

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Geologia

Guilherme Loriato Potratz

Petrogênese e geocronologia U-Pb do Granito Sana, Faixa Ribeira, e dos Complexos Intrusivos de Santa Angélica e Várzea Alegre, Faixa Araçuaí

> Rio de Janeiro 2020

Guilherme Loriato Potratz

Petrogênese e geocronologia U-Pb do Granito Sana, Faixa Ribeira, e dos Complexos Intrusivos de Santa Angélica e Várzea Alegre, Faixa Araçuaí

> Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Geociências, da Universidade do Estado do Rio de Janeiro. Área de concentração: Tectônica, petrologia e recursos minerais.

Orientador: Prof. Dr. Mauro Cesar Geraldes

Rio de Janeiro 2020

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/C

P864 Potratz, Guilherme Loriato. Petrogênese e geocronologia U-Pb do Granito Sana, Faixa Ribeira, e dos Complexos Intrusivos de Santa Angélica e Várzea Alegre, Faixa Araçuaí / Guilherme Loriato Potratz. - 2020. 249 f.: il. Orientador: Mauro Cesar Geraldes. Tese (Doutorado) - Universidade do Estado do Rio de Janeiro, Faculdade de Geologia. 1. Granito – Ribeira, Faixa (RJ) – Teses. 2. Petrologia – Ribeira, Faixa (RJ) – Teses. 3. Petrologia - Araçuaí, Faixa (ES) - Teses. 4. Geologia isotópica -Ribeira, Faixa (RJ) – Teses. 5. Geologia isotópica – Araçuaí, Faixa (ES) – Teses. 6. Geoquímica – Ribeira, Faixa (RJ) – Teses. 7. Geoquímica – Araçuaí, Faixa (RJ) - Teses. 8. Geocronologia - Teses. I. Geraldes, Mauro Cesar. II. Universidade do Estado do Rio de Janeiro. Faculdade de Geologia. III. Título. CDU 552.321(815.3+815.2)

Bibliotecária responsável: Taciane Ferreira da Silva / CRB-7: 6337

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Data

Guilherme Loriato Potratz

Petrogênese e geocronologia U-Pb do Granito Sana, Faixa Ribeira, e dos Complexos Intrusivos de Santa Angélica e Várzea Alegre, Faixa Araçuaí

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Geociências, da Universidade do Estado do Rio de Janeiro. Área de concentração: Tectônica, petrologia e recursos minerais.

Aprovada em 20 de agosto de 2020.

Banca Examinadora:

Prof. Dr. Mauro Cesar Geraldes (Orientador) Faculdade de Geologia – UERJ

Prof.^a Dra. Camila Cardoso Nogueira Faculdade de Geologia – UERJ

Prof. Dr. Antônio Carlos Pedrosa Soares Universidade Federal de Minas Gerais

Prof. Dr. Júlio Cezar Mendes Universidade Federal do Rio de Janeiro

Prof. Dr. Edgar Batista de Medeiros Junior Universidade Federal de Ouro Preto

DEDICATÓRIA

Não poderia dedicar este trabalho a ninguém menos que meus pais Denilson Potratz e Giâni Loriato Potratz, pois nunca mediram esforços para que eu chegasse até aqui e para que eu continue trilhando o caminho do conhecimento. Dedico também a minha irmã, Júlia Potratz, que esteve junto comigo em toda minha jornada acadêmica na UERJ.

Por fim, dedico esse trabalho a meu namorado, José Marcio Batista Rangel, que me mostrou uma maneira diferente de enxergar a vida e não me deixou desanimar nos momentos complicados.

AGRADECIMENTOS

Agradeço à Universidade do Estado do Rio de Janeiro e ao Programa de Pósgraduação em Geociências que tornaram possível o sonho de obtenção do título de doutor em Geociências.

Agradeço ao meu orientador, Mauro Cesar Geraldes, por acreditar no projeto e fornecer os recursos para desenvolvimento do mesmo.

Por fim, agradeço à Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) por conceder a bolsa de estudos que permitiu a realização desta tese.

A tarefa não é tanto ver aquilo que ninguém viu, mas pensar o que ninguém ainda pensou sobre aquilo que todo mundo vê.

Arthur Schopenhauer

RESUMO

POTRATZ, Guilherme Loriato. *Petrogênese e geocronologia U-Pb do Granito Sana, Faixa Ribeira, e dos Complexos Intrusivos de Santa Angélica e Várzea Alegre, Faixa Araçuaí.* 2020 249 f. Tese (Doutorado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

O estágio pós-colisional nas faixas móveis Araçuaí e Ribeira é marcado por intenso magmatismo de idade Cambro-Ordoviciana, que se desenvolve de forma distinta em cada uma das faixas móveis. Na Faixa Ribeira, o magmatismo pós-colisional, representado pelas suítes Suruí, Nova Friburgo e Sana, compreende uma série de corpos ígneos compostos essencialmente por granitoides, com pouco ou nenhuma variação para membros intermediários e/ou básicos. Na Faixa Araçuaí este magmatismo é representado pela suíte G4, composta por granitos tipo S e pela supersuíte G5, composta por uma série de corpos ígneos cujo a principal característica é o processo de mistura de magmas. O Granito Sana, um dos representantes do magmatismo pós-colisional da Faixa Ribeira, foi classificado como um granito tipo-S, gerado pela fusão parcial de rochas paraderivadas (Grupo São Fidélis) através da desidratação de minerais como biotita e muscovita. A temperatura máxima do magmatismo que deu origem ao Granito Sana é por volta de 800°C e o calor que proporcionou a fusão parcial das rochas foi transferido para a crosta pelo processo de condução térmica. O magmatismo do Sana se estendeu pelo intervalo de pelo menos 516 a 474 Ma. O Complexo Intrusivo de Santa Angélica (CISA), também denominado de Maciço Santa Angélica, é um plúton de caráter bimodal, cuja gênese está associada ao estágio pós-colisional da Faixa Araçuaí. Este plúton apresenta intenso processo de mistura de magmas de origem mantélica e crustal. O magmatismo que deu origem ao CISA durou cerca de 25 Ma. Os dados isotópicos Lu-Hf obtidos para o CISA indicam que a fonte crustal deste magmatismo possivelmente seja o Complexo Caparaó. O Complexo Intrusivo de Várzea Alegre (CIVA) é mais um representante da supersuíte G5. As idades U-Pb obtidas para o CIVA apontam para um evento magmático que durou cerca de 38 Ma e os dados isotópicos Lu-Hf confirmam a participação de magmas de origem mantélica e crustal.

Palavras-chave: Granito Sana. Complexo Intrusivo de Santa Angélica. Complexo Intrusivo de Várzea Alegre. Idades U-Pb. Geologia isotópica Lu-Hf.

ABSTRACT

POTRATZ, Guilherme Loriato. *Petrogenesis and U-Pb geochronology of the Sana granite, Ribeira Belt, and the Intrusive Complexes of Santa Angelica and Varzea Alegre, Araçuaí Belt.* 2020. 249 f. Tese (Doutorado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

The post-collisional stage in the Araçuaí and Ribeira mobile belts is marked by intense magmatism from the Cambro-Ordovician age. Such magmatism develops in different ways in each mobile belt. In the Ribeira Belt, post-collisional magmatism, represented by the Suruí, Nova Friburgo and Sana, suites, includes a series of igneous bodies essentially comprised of granitoids, with little or no variation into intermediate and/or basic members. In the Araçuaí Belt, magmatism is represented by the G4 suite, comprised of S-type granites, and by the G5 supersuite, comprised of a series of igneous bodies whose main feature is the mixing of magma. The Sana Granite is one of the examples of post-collisional magmatism from the Ribeira Belt, and was classified as S-type granite, whose partial fusion of paragneiss (São Fidélis Group) was generated by the dehydration of minerals such as biotite and muscovite. Maximum temperature of the magmatism that originated the Sana Granite is at around 800°C and the heat that led to the partial fusion of rocks was transferred to the crust through the thermal conduction process. Sana's magmatism lasted from 516 to 474 Ma at least. The Santa Angélica Intrusive Complex, also known as the Santa Angélica Massif, is a bimodal pluton, which was generated during the post-collisional stage of the Araçuaí Belt. That pluton presents intense mixing of magma from the crust and the mantle. Magmatism that originated the Santa Angélica Intrusive Complex lasted for approximately 25 Ma. Lu-Hf isotopic data obtained on the Santa Angélica Intrusive Complex suggest that the crustal source of that magmatism is the Caparaó Complex. The Santa Angélica Intrusive Complex is another sample of the G5 supersuite. U-Pb ages obtained on the Santa Angélica Intrusive Complex indicate a magmatic event that lasted about 38 Ma, and Lu-Hf isotopic data corroborate the presence of both crustal and mantle-derived magmas.

Keywords: Sana Granite. Santa Angélica Intrusive Complex. Várzea Alegre Intrusive Complex. U-Pb ages. Lu-Hf isotopic geology.

LISTA DE FIGURAS

Figura 1 –	Distribuição geográfica das unidades pós-colisionais dos segmentos
	central e setentrional da Província Mantiqueira - Faixas Ribeira e
	Araçuaí
Figura 2 –	Compartimentação tectônica da Faixa Ribeira
Figura 3 –	Orógeno Araçuaí na região central do Paleocontinente Gondwana
Figura 4 –	Perfil esquemático do Orógeno Araçuaí-Congo Ocidental, com foco
	na porção brasileira
Figura 5 –	Coluna estratigráfica esquemática do orógeno Araçuaí
Figura 6 –	Localização das principais unidades pós-colisionais dos segmentos
	central e setentrional da Província Mantiqueira - Faixas Ribeira e
	Araçuaí
Figura 7 –	Diagrama de classificação de rochas ígneas utilizado para as rochas
	das Faixas Ribeira e Araçuaí
Figura 8 –	Diagramas de caracterização de saturação em alumina utilizado
	para as rochas das Faixas Ribeira e Araçuaí
Figura 9 –	Diagramas de classificação genéticas utilizado para as rochas das
	Faixas Ribeira e Araçuaí
Figura 10 –	Mapa de localização e do Granito Sana
Figura 11 –	Mapa de pontos visitados no Granito Sana
Figura 12 -	Afloramentos do Granito Sana
Figura 13 -	Características macroscópicas do Granito Sana
Figura 14 -	Diagramas Q-A-P e Q-A+P-M para classificação de rochas
	plutônicas (Q-A-P) e determinação do índice de cor de rochas
	ígneas (Q-A+P-M)
Figura 15 -	Fotomicrografias das lâminas delgadas do Granito Sana
Figura 16 -	Diagrama TAS de classificação de rochas plutônicas
Figura 17 -	Diagramas Harker para os óxidos Al ₂ O ₅ , FeO _T , MnO, MgO, CaO,
	Na ₂ O, K ₂ O, TiO ₂ , P ₂ O ₅
Figura 18 -	Diagrama multielementar normalizado pelo condrito de Thompson
	(1982)

Figura 19 -	Diagrama de elementos terras raras normalizado pelo condrito de
	Boynton (1984)
Figura 20 -	Diagramas de classificação para rochas graníticas
Figura 21 -	Diagramas discriminantes de ambientes tectônicos
Figura 22 -	Diagramas discriminantes de fontes magmáticas
Figura 23 -	Tipos e morfologia dos cristais de zircão encontrados nas rochas do
	Granito Sana
Figura 24 -	Imagem de catodoluminescência dos cristais de zircão da amostra
	SANA 02
Figura 25 -	Diagrama concórdia com os dados plotados da amostra SANA 02
Figura 26 -	Diagrama concórdia com os dados plotados da amostra SANA 05
Figura 27 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	SANA 10
Figura 28 -	Diagrama concórdia com os dados plotados da amostra SANA 10
Figura 29 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	SANA 22
Figura 30 -	Diagrama concórdia com os dados plotados da amostra SANA 22
Figura 31 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	SANA 28
Figura 32 -	Diagrama concórdia com os dados plotados da amostra SANA 28
Figura 33 -	Grãos de zircão utilizados para análises isotópicas de Lu-Hf
Figura 34 -	Correlação dos índices A/CNK com a evolução da sílica 1
Figura 35 -	Discriminação de fontes magmáticas 1
Figura 36 -	Evolução isotópica das rochas do Granito Sana 1
Figura 37 -	Mapa de localização do Complexo Intrusivo de Santa Angélica 1
Figura 38 -	Mapa geológico do Complexo Intrusivo de Santa Angélica 1
Figura 39 -	Diagramas de classificação de rochas plutônicas 1
Figura 40 -	Amostra do Álcali-feldspato granito 1
Figura 41 -	Fotomicrografias do álcali-feldspato granito 1
Figura 42 -	Fotomicrografias das rochas agrupadas na unidade gabro 1
Figura 43 -	Feições de mistura de magma (mingling) nas rochas híbridas do
	CISA 1
Figura 44 -	Monzogranito pertencente à unidade híbrida do CISA 1

Figura 45 -	Monzogranito pertencente à unidade híbrida do CISA com feições
	de milonitização
Figura 46 -	Fotomicrografias dos mozogranitos da unidade híbrida do CISA
Figura 47 -	Quartzo monzogabro pertencente à unidade híbrida do CISA
Figura 48 -	Fotomicrografias das rochas máficas da zona híbrida do CISA
Figura 49 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-06A
Figura 50 -	Diagrama concórdia com os dados plotados da amostra CISA-06A
Figura 51 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-12
Figura 52 -	Diagrama concórdia com os dados plotados da amostra CISA-12
Figura 53 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-07
Figura 54 -	Diagrama concórdia com os dados plotados da amostra CISA-07
Figura 55 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-09
Figura 56 -	Diagrama concórdia com os dados plotados da amostra CISA-09
Figura 57 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-10A
Figura 58 -	Diagrama concórdia com os dados plotados da amostra CISA-10A
Figura 59 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-10B
Figura 60 -	Diagrama concórdia com os dados plotados da amostra CISA-10B
Figura 61 -	Imagens de catodoluminescência dos cristais de zircão da amostra
	CISA-02
Figura 62 -	Diagrama concórdia com os dados plotados da amostra CISA-02
Figura 63 -	Evolução isotópica da amostra CISA-06A – unidade gabro
Figura 64 -	Evolução isotópica da amostra CISA-07 – membro máfico da
	unidade híbrida
Figura 65 -	Evolução isotópica da amostra CISA-09 – membro máfico da
	unidade híbrida
Figura 66 -	Evolução isotópica da amostra CISA-10A – membro granítico da
	unidade híbrida

Figura 67 -	Evolução isotópica da amostra CISA-10B - membro granítico da
	unidade híbrida
Figura 68 -	Evolução isotópica da amostra CISA-12, unidade álcali-feldspato
	granito
Figura 69 -	Evolução isotópica da amostra CISA-02, rocha encaixante do CISA
Figura 70 -	Mapa de localização do Complexo Intrusivo de Várzea Alegre
Figura 71 -	Mapa geológico do Complexo Intrusivo de Várzea Alegre
Figura 72 -	Afloramentos e amostras da unidade Charnockito/Opdalito
Figura 73 -	Diagrama Q-A-P de classificação de rochas ígneas para as amostras
	da unidade Charnockito/Opdalito
Figura 74 -	Fotomicrografias da unidade Charnockito/Opdalito
Figura 75 -	Afloramentos e amostras da unidade Gabro Norito/Quartzo-Gabro
	Norito/Quartzo Diorito
Figura 76 -	Diagramas ternários para classificação de rochas ígneas plutônicas
Figura 77 -	Fotomicrografias da unidade Gabro Norito/Quartzo-Gabro
	Norito/Quartzo Diorito
Figura 78 -	Afloramentos e amostra da unidade Enderbito
Figura 79 -	Diagrama Q-A-P de classificação de rochas ígneas para as amostras
	da unidade Enderbito
Figura 80 -	Fotomicrografias da unidade Enderbito
Figura 81 -	Afloramentos da zona híbrida
Figura 82 -	Diagramas ternários para classificação de rochas ígneas plutônicas
Figura 83 -	Fotomicrografias do membro granítico da zona híbrida
Figura 84 -	Fotomicrografias do membro máfico da zona híbrida
Figura 85 -	Amostras de granito porfirítico
Figura 86 -	Diagrama Q-A-P de classificação de rochas ígneas para as amostras
	da unidade Granito porfirítico
Figura 87 -	Fotomicrografias da unidade granito porfirítico
Figura 88 -	Amostras da unidade granito inequigranular
Figura 89 -	Diagrama Q-A-P de classificação de rochas ígneas para as amostras
	da unidade Granito inequigranular
Figura 90 -	Fotomicrografias do Granito Inequigranular
Figura 91 -	Diagramas A/CNK vs A/NK e SiO ₂ vs K ₂ O

Figura 92 -	Diagrama de Frost et al. (2001) para classificação de rochas ácidas	
	e intermediárias	1
Figura 93 -	Diagramas multielementares para as diferentes rochas do CIVA	1
Figura 94 -	Diagramas de elementos terras raras para as diferentes rochas do	
	CIVA	1
Figura 95 -	Diagramas de ambiência tectônica para rochas básicas	1
Figura 96 -	Diagramas descriminantes de fontes magmáticas	1
Figura 97 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-01	2
Figura 98 -	Diagrama concórdia com os dados plotados da amostra CIVA-01	2
Figura 99 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-06	2
Figura 100 -	Diagrama concórdia com os dados plotados da amostra CIVA-06	4
Figura 101 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-08	4
Figura 102 -	Diagrama concórdia com os dados plotados da amostra CIVA-08	4
Figura 103 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-02	4
Figura 104 -	Diagrama concórdia com os dados plotados da amostra CIVA-02	4
Figura 105 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-05	2
Figura 106 -	Diagrama concórdia com os dados plotados da amostra CIVA-05	2
Figura 107 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-03	2
Figura 108 -	Diagrama concórdia com os dados plotados da amostra CIVA-03	2
Figura 109 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-04	4
Figura 110 -	Diagrama concórdia com os dados plotados da amostra CIVA-04	2
Figura 111 -	Imagens de catodoluminescência dos cristais de zircão da amostra	
	CIVA-07	2
Figura 112 -	Diagrama concórdia com os dados plotados da amostra CIVA-07	4
Figura 113 -	Evolução isotópica das rochas charnockiticas do CIVA	4
Figura 114 -	Evolução isotópica do granito porfirítico do CIVA	4

Figura 115 -	Evolução isotópica do gabro e diorito do CIVA	231
Figura 116 -	Evolução isotópica do membro granítico da zona híbrida do CIVA	231

LISTA DE QUADROS

Quadro 1 –	Resumo da composição litológica e mineralógica das unidades pós-	
	colisionais da Faixa Ribeira	50
Quadro 2 –	Relação de referências bibliográficas de onde foram compilados os	
	dados litogeoquímicos das unidades pós-colisionais do sistema	
	orogênico Araçuaí-Ribeira	53

LISTA DE TABELAS

Tabela 1 –	Dados compilados de idades U-Pb dos granitoides pós-colisionais do
	sistema orogênico Araçuaí-Ribeira
Tabela 2 –	Composição modal das rochas do Granito Sana
Tabela 3 –	Composição modal das rochas do Granito Sana (continuação)
Tabela 4 –	Dados litogeoquímicos de elementos maiores expressos em % em
	peso
Tabela 5 –	Valores de R ² e R para as correlações apresentadas nos diagramas
	Harker
Tabela 6 –	Composição normativa das rochas do Granito Sana
Tabela 7 –	Resultados analíticos para os elementos traços expressos em partes
	por milhão (ppm)
Tabela 8 –	Resultados analíticos para os elementos terras raras expressos em
	partes por milhão (ppm)
Tabela 9 –	Temperatura de saturação de Zr
Tabela 10 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 02
Tabela 11 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 02
	(continuação)
Tabela 12 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 05
Tabela 13 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 05
	(continuação)
Tabela 14 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 10
Tabela 15 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 22
Tabela 16 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 22
	(continuação)
Tabela 17 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 28
Tabela 18 –	Dados isotópicos U-Th-Pb LA-ICP-MS da amostra Sana 28
	(continuação)
Tabela 19 –	Dados isotópicos Lu-Hf LA-ICP-MS obtidos no Multilab -UERJ
Tabela 20 –	Composição modal das rochas coletadas no Complexo Intrusivo de
	Santa Angélica

Tabela 21 –	Idades obtidas nas amostras coletadas no Complexo Intrusivo de
	Santa Angélica
Tabela 22 –	Dados isotópicos U-Pb dos zircões da amostra CISA-06A
Tabela 23 –	Dados isotópicos U-Pb dos zircões da amostra CISA-12
Tabela 24 –	Dados isotópicos U-Pb dos zircões da amostra CISA-07
Tabela 25 –	Dados isotópicos U-Pb dos zircões da amostra CISA-09
Tabela 26 -	Dados isotópicos U-Pb dos zircões da amostra CISA-10A
Tabela 27 -	Dados isotópicos U-Pb dos zircões da amostra CISA-10B
Tabela 28 -	Dados isotópicos U-Pb dos zircões da amostra CISA-02
Tabela 29 -	Resumo dos dados isotópicos das amostras do CISA e de sua
	encaixante
Tabela 30 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-06A
Tabela 31 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-07
Tabela 32 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-09
Tabela 33 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-10A
Tabela 34 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-10B
Tabela 35 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-12
Tabela 36 -	Dados isotópicos Lu-Hf dos zircões da amostra CISA-02
Tabela 37 -	Resumo dos dados isotópicos Lu-Hf apresentados por Araújo et al,
	(2020) para os plútons Arecê, Vitória e Mestre Álvaro, bem como as
	rochas do complexo Nova Venécia e da suíte Ataléia,
Tabela 38 -	Composição modal das amostras coletadas na unidade
	charnocktio/opdalito do CIVA
Tabela 39 -	Composição modal das amostras coletadas na unidade Gabro
	Norito/Quartzo-Gabro Norito/Quartzo Diorito do CIVA
Tabela 40 -	Composição modal das amostras coletadas na zona híbrida do CIVA.
Tabela 41 -	Composição modal das amostras coletadas na unidade granito
	porfirítico do CIVA
Tabela 42 -	Dados litogeoquímicos de elementos maiores das amostras coletadas
	no CIVA
Tabela 43 -	Dados litogeoquímicos de elementos traços das amostras coletadas
	no CIVA
Tabela 44 -	Dados litogeoquímicos de elementos terras raras (ETR) das amostras

	coletadas no CIVA
Tabela 45 -	Temperatura de saturação de Zr
Tabela 46 -	Idades de cristalização obtidas nas amostras coletadas no Complexo
	Intrusivo de Várzea Alegre
Tabela 47 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-01 do
	Complexo Intrusivo de Várzea Alegre
Tabela 48 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-06 do
	Complexo Intrusivo de Várzea Alegre
Tabela 49 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-08 do
	Complexo Intrusivo de Várzea Alegre
Tabela 50 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-02 do
	Complexo Intrusivo de Várzea Alegre
Tabela 51 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-05 do
	Complexo Intrusivo de Várzea Alegre
Tabela 52 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-03 do
	Complexo Intrusivo de Várzea Alegre
Tabela 53 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-04 do
	Complexo Intrusivo de Várzea Alegre
Tabela 54 -	Dados isotópicos U-Pb dos zircões da amostra CIVA-07 do
	Complexo Intrusivo de Várzea Alegre
Tabela 55 -	Dados isotópicos Lu-Hf dos zircões da amostra CIVA-01 do
	Complexo Intrusivo de Várzea Alegre
Tabela 56 -	Dados isotópicos Lu-Hf dos zircões da amostra CIVA-02 do
	Complexo Intrusivo de Várzea Alegre
Tabela 57 -	Dados isotópicos Lu-Hf dos zircões da amostra CIVA-03 do
	Complexo Intrusivo de Várzea Alegre
Tabela 58 -	Dados isotópicos Lu-Hf dos zircões da amostra CIVA-04 do
	Complexo Intrusivo de Várzea Alegre

SUMÁRIO

	INTRODUÇÃO	21
1	MATERIAIS E MÉTODOS	27
1.1	Trabalhos de campo	27
1.2	Preparação das amostras	28
1.2.1	Confecção de lâminas delgadas	28
1.2.2	Amostras para litogeoquímica	28
1.2.3	Separação de zircão para datações U-Pb e análises isotópicas de Lu-Hf	29
1.3	Petrografia	31
1.4	Litogeoquímica	31
1.5	Geocronologia U-Pb	32
1.6	Geologia isotópica Lu-Hf	33
2	CONTEXTO GEOLÓGICO REGIONAL	35
2.1	Faixa Ribeira	35
2.1.1	Introdução	35
2.1.2	Embasamento cristalino	37
2.1.3	Unidades metassedimentares Mesoproterozóica a Neoproterozoica	37
2.1.4	Magmatismo orogênico	39
2.2	Orógeno Araçuaí-Congo Ocidental	4(
2.2.1	Introdução	4(
2.2.2	Estratigrafia	42
2.2.3	Magmatismo associado aos estágios de evolução do orógeno Araçuaí-Congo	
	Ocidental	44
2.2.4	Evolução tectônica	46
2.3	Magmatismo pós-colisional no sistema orogênico Araçuaí-Ribeira	47
2.3.1	Características de campo e petrográficas	49
2.3.2	Caracterização geoquímica	52
2.3.3	Idades de cristalização das diversas unidades pós-colisionais do sistema	
	orogênico Araçuaí-Ribeira	56
2.3.4	Uma breve discussão sobre o magmatismo pós-colisional do sistema orogênico	
	Araçuaí-Ribeira	57

3	GRANITO SANA	59
3.1	Aspectos de campo e petrográficos	60
3.2	Litogeoquímica	66
3.2.1	Temperatura de saturação de Zr	77
3.3	Geocronologia U-Pb	78
3.3.1	<u>Sana 02</u>	79
3.3.2	<u>Sana 05</u>	83
3.3.3	<u>Sana 10</u>	86
3.3.4	<u>Sana 22</u>	89
3.3.5	<u>Sana 28</u>	93
3.4	Geologia isotópica Lu-Hf	97
3.5	Discussões e conclusões parciais	99
4	COMPLEXO INTRUSIVO DE SANTA ANGÉLICA	106
4.1	Aspectos de campo e petrográficos	109
4.1.1	Álcali-feldspato granito	113
4.1.2	<u>Gabro</u>	116
4.1.3	Rochas híbridas	118
4.2	Geocronologia U-Pb	125
4.2.1	<u>Gabro</u>	125
4.2.2	Álcali-feldspato granito	129
4.2.3	Zona híbrida	132
4.2.3.1	CISA-07	132
4.2.3.2	CISA-09	135
4.2.3.3	CISA-10A	138
4.2.3.4	CISA-10B	141
4.2.4	Rocha encaixante	144
4.3	Geologia isotópica Lu-Hf	147
4.4	Discussões e concussões parciais	159
5	COMPLEXO INTRUSIVO DE VÁRZEA ALEGRE	165
5.1	Aspectos de campo e petrográficos	168
5.1.1	Charnockito/Opdalito	168
5.1.2	Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito	172
5.1.3	Enderbito	175

5.1.4	Zona híbrida	178
5.1.4.1	Características petrográficas da amostra de monzogranito	181
5.1.4.2	Características petrográficas da amostra dos membros máficos da zona híbrida	182
5.1.5	Granito porfirítico	184
5.1.6	Granito inequigranular	188
5.2	Litogeoquímica	190
5.2.1	Temperatura de saturação de Zr	198
5.3	Geocronologia U-Pb	198
5.3.1	Charnockito/Opdalito	199
5.3.2	Granito porfirítico	206
5.3.3	Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito	211
5.3.4	Rocha híbrida	214
5.3.5	Granulito Mascarenhas	217
5.4	Geologia isotópica Lu-Hf	220
5.5	Discussões e conclusões parciais	225
	CONCLUSÕES	233
	REFERÊNCIAS	236

INTRODUÇÃO

Apresentação

O estágio pós-colisional é definido como o período que sucede uma grande colisão continental e/ou de crescimento continental por acreção de terrenos que desenvolvem intenso metamorfismo regional (Harris *et al.*, 1986; Sylvester, 1998; Liégeios *et al.*, 1998; Fan *et al.*, 2001; Chung *et al.*, 2005; Finger *et al.*, 2009). Sylvester (1998) e Kopubrasi & Aldanmaz (2001) descrevem que este estágio é marcado por transtração e transpressão tectônica, além de intenso magmatismo. A movimentação lateral de grandes blocos através de zonas de falhas reflete o ajuste dos blocos litosféricos para diminuir as tensões acumuladas durante a colisão e estabilizar esses blocos (Sylvester, 1998).

Fan *et al.* (2001) afirmam que o magmatismo é a manifestação mais importante do estágio pós-colisional, uma vez que este magmatismo apresenta forte caráter bimodal, com magmas derivados de fontes mantélicas e crustais. Esta característica bimodal para o magmatismo atualmente é explicada pelo processo de delaminação da litosfera duplicada (Li *et al.*, 2016).

O conceito de delaminação foi proposto inicialmente por Bird (1978), cuja ideia básica é que a camada inferior de uma litosfera continental duplicada por processos orogênicos é mais densa que a astenosfera, podendo descolar-se e afundar no manto. Este processo cria inicialmente um conduto alongado que conecta a astenosfera quente com a base da crosta continental, gerando assim uma anomalia térmica na crosta continental inferior e, por sua vez, uma volumosa fusão crustal e mantélica (Finger *et al.*, 2009; Li *et al.*, 2016). Harris *et al.* (1986) descrevem que a fusão parcial do manto se dá por meio da descompressão adiabática causada pela delaminação.

Na Faixa Ribeira o estágio pós-colisional é marcado por uma série de corpos ígneos que ocorrem no terreno Oriental e estão intrudidos nas rochas do Arco Magmático Rio Negro e nos paragnaisses do Grupo São Fidélis (Valeriano *et al.*, 2011; Valeriano *et al.*, 2016). O magmatismo pós-colisional neste segmento da Província Mantiqueira é representado, em sua maioria, por corpos graníticos que variam de dimensões batolíticas a stocks e veios, distribuídos ao longo do estado do Rio de Janeiro (Figura 1), estando concentrados nas regiões central e sul do estado. Estes corpos ígneos compõem as suítes Suruí e Nova Friburgo,

sendo a idade relativa da primeira mais antiga que a segunda (Valeriano *et al.*, 2011; Tupinambá *et al.*, 2012a).

Figura 1 – Distribuição geográfica das unidades pós-colisionais dos segmentos central e setentrional da Província Mantiqueira - Faixas Ribeira e Araçuaí.

Legenda: 1 – Localização do Granito Sana; 2 – Localização do Complexo Intrusivo de Santa Angélica; 3 – Localização do Complexo Intrusivo de Várzea Alegre.

Fonte: MODIFICADO DE: VIEIRA ET AL. (2015) e HEILBRON ET AL. (2016a).

Na Faixa Araçuaí o estágio pós-colisional é marcado pela formação da suíte G4 e da supersuíte G5, estando ambas unidades localizadas no núcleo metamórfico anatético da Faixa Araçuaí (Alkmim et al., 2006). Os corpos ígneos da Suíte G4 estão localizados principalmente a norte do estado de Minas Gerais e a sul do estado da Bahia (Figura 1), já os corpos pertencentes à supersuíte G5 distribuem-se pelo estado do Espírito Santo (Figura 1). A suíte G4 é do tipo S, composta por granitos a duas micas (de composição hidratada) (Pedrosa-Soares et al., 2007). Já a supersuíte G5 apresenta uma complexa associação liotológica. De acordo com De Campos et al., (2016) os principais litotipos variam entre olivina gabro/norito e granito. com composições intermediárias gradando de monzogabro-norito, diorito/monzodiorito, tonalitos, granodioritos, sienitos e monzonitos. Mendes et al., (1997, 1999) também descrevem a ocorrência de rochas charnockiticas associadas ao estágio póscolisional da Faixa Araçuaí. Estas rochas estão associadas a zonas de cisalhamento de alto ângulo e núcleos de estruturas antiformais relacionados a deformações anteriores (Wiedemann-Leonardos et al., 2000). O zoneamento inverso e os processos de mistura de magma (mingling e mixing) são feições comuns a maioria destes corpos (Mendes et al., 1999; Medeiros et al., 2000; Wiedemann-Leonardos et al., 2000).

O Granito Sana é um dos corpos ígneos que Tupinambá *et al.* (2012a) agrupou na suíte Nova Friburgo. Esta unidade aflora na região central do estado do Rio de Janeiro e está intrudida nas rochas metassedimentares do Grupo São Fidélis (Geraldes et al., 2012). Dentre as unidades que compõem a suíte Nova Friburgo, o Granito Sana é o que mais se difere das demais, sendo também a unidade mais homogênea em relação à composição mineralógica e a variação faciológica.

Os Complexos Intrusivos de Santa Angélica (CISA) e de Várzea Alegre (CIVA), por sua vez, fazem parte da supersuíte G5 (Figura 1), da Faixa Araçuaí (Wiedemann-Leonardos et al., 2000). O CISA aflora na região Sul do estado do Espírito Santo (ES), enquanto o CIVA aflora na região Centro-Serrana do ES. Diferente dos corpos da suíte Nova Friburgo, as unidades da supersuíte G5 apresentam variações litológicas, onde a característica mais marcante é a presença de estruturas características de mistura de magmas (Wiedemann-Leonardos *et al.*, 2000).

Os modelos propostos para o magmatismo pós-colisional tanto na Faixa Ribeira quanto na Faixa Araçuaí sugerem uma estreita relação entre magmas de origem mantélica e fusões parciais da crosta (De Campos *et al.*, 2002; Valeriano *et al.*, 2011; De Campos *et al.*, 2016; Valeriano *et al.*, 2016). Contudo, existem diferenças discrepantes entre as unidades pós-colisionais das Faixas Ribeira e Araçuaí, sendo o primeiro conjunto menos complexo do que

o segundo. As características das suítes Suruí e Nova Friburgo sugerem pouca ou nenhuma contribuição direta de magmas mantélicos nos processos de diferenciação magmática destas unidades. Valeriano *et al.* (2011) consideram ainda que o magmatismo pós-colisional em ambas as faixas móveis tenha ocorrido em dois pulsos principais com idades distintas (~ 510 Ma e ~ 485Ma). Por outro lado, Bione *et al.* (2019) consideram que esse magmatismo possa ser divido em três pulsos com as idades de 512 Ma, 495 Ma e 455 Ma ou que esse magmatismo tenha ocorrido em um evento contínuo entre 515 Ma e 475 Ma.

Objetivos

O objetivo desta tese é contribuir com dados para o melhor entendimento do magmatismo pós-colisional das Faixas Ribeira e Araçuaí. Para isso, os objetivos específicos desta tese são:

- a) Apresentar e discutir os dados de campo, petrográficos, litogeoquímicos, idades U-Pb e geologia isotópica Lu-Hf para o Granito Sana e propor um modelo petrogenético para esta unidade;
- b) Apresentar dados de campo, petrográficos e dados isotópicos de Lu-Hf, além de novas idades U-Pb para o Complexo Intrusivo de Santa Angélica, discutindo esses dados a luz do modelo petrogenético atualmente proposto para este complexo intrusivo;
- c) Apresentar dados de campo, petrográficos, litogeoquímicos, isótopos de Lu-Hf e novas idades U-Pb para o Complexo Intrusivo de Várzea Alegre. Discutir estes dados a luz dos modelos petrogenéticos já propostos para as rochas deste complexo intrusivo.

Justificativa e motivações para este trabalho

Para as rochas pós-colisionais da Faixa Ribeira, Valeriano *et al.* (2016) apresentam um modelo combinado entre a quebra do slab de crosta oceânica subductada, que produz magmatismo toleítico, somando-se a isso a elevação e fusão parcial da astenosfera devido ao colapso gravitacional do orógeno que provocou o afinamento e extensão da litosfera. Por sua vez, De Campos *et al.* (2016) apresentam um modelo muito semelhante para o magmatismo

pós-colisional da Faixa Araçuaí, aonde a delaminação do manto sublitosférico e da crosta continental adjacente criam condições de ressurgência da astenosfera, gerando fusão parcial de um manto previamente aquecido, produzindo, portanto, magmas basálticos que se alojam na base da crosta e proporcionam a fusão parcial da crosta profunda.

Apesar da semelhança dos modelos geodinâmicos apresentados para as faixas Ribeira e Araçuaí e da conexão geográfica entre as duas faixas móveis, as suítes pós-colisionais destas faixas apresentam diferenças significativas. Na faixa Ribeira o magmatismo pós-colisional é representado essencialmente por corpos graníticos, com ocorrências isoladas de chanockitos em Parati e quartzo dioritos em Conselheiro Paulino. Já na faixa Araçuaí, as unidades póscolisionais apresentam uma complexa variação de rochas que vão desde olivinagabros/noritos a granitos, passando por todas as composições intermediárias entre estes membros extremos.

De Campos *et al.* (2016) e suas referências, caracterizam o magmatismo pós-colisional na faixa Araçuaí em três grupos distintos, sendo eles toleítico, alcalino a peralcalino e cálcioalcalino de alto potássio. O grupo predominante é o cálcio-alcalino de alto potássio. Na faixa Ribeira, Valeriano *et al.* (2011) e suas referências, caracterizam esse magmatismo como essencialmente cálcio-alcalino de alto potássio.

Em termos de idades absolutas, ainda se discute a extensão do magmatismo póscolisional em ambas as faixas. Valeriano *et al.* (2011) consideram que o magmatismo ocorre em dois pulsos principais, um mais antigo por volta de 510 Ma e outro mais novo a cerca de 485 Ma. Bione *et al.* (2019) após considerar novos dados geocronológicos, consideram que o magmatismo pós-colisional nas duas faixas móveis pode ter se desenvolvido em três pulsos (515 Ma, 495 Ma e 455) ou em um evento contínuo que teve início por volta de 515 Ma e durou até 475 Ma, com um intervalo de aproximadamente 20 Ma para um último pulso a 455 Ma.

Mesmo diante de tantos trabalhos que buscaram caracterizar o magmatismo póscolisional nas faixas Ribeira e Araçuaí, De Campos *et al.* (2016) consideram que ainda há muito a ser feito para entender melhor as etapas finais destes orógenos, não apenas do ponto de vista estrutural e geocronológico, mas também do ponto de vista petrológico e reológico. Diante disso, este trabalho é uma maneira de contribuir para com informações adicionais sobre unidades pós-colisionais de ambas faixas móveis, possibilitando a identificação das diferentes fontes magmáticas das unidades estudadas e suas correlações com o contexto tectônico. Organização da tese

A presente tese de doutorado intitulada "Petrogênese e geocronologia U-Pb do Granito Sana, Faixa Ribeira, e dos Complexos Intrusivos de Santa Angélica e Várzea Alegre, Faixa Araçuaí", está estruturada, além deste item introdutório, em seis capítulos e a lista de referências bibliográficas. A organização dos capítulos é dada da seguinte maneira:

- a) Capítulo 1 Apresenta os materiais e métodos utilizados neste trabalho para a realização da caracterização petrográfica das rochas, coleta, preparação e análise de dados litogeoquímicos e coleta, preparação e análises U-Pb e Lu-Hf;
- b) Capítulo 2 Apresenta o contexto geológico regional das Faixas Araçuaí e Ribeira, juntamente com uma síntese do magmatismo pós-colisional nas duas faixas;
- c) Capítulo 3 São apresentados os dados do Granito Sana, aonde constam dados de campo, petrográficos, litogeoquímicos, idades U-Pb e isótopos de Lu-Hf. Além destes dados, são apresentadas as discussões inerentes a petrogênese e implicações tectônicas para esta unidade;
- d) Capítulo 4 Este capítulo contém os resultados referentes ao Complexo Intrusivo de Santa Angélica, sendo apresentados os dados de campo, petrográficos, idades U-Pb e isótopos Lu-Hf. Neste item contém ainda as discussões destes resultados a luz dos modelos petrogenéticos até então apresentados para este complexo intrusivo;
- e) Capítulo 5 Os resultados do Complexo Intrusivo de Várzea Alegre são apresentados neste capítulo, que contém dados de campo, petrográficos, litogeoquímicos, idades U-Pb e isótopos de Lu-Hf. Estes dados são discutidos neste capítulo com base nos modelos petrogenéticos atualmente aceitos;
- f) Capítulo 6 Neste capítulo são apresentadas as conclusões deste trabalho.

1 MATERIAIS E MÉTODOS

O desenvolvimento deste projeto de doutorado foi sistematizado em etapas de compilação bibliográfica, realização de trabalhos de campo para reconhecimento e coleta de amostras, preparação de amostras, análises laboratoriais, tratamento e interpretação de dados, elaboração da tese e produção de artigos.

1.1 Trabalhos de campo

Os trabalhos de campo incluíram o reconhecimento e caracterização das unidades apresentadas nesta tese a fim de identificar as litologias que compõe cada uma das três intrusões, suas relações de contato e feições indicativas de seus processos petrogenéticos. Durante os trabalhos de campo também foram coletadas amostras de rochas para confecção de lâminas delgadas, análises litogeoquímicas das unidades Granito Sana e CIVA, determinação das idades U-Pb e das razões isotópicas de Hf.

Os materiais utilizados como apoio para as atividades de campo foram:

- a) Granito Sana: relatório e mapa geológico da Folha Casemiro de Abreu (SF23-Z-B-III) escala 1:100.000 (Geraldes et al., 2012);
- b) Complexo Intrusivo de Santa Angélica: relatório e mapa faciológico (escala 1:10.000) desenvolvido pela turma de Mapeamento Geológico II da Universidade Federal do Espírito Santo no ano de 2012 e os trabalhos publicados por Bayer *et al.* (1987), Wiedemann-Leonardos *et al.* (2000) e De Campos *et al.* (2004);
- c) Complexo Intrusivo de Várzea Alegre: mapa faciológico elaborado por Potratz (2014) e Potratz *et al.* (2018), relatório e mapa geológico (escala 1:100.000) da Folha Colatina (SE. 24-YC-VI) elaborado por Tuller (1993) e os artigos publicados por Mendes *et al.* (1999), Medeiros *et al.* (2000) e Wiedemann-Leonardos *et al.* (2000).

1.2 Preparação das amostras

As amostras coletadas em campo foram preparadas no Laboratório Geológico de Preparação de Amostras (LGPA) da Universidade do Estado do Rio de Janeiro (UERJ). A preparação das amostras para cada finalidade foi feita de forma distinta.

1.2.1 Confecção de lâminas delgadas

Todas as lâminas delgadas foram confeccionadas no LGPA seguindo os procedimentos operacionais deste laboratório. Ao todo foram confeccionadas 25 lâminas delgadas do Granito Sana, 16 do Complexo Intrusivo de Santa Angélica e 25 do Complexo Intrusivo de Várzea Alegre.

1.2.2 Amostras para litogeoquímica

Após análise prévia das lâminas delgadas, foram selecionadas as amostras com menor grau de alteração e que melhor representassem as litologias que compõem as unidades estudadas neste trabalho. Cabe salientar que em todas as etapas foram tomados os devidos cuidados para evitar contaminação das amostras. Após cada amostra ser finalizada todos os equipamentos foram devidamente lavados e descontaminados.

A preparação das amostras para análise litogeoquímica se deu na seguinte sequência:

- a) Serragem: as amostras selecionadas foram serradas para que a porção externa delas fosse removida, ficando apenas um slab da porção interna, garantindo que não fossem analisadas porções alteradas da rocha. Após cada amostra ser serrada, embalava-se o slab com filme de PVC e ele era identificado;
- b) Britagem manual: cada slab passou por britagem manual para que fossem reduzidos a tamanhos adequados à etapa seguinte. Os slabs foram envoltos em sacos plásticos de polietileno de alta densidade para evitar

contaminação. A britagem foi feita com auxílio de uma bigorna e uma marreta. Após britado, o material foi colocado em uma placa de vidro, lavado e levado à estufa para secar;

- c) Quarteamento: após seca, cada amostra foi colocada sobre uma folha de papel limpa e descontaminada. Dividia-se a amostra em 4 partes iguais e selecionava-se duas partes opostas para a etapa do moinho de bolas de tungstênio. As duas partes que sobraram foram novamente embaladas e guardadas para alguma eventual necessidade de reutilização;
- d) Moinho de bolas: depois de quarteada cada amostra foi colocada no moinho de bolsa de tungstênio para fazer com que os grãos chegassem ao tamanho de aproximadamente 200 mesh. Depois de moídas as amostras foram acondicionadas em potes plástico de aproximadamente 20g e devidamente identificadas.

Para o Granito Sana foram preparadas 22 amostras, sendo 17 compiladas de Geraldes et al. (2012) e 5 análises coletadas para este trabalho, e para o Complexo Intrusivo de Várzea Alegre 11 amostras. Para o Complexo Intrusivo de Santa Angélica não foram feitas análises litogeoquímicas.

1.2.3 Separação de zircão para datações U-Pb e análises isotópicas de Lu-Hf

A preparação das amostras para separação de zircões difere das demais preparações. Para cada amostra (ponto) a ser datada foram coletados cerca de 10 kg de rocha para litotipos ácidos ou intermediários e 20 kg de rocha para litotipos básicos.

A preparação das amostras para separação de grãos de zircão obedeceu às seguintes etapas:

- a) Lavagem: cada amostra foi lavada e deixada em local limpo para secar. A lavagem foi feita para remover qualquer material contaminante da amostra;
- b) Redução manual: cada amostra foi reduzida manualmente com auxílio de uma marreta, para que chegasse ao tamanho adequado para a etapa de britagem;

- c) Britagem: cada amostra passou pelo britador de mandíbulas para redução de seu tamanho;
- d) Moinho: após britada, cada amostra passou pelo moinho de discos para que todo o material fosse pulverizado e homogeneizado, fazendo com que os cristais se desagregassem na rocha;
- e) Peneira: as amostras moídas passaram por peneiramento manual para separação da fração de 100 mesh;
- f) Mesa vibratória: nesta etapa o material peneirado foi passado na mesa vibratória para separação gravimétrica e coleta dos minerais densos;
- g) Líquido denso: os minerais densos, separados na mesa vibratória, passaram pelo bromofórmio para concentração das fases mais densas;
- h) Separador magnético: o concentrado obtido após a passagem pelo bromofórmio foi separado em frações de susceptibilidade magnética inicialmente por variação da intensidade da amperagem (e da intensidade do campo magnético) desde 1,5 A, 1,0, 0,75 A, 0,5 A até o valor de 0,2 A. O franz final é realizado com a variação no ângulo de inclinação (5°, 3°, 1°, 0°, -5° e fração não extraível);
- i) Separação manual e montagem dos mounts de epóxi: os zircões das frações que saíram do separador magnético foram selecionados manualmente com auxílio de uma lupa binocular e foram depositados em mounts de epóxi com suas posições devidamente mapeadas;
- j) Imageamento: os mounts de epóxi montados foram imageados com auxílio do microscópio de varredura eletrônica (MEV) através da elaboração de imagens de catodoluminescencia.

Ao final de cada uma das etapas (por amostra) todos os equipamentos e salas foram devidamente higienizados e descontaminados para que a próxima amostra fosse preparada. No Granito Sana foram preparadas 5 amostras para coleta de zircão, para o CISA foram preparadas 9 amostras e para o CIVA 8 amostras.

1.3 Petrografia

A descrição das 66 lâminas delgadas para identificação e quantificação das fases minerais, bem como a identificação e descrição das texturas e relações de contato entre os minerais, foi feita no laboratório de petrografia da Universidade do Estado do Rio de Janeiro. A classificação das rochas foi estabelecida com base em Streckeisen (1976). A contagem modal das rochas foi feita de maneira manual, sendo contados 500 pontos por seção delgada.

1.4 Litogeoquímica

As amostras preparadas para litogeoquímica foram enviadas para análise no Activation Laboratories (ACTLABS), no Canadá

As análises químicas foram realizadas na *Acme Analytical Laboratories Ltda* (Vancouver - Canadá). As amostras analisadas no ICP-ES foram abertas por fusão do metaborato de lítio / tetraborato e digestão em ácido nítrico diluído, exigindo 0,2 g de cada amostra. O ICP-ES foi utilizado para medir SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, MnO, Cr₂O₃, Ni, Sc.

As análises de Ba, Be, Co, Cs, Ga, Hb, Nb, Sn, Sr, Ta, Th, U, V, W, Zr, Y e elementos de terras raras (REE) foram obtidas por meio do ICP-MS, abertura das amostras por fusão de metaborato / tetraborato de lítio e digestão em ácido nítrico, sendo necessários 0,2 g de cada amostra. Para análises de Mo, Cu, Pb, Zn, Ni, As, Cd, Sb, Bi, Ag, Au, Hg, Tl e Se, também realizadas por ICP-MS, foram necessários 0,5 g de cada amostra e digestão em água régia.

A diluição das amostras foi feita a partir de fusão com utilização de sistemas robóticos, o que garante que grandes óxidos, minerais refratários, elementos terras raras e outros elementos de alta resistência sejam colocados em solução.

Cada lote de amostras analisadas contém um branco de reagente do método, materiais de referências certificados e 6% de réplicas. As amostras são misturadas com metaborato de lítio e tetraborato de lítio e fundidas em forno de indução. O material fundido é imediatamente misturado com uma solução de ácido nítrico a 5%. As análises são feitas por Perkin Elmer Sciex ELAN 6000, 6100 ou 9000 ICP-MS. Antes e depois de cada lote de amostras é rodado

um conjunto de 10 materiais de referência certificados. As duplicadas são analisadas a cada 17 amostras e o instrumento é calibrado a cada 2 grupos de amostra.

Os dados foram tratados e analisados com os *softwares* Microssoft Excel e *Geochemical Data Toolkit* (GCDkit) versão 6.0.

1.5 Geocronologia U-Pb

As análises para determinação das idades U-Pb foram feitas no Laboratório multi usário de Meio Ambiente e Materiais Multilab. Este laboratório trabalha com espectrometria de massa com plasma acoplado e ablação por laser (LA-ICP-MS). O espectrômetro utilizado foi o Thermo Neptune Plus acoplado a um laser ablation. A leitura das razões isotópicas dos grãos de zircão foi feita com multicoletores.

O princípio do método baseia-se no decaimento do ²³⁸U, ²³⁵U e ²³²Th para isótopos estáveis de ²⁰⁶Pb, ²⁰⁷Pb e ²⁰⁸Pb, respetivamente. Desta forma são geradas três séries independentes de decaimento, que funcionam como métodos individuais para datação. Além do Pb resultante do decaimento radioativo, que aumenta ao longo do tempo geológico, temos o ²⁰⁴Pb, também chamado de Pb comum e tem uma quantidade constante ao longo do tempo, sendo utilizado para normalizar as equações isotópicas.

A sequência da análise se dá inicialmente pela leitura de um branco, leitura do padrão GJ1, leitura de nove grãos de zircão, seguido pela leitura dos padrões 91500 e GJ1, finalizando com a leitura de outro branco. Os dados foram transferidos para planilhas de Excel aonde foram reduzidos e analisados. Na técnica de ablação a laser (LA), um feixe de laser de alta potência é usado para vaporizar o material da superfície. Quando acoplado ao ICP-MS, esse vapor é transportado através de um fluxo de hélio para o plasma, onde os átomos são ionizados e as medidas da razão isotópica são fornecidas pelo espectrômetro. O ICP-MS multi-coletor compreende nove copos de faraday e sete contadores de íons CDD. A análise U-Th-Pb inclui a medição das massas ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th e ²³⁸U. O mercúrio representa um contaminante comum nos gases He e Ar e o ²⁰⁴Hg interfere nas contagens de massa de ²⁰⁴Pb. A massa ²⁰²Hg, a massa 204 (²⁰⁴Pb + ²⁰⁴Hg), bem como ²⁰⁶Pb, ²⁰⁷Pb e ²⁰⁸Pb foram detectadas usando contadores de íons, enquanto ²³⁸U e ²³²Th foram medidos com copos de Fraday. O material ablado por laser foi transportado usando Ar (0,80 L/min) e He (0,55 L/min) para análises em 40 ciclos, durante um total de 1.045 segundos.

As análises desconhecidas foram agrupadas por medidas dos padrões internacionais GJ-1 (dados de normalização TIMS $^{207}Pb/^{206}Pb = 608,3$ Ma, $^{206}Pb/^{238}U = 600,7$ Ma e $^{207}Pb/^{235}U = 602,2$ Ma; (Jackson *et al.*, 2004) e 91500 (ID- TIMS $^{206}Pb/^{238}U e ^{207}Pb/^{206}Pb$ com idades de 1062,4 ± 0,8 e 1065,4 ± 0,6 Ma (Wiedenbeck *et al.*, 1995), seguindo a sequência de 1 em branco, 1 padrão, 9 incógnitas e 1 em branco e 2 padrões. Os dados no padrão de zircão GJ-1 para um ponto de ablação de 30 µm produziram 432.000-114.000 cps de ^{206}Pb , 25.000-7.000 cps de ^{207}Pb , 6.500-4.200 cps de ^{208}Pb , 4.400-4.200 cps de ^{202}Hg e 1.060-1.090 cps de 204 (Hg + Pb). Para as ^{232}Th e ^{238}U , medições em copos de faraday, os valores são 0,78 mV e 6,06 mV, respectivamente, produzindo uma idade de 603 ± 5,7 Ma. Utilizando uma planilha do Excel, foram realizadas correções off-line para branco, interferência de Hg e Pb comum. Além disso, os valores de GJ-1 obtidos foram comparados com valores reais (Jackson *et al.*, 2004) para calcular um fator de conversão aplicado a todas as nove amostras desconhecidas. Por fim, o programa ISOPLOT (versão 4.1.5 de Ludwing, 2012) foi utilizado para calcular idades e construir diagramas de concordância.

1.6 Geologia isotópica Lu-Hf

Para o método Lu-Hf foram selecionados 10 grãos de zircão que haviam sido utilizados para as datações U-Pb e que compõem a idade final da concórdia. As análises pontuais foram realizadas no mesmo local das análises U-Pb com um spot de 50 µm. A sequência de aquisição dos dados contém 50 ciclos, iniciando com a leitura de um branco, seguida pelos padrões GJ-01 e Mud Tank, após essas leituras são analisados 10 grãos de amostras desconhecidas, finalizando com a análise dos padrões 91500 e GJ-01, além de mais um branco. O procedimento analítico adotado para as análises de Lu-Hf é descrito detalhadamente por Alves *et al.* (2019).

O método Lu-Hf é baseado no decaimento radioativo do ¹⁷⁶Lu para o ¹⁷⁶Hf, por meio da emissão espontânea de uma partícula β^- com o tempo de meia-vida de 37,2 Ga (Scherer *et al.*, 2001). O ¹⁷⁶Lu é um dos Elementos Terras Raras Pesados amplamente distribuído e ocorre primariamente em fosfatos, silicatos e óxidos, sendo encontrado em todos os tipos de rochas (Faure, 2005), mas em concentrações baixas e sempre associado ao itérbio (Yb).

O ¹⁷⁶Hf é um metal de transição, com Elemento de Elevado Potencial Iônico pertencente ao grupo IVB da tabela periódica. Sua valência +4 e seu raio iônico de 0,81Å, o

que o torna idêntico ao Zr^{+4} (0,80Å), indicando sua ocorrência abundante em minerais de Zr (badeleíta, zircão, zirkelita e eudialita). Ambos Lu e Hf são elementos traço e não formam seus próprios minerais na maioria dos ambientes geológicos, apesar disso a concentração média de Hf em zircões é de 15.000 ppm (Faure & Mensing, 2005).

O processo responsável por modificar a razão ¹⁷⁶Hf/¹⁷⁷Hf é a diferenciação mantocrosta, onde ocorre o fracionamento de Lu em relação ao Hf durante as fusões mantélicas e a respectiva geração de magmas. Neste sentido a razão Lu/Hf tem sido progressivamente empobrecida no manto e uma crosta enriquecida com respectiva razão Lu/Hf maior e menor do que a composição condrítica inicial da Terra. Desta forma a razão ¹⁷⁶Hf/¹⁷⁷Hf evolui diferentemente no manto e crosta terrestre.

Este sistema é muito semelhante ao sistema Sm-Nd, sendo que enquanto Sm e Nd são ambos REE (Elementos Terra Rara) com características químicas muito semelhantes, o Lu e Hf são um HREE (Elemento Terra Rara Pesado) e um HFSE, respectivamente. Isso implica em um comportamento muito diferente para Lu e Hf durante a evolução do sistema crostamanto.
2 CONTEXTO GEOLÓGICO REGIONAL

As unidades ígneas apresentadas neste trabalho estão situadas nos segmentos central e setentrional da Província Mantiqueira, nos segmentos que compreendem as faixas móveis Ribeira e Araçuaí-Congo Ocidental, respectivamente (Heilbron *et al.*, 2004, Alkmim *et al.*, 2006, Pedrosa-Soares *et al.*, 2007, Alkmim *et al.*, 2007). O Granito Sana faz parte de um conjunto de rochas ígneas livres de deformação regional associado ao colapso do orógeno Ribeira (Valeriano *et al.*, 2011, Geraldes et al., 2012, Valeriano *et al.*, 2016). Os Complexos Intrusivos de Santa Angélica e de Várzea Alegre pertencem à supersuíte G5, gerada no estágio pós-colisional do orógeno Araçuaí-Congo Ocidental (Mendes *et al.*, 1997, Mendes *et al.*, 1999, Medeiros *et al.*, 2000, Wiedemann-Leonardos *et al.* 2000, De Campos *et al.*, 2016).

2.1 Faixa Ribeira

2.1.1 Introdução

A Faixa Ribeira (FR) representa a raiz de um orógeno profundamente erodido, que compõe o Sistema Orogênico Mantiqueira (Almeida, 1977; Heilbron *et al.*, 2004). Este segmento da Província Mantiqueira tem sua origem associada à colisão do paleocontinente São Francisco com a parte ocidental do Cráton do Congo, envolvendo ainda outras microplacas acopladas em vários episódios de convergência (Heilbron *et al.*, 2004; Heilbron *et al.*, 2008; Heilbron *et al.*, 2016b). A FR é limitada a norte pelo Orógeno Araçuaí, cujo limite entre ambos ainda segue sendo discutido, a WNW pela porção meridional do Cráton do São Francisco, a SW pelo segmento meridional da Faixa Brasília e a sul pelo Cráton Luiz Alves (Heilbron *et al.*, 2016b)

O segmento setentrional da FR é compartimentado em quatro terrenos tectonoestratigráficos, imbricados para NW/W, paralelos à borda do Cráton São Francisco, sendo eles: Terreno Ocidental, Terreno Paraíba do Sul, Terreno Oriental e Terreno Cabo Frio (Figura 2) (Heilbron *et al.*, 2000; Truow *et al.*, 2000, Tupinambá *et al.*, 2007). Estes terrenos são separados por zonas de cisalhamento dúcteis geradas durante os principais eventos de deformação associados a esta orogênese (Heilbron *et al.*, 2004).

Figura 2 - Compartimentação tectônica da Faixa Ribeira.

Legenda: 1 – Cobertura fanerozóica; 2 – Intrusões alcalinas do mesozoico-terciário; 3 – Faixa Brasília; 4 –
 Cobertura supracrustal do Cráton do São Francisco; - 5 –Embasamento do Cráton do São Francisco; 6 – Terreno Ocidental; 7 – Terreno Paraíba do Sul – Embu; - Terreno Oriental; 9 –
 Terreno Cabo Frio

Fonte: TROUW ET AL. (2000).

Três grandes episódios tectônicos marcantes estão registrados na região sudeste brasileira. O primeiro episódio está registrado nas rochas do embasamento cristalino, tendo se desenvolvido entre o Arqueano e o Mesoproterozóico. O segundo episódio, de idade Neoproterozóica, teve como resultado o retrabalhamento das rochas do Cráton do São Francisco e a edificação do Orógeno Ribeira. Por fim, o terceiro episódio está associado à quebra do Gondwana, gerando as estruturas relacionadas a regimes extensionais. Um modelo tectônico revisado e integrado a novos dados geoquímicos e geocronológicos para a Faixa Ribeira é apresentado em Heilbron *et al.* (2020)

2.1.2 Embasamento cristalino

O embasamento cristalino da Faixa Ribeira (FR) é representado por ortognaisses, ortogranulitos e metabasitos Paleoproterozóicos, sendo estas rochas encontradas em todos os terrenos da FR, exceto no terreno oriental aonde são encontradas apenas rochas Neoproterozóicas e Ordovicianas. O embasamento Paleoproterozóico é representado pelos complexos Mantiqueira, Juiz de Fora, Quirino e Região dos Lagos (Heilbron *et al.*, 1995; Trouw *et al.*, 2000; Heilbron & Machado, 2003; Heilbron *et al.*, 2004).

O Complexo Mantiqueira é a unidade basal do terreno Ocidental e compreende ortognaisses tonalíticos a graníticos, onde estruturas migmatíticas são comuns (Heilbron *et al.*, 2020). A composição geoquímica das rochas do Complexo Mantiqueira aponta para várias suítes magmáticas, com associação de arco magmático continental, cujas idades de cristalização variam entre 2,2 e 2,08 Ga (Heilbron *et al.*, 2020).

O Complexo Juiz de Fora é composto por ortogranulitos e ortognaisses com graus variados de deformação e metamorfismo retrogrado (Heilbron *et al.*, 2020). As rochas félsiscas deste complexo compreendem dois grupos composicionais intermediários a cálcioalcalinos de alto potássio, com assinaturas típicas de arco magmático juvenil (Duarte *et al.*, 1997). O grupo de rochas básicas apresentam assinaturas toleíticas (Heilbron *et al.*, 2004).

O Complexo Quirino é composto de ortognaisses mesocráticos tonalíticos a graníticos (Valladares *et al.*, 2002). Os dados litogeoquímicos indicam duas suítes calcioalcalinas relacionadas a arcos magmáticos e a idade de cristalização é de cerca de 2,3 a 2,1 Ga (Machado *et al.*, 1996; Valladares *et al.*, 2002).

O Complexo Região dos Lagos compreende ortognaisses tonalíticos a granodioríticos com lentes de diorito e anfibólio (Heilbron *et al.*, 2020). A assinatura geoquímica destas rochas é compatível à série cálcio-alcalina e exibem caráter metaluminoso a fracamente peraluminoso (Viana *et al.*, 2008). As idades indicam cristalização por volta de 2,09 a 1,95 Ga (Schmitt *et al.*, 2004; Machado et al., 2017).

2.1.3 Unidades metassedimentares Neoproterozoicas

A maior parte das associações metassedimentares de idade Neoproterozóica da Faixa Ribeira corresponde a depósitos sedimentares de margem passiva. Nos terrenos Oriental e Cabo Frio são encontradas sequências típicas de bacias de retro-arco e ante-arco, além da Megassequência Andrelândia que está situada às margens do Cráton São Francisco (Heilbron *et al.*, 1995; Trouw *et al.*, 2000; Heilbron & Machado, 2003).

As bacias marginais dos Grupos Andrelândia e São João Del Rei, são provavelmente associadas a um pequeno proto-oceano de mesma idade (com vestígios de crosta oceânica, próximos a região de Juiz de Fora e Monte Verde-MG). A deformação destas rochas ocorre em regime de colisão inicialmente com vergência WNW e posteriormente redirecionada na direção NNE, com consequente fechamento do proto-oceano. Conforme alguns modelos evolutivos propostos, subsequente a esta fase, ocorreram docagens sucessivas de terrenos, que amalgamaram as sequências de mar profundo, apesar de ainda serem encontrados seus vestígios, ou foram apenas erodidos (Heilbron *et al.*, 2004).

A fase seguinte está representada pela implantação do rifteamento do Paraíba do Sul, em consequência do provável afinamento crustal, resultante de esforço extensional de alívio, pós-colisão continente-continente. Esta fase evoluiu associada a uma sedimentação rasa do Paraíba do Sul, que posteriormente é erodida, pois se tem ainda vestígios, ou o que é presumível, todas aquelas rochas quartzo feldspáticas, quartzíticas e metassedimentos podem estar erroneamente corelacionadas ao Grupo Andrelândia, na porção SE da megassinforma, que neste caso, se encontram extremamente milonitizados.

O Terreno Paraíba do Sul é uma sucessão metassedimentar gnáissica intercalada com rochas calcissilicáticas, xisto, gondito e mármore impuro. Estes são típicos depósitos de margem passiva e em ambiente de ante-arco e de retro-arco. Nos três domínios estruturais do Terreno Oriental ocorrem sucessões metassedimentares distintas. No Domínio Italva afloram gnaisses, mármores calcíticos, anfibolitos e xistos. Já no Domínio Cambuci ocorrem gnaisses migmatíticos com lentes de mármore dolomítico, rochas calcissilicáticas e rochas básicas granulitizadas, derivados tanto a partir do embasamento como do arco magmático neoproterozóico (Heilbron *et al.*, 2004).

No Domínio Costeiro ocorrem gnaisses peraluminosos intercalados com quartzitos impuros, rochas calcissilicáticas e anfibolitos divididos em duas unidades: (i) São Fidélis: unidade basal constituída por biotita gnaisses granatíferos, com sillimanita e, localmente, cordierita. Normalmente estão muito migmatizados, sendo frequentes arranjos metatexíticos e diatexíticos, com leucossomas portadores de granada peritética e subordinadamente cordierita. Lentes de rochas calcissilicáticas, anfibolitos e quartzitos feldspáticos também ocorrem; e (ii) São Sebastião do Alto: (granada)-(hornblenda)-biotita gnaisses migmatíticos com estrutura bandada e/ou porfirítica ou, localmente, textura nebulítica. Ocorrendo, ainda, presença de

camadas descontínuas de (sillimanita)-(muscovita) -quartzito (puro ou feldspático) fortemente recristalizado (Heilbron *et al.*, 2004).

Por fim, a Associação Metassedimentar do terreno Cabo Frio é subdividida nas duas Sucessões Búzios e Palmital, que são compostas, respectivamente, por metassedimentos aluminosos com frequentes intercalações de camadas de rochas calcissilicáticas e corpos de anfibolitos, e sillimanita-granada-biotita gnaisses com intercalações de rochas calcissilicáticas e granada quartzitos (Heilbron *et al.*, 2004).

2.1.4 Magmatismo orogênico

O magmatismo associado aos estágios orogênicos que edificaram a Faixa Ribeira desenvolve-se principalmente no terreno Oriental, que por sua vez é subdivido nos domínios Cambuci, Costeiro e Italva (Tupinambá *et al.*, 2007; Heilbron *et al.*, 2013). O Arco Magmático Rio Negro representa o magmatismo pré-colicional, as suítes Cordeiro e Serra dos Órgãos correspondem ao magmatismo sin-colisional e o magmatismo tardi- a pós-colisional é representado respectivamente pelas suítes Suruí e Nova Friburgo, sendo o Granito Sana agrupado na suíte Nova Friburgo (Valeriano *et al.*, 2011; Tupinambá *et al.*, 2012b; Geraldes et al., 2012; Valeriano *et al.*, 2016).

Os magmatismos tardi- (Suíte Suruí) e pós-colisional (Suíte Nova Friburgo) da Faixa Ribeira são representados, em sua maioria, por corpos graníticos que variam de dimensões batolíticas a stocks e veios, distribuídos ao longo do estado do Rio de Janeiro, concentrandose principalmente na região central e sul do estado. Todos os corpos apresentados são compostos essencialmente de granitoides isotrópicos, em geral leucocráticos, com texturas variando entre equigranular, inequigranular seriada e porfirítica, sendo também frequentes enclaves centimétricos a métricos de rochas intermediárias e máficas. Variações litológicas podem ser observadas apenas nas unidades Parati, Frade, Conselheiro Paulino e São José do Ribeirão, onde podem ser encontradas, além de granitos, rochas intermediárias e máficas. Nas unidades que apresentam variações litológicas são frequentes feições macroscópicas que indicam processos de mistura de magma do tipo mingling (Valeriano *et al.*, 2011; Tupinambá *et al.*, 2012b; Geraldes et al., 2012; Valeriano *et al.*, 2016).

2.2 Orógeno Araçuaí-Congo Ocidental

2.2.1 Introdução

O Orógeno Araçuaí-Congo Ocidental, é definido como um orógeno colisional, situado na grande reentrância limitada a norte e oeste pelo Cráton do São Francisco, a leste pelo Cráton do Congo e a sul se conecta à Faixa Ribeira (Figura 3) (Pedrosa-Soares *et al.*, 2001; Pedrosa-Soares *et al.*,2007). A caracterização de orógeno colisional é dada pela presença de unidades litoestratigráficas e grandes estruturas características de margens passivas, lascas ofiolíticas, zona de sutura, arco magmático e geração de magmatismo sin- e pós-colisional (Pedrosa-Soares & Wiedemann-Leonardos, 2000; Pedrosa-Soares *et al.*, 2001; Pedrosa-Soares *et al.*, 2007). Alkmim *et al.* (2007) acrescentam ainda que este conjunto orogênico apresenta características que o difere de construções tectônicas equivalentes devido à sua origem confinada entre os crátons do São Francisco e do Congo, que se encontravam ligados por uma ponte cratônica.

Devido ao confinamento deste orógeno, a bacia precursora (Bacia Macaúbas), desenvolvida por volta de 850 Ma, se assemelharia a um golfo parcialmente oceanizado (Alkmim *et al.*, 2006; Alkmim *et al.*, 2007). Considerando o confinamento deste orógeno, o modelo de evolução postulado seria semelhante ao fechamento de um quebra-nozes (*nutcracker*) (Alkmim *et al.*, 2006).

Figura 3 - Orógeno Araçuaí na região central do Paleocontinente Gondwana.

Legenda: FA – Faixa de dobramentos Araçuaí; ZI – Zona de interferência do orógeno Araçuaí com o aulacógeno do PAranamirim; A – Cráton Amazônico; R – Cráton Kalahari; PP-RP – Cráton Paraná-Paranapanema-Rio de la Plata; SF – Cráton São Francisco Congo; SL-AO – Cráton São Luis-Oeste Africano.

Fonte: MODIFICADO DE ALKMIM ET AL. (2006) POR PEDROSA-SOARES ET AL. (2007).

Pedrosa-Soares & Wiedemann-Leonardos (2000) apresentam uma compartimentação simplificada para o Orógeno Araçuaí-Congo Ocidental, em que o dividem em três domínios tectônicos: externo, interno e inflexão setentrional (Figura 4). O domínio externo corresponde à faixa de dobramentos e empurrões com direção preferencial NNE, composto por rochas metamorfizadas nas fácies xisto verde e anfibolito. O domínio interno é caracterizado por rochas de alto grau metamórfico e intensa atividade magmática, sendo considerado o núcleo metamórfico-anatético do orógeno. O último domínio é representado pela contraparte africana deste conjunto orogênico.

Figura 4 - Perfil esquemático do Orógeno Araçuaí-Congo Ocidental, com foco na porção brasileira

ORÓGENO ARAÇUAÍ

Fonte: ADAPTADO DE PEDROSA-SOARES ET AL. (2007)

2.2.2 Estratigrafia

O embasamento do orógeno Araçuaí é formado por rochas de idade Arqueana a Paleoproterozóica. As unidades que compõem o embasamento são os complexos Guanhães, Gouveia, Porteirinha, Mantiqueira, Juiz de Fora e Pocrane, juntamente com a suíte Caparaó. As suítes Pedro Lessa e Salto da Divisa juntamente com o grupo Macaúbas, todos de idade Neoproterozóica, representam as unidades da fase rifte e margem passiva da bacia precursora do orógeno (Figura 5) (Noce *et al.*, 2007).

As rochas metaultramáficas e os ortoanfibolitos de granulação média a grossa que ocorrem na forma de lascas tectônicas representam as seções ofiolíticas e encontram-se alojadas nas formações Capelinha e Ribeirão da Folha (Noce *et al.*, 2007; Queiroga *et al.*, 2007). Os complexos paragnaissicos Jequitinhonha e Indiviso também estão associados ao estágio de margem passiva da bacia precursora (Pedrosa-Soares *et al.*, 2008).

Nota: O perfil esquemático do Orógeno Araçuaí-Congo Ocidental é destacado aqui apenas nos domínios que correspondem à porção brasileira deste orógeno. O retângulo azul destaca a supersúite G5, foco deste trabalho.

Figura 5 - Coluna estratigráfica esquemática do orógeno Araçuaí

Legenda: 1 – Conglomerados; 2 – Arenitos; 3 – Pelitos; 4 – Diamictitos; 5 – Formação ferrífera diamictitica; 6 – Basalto transicional; 7 – Calcário dolomítico; 8 – Sedimentos exalativos; 9 – Rochas máficas e ultramáficas oceânicas; 10 – Wakes e pelitos; 11 – Rochas piroclásticas e vulcanoclásticas dacíticas; 12 – seixos e blocos pingados.
Fonte: PEDROSA-SOARES *ET AL.* (2007)

No estágio acrescionário (pré-colisional) foi edificado o arco magmático do orógeno, que é representado pela G1, composta por rochas de composição granodiorítca e tonalitica, e pelas rochas vulcânicas do grupo Rio Doce. Essas rochas caracterizam uma suíte cálcioalcalina expandida representativa de um arco magmático de margem continental ativa. O estágio pré-colisional ocorreu entre 630 e 585 Ma (Nalini *et al.*, 2005; Noce *et al.*, 2007; Pedrosa-Soares *et al.*, 2001; Silva *et al.*, 2005; Novo, 2009).

O setor distal da bacia de retro-arco é presentado pelo complexo Nova Venécia, que é composto por paragnaisses intercalados com rochas calcissilicáticas (Pedrosa-Soares *et al.*, 2008). A formação Salinas representa a sedimentação sin-orogênica (*flysch*), sendo composta de meta-wackes, meta-pelitos e meta-conglomerados (Pedrosa-Soares *et al.*, 2007).

O metamorfismo regional e a deformação, associados à intensa geração de granitos tipo S, que ocorreu entre 582 e 560 Ma, caracterizam o estágio sin-colisional. O metamorfismo Barroviano acompanhou o processo de deformação, que cresceu de oeste para leste e de norte para sul, atingindo as condições da fácies granulito. No estágio sin-colisional formou-se a suíte G2, composta por granitos peraluminosos provenientes da fusão parcial dos metassedimentos (Pedrosa-Soares & Wiedemann-Leonardos, 2000; Pedrosa-Soares *et al.*, 2001, Pedrosa-Soares *et al.*, 2007).

O estágio tardi-colisional (560-530 Ma) é marcado pela formação de leucogranitos com granada e/ou cordierita, pobres em micas e isentos da foliação regional que representam a suíte G3, interpretada como produto da fusão parcial das rochas da suíte G2 (Pedrosa-Soares & Wiedemann-Leonardos, 2000; Pedrosa-Soares *et al.*, 2001, Silva *et al.*, 2005, Silva *et al.*, 2007).

O colapso gravitacional do orógeno ocorre entre 530 e 490 Ma, que desencadeou movimentações laterais de grandes blocos e intenso magmatismo que gera plútons isentos de deformação regional. O estágio pós-colisional é mercado pela formação das rochas da suíte G4 e da supersuíte G5 (Pedrosa-Soares & Wiedemann-Leonardos, 2000; Pedrosa-Soares *et al.*, 2001; De Campos *et al.*, 2004).

2.2.3 Magmatismo associado aos estágios de evolução do orógeno Araçuaí-Congo Ocidental

A evolução magmática do Orógeno Araçuaí pode ser compartimentada em quatro estágios evolutivos de acordo com Pedrosa-Soares & Wiedemann-Leonardos (2000) e Pedrosa-Soares *et al.* (2001). Durante estes estágios evolutivos se edificou o arco magmático de margem ativa e consequentemente toda a granitogênese relacionada ao orógeno. Os quatro

estágios descritos pelos autores acima citados são: pré-colisional, sin-colisional, tardicolisional e pós-colisional.

No estágio pré-colisional (630-585 Ma.), Pedrosa-Soares & Wiedemann-Leonardos (2000) e Pedrosa-Soares *et al.* (2007) descrevem a estruturação do arco magmático cálcioalcalino de margem ativa, denominado de suíte G1 e seus correspondentes extrusivos, representados pelo Grupo Rio Doce, descrito por Vieira *et al.* (2007). Esta suíte é composta predominantemente de granitoides tipo I, de composição tonalitica e granodiorítica, ocorrendo em menores proporções dioritos que podem conter xenólitos de rochas metassedimentares (Pedrosa-Soares *et al.*, 2007). Em termos de estruturação, Pedrosa-Soares *et al.* (2011) definem essa suíte como batólitos e stocks que apresentam foliação regional, muitas vezes milonítica, como característica principal.

O estágio sin-colisional ocorre entre 580 e 560 Ma (Pedrosa-Soares *et al.*, 2007), sendo formados nesta fase da orogênese os granitos da suíte G2. Esta suíte engloba granitos foliados, gnaissificados ou migmatizados (Pedrosa-Soares *et al.*, 2007). São predominantemente do tipo S e caracterizam corpos tabulares autóctones ou parautóctones e intrusões concordantes com a foliação regional (Pedrosa-Soares *et al.*, 2011).

A suíte G3 compreende granitos originados no estágio tardi-colisional (565-535 Ma) do Orógeno. São granitos do tipo S que se assemelham muito aos da suíte G2. Contudo, Pedrosa-Soares *et al.* (2006) consideram como pertencentes a essa suíte os leucogranitos com granada e/ou cordierita sem foliação ou com foliação incipiente, oriundos da fusão parcial da suíte G2.

No estágio pós-colisional (535-490 Ma), Pedrosa-Soares & Wiedemann-Leonardos (2000) e Pedrosa-Soares *et al.* (2007) descrevem a granitogênese que originou as rochas da suíte G4 e a supersuíte G5, sendo este estágio marcado pelo colapso gravitacional do orógeno. De acordo com Pedrosa-Soares *et al.* (2007), os granitos da suíte G4 são do tipo S e apresentam orientação de fluxo ígneo, além de frequentes xenólitos de rochas encaixantes. Para Pedrosa-Soares et al. (2007) esta suíte é composta por intrusões em forma de balão e conjunto de plútons amalgamados, com cúpulas pegmatíticas localmente preservados.

Segundo Pedrosa-Soares *et al.* (2006) a supersuíte G5 é representada pelo magmatismo tardio, relacionado ao relaxamento crustal e consequente colapso gravitacional do orógeno. Wiedemann-Leonardos et al. (2000) e Pedrosa-Soares *et al.* (2007) acrescentam que tal magmatismo é composto de granitos tipo I e A2 com altos teores de potássio relacionados à série cálcio-alcalina, com ocorrência de magmatismo bimodal. Wiedemann-Leonardos *et al.* (2000) descrevem a ocorrência de misturas de magmas (*mingling* e *mixing*) e

fluxos ígneos em geral bem marcados nas rochas dessa suíte. Segundo Wiedemann-Leonardos *et al.* (2000) as rochas desta supersuíte ocorrem ao longo de zonas de cisalhamento de alto ângulo e em núcleos de estruturas antiformais das deformações anteriores. Wiedemann-Leonardos *et al.* (2000) acrescentam que essas intrusões são comuns na porção sul do Orógeno Araçuaí, mostrando zonação com núcleo de composição básica e bordas graníticas.

2.2.4 Evolução tectônica

Alkmim *et al.* (2007) apresentam um modelo de evolução tectônica para o orógeno Araçuaí que pode ser compartimentado em cinco estágios principais, sendo eles: a) abertura e desenvolvimento da bacia precursora (bacia Macaúbas), b) convergência inicial associada ao estágio acrescionário (pré-colisional), c) colisão continental, d) escape lateral da porção sul e e) colapso gravitacional do orógeno.

O desenvolvimento pleno da bacia precursora Macaúbas se deu por volta de 600 Ma, na forma de um grande golfo com assoalho formado parcialmente por crosta oceânica. A formação dessa bacia tem início na fase rift (880 Ma) que evoluiu para duas margens passivas conectadas pela ponte cratônica Bahia-Gabão (Porada, 1989; Pedrosa-Soares et al., 2001; Pedrosa-Soares *et al.*, 2007, Silva *et al.*, 2007).

A convergência das margens opostas da bacia iniciou de maneira que lembraria o funcionamento de um quebra-nozes, fazendo com que a península São Francisco rotacionasse no sentido anti-horário contra o continente do Congo, pressionando a bacia Macaúbas e consumindo a litosfera oceânica. Forma-se então uma zona de subducção ativa e, consequentemente, um arco-magmático associado à essa zona de subducção (Pedrosa-Soares *et al.*, 2001; Silva *et al.*, 2005; Alkmim *et al.*, 2006; Alkmim *et al.*, 2007).

As margens opostas da bacia começam a colidir a norte e a colisão avança continuamente para sul, gerando as frentes de empurrão em direção as regiões cratônicas e formando uma cadeia de montanhas (Pedrosa-Soares *et al.*, 2007). As grandes zonas transcorrentes dextrais favorecem o escape lateral da porção sul do núcleo do orógeno no intervalo de 560 e 535 Ma (Alkmim *et al.*, 2007). Por fim, a sobrecarga na crosta aquecida e de baixa resistência causou o fluxo lateral da porção basal e abatimento das porções superiores (Pedrosa-Soares & Wiedemann-Leonardos, 2000; Alkmim *et al.*, 2007).

2.3 Magmatismo pós-colisional no sistema orogênico Araçuaí-Ribeira

O sistema Araçuaí-Ribeira é definido como o segmento que abrange os setores norte e central da Província Mantiqueira, gerados por processos tectônicos diacrônicos associados à orogenia Brasiliana, que incluem os orógenos Araçuaí, a norte, e Ribeira, a sul, limitados pelo paralelo 21º S (Brito Neves *et al.*, 1999; Silva *et al.*, 2005; Tedeschi *et al.*, 2016; Degler *et al.*, 2017).

Os principais corpos intrusivos associados ao estágio pós-colisional na Faixa Ribeira ocorrem no terreno Oriental e estão encaixados nas rochas do Arco Magmático Rio Negro e/ou nos paragnaisses do Grupo São Fidélis (Valeriano *et al.*, 2011). Ao todo, foram individualizadas dezoito (Figura 6) unidades principais ao longo do estado do Rio de Janeiro, sendo elas Parati, Vila Dois Rios, Conceição do Jacareí, Mambucaba, Mangaratiba, Pedra Branca, Favela, Andorinha, Suruí, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Silva Jardim, Sana, Itaoca e Morro do Coco (Puget & Penha, 1980; Castro *et al.*, 1984; Penha, 1984; Junho & Wiedemann, 1987; Junho *et al.*, 1987; Porto Jr. & Valente, 1988; Penha, 1989; Machado *et al.*, 1996; Fonseca, 1998; Guimarães, 1999; Tupinambá, 1999; Fernandes, 2000; Mendes *et al.*, 2002; Heilbron & Machado, 2003; Porto Jr., 2004; Eirado *et al.*, 2006; Ludka *et al.*, 2006; Ribeiro, 2006; Eirado *et al.*, 2007; Pacheco, 2010; Valeriano *et al.*, 2011; Tupinambá *et al.*, 2012a; Geraldes et al., 2012; Roland, 2013; Potratz, 2016; Potratz & Valeriano, 2017; Porto Jr. *et al.*, 2018; Bione *et al.*, 2019).

Na Faixa Araçuaí os corpos pós-colisionais da supersuíte G5 ocorrem em maior quantidade e de forma mais abrangente pelo estado do Espírito Santo, enquanto os corpos da suíte G4 estão localizados essencialmente no norte do estado de Minas Gerais e sul da Bahia (Pedrosa-Soares & Wiedemann-Leonardos, 2000; Pedrosa-Soares *et al.*, 2001, De Campos *et al.*, 2016). Aqui serão apresentadas apenas as principais unidades pós-colisionais do orógeno Araçuaí pertencentes à supersuíte G5, em específico as unidades Santa Angélica, Castelo, Jacutinga-Torre, Conceição do Muqui, Iconha, Venda Nova, Pedra Azul, Várzea Alegre e Aracruz, sendo todos pertencentes à supersuíte G5 (Figura 6) (Meneses & Paradella, 1978; Fontes *et al.*, 1981; Wiedemann & Ludka, 1984; Bayer *et al.*, 1987; Offman & Weber-Diefenbach, 1989; Ludka, 1991; Murad, 1992; Murad & Wiedemann, 1992; Mendes *et al.*, 1997; Wiedemann *et al.*, 1997; Ludka *et al.*, 1998; Mendes *et al.*, 1999; Medeiros *et al.*, 2000; Pedrosa-Soares & Wiedemann-Leonardos, 2000; Wiedemann-Leonardos *et al.*, 2000; 2005; Mendes *et al.*, 2005; Wiedemann-Leonardos *et al.*, 2007; Zanon *et al.*, 2012; Mendes & De Campos, 2012, Galvão, 2012; Medeiros, 2013; Torres, 2013; Faria, 2013; Zanon, 2013; Potratz, 2014; Vieira *et al.*, 2015; Zanon *et al.*, 2015; De Campos, *et al.*, 2016; Potratz *et al.*, 2018, Araújo *et al.*, 2020).

Figura 6 – Localização das principais unidades pós-colisionais dos segmentos central e setentrional da Província Mantiqueira - Faixas Ribeira e Araçuaí.

Legenda: 1 – Parati, 2 – Vila Dois Rios, 3 – Mambucaba, 4 – Mangaratiba, 5 – Andorinha, 6 – Suruí, 7 – Pedra Branca, 8 – Favela, 9 – Teresópolis, 10 – Frade, 11 – Conselheiro Paulino e Nova Friburgo, 12 – São José do Ribeirão, 13 – Silva Jardim, 14 – Sana, 15 – Itaoca, 16 – Morro do Coco, 17 – Mimoso do Sul, 18 – Conceição do Muqui, 19 – CISA, 20 – Lajinha de Mutum, 21 – Castelo, 22 – Venda Nova, 23 – Iconha, 24 – Garrafão, 25 – Afonso Claudio, 26 – CIVA, 27 – Mestre Álvaro, 28 – Fundão, 29 – Aracruz.

Fonte: Adaptado de POTRATZ (2016) e suas referências.

2.3.1 Características de campo e petrográficas

O magmatismo pós-colisional da Faixa Ribeira é representado, em sua maioria, por corpos graníticos que variam de dimensões batolíticas a *stocks* e veios, distribuídos ao longo do estado do Rio de Janeiro, concentrando-se principalmente na região central e sul do estado. Todos os corpos apresentados são compostos essencialmente de granitoides isotrópicos, em geral leococráticos, com texturas variando entre equigranular, inequigranular seriada e porfirítica, sendo também frequentes enclaves centimétricos a métricos de rochas intermediárias e máficas. Variações litológicas podem ser observadas apenas nas unidades Parati, com ocorrência de charnockitos. Frade, contendo quartzo diorito e granodiorito. Conselheiro Paulino, que são encontrados granodioritos, e São José do Ribeirão, com rochas de composição diorítica. Nas unidades que apresentam variações litológicas são frequentes feições macroscópicas que indicam processos de mistura de magma do tipo *mingling*.

A composição mineralógica reflete a homogeneidade de todas as unidades da Faixa Ribeira. A mineralogia principal é dada por quartzo, feldspato potássico e plagioclásio, tendo a biotita como o principal mineral máfico. A hornblenda é observada apenas nos granitos Parati, Pedra Branca e Conselheiro Paulino. Os minerais acessórios presentes nestas unidades são titanita, allanita, apatita, minerais opacos, zircão e moscovita. As características gerais das principais unidades pós-colisionais da Faixa Ribeira são apresentadas no quadro 1.

Diferente das suítes Suruí e Nova Friburgo (Faixa Ribeira), a supersuíte G5 apresenta uma complexa associação liotológica. De acordo com De Campos *et al.* (2016) os principais litotipos variam entre olivina gabro/norito e granito, com composições intermediárias gradando de monzogabro-norito, diorito/monzodiorito, tonalitos, granodioritos, sienitos e monzonitos. Mendes *et al.* (1997) e Mendes *et al.* (1999) também descrevem a ocorrência de rochas charnockiticas associadas ao estágio pós-colisional da Faixa Araçuaí. Estas rochas estão associadas a zonas de cisalhamento de alto ângulo e núcleos de estruturas antiformais relacionados a deformações anteriores (Wiedemann-Leonardos *et al.*, 2007). O zoneamento inverso e os processos de mistura de magma (mingling e mixing) são feições comuns a maioria destes corpos ígneos (Mendes *et al.*, 1999; Medeiros *et al.*, 2000; Wiedemann-Leonardos *et al.*, 2000).

	Unidades pós-colisionais da Faixa Ribeira														
	Parati	Vilas Dois Rios/ Conceição do Jacareí	Mambucaba/ Mangaratiba	Pedra Branca	Favela/ Andorinha	Teresópolis	Frade	Nova Friburgo	Suruí	Silva Jardim	Sana	Conselheiro Paulino	São José do Ribeirão	Itaoca	Morro do Coco
٦,															
2															
m															
4															
Mineralogia	Hbl, K-fel, Ti, Bt, Qtz, Pl, Opx, Zr	Qtz, Pl, K- fel, Ap, Ti, Zr, Op, Bt	Qtz, Pl, K-fel, Bt, Ti, All, Pi, Mg, Zr, Ap	Qtz, Pl, K- fel, Bt, Hbl, All, Ti, Ap, Zr, Op	Qtz, Pl, K- fel, Ap, Ti, Zr, Op, Bt	Qtz, Pl, K- fel, Bt, All, Ti	Qtz, Pl, K-fel, Bt, Ti, Il, Op, Zr, Ca	Qtz, Pl, K-fel, Ap, Ti, Zr, All, Op, Bt, Msc	Qtz, Pl, K- fel, Zr, Op, Bt	Qtz, Pl, K- fel, Bt, Ti, All, Zr	Qtz, Pl, K- fel, Zr, All, Op, Bt, Msc	Hbl, K-fel, Ti, All, Bt, Qtz, Pl, Zr	Qtz, Pl, K- fel, Ap, Ti, Zr, All, Op, Bt	Qtz, K- fel, Pl, Bt, Ap, Mz, Zr, All, Op	Qtz, Pl, K- fel, Ap, Ti, Zr, All, Op, Bt, Msc
Informações adicionais	Enclaves dioríticos e granodioríticos.	Enclaves lenticulares de rochas máficas.	Presença de "clots" máficos.	Estrutura de acamamento magmático	-	-	Enclaves de quartzo diorito.	-	-	-	-	Enclaves máficos.	Feições de mingling.	Presença de "clots" de biotita.	-
	Parati	Vilas Dois Rios/ Conceição do Jacareí	Mambucaba/ Mangaratiba	Pedra Branca	Favela/ Andorinha	Teresópolis	Frade	Nova Friburgo	Suruí	Silva Jardim	Sana	Conselheiro Paulino	São José do Ribeirão	Itaoca	Morro do Coco

Quadro 1 - Resumo da composição litológica e mineralógica das unidades pós-colisionais da Faixa Ribeira

Legenda: 1 – Granitoides; 2 – Granodioritos; 3 – Dioritos; 4 – Charnockitos; Qtz – quartzo; Pl – plagioclásio; K-fel – feldspato potássico; Bt – biotita; Hbl – hornblenda; Opx – ortopiroxênio; Ti – titanita; All – allanita; Ap – apatita; Op – minerais opacos; Zr – zircão; Msc – moscovita; Ca – Carbonato. Nota: Os campos sombreados de cinza correspondem às litologias presentes em cada uma das unidades. Fonte: O Autor, 2020. O Complexo Intrusivo de Santa Angélica (CISA) apresenta zoneamento concêntrico inverso, com margens mais ácidas gradando para dois núcleos básicos Wiedemann-Leonardos *et al.*, 2000). Bayer *et al.* (1987) distinguiram 4 domínios para o CISA, que posteriormente foram detalhados por Torres (2013) e Zanon (2015). Estes domínios são granito porfirítico de granulometria muito grossa com allanita, granito porfirítico de granulometria fina com titanita, zona de mistura de magmas e piroxênio-biotita monzogabro/monzodiorito. No interior do CISA observa-se uma zona ativa de deformação (*shear strain*), possivelmente uma feição de deformação intramagmática, que separa os dois núcleos gabróicos (De Campos *et al.* 2004; Wiedemann-Leonardos *et al.* 2000).

O maciço Castelo é composto por dois tipos de granitos em suas bordas, um monzogranito megaporfirítico de matriz grossa e um monzogranito porfirítico de matriz fina a média (De Campos *et al.*, 2004). O núcleo desta intrusão é composto de diorito de granulação grossa e a zona de transição entre o núcleo e a borda é marcada por uma estreita zona de mistura de magmas que ocorrem em graus variados (De Campos *et al.*, 2004; Medeiros, 2013).

No maciço Torre foram reconhecidos três domínios com base em critérios petrográficos e de campo, sendo estes o domínio externo, composto por rochas monzoníticas a quartzo monzoníticas, domínio intermediário, no qual destacam-se monzonitos com presença de piroxênio e mesopertita, e o domínio interno com monzodioritos e dioritos (Ludka *et al.*, 1991; Faria, 2013). O maciço Jacutinga é caracterizado por rochas gabronoríticas com composições gradando de olivina gabrosnorito para gabros de textura fina a leucogabros (Ludka *et al.*, 1991). Os maciços Torre e Jacutinga forma o Complexo Intrusivo Mimoso do Sul (Ludka *et al.*, 1991).

O plúton Conceição de Muqui é descrito como um complexo intrusivo elipsoidal com quatro domínios petrográficos descontínuos e interdigitados. Os domínios descritos por Murad (1992) e Wiedemann-Leonardos *et al.* (2000) são uma zona mista "a" composta por rochas monzoníticas à dioríticas de textura média a grossa, uma zona mista "b" com rochas de composição monzonítica à graníticas mais leucocráticas de granulação fina a grossa e que destacam-se processos de mistura de magma tipo mingling, um terceiro domínio composto por rochas monzoníticas de granulação média a grossa, e um domínio de rochas graníticas de granulação fina a grossa.

O maciço Iconha é um dos menos complexos, sendo formado por dois corpos intrusivos aproximadamente circulares. Estes corpos são compostos por quartzo monzonitos e tonalitos, aos quais estão associados, em menor volume, sienogranitos e monzogranitos (Torres, 2013). As principais evidencias de mistura de magma nesta unidade são microscópicas (Torres, 2013), entretanto Offman & Weber-Diefenbach (1989), descrevem estruturas de mistura, como "*schlieren*" de granito no granodiorito, "schollen" pillow-like do diorito fino no granito e zonas agmáticas.

O Complexo Intrusivo de Venda Nova é uma intrusão circular que apresenta zoneamento inverso, aonde seu núcleo é composto por gabros e noritos e as bordas compostas por sieno-monzonito, monzonito e granito (Mendes *et al.*, 2002; Mendes & De Campos, 2012). Em sua porção oeste são encontradas rochas noríticas e charnoenderbíticas envolvendo parte das rochas deste plúton (Mendes & De Campos, 2012).

O Complexo Pedra Azul é uma intrusão irregular formada por dioritos e sienogranitos que se misturam (*mingling*) em diferentes graus (Costa-de-Moura *et al.*, 1999). Diferente dos demais plútons, este não apresenta fácies porfiríticas para os granitos. O núcleo da intrusão é composto por tonalitos e granodioritos e a transição para as fácies graníticas é marcada por misturas de magma tipo mingling (De Campos *et al.*, 2004).

O Complexo Intrusivo de Várzea Alegre é uma intrusão de forma aproximadamente circular com estrutura inversamente zonada (Mendes *et al.*, 1999; Medeiros *et al.*, 2000). Este complexo é subdivido em dois domínios: o externo, que forma um anel de rochas charnockiticas, e o interno, dominado por rochas graníticas nas porções mais elevadas e um núcleo composto por gabros/dioritos (Medeiros *et al.*, 2000). Em um mapeamento faciológico Potratz (2014) e Potratz *et al.* (2018) identificaram 11 fácies ígneas, sendo elas charnockito, ortopiroxênio gabro, quartzo diorito, enderbito, granito foliado, granito porfirítico, biotita granito porfirítico, granada granito porfirítico, leucogranito. e uma zona de rochas híbridas em que são observados processos de mistura de magma tipo mingling.

Por fim, o maciço Aracruz é um corpo de forma elíptica, composto majoritariamente por rochas graníticas, contendo também dois pequenos núcleos dioríticos e uma zona de rochas híbridas formadas por processos de mistura de magmas tipo minlging (Galvão, 2012).

2.3.2 Caracterização geoquímica

As características geoquímicas gerais para as suítes Suruí e Nova Friburgo, juntamente com a supersuíte G5, foram obtidas a partir da compilação de um conjunto de 195 análises de elementos maiores de 21 unidades intrusivas das suítes em questão. As referências

bibliográficas dos dados litogeoquímicos compilados e seus respectivos corpos intrusivos são apresentadas no quadro 2,

Unidade intrusiva	Referências	Unidade intrusiva	Referências
Parati	Teixeira (2010)	Itaoca	Potratz (2016) e Potratz & Valeriano (2017)
Mangaratiba	Teixeira (2010)	Morro do Coco	Roland (2013)
Conceição do Jacareí	Guimarães (1999)	CIVA	Medeiros <i>et al.</i> (2001) e Mendes <i>et al.</i> (1999)
Pedra Branca	Junho <i>et al.</i> (1987), Porto Jr. (2004) e Porto Jr. <i>et al.</i> (2012)	CISA	Bayer et al. (1987), Torres (2013) e Zanon (2015)
Favela	Porto Jr. et al. (2012)	Castelo	Horn (1986) e Meyer (2017)
Andorinha	Zorita (1979)	Conceição do Muqui	Murad (1992)
Teresópolis	Junho (1992)	Iconha	Offman & Weber-Diefenbach (1989) e Torres (2013)
Frade	Junho et al. (1987)	Venda Nova	Ludka <i>et al.</i> (1998), Mendes et al. (2002) e Torres (2013)
Nova Friburgo	Junho et al. (1987)	Pedra Azul	Platzer (1997)
São João do Ribeirão	Mendes <i>et al.</i> (2002)	Mimoso do Sul (Jacutinga e Torre)	Wiedemann <i>et al.</i> (1986) e Faria (2013)
Sana	Valeriano <i>et al.</i> (2016); Geraldes et al. (2012) e este trabalho	-	-

Quadro 2 – Relação de referências bibliográficas de onde foram compilados os dados litogeoquímicos das unidades pós-colisionais do sistema orogênico Araçuaí-Ribeira

Fonte: O AUTOR, 2020

Na Faixa Ribeira os teores de sílica variam entre 53,84% e 76,32%, sendo que 85% das rochas são classificadas como ácidas (SiO₂ > 63%). Na faixa Araçuaí os terrores de sílica variam entre 39,26% e 76,47%, tendo rochas ultrabásicas, básicas, intermediárias e ácidas. Esta diferença pode ser observada nos diagramas de classificação de rochas plutônicas de Middlemost (1994) apresentados na figura 7. Em relação aos teores de álcalis, as faixas Ribeira e Araçuaí também apresentam significativas diferenças, sendo as unidades póscolisionais da faixa Ribeira predominantemente subalcalinas, com exceção de três amostras alcalinas, e unidades pós-colisionais da faixa Araçuaí variam entre subalcalinas e alcalinas (figura 7).

Figura 7 – Diagrama de classificação de rochas ígneas utilizado para as rochas pós-colisionais das Faixas Ribeira e Araçuaí.

Nota: Diagramas TAS de classificação de rochas plutônicas de Middlemost (1994) utilizados para as rochas pós-colisionais das faixas Ribeira (A) e Araçuaí (B). As unidades pós colisionais da faixa Ribeira (A) são essencialmente ácidas, subalcalinas e plotam, em grande parte, no campo dos granitos. Já as rochas da faixa Araçuaí se distribuem entre os campos alcalino e subalcalino, limitados pela linha contínua azul, tendo grande variação entre rochas ácidas (pontos vermelhos), intermediárias (pontos pretos), básicas e ultrabásicas (pontos verdes).

Fonte: O AUTOR, 2020.

A saturação de alumina também é significativamente distinta entre as unidades póscolisionais das faixas Araçuaí e Ribeira. Na faixa Araçuaí predominam rochas metaluminosas, com poucas ocorrências de rochas levemente peraluminosas (figura 8). Na faixa Ribeira as rochas variam entre metaluminosas a fortemente peraluminosas (figura 8).

Ao correlacionar o número de ferro [FeO/(FeO+MgO)] com os terrores de sílica, (figura 9) as rochas da supersuíte G5 plotam tanto no campo magnesiano quanto no campo férrico, já as rochas das suítes Nove Friburgo e Suruí são predominantemente férricas, com apenas 10 amostras plotando no campo magnesiano (figura 9). Em relação aos teores de álcalis e cálcio (Na₂O+K₂O-CaO) correlacionados com a sílica (figura 9), as rochas da supersuíte G5 aparecem dispersas pelos campos alcalino, alcalicálcico, calcioalcalino e cálcico (figura 9). As rochas das suítes Nova Friburgo e Suruí plotam majoritariamente no campo alcalicálcico, havendo também poucas amostras nos campos alcalino e cálcioalcalino (figura 9).

Figura 8 – Diagramas de caracterização de saturação em alumina utilizados para as rochas das Faixas Ribeira e Araçuaí.

Nota: Diagrama de Shand (1943) evidenciando a saturação de alumina das unidades pós-colisionais das faixas Araçuaí (A) e Ribeira (B). Na faixa Araçuaí predominam rochas metaluminosas, enquanto na faixa Ribeira ocorrem tanto rochas metaluminosas quanto peraluminosas. Fonte: O AUTOR, 2020.

Figura 9 - Diagramas de classificação genéticas utilizado para as rochas das Faixas Ribeira e Araçuaí.

Nota: Diagramas de Frost *et al.* (2001) para classificação de rochas granitoides e aplicados neste trabalho para as rochas com $SiO_2 > 50\%$. As rochas da supersuíte G5 aparecem dispersas entre os campos férrico e magnesiano (A), enquanto as rochas das suítes Suruí e Nova Friburgo são majoritariamente férricas (B). A relação de álcalis e cálcio demonstra grande dispersão nas rochas da supersuíte G5 (C). Já nas suítes Nova Friburgo e Suruí as rochas concentram-se no campo alcalicálcico (D).

2.3.3 <u>Idades de cristalização das diversas unidades pós-colisionais do sistema orogênico</u> <u>Araçuaí-Ribeira</u>

Os dados geocronológicos do magmatismo pós-colisional no sistema orogênico Araçuaí-Ribeira ainda são heterogêneos e fragmentados, considerando que existem poucos corpos datados e que, mesmo estes que possuem idades, os métodos de datação são variados (U-Pb em zircão, U-Pb por diluição isotópica e Rb-Sr). São apresentadas aqui as idades compiladas apenas os dados de granitoides que apresentassem idades U-Pb. As idades foram compiladas de Söllner *et al.* (199) (CISA), Medeiros (1999) (CIVA), Söllner *et al.* (2000) (Mimoso do Sul e Frades), Heilbron & Machado (2013) (Mangaratiba, Pedra Branca e Favela), Valeriano *et al.* (2011) (Sana, Andorinha, Suruí, Nova Friburgo), Neto *et al.* (2014) (Itaoca), De Campos *et al.* (2016) (Pedra do Elefante), Bione et al. (2019) (Morro do Coco) e Araújo *et al.* (2020) (Arecê – Pedra Azul, Mestre Álvaro e Vitória). As idades são apresentadas na tabela 1.

Corpo intrusivo (granitoides)	Idade U-Pb (Ma)
Mangaratiba	492 <u>+</u> 15
Pedra Branca	513 <u>+</u> 5
Favela	482 <u>+</u> 6
Sana	490,9 <u>+</u> 9,8
Andorinha	490,3 <u>+</u> 8,7
Suruí	511,2 <u>+</u> 6,9
Nova Friburgo	488,7 <u>+</u> 4,2
Frade	480,7 <u>+</u> 6,1
Mimoso do Sul	498 <u>+</u> 5
Morro do Coco	496 <u>+</u> 3
Arecê	523 <u>+</u> 2
Vitória	505 <u>+</u> 1
Mestre Álvaro	527 <u>+</u> 2
Itaoca	476,4 <u>+</u> 1,8
CISA	513 <u>+</u> 8
CIVA	507 <u>+</u> 33
Pedra do Elefante	531 <u>+</u> 34

Tabela 1 – Dados compilados de idades U-Pb dos granitoides pós-colisionais do sistema orogênico Araçuaí-Ribeira.

Fonte: O AUTOR, 2020

2.3.4 <u>Uma breve discussão sobre o magmatismo pós-colisional do sistema orogênico Araçuaí-</u> <u>Ribeira</u>

Existem diferenças fundamentais entre as associações litológicas pós-colisionais das faixas Araçuaí e Ribeira, sendo a primeira muito mais complexa que a segunda. Na faixa Araçuaí ocorrem rochas que variam desde olivina gabros até granitos altamente evoluídos, passando por todos os membros intermediários entre estes extremos. Na faixa Ribeira o que predominam são rochas granitoides, com raras ocorrências de dioritos, charnockitos e granodiriotos associados a estes granitoides.

Valeriano *et al.* (2011) e Valeriano *et al.* (2016) sugerem uma estreita relação entre magmas de origem mantélica com a geração dos granitos pós-colisionais da Faixa Ribeira. Apesar de não aparentar magmatismo bimodal tão intenso como na Faixa Araçuaí (De Campos *et al.*, 2016), a presença de enclaves máficos em algumas unidades da Faixa Ribeira sugerem que em algum grau magmas mantélicos se misturaram com fusões crustais. A questão que ainda está em aberto é se o processo de mistura de magmas foi efetivo a ponto de quase não restarem evidências ou se a quantidade de magma mantélico envolvido diretamente é insignificante a ponto de predominarem as rochas graníticas geradas por fusão parcial da crosta.

Ao contrário da faixa Ribeira, todos os corpos pós-colisionais da faixa Araçuaí apresentam evidências de campo e petrográficas muito claras do envolvimento direto de magmas de origem mantélica juntamente com magmas gerados por fusão parcial da crosta. Em maior ou menor grau, todos os corpos da faixa Araçuaí apresentam as feições de misturas de magma (*mingling* e *mixing*) descritas por Hibbard (1999) e Mariano & Sial (1990) (De Campos *et al.*, 2016; Mederios *et al.*, 2001; Wiedemann-Leonardos *et al.*, 2000).

Os dados litogeoquímicos sugerem um magmatismo com fontes mais restritas e processos evolutivos distintos para os granitoides da Faixa Ribeira, enquanto na Faixa Araçuaí, os dados sugerem ao menos duas fontes e processos evolutivos mais complexos para o intenso magmatismo que ocorre no estado do Espírito Santo, envolvendo intensa participação de magmas derivados do manto.

De acordo com Finger *et al.* (2009) a ausência de rochas máficas nas unidades póscolisionais não deve ser utilizada como argumento contra a ocorrência de fusão do manto, uma vez que grandes volumes de magma de origem mantélica podem não ter ultrapassado o limite manto crosta e ter atingido a crosta. Vielzeuf *et al.* (1990) argumentam que a fusão parcial da crosta inferior normalmente "extrai" calor do magma mantélico, alojado na base da crosta, causando seu resfriamento em profundidade. Esse argumento pode explicar a quantidade reduzida de rochas máficas nas unidades pós-colisionais da Faixa Ribeira, contudo, estudos mais detalhados são necessários para resolver tal questão.

Apesar de pertencerem ao mesmo sistema orogênico, cada uma das faixas móveis evolui de maneiras distintas. A Faixa Araçuaí tem sua evolução confinada entre dois grandes crátons, em um modelo denominado de quebra nozes (Alkmim *et al.*, 2006; Alkmim *et al.*, 2007). Já a Faixa Ribeira evolui a partir de um complexo sistema de acreção de terrenos (Heilbron *et al.*, 2000). O final da evolução de ambas as faixas culmina na formação do supercontinente Gondwana (Heilbron *et al.*, 2008; Heilbron *et al.*, 2013; Pedrosa-Soares *et al.*, 2007; Alkmim *et al.*, 2006). A questão que fica em aberto é como o magmatismo associado ao estágio final desta grande colisão acontece de maneira tão distinta em faixas móveis paleogeograficamente próximas?

Chung *et al.* (2005) sugerem que o alinhamento de corpos pós colisionais com idades mais antigas e próximas podem indicar a posição em que a camada inferior da litosfera, anteriormente espessada por processos orogênicos, se descola e dá início ao processo de delaminação, criando um conduto alongado que conecta a astenosfera com a base da crosta inferior. Se a idade obtida na Pedra do Elefante for desconsiderada, devido ao seu erro elevado (\pm 33 Ma), observa-se três corpos pós colisionais com idades mais antigas e próximas entre si, sendo eles: Pedra Branca (513 \pm 5 Ma), Suruí (511,2 \pm 6,9 Ma) e Complexo Intrusivo de Santa Angélica (513 \pm 8 Ma). Observando a posição geográfica destes três corpos (Figura 6), observa-se um alinhamento entre eles. Seria esta então a linha aonde o manto litosférico foi rompido inicialmente?

3 GRANITO SANA

O Granito Sana faz parte de um conjunto de rochas ígneas cuja gênese está associada aos estágios tardi- a pós-colisional de evolução da Faixa Ribeira. Esta unidade aflora nos municípios de Casimiro de Abreu, Nova Friburgo, Macaé, Silva Jardim e Trajano de Moraes, região centro-leste do estado do Rio de Janeiro (Figura 10). Seu corpo principal pode ser acessado, partindo da cidade do Rio de Janeiro, pela BR-101 sentido Norte até Casimiro de Abreu, seguindo então pela RJ-142 (Figura 10). O mapa de pontos visitados para descrição de afloramentos e coleta de amostras é apresentado na Figura 11.

Figura 10 – Mapa de localização e do Granito Sana

Nota: Localização do Granito Sana que aflora nos municípios de Casimiro de Abreu, Nova Friburgo, Macaé, Silva Jardim e Trajano de Moraes.

Fonte: O AUTOR, 2020.

Figura 11 - Mapa de pontos visitados no Granito Sana

Nota: Mapa de pontos visitados no Granito Sana em seu corpo principal (A) e em um de seus satélites (B). Os pontos cujos nomes estão em caixa alta foram visitados por Geraldes et al. (2012) para confecção da Folha Casemiro de Abreu e os demais pontos foram visitados para complementar esta tese.

Fonte: O AUTOR, 2020.

3.1 Aspectos de campo e petrográficos

O corpo principal do Granito Sana é um plúton com cerca de 270 km² e seus "satélites" ocorrem na forma de stocks e corpos tabulares que afloram a Oeste e a Nordeste do corpo principal. Esta unidade aflora majoritariamente na forma de lajedos nos topos de morros, cachoeiras e encostas, ocorrendo também na forma de blocos rolados (Figura 12).

As rochas que compõem a unidade Granito Sana são predominantemtne isotrópicas, hololeucocráticas a leucocráticas, com cores variando de cinza claro a cinza escuro e possuem textura inequigranular, com granulação variando de fina a grossa (0,1mm a 3,0cm) (Figura 13). Estas rochas não apresentam variação faciológica expressiva, sendo a granulação média predominante. Em raros casos ocorrem cristais de microclina com granulação variando de 2 a 4 cm dispersos em uma matriz de granulação fina a média (Figura 13). Também se observa a

presença de autólitos esbranquiçados (Figura 13). Esta unidade é composta essencialmente por álcali-feldspato granitos, sienogranitos e monzogranitos (Figura 14).

Figura 12 – Afloramentos do Granito Sana

Fonte: O AUTOR, 2020.

Figura 13 - Características macroscópicas do Granito Sana

Nota: Características macroscópicas das rochas do Granito Sana, demonstrando granitos inequigranulares (fino a médio) em A, B e D. Em C observa-se um monzogranito de granulação média com cristais dispersos de microclina com dimensões variando entre 2 e 4cm. Em D observa-se ainda um autólito de leucogranito. Fonte: O AUTOR, 2020.

Figura 14 – Diagramas Q-A-P e Q-A+P-M para classificação de rochas plutônicas (Q-A-P) e determinação do índice de cor de rochas ígneas (Q-A+P-M)

- Legenda: 1 Quartzolito; 2 Granitos ricos em quartzo; 3 Álcali-felsdspato granito; 4 Sienogranito; 5 Monzogranito; 6 Granodiorito; 7 Tonalito; 8 Quartzo álcali-feldspato granito; 9 Quartzo sienito; 10 Quartzo monzonito; 11 Quartzo monzodiorito/Quartzo monzogabro; 12 Quartzo gabro/ Quartzo diorito/ Quartzo anortosito; 13 Álcali-feldspato sienito; 14 Sienito; 15 Monzonito; 16 Monzodiorito; 17 Gabro/ Diorito/ Anortosito; A Feldspato alcalino; Q Quartzo; P Plagioclásio; M Máficos.
- Nota: No diagrama Q-A+P-M (esquerda) as rochas do Granito Sana plotam nos campos Hololeucocrático e Leucocrático. Já no diagrama Q-A-P (direita) as estas rochas plotam nos campos Álcali-feldspato granito, Sienogranito e Monzogranito.
- Fonte: Adaptado de STRECKEISEN, 1976.

A composição mineralógica das rochas é homogênea em todo o plúton, tendo como minerais primários feldspato alcalino, quartzo, plagioclásio, biotita, muscovita, allanita, zircão e minerais opacos. A mineralogia secundária, produto da alteração dos minerais primários, é representada por clorita, biotita e muscovita. A composição média das rochas é de 43,8% de feldspato alcalino, 37,1% de quartzo, 11,2% de plagioclásio, 5,4% de biotita, 3,5% de muscovita, 1,5% de allanita, 1,4% de clorita, 1,1% de minerais opacos e 0,6% de zircão. A composição modal de cada amostra analisada é apresentada nas tabelas 2 e 3.

O feldspato alcalino presente no Granito Sana é majoritariamente a microclina. Esta fase mineral apresenta hábito granular anédrico a subédrico (Figura 15-A e B), granulação variando entre 0,2 a 7,0mm, textura poiquilítica (Figura 15-A e B). Em raros casos observa-se textura gráfica e formação de mimerquitas. O quartzo é granular anédrico, apresenta textura poiquilítica (inclusões de biotita) e a granulação varia entre 0,1 a 2,0mm.

O plagioclásio possui hábito tabular subédrico (Figura 15-F) e granular anédrico (Figura 15-B), a granulação varia entre 0,4 e 1,6mm e por vezes apresenta alteração para sericita. Os cristais de biotita ocorrem tanto na forma primária, com hábito tabular euédrico a subédrico (Figura 15), quanto na forma secundário, na forma de escamas, ambos os tipos com dimensões que não excedem 2,8mm. Na biotita primária ocorrem inclusões de minerais opacos e zircão, além de processo de cloritização, podendo ser parcial (nas bordas) ou total (Figura 15).

Figura 15 - Fotomicrografias das lâminas delgadas do Granito Sana.

Legenda: Qtz – Quartzo; Kf – K-feldspato; Pl – Plagioclásio; Bt – Biotita; Ms – Muscovita; Cl – Clorita; All – Allanita.

Nota: O hábito granular anédrico dos cristais de K-feldspato, plagioclásio e quartzo é demonstrado nas figuras A e B. Os cristais com hábito tabular euédrico e subédrico da muscovita, interpretada neste trabalho como cristais primários, são apresentados nas figuras C, D e F. Na figura E observa-se um cristal de biotita com inclusão de zircão. A figura G apresenta um cristal de biotita com alteração para clorita nas bordas. A figura H apresenta um cristal de allanita isotropizada.

Fonte: O AUTOR, 2020.

Assim como a biotita, a muscovita também ocorre nas formas primária e secundária. Em sua forma secundária a muscovita ocorre como sericita, sendo formada pela alteração dos feldspatos da rocha. A muscovita primária apresenta hábito tabular pseudo-hexagonal (euédrico e subédrico) (Figura 15-C, D e F), as dimensões podem chegar a 3,2mm, as bordas dos cristais são bem delimitadas e não apresentam inclusões.

Os minerais opacos apresentam hábito granular subédrico a anédrico, granulação que não excede 2,0mm e frequentemente estão inclusos ou associados aos cristais de biotita. A allanita é granular euédrica a subédrica, com granulação menor que 0,5mm e está parcialmente isotropizada. Os cristais de zircão possuem hábito granular subédrico a euédrico, granulação menor que 0,1mm e ocorrem sempre como inclusão nas demais fases minerais, principalmente na biotita.

MINERAIS	SANA 17A	SANA 43	SANA 41	SANA 04	SANA 05	SANA 06ª	SANA 07	SANA 08A	SANA 09	SANA 10	SANA 06B	SANA 08B	SANA 15
Quartzo	35.4	34.3	32.9	35.7	30.3	37.4	43.7	51.1	44.6	39.7	40.6	48.6	28.0
Microclina	52.6	44.3	35.7	48.6	39.1	52.9	35.7	44.9	26.0	47.4	46.3	46.9	38.0
Plagioclásio	4.9	13.4	18.6	2.9	25.1	-	8.9	-	17.4	-	-	-	19.4
Biotita	6.6	3.7	6.9	5.7	5.4	6.0	5.7	-	7.4	4.9	7.7	-	6.9
Moscovita	-	0.6	2.9	5.4	-	-	5.1	2.9	3.7	3.7	-	3.4	3.4
Opacos	-	2.3	-	1.4	-	1.7	0.9	0.3	-	-	1.4	0.6	-
Zircão	0.6	0.9	0.3	0.3	-	0.6	-	0.9	-	0.3	1.1	0.6	0.9
Allanita	-	0.6	-	-	-	-	-	-	0.9	3.1	-	-	-
Clorita	-	-	2.9	-	-	1.4	-	-	-	0.9	2.9	-	3.4
Q	38.2	36.9	37.7	41.0	32.0	41.5	49.5	53.3	50.6	45.6	46.7	50.9	32.8
Α	56.6	48.6	41.0	55.7	41.4	58.5	40.5	46.7	29.5	54.4	53.3	49.1	44.5
Р	5.2	14.5	21.3	3.3	26.6	0.0	10.0	0.0	19.8	0.0	0.0	0.0	22.7
ΣΜ	7.1	8.0	12.9	12.9	5.4	9.7	11.7	4.0	12.0	12.9	13.1	4.6	14.6
Q'	35.4	34.3	32.9	35.7	30.3	37.4	43.7	51.1	44.6	39.7	40.6	48.6	28.0
A+P	57.4	57.7	54.3	51.4	64.3	52.9	44.6	44.9	43.4	47.4	46.3	46.9	57.4

Tabela 2 - Composição modal das rochas do Granito Sana

Legenda: Q – % de quartzo recalculada para o diagrama Q-A-P; A – % de álcali feldspato recalculada para o diagrama Q-A-P; P – % de plagioclásio recalculada para o diagrama Q-A-P; ΣM – soma dos % de minerais máficos; Q' - % real de quartzo; A+P – soma das % de álcali feldspato e plagioclásio.

Fonte: O AUTOR, 2020.

MINERAIS	SANA 16	SANA 17B	SANA 20	SANA 21	SANA 22	SANA 28	SANA 02	Sana 4'	Sana 5'	Sana 12'	Sana 14'	Sana 17'	Média
Quartzo	32.6	27.1	40.0	42.0	43.4	37.1	40.6	34.3	28.9	31.7	35.1	31.1	37.1
Microclina	50.0	40.0	46.9	37.7	48.3	33.1	45.4	51.7	38.3	50.0	48.6	46.6	43.8
Plagioclásio	4.0	26.0	1.7	8.0	2.3	18.0	1.7	2.3	26.3	7.7	2.6	12.3	11.2
Biotita	4.3	5.4	6.0	5.1	0.6	4.9	4.9	4.9	5.4	6.6	4.9	3.7	5.4
Moscovita	5.4	-	1.7	5.4	3.1	2.9	2.9	4.3	-	3.4	4.3	1.7	3.5
Opacos	2.3	0.9	1.7	0.3	0.3	1.4	0.6	1.4	-	0.3	0.6	1.4	1.1
Zircão	0.6	-	0.6	-	0.9	0.6	0.3	0.6	0.3	0.3	0.6	0.3	0.6
Allanita	-	-	-	-	0.6	0.9	3.1	-	0.9	-	1.7	1.4	1.5
Clorita	0.9	0.6	1.4	1.4	0.6	1.1	0.6	0.6	-	-	1.7	1.4	1.4
Q	37.6	29.1	45.2	47.9	46.2	42.1	46.3	38.8	30.9	35.5	40.7	34.6	
Α	57.8	42.9	52.9	43.0	51.4	37.5	51.8	58.6	41.0	55.9	56.3	51.7	
Р	4.6	27.9	1.9	9.1	2.4	20.4	2.0	2.6	28.1	8.6	3.0	13.7	
ΣΜ	13.4	6.9	11.4	12.3	6.0	11.7	12.3	11.7	6.6	10.6	13.7	10.0	
Q'	32.6	27.1	40.0	42.0	43.4	37.1	40.6	34.3	28.9	31.7	35.1	31.1	
A+P	54.0	66.0	48.6	45.7	50.6	51.1	47.1	54.0	64.6	57.7	51.1	58.9	

Tabela 3 – Composição modal das rochas do Granito Sana (continuação)

Legenda: Q – % de quartzo recalculada para o diagrama Q-A-P; A – % de álcali feldspato recalculada para o diagrama Q-A-P; P – % de plagioclásio recalculada para o diagrama Q-A-P; ΣM – soma dos % de minerais máficos; Q' - % real de quartzo; A+P – soma das % de álcali feldspato e plagioclásio.

Nota: A coluna média representa a média da proporção modal de cada mineral considerando todas as amostras (tabelas 2 e 3).

Fonte: O AUTOR, 2020.

3.2 Litogeoquímica

O conjunto de amostras analisado apresenta comportamento litogeoquímico homogêneo, tal qual a composição modal deste grupo de rochas. Os teores de sílica variam entre 66,81% e 74,75%, com valor médio de 70,76%. A soma dos óxidos varia entre 98,35% e 100,8%, demonstrando que estes resultados estão dentro dos padrões de qualidade aceitáveis. Os resultados analíticos para elementos maiores, expressos em % em peso, são apresentados na tabela 4. A homogeneidade na composição das rochas pode ser observada no diagrama TAS de classificação de rochas ígneas, aonde todas as amostras plotam no campo dos granitos subalcalinos (Figura 16).

Figura 16 - Diagrama TAS de classificação de rochas plutônicas

Nota: As amostras do Granito Sana plotam todas no campo dos granitos subalcalinos. Fonte: Adaptado de COX *ET AL*. (1979).

A figura 17 apresenta os diagramas Harker para os elementos maiores apresentados na tabela 4. Em todos os diagramas gerados foram feitas inserções de curvas lineares e polinomiais através de regressão ordinária por mínimos quadrados de y em x e os coeficientes de correlação para cada curva são apresentados na tabela 5. As melhores correlações são observadas nas curvas polinomiais, ainda que as diferenças entre os coeficientes de correlação linear e polinomial não sejam tão significativas para alguns óxidos (Tabela 5). Correlações negativas são observadas nos óxidos FeO_T, MnO, MgO, CaO, TiO₂, P₂O₅ (Figura 17).

Amostra	SANA 04	SANA 05	SANA 06A	SANA 06B	SANA 07	SANA 08A	SANA 08B	SANA 09	SANA 10	SANA 15	SANA 16	SANA 17A	SANA 17B	SANA 41	SANA 43	SANA 20	SANA 21	Sana 4'	Sana 5'	Sana 12'	Sana 14'	Sana 17'
SiO ₂	73.84	67.45	67.60	68.21	69.38	70.55	70.60	68.77	66.81	73.31	73.77	71.11	71.17	72.84	74.75	69.43	70.52	71.62	73.22	70.30	72.88	68.50
Al ₂ O ₃	13.45	14.89	13.86	14.61	14.38	13.85	13.99	13.99	13.91	13.71	13.90	13.52	13.83	14.32	13.46	13.98	13.85	14.34	13.75	13.85	14.28	14.22
Fe ₂ O ₃	1.71	3.48	3.55	3.69	2.45	2.62	3.17	4.27	4.11	1.50	2.04	2.01	1.81	1.79	1.94	2.82	2.36	2.38	2.36	3.46	2.19	4.26
MnO	0.02	0.04	0.05	0.05	0.03	0.04	0.05	0.05	0.06	0.04	0.02	0.02	0.02	0.01	0.02	0.05	0.04	0.04	0.03	0.05	0.03	0.06
MgO	0.34	0.75	0.68	0.80	0.57	0.49	0.59	0.66	0.75	0.22	0.36	0.38	0.35	0.34	0.34	0.58	0.46	0.35	0.41	0.68	0.32	0.70
CaO	1.16	0.95	1.86	1.98	1.89	1.43	1.48	1.83	2.20	0.60	0.59	1.06	1.09	1.03	0.68	1.64	1.41	0.83	0.88	1.71	1.05	2.15
Na ₂ O	2.76	2.72	2.56	2.91	2.79	3.08	3.15	2.54	2.55	2.84	2.51	2.69	2.76	3.02	2.18	2.61	2.60	2.75	2.77	2.62	2.82	2.61
K ₂ O	5.57	6.08	5.88	5.08	5.77	4.81	4.80	5.90	5.62	5.72	5.65	5.85	6.13	5.74	5.71	5.38	5.82	6.03	5.66	5.80	5.75	5.84
TiO ₂	0.38	0.76	0.74	0.90	0.59	0.50	0.64	0.73	0.87	0.32	0.34	0.40	0.34	0.35	0.33	0.54	0.48	0.33	0.36	0.65	0.30	0.80
P2O5	0.08	0.27	0.22	0.26	0.17	0.18	0.18	0.19	0.24	0.10	0.18	0.14	0.14	0.11	0.20	0.17	0.14	0.20	0.17	0.19	0.16	0.20
PF	0.93	1.48	1.35	1.39	1.66	1.26	1.20	0.94	1.22	1.09	1.34	1.41	1.43	1.25	1.19	1.33	1.00	0.55	0.47	0.69	0.69	0.63
Total	100.20	98.87	98.36	99.88	99.68	98.80	99.85	99.85	98.35	99.45	100.70	98.58	99.08	100.80	100.80	98.53	98.68	99.40	100.10	99.99	100.50	99.96

Tabela 4 - Dados litogeoquímicos de elementos maiores expressos em % em peso

Nota: Apresentação dos resultados analíticos para os óxidos SiO₂, Al₂O₅, FeO_T, MnO, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, além dos valores de perda ao fogo (PF). Obs.: Os valores de ferro são apresentados na forma de ferro total. As amostras com o código em "caixa alta" foram compiladas do Relatório da Folha Casemiro de Abreu (Geraldes et al., 2012) e as demais amostras foram coletadas para este trabalho.
Fonte: O AUTOR, 2020.

Figura 17 – Diagramas Harker para os óxidos Al₂O₅, FeO_T, MnO, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅

Nota: Para cada diagrama foram inseridas curvas lineares e polinomiais através do processo de regressão ordinária por mínimos quadrados de y em x. Fonte: O AUTOR, 2020

Correlo e a	Linea	ır	Polinomial					
Correlação	\mathbf{R}^2	R	\mathbf{R}^2	R				
SiO ₂ x Al ₂ O ₃	0.245	0.494	0.248	0.498				
SiO ₂ x FeO _T	0.707	0.841	0.727	0.853				
SiO ₂ x MnO	0.603	0.777	0.606	0.778				
SiO ₂ x MgO	0.807	0.898	0.825	0.908				
SiO ₂ x CaO	0.651	0.807	0.656	0.810				
SiO ₂ x Na ₂ O	7.0E-05	0.008	0.275	0.524				
SiO ₂ x K ₂ O	2.0E-05	0.004	0.018	0.134				
SiO ₂ x TiO ₂	0.812	0.901	0.850	0.922				
SiO ₂ x P ₂ O ₅	0.450	0.671	0.569	0.754				

Tabela 5 – Valores de R² e R para as correlações apresentadas nos diagramas Harker

Nota: Na tabela são apresentados os valores de R² e R para avaliar a correlação da sílica com os demais óxidos. Fonte: O AUTOR, 2020

A composição normativa (Norma CIPW) destas rochas é dada essencialmente por quartzo, ortoclásio e albita, destacando a presença de coríndon normativo que chega até a 3%. O resultado do cálculo da composição normativa das rochas do Granito Sana é apresentado na tabela 6.

Para os elementos traços e terras raras, as amostras também demonstram alta homogeneidade na composição. Os resultados analíticos de elementos maiores e terras raras, expressos em parte por milhão (ppm), são apresentados nas tabelas 7 e 8. No diagrama multielementar, normalizado pelo condrito de Thompson (1982) observa-se anomalias negativas de Ba, Nb, Ta, Sr, P e Ti (Figura 18). Em relação ao elementos terras raras (ETR), todas as amostras apresentam anomalia negativa de Európio e forte enriquecimento dos elementos terras raras leves (ETR_L) em relação aos elementos terras raras pesados (ETR_P), o que está evidenciado nas razões La/Yb que variam entre 49,4 e 267,5 (Figura 19).
Amostra	Q	С	Or	Ab	An	Hi	Il	Hm	Ru	Ар	Soma
SANA 04	33.9	1.0	33.2	23.5	5.3	0.8	0.0	1.7	0.4	0.2	100
SANA 05	26.7	2.8	36.9	23.6	3.0	1.9	0.1	3.6	0.7	0.7	100
SANA 06A	26.6	0.4	35.8	22.3	8.0	1.7	0.1	3.7	0.7	0.5	100
SANA 06B	27.6	1.4	30.5	25.0	8.3	2.0	0.1	3.8	0.9	0.6	100
SANA 07	27.1	0.5	34.8	24.1	8.5	1.4	0.1	2.5	0.6	0.4	100
SANA 08A	31.7	1.4	29.1	26.7	6.1	1.2	0.1	2.7	0.5	0.4	100
SANA 08B	30.8	1.4	28.8	27.0	6.3	1.5	0.1	3.2	0.6	0.4	100
SANA 09	27.3	0.6	35.2	21.7	7.9	1.7	0.1	4.3	0.7	0.5	100
SANA 10	26.0	0.2	34.2	22.3	9.6	1.9	0.1	4.2	0.8	0.6	100
SANA 15	34.1	2.0	34.4	24.5	2.4	0.5	0.1	1.5	0.3	0.2	100
SANA 16	36.5	3.0	33.6	21.4	1.8	0.9	0.0	2.1	0.3	0.4	100
SANA 17A	31.5	1.2	35.6	23.4	4.5	1.0	0.0	2.1	0.4	0.3	100
SANA 17B	29.9	1.0	37.1	23.9	4.6	0.9	0.0	1.9	0.3	0.3	100
SANA 41	31.1	1.5	34.1	25.6	4.4	0.8	0.0	1.8	0.3	0.3	100
SANA 43	39.0	2.9	33.9	18.5	2.1	0.8	0.0	2.0	0.3	0.5	100
SANA 20	30.6	1.3	32.7	22.8	7.3	1.5	0.1	2.9	0.5	0.4	100
SANA 21	30.5	1.1	35.2	22.5	6.2	1.2	0.1	2.4	0.4	0.3	100
Sana 4'	31.2	2.3	36.0	23.5	2.9	0.9	0.1	2.4	0.3	0.5	100
Sana 5'	33.6	1.9	33.6	23.5	3.3	1.0	0.1	2.4	0.3	0.4	100
Sana 12'	28.9	0.6	34.5	22.3	7.3	1.7	0.1	3.5	0.6	0.5	100
Sana14'	32.3	1.9	34.0	23.9	4.2	0.8	0.1	2.2	0.3	0.4	100
Sana 17'	26.1	0.2	34.7	22.3	9.4	1.7	0.1	4.3	0.7	0.5	100

Tabela 6 – Composição normativa das rochas do Granito Sana

Nota: Resultados dos cálculos da norma CIPW para as rochas do Granito Sana. As amostras com o código em "caixa alta" foram compiladas do Relatório da Folha Casemiro de Abreu (Geraldes et al., 2012) e as demais amostras foram coletadas para este trabalho.

Fonte: O AUTOR, 2020.

Amostra	SANA 04	SANA 05	SANA 06A	SANA 06B	SANA 07	SANA 08A	SANA 08B	SANA 09	SANA 10	SANA 15	SANA 16	SANA 17A	SANA 17B	SANA 41	SANA 43	SANA 20	SANA 21	Sana 4'	Sana 5'	Sana 12'	Sana14'	Sana 17'
Sc	3	6	6	6	4	5	6	6	7	3	3	4	3	3	3	5	4	3	2	6	4	6
Be	2	2	3	2	2	4	4	3	3	3	3	3	3	3	2	4	3	4	2	3	4	3
\mathbf{V}	12	30	33	36	24	20	32	33	38	< 5	8	13	10	12	12	28	23	12	17	35	12	34
Ba	503	637	1347	1256	1276	605	613	1686	1483	545	303	467	485	468	398	862	1302	386	438	1161	407	1740
Sr	113	128	260	217	213	124	126	331	278	103	54	98	103	108	70	181	214	70	80	195	78	329
Y	11	17	32	17	10	18	21	49	36	6	12	10	8	15	10	9	9	13	13	30	14	76
Zr	235	364	603	667	457	378	458	627	783	192	180	239	219	212	168	402	374	188	202	607	194	763
Со	32	25	30	25	30	28	25	52	24	32	24	21	31	40	25	26	24	8	18	20	5	9
Zn	50	80	90	140	100	90	100	40	70	40	90	40	60	40	80	50	50	80	70	90	60	100
Ga	22	28	24	27	23	30	30	22	24	24	27	23	23	23	25	23	21	27	23	21	27	24
Rb	262	374	266	297	271	355	350	248	262	291	373	314	326	281	313	277	254	359	298	260	330	235
Nb	10	18	24	17	12	19	23	30	29	7	12	11	10	11	11	18	15	11	9	25	14	34
Sn	1	10	5	4	3	74	14	4	5	2	5	5	4	2	3	3	3	6	4	4	6	5
Sb	0.9	< 0.5	< 0.5	< 0.5	0.6	0.5	0.5	< 0.5	< 0.5	0.6	< 0.5	0.6	0.8	0.6	0.9	< 0.5	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cs	1.6	2.3	0.7	1	0.9	2.8	2.7	1	1.1	3.5	4.7	2.9	3.1	2.2	2.7	2.1	1.4	5.1	1.5	1.4	4.1	1.5
Hf	7.7	12	16.1	18.3	13	11.2	12.9	16.7	20.8	6.2	7	7.7	7	7.2	6	11.3	10.4	5.1	5.1	14.1	4.9	17.1
Та	1	1.3	2.6	0.9	0.9	1.6	1.8	2.7	2.1	0.9	0.7	0.8	1	1.2	0.7	1.1	1	0.9	0.6	1.5	1	3.1
\mathbf{W}	344	229	270	218	286	267	237	277	269	440	262	229	302	406	284	239	258	91	272	253	62	85
Tl	3.3	1.6	3.2	3.9	1.9	5.1	5.2	1.3	1.9	3.1	2.9	2.8	4.6	2.5	4.6	2	2	2.1	1.8	1.3	1.9	1.2
Pb	36	21	33	35	17	32	33	17	23	37	33	25	39	25	37	17	18	31	32	32	35	38
Bi	< 0.4	< 0.4	0.6	61.5	< 0.4	1.7	1	< 0.4	< 0.4	0.5	0.4	< 0.4	0.6	75.9	64.1	64.7	83.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Th	72.9	114	61.9	81	54.3	70.7	78.4	56	67.3	71.3	47.7	68.3	55.8	63.4	39.8	68.9	44.5	46.6	49.1	63.1	49.7	64.7
\mathbf{U}	7.8	5.4	2.5	1.9	2.1	4.3	5	2.6	2.7	6.9	6.8	4.1	9.9	4.6	5.1	2.4	1.7	4.1	4.1	1.8	14.3	3.1

Tabela 7 – Resultados analíticos para os elementos traços expressos em partes por milhão (ppm)

Nota: As amostras com o código em "caixa alta" foram compiladas do Relatório da Folha Casemiro de Abreu (Geraldes et al., 2012) e as demais amostras foram coletadas para este trabalho. Fonte: O AUTOR, 2020.

Amostra	SANA 04	SANA 05	SANA 06A	SANA 06B	SANA 07	SANA 08A	SANA 08B	SANA 09	SANA 10	SANA 15	SANA 16	SANA 17A	SANA 17B	SANA 41	SANA 43	SANA 20	SANA 21	Sana 4'	Sana 5'	Sana 12'	Sana14'	Sana 17'
La	126	184	241	191	140	166	186	294	282	107	62.8	117	82.8	156	64.9	184	161	69.3	71.8	240	79.6	306
Ce	259	370	474	402	287	343	382	565	552	213	140	243	172	245	140	375	321	150	155	404	166	571
Pr	24.3	47.4	47.1	41.2	27.2	34.5	38.2	55.6	54.9	19.4	18.5	23	16.3	29.3	13.5	37.2	29.8	16.8	17.9	51.1	18.5	60.3
Nd	74.1	131	131	110	74.1	95.5	104	155	146	56.9	57.3	67.4	48.9	89.9	44.2	99.5	83.6	62.3	65.7	178	65.4	213
Sm	13.3	20.6	21.8	17.6	12.6	15.2	16.6	25.3	23.3	9.7	11	12.2	8.8	16.4	8.8	15.6	13.6	10.6	11.2	24.6	10.3	35.3
Eu	0.99	1.24	2.36	1.81	1.54	1.13	1.21	2.77	2.58	0.83	0.58	0.89	0.8	1.29	0.71	1.55	1.63	0.62	0.72	2.29	0.69	3.9
Gd	6.6	11.6	12.5	9.1	5.7	7.9	8.4	15.1	13.1	4.4	7.6	5.8	4.3	9.9	5.1	7.6	6.2	6	6.2	13.3	5.8	23.2
Tb	0.8	1.1	1.5	0.9	0.6	0.9	0.9	1.9	1.5	0.5	0.9	0.6	0.5	1	0.6	0.7	0.6	0.7	0.7	1.5	0.7	3.3
Dy	3.6	4.6	7.2	4.2	2.8	4.1	4.2	10.1	7.6	2	3.9	2.7	2.2	4.1	2.6	2.8	2.8	3.3	3.1	7.1	3.3	17.9
Но	0.5	0.7	1.3	0.7	0.5	0.7	0.7	1.9	1.4	0.3	0.6	0.4	0.4	0.6	0.4	0.4	0.4	0.5	0.5	1.2	0.5	3.1
Er	1.1	1.6	3.5	1.8	1.2	2	2	5.3	3.8	0.7	1.3	1	0.9	1.5	1	1	1	1.3	1.1	3.2	1.4	8.1
Tm	0.12	0.21	0.49	0.21	0.15	0.25	0.27	0.74	0.52	0.08	0.14	0.13	0.11	0.17	0.13	0.13	0.13	0.17	0.13	0.39	0.19	1.05
Yb	0.6	1.3	2.7	1.1	0.8	1.4	1.5	4.2	3	0.4	0.8	0.7	0.6	0.9	0.7	0.7	0.7	0.9	0.7	2.1	1.1	6.2
Lu	0.07	0.18	0.34	0.14	0.1	0.18	0.18	0.53	0.4	0.05	0.09	0.08	0.08	0.11	0.09	0.09	0.09	0.12	0.09	0.3	0.14	0.85
La/Yb	210.0	141.5	89.3	173.6	175.0	118.6	124.0	70.0	94.0	267.5	78.5	167.1	138.0	173.3	92.7	262.9	230.0	77.0	102.6	114.3	72.4	49.4

Tabela 8 - Resultados analíticos para os elementos terras raras expressos em partes por milhão (ppm)

Nota: As amostras com o código em "caixa alta" foram compiladas do Relatório da Folha Casemiro de Abreu (Geraldes et al., 2012) e as demais amostras foram coletadas para este trabalho.

Fonte: O AUTOR, 2020

Figura 18 – Diagrama multielementar normalizado pelo condrito de Thompson (1982)

Fonte: O AUTOR, 2020.

Figura 19 - Diagrama de elementos terras raras normalizado pelo condrito de Boyton (1984)

Fonte: O AUTOR, 2020.

A Figura 20 apresenta as classificações propostas por Frost *et al.* (2001) e Frost & Frost (2008) aplicadas às rochas do Granito Sana. Em relação ao número de ferro, as rochas

plotam na transição entre os campos ferroso e magnesiano, destacando-se mais o campo férrico (Figura 20). O índice MALI (Na₂O + K₂O – CaO) demonstra que as rochas do Granito Sana são essencialmente Alcali-cálcicas, tendo uma amostra no campo alcalino e 3 amostras no campo cálcio-alcalino. No diagrama MALI as rochas apresentam evolução relativamente paralela aos campos do diagrama (Figura 20). Com relação à saturação em alumina, todas as amostras são classificadas como peraluminosas. O diagrama FSSI reforça o caráter peraluminoso das rochas (Figura 20).

Figura 20 – Diagramas de classificação para rochas graníticas.

Fonte: Adaptado de FROST ET AL. (2001) e FROST & FROST (2008).

Nos diagramas ternários de ambiência tectônica apresentados por Muller *et al.* (1992), as rochas do Granito Sana plotam no campo dos arcos magmáticos continentais e arcos magmáticos pós-colisionais (Figura 21). Já no diagrama de fontes magmáticas, apresentado por Laurent *et al.* (2014), as rochas plotam no campo dos magmas gerados por fusão parcial de metassedimentos (Figura 22).

Figura 21 - Diagramas discriminantes de ambientes tectônicos

Legenda: CAP – Arco magmático continental; PAP – Arco magmático pós-colisional; IOL – Arco magmático oceânico inicial; LOP - Arco magmático oceânico tardio.
 Fonte: Adaptado de MULLER *ET AL*. (1992).

Figura 22 – Diagramas discriminantes de fontes magmáticas

Fonte: Adaptado de LAURENT ET AL. (2014).

Os resultados dos cálculos de temperatura de saturação de Zr são apresentados na tabela 9. Os cálculos foram feitos com base nas equações apresentadas por Boehnke *et al.* (2013). Ao considerar a composição média das rochas, a temperatura de saturação de Zr para o Granito Sana é de 825,9°C. Conforme será discutido posteriormente, em magmatismo com muita herança de zircão as temperaturas de saturação marcam o pico de temperatura do evento magmático.

		Zr	Zr	TZr
Sample	М	(ppm)	saturação	saturação
SANA 04	1.3	235	167.8	786.1
SANA 05	1.3	364	162.1	841.3
SANA 06A	1.5	603	207.8	873.7
SANA 06B	1.5	667	190.0	899.0
SANA 07	1.5	457	198.9	844.1
SANA 08A	1.4	378	171.7	838.9
SANA 08B	1.4	458	175.5	860.0
SANA 09	1.5	627	202.5	882.1
SANA 10	1.6	783	219.9	**900.9
SANA 15	1.2	192	149.1	776.9
SANA 16	1.2	180	135.3	780.4
SANA 17A	1.4	239	170.9	786.0
SANA 17B	1.4	219	176.7	772.7
SANA 41	1.3	212	164.0	777.3
SANA 43	1.2	168	133.4	774.5
SANA 20	1.4	402	177.0	842.7
SANA 21	1.4	374	177.2	833.7
Sana 4'	1.3	188	156.0	*769.7
Sana 5'	1.3	202	156.7	777.0
Sana 12'	1.5	607	195.4	882.6
Sana14'	1.3	194	159.1	771.0
Sana 17'	1.6	763	216.4	899.6

Tabela 9 - Temperatura de saturação de Zr

Nota: Reusltados para os cálculos de saturação de Zr no magma (Zr saturação) e temperatura de saturação de zircão (TZr saturação).

Legenda: * Valor mínimo; ** Valor máximo

Fonte: O AUTOR, 2020.

3.3 Geocronologia U-Pb

As amostras selecionadas para datações U-Pb foram SANA 02, SANA 05, SANA 10, SANA 22 e SANA 28, sendo as três primeiras do corpo principal e as demais de um dos corpos "satélite" localizado a sudoeste. Todas as amostras apresentam populações de zircões heterogêneas, nas quais os cristais por vezes apresentam mais de uma fase de crescimento e/ou dissolução das bordas e, em geral, faces retilíneas (Figura 23). As diferenças de morfologia e a identificação de mais de uma fase de cristalização em alguns grãos indicam a presença de zircões herdados, conforme será discutido posteriormente.

Figura 23 - Tipos e morfologia dos cristais de zircão encontrados nas rochas do Granito Sana

Nota: Zircões prismáticos alongados com crescimento homogêneo demonstrado em A e com bordas que apresentam crescimento zonado demonstrado em B. Os grãos C, D e E apresentam crescimento zonado, contudo, o núcleo e as bordas aparentam ter variação composicional. O cristal F apresenta estrutura interna semelhantes aos cristais C, D e E, contudo, suas bordas aparentam estar dissolvidas e o grão apresenta forma mais arredondada.

Fonte: O AUTOR, 2020

Para os cálculos analíticos e plotagem nos diagramas de Concórdia, foram selecionados apenas os dados com valores de discordância iguais ou inferiores a 5%, razões Th/U superiores a 0.19, erros individuais nas leituras inferiores a 8%, Rho superior a 0.30 e valores baixos de Pb comum (f²⁰⁶Pb/²⁰⁴Pb>0.006). O conjunto de zircões datados nas cinco amostras sugere grande quantidade de zircões herdados.

Na amostra SANA 02 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 659 ± 8 Ma e 464 ± 18 Ma (Tabelas 10 e 11) (Figura 24). Os grãos utilizados no cálculo da idade de cristalização (N=10) têm idades variando entre 464 ± 18 Ma e 492 ± 10 Ma, com uma idade média de 480 ± 6 Ma, MSWD = 0.016 e probabilidade de 0.90 (Figura 25). As análises de grãos que não foram utilizadas para o cálculo da idade de cristalização e não foram descartadas, foram interpretadas como grãos herdados.

Nota: As idades U-Pb são relatadas como ²⁰⁶Pb/²³⁸U em Ma, com erros em 2σ. Em A são apresentados os grãos utilizados no cálculo da idade de cristalização da amostra. Em B são apresentados os grãos interpretados neste trabalho como grãos herdados.

Fonte: O AUTOR, 2020.

Figura 25 – Diagrama concórdia com os dados plotados da amostra SANA 02

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra SANA 02, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e as elipses cinzas foram interpretadas como idades de grãos herdados. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra SANA 02.
Fonte: O AUTOR, 2020.

								Razõe	s isotóp	oicas						Idade	s (Ma)			
Número	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb [/]	1 s		²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s Ab	²⁰⁷ Pb/	1 s	% Con	%
do spot	200	ppm	Ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	S	²⁰⁶ Pb	abs	с	Disc.
02A_01*	0.0026	38	162	431	0.38	0.6038	2.68	0.0772	2.29	0.86	0.0567	1.39	480	11	480	13	480	7	100	0
02A_02	0.0083	21	109	82	1.33	2.1705	2.16	0.1991	1.20	0.55	0.0791	1.79	1170	14	1172	25	1174	21	100	0
02A_03	0.0128	10	61	107	0.56	0.6489	2.42	0.0823	1.50	0.62	0.0572	1.89	510	8	508	12	500	9	102	-2
02A_04*	0.0024	29	130	319	0.41	0.6077	4.05	0.0776	3.78	0.93	0.0568	1.45	482	18	482	20	483	7	100	0
02A_05*	0.0048	17	73	197	0.37	0.6222	2.62	0.0792	1.99	0.76	0.0570	1.71	492	10	491	13	490	8	100	0
02A_06*	0.0044	14	115	149	0.77	0.6037	2.99	0.0771	2.26	0.76	0.0568	1.95	479	11	480	14	482	9	99	1
02A_07*	0.0047	15	56	174	0.32	0.5801	3.26	0.0747	2.79	0.86	0.0563	1.69	465	13	465	15	465	8	100	0
02A_08**	0.0048	24	158	233	0.68	0.6972	3.83	0.0866	3.54	0.92	0.0584	1.46	535	19	537	21	544	8	98	2
02A_09	0.0013	47	48	580	0.08	0.6021	2.01	0.0764	1.56	0.77	0.0572	1.28	474	7	479	10	499	6	95	5
02A_10**	0.0047	32	220	278	0.79	0.7418	2.13	0.0913	1.64	0.77	0.0589	1.36	563	9	563	12	565	8	100	0
02A_11*	0.0042	19	66	211	0.32	0.6150	2.26	0.0788	1.78	0.79	0.0566	1.39	489	9	487	11	477	7	102	-2
02A_12	0.0050	8	27	85	0.31	0.7148	1.92	0.0896	1.38	0.72	0.0578	1.34	553	8	548	11	524	7	106	-6
02A_13	0.0298	8	46	76	0.60	0.7997	2.36	0.0971	1.24	0.52	0.0597	2.01	598	7	597	14	593	12	101	-1
02B_01**	0.0036	15	173	130	1.33	0.6695	1.42	0.0834	0.73	0.51	0.0582	1.22	516	4	520	7	538	7	96	4
02B_02**	0.0025	26	87	220	0.40	0.9082	1.88	0.1076	1.14	0.61	0.0612	1.49	659	8	656	12	647	10	102	-2
02B_03**	0.0032	25	67	242	0.27	0.7097	1.64	0.0884	0.84	0.51	0.0583	1.41	546	5	545	9	539	8	101	-1
02B_04**	0.0034	16	65	177	0.37	0.6799	2.10	0.0852	1.30	0.62	0.0579	1.65	527	7	527	11	525	9	100	0
02B_05**	0.0043	11	85	112	0.76	0.6919	1.71	0.0862	1.12	0.65	0.0582	1.30	533	6	534	9	538	7	99	1
02B_06*	0.0041	36	289	346	0.84	0.6178	2.42	0.0787	2.15	0.89	0.0569	1.09	488	11	488	12	489	5	100	0
02B_07**	0.0040	17	230	142	1.63	0.7388	1.62	0.0915	0.95	0.59	0.0586	1.31	564	5	562	9	551	7	103	-3

Tabela 10 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 02.

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 02; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por f_{206} >0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%.

								Razõe	s isotóp	oicas						Idade	s (Ma)			
	f	Pb	Th	U			1 s		1 s			1 s		1 s		1 s		1 s	%	%
Número	 206				Th/U	²⁰⁷ Pb [/]		²⁰⁶ Pb [/]			²⁰⁷ Pb [/]		²⁰⁶ Pb/		²⁰⁷ Pb/	Ab	²⁰⁷ Pb/		Con	
do spot	200	ppm	Ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	S	²⁰⁶ Pb	abs	С	Disc.
02B_08*	0.002																			
*	2	29	139	234	0.59	0.8718	1.89	0.1037	1.23	0.65	0.0610	1.43	636	8	637	12	638	9	100	0
	0.006		040	075		0.0004	0.00		4.00	0.40	0 0500	0.47	540	_	505	40	004	40		
02B_09	4	38	313	375	0.84	0.6931	2.39	0.0839	1.00	0.42	0.0599	2.17	519	5	535	13	601	13	86	14
02B 10*	0.004	33	170	386	0.44	0.5810	1 22	0.0746	3 05	0.03	0 0565	1 50	464	18	165	20	470	7	00	1
020_10	0.004	- 55	170	500	0.44	0.5010	4.22	0.0740	5.55	0.35	0.0000	1.50	404	10	400	20	470	'	33	I
02B_11*	5	31	141	365	0.39	0.6039	2.23	0.0775	1.56	0.70	0.0565	1.59	481	7	480	11	473	8	102	-2
	0.004																			
02B_12*	7	30	81	362	0.22	0.5906	2.26	0.0760	1.63	0.72	0.0564	1.57	472	8	471	11	467	7	101	-1
02B_13*	0.003																			
*	4	27	68	319	0.21	0.6516	2.53	0.0823	1.74	0.69	0.0575	1.84	510	9	509	13	509	9	100	0

Tabela 11 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 02 (continuação)

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 02; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra SANA 05 o conjunto de zircões apresenta idades, relatadas como ²⁰⁶Pb/²³⁸U, variando entre 656±16 Ma e 479±9 Ma (Tabelas 12 e 13) (Figura 26). Nesta amostra não foi possível calcular uma idade de cristalização pois apenas 6 análises não foram excluídas, sendo que destas ao menos metade das análises foram interpretadas como grãos herdados. Os resultados desta amostra foram apresentados apenas para reforçar a quantidade de grãos herdados presentes no Granito Sana.

Figura 26 - Diagrama concórdia com os dados plotados da amostra SANA 05

Nota: Nesta amostra não foi possível calcular uma idade de cristalização devido à baixa quantidade de amostras e à dispersão delas. Fonte: O AUTOR, 2020.

								Razõe	s isotóp	oicas						Idades	s (Ma)			
Número	f	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb [/]	1 s		²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
do spot	200	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	Abs	²⁰⁶ Pb	abs	Conc	Disc.
05A_01	0.0017	16	28	165	0.17	0.6799	5.16	0.0852	4.99	0.97	0.0579	1.31	527	26	527	27	526	7	100	0
05A_02	0.0017	12	137	107	1.28	0.5765	1.41	0.0776	0.92	0.65	0.0539	1.07	482	4	462	7	365	4	132	-32
05A_03	0.0008	17	43	169	0.25	0.7908	1.64	0.0973	0.73	0.45	0.0590	1.47	598	4	592	10	566	8	106	-6
05A_04	0.0036	21	10	259	0.04	0.8588	9.53	0.1023	9.08	0.95	0.0609	2.88	628	57	629	60	636	18	99	1
05A_05	0.0045	11	129	98	1.32	0.6038	3.56	0.0771	1.95	0.55	0.0568	2.98	479	9	480	17	485	14	99	1
05A_06	0.0009	20	36	218	0.16	0.6920	2.49	0.0868	1.99	0.80	0.0578	1.49	536	11	534	13	524	8	102	-2
05A_07	0.0019	37	9	369	0.03	0.9153	3.29	0.1096	1.70	0.52	0.0606	2.82	670	11	660	22	624	18	107	-7
05A_08	0.0048	56	112	635	0.18	1.0769	3.36	0.1228	2.84	0.85	0.0636	1.78	747	21	742	25	729	13	102	-2
05A_09	0.0022	31	16	315	0.05	0.6505	3.16	0.0822	2.73	0.86	0.0574	1.60	509	14	509	16	508	8	100	0
05A_10	0.0019	7	103	56	1.82	0.6072	2.47	0.0842	0.88	0.35	0.0523	2.31	521	5	482	12	298	7	175	-75
05A_11	0.0048	17	14	195	0.07	1.0315	2.14	0.1182	1.64	0.77	0.0633	1.37	720	12	720	15	718	10	100	0
05A_12	0.0176	8	45	72	0.62	0.7918	15.52	0.0793	4.53	0.29	0.0724	14.84	492	22	592	92	998	148	49	51
05A_13	0.0023	36	496	262	1.90	0.8296	3.51	0.0984	2.00	0.57	0.0611	2.89	605	12	613	22	644	19	94	6
05B_01	0.0187	66	18	551	0.03	1.0503	5.43	0.0971	5.02	0.92	0.0784	2.07	597	30	729	40	1158	24	52	48
05B_02	0.0032	24	79	259	0.31	0.8618	3.18	0.1058	0.82	0.26	0.0591	3.07	649	5	631	20	569	17	114	-14
05B_03	0.0023	16	136	151	0.90	0.6533	2.00	0.0818	1.20	0.60	0.0579	1.60	507	6	511	10	527	8	96	4
05B_04	0.0033	43	58	494	0.12	0.8994	12.02	0.1056	3.47	0.29	0.0618	11.51	647	22	651	78	667	77	97	3
05B_05	0.0048	19	19	196	0.09	1.4113	5.20	0.1451	3.03	0.58	0.0705	4.23	874	26	894	46	944	40	93	7
05B_06	0.0033	19	17	191	0.09	0.8797	4.72	0.1048	1.87	0.40	0.0609	4.34	643	12	641	30	634	28	101	-1
05B_07	0.0021	31	130	343	0.38	0.6743	1.79	0.0851	0.97	0.54	0.0575	1.51	526	5	523	9	510	8	103	-3

Tabela 12 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 05.

Nota: Nesta amostra não foi possível determinar a idade de cristalização devido à alta dispersão das poucas análises que não foram excluídas. Legenda: As linhas sombreadas representam os dados descartados por f_{206} >0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

								Razõe	s isotóp	oicas						Idades	s (Ma)			
Número	f	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb [/]	1 s		²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
do spot	206	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	Abs	²⁰⁶ Pb	abs	Conc	Disc.
05B_08	0.0031	9	122	72	1.68	0.6543	2.13	0.0816	1.22	0.57	0.0581	1.75	506	6	511	11	535	9	95	5
05B_09	0.0036	67	531	619	0.86	0.9145	3.69	0.1071	2.41	0.65	0.0619	2.79	656	16	659	24	672	19	98	2
05B_10	0.0019	12	150	109	1.38	0.7080	1.70	0.0874	1.01	0.59	0.0587	1.37	540	5	544	9	557	8	97	3
05B_11	0.0013	7	37	73	0.51	0.7674	14.12	0.0939	2.13	0.15	0.0593	13.96	578	12	578	82	578	81	100	0
05B_12	0.0012	70	29	831	0.03	0.6992	3.67	0.0863	2.42	0.66	0.0587	2.76	534	13	538	20	557	15	96	4
05B_13	0.0031	18	108	184	0.59	0.7997	4.76	0.0867	1.11	0.23	0.0669	4.62	536	6	597	28	835	39	64	36

Tabela 13 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 05 (continuação)

Nota: Nesta amostra não foi possível determinar a idade de cristalização devido à alta dispersão das poucas análises que não foram excluídas. Legenda: As linhas sombreadas representam os dados descartados por f_{206} >0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra SANA 10 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 562 ± 7 Ma e 485 ± 8 Ma (Tabela 14) (Figura 27). Os grãos utilizados no cálculo da idade de cristalização (N=13) têm idades variando entre 485 ± 7 Ma e 510 ± 7 Ma, com uma idade média de 495 ± 4 Ma, MSWD = 0,043 e probabilidade de 0,84 (Figura 28). Apenas uma idade nesta amostra foi interpretada como grão herdado.

Figura 27 - Imagens de catodoluminescência dos cristais de zircão da amostra SANA 10.

Nota: As idades U-Pb são relatadas como ²⁰⁶Pb/²³⁸U em Ma, com erros em 2σ. São apresentados apenas os grãos utilizados no cálculo da idade de cristalização da amostra. Fonte: O AUTOR, 2020.

Figura 28 - Diagrama concórdia com os dados plotados da amostra SANA 10

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra SANA 10, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra SANA 10.

Fonte: O AUTOR, 2020.

								Razõe	es isotóp	icas						ldades (Ma)			
	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Numero do spot	,	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
10A_01*	0.0044	16	270	126	2.14	0.6527	1.89	0.0823	1.32	0.70	0.0575	1.36	510	7	510	10	511	7	100	0
10A_02*	0.0041	13	195	104	1.88	0.6374	2.39	0.0806	1.97	0.83	0.0573	1.34	500	10	501	12	505	7	99	1
10A_03*	0.0050	12	159	110	1.44	0.6468	2.12	0.0817	1.40	0.66	0.0574	1.59	506	7	507	11	508	8	100	0
10A_04*	0.0030	20	371	153	2.43	0.6229	1.84	0.0793	1.17	0.63	0.0570	1.43	492	6	492	9	491	7	100	0
10A_05*	0.0035	12	217	87	2.50	0.6401	2.77	0.0814	2.38	0.86	0.0571	1.41	504	12	502	14	494	7	102	-2
10A_06*	0.0025	11	126	100	1.26	0.6173	1.79	0.0788	1.32	0.74	0.0568	1.21	489	6	488	9	485	6	101	-1
10B_01*	0.0035	3	48	27	1.82	0.6156	2.96	0.0784	1.77	0.60	0.0569	2.37	487	9	487	14	489	12	100	0
10B_02*	0.0036	12	228	84	2.71	0.6225	2.21	0.0793	1.35	0.61	0.0570	1.75	492	7	491	11	490	9	100	0
10B_03*	0.0027	12	228	87	2.64	0.6277	1.94	0.0797	1.34	0.69	0.0571	1.41	494	7	495	10	496	7	100	0
10B_04*	0.0021	16	250	122	2.05	0.6119	1.82	0.0781	1.36	0.75	0.0568	1.20	485	7	485	9	485	6	100	0
10B_05*	0.0013	26	492	188	2.61	0.6339	2.31	0.0805	1.69	0.73	0.0571	1.58	499	8	499	12	497	8	100	0
10B_06*	0.0024	15	173	122	1.41	0.6173	3.84	0.0786	3.24	0.84	0.0570	2.06	488	16	488	19	490	10	100	0
10B_08*	0.0018	14	176	121	1.46	0.6295	1.60	0.0803	1.18	0.74	0.0569	1.08	498	6	496	8	486	5	102	-2
10A_07**	0.0020	7	39	61	0.64	0.7497	2.33	0.0911	1.40	0.60	0.0597	1.85	562	8	568	13	591	11	95	5
10A_08	0.0040	8	38	74	0.52	0.7855	1.46	0.0973	0.95	0.65	0.0585	1.11	599	6	589	9	550	6	109	-9
10A_09	0.0040	8	38	74	0.52	0.7816	1.61	0.0975	0.91	0.57	0.0581	1.32	600	5	586	9	534	7	112	-12
10B_09	0.0016	14	193	120	1.61	0.6289	1.64	0.0809	1.22	0.75	0.0564	1.09	501	6	495	8	468	5	107	-7

Tabela 14 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 10.

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 10; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* ₂₀₆>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra SANA 22 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 581±19 Ma e 494±6 Ma (Tabelas 15 e 16) (Figura 29). Os grãos utilizados no cálculo da idade de cristalização (N=14) têm idades variando entre 485±7 Ma e 538±19 Ma, com uma idade média de 508±5 Ma, MSWD = 0,37 e probabilidade de 0,55 (Figura 30).

Figura 29 - Imagens de catodoluminescência dos cristais de zircão da amostra SANA 22.

Nota: As idades U-Pb são relatadas como ²⁰⁶Pb/²³⁸U em Ma, com erros em 2σ. Em A são apresentados os grãos utilizados no cálculo da idade de cristalização da amostra. Em B são apresentados os grãos interpretados neste trabalho como grãos herdados.

Fonte: O AUTOR, 2020.

Figura 30 – Diagrama concórdia com os dados plotados da amostra SANA 22

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra SANA 22, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e as elipses cinzas foram interpretadas como idades de grãos herdados. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra SANA 22.
Fonte: O AUTOR, 2020.

								Razõe	s isotóp	oicas						Idades	s (Ma)			
Número	f	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb [/]	1 s		²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
do spot	200	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	Abs	²⁰⁶ Pb	abs	Conc	Disc.
22A_01*	0.0026	9	55	94	0.58	0.6345	6.50	0.0813	3.77	0.58	0.0566	5.30	504	19	499	32	477	25	105	-5
22A_02	0.0008	19	193	193	1.00	0.6758	6.28	0.0864	3.53	0.56	0.0567	5.19	534	19	524	33	481	25	111	-11
22A_03	0.0008	21	127	229	0.55	0.6727	6.25	0.0853	3.60	0.58	0.0572	5.12	528	19	522	33	499	26	106	-6
22A_04**	0.0016	43	100	479	0.21	0.7700	6.72	0.0942	4.33	0.64	0.0593	5.15	580	25	580	39	578	30	100	0
22A_05**	0.0043	25	75	284	0.26	0.7832	5.91	0.0943	3.27	0.55	0.0602	4.93	581	19	587	35	612	30	95	5
22A_06*	0.0022	14	167	125	1.33	0.6634	6.78	0.0835	3.70	0.55	0.0576	5.68	517	19	517	35	515	29	100	0
22A_07**	0.0028	15	229	130	1.76	0.7147	6.09	0.0886	3.45	0.57	0.0585	5.01	547	19	548	33	550	28	100	0
22A_08	0.0024	12	180	94	1.91	0.6879	6.22	0.0876	3.48	0.56	0.0569	5.15	542	19	532	33	489	25	111	-11
22A_09	0.0040	32	493	264	1.86	0.7368	7.05	0.0891	3.51	0.50	0.0600	6.11	550	19	561	40	603	37	91	9
22A_10*	0.0011	20	161	206	0.78	0.6603	6.28	0.0840	3.65	0.58	0.0570	5.10	520	19	515	32	493	25	105	-5
22A_11*	0.0008	30	404	257	1.58	0.6970	6.19	0.0871	3.62	0.58	0.0580	5.03	538	19	537	33	531	27	101	-1
22A_12*	0.0015	16	125	172	0.72	0.6832	6.27	0.0863	3.54	0.56	0.0574	5.18	534	19	529	33	507	26	105	-5
22A_13*	0.0005	34	259	365	0.71	0.6280	6.41	0.0798	3.82	0.60	0.0571	5.15	495	19	495	32	496	26	100	0
22B_01*	0.0024	8	51	86	0.59	0.6199	2.29	0.0797	1.29	0.56	0.0564	1.89	494	6	490	11	470	9	105	-5
22B_02	0.0008	18	180	177	1.02	0.6478	2.03	0.0831	1.26	0.62	0.0566	1.59	514	7	507	10	475	8	108	-8
22B_03*	0.0008	19	119	210	0.57	0.6362	2.22	0.0813	1.27	0.57	0.0568	1.82	504	6	500	11	483	9	104	-4
22B_04*	0.0016	39	93	438	0.21	0.7032	3.41	0.0869	2.60	0.76	0.0587	2.21	537	14	541	18	556	12	97	3
22B_05**	0.0023	23	70	260	0.27	0.7710	2.16	0.0938	1.19	0.55	0.0596	1.80	578	7	580	13	591	11	98	2
22B_06*	0.0022	13	156	114	1.36	0.6535	4.37	0.0827	1.49	0.34	0.0573	4.11	512	8	511	22	504	21	102	-2
22B_07*	0.0028	14	214	119	1.80	0.6978	3.29	0.0866	1.25	0.38	0.0585	3.04	535	7	537	18	548	17	98	2

Tabela 15 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 22.

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 22; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

								Razõe	s isotó	picas						Idade	s (Ma)			
Númer	f	Pb	Th	U	Th/		1 s		1 s			1 s		1 s		1 s	²⁰⁷ Pb/	1 s	%	%
o do	206				U	²⁰⁷ Pb [/]	[%	²⁰⁶ Pb [/]	[%		²⁰⁷ Pb [/]	[%	²⁰⁶ Pb/		²⁰⁷ Pb/	Ab			Con	Disc
spot		ppm	ppm	ppm		²³⁵ U]	²³⁸ U]	Rho	²⁰⁶ Pb]	²³⁸ U	abs	²³⁵ U	S	²⁰⁶ Pb	abs	С	
22B_08	0.0024	11	169	86	1.95	0.6661	2.34	0.0849	1.22	0.52	0.0569	1.99	526	6	518	12	486	10	108	-8
22B_09*	0.0040	29	462	242	1.91	0.6553	2.94	0.0827	1.51	0.51	0.0574	2.52	513	8	512	15	508	13	101	-1
22B_10	0.0011	18	151	188	0.80	0.6261	2.16	0.0804	1.32	0.61	0.0565	1.72	498	7	494	11	472	8	106	-6
22B_11*	0.0011	27	379	235	1.61	0.6588	2.51	0.0833	1.83	0.73	0.0574	1.71	516	9	514	13	506	9	102	-2
22B_12*	0.0015	15	117	158	0.74	0.6321	2.29	0.0806	1.36	0.59	0.0569	1.84	500	7	497	11	486	9	103	-3
22B_13	0.0005	31	242	334	0.73	0.6933	2.11	0.0888	1.37	0.65	0.0566	1.60	549	8	535	11	476	8	115	-15

Tabela 16 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 22 (continuação)

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 22; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra SANA 28 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 625 ± 6 Ma e 491 ± 4 Ma (Tabelas 17 e 18) (Figura 31). Os grãos utilizados no cálculo da idade de cristalização (N=4) têm idades variando entre 485 ± 7 Ma e 518 ± 4 Ma, com uma idade média de 506 ± 10 Ma, MSWD = 0,095 e probabilidade de 0,76 (Figura 32).

Figura 31 - Imagens de catodoluminescência dos cristais de zircão da amostra SANA 28

Nota: As idades U-Pb são relatadas como ²⁰⁶Pb/²³⁸U em Ma, com erros em 2σ. Em A são apresentados os grãos utilizados no cálculo da idade de cristalização da amostra. Em B são apresentados os grãos interpretados neste trabalho como grãos herdados.

Fonte: O AUTOR, 2020.

Figura 32 - Diagrama concórdia com os dados plotados da amostra SANA 28

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra SANA 28, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e as elipses cinzas foram interpretadas como idades de grãos herdados. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra SANA 28.
 Fonte: O AUTOR, 2020.

								Razõe	s isotóp	oicas						Idade	s (Ma)			
Número	f	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb [/]	1 s		²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
do spot	200	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	Abs	²⁰⁶ Pb	abs	Conc	Disc.
28A_01	0.0014	48	87	515	0.17	0.7916	1.55	0.0967	0.52	0.34	0.0593	1.45	595	3	592	9	580	8	103	-3
28A_02**	0.0019	16	83	142	0.59	0.8508	1.85	0.1018	0.93	0.51	0.0606	1.60	625	6	625	12	626	10	100	0
28A_03**	0.0026	14	172	117	1.47	0.6887	2.64	0.0861	2.05	0.78	0.0580	1.66	532	11	532	14	531	9	100	0
28A_04*	0.0017	13	168	109	1.54	0.6536	1.96	0.0822	1.34	0.69	0.0576	1.43	509	7	511	10	516	7	99	1
28A_05	0.0006	60	29	670	0.04	0.7004	1.26	0.0874	0.59	0.47	0.0581	1.11	540	3	539	7	535	6	101	-1
28A_06	0.0004	92	39	1030	0.04	0.7032	1.26	0.0879	0.64	0.51	0.0580	1.08	543	3	541	7	532	6	102	-2
28A_07	0.0015	44	42	487	0.09	0.7019	1.58	0.0867	0.66	0.42	0.0587	1.44	536	4	540	9	556	8	96	4
28A_08**	0.0010	32	80	329	0.24	0.7758	1.49	0.0951	0.81	0.54	0.0591	1.25	586	5	583	9	573	7	102	-2
28A_09	0.0006	24	212	304	0.70	0.6018	1.40	0.0759	0.77	0.27	0.0575	1.16	472	4	478	7	511	6	92	8
28A_10	0.0007	73	38	827	0.05	0.6876	1.33	0.0860	0.70	0.53	0.0580	1.13	532	4	531	7	530	6	100	0
28A_11	0.0051	10	63	92	0.69	0.7232	1.34	0.0858	0.70	0.53	0.0611	1.14	531	4	553	7	643	7	83	17
28A_12	0.0046	9	122	83	1.48	0.7284	1.47	0.0888	0.71	0.49	0.0595	1.28	548	4	556	8	586	8	94	6
28A_13	0.0050	24	345	199	1.74	0.6151	1.48	0.0764	0.91	0.62	0.0584	1.17	474	4	487	7	546	6	87	13
28B_01	0.0022	11	160	106	1.51	0.5733	1.82	0.0740	1.46	0.29	0.0562	1.09	460	7	460	8	459	5	100	0
28B_02	0.0038	12	184	107	1.72	0.5722	1.21	0.0731	0.80	0.66	0.0568	0.91	455	4	459	6	483	4	94	6
28B_03*	0.0023	16	114	178	0.64	0.6260	1.42	0.0792	0.89	0.63	0.0573	1.10	491	4	494	7	505	6	97	3
28B_04*	0.0032	22	276	196	1.40	0.6460	2.01	0.0815	1.60	0.79	0.0575	1.22	505	8	506	10	509	6	99	1
28B_05**	0.0017	53	243	591	0.41	0.7749	2.49	0.0942	2.27	0.91	0.0597	1.02	580	13	583	15	592	6	98	2
28B_06	0.0064	14	216	125	1.73	0.6249	1.79	0.0782	0.84	0.47	0.0579	1.58	486	4	493	9	527	8	92	8
28B_07	0.0053	13	150	132	1.13	0.6346	1.35	0.0793	0.97	0.72	0.0580	0.94	492	5	499	7	531	5	93	7

Tabela 17 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 28

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 28; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

								Razõe	s isotóp	icas						Idades	s (Ma)			
Número	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb [/]	1 s		²⁰⁷ Pb [/]	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
do spot		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	Abs	²⁰⁶ Pb	abs	Conc	Disc.
28B 08**	0.004	10	292	102	2 86	0 7587	2 81	0 0927	2 17	0.77	0 0594	1 77	572	12	573	16	580	10	98	2
200_00	0.004	10	LUL	102	2.00	0.1001	2.01	0.0021	2.17	0.11	0.0001		012		010	10	000	10	00	-
28B_09	1	18	254	173	1.47	0.5900	1.76	0.0733	0.88	0.50	0.0584	1.52	456	4	471	8	543	8	84	16
28B 10*	0.002 9	12	160	106	1 5 1	0 6662	2 00	0 0837	0.82	0.41	0.0577	1 83	518	4	518	10	520	٩	100	0
200_10	0.000	12	100	100	1.51	0.0002	2.00	0.0007	0.02	0.41	0.0077	1.00	510	-	510	10	520	3	100	U
28B_11	7	89	50	1011	0.05	0.6722	2.04	0.0843	1.61	0.79	0.0578	1.26	522	8	522	11	523	7	100	0
28B_12**	0.001 2	52	117	531	0.22	0.7436	1.87	0.0919	1.37	0.73	0.0587	1.27	567	8	565	11	556	7	102	-2

Tabela 18 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra SANA 28 (continuação)

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra SANA 28; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

3.4 Geologia isotópica Lu-Hf

As análises isotópicas de Lu-Hf foram feitas em 24 grãos de zircão que foram utilizados para calcular as idades de cristalização do Granito Sana, sendo 10 grãos da amostra SANA 02, 10 grãos da amostra SANA 22 e mais 4 grãos da amostra SANA 28. Destes 24 grãos, foram excluídos 4 resultados que apresentaram erro superior a 8%. As posições dos spots para análise Lu-Hf são apresentadas na figura 33. Dentre os resultados que não foram descartados, os valores de EHf variam entre -15,54 e -6,54 e as idades modelo para o manto depletado variam entre 2,22 e 1,69 Ga. Os dados analíticos são apresentados na tabela 19.

Figura 33 - Grãos de zircão utilizados para análises isotópicas de Lu-Hf

Nota: A posição dos *spots* aonde foram feitas as análises Lu-Hf é demarcada com o círculo vermelho tracejado. Fonte: O AUTOR, 2020.

	U/P	þ	Amos	stras (Razões	s isotópicas at	uais)	Chur	DM	Razõ	es isotópic	as iniciais	Idade	•	Residência	
Amostra	ldade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	modelo (DM) (Ga)	Corr (%)	crustal (Ga)
02A_01	480	6	0.282182	5.76E-05	5.15E-04	4.8E-05	0.282483	0.282901	0.282177	-21.33	-10.81	1.15	1.93	6	1.45
02A_04	480	6	0.282130	1.04E-04	2.28E-04	6.2E-05	0.282483	0.282901	0.282128	-23.15	-12.54	3.59	2.03	2	1.55
02A_05	480	6	0.282075	4.30E-05	3.78E-04	3.4E-06	0.282483	0.282901	0.282071	-25.11	-14.55	0.31	2.14	4	1.66
02A_06	480	6	0.281798	2.84E-04	9.57E-04	1.2E-04	0.282483	0.282901	0.281789	-34.90	-24.54	3.43	2.70	10	2.22
02A_07	480	6	0.282130	6.70E-05	6.22E-04	2.5E-05	0.282483	0.282901	0.282125	-23.15	-12.66	0.66	2.04	7	1.56
02A_11	480	6	0.282099	4.75E-05	4.90E-04	2.8E-05	0.282483	0.282901	0.282095	-24.26	-13.73	0.95	2.10	6	1.62
02B_06	480	6	0.282225	6.19E-05	2.16E-04	5.4E-06	0.282483	0.282901	0.282223	-19.81	-9.19	0.35	1.84	2	1.36
02b_10	480	6	0.282084	7.07E-05	1.61E-04	3.8E-06	0.282483	0.282901	0.282083	-24.79	-14.16	0.51	2.12	2	1.64
02B_11	480	6	0.282300	7.99E-05	2.23E-04	7.7E-06	0.282483	0.282901	0.282298	-17.15	-6.54	0.31	1.69	2	1.21
02B_12	480	6	0.282109	6.79E-05	1.64E-04	3.7E-06	0.282483	0.282901	0.282107	-23.92	-13.29	0.47	2.07	2	1.59
22A_01	508	5	0.282231	5.43E-05	1.10E-03	2.2E-05	0.282465	0.282880	0.282221	-19.58	-8.64	0.26	1.83	14	1.33
22A_06	508	5	0.282176	6.00E-05	8.52E-04	6.9E-05	0.282465	0.282880	0.282168	-21.52	-10.50	0.96	1.94	10	1.43
22A_10	508	5	0.282141	6.59E-05	3.88E-04	3.8E-06	0.282465	0.282880	0.282137	-22.79	-11.61	0.23	2.00	5	1.49
22A_11	508	5	0.282046	8.39E-05	4.40E-04	2.7E-05	0.282465	0.282880	0.282041	-26.15	-14.99	1.08	2.19	5	1.68
22A_12	508	5	0.282119	6.10E-05	2.37E-04	7.7E-06	0.282465	0.282880	0.282117	-23.56	-12.33	0.52	2.04	3	1.53
22A_13	508	5	0.282029	7.21E-05	2.74E-04	5.3E-06	0.282465	0.282880	0.282026	-26.75	-15.54	0.46	2.22	3	1.71
22B_01	508	5	0.282119	5.65E-05	2.24E-04	3.1E-06	0.282465	0.282880	0.282117	-23.56	-12.33	0.29	2.04	2	1.53
22B_03	508	5	0.282045	7.79E-05	3.74E-04	4.7E-06	0.282465	0.282880	0.282042	-26.16	-14.98	0.34	2.19	4	1.68
22B_06	508	5	0.282032	6.67E-05	2.78E-04	5.5E-06	0.282465	0.282880	0.282029	-26.63	-15.41	0.46	2.21	3	1.71
22B_07	508	5	0.282046	8.39E-05	4.40E-04	2.7E-05	0.282465	0.282880	0.282041	-26.15	-14.99	1.08	2.19	5	1.68
28A_04	506	10	0.282180	4.61E-05	2.01E-04	8.0E-06	0.282466	0.282882	0.282178	-21.40	-10.20	0.61	1.92	2	1.41
28B_03	506	10	0.282109	6.06E-05	9.47E-04	2.1E-05	0.282466	0.282882	0.282100	-23.89	-12.95	0.55	2.07	10	1.57
28B_04	506	10	0.282168	5.34E-05	3.55E-04	1.4E-05	0.282466	0.282882	0.282165	-21.81	-10.66	0.63	1.95	4	1.44
28B_10	506	10	0.282116	3.76E-05	1.97E-04	6.4E-06	0.282466	0.282882	0.282114	-23.65	-12.45	0.65	2.05	2	1.54

|--|

Nota: As linhas sombreadas em cinza representam os dados descartados para as interpretações por apresentarem erro superior a 8% e/ou $\pm 2SE > 1,1$. Fonte: O AUTOR, 2020.

3.5 Discussões e conclusões parciais

O Granito Sana é um corpo intrudido em paragnaisses do grupo São Fidélis, composto por granitoides isotrópicos, equigranulares e sem feições macroscópicas e microscópicas de deformação. Tais características fizeram com que esta unidade fosse inserida na suíte Nova Friburgo (Valeriano *et al.*, 2011; Geraldes et al., 2012).

A origem da suíte Nova Friburgo está associada ao magmatismo Cambro-Ordoviciano produto da interação litosfera-astenosfera durante o colapso do Orógeno Ribeira (Valeriano *et al.*, 2011; Valeriano *et al.*, 2016). Compõem esta suíte as unidades Mangaratiba, Mambucaba, Favela, Andorinha, Teresópolis, Nova Friburgo, Frades, Conselheiro Paulino, Itaoca, São José do Ribeirão, Morro do Coco e Sana (Valeriano *et al.*, 2011; Tupinambá, 2012; Tupinambá *et al.*, 2012; Geraldes et al., 2012; Valeriano *et al.*, 2016; Potratz & Valeriano, 2017; Bione *et al.*, 2019). Valeriano *et al.* (2011) definiram os corpos desta suíte com base em critérios geocronológicos, composicionais e estruturais, sendo esta composta principalmente por granitos a titanita, tipo I, leucocráticos e cálcio-alcalinos.

Analisando o conjunto de corpos pertencente à suíte Nova Friburgo, o Granito Sana é o que mais se difere das demais, sendo o mais homogêneo de todos tanto em relação à mineralogia, quanto em relação à variação textural. A maioria dos corpos da suíte Nova Friburgo apresenta variações faciológicas significativas, principalmente em relação à textura das rochas. Outro aspecto importante é a presença de rochas intermediárias a básicas na maioria destes corpos ígneos (Valeriano *et al.*, 2011; Valeriano *et al.*, 2016).

Os corpos desta suíte que mais se assemelham ao Granito Sana são os granitos Andorinha e Favela, que também não apresentam variação faciológica, mas diferem ligeiramente em sua mineralogia primária (Puget & Penha, 1980; Heilbron & Machado, 2003; Valeriano *et al.*, 2011).

Considerando inicialmente a composição mineralógica primária, observa-se a primeira questão em relação à classificação do Granito Sana em tipo I, por ser característico granito a duas micas (biotita e muscovita), o que, de acordo com Chappell & White (1974, 2001), é uma característica diagnóstica de granitos tipo S. O caráter primário da maioria dos cristais de muscovita do Granito Sana é reforçado pelos critérios texturais descritos por Miller *et al.* (1981), que consideram que cristais de muscovita de origem ígnea são euédricos a subédricos e de dimensões semelhantes às demais fases minerais (primárias) presentes na rocha, características essas que podem ser observadas na unidade em questão.

Além dos critérios texturais e do baixo grau de alteração das rochas do Granito Sana, evidências litogeoquímicas sugerem que estas rochas tenham evoluído exclusivamente por sua fase magmática, sem a presença de fluidos hidrotermais. Ballouard *et al.* (2016) consideram que concentrações de Sn < 30 ppm, Cs < 35 ppm e razões Nb/Ta > 5,0 em granitos peraluminosos indicam ausência de fluidos hidrotermais na evolução magmática, sendo todos estes critérios observados no Granito Sana.

Outra questão que pode ser destacada em relação à classificação do Granito Sana em tipo I é seu caráter peraluminoso. Chappell & White (1974, 2001) consideram que o caráter peraluminoso está associado a granitos tipo S e não a granitos tipo I. A presença de coríndon normativo reforça a associação a granitos tipo S. Os altos teores de potássio dessas rochas, além de suas características estruturais e composicionais, podem ter influenciado Valeriano *et al.* (2011) a classificarem como o Granito Sana como tipo I, contudo, os altos teores de potássio em um granitoide peraluminoso não são indicativos para a fonte do magmatismo, tão pouco para diferenciação nos tipos I e S, uma vez que todas as fusões parciais peraluminosas são ricas em K₂O (Gao *et al.*, 2017).

Diante do avanço de estudos em granitoides, a classificação destas rochas nos tipos I e S tem sido reavaliada, não podendo ser feita apenas pela mineralogia primária e o índice de saturação de alumina conforme proposto por Chappell & White (1974). Gao *et al.* (2016) e Gao *et al.* (2017) destacam que essa dificuldade em aplicar a classificação em tipos I e S se deve ao fato de que as características de granitos altamente diferenciados se sobrepõem, havendo então a necessidade de avaliar características que vão além da composição mineralógica e do índice de saturação em alumina.

As correlações negativas observadas nos teores de P_2O_5 podem ser um bom indicativo das características da fonte, que, de acordo com Chappell (1999) e Chappell & White (2001), é uma característica típica de granitos tipo I. Os teores de P_2O_5 estão diretamente relacionados com a taxa de fusão da apatita, que por sua vez é controlada pela saturação em alumina. Gao *et al.* (2016) explicam que quanto maior o índice de saturação de alumina (ASI), maior será a solubilidade da apatita, ou seja, granitos tipo I tendem a apresentar correlações negativas de P_2O_5 devido à menor solubilidade de apatita das rochas fonte. Entretanto, deve-se ter cautela com essa observação, considerando que um granito tipo S, cuja fonte seja deficiente em apatita, também pode apresentar correlação negativa para o P_2O_5 , o que aparenta ser o caso do Granito Sana.

Outro critério para diferenciação de granitos tipo I e S é a variação do índice A/CNK em relação ao aumento dos teores de sílica. Clemens & Stevens (2012) destacam que granitos

tipo I apresentam correlação fortemente positiva em seus índices A/CNK, por outro lado, Gao *et al.* (2016) consideram que granitos tipo S apresentam valores constantes para o índice A/CNK, coerentemente com metassedimentos. O que se observa no Granito Sana são valores relativamente constantes para este índice (Figura 34).

Figura 34 - Correlação do índice A/CNK com a evolução da sílica

Nota: O índice A/CNK permanece relativamente constante quando correlacionado com os teores de SiO₂, uma característica considerada por Gao et al. (2016) como típica de granitos tipo S. Fonte: O AUTOR, 2020.

A razão CaO/Na₂O é apontada por Sylvester (1998) como outro indicativo de tipos de fontes que dão origem a magmas graníticos. As rochas do Granito Sana apresentam valores de CaO/Na₂O maiores que 0,3, o que é considerado por Sylvester (1998) como característicos de um magma formado pela fusão parcial de rochas metassedimentares, com exceção de psamitos. A origem do magma associada à fusão parcial de metassedimentos também é observada no diagrama de Laurent *et al.* (2014) (Figura 22).

As baixas razões Sr/Y (<30) e razões La/Yb altamente variadas observadas no Granito Sana, indicam, segundo Gao *et al.* (2016) e Gao *et al.* (2017), que a fusão parcial que deu origem a este granito tenha ocorrido sob condições de baixas pressões, altas temperaturas e com plagioclásio residual significante. O efeito do plagioclásio residual na fonte também é observado nas anomalias negativas de Sr, Ba e Eu (Figura 18). A figura 35 traz o diagrama apresentado por Wang *et al.* (2016), no qual as rochas do Granito Sana plotam no campo F3 que representa a estabilidade do plagioclásio na fonte com pouca ou nenhuma granada.

Nota: A – Razões Sr/Y < 30 demonstradas no diagrama Sr/Y vs SiO₂; B- Razões variadas de La/Yb observadas no diagrama La/Yb vs SiO₂; C – Diagrama Sr/Y vs La/Yb proposto por Wang et al. (2016) para interpretação de fontes para fusão parcial de magmas graníticos peraluminosos.

Legenda: F1 - campo de estabilidade da granada com pouco ou nenhum plagioclásio; F2 - campo de estabilidade da granada e do plagioclásio; F3 - campo de estabilidade do plagioclásio com pouca ou nenhuma granada.

Fonte: O AUTOR, 2020.

Em relação a soma dos teores de ferro total (FeO_T) e MgO, os valores para o Granito Sana não ultrapassam 5%, o que é considerado por Gao *et al.* (2017) como produto de fusões parciais a partir da desidratação da biotita, enquanto valores acima de 5% são associados à fusões parciais geradas por desidratação de anfibólio.

Os diagramas discriminantes de ambientes tectônicos de Muller *et al.* (1992) indicam afinidade com o ambiente de arco magmático continental (Figura 21). Associado a isso, as características mineralógicas e geoquímicas são semelhantes aos granitoides tipo MPG caracterizados por Barbarin (1996, 1999). Barbarin (1999) considera que granitos tipo MPG tem sua origem associadas unicamente à fusão parcial de rochas crustais e estão associados à Orógenos colisionais. O fato de não haver evidências de deformação nas rochas do Granito Sana pode-se indicar que este magmatismo tenha ocorrido no estágio pós-colisional do Orógeno Ribeira. Os dados isotópicos Lu-Hf sustentam a hipótese de contribuição exclusivamente crustal para o magmatismo que deu origem ao Granito Sana, demonstrado pelos valores negativos de EHf no momento da cristalização deste granito. O diagrama da figura 36 demonstra a evolução dos isótopos de Hf a partir de um reservatório essencialmente crustal.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Fonte: O AUTOR, 2020.

Parte significativa dos cristais de zircão aparenta ter mais de um evento de cristalização, o que, de acordo com Miller *et al.* (2013), é comum em fusões félsicas que se aproximam da composição primária do líquido segregado, uma vez que uma fusão efetiva remove todos os zircões herdados e precocemente cristalizados e os coloca em solução. Somado a este fato, as diferentes tipologias de zircão e as diferentes idades obtidas sugerem que o magma que deu origem ao Granito Sana estiva saturado em zircões herdados das rochas fontes, que registram idades de eventos tectônicos e magmáticos anteriores à cristalização do Granito Sana e podem ser interpretados como xenocristais.

As idades concórdia interpretadas como idades de cristalização do Granito Sana foram 480±6 Ma (Sana 02), 495±4 Ma (Sana 10), 508±5 Ma (Sana 22) e 506±10 Ma (Sana 28). Apesar da pequena diferença, o corpo principal apresenta idades mais novas do que seu satélite. As idades de cristalização obtidas no corpo principal do Granito Sana são

concordantes com a idade U-Pb de 490,9<u>+</u>9,8 Ma (LA-ICPMS – zircão) obtida por Valeriano *et al.* (2011), que foi adotada como um dos critérios para inserir o Granito Sana na suíte Nova Friburgo.

As demais idades obtidas foram interpretadas como heranças de eventos anteriores ao magmatismo que deu origem ao Granito Sana. Considerando que as fontes do magma sejam as rochas encaixantes do Granito Sana, a existência de zircões herdados é perfeitamente crível, uma vez que este granito está encaixado em paragnaisses do grupo São Fidélis, podendo, portanto, haver zircões de outros eventos tectôno-magmáticos relacionados ao Orógeno Ribeira e até mesmo ao embasamento de sua bacia precursora.

Dois pulsos magmáticos principais foram propostos por Valeriano *et al.* (2011) para o magmatismo do estágio pós-colisional na Faixa Ribeira, com idades de 513 Ma e 486 Ma, tendo Valeriano *et al.* (2011) associado a cristalização do Granito Sana ao pulso magmático mais jovem. As idades obtidas para o corpo principal são concordantes com a hipótese dos dois pulsos, contudo, as idades obtidas para o corpo satélite sugerem que não exista necessariamente uma divisão entre dois pulsos magmáticos, mas sim que este magmatismo tenha se dado de forma contínua no intervalo de tempo de 506 ± 10 Ma e 480 ± 6 Ma, ao menos para o Granito Sana.

Em relação à temperatura de saturação de Zr (TZr), Miller *et al* (2013) consideram que em granitos ricos em herança de zircão (>5%) a TZr indica o limite superior na temperatura do magma. Miller *et al*. (2013) consideram ainda que granitos com grande quantidade de zircões herdados sejam formados por fusões parciais de rochas crustais com fracionamento limitado, próximas às composições mínimas de albita-ortoclásio-quartzo, a temperaturas em torno de 800°C e, portanto, necessitando de grande quantidade de fluidos para possibilitar a fusão parcial.

Considerando os dados apresentados para o Granito Sana, sugere-se então que sua gênese esteja associada à processos de fusão parcial de rochas crustais paraderivadas (Grupo São Fidélis) a partir da desidratação de minerais como biotita e muscovita, sem significativos fracionamentos em relação ao magma primário.

Dois modelos geodinâmicos principais são apresentados para explicar o magmatismo Cambro-Ordoviciano para o sistema orogênico Araçuaí-Ribeira: o primeiro, considera que a geração de magmas seja produto da quebra da litosfera oceânica subduzida após a colisão continental (Söllner *et al.*, 2000); o segundo está relacionado ao colapso extensional da crosta duplicada durante o estágio colisional (Heilbron & Machado, 2003, Pedrosa-Soares *et al.*, 2008). Para as duas situações, entende-se que haja intensa participação do manto sublitosférico parcialmente fundido e ascendente.

Considerando que não existem evidências de atuação direta de magmas de origem mantélica na gênese do Granito Sana, os dois modelos para o magmatismo Cambro-Ordoviciano no sistema Araçuaí-Ribeira não se aplicam a este granito. Sugere-se então a combinação dos modelos descritos por Sylvester (1998) e Barbarin (1999), aonde o intenso espessamento crustal fez com que a delaminação da litosfera, após colisão continental, fosse insuficiente para permitir que a astenosfera se elevasse a profundidades de fusão parcial. Com isso, o calor do manto astenosférico ter-se-ia transferido para a litosfera por meio de condução e contribuído com o processo de fusão parcial.

Por fim, considerando os aspectos até aqui discutidos, fica evidente que, apensar de idades concordantes, o Granito Sana não faz parte da suíte nova Friburgo, já que seu processo petrogenético difere dos demais corpos desta suíte. Os dados indicam também que em termos de datação relativa, esta unidade não seja exclusivamente pós-colisional, mas sim que este magmatismo marque a transição entre o estágio tardi-colisional e o pós-colisional. Portanto, sugere-se que o Granito Sana seja retirado da suíte Nova Friburgo e que o mesmo seja classificado como suíte Sana, que é caracterizada por leucogranitos peraluminosos tipo S, que marcam a transição entre os estágios tardi- e pós-colisional da Faixa Ribeira.

4 COMPLEXO INTRUSIVO DE SANTA ANGÉLICA

O Complexo Intrusivo de Santa Angélica (CISA), também denominado de Maciço Santa Angélica, é um plúton de caráter bimodal, cuja gênese está associada ao estágio póscolisional da Faixa Araçuaí-Congo Ocidental. Esta unidade aflora no município de Alegre, região Sul do estado do Espírito Santo (Figura 37). Partindo de Vitória, capital do estado do Espírito Santo, o CISA pode ser acessado a partir da rodovia BR-101, até o município de Cachoeiro de Itapemirim, seguindo pela rodovia ES-482 até o distrito de Rive e posteriormente pela rodovia Henrique Vanderlei.

Os pontos estudados no CISA foram plotados no mapa geológico apresentado por Nanni & Chaves (2011) e produzido pelas duas primeiras turmas de mapeamento geológico II, no curso de geologia da Universidade Federal do Espírito Santo (Figura 38). Este mapa foi adotado como base de apoio para os trabalhos de campo devido à escala de semi-detalhe que ele foi produzido (1:10.000).

Figura 37 - Mapa de localização do Complexo Intrusivo de Santa Angélica.

Nota: Localização e acesso ao Complexo Intrusivo de Santa Angélica (C), que aflora no município de Alegre, região sul do estado do Espírito Santo (B), sudeste do Brasil (A). Fonte: O AUTOR, 2020.

Nota: Os pontos plotados no mapa geológico do CISA representam os pontos estudados para descrições das características macroscópicas e coleta de amostras para datações UPb e determinações das razões isotópicas Lu-Hf. O granito tipo 1 é representado por uma rocha porfirítica de matriz fina, o granito tipo 2 é representado por granitos porfiríticos de matriz média a grossa. A zona híbrida é o resultado da mistura de magmas (ácidos e básicos) nas mais diversas proporções, sendo encontradas principalmente feições de mistura tipo *mingling*.

Fonte: Adaptado de Nanni & Chaves (2011).

4.1 Aspectos de campo e petrográficos

O Complexo Intrusivo de Santa Angélica é uma intrusão com formato ovalado e área de aproximadamente 200 Km² (Wiedemann-Leonardos *et al.*, 2000). Este plúton está intrudido principalmente no Ortognaisse Muniz Freire (Figura 38), fazendo contato também, a sudeste, com o paragnaisse do grupo Bom Jesus do Itabapoana. No contato com o CISA, a foliação das rochas encaixantes apresenta trend paralelo às bordas do plúton e mergulham em direção ao CISA com ângulos maiores que 50°, característica essa que difere do padrão regional das rochas encaixantes.

Diversos trabalhos já foram desenvolvidos no CISA com o objetivo de mapear as rochas que fazem parte desse complexo intrusivo e detalhar sua petrogênese, por exemplo Bayer et al. (1987), Wiedemann-Leonardos *et al.* (2000), De Campos *et al.* (2004), Zanon et al. (2012), Potratz *et al.* (2013), Zanon (2013), Torres (2013), Zanon *et al.* (2015), De Campos *et al.* (2016) e Altoé *et al.* (2017). Todos estes autores descrevem duas características principais para o CISA: a) zoneamento concêntrico inverso, aonde as bordas do plúton são graníticas e seu núcleo é composto por rochas gabróicas; b) uma zona híbrida, marcada por feições de mistura de magmas. Os principais afloramentos do CISA são em lajedos em topos de morro, encostas, cachoeiras, pedreiras e blocos rolados.

Bayer et al. (1987) distinguiram 4 domínios de rochas no CISA, sendo estes:

- a) Granito tipo I: Granito porfirítico com matriz de granulação muito grossa e presença de allanita;
- b) Granito tipo II: Granito porfirítico com matriz de granulação fina a média e presença de titanita;
- c) Zona híbrida: resultado do processo de mistura de magmas, exibindo feições típicas de mingling;
- d) Rochas gabróicas: piroxênio-biotita monzogabro e monzodiorito. Neste domínio são observadas as fácies com granulação grossa a porfirítica com matriz de granulação fina.

Nanni & Chaves (2011) apresentam um mapa geológico de semi-detalhe do CISA aonde foram definidas as unidades granito porfirítico de matriz fina, granito equigranular grosso, gabro, gabro porfirítico e uma zona de rochas híbridas. Por sua vez, Zanon *et al.* (2015) apresentam uma separação distinta para as rochas do CISA, considerando as unidades

gabro, quartzo monzonito, quartzo sienito e sienogranito como uma intensa zona de mistura, separando apenas uma segunda geração de sienogranitos tardios.

Considerando que diferentes mapas foram apresentados para o CISA e que em todos é observado o padrão da existência de rochas gabroicas, graníticas e de uma zona híbrida, foi adotando para este trabalho a divisão em três grupos distintos de rochas. A composição modal das rochas é apresentada na tabela 20.

Os grupos de rochas adotados para este trabalho são:

- a) Álcali-feldspato granitos: Foram descritas três amostras desse grupo (Figura 39), sendo este o grupo mais homogêneo, com poucas variações faciológicas;
- b) Gabros: Neste grupo foram descritas 4 amostras de gabronorito e uma amostra de leuco-piroxênio-hornblenda gabronorito (Figura 39), sendo observadas variações faciológicas nas rochas deste grupo;
- c) Rochas híbridas: Este é o grupo mais heterogêneo, aonde foram descritas 4 amostras de monzogranito, 2 de quartzo monzogabro e 2 quartzo gabro (Figura 39). Foram classificadas neste grupo todas as amostras coletadas em afloramentos em que foram descritas feições de mistura de magmas.

Figura 39 - Diagramas de classificação de rochas plutônicas

Legenda: a - Quartzolito; b - Granitos ricos em quartzo; c - Alcali feldspato granito; d - Sienogranito; e -Monzogranito; f - Granodiorito; g - Tonalito; h - Quartzo álcali feldspato sienito; i - Quartzo sienito; j -Quartzo monzonito; k – Quartzo monzodiorito/quartzo monzogabro; l – Quartzo diorito/quartzo gabro/quartzo anortosito; m - álcali-feldspato sienito; n - Sienito; o - Monzonito; p q – Diorito/gabro/anortosito; Monzodiorito/Monzogabro; 1 _ Anortosito; 2 Gabro/gabronorito/norito; 3,4 e 6 – Piroxênio-hornblenda gabro/piroxênio-hornblenda gabronorito/piroxênio-hornblenda norito; 5 - Hornblenda gabro; 7 - Piroxenito com plagioclásio; 8 -Honblenda-piroxenito com plagioclásio; 9 - Piroxênio-honblendito com plagioclásio; 10 -Hornblendito com plagioclásio; 11 - Anortosito; 12 - Gabro/gabronorito/norito; 13 - Troctolito; 14, 15 e 16 - Olivina gabro/olivina gabronorito/olivina norito; 17 - Rochas ultrabásicas com oligoclásio. Fonte: Adaptado de STRECKEISEN (1876).

MINERAIS			Gabro)			Híbridas ı	náficas		Н	íbridas monzo		Álcali-feldspato granito			
MINERAIS	CISA- 01	CISA- 03A	CISA- 03B	CISA-05	CISA- 06A	CISA- 04A	CISA- 07A	CISA- 07B	CISA- 09	CISA- 06B	CISA-08	CISA- 10A	CISA- 10B	CISA- 11A	CISA- 11B	CISA- 12
Quartzo	3.1	2.6	0.6	0.0	0.0	4.3	4.6	3.4	4.3	20.0	33.7	18.6	17.7	32.0	34.6	28.0
Álcali-felsdpato	0.0	3.4	1.1	0.0	0.0	0.0	2.9	8.0	6.3	25.1	55.4	29.7	24.3	54.3	60.6	51.7
Plagioclásio	55.1	53.1	58.0	53.1	51.4	51.4	45.1	43.4	43.4	21.1	0.0	21.1	31.1	0.0	0.0	3.7
Biotita	16.0	14.9	17.1	16.3	14.6	18.3	15.4	16.0	15.4	12.9	0.0	14.6	12.3	4.9	0.0	6.6
Hornblenda	0.0	0.0	0.0	0.0	9.1	0.0	0.0	0.0	10.6	8.3	0.0	0.0	0.0	0.0	0.0	0.0
Augita	15.4	12.3	16.0	9.4	15.7	14.6	16.0	14.6	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hiperstênio	6.6	6.0	3.4	12.9	1.7	6.6	9.7	7.1	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Allanita	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7	0.0	3.4	0.0	6.3	3.7	4.3
Titanita	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0	0.0	9.1	4.6	5.4	0.0	0.0	0.0
Apatita	2.3	0.0	0.0	1.1	0.0	0.0	1.4	1.7	2.6	0.9	0.0	1.7	1.4	0.0	0.0	0.0
Olivina	0.0	0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Zircão	0.9	0.6	0.3	0.3	0.6	0.6	0.6	0.6	0.3	1.4	1.7	0.9	1.1	0.6	1.1	1.1
Minerais opacos	0.6	7.1	3.4	5.1	3.7	4.3	4.3	5.1	2.3	6.6	0.0	5.4	6.6	2.0	0.0	4.6

Tabela 20 – Composição modal das amostras coletadas no Complexo Intrusivo de Santa Angélica.

Fonte: O AUTOR, 2020.

4.1.1 <u>Álcali-feldspato granito</u>

Esta unidade aflora principalmente nas bordas do CISA, nas porções mais elevadas no relevo. Estas rochas possuem coloração amarelada a esbranquiçada (Figura 40), são isotrópicas e inequigranulares, com granulação variando de fina a grossa, podendo ser encontrados alguns fenocristais de álcali-fedsptato. Os principais minerais que compõem estas rochas são quartzo e álcali-felspato, os demais minerais destas rochas são plagioclásio, biotita, minerais opacos, allanita, titanita e zircão. Esta unidade é representada pelas amostras CISA-11A, CISA-11B e CISA-12.

Nota: Álcali-feldspato granito de granulação fina a média, de coloração esbranquiçada a amarelada. Amostra CISA-11A.

Fonte: O AUTOR, 2020.

A composição média destas rochas é de aproximadamente 56% de álcali-feldspato, 32% de quartzo, 4% de allanita, 3% de biotita, 2% de titanita, 2% de minerais opacos, 1% de plagioclásio, 1% de zircão.

O principal álcali-feldspato destas rochas é a microclina (Figura 41-F), contudo, alguns cristais de ortoclásio também são encontrados, podendo estes estar em vias de triclinização. Os cristais de álcali-feldspato apresentam hábito granular anédrico a subédrico, granulação fina grossa e podem estar parcialmente alterados para muscovita (Figura 41-C,D). O quartzo tem hábito granular anédrico (Figura 41-E), granulação variando de fina a grossa e em raros casos apresenta inclusões de biotita.

O plagioclásio é praticamente inexistente nestas rochas, sendo encontrados raros cristais com hábito granular e granulação fina, em geral inclusos em cristais de quartzo. Os cristais de biotita apresentam hábito tabular euédrico (Figura 41-A) a subédrico e possuem inclusões de zircão e minerais opacos. Titanita e allanita (Figura 41-B) possuem hábito granular anédrico a subédrico e granulação média a grossa.

Figura 41 - Fotomicrografias do álcali-feldspato granito.

Legenda: Ms – Muscovita; Mic – Microclina; All – Allanita; Qtz – Quartzo; Bt – biotita; Zr - Zircão
Nota: A – Cristal de zircão incluso em biotita; B – cristal de allanita granular subédrica e parcialmente isotropizada; C – Cristal de microclina parcialmente alterado para muscovita; D – Cristais de microclina e quartzo com hábito granular anédrico. E – Cristais de quartzo anédricos; F – Fenocristal de micrclina.
Fonte: O AUTOR, 2020.

As rochas gabroicas afloram principalmente nas porções mais rebaixadas do relevo, sendo as proximidades do distrito de Santa Angélica a principal região de afloramento. Outro núcleo gabroico também foi mapeado na borda nordeste do CISA. Nesta unidade são encontradas rochas isotrópicas, melanocráticas com textura inequigranular e granulação variando de fina a grossa. Em alguns afloramentos são observados fenocristais de álcali-feldspato com proporção fenocristal/matriz menor que 10%. Foram classificadas neste grupo as amostras CISA-01, CISA-03A, CISA-03B, CISA-05 e CISA-06A.

A composição média das rochas agrupadas nesta unidade é de aproximadamente 53% de plagioclásio, 16% de biotita, 14% de augita, 6% de hiperstênio, 2% de quartzo, 2% de minerais opacos, 1% de quartzo, 1% titanita, 1% de apatita, 1% de olivina e 1% de zircão.

Os cristais de plagioclásio apresentam hábito tabular alongado (euédrico a subédrico), com granulação variando de fina a grossa. Estes cristais têm aparência ripiforme e estão parcialmente inclusos em cristais de priroxênio, conferindo a esta rocha a textura subofítica. Em alguns cristais de plagioclásio é possível observar maclas polissintéticas acunhadas (Figura 42-D), o que sugerem que estes cristais sofreram algum tipo de deformação. Nos cristais de plagioclásio são observadas inclusões de zircão (Figura 42-F), olivina (Figura 42-H) cristais de apatita com formato acicular, titanita e minerais opacos.

Os cristais de biotita ocorrem na com hábito tabular e lamelar, com granulação variando de fina a média. Inclusões de apatita acicular, zircão e minerais opacos são frequentes nesta fase mineral. Os piroxênios (augita e hiperstênio) ocorrem predominantemente com hábito granular (Figura 48-A, D, E e G)), sendo observados também cristais com hábito prismático curto. Por vezes as fraturas dos piroxênios podem estar preenchidas por serpentina.

A hornblenda ocorre como cristais xenomórficos de granulação fina a média sempre associado aos minerais máficos, em especial aos cristais de biotita. Os cristais de álcalifeldspato são encontrados dispersos pela rocha e apresentam hábito granular e granulação grossa. Associado aos cristais de álcali-feldspato sempre são observadas bordas de mimerquita (Figura 42-C). O quartzo ocorre na forma granular anédrica e com granulação fina.

Figura 42 – Fotomicrografias das rochas agrupadas na unidade gabro.

Legenda: Bt – Biotita; Au – Augita; Pl – Plagioclásio; Zr – Zircão; Hi – Hiperstênio; Ol – Olivina

Nota: A – Cristais granulares de augita e lamelares/tabulares de biotita; B – Textura subofítica; C – Mimerquitas foramadas no contato de cristas de ortoclásio e plagioclásio; D – Macla acunhada em cristal de plagioclásio; E – Cristais de apatita com hábito acicular; F – Cristal de zircão; G – Cristal prismático de augita com borda de biotita; H – Cristais de olivina granulares inclusos em plagioclásio.
 Fonte: O AUTOR, 2020.

4.1.3 Rochas híbridas

Foram consideradas rochas híbridas todas aquelas que apresentaram em escala de afloramento e/ou em amostra de mão algum tipo de evidência de processos de mistura de magma, em especial às feições tipo *mingling*. Nesta unidade foram encontrados monzogranitos, quartzo monzogabros e quartzo gabros. As principais feições de mistura de magmas observadas no CISA são os complexos de veios em rede (*net-veined complexes*) (Figura 43-D) em que rochas félsicas com textura porifirítica se distribuem em zonas dominadas por rochas máficas. Outras feições observadas são rochas máficas de matriz fina a média com presença de fenocristas de álcali-feldspatos dispersos na matriz da rocha, pequenas inclusões máficas em monzogranitos porfiríticos e cristais de quartzo e/ou feldspato manteados por minerais máficos (Figura 43-A, B e C).

Figura 43 - Feições de mistura de magma (mingling) nas rochas híbridas do CISA.

Nota: As fotos de afloramentos de rochas híbridas do CISA destacam feições típicas de mistura de magmas tais como inclusões de rochas máficas em monzogranitos (A), rochas máficas com fenocristais de álcalifeldspato (A, B e C) e complexos de veios em rede (*net-veined complexes*) (D). Fonte: O AUTOR, 2020.

As amostras de monzogranito coletadas nesta zona de mistura são inequigranulares porfiríticas de matriz com granulação variando de média a grossa. De maneira geral as rochas são isotrópicas, de coloração amarelada (Figura 44) e com proporção fenocristal/matriz que varia de 30 a 70%. No ponto CISA-08 o monzogranito apresenta algumas feições características de milonitos (protomilonitos), como por exemplo cristais de feldspato estirados e orientação dos cristais de biotita (Figura 45).

Figura 44 - Monzogranito pertencente à unidade híbrida do CISA.

Nota: Os retângulos vermelhões destacam cristais de quartzo manteados por minerais máficos e o retângulo azul destaca um cristal de álcali-feldspato manteado por minerais máficos. Fonte: O AUTOR, 2020.

Figura 45 – Monzogranito pertencente à unidade híbrida do CISA com feições de milonitização (protomilonito).

Nota: No afloramento do ponto CISA-08 é possível observar orientação dos cristais de biotita e feições de estiramento em alguns cristais de álcali-feldspato. Fonte: O AUTOR, 2020.

A composição modal média do monzogranito que faz parte unidade híbrida é de aproximadamente 27% de álcali-feldspato, 25% de plagioclásio, 19% de quartzo, 13% de biotita, 6% de minerais opacos, 3% de hornblenda, 3% de titanita, 2% de allanita, 1% de apatita e 1% de zircão. As amostras de monzogranito são CISA-06B, CISA-08, CISA-10A e CISA-10B.

Os cristais de álcali-feldspato do monzogranito são essencialmente de ortoclásio de hábito granular anédrido (Figura 46-F) e tabular subédrico, com granulação variando de média a muito grossa. O plagioclásio é granular anédrico, com granulação variando de média a grossa (Figura 46-E) e apresenta textura mimerquítica quando está em contato com o ortoclásio. Os cristais de quartzo são granulares anédricos, com granulação média a grossa e inclusões de minerais opacos e apatitas aciculares.

Os cristais de biotita são tabulares euédricos a subédricos e ocorrem com hábito lamelar (Figura 46-D e E). Os cristais de biotita frequentemente apresentam inclusões de minerais opacos e zircão. A hornblenda ocorre sempre associada à biotita ou allanita (Figura 46-A e B), possui hábito prismático subédrico e granulação média. Os cristais de allanita e titanita possuem hábito granular anédicro, granulação média a grossa e ocorrem sempre associadas aos minerais máficos da rocha.

Legenda: Bt – Biotita; Or - Ortoclásio; Pl – Plagioclásio; Zr – Zircão; Hbl – Hornblenda; All – Allanita; Ap – Apatita; Op- Minerais opacos; Qtz – Quartzo

Nota: A – Cristal anédrico de hornblenda; B – Cristal de hornblenda associado a um cristal de allanita; C – Cristais de biotita com hábito lamelar dispersos na matriz da rocha; D – Cristais aciculares de apatita inclusos em plagioclásio; E – Hábito granular da rocha; F – Fenocristal de ortoclásio com bordas de mimerquita.

Fonte: O AUTOR, 2020.

As rochas máficas coletadas na zona híbrida foram classificadas como quartzo monzogabro e quartzo gabro, sendo as amostras CISA-04A, CISA-07A, CISA-07B e CISA-09. As rochas máficas da zona híbrida são inequigranulares porfiríticas com matriz fina a média (Figura 47). Os fenocristais presentes nestas rochas são de álcali-feldspato e a proporção em relação à matriz varia entre 15 e 30%.

Figura 47 – Quartzo monzogabro pertencente à unidade híbrida do CISA.

Nota: Fenocristais de álcali-feldspato dispersos em uma matriz de quartzo monzogabro com granulação fina a média. Fonte: O AUTOR, 2020.

A composição modal média das rochas máficas da zona híbrida é de aproximadamente 46% de plagioclásio, 16% de biotita, 14% de augita, 7% de hiperstênio, 4% de quartzo, 4% de álcali-fedspato, 4% de minerais opacos, 3% de hornblenda, 1% de apatita e 1% de zircão. Os fenocristais de álcali-feldspato não foram computados na contagem modal.

Os cristais de plagioclásio apresentam hábito tabular subédrico e granular anédrico, com granulação variando de média a grossa. Alguns cristais de plagioclásio apresentam zoneamento composicional (Figura 48-G) e feições deformacionais observadas na modificação do padrão da macla polissintetica (Figura 48-A). A distribuição dos cristais de plagioclásio confere as rochas desta unidade a textura subofítica (Figura 48-F e H). A biotita ocorre na forma tabular e lamelar, ocorre sempre associada aos demais minerais máficos (Figura 48-D) e por vezes está manteando estes minerais. Na biotita podem estar inclusos cristais de minerais opacos, zircão e apatitas aciculares.

A augita ocorre predominantemente com hábito prismático curto, com granulação fina a média e por vezes apresenta coronas de hiperstênio (Figura 48-D), hornblenda ou biotita. O Hiperstênio apresenta hábito granular anédrico com granulação variando de fina a média. Os cristais de quartzo e ortoclásio apresentam hábito granular anédrico e granulação fina, sendo também observados cristais de ortoclásio com textura mimerquítica. Figura 48 - Fotomicrografias das rochas máficas da zona híbrida do CISA.

- Legenda: Bt Biotita; Pl Plagioclásio; Zr Zircão; Hbl Hornblenda; Op- Minerais opacos; Au Augita; Hi - Hiperstênio
- Nota: A Cristais de plagioclásio com maclas acunhada; B Cristais de augita com hábito granular; C Cristal granular de hornblenda; D - Aglomerado de minerais máficos, com destaque ao cristal de augita com borda de hiperstênio; E - Mimerquitas nas bordas dos cristais de plagioclásio; F - Textura subofítica da rocha; G - Zonamento composicional do cristal de plagioclásio; H - Textura subofítica da rocha.

Fonte: O AUTOR, 2020.

4.2 Geocronologia U-Pb

As datações foram feitas em sete amostras, sendo uma de álcali-feldspato granito (CISA-12), uma amostra de gabro (CISA-06A), duas amostras máficas da unidade híbrida (CISA-07 e CISA-09), duas amostras de monzogranito da unidade híbrida (CISA-10A e CISA-10B) e uma amostra de ortognaisse Muniz Freire (CISA-02), rocha encaixante do CISA.

Para cálculo das idades foram considerados apenas os *spots* que apresentaram discordância menor ou igual a 5% (em módulo), fração de ²⁰⁶Pb/²⁰⁴Pb menor ou igual a 0,005, razão Th/U maior que 0,19, erros individuais das razões menores ou iguais a 8% e com valores de Rho acima de 30%. Os *spots* que não atenderam a estes critérios foram descartados. O resumo das idades obtidas é apresentado na tabela 21.

Amostra	Idades (Ma)	Unidade
CISA-02	599 <u>+</u> 25	Encaixante
CISA-06A	498 <u>+</u> 4	Gabro
CISA-07	500 <u>+</u> 3	Máfica híbrida
CISA-09	510 <u>+</u> 6	Máfica híbrida
CISA-10A	514 <u>+</u> 4	Félsica híbrida
CISA-10B	510 <u>+</u> 4	Félsica híbrida
CISA012	501 <u>+</u> 5	Álcali-feldspato granito

Tabela 21 – Idades obtidas nas amostras coletadas no Complexo Intrusivo de Santa Angélica.

Fonte: O AUTOR, 2020.

4.2.1 Gabro

Na amostra CISA-06A o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 575±10 Ma e 489±4 Ma (Tabela 22) (Figura 49). Os grãos utilizados no cálculo da idade de cristalização (N=9) têm idades variando entre 489±4 Ma e 510±7 Ma, com uma idade média de 498±4 Ma, MSWD = 0,13 e probabilidade de 0,72

(Figura 50). A população de zircões da amostra CISA-06A é heterogênea, apresentando grãos prismáticos alongados, com proporções (comprimento : largura) de 4:1, 3:1 e 2:1, cristais euédricos a subédricos, com textura nebulítica no centro e zonados nas bordas. Alguns cristais apresentam mais de uma fase de crescimento, com padrões de crescimento distintos no núcleo e na borda. Esta amostra contém grãos interpretados neste trabalho como grãos herdados.

Nota: As idades U-Pb são relatadas como ${}^{206}Pb/{}^{238}U$ em Ma, com erros em 2σ . Fonte: O AUTOR, 2020.

Figura 50 - Diagrama concórdia com os dados plotados da amostra CISA-06A

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra CISA-06A, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra CISA-06A.

Fonte: O AUTOR, 2020.

								Razõe	es isotóp	icas			Idades (Ma)								
	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%	
Número do spot	, 200	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.	
01-A**	0.0048	30	208	275	0.76	0.7566	2.37	0.0932	1.67	0.70	0.0589	1.68	575	10	572	14	562	9	102	-2	
02-A*	0.0031	14	115	137	0.84	0.6425	1.93	0.0812	0.95	0.49	0.0574	1.69	504	5	504	10	505	9	100	0	
03-A	0.0134	14	111	134	0.83	0.7395	2.09	0.0863	1.05	0.51	0.0621	1.80	534	6	562	12	679	12	79	21	
04-A	0.0079	10	77	85	0.90	0.7273	1.98	0.0880	1.00	0.50	0.0599	1.71	544	5	555	11	601	10	90	10	
05-A**	0.0045	9	89	89	1.00	0.6838	2.10	0.0855	1.01	0.48	0.0580	1.84	529	5	529	11	531	10	99	1	
06-A**	0.0049	48	356	497	0.72	0.6843	2.49	0.0847	1.88	0.76	0.0586	1.63	524	10	529	13	551	9	95	5	
07-A*	0.0047	7	89	59	1.51	0.6520	2.81	0.0823	1.44	0.51	0.0574	2.42	510	7	510	14	508	12	100	0	
08-A**	0.0046	9	63	85	0.74	0.6996	2.64	0.0872	1.21	0.46	0.0582	2.34	539	7	539	14	537	13	100	0	
09-A**	0.0041	28	420	216	1.94	0.6737	2.10	0.0837	1.06	0.50	0.0583	1.81	518	6	523	11	543	10	95	5	
01-B*	0.0043	14	158	122	1.29	0.6459	2.19	0.0811	1.46	0.67	0.0578	1.63	503	7	506	11	521	9	97	3	
02-B*	0.0037	16	132	153	0.87	0.6282	2.36	0.0797	1.25	0.53	0.0572	2.01	494	6	495	12	499	10	99	1	
03-B*	0.0039	12	69	122	0.57	0.6301	2.77	0.0801	1.66	0.60	0.0571	2.22	496	8	496	14	495	11	100	0	
04-B**	0.0040	20	109	178	0.61	0.7587	2.40	0.0929	1.38	0.58	0.0592	1.96	573	8	573	14	575	11	100	0	
05-B*	0.0041	9	137	75	1.82	0.6291	2.54	0.0803	1.57	0.62	0.0569	1.99	498	8	496	13	486	10	102	-2	
06-B*	0.0038	18	177	176	1.00	0.6152	1.91	0.0787	0.83	0.44	0.0567	1.71	489	4	487	9	478	8	102	-2	
07-B*	0.0038	24	266	223	1.19	0.6431	2.13	0.0806	1.53	0.72	0.0579	1.48	499	8	504	11	526	8	95	5	
08-B	0.0060	10	138	86	1.60	0.6375	2.50	0.0793	1.06	0.42	0.0583	2.26	492	5	501	13	541	12	91	9	

Tabela 22 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-06A.

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CISA-06A; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra CISA-12 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 527 ± 8 Ma e 480 ± 5 Ma (Tabela 23) (Figura 51). Os grãos utilizados no cálculo da idade de cristalização (N=10) têm idades variando entre 480 ± 5 Ma e 517 ± 10 Ma, com uma idade média de 501 ± 5 Ma, MSWD = 0,24 e probabilidade de 0,62 (Figura 52). A população de zircões da amostra CISA-12 é homogênea, com cristais prismáticos, euédricos, com poucas inclusões e fraturas. Os cristais não aparentam ter mais de uma fase de cristalização, uma vez que o crescimento concêntrico observado nas bordas é compatível a grãos cristalizados a partir de líquidos magmáticos.

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR, 2020.

Figura 52 - Diagrama concórdia com os dados plotados da amostra CISA-12

Nota: Diagrama da concórdia com a idade de cristalização da amostra CISA-12. Fonte: O AUTOR, 2020.

							Razõe	icas			Idades (Ma)									
N	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Numero do spot	,	ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0.0047	11	116	96	1.20	0.6499	3.84	0.0821	3.61	0.94	0.0574	1.31	509	18	508	20	507	7	100	0
02-A	0.0053	22	297	177	1.68	0.6607	3.92	0.0832	3.57	0.91	0.0576	1.62	515	18	515	20	513	8	100	0
03-A*	0.0045	5	40	45	0.88	0.6082	4.37	0.0777	3.84	0.88	0.0567	2.07	483	19	482	21	482	10	100	0
04-A**	0.0043	6	57	54	1.06	0.6672	3.71	0.0840	3.51	0.95	0.0576	1.18	520	18	519	19	514	6	101	-1
05-A*	0.0044	8	90	72	1.25	0.6211	3.95	0.0798	3.77	0.96	0.0564	1.17	495	19	491	19	470	5	105	-5
06-A	0.0105	7	69	64	1.09	0.6736	4.80	0.0820	3.64	0.76	0.0596	3.13	508	18	523	25	588	18	86	14
07-A*	0.0046	10	104	98	1.06	0.6324	4.21	0.0805	3.67	0.87	0.0570	2.05	499	18	498	21	492	10	101	-1
08-A	0.0062	7	72	64	1.11	0.6532	4.47	0.0824	3.74	0.84	0.0575	2.45	510	19	510	23	512	13	100	0
09-A*	0.0017	25	355	205	1.73	0.6196	4.20	0.0795	3.89	0.93	0.0566	1.57	493	19	490	21	474	7	104	-4
01-B*	0.0047	8	83	72	1.16	0.6055	1.72	0.0774	1.13	0.66	0.0568	1.30	480	5	481	8	482	6	100	0
02-В	0.0049	6	59	53	1.11	0.6736	2.67	0.0845	1.00	0.29	0.0578	2.47	523	5	523	14	523	13	100	0
03-B*	0.0040	5	52	50	1.03	0.6642	2.49	0.0835	2.01	0.81	0.0577	1.47	517	10	517	13	517	8	100	0
04-B*	0.0041	8	81	75	1.08	0.6584	1.60	0.0831	1.02	0.64	0.0575	1.23	514	5	514	8	510	6	101	-1
05-B*	0.0040	5	48	47	1.01	0.6286	2.12	0.0799	1.12	0.53	0.0571	1.80	496	6	495	10	494	9	100	0
06-B**	0.0042	16	218	122	1.79	0.6801	2.53	0.0852	1.48	0.59	0.0579	2.05	527	8	527	13	525	11	100	0
07-B	0.0058	4	36	40	0.88	0.6623	2.59	0.0833	1.30	0.50	0.0577	2.24	516	7	516	13	517	12	100	0
08-B*	0.0047	6	53	54	0.98	0.6286	1.57	0.0799	0.73	0.47	0.0571	1.39	496	4	495	8	494	7	100	0
09-B	0.0248	8	93	65	1.43	1.0023	2.44	0.0809	1.10	0.45	0.0899	2.18	501	6	705	17	1423	31	35	65

Tabela 23 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-12.

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CISA-12; ** Dados interpretados como zircões herdados; As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

4.2.3.1 CISA-07

Na amostra CISA-07 o conjunto de zircões apresenta idades, relatadas como 206 Pb/ 238 U, variando entre 543 \pm 8 Ma e 489 \pm 6 Ma (Tabela 24) (Figura 53). Os grãos utilizados no cálculo da idade de cristalização (N=16) têm idades variando entre 489 \pm 6 Ma e 543 \pm 8 Ma, com uma idade média de 500 \pm 3 Ma, MSWD = 0,0105 e probabilidade de 0,92 (Figura 54). A população de zircões desta amostra é heterogênea, tendo os cristais diferentes hábitos, sendo observados cristais prismáticos alongados, prismáticos curtos e granulares.

Figura 53 - Imagens de catodoluminescência dos cristais de zircão da amostra CISA-07

Nota: As idades U-Pb são relatadas como $^{206}\text{Pb}/^{238}\text{U}$ em Ma, com erros em 2 $\sigma.$ Fonte: O AUTOR, 2020.

Figura 54 - Diagrama concórdia com os dados plotados da amostra CISA-07

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra CISA-07, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra CISA-07.
 Fonte: O AUTOR, 2020.

	•	1						Razõe	es isotóp	icas			Idades (Ma)								
	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%	
Número do spot	, 200	ppm	ppm	ppm	1120	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.	
01-A*	0.0047	12	192	87	2.21	0.6603	2.19	0.0831	1.09	0.50	0.0577	1.90	514	6	515	11	517	10	100	0	
02-A*	0.0046	14	223	113	1.98	0.6370	2.13	0.0808	1.15	0.54	0.0572	1.79	501	6	500	11	499	9	100	0	
03-A*	0.0046	4	48	40	1.21	0.6525	2.13	0.0824	1.10	0.52	0.0574	1.82	510	6	510	11	508	9	100	0	
04-A**	0.0048	10	163	78	2.09	0.6689	2.28	0.0841	1.45	0.64	0.0577	1.76	520	8	520	12	518	9	100	0	
05-A*	0.0050	12	198	94	2.11	0.6426	2.44	0.0812	1.19	0.49	0.0574	2.14	504	6	504	12	506	11	100	0	
06-A*	0.0049	4	60	30	1.98	0.6179	2.19	0.0788	1.21	0.55	0.0569	1.82	489	6	489	11	487	9	100	0	
07-A*	0.0046	5	64	43	1.47	0.6346	2.15	0.0804	1.08	0.50	0.0572	1.86	499	5	499	11	501	9	100	0	
08-A*	0.0048	11	142	89	1.60	0.6241	2.03	0.0793	1.00	0.49	0.0570	1.77	492	5	492	10	493	9	100	0	
09-A*	0.0032	18	274	143	1.91	0.6468	2.44	0.0818	1.24	0.51	0.0574	2.10	507	6	506	12	505	11	100	0	
01-B*	0.0039	19	327	135	2.43	0.6452	2.45	0.0815	1.16	0.47	0.0574	2.16	505	6	506	12	507	11	100	0	
02-B*	0.0050	9	122	73	1.67	0.6261	2.01	0.0796	1.03	0.51	0.0571	1.73	494	5	494	10	494	9	100	0	
03-B*	0.0045	4	46	39	1.20	0.6320	2.31	0.0802	0.97	0.42	0.0571	2.10	498	5	497	11	496	10	100	0	
04-B*	0.0040	17	264	125	2.12	0.6349	1.99	0.0806	1.09	0.55	0.0571	1.66	500	5	499	10	497	8	100	0	
05-B*	0.0047	14	219	108	2.03	0.6442	1.84	0.0815	1.03	0.56	0.0573	1.52	505	5	505	9	504	8	100	0	
06-B*	0.0049	6	82	48	1.72	0.6203	2.59	0.0789	1.26	0.49	0.0570	2.26	490	6	490	13	492	11	100	0	
07-B*	0.0049	9	119	72	1.65	0.6326	1.97	0.0800	1.17	0.59	0.0573	1.59	496	6	498	10	505	8	98	2	
08-B**	0.0047	7	109	49	2.23	0.7064	2.62	0.0879	1.48	0.57	0.0583	2.16	543	8	543	14	540	12	100	0	
09-B*	0.0030	6	73	50	1.46	0.6487	2.31	0.0816	1.14	0.49	0.0576	2.01	506	6	508	12	516	10	98	2	

Tabela 24 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-07

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CISA-07; ** Dados interpretados como zircões herdados. Fonte: O AUTOR, 2020. Na amostra CISA-09 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 606 ± 5 Ma e 498 ± 12 Ma (Tabela 25) (Figura 55). Os grãos utilizados no cálculo da idade de cristalização (N=5) têm idades variando entre 498 ± 12 Ma e 512 ± 7 Ma, com uma idade média de 510 ± 6 Ma, MSWD = 0,022 e probabilidade de 0,88 (Figura 56). A população de zircões desta amostra é heterogênea, com cristais prismáticos alongados a curtos, em geral com textura nebulítica no centro dos cristais e bordas indicando crescimento concêntrico. Esta amostra apresenta um conjunto expressivo de grãos herdados.

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR, 2020.

Figura 56 - Diagrama concórdia com os dados plotado das amostra CISA-09

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra CISA-09, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra CISA-09.

Fonte: O AUTOR, 2020.

					-		Razõe	cas												
Snot	£ 206	Pb	Th	U	Th/∐	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Spor	<i>j</i> 2 00	ppm	ppm	ppm	11.0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0.0047	17	287	121	2.37	0.6574	1.95	0.0825	1.42	0.73	0.0578	1.33	511	7	513	10	521	7	98	2
02-A**	0.0039	12	189	85	2.22	0.6770	1.80	0.0853	0.83	0.46	0.0575	1.60	528	4	525	9	512	8	103	-3
03-A*	0.0050	16	241	120	2.00	0.6553	2.20	0.0825	1.03	0.47	0.0576	1.94	511	5	512	11	515	10	99	1
04-A*	0.0040	27	364	196	1.86	0.6335	2.99	0.0804	2.42	0.81	0.0572	1.75	498	12	498	15	498	9	100	0
05-A	0.0070	14	228	103	2.23	0.6787	2.24	0.0851	0.89	0.40	0.0578	2.06	526	5	526	12	524	11	100	0
06-A**	0.0048	9	127	59	2.16	0.7206	2.27	0.0901	1.33	0.59	0.0580	1.84	556	7	551	12	529	10	105	-5
07-A**	0.0043	16	221	112	1.97	0.6915	2.42	0.0869	1.27	0.52	0.0577	2.06	537	7	534	13	520	11	103	-3
08-A*	0.0050	7	113	57	2.00	0.6610	3.07	0.0827	1.13	0.37	0.0580	2.86	512	6	515	16	528	15	97	3
09-A	0.0056	14	213	91	2.35	0.8082	2.32	0.0986	0.89	0.39	0.0594	2.14	606	5	601	14	583	12	104	-4
01-B**	0.0042	12	193	87	2.22	0.6859	2.38	0.0863	0.83	0.35	0.0577	2.23	533	4	530	13	517	12	103	-3
02-B**	0.0035	4	33	31	1.06	0.7060	3.34	0.0880	1.73	0.52	0.0582	2.86	544	9	542	18	536	15	102	-2
03-B*	0.0047	9	136	64	2.11	0.6424	3.17	0.0816	1.36	0.43	0.0571	2.87	506	7	504	16	495	14	102	-2
04-B**	0.0044	13	194	89	2.18	0.7142	3.32	0.0889	1.93	0.58	0.0582	2.70	549	11	547	18	539	15	102	-2
05-B	0.0109	7	92	49	1.88	0.7427	3.53	0.0913	1.32	0.37	0.0590	3.28	563	7	564	20	568	19	99	1
06-B	0.0046	15	232	102	2.28	0.7028	2.94	0.0874	0.85	0.29	0.0583	2.81	540	5	540	16	541	15	100	0
07-B**	0.0046	9	133	60	2.22	0.6985	2.74	0.0870	1.20	0.44	0.0582	2.46	538	6	538	15	539	13	100	0
08-B	0.0093	8	101	51	1.99	0.7559	4.47	0.0922	3.54	0.79	0.0594	2.72	569	20	572	26	583	16	97	3
09-B	0.0086	8	120	56	2.15	0.6553	3.47	0.0821	1.71	0.49	0.0579	3.02	509	9	512	18	525	16	97	3

Tabela 25 - Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-09

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CISA-09; ** Dados interpretados como zircões herdados. As linhas sombreadas representam os dados descartados por f_{206} >0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra CISA-10A o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 531 ± 6 Ma e 504 ± 5 Ma (Tabela 26) (Figura 57). Os grãos utilizados no cálculo da idade de cristalização (N=9) têm idades variando entre 504 ± 5 Ma e 525 ± 8 Ma, com uma idade média de 514 ± 4 Ma, MSWD = 0,000 e probabilidade de 0,995 (Figura 58). Os zircões coletados nesta amostra apresentam hábito prismático longo, são euédricos, proporção (comprimento : largura) de 5:1/4:1/3:1 e alguns cristais apresentam zoneamento concêntrico..

Figura 57 - Imagens de catodoluminescência dos cristais de zircão da amostra CISA-10A

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR, 2020.

Figura 58 - Diagrama concórdia com os dados plotados da amostra CISA-10A

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra CISA-10A, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra CISA-10A.
Fonte: O AUTOR, 2020.

Spot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0.0045	9	71	90	0.79	0.6546	1.59	0.0826	0.96	0.61	0.0575	1.26	512	5	511	8	510	6	100	0
02-A*	0.0034	18	144	169	0.85	0.6656	1.80	0.0832	0.92	0.51	0.0580	1.55	515	5	518	9	531	8	97	3
03-A**	0.0039	15	157	121	1.30	0.6805	1.87	0.0848	1.31	0.70	0.0582	1.34	525	7	527	10	537	7	98	2
04-A*	0.0044	15	183	126	1.45	0.6578	2.22	0.0829	1.32	0.60	0.0575	1.78	514	7	513	11	512	9	100	0
05-A	0.0056	14	84	144	0.58	0.6771	1.84	0.0833	1.19	0.65	0.0589	1.40	516	6	525	10	564	8	91	9
06-A*	0.0045	14	176	121	1.46	0.6424	1.79	0.0813	0.92	0.51	0.0573	1.54	504	5	504	9	504	8	100	0
07-A*	0.0042	7	97	52	1.88	0.6718	2.13	0.0849	1.02	0.48	0.0574	1.87	525	5	522	11	507	9	104	-4
08-A*	0.0045	11	131	101	1.30	0.6576	1.77	0.0822	1.09	0.62	0.0580	1.39	509	6	513	9	531	7	96	4
09-A**	0.0035	22	166	213	0.78	0.6881	1.97	0.0859	1.11	0.56	0.0581	1.63	531	6	532	10	533	9	100	0
01-B**	0.0032	25	225	227	0.99	0.6815	1.71	0.0848	1.31	0.77	0.0583	1.10	525	7	528	9	540	6	97	3
02-B*	0.0029	16	135	158	0.85	0.6677	2.25	0.0839	1.41	0.63	0.0577	1.75	519	7	519	12	519	9	100	0
03-B*	0.0039	9	97	78	1.24	0.6726	1.92	0.0849	1.54	0.80	0.0575	1.14	525	8	522	10	510	6	103	-3
04-B**	0.0047	8	126	60	2.11	0.6809	2.78	0.0852	1.94	0.70	0.0580	1.99	527	10	527	15	529	11	100	0
05-В	0.0066	4	57	25	2.24	0.6555	2.51	0.0826	1.11	0.44	0.0576	2.25	511	6	512	13	514	12	100	0
06-B	0.0088	6	53	53	0.99	0.7402	5.22	0.0896	1.33	0.25	0.0599	5.05	553	7	563	29	601	30	92	8
07-B	0.0036	36	321	317	1.01	0.7089	2.91	0.0857	1.80	0.62	0.0600	2.29	530	10	544	16	605	14	88	12
08-B**	0.0044	9	129	69	1.87	0.6784	2.70	0.0849	2.01	0.74	0.0579	1.81	525	11	526	14	528	10	100	0
09-B*	0.0045	5	38	51	0.75	0.6622	1.66	0.0836	1.20	0.72	0.0575	1.15	517	6	516	9	509	6	102	-2

Tabela 26 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-10A

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CISA-10A; ** Dados interpretados como zircões herdados. As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra CISA-10B o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 532 ± 11 Ma e 501 ± 5 Ma (Tabela 27) (Figura 59). Os grãos utilizados no cálculo da idade de cristalização (N=13) têm idades variando entre 521 ± 5 Ma e 501 ± 5 Ma, com uma idade média de 510 ± 3 Ma, MSWD = 0,106 e probabilidade de 0,75 (Figura 60). Os cristais de zircão desta amostra apresentam hábito prismático alongado e curto, havendo também cristais com hábito granular anédrico. Alguns cristais apresentam zoneamento concêntrico e outros possuem textura nebulítica, entretanto, os cristais não aparentam ter mais de uma fase de crescimento.

Figura 59 - Imagens de catodoluminescência dos cristais de zircão da amostra CISA-10B

Nota: As idades U-Pb são relatadas como $^{206}\text{Pb}/^{238}\text{U}$ em Ma, com erros em 2 $\sigma.$ Fonte: O AUTOR, 2020.

Figura 60 - Diagrama concórdia com os dados plotados da amostra CISA-10B

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra CISA-10B, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra CISA-10B.
 Fonte: O AUTOR, 2020.
	-							Razõ	es isotópic:	as					Idades	(Ma)				
Spot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
	,	ррт	ppm	ррт		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0.0049	11	116	94	1.23	0.6586	2.40	0.0829	0.91	0.38	0.0576	2.22	513	5	514	12	516	11	100	0
02-A*	0.0045	4	43	39	1.10	0.6499	3.67	0.0821	1.18	0.32	0.0574	3.47	509	6	508	19	507	18	100	0
03-A**	0.0029	25	407	184	2.21	0.6716	2.11	0.0842	0.97	0.46	0.0578	1.88	521	5	522	11	523	10	100	0
04-A*	0.0026	22	357	162	2.21	0.6692	2.06	0.0835	1.28	0.62	0.0581	1.62	517	7	520	11	534	9	97	3
05-A	0.0037	13	118	99	1.19	0.8328	3.83	0.1000	1.08	0.28	0.0604	3.68	615	7	615	24	617	23	100	0
06-A*	0.0012	27	149	282	0.53	0.6548	1.48	0.0832	0.77	0.52	0.0571	1.26	515	4	511	8	495	6	104	-4
07-A*	0.0036	20	300	158	1.90	0.6390	2.36	0.0809	0.98	0.42	0.0573	2.14	501	5	502	12	503	11	100	0
08-A*	0.0048	9	124	76	1.63	0.6564	2.54	0.0827	1.22	0.48	0.0576	2.23	512	6	512	13	513	11	100	0
09-A	0.0027	22	344	159	2.17	0.6879	2.77	0.0860	2.10	0.76	0.0580	1.81	532	11	532	15	530	10	100	0
01-B*	0.0028	31	481	236	2.03	0.6454	1.62	0.0812	1.11	0.68	0.0577	1.18	503	6	506	8	517	6	97	3
02-B*	0.0044	16	217	130	1.67	0.6386	2.38	0.0809	1.26	0.53	0.0572	2.01	502	6	501	12	501	10	100	0
03-B*	0.0014	64	1051	433	2.43	0.6458	1.78	0.0816	0.86	0.48	0.0574	1.55	506	4	506	9	506	8	100	0
04-B	0.0030	22	327	165	1.99	0.6062	1.68	0.0771	0.97	0.28	0.0570	1.38	479	5	481	8	492	7	97	3
05-B*	0.0021	38	569	274	2.08	0.6529	2.15	0.0824	1.19	0.55	0.0575	1.79	511	6	510	11	509	9	100	0
06-B*	0.0018	51	804	371	2.17	0.6434	1.80	0.0817	1.29	0.71	0.0571	1.26	506	7	504	9	496	6	102	-2
07-B*	0.0046	12	151	102	1.49	0.6544	2.50	0.0826	1.34	0.53	0.0575	2.12	511	7	511	13	510	11	100	0
08-B*	0.0030	16	122	157	0.78	0.6495	1.69	0.0828	0.82	0.49	0.0569	1.47	513	4	508	9	488	7	105	-5
09-B	0.0068	8	82	76	1.07	0.6343	2.00	0.0826	1.27	0.64	0.0557	1.54	512	6	499	10	440	7	116	-16

Tabela 27 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-10B

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CISA-10B; ** Dados interpretados como zircões herdados. As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

4.2.4 Rocha encaixante

A amostra coletada da rocha encaixante corresponde à unidade Ortognaisse Muniz Freire. Trata-se de uma rocha de tonalidade cinza clara, granulação média a grossa e por vezes porfiroblástica, com uma foliação pouco desenvolvida. É uma rocha de composição essencialmente granítica, tendo como constituintes principais o feldspato alcalino, plagioclásio, quartzo e biotita. Os grãos de zircão desta amostra apresentam hábito prismático, são euédricos e alguns cristais exibem zoneamento concêntrico bem definido (Figura 61).

Os resultados analíticos U-Pb são apresentados na tabela 28. Os mesmos critérios de qualidade dos dados utilizados para as rochas ígneas também foram adotados para a rocha encaixante, sendo excluídos dados de dois grãos nesta amostra. Na amostra CISA-02 foi obtida uma idade de intercepto superior de 599±25 Ma (Figura 62).

Figura 61 – População de zircões analisados da amostra CISA-02.

Fonte: O AUTOR, 2020.

Figura 62 - Diagrama concórdia com os dados plotados da amostra CISA-02

Nota: Diagrama da concórdia com a idade de cristalização da amostra CISA-02. Fonte: O AUTOR, 2020.

					-			Razõ	es isotópic:	as					Idades (I	Ma)				-
Spot	£ 206	Pb	Th	U	Th/I∐	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Spot	J 200	ррт	ppm	ррт	111/0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0.0032	17	95	150	0.63	0.7839	2.15	0.0954	1.34	0.62	0.0596	1.68	587	8	588	13	590	10	100	0
02-A*	0.0039	6	39	54	0.72	0.7916	2.29	0.0962	0.94	0.41	0.0597	2.09	592	6	592	14	593	12	100	0
03-A	0.0037	12	96	103	0.93	0.7322	1.82	0.0893	1.20	0.66	0.0594	1.37	552	7	558	10	584	8	95	5
04-A	0.0046	8	52	73	0.71	0.7752	2.47	0.0941	1.09	0.44	0.0598	2.22	580	6	583	14	595	13	97	3
05-A	0.0048	9	68	71	0.96	0.7698	2.09	0.0931	0.99	0.47	0.0599	1.84	574	6	580	12	602	11	95	5
06-A*	0.0040	20	110	163	0.67	0.8411	1.75	0.1011	1.25	0.71	0.0603	1.23	621	8	620	11	615	8	101	-1
07-A	0.0008	39	199	413	0.48	0.6667	1.69	0.0839	1.04	0.25	0.0576	1.33	520	5	519	9	515	7	101	-1
08-A	0.0036	28	168	232	0.73	0.7793	2.58	0.0923	1.70	0.66	0.0612	1.94	569	10	585	15	647	13	88	12
09-A*	0.0013	58	85	548	0.16	0.8160	1.52	0.0988	1.02	0.67	0.0599	1.12	607	6	606	9	600	7	101	-1
01-B*	0.0032	14	67	118	0.57	0.8436	1.95	0.1000	1.44	0.74	0.0612	1.32	615	9	621	12	645	8	95	5
02-B*	0.0048	12	95	96	0.99	0.7995	2.03	0.0969	1.04	0.52	0.0598	1.74	596	6	597	12	597	10	100	0
03-B*	0.0049	6	47	50	0.94	0.7998	2.03	0.0969	1.10	0.54	0.0599	1.70	596	7	597	12	600	10	99	1
04-B*	0.0046	7	50	51	0.98	0.8128	2.19	0.0973	1.14	0.52	0.0606	1.87	598	7	604	13	625	12	96	4
05-B*	0.0049	8	60	62	0.97	0.7951	1.79	0.0958	1.01	0.56	0.0602	1.48	590	6	594	11	610	9	97	3
06-B*	0.0050	10	75	77	0.97	0.7592	2.35	0.0920	1.02	0.43	0.0598	2.12	568	6	574	13	597	13	95	5
07-B*	0.0029	26	147	229	0.64	0.7869	1.78	0.0956	1.03	0.58	0.0597	1.46	589	6	589	11	592	9	100	0
08-B*	0.0020	33	161	289	0.56	0.8011	1.92	0.0977	1.15	0.60	0.0595	1.54	601	7	597	11	585	9	103	-3
09-B	0.0095	9	80	68	1.17	0.8103	2.80	0.0980	1.44	0.51	0.0599	2.41	603	9	603	17	601	14	100	0

Tabela 28 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CISA-02

Legenda: * Dados utilizados para o cálculo da idade (intercepto superior) interpretada como idade de cristalização da amostra CISA-02. As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

4.3 Geologia isotópica Lu-Hf

As análises isotópicas Lu-Hf foram feitas nos cristais de zircão que foram utilizados para o cálculo das idades de cristalização de cada amostra. Para cada uma das amostras, foram feitas análises Lu-Hf em 10 cristais de zircão, sendo o tiro do laser posicionado preferencialmente nos locais em que foram dados os tiros para determinação das idades U-Pb. A tabela 29 apresenta o resumo dos dados isotópicos obtidos em todas as amostras analisadas do CISA.

Os resultados analíticos Lu-Hf são apresentados nas tabelas 30 a 36. As amostras gabro (CISA-06A), álcali-feldspato granito (CISA-12) e uma amostra de monzogranito (CISA-10B) apresentam apenas valores de épsilon Hf negativo, caracterizando assinatura crustal nas amostras analisadas. Nas amostras CISA-02 (rocha encaixante), CISA-07 (híbrida máfica), CISA-09 (híbrida máfica) e CISA-10A (híbrida granítica) a maioria dos zircões apresentam épsilon Hf negativo, contudo, também são observados valores positivos de épsilon Hf nestas amostras. Os diagramas de épsilon Hf *vesus* idade, comparados com os modelos de evolução para o condrito e o manto depletado são apresentados nas figuras 63 a 69.

	A		eH	f(t)	Idade mod	elo (Tdm)	Residênci	a crustal
Kocna	Amostra	Idade U-PD (t)	Min.	Max.	Mais antiga	Mais nova	Mais antiga	Mais nova
Encaixante	CISA-02	599 <u>+</u> 25 Ma	-13,83	0,32	2,20 Ga	1,40 Ga	1599 Ma	803 Ma
Gabro	CISA-06A	498 <u>+</u> 4 Ma	-31,48	-8,86	3,09 Ga	1,84 Ga	2595 Ma	1341 Ma
Híbrida máfica	CISA-07	500 <u>+</u> 3 Ma	-31,31	-4,41	3,09 Ga	0,64 Ga	2585 Ma	137 Ma
Híbrida máfica	CISA-09	510 <u>+</u> 6 Ma	-25,70	7,03	2,79 Ga	0,95 Ga	2275 Ma	440 Ma
Híbrida granítica	CISA-10A	514 <u>+</u> 4 Ma	-28,34	13,48	2,93 Ga	0,58 Ga	2420 Ma	69 Ma
Híbrida granítica	CISA-10B	510 <u>+</u> 4 Ma	-33,81	-5,73	3,23 Ga	1,67 Ga	2721 Ma	1163 Ma
Álcali-feldspato granito	CISA-12	501 <u>+</u> 5 Ma	-43,76	-24,60	3,76 Ga	2,72 Ga	3263 Ma	2216 Ma

Tabela 29 – Resumo dos resultados isotópicos das amostras do CISA e de sua encaixante.

Nota: Na tabela estão presentes os valores mínimo e máximo de épsilon Hf, idades U-Pb, idades modelo T_{DM} (mais antiga e mais nova) e tempo de residência crustal. Fonte: O AUTOR, 2020.

	U/F	ъ]	Razões isotóp	icas medidas		CHUR	DM	Razões is	otópicas ini	ciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud Tank	732	5	0,282673	1,37E-04	3,98E-05	1,5E-06	0,282323	0,282716	0,282672	-3,96	12,39	0,55	0,82	0	89
02-A*	498	4	0,282003	1,77E-04	5,48E-04	3,7E-05	0,282471	0,282888	0,281998	-27,65	-16,75	1,27	2,28	6	1782
07-A	498	4	0,281862	2,52E-04	3,70E-04	5,5E-06	0,282471	0,282888	0,281858	-32,65	-21,69	0,52	2,55	4	2056
01-B	498	4	0,282228	2,15E-04	7,74E-04	5,0E-05	0,282471	0,282888	0,282221	-19,69	-8,86	0,65	1,84	10	1341
02-B*	498	4	0,281668	1,76E-04	5,50E-04	3,1E-05	0,282471	0,282888	0,281663	-39,49	-28,61	1,86	2,94	7	2438
03-B*	498	4	0,282160	1,79E-04	1,11E-03	1,3E-04	0,282471	0,282888	0,282149	-22,12	-11,40	1,39	1,98	14	1483
05-B	498	4	0,281785	3,23E-04	2,67E-04	4,4E-06	0,282471	0,282888	0,281782	-35,37	-24,39	0,63	2,70	3	2205
06-B	498	4	0,281584	2,35E-04	2,15E-04	2,8E-06	0,282471	0,282888	0,281582	-42,47	-31,48	0,69	3,09	3	2595
07-В	498	4	0,281772	2,05E-04	4,80E-04	4,1E-06	0,282471	0,282888	0,281768	-35,82	-24,91	0,43	2,73	6	2234
09-A	498	4	0,281888	2,01E-04	4,28E-04	4,8E-06	0,282471	0,282888	0,281884	-31,73	-20,80	0,42	2,50	5	2007
09-B	498	4	0,282095	4,36E-04	7,30E-04	3,1E-05	0,282471	0,282888	0,282088	-24,41	-13,56	0,70	2,10	10	1604
91500	1065	0,6	0,282285	4,45E-04	3,11E-04	7,4E-06	0,282110	0,282471	0,282279	-17,66	5,99	0,16	1,45	4	389

Tabela 30 - Dados isotópicos Lu-Hf dos zircões da amostra CISA-06A

	U/P	ď	1	Razões isotóp	icas medidas		CHUR	DM	Razões is	sotópicas in	iciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud	722	5	0 202447	1.000 04	4 (05 05	1.00.00	0.000000	0.000716	0.000446	11.00	4.20	0.15	1.00	0	5.47
Tank	132	5	0,282447	1,22E-04	4,60E-05	1,2E-06	0,282323	0,282716	0,282446	-11,96	4,38	0,15	1,28	0	547
07-A	501	3	0,282349	1,73E-04	4,50E-04	1,0E-05	0,282469	0,282885	0,282345	-15,43	-4,41	0,13	1,59	5	1090
08-A	501	3	0,282028	2,13E-04	7,75E-04	1,3E-05	0,282469	0,282885	0,282021	-26,77	-15,87	0,37	2,23	10	1732
09-A	501	3	0,282035	2,96E-04	2,90E-04	4,5E-06	0,282469	0,282885	0,282033	-26,51	-15,46	0,35	2,21	4	1709
01-B	501	3	0,282823	2,70E-04	5,15E-04	1,1E-05	0,282469	0,282885	0,282818	1,34	12,35	0,35	0,64	6	137
02-B	501	3	0,282829	4,88E-04	1,71E-03	9,4E-05	0,282469	0,282885	0,282813	1,55	12,16	0,77	0,65	20	148
03-B	501	3	0,282258	2,28E-04	1,26E-03	3,9E-05	0,282469	0,282885	0,282246	-18,63	-7,90	0,30	1,79	17	1286
04-B	501	3	0,281592	3,09E-04	7,29E-04	5,3E-06	0,282469	0,282885	0,281585	-42,20	-31,31	0,45	3,09	9	2585
05-B	501	3	0,282175	2,61E-04	5,77E-04	1,0E-05	0,282469	0,282885	0,282169	-21,58	-10,61	0,26	1,94	7	1439
06-B	501	3	0,281769	2,66E-04	5,65E-04	4,4E-06	0,282469	0,282885	0,281764	-35,93	-24,98	0,37	2,74	7	2237
08-B	501	3	0,282072	2,81E-04	5,95E-04	6,1E-06	0,282469	0,282885	0,282066	-25,22	-14,27	0,25	2,14	8	1643
91500	1065	0,6	0,281949	3,96E-04	3,04E-04	4,6E-06	0,282110	0,282471	0,281943	-29,57	-5,94	0,10	2,13	4	1065

Tabela 31 – Dados isotópicos Lu-Hf dos zircões da amostra CISA-07

Fonte: O AUTOR, 2020.

	U/P	b]	Razões isotóp	icas medidas		CHUR	DM	Razões is	otópicas ini	ciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud		_													
Tank	732	5	0,281888	2,65E-04	4,28E-05	2,6E-06	0,282323	0,282716	0,281888	-31,72	-15,41	1,04	2,39	0	1661
01-A	510	6	0,282075	3,54E-04	5,83E-04	7,1E-06	0,282464	0,282879	0,282070	-25,10	-13,95	0,35	2,13	8	1623
02-A	510	6	0,282378	4,47E-04	1,55E-03	1,3E-05	0,282464	0,282879	0,282363	-14,39	-3,55	0,08	1,55	22	1040
04-A	510	6	0,282676	4,02E-04	1,42E-03	8,8E-06	0,282464	0,282879	0,282662	-3,87	7,03	0,14	0,95	20	440
06-A	510	6	0,281930	2,17E-04	6,06E-04	1,8E-05	0,282464	0,282879	0,281925	-30,22	-19,08	0,79	2,42	8	1909
09-A	510	6	0,282157	2,88E-04	9,29E-04	1,8E-05	0,282464	0,282879	0,282148	-22,19	-11,15	0,36	1,98	13	1467
01-B	510	6	0,281963	2,44E-04	5,52E-04	7,4E-06	0,282464	0,282879	0,281958	-29,06	-17,89	0,47	2,35	7	1843
04-B	510	6	0,282175	2,22E-04	5,98E-04	9,6E-06	0,282464	0,282879	0,282169	-21,57	-10,42	0,30	1,94	8	1426
05-B	510	6	0,281852	2,52E-04	5,66E-04	5,0E-06	0,282464	0,282879	0,281846	-33,00	-21,85	0,47	2,57	8	2062
06-B	510	6	0,281756	2,97E-04	6,24E-04	3,2E-06	0,282464	0,282879	0,281750	-36,40	-25,27	0,45	2,76	9	2252
07-B	510	6	0,281741	2,31E-04	3,00E-04	6,2E-06	0,282464	0,282879	0,281738	-36,94	-25,70	0,86	2,79	4	2275
91500	1065	0,6	0,281825	4,04E-04	3,06E-04	4,8E-06	0,282110	0,282471	0,281819	-33,94	-10,32	0,18	2,38	3	1311

Tabela 32 – Dados isotópicos Lu-Hf dos zircões da amostra CISA-09

Fonte: O AUTOR, 2020.

	U/F	Рb]	Razões isotóp	icas medidas		CHUR	DM	Razões is	otópicas ini	ciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud Tank	732	5	0.281527	1 70E-04	3 71E-05	2 3E-06	0 282323	0.282716	0.281526	-44 50	-28 21	1.9/	3 10	0	2370
	514	4	0.201527	2.42E.04	6.79E.04	2,5E-00	0,282323	0,282710	0,281520	20.54	-20,21	0.84	2.02	0	2370
01-A	514	4	0,281007	2,42E-04	0,78E-04	1,4E-05	0,282401	0,282876	0,281000	-39,54	-28,34	0,84	2,95	9	2420
02-A*	514	4	0,280915	1,15E-04	2,19E-04	4,4E-06	0,282461	0,282876	0,280913	-66,11	-54,79	1,56	4,37	2	3855
03-A*	514	4	0,280794	1,62E-04	3,24E-04	4,4E-06	0,282461	0,282876	0,280791	-70,41	-59,13	1,30	4,60	4	4087
04-A	514	4	0,282858	3,36E-04	2,84E-03	1,1E-04	0,282461	0,282876	0,282831	2,59	13,09	0,61	0,61	41	92
06-A*	514	4	0,280868	2,27E-04	4,78E-04	4,5E-06	0,282461	0,282876	0,280863	-67,80	-56,57	1,02	4,46	6	3950
07-A*	514	4	0,281024	2,24E-04	4,77E-04	8,8E-06	0,282461	0,282876	0,281020	-62,26	-51,02	1,37	4,17	6	3653
08-A	514	4	0,282869	3,23E-04	2,85E-03	9,5E-05	0,282461	0,282876	0,282842	2,98	13,48	0,57	0,58	36	69
03-B*	514	4	0,281372	2,71E-04	1,12E-03	3,2E-05	0,282461	0,282876	0,281361	-49,98	-38,95	1,44	3,51	14	3000
04-B*	514	4	0,281512	2,43E-04	9,97E-04	3,8E-05	0,282461	0,282876	0,281502	-45,02	-33,94	1,58	3,24	15	2727
07-В	514	4	0,281951	3,25E-04	1,59E-03	5,6E-05	0,282461	0,282876	0,281936	-29,50	-18,60	0,82	2,40	21	1882
91500	1065	0,6	0,280999	2,86E-04	3,02E-04	3,6E-06	0,282110	0,282471	0,280993	-63,15	-39,60	0,54	3,99	3	2928

Tabela 33 - Dados isotópicos Lu-Hf dos zircões da amostra CISA-10A

	U/P	b]	Razões isotóp	icas medidas		CHUR	DM	Razões i	sotópicas in	iciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud	722	5	0.201000	2.65E.04	4 29E 05	2 65 06	0.282222	0.282716	0.201000	21 72	15 41	1.04	2 20	0	1661
тапк	132	5	0,281888	2,05E-04	4,28E-05	2,0E-00	0,282525	0,282710	0,281888	-31,72	-15,41	1,04	2,39	0	1001
01-A	510	4	0,282077	2,04E-04	8,61E-04	5,4E-05	0,282464	0,282879	0,282068	-25,05	-13,99	0,99	2,14	11	1625
03-A*	510	4	0,281587	1,60E-04	7,15E-04	4,6E-05	0,282464	0,282879	0,281580	-42,37	-31,28	2,29	3,09	9	2582
04-A	510	4	0,281511	1,60E-04	2,56E-04	3,8E-06	0,282464	0,282879	0,281508	-45,06	-33,81	0,79	3,23	3	2721
06-A	510	4	0,281939	2,72E-04	1,03E-03	3,7E-05	0,282464	0,282879	0,281929	-29,91	-18,92	0,85	2,41	13	1900
08-A	510	4	0,281765	2,72E-04	4,98E-04	1,3E-05	0,282464	0,282879	0,281761	-36,06	-24,89	0,85	2,74	6	2230
09-A*	510	4	0,282074	6,30E-04	1,34E-03	3,0E-05	0,282464	0,282879	0,282061	-25,16	-14,26	0,46	2,15	17	1641
01-B	510	4	0,282313	1,95E-04	1,22E-03	6,4E-06	0,282464	0,282879	0,282302	-16,68	-5,73	0,08	1,67	15	1163
02-B*	510	4	0,282254	2,69E-04	1,09E-03	1,6E-05	0,282464	0,282879	0,282243	-18,79	-7,80	0,18	1,79	14	1279
04-B*	510	4	0,281786	2,73E-04	6,79E-04	1,8E-05	0,282464	0,282879	0,281780	-35,32	-24,21	0,85	2,70	9	2193
08-B	510	4	0,282126	5,11E-04	1,30E-03	6,6E-05	0,282464	0,282879	0,282113	-23,32	-12,40	0,75	2,05	14	1537
91500	1065	0,6	0,281825	4,04E-04	3,06E-04	4,8E-06	0,282110	0,282471	0,281819	-33,94	-10,32	0,18	2,38	3	1311

Tabela 34 - Dados isotópicos Lu-Hf dos zircões da amostra CISA-10B

	U/P	'n]	Razões isotóp	icas medidas		CHUR	DM	Razões is	otópicas ini	iciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud Tank	732	5	0,281670	1,72E-04	4,12E-05	2,2E-06	0,282323	0,282716	0,281669	-39,43	-23,14	1,40	2,82	0	2091
02-A*	501	5	0,281522	3,14E-04	2,44E-04	8,3E-06	0,282469	0,282885	0,281520	-44,65	-33,60	1,52	3,21	3	2711
03-A*	501	5	0,281073	5,28E-04	2,94E-04	6,6E-06	0,282469	0,282885	0,281070	-60,54	-49,52	1,70	4,08	3	3574
04-A*	501	5	0,281377	2,11E-04	2,35E-04	6,9E-06	0,282469	0,282885	0,281375	-49,78	-38,73	1,54	3,49	3	2991
06-A	501	5	0,281482	2,51E-04	2,97E-04	4,8E-06	0,282469	0,282885	0,281479	-46,07	-35,04	0,95	3,29	4	2790
07-A*	501	5	0,281446	2,95E-04	2,42E-04	4,7E-06	0,282469	0,282885	0,281444	-47,34	-36,30	1,11	3,36	3	2858
02-B	501	5	0,281463	4,37E-04	4,32E-04	6,6E-06	0,282469	0,282885	0,281459	-46,74	-35,76	0,96	3,33	5	2829
03-B	501	5	0,281782	2,34E-04	8,24E-04	1,5E-05	0,282469	0,282885	0,281774	-35,47	-24,60	0,71	2,72	10	2216
06-B	501	5	0,281237	2,43E-04	3,64E-04	4,3E-06	0,282469	0,282885	0,281233	-54,76	-43,76	0,99	3,76	4	3263
07-B*	501	5	0,281371	1,94E-04	2,47E-04	6,6E-06	0,282469	0,282885	0,281369	-50,01	-38,97	1,45	3,50	3	3003
08-B*	501	5	0,281880	4,56E-04	1,28E-03	5,6E-05	0,282469	0,282885	0,281868	-32,02	-21,30	1,18	2,53	14	2034
91500	1065	0,6	0,282234	4,63E-04	3,03E-04	6,8E-06	0,282110	0,282471	0,282228	-19,49	4,17	0,10	1,56	3	493

Tabela 35 – Dados isotópicos Lu-Hf dos zircões da amostra CISA-12.

	U/F	Ъ]	Razões isotóp	icas medidas		CHUR	DM	Razões i	isotópicas in	iciais (t)		Modelo DM	corr	Residência
Amostra	Idade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	Idade (Ga)	%	crustal
Mud	722	F	0.281500	1.575.04	4.545.05	1.95.06	0.282222	0.090716	0.291509	41.00	25.77	1.00	2.00	0	2220
тапк	132	5	0,281599	1,57E-04	4,54E-05	1,8E-00	0,282323	0,282710	0,281598	-41,90	-25,67	1,22	2,96	0	2230
02-A*	599	29	0,282070	2,53E-04	1,05E-03	2,8E-05	0,282407	0,282814	0,282058	-25,28	-12,36	0,86	2,12	12	1517
03-A	599	29	0,282154	2,15E-04	1,07E-03	5,9E-05	0,282407	0,282814	0,282142	-22,31	-9,39	0,92	1,95	12	1351
04-A	599	29	0,282205	3,03E-04	1,42E-03	3,7E-05	0,282407	0,282814	0,282189	-20,52	-7,73	0,53	1,86	16	1257
05-A	599	29	0,282158	1,78E-04	1,22E-03	1,4E-05	0,282407	0,282814	0,282144	-22,18	-9,32	0,50	1,95	13	1347
06-A*	599	29	0,282026	3,64E-04	7,71E-04	3,4E-05	0,282407	0,282814	0,282018	-26,82	-13,79	1,19	2,20	9	1597
02-B	599	29	0,282181	2,99E-04	1,07E-03	3,2E-05	0,282407	0,282814	0,282169	-21,37	-8,45	0,62	1,90	12	1298
04-B	599	29	0,282337	3,43E-04	1,38E-03	9,6E-05	0,282407	0,282814	0,282321	-15,85	-3,04	0,34	1,59	16	994
06-B	599	29	0,282431	3,20E-04	1,31E-03	3,7E-05	0,282407	0,282814	0,282416	-12,52	0,32	0,02	1,40	16	803
07-B*	599	29	0,281918	2,34E-04	1,21E-03	3,3E-05	0,282407	0,282814	0,281904	-30,67	-17,81	1,25	2,42	14	1821
08-B	599	29	0,282032	2,80E-04	1,35E-03	3,1E-05	0,282407	0,282814	0,282017	-26,64	-13,83	0,90	2,20	16	1599
91500	1065	0,6	0,281712	4,10E-04	3,04E-04	5,7E-06	0,282110	0,282471	0,281706	-37,95	-14,34	0,30	2,60	3	1536

Tabela 36 - Dados isotópicos Lu-Hf dos zircões da amostra CISA-02.

Figura 63 - Evolução isotópica da amostra CISA-06, unidade Gabro.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Nota: Na amostra de gabro não foi encontrado nenhum grão de zircão com ɛHf positivo. Fonte: O AUTOR, 2020.

Figura 64 – Evolução isotópica da amostra CISA-07, membro máfico da unidade híbrida.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Fonte: O AUTOR, 2020.

Figura 65 – Evolução isotópica da amostra CISA-09, membro máfico da unidade híbrida.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Fonte: O AUTOR, 2020.

Figura 66 – Evolução isotópica da amostra CISA-10A, membro granítico da unidade híbrida.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Fonte: O AUTOR, 2020.

Figura 67 – Evolução isotópica da amostra CISA-10B, membro granítico da unidade híbrida.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Nota: Na amostra de gabro não foi encontrado nenhum grão de zircão com ɛHf positivo. Fonte: O AUTOR, 2020.

Figura 68 – Evolução isotópica da amostra CISA-12, unidade álcali-feldspato granito.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Nota: Na amostra de gabro não foi encontrado nenhum grão de zircão com ɛHf positivo. Fonte: O AUTOR, 2020.

Figura 69 – Evolução isotópica da amostra CISA-02, rocha encaixante do Complexo Intrusivo de Santa Angélica.

Legenda: CHUR – Reservatório condrítico; DM – Manto depletado Fonte: O AUTOR, 2020.

4.4 Discussões e conclusões parciais

Nas últimas décadas diversos trabalhos foram realizados no Complexo Intrusivo de Santa Angélica (CISA) na tentativa de entender melhor os processos petrogenéticos que deram origem a esse complexo intrusivo e, consequentemente, as demais unidades da supersuíte G5, como Wiedemann *et al.* (1986), Bayer *et al.* (1986), Bayer *et al.* (1987), Horn & Weber-Dierfenbach (1987), Söllner *et al.* (2000), Wiedemann-Leonardos *et al.* (2000), Wiedemann *et al.* (2002), De Campos *et al.* (2004), Zanon *et al.* (2012), Torres (2013), Zanon *et al.* (2015), De Campos (2015) e De Campos *et al.* (2016). A grande quantidade de afloramentos, a complexidade nas fácies ígneas presentes neste corpo e as feições típicas de processos de mistura de magmas fizeram com que o CISA fosse considerado um dos principais representantes da supersuíte G5 (Wiedemann-Leonardos *et al.*, 2000, Pedrosa-Soares & Wiedemann-Leonardos, 2000). Os trabalhos de mapeamento de detalhe demonstram a presença de rochas máficas (gabros e dioritos), rochas félsicas (granitoides em geral) e uma zona híbrida, em que predominam feições de mistura de magma e as fácies ígneas não são separáveis nas escalas de mapeamento. Wiedemann *et al.* (1986) descrevem rochas gabróicas aflorando no centro da intrusão, dois tipos de granito (a allanita e a titanita) nas bordas da intrusão e uma zona de mistura. Zanon et al. (2015) por sua vez caracterizam uma zona de mistura formada por gabro, quartzo monzonito, quartzo sienito e sienogranito, além de outro sienogranito tardio. Como o objetivo deste trabalho não foi gerar um mapa detalhado do CISA, foram coletadas amostras representativas dos possíveis membros extremos da mistura binária de magmas e amostras representativas da zona híbrida.

Todas as feições macro e microscópicas que indicam processos de misturas de magmas, descritas pelos autores aqui citados, foram observadas, tais como a ampla variação composicional, diques melanocráticos e leucocráticos sincrônicos, megacristais de álcali-feldspato envoltos em uma matriz de rocha máfica, cristais de quartzo e feldspato manteados por minerais máficos, complexos de veios em rede, cristais de quartzo arredondados, grãos de zircão com núcleo arredondado envoltos em zonas de crescimento idiomórficas e cristais de apatita com formato acicular. Dentre as unidades do CISA apresentadas neste trabalho, apenas o álcali-feldspato granito não apresenta as feições de mistura de magmas.

Zanon *et al.* (2015) apresentam dados de química mineral para os xenocristais de álcali-feldspato presentes nas rochas máficas e descrevem que a textura mimerquítica associada a estes cristais tenha sido gerada por processos de metassomatismo com os íons de Ca e Na presentes no líquido de composição gabroica. A presença de xenocristais provenientes de um magma granitico em meio a um fundido básico, indica que o processo de cristalização se deu com a mistura de magmas de diferentes composições.

De Campos (2015) e De Campos *et al.* (2016) descrevem que as estruturas em vórtices observadas nos dois núcleos gabroicos do CISA indicam processos caóticos de mistura de magmas contrastantes na câmara magmática, que são controlados pelos processos de difusão e convecção. Em plútons com grande dimensão, novas intrusões e fusões parciais adicionais podem levar a diferentes episódios de cristalização, seguidos de reequilíbrio mineralógico e recristalização tardia (De Campos, 2015). Estes processos de recristalização tardia podem ser observados a nível microscópico, como é o caso das maclas acunhadas em cristais de plagioclásio e cristais de biotita deformadas, o que indica que estes minerais passaram por algum tipo de deformação. De Campos *et al.* (2016) também descrevem feições semelhantes como piroxênios retorcidos, grãos de biotita dobrados e lamelas geminadas deformadas em

cristais de plagioclásio, sendo estas feições associadas a deformação dúctil magmática na crosta profunda proporcionada pelo fluxo turbulento de magma associado à diferença de viscosidade dos componentes da mistura.

Zanon *et al.* (2015) consideram que apenas o processo de *mingling* atue na gênese do CISA, contudo, o termo "magma mingling" foi aplicado para indicar dispersão física de magmas sem interação química envolvida, ou seja, apenas a convecção atuaria neste caso. De Campos (2015) demonstra, através de modelagem geoquímica e aplicação da teoria do caos, que o processo evolutivo no CISA não se deu apenas por convecção, mas também por difusão, sendo, portanto, o termo "magma mixing" mais adequado, já que este também envolve trocas químicas no processo de hibridização.

Em seu estudo de padrões de fluxos caóticos de magmas em ambientes plutônicos profundos, De Campos (2015) reconhece dois episódios de mistura (ME1 e ME2) para o Complexo Intrusivo de Santa Angélica, consequentemente, dois pulsos distintos de magmas neste sistema. O episódio ME1 é um episódio curto, porém eficiente, de mistura entre o que De Campos classifica como granito I e o monzogabro. O episódio ME2 é mais restrito e é associado à reintrusão do monzogabro e intrusão do granito II.

Os dados geocronológicos U-Pb aqui reportados são compatíveis com as idades de 513 ± 8 Ma do granito megaporfirítico (Söllner *et al.*, 2000) e 492 ± 15 Ma para o granito a titanita (De Campos *et al.*, 2016) apresentadas para os granitoides do CISA. De Campos (2015) considera que a idade de 513 ± 8 Ma restringe a cristalização magmática das rochas do CISA, limitando, portanto, a cristalização das rochas desta unidade à esta idade. Essa idade limite corresponde à idade de 514 ± 4 Ma, obtida neste trabalho para a amostra de monzogranito da unidade híbrida. Temporim *et al.* (2020) também apresentaram dados geocronológicos U-Pb para o CISA, sendo as idades de 506 ± 3 Ma para uma amostra de granito protomilonítico coletada próximo à borda sudoeste do CISA, e 498 ± 5 Ma obtida em uma amostra de gabro no núcleo da porção sudoeste do CISA.

De campos (2015) sugere dois momentos distintos de colocação de magmas no CISA, sendo o primeiro pulso correspondente ao que a autora denominou de evento de mistura 1 e o pulso mais jovem correspondente ao evento de mistura 2. Caso a hipótese apresentada por De Campos seja verdadeira, o conjunto de dados geocronológicos apresentados neste trabalho, somados aos dados até então publicados, apontam para pulsos de magmas muito próximos. O conjunto de idades sugere que o magmatismo do CISA tenha se desenvolvido por cerca de 25 Ma.

A idade de 599 ± 25 Ma obtida para o ortognaisse Muniz Freire (estágio pré-colisional) é compatível com a idade de cristalização apresentada por Söllner *et al.* (1991) para esta mesma unidade (590 +2/-4 Ma). Os valores de $\varepsilon_{\rm Hf}$ para esta unidade variam entre -20,20 e -7,13.

Mesmo com um exaustivo e detalhado estudo, De Campos (2015), por não ter conseguido identificar os membros extremos do magmatismo que deu origem ao CISA, considerou que todas as rochas apresentam algum grau de mistura de magma entre fontes distintas. Os isótopos de Hf indicam de fato uma forte contribuição crustal para todos os membros máficos apresentados neste teste. Dentre as amostras de monzogranito porfirítico, a presença de valores positivos e negativos de ε_{Hf} , também confirmam a hipótese de mistura para estas rochas. Contudo, os valores altamente negativos de ε_{Hf} obtidos na amostra de álcali-feldspato granito, associados às suas feições macroscópicas e microscópicas, permitem sugerir que esta rocha represente um dos *end* members da mistura de magmas que deu origem ao CISA.

O conjunto de dados isotópicos obtidos para as rochas do CISA indicam no mínimo duas fontes distintas para este magmatismo. As idades T_{DM} Neoproterozóicas (0,95 a 0,58 Ga), associadas a valores positivos de $\boldsymbol{\epsilon}_{Hf}$ indicam a presença de um magma de origem mantélica. Já o conjunto de idades T_{DM} Arqueanas a Paleoproterozóicas (3,76 a 1,67 Ga), associado a $\boldsymbol{\epsilon}_{Hf}$ fortemente negativos, indicam a participação de uma crosta intensamente retrabalhada.

Faria (2016) apresenta um estudo isotópico Lu-Hf detalhado do Complexo Caparaó, interpretado como uma lasca tectônica do embasamento do Orógeno Araçuaí. As idades modelo T_{DM} apresentadas pela autora para o Complexo Caparaó são todas Arqueanas a Paleoproterozóica, variando entre 3,79 e 1,83 Ga. Estas idades modelo são compatíveis com o conjunto de idades modelo obtidas no CISA, sugerindo, portanto, que o Complexo Caparaó possa ser uma das fontes ou a fonte crustal do magmatismo que deu origem ao CISA. Sendo verdadeira essa hipótese, a implicação tectônica é que essa lasca do embasamento, representada pelo Complexo Caparaó esteja projetada, em profundidade, ao menos até a região de afloramento do CISA.

Os dados isotópicos do Ortognaisse Muniz Freire são correlatos aos dados apresentados por Araújo *et al.* (2020) para a suíte Ataléia (Tabela 37). Os zircões detríticos analisados por Alves (2016) para os paragnaisses do Grupo Bom Jesus do Itabapoana apresentam valores de ε_{Hf} variando entre -24,2 e 42,3 e idade modelo T_{DM} máxima de 3,6 Ga e mínima de 0,2 Ga, com concentração de idades entre 2,0 e 1,8 G, sugerindo, portanto

alguma contribuição como fonte de magma primário para o CISA e/ou contaminação. A predominância de cristais de zircão com idades modelo Arqueana a Paleoproterozóica sugere que as encaixantes do CISA não contribuíram significativamente no magmatismo do CISA.

Araújo *et al.* (2020) apresentam dados isotópicos Lu-Hf para os plútons Arecê, Vitória e Mestre Álvaro, todos pertencentes à supersuíte G5, além das rochas do complexo Nova Venécia e da suíte Ataléia, sendo as duas últimas as rochas encaixantes dos três plútons. Os resultados obtidos por Araújo *et al.* (2020) são apresentados de forma resumida na tabela 37.

Diferente dos plútons Vitória e Mestre Álvaro, que Araújo *et al.* (2020) consideram ser produto de fusão parcial de rochas da crosta superior, como por exemplo as rochas da suíte Ataléia, Ortognaisse Muniz Freire, Grupo Bom Jesus do Itabapoana e o Complexo Nova Venécia, o componente crustal do CISA é produto de fusão de uma crosta mais profunda e antiga, assim como parece ser o caso do plúton Arecê (Araújo *et al.*, 2020). Conforme já mencionado, o Complexo Caparaó é um forte candidato de fonte para o componente crustal do CISA.

Amostro	3	Hf(t)	Idade mode	lo (DM) (Ga)	Idadas II Dh (Ma)
Amostra	Mínimo	Máximo	Mínima	Máxima	Idades U-FD (Ivia)
Arecê	-23,80	-18,60	2,47	2,25	523 <u>+2</u>
Vitória	-7,40	-10,30	1,71	1,58	505 <u>+</u> 1
Mestre Álvaro	-0,70	-8,80	1,66	1,27	527 <u>+</u> 2
Nova Venécia*	-39,0	+4,10	3,47	1,20	617 <u>+</u> 4 (68%), 719 <u>+</u> 22 (14%), 839 <u>+</u> 46 (8%) e 922 <u>+</u> 31 (10%)
Ataléia	-8,10	-3,20	1,64	1,62	583 <u>+</u> 3

Tabela 37 – Resumo dos dados isotópicos Lu-Hf apresentados por Araújo *et al*, (2020) para os plútons Arecê, Vitória e Mestre Álvaro, bem como as rochas do complexo Nova Venécia e da suíte Ataléia,

Nota: *As idades do Complexo Nova Venécia correspondem as populações (%) de zircões detriticos desta unidade.
 Fonte: ARAÚJO *ET AL*. (2020),

De Campos *et al.* (2020) consideraram que durante o processo de subducção e colisão, o manto sublitosférico tenha sido progressivamente contaminado por material crustal, o que explicaria os padrões de enriquecimento nos fundidos básicos derivados do manto. Contudo, De Campos *et al.* (2016) e suas referências observaram valores de ε_{Nd} inferiores a -10 para as rochas básicas do CISA, o que necessitaria de uma fonte adicional de enriquecimento. A delaminação de uma crosta paleoproterozóica ou até mais antiga poderia ser responsável pelos valores muito negativos de ε_{Nd} . Os valores de ε_{Hf} fortemente negativos apresentados neste trabalho, tanto para as rochas básicas quanto para os granitos, confirmam a participação de uma crosta Aqueana-Paleoproterozoica na contaminação do magma de origem mantélica.

No modelo proposto por De Campos *et al.* (2016) a quebra do slab de crosta oceânica durante a subducção proporcionou a ressurgência do manto astenosférico quente e já enriquecido, o que por sua vez facilitou o processo de delaminação do manto sublitosférico. A diminuição dos esforços compressivos horizontais permitiu que a astenosfera entrasse em fusão parcial e lotes de magmas básicos se alojaram na base da costa, em uma grande zona linear de relaxamento paralela ao complexo metamórfico do orógeno. O calor gerado pelo magma básico foi capaz de fundir parcialmente a crosta, gerando o/os magma(as) granítico(os) que interagiram com o magma básico.

De Campos (2015) descreve que durante o processo de colocação destes magmas, as diferenças de viscosidade entre os magmas e o fluxo turbulento deram origem a processos de mistura caótica de magmas. Conforme o sistema magmático foi perdendo temperatura, as interações magmáticas "congelaram". A presença de uma zona de cisalhamento intramagmática, separando os dois núcleos gabróicos do CISA é explicada por Temporim *et al.* (2020), que realizaram estudos de anisotropia magnética, cujos resultados apontam para dois plútons parcialmente sobrepostos e limitados por esta zona de cisalhamento sinistral. Temporim et al. (2020) consideram que o setor nordeste do CISA corresponde à porção mais profunda da intrusão, próxima à sua raiz de alimentação.

5 COMPLEXO INTRUSIVO DE VÁRZEA ALEGRE

O Complexo Intrusivo de Várzea Alegre (CIVA) é um complexo de rochas ígneas intrusivas associadas ao estágio pós-colisional do orógeno Araçuaí-Congo Ocidental. Suas rochas afloram em uma área de 150km² e estão localizadas nos municípios de Santa Teresa, Itarana, Itaguaçu e São Roque do Canaã, estado do Espírito Santo (Figura 70). O distrito de Várzea Alegre, que dá nome ao complexo, situa-se a aproximadamente 90 km da capital do estado (Vitória – ES). Partindo de Vitória, o acesso ao CIVA pode ser feito seguindo a BR-101 norte até o município de Fundão e depois seguindo pela rodovia ES-260.

Nota: Localização e acesso ao Complexo Intrusivo de Várzea Alegre (C), que aflora nos municípios de Santa Teresa, São Roque do Canaã, Itarana e Itaguaçu, estado do Espírito Santo (B), sudeste do Brasil (A).
Fonte: O AUTOR, 2020.

Assim como o Complexo Intrusivo de Santa Angélica (CISA), o CIVA também é um importante representante do magmatismo pós-colisional do orógeno Araçuaí-Oeste congo, uma vez que apresenta as principais feições que caracterizam a supersuíte G5 (Pedrosa-Soares & Wiedemann-Leonardos, 2000). As características mais marcantes deste complexo intrusivo

são seu relevo inversamente zonado, as feições de mistura de magmas e a presença de rochas charnockiticas (Mendes *et al.*, 1997; Mendes *et al.*, 1999; Medeiros *et al.*, 2000).

Além de sua importância científica e acadêmica, o CIVA tem importância histórica e econômica para o estado do Espírito Santo. As gemas de água-marinha, encontradas nos pegmatitos que ocorrem em todo o CIVA, foram motivo de uma grande corrida garimpeira entre os anos 1930 e 1970 (Taufner, 2007). Durante esse período os moradores da região relatam que uma grande quantidade de gemas de água-marinha foi encontrada, contudo, boa parte destas gemas foi contrabandeada, não havendo, portanto, registros oficiais da quantidade exata de gemas extraídas da região.

O mapa geológico apresentado neste trabalho (Figura 71) foi elaborado a partir da revisão e complementação do mapeamento faciológico apresentado por Potratz (2014) e Potratz *et al.* (2018). O mapeamento do CIVA foi refeito na escala 1:25.000, onde foram identificadas seis unidades ígneas distintas. A localização dos pontos onde foram coletadas amostras para datações U-Pb, análises isotópicas Lu-Hf e litogeoquímica é apresentada no mapa geológico (Figura 71). Os pontos CIVA-01 até CIVA-08 correspondem aos locais de coleta de amostras para datações U-Pb e análises Lu-Hf. Os demais pontos (CIVA-09 a CIVA-19) correspondem aos locais de coleta de amostras para análises litogeoquímicas.

No mapa apresentado neste trabalho são apresentadas seis unidades geológicas distintas mapeadas no CIVA, sendo uma delas subdividida em três fácies ígneas. As unidades do CIVA são: Charnockito/Opdalito, Gabro Norito/Quartzo-gabro Norito/Quartzo Diorito, Enderbito, Granito Porfirítico, Granito Inequigranular e uma zona híbrida aonde predominam feições macroscópicas de mistura de magmas. A distribuição espacial destas rochas é apresentada no mapa geológico (Figura 71). As rochas encaixantes do CIVA são Grafita-cordierita-granada-sillimanita-biotita gnaisse, Gnaisse enderbitico e Granitoide tipo Colatina.

Figura 71 - Mapa geológico do Complexo Intrusivo de Várzea Alegre

- Nota: Mapa geológico do Complexo Intrusivo de Várzea Alegre modificado do mapa faciológico apresentado por Potratz et al. (2018). No mapa apresentado neste trabalhas as fácies de granito porfirítico foram agrupadas em uma única unidade (Granito Porfirítico), que está subdividida nas fácies Granada Granito Porfirítico (A), Biotita Granito Porfirítico (B), Granito Porfirítico (C) e Leucogranito (D). Os pontos CIVA-01 a CIVA-08 foram os locais de coleta de amostras pra geocronologia U-Pb e análises isotópicas Lu-Hf. Os demais pontos foram pontos de coleta para análises litogeoquímicas.
- Legenda: 1 Sedimentos Cenozóicos. Rechas do CIVA: 2 Charnockito/Opdalito; 3 Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito; 4 Enderbito; 5 Zona Híbrida; 6 Granito Porfirítico; 7 Granito Inequigranular. Rochas encaixantes: 8 Diorito; 9 Grafita-Cordierita-Granada-Sillimanita-Biotita Gnaisse; 10 Gnaisse Enderbitico; 11 Granitoide tipo Colatina; 12 Granulito Mascarenhas; 13 Biotita Sillimanita Gnaisse.
- Fonte: Modificado de POTRATZ ET AL. (2018).

5.1 Aspectos de campo e petrográficos

5.1.1 Charnockito/Opdalito

Esta unidade é caracterizada por uma rocha isotrópica, de coloração verde escura, verde claro e acinzentada, com textura que varia de inequigranular porfirítica (Figura 79), nas bordas do CIVA, a inequigranular média a grossa (Figura 72), nas porções mais próximas ao centro do complexo intrusivo. Os fenocristais de feldspato têm entre 3 e 6 centímetros e a proporção dos fenocristais em relação à matriz da rocha é variável, podendo chegar a 50%. Diques máficos de granulação fina e diques pegmatíticos são frequentemente observados nesta unidade (Figura 72).

Nota: Afloramentos da unidade Charnockito/Opdalito do CIVA. Em A é apresentado um charnockito megaporfirítico com matriz de granulação média a grossa. Uma amostra de opdalito de granulação média a grossa (B). As linhas amarelas em C destacam um dique máfico vertical. A foto D apresenta uma série de diques pegmatíticos que cortam o charnockito.

A composição média desta unidade é de 27% de plagioclásio, 24% de ortoclásio, 17% de quartzo, 11% de hiperstênio, 8% de biotita, 4% de augita, 4% de minerais opacos, 3% de hornblenda, 1% de apatita, 1% de granada e 1% de zircão. A composição modal de cada amostra é apresenta na tabela 38 e a classificação destas amostras é apresentada no diagrama Q-A-P da figura 73. Cabe ressaltar que, apesar da granada ter sido considerada no cálculo da média, este mineral só foi observado nas rochas próximas à borda leste do CIVA, nos contatos com a rocha encaixante.

Figura 73 – Diagrama Q-A-P de classificação de rochas ígneas para as amostras da unidade charnockito/opdalito.

Fonte: adaptado de STRECKEISEN (1976).

Tabela 38 - Composição modal das amostras coletadas na unidade charnocktio/opdalito do CIVA.

Minerais	CIVA-01	CIVA-06	CIVA-08	CIVA-09	CIVA-13	Média
Plagioclásio	29	21	27	24	33	27
Hiperstênio	9	12	13	11	8	11
Ortoclásio	27	31	21	25	17	24
Quartzo	16	12	16	20	19	17
Augita	6	5	-	4	6	7
Biotita	3	9	9	11	8	8
Minerais opacos	3	3	6	3	3	4
Apatita	1	1	2	1	-	1
Granada	5	-	-	-	-	1
Zircão	1	1	-	1	1	1
Hornblenda	-	5	6	-	5	1
Total	100	100	100	100	100	

Nota: Os dados são apresentados em número de pontos contados na lâmina e a porcentagem correspondente em cada amostra.

Fonte: O AUTOR, 2020.

Os cristais de plagioclásio são euédricos a subédricos, com granulação que varia de 0,2 a 5,0 mm na matriz da rocha e fenocristais que alcançam 6 cm. Os cristais apresentam textura poiquilítica, com inclusões de quartzo, minerais opacos, apatita e zircão. A formação de mimerquitas é frequente em cristais que fazem contato com ortoclásio. O processo de saussuritização é comum nos cristais de plagioclásio. É comum a ocorrência de maclas acunhadas nos cristais de plagioclásio (Figura 74-E)

O ortoclásio da matriz da rocha apresenta hábito granular anédrico (Figura 74-B), enquanto os fenocristais são tabulares euédricos. A granulação dos cristais na matriz da rocha varia entre 0,25 e 5,0 mm. Inclusões de plagioclásio, zircão e minerais opacos são frequentes nos cristais de ortoclásio. O processo de sericitização pode ser observado nesta fase mineral e é mais frequente nos fenocristais.

O quartzo possui hábito granular anédrico (Figura 74-C), com granulação variando entre 0,1 e 3,0 mm. Inclusões de biotita, ortoclásio, zircão e minerais opacos são frequentes nesta fase mineral. O hiperstênio é subédrico a anédrico (Figura 74-A/F) com granulação variando de 0,3 a 2,5 mm. Estão inclusos cristais de apatita, quartzo e minerais opacos. Esta fase mineral é intensamente fraturada e por vezes ocorrem processos de substituição ora por biotita, ora por hornblenda.

A augita é subédrica (Figura 74-B), com granulação variando entre 0,8 a 2,0mm. Ocorre principalmente associada aos cristais de hiperstênio. Estão inclusos nessa fase mineral cristais de apatita e zircão. Os cristais de biotita possuem hábito tabular e lamelar euédricos a subédricos. A biotita pode ser tanto primária quanto formada pela alteração dos cristais de hiperstênio e augita.

A granada é anédrica e a granulação varia de 0,5 a 1,0mm, possui inclusões de quartzo e apatita. Sua ocorrência é restrita às rochas que estão em contato com as encaixantes do CIVA na borda leste. Os minerais opacos são anédricos e a granulação varia de 0,1 a 0,7mm. Ocorrem principalmente como inclusões nas fases minerais essenciais e acessórias da rocha.

O zircão é euédrico (Figura 74-B), com hábito prismático alongado e ocorre como inclusão nas principais fases minerais das rochas. A apatita também é euédrica e apresenta hábito prismático alongado e por vezes acicular, ocorrendo como inclusão nas principais fases minerais das rochas.

Figura 74 – Fotomicrografias da unidade Charnockito/Opdalito.

- Legenda: Pl plagioclásio; Qtz quartzo; Op minerais opacos; Or ortoclásio; Hi hiperstênio; Hbl hornblenda; Au augita; Bt biotita; Zr zircão.
- Nota: A Cristais granulares de hiperstênio; B Cristal euédrico de zircão incluso em um cristal de plagioclásio; C cristais granulares de quartzo, ortoclásio e plagioclásio; D Cristais de hornblenda e minerais opacos; E maclas acunhadas em cristais de plagioclásio; F cristais anédricos de hiperstênio.

Fonte: O AUTOR, 2020.

5.1.2 Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito

Esta unidade é representada por rochas isotópicas, com textura inequigranular seriada (fina a grossa) e cor variando de cinza escuro a preta (Figura 75). Em alguns afloramentos observam-se veios graníticos com dimensões centimétricas cortando a rocha. A composição média das rochas desta unidade é de 54% de plagioclásio, 12% de biotita, 11% de augita, 7% de hiperstênio, 5% de minerais opacos, 4% de quartzo, 4% de hornblenda, 2% de apatita, 2% de ortoclásio, 1% de granada e zircão e apatita com menos de 1%. Os dados referentes à contagem modal das amostras são apresentados na tabela 39. A classificação das rochas é demonstrada nos diagramas da figura 76.

Figura 75 - Amostras da unidade Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito.

Nota: Amostras da unidade Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito do CIVA. Em A é apresentada uma amostra de Quartzo Gabro-norito de granulação média a grossa e em B é apresentada uma amostra de Quartzo diorito de granulação fina a média.
Fonte: O AUTOR, 2020.

Os cristais de plagioclásio apresentam hábito tabular e granular, com granulação variando de 0,1 a 4,0mm. O arranjo e tamanho dos cristais de plagioclásio conferem às rochas desta unidade a textura subofítica (Figura 77-A/C/D). Grãos com inclusão são pouco frequentes, mas podem ser observadas inclusões de minerais opacos, zircão, hiperstênio e apatita (acicular).

Minerais	CIVA-03	CIVA-12	CIVA-17	CIVA-18	Média
Plagioclásio	59	53	51	54	54
Quartzo	6	-	4	4	4
Biotita	9	6	11	11	12
Minerais opacos	6	5	4	4	5
Hornblenda	6	-	-	-	4
Hiperstênio	6	11	9	9	7
Augita	5	18	12	12	11
Apatita	2	1	2	2	2
Zircão	1	-	-	-	0
Granada	-	2	-	-	1
Ortoclásio	-	4	4	4	2
Total	100	100	100	100	

Tabela 39 – Composição modal das amostras coletadas na unidade Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito do CIVA.

Nota: Os dados são apresentados em número de pontos contados na lâmina e a porcentagem correspondente em cada amostra.

Fonte: O AUTOR, 2020

Figura 76 - Diagramas ternários para classificação de rochas ígneas plutônicas.

- Legenda: a Quartzolito; b Granitos ricos em quartzo; c Alcali feldspato granito; d Sienogranito; e Monzogranito; f – Granodiorito; g – Tonalito; h – Quartzo álcali feldspato sienito; i – Quartzo sienito; j -Quartzo monzonito; k – Quartzo monzodiorito/quartzo monzogabro; l – Quartzo diorito/quartzo gabro/quartzo anortosito; m - álcali-feldspato sienito; n – sienito; o – Monzonito; p – Monzodiorito/Monzogabro; q – Diorito/gabro/anortosito; l – Anortosito; 2 - Gabro/gabronorito/norito; 3,4 e 6 – Piroxênio-hornblenda gabro/piroxênio-hornblenda norito; 5 – Hornblenda gabro; 7 – Piroxenito com plagioclásio; 8 – Honblenda-piroxenito com plagioclásio; 9 – piroxênio-honblendito com plagioclásio; 10 - Hornblendito com plagioclásio.
- Nota: Três amostras desta unidade plotam no campo quartzo diorito/quartzo gabro e uma das amostras plota no campo gabro-norito.

Fonte: adaptado de STRECKEISEN (1976).

Figura 77 - Fotomicrografias da unidade Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito.

Legenda: Pl – plagioclásio; Op – minerais opacos; Hi – hiperstênio; Au – augita. Nota: A – Textura subofítica da rocha; B – Cristais granulares de hiperstênio sob luz natural; C – cristais granulares de hiperstênio e augita; D – textura subofítica da rocha.

A biotita apresenta tanto hábito tabular quanto em escamas. Inclusões de minerais opacos e apatita são frequentes nos cristais de biotita. Os cristais que apresentam formato de escama estão frequentemente associados aos cristais de piroxênio. A augita é subédrica a anédrica (prismática e granular), com granulação variando entre 0,3 e 1,3 mm. Bordas de biotita são frequentes nesta fase mineral, indicando transformação da augita em biotita.

Os cristais de hiperstênio são granulares subédricos (Figura 77-B/C), com granulação variando entre 0,3 e 1,0mm. Inclusões de minerais opacos são frequentes nesta fase mineral, assim a alteração para biotita observada nas bordas dos cristais de hiperstênio. Os minerais opacos apresentam hábito granular anédrico, granulação que varia de 0,3 a 0,8 e ocorrem principalmente inclusos em outras fases minerais.

O quartzo é granular anédrico, com granulação variando entre 0,1 e 0,5mm. A hornblenda apresenta hábito prismático subédrico e apresenta inclusões de minerais opacos, quartzo, apatita e plagioclásio. O ortoclásio é granular xenomórfico, com granulação variando

Fonte: O AUTOR, 2020.

entre 0,3 e 1,3mm. A granada apresenta hábito dodecaédrico euédrico a subédrico, com granulação variando entre 1,5 e 2,0mm. Observa-se inclusões de plagioclásio e coronas de biotita nos cristais de granada.

5.1.3 Enderbito

Esta unidade é caracterizada por uma rocha isotrópica, inequigranular (granulação fina a grossa) e cor cinza claro a escuro (Figura 78). Autólitos centimétricos de microdiorito e complexos de veios graníticos são frequentes nesta unidade. A composição da amostra, estudada em lâmina, desta unidade é de 44% de plagioclásio, 15% de quartzo, 15% de biotita, 11% de hiperstênio, 9% de augita, 3% de ortoclásio, 1% de apatita, 1% de minerais opacos e 1% de zircão. A classificação da rocha é apresentada no diagrama Q-A-P (Figura 79).

Figura 78 – Afloramentos e amostras da unidade Enderbito.

Nota: Afloramento (A) e amostra (B) da unidade enderbito. Fonte: O AUTOR, 2020.

Figura 79 – Diagrama Q-A-P de classificação de rochas ígneas para as amostras da unidade enderbito.

 Legenda: a – Quartzolito; b – Granitos ricos em quartzo; c – Alcali feldspato granito; d – Sienogranito; e – Monzogranito; f – Granodiorito; g – Tonalito; h – Quartzo álcali feldspato sienito; i – Quartzo sienito; j -Quartzo monzonito; k – Quartzo monzodiorito/quartzo monzogabro; l – Quartzo diorito/quartzo gabro/quartzo anortosito; m - álcali-feldspato sienito; n – sienito; o – Monzonito; p – Monzodiorito/Monzogabro; q – Diorito/gabro/anortosito.
 Nota: A amostra desta unidade plota no campo dos tonalitos.

Fonte: adaptado de STRECKEISEN (1976).

O plagioclásio é tabular euédrico a subédrico, com granulação variando de 1,0 a 3,5mm. Os cristais de plagioclásio frequentemente apresentam textura antipertítica. Mimerquitas são observadas no contato dos cristais de plagioclásio com cristais de ortoclásio (Figura 80-F). Os cristais de quartzo são granulares anédricos, com granulação variando de 0,5 a 1,3mm. Inclusões de apatita podem ser observadas nos cristais de quartzo.

A biotita apresenta hábito tabular quando primária e lamelar quando formada por alteração do hiperstênio e da augita (Figura 80-D/E). Alguns cristais de biotita podem apresentar alteração parcial ou total para Mg-Fe clorita. A augita é prismática subédrica, com granulação que varia de 0,5 a 2,0 mm. Lamelas exsolvidas de hiperstênio são comuns nos cristais de augita, assim como alteração para biotita ou hornblenda nas bordas dos cristais (Figura 80-A).

O hiperstênio é granular anédrico, com granulação variando entre 0,5 a 0,8 mm. Ocorre na rocha sempre associada aos cristais de augita e a alteração para biotita é comum nesta fase mineral. O ortoclásio é granular anédrico, com granulação que varia entre 0,5 a 1,2mm. Inclusões de apatita, e minerais opacos são comuns nesta fase mineral. A hornblenda apresenta hábito prismático subédrico. Em raros casos pode-se observar a formação de coronas de hornblenda em cristais de biotita.

Figura 80 – Fotomicrografias da unidade Enderbito.

Legenda: Pl – plagioclásio; Op – minerais opacos; Hi – hiperstênio; Au – augita; Hbl – hornblenda; Qtz – quartzo.

Nota: A – Bordas de hornblenda em cristais de augita; B – Textura granular da rocha; C – Maclas retorcidas em cristal de plagioclásio; D/E – cristal de hiperstênio envolto por cristais de biotita; F – Textura mimerquítica nas bordas de cristais de plagioclásio.

Fonte: O AUTOR, 2020.

5.1.4 Zona híbrida

Esta é uma unidade heterogênea, na qual coexistem duas ou mais rochas distintas, não sendo possível separá-las em mapa dada a escala no processo de mistura. Ao menos três unidades identificadas no CIVA podem ser encontradas na zona de mistura, sendo elas granito porfirítico, gabro/diorito e enderbito (Figura 81). As principais feições macroscópicas relacionadas aos processos de mistura de magma observadas na zona híbrida do CIVA são: clots máficos em meio a granitoides, complexos de veios em rede (net-veined complexes), intrusões sinuosas de composição granítica em rochas máficas, cristais de quartzo e álcalifeldspatos manteados por minerais máficos e autólitos máficos cortados por veios graníticos (Figura 81).

Nesta unidade foram coletadas quatro amostras, sendo três delas de rochas máficas e uma de granito. A composição da amostra granítica (CIVA-04) é de 38% de álcali-feldspato, 23% de plagioclásio, 16% de quartzo, 10% de biotita, 4% de titanita, 4% de minerais opacos, 3% de apatita e 2% de zircão (Tabela 40). A composição média dos membros máficos da zona híbrida é de 54% de plagioclásio, 12% de biotita, 11% de augita, 6% de hiperstênio, 5% hornblenda, 5% de minerais opacos, 3% de quartzo, 2% de apatita, 1% de granada e 1% de ortoclásio (Tabela 40). A classificação das rochas é apresentada nos diagramas da figura 82.
Figura 81 – Afloramentos da zona híbrida.

Legenda: Feições macroscópicas que indicam o processo de mistura de magmas. As figuras A e B apresentam complexos de veios em rede, aonde o magma granítico se dispersa em veios em uma rocha máfica. As figuras C e D apresentam autólitos máficos em meio ao enderbito e cortados por veios graníticos. A imagem E apresenta um autólito máfico cortado por intrusões sinuosas de magma granítico. As figuras F e H demonstram uma complexa relação entre tipos distintos de magmas aonde a mistura não foi totalmente eficiente. Por fim, em G é apresentado um bloco aonde são observadas três litologias distintas, a saber: granito porfirítico, diorito e enderbito. Fonte: O AUTOR, 2020.

Minerais	CIVA-15	CIVA-16	CIVA-19	CIVA-04
Plagioclásio	58	53	51	23
Quartzo	6	-	4	16
Biotita	9	6	21	10
Minerais opacos	6	5	5	4
Hornblenda	6	-	8	-
Hiperstênio	6	11	-	-
Augita	5	18	9	-
Apatita	2	1	2	3
Zircão	1	-	-	2
Titanita	1	-	-	4
Granada	-	2	-	-
Álcali-feldspato	-	4	-	38
Total	100	100	100	100

Tabela 40 - Composição modal das amostras coletadas na zona híbrida do CIVA.

Nota: Os dados são apresentados em número de pontos contados na lâmina e a porcentagem correspondente em cada amostra.

Fonte: O AUTOR, 2020

Figura 82 - Diagramas ternários para classificação de rochas ígneas plutônicas.

- Legenda: a Quartzolito; b Granitos ricos em quartzo; c Alcali feldspato granito; d Sienogranito; e Monzogranito; f – Granodiorito; g – Tonalito; h – Quartzo álcali feldspato sienito; i – Quartzo sienito; j -Quartzo monzonito; k – Quartzo monzodiorito/quartzo monzogabro; l – Quartzo diorito/quartzo gabro/quartzo anortosito; m - álcali-feldspato sienito; n – sienito; o – Monzonito; p – Monzodiorito/Monzogabro; q – Diorito/gabro/anortosito; l – Anortosito; 2 -Gabro/gabronorito/norito; 3,4 e 6 – Piroxênio-hornblenda gabro/piroxênio-hornblenda gabronorito/piroxênio-hornblenda norito; 5 – Hornblenda gabro; 7 – Piroxenito com plagioclásio; 8 – Honblenda-piroxenito com plagioclásio; 9 – piroxênio-honblendito com plagioclásio; 10 -Hornblendito com plagioclásio.
- Nota: A amostra do membro granítico da zona de mistura plota no campo do monzogranito. Duas amostras de membros máficos plotam no campo do quartzo diorito/quartzo gabro e uma amostra plota no campo gabronorito.

Fonte: adaptado de STRECKEISEN (1976).

5.1.4.1 Características petrográficas da amostra de monzogranito

O membro granítico da zona híbrida é uma rocha isotrópica, inequigranular fanerítica, de cor cinza claro a esbranquiçada. Os fenocristais de feldspato podem chegar a 6cm e a matriz da rocha varia de fina a grossa. Fragmentos de diorito fino a médio e cristais de quartzo e feldspatos manteados por minerais máficos são frequentes.

A rocha apresenta dois tipos de álcali-feldspato, o ortoclásio e a microclina, sendo o primeiro mais comum. Estes feldspatos apresentam hábito tabular subédrico, com granulação variando entre 1,0 2,5 mm na matriz da rocha. Em amostra de mão os fenocristais de feldspato chegam até a 6 cm. A textura pertítica é comum nos cristais de ortoclásio, assim como o processo avançado de triclinização.

Os cristais de plagioclásio são subédricos, com granulação variando entre 1,0 e 3,0 mm. Raramente ocorrem inclusões de minerais opacos, zircão e titanita (Figura 83-B). Alguns cristais apresentam maclas acunhadas (Figura 83-D). O quartzo é granular anédrico, com granulação variando entre 0,3 e 1,5 mm. Alguns cristais de quartzo apresentam processo de recristalização (Figura 83-C). Frequentemente ocorrem inclusões de zircão, minerais opacos e apatita.

A biotita apresenta hábito tabular euédrico, ocorrendo intenso processo de cloritização, transformando os cristais de biotita em Mg-Fe clorita. Inclusões de grãos prismáticos de zircão e agulhas de apatita são frequentes nos cristais de biotita. Os minerais opacos são granulares anédricos, com granulação que não ultrapassa 0,5mm. A apatita ocorre tanto em sua forma hexagonal (euédrica) quanto com hábito acicular, sempre inclusa em alguma outra fase mineral. A titanita apresenta hábito losangular ou lenticular, sendo encontrada sempre como inclusão nas fases minerais essenciais da rocha.

Figura 83 – Fotomicrografias do membro granítico da zona híbrida.

Legenda: Pl – plagioclásio; Qtz – quartzo; Ti – titanita.
Nota: A – textura granular da rocha; B – Cristal de titanita incluso em cristal de plagioclásio; C – Cristal de quartzo recristalizado; D – Macla acunhada em cristal de plagioclásio.
Fonte: O AUTOR, 2020.

5.1.4.2 Características petrográficas da amostra dos membros máficos da zona híbrida

As rochas máficas que ocorrem na zona híbrida são quartzo gabro e gabro norito. Estas rochas são isotrópicas, inequigranulares de granulação fina a grossa, podendo ter alguns fenocristais de álcali-feldspato dispersos na matriz, e apresentam coloração cinza escuro a preto. Complexos de veios graníticos e intrusões sinuosas são frequentes.

O plagioclásio apresenta hábito tabular (Figura 84-A), com granulação variando de 0,4 a 5,0mm. O arranjo e tamanho dos cristais de plagioclásio conferem às rochas desta unidade a textura subofítica. Grãos com inclusão são pouco frequentes, mas podem ser observadas inclusões de minerais opacos, zircão e apatita (acicular).

Figura 84 – Fotomicrografias do membro máfico da zona híbrida.

Legenda: Pl – plagioclásio; Hi – hiperstênio; Bt – biotita; Op -minerais opacos; Au – Augita. Nota: A – Aglomerados de cristais de plagioclásio; B – Cristais de plagioclásio com macla acunhada; C – Cristal granular de augita; D – textura granular da rocha.

A biotita apresenta hábito tabular e em escamas. Inclusões de minerais opacos e apatita são frequentes nos cristais de biotita. Os cristais que apresentam formato de escama estão frequentemente associados aos cristais de piroxênio. A augita é subédrica a anédrica (Figura 84-C), com granulação variando entre 0,3 e 1,0 mm.

Os cristais de hiperstênio são granulares subédricos, com granulação variando entre 0,5 e 1,6 mm. Inclusões de minerais opacos são frequentes nesta fase mineral, assim a alteração para biotita observada nas bordas dos cristais de hiperstênio. Os minerais opacos apresentam hábito granular anédrico, granulação que varia de 0,2 a 1,5 e ocorrem principalmente inclusos em outras fases minerais.

O quartzo é granular anédrico, com granulação variando entre 0,1 e 0,5mm. A hornblenda apresenta hábito prismático subédrico e apresenta inclusões de minerais opacos,

Fonte: O AUTOR, 2020.

quartzo, apatita e plagioclásio. O ortoclásio é granular xenomórfico, com granulação variando entre 0,3 e 1,3mm. A granada apresenta hábito granular subédrico a anédrico, com granulação variando entre 0,4 e 1,5 mm.

5.1.5 Granito porfirítico

Esta unidade é representada por rochas inequigranulares porfiríticas, com matriz de granulação média a grossa e fenocristais que podem atingir até 6 cm (Figura 85). Esta unidade pode ser subdividida em 4 fácies, de acordo com critérios mineralógicos, sendo elas granada granito porfirítico, biotita granito porfirítico, granito porfirítico e leucogranito porfirítico.

A fácies granada granito porfirítico ocorre na borda sudeste do CIVA. Trata-se de uma rocha isotrópica, leucocrática e inequigranular porfirítica, com fenocristais que podem chegar a 4cm. Esta fácies é frequentemente cortada por diques graníticos de granulação fina a média e o que destaca essa fácies é a presença de granada. A fácies biotita granito porfirítico ocorre próximo à borda leste do CIVA e está diretamente associada aos charnockitos, sendo que o contato entre estas unidades é transicional. Na fácies biotita granito porfirítico são encontradas rochas isotrópicas e inequigranulares porfiríticas (Figura 85). Em raros casos é possível observar a foliação de fluxo magmático marcada pela orientação de fenocristais. O que destaca essa fácies das demais é a presença de biotita em quantidade superior a 10% na composição modal da rocha. Diques pegmatíticos são frequentemente observados na fácies biotita granito porfirítico.

A fácies granito porfirítico ocorre no centro do CIVA e próximo à borda oeste. Esta fácies é representada por rochas isotrópicas e inequigranulares porfiríticas (Figura 85). Nesta unidade é muito frequente a presença de diques graníticos de granulação fina a média, assim como diques pegmatíticos compostos de feldspatos, quartzo, turmalina e águas-marinhas (raro). Por fim, a fácies leucogranito porfirítico (Figura 85) ocorre em um pequeno corpo localizado no centro do CIVA. Trata-se de uma rocha isotrópica, inequigranular porfirítica, com a granulação da matriz variando de média a grossa e fenocristais de feldspato com até 6cm. Esta rocha apresenta coloração esbranquiçada e sua principal característica é a ocorrência de textura gráfica.

A composição modal das amostras coletadas é apresentada na tabela 41 e a classificação destas amostras é apresentada no diagrama Q-A-P na figura 86.

Figura 85 – Amostras de granito porfirítico

Legenda: A – Fácies biotita granito porfirítico; B e C – Fácies granito porfirítico; D – Fácies granada granito porfirítico; E e F – Fácies leucogranito porfirítico.
 Fonte: O AUTOR, 2020.

Minerais	CIVA-02	CIVA-05	CIVA-10	Média
Quartzo	28	21	19	23
K-feldspato	35	38	37	37
Plagioclásio	20	27	26	24
Granada	-	-	8	3
Biotita	9	9	5	8
Zircão	1	1	1	1
Minerais opacos	2	2	3	2
Apatita	-	1	1	1
Allanita	5	1	-	2
Total	100	100	100	

Tabela 41 - Composição modal das amostras coletadas na unidade granito porfirítico do CIVA.

Nota: Os dados são apresentados em número de pontos contados na lâmina e a porcentagem correspondente em cada amostra.

Fonte: O AUTOR, 2020

Figura 86 – Diagrama Q-A-P de classificação de rochas ígneas para as amostras da unidade granito porfirítico.

Nota: As amostras das diferentes fácies de granito porfirítico plotam no campo do monzogranito. Fonte: adaptado de STRECKEISEN (1976).

Os cristais de álcali-feldspato apresentam hábito granular a tabular subédrico, com granulação variando entre 0,4 e 4,5 mm na matriz da rocha. Nesta unidade o principal álcali-feldspato é o ortoclásio, contudo, o processo de triclinização é frequente, assim como a textura pertítica (Figura 87-B). Inclusões de hornblenda, zircão e apatita são comuns nesta fase mineral. Outra feição frequente são os mantos de biotita em cristais de ortoclásio.

Figura 87 – Fotomicrografias da unidade granito porfirítico.

Legenda: Pl – plagioclásio; Qtz – quartzo; Ti – titanita; Or – Ortoclásio; Mic – microclima; Grt – granada; Bt – biotita.

Nota: A – cristais de titanita com hábito losangular inclusos em cristais de plagioclásio; B – textura pertítica em cristal de ortoclásio; C – fenocristal de ortoclásio; D – Cristais de biotita com hábito tabular; E – aglomerado de cristais de granada; F – fenocristal de plagioclásio corroído com maclas retorcidas.
 Fonte: O AUTOR, 2020.

O plagioclásio apresenta hábito granular subédrico, com granulação que varia entre 0,3 e 2,5 mm na matriz da rocha. A textura antipertítica e inclusões de minerais opacos e biotita são frequentes nos cristais de plagioclásio. Maclas polissintéticas retorcidas também

são frequentes nos cristais de plagioclásio (Figura 87-F). Os cristais de quartzo são granulares, com granulação variando entre 0,3 e 4,0 mm na matriz da rocha e inclusões de apatita, minerais opacos, biotita e plagioclásio.

Os cristais de biotita apresentam hábito tabular e lamelar (Figura 87-D), havendo tanto cristais primários, quanto secundários. Inclusões de zircão e minerais opacos são frequentes nos cristais de biotita. A granada apresenta hábito granular subédrico, com granulação variando de 0,2 a 1,8mm (Figura 87-E). Os cristais de granada apresentam inclusões de grãos de quartzo com formato ovalado. A granada só está presente na fácies granada granito porfirítico. A allanita ocorre principalmente na fácies granito porfirítico, apresentando hábito granular anédrico e granulação variando entre 0,1 e 1,4mm.

5.1.6 Granito inequigranular

Esta unidade é representada por rochas inequigranulares de granulação fina a média, que são isotrópicas na maioria dos afloramentos, porém alguns afloramentos apresentam rochas anisotrópicas (Figura 88). Nos aforamentos aonde a rocha é anisotrópica, é possível observar um bandamento centimétrico incipiente (Figura 88) e alguns cristais de feldspato deformados. A composição mineralógica da unidade granito equigranular é de 30% de quartzo, 37 % de microclina, 13% de plagioclásio, 9% de biotita, 6% de minerais opacos, 3% de titanita, 1% de apatita e 1% de allanita. A classificação da rocha é apresentada no diagrama Q-A-P (Figura 89).

Legenda: A – granito inequigranular isotrópico; B – granito inequigranular anisotrópico. Fonte: O AUTOR, 2020.

Figura 89 – Diagrama Q-A-P de classificação de rochas ígneas para as amostras da unidade granito inequigranular.

Nota: A amostra de granito inequigranular plota no campo do sienogranito. Fonte: adaptado de STRECKEISEN (1976).

A microclina é granular anédrica, com granulação que varia entre 0,2 a 1,4 mm. O contato dos cristais de microclina com quartzo e/ou plagioclásio em geral é serrilhado. Inclusões de biotita, zircão e apatita são frequentes nessa fase mineral. O quartzo ocorre na forma anédrica, com granulação variando de 0,1 a 2,0 mm. Alguns grãos possuem extinção fortemente ondulante. *Ribbons* de quartzo (Figura 90-B) são muito comuns na rocha, apresentando ainda a formação de subgrãos e novos grãos gerados por migração da parede de discordância.

Os cristais de plagioclásio apresentam hábito granular anédrico, com granulação variando entre 0,2 e 1,5mm. Nestes cristais são frequentes inclusões de biotita, apatita e minerais opacos. A biotita é tabular euédrica, ocorre sempre associada aos minerais opacos e sua orientação preferencial marca o bandamento da rocha. Os minerais opacos são granulares anédricos, com granulação variando entre 0,2 e 0,8mm. A titanita apresenta hábito losangular, com granulação variando entre 0,4 e 0,9mm. A apatita é euédrica (Figura 90-C) e apresenta hábito prismático e hexagonal. A allanita é granular anédrica, com granulação variando entre 0,3 e 0,7 mm.

Figura 90 – Fotomicrografias do granito inequigranular.

Legenda: Pl – plagioclásio; Qtz – quartzo; Ms – muscovita; Ap – Apatita; Op – minerais opacos; Bt – biotita.

Nota: A – Textura granular da rocha; B – Ribbon de quartzo; C – cristais de apatita e zircão euédricos; D – textura granular da rocha.

Fonte: O AUTOR, 2020.

5.2 Litogeoquímica

O conjunto de amostras coletadas no CIVA representa a heterogeneidade das rochas que compõem esse complexo e as análises geoquímicas tiveram o objetivo caracterizar o maior número de unidades possíveis. Desta forma foram analisadas três amostras da unidade Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito, três amostras do membro máfico da zona Híbrida, uma amostra de Enderbito, duas amostras de Charnockito/Opdalito, uma amostra de Granito porfirítico, da fácies Granada granito porfirítico, e uma amostra de Granito inequigranular. Os resultados analíticos são apresentados nas tabelas 42, 43 e 444.

Análises		Gabro			Híbrida		Enderbito	Charnockit	o/Opdalito	Gra	nito
7 manses	CIVA-12	CIVA-17	CIVA-18	CIVA-15	CIVA-16	CIVA-19	CIVA-11	CIVA-09	CIVA-13	CIVA-10	CIVA-14
SiO ₂	51,20	49,86	52,60	52,37	58,04	52,60	62,07	68,13	62,02	68,71	74,34
Al ₂ O ₃	14,22	15,16	16,84	15,88	15,27	15,59	14,09	14,15	17,42	14,01	11,99
FeO	12,65	11,37	9,33	11,17	11,19	10,33	7,64	4,77	4,76	3,12	2,39
MnO	0,18	0,17	0,13	0,17	0,20	0,15	0,10	0,06	0,08	0,03	0,03
MgO	3,37	4,91	3,50	3,35	2,94	4,24	2,36	0,80	0,71	0,54	0,51
CaO	7,01	7,87	7,82	6,65	5,14	7,22	4,47	2,79	4,57	1,89	1,15
Na ₂ O	2,80	3,16	3,20	3,06	3,47	3,06	2,99	3,30	3,58	2,46	2,35
K_2O	2,26	2,12	2,02	3,03	1,05	2,41	3,41	3,53	3,20	5,77	4,60
TiO ₂	3,28	2,54	2,35	2,80	2,03	2,47	1,62	0,71	0,78	0,56	0,37
P_2O_5	1,40	1,05	0,96	1,18	0,85	1,03	0,74	0,30	0,31	0,16	0,17
PF	1,23	1,24	0,93	0,80	0,04	1,34	1,14	1,27	0,90	1,36	0,63
Total	99.62	99.44	99.67	100.50	100.20	100.40	100.60	99.81	98.34	98.60	98.53

Tabela 42 - Dados litogeoquímicos de elementos maiores das amostras coletadas no CIVA.

Nota: Os valores são expressos em % em peso. OS valores de PF estão abaixo de 1,50 e a soma dos óxidos + PF entre 98,5% e 101,0%, portanto, os resultados estão dentro de padrões de qualidade aceitáveis. Fonte: O AUTOR, 2020

		Gabro			Híbrida		Enderbito	Charnockit	o/Opdalito	Gra	nito
Analises	CIVA-12	CIVA-17	CIVA-18	CIVA-15	CIVA-16	CIVA-19	CIVA-11	CIVA-09	CIVA-13	CIVA-10	CIVA-14
Cs	0,8	< 0.5	0,6	0,6	0,6	< 0.5	1,8	2,5	< 0.5	1	0,7
Rb	53	44	59	83	12	55	126	131	63	144	146
Ba	1977	1980	1409	2168	1115	1958	1553	1052	2840	1856	503
Sr	780	1057	984	794	524	1084	542	236	579	334	145
Pb	15	15	17	19	19	17	21	21	21	41	55
Th	2,9	3,5	8,5	8	24,9	8,3	22,7	65,9	1,9	65,2	16,9
U	0,5	0,5	1	1,1	2	1,1	1,4	2,5	0,5	1	1,6
Zr	494	434	402	540	962	416	513	632	695	397	188
Hf	11,2	10,4	9,1	12,5	21,5	9,3	12,2	15,6	15,8	9,8	5,2
Та	2,1	1,3	1,5	1,6	2,9	1,3	1,6	1,1	0,8	0,6	0,7
Nb	39	28	27	34	44	26	28	26	16	10	11
Y	41	32	27	41	57	31	35	22	14	6	33
Sc	22	24	20	24	27	21	14	11	9	3	3
Cr	< 20	40	40	< 20	40	40	30	< 20	< 20	< 20	< 20
Со	34	37	34	28	37	35	26	19	16	23	22
Ni	< 20	< 20	< 20	< 20	< 20	30	< 20	< 20	< 20	< 20	< 20
V	260	238	209	251	148	212	128	29	43	36	28
W	94	97	152	71	276	93	149	179	162	288	254
Cu	10	20	< 10	< 10	30	10	< 10	< 10	10	< 10	< 10
Zn	160	140	110	150	170	120	110	90	90	50	50
Ga	23	22	23	26	24	22	23	24	27	21	15

Tabela 43 - Dados litogeoquímicos de elementos traços das amostras coletadas no CIVA.

Nota: Os valores são expressos em partes por milhão (ppm). Fonte: O AUTOR, 2020

Análicos		Gabro			Híbrida		Enderbito	Charnockit	o/Opdalito	Gra	nito
Analises	CIVA-12	CIVA-17	CIVA-18	CIVA-15	CIVA-16	CIVA-19	CIVA-11	CIVA-09	CIVA-13	CIVA-10	CIVA-14
La	108	117	95,1	137	195	112	214	304	60,6	162	59,7
Ce	229	238	199	289	382	222	398	577	108	314	119
Pr	27,1	26,6	22,6	33,3	42,2	24,6	41,9	58,8	11,9	32,4	12,9
Nd	109	103	88	127	160	95,2	146	211	47	110	46,1
Sm	20	17,5	14,9	21,9	28	15,8	22,7	27,8	8	13,4	9,3
Eu	4,92	4,24	3,79	4,4	4,87	3,83	3,52	2,54	5,43	2,04	1,26
Gd	14	11,9	10,2	13,8	19,5	10,6	13,5	14,2	5,7	4,8	7,9
Tb	1,9	1,5	1,4	1,9	2,5	1,4	1,7	1,4	0,7	0,4	1,2
Dy	9,7	7,2	6,2	8,9	12,3	7,1	8,6	5,8	3,2	1,8	6,6
Ho	1,6	1,2	1	1,5	2,2	1,2	1,4	0,9	0,5	0,2	1,1
Er	4	3,2	2,6	3,8	5,3	2,9	3,3	2,1	1,5	0,5	2,8
Tm	0,53	0,42	0,34	0,51	0,7	0,38	0,44	0,27	0,2	0,06	0,36
Yb	3,2	2,6	2	3,1	4,4	2,4	2,8	1,6	1,3	0,4	2,2
Lu	0,48	0,38	0,31	0,45	0,66	0,36	0,39	0,24	0,19	0,06	0,33
La/Yb	33,8	45,0	47,6	44,2	44,3	46,7	76,4	190,0	46,6	405,0	27,1

Tabela 44 – Dados litogeoquímicos de elementos terras raras (ETR) das amostras coletadas no CIVA.

Nota: Os valores são expressos em partes por milhão (ppm). Fonte: O AUTOR, 2020

As rochas são essencialmente metaluminosas (Figura 91), com exceção das amostras de granito inequigranular e granito porfirítico, que são fracamente peraluminosas. A tendência cálcio-alcalina de alto potássio é observada na maioria das amostras (Figura 91), tendo uma amostra de rocha híbrida com comportamento cálcio-alcalino (CIVA-16) e duas amostras com comportamento shoshonítico (CIVA-15 e CIVA-10).

Figura 91 – Diagramas A/CNK vs A/NK e SiO2 vs K2O.

Nota: No diagrama A/NK versus A/CNK a maioria das rochas plota no campo metaluminoso, com exceção dos granitos que plotam no campo peraluminoso. No diagrama de Peccerillo & Taylor (1976) o principal campo em que as amostras plotam é o da série cálcio-alcalina de alto potássio. Uma amostra de rocha

máfica plota no campo cálcio-alcalino, uma amostra de rocha máfica plota no campo shoshonítico e uma amostra de granito também plota no campo shoshonítico. Fonte: adaptado de SHAND (1943) e PECCERILLO & TAYLOR (1976)

Utilizando a classificação de Frost *et al.* (2001), as amostras de rochas intermediárias e ácidas apresentam diferentes comportamentos. A amostra de granito inequigranular é magnesiana e álcali-cálcica, enquanto a amostra de granada granito porfirítico é ferrosa e cálcica (Figura 92). As amostras de charnockito/opdalito apresentam comportamento semelhante, sendo ambas ferrosas e cálcio-alcalinas (Figura 92). A amostra de enderbito é levemente magnesiana e cálcio-alcalina (Figura 92).

Figura 92 - Diagramas de Frost et al. (2001) para classificação de rochas ácidas e intermediárias.

Nota: As amostras de charnockito e a amostra de granada granito porfirítico plotam no campo ferroso. A amostra de enderbito e granito inequigranular plotam no campo magnesiano, estando a amostra de enderbito no limite que separa os dois campos. Em relação aos teores de álcalis e cálcio, os charnockitos e o enderbito plotam no campo cálcio-alcalino. A amostra de granada granito porfirítico plota no campo álcali-cálcico e a amostra de granito inequigranular plota no limiar entre os campos cálcio e cálcio-alcalino. Fonte: adaptado de FROST *ET AL*. (2001).

No diagrama multielementar diferentes comportamentos são observados para as diferentes unidades do CIVA (Figura 93). As amostras de granitos apresentam anomalias negativas de Nb, Ta, Sr, P e Ti (Figura 93). A amostra CIVA-10 apresenta anomalia negativa de Ba e anomalia positiva de Th, enquanto a amostra CIVA14 é enriquecida em Tb, Y Tm e Yp quando comparada com a amostra CIVA-10 (Figura 93). As amostras de Charnockito/opdalito apresentam comportamento variado, principalmente em relação ao Th,

em que a amostra CIVA-09 apresenta anomalia positiva e a amostra CIVA-13 apresenta anomalia negativa para o elemento em questão (Figura 93). O comportamento do Enderbito se assemelha ao comportamento da amostra CIVA-09 (Figura 93). As amostras da unidade gabro e as amostras de membros máficos da zona híbrida apresentam comportamento semelhante, tendo apenas uma amostra da zona híbrida se destacado por sua anomalia negativa de Rb e anomalia positiva de Th (Figura 93).

Os elementos terras raras também apresentam comportamento distinto nas amostras de granitos (Figura 94). A amostra de granada granito porfirítico (CIVA-10) apresenta alto fracionamento entre os ETR leves e pesados, com razão La/Yb igual a 405. O fracionamento entre os ETR leves e pesados na amostra CIVA-14 é menos pronunciado, com razão La/Yb de 27,1, contudo, esta amostra apresenta anomalia negativa de európio (Figura 94). Entre as amostras de charnockito/opdalito o fracionamento entre ETR leves e pesados é menor na amostra CIVA-13, tendo esta amostra uma anomalia positiva de európio (Figura 94). A amostra CIVA-09 apresenta anomalia negativa de európio e alto fracionamento entre os ETR leves e pesados, sendo o mesmo padrão observado na amostra de enderbito (CIVA-11) (Figura 94). Entre as amostras de gabro e rochas híbridas, o comportamento do ETR é semelhante, destacando-se apenas a amostra CIVA-16, que apresenta leve anomalia negativa de európio (Figura 94).

Os diagramas tectônicos indicam ao menos três fontes distintas para os magmas que deram origem ao CIVA. Tanto as amostras da unidade Gabro, quanto os membros máficos da zona híbrida apresentam afinidades com arcos alcalinos (Figura 95). As rochas da série charnockitica podem ter sua origem associada à fusão de rochas máficas de alto potássio (Figura 96). Por fim, os granitos possivelmente se formaram por fusão de rochas metassedimentares (Figura 96).

Figura 93 – Diagramas multielementares para as diferentes rochas do CIVA.

Nota: Os valores foram normalizados pelo condrito de Thompson (1982). Fonte: O AUTOR (2020).

Figura 94 – Diagramas de elementos terras raras para as diferentes rochas do CIVA.

Nota: os valores foram normalizados pelo condrito de Boynton (1984). Fonte: O AUTOR (2020).

Figura 95 - Diagramas de ambiência tectônica para rochas básicas

Nota: As amostras de rocha máficas plotam todas no campo dos arcos alcalinos. Fonte: Adaptado de HOLLOCHER ET AL. (2012).

Figura 96 - Diagramas discriminantes de fontes magmáticas

Nota: as amostras de granito plotam no campo de fontes metassedimentres. Já as amostras de charnockitos e enderbitos plotam no campo de fusões a partir de rochas máficas de alto K. Fonte: Adaptado de LAURENT ET AL. (2014).

5.2.1 Temperatura de saturação de Zr

Os resultados dos cálculos de temperatura de saturação de zircônio são apresentados na tabela 45. Os cálculos foram feitos com base nas equações apresentadas por Boehnke *et al.* (2013). A temperatura de saturação de Zr para o granito inquigranular (CIVA-14) é de 772,1°C e para a amostra de granada granito porfirítico (CIVA-10) é de 830,1°C. Para os charnockitos as temperaturas de saturação foram de 876,4°C para a amostra CIVA-09 e 786,5°C para a amostra CIVA-09. Na amostra de enderbito a temperatura foi de 866,1°C.

Saturação de Zr (ppm)	Temperatura de saturação de Zr (°C)
152,6	830,1
193,8	772,1
212,3	876,4
253,9	866,1
365,2	786,5
	Saturação de Zr (ppm) 152,6 193,8 212,3 253,9 365,2

Tabela 45 – Temperatura de saturação de Zr.

Nota: Resultados para os cálculos de saturação de zircônio no magma (Zr saturação) e temperatura de saturação de zircônio.

Fonte: O AUTOR, 2020.

5.3 Geocronologia U-Pb

As datações U-Pb foram feitas em oito amostras, sendo três de Charnockito/Opdalito (CIVA-01, CIVA-06 e CIVA-08), duas de Granito porfirítico (CIVA-02 e CIVA-05), uma amostra de Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito (CIVA-03), uma amostra do membro granítico da Zona Híbrida (CIVA-04) e uma amostra de Granulito Mascarenhas (CIVA-07), uma das rochas encaixantes do CIVA.

Para cálculo das idades foram considerados apenas os *spots* quem apresentaram discordância menor ou igual a 5% (em módulo), fração de ²⁰⁶Pb/²⁰⁴Pb menor ou igual a 0,005, razão Th/U maior que 0,19, erros individuais das razões menores ou iguais a 8% e com valores de Rho acima de 30%. Os *spots* que não atenderam a estes critérios foram descartados. O resumo das idades obtidas é apresentado na tabela 46.

Amostra	Idades (Ma)	Unidade
CIVA-01	510 <u>+</u> 3	Charnockito/opdalito
CIVA-02	502 <u>+</u> 4	Granito porfirítico
CIVA-03	511 <u>+</u> 4	Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito
CIVA-04	506 <u>+</u> 5	Zona híbrida – membro granítico
CIVA-05	483 <u>+</u> 4	Granito porfirítico
CIVA-06	504 <u>+</u> 3	Charnockito/opdalito
CIVA-07	587 <u>+</u> 27	Granulito Mascarenhas
CIVA-08	513 <u>+</u> 4	Charnockito/opdalito

Tabela 46 - Idades de cristalização obtidas nas amostras coletadas no Complexo Intrusivo de Várzea Alegre.

Fonte: O AUTOR, 2020.

5.3.1 Charnockito/Opdalito

A população de zircões das amostras de Charnockito/Opdalito é homogênea, com cristais prismáticos, euédricos e proporções (comprimento : largura) de 4:1, 3:1 e 2:1. No geral os cristais apresentam crescimento concêntrico, havendo ainda alguns cristais com textura nebulítica em todo grão.

Na amostra CIVA-01 o conjunto de zircões apresenta idades, relatadas como 206 Pb/ 238 U, variando entre 521 \pm 5 Ma e 498 \pm 6 Ma (Tabela 47) (Figura 97), com idade média de 510 \pm 3 Ma, MSWD = 0,000 e probabilidade de 0,995 (N=17) (Figura 98).

Figura 97 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-01

Nota: As idades U-Pb são relatadas como $^{206}\text{Pb}/^{238}\text{U}$ em Ma, com erros em 2 $\sigma.$ Fonte: O AUTOR 2020.

Figura 98 - Diagrama concórdia com os dados plotados da amostra CIVA-01

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-01. Fonte: O AUTOR, 2020.

								Razõe	s isotópio	cas					Idades (1	Ma)				
Spot	£ 206	Pb	Th	U	Th/∐	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Брог	J 200	ppm	ppm	ppm	III/C	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0,0047	10	67	103	0,65	0,6483	2,52	0,0819	1,14	0,45	0,0574	2,25	508	6	507	13	506	11	100	0
02-A*	0,0046	6	40	66	0,61	0,6541	3,60	0,0826	2,08	0,58	0,0575	2,93	511	11	511	18	509	15	100	0
03-A*	0,0037	11	79	105	0,75	0,6342	2,37	0,0803	1,25	0,53	0,0573	2,02	498	6	499	12	503	10	99	1
04-A*	0,0046	9	84	86	0,98	0,6371	3,16	0,0807	1,33	0,42	0,0572	2,86	500	7	501	16	501	14	100	0
05-A*	0,0028	14	135	134	1,01	0,6497	2,75	0,0820	1,90	0,69	0,0574	1,99	508	10	508	14	508	10	100	0
06-A*	0,0044	7	43	75	0,58	0,6627	2,67	0,0835	1,48	0,55	0,0576	2,23	517	8	516	14	514	11	100	0
07-A*	0,0044	13	116	127	0,91	0,6441	2,56	0,0815	1,71	0,67	0,0574	1,91	505	9	505	13	505	10	100	0
08-A*	0,0041	10	106	93	1,14	0,6436	2,47	0,0814	1,58	0,64	0,0574	1,89	504	8	505	12	506	10	100	0
09-A*	0,0048	12	74	125	0,60	0,6643	2,61	0,0834	1,44	0,55	0,0578	2,17	516	7	517	13	522	11	99	1
01-B*	0,0027	9	57	87	0,65	0,6569	2,84	0,0826	1,55	0,54	0,0577	2,39	512	8	513	15	518	12	99	1
02-B*	0,0048	10	78	97	0,81	0,6412	2,33	0,0812	1,24	0,53	0,0573	1,97	503	6	503	12	502	10	100	0
03-B*	0,0048	9	51	88	0,58	0,6562	2,69	0,0827	1,16	0,43	0,0575	2,42	512	6	512	14	512	12	100	0
04-B*	0,0050	5	32	51	0,63	0,6532	3,84	0,0824	1,50	0,39	0,0575	3,53	510	8	510	20	511	18	100	0
05-B*	0,0034	7	59	69	0,86	0,6534	2,42	0,0825	1,43	0,59	0,0575	1,95	511	7	511	12	510	10	100	0
06-B*	0,0045	7	58	73	0,79	0,6447	2,35	0,0814	1,34	0,57	0,0574	1,93	505	7	505	12	508	10	99	1
07-B*	0,0035	12	73	122	0,60	0,6689	2,05	0,0841	1,05	0,51	0,0577	1,76	521	5	520	11	517	9	101	-1
08-B*	0,0040	12	76	123	0,61	0,6681	2,03	0,0840	1,01	0,49	0,0577	1,76	520	5	520	11	517	9	101	-1
09-B	0,0125	5	46	50	0,93	0,6771	3,18	0,0850	1,81	0,57	0,0578	2,62	526	10	525	17	522	14	101	-1

Tabela 47 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-01

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-01. A linha sombreada representa o dado descartado por f 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020. Na amostra CIVA-06 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 529<u>+</u>6 Ma e 493<u>+</u>5 Ma (Tabela 48) (Figura 99), com idade média de 504<u>+</u>3 Ma, MSWD = 0,064 e probabilidade de 0,80 (N=17) (Figura 100).

Figura 99 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-06

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR 2020.

Figura 100 - Diagrama concórdia com os dados plotados da amostra CIVA-06

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-06. Fonte: O AUTOR, 2020.

		-				Razões isotópicas									Idades (I	Ma)				
Spot	£ 206	Pb	Th	U	Th/∐	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Брог	J 200	ppm	ppm	ppm	11.0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0,0039	8	67	72	0,94	0,6313	1,96	0,0801	1,10	0,56	0,0572	1,62	497	5	497	10	498	8	100	0
02-A*	0,0041	6	32	59	0,55	0,6414	2,28	0,0812	1,04	0,46	0,0573	2,03	503	5	503	11	503	10	100	0
03-A*	0,0026	18	100	183	0,54	0,6607	1,67	0,0832	0,91	0,55	0,0576	1,40	515	5	515	9	514	7	100	0
04-A*	0,0044	6	48	60	0,80	0,6521	2,85	0,0823	1,25	0,44	0,0575	2,56	510	6	510	15	510	13	100	0
05-A*	0,0044	7	49	65	0,75	0,6415	2,51	0,0812	1,44	0,57	0,0573	2,05	503	7	503	13	504	10	100	0
06-A	0,0105	4	26	33	0,77	0,6608	2,53	0,0832	1,53	0,60	0,0576	2,01	515	8	515	13	514	10	100	0
07-A*	0,0023	12	99	114	0,87	0,6737	1,66	0,0845	1,13	0,68	0,0578	1,21	523	6	523	9	523	6	100	0
08-A*	0,0047	4	26	34	0,76	0,6542	2,86	0,0824	1,68	0,59	0,0575	2,31	511	9	511	15	513	12	100	0
09-A*	0,0050	3	22	26	0,83	0,6391	2,25	0,0809	1,34	0,60	0,0573	1,81	502	7	502	11	502	9	100	0
01-B*	0,0050	4	30	41	0,73	0,6369	2,82	0,0807	1,73	0,61	0,0573	2,23	500	9	500	14	502	11	100	0
02-B*	0,0039	11	51	113	0,45	0,6382	2,33	0,0809	0,91	0,39	0,0572	2,15	502	5	501	12	499	11	100	0
03-B*	0,0049	4	31	33	0,95	0,6431	3,57	0,0813	1,57	0,44	0,0574	3,21	504	8	504	18	506	16	100	0
04-B*	0,0050	9	70	92	0,76	0,6316	2,34	0,0801	1,06	0,45	0,0572	2,09	497	5	497	12	499	10	100	0
05-B*	0,0048	5	37	46	0,81	0,6256	3,17	0,0795	1,01	0,32	0,0571	3,00	493	5	493	16	494	15	100	0
06-B*	0,0026	17	84	175	0,48	0,6341	2,51	0,0805	1,17	0,46	0,0571	2,22	499	6	499	13	497	11	100	0
07-B*	0,0044	7	30	70	0,42	0,6418	3,00	0,0813	2,11	0,70	0,0573	2,13	504	11	503	15	502	11	100	0
08-B*	0,0032	12	83	114	0,73	0,6558	2,32	0,0826	1,35	0,58	0,0576	1,88	512	7	512	12	513	10	100	0
09-B*	0,0041	6	35	63	0,55	0,6868	2,57	0,0855	1,08	0,42	0,0583	2,33	529	6	531	14	540	13	98	2

Tabela 48 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-06

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-06. A linha sombreada representa o dado descartado por *f* ₂₀₆>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020. Na amostra CIVA-08 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 524<u>+</u>6 Ma e 499<u>+</u>7 Ma (Tabela 49) (Figura 101), com idade média de 513<u>+</u>4 Ma, MSWD = 0,027 e probabilidade de 0,87 (N=10) (Figura 102).

Figura 101 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-08

Nota: As idades U-Pb são relatadas como $^{206}\text{Pb}/^{238}\text{U}$ em Ma, com erros em 2 $\sigma.$ Fonte: O AUTOR 2020.

Figura 102 - Diagrama concórdia com os dados plotados da amostra CIVA-08

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-06. Fonte: O AUTOR, 2020.

								Razõe	es isotópio	cas					Idades (I	Ma)				-
Spot	£ 206	Pb	Th	U	ть/П	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Spor	J 200	ppm	ppm	ppm	111/0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A	0,0002	10	58	108	0,54	0,5926	1,55	0,0780	0,88	0,56	0,0551	1,28	484	4	472	7	416	5	117	-17
02-A	0,0013	7	61	72	0,85	0,6172	2,07	0,0794	1,00	0,21	0,0564	1,81	492	5	488	10	468	8	105	-5
03-A*	0,0007	7	79	63	1,25	0,6338	3,73	0,0804	1,46	0,39	0,0572	3,43	499	7	498	19	498	17	100	0
04-A	0,0007	7	52	75	0,70	0,6027	2,27	0,0781	0,83	0,37	0,0559	2,11	485	4	479	11	450	10	108	-8
05-A	0,0004	11	57	117	0,49	0,6342	2,08	0,0826	1,32	0,64	0,0557	1,60	512	7	499	10	439	7	117	-17
06-A	0,0000	15	73	167	0,44	0,6232	1,55	0,0800	1,04	0,67	0,0565	1,15	496	5	492	8	472	5	105	-6
07-A*	0,0005	11	67	121	0,55	0,6194	1,54	0,0800	0,93	0,61	0,0562	1,22	496	5	489	8	459	6	108	-8
08-A*	0,0004	8	51	83	0,61	0,5958	2,36	0,0798	1,07	0,46	0,0542	2,10	495	5	475	11	378	8	131	-31
09-A*	0,0014	8	54	79	0,69	0,6008	2,96	0,0808	1,40	0,47	0,0539	2,61	501	7	478	14	368	10	136	-36
01-B*	0,0047	7	55	61	0,90	0,6785	2,26	0,0846	1,15	0,51	0,0582	1,95	524	6	526	12	536	10	98	2
02-B*	0,0040	7	70	66	1,06	0,6506	2,09	0,0821	0,83	0,40	0,0575	1,92	509	4	509	11	510	10	100	0
03-B*	0,0045	5	52	45	1,16	0,6688	2,57	0,0840	1,46	0,57	0,0578	2,12	520	8	520	13	520	11	100	0
04-B*	0,0033	6	51	62	0,82	0,6633	1,67	0,0834	0,85	0,51	0,0577	1,44	517	4	517	9	517	7	100	0
05-B*	0,0045	5	34	47	0,73	0,6493	2,49	0,0819	1,24	0,50	0,0575	2,15	508	6	508	13	510	11	100	0
06-B*	0,0043	10	135	84	1,60	0,6452	2,04	0,0815	1,07	0,52	0,0574	1,74	505	5	506	10	509	9	99	1
07-B*	0,0046	4	36	38	0,94	0,6525	2,47	0,0823	1,71	0,69	0,0575	1,78	510	9	510	13	510	9	100	0
08-B*	0,0033	6	56	57	0,97	0,6598	2,33	0,0831	1,22	0,52	0,0576	1,99	515	6	514	12	514	10	100	0
09-B*	0,0044	4	32	39	0,83	0,6479	3,23	0,0818	1,68	0,52	0,0574	2,77	507	9	507	16	508	14	100	0

Tabela 49 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-08

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-08. As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

5.3.2 Granito porfirítico

A população de zircões das amostras de granito porfirítico é heterogênea, com cristais prismáticos euédricos a subédricos e granulares anédricos. Alguns cristais prismáticos apresentam zonamento concêntrico enquanto outros cristais com esse mesmo hábito apresentam textura nebulítica. Os cristais com hábito granular apresentam um núcleo com textura nebulítica e bordas com zonamento concêntrico. Alguns cristais aparentam ter mais de uma fase de cristalização, demonstrada pela presença de núcleos com hábito granular.

Na amostra CIVA-02 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 602 ± 7 Ma e 474 ± 8 Ma (Tabela 50) (Figura 103), com idade média de 502 ± 4 Ma, MSWD = 0,068 e probabilidade de 0,79 (N=13) (Figura 104). Nesta amostra três grãos foram interpretados como grãos herdados, com idades ($^{206}Pb/^{238}U$) 602 ± 7 Ma, 573 ± 6 Ma e 559 ± 6 Ma.

Figura 103 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-02

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR 2020.

Figura 104 – Diagrama concórdia com os dados plotados da amostra CIVA-02

Nota: Em A é ilustrado o diagrama da concórdia com todos as análises não descartadas da amostra CISA-02, em que as elipses pretas simbolizam as idades interpretadas como idades de cristalização e a elipse cinza foi interpretada como idade de um grão herdado. Em B é apresentado o diagrama da concórdia apenas com a idade de cristalização da amostra CISA-02.
Fonte: O AUTOR, 2020.

								Razõe	es isotópica	ıs					Idades (N	Ma)				
Spot	£ 206	Pb	Th	U	Th/∐	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Spor	J 200	ррт	ррт	ррт	11.0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A**	0,0051	6	43	45	0,96	0,8094	2,93	0,0979	1,13	0,39	0,0600	2,70	602	7	602	18	603	16	100	0
02-A	0,0159	7	98	61	1,62	0,6160	2,86	0,0764	1,94	0,68	0,0584	2,09	475	9	487	14	546	11	87	13
03-A*	0,0044	13	47	144	0,32	0,6731	2,88	0,0844	1,33	0,46	0,0578	2,55	522	7	523	15	523	13	100	0
04-A**	0,0049	14	64	138	0,46	0,7683	2,38	0,0930	1,12	0,47	0,0599	2,09	573	6	579	14	601	13	95	5
05-A*	0,0027	20	74	227	0,33	0,6437	2,24	0,0815	1,02	0,46	0,0573	1,99	505	5	505	11	502	10	101	-1
06-A*	0,0047	12	87	117	0,75	0,6243	2,63	0,0794	1,06	0,41	0,0571	2,40	492	5	493	13	494	12	100	0
07-A*	0,0050	15	40	168	0,24	0,6405	2,68	0,0812	1,24	0,46	0,0572	2,38	503	6	503	13	501	12	100	0
08-A*	0,0048	8	55	83	0,66	0,6505	2,97	0,0821	1,50	0,50	0,0575	2,56	509	8	509	15	510	13	100	0
09-A*	0,0046	11	68	107	0,64	0,6498	3,30	0,0821	1,40	0,42	0,0574	2,99	508	7	508	17	508	15	100	0
01-B*	0,0045	10	119	88	1,36	0,6677	2,64	0,0839	1,50	0,57	0,0577	2,17	519	8	519	14	520	11	100	0
02-B*	0,0048	8	104	70	1,48	0,6690	2,32	0,0834	1,22	0,52	0,0582	1,98	517	6	520	12	536	11	96	4
03-B*	0,0035	6	89	54	1,65	0,6207	3,17	0,0790	1,95	0,62	0,0570	2,50	490	10	490	16	491	12	100	0
04-B**	0,0025	28	216	242	0,90	0,7417	2,04	0,0906	1,05	0,52	0,0594	1,74	559	6	563	11	580	10	96	4
05-B*	0,0042	5	57	45	1,25	0,6443	3,61	0,0814	1,93	0,54	0,0574	3,04	505	10	505	18	506	15	100	0
06-B*	0,0048	9	63	100	0,63	0,6210	3,09	0,0790	1,34	0,44	0,0570	2,78	490	7	490	15	492	14	100	0
07-B*	0,0049	6	79	55	1,44	0,5943	3,31	0,0763	1,64	0,49	0,0565	2,88	474	8	474	16	473	14	100	0
08-B	0,0111	10	50	112	0,45	0,6231	2,56	0,0776	1,02	0,40	0,0582	2,35	482	5	492	13	538	13	90	10
09-B*	0,0044	7	83	62	1,33	0,6131	2,78	0,0777	1,83	0,66	0,0573	2,09	482	9	486	14	501	10	96	4

Tabela 50 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-02

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-02. ** Dados interpretados como grãos herdados. As linhas sombreadas representam os dados descartados por *f* ₂₀₆>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

Na amostra CIVA-05 o conjunto de zircões apresenta idades, relatadas como $^{206}Pb/^{238}U$, variando entre 507±10 Ma e 465±8 Ma (Tabela 51) (Figura 105), com idade média de 483±4 Ma, MSWD = 0,056 e probabilidade de 0,81 (N=16) (Figura 106).

Figura 105 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-05

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR 2020.

Figura 106 - Diagrama concórdia com os dados plotados das amostras CIVA-05

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-06. Fonte: O AUTOR, 2020

	-					Razões isotópicas									Idades (I	Ma)				-
Spot	£ 206	Pb	Th	U	ть/П	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Брог	J 200	ррт	ppm	ppm	Th/C	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0,0050	6	43	63	0,69	0,6050	3,19	0,0774	1,66	0,52	0,0567	2,72	481	8	480	15	479	13	100	0
02-A*	0,0043	4	31	45	0,69	0,6003	3,27	0,0769	1,97	0,60	0,0566	2,61	477	9	477	16	478	12	100	0
03-A*	0,0045	10	77	108	0,72	0,6045	2,81	0,0773	1,83	0,65	0,0567	2,13	480	9	480	13	480	10	100	0
04-A	0,0089	2	14	15	0,93	0,6492	3,77	0,0819	2,31	0,61	0,0575	2,98	508	12	508	19	510	15	100	0
05-A*	0,0048	3	25	34	0,75	0,5859	3,23	0,0748	1,66	0,51	0,0568	2,78	465	8	468	15	485	13	96	4
06-A*	0,0045	9	66	94	0,70	0,6048	2,55	0,0768	1,71	0,67	0,0571	1,90	477	8	480	12	495	9	96	4
07-A*	0,0047	9	62	100	0,62	0,6050	2,92	0,0772	1,86	0,64	0,0568	2,25	480	9	480	14	484	11	99	1
08-A*	0,0047	5	45	55	0,83	0,5975	3,22	0,0765	1,93	0,60	0,0566	2,58	475	9	476	15	477	12	100	0
09-A*	0,0050	8	60	79	0,76	0,6022	3,31	0,0767	1,80	0,54	0,0569	2,78	477	9	479	16	488	14	98	2
01-B	0,0129	6	56	52	1,08	0,6365	2,40	0,0790	1,37	0,57	0,0584	1,97	490	7	500	12	545	11	90	10
02-B*	0,0041	9	61	89	0,68	0,6207	2,72	0,0790	1,20	0,44	0,0570	2,44	490	6	490	13	491	12	100	0
03-B*	0,0047	6	40	64	0,63	0,6079	2,66	0,0776	1,38	0,52	0,0568	2,28	482	7	482	13	483	11	100	0
04-B*	0,0032	8	39	90	0,43	0,5962	3,03	0,0764	1,34	0,44	0,0566	2,71	475	6	475	14	475	13	100	0
05-B*	0,0020	16	83	179	0,47	0,6147	2,29	0,0783	1,29	0,56	0,0569	1,90	486	6	487	11	488	9	100	0
06-B*	0,0041	9	73	89	0,82	0,6187	2,74	0,0788	1,38	0,50	0,0569	2,37	489	7	489	13	488	12	100	0
07-B*	0,0049	8	47	80	0,58	0,6296	3,00	0,0800	1,20	0,40	0,0571	2,75	496	6	496	15	494	14	100	0
08-B*	0,0040	4	37	36	1,02	0,6121	3,40	0,0781	1,24	0,37	0,0568	3,17	485	6	485	17	485	15	100	0
09-B*	0,0047	2	19	23	0,82	0,6479	3,08	0,0819	1,95	0,63	0,0574	2,39	507	10	507	16	507	12	100	0

Tabela 51 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-05

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-05. As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

5.3.3 Gabro Norito/Quartzo-Gabro Norito/Quartzo Diorito

A população de zircões da amostra CIVA-03 é heterogênea, sendo os cristais em geral subédricos e anédrico. Nesta amostra o conjunto de zircões apresenta idades, relatadas como 206 Pb/ 238 U, variando entre 517 \pm 9 Ma e 499 \pm 10 Ma (Tabela 52) (Figura 107), com idade média de 511 \pm 4 Ma, MSWD = 0,0079 e probabilidade de 0,93 (N=15) (Figura 108).

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR 2020.

Figura 108 - Diagrama concórdia com os dados plotados da amostra CIVA-03

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-03. Fonte: O AUTOR, 2020

	Razões isotópicas							Idades (Ma)							_					
Spot	f 206	Pb	Th	U ppm	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
		ppm	ppm			²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0,0042	17	160	150	1,07	0,6566	2,19	0,0828	1,37	0,63	0,0575	1,71	513	7	513	11	512	9	100	0
02-A*	0,0050	9	127	74	1,71	0,6576	2,91	0,0828	1,94	0,67	0,0576	2,16	513	10	513	15	513	11	100	0
03-A*	0,0034	11	106	107	0,99	0,6510	2,65	0,0822	1,77	0,67	0,0575	1,98	509	9	509	14	510	10	100	0
04-A*	0,0049	20	337	148	2,28	0,6491	2,93	0,0819	1,72	0,59	0,0575	2,37	508	9	508	15	509	12	100	0
05-A	0,0045	14	85	138	0,61	0,6872	2,11	0,0864	1,30	0,22	0,0577	1,66	534	7	531	11	519	9	103	-3
06-A	0,0087	18	302	126	2,40	0,5713	2,51	0,0720	1,81	0,72	0,0576	1,74	448	8	459	12	513	9	87	13
07-A*	0,0049	12	137	99	1,38	0,6574	2,23	0,0833	1,46	0,65	0,0573	1,68	516	8	513	11	501	8	103	-3
08-A*	0,0037	13	197	98	2,01	0,6586	2,62	0,0821	1,62	0,62	0,0582	2,06	509	8	514	13	537	11	95	5
09-A	0,0032	7	81	62	1,31	0,5963	2,90	0,0760	2,08	0,28	0,0569	2,02	472	10	475	14	488	10	97	3
01-B*	0,0039	21	331	161	2,05	0,6426	2,64	0,0815	1,92	0,73	0,0572	1,81	505	10	504	13	499	9	101	-1
02-B*	0,0045	8	96	63	1,52	0,6461	2,66	0,0817	1,59	0,60	0,0573	2,14	506	8	506	13	504	11	100	0
03-B*	0,0042	16	184	131	1,41	0,6608	3,23	0,0836	1,67	0,52	0,0574	2,76	517	9	515	17	505	14	102	-2
04-B*	0,0035	11	119	92	1,29	0,6506	3,15	0,0822	1,83	0,58	0,0574	2,56	509	9	509	16	507	13	100	0
05-B*	0,0048	11	73	114	0,64	0,6580	2,30	0,0830	1,54	0,67	0,0575	1,72	514	8	513	12	511	9	101	-1
06-B*	0,0050	16	245	114	2,15	0,6610	3,01	0,0832	1,93	0,64	0,0576	2,31	515	10	515	16	516	12	100	0
07-B*	0,0047	11	149	88	1,68	0,6546	3,05	0,0825	1,93	0,63	0,0575	2,36	511	10	511	16	512	12	100	0
08-B*	0,0047	20	325	142	2,30	0,6582	3,86	0,0833	2,46	0,64	0,0573	2,97	516	13	513	20	504	15	102	-2
09-B*	0,0044	10	119	89	1,34	0,6356	3,74	0,0805	2,01	0,54	0,0573	3,16	499	10	500	19	502	16	99	1

Tabela 52 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-03

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-03. As linhas sombreadas representam os dados descartados por *f* 206>0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

5.3.4 Rocha híbrida

Na amostra de granito da zona híbrida a população de zircões é heterogênea, tendo cristais euédricos e subédricos, sendo todos prismáticos. Alguns cristais apresentam textura nebulítica e outros apresentam zonamento concêntrico. Nesta amostra o conjunto de zircões apresenta idades, relatadas como 206 Pb/ 238 U, variando entre 520±6 Ma e 471±21 Ma (Tabela 53) (Figura 109), com idade média de 506±5 Ma, MSWD = 0,0118 e probabilidade de 0,91 (N=15) (Figura 110). Um grão que apresentou idade de 540±20 Ma foi interpretado como grão herdado.

Figura 109 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-04

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR 2020.

Figura 110 - Diagrama concórdia com os dados plotados da amostra CIVA-04

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-04. Fonte: O AUTOR, 2020

					_	Razões isotópicas							Idades (Ma)							
Spot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Spor	<i>j</i> 2 00	ppm	ppm	ppm	11.0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A*	0,0033	10	31	112	0,27	0,6276	2,25	0,0797	1,20	0,53	0,0571	1,90	494	6	495	11	496	9	100	0
02-A*	0,0050	4	50	40	1,24	0,6413	2,88	0,0812	2,02	0,70	0,0573	2,05	503	10	503	14	503	10	100	0
03-A*	0,0046	3	30	31	0,98	0,6490	3,41	0,0820	1,56	0,46	0,0574	3,04	508	8	508	17	508	15	100	0
04-A*	0,0020	25	160	256	0,63	0,6617	2,45	0,0833	1,51	0,62	0,0576	1,93	516	8	516	13	516	10	100	0
05-A*	0,0023	3	25	26	0,94	0,6433	3,70	0,0814	1,97	0,53	0,0573	3,14	505	10	504	19	503	16	100	0
06-A*	0,0045	14	75	147	0,51	0,6686	2,07	0,0840	1,25	0,60	0,0577	1,65	520	6	520	11	518	9	100	0
07-A*	0,0048	10	40	115	0,35	0,6561	2,51	0,0826	1,76	0,70	0,0576	1,78	512	9	512	13	514	9	100	0
08-A*	0,0043	15	58	165	0,35	0,6547	2,13	0,0826	1,28	0,60	0,0575	1,70	512	7	511	11	510	9	100	0
09-A*	0,0036	3	36	24	1,53	0,6355	3,91	0,0805	1,62	0,41	0,0572	3,56	499	8	500	20	501	18	100	0
01-B*	0,0031	3	36	26	1,40	0,6037	5,61	0,0773	4,47	0,80	0,0566	3,40	480	21	480	27	478	16	100	0
02-B*	0,0048	4	39	33	1,17	0,5920	5,13	0,0758	4,43	0,86	0,0566	2,59	471	21	472	24	478	12	99	1
03-B*	0,0039	3	35	26	1,34	0,6308	4,54	0,0801	4,03	0,89	0,0571	2,09	497	20	497	23	496	10	100	0
04-B**	0,0031	7	89	47	1,91	0,7025	4,44	0,0874	3,70	0,83	0,0583	2,46	540	20	540	24	541	13	100	0
05-B*	0,0045	6	75	48	1,56	0,5974	4,84	0,0761	4,33	0,89	0,0569	2,17	473	20	476	23	489	11	97	3
06-B*	0,0049	3	39	27	1,44	0,6348	5,43	0,0805	4,28	0,79	0,0572	3,34	499	21	499	27	500	17	100	0
07-B	0,0017	38	68	434	0,16	0,6530	4,31	0,0824	3,88	0,90	0,0575	1,88	510	20	510	22	510	10	100	0
08-B	0,0130	2	27	21	1,27	0,5578	6,03	0,0723	4,62	0,77	0,0559	3,86	450	21	450	27	450	17	100	0
09-B*	0,0039	3	35	30	1,18	0,6195	5,84	0,0789	4,32	0,74	0,0570	3,92	489	21	490	29	491	19	100	0

Tabela 53 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-04

Legenda: * Dados utilizados para o cálculo da idade interpretada como idade de cristalização da amostra CIVA-04. ** Grão herdado. As linhas sombreadas representam os dados descartados por f_{206} >0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%.

Fonte: O AUTOR, 2020.

5.3.5 Granulito Mascarenhas

Na amostra do granulito Mascarenhas, os zircões são homogêneos, sendo euédricos e com hábito prismático. Todos os cristais datados apresentam zonamento concêntrico, alguns em todo o cristal, outros apenas nas bordas (Figura 111). Os resultados analíticos são apresentados na tabela 54. A idade de intercepto superior obtida para a amostra de granulito foi de 587±27 Ma (Figura 112).

Figura 111 - Imagens de catodoluminescência dos cristais de zircão da amostra CIVA-07

Nota: As idades U-Pb são relatadas como 206 Pb/ 238 U em Ma, com erros em 2 σ . Fonte: O AUTOR 2020.

Figura 112 - Diagrama concórdia com os dados plotados da amostra CIVA-07

Nota: Diagrama da concórdia com a idade de cristalização da amostra CIVA-07. Fonte: O AUTOR, 2020

						Razões isotópicas						Idades (Ma)								
Spot	£ 206	Pb	Th	U	ть/П	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%	%
Spot	J 200	ppm	ppm	ppm	111/0	²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc	Disc.
01-A	0,0039	10	31	96	0,33	0,7974	2,64	0,0969	1,82	0,69	0,0597	1,91	596	11	595	16	593	11	100	0
02-A	0,0034	11	47	102	0,46	0,7747	1,92	0,0945	0,88	0,46	0,0594	1,71	582	5	582	11	583	10	100	0
03-A	0,0041	13	53	118	0,45	0,8076	1,96	0,0978	1,20	0,61	0,0599	1,55	602	7	601	12	599	9	100	0
04-A	0,0030	16	59	145	0,40	0,8244	1,45	0,0998	0,87	0,60	0,0599	1,16	613	5	611	9	600	7	102	-2
05-A	0,0042	9	31	86	0,35	0,7706	2,55	0,0942	1,89	0,74	0,0593	1,72	581	11	580	15	579	10	100	0
06-A	0,0024	14	37	132	0,28	0,7985	1,79	0,0970	1,24	0,69	0,0597	1,30	597	7	596	11	594	8	100	0
07-A	0,0023	24	135	218	0,62	0,7842	1,52	0,0954	0,87	0,57	0,0596	1,24	588	5	588	9	589	7	100	0
08-A	0,0025	18	80	173	0,46	0,7605	1,88	0,0929	0,97	0,52	0,0594	1,61	573	6	574	11	581	9	98	2
09-A	0,0025	21	75	198	0,38	0,7932	1,94	0,0966	1,00	0,52	0,0596	1,66	594	6	593	12	588	10	101	-1
01-B	0,0021	26	71	235	0,30	0,8377	1,51	0,1016	1,14	0,76	0,0598	0,99	624	7	618	9	596	6	105	-5
02-B	0,0064	8	39	68	0,58	0,8309	1,96	0,1009	1,17	0,60	0,0597	1,57	620	7	614	12	593	9	105	-5
03-B	0,0047	8	30	81	0,37	0,8007	2,30	0,0980	1,58	0,69	0,0592	1,67	603	10	597	14	575	10	105	-5
04-B	0,0027	15	55	139	0,39	0,7882	2,01	0,0963	1,27	0,63	0,0593	1,56	593	8	590	12	580	9	102	-2
05-B	0,0024	18	68	160	0,43	0,7770	2,07	0,0946	1,50	0,73	0,0596	1,42	583	9	584	12	587	8	99	1
06-B	0,0027	19	58	180	0,32	0,7790	1,89	0,0946	1,02	0,54	0,0597	1,59	583	6	585	11	594	9	98	2
07-B	0,0042	13	65	109	0,60	0,8236	2,18	0,1004	1,20	0,55	0,0595	1,82	617	7	610	13	586	11	105	-5
08-B	0,0012	38	109	425	0,26	0,6533	4,47	0,0823	4,30	0,96	0,0576	1,22	510	22	510	23	514	6	99	1
09-B	0,0038	12	41	108	0,38	0,7459	9,74	0,0920	8,71	0,90	0,0588	4,34	567	49	566	55	560	24	101	-1

Tabela 54 – Dados isotópicos U-Th-Pb LA-ICP-MS da amostra CIVA-07

Legenda: A linha sombreada representa o dado descartado por f_{206} >0.005 e/ou Th/U<0.19 e/ou Rho<0.3 e/ou Disc>5% e/ou erros individuais das razões (1S %) > 8%. Fonte: O AUTOR, 2020.

5.4 Geologia isotópica Lu-Hf

Para cada uma das amostras, foram feitas análises Lu-Hf em 10 cristais de zircão, sendo o tiro do laser posicionado preferencialmente nas posições que foram dados os tiros para determinação das idades U-Pb. Os resultados analíticos Lu-Hf são apresentados nas tabelas 58 a 58. Os resultados que apresentam idades modelo menores que as idades U-Pb e/ou erro associado ao épsilon Hf superior a 1,0 não foram considerados na análise dos dados.

Amostra	U/Pb		Pb Razões isotópicas medidas				CHUR	DM	Razões is	otópicas i	Modelo DM	corr	Residência		
Amostra	ldade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	ldade (Ga)	%	crustal
Mud Tank	732	5	0,281901	8,94E-05	4,98E-05	7,6E-07	0,282323	0,282716	0,281900	-31,26	-14,96	0,33	2,37	1	1636
01-A	510	3	0,282613	1,38E-04	5,65E-04	2,6E-06	0,282464	0,282879	0,282607	-6,10	5,09	0,06	1,06	8	550
02-A	510	3	0,282336	1,26E-04	5,10E-04	2,1E-06	0,282464	0,282879	0,282331	-15,88	-4,69	0,05	1,61	7	1104
03-A	510	3	0,282355	1,14E-04	4,70E-04	4,9E-06	0,282464	0,282879	0,282351	-15,19	-3,99	0,07	1,57	7	1064
04-A	510	3	0,282476	1,16E-04	6,53E-04	2,3E-05	0,282464	0,282879	0,282469	-10,94	0,20	0,01	1,34	10	828
05-A	510	3	0,282695	9,85E-05	7,17E-04	5,7E-06	0,282464	0,282879	0,282688	-3,18	7,95	0,11	0,90	11	387
06-A	510	3	0,282316	1,01E-04	4,47E-04	2,5E-06	0,282464	0,282879	0,282312	-16,59	-5,38	0,06	1,65	7	1143
07-A	510	3	0,282787	9,31E-05	8,77E-04	2,1E-05	0,282464	0,282879	0,282779	0,07	11,15	0,33	0,71	13	204
08-A	510	3	0,282317	1,05E-04	4,61E-04	3,3E-06	0,282464	0,282879	0,282312	-16,56	-5,35	0,07	1,65	7	1141
09-A	510	3	0,282731	1,00E-04	7,24E-04	6,6E-06	0,282464	0,282879	0,282724	-1,90	9,23	0,14	0,82	11	314
01-B	510	3	0,282398	1,99E-04	9,04E-04	2,9E-05	0,282464	0,282879	0,282390	-13,67	-2,61	0,10	1,50	11	987
91500	1065	0,6	0,281876	1,10E-04	3,07E-04	1,1E-06	0,282110	0,282471	0,281870	-32,15	-8,52	0,04	2,28	4	1210

Tabela 55 – Dados isotópicos Lu-Hf dos zircões da amostra CIVA-01 (Charnockito) do Complexo Intrusivo de Várzea Alegre.

Fonte: O AUTOR, 2020.

Amostra	U/Pb		Raz	zões isotópi	cas medidas		CHUR	DM	Razões isotópicas iniciais (t)				Modelo DM	corr	Residência
Amostra	ldade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	ldade (Ga)	%	crustal
Mud Tank	732	5	0,281839	8,08E-05	4,62E-05	7,6E-07	0,282323	0,282716	0,281838	-33,47	-17,17	0,41	2,49	0	1759
01-A	502	4	0,282315	1,26E-04	4,17E-04	3,8E-06	0,282469	0,282885	0,282311	-16,64	-5,59	0,10	1,66	6	1156
02-A	502	4	0,282445	1,39E-04	4,77E-04	1,4E-06	0,282469	0,282885	0,282441	-12,02	-0,99	0,01	1,40	7	897
03-A	502	4	0,282677	3,56E-04	6,43E-04	1,1E-05	0,282469	0,282885	0,282671	-3,81	7,17	0,19	0,94	7	433
05-A	502	4	0,282538	1,18E-04	7,15E-04	1,5E-05	0,282469	0,282885	0,282531	-8,74	2,21	0,06	1,22	9	715
07-A	502	4	0,282780	2,34E-04	9,36E-04	1,8E-05	0,282469	0,282885	0,282771	-0,18	10,71	0,30	0,73	11	231
08-A	502	4	0,282393	1,15E-04	5,89E-04	2,9E-06	0,282469	0,282885	0,282387	-13,88	-2,89	0,04	1,51	9	1004
09-A	502	4	0,282480	1,11E-04	5,61E-04	2,3E-06	0,282469	0,282885	0,282475	-10,77	0,23	0,00	1,33	8	827
05-B	502	4	0,282817	2,65E-04	1,11E-03	4,7E-05	0,282469	0,282885	0,282806	1,12	11,95	0,62	0,66	15	159
06-B	502	4	0,282287	9,28E-05	4,96E-04	8,6E-07	0,282469	0,282885	0,282282	-17,61	-6,59	0,07	1,71	7	1213
07-B	502	4	0,282351	7,21E-05	6,91E-04	1,7E-05	0,282469	0,282885	0,282345	-15,33	-4,38	0,14	1,59	10	1088
91500	1065	0,6	0,281779	1,12E-04	2,94E-04	1,1E-06	0,282110	0,282471	0,281773	-35,58	-11,96	0,06	2,47	4	1403

Tabela 56 – Dados isotópicos Lu-Hf dos zircões da amostra CIVA-02 (Granito porfirítico) do Complexo Intrusivo de Várzea Alegre.

Fonte: O AUTOR, 2020.

Amostra	U/Pb		U/Pb Razões isotópicas medidas				CHUR	DM	Razões is	otópicas ir	Modelo DM	corr	Residência		
Amostra	ldade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	ldade (Ga)	%	crustal
Mud Tank	732	5	0,281792	7,54E-05	4,65E-05	5,5E-07	0,282323	0,282716	0,281792	-35,11	-18,81	0,36	2,58	0	1850
01-A	511	4	0,283109	6,53E-05	4,87E-04	3,7E-06	0,282463	0,282878	0,283104	11,45	22,70	0,36	0,05	7	-462
02-A	511	4	0,283066	7,73E-05	4,99E-04	2,7E-05	0,282463	0,282878	0,283061	9,92	21,17	1,32	0,14	7	-373
03-A	511	4	0,282900	6,88E-05	4,93E-04	1,1E-05	0,282463	0,282878	0,282895	4,07	15,31	0,46	0,48	7	-35
04-A	511	4	0,282793	8,90E-05	7,23E-04	3,0E-05	0,282463	0,282878	0,282787	0,30	11,46	0,56	0,70	9	186
05-A	511	4	0,282422	1,55E-04	3,90E-04	8,9E-06	0,282463	0,282878	0,282418	-12,85	-1,59	0,05	1,44	5	929
06-A	511	4	0,282641	1,19E-04	7,40E-04	3,8E-05	0,282463	0,282878	0,282633	-5,11	6,04	0,36	1,01	8	496
07-A	511	4	0,282463	6,98E-05	5,17E-04	9,4E-06	0,282463	0,282878	0,282458	-11,40	-0,18	0,00	1,36	7	849
08-A	511	4	0,283194	1,77E-04	1,47E-03	3,8E-05	0,282463	0,282878	0,283180	14,46	25,38	0,87	-0,11	20	-618
09-A	511	4	0,282140	9,18E-05	4,32E-04	4,9E-05	0,282463	0,282878	0,282135	-22,82	-11,59	1,40	2,00	6	1491
01-B	511	4	0,282380	8,39E-05	6,75E-04	2,0E-05	0,282463	0,282878	0,282373	-14,34	-3,18	0,12	1,53	10	1019
91500	1065	0,6	0,281006	7,43E-05	2,95E-04	6,4E-07	0,282110	0,282471	0,281001	-62,89	-39,34	0,12	3,98	4	2914

Tabela 57 – Dados isotópicos Lu-Hf dos zircões da amostra CIVA-03 (Gabro) do Complexo Intrusivo de Várzea Alegre.

Nota: Os dados sombreados de cinza foram descartados das análises. Fonte: O AUTOR, 2020.

Amostra	U/Pb		Raz	zões isotópi	cas medidas		CHUR	DM	Razões is	Modelo DM	corr	Residência			
Amostra	ldade (Ma)	±2s	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	eHf(0)	eHf(t)	±2SE	ldade (Ga)	%	crustal
Mud Tank	732	5	0,281790	7,54E-05	4,62E-05	5,5E-07	0,282323	0,282716	0,281789	-35,19	-18,90	0,36	2,59	0	1855
01-B	506	5	0,283795	8,45E-05	5,67E-04	4,8E-06	0,282466	0,282882	0,283789	35,71	46,85	0,88	-1,38	8	-1881
01-A	506	5	0,283594	1,37E-04	6,06E-04	9,7E-06	0,282466	0,282882	0,283588	28,61	39,73	1,05	-0,95	8	-1459
02-A	506	5	0,285164	6,02E-05	5,50E-04	4,6E-06	0,282466	0,282882	0,285159	84,12	95,32	1,76	-4,34	7	-4850
03-A	506	5	0,284345	6,94E-05	1,03E-03	3,7E-05	0,282466	0,282882	0,284335	55,15	66,16	3,02	-2,54	14	-3044
04-A	506	5	0,282854	9,86E-05	4,50E-04	2,6E-06	0,282466	0,282882	0,282850	2,44	13,58	0,22	0,57	6	65
05-A	506	5	0,282094	7,07E-05	5,74E-04	7,5E-06	0,282466	0,282882	0,282089	-24,43	-13,36	0,31	2,10	7	1591
06-A	506	5	0,281703	6,01E-05	4,84E-04	6,4E-06	0,282466	0,282882	0,281698	-38,26	-27,18	0,63	2,86	6	2357
07-A	506	5	0,281714	1,03E-04	7,73E-04	7,3E-06	0,282466	0,282882	0,281707	-37,87	-26,88	0,53	2,85	11	2341
08-A	506	5	0,281249	9,02E-05	6,88E-04	2,1E-05	0,282466	0,282882	0,281242	-54,32	-43,32	1,77	3,74	10	3239
09-A	506	5	0,280545	7,46E-05	3,95E-04	1,4E-06	0,282466	0,282882	0,280542	-79,20	-68,13	0,93	5,07	6	4566
91500	1065	0,6	0,280999	6,74E-05	2,94E-04	6,4E-07	0,282110	0,282471	0,280993	-63,16	-39,60	0,12	3,99	4	2928

Tabela 58 – Dados isotópicos Lu-Hf dos zircões da amostra CIVA-04 (Unidade híbrida – Granito) do Complexo Intrusivo de Várzea Alegre.

Nota: Os dados sombreados de cinza foram descartados das análises. Fonte: O AUTOR, 2020.

5.5 Discussões

Da mesma maneira que o Complexo Intrusivo de Santa Angélica, o Complexo Intrusivo de Várzea Alegre também conta com grande quantidade de estudos que se dedicaram a compreender os processos petrogenéticos que deram origem ao CIVA, dentre eles destacam-se os trabalhos de Mendes *et al.* (1997), Mendes *et al.* (1999), Mendes *et al.* (2005), Medeiros & Wiedeman (2000), Medeiros *et al.* (2000), Medeiros *et al.* (2001), Widemann et al. (1986), Wiedemann-Leonardos et al. (2000), De Campos *et al.* (2016), Potratz *et al.* (2018), entre outros. A complexidade que envolve os diferentes tipos de rochas foi descrita em todos os trabalhos citados, sendo esta, uma característica típica da supersuíte G5 (Wiedemann-Leonardos *et al.*, 2000, Pedrosa-Soares & Wiedemann-Leonardos, 2000, Wiedemann *et al.*, 2002). Apesar da semelhança nas unidades descritas nos trabalhos anteriores, aonde coexistem rochas gabróicas, graníticas e charnockiticas, o mapa geológico apresentado neste trabalho difere dos demais mapas na distribuição espacial destas unidades.

O mapeamento de detalhe/faciológico (1:25.000) permitiu a distinção de ao menos cinco fácies de granitos no CIVA, o que demonstra que mesmo no "end member" felsico, a evolução magmática se deu de forma heterogênea. A fácies Biotita Granito Porfirítico apresenta forte relação de campo com as rochas charnockiticas, na qual o contato entre as rochas é difuso, em especial nas bordas do CIVA (Potratz *et al.*, 2018). De acordo com Frost & Frost (2008b) essa relação pode ser explicada por um processo de cristalização fracionada de magmas charnockiticos, em que os cumulatos iniciais dão origem aos charnockitos, enquanto as fusões residuais, enriquecidas em H₂O, cristalizam granitos ricos em biotita ou biotita + hornblenda. Frost & Frost (2008b) explicam que a complexidade na transição entre essas rochas deve-se à hidratação por fluidos que migram das rochas encaixantes ou que são liberados por líquidos residuais da fusão.

A presença de granada na fácies Granada Granito Porfirítico, sugere que durante o processo de diferenciação, o magma granítico possa ter sido contaminado com fragmentos da rocha encaixante e/ou possa ter ocorrido difusão de elementos entre as rochas encaixantes e o magma, tornando-o altamente enriquecido em elementos terras raras leves e empobrecido em elementos terras raras pesados. O fracionamento entre elementos terras raras leves e pesados é demonstrado pela alta razão La/Yb (405). A ocorrência de uma facie de Leucogranito Porfirítico com textura gráfica, sugere um processo de cristalização tardio para esta facie, em

um sistema rico em H₂O que permitiu o crescimento concomitante de quartzo e álcalifeldspato.

Apesar de uma unidade ter sido caracterizada como híbrida, feições de mistura de magma são observadas em todas as unidades do CIVA, tais como alta variação composicional, existência de zonas híbridas com rochas magmáticas de diferentes composições, presença de cristais de quartzo arredondados e de feldspatos manteados por biotita e/ou minerais opacos, diques melanocráticos e leucocráticos sincrônicos, cristais aciculares de apatita, coronas de hornblenda em cristais de biotita e complexos de veios em rede. Todas essas feições também já foram descritas por Medeiros & Wiedemann (2000), Medeiros *et al.*, (2001) e Potratz *et al.* (2018).

A exceção dos granitos, que são peraluminosos, as demais rochas são metaluminosas. O conjunto de amostras apresenta também um padrão compatível à série cálcio-alcalina de alto potássio, o que também já foi observado por Mendes *et al.* (1999), Medeiros *et al.* (2000) e Wiedemann-Leonados *et al.* (2000). Os charnockitos são ferrosos, enquanto o enderbito é magnesiano, sendo que todas as amostras plotam próximo ao limite destes dois campos do diagrama de Frost *et al.* (2001). Frost & Frost (2008b) descrevem que magmas do tipo C (charnockitico) apresentam esse mesmo tipo de comportamento, com amostras que plotam próximas à barreira dos campos magnesiano e ferroso.

Medeiros *et al.* (2001) consideram que o aumento progressivo de elementos terras raras, com baixas razões La/Yb e sem anomalias de Eu, nas rochas gabróicas e dioríticas sugerem a predominância de um processo de cristalização fracionada em uma série magmática restrita. Esse mesmo comportamento de elementos terras raras foi observado nas amostras grabróicas e dioríticas analisadas neste trabalho.

Os diagramas discriminantes apontam ao menos 3 fontes distintas para as rochas que compõem o CIVA. O diagrama de Hollocher *et al.* (2012) sugere que as rochas básicas têm afinidade com arcos alcalinos, indo de encontro com a ideia de De Campos *et al.* (2016) que sugerem a participação de uma porção mais profunda do manto. Já o diagrama de fontes de Laurent *et al.* (2014) aponta para fontes metassedimentares para as duas amostras de granito e para rochas máficas de alto potássio para as amostras de charnockito, opdalito e enderbito. A diversidade de fontes para este magmatismo também já foi apontada em outros estudos. Mendes *et al.* (1997), Mendes *et al.* (1999) e Mendes *et al.* (2005) sugerem que as rochas charnockiticas do CIVA tenham como fonte rochas da crosta continental inferior com alguma contribuição de magmas derivados do manto. Medeiros *et al.* (2000) e Medeiros *et al.* (2001) sugerem que as rochas básicas têm como fonte magmas derivados de um manto enriquecido e

as rochas graníticas têm como fonte rochas crustais. Por fim, De Campos *et al.* (2016) consideram ainda que alguma contribuição de magmas de um manto mais profundo seria necessária para justificar as características químicas destas rochas.

Os primeiros trabalhos no CIVA (Mendes *et al.*, 1997; Mendes *et al.*, 1999; Medeiros *et al.*, 2000; Wiedemann-Leonardos *et al.*, 2000; Medeiros *et al.*, 2001 e Medeiros *et al.*, 2001) o compartimentavam em domínio externo, composto por um anel de rochas charnockiticas, e o domínio interno, composto pela relação complexa de rochas gabróicas/dioríticas e graníticas, considerando o domínio externo mais antigo que o domínio interno. Medeiros *et al.* (2001) consideraram que existia uma diferença de profundidade de intrusão entre os domínios interno e externo de cerca de 3 km e uma diferença de temperatura na magnitude de 100°C. As temperaturas calculadas por Mendes *et al.* (1997) utilizando os termômetros de temperatura de saturação de Zr e P_2O_5 proposto por Watson & Harrioson (1983) apresentam valores entre 950° e 1000° C, enquanto os geotermômetros apresentados por Mendeiros *et al.* (2001) para o par mineral ortopiroxênio e clinopiroxênio forneceram temperaturas em torno de 850°C para os gabros e dioritos do domínio interno.

As temperaturas de saturação de Zr calculadas para este trabalho utilizando o método de Boehnke *et al.* (2013) obtiveram valores entre 786,5°C e 866,1°C para charnockitos e enderbitos e 830,1°C para o granada granito porfirítico. Miller *et al.* (2013) consideram que em sistemas com pouca ou nenhuma herança de zircões as temperaturas de saturação de Zr indicam o limite inferior de temperatura do magmatismo. As temperaturas de saturação de Zr obtidas neste trabalho sugerem, portanto, que os domínios interno e externo estavam em condições próximas de temperatura.

Mendes *et al.* (2005) obtiveram uma idade concórdia U-Pb de 498,6±4,9 para as rochas charnockíticas. Essa idade refutou a ideia de momentos distintos de intrusão dos domínios interno e externo, uma vez que Medeiros *et al.* (2000) obtiveram uma isócrona Rb/Sr de 508 ± 12 Ma para o granito porfirítico. Mendes *et al.* (2005) consideram que as relações de contato entremeadas entre as rochas do domínio interno e externo podem ser explicadas pela injeção contemporânea de magmas contrastantes em pulsos separados.

As idades U-Pb obtidas neste trabalho confirmam a ideia de Mendes *et al.* (2005) de contemporaneidade dos diferentes tipos de magma. Apenas a idade de 483<u>+</u>4 Ma, obtida para uma amostra de granito porfirítico, destoa das demais idades obtidas. Esta idade mais nova sugere que o sistema permaneceu quente, fornecendo temperaturas para a fusão da crosta e cristalização deste granito. A idade U-Pb de 587+27 Ma (intercepto superior) apenas

corrobora que o CIVA tem origem em um estágio posterior ao pico do metamorfismo regional.

Mendes *et al.* (2005) obtiveram razões iniciais de ⁸⁷Sr/⁸⁶Sr_(0,5Ga) variando entre 0,7087 e 0,7116 e valores de ε_{Nd} variando entre -10,1 e -7,13, com idades modelo na faixa de 1,46-1,78 Ga para as rochas charnockiticas do CIVA (Figura 113). Estes valores sugerem uma contribuição essencialmente crustal para os charnockitos, contudo, Mendes *et al.* (2005) alertaram que uma contribuição essencialmente crustal deveria ser vista com cautela e alguma contribuição mantélica deveria ser considerada. Os dados Lu-Hf obtidos neste trabalho corroboram a sugestão de Mendes *et al.* (2005). Os valores de ε_{Hf} para o charnockito variam entre -5,38 e 11,15, com idades T_{DM} variando entre 0,82 e 1,65 Ga (Figura 113).

Figura 113 - Evolução isotópica das rochas charnockíticas do CIVA.

Nota: Evolução dos isótopos de Hf obtidos neste trabalho (A). Evolução dos isótopos de Sr apresentados por Medeiros et al. (2001) e Mendes et al. (2005) (B). Evolução dos isótopos de Nd apresentados por Medeiros et al. (2001) e Mendes et al. (2005) (C). Os dados de Hf apontam para uma origem híbrida de fontes mantélicas e crustais.

Fonte: O AUTOR (2020).

Para as rochas que Medeiros & Wiedeamnn (2000) denominaram de domínio interno (gabros/dioritos, granitos e zona híbrida), Medeiros *et al.* (2000) obtiveram razões iniciais (0,5Ga) de 87 Sr/ 86 Sr variando entre 0,7052 e 0,7076 para os granitos porfiríticos (Figura 114), 0,7064 a 0,7073 para Opx gabros e quartzo dioritos e uma razão de 0,7007 para uma amostra quartzo monzonito (Figura 115). Para o sistema isotópico de neodímio, Medeiros *et al.* (2000) obtiveram valores de $\mathcal{E}_{Nd(0,5 \text{ Ga})}$ no intervalo de -7,56 e -473, com idades modelo (TDM) variando entre 1,32 e 1,53 Ga (Figura 115). Estas razões de 87 Sr/ 86 Sr e os valores de épsilon neodímio sugerem uma composição essencialmente crustal para o magmatismo que deu origem ao CIVA, com exceção da amostra de quartzo monzonito que apresentou uma razão 87 Sr/ 86 Sr de 0,7007.

Os dados isotópicos Lu-Hf sustentam a hipótese de mistura de magmas de origem mantélica e crustal para a origem das rochas, uma vez que valores positivos e negativos de ε_{Hf} são encontrados em uma mesma amostra. Para a amostra de granito porfirítico (CIVA-02) os valores de ε_{Hf} variam entre -6,59 e 11,95, com idades modelo (T_{DM}) que variam entre 0,66 e 1,71 Ga. A amostra de gabro (CIVA-03) apresenta valores de ε_{Hf} variando entre -3,18 e 11,46, com idades modelo (TDM) entre 0,70 e 1,53 Ga. Na amostra do granito coletada na zona híbrida, os valores de ε_{Hf} variam entre -27,18 e 2,44, com idades modelo (T_{DM}) variando entre 0,57 e 2,86 Ga (Figura 116).

As assinaturas crustais de ε_{Hf} obtidos para as amostras CIVA-01, CIVA-02 e CIVA-03 são compatíveis com os dados apresentados por Araújo et al. (2020) para os maciços Vitória e Mestre Álvaro, unidades que também compõem a supersuíte G5. Araújo et al. (2020) apresentaram também dados de ε_{Hf} para rochas da suíte Atalélia, com valores variando entre -8,10 e -3,2 e idades modelo (T_{DM}) entre 1,64 e 1,62 Ga. Os valores altamente negativos de ε_{Hf} obtidos para o membro granítico da zona híbrida do CIVA são compatíveis aos valores obtidos para o Complexo Intrusivo de Santa Angélica, apresentados neste trabalho (Capítulo 5), e com os valores obtidos por Araújo et al. (2020) para o maciço Arecê. Araújo et al. (2020) também apresentaram dados isotópicos Lu-Hf para as rochas do Complexo Nova Venécia. Os valores de ε_{Hf} apresentados por estes autores variam entre -39,0 e 4,10, com idades modelo variando entre 3,47 e 1,20 Ga.

Figura 114 - Evolução isotópica do Granito porfirítico do CIVA.

 Nota: Evolução dos isótopos de Hf obtidos neste trabalho (A). Evolução dos isótopos de Sr apresentados por Medeiros et al. (2001). Os dados de Hf apontam para uma origem híbrida de fontes mantélicas e crustais.
Fonte: O AUTOR (2020).

Figura 115 - Evolução isotópica dos gabros e dioritos do CIVA.

Fonte: O AUTOR (2020).

Figura 116 - Evolução isotópica do membro granítico da zona híbrida do CIVA.

Nota: Evolução dos isótopos de Hf obtidos neste trabalho. Os dados de Hf apontam para uma origem híbrida de fontes mantélica e crustais.

As assinaturas crustais de ε_{Hf} obtidos para as amostras CIVA-01, CIVA-02 e CIVA-03 são compatíveis com os dados apresentados por Araújo *et al.* (2020) para os maciços Vitória e Mestre Álvaro, unidades que também compõem a supersuíte G5. Araújo *et al.* (2020) apresentaram também dados de ε_{Hf} para rochas da suíte Atalélia, (estágio pré-colisional), com valores variando entre -8,10 e -3,2 e idades modelo (T_{DM}) entre 1,64 e 1,62 Ga. Os valores altamente negativos de ε_{Hf} obtidos para o membro granítico da zona híbrida do CIVA são compatíveis aos valores obtidos para o Complexo Intrusivo de Santa Angélica, apresentados neste trabalho (Capítulo 5), e com os valores obtidos por Araújo *et al.* (2020) para o maciço Arecê. Araújo *et al.* (2020) também apresentaram dados isotópicos Lu-Hf para as rochas do Complexo Nova Venécia. Os valores de ε_{Hf} apresentados por estes autores variam entre -39,0 e 4,10, com idades modelo variando entre 3,47 e 1,20 Ga.

Os dados isotópicos Lu-Hf obtidos no CIVA sugerem ao menos 3 fontes distintas para o magmatismo que deu origem às rochas deste complexo. As idades T_{DM} mais novas que 1,0 Ga (Neoproterozóico), associada a valores positivos de ε_{Hf} apontam para um magma mantélico juvenil, gerado durante os estágios de subducção e colisão continental. As idades T_{DM} por volta de 1,5 e 1,7 Ga (Estateriano-Calimaniano), associadas a valores negativos de ε_{Hf} apontam para rochas do arco magmático, como por exemplo a suíte Ataléia.

Os dados isotópicos apresentados neste trabalho sustentam o modelo evolutivo para a supersuíte G5 apresentada por De Campos *et al.* (2016), bem como os modelos individuais apresentados por Medeiros *et al.* (2001) e Mendes *et al.* (2005). Contudo, a identificação de diferentes fácies ígneas nos granitos porfiríticos sugerem um processo de evolução magmática ainda mais complexo para o CIVA.

CONCLUSÕES

Diferenças fundamentais são observadas entre o conjunto de unidades pós-colisionais nas Faixas Ribeira e Araçuaí. As unidades da Faixa Ribeira são essencialmente graníticas, com raras ocorrências de rochas básicas e/ou intermediária, sendo os granitos tanto da suíte Nova Friburgo quanto da suíte Suruí, descritos na literatura como granitos tipo I. Além disso, o volume de unidades pós-colisionais na Faixa Ribeira é significativamente menor que na Faixa Araçuaí. Em contrapartida, o estágio pós-colisional na Faixa Araçuaí é marcado pela produção de um grande volume de magmas, que deram origem a uma ampla variação de rochas ígneas plutônicas, que vão desde olivina gabros até granitos altamente evoluídos, passando por todos os membros intermediários. Ao contrário da Faixa Ribeira, as suítes póscolisionais da Faixa Araçuaí são distintas, sendo a suíte G4 composta basicamente por granitos tipo S, enquanto a supersuíte G5 é formada por processos complexos de mistura de magmas graníticos com magmas de origem mantélica.

As diferenças, composicionais, volumétricas e petrogenéticas observadas entre as unidades pós-colisionais das Faixas Ribeira e Araçuaí parecem estar relacionadas às diferentes histórias evolutivas destas faixas móveis. Os resultados obtidos para o Granito Sana e para os Complexos Intrusivos de Santa Angélica (CISA) e de Várzea Alegre (CIVA) fornecem informações importantes que podem ajudar a desvendar as diferenças entre o magmatismo pós-colisional em ambas as faixas móveis.

O Granito Sana foi descrito como um granito tipo I pertencente à suíte Nova Friburgo. Dentre os corpos pertencentes à suíte Nova Friburgo, o Granito Sana é o que mais se difere devido a sua homogeneidade mineralógica e faciológica. Ao considerar o conjunto de dados petrográficos, litogoequímicos e isotópicos, o Granito Sana pode ser interpretado como um granito tipo MPG (muscovite-bearing peraluminous granites), cuja origem está associada a fusão parcial de rochas crustais no estágio pós-colisional de orógenos acrescionários. A grande quantidade de zircões herdados e os dados de Hf, reforçam a hipótese de contribuição exclusivamente crustal para a fonte do magmatismo que deu origem ao Granito Sana.

As idades U-Pb indicam que o evento magmático que deu origem ao Granito Sana tenha se desenvolvido no intervalo entre 506<u>+</u>10 e 480<u>+</u>6 milhões de anos. As temperaturas de saturação de Zr indicam que o limite superior de temperatura do magma que deu origem ao Sana seja em torno de 800°C, o que contraria a hipótese de um evento magmático com altas temperaturas para todo estágio pós-colisional na Faixa Ribeira. Ao considerar todos os dados

apresentados para o Granito Sana, sugere-se que sua gênese esteja associada à fusão parcial de rochas paraderivadas a partir da desidratação de minerais como biotita e muscovita, sem significativos fracionamentos em relação ao magma primário.

Os dois modelos geodinâmicos propostos para o estágio pós-colisional da Faixa Ribeira pressupõem que haja intensa participação do manto sublitoférico parcialmente fundido e ascendente. Entranto, nenhuma evidência de participação efetiva de magmas mantélicos foi observada no Granito Sana. Uma possível explicação para o surgimento deste granito é que o intenso espessamento crustal fez com que a delaminação da litosfera na região do Sana tenha sido insuficiente para permitir que a astenosfera se elevasse a profundidades que permitissem a fusão parcial por descompressão. Com isso, o calor do manto apenas terse-ia transferido para a litosfera por meio do processo de condução térmica, contribuindo assim para a produção de magmas graníticos em grande escala. Como o conjunto de informações obtidas e discutidas para o Granito Santa não se adequam às características da suíte Nova Friburgo, sugere-se a individualização da suíte Sana.

O Complexo Intrusivo de Santa Angélica (CISA) é um dos principais representantes da supersuíte G5. Ao contrário do Granito Sana, o CISA representa uma complexa relação de magmas de origens distintas. Os processos de mistura de magmas contemporâneos é a característica que mais se destaca nesta unidade, no qual são encontradas rochas formadas por magmas de origem crustal e de origem mantélica.

Enquanto a delaminação da litosfera e ascensão de magma astenosférico parece não ter sido o processo tectônico que desencadeou o magmatismo que deu origem ao Ganito Sana, este modelo é perfeitamente crível e amplamente aceito para as unidades pós-colisionais da Faixa Araçuaí. Os dados isotópicos Lu-Hf apresentados neste trabalho para as rochas do CISA confirmam a participação de ao menos duas fontes distintas para a origem deste magmatismo, sendo uma delas o manto sublitosférico parcialmente fundido e a outra seria produto de fusão parcial de algum componente crustal. No caso do CISA, os dados isotópicos apontam para o Complexo Caparaó (CC) como a possível fonte crustal. Sendo verdade a hipótese das rochas do Complexo Caparaó serem a fonte do componente crustal, significa que a lasca do embasamento do Orógeno Araçuaí, representada pelo CC, se projete em subsuperfície ao menos até as proximidades do CISA.

Os dados isotópicos Lu-Hf obtidos na literatura para as unidades supracrustais da região do CISA, sugerem que elas tenham pouca ou nenhuma participação como fonte para este evento magmático. Os estudos de anisotropia magnética, disponíveis na literatura, confirmam a participação de componentes de crosta inferior como fonte dos magmas que

deram origem ao CISA. O conjunto de idades U-Pb apresentados para o Compelxo Intrusivo de Santa Angélica sugerem que o magmatismo tenha se desenvolvido por cerca de 25 Ma.

Finalmente, o Complexo Intrusivo de Várzea Alegre (CIVA) é mais um representante da supersuíte G5, sendo composto por grabronorito/quartzo gabro/quartzo diorito, enderbrio, quarto fácies distintas de granitos porfirítico, granito inequigranular, charnockitos/opdalitos e uma complexa zona de mistura. Ao contrário do CISA, as características observadas no CIVA sugerem que o magmatismo tenha tido uma importante influência das rochas encaixantes.

Os dados litogeoquímicos apontam ao menos três fontes distintas para os magmas que deram origem ao CIVA. O conjunto de rochas composto por gabronoritos, quartzo gabros e quartzo dioritos estão correlacionados à magmas de fonte mantélica. Os diferentes granitoides que estão presentes neste complexo apresentam características compatíveis a misturas de magmas de fontes distintas. Os charnockitos por sua vez, tem sua gênese associada a magmas gerados por fusão parcial de rochas crustais máficas de alto potássio, com alguma contribuição de magmas de origem mantélica.

As idades U-Pb obtidas para o CIVA apontam para um evento magmático que durou cerca de 38 Ma e os dados isotópicos Lu-Hf confirmam a participação de magmas de origem mantélica e crustal. Ao contrário do CISA, cujo componente crustal é exclusivamente Arqueano-Paleoproterozóico, o CIVA apresenta componentes crustais com idades variando do Arqueano ao Calimaniano.

Por fim, a análise individualizada de cada uma destas unidades pós-colisionais do sistema orogênico Araçuaí-Ribeira permite reconhecer importantes diferenças na estrutura e evolução dos respectivos orógenos nas áreas de afloramento destas unidades. O que fica claro é que a temperatura do sistema orogênico no estágio pós-colisional é significativamente menor na Faixa Ribeira e os componentes mantélicos estão intensamente presentes nas unidades da Faixa Araçuaí.

REFERÊNCIAS

ALKMIM, F.F.; MARSHAK, S.; PEDROSA-SOARES. A.C.; PERES, G.G.; WHITIINGTON, A.; Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. **Precambrian Research**, [S.1.], v.149, p. 43-64. 2006.

ALKMIN, F.F.; PEDROSA-SOARES, A.C.; NOCE, C.M.; CRUZ, S.C.P. Sobre a evolução tectônica do Orógeno Araçuaí-Congo Ocidental. **Geonomos**, [S.I.], v.15, p. 25-43. 2007.

ALMEIDA, F.F.M. O Cráton do São Francisco. **Revista Brasileira de Geociências**, [S.l.], v.7, p. 349-364. 1977.

ALVES, M.I. 2016. Metassedimentos do Grupo Andrelândia e Complexo Paraíba do Sul na região da Zona de Cisalhamento Guaçuí (ES): idades U-Pb/Lu-Hf (LA-ICP-MS) em zircões detríticos para a análise de proveniência. Dissertação de mestrado, UERJ, 83p.

ALVES, M.I.; ALMEIDA, B.S.; CARDOSO, L.M.C.; SANTOS, A.C.; APPI, C.; BERTOTTI, A.L.; CHEMALE, F.; TAVARES Jr., A.D.; MARTINS, M.V.A.; GERALDES, M.C. Isotopic composition of Lu, Hf and Yb in GJ-01, 91500 and Mud Tank reference materials measured by LA-ICP-MS: application of the Lu-Hf geochronology in zircon. **Journal of Sedimentary Environments**, [S.I.], v.4(2), p. 220-248. 2019.

ARAÚJO, C.; PEDROSA-SOARES, A.; LANA, C.; DUSSIN, I.; QUEIROGA, C.; SERRANO, P.; MEDEIROS-JUNIOR, E. Zircon in emplacement borders of post-collisional plutons compared to country rocks: A study on morphology, internal texture, U–Th–Pb geochronology and Hf isotopes (Araçuaí orogen, SE Brazil). **Lithos**, [S.I.], v. 352-353, p. 105252. 2020.

BALLOUARD, C.; POUJOL, M.; BOULVAIS, P.; TARTÈSE, R.; VIGNERESSE, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. **Geology**, [S.1.], v. 44(3), p. 231-234. 2016.

BARBARIN, B. Genesis of the two main types of peraluminous granitoids. **Geology**, [S.l.], v. 24, p. 295-298. 1996.

BARBARIN, B. A review of the relationships between granitoid types, their origens and their geodtnamic environments. Lithos, [S.1.], v. 46, p. 605-626. 1999.

BAYER, P.; HORN, H.; ÇAMMERER, B.; SCHMIDT-TOMÉ, R.; WEBER-DIEFENBACH, K.; WIEDEMANN, C. The Brasiliano mobile belt int Southern Espírito Santo (Brazil) and its igneous intrusions. **Zentralblatt für Geologie und Palaontologie**, [S.I.], v. 9-10, p. 1429-1439. 1986.

BAYER, B.P.; SCHMIDT-TOMÉ, R.; WEBER-DIEFENBACH, K.; HORN, H.A. Complex concentric granitoid intrusions in the coastal mobile belt, Espirito Santo, Brazil: the Santa Angélica Pluton - na axample. **Geological Rundschau**, Stuttgart, v. 76, p. 357-371. 1987

BIONE, F.R.A.; BONGIOLO, E.M.; MENDES, J.C.; ROLAND, C.L. Geochemistry, Sm-Nd isotopes and SHRIMP U-Pb geochronology of the Morro do Coco Granite (RJ, Brazil): another piece of the post-collisional magmatism of the Ribeira Belt. **Brazilian Journal of Geology**, [S.I.], v. 49, p. 1-19. 2019.

BIRD, P. Continental delamination and the Colorado Plateau. Journal of Geophysical Research, [S.l.], v. 84, p. 7561-7571. 1978.

BOEHNKE, P.; WATSON, E.B.; TRAIL, D.; HARRISON, T.M.; SCHMITT, A.K. Zircon saturation re-revisited. **Chemical Geology**, [S.l.], v. 351, p. 324-334. 2013.

BOYNTON, W.V. Cosmochemistry of the rare earth elements: meteoritic studies. In: HENDERSEN, P. (Ed.). Rare Earth Elements Geochemistry. Elsevier, Amsterdam, p. 63-114. 1984.

BRITO-NEVES, B.B.; CAMPOS-NETO, M.; FUCK, R.A. From Rodinia to Western Gondwana: An approach to the Brasiliano- Pan African cycle and orogenic collage. **Episodes**, [S.I.], v. 22, p. 155-199. 1999.

CASTRO, H.M.; ROCHA, R.L.S.; SPERLING, E.V.; BALTAZAR, O.F. Geologia das folhas Mangaratiba, Ilha Grande, Cunhambebe, Angra dos Reis, Rio Mambucaba/Campos de Cunha, Parati, Cunha, Pinciguaba e Juatinga - RJ: In: CONGRESSO BRASILEIRO DE GEOLOGIA, **anais...** p. 2355-2367. 1984.

CHAPPELL, B.W. & WHITE, A.J.R. **Two contrasting granites types. Pacific Geology**, v. 8, p. 173-174. 1974.

CHAPPELL, B.W. & WHITE, A.J.R. Two contrasting granites types: 25 years later. **Australian Journal of Earth Sciences**, [S.l.], v. 48, p. 489-499. 2001.

CHAPPELL, B.W. Aluminiun saturation in I- and S-type granites and the characterization of fractionated haplogranites. **Lithos**, v. 46, p. 535-551. 1999.

CHUNG, S.L.; CHU, M.F.; ZHANG, Y.; XIE, Y.; LO, C.H.; LEE, T.Y.; LAN, C.Y.; LI, X.; ZHANG, Q.; WANG, Y. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisonal magmatism. **Earth Science Reviws**, [S.l.], v. 68, p. 173-196. 2005.

CLEMENS, J.D. & STEVENS, G. What controls chemical variation in granitic magmas? Lithos, v. 134-135, p. 317-329. 2012

COSTA-DE-MOURA, J.; WIEDEMANN, C.M.; WALLFFAS, W.; VAN, W. O pluton de Pedra Azul: a estrutura do maciço intrusivo e suas rochas encaixantes – Domingos Martins, ES, Brasil. In: SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS, Lençóis, BA, **anais...** p. 129–131. 1999

COX, K.G.; BELL, J.D.; PANKHURST, R.J. The Interpretation of Igneous Rocks. London: George Allen and Unwin, 450 p. 1979.

DE CAMPOS, C.P.; MENDES, J.; LUDKA, I.P.; MEDEIROS, S.; COSTA DE MOURA, J.; WALLFASS, J. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. In: WEINBERG, R.; TRUOW, R.; FUCK, R.; HACKSPACHER, P. (Eds), The 750-550 Ma Brasiliano event of South America. Journal of the Virtual Explorer, v. 17, p. 1441-8142. 2004.

DE CAMPOS, C.P. Chaotic flow patterns from a deep plutonic environment: a case study on natural magma mixing. **Pure Appl. Geophys.**, v. 172(7), p. 1815-1833. 2015.

DE CAMPOS, C.P.; MEDEIROS, S.R.; MENDES, J.C.; PEDROSA-SOARES, A.C.; DUSSIN, I.; LUDKA, I.P.; DANTAS, E.L. Cambro-Ordovician magmatism in the Araçuaí Belt (SE Brazil): Snapshots fron a post-collisional event. Journal of South American **Earth Sciences**, [S.1.], v. 68, p. 248-268. 2016.

DEGLER, R.; PEDROSA-SOARES, A.; DUSSIN, I.; QUEIROGA, G.; SCHULZ, B. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil: Hints from Western Gondwna Assembly. **Gondwana Research**, [S.l.], v. 51, p. 30-50. 2017.

DUARTE, B.P.; FIGUEIREDO, M.C.H.; CAMPOS-NETO, M.; HEILBRON, M. Geochemistry of the granulite facies orthogneisses of Juiz de Fora Complex, central segment of Ribeira Belt, southeastern Brazil. **Revista Brasileira de Geociências**, [S.l.], v. 27, p. 67-82. 1997.

EIRADO SILVA, L.G.; HEILBRON, M.; ALMEIDA, J.C.H. Os terrenos tectônicos da Faixa Ribeira na Serra da Bocaina e na Baía de Ilha Grande, sudeste do Brasil. **Revista Brasileira de Geociências**, [S.I.], v. 36, p. 426-436. 2006.

EIRADO SILVA, L.G.; FERNANDES, G.A.; DUARTE, B.P.; HEILBRON, M.; PIMENTEL, R.; CUELLAR, A. Mapa geológico da Folha Angra dos Reis (SF.23-Z-C-II), escala 1:100.000. CPRM. 2007.

FAN, W.M.; GUO, F.; WANG, Y.J.; ZHANG, M. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in Eastern China. **Phys. Chem. Earth**, [S.I.], v. 26, p. 133-146. 2001.

FARIA, T.G. 2016. Idades U-Pb e Lu-Hf das rochas do Complexo Caparaó, porção meridional do Orógeno Araçuaí, Espírito Santo-Minas Gerais, Brasil. Dissertação de mestrado, UERJ, 172 p.

FARIA, T.G. Caracterização petrográfica e geoquímica do Complexo Intrusivo de Mimoso do Sul (maciços Torre e Jacutinga), região sul do Espírito Santo. Monografia, UFES, 130 p. 2013.

FAURE, G. & MENSING, T.M. Isotopes: Principles and Applications. Wiley, Hoboken. 2005.

FAURE, G. **Isotopes: Principles and applications**. New York, John Wiley & Sons, 3^a ed., 589 p. 2005.

FERNANDES, G.A. Contribuição ao entendimento geológico do terreno Oriental da Faixa Ribeira na Baía de Ilha Grande, litoral sul fluminense, RJ. Dissertação de mestrado, UERJ, 138 p. 2000.

FINGER, F.; GERDES, A.; RENE, M.; RIEGLER, G. The Saxo-Danubian Granite Belt: magmatic response to postcollisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). **Geologica Carpathica**, [S.1], v. 3, p. 205-212. 2009.

GERALDES, M.C.; HEILBRON, M.; PASCUTTI, A.H.F.G.; SILVA, T.M.; MENESES, P.T.; VALLADARES, C.S.; ALMEIDA, J.C.H.; DUARTE, B.P.; TUPINAMBÁ, M.; NOGUEIRA, J.R.; VALERIANO, C.; SILVA, L.G.E.; SCHMITT, R.; RAGATKY, C.D.; NUMMER, A.R.; VALENTE, S.C.; DIOS, F.B.; PAMPLONA, M.D.; SILVA, M.; SALIBA, F.; MELLO, F.M.; PALERMO, N.; MALLO, R.P.; GUIMARÃES, P.V.; SILVA, F.L. **Geologia e recursos minerais da folha Casemiro de Abreu**. CPRM, 2012.

FONSECA, M.J.G. **Mapa geológico do estado do Rio de Janeiro: texto explicativo**. DNPM, 144 p. 1998.

FONTES, C.A.; NETTO, C.; COSTA, M.R.A.; BALTASAR, O.F.; SILVA, S.L. **Projeto Mimoso do Sul: relatório interno**. CPRM/DNPM, Brasília, 248 p. 1981.

FROST, B.R. & FROST, C.D. A geochemical classification for feldspathic igeous rocks. **Journal of Petrology**, [S.I.], v. 49, p. 1955-1969. 2008a

FROST, B.R. & FROST, C.D. On charnockites. **Gondwana Research**, [S.l], v. 12, p. 30-44. 2008b.

FROST, B.R.; ARCULUS, R.J.; BARNES, C.G.; COLLINS, W.J.; ELLIS, D.J.; FROST, D.C. A geochemical classification of granitc rocks. **Journal of Petrology**, [S.I.], v.42, p. 2033-2048. 2001.

GALVÃO, M.S. Caracterização petrológica e estrutural da região dos municípios de Aracruz, Ibiraçu e João Neiva, norte do Espírito Santo. Trabalho de conclusão de curso, UFES. 120 p. 2012.

GAO, P.; ZHENG, Y.F.; ZAO, Z.F. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. **Lithos**, v. 258-259, p. 77-91.

GAO, P.; ZHENG, Y.F.; ZAO, Z.F. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis and tectonic significance. **Earth Science Reviews**, [S.l.], v. 173, p. 266-294. 2017.

GUIMARÃES, M.T. Geologia, petrografia, e geoquímica do Complexo Granítico de Mangaratiba - Conceição de Jacareí, RJ. Dissertação de mestrado, UUF, 155 p. 1999.

HARRIS, N.B.W.; PEARCE, A.J.; TINDLE, A.G.; Gepchemical characteristics of collisionzone magmatism. In: COWARD, M.P. & RIES, A.C. (Eds). Collision Tectonics. **Geological Society publications**, London, v. 19, p. 67-81. 1986. WATSON, E.B. & HARRISON, T.M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. **Earth and Planetary Science Latters**, [S.1.], v. 64, p. 295-304. 1983.

HEILBRON, M. & MACHADO, N. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira Orogen (SE, Brazil). **Precambrian Research**, [S.l.], v. 125, p. 87-112. 2003.

HEILBRON, M.; VALERIANO, C.M.; VALLADARES, C.; MACHADO, N. A orogênese brasiliana no segmento central da Faixa Ribeira, Brasil. **Revista Brasileira de Geociências**, [S.1.], v. 25(4), p. 249-266. 1995.

HEILBRON, M.; DUARTE, P.B.; VALERIANO, C.M.; SIMONETTI, A.; MACHADO, N.; NOGUEIRA, J.R. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb geochronology: implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. **Precambrian Research**, [S.1.], v. 178, p. 136-148.

HEILBRON, M.; PEDROSA-SOARES, A.C.; CAMPOS NETO, M.C.; SILVA, L.C.; TRUOW, R.A.J.; JANASI, V.A. Província Mantiqueira. In: MANTESSO-NETO, V; BARTORELI, A.; CARNEIRO, C.D.R.; BRITO-NEVES, B.B. Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. Beca, p. 203-234. 2004.

HEILBRON, M.; VALERIANO, C.M.; TASSINARI, C.C.G.; ALMEIDA, J.; TUPINAMBÁ, M.; SIGA Jr, O.; TRUOW, R.A.J. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: PANKHURST, R.J.; TRUOW, R.A.J.; BRITO NEVES, B.B.; DE WIT, M.J. (Eds), West Gondwana: Pre-Cenozoic correlations across the South Atlantic Region. Geological Society, London, Special Publications, v. 294, p. 211-237. 2008.

HEILBRON, M.; TUPINAMBÁ, M.; VALERIANO, C.M.; SILVA, L.G.E.; MELO, R.S.; SIMONETTI, A.; PEDROSA-SOARES, A.C.; MACHADO, N. The Serra da Bolívia complex: the record os a new Neoproterozoic arc-related unit at Ribeira belt. **Precambrian Research**, [S.1.], v. 238, p. 158-175. 2013.

HEILBRON, M.; EIRALDO, L.G.; ALMEIDA, J.C.H. **Mapa geológico e de recursos minerais do estado do Rio de Janeiro - Nota explicativa.** CPRM. 2016a.

HEILBRON, M.; EIRALDO, L.G.; ALMEIDA, J.C.H. Mapa geológico e de recursos minerais do estado do Rio de Janeiro, Escala 1:400.000. CPRM. 2016b.

HEILBRON, M.; SILVA, L.G.E.; ALMEIDA, J.C.H.; TUPINAMBÁ, M.; PEIXOTO, C.; VALERIANO, C.M.; LOBATO, M.; RODRIGUES, S.W.O.; RAGATKY, D.; SILVA, M.A.; MONTEIRO, T.; FREITAS, N.C.; MIGUENS, D.; GIRÃO, R. Proterozoic to Ordovician geology and tectonic evolution of Rio de Janeiro State, SE-Brazil: insights on the central Ribeira Orogen from the new 1:400,000 scale geologic map. **Brazilian Journal of Geology**, [S.I.], v. 50, p. 1-25. 2020 HIBBARD, M.J. **Petrology to petrogenesis**. Departament of Geological Sciences, Nevada, p. 243-271. 1999.

HOLLOCHER, K.; ROBINSON, P.; WALSH, E.; ROBERTS, D. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, western gneiss region, Norway: A key to correlations and paleotectonic settings. **American Journal of Science**, [S.I.], v. 312, p. 357-416. 2012.

HORN, H.A. & WEBER-DIEFENBACH, K. Geochemical and genetic studies of three inverse zoned intrusive bodies of both alkaline and subalkaline composition in the Araçuaí-Ribeira Mobile Belt (Espírito Santo, Brazil). **Revista Brasileira de Geociências**, [S.I.], v. 17(4), p. 488-497. 1987.

HORN, H.A. Plutonite in Espírito Santo. Geochemische untersuchungen an Intrusiv Komplexen des Brasiliano in Kuestenguertel von Espírito Santo/Brasilien. Unpublished Ph.D. thesis. LMU München. 1986.

JACKSON, S.E.; PEARSON, N.J.; GRIFFIN, E.A. Belousova The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. **Chemical Geology**, [S.I.], p. 211, p. 47-69. 2004.

JUNHO, M.C.B. & WIEDEMANN, C.M. Idade, petrografia comparativa de três complexos intrusivos da província granítica do estado do Rio de Janeiro. In: SIMPÓSIO DE GEOLOGIA REGIONAL RJ/ES. **Anais...** p. 120-131. 1987.

JUNHO, M.C.B.; WEBER-DIEFENBACH, K.; PENHA, H.M. Major and minor elements heochemistry of the Pedra Branca, Frades and Nova Friburgo granitic complexes, Ribeira mobile belt, **Brazil. Revista Brasileira de Geociências**, São Paulo, v. 17(4), p. 507-511. 1987.

KOPUBRASI, M.C.B. & ALDANMAZ, E. Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in Northwest Anatolia, Turkey: evidence for magma generation by lithospheric delamination in a post-collisional setting. **International Geology Review**, [S.l.], v. 46(8), p. 705-729. 2001.

LAURENT, A.; JANOUSEK, V.; MAGNA, T.; SCHULMANN, K.; MIKOVÁ, J. Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Žulová Pluton, Bohemian Massif. **Journal of Geosciences**, [S.1.], v. 59, p. 415-440. 2012.

LI, Z.H.; LIU, M.; GERYA, T. Lithosphere delamination in continental collision orogens: A systematic numerical study. **Journal of geophysical research: solid Earth**, [S.l.], v. 121, p. 5186-5211. 2016.

LIÉGEOIS, J.P.; NAVEZ, J.; HERTOGEN, J.; BLACK, R. Contrasting origin of postcollisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: the use of sliding normalization. **Lithos**, [S.I.], v. 41, p. 1-28. 1998.

LUDKA, I. Geologia, petrografia e geoquímica do Complexo Intrusivo Jacutinga-Torre, Mimoso do Sul, ES. Dissertação de mestrado, UFRJ. 1991.

LUDKA, I.; WIEDEMANN, C.M.. TOPFNER, C. On origin of incompatible elements in the Venda Nova Pluton, state of Espírito Santo, Southeast Brazil. J. S. Am. Earth Sci., [S.l.], v. 11, p. 473-486. 1998.

LUDKA, I.P.; MENDES, J.C.; PENHA, H.M.; BELMONTE, S.; ALMEIDA, T. Considerações geoquímicas e idades U=Pb do granito Parati, sul do estado do Rio de Janeiro. In: XLIII CONGRESSO BRASILEIRO DE GEOLOGIA, Aracajú, **anais...** v.1, p. 253. 2006.

LUDWING, K. R. User's manual for Isoplot 3.75: A geochronological toolkit for microsoft excel. **Special Publication 5.** Berkeley Geochronological Center, Berkeley. 2012.

MACHADO, N.; VALLADARES, C.; HEILBRON, M.; VALERIANO, C. U-Pb geochronology of the central Ribeira belt (Brazil) and implications for the evolution of the Brazilian Orogeny. **Precambrian Research**, [S.1.], v. 79, p. 347-361. 1996.

MARIANO, G. & SIAL, A.N. Coexistence and mixing of magmas in the late Precambrian Itaporanga Batholith, state of Paraíba, Northeastern Brazil. **Revista Brasileira de Geociências**, [S.l.], v. 20, p. 101-110.

MARTINS, V.T.; TEIXEIRA, W.; NOCE, C.M.; PEDROSA-SOARES, A.C. Sr adn Nd chraracteristics of Brasiliano/Pan-African granitoid plutons of the Araçuaí orogen, Southeastern Brazil: Tectonic implications. **Gondwana Research**, [S.I.], v. 1(7), p. 75-89.

MEDEIROS, S.R. & WIEDEMANN, C.M. Magmatísmo bimodal pós-colisional cálcioalcalino de médio a alto-K no cinturão Ribeira: Estudo geoquímico do Complexo Intrusivo de Várzea Alegre (CIVA) - ES. **Revista Brasileira de Geociências**, [S.1.], v. 30(4), p. 707-716.

MEDEIROS, J.D. Caracterização petrográfica e litogeoquímica do batólito Forno Grande, Castelo, Espírito Santo. Monografia, UFES. 2013.

MEDEIROS, S.R.; WIEDEMANN-LEONARDOS, C.M.; MENDES, J.C. Post-collisional multstage magmatism in the Ribeira Mobile Belt: geochemical and isotopic study of the Várzea Alegre intrusive complex, Espírito Santo, Brazil. **Revista Brasileira de Geociências**, [S.I.], v. 30(1), p. 30-34. 2000.

MEDEIROS, S.R.; WIEDEMANN-LEONARDOS, C.M.; VRIEND, S. Evidence of mingling between contrasting magmas in a deep plutonic environment: the example of Várzea Alegre, in the Ribeira Mobile Belt, Espírito Santo, Brazil. **Anais da Academia Brasileira de Ciências**, [S.I], v. 73(1), p. 99-119. 2001.

MENDES, J.C. & DE CAMPOS, C.M.P. Norite and charnockites from the Venda Nova Pluton, SE Brazil: intensive parameters and some petrogenetic constrains. **Geoscience Frontiers**, Beijing, v. 3(6), p. 789-800. 2012.

MENDES, J.C.; MCREATH, I.; WIEDEMANN, C.M.; FIGUEIREDO, M.C.H. Charnockitoides do Maciço de Várzea Alegre: um novo exemplo do magmatismo cálcioalacalino do arco magmático do Espírito Santo. **Revista Brasileira de Geociências** [S.l.], v. 27(1), p. 13-24. 1997. MENDES, J.C.; WIEDEMANN, C.M.;McRASTH, I. Conditions of formation of charnockitic magmatic rock from the Varzea Alegre massif, State of Espírito Santo, southeastern Brazil. **Revista Brasileira de Geociências**, [S.I.], v. 29, p. 47-54. 1999.

MENDES, J.C.; WIEDEMANN, C.M.; McREATH, I.; Norito e charnoenderbitos da borda do Maciço Intrusivo de Venda Nova, Espírito Santo. **Anuário do Instituto de Geociências** - UFRJ, v.25, p. 99-124. 2002.

MENDES, J.C.; MEDEIROS, S.R.; McREATH, I.; DE CAMPOS, C.M. Cambro-Ordovician magmatism in SE Brazil: U-Pb and Rb-Sr ages, Combined winth Sr and Nd isotopic data of Chanockitic rocks from the Varzea Alegre Complex. **Gondwana Research**, [S.l.], v. 8(3), p. 337-345. 2005.

MENESES, P.R. & PARADELLA, W.R. Síntese geológica preliminar da parte sul do estado do Espírito Santo. INPE, São Paulo. 1978.

MEYER, A.P. Geologia e geoquímica da porção sul do Maciço Castelo-ES. Dissertação de mestrado, UNESP. 2017.

MIDDLEMOST, E.A.K. Naming materials in the magma/igneous rock system. Earth-Science Reviews, [S.I.], v. 37, p. 215-224. 1994.

MILLER, C.F.; STODDARD, E.F.; BRADFISH, L.J.; DOLLASE, W.A. Composition of plutonic muscovite: genetic implications. **Canadian Mineralogist**, [S.l.], v. 19, p. 25-34. 1981.

MILLER, C.F.; McDOWELL, S.M.; MAPES, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. **Geology**, [S.I.], v. 31(6), p. 529-532. 2013.

MÜLLER, D.; ROCK, N.M.S.; GROVES, D.I. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic setting, a pilot study. **Mineral Petrology**, [S.I.], v. 46, p. 259-289. 1992

MURAD, A. & WIEDEMANN, C.M. Feições constrastantes do magmatismo final de tendência alcalina no cinturão móvel Ribeira: o exemplo do pluton de Conceição de Muqui, ES. In: Congresso Brasileiro de Geologia, São Paulo, **anais...** v. 37(1), p. 343-344. 1992. MURAD, A. Resumo de geologia, petrografia e geoquímica (elementos maiores, menores e alguns traços) do Maciço Intrusivo de Conceição do Muqui - ES. **Anuário do Isntituto de Geociências**, [S.1.], v. 16, p. 134.

NALINI, H.A., MACHADO, R.; BILAL, E. Geoquímica e Petrogênese da Suíte Galiléia: exemplo de Magmatismo Tipo-I Metaluminoso Pré-Colisional Neoproterozóico da Região do Médio Vale do Rio Doce (MG). **Revista Brasileira de Geociências**, [S.l.], v. 35, p. 23-34. (2005).

NANNI, A.S. & CHAVES, A.O. Uso de aplicativos computacionais livres em disciplinas de mapeamento geológico. **GeoFocus**, [S.I.], v. 11, p. 55-65. 2011.

NOCE, C.M.; PEDROSA-SOARES, A.C.; ALKMIM, F.F. O Embasamento Arqueano e Paleoproterozóico do Orógeno Araçuaí. **Geonomos**, [S.I.], v. 15, p. 17-23. 2007.

NOVO, T. Significado geotectônico das rochas charnockíticas da região de Carangola– MG: implicações para a conexão Araçuaí–Ribeira. MSc thesis, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte. 2009.

OFFMAN R.A. & WEBER-DIEFENBACH, K. Two zoned complexes in the Iconha region, Espírito Santo, Brazil: a geochemical characterization of an intrusive series. **Zbl. Geol. Paläont**, [S.l.], v. 5/6, p. 903-916. 1989.

PACHECO, B.T. Caracterização petrográfica e geoquímica das rochas do corpo Conselheiro Paulino (Suíte Nova Friburgo) na região Serrana do estado do Rio de Janeiro. Monografia, UERJ, 51 p. 2010.

PECCERILLO, A. & TAYLOR, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. **Contributions to Mineralogy and Petrology**, [S.l.], v. 58, p. 63-81. 1976.

PEDROSA-SOARES, A.C. & WIEDEMANN-LEONARDOS, C.M. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: CORDANI, U.; MILANI, E.; THOMAZ-FILHO, A.; CAMPOS, D.A. (Eds), Tectonic evolution of South-America, São Paulo, p. 265-285. 2000.

PEDROSA-SOARES, A.C.; NOCE, C.M.; WIEDEMANN, C.M.; PINTO, C.P. The Araçuaí-West Congo orogen in Brazil: Na overview of a confined orogen formed during Gondwanaland Assembly. **Precambrian Research**, [S.l.], v. 110, p. 307-323. 2001.

PEDROSA-SOARES, A.C.; NOCE, C.M.; ALKMIM, F.F.; SILVA, L.C.; BABINSKI, M.; CORDANI, U., CASTAÑEDA, C. Orógeno Araçuaí: Síntese do conhecimento 30 anos após Almeida 1997. **Geonomus**, v. 16, p. 1-16. 2007.

PEDROSA-SOARES, A.C.; ALKMIM, F.F.; TACK, L.; NOCE, C.M.; BABINSKI, M.; SILVA, L.C.; MARTINS-NETO, M.A. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo Orogen. Geological Society, **Special publications**, London, v. 249, p. 153-172. 2008.

PENHA, H.M. Geologia dos corpos granitoides do litoral oeste do estado do Rio de Janeiro. In: SIMPÓSIO DE GEOLOGIA DO SUDESTE, **anais...** p. 165-166. 1989.

PLATZER, S. Whole rock geochemistry of the Aracê/Pedra Azul pluton. University of Utrecht, The Netherlands.Unpublished Master Thesis, 58 p. 1987.

PORTO Jr., R. & VALENTE, S.C. As rochas granitóides do norte da Serra da Pedra Branca e suas relações com as encaixantes gnáissicas da região de Bangu, Rio de Janeiro, RJ. In: CONGRESSO BRASILEIRO DE GEOLOGIA, BELÉM, **anais...** v.3, p. 1066-1074. 1988.

PORTO Jr. **Petrogênese das rochas do Maciço da Pedra Branca**. Tese de Doutorado, UFRJ, 229 p. 2004.

PORTO Jr., R.; TESSER, L.R.; DUARTE, B.P. A origem do acamamento magmático no granito Pedra Branca, Maciço Pedra Branca, Rio de Janeiro, Brasil. **Geociências UNESP**, v. 37, p. 237-251.

POTRATZ, G.L. & VALERIANO, C.M. Petrografia e litogeoquímica do granito Itaoca, município de Campos dos Goytacazes, RJ: o representante mais jovem do magmátismo póscolisional da Faixa Ribeira. **Geonomus**, [S.I.], v. 25(1), p. 1-13. 2017.

POTRATZ, G. L.; FERNANDES, V. M. T. ; Herzog, I.B. ; MORAES, F. N. . Análise deformacional relacionada ao alojamento de corpos graníticos: o exemplo do Maciço Santa Angélica - Alegre, ES. In: 13° Simpósio de Geologia do Sudeste e 17° Simpósio de Geologia de Minas Gerais, Juiz de Fora. **Anais**..., 2013.

POTRATZ, G.L. Mapeamento faciológico do Complexo Intrusivo de Várzea Alegre na escala de 1:50.000. Monografia, UFES. 2014.

POTRATZ, G.L. Petrografia, litogeoquímica e geologia isotópica do granito póscolisional Itaoca, Campos dos Goytacazes - RJ. Dissertação de mestrado: UERJ. 124 p. 2016.

POTRATZ, G.L.; MARQUES, R.A.; NOGUEIRA, C.C. Mapeamento faciológico do Complexo Intrusivo de Várzea Alegre - ES, na escala de 1:50.000. In: OLIVEIRA, F.B.; MARQUES, R.A.; CANDOTTI, C. Mapeamento geológico e geologia regional, volume 1, Alegre, CCA-UFES, p. 21-34. 2018.

PUGET, A.J.P. & PENHA, H.M. Granitos da região de Ipiranga, RJ: considerações geoquímicas e petrológicas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, **anais**, v.4, p.2215-2230. 1980.

QUEIROGA, G. N.; PEDROSA-SOARES, A.C.; NOCE, C.M.; ALKMIM, F.F.; PIMENTEL, M.M.; DANTAS, E.L.; SOUZA, M.M; CASTAÑEDA, C.; FREITAS, S.M.T.; HAZEL, P. Age of the Ribeirão da Folha ophiolite, Araçuaí orogen: the U-Pb zircon (LA-ICPMS) dating of a plagiogranite. **Geonomos**, v. 15, p. 61-65. 2007."

RIBEIRO, R. Estudo geológico e geoquímico preliminar do granito Silva Jardim, Rio de Janeiro. Monografia, UFRJ, 45 p. 2006.

ROLAND, C.L. Mapeamento, petrografia e geoquímica preliminar da região de Morro do Coco, distrito de Campos dos Goytacazes, RJ. Monografia, UFRJ. 2013.

SCHERER, E.E.; CAMERON, K.L.; BLICHERT-TOFT, J. Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. **Geochimica et Cosmochimica Acta**, [S.l.], v. 64, p. 3413–3432. 2001.

SCHMITT, R.S.; TRUOW, R.A.J.; SCHMUS, W.R.V.; PIMENTEL, M.M. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). **Precambrian Research**, [S.I.], v. 133, p. 29-61. 2004.

SHAND, S.J. **Eruptive Rocks: their genesis, composition, classification and their relation to Ore-deposits with a chapter on meteorite**. John Wiley & Sons, New York, 444 p.

SILVA, L.C.; McNAUGHTON, N.J.; ARMSTRONG, R.; HARTMANN, L.; FLETCHER, I. The Neoproterozoic Mantiqueira Province and its African connections. **Precambrian Research**, [S.I.], v. 136, p. 203-240. 2005.

SÖLLNER, F.; LAMMERER, B. & WEBER-DIEFENBACH, K. Die Krustenentwicklung in der Küstenregion nördlich von Rio de Janeiro: Altersbestimmungen (U-Pb an Zirkonen und Rb-Sr na Gesteinen) an hochdruckfaziellen Gesteinen des Ribeira Mobile Belt und des São Francisco Kratons (ESpírito Santo/Minas Gerais). **Münchner Geol. Hefte**. [S.l.], v. 4, p. 101. 1991.

SÖLLNER, F.; LAMMERER, B. & WIEDEMANN-LEONARDOS, C.M. Dating the Ribeira Mobile Belt in Brazil. Zeit. **Angw. Sonderheft**, [S.l.], SH1, p. 245-255. 2000.

STRECKEISEN, F. Plutonic rocks, classification and nomenclature recommended by the IUGS subcommission on the Systematics of igneous Rocks. **Geotimes**, [S.I.], p. 26-30

SYLVESTER, P.J. Post-collisional strongly peraluminous granites. Lithos, [S.l.], v. 45, p. 29-44. 1998.

TAUFNER, I. A Pedra da Onça: Jazidas, lavras e garimpos no Espírito Santo (Memórias II). Grafitusa, Vitória, p. 27-54.

ALTOÉ, R.T.; HERZOG, I.B.; POTRATZ, G.L.; ZUQUI, A.R. Mapeamento faciológico do núcleo do Complexo Intrusivo de Santa Angélica - ES. In: X SIMPÓSIO SUL-BRASILEIRO DE GEOLOGIA, Curitiba, **anais...** 2017.

TEDESCHI, M.; NOVO, T.; PEDROSA-SOARES, A.; DUSSIN, I.; TASSINARI, C.; SILVA, L.C.; GONÇALVES, L.; ALKMIM, F.; LANA, C.; FIGUEIREDO, C.; DANTAS, E.; MEDEIROS, S.; DE CAMPOS, C.; CORRALES, F.; HEILBRON, M. The Edicaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil). Journal of South American Earth Sciences, [S.1], v. 68, p. 167-186. 2016.

TEIXEIRA, A.G.P. Estudos Geoquímicos Comparativos de Granitos Tardi a Pós-Colisionais do Segmento Central do Orógeno Ribeira no Estado do Rio de Janeiro. Monografia, UFRJ, 56 p. 2010.

TEMPORIM, F.A.; TRINDADE, E.; TOHVER, C.C.; SOARES, L.P.; GOUVÊA, M.; EGYDIO-SILVA, C.A.D.; AMARAL, G.F.; SOUZA Jr., A.G. Magnetic Fabric and Geochronology of a Cambrian "Isotropic" Pluton in the Neoproterozoic Araçuaí Orogen. **Tectonics**, [S.I.], v. 19, e2019TC005877. 2020.

THOMPSON, R.N. Magmatism of the British Tertiary province Scottish. Journal of Geology, [S.l.], v. 18, p. 49-107. 1982.

TORRES, L.F. **Petrografia e geoquímica de plútons zonados do Sul do Espírito Santo.** Monografia, UFES. 2013. TRUOW, R.A.J.; HEILBRON, M.; RIBEIRO, A.; PACIULLO, F.V.P.; VALERIANO, C.M.; ALMEIDA, J.C.J.; TUPINAMBÁ, M. The central segment of the Ribeira Belt. In: CORDANI, U. & MILANI, E.J. (Eds), Tectonic Evolution of South America. Rio de Janeiro, p. 287-310. 2000.

TULLER, M.P. Texto explicativo da Folha SE.24-Y-C-VI. CPRM: Programa de levantamentos Geológicos Básicos do Brasil, escala 1:100.000. 1993.

TUPINAMBÁ, M. Evolução tectônica e magmática da Faixa Ribeira na região Serrana do Estado do Rio de Janeiro. Tese de doutoramento, USP, 221 p. 1999.

TUPINAMBÁ, M.; HEILBRON, M.; DUARTE, B.P.; NOGUEIRA, J.R.; VALLADARES, C.; ALMEIDA, J.; SILVA, L.G.E.; MEDEIROS, S.R.; ALMEIDA, C.G.; MIRANDA, A.; RAGATKY, C.D.; MENDES, J.; LUDKA, I. Geologia da Faixa Ribeira Setentrional: estado da arte e conexões com a Faixa Araçuaí. **Geonomus**, [S.I.], v. 15(1), p. 67-79. 2007.

TUPINAMBÁ, M.; TEIXEIRA, W.; HEILBRON, M. Evolução tectônica e magmática da Faixa Ribeira entre o Neoproterozóico e Paleozóico inferior na Região Serrana do Estado do Rio de Janeiro, Brasil. **Anuário do Instituto de Geociências** - UFRJ, [S.l.], v. 35, p. 140-151. 2012a.

TUPINAMBÁ, M.; HEILBRON, M.; VALERIANO, C.M.; JUNIOR, R.P.; DIOS, F.B.; MACHADO, N.; SILVA, L.G.E.; ALMEIDA, J.C.H. Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): Implications for Western Gondwana amalgamation. **Gondwana Research**, [S.1.], v. 21, p. 422-438. 2012b

VALLADARES, C.S.; SOUZA, S.; RAGATKY, D. The Quirino Complex: a Transamazonian Magmatic Arc (?) of the Central Segment of the Brasiliano/Pan-African Ribeira Belt, SE Brazil. Revista Universidade Rural, **Série Ciências Exatas e da Terra**, [S.l.], v. 21(1), p.49-62. 2002

VALERIANO, C.M.; TUPINAMBÁ, M.; SIMONETTI, A.; HEILBRON, M.; ALMEIDA, J.C.H.; EIRALDO, L.G. U-Pb LA-MC-ICPMS geochronology of Cambro-Ordovician postcollisional granites of the Ribeira belt, southeast Brazil: Terminal Brasiliano magmatism in central Gondwana supercontinent. **Journal of South American Earth Sciences**, [S.l.], v. 32, p. 416-428. 2011.

VALERIANO, C.M.; MENDES, J.C.; TUPINAMBÁ, M.; BONGIOLO, E.; HEILBRON, M.; JUNHO, M.C.B. Cambro-Ordovician post-collisional granites of the Ribeira Belt, SE-Brazil: A case of terminal magmatism of a hot orogen. Journal of South American Earth Sciences, [S.l.], v. 68, p. 416-428. 2016.

VIANA, S.M.; VALLADARES, C.S.; DUARTE, B.P. Geoquímica dos ortognaisses do Complexo Região dos Lagos, Araruama-Cabo Frio, Rio de Janeiro, Brasil. **Revista Brasileira de Geociências**, [S.I.], v. 38(3), p. 489-501. 2008.

VIEIRA, V.S. **Significado do Grupo Rio Doce no Contexto do Orógeno Araçuaí**. Tese de Doutoramento, UFMG, 123 p. 2007.

VIEIRA, V.S.; SILVA, M.A., CORREA, T.R.; LOPES, N.H.B. Geologia e recursos minerais do estado do Espírito Santo. In: Programa Geologia do Brasil, Mapas Geológicos Estaduais, escala 1:400.000, CPRM. 2015.

VIELZEUF, D,; CLEMENS, J.D.; PIN, C.; MOINET, E. Granites, Granulites, and Crustal Differentiation. In: D. Vielzeuf, P. Vidal (Eds.), Granulites and Crustal Evolution, Kluwer Academic Publishing, Dordrecht, pp. 59-86. 1990.

WANG, Q.; HAWKESWORTH, C.J.; WYMAN, D.; CHUNG, S.L.; WU, F.Y.; LI, X.H.; LI, Z.X.; GOU, G.N.; ZHANG, X.Z.; TANG, G.J.; DAN, W.; DONG, Y.H. Pliocene-quaternary crustal melting in central and northern Tibet and insights into crustal flow. **Nature Communications**, [S.l.], v. 7, p. 1-11.

WIEDEMANN, C.M. & LUDKA, I. Contribuição à geologia e petrografia do Complexo Jacutinga-Torre, Mimoso do Sul, Espírito Santo. In: Congresso Brasileiro de Geologia, Rio de Janeiro, **anais...** p. 2723-2737. 1984.

WIEDEMANN, C.M.; BAYER, P.; HORN, H.; LAMMERER, B.; LUDKA, I.P.; SHMIDT-TOMÉ, R.; WEBER-DIEFENBACH, K. Macicos intrusivos do Sul do Espírito Santo e seu contexto regional. **Revista Brasileira de Geociências**, v, 16(1), p. 24-37. 1986.

WIEDEMANN, C.M.; MENDES, J.C.; COSTA DE MOURA, J.C.; COSTA NASCIMENTO, R.C.; LUDKA, I.P. Granitoids of the Espírito Santo magmatic arc. In: INTERNATIONAL SYMPOSIUM ON GRANITES AND ASSOCIATED MINERALIZATIONS, **anais...** p. 57-76.

WIEDEMANN, C.M.; MEDEIROS, S.R.; LUDKA, I.P.; MENDES, J.C.; COSTA DE MOURA, J.C.; NASCIMENTO, R.C. Architecture of late orogenic plutons in the Araçuaí-Ribeira fold belt, Southeast Brazil. **Gondwana Research**, [S.I.], v. 5(2), p. 381-399.

WIEDEMANN-LEONARDOS, C.M.; LUDKA, I.P.; MEDEIROS, S.R.; MENDES, J.C.; MOURA, J.C. Arquitetura de plútons zonados da Faixa Araçuaí-Ribeira. Geonomus, [S.1.], v.8(1), p. 25-38. 2000.

WIEDEAMNN, C.M.; MEDEIROS, S.R.; LUDKA, I.P.; MENDES, J.C.; COSTA DE MOURA, J.C.; COSTA NASCIMENTO, R.C. Architecture of late orogenic plutons in the Araçuaí-Ribeira fold belt, Southeast Brazil. **Gondwana Research**, v. 5(2), p. 381-399. 2002.

ZANON, M. Geologia do Maciço Santa Angélica e suas encaixantes (Espírito Santo). Dissertação de mestrado, UFMG. 2013.

ZANON, M.; CHAVES, A.O.A.; GABRIG, C.V.T. A origem das bordas de mirmequita nos xenocristais de feldspato potássico em rochas máficas e híbridas do Maciço Santa Angélica - ES. Geonomos, [S.I.], v. 20(2), p.23-33. 2012.

ZANON, M.; CHAVES, A.O.; RANGEL, C.V.G.; GABURO, L.; PIRES, C.R. The geology of Santa Angelica's intrusion: a new argument. **Brazilian Journal of Geology**, [S.I.], v. 45(4), p. 609-633. 2015.

ZORITA, M.E. Geoquímica de Las Rocas Granítica de la Region de Suruí – Município de Magé – RJ. Dissertação de Mestrado, UFF, 96 p. 1979.