 3.5:: The optimality condition satisfied by uKc (λ) is given by

∀δu ∈ L2(0, tF )m, LagK(u,λ) ≤ LagK(uKc + δu,λ) ⇔

∀δu ∈ L2(0, tF )m, 〈ρuuKc , δu〉+ 〈T Kθ [uKc ]− θro, T Kθ [δu]〉+ 〈λa,−δu〉+ 〈λb, δu〉 = 0 ⇔

ρuu+ (T Kθ )∗[T Kθ [u]− θro] + (λb − λa) = 0 (3.A.7)

or, equivalently, taking orthogonal projections u1 and u2 of u on (T Kθ )∗[L2(Ω)] and on

its orthogonal complement,

ρuu
1 + (T Kθ )∗[T Kθ [u1 + u2]]− (T Kθ )∗[θro]− λ1

ab = 0

and ρuu
2 − λ2

ab = 0 where λab , λa − λb, λ1
ab and λ2

ab are the corresponding projections

of λab.

Noting further that T Kθ [u2] = 0 (u2 is orthogonal to the range space of (T Kθ )∗ and

hence is in the null space of T Kθ ) the equations above can be rewritten as

ρuu
1 + (T Kθ )∗[T Kθ [u1]]− (T Kθ )∗[θro]− λ1

ab = 0

and ρuu
2 = λab − λ1

ab.

Now, T Kθ [u] =
K∑
k=1

ck(tF ;u)φk and (T Kθ )∗[w](τ) = FK(τ)w̄K ,

where {φk; k = 1, . . . , n(K)} is an orthogonal basis for XK ,

ck(tF ;u) , ek(n(K))T

∫ tF

0

FK(τ)Tu(τ)dτ , where FK(τ) , (MK
β )T exp[AT

K(tF − τ)],

w̄K , [〈w, φ1, 〉 · · · 〈w, φn(K)〉] and

MK
β ,


〈βS1, φ1〉 · · · 〈βSm, φ1〉

...
...

〈βS1, φK〉 · · · 〈βSm, φn(K)〉

 .
It follows that u1 = FKᾱ

K
c and λ1

ab = FKᾱ
K
λ and, hence, the equation involving

u1 above can be written as

FK

{
ρuᾱ

K
c + w̄K

a [ᾱKc ]− θ̄Kro − ᾱKλ
}

= 0, (3.A.8)
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where θ̄
K
ro , [〈θro, θ1〉 · · · 〈θro, θn(K)〉]T and

w̄K
a [ᾱKc ] ,

[
〈T Kθ [u1], φ1〉 · · · 〈T Kθ [u1], φn(K)〉

]T
i.e., w̄[ᾱKc ] = [c1(tF ;u1) · · · cn(K)(tF ;u1)]T =

∫ tF

0

FK(τ)Tu1(τ)dτ

=

{∫ tF

0

FK(τ)T(τ)FK(τ)

}
ᾱKc ⇔ w̄K

a [ᾱKc ] = GKᾱ
K
c and GK ,

∫ tF

0

FK(τ)TFK(τ)dτ .

A sufficient condition for (3.A.8) to be satisfied is then given by

ρuᾱ
K
c + GKᾱ

K
c = θ̄

K
ro + ᾱKλ ⇔ ᾱKc = (ρuI + GK)−1(θ̄

K
ro + ᾱKλ ).

It then follows that uKc [λ] is given by (since ρuu
2 = λ2

ab )

uKc [λ] = FKᾱ
K
c + ρ−1

u (λab − FKᾱ
K
λ )⇔

uKc [λ](τ) = FK(τ)(ᾱKc − ρ−1
u ᾱ

K
λ ) + ρ−1

u λab(τ)⇔

uKc [λ](τ) = uK(τ) + FK(τ)
{

(ρuI + GK)−1 − ρ−1
u I
}
ᾱKλ + ρ−1

u λab(τ).

With respect to the dual functional ϕDK(λ), rewrite LagK as

LagK(u,λ) = 〈ρuu+ (T Kθ )∗[T Kθ [u]− θro] + (λb − λa),u〉+ 〈T Kθ [u]− θro,−θro〉

+ 〈λb − λa,u〉+ 2〈λa,ua〉 − 2〈λb,ub〉. (3.A.9)

Thus, as ϕDK(λ) = LagK(uKc [λ],λ), it follows from (3.A.7) and (3.A.9) that

ϕDK(λ) = 〈T Kθ [uKc [λ]]− θro,−θro〉+ 〈λb − λa,uKc [λ]〉+ 2〈λa, ua〉 − 2〈λb, ub〉

or equivalently, since

uKc [λ] = uK − uξK + ρ−1
u λab, ϕDK(λ) = ‖θro‖2

2 + 〈T Kθ [uK ],−θro〉+ ϕ̂DK(λ),

where

ϕ̂DK(λ) , 〈T Kθ [ρ−1
u λab − u

ξ
K ],−θro〉 − 〈λab,uK − uξK + ρ−1

u λab〉+ 2〈λa,ua〉 − 2〈λb,ub〉
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i.e.,

ϕ̂DK(λ) = −ρ−1
u 〈λab,λab〉+ 〈λab,uξK − uK − ρ

−1
u (T Kθ )∗[θro]〉+ 〈uξK , (T

K
θ )∗[θro]〉

+ 2〈λa,ua〉 − 2〈λb,ub〉,

and uξK [λ] , FK {ρ−1
u I− (ρuI + GK)−1} ᾱKλ or, equivalently

(as ρ−1
u I− (ρuI + GK)−1 = ρ−1

u

{
I− ρu(ρuI + GK)−1

}
= ρ−1

u

{
I− (I + ρ−1

u GK)−1
}

= ρ−1
u

{
ρ−1
u GK(I + ρ−1

u GK)−1
}

= ρ−1
u (I + ρ−1

u GK)−1ρ−1
u GK)

uξK [λ] = FKρ
−1
u (ρuI + GK)−1GKᾱ

K
λ .

Finally, as (T Kθ )∗[θro] = FK θ̄
K
ro and uK = FKᾱK ,

〈uξK [λ], (T Kθ )∗[θro]〉 = 〈ρ−1
u (ρuI + GK)−1GKᾱ

K
λ ,GK θ̄

K
ro〉E and

〈λab,uξK − uK − ρ−1
u (T Kθ )∗[θro]〉 = 〈ξKλ , ρ−1

u (ρuI + GK)−1GKᾱ
K
λ − ᾱK − ρ−1

u θ̄
K
ro〉E,

where ᾱK = (ρuI + GK)−1θ̄
K
ro, ξKλ ,

∫ tF

0

FK(τ)Tλab(τ)dτ (ξKλ = GKᾱ
K
λ ).

As a result, ϕ̂DK(λ) is given by

ϕ̂DK(λ) = −ρ−1
u 〈λab,λab〉+ ρ−1

u 〈ξKλ , (ρuI + GK)−1GKᾱ
K
λ 〉 − 〈ξKλ , ᾱK + ρ−1

u θ̄
K
ro〉

+ρ−1
u 〈(ρuI + GK)−1ᾱKλ ,GK θ̄

K
ro〉+ 2〈λa,ua〉 − 2〈λb,ub〉.

Now, 〈(ρuI + GK)−1GKᾱ
K
λ ,GK θ̄

K
ro〉 = 〈ξKλ , (ρuI + GK)−1GK θ̄

K
ro〉 ⇒

ϕ̂DK(λ) = −ρ−1
u 〈λab,λab〉+ ρ−1

u 〈ξKλ , (ρuI + GK)−1ξKλ 〉 − 〈ξKλ , ᾱK〉

+ρ−1
u 〈ξKλ ,

{
(ρuI + GK)−1GK − I

}
θ̄
K
ro〉+ 2〈λa,ua〉 − 2〈λb,ub〉.

Moreover, as (ρuI + GK)−1GK = (I + ρ−1
u GK)−1ρ−1

u GK = I− (I + ρ−1
u GK)−1

so that

ϕ̂DK(λ) = −ρ−1
u 〈λab,λab〉+ ρ−1

u 〈ξKλ , (ρuI + GK)−1ξKλ 〉 − 〈ξKλ , ᾱK〉

−ρ−1
u 〈ξKλ , (I + ρ−1

u GK)−1θ̄
K
ro〉+ 2〈λa,ua〉 − 2〈λb,ub〉.



59

Note now that ρ−1
u (I + ρ−1

u GK)−1θ̄
K
ro = (ρuI + GK)−1θ̄

K
ro = ᾱK . Thus,

ϕ̂DK(λ) = −ρ−1
u 〈λab,λab〉+ ρ−1

u 〈ξKλ , (ρuI + GK)−1ξKλ 〉 − 2〈ξKλ , ᾱK〉

+2〈λa,ua〉 − 2〈λb,ub〉.

�



4 EXAMPLES AND NUMERICAL RESULTS FOR THE LHEQ

In this chapter, two simple numerical examples are presented to illustrate the way

the results above can be used to characterize control signals which aim at steering a

solution of a PDEE over a given interval [0, tF ] towards a prescribed final state. It is of

particular interest here to illustrate the role of the coefficient ρF in improving final-state

approximation, the effect on imposing a peak-value constraint on the control signals (vis-

á-vis the unconstrained one) and the way piecewise-linear multipliers yield approximation

to the optimal control signals under peak-value constraints.

In Section 4.1, the one-dimensional LHEq is considered under the action of a single

scalar control signal (i.e., m = 1). To facilitate reading (and for concreteness) some of

the relevant symbol definitions (AK , β̄
T
SK ,θ

K
ro) are re-stated now for the basis functions{√

2
Lx

sin
[
kπx
Lx

]}
, k = 1, . . . , K. Exploiting the simple case at hand, an explicit upper

bound is presented on the L2−norm of the approximation error to the final state of the

LHEq as a function of the correcting error in the truncated (ODE in RK) problem. Some

of notation introduced for the dual problem (Chapter 3) is also reproduced in Section

3.1 to facilitate reading. In Section 4.2, numerical results are presented for the one-

dimensional example of Section 4.1 with two distinct temperature distribution taken as

desired finals states and one actuator located at the mid-point of the interval (0, Lx). In

Section 4.3, numerical results are presented for the two-dimensional LHEq with one scalar

control signal; for one desired final state, numerical experiments were carried with two

different values of ρF .

Finally in Section 4.4, numerical experiments to “locate” actuator are reported

for the two-dimensional LHEq under the action of two and three scalar control signals

(m = 2 and m = 3).

4.1 A One-Dimensional Example

Let Ω = (0, Lx) and consider the one-dimensional heat equation with homogeneous

Dirichlet boundary conditions and single-point control u : [0, tF ]→ R, i.e.,

∂θ

∂t
(x, t) = kα

∂2θ

∂x2
(x, t) + βS(x)u(t) ∀ t ∈ (0,∞),∀ x ∈ Ω,

θ(x, 0) = 0 (zero initial condition) ∀x ∈ Ω,

θ(0, t) = θ(Lx, t) = 0 (boundary conditions) ∀ t ∈ (0,∞)

60
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with the corresponding weak version given by

∀ k = 1, 2, . . . , K,

〈
∂θ

∂t
(·, t), φk

〉
= −kα

〈
∂θ

∂x
(·, t), ∂φk

∂x

〉
+ 〈βS, φk〉u(t)

〈θ(·, 0), φk〉 = 0,

where φk : [0, Lx]→ R is given by φk(x) =

√
2

Lx
sin

[
kπx

Lx

]
.

Approximate solutions uK and uKc are sought to the problems

Prob. I : min
u∈L2(0,tF )

J̌ (u; ρF ) or Prob. Ic : min
u∈SuF

J̌ (u; ρF ),

where J̌ (u; ρF ) = ‖u‖2
L2(0,tF ) +ρF‖Tθ[u]−θro‖2

2, θro is the final state to be approximately

reached, ρF = ρ−1
u and

SuF =
{
u ∈ L∞(0, tF ) : ‖u‖L∞(0,tF ) ≤ µu

}
.

In this case, {AK}k` = −kα
〈√

2
Lx

[
− kπ
Lx

]
cos
[
kπ (·)
Lx

]
, [
√

2
Lx

[
− `π
Lx

]
cos
[
`π (·)
Lx

]〉
, i.e.,

AK = diag

{
−kα

[
kπ

Lx

]2
}

and

β̄
T
SK =

[〈
βS,

√
2

Lx
sin

[
1π (·)
Lx

]〉
· · ·
〈
βS,

√
2

Lx
sin

[
Kπ (·)
Lx

]〉]
.

The optimal solution of Prob. I is given by, ∀τ ∈ [0, tF ]

u(τ) = β̄
T
SK exp{AT

K(tF − τ)}ᾱK ,

where ᾱK = (I + ρFGK)−1ρF θ̄
K
ro,

(θ̄
K
ro)

T =

[〈
θro,

√
2

Lx
sin

[
1π (·)
Lx

]〉
. . .

〈
θro,

√
2

Lx
sin

[
Kπ (·)
Lx

]〉]
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and GK =

∫ tF

0

exp[AKt]β̄SKβ̄
T
SK exp[AKt]

Tdt, i.e., GK is the unique solution of

AKGK + GKAT
K = exp[AKtF ]β̄SKβ̄

T
SK exp[AKtF ]T − β̄SKβ̄

T
SK .

The approximation error on the final state for a given control signal u is given by

Tθ[u]− θro = eK [u] + ěK [u] where eK [u] , T Kθ [u]− θKro (error projection on

span{φ1, . . . , φK}) and ěK [u] = {Tθ[u]− T Kθ [u]} − {θro − θKro}.

To get an upper bound on ‖Tθ[u]− θro‖2 note that

‖Tθ[u]− θro‖2
2 = ‖eK [u]‖2

2 + ‖ěK [u]‖2
2, (4.1)

‖eK [u]‖2
2 = ‖c̄K(tF ;u)− θ̄Kro‖2

E, (4.2)

‖ěK [u]‖2 ≤ ‖Tθ[u]− T Kθ [u]‖2 + ‖θro − θKro‖2. (4.3)

Note also that
∥∥Tθ[u]− T Kθ [u]

∥∥2

2
=

∥∥∥∥∥
∞∑

k=K+1

ck(tF ;u)φk

∥∥∥∥∥
2

2

=
∞∑

k=K+1

ck(tF ;u)2, and

ck(tF ,u) =

∫ tF

0

exp

[
−kα

[
kπ

Lx

]2

(tF − τ)

]
βSku(τ)dτ , where βSk , 〈βS, φK〉, so that

(in the light of Cauchy-Schwarz inequality)

⇒ ck(tF ;u)2 ≤ |βSk|
2

∥∥∥∥∥exp

[
−kα

[
kπ

Lx

]2

(tF − ·)

]∥∥∥∥∥
2

L2(0,tF )

‖u‖2
L2(0,tF )

⇒ ck(tF ;u)2 ≤ |βSk|
2 1

kα

[
kπ
Lx

]2

{
1− exp

[
−kα

[
kπ

Lx

]2

tF

]}
‖u‖2

L2(0,tF )

≤ |βSk|
2 1

kα

[
kπ
Lx

]2‖u‖
2
L2(0,tF ).

It then follows that

‖Tθ[u]− T Kθ [u]‖2
2 ≤ ‖βS − β̂SK‖2

2

1

kα{(K + 1) π
Lx
}2
‖u‖2

L2(0,tF ), (4.4)

where β̂Sk ,
∑K

k=1 βSkφk.
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Thus, combining (4.1) -(4.4) gives an upper bound on ‖Tθ[u]− θro‖2
2 namely,

‖Tθ[u]− θro‖2
2 ≤ ‖c̄K(tF ;u)− θ̄Kro‖2

E +

{
‖βS − β̂SK‖2√
kα(K + 1) π

Lx

‖u‖L2(0,tF ) + ‖θro − θKro‖2

}2

.

Thus, as the approximately property of span
{√

2
Lx

sin
[
kπx
Lx

]
: k = 1, . . . , K

}
, K ≥ 1

ensures that ‖βS − β̂SK‖2 → 0 and ‖θro − θKro‖2 → 0 as K → ∞, that L2−norm of the

approximation error for the final state for the LHEq (i.e., ‖Tθ[u]− θro‖2 approaches the

corresponding error for the K−dimensional ODE, i.e., ‖c̄K(tF ;u)− θ̄Kro‖E).

For the optimal solution of Prob. IK , the latter is given by

‖eK [uK ]‖2
2 = ‖c̄K(tF ;uK)− θ̄Kro‖2

2 and since

c̄K(tF ;uK) =

∫ tF

0

HK(tF − τ)uK(τ)dτ =

∫ tF

0

HK(tF − τ)HK(tF − τ)TᾱKdτ , where

HK(t) = exp [AKt]βSK , c̄K(tF ;uK) = GKᾱK ⇔
c̄K(tF ;uK) = GK(I + ρFGK)−1ρF θ̄

K
ro = {I− (I + ρFGK)−1} θ̄Kro it follows that

‖eK [uK ]‖2
2 = ‖(I + ρFGK)−1θ̄ro

K‖2
2. (4.5)

–it can thus be seen that whenever GK is nonsingular ‖eK [uK ]‖2 → 0 as ρF →∞.

To compute approximate solutions to Prob. Ic, consider the truncated problem

Prob. IcK : min
u∈SuF

J̌K(u; ρF ) and the corresponding dual problem,

Prob. DK : max
λa,λb

ϕKD(λa,λb; ρF ) subject to ∀t a.e. in (0, tF ), λa ≥ 0, λb ≥ 0,

where ϕKD(λa,λb) = inf{LagK(u;λa,λb) : u ∈ L2(0, tF )},
LagK(u;λa,λb) = J̌K(u; ρF ) + 2〈λa,ua−u〉+ 2〈λb,u−ub〉 and ub = µu and ua = −µu,

and SuF = {u ∈ L2(0, tF ) : ∀t a.e. in(0, tF ),−µu ≤ u(t) ≤ µu}.
The unique solution to the problem min

u∈L2(0,tF )
LagK(u;λa,λb) is given by

uKc [λ] = ûcK + λab, where ûcK [λ](τ) = HT
K(tF − τ)

{
ᾱK − (I + ρFGK)−1ρFξ

K
λ

}
,

λ = (λa,λb), λab = λa − λb and ξKλ =

∫ tF

0

HK(tF − τ)λab(τ)dτ .

The corresponding value for the dual functional is given by

ϕKD(λa,λb) = LagK(uKc [λ];λa,λb) = ρF‖θro‖2
2 + ρF 〈T Kθ [uKc ],−θro〉+ ϕ̂KD(λa,λb),
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where

ϕ̂KD(λa,λb) = −〈λab,λab〉+ ρF
〈
(I + ρFGK)−1ξKλ , ξ

K
λ

〉
E
− 2〈ξKλ , ᾱK〉E + 2〈λa,ua〉

−2〈λb,ub〉.

Note that for any non-negative λa and λb, ϕ
K
D(λa,λb) is a lower bound for the

optimal value of Prob. IcK . If (λoa,λ
o
b) is optimal uKc ∈ SuF . Moreover, λoa(τ) = 0

and λob(τ) = 0 (hence, λoab(τ) = 0) whenever uKc [λo](τ) ∈ (ua,ub) so that, in this case,

ûcK [λo](τ) also belongs to (ua,ub). When λoa(τ) 6= 0 (respectively λob(τ) 6= 0) uKc (τ) = ua

and ûcK [λo](τ) < ua (respectively, uKc [λo](τ) = ub and ûcK [λo](τ) > ua). This suggests a

heuristic way of obtaining a feasible uRK [λ], namely, uRK [λ](τ) = ûcK [λ](τ) if

ûcK [λ] ∈ (ua,ub), u
R
K [λ](τ) = ua if ûRK [λ](τ) ≤ ua and uRK [λ](τ) = ub if ûcK [λ](τ) ≥ ub.

To obtain approximate solutions to Prob. DK , piecewise linear classes of multipliers

are considered, i.e., let Nλ ∈ Z+, δt = tF/Nλ, Ik = [(k − 1)δt, kδt], γ = [γ1 · · · γNλ+1]

and define ∀k = 1, . . . , Nλ, ∀t ∈ Ik, λ(t;γ) = γk + (1/δt)(γk+1 − γk)∆tk, where

∆tk = t − (k − 1)δt (note that γk and γk+1 are respectively the values of λ(t,λ) at the

lower and upper extreme points of the interval Ik). Such multipliers can then be written

as a function of γ as follows:

∀t ∈ Ik, λ(t;γ) = hT
kab(t)Ekγ,

where hT
kab(t) = [hka(t)

... hkb(t)], E
T
k = [ek(mγ)

... ek+1(mγ)], mγ = Nλ+1, hka : Ik → R,

hka(t) = 1− hkb(t), hkb : Ik → R, hkb(t) = (1/δt)(t− ak), where ak = (k − 1)δt.

As a result, ξKλ = T ξγ(γa−γb), where T ξγ =

{
Nλ∑
k=1

∫
Ik

HK(tf − τ)hT
kab(τ)dτ

}
Ek

and

−ϕ̂KD(λa,λb) = γT
ab

(
P γ − T T

ξγρF (I + ρFGK)−1T ξγ
)
γab+2ᾱT

KT ξγγab−2rT
γaγa+2rT

γbγb,

where γab , γa−γb, P γ ,
Nλ∑
k=1

ET
k

∫
Ik
hkab(t)h

T
kab(t)dtEk, r

T
γa =

Nλ∑
k=1

{[∫
Ik
ua(t)h

T
kab(t)dt

]
Ek

}
,

and rT
γb =

Nλ∑
k=1

{[∫
Ik
ub(t)h

T
kab(t)dt

]
Ek

}
.

The problem to be numerically solved is then

Prob. DK
γ : max

γa,γb∈RNλ+1
ϕKD(λa(γa),λb(γb); ρF ). (4.6)
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4.2 Numerical Results for the One-dimensional Example

Prob. IK and Prob. DK
γ were numerically solved for two pairs (θr,βS) respectively

displayed in Figures 1, 2 and Figures 7, 8, with ρF = 2000, K = 5, Lx = 1 or 2, and

Nλ = 30. For the first pair (θr,βS) the unconstrained problem was solved leading to the

approximate solution uK( ·; ρF ) which is plotted in Figure 3 (dashed blue curve, labeled

uK). Table 1 gives the L2(0, tF ) and L∞(0, tF ) norms of uK( ·; ρF ) and the L2(Ω) norm

of the projection of the final-state, approximation error on span{φ1, . . . , φK}.

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2

160.5171 10.9233 43.5917 0.1435

Table 1: Unconstrained problem for the first pair (θr,βS), ρF = 2000.

The constrained problem Prob. IcK was then solved for the same pair (θr,βS) with

the prescribed upper bound µu on ‖u‖∞ taken to be µu = 30. Approximate solutions are

then obtained for Prob. DK
γ , say (γKa ,γ

K
b ). The corresponding multipliers are denoted by

λKa and λKb on the basis of which a feasible solution for Prob. IcK is computed, namely,

ǔRK = uRK [λK ] where λK = (λKa ,λ
K
b ). Table 2 below exhibits the results to Prob. IcK for

the first pair (θr,βS).

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θRro‖2

168.2210 167.0747 10.5405 30 0.1690

Table 2: Constrained problem for the first pair (θr,βS), ρF = 2000.

Recall that ϕKD(λK) is a lower bound on the optimal value of Prob. IcK and that

ǔRK is a feasible solution for it. Thus, as shown in Table 3, J̌K(ǔRK) does not exceed the

optimal value of Prob. IcK (say J o
cK) by more than 1.15 (or by 0.7% of J o

cK) – thus, ǔRK

can be taken to be an ”approximately - optimal” solution to Prob. IcK .

Figure 3 displays the plots of ǔRK and uK . Figure 4 exhibits the plots of θKro (the

projection of θro on span{φ1, . . . , φK}, in green), θ̂K , T Kθ [uK ] (dashed blue) and

θ̂RK , T Kθ [ǔRK ](in red).

To illustrate the role of ρF in getting better approximation of the desired final

state, numerical results were obtained for the same pair (θr,βS) with ρF = 4000. The

results are presented in Tables 3, 4 and Figures 5 and 6.
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J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2

187.54639 12.3752 46.5118 0.0926

Table 3: Unconstrained problem for the first pair (θr,βS), ρF = 4000.

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θRro‖2

211.2104 212.2948 11.9634 30 0.1305

Table 4: Constrained problem for the first pair (θr,βS), ρF = 4000.

Comparing Tables 1 and 3, it can be noted that the increase in ρF from 2000

to 4000 brought about a decrease in the L2(0, tF )–norm of the approximation error on

span{φ1, . . . , φ5} (from 0.1435 to 0.0926) at the expense of increases in both the L2(0, tF )

and L∞(0, tF ) norms of uK (respectively, from 10.9233 to 12.3752 and from 43.5917 and

46.5118).

Similarly, in the case of constrained problems (Tables 2 and 4) it can be noted that

the increase in ρF decreased the L2(0, tF )–norm of the “projected” approximation error ob-

tained under “peak-value” constraint (‖u‖∞ ≤ 30) from 0.1690 (Table 2) to 0.1305 (Table

4). Note also that uRK is “approximately optimal” as |ϕKD(λK)−J̌K(uRK ; 4000)|/ϕKD(λK) ≈
1.09/212.2948 ≤ 0.5× 10−2. In this case, due to numerical imprecision, J̌K(·) is close to

but smaller than ϕKD(λK).

The plots of uK and uRK and those of the corresponding approximations θ̂K and

θ̂RK of the desired final state are respectively displayed in Figures 5 and 6.

Numerical results were also obtained for the pair (θr,βS) shown in Figures 7 and 8.

First, an approximate solution uK was obtained for Prob. IK – see Table 5 for the values

of its L2(0, tF ) and L∞(0, tF ) norms and the corresponding values of the cost-functional

and the L2(0, 1) norm of the final-state error (projected on span{φ1, . . . , φK}).

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2

283.5120 13.5254 23.5491 0.2242

Table 5: Unconstrained problem for the second pair (θr,βS), ρF = 2000.
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A numerical solution ǔRK was then obtained for Prob. IcK with the prescribed

upper limit µu on the L∞(0, tF )–norm of u being set at µu = 18. This was done along

the same lines described above in connection with the first pair (θr,βS). Table 6 exhibits

the corresponding assessment data for ǔRK .

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θRro‖2

300.2274 286.3859 12.6191 18.0000 0.2655

Table 6: Constrained problem for the second pair (θr,βS), ρF = 2000.

Note that J̌K(ǔRK ; ρF ) may only exceed the optimal value J o
cK of Prob. IcK by less

than 5% (of J o
cK). Figures 9 and 10 respectively display the plots of uK (dashed blue) and

ǔRK and those of θKro (the projection of θro on span{φ1, . . . , φK}), θ̌K , T Kθ [uK ] (dashed

blue) and θ̌RK , T Kθ [uRK ].

Results were also obtained for the second pair (θr,βS) with ρF = 4000, as presented

in Tables 7 and 8 and Figures 11 and 12

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2

362.0183 15.3659 26.4600 0.1774

Table 7: Unconstrained problem for the second pair (θr,βS), ρF = 4000.

J̌K(ǔRK ; ρF ) ϕKD(λK) ‖ǔRK‖2 ‖ǔRK‖∞ ‖T Kθ [ǔRK ]− θ̌Rro‖2

387.3645 387.2568 14.7342 18 0.2063

Table 8: Constrained problem for the second pair (θr,βS), ρF = 4000.

Again, it can be noted that increasing ρF brings about a better approxima-

tion to the desired final state. Note also that |ϕKD(λK) − J̌K(uRK ; 4000)|/ϕKD(λK) ≈
0.11/387.2568 ≤ 0.03× 10−2 and hence ǔRK can be regarded as “approximately optimal”

for the constrained problem.
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Figure 1: Example 1. θr: target final state.

Figure 2: Example 1. βS: control-to-state actuator.
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Figure 3: Example 1. Control signals uK (blue dashed), uRK (red solid) for ρF = 2000.

Figure 4: Example 1. Approximations to target final state for ρF = 2000.
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Figure 5: Example 1. Control signals uK (blue dashed), uRK (red solid) for ρF = 4000.

Figure 6: Example 1. Approximations to target final state for ρF = 4000.
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Figure 7: Example 2. θr: target final state.

Figure 8: Example 2. βS: control-to-state actuator.
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Figure 9: Example 2. Control signals uK (blue dashed), uRK (red solid) for ρF = 2000.

Figure 10: Example 2. Approximations to target final state for ρF = 2000.
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Figure 11: Example 2. Control signals uK (blue dashed), uRK (red solid) for ρF = 4000.

Figure 12: Example 2. Approximations to target final state for ρF = 4000.
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Finally, the effect of the location of the “actuator” βS on the final-state error

T Kθ [uKc ]− θro is illustrated by taking βS to be centered on `x ∈ (0, 2), i.e., by letting βS

to be given by βS(x) = 1, ∀x ∈ (`x− δβ, `x + δβ), βS(x) = 0 otherwise, and computing

the resulting T Kθ [uKc ] for several values of `x (with δβ = 0.1), which are displayed in

Figures 13 – 15, respectively for `x = 3/10, `x = 1 and `x = 2− 3/10.

Figure 13: Example 2. Approximations to target final state for ρF = 4000, `x = 3/10.

Figure 14: Example 2. Approximations to target final state for ρF = 4000, `x = 1.



75

Figure 15: Example 2. Approximations to target final state for ρF = 4000, `x = 2− 3/10.

4.3 A Two-Dimensional Example

An example is now presented of an initial/boundary-value problem defined by the

heat equation on a rectangle in R2. More specifically, let Ω = (0, Lx) × (0, Ly), where

Lx, Ly ∈ R+ and consider the following equation:

∀(x, y) ∈ Ω,
∂θ

∂t
(x, y, t) = kα

{
∂2θ

∂x2
+
∂2θ

∂y2

}
(x, y, t) + βS(x, y)u(t)

with zero initial conditions, i.e., ∀(x, y) ∈ Ω, θ(x, y, 0) = 0 and homogeneous Dirichlet

boundary conditions, i.e.,

∀t ∈ [0, tF ], ∀(x, y) ∈ ∂Ω, θ(x, y, t) = 0,

where u : [0, tF ]→ R and βS : Ω→ R.

The corresponding weak, “K−th order”, Galerkin version is given by ∀k = 1, . . . , K,〈
∂θ

∂t
(·, ·, t), φk

〉
= −kα

{〈
∂θ

∂x
(·, ·, t), ∂φk

∂x

〉
+

〈
∂θ

∂y
(·, ·, t), ∂φk

∂y

〉}
+ βSku(t),

where i = 1, . . . , Kx, j = 1, . . . , Ky, k(i, j) = (i− 1)Ky + j, K = KxKy,

φk(i,j)(x, y) = φxi (x)φyj (y), φxi (x) =
√

2
Lx

sin
[
iπx
Lx

]
, φyj (y) =

√
2
Ly

sin
[
jπy
Ly

]
.
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As in the previous example, control signals uK and uKc are sought by means of

the problems

Prob. IK : min
u∈L2(0,tF )

J̌K(u; ρF ) and Prob. IcK : min
u∈SuF

J̌K(u; ρF ),

where J̌K(u; ρF ) = ‖u‖2
L2(0,tF ) + ρF‖T Kθ [u]− θro‖2

2, T Kθ [u] =
∑K

k=1 ck(tF ;u)φk, θr is the

final state to be “approximately reached” and, as before, c̄K(t;u) = [c1(t;u) · · · cK(t;u)]T

is given by c̄K(t;u) =

∫ t

0

FK(τ)Tu(τ)dτ with FK as in (2.25). In this case,

AK = diag{ak : k = k(1, 1), . . . , k(1, Ky), k(2, 1), . . . , k(2, Ky), . . . , k(Kx, 1), . . . , k(Kx, Ky)},

where ak(i,j) = −kα
{[

iπ
Lx

]2

+
[
jπ
Ly

]2
}

, MK
β = [〈βS, φ1〉 · · · 〈βS, φk〉]T, and

SuF = {u ∈ L2(0, tF ) : a.e., |u(t)| ≤ µu}.
Note that J̌K(u; ρF ) = ‖u‖2

L2(0,tF ) +ρF‖T Kθ [u]−θKro‖2
L2(Ω) +‖θro−θKro‖2

L2(Ω), where

θKro is the orthogonal projection of θro on the span of {φ1, . . . , φK}.
The numerical results shown in Tables 9 – 12 were obtained with the following prob-

lem data: kα = 1, Lx = Ly = 1, tF = 1, ρF = 8000 and 20000, µu = 100, Kx = Ky = 5,

θr(x, y) = 0 ∀(x, y) ∈ ∂Ω, θr(x, y) = 2 ∀(x, y) ∈ [Lx/10, 9Lx/10] × [Ly/10, 9Ly/10], the

graph of θr is the frustum of a rectangular pyramid with [0, Lx]× [0, Ly] as basis, ‖θKro‖2 =

1.7289 and βS is given by

{
βS = 1 for (x, y) ∈ [Lx/4, 3Lx/4]× [Ly/4, 3Ly/4]

βS = 0 otherwise
.

J̌K(uK ; ρF ) ‖uK‖2 ‖uK‖∞ ‖T Kθ [uK ]− θKro‖2
2

4978.00 45.6636 192.5735 0.6037

Table 9: Unconstrained problem with ρF = 8000.

J̌K(uKc ; ρF ) ϕKD(λK) ‖uKc ‖2 ‖uKc ‖∞ ‖T Kθ [uKc ]− θKro‖2
2

5668.10 5485.00 33.0038 100 0.7565

Table 10: Constrained problem with ρF = 8000.
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J̌K(uK ; ρF ) ‖uK‖2 ‖uKc ‖∞ ‖T Kθ [uK ]− θKro‖2
2

8127.40 64.4017 265.37 0.4485

Table 11: Unconstrained problem with ρF = 20000.

J̌K(uKc ; ρF ) ϕKD(λK) ‖uKc ‖2 ‖uKc ‖∞ ‖T Kθ [uKc ]− θKro‖2
2

12281.00 11195.00 37.8125 100 0.7366

Table 12: Constrained problem with ρF = 20000.

Similarly to the results in the case of a one-dimensional spatial domain, Tables

9 – 11 illustrate the effect of increasing ρF on the decrease of the approximation errors

‖T Kθ [uK ] − θKro‖2 (from 0.6037 in Table 9 to 0.4484 in Table 11) and ‖T Kθ [uKc ] − θKro‖2

(from 0.7565 in Table 10 to 0.7366 in Table 12). Note that in the latter case, increasing

ρF from 8000 to 20000 had a small effect on the approximation error - this is due to the

fact that the maximum magnitude of u was kept at the same value (µu = 100).

Again, as observed in the 1D-case, the “relatively small” difference between ϕKD(λK)

and J̌K(uKc ; ρF ) (3.2% for ρF = 8000 and 8.8% for ρF = 20000) indicates that uKc is

“nearly optimal” for the constrained problem - recall that ϕKD(λK) is a lower bound on

ǔK(u; ρF ) for any u ∈ SuF .
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Figure 16: Transversal section of T Kθ [uKc ] at `x = `y for ρF = 8000.

Figure 17: Transversal section of T Kθ [uKc ] at `x = `y for ρF = 20000.
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Figure 18: Transversal section of θKro.

Figure 19: Graphs of uK and uKc for ρF = 8000.
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Figure 20: Graphs of uK and uKc for ρF = 20000.

Figures 16 – 18 respectively display T Kθ [uKc ], θKro, transversal sections of the first two plot

and Figures 19 – 20 display uK and uKc for ρF = 8000 and 20000, respectively.

4.4 Actuator Location

The initial/boundary value example defined by the heat equation on a rectangle

(0, Lx)× (0, Ly) in R2 which was introduced above is now slightly modified to involve two

scalar control signals (u(t) ∈ R2) and numerical results obtained searching the set of their

possible “locations” will be presented.

More specifically, let the “source” term in the heat equation be given by

βS(x, y;X )u(t) =
2∑
i=1

βSi(x, y;Xi)ui(t),

where X = (X1,X2), Xi = (X x
i ,X

y
i ) ∈ R2 and βSi(·) is defined by

βSi(x, y;Xi) = 1 ∀ (x, y) ∈ [X x
i − δβ,X x

i + δβ]× [X y
i − δβ,X

y
i + δβ]

βSi(x, y;Xi) = 0 otherwise.
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A location X will be assessed by the approximation error relative to the desired

final state θKro achieved by the optimal (unconstrained) control over (0, tF ), i.e., by

ν(X1,X2) = ‖(I + ρFGK(MK
β (X1,X2)))θ

K

ro‖2,

where MK
β and GK(M) are as in Section 3.2.

Two searches were carried with the following data: Lx = Ly = 1, tF = 1,

ρF = 8000, ∀ (x, y) ∈ (0, Lx)× (0, Ly), θr(x, y) = 2, K = 5, δβ = 0.1.

For the first one, a 5×5 grid was defined by Sgr = {0.1, 0.3, 0.5, 0.7, 0.9} as Sgr×Sgr
and the set of possible locations SXgr , {(X1,X2) : Xi ∈ (Sgr × Sgr), i = 1, 2} (comprised

of 625 “locations”) was exhaustively searched. The minimum of ν(·, ·) on SXgr was found

to be 1.2563 and it was attained at the location

([
0.5

0.7

]
,

[
0.5

0.3

])
.

For Na > Nαε, a search was also carried out on a set of Na pseudo-random samples

of a constant pdf on SX2 = {(X1,X2) : Xi ∈ (0, Lx) × (0, Ly), i = 1, 2}, with α and ε set

to α = ε = 10−2, Nαε = 2/ log(1/0.99) ≈ 454.5454, so that Na was taken to be 500.

The minimum of ν(·, ·) on the 500 pseudo-random samples was found to be 1.2562

and it was attained at the location

([
0.2854

0.4170

]
,

[
0.6641

0.5468

])
.

Finally, the case of three scalar control signals was considered in the same setting.

With the same values for α, ε and Na a search on pseudo-random samples of a constant

pdf on SX3 = {(X1,X2,X3) : Xi ∈ (0, Lx)× (0, Ly), i = 1, 2} was carried out leading to the

minimum value 1.1431 for ν(·, ·, ·) which was attained at the location

X1 =

[
0.2952

0.4485

]
, X2 =

[
0.7628

0.2222

]
, X3 =

[
0.7064

0.8012

]
.



5 FINITE-STATE, APPROXIMATE CONTROL OF THE NLHEQ: A HEURIS-

TIC SCHEME BASED ON LINEARIZATION

In this chapter, a finite-state control problem will be considered in connection

with the NLHEq subject to initial-value and homogeneous, Dirichlet boundary condi-

tions. A heuristic scheme will be introduced which essentially consists of linearizing

a finite-dimensional (semi-discrete) Galerkin approximation to the NLHEq, on “small”

sub-intervals of (0, tF ), and then computing the quadratically-optimal control functions

for each of the corresponding linear, finite-dimensional, ordinary differential equations.

The main motivation for such a heuristic scheme rests on certain features of the

non-linear problem which makes it difficult to compute approximate solutions on the ba-

sis of other possible approaches to this problem. These topics will be briefly discussed

before the heuristic scheme in question is described in detail. Finally, after such a de-

scription is presented, numerical examples involving one-dimensional spatial domains will

be presented at the end of this chapter.

To begin, it is recalled that the initial-value/boundary condition problem in ques-

tion for the NLHEq is defined (in “weak” form) by

∀φ ∈ H1
0 (0, Lx),

〈
dθ

dt
(t), φ

〉
= −

〈
α(θ(t))

∂θ(t)

∂x
,
∂φ

∂x

〉
+ 〈f

S
(t), φ〉+

m∑
i=1

〈βSi, φ〉ui(t)

(5.1)

and 〈θ(0), φ〉 = 〈g, φ〉. (5.2)

Let the solution of (5.1)–(5.2) for a given triple (f
S
, g,u) be denoted by θ(·;u) (f

S

and g will be omitted as they remain unaltered throughout this chapter). A quadratic

criterion for the choice of u(·) = [u1(·) . . . um(·)]T is then defined (as before) by:

Ja(u) ≡ ‖θ(tF ;u)− θref‖2
2 + ρu‖u‖2

L2(0,tF )m ,

where θref is the desired final-state (to be approximately reached).

Final-state control problems with and without “peak-value” constraints on u are

defined as before by:

Prob. a: min
u∈L2(0,tF )m

Ja(u) and Prob. ac: min
u∈SuF

Ja(u),

where SuF , {u ∈ L2(0, tF )m : ∀i = 1, . . . ,m, −µi ≤ ui(t) ≤ µi, ∀t a.e. in (0, tF )}.

82
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Difficulties in the way of obtaining an approximate solution even to the simpler,

unconstrained Prob. a. are the fact the mapping u 7→ θ(tF ;u) is only implicitly char-

acterized (by (5.1) and (5.2)) and that due to (5.1) being non-linear on θ, convexity of

the cost-functional (with respect to u) could not be established; additionally, the space

of possible u(·) is infinite-dimensional.

A first step towards more tractable problems would be to replace (5.1)–(5.2) by

a Kth-order Galerkin approximation (as described in Chapter 2) which would lead to

θK(t;u) =
∑nK

k=1 ck(t;u)φk where cK(·;u) : (0, tF ) → RnK is the solution of the non-

linear, ordinary differential equation

ż(t) = RK (z(t)) z(t) + fSK(t) + βT

SK
u(t), ∀t > 0, z(0) = g

K
, (5.3)

where, with Gφ
K as in Chapter 2, fSK(t) = (Gφ

K)−1f̌
S

K(t), βS
K

= (Gφ
K)−1β̌S

K
, {f̌S

K
(t)}` =

〈f
S
(t), φ`〉` and {β̌T

SK
}k` = 〈βSk, φ`〉,

RK = (Gφ
K)−1ŘK(·) and {ŘK (z(t))}`k = −

〈
αK (z(t))

∂φk
∂x

,
∂φ`
∂x

〉
. (5.4)

The corresponding, truncated cost-functional would then be given by

J K
a (u) ≡ ‖θK(tF ;u)− θKref‖2

2 + ρu‖u‖2
L2(0,tF )m ,

where θKref is the orthogonal projection of θref on SK , i.e., θKr = [θKr1 . . . θKrnK ]T,

θKr = (Gφ
K)−1θ̌

K

r and θ̌
K

r = [〈θref , φ1〉 . . . 〈θref , φnK 〉]T. Thus,

J K
a (u) =

(
cK(tF ;u)− θKr

)T
Gφ
K

(
cK(tF ;u)− θKr

)
+ ρu‖u‖2

L2(0,tF )m .

Again, the mapping u 7→ cK(tF ;u) is only implicitly characterized by the non-

linear ordinary differential equation (5.3) whose solution is cK(·,u) : [0, tF ] → RnK

so that a possible approach to the problem Prob. aK: min
u∈L2(0,tF )m

J K
a (u) would be to

formally replace cK in J K
a (u) by z and treat z and u as separate decision variables

linked by the non-linear equality constraint (5.3) which could, in principle, be handled by

means of Lagrange multipliers. More specifically, a Lagrangian functional LagaK would

be introduced as

LagaK (u, z,λ) = J̌ K
a (u, z) +

〈
λ, ż(t)−

[
RK(z(t))z(t) + fSK(t) + βT

SK
u(t)

]〉
L2(0,tF )m

,

where J̌ K
a (u, z) = (z(tF )− θrK)T Gφ

K(z(tF )−θKr ) +‖u‖2
L2(0,tF )m , λ : (0, tF )→ Rm is a
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Lagrange multiplier and the first step towards obtaining necessary optimality conditions

would amount to solving (for a given λ) the problem min
u,z

Lag(u, z,λ).

However, the difficulties associated with lack of convexity also apply to this prob-

lem. This motivates the use of global optimization techniques (NEUMAIER, 2004). To

make such an approach viable, finite-dimensional sets of possible control functions and

Lagrange multipliers would need to be considered (e.g, piecewise linear functions on a

partition of (0, tF ) in sub-intervals). Still, such methods are potentially very costly in

computational terms so that random search methods (such as outlined in Chapter 4, Sec-

tion 3) may also be considered as a less computationally-demanding alternative. These

methods could, in principle, also be used in connection with Prob. aK (without introduc-

ing Lagrange multipliers) but, in any case, to evaluate J K
a (u) for each candidate u

would require that the corresponding approximate solution of (5.3) is computed by some

numerical integration scheme.

Given these difficulties, which apply even to the unconstrained problem (Prob. aK)

above, a heuristic scheme based on the linearization of the non-linear ODE in (5.3) is now

introduced. The basic idea is that, as z(·) varies continuously with time, RK(z(t)) could

be taken as approximately constant on small sub-intervals Iq = [tq−1, tq] of (0, tF ), i.e.,

∀t ∈ Iq RK(z(t)) ≈ RK(z(tq−1)). Then replacing RK(z(t)) by RK(z(tq−1)) in (5.3) a

control signal ǔq : Iq → Rm is computed solving a linear-quadratic problem (using the

results of Chapter 3). With the control signal ǔq (acting over Iq) a non-linear initial value

problem is numerically solved on Iq for uq and the initial condition z(tq−1) (z(0) = g
K

)

thereby defining z(tq)). This is repeated for all sub-intervals making up [0, tF ] and the

control signal over [0, tF ] is obtained as the “concatenation” of the various ǔqs.

More precisely, this leads to the heuristic scheme described in the sequel for ob-

taining an “acceptable solution” to Prob. acK : min
u∈SuF

J K
a (u).

Linearization scheme for Prob. acK:

(a) Divide the interval [0, tF ] intoNlin sub-intervals Iq = [tq−1, tq], where tq = q(tF/Nlin),

for q = 1, . . . , Nlin.

(b) At each step q = 1, . . . , Nlin with uq : Iq → Rm and for a given initial value z0
q.

(i) the following problem is solved (using the results of Chapter 3)

Prob. q : min
uq∈L2(Iq)m

‖uq‖2
2 + ρF‖zqa(tq;uq)− z

q
ref‖

2
2

subject to: ∀ t a.e. in Iq, −µi(t) ≤ uqi(t) ≤ µi(t),
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where zqa(·,uq) is the solution of the linear initial-value problem

żqa(t) = RK(z0
q)z

q
a(t) + fSK(t) + β

SK
uq(t) ∀t ∈ Iq, zqa(tq−1) = z0

q, (5.5)

i.e., ∀ t ∈ Iq,

zqa(t;uq) = exp [Aq(t− tq−1)] z0
q +

∫ t

tq−1

exp [Aq(t− τ)]
{
fSK(τ) + BKuq(τ)

}
dτ,

where Aq = RK(z0
q), BK = βT

SK
, z0

1 = z(0) = g
k
, z0

q = ẑ(tq−1), q ≥ 2; for

q ≥ 1, ẑ(tq) is an estimate of the solution of (5.3) driven by uq on Iq from initial

condition z0
q. The optimal solution obtained in step k is denoted by ǔq.

(c) The estimate ẑ(tq) is obtained as an approximate solution (obtained with a chosen

numerical method) of

ż(t) = RK(z(t))z(t) + fSK(t) + BKǔq(t), ∀t ∈ Iq, z(tq−1) = z0
q, (5.6)

where ǔq is the solution of Prob. q.

(d) The control signal ǔ : [0, tF ] → Rm obtained with the iterations above is given by

∀t ∈ (tq−1, tq], ǔ(t) = ǔq(t), ǔ(0) = ǔ1(0).

(e) The final-state achieved with ǔ is given by ẑ(tF ).

Note that for sub-intervals of equal length (i.e., (tq − tq−1) = δlin) the fact that

the linearized model has constant coefficients enables the rewriting of the problem stated

in b(i) as:

Prob. q : min
ua:[0,δlin]→Rm

‖ua‖2
L2(0,δlin) + ρF‖Tq[ua]− zaq‖2

E

subject to: ∀ t ∈ [0, δa], µi ≤ uai(t) ≤ µi,

where zaq = zref − exp [Aqδlin] z0
q−
∫ δlin

0

exp [Aq(δlin − τ)]fSK(tq−1 + τ)dτ , δa = tF/Nlin,

and Tq[ua] =

∫ δlin

0

exp [Aq(δlin − τ)] BKua(τ)dτ.

Thus, the linearization scheme described above amounts to solving the linear

quadratic problem, Prob. q, above for successive (z0
q, z

a
q ,Aq) (using the algorithm de-

scribed in the next section) and numerically integrating the non-linear ODE in (5.3) over
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each sub-interval from initial state z0
q (z0

1 = g
K

) to obtain z
(
tq; ǔq, z

0
q

)
- note that (5.3)

is numerically solved over (0, tF ) only once (for the obtained ǔ).

A summary is now presented of the computational steps required to obtain a

control signal to steer the NLHEq towards a desired final state. Given (α, g, fS; {βS}, θref )
and a family of subspaces {SK} with orthonormal bases {φ1, . . . , φK}.

(1) Compute

BK = βT
SK =


〈βS1, φ1〉 · · · 〈βSm, φ1〉

...
...

〈βS1, φK〉 · · · 〈βSm, φK〉

 ,
{BK}`i = 〈βSi, φ`〉, gT

K
= [〈g, φ1〉 . . . 〈g, φK〉], z(0) = g

K
= z0

1 and

zref = [〈θref , φ1〉 . . . 〈θref , φK〉].

(2) Choose Nlin (and Iq) as in (a) above and for each step q = 1, . . . , Nlin (given z0
q).

(2.1) Compute Aq = RK(z0
q), z

a
q = zref − exp [Aqδa] z

0
q, where RK is given by

(5.4).

(2.2) Solve Prob. q, thus obtaining ǔq(t) = ua(tq−1), t ∈ Iq, using the procedure

introduced in Chapter 3, for the linear case, appropriately setting the problem data

in each step.

(2.3) Obtain ẑ(tq) as the numerical solution of (5.6) on Iq with uq set to ǔq

obtained as in (2.2), at t = tq (update: z0
q+1 = ẑ(tq)).

(3) In the end for ǔ : [0, tF ] → Rm defined as in (d), solve (5.3) numerically for the

interval [0, tF ] with u set to ǔ.

Remark 5.1. The major computational tasks required in the procedure described above

are solving the Nlin optimal control problems on Iq, q = 1, . . . , Nlin (see (2.2) above) and

solving Nlin non-linear initial value problems over Iq (see (2.3) above). The former are

to be solved on the basis of Chapter 4 whereas the latter have been solved in the examples

below by the 4th–order Runge-Kutta method (see APPENDIX C.2).

∇
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5.1 Numerical Examples

In this section, numerical results are presented to illustrate the use of the lin-

earization scheme above in the computation of control signals which purport to steer the

solution of the NLHEq towards a desired, final state (over the time-interval [0, tF ]). The

diffusion coefficient α : R→ R which is a function of the temperature θ is taken to be by

α(θ) = α1 + α2

(
γ1

γ1 + γ2(θ − θc)γ3

)
,

where α1, α2, γ1, γ2, and γ3 are positive coefficients and θc is the “origin of the temperature

scale” over which α(·) as above is thought to be an acceptable model for how the diffusion

coefficient varies with θ – note that for θ = θc, α(θ) = α1 + α2 and that, as θ gets much

larger than θc, α(θ) tends to α1 so that the overall range of variation of α(θ) for θ ≥ θc

is contained in (α1, α1 + α2), with α(θ) decreasing as θ increases. In accordance with the

homogeneous Dirichlet boundary condition, the origin of the temperature scale is taken

to be the boundary temperature so that θc is set to zero in the examples below.

Each of the numerical experiments reported below correspond to

(a) A pair of values assigned to the coefficients α1 and α2 (with α1 + α2 = 1) (the

coefficients γ1, γ3 and θc have the following values which are held fixed throughout

all experiments γ1 = 1, γ3 = 2, θc = 0). For the experiments in Figures 25 – 28, γ2

is set to γ2 = 10. For the remaining experiments γ2 is set to γ2 = 1.

(b) One of the two desired final states given in Figure 1 and Figure 7 of Chapter 4.

(c) One of two possible values for ρF .

(d) One of two possible values for µu.

As in the examples of Chapter 4, one of the aims here is to illustrate the effect

of ρF and µu on the final-state approximation error as well the relative difficulties posed

by different functions taken to be the desired final states. In addition, by varying α1,

the effect of the “amount of non-linearity” involved on the final-state error can also be

illustrated (note that as α1 + α2 = 1, the smaller α1 the greater the departure of α(·)
from a constant value).
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In the following experiments the values assigned to ρF , µu and γ1 are γ1 = 1.0,

ρF = 10000, ρF = 40000 and µu = 30, µu = 70. Roughly speaking, in the examples

below θ(x, t) varies between zero and one. Thus, α(θ(·)) varies between α1 + α2 and

α1 + α2

(
1

1 + γ2

)
(with α1 + α2 = 1), i.e., the range of values of α(·) is α2

(
γ2

1 + γ2

)
.

As a result, the “amount of non-linearity” in the NLHEq would increase with α2 and γ2.

First, the desired final state is given in Figure 1 from Chapter 4, which for convenience

will be named θr1.

Figure 21: ρF = 10000, µu = 30, α1 = 0.1, α2 = 0.9, γ2 = 1.

Figure 22: ρF = 40000, µu = 30, α1 = 0.1, α2 = 0.9, γ2 = 1.
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Figure 23: ρF = 10000, µu = 70, α1 = 0.1, α2 = 0.9, γ2 = 1.

Figure 24: ρF = 40000, µu = 70, α1 = 0.1, α2 = 0.9, γ2 = 1.

‖eK‖ µu = 30 µu = 70

ρF = 10000 0.1003 0.0398
ρF = 40000 0.1003 0.0198

Table 13: Final state for θr1. Approximation error norms on SK for Figures 21 – 24
(α1 = 0.1, α2 = 0.9 and γ2 = 1).

Note that the error norms in SK , (i.e., ‖zref − ẑ(tF )‖E, with zref and ẑ(tF ) as in

(1) and (2.3) above) diminish with increasing ρF and µu as happened in the case of the

experiments with the LHEq.
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Figure 25: ρF = 10000, µu = 30, α1 = 0.1, α2 = 0.9, γ2 = 10.

Figure 26: ρF = 40000, µu = 30, α1 = 0.1, α2 = 0.9, γ2 = 10.
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Figure 27: ρF = 10000, µu = 70, α1 = 0.1, α2 = 0.9, γ2 = 10.

Figure 28: ρF = 40000, µu = 70, α1 = 0.1, α2 = 0.9, γ2 = 10.

‖eK‖ µu = 30 µu = 70

ρF = 10000 0.1104 0.1035
ρF = 40000 0.1072 0.0827

Table 14: Final state for θr1. Approximation error norms on SK for Figures 25 – 28
(α1 = 0.1, α2 = 0.9 and γ2 = 10) .

In comparison with Table 13, the increase in γ2 (as remarked above, increasing the

“amount of non-linearity”) brought about an increase in the approximation error for all

values of ρF and µu taken in account.



92

Figure 29: ρF = 10000, µu = 30, α1 = 0.8, α2 = 0.2, γ2 = 1.

Figure 30: ρF = 40000, µu = 30, α1 = 0.8, α2 = 0.2, γ2 = 1.
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Figure 31: ρF = 10000, µu = 70, α1 = 0.8, α2 = 0.2, γ2 = 1.

Figure 32: ρF = 40000, µu = 70, α1 = 0.8, α2 = 0.2, γ2 = 1.

‖eK‖ µu = 30 µu = 70

ρF = 10000 0.1381 0.0324
ρF = 40000 0.1381 0.0098

Table 15: Final state for θr1. Approximation error norms on SK for Figures 29 – 32
(α1 = 0.8, α2 = 0.2 and γ2 = 1).

Note that with a “small amount of non-linearity” (α2 = 0.2 and γ2 = 1) the ap-

proximation errors obtained with µu = 70 in Table 15 are smaller than the corresponding

values in Tables 13 and 14.
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Numerical experiments are now presented for the desired final state given in Figure

7 from Chapter 4, which, for convenience, will be named θr2.

The results below (Figures 33 – 44 and Tables 16 – 18) exhibit the same behavior

of approximation error with respect to different values of ρF , µu and the “amount of

non-linearity” as observed in the examples with θr1 with performance improving with

increasing ρF , µu and when α(·) is “closer” to the linear case (constant α(·) or “small α2).

Figure 33: ρF = 10000, µu = 30, α1 = 0.2, α2 = 0.8, γ2 = 1.

Figure 34: ρF = 40000, µu = 30, α1 = 0.2, α2 = 0.8, γ2 = 1.
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Figure 35: ρF = 10000, µu = 70, α1 = 0.2, α2 = 0.8, γ2 = 1.

Figure 36: ρF = 40000, µu = 70, α1 = 0.2, α2 = 0.8, γ2 = 1.

‖eK‖ µu = 30 µu = 70

ρF = 10000 0.4506 0.4061
ρF = 40000 0.4496 0.3872

Table 16: Final state for θr2. Approximation error norms on SK for Figures 33 – 36
(α1 = 0.2, α2 = 0.8 and γ2 = 1).
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Figure 37: ρF = 10000, µu = 30, α1 = 0.5, α2 = 0.5, γ2 = 1.

Figure 38: ρF = 40000, µu = 30, α1 = 0.5, α2 = 0.5, γ2 = 1.
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Figure 39: ρF = 10000, µu = 70, α1 = 0.5, α2 = 0.5, γ2 = 1.

Figure 40: ρF = 40000, µu = 70, α1 = 0.5, α2 = 0.5, γ2 = 1.

‖eK‖ µu = 30 µu = 70

ρF = 10000 0.4166 0.3660
ρF = 40000 0.4158 0.3440

Table 17: Final state for θr2. Approximation error norms on SK for Figures 37 – 40
(α1 = 0.5, α2 = 0.5 and γ2 = 1).
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Figure 41: ρF = 10000, µu = 30, α1 = 0.8, α2 = 0.2, γ2 = 1.

Figure 42: ρF = 40000, µu = 30, α1 = 0.8, α2 = 0.2, γ2 = 1.
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Figure 43: ρF = 10000, µu = 70, α1 = 0.8, α2 = 0.2, γ2 = 1.

Figure 44: ρF = 40000, µu = 70, α1 = 0.8, α2 = 0.2, γ2 = 1.

‖eK‖ µu = 30 µu = 70

ρF = 10000 0.3873 0.3318
ρF = 40000 0.3860 0.3082

Table 18: Final state for θr2. Approximation error norms on SK for Figures 41 – 44
(α1 = 0.8, α2 = 0.2 and γ2 = 1).



6 CONCLUDING REMARKS

In this work, two types of open-loop control problems were addressed in connec-

tion with the linear heat equation in rectangular domains with Dirichlet type boundary

conditions in which the control function (depending only on time) constitutes a source

term. In both cases, the main objective is to impose a prescribed state (temperature dis-

tribution) at the final instant of a given time-interval. Control signals are to be selected

on the basis of two optimization problems, one unconstrained and the other one involving

constraints on the maximum magnitudes of the values taken by the control signals on the

time-interval in question. Both problems have the same quadratic cost-functional.

Approximations for the optimal control signals are obtained on the basis of finite-

dimensional Galerkin approximation for the linear heat equation. As a consequence, the

resulting optimal control signals can be effectively computed. Indeed, in the unconstrained

case, they are given as the output of an autonomous, finite-dimensional linear system

with initial state given by the data of the original problem. Whereas, in the constrained

case, using Lagrangian duality, the resulting control signals are obtained from the cascade

connection of a linear system (as in the unconstrained case but with a modified initial state

which depends on the “approximately-optimal” Lagrange multipliers) and a (memoryless)

limiting operation. Numerical results for the 1D and 2D linear heat equations were

presented to illustrate the results mentioned above.

Brief comments on the problem of choosing the location of the “point” controls

were also presented together with examples to illustrate the location effects of the final-

state approximation goals.

On the basis of the results obtained for the linear heat equation, a heuristic lin-

earization scheme was introduced to address final-state control problems for the NL-

HEq. This scheme rests on a piecewise linearization of the finite-dimensional, non-linear

ODEs corresponding to Galerkin approximations of the NLHEq. Essentially, a given

time-interval is divided in contiguous sub-intervals. Starting with the “left most one”,

the non-linear ODE is linearized around the given initial state. Then, an optimal con-

trol problem is solved for the resulting linear ODE using the results previously obtained.

Then, a numerical integration scheme is invoked to obtain the state at the end of this

sub-interval with the obtained optimal control acting on the non-linear ODE. This is iter-

atively repeated over the next subinterval thereby obtaining control signals over the whole

interval and the state (of the non-linear ODE) reached of the end of the original interval.

Some numerical results are also presented to illustrate this heuristic linearization scheme

for the 1D NLHeq.

With respect to further work, it would be interesting to compare the linearization
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scheme described above with other ways of choosing control signals, e.g., using piecewise

linear signals and random search methods or discretization of control signals obtainded

from state-feedback methods aiming at directing the state of a non-linear systems at each

instant towards the desired final one. Additionally, the problems of choosing the location

of point controls for the NLHeq could be investigated particularly in connection with

the linearization scheme presented here. Another attractive topic would be the extension

of the developed techniques to problems with Robin boundary conditions. The more

general problem of approximately imposing a precribed trajectory for the state variable

{θ(t)}, t ∈ [0, tF ] would also be of interest and possibly handeled by similiar means. A

bigger departure from the problems treated here would be to tackle control problems

where the control signal is acting on the boundary of the spacial domain. Two further

natural extensions of the work reported here would be to apply a similar approach to the

NLHeq in 2D and 3D domains and to generalize the procedures presented here to the

use of non-orthogonal basis in the sense of finite element methods, is also of considerable

interest.
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APPENDIX A – ELEMENTS OF CONTINUUM MECHANICS AND THE MATH-

EMATICAL DESCRIPTION OF HEAT CONDUCTION IN SOLIDS

APPENDIX A.1 – Elements from Continuum Mechanics

The following material was obtained from (GAMA, 2011) e (GAMA, 2012).

Divergence Theorem (for tensor fields)

Consider the arbitrary constant vector, a. Then, for a tensor field S sufficiently regular,

we write ∫
∂Ω

STa · ndS =

∫
∂Ω

Sn · adS =

∫
Ω

(divSdS) · a

and that ∫
∂Ω

STa · ndS =

∫
Ω

div
(
STa

)
dV.

Then, defining divS such that

(divS) · a = div
(
STa

)
it can be written ∫

∂Ω

SndS =

∫
Ω

divSdV.

Velocity Gradient

Let v = vxi+ vyj + vzk be a vector field. The velocity gradient of v is defined by

gradv =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

 .
Then we have

gradv = D︸︷︷︸
Symmetric

part

+ W︸︷︷︸
Skew–Symmetric

part

where

D =
1

2

[
gradv + (gradv)T

]
and W =

1

2

[
gradv − (gradv)T

]
.
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Material Derivative

Let ω be a vector field. We define the material derivative as

D ω

Dt
=
∂ω

∂t
+ (gradω) v.

Reynolds Transport Theorem

Let field Ψ, be a function of the variable x ∈ R3 (representing the position the position

with spatial coordinates (x, y, z) that depend on time t, given in this case, by

Ψ = Ψ̂(x, t) = Ψ̂(x, y, z, t).

Let a variable x ∈ R3 with coordinates (X, Y, Z) defined in such a way that, given X and

t, x is determined in a unique way from the regular function

χ (X, t)→ (x, y, z) = (x̃(X, Y, Z), ỹ(X, Y, Z), z̃(X, Y, Z)).

Thus, we can write

Ψ = Ψ̂ (X, t) = Ψ̂(x̃(X, Y, Z), ỹ(X, Y, Z), z̃(X, Y, Z)) = Ψ̃ (X, t) .

Reynolds Transport Theorem establishes that, in case of regular fields, that

d

dt

∫
Ωt

[
∂

∂t

(
Ψ̃ (X, t)

)
+
(

Ψ̃ (X, t)
)
tr

(
∂F

∂t
F−1

)]
dV =

∫
Ωt

[
DΨ

Dt
+ Ψdivv

]
dV,

where F = F̃ (X, t),
D

Dt
represents the material derivative and Ωt is the body’s configu-

ration at time t (it can vary on time t).

APPENDIX A.2–Green’s Identities

For given twice differentiable functions θ, φ in a domain Ω ⊂ R with boundary ∂Ω, we

have the following Green’s Identities (TAYLOR; MANN, 1983, pp. 492 – 493):
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The First Identity

∫
Ω

(
∂2θ

∂x2
φ+

∂θ

∂x

∂φ

∂x

)
dΩ =

∫
∂Ω

∂θ

∂x
φ · nd(∂Ω),

where n is the normal (perpendicular) vector to ∂Ω.

The Second Identity

∫
Ω

(
∂2θ

∂x2
φ− θ∂

2φ

∂x2

)
dΩ =

∫
∂Ω

(
∂θ

∂x
φ− θ∂φ

∂x

)
d(∂Ω).

APPENDIX A.3 – The Mathematical Description of Heat Conduction in Rigid

Bodies

In this section, the deduction of the mathematical description of heat conduction

in rigid bodies gives us as a result the (linear/non-linear) non-homogeneous (with a source

term) heat equation. This deduction was presented in (LÓPEZ–FLORES, 2014, pp. 18

– 22) and it it is reproduced here for the reader’s convenience.

The energy equation for a continuous body, also known as First Law of Thermo-

dynamics, consists on an axiom that establishes that:

The rate of change of the quantity of energy (kinetic + internal) is equal to the rate of

mechanical work done over a body (mechanical power due to the forces acting over the

body) in addition to this, the rate of energy transmitted in the form of heat (heat trans-

mitted by time unit through the boundary + the heat generation).

This principle can be mathematically represented by

d

dt

∫
Ωt

ρ

[
u+

1

2
v · v

]
dV =

∫
∂Ωt

(Tn) · vdS +

∫
∂Ωt

ρg · vdV +

∫
∂Ωt

−q · ndS +

∫
Ωt

q̇dV,

(A.3.1)
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where:∫
∂Ωt

(Tn) · vdS : mechanical power of the surface forces (contact);

∫
∂Ωt

ρg · vdV : mechanical power of the body’s forces;

∫
∂Ωt

−q · ndS : heat flux crossing (entering) the boundary of the body;

∫
Ωt

q̇dV : internal heat generation rate (energy).

The quantity ρ represents the body’s density Ωt (the body’s actual configuration),

the function u represents the body’s internal energy and v represents the body’s velocity

field. The quantity q represents the heat flux vector (per unit of time and area), while

the quantity q̇ represents the rate of heat generation (per unit of time and volume). For

example, when an electric current flows through a conductor, q̇ is positive, in average,

the same as the product of the difference of potential by the current, divided by the

respective volume of conductive material. The negative sign of the integral before the last

one above, appears due to the fact that it represents the flux entering the body and not

the flux coming out.

Rewriting (A.3.1) with the help of Reynolds transport theorem, in the following

way,∫
Ωt

{
D

Dt

[
ρ

(
u+

1

2
v · v

)]
+ ρ

(
u+

1

2
v · v

)
divv

}
dV = (A.3.2)

=

∫
∂Ωt

(Tn) · vdS +

∫
∂Ωt

ρg · vdV +

∫
∂Ωt

−q · ndS +

∫
Ωt

q̇dV.

Rewriting the internal argument of left-hand side integral of (A.3.2) as

D

Dt

[
ρ

(
u+

1

2
v · v

)]
+ ρ

(
u+

1

2
v · v

)
divv =

= ρ
D

Dt

(
u+

1

2
v · v

)
+

(
u+

1

2
v · v

)
Dρ

Dt
+ ρ

(
u+

1

2
v · v

)
divv

=

[
Dρ

Dt
+ ρdivv

](
u+

1

2
v · v

)
+ ρ

D

Dt

(
u+

1

2
v · v

)
(A.3.3)
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and considering the continuity equation we establish the following

Dρ

Dt
+ ρdivv = 0. (A.3.4)

Then we obtain∫
Ωt

{
ρ
D

Dt

(
u+

1

2
v · v

)}
dV =

∫
∂Ωt

(Tn) · vdS +

∫
∂Ωt

ρg · vdV +

∫
∂Ωt

−q · ndS +

∫
Ωt

q̇dV.

(A.3.5)

The symmetry of the Cauchy stress tensor, T, and the divergence theorem allows

us to write ∫
∂Ωt

(Tn) · vdS −
∫
∂Ωt

q · ndS =

∫
∂Ωt

(Tv) · ndS −
∫
∂Ωt

q · ndS

=

∫
Ωt

div (Tv) dV −
∫

Ωt

divqdV. (A.3.6)

Therefore, the energy equation, (A.3.1), can be expressed as∫
Ωt

{
ρ
D

Dt

(
u+

1

2
v · v

)}
dV =

∫
Ωt

div (Tv) dV +

∫
∂Ωt

ρg · vdV −
∫

Ωt

divqdV +

∫
Ωt

q̇dV.

(A.3.7)

Since the region Ωt is chosen arbitrarily, we can conclude that (the local form of

the energy equation for a continuous body) is given by

ρ
D

Dt

(
u+

1

2
v · v

)
= div (Tv) + ρg · v − divq + q̇. (A.3.8)

Since

div (Tv) = (divT) · v + T · gradv (A.3.9)

and that
D

Dt

(
1

2
v · v

)
=
Dv

Dt
· v (A.3.10)

equation (A.3.8) can be written as

ρ
Du

Dt
+ ρ

Dv

Dt
· v = (divT) · v + T · gradv + ρg · v − divq + q̇. (A.3.11)
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Taking in consideration that the equation of linear motion establishes that

ρ
Dv

Dt
= divT + ρg (A.3.12)

a local form of the energy equation given by (A.3.8), it reduces to

ρ
Du

Dt
= T · gradv − divq + q̇. (A.3.13)

The symmetry of the stress tensor and the definition of material derivative allows

us to write

ρ

(
∂u

∂t
+ grad u · v

)
= −divq + T ·D + q̇, (A.3.14)

where D is the symmetrical part of the velocity gradient. It is important to point out that

for rigid bodies, gradv is skew-symmetric and so T ·D = 0.

Fourier’s Law

Initially we admit that the heat flux vector is solely dependent on the temperature

distribution. In other words, the heat flux vector q must be a function of the temperature

θ and on the spacial gradient grad θ. To comply with the objectivity (frame invariance)

principles, we have that (SLATTERY, 1999, p. 251 – 256, 273 – 275)

q = K (θ, grad θ) grad θ. (A.3.15)

Fourier’s law is a particular case of the previous equation where K depends only

on θ. For isotropic materials, Fourier’s law is given by

q = −κ (θ) grad θ, (A.3.16)

where κ is called thermal conductivity.

Heat Conduction in an Isotropic, Rigid Solids at Rest

For a rigid opaque solid at rest, the energy equation reduces to

ρ
∂u

∂t
= −divq + q̇. (A.3.17)

It is known from thermodynamics that the specific heat at a constant volume for a rigid

solid, denoted it here by c, to be constant and defined as c = (∂u/∂θ)V . Using this we



114

write

ρc
∂θ

∂t
= −divq + q̇, (A.3.18)

where θ represents the temperature field. Notice that for the given body’s configuration,

we can assume the density, ρ, as constant.

Considering q as in (A.3.16), we then have the general equation for the heat

conduction in an isotropic rigid solid at rest given by

ρc
∂θ

∂t
= div (κ(θ) grad θ) + q̇. (A.3.19)

If we consider the case in which q̇ does not depend on the temperature θ, it is possible

to write the previous equation as

∂θ

∂t
− div(α(θ) grad θ) = f, (A.3.20)

where α(θ) = κ(θ)
ρc

> 0 is called thermal diffusivity and f = q̇
ρc

. It is important to point

out that the thermal conductivity is strictly positive. “Heat flows in the opposite direction

of the temperature gradient”.

In engineering, in some cases, is a common practice to approximate the thermal

conductivity by an average constant value. In other words, for some cases, we despise the

dependency of the thermal conductivity from the temperature. In such cases we consider

q = −κ grad θ. We assume that κ is constant. Also, if we consider q̇ not depending on

θ, we write (A.3.20) as
∂θ

∂t
− α div(grad θ) = f, (A.3.21)

where α = κ
ρc
> 0 and f = q̇

ρc
, as before.

Boundary Conditions (BCs)

Now we chose initial and boundary conditions for our given partial differential

equations. For this we have the Dirichlet (prescribed temperature) and Neumann bound-

ary conditions (insulated wall), which are commonly found in the classical heat transfer

literature. However, both are somewhat unrealistic.

In a more realistic sense, is not possible to prescribe a temperature and there

is no perfect insulating material (the a Neumann boundary condition can be used with

precision in cases when it describes symmetry). Thus, with the interest to keep a minimum

resemblance with reality we should use a boundary condition that correlates the boundary

temperature with the normal (perpendicular) heat flux. For example, Newton’s law of
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cooling, given by

q · n = h (θ − θ∞) over ∂Ω. (A.3.22)

Choice of BCs for the Positioning Problem of the Final State

Nevertheless, by the relative simplicity of the resulting problems and the ap-

proximation nature (still coarse) in many cases, Dirichlet boundary conditions are com-

monly found in the literature, see for example (MARUŠIĆ;PALOKA, 1999), (KUNICH;

VEXLER, 2007), (BELGACEM; BERNARDI; FEKIH, 2011), (LUO, K. et al, 2016).

Since the main interest is to approximately position the final state of a thermal

system described by the (linear or nonlinear) heat equation, this will be formulated here

as an optimal control problem subject to partial differential equations for a final time

tF , with a Dirichlet boundary condition. Even though it is not a very realistic boundary

condition, it allows us to make a fast and intuitive assessment of the numerical results

here obtained with previously available ones.



APPENDIX B – MATERIAL ON SYSTEMS AND CONTROL THEORY

APPENDIX B.1 – Open-Loop Control System

In this section, we present information related to systems and control theory that

will allow the reader to follow the main ideas used throughout the text.

One of the two major configurations of a control system is an open-loop control

system, see (NISE, 2015, pp. 6 – 7). This is a system that does not have a “feedback loop”

in its configuration. This kind of system will help the reader understand, conceptually,

the main ideas of our work. This system is represented in the can be presented as follows.

to understand the main idea of our work.

Figure 45: Block diagram of a generic open-loop control system.

As shown in Figure 45, in a generic simple open-loop control system we have two

main subsystems of interest. We have a controller that receives an input or reference signal

that “drives” the second subsystem to a specific desired state. The second subsystem is

called the process or plant which gives the specified state in form of an output signal that

can be called a controlled variable.

Any system is prone to disturbances. This other signals are shown added to the

controller via summing junctions. This signals will be added algebraically to the input

signal using the associated signs. As an example, the controller in a heating system

consists of fuel valves and the electrical system that operates the valves. As for the plant,

we can consider an air conditioning system or a furnaces, where the controlled variable is

the temperature.

We can represent our problem simply by the following open-loop system.

By identifying the plant with a process, such as heat conduction in solids, a choice

is to represent this system by the heat equation with its necessary initial and boundary

conditions.

116
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Figure 46: Open-loop system representing a process modeled by the heat equation where
the control function, u, depends only of time with a disturbance signal, fS, entering the
process which gives us a desired output signal θcont..

APPENDIX B.2 – The Essential Elements of a Control Problem

The essential elements of a control problem are presented, as in (ATHAN; FALB,

1966, p. 3 – 4), as follows:

1. A mathematical model (system) to be “controlled”.

The mathematical model, which represents the physical system, consists of a set

of relations which describe the response or output of the system for various inputs. Con-

straints based upon the physical situations are incorporated in this set of relations.

2. A desired output of the system.

The objective of the system is often translated into a requirement on the output.

The desired output is the signal being tracked (or something close to it).

3. A set of admissible inputs or “controls”.

Since “control” signals in physical systems are usually obtained from equipment

which can provided only a limited amount of force or energy, constraints are imposed

upon the inputs of the systems. These constraints lead to a set of admissible inputs (or

“control” signals). The desired objective can be attained by any admissible inputs, then a

measure of performance or cost control is sought for which allows the choice of the “best”

input.
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4. A performance or cost functional which measures the effectiveness of a

given “control action”.

When a cost functional has been decided upon, the (admissible) inputs as deter-

mined which generate the desired output and which, in so doing, minimize (optimize)

the chosen performance measure. At this point, optimal-control theory is used to find a

solutions to the control problem.

APPENDIX B.3 – Mathematical Formulation of a Control Problem

We follow the presentation in (MACKI; STRAUSS, 1982, pp. 4 – 6) of a precise

mathematical formulation of the type of control problem we will be discussing. Let m, n

be natural numbers, and let R stand for the real numbers. If x, y in Rn, we denote their

i−th components by xi, yi, respectively.

Let Ω` denote the unit cube Rm, i.e.,

Ω` = {` : ` ∈ Rm, |`i| ≤ 1, i = 1, 2, . . . m}.

For t1 ≥ 0, define

Uad[0, t1] = {u(·) : u(t) ∈ Ω` and u(·) measurable on[0, t1]},

Uad =
⋃
t1>0 Uad[0, t1] (Uad−set of the admissible controls u(·)). We assume that for each

t ≥ 0 we are given a target set T (t) ⊂ Rn where T (t) is a closed set.

We assume that the dynamics of the system, that is, the evolution of the state

x(t) under a given control u(t), is determined by a vector ordinary differential equation:

ẋ(t) = F(t,x(t),u(t)), x(0) = x0. (B.1)

We will always assume that f(t,x,u), ∂fi/∂xj, ∂fi/∂uk are all continuous (i, j =

1, . . . , n; k = 1, . . . ,m) on [0,∞)×Rn×Rm, although most results are valid under weaker

conditions. This assumption guarantees local existence and uniqueness of the solution of

(B.1) for a given u(·) ∈ Uad. Because u(·) is only assumed measurable and bounded, the

right side of the equation ẋ(t) = f(t,x,u(t)) is continuous in x but only measurable and

bounded in t for each x. Therefore, solutions are understood to be absolutely continuous

functions that satisfy (B.1) almost everywhere.
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The solution of (B.1) for a given u(·) will be called the response to u(·); we denote

it by x[t] ≡ x(t;x0,u(·)). The control problem is to determine those x0 and u(·) ∈ Uad
such that the associated response satisfies x[t1] ∈ T (t1) for some t1 > 0; we then say that

the control u(·) steers x0 to the target.

If the control u(·) is defined on [0, t1) (t1 ≤ ∞), it is not assumed that the

corresponding response extends to [0, t1); a given response x(t;x0,u(·) may only exist on

some subinterval of [0, t1).

Thus, our general control problem consists of a class of admissible controls Uad, a

vector differential equation (B.1) describing the dynamics of our system, and a family of

target sets T (t). One basic problem is to describe those initial states x ∈ Rn which can

be steered to the target, that is, those states which are controllable.

APPENDIX B.4 – The Optimal Control Problem

The basic control problem, as in (MACKI; STRAUSS, 1982, p. 9), may have

associated with it a cost functional or performance criterion. Taking the cost functional

of the form

J (u(·)) =

∫ t1

0

f(x[t],u(t))dt, x[t] ≡ x(t;x0,u(·)),

where f is a given real-valued function. The optimal control problem is to steer x0 to a

state in the target, using a control u(·) from the appropriate class for the problem, in such

a way that J (u(·)) is a minimum. More precisely, let the successful controls be denoted

by SC, i.e.,

SC = {u(·) ∈ Uad : ∃t1 ≥ 0 such that x(t1;x0,u(·)) ∈ T (t1)}.

Then a control u∗(·) ∈ Uad is optimal if it is successful, i.e., u∗(·) ∈ SC, and

J (u∗(·)) ≤ J (u(·)) for all u(·) ∈ SC.



APPENDIX C – MATERIAL ON SEMIGROUP THEORY AND THE 4TH-ORDER

RUNGE–KUTTA METHOD

APPENDIX C.1 – Semigroup Theory

The study of linear, first-order differential equations in infinite-dimensional Banach

spaces provides the basic motivation for the introduction of one-parameter family of linear

operators (semigroups) as defined below. Recalling that a linear ODE in Rn, namely,

ẋ(t) = Ax(t), t ≥ 0 where x : [0,∞)→ Rn and A ∈ Rn×n,

has solution given by x(t) = exp[At]x0, the question arises if, for z : [0,∞)→ X , where

X is not finite-dimensional and A is defined on a dense subset of X , there exists a family

{S(t) : t ≥ 0} of linear mappings S(t) : X → X such that the solutions of the linear

ODE ż(t) = Az(t) are likewise given by z(t) = S(t)x(0). Clearly, if A is bounded on X ,

it suffices to define

S(t) = exp[At] =
∞∑
k=0

tk

k!
Ak

(in this case, the series above converges uniformly on any finite interval [0, tF ] with respect

to the induced operator norm). The definition of strongly continuous semigroup provides

a generalization of exp[At] (for unbounded A) in its role of describing the solutions of

linear ODEs in infinite-dimensional spaces.

Basic definition and few fundamental results are reproduced below, see (CUR-

TAIN; ZWART, 1995, Chapter 2, pp. 13 – 52)

Definition C.1: (CURTAIN;ZWART, 1995, Definition 2.1.2, p. 15). A Co−semigroup

is an operator-valued function T (t) from R+ to L(Z) (Z is a separable Hilbert space) that

satisfies the following properties:

T (t+ s) = T (t)T (s) for t, s ≥ 0; (C.1)

T (0) = I; (C.2)

‖T (t)z0 − z0‖ → 0 t→ 0+ ∀z0 ∈ Z. (C.3)

120
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Theorem C.T1 (CURTAIN;ZWART, 1995, Theorem 2.1.6 (d, e), p. 18). A strongly

continuous semigroup on a Hilbert space Z T (t) has the following properties:

(d) If ω0 = inf
t>0

[
1

t
log ‖T (t)‖

]
, then ω0 = lim

t→∞

[
1

t
log ‖T (t)‖

]
<∞;

(e) ∀ω > ω0, there exists a constant Mω such that ∀t ≥ 0, ‖T (t)‖ ≤Mωe
ωt.

Definition C.2: (CURTAIN;ZWART, 1995, Definition 2.1.8, p. 20). The infinitesimal

generator A of a Co−semigroup on a Hilbert space Z is defined by

Az = lim
t→0+

1

t
[T (t)− I] ,

whenever the limit exists; the domain of A, Dom(A), being the set of elements in Z for

which the limit exists.

Theorem C.T2 (CURTAIN;ZWART, 1995, Theorem 2.1.10 (b, f) , p. 21). Let T (t) be a

strongly continuous semigroup on a Hilbert space Z with infinitesimal generator A. Then

the following results hold:

(b)
d

dt
[T (t)z0] = AT (t)z0 = T (t)Az0 for z0 ∈ Dom(A), t > 0;

(f) A is a closed linear operator.

Definition C.3: (CURTAIN;ZWART, 1995, Definition A.4.1, p. 608). Let A be a closed

linear operator on a (complex) normed linear space X. We say that λ is in the resolvent

set ρ(A) of A, if (λI − A)−1 exists and is a bounded linear operator on a dense domain

of X. We shall call (λI − A)−1 the resolvent operator of A.

Theorem C.T3 (CURTAIN;ZWART, 1995, Theorem 2.1.12 – The Hille-Yosida Theorem,

p. 26). A necessary and sufficient condition for a closed, densely defined, linear operator

A on a Hilbert space Z to be the infinitesimal generator of a Co−semigroup is that there

exist real numbers M , ω, such that for all real α > ω, α ∈ ρ(A), the resolvent set of A,

and

‖R(α,A)r‖ ≤ M

(α− ω)r
for all r ≥ 1,

where R(α,A) = (αI − A)−1 is the resolvent operator. In this case

‖T (T )‖ ≤Meωt.
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APPENDIX C.2–The 4th–Order Runge–Kutta Method

In this section, short presentation of the 4th–order Runge–Kutta Method is given.

Numerical methods for the initial value problem are traditionally divided into two classes:

one-step methods and multistep (or multivalue) methods. One-step methods (also called

Runge-Kutta methods) are memoryless and only make use of the most recently computed

solution point to compute a new solution point, whereas multistep methods retain some

memory of the history by storing, using, and updating a matrix containing old and new

information, see (NEUMAIER, 2001, p. 211).

The “classical (4th–order) Runge–Kutta method” or simply the “Runge–Kutta

method” it is one of the most widely used methods to solve initial value problems such

as the one presented as follows.

Suppose a continuous function F : D ⊆ Rn → Rn, a point y0 ∈ int(D), and a real

interval [x0, xF ] are given. We seek a continuously differentiable function y : [x0, xF ] →
Rn” with y′(x) = F (y(x)), y(x0) = y0. Each such function is called a solution to the

initial value problem

y′ = F (y), y(x0) = y0 in the interval [x0, xF ]. (C.4)

Here y is an unknown function (scalar or vector) of x, which we would like to approximate;

The function F and the data (x0, y0) are given.

Choosing a step-size h > 0 and define

yn + 1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4),

xn + 1 = xn+ h

for n = 0, 1, 2, 3, . . ., using

k1 = hF (xn, yn),

k2 = hF (xn +
h

2
, yn +

k1

2
),

k3 = hF (xn +
h

2
, yn +

k2

2
),

k4 = hF (xn + h, yn + k3).

Here yn+1 is the 4th–order Runge–Kutta approximation of y(xn+1), and the next value

(yn+1) is determined by the present value (yn) plus the weighted average of four increments,
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where each increment is the product of the size of the interval, h, and an estimated

slope specified by function F on the right-hand side of the differential equation. More

specifically, k2 and k3 represent approximations to the derivative y′ at points on the

solution curve, intermediate between (xn, y(xn)) and (xn+1, y(xn+1)), and F (xn, yn;h) is

a weighted average of the ki, i = 1, 2, 3, 4, the weights corresponding to those of Simpsons

rule (to which the classical 4th–order Runge–Kutta method reduces when ∂F
∂y
≡ 0), see

(SÜLI;MAYERS, 2003, p. 328).

In the numerical results presented in this work it was used the following quadrature

form:

Quadrature for numerical integration (to obtain Aq)

Grid: xj = (j − 1)Lx/Nx, j = 1, . . . , Nx + 1.

{Aq}`k =
Nx+1∑
j=1

(1/2)
[
gAq (xj) + gAq (xj+1)

]
(Lx/Nx),

where gAq (x) = αa(z
0
q)(x)

∂φk(x)

∂x

∂φ`(x)

∂x
.

To avoid some difficulties using the Runge–Kutta method presented here, a careful

choice of step-size has to be taken. As an empirical rule we present the following com-

mentary from (LAPIDUS;SEINFELD, 1971, Section 2.8, pg. 69),

Collatz Rule of Thumb

(COLLATZ, 1966) has outlined a rule-of-thumb method for indirectly measuring F (x, h)

by specifying the correct magnitude of h. He suggested that in the classic Runge–Kutta

calculation k2 and k3 must be approximately equal. To be more specific, it was suggested

that the identity ∣∣∣∣k3 − k2

k2 − k1

∣∣∣∣ = 1.0 (C.5)

hold when the proper value of h is used in a calculation. If the ratio is much greater than

1, the local truncation error is too large in this step and h must be decreased. If the ratio

is much smaller than 1, the h should be increased. The use of (C.5) to specify h is, of

course, subject to considerable interpretation and should be used only with care. As an

example, if F (x, y) = F (x) then k3 = k2 in the Runge–Kutta formulas and (C.5) breaks

down. (WARTEN, 1963) has, however, used the idea with some success. He suggested

that one try to estimate the local truncation error by means of a weighted linear combi-
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nation of the ki. The weighting factors are then adjusted to fit the local truncation error

for the linear differential equation y′ = ay + b or its vector equivalent.

This type of analysis continues to be of interest in the applied sciences. For

example, in the recent work of (NUGRAHA, 2015), it was studied the selection of time

step in Runge–Kutta fourth order for determine deviation in the weapon arm vehicle,

where the simulation results showed that for stepping over a specified time of 0.01 s

produced unstable simulation results, in contrast, using a time step of 0.001 s provided

a more stable result. This shows how important is the choice of the time step for this

method.
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