

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Carlos Alexandre de Souza e Silva

Metodologia para Monitoramento de Riscos de Incidentes Derivados de Terraplenos Rodoviários

Carlos Alexandre de Souza e Silva

Metodologia para Monitoramento de Riscos de Incidentes Derivados de Terraplenos Rodoviários

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Geotecnia.

Orientadores: Profa. DSc. Ana Cristina Castro Fontenla Sieira

Prof. DSc. Rogério Luiz Feijó

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

S586 Silva, Carlos Alexandre de Souza e.

Metodologia para monitoramento de riscos de incidentes derivados de terraplenos rodoviários / Carlos Alexandre de Souza e Silva. – 2021.

233f.

Orientadores: Ana Cristina Castro Fontenla Sieira, Rogério Luiz Feijó.

Tese (Doutorado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia.

1. Engenharia civil - Teses. 2. Rodovias - Teses. 3. Mecânica do solo - Teses. 4. Acidentes - Teses. 5. Avaliação de riscos - Aspectos ambientais - Teses. I. Sieira, Ana Cristina Castro Fontenla. II. Feijó, Rogério Luiz. III. Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. IV. Título.

CDU 624.131

Bibliotecária: Júlia Vieira - CRB7/6022

desta tese, desde que citada a fonte.	
desid tese, deside que situad a forite.	
Assinatura	Data

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial

Carlos Alexandre de Souza e Silva

Metodologia para Monitoramento de Riscos de Incidentes Derivados de Terraplenos Rodoviários

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Geotecnia.

Aprovado	Geotecnia. provado em: 06 de dezembro de 2021.	
-	xaminadora:	
	Prof ^a . DSc. Ana Cristina Castro Fontenla Sieira (Orientadora)	
	Faculdade de Engenharia – UERJ	
	Prof. DSc. Rogério Luiz Feijó (Orientador)	
	Faculdade de Engenharia – UERJ	
	Faculdade de Engelinaria – DENJ	
	Prof. DSc. Armando Prestes de Menezes Filho	
	Faculdade de Engenharia – UERJ	
	Prof. Dsc. Juliano de Lima	
	Centro Federal de Educação Tecnológica – CEFET/RJ	

Prof. DSc. Maurício Ehrlich
Universidade Federal do Estado do Rio de Janeiro - COPPE
Rio de Janeiro
2021

DEDICATÓRIA

Dedico este trabalho ao Nosso Senhor Jesus Cristo, que está a todo momento com suas mãos sobre mim e sobre meu amor nessa vida, minha filha Letícia, eterna fonte de força e inspiração, simplesmente um presente abençoado de Deus. À minha família, de coração.

AGRADECIMENTOS

Antes de tudo a Deus por ter me dado força e perseverança, em especial nesses momentos tão delicados que vivemos.

Aos meus incansáveis orientadores, Prof^a. DSc. Ana Cristina Castro Fontenla Sieira e Prof. DSc. Rogério Luiz Feijó pelos ensinamentos, auxílio e colaboração, colocando-se à disposição a todo momento. Sem suas contribuições o desenvolvimento não teria sido possível, pois são excelentes orientadores, apontando os desvios e direcionando o caminho correto, dando incentivo e demonstrando amizade, durante todos esses anos.

A todos os professores do PGCIV, sem qualquer exceção, pelos ensinamentos, dentro e fora da sala de aula, durante o período de curso de disciplinas e desenvolvimento desta tese.

Aos meus colegas de pós-gradução, pelo companheirismo e inegável apoio sempre que necessário.

A UERJ, esta Instituição tão importante e querida, onde tive a oportunidade de fazer minha graduação, mas que muitas vezes não recebe o merecido tratamento de relevância por parte do executivo estadual. Sem ela não poderia ter realizado este sonho.

Aos colaboradores do PGECIV por estarem sempre prontos a auxiliar e dirimir dúvidas.

A todos os professores componentes da Banca do Exame de Qualificação, da Banca Examinadora da Defesa da Proposta de Tese e da Banca Examinadora da Defesa de Tese, meus sinceros agradecimentos pela contribuição.

Meu agradecimento especial àqueles que sempre me apoiaram nas fases mais difíceis, sendo fonte de inspiração e alegria: minha filha Letícia Torrão e Silva, meu irmão Raphael e demais familiares.

A todos aqueles que, embora não nomeados, me presentearam com suas inestimáveis palavras de incentivo e acolhimento em momentos distintos.

Podemos julgar nosso progresso pela coragem dos nossos questionamentos e pela profundidade de nossas respostas, nossa vontade de abraçar o que é verdadeiro, ao invés daquilo que nos faz sentir bem. Carl Sagan Aqueles que semeiam em lágrimas, com júbilo ceifarão. Salmo 126:5 Sorte é o que acontece quando a preparação encontra a oportunidade. Sêneca

RESUMO

SILVA, Carlos Alexandre de Souza e. *Metodologia para monitoramento de riscos de incidentes derivados de terraplenos rodoviários*. 2021. 233f. Tese (Doutorado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021.

O crescimento populacional e a concentração de pessoas em centros urbanos provocam a necessidade vital de abastecimento de alimentos e produtos. A logística nacional tem em sua matriz de transportes o modo rodoviário como principal elo entre origem dos insumos e destino de consumo. A maioria das rodovias brasileiras foi construída há mais de 70 anos e não passa por processo de monitoramento. Em diversas regiões do país o período chuvoso tem provocado deslizamentos e escorregamentos de terrenos naturais às margens de rodovias. Sabe-se que os recursos financeiros são escassos, contrapondo-se à necessidade de investimento em serviços de monitoração, conservação, manutenção e melhorias para segurança rodoviária. Então, para que seja otimizada a utilização de tais recursos, propõe-se uma gradação do risco derivado de incidentes com terraplenos em rodovias. A questão paira sobre definir a matriz de riscos, considerando a probabilidade da ocorrência e o consequente impacto. Para estabelecer a análise da perspectiva relacionada à possibilidade de ocorrência de instabilização dos terraplenos em rodovias, propõe-se a utilização de um Processo Hierárquico Analítico e para o efeito do incidente na segurança rodoviária, a proposta prevê a avaliação do Nível de Serviço. A metodologia produz uma Matriz de Riscos para incidente derivado de terraplenos rodoviários, designando hierarquização de níveis, de modo a permitir o planejamento para direcionamento de recursos, conforme prioridade de serviços em determinados períodos, condição que pode variar desde a continuidade de monitoramento, passando pela recuperação e reforço, até a necessidade de obras do estabilização do terrapleno. Ao aplicar o estudo em trecho rodoviário concedido à iniciativa privada foram identificados 7% dos terraplenos em perspectiva de probabilidade "improvável" de ocorrência na matriz de riscos de incidentes, 69% foram considerados de risco "moderado", condição que remete a um estágio de observação e adocão de medidas de conservação em até 12 meses e não foram registradas situações de risco "crítico".

Palavras-chave: Rodovias. Terraplenos. Incidentes. Processo Hierárquico Analítico. Matriz de Riscos.

ABSTRACT

SILVA, Carlos Alexandre de Souza e. *Methodology for monitoring the risks of incidents arising from road embankments*. 2021. 233f. Tese (Doutorado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021.

The growth and the concentration of people in urban centers create a vital need for the supply of food and products. National logistics has its transport matrix or road mode as the main element between the input and the destination of consume. Most Brazilian highways were built more than 70 years ago and do not go through the monitoring process. In several regions of the country or in the rainy season, there are natural landslides and landslides on the roadsides. It is known that financial resources are scarce, in contrast to the need for investment in monitoring services, conservation, maintenance and improvements for road safety. Then, in order to optimize the use of such resources, use a risk gradation derived from road embankment incidents. The question is about defining the risk matrix, considering the probability of occurrence and the consequent impact. In order to define perspective analysis, with the possibility of the occurrence of highways instability, the use of an Analytical Hierarchical Process -AHP, and for the effect of an incident on road safety, apply a service level assessment proposal. The methodology produces a Risk Matrix for incidents derived from road embankments, designating a hierarchy of levels, in order to allow planning for the allocation of resources, according to priority of services in certain periods, a condition that can vary from the continuity of monitoring, through to recovery and reinforcement, even the need for embankment stabilization works. Implementing the study on a road stretch granted to the private sector, 7% of the embankments were identified with an "unlikely" probability of occurrence in the incident risk matrix, 69% considered to be of "moderate" risk, a condition that refers to a stage observation and adoption of conservation measures within 12 months and with no "critical" risk situations being recorded.

Keywords: Highways. Embankments. Incidents. Slopes Analytical Hierarchical Process. Risk Matrix.

LISTA DE FIGURAS

Figura 1 – (%) População em Cidades Urbanas x Anos	19
Figura 2 – População urbana e rural no mundo 1950 – 2050	19
Figura 3 – Distribuição modal da matriz brasileira de transportes regionais de c	argas
(Adaptado - Ministério dos Transportes, 2011)	21
Figura 4 – Terrapleno - seção transversal	26
Figura 5 – Talude - seção transversal (Caputo, 1975)	26
Figura 6 – Diagrama de Venn - agrupamento	28
Figura 7 – Tergo e Vale (Peixoto, 1991)	29
Figura 8 – Tipos e formas geométricas de encostas (Chorley, 1984)	29
Figura 9 – Respostas geodinâmicas dos taludes (Troeh, 1965)	31
Figura 10 – Desprendimento (Bittencourt, 2010)	38
Figura 11 – Escorregamento (Bittencourt, 2010)	38
Figura 12 – Rastejo (Bittencourt, 2010)	39
Figura 13 - Erosões (Dian, 2010)	39
Figura 14 - Corrida de detritos (Nunes e Sayão, 2014, adapt. Nettheton et al., 2	2005)
	40
Figura 15 – Instabilização x Ruptura x Medidas mitigadoras	43
Figura 16 – Incidentes diversos (Google imagens, 2019)	50
Figura 17 - Ficha de levantamento (DER/SP, 1991)	56
Figura 18 – Monitoração pontual (Autopista Litoral Sul, 2018)	65
Figura 19 – Marcação de polígono no Google Earth Pro	68
Figura 20 - Apresentação das curvas de níveis extraídas do Google Earth	68
Figura 21 - Motivo da Conservação	73
Figura 22 – Tipo da Conservação	73
Figura 23 – Reta de regressão linear simples (adaptado de Garcia, 2018)	75
Figura 24 - Padrões de correlação (Theil, 1978 apud Aguiar, 2019)	80
Figura 25 - Intervalo de confiança (Gujarati e Porter, 2011)	83
Figura 26 – Regressão linear simples Intervenção x Tempo	85
Figura 27 – Variação de PRE com a Altura do Talude (Silva, 2008)	89
Figura 28 - Distância do Acostamento - Seção transversal mista	90
Figura 29 – Distância da invasão x Probabilidade de incidente (DNIT, 2010)	90

Figura 30 – Desprendimento de rocha em terrapleno rodoviário	91
Figura 31 – Padrões de inclinação para taludes, estabelecidas empiricam	
referência (Marangon, 2006)	
Figura 32 - Microestacas ou estaca tipo raiz (Gerscovich et al, 2016)	
Figura 33 – Exemplos de cortinas: (A) atirantada; (B) estroncada; (C) em	
(Gerscovich et al, 2016)	97
Figura 34 – Berma de equilíbrio (DNIT, 1998)	98
Figura 35 – Muro de gabião (Gerscovich et al, 2016)	99
Figura 36 - Graduação de transição de rocha (Hoek, 2002)	100
Figura 37 – Implantação de placas de grama em terrapleno	102
Figura 38 – Indicação dos 8 critérios de composição	104
Figura 39 - Fotografia com os 8 critérios propostos para sistemática	105
Figura 40 – Drenagem – Bom Estado	109
Figura 41 – Drenagem – Demanda Manutenção	109
Figura 42 – Drenagem – Parcial ou natural	110
Figura 43 – Obras de contenção/ estabilização – Bom estado	111
Figura 44 – Obras de contenção/estabilização – Demanda manutenção	111
Figura 45 – Obras de contenção/estabilização – Desgastada	112
Figura 46 - Vegetação – Consolidada	113
Figura 47 - Vegetação – Parcial	113
Figura 48 - Vegetação – Pouca ou inconsistente	114
Figura 49 – Análise - Forma hierárquica (Adaptado de Saaty, 1980)	116
Figura 50 - Hierarquização de critérios e estágios (adaptado de Saaty, 19	80)118
Figura 51 – Análise Forma hierárquica (Adaptado de Saaty, 1980)	126
Figura 52 – Análise – Coincidindo valores dos Estágios	127
Figura 53 - Plataforma de desenvolvimento do site	128
Figura 54 - Página inicial do site – PRI	129
Figura 55 - Página inicial do site – Critérios	130
Figura 56- Página inicial do "site" – Nível de Serviço	131
Figura 57 - Página final do site - Resultado	131
Figura 58 – Nível de Serviço I	134
Figura 59 – Nível de Serviço II	134
Figura 60 – Nível de Serviço III	135
Figura 61 – Nível de Servico IV	136

Figura 62 - Nível de Serviço ilustrativo	138
Figura 63 – Geomorfologia do trecho Fluminense da Rodovia (CPRM, 2019)	145
Figura 64 – Altura – médias	158
Figura 65 – Distância do acostamento – médias	159
Figura 66 – Drenagem - Quantidade	160
Figura 67 – Extensão – médias	161
Figura 68 – Inclinação – médias	161
Figura 69 – Obras de Contenção/Estabilização - Quantidade	162
Figura 70 – Rochas – Quantidade	163
Figura 71 – Vegetação - Quantidade	163
Figura 72 – Limites de Confiança	166

LISTA DE TABELAS

Tabela 1- Descrição das causas de instabilização (Terzaghi, 1950)	30
Tabela 2- Mecanismos de instabilização x Perfil de intemperismo (Carregã, 1996)	.34
Tabela 3 - Classificação dos movimentos de encostas (Varnes, 1978)	40
Tabela 4 - Movimentos de massa: velocidade e profundidade (Gerscovich, 2016)	41
Tabela 5 – Fatores deflagradores, movimentos de massa (Varnes, 1978)	41
Tabela 6 – Principais problemas e suas causas em terraplenos (DER/SP, 1991)	46
Tabela 7- Fatores de probabilidade do perigo COPPETEC/ANTT – adaptado	57
Tabela 8 - Fatores de probabilidade do perigo (Ehrlich e Silva, 2014)	58
Tabela 9- Fatores de probabilidade sugeridos (Ehrlich e Silva, 2014)	58
Tabela 10 - Fatores de impacto relativo ao material desprendido que atinge às fai	xas
de rolamento e frequência de trafego. (Ehrlich e Silva, 2014)	58
Tabela 11 - Fatores de impacto sobre a integridade da rodovia (Ehrlich e Silva, 20	14)
	58
Tabela 12 - Fatores de impacto sobre a funcionalidade da rodovia	59
Tabela 13 - Fatores de impacto sobre o meio ambiente (Ehrlich e Silva, 2014)	59
Tabela 14 - Fatores de probabilidade (Ehrlich e Silva, 2014)	59
Tabela 15 - Método Rockfall Hazard Rating System	60
Tabela 16 - Valores adaptados do Método Rockfall Hazard Rating System	60
Tabela 17 – Graus de risco x deslocamento x velocidade (NBR 11682/1991)	61
Tabela 18 ´Níveis de Segurança x Critérios contra perdas de vidas humanas	61
Tabela 19 - Níveis de Segurança x Critérios contra danos materiais e ambientais.	62
Tabela 20 – Níveis de Segurança contra perdas de vidas humanas x contra danos	3
materiais e ambientais (NR 11682/2009)	62
Tabela 21 – Pontos para hierarquização (Geo-Rio, 2016)	62
Tabela 22 – Classes x Pontuação (Geo-Rio, 2016)	63
Tabela 23 - Coeficiente de correlação (Shimakura, 2016 apud Aguiar, 2019)	79
Tabela 24 – Tipos de erros (Aguiar, 2019)	81
Tabela 25 – Análise da variância (Faria, 2011)	84
Tabela 26 – Análise da variância (Faria, 2011)	85
Tabela 27 – Dados geométricos dos terraplenos	86
Tabela 28 - Classes dos dados geométricos	87

Tabela 29 - Redução de acidentes por aumento das áreas laterais	91
Tabela 30 – Redução de acidentes por diminuição das inclinações	95
Tabela 31 - Estágios dos Critérios aplicados na Perspectiva de Risco de Ir	ncidentes
	106
Tabela 32 – Escala fundamental (adaptado de Saaty, 1980)	117
Tabela 33 – Matriz de Preferência	119
Tabela 34 – Matriz de Preferência Comparação entre Estágios	120
Tabela 35 - Autovetor normalizado	121
Tabela 36 – Linha com somatórios dos valores dos critérios	122
Tabela 37 – Autovetor normalizado	122
Tabela 38 – Linha com somatórios dos valores dos estágios	122
Tabela 39 - Normalização dos Critérios	123
Tabela 40 – Normalização dos Estágios	123
Tabela 41 – Valores de IR para matrizes de ordem 8 (Saaty, 1980)	124
Tabela 42 – Valores de IR para matrizes de ordem 4 (Saaty, 1980)	125
Tabela 43 – Soma dos valores Critério x Estágio	126
Tabela 44 – Intervalos entre Graus da PRI	127
Tabela 45 - Graus de Probabilidade de Incidentes	127
Tabela 46 - Níveis de Serviço freeways TRB (2000)	137
Tabela 47 - Níveis de Serviço multilane highways (DNIT, 2006)	137
Tabela 48 - Capacidade remanescente (TRB, 2000)	139
Tabela 49 - Graus de Impacto de Incidentes	141
Tabela 50 – Intervalo dos Níveis de Risco	142
Tabela 51 – Matriz de Riscos de Incidentes	143
Tabela 52 – Intervenção e prazo	143
Tabela 53 – Dados dos Terraplenos e Resultados da Perspectiva de Incide	entes146
Tabela 54 – Altura – Tratamento de dados	158
Tabela 55 – Distância do acostamento - Tratamento de dados	159
Tabela 56 – Drenagem - Quantidade	159
Tabela 57 – Extensão - Tratamento de dados	160
Tabela 58 – Inclinação - Tratamento de dados	161
Tabela 59 – Obras de Contenção/Estabilização - Quantidade	162
Tabela 60 – Rochas - Quantidade	162
Tabela 61 – Vegetação - Quantidade	163

Tabela 62 – Quantidade de Terraplenos por PRIs	164
Tabela 63 – Características Físicas e Operacionais da Rodovia	168
Tabela 64 – Volume médio diário anual de tráfego (adaptado de Nova Dutra,	, 2018)
	169
Tabela 65 –Níveis de Serviço por trecho homogêneo	169
Tabela 66 – Valores da Matriz de Riscos	171
Tabela 67 – Matriz de Risco de Incidentes em Terraplenos Rodoviários	181
Tabela 68 – Percentual de Níveis de Risco	182

LISTA DE ABREVIATURAS E SIGLAS

AHP Processo Hierárquico Analítico

CPRM Companhia de Pesquisas de Recursos Minerais

DNIT Departamento Nacional de Infraestrutura de Transportes

FMEA Failure Modes and Effects Analysis)

FMECA Failure Modes, Effects and Criticality Analysis)

HCM Highway Capacity Manual

IC Índice de Coerência

IR Índice Randômico

IPT Instituto de Pesquisas Tecnológicas

ISSMGE Sociedade Internacional de Mecânica dos Solos e Engenharia Geotécnica

ONU Organização das Nações Unidas

PRI Perspectiva de Incidentes

RHRS Rockfall Hazard Rating System

RPN Risk Priority Number

RQD Designação da Qualidade da Rocha

TRB Transportation Research Board

UERJ Universidade do Estado do Rio de Janeiro

CEMADEN Centro Nacional de Monitoramento e Alertas de Desastres Nacionais

LISTA DE SÍMBOLOS

P	probabilidade
X	quantidade de eventos
е	base do logaritmo natural (e = 2.71828)
X	inteiro não negativo
λ	taxa média de ocorrências
Y_i	variável dependente para a i-ésima observação
β_0 e β_1	coeficientes desconhecidos da reta que relaciona as variáveis X e Y
$arepsilon_i$	erro aleatório
$ar{Y}$	média dos valores de Y;
$ar{X}$	média dos valores de X;
n	total de observações na amostra.
r	coeficiente de correlação;
β_1^*	valor de β_1 sob H_0 ;
$t_{\frac{\alpha}{2}}$:	valores críticos de t
$\frac{\alpha}{2}$	nível de significância
$\lambda_{mcute{a}x}$	autovalor
$y^{}$	variável independente na linha de tendência
MSE	Erro Médio Quadrado
$\sigma[y]$	Raiz da variância

SUMÁRIO

	INTRODUÇÃO	18
1	REVISÃO BIBLIOGRÁFICA	26
1.1	Dinâmica dos Movimentos de Massa	28
1.1.1	Condicionantes Geológicas	35
1.1.2	Modos de Ruptura	37
2	INCIDENTES EM TERRAPLENOS	47
2.1	Conceituação de Incidentes	50
2.1.1	Risco de Incidente	51
2.2	Níveis de Risco e Metodologias	53
2.2.1	Metodologias FMEA E FMECA	54
2.2.2	Metodologia DER-SP (1991)	55
2.2.3	Metodologia COPPETEC/ANTT – adaptado	57
2.2.4	Metodologia Rockfall Hazard Rating System (RHRS)	60
2.2.5	Norma Brasileira 11682/2009	61
3	SISTEMÁTICA DE MONITORAMENTO	64
3.1	Periodicidade	64
3.2	Levantamento <i>In situ</i>	66
3.3	Levantamento Remoto	66
4	IDENTIFICAÇÃO DE CRITÉRIOS	70
4.1	Intervenções de Conservação em Terraplenos	72
4.1.1	Regressão Linear Simples	74
4.2	Definição de Dados dos Critérios Geométricos	86
4.3	Convergência dos Critérios com a Proposta	87
5	PROPOSTA METODOLÓGICA DE IDENTIFICAÇÃO DE RISCO	103
5.1	Perspectiva de Incidentes - PRI pelo Processo Hierárquico Analí	tico - AHP
		114
5.2	Impacto relacionado ao Nível de Serviço	132
5.2.1	Efeitos na Rodovia Resultantes de Incidentes em Terraplenos	138
5.3	Matriz de Risco de Incidentes em Terraplenos Rodoviários	141
6	APLICAÇÃO DA METODOLOGIA	144
6.1	Caracterização do trecho	144

6.2	Probabilidade: Perspectiva de Incidentes - PRI	146
6.2.1	Análise dos Resultados	157
6.2.2	Limites de Confiança da Reta de Probabilidade	165
6.3	Impacto: Avaliação dos Níveis de Serviços	168
6.4	Aplicação da Matriz de Riscos de Incidentes em Terraplenos Ro	doviários
		171
6.5	Vantagens x Desvantagens e limitações	182
7	CONSIDERAÇÕES FINAIS	184
	REFERÊNCIAS	187
ANE	XO 1. PLANILHA PARA LEVANTAMENTO DOS TERRAPLENOS	195
ANE	XO 2. AMOSTRA DAS TABELAS DE CÁLCULO DOS LIMITES DE CO	NFIANÇA
		205

INTRODUÇÃO

Os solos são materiais provenientes da alteração das rochas por ação do intemperismo (agentes físicos ou químicos), sendo constituídos por um conjunto de partículas sólidas e vazios preenchidos ou não por água. O comportamento dos solos depende do movimento de suas partículas entre si. Essas constituintes são denominadas minerais, tendo uma de suas definições estabelecida por Frascá e Sartori (1998) como sendo a substância sólida natural e homogênea com estrutura atômica característica. Os mesmos autores propõem uma definição para rochas, como sendo um corpo sólido natural, resultante de um processo geológico determinado, formado por agregados de um ou mais minerais, arranjados segundo as condições de temperatura e pressão existentes durante sua formação, podendo ser ígneas, sedimentares e metamórficas.

A mecânica do solo é a aplicação das leis da mecânica e hidráulica para lidar com problemas de engenharia com sedimentos e outras acumulações não consolidadas de partículas sólidas produzidas pela desintegração mecânica e química das rochas, independentemente de conterem ou não uma mistura de orgânicos constituintes. Em geologia, tais acumulações são chamadas de manto ou regolito (Terzaghi, 1943).

O desenvolvimento da humanidade está relacionado à ação do homem e sua interação com solos e rochas.

No campo da engenharia, todas as obras de alguma forma estão relacionadas ao solo. As obras de infraestrutura estão assentadas sobre solos e/ou rochas e de alguma forma alteraram a estrutura natural originária.

A população em todo o mundo tem crescido, trazendo a necessidade de expansão dos espaços, obtidos com obras de infraestrutura. Para suportar o aumento populacional com alguma qualidade de vida, evitando incidentes e transtornos, é importante controlar o uso e ocupação de áreas, a fim de evitar a atuação de agentes antrópicos e naturais, que possam ocasionar o escorregamento de encostas.

Durante o período de 1980 a 2005, o PIB global aumentou cerca de 40 vezes, com média de crescimento de 10% ao ano, enquanto a população urbana triplicou e a população total aumentou 30% (Zhao, 2009). No mesmo período, a quantidade de veículos a motor aumentou 18 vezes e a quantidade de condutores de veículos apresentou acréscimo de 33 vezes. A Figura 1 apresenta o crescimento da população

urbana por continente em período de um século, compreendido entre o ano de 1950 e a projeção até o ano de 2050.

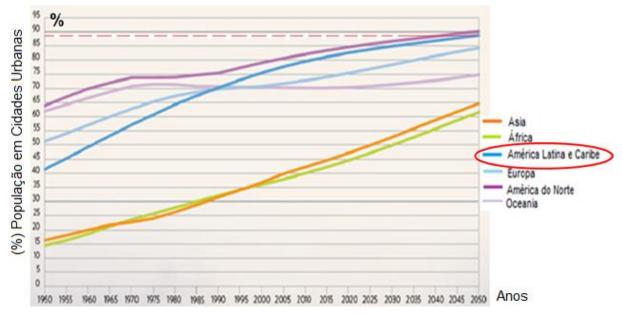


Figura 1 – (%) População em Cidades Urbanas x Anos (*United Nations Population Fund* - 2011)

O aumento da população tem levado ao aumento das cidades, conforme mostra o relatório "Perspectivas da Urbanização Mundial" (*World Urbanization Prospects*) produzido pela Divisão das Nações Unidas para a População do Departamento dos Assuntos Económicos e Sociais (DESA) da ONU, edição de 2014, Figura 2 mostra uma população mundial cada vez mais urbanizada, atualmente 54% da população mundial vive em áreas urbanas, podendo chegar a 66% em 2050.

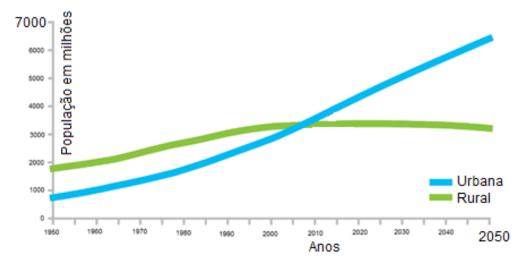


Figura 2 – População urbana e rural no mundo 1950 – 2050 (Departamento dos Assuntos Económicos e Sociais da ONU, 2014)

As cidades crescem, mas nelas não são produzidos alimentos em escala que abasteça sua população, havendo a necessidade do consumo de produtos agrícolas e insumos diversos, essenciais ao desenvolvimento e à própria subsistência do ser humano, o que gera demanda pelo transporte de mercadorias e produtos das origens rurais aos destinos urbanos.

Para atender os anseios e abastecer a população são implantados sistemas viários de diversos modos de transporte. A construção de estradas aumentou significativamente em todo o mundo nas últimas décadas para a provisão de mobilidade humana efetiva e transporte de commodities (Bochet *et al.*, 2010). As rodovias são obras de engenharia civil com finalidade de integração de regiões e possibilidade de circulação de bens e pessoas, garantindo benefício para sociedade.

Não há um banco de dados nacional com registros específicos sobre incidentes naturais que causem interdição parcial ou total de rodovias. Sabe-se apenas que, quando tais incidentes ocorrem podem causar graves prejuízos econômicos e à circulação de tráfego. Segundo o Ministério dos Transportes (2011) o modo rodoviário tem participação de 68% no transporte de cargas, excluindo o minério de ferro, que tem seu transporte exclusivamente realizado pelo modo ferroviário.

Segundo o Anuário Estatístico de Transportes (2010 – 2020), no ano de 2019, antes da Pandemia, o sistema rodoviário de passageiros no Brasil movimentou 91,8 milhões de pessoas. Com essa importante parcela utilizando o modo rodoviário, tornase imperativa a garantia de segurança rodoviária em diversos aspectos, como por exemplo pavimentação, sinalização e elementos de segurança. A Figura 3 apresenta a matriz de transportes nacional, com distribuição percentual de carga entre os diversos modos com todos os produtos e sem o minério de ferro, que devido suas características e logística, tem sido transportado pelo modo ferroviário.

Figura 3 – Distribuição modal da matriz brasileira de transportes regionais de cargas (Adaptado - Ministério dos Transportes, 2011)

O desenvolvimento seguido da necessidade de construção de infraestrutura viária, resulta em alteração permanente das configurações geomórficas e hidrológicas da paisagem, levando ao aumento da erosão do solo (Ramos-Scharron e Macdonald, 2007).

No Brasil o transporte rodoviário de cargas e pessoas tem participação significativa na matriz de transportes, consolidando sua importância econômica e estratégica. Interrupções na circulação causam atrasos, comprometem a segurança e ocasionam perdas econômicas. A construção de estradas pode resultar na modificação de perfis naturais, alteração de declives, empréstimo de materiais para aterros e impermeabilização de terrenos, alterando as condições de escoamento (Jordan e Martinez-Zavala, 2008). Por uma condição natural, a topografia impõe morros, escarpas, montanhas, vales, colinas, dentre outras topologias, incluindo às margens de rodovia os taludes e as encostas. A construção de rodovias pode alterar condições geomorfológicas de regiões, causando instabilidade de taludes e encostas, e mesmo depois da infraestrutura viária implantada e obras de estabilização executadas, deve haver monitoração dos terraplenos, pois condições de instabilidade podem romper as estruturas e provocar interrupção de circulação nas rodovias.

O Brasil tem 1.720.630,2 km de rodovias, das quais 119.953,5 km estão sob jurisdição federal, sendo 53,4% pavimentadas. A considerar a extensão da malha rodoviária, pode-se ter uma noção da existência de inúmeros terraplenos contíguos às rodovias, sendo das mais variadas formas e tamanhos, com alturas distintas, gradientes e composição de solos diversos. Não raro, são descritos casos de deslizamento ou escorregamentos, inclusive com interrupção de circulação das pistas

nas rodovias. Dois casos merecem destaque, pois são registrados como grandes tragédias naturais rodoviárias do país, o escorregamento de terra ocorrido em 1967 na Serra das Araras/RJ com maior número de desaparecidos, interrompendo o tráfego na rodovia Presidente Dutra e a ocorrência de 2011 na região de Nova Friburgo, Petrópolis e Teresópolis, interditando parte da pista da rodovia Rio – Teresópolis, ambas BR-116.

A tragédia de 2011, que atingiu a região Serrana do Estado do Rio de Janeiro, provocou a morte de 905 pessoas e deixou quase 1.500 desabrigados. O professor Alberto Sayão, em entrevista à Agência Brasil, em 11/02/2011, acrescentou que não é possível eliminar as mortes, mas é possível reduzi-las com adoção de medidas como criação de um órgão com estrutura na área de Defesa Civil, investimento em educação, socorro emergencial, estratégias de fuga e implantação de abrigos, além da necessidade de traçar diretrizes para prever os desastres e minimizar seus efeitos. Evitar que estes processos ocorram, segundo Kobiyama *et al.* (2006), foge da capacidade humana, porém se forem adotadas medidas preventivas adequadas, seus danos podem ser evitados ou minimizados. Membros da Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica (ABMS), e da Associação Brasileira de Geologia de Engenharia e Ambiental (ABGE), apresentaram em 2010 a "Carta Aberta às Autoridades", assinada pelo engenheiro geotécnico Jarbas Milititsky, sustentando a necessidade de adoção imediata de medidas, dentre as quais está o monitoramento das áreas de riscos.

Para o ex-presidente do Núcleo Regional São Paulo da ABMS, Futai (2013) as melhores medidas para se prevenir acidentes geotécnicos são o monitoramento das chuvas, o mapeamento da região e a manutenção contínua. A prevenção requer mapeamento feito com algumas metodologias, por vias aéreas, caminhamento, análise de mapas topográficos, de solo e vegetação. Complementa ainda, que é importante manter uma manutenção preventiva em rodovias. Deste modo, o foco não seria tentar evitar os escorregamentos, mas os danos e a invasão das correntes de detritos nas vias. Ele ainda esclarece que fenômenos de escorregamentos são consequências de um processo natural, fazem parte da própria evolução da encosta. Os materiais vão sendo desprendidos dela e depositados na Baixada, esse caminhamento é lento, mas vai acontecendo.

Devido à sua importância, a circulação rodoviária deve ser segura, confortável e rápida. Para garantir essas funcionalidades, deve ser estabelecida uma sistemática

para identificar de maneira hierarquizada a perspectiva de risco de incidentes em terraplenos e estruturas de contenção em rodovias, a fim de que os gestores de rodovias possam agir na prevenção.

O Centro Nacional de Monitoramento e Alertas de Desastres Nacionais, em seu site, informa que instalou equipamentos de alta tecnologia denominados Estações Totais Robotizadas (ETRs) e um conjunto de 100 prismas em nove municípios pilotos que possuem áreas de risco de deslizamentos, para acompanhar com maior precisão os deslocamentos de terra em encostas. Entretanto, no caso de rodovias, à exceção das concedidas à iniciativa privada, que tem parâmetros a cumprir; não tem sido usual a realização de monitoramento para identificar riscos de incidentes de forma preventiva. Esta não realização de monitoração pode permitir que a condição do terrapleno chegue a um estágio de instabilidade, devido a ausência de medidas corretivas ou mitigadoras, situação que além dos prejuízos relacionados à interdição da rodovia, pode comprometer a segurança dos usuários.

MOTIVAÇÃO

A ausência de preservação de terraplenos em rodovias em níveis desejáveis, pode ocasionar problemas de instabilidade com consequentes movimentos gravitacionais de massa. Com o intuito de garantir condições mais seguras a custos responsáveis, deve ser prescrita a conservação das condições de terraplenos naturais ou execução de obras de contenção/estabilização. Entretanto, esta etapa deve ser precedida de um diagnóstico que considere os registros provenientes de levantamentos realizados com base em uma monitoração periódica, que possibilite identificar os níveis de risco de incidentes em terraplenos de rodovias, permitindo apontar quais necessitam de serviços e intervenções, conforme hierarquização e condição de criticidade.

OBJETIVO

Propor uma metodologia de monitoramento periódica para identificar perspectivas e possibilidades de ocorrências de incidentes rodoviários derivados da instabilização de terraplenos. O estudo visa estabelecer uma matriz de risco de incidentes, com fundamento na análise hierárquica analítica e no nível de serviço, que

permita avaliação de medidas corretivas, a fim de mitigar impactos, provenientes da instabilidade.

JUSTIFICATIVA

A ação antropogênica de implantação de terraplenos rodoviários pode ser uma aliada de peso na prática de prevenção à instabilização de terraplenos, não sendo considerada um fim em si, pois é dinâmica no tempo, visto que as rochas e os solos estão num processo de transformação ininterrupto, passando por desgaste natural e fatores constantes de intemperismo.

Alguns autores como Vanmarcke (1977a, apud Sandoval, 2013) destacam também a variabilidade espacial das propriedades do solo. Nas obras geotécnicas, definem-se postos-chave, onde se executam os ensaios de caracterização e resistência do solo, sendo inviável economicamente realizar ensaios em toda a extensão do terreno.

A essência da rodovia, em trechos rurais, é ser contígua ao terrapleno de corte e/ou aterro. Como são significativas as extensões da malha rodoviária, instrumentações para predição de comportamento, tornam-se praticamente inviáveis financeiramente. Medidas de monitoramento periódicas podem auxiliar na mitigação de efeitos de instabilidade, além de possibilitar a previsão de intervenção específica. Com a obtenção da perspectiva de risco de incidentes é possível avaliar a medida a ser adotada no terrapleno. Vaughan (1994) descreve que em problemas de engenharia geotécnica, a compreensão do comportamento real é mais importante do que cálculos acurados.

ESTRUTURA DA TESE

Neste Capítulo introdutório aborda-se a motivação para desenvolvimento do tema, o objetivo e a justificativa da pesquisa, considerando a necessidade de encostas monitoradas e seguras, devido à importância do transporte rodoviário na matriz de transportes brasileira.

O Capítulo 1 apresenta as considerações iniciais, abordando uma temática introdutória da pesquisa.

O Capítulo 2 explora as bibliografias com pesquisas correlatas, de modo a auxiliar na caracterização dos problemas e indicação de caminhos para tratamentos. Neste capítulo destacam-se os movimentos de massas.

O Capítulo 3 define incidentes em terraplenos dirimindo eventuais dúvidas conceituais, descreve riscos e apresenta metodologias.

O Capítulo 4 descreve a sistemática de monitoramento proposta, desenvolve e explicita as ideias, convergindo informações e dados, de modo a propor soluções.

No Capítulo 5 são definidos os critérios a serem avaliados e inseridos na metodologia para compor os níveis de riscos.

O Capítulo 6 apresenta a proposta metodológica de identificação de risco, por meio de matriz, definida pela possibilidade e efeito do evento incidente. A probabilidade de ocorrência foi formulada com base no processo hierárquico analítico. O impacto está pautado no nível de serviço da rodovia.

O Capítulo 7 descreve o *modus operandi* e a aplicação em um estudo de caso, no qual se apresenta todo arcabouço da proposta de conhecimento desenvolvido, consolidado com resultados e avaliação das vantagens e desvantagens da metodologia.

No Capítulo 8 são descritas as conclusões, que foram obtidas com o desenvolvimento do presente trabalho, além de serem apresentadas proposições para trabalhos futuros.

1 REVISÃO BIBLIOGRÁFICA

A pesquisa desenvolvida trata de terrapleno, pois delimita a parte da encosta trabalhada após a terraplenagem. O termo "terrapleno", segundo o Manual de Conservação Rodoviária do DNIT (2005), é resultante de terraplenagem, sendo a parte da faixa de domínio compreendida entre a crista do corte e a base do aterro. A Figura 4 apresenta seção transversal com delimitação por cercas, que elucida o limite dos terraplenos.

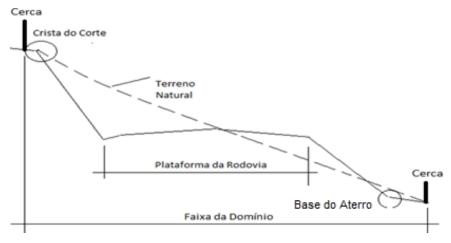


Figura 4 - Terrapleno - seção transversal

O Glossário de Termo Técnicos do DNER (1997) define "encosta" como a superfície lateral de elevação ou depressão do terreno. O "talude" é descrito em Caputo (1975) como qualquer superfície inclinada que limita um maciço de terra, de rocha ou de terra e rocha, podendo ser natural, caso das encostas, ou artificial, caso dos taludes de corte e aterro. A Figura 5 apresenta seção transversal de talude indicando os componentes do mesmo

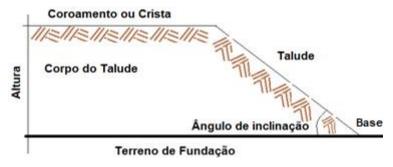


Figura 5 – Talude - seção transversal (Caputo, 1975)

O Manual do DNIT (2005) conceitua talude, como sendo a superfície inclinada ou vertical, proveniente dos trabalhos de terraplenagem e que limita o terreno natural com o corpo da estrada. É também chamado de saia de corte ou de aterro. Nos cortes, o talude é resultante da escavação do terreno natural. Sua inclinação é determinada antes do início dos serviços.

Segundo a Associação Brasileira de Normas Técnicas, NBR 11682/1991 foi inicialmente intitulada "Estabilidade de Taludes". Posteriormente, foi instituída a NBR 11682/2009 da ABNT com a designação de "Estabilidade de Encostas", em vigor atualmente. Esta norma prescreve requisitos exigíveis para o estudo e controle da estabilidade de encostas e de taludes resultantes de cortes e aterros realizados em encostas. Abrange, também, as condições para estudos, projeto, execução, controle e observação de obras de estabilização. A Figura 6 representa graficamente a relação entre conjuntos. Para isso foram utilizadas linhas fechadas com os elementos no interior, facilitando o entendimento da relação de inclusão. Tal representação é denominada Diagrama de Venn. Observa-se que a Topografia como ciência destinada ao estudo da obtenção das características do terreno e fatores determinantes é a mais abrangente e o terrapleno encontra-se inserido no conjunto de taludes, como parte deste.

As regiões por onde passam traçados de rodovias podem ser planas, onduladas e montanhosas. Mesmo nas regiões consideradas planas podem ser caracterizados terraplenos, com a finalidade de atingir uma determinada cota de greide definida em projeto. Os terraplenos em solo e em rocha estão sujeitos, com relativa frequência a problemas geotécnicos associados à instabilização de massas. Os terraplenos rodoviários em cortes ou aterros, assim como as encostas naturais adjacentes às rodovias, costumam provocar danos e, frequentemente, até interrupções no tráfego, com graves prejuízos para os usuários (DER-SP, 1991).

Figura 6 - Diagrama de Venn - agrupamento

Em circunstâncias diversas os elementos terrapleno e talude podem ser coincidentes e ainda, em condições mais específicas os três elementos terrapleno x talude x encostas, também podem ser coincidentes.

1.1 Dinâmica dos Movimentos de Massa

As formações topográficas podem parecer diversas e complexas, mas seus relevos podem ser expressos em duas denominações básicas: tergos e vales, conforme pode ser observado na Figura 7 cuja diferença está na concavidade. O tergo tem sua superfície formada pela reunião de duas vertentes com concavidade voltada para baixo; já os vales, também tem sua superfície formada pela reunião de duas vertentes, porém com concavidade voltada para cima.

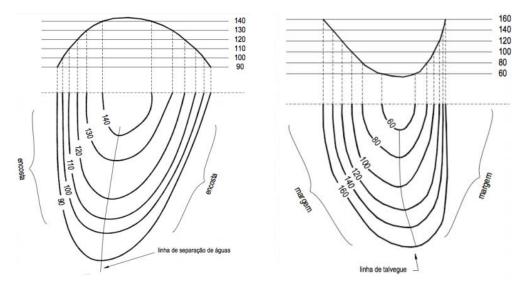


Figura 7 - Tergo e Vale (Peixoto, 1991)

As formas das encostas são designadas geometricamente, considerando suas linhas de arestas laterais, superiores e inferiores; podendo ser lineares, côncavas e convexas, de acordo com a Figura 8. Ainda, sua face pode ser plana côncava ou convexa, funcionando como difusora ou coletora de água precipitadas.

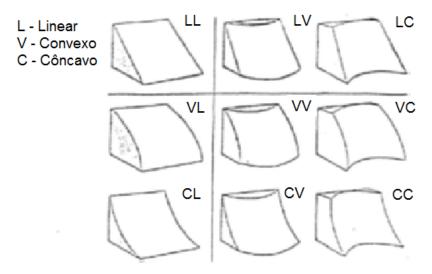


Figura 8 – Tipos e formas geométricas de encostas (Chorley, 1984)

Segundo Terzaghi (1950) as causas dos movimentos de massa podem ser subdivididas em duas categorias relacionadas aos taludes: internas e externas. As internas contribuem na diminuição de resistência ao cisalhamento disponível no solo – aumento da poro-pressão, diminuição do intercepto coesivo e do ângulo de atrito, etc. As externas são consideradas aquelas que provocam um aumento das tensões

de cisalhamento por modificações da geometria dentre outras. Na Tabela 1 são descritas as causas de instabilização em taludes de corte e aterro.

Tabela 1- Descrição das causas de instabilização (Terzaghi, 1950)

Causas	Descrição
Externas	São devidas a ações externas que alteram o estado de tensão atuante sobre o maciço. Esta alteração resulta num acréscimo das tensões cisalhantes, que igualando ou superando a resistência intrínseca do solo leva o maciço à condição de ruptura, por exemplo, aumento da inclinação do talude, deposição de material ao longo da crista do talude, efeitos sísmicos.
Internas	São aquelas que atuam reduzindo a resistência ao cisalhamento do solo constituinte do talude, sem ferir o aspecto geométrico visível, podendo ser: aumento de pressão na água instersticial; decréscimo da coesão.
Intermediárias	São as que não podem ser explicitamente classificadas em uma das duas classes anteriormente definidas. Efeitos da água subterrânea, efeitos de resfriamento, intemperismo das rochas, mudanças na cobertura vegetal dos taludes.

O incidente mais comum de origem geológica em rodovias é o escorregamento, cuja ocorrência torna-se mais frequente em períodos de precipitações mais intensas. As instituições gestoras de trechos rodoviários registram anualmente processos de instabilização de taludes ao longo de seus mais de 1,5 milhão de quilômetros de extensão, por diversas causas, tais como insuficiência de estudos geológico-geotécnicos na fase de concepção de projeto, traçados mal elaborados, ausência do procedimento correto de estabilização, fatores construtivos, deficiência ou ausência de conservação e sobreposição de mais de um fator. O tipo de terrapleno, sua superfície e consequentemente a condição de escoamento das águas precipitadas contribuem para as ocorrências de incidentes. A Figura 9 apresenta respostas geodinâmicas dos taludes, em relação ao escoamento das águas superficiais.

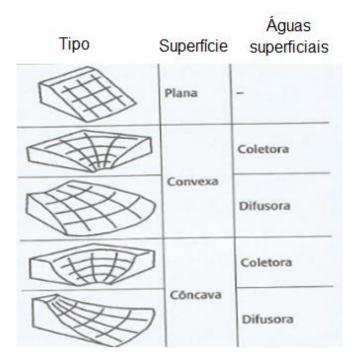


Figura 9 – Respostas geodinâmicas dos taludes (Troeh, 1965)

Ao longo de rodovias, os terraplenos podem ser de corte ou aterro. Tanto em um quanto em outro, a inclinação é função da natureza do solo, suas características e alturas. A prática rodoviária tem demonstrado que taludes de corte devem ter inclinação máxima de 1,0:1,0 (V:H) e aterros compactados inclinação máxima de 2,0:3,0 (V:H). Entretanto, cada tipo de solo e configuração do terrapleno requer estudo específico, devendo ser definido em projeto básico e posteriormente em projeto executivo.

Os processos de instabilidade são diversos, variando de acordo com as características do maciço. Em DNIT (2010) estão descritos os processos com foco de ocorrência em rodovias:

- a) Instabilidade superficial Ocorre nos casos em que a camada superficial passível de deslizamento é pouco espessa em relação à altura do terrapleno estável.
- b) Instabilidade interna Ocorre nos casos em que a profundidade e a extensão do terreno, envolvidas pela instabilidade, apresentam ordem de grandeza semelhante. Neste caso, os métodos de cálculo analítico têm a sua melhor e mais precisa aplicação, tanto os baseados no equilíbrio-limite, com determinação de um fator de segurança, quanto os de determinação de tensões-deformações-limites no terreno. Em geral, a aplicação de métodos analíticos deve ser condicionada a simplificações. Entre estas tem-se a utilização de seções representativas em duas dimensões,

quando, então, devem ser considerados a influência favorável ou desfavorável da forma em planta e o desenvolvimento do talude;

- c) Instabilidade de grandes massas Ocorre quando a massa do solo instável atinge grande profundidade. Em geral, compreende a movimentação de massas de solo, em grande amplitude de tempo após a deflagração do processo. A massa de solo se movimenta como um semifluido de alta viscosidade, apresentando velocidades que variam com a profundidade (em geral, maior velocidade na superfície, na zona média da área em movimentação);
- d) Instabilidade devido a particularidade geológica local As características principais são deslizamentos rápidos e singulares, restritos ao local de particularidade geológica.

Em geral, esses processos de instabilidade são decorrentes da presença de uma ou mais ocorrências, como: falhas, fraturas, diáclases e outras descontinuidades, intrusões, dique e derrames geológicos alterados, resultando em zonas de fraqueza e infiltração subterrânea. Também dobramentos intensos combinados com a ação da gravidade e do gradiente hidráulico;

e) Colapsos ou deficiências de obras de estabilização - São decorrentes da inadequação de solução, de deficiência de projeto, da falha na execução da obra, assim como da falta de correção, conservação e manutenção e, também, de fatores externos imprevistos, que provocam a deficiência do sistema de proteção superficial contra a erosão e deformação exagerada de obras de contenção, ou mesmo sua ruína (muros de arrimo, cortinas atirantadas).

Para Varnes (1978) os principais fatores que contribuem para a redução da resistência ao cisalhamento e consequente instabilidade de talude/terrapleno são o estado inicial do material (composição, textura, estrutura e geometria do talude), as mudanças devidas ao intemperismo e outras reações químicas.

Alguns fatores promovem um aumento na probabilidade de ocorrência de escorregamentos, tais como:

- a) ausência de vegetação, expondo diretamente o solo às condições climáticas, intensificando-se os processos erosivos;
- b) estruturas primárias condicionando a instabilização dos materiais (falhas, fraturas, juntas);

- c) contatos entre solos de diferentes condutividades hidráulicas, provocando o aparecimento de fluxos de água, elevação de pressões no solo ou na rocha ou entre eles;
- d) solos com baixa resistência ao cisalhamento. Esses fatores contribuem isolada ou conjuntamente para aumentar a probabilidade de ocorrência de escorregamentos (Gramani e Kanji, 2001).

Precipitações pluviais são eventos que mobilizam a maior parte dos fenômenos de instabilidade de taludes. Os efeitos na consistência dos solos, forças de percolação e os excessos de poropressão são os fatores desestabilizadores provocados pelas águas das chuvas em um talude (Martinello, 2006).

Pinheiro (2000) adota como os principais fatores condicionantes de instabilidade associados às encostas os definidos como geológicos (litologia e estrutura), geomorfológicos, climáticos, vegetação, intemperismo e ação antrópica.

Outro fenômeno típico de instabilização de encostas é a alternância de rochas sedimentares apresentando camadas mais resistentes intercaladas com camadas menos resistentes e sujeitas a processos de degradação mais intensos. Estes fenômenos são comuns na região sul do Brasil. Fernandes *et al* (1974) e Santos (1974) descrevem processos de instabilização associados a cortes em estradas.

Na maioria dos solos residuais de granito e gnaisse e de tálus, encontrados no Brasil, a hidrologia subterrânea é comandada por caminhos preferenciais de infiltração e de percolação. Assim sendo, as precipitações pluviométricas não interferem apenas na parte superior do maciço terroso, mas até às zonas mais profundas, fazendo variar consideravelmente a pressão neutra no maciço Moreira (1974).

Os depósitos de tálus formados por matacões e pedregulhos, predominam nas áreas próximas à escarpa. Junto à base dos vales predominam materiais mais argilosos originados dos processos de instabilização das encostas denominados depósitos coluvionares (Pinheiro, 2000).

Vargas Jr. et al (1986) apresentaram evidência analítica de que a intensidade e duração das chuvas na região do Rio de Janeiro poderia ser responsável pelos problemas de instabilidade de taludes. Wolle e Hachich (1989), usando técnicas analíticas similares, e resultados de instrumentação de campo e ensaios de laboratório, obtiveram conclusões similares relacionadas a escorregamentos em colúvios na Serra do Mar, na região de São Paulo (Pinheiro, 2000).

No que diz respeito aos efeitos da vegetação, existem opiniões discordantes sobre o efeito favorável ou desfavorável da cobertura vegetal em taludes e encostas nos processos de instabilização. De um lado têm-se estudos que destacam o papel estabilizador da vegetação enquanto outros demonstram que a vegetação contribui para a instabilização das encostas. A função diferenciada da vegetação pode resultar da grande variedade de solos e rochas, associado às diferentes condições meteorológicas e do próprio tipo de cobertura vegetal (Pinheiro, 2000). Entretanto, evidências indicam que os processos de instabilização de taludes e encostas tendem a acelerar após o desmatamento.

Carregã (1996) propõe correlação entre os principais mecanismos de instabilização e o perfil de intemperismo em ambientes tropicais. (Tabela 2)

Tabela 2- Mecanismos de instabilização x Perfil de intemperismo (Carregã, 1996)

Horizonte do	Constituição	Características	Permeabilidade subjacente	Mecanismo	
perfil de				principal de	
intemperismo				movimentação	
Superficial	Solo pedogeneticamente	Espessados, homogêneos (normalmente laterizados)	Menor Rotacional Translacional (cor rede de fluxo vertic	Escorregamentos Rotacional	RASTEJO
	transformado (residual ou	Camadas delgadas		Translacional (com rede de fluxo vertical)	
	coluvionar)	(normalmente laterizadas)			
Solo saprolítico	Solo de decomposição <i>in</i> situ com estruturas preservadas	Camadas espessadas (não laterizadas)	Menor	Translacional (com rede de fluxo subparalela)	
			Maior	Translacional (com rede de fluxo vertical)	EROSÃO
			Variável	Estruturados	ER
Saprólito	Rocha muito alterada	Espessuras variáveis (não laterizadas)	Menor	Estruturados	
Tálus	Variável	Variáveis	Variável	RASTEJO	
i alus				ESCORREGAMENTOS	

Os fenômenos de instabilização de encostas envolvendo rocha e saprólito, através de quedas e rolamentos de blocos e deslizamentos de lascas ou blocos isolados, estão associados à existência de feições, em superfície, nas escarpas

Amaral (1992). Schilling (1993) e Avelar e Lacerda (1997) descrevem uma grande avalanche que teve início com a queda de um grande bloco de rocha que se deslocou por gravidade, atingindo a estrada do Soberbo e Furnas e represando o rio das Cachoeiras.

No início da subida da serra gaúcha há espessos e amplos depósitos de solos coluvionares/tálus de basalto, constituídos por materiais argilo-arenosos com blocos de tamanhos variáveis, de baixa consistência, frequentemente saturados de água. Os fenômenos de instabilidade que ocorrem nestes materiais, são os escorregamentos dos solos devido ao aumento das poropressões (Pinheiro, 2000).

Em taludes que apresentam depósitos de solos coluvionares, podem ocorrer diversas formas de instabilidade, como rastejo ou *creep*, escorregamentos translacionais do tipo talude infinito, escorregamento rotacional, corridas de detritos ou várias outras formas (Silveira, 2008).

As instabilizações em encostas serão deflagradas quando as tensões cisalhantes mobilizadas se igualarem à resistência ao cisalhamento. A maioria é de complexa identificação, em especial em quesitos visuais.

1.1.1 Condicionantes Geológicos

O IBGE (2009) disponibiliza um banco de dados de geomorfologia para consultas, pesquisas e análises sobre o território brasileiro, constituindo, assim, importante ferramenta para subsidiar o planejamento regional e a gestão territorial. Para tanto, estes dados estão disponíveis em uma estrutura compatível com um grande número de ferramentas de geoprocessamento no endereço eletrônico "http://www.ibge.gov.br".

Entende-se por geomorfologia o estudo das formas de relevo associado à gênese e à evolução destas formas. A geomorfologia estuda os processos responsáveis pelas ações de criar, destruir, deslocar, ampliar, reduzir, preservar e alterar as formas de relevo.

Os fatores geológicos estão presentes na identificação da instabilização de encostas, mas outros fatores também são importantes, podendo atuar conjuntamente no processo de instabilização, tais como: geomorfologia, clima, vegetação, intemperismo, ação antrópica e alteração de rocha. Para Gramani (2001) fatores geológicos e geomorfológicos controlam as diferentes formas geométricas

apresentadas pelas linhas de drenagem em uma determinada bacia. A geomorfologia condiciona o formato das drenagens com altas declividades, vales encaixados e estrangulamentos dos canais. As altas declividades proporcionam maiores instabilidades locais dos materiais e os estrangulamentos atuam como ponto de acumulação e formação de barramentos naturais contra o fluxo. A geologia contribui com a formação de corpos de coluvionares e aluvionares depositados ao longo das drenagens, modificando o perfil geral do canal, contribuindo com grande quantidade de material rochoso e blocos de maiores diâmetros.

Em geral a caracterização geológico-geotécnica voltada para o estudo de encostas tem início pela investigação de campo superficial, que serve de base para todos os demais trabalhos. Os principais aspectos que devem ser investigados são as formações geológicas, perfis de solo e alteração, estruturas geológicas, geometria do talude ou encosta, instabilizações existentes, feições características de movimentos (trincas, degraus, etc.), zonas de acúmulo e surgência de água, cobertura vegetal e ações antrópicas Pinheiro (2000). Segundo Azambuja et al (2001) apud Silveira (2016), as manifestações de instabilidade estão estreitamente relacionadas com a morfologia das encostas, mais especificamente ao padrão de escoamento subsuperficial.

Em estudos de variação nos estados de tensões efetivas do solo, alguns aspectos devem ser levados em consideração:

- Planos de fraqueza, falhas, fraturas ou descontinuidades do maciço;
- Superfície definida no contato entre solos com comportamentos distintos;
- Saturação do maciço;
- Comportamento do solo, drenado e não drenado.

Em rodovias os incidentes de ocorrência geológicas mais comuns são os escorregamentos, principalmente no período de maior volume de precipitações. São registrados anualmente processos de instabilização de taludes e encostas, ao longo da malha rodoviária, sendo as ocorrências diversas, tais como: insuficiência de estudos geológico-geotécnicos na fase de concepção de projeto, traçados mal elaborados, ausência do correto procedimento de estabilização, fatores construtivos, deficiência ou ausência de conservação e sobreposição de mais de um fator.

Para Martinello (2006) as corridas de detritos (*debris flow*) merecem atenção especial. Trata-se de movimentos rápidos e de alta energia, nos quais fragmentos, detritos e blocos de rochas escoam encosta abaixo em conjunto com restos vegetais.

São geralmente associados a uma sequência de escorregamentos consecutivos, que se juntam com blocos de rochas do canal principal da drenagem, mobilizando uma grande quantidade de material, com energia e poder destrutivo muito elevado. Bressani (1999) define como um tipo de instabilização espacialmente contínuo, onde as superfícies de cisalhamento são pouco espaçadas e não são preservadas, lembrando o movimento de um fluido viscoso durante o fluxo.

Os escorregamentos que geram corridas de detritos geralmente começam em cotas bastante elevadas (que normalmente apresentam as maiores declividades) e causam a ruptura nas cotas inferiores num processo progressivo (Kanji & Gramani, 2001). Segundo Ellen & Fleming (1987) *apud* Silveira (2016), a instabilidade comum em taludes rasos de colúvio envolve dois componentes distintos de movimento: um escorregamento raso rotacional ou translacional seguido por um escoamento da massa perturbada.

Morgan *et al.* (1997) *apud* Silveira (2016) relatam que a maior parte das instabilidades de taludes do tipo corridas de detritos inicia-se, a partir de escorregamentos rasos (solos, detritos ou escorregamentos de massas rochosas), principalmente em encostas íngremes (acima de 25°) com abundantes solos residuais e coluvionares.

1.1.2 Modos de Ruptura

A ruptura é caracterizada pela formação de uma superfície de cisalhamento contínua na massa de solo. Portanto, existe uma camada de solo em torno da superfície de cisalhamento que perde suas características durante o processo de ruptura, formando assim a zona cisalhada. Inicialmente há a formação da zona cisalhada e, em seguida, desenvolve-se a superfície de cisalhamento. Este processo é bem caracterizado, tanto em ensaios de cisalhamento direto, como nos escorregamentos de taludes (Gerscovich, 2010).

Para Parizzi (2004) foi possível estabelecer os tipos de mecanismos de ruptura mais comuns nos diferentes materiais geológicos estudados. Dentro de cada um destes grupos, os condicionantes geológicos atuam como agentes predisponentes que influenciam no tipo de ruptura, enquanto as ações antrópicas, os condicionantes geomorfológicos induzidos e a ação da água são agentes preparatórios dos terrenos aos movimentos de massa.

Os movimentos de massa e a caracterização da ruptura no maciço, se diferenciam em função da velocidade e da forma. Os taludes terrosos e rochosos não apresentam os mesmos tipos. Os modos de ruptura mais frequentes são:

a) Desprendimento - representado pela Figura 10, é definido como a separação de um fragmento terroso ou rochoso, caindo livremente. Trata-se de um fenômeno localizado, que pode ser evitado, através de obra de correção.

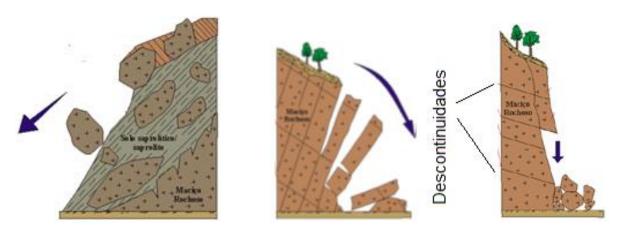


Figura 10 – Desprendimento (Bittencourt, 2010)

b) Escorregamento (*landslide*) - representado pela Figura 11, é definido como sendo o deslocamento rápido de uma massa de solo ou rocha, que, rompendo-se do maciço, desliza para baixo e para o lado, ao longo de uma superfície de deslizamento.

No caso de solos coesivos homogêneos (argila), o movimento predominante é a rotação. Nos maciços rochosos estratificados o movimento predominante é o de translação. As rupturas do maciço podem ser superficiais ou profundas.

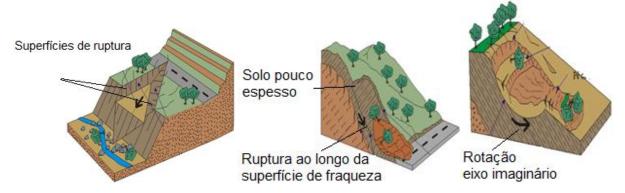


Figura 11 - Escorregamento (Bittencourt, 2010)

c) Rastejo ou *creep* - representado pela Figura 12, trata do deslocamento lento e contínuo de camadas superficiais sobre camadas mais profundas. São movimentos

lentos, facilmente observados ao longo do tempo, devido à inclinação ou distorção vertical de elementos na localidade.

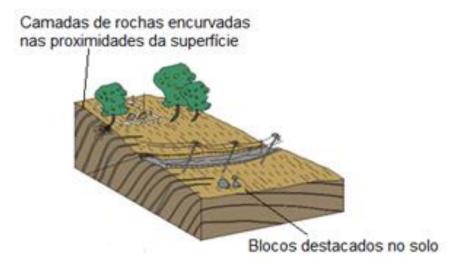


Figura 12 – Rastejo (Bittencourt, 2010)

d) Erosões - representada pela Figura 13, mecanismos deflagradores dos processos erosivos que podem ser constituídos de vários agentes, fazendo com que as erosões mereçam destaque. A ação antrópica, nas suas várias formas de atuação, tais como desmatamento e construção de vias de acesso, caso realizadas sem o devido cuidado, tornam-se fatores deflagradores de processos erosivos.

Figura 13 - Erosões (Dian, 2010)

e) Corridas de detritos (*debris flow*) - representadas pela Figura 14, são fenômenos geológicos com três etapas distintas a ocorrência, o percurso do fluxo e a deposição. Constituem-se de massas de terra carregadas de água e rochas fragmentadas que se precipitam por encostas, se infiltram em talvegues e canais, arrastando objetos pelo caminho e formando depósitos espessos e lamacentos em vales.

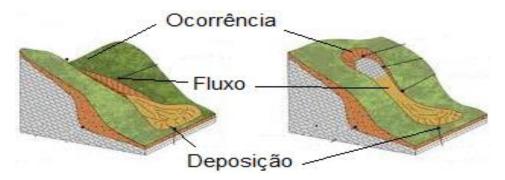


Figura 14 - Corrida de detritos (Nunes e Sayão, 2014, adapt. Nettheton et al., 2005)

Entre as causas frequentes que dão origem aos deslocamentos podem ser citadas:

- Inclinação do talude não compatível com a natureza do terreno;
- Sobrecarga excessiva, ocasionada por bota-foras ou construções posteriores à execução do talude;
- Excesso de umidade no solo, após longos períodos de chuvas;
- Fendas, fraturas ou planos de estratificação do maciço que se torna instável,
 pela presença de água de infiltração;
- Escavação profunda no pé do talude para implantação de obras;
- Altura excessiva dos taludes de corte e de aterro;
- Baixo suporte dos solos de fundação.

Na classificação dos movimentos de encosta, a proposta por Varnes (1978), Tabela 3 é a mais utilizada internacionalmente e a proposta de Augusto-Filho (1992), pode ser adequada para os casos brasileiros, tendo ainda o sistema de classificação de Magalhães Freire, que sugere movimentos classificados em 3 tipos.

Tabela 3 - Classificação dos movimentos de encostas (Varnes, 1978)

Tipo de movimento		Tipo de material			
		Rocha	Solo (engenharia)		
			rtocha	Grosseiro	Fino
	Quedas		De rocha	De detritos	De terra
Tombamentos		De rocha	De detritos	De terra	
Escorregamentos	Rotacional	Poucas unidades	Abatimento	Abatimento	Abatimento
Laconegamentos	Translacional	Muitas unidades	Blocos / rocha	Blocos / detritos	Blocos / terra
	Expansões laterais		De rocha	De detritos	De terra
Corridas / escoamentos		De rocha (rastejo	De detritos	De terra	
		profundo)	(Rastejo	de solo)	
Complexos: combinação de dois ou mais dos principais tipos de movimentos					

Na Tabela 4 apresentada por Gerscovich (2016) são descritas nomenclaturas para velocidades e profundidade de movimentos de massa.

Tabela 4 - Movimentos de massa: velocidade e profundidade (Gerscovich, 2016)

Velocidades		Profun	didades
Externamente rápido	> 3m/s	Superficial	< 1,5m
Muito rápido	0,3m/s a 3m/s	Cupomolai	7,011
Rápido	1,6m/dia a 0,3m/s	Raso	1,5m a 5m
Moderado	1,6m/mês a 1,6m/dia	, rado	
Lento	1,6m/ano a 1,6m/mês	Profundo	5m a 20m
Muito lento	0,06m/ano a 1,6m/ano	riolando	5iii a 20iii
Extremamente lento	< 0,06m/ano	Muito profundo	> 20m

Os movimentos podem ocorrer em virtude do aumento das tensões cisalhantes mobilizadas ou pela redução da resistência. Na Tabela 5, Varnes (1978) divide os mecanismos deflagradores em 2 grupos.

Tabela 5 – Fatores deflagradores, movimentos de massa (Varnes, 1978)

Ação	Fatores	Fenômenos geológicos / antrópicos
		Erosão
	Remoção de massa (lateral ou da base)	Escorregamentos
		Cortes
		Peso da água de chuva, neve, granizo, etc.
Aumento da	Sobrecarga	Acúmulo natural de material (depósitos)
solicitação		Construção de estruturas, aterros, etc.
Solicitação	Solicitações dinâmicas	Terremotos, ondas, vulcões, etc.
	Conortações amarmoas	Explosões, tráfego, sismos induzidos
		Água em trinas
	Pressões laterais	Congelamento
		Material expansivo
	Características inerentes ao material	Características geomecânicas do material
Redução da	(geometria, estruturas, etc.)	Tensões
resistência	Mudanças ou fatores variáveis	Intemperismo: redução na coesão, ângulo de atrito
widdenigas ou latores variaveis		Variação das poropressões

É de extrema dificuldade a identificação de grande parte dos elementos de instabilização de encostas. A Figura 15 apresenta uma proposta de conexão entre instabilização x ruptura x medidas mitigadoras.

Para mitigar os efeitos deletérios à circulação rodoviária de possíveis ocorrências de incidentes, medidas podem ser adotadas:

- Precipitações pluviais A implantação de sistema drenagem eficiente,
 além de constante manutenção e conservação;
- Vegetação A retirada da cobertura vegetal é um poderoso fator de instabilização;
- Estruturas primárias (falhas, fraturas, juntas) Condição de difícil identificação, monitoramento e obras de contenção;
- Aparecimento de fluxos de água, elevação de pressões Condição de identificação complexa, monitoramento e obras de contenção;
- Solos com baixa resistência ao cisalhamento Na concepção do projeto tem que ser identificado, após obra concluída deve-se monitorar e se necessário executar obras de alívio ou contenção;
- Ação antrópica Deve ser acompanhada de especialistas na área de Geotecnia. Muita prudência nas escavações próximas ao pé do talude;
- Alternância de rochas sedimentares Condição de identificação complexa, monitoramento e obras de contenção;
- Intensidade e duração das chuvas Como este fenômeno tem sazonalidade praticamente estabelecida, trabalhos preventivos de conservação e manutenção devem ser previstos;
- Drenagem superficial, com identificação das zonas preferenciais de percolação;
- Monitoramento constante para identificação de escorregamentos anteriores;
- Atenção especial em encostas de tálus, devido a possibilidade de escorregamento em corte;
- Condições geométricas, reduzindo o ângulo do talude e execução de banquetas;
- Remoção total ou parcial de material da camada superficial de baixa resistência.

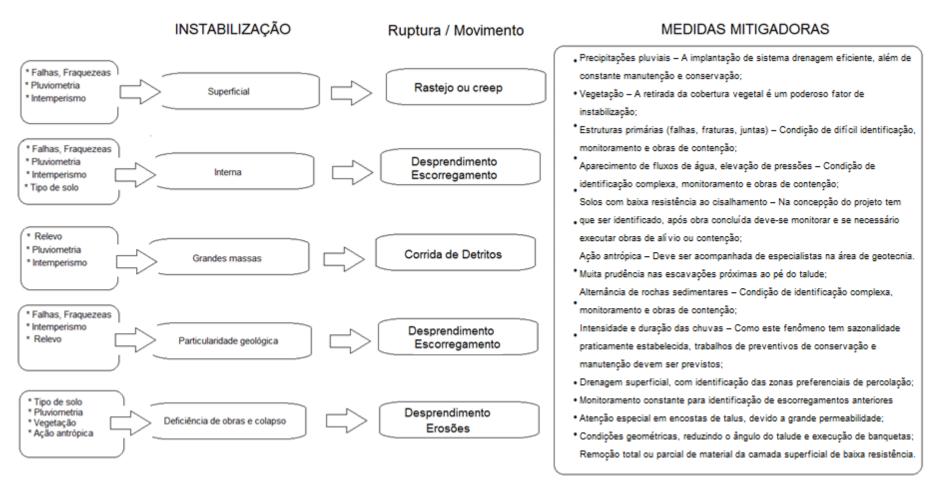


Figura 15 – Instabilização x Ruptura x Medidas mitigadoras

Segundo a NBR 11682 (1991) para avaliar a ocorrência de escorregamento de massa de solo presente em taludes, geralmente comparam-se as tensões cisalhantes mobilizadas com a resistência ao cisalhamento, definindo um fator de segurança. Este corresponde a um valor mínimo a ser atingido e varia em função do tipo de obra e vida útil.

Head e Epps (1986) descrevem em sua obra que o engenheiro francês Alexander Collin, em 1846, propôs a análise da estabilidade do declive usando cálculos matemáticos para melhorar o padrão de suspensão da inclinação. O estudo da estabilidade de taludes teve início após o escorregamento no cais de Stigberg, em Gutemburgo, Suécia (GUIDICINI & NIEBLE, 1993). Caputo (1988), cita David Watson Taylor autor do livro *Fundamentals of Soil Mechanics* de 1960, como referência no desenvolvimento dos fundamentos da Mecânica dos Solos. Mais especificamente sobre estabilidade de taludes, Morgenstern e Price (1965) fizeram um progresso no equilíbrio de momentos e forças ao mesmo tempo. Spencer (1967) introduziu forças paralelas nos cálculos.

Gilbert e Low (1998) registram o refinamento do método de deslizamento circular para superfície de deslizamento generalizada por Janbu em 1973. Todos esses aprimoramentos subsequentes estabeleceram o fundamento do conhecido método generalizado de fatias (Gilbert e Low, 1998). Os métodos onipresentes de elementos finitos (Griffiths e Lane, 1999) e o método de diferença finita equivalente (Cundall e Strack, 1979) podem ser aplicados para estimar a estabilidade das pistas com base na abordagem de redução da força (Dawson et al., 1999). Em 1999, Zhang usou um método rígido de elementos finitos para descobrir o fator de segurança.

Sobre o método de Monte Carlo, em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional análise combinatória. Após gastar bastante tempo fazendo cálculos percebeu que uma alternativa mais prática seria simplesmente realizar inúmeras jogadas, por exemplo, cem ou mil, e contar quantas vezes cada resultado ocorria. O Método de Monte Carlo foi formalizado em 1949, por meio do artigo intitulado "Monte Carlo Method".

A respeito de métodos para identificação de instabilidade, diversos estudos buscam caracterizar o risco envolvido, englobando tanto a possibilidade de ocorrência do processo quanto os danos decorrentes (Cerri, 1993; Augusto Filho e Wolle, 1996; Cruden, 1997). Deslizamentos e instabilidades de taludes se apresentam como

grandes problemas para as atividades humanas, provocando danos às propriedades, perdas econômicas e altos custos de manutenção, assim como ocasionando lesões ou mortes (Das *et al.*, 2010).

Van Den Eeckhaut et al. (2012) destacam que em situações relacionadas aos eventos de desastres proporcionados por deslizamentos, mapeamentos relativos à susceptibilidade e ao risco são requeridos urgentemente no sentido de apoiar o gerenciamento emergencial e para identificar novas áreas com alto potencial de serem atingidas por sérios danos causados por este tipo de fenômeno. Conforme Vanacôr e Rolim (2012), para mitigar efetivamente áreas que possuem uma maior predisposição à ocorrência de deslizamentos e reduzir as consequências negativas definidas por estes eventos na sociedade, deve-se concretizar em primeiro lugar o mapeamento de susceptibilidades. No Brasil a obtenção de dados é restrita, por não haver uma preocupação direta da gestão pública com a ocupação desordenada e coam as características e evolução das condições dos terraplenos.

No que diz respeito à estabilidade de taludes, o Manual do DNIT a descreve como sendo a capacidade que este possui de permanecer inalterado após a sua execução, resistindo à ação do intemperismo. A inclinação do talude é definida com base em considerações técnico-econômicas. Para tanto, o parâmetro técnico mais significativo é a resistência ao cisalhamento do solo, que é função do atrito, coesão interna do material e pressões nos seus poros. Influem, ainda, os seguintes aspectos: natureza do solo, regime de chuvas, altura do corte, finalidade, tipo de estrada etc.

A instabilização dos taludes compreende processos erosivos e de liquefação de solos, os quais tendem a acentuar ou a induzir às instabilidades. Estes processos causam o carreamento de material por ação de águas (das chuvas, rios e caudais em geral) ou de ventos, constantes ou periódicos, causando o desgaste no talude, a saber: ravinamento, voçorocas, erosões diversas por sulcos, por cavernas, laminares, avançadas, subterrâneas, diferencial e eólicas.

O Departamento de Estradas de Rodagens de São Paulo (1991) propõe, conforme Tabela 6, a identificação dos principais problemas em terraplenos, taludes e encostas, que podem comprometer a segurança rodoviária, indicando as formas de ocorrência de cada um dos problemas e as principais causas.

Tabela 6 – Principais problemas e suas causas em terraplenos (DER/SP, 1991)

Tipo de problema	Forma de ocorrência	Principais causas	
	- em taludes de corte e aterro (em sulcos	- deficiência de drenagem	
	e diferenciada)	- deficiência de proteção superficial	
Erosão	- longitudinal ao longo da plataforma	- concentração de água superficial	
	- localizada e associada a obras de	- concentração de água superficial e/ou interceptação do lençol freático	
	drenagem (ravinas e boçorocas)		
	- interna em aterros (piping)	- deficiência ou inexistência de drenagem interna	
Desagregação	- empastilhamento superficial em taludes	- secagem e umedecimento do material	
superficial	de corte	- presença de argilo-mineral expansivo ou desconfinamento do material	
	- superficial	- inclinação acentuada do talude	
	- profundo	- relevo enérgico	
	- forma e dimensões variadas	- descontinuidades do solo e rocha	
Escorregamento em	- superficial em corte ou encostas		
	naturais	- saturação do solo	
corte	- profundo em cortes		
	- formas e dimensões variadas		
	- movimentação de grandes dimensões e	- evolução por erosão - corte de corpo de tálus	
	generalizada em corpo de tálus	- alteração de drenagem	
	- atingindo a borda do aterro	- compactação inadequada da borda	
		- deficiência de fundação	
Escorregamento em		- deficiência de drenagem	
aterro	- atingindo o corpo do aterro	- deficiência de proteção superficial	
		- má qualidade do material - compactação inadequada	
		- inclinação inadequada do talude	
		- deficiência de fundação	
Recalque em aterro	- deformação vertical da plataforma	- deficiência de drenagem	
recoulded citi atcito	derennaşão vertical da platarenna	- rompimento de bueiro	
		- compactação inadequada	
- Queda de blocos	- geralmente em queda livre	- ação da água e das raízes nas descontinuidades do maciço rochoso	
- Rolamento de blocos	- movimento de bloco por rolamento no corte ou encosta	- descalçamento da base por erosão	

2 INCIDENTES EM TERRAPLENOS

O Incidente é um evento físico indesejável, de pequeno porte, que prejudica a funcionalidade da obra, podendo vir a gerar eventuais acidentes, ainda que muito pequenos, se não corrigidos a tempo. Em contrapartida, o acidente é uma anomalia de grande porte correspondente à ruptura parcial ou total de um talude ou obra e sua completa disfuncionalidade, com graves consequências econômicas e sociais (Vieira, 2005).

Os escorregamentos de massa não são raros em rodovias, tais processos de movimentos envolvem materiais que recobrem as superfícies das vertentes ou encostas, como solos, rochas e vegetação (Varnes, 1958; Guidicini e Nieble, 1983; e Tominaga *et al.* 2009).

O escorregamento de solo tem um papel fundamental como agente modificador do relevo, pois afeta diretamente o meio físico do local de ocorrência. A dinâmica superficial provocada pelos escorregamentos de solo, apesar de muito estudada no meio geotécnico, é na maioria das vezes uma tarefa complexa, pois existem inúmeras incógnitas envolvidas, que incluem: formas do relevo; características da rede de drenagem da bacia hidrográfica; intensidade, quantidade, distribuição e frequência das chuvas; características do solo e o teor de umidade; presença ou ausência da cobertura vegetal; e ação antrópica, dentre outras (Silva, 2016).

Na condição de solos, a forma da superfície de ruptura varia dependendo da resistência dos materiais presentes na massa, podendo ser: rotacional, translacional e um misto destes dois. Tanto em solos como em rochas a ruptura é iniciada na superfície de menor resistência.

Ao se deparar com as características das diversas possibilidades de rochas, condições que remetiam à possibilidade de análises diversas, profissionais relacionados e estudiosos da Mecânica da Rochas tentaram estabelecer classificações, inicialmente para túneis, porém que servem para os demais maciços rochosos de taludes e obras de fundação em rochas. Destaque para proposta de Bieniawski (1973) que tem por objetivo determinar a relação entre o vão livre do túnel e o tempo de sustentação sem suporte, estimando a coesão e o ângulo de atrito para cada classe de maciço. Além disso atribui pesos a seis parâmetros, com base na observação de um grande número de túneis. Os parâmetros são:

-Resistência à compressão simples

- -RQD
- -Espaçamento entre fratura
- -Orientação das fraturas
- -Características das fraturas
- -Caudal

Após aplicação dos pesos, os maciços são classificados quanto à qualidade em 5 classes relacionadas com o período de auto sustentação e necessidade de suporte (pregagens e ancoragens, concreto projetado e perfis metálicos).

São inúmeros os incidentes em terraplenos rodoviários. A Figura 16 apresenta imagens extraídas de *sites* que registraram o incidente após a ocorrência:

1) Rodovia ES 460

3) Rodovia BR 101 - Rio-Santos

5) Rodovia BR 280

2) Rodovia Padre M. da Nóbrega

4) Rodovia BR 101 - Rio-Santos

6) Rodovia dos Tamoios

7) Rodovia BR 153

9) Rodovia SC 390

11) Rodovia SP 98

13) Rodovia ES 080

8) Rodovia BR 287

10)Rodovia RS 324

12) Rodovia SP 98

14) Rodovia Cândido Portinari

15) Rodovia em Taiwan

16) Rodovia em Washington (EUA)

Figura 16 – Incidentes diversos (Google imagens, 2019)

2.1 Conceituação de Incidentes

O incidente é uma ocorrência de emergência com o usuário da via, podendo ser desastre natural ou evento não planejado que afete ou impeça o fluxo normal de tráfego (FHWA, 2000).

The Traffic Management Data Dictionary (TMDD), conforme publicado pela ITE e AASHTO (2008), define um incidente como uma ocorrência de trânsito ou evento não planejado, que aleatória e negativamente afetam os efeitos de operações de trânsito normal.

De acordo com ABNT NBR 15486, Segurança no tráfego, o incidente é descrito como um evento produzindo um conflito de tráfego, que poderia resultar em acidente caso medidas evasivas não fossem tomadas.

Tem sido comum certa confusão entre a conceituação dos termos "incidente" e "acidente" em rodovias.

No Brasil dados estatísticos sobre ocorrências de trânsito estão sempre relacionados aos acidentes. Com isso, deixa-se de lado a consideração sobre o que é de fato um incidente. No Anuário Estatístico de 2010, elaborado conjuntamente entre os ministérios do Transporte e da Justiça, a conceituação de acidente de trânsito designa "ocorrência fortuita ou não, em decorrência do envolvimento em proporções variáveis do homem, do veículo, da via e demais elementos circunstanciais, da qual tenha resultado ferimento, dano, estrago, avaria, ruína etc".

Reportando a AURÉLIO (2008), tanto acidente quanto incidente são vocábulos originários do latim, sendo que o primeiro significa acontecimento casual, fortuito, imprevisto, acontecimento infeliz, casual ou não, e de que resulta ferimento, dano,

estrago, prejuízo, avaria, ruína, entre outros. O segundo vocábulo, incidente, significa aquilo que incide, ocorre, sobrevém, superveniente, uma circunstância acidental; episódio; aventura, peripécia. Há uma estreita relação entre os vocábulos, porém cada um, reserva sua peculiaridade quando relacionado aos efeitos da circulação de tráfego na rodovia.

Os incidentes de tráfego são quaisquer eventos não recorrentes que causam uma redução da capacidade de pista ou um aumento anormal na demanda (TIM Handbook, 2000).

2.1.1 Risco de Incidente

Risco é a probabilidade de ocorrer um efeito adverso de um processo sobre um elemento. Relação entre perigo e vulnerabilidade, pressupondo sempre a perda (MCidades, 2017). De acordo com a ISSMGE (2004), risco é um conceito expresso pela probabilidade e severidade de um efeito adverso na vida, nos bens, na saúde ou no meio ambiente. A ONU (2004), por outro lado, define risco como sendo a probabilidade de ocorrência de consequências prejudiciais ao homem ou aos bens, resultantes da ação de perigos naturais ou induzidos, tipicamente associados à vulnerabilidade local.

O Instituto de Pesquisas Tecnológicas Estado de São Paulo apresenta duas definições, como sendo:

Risco = Probabilidade de ocorrência x danos ou consequência

Risco = Perigo x Vulnerabilidade

Em Castro (2003), risco é a probabilidade de ocorrência de danos resultantes da interação entre perigos naturais ou induzidos pelos homens e as condições de vulnerabilidade de um sistema, sendo o perigo considerado como ameaça potencial às pessoas ou bens que estão em exposição,

Tominaga *et al.* (2004) e Tominaga (2007) adotaram, com base em Varnes (1984), Einstein (1988) e UN-ISDR (2004), que Risco é a possibilidade de se ter consequências prejudiciais ou danosas em função de perigos naturais ou induzidos pelo homem.

O Risco (R) em função do Perigo (P), da Vulnerabilidade (V) e do Dano Potencial (DP), o qual pode ser expresso como:

$$R = P \times V \times DP \tag{1}$$

Grau de risco de uma instabilidade é a probabilidade da ocorrência ou do agravamento da mesma, avaliado com base nos fatores intervenientes e/ou em sua evolução (NBR 11682/91).

O Ministério das Cidades (2007) descreve que as ações para o controle dos riscos geológicos e a prevenção de acidentes podem ser aplicadas a partir de três enfoques distintos, simultaneamente ou não, conforme observado a seguir:

- a) Eliminar/Reduzir o Risco
- Agindo sobre o processo

Agindo sobre a consequência

b) Evitar a Formação de Áreas de Risco

Controle efetivo do uso do solo

Conviver com os Problemas

c) Planos preventivos de defesa civil

No ano de 1991, a UNDRO (Agência de Coordenação das Nações Unidas para o Socorro em Desastres) elaborou um método para enfrentar os acidentes naturais, que se baseia em duas atividades: prevenção e preparação.

As atividades de prevenção estão relacionadas a estudos de natureza técnicocientífica, à definição da magnitude de um desastre e ao estabelecimento das medidas que possibilitem a proteção da população e de seus bens materiais. Tais atividades compreendem a fenomenologia dos processos, os estudos de análise de risco e a formulação de métodos, técnicas e ações de prevenção de desastres.

O Manual de Procedimentos de Homologação – MPH da ANAC (2008) caracteriza Risco, como sendo a medida de insegurança, podendo ser quantificado através da combinação da probabilidade de ocorrência e dos efeitos de um determinado evento, caso ocorra. Quanto mais provável o evento e graves suas consequências, maior será o risco. A avaliação de risco é o processo de identificação dos fatores de risco e suas consequências.

O controle de riscos é o método de implementação de medidas de mitigação para cada risco identificado, visando à redução da probabilidade de ocorrência dos perigos (fatores de risco) e/ou redução das suas consequências. Gerenciamento de

Risco é o processo que usa a capacidade de raciocínio, aliada a uma metodologia específica, para identificar e reduzir os riscos de uma atividade a um nível aceitável.

A avaliação preliminar de Risco considera fatores típicos, além de outros aspectos qualitativos. No estabelecimento do processo deve haver o dimensionamento da equipe responsável pela revisão, levantamento de identificação e julgamento do nível de risco.

A consideração de Fell *et al.* (2008), com fulcro nas definições adotadas pela Sociedade Internacional de Mecânica dos Solos e Engenharia Geotécnica (ISSMGE), define:

- Elementos em risco: população, construções e obras de infraestrutura, atividades econômicas e o meio ambiente localizados em áreas potencialmente afetadas por movimentos de massa;
- Risco: é uma medida da probabilidade de um evento ocorrer e de sua gravidade. Sendo assim, pode ser estimado como o produto "probabilidade x consequência";
- Análise de risco: uso da informação disponível para estimar o risco à população, bens ou o ambiente, a partir do perigo. Análises de risco geralmente contêm os seguintes passos: definição do escopo, identificação do perigo, e estimativa do risco.

2.2 Níveis de Risco e Metodologias

A proposta de mapeamento de risco do Ministério das Cidades é mais voltada para áreas urbanas e ocupações de morros e encostas. Entretanto, devido ao dinamismo rodoviário, que inúmeras vezes cruza trechos urbanos, cabe a abordagem das metodologias, sendo três os métodos indicados:

- Método simplificado ou heurístico, mais subjetivo e fornece alguma incerteza, pois depende basicamente da experiência do profissional no mapeamento direto e levantamentos de campo;
- Método determinístico utiliza-se de quantidade e qualidade, com vistas a reduzir a subjetividade, baseando-se em correlações entre os eventos e fatores, medidos de forma padronizada.

• Método estatístico utiliza pesquisa e estuda amostragem de unidades individuais de uma população e as técnicas de coleta de dados.

Os critérios básicos a serem observados: declividade/inclinação, tipologia dos processos, posição da ocupação em relação à encosta e qualidade da ocupação (vulnerabilidade), podem variar de acordo com o tipo de solo, rocha, relevo ou intervenções antrópicas.

Para auxiliar a percepção do profissional na classificação utilizam-se como referência os parágrafos dispostos na Lei 6.766/1979, conhecida como Lei Lehman, que trata do parcelamento urbano, parcelamento do solo e loteamento:

- Áreas com inclinação acima de 17º (30%) devem ter sua ocupação condicionada a não existência de riscos por laudos geológico-geotécnicos;
- Áreas com histórico de escorregamentos devem passar por nova avaliação antes da ocupação.

Após a pré-setorização são feitos os trabalhos de setorização final, realizado com o auxílio de fichas de campo *check list*.

No Manual há menção a critérios para determinação dos graus de risco, sendo subdividido em quatro graus de probabilidade de risco: R1 – Baixo, R2 – Médio, R3 – Alto e R4 – Muito alto.

2.2.1 Metodologias FMEA E FMECA

A FMEA (Failure Modes and Effects Analysis) é um método de análise usado para definir e identificar os possíveis modos potenciais de falha e as causas de cada modo, com seus respectivos efeitos sobre o desempenho do sistema. O método permite organizar e classificar os riscos de forma a identificar a relevância de cada um e identificar as soluções mais eficientes em termos de custos, a fim de prevenir problemas potenciais. Segundo Slack et al. (1996), o objetivo da FMEA é identificar as características críticas do sistema para vários modos de falhas, sendo um método de análise que permite identificar as falhas antes que elas aconteçam, por meio de uma lista de verificação (checklist).

A metodologia FMECA (Failure Modes, Effects and Criticality Analysis) complementa e completa a FMEA. A FMECA, além de analisar os modos de falha e os seus efeitos, analisa a criticidade e caracteriza a importância no funcionamento do

sistema de cada um dos modos de falha, o impacto que eles têm sobre o desempenho do sistema e a dimensão das consequências.

Sucena (2011) indica procedimentos para condução de uma análise FMECA, que é uma ferramenta qualitativa, que transforma as informações em dados quantitativos. Durante a elaboração de plano de manutenção, o FMEA é uma das ferramentas mais importantes a serem usadas, por três motivos básicos:

- a) Determinação dos modos de falha Dados podem vir da hipótese ou do campo. Dados advindos do campo são mais confiáveis, pois representam falhas que podem ter um processo.
- b) Análise de riscos de cada modo de falha A priorização do modo de falha passa por 3 etapas: determinação da severidade da falha (quão ruim vai ser se ela acontecer), determinação da ocorrência da falha (quão frequentemente ela de fato ocorre) e determinação da probabilidade de detecção da falha (o quão fácil é percebermos que ela ocorreu).
- c) Cálculo do RPN (*risk priority number*) Este indicador é uma maneira de sabermos qual modo de falha deve-se calcular primeiro, correspondendo ao produto dos valores de ocorrência, severidade e detecção. Quanto maior for o RPN, mais atenção e prioridade deve ser dada ao ponto no processo.

2.2.2 Metodologia DER-SP (1991)

Propõe um panorama da situação geral das rodovias, com levantamento baseado na observação visual dos diversos locais que apresentem indícios de movimento de massas e que possam representar perigo ao tráfego. Também, deve incluir locais que não se encontram em situação de risco imediato, caracterizado pela iminência de ruptura ou após sua ocorrência.

Na prospecção para atribuição da gravidade, a identificação dos níveis requer o levantamento prévio de alguns dados coletados em campo. Para tal devem ser obtidos os seguintes dados geotécnicos (DER-SP/1991):

- Altura;
- Inclinação;
- Declividade:
- Extensão;
- Volume aproximado de material envolvido na instabilização.

O levantamento deve ser registrado em ficha, conforme modelo na Figura 17 a seguir:

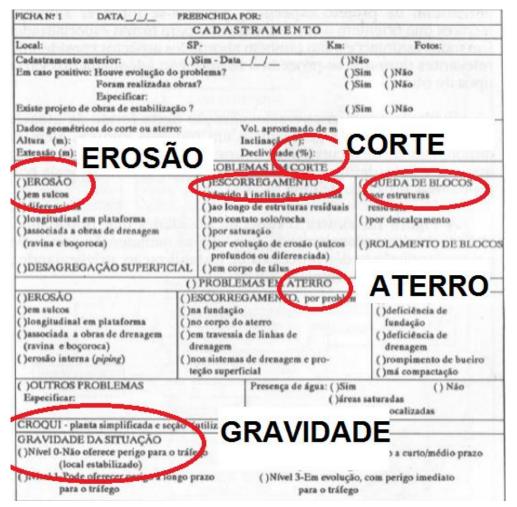


Figura 17 - Ficha de levantamento (DER/SP, 1991)

O risco é descrito como Gravidade da situação para o tráfego, estando subdividido em 4 níveis:

- Nível 0 Local estabilizado, não oferecendo perigo para o tráfego.
 Locais onde já foram executadas obras.
- Nível 1 Problema em estágio inicial de evolução, podendo oferecer perigo em longo prazo para o tráfego.
- Nível 2 Problema em evolução, oferecendo perigo a curto ou médio prazo para o tráfego.
- Nível 3 Problema em evolução, oferecendo perigo imediato para o tráfego, pois já houve ruptura ou está prestes a ocorrer. Deverão ser adotadas medidas emergenciais.

2.2.3 Metodologia COPPETEC/ANTT – adaptado

Esta metodologia foi originalmente desenvolvida pelo convênio firmado entre a UFRJ e a ANTT, sendo adotada desde 2008. Em 2014 passou por revisão com mudanças propostas descritas no relatório de monitoramento.

A metodologia atual consiste na obtenção de um valor de risco total, classificado como grau de risco, sendo o produto entre o fator probabilidade x fator de impacto, variando de muito baixo, até 13 pontos a muito elevado de 86 a 125 pontos. O Fator de Impacto considera as pontuações relativas ao material desprendido que atinge a pista e frequência de tráfego (P1), integridade da rodovia (P2), funcionalidade da rodovia (P3), meio ambiente (P4) e facilidades de apoio (P5), sendo calculado conforme expressão:

Fator de Impacto =
$$1.4 P1 + 0.8 P2 + 1.2 P3 + 1.2 P4 + 0.4 P5$$
 (2)

Para compor os valores, foram desenvolvidas as Tabelas de 7 a 14, sendo a Tabela 7, considerando as diversas situações de risco. As Tabelas 8 e 9 estão relacionadas à probabilidade de perigo. As Tabelas 10 a 14 foram desenvolvidas para determinar o Fator de Impacto.

Tabela 7- Fatores de probabilidade do perigo COPPETEC/ANTT – adaptado (Ehrlich e Silva, 2014)

Descrição	Pontuação
Trincas, abatimentos, levantamento da base do talude ou outras evidências de movimentação do talude, inclinação de árvores, etc.	9 a 5
Talude rochoso intensamente fraturado, com juntas abertas e inclinação destas desfavorável a estabilidade.	9 a 7
Talude rochosos fraturado, com juntas com inclinação desfavorável ao talude.	6 a 4
Estruturas de contenção ou de drenagem com anormalidades.	9 a 2
Surgência de água.	8 a 4
Blocos soltos sobre base inclinada	8 a 2
Trincas em canaletas	7 a 3
Cicatrizes de escorregamento ou erosão	6 a 2
Assentamentos precários nas encostas	3 a 1
Drenos e sistemas de drenagem obstruídos	3 a 1
Deságue inadequado	3 a 1
Local em talvegue ou descida de água natural	3 a 1
Lixo e detritos na encosta	3 a 1
Deficiência de cobertura vegetal	2 a 1

Tabela 8 - Fatores de probabilidade do perigo (Ehrlich e Silva, 2014)

Descrição	Fator
Bastante provável (> 0,5/ano)	5
Considerável probabilidade (0,1 – 0,5/ano)	4
Possível, mas não provável (0,01 – 0,1/ano)	3
Improvável (0,001 – 0,01/ano)	2
Ocorrência rara (< 0,001/ano)	1

Tabela 9- Fatores de probabilidade sugeridos (Ehrlich e Silva, 2014)

Somatório da pontuação da superfície potencial de ruptura em aterros sobre solo mole (Item Grau de Risco)	Fator sugerido
1 a 2	1
3 a 4	2
5 a 6	3
7 a 8	4
≥ 9	5

Tabela 10 - Fatores de impacto relativo ao material desprendido que atinge às faixas de rolamento e frequência de trafego. (Ehrlich e Silva, 2014)

Descrição	Fator
Tráfego e material deslizado muito elevado	5
Trafego e material deslizado elevado	4
Trafego e material deslizado moderado	3
Trafego e material deslizado baixo.	2
Trafego e material deslizado muito baixo	1
Não atinge às faixas de rolamento.	0

Tabela 11 - Fatores de impacto sobre a integridade da rodovia (Ehrlich e Silva, 2014)

Descrição	Fator
Estrutura da rodovia completamente destruída ou com elevados danos, requerendo serviços de engenharia de grande porte.	5
Extensos danos à rodovia, requerendo significativos e imediatos serviços de engenharia.	4
Danos moderados à rodovia; requerendo pequenos, mas imediatos serviços de engenharia.	3
Danos limitados à rodovia, requerendo a imediata intervenção de uma equipe de recuperação, sem necessidade de emprego de maiores equipamentos.	2
Danos insignificantes, requerendo pequena intervenção, em médio prazo, de uma equipe de recuperação, sem a necessidade de emprego de maiores equipamentos.	1
Impacto inexistente	0

Tabela 12 - Fatores de impacto sobre a funcionalidade da rodovia (Ehrlich e Silva, 2014)

Descrição	Fator
Impacto muito forte podendo provocar o fechamento da rodovia por longo prazo (superior a 1 semana).	5
Impacto forte podendo provocar o fechamento da rodovia por médio prazo (entre 1 dia e 1 semana).	4
Impacto moderado podendo provocar o fechamento da rodovia por curto prazo (inferior a 24h).	3
Impacto de baixo potencial podendo provocar a interdição parcial da rodovia, permitindo a continuidade do tráfego através de variante.	2
Impacto pouco significativo, podendo ter como consequência uma pequena redução na velocidade média do tráfego.	1
Impacto inexistente.	0

Tabela 13 - Fatores de impacto sobre o meio ambiente (Ehrlich e Silva, 2014)

Descrição	Fator
Impacto extremamente relevante, com consequente	5
degradação da flora, fauna, solo, água ou ar: a situação	
se deteriora rapidamente e se nada for feito os danos	i
ambientais serão irreparáveis.	
Impacto muito relevante: a situação se deteriora em	4
pouco tempo, sem garantia de recuperação do dano	
ambiental.	
Impacto relevante: a situação de deteriora em médio	3
prazo, com garantia de recuperação do dano ambiental.	
Impacto pouco relevante: a situação piora em longo	2
prazo, com garantia de recuperação do dano ambiental.	
Irrelevante: a situação se mantém, com eventual dano	1
ambiental de pequena monta.	
Impacto inexistente.	0

Tabela 14 - Fatores de probabilidade (Ehrlich e Silva, 2014)

Descrição	Fator
Serviços associados às facilidades interrompidos por longo período de tempo (superior a 1 mês).	5
Serviços associados às facilidades interrompidos por médio período de tempo (entre 1 e 4 semanas).	4
Serviços associados às facilidades interrompidos por curto período de tempo (inferior a 1 semana).	3
Serviços associados às facilidades ativos, mas atuando precariamente.	2
Serviços associados às facilidades ativos, atuando com mínimas limitações.	1
Impacto inexistente.	0

2.2.4 Metodologia Rockfall Hazard Rating System (RHRS)

Pierso e Nan Vickie (1993) desenvolveram a metodologia Rockfall Hazard Rating System (RHRS), na qual são considerados: parâmetros de altura do terrapleno, efetividade da área de captação, risco médio ao veículo, porcentagem de distância de visibilidade, largura do pavimento, características geológicas e geotécnicas, dimensão dos blocos e histórico de quedas, conforme pode ser observado na Tabela 15.

Tabela 15 - Método Rockfall Hazard Rating System (adaptado para o sistema métrico Pierson e Van Vickie, 1993)

Categoria		Critérios e pontuação				
Jacogoria			3 pontos	9 pontos	27 pontos	81 pontos
	Largura da rodovia		13,2m	10,8m	8,4m	6,0m
lica	Classe 1	Condição estrutural	Fraturas descontínuas com orientação favorável	Fraturas descontínuas com orientação aleatória	Fraturas descontínuas com orientação adversa	Fraturas contínuas com orientação adversa
Classificação geológica	J	Atrito nas descontinuidades	Rugoso irregular	Ondulado	Planar	Preenchimento argiloso ou polido
Classific	Classe 2	Condição estrutural	Poucas feições de erosão	Feições de erosão diferencial ocasionais	Muitas feições de erosão diferencial	Maiores feições de erosão diferencial
		Diferença entre faixas na erosão	Pequena diferença	Diferença moderada	Grande diferença	Extrema diferença

No Brasil, Gomes (2009) fez uma adaptação do RHRS para avaliação do perigo de queda de blocos nas rodovias do Estado do Espírito Santo, de acordo com a Tabela 16.

Tabela 16 - Valores adaptados do Método Rockfall Hazard Rating System (Gomes, 2009)

Parâmetros	Símbolo	Equação atribuída
Altura do talude (H)	I_{AT}	$I_{AT} = e^{0.183 (H)}$
Risco ao veículo (RV)	I_{RV}	$I_{RV} = e^{0.0439 (RV)}$
% da distância de visibilidade (DV)	I_{DV}	$I_{DV} = 243e^{-0.0439DV}$
Largura do pavimento (LP)	I_{LP}	$I_{LP} = 1262,7 e^{-0.45781 LP}$
Dimensão do bloco (Db)	I_{Db}	$I_{Db} = e^{3,662Db}$
Característica geológico-geotécnica (SMR)	I_{CG}	$I_{CG} = 19683 e^{-0.11 SMR}$

2.2.5 Norma Brasileira 11682/2009

A NBR 11682/2009 que está em vigor, tem sido considerada uma boa norma, porém, como todo processo evolutivo, precisa ser revisada. Com o intuito de tronar a norma mais adaptada à realidade, profissionais da área geotécnica têm debatido na ABMS sua revisão. Em 08/12/2021, foi realizado o evento Mesa Redonda promovido pela ABMS, no qual foram apresentados alguns temas que estão em discussão, para futuramente serem incorporados à nova norma. No evento foi feita menção ao método observacional em taludes de estradas e a realização de monitoramento.

Como parte da evolução dos estudos no campo da estabilidade de encostas, foi realizada pesquisa e revisão bibliográfica, sendo apresentada a Norma Brasileira 11682/1991 na Tabela 17, que versava sobre três diferentes graus de risco, relacionados aos deslocamentos característicos e em função do valor da velocidade, condições que geravam ponderações, pois o risco não deveria ser simplesmente associado a deslocamentos, nem a velocidades, como exemplo, colúvios podem apresentar fortes movimentos sem configurar necessariamente susceptibilidade à rotura.

Tabela 17 – Graus de risco x deslocamento x velocidade (NBR 11682/1991)

Grau de risco	Deslocamento	característico	Velocidade característica	
Grad do 11000	horizontal (cm)	vertical (cm)	horizontal (mm/dia)	vertical (mm/dia)
alto	> 20	> 10	> 20	> 20
médio	5 a 20	2 a 10	1 a 20	1 a 20
baixo	< 5	< 2	< 1	< 1

A NBR 11682/2009, também estabelece três níveis de segurança, relacionando-os, conforme Tabelas de 18 a 20.

Tabela 18 – Níveis de Segurança x Critérios contra perdas de vidas humanas (NBR 11682/2009)

Nível de segurança	Critérios
Alto	Áreas com intensa movimentação e permanência de pessoas, como edificações públicas, residenciais ou industriais, estádios, praças e demais locais, urbanos ou não com possibilidade de elevada concentração de pessoas.
	Ferrovias e rodovias de tráfego intenso.
Médio	Áreas e edificações com movimentação restrita de pessoas.
	Ferrovias e rodovias de tráfego moderado.
Baixo	Áreas e edificações com movimentação eventual de pessoas.
	Ferrovias e rodovias de tráfego reduzido.

Tabela 19 - Níveis de Segurança x Critérios contra danos materiais e ambientais (NBR 11682/2009)

Nível de segurança	Critérios
Alto	Danos materiais: Locais próximos a propriedades de alto valor histórico, social ou patrimonial, obras de grande porte e áreas que afetem serviços essenciais
	Danos ambientais: Locais sujeitos a acidentes ambientais graves, tais como nas proximidades de oleodutos, barragens de rejeito e fábricas de produtos tóxicos
Médio	Danos materiais: Locais próximos a propriedades de valor moderado
	Danos ambientais: Locais sujeitos a acidentes ambientais moderados
Baixo	Danos materiais: Locais próximos a propriedades de valor reduzido
	Danos ambientais: Locais sujeitos a acidentes ambientais reduzidos

Tabela 20 – Níveis de Segurança contra perdas de vidas humanas x contra danos materiais e ambientais (NR 11682/2009)

Nível de segurança contra danos a vidas humanas Nível de segurança contra danos materiais e ambientais	Alto	Médio	Baixo
Alto	1,5	1,5	1,4
Médio	1,5	1,4	1,3
Baixo	1,4	1,3	1,2

A Fundação Geo – Rio (2016) com base na organização e hierarquização dos acidentes, apresentada nas Tabelas 21 e 22, pontos de hierarquização e classe, respectivamente, tendo sido publicadas na edição com os cinquenta maiores acidentes geológico-geotécnicos ocorridos na Cidade do Rio de Janeiro durante os primeiros cinquenta anos de sua atuação.

Tabela 21 – Pontos para hierarquização (Geo-Rio, 2016)

Categorias					Pontuação
Número de mortes	0 (zero)	1 a 2	3 a 10	> 10	
Trainere de mentes	Ponto 0	Ponto 1	Ponto 4	Ponto 8	
Volume (m³)	Até 10m³	10 a 1.000 m ³	1.000 a 100 mil m ³	<u>></u> 100 mil m ³	
v oranie (iii)	Ponto 1	Ponto 2	Ponto 4	Ponto 6	
Destruição de moradias	0 (zero)	1 a 5	6 a 20	<u>></u> 20	
	Ponto 0	Ponto 2	Ponto 3	Ponto 6	
Transtornos em geral	Pequeno porte	Médio porte	Grande porte		
Transitionies sin gerai	Ponto 1	Ponto 3	Ponto 5		
Obstrução de vias	NÃO	SIM			
	Ponto 0	Ponto 2			
Pontuação mínima: 2 pontos Pontuação máxima: 25 pontos				Pontuação total	

Tabela 22 – Classes x Pontuação (Geo-Rio, 2016)

CLASSES	INTERVALOS DA PONTUAÇÃO
I	2 a 7
II	8 a 13
III	14 a 25

Os incidentes, na grande maioria dos casos, são decorrentes de condições inadequadas de investigações de campo, projeto, construção, operação, monitoramento ou da combinação de fatores.

3 SISTEMÁTICA DE MONITORAMENTO

A sistemática proposta a ser desenvolvida surge de uma revisão bibliográfica realizada, tendo como ponto de partida as metodologias sobreditas e as definições conceituais apresentadas. O primeiro aspecto a ser justificado fica por conta da periodicidade, pois uma sistemática de monitoramento deve servir também como um banco de dados para análises comparativas das evoluções características do terrapleno. Para tal, faz-se necessário indicar o intervalo máximo entre dois levantamentos consecutivos.

3.1 Periodicidade

A ausência de manutenção em terraplenos, pode ocasionar escorregamentos e deslizamentos, não sendo poucas as ocorrências em rodovias. A Norma Brasileira 11682/2009 descreve que o monitoramento do desempenho de uma obra ou encosta deve ser realizado, sempre que julgado necessário pelo engenheiro civil geotécnico, como um dado relevante para garantia da estabilidade. Complementa que em determinadas situações, o monitoramento pode ser utilizado em uma fase de préconstrução ou durante a própria construção, visando à obtenção de dados para elaboração ou ajuste eventual do projeto. Entretanto, nesta proposta busca-se identificar a periodicidade do monitoramento pós-construção.

Das formas mais recentes de monitoramento está a realizada *real time*, monitoração por instrumentos com dados registrados em tempo real. Millis e Lau (2008) registraram sua experiência de monitoração e instrumentação em tempo real na identificação de movimentos de um terrapleno em Hong Kong. Desenbrock (2003) também compila sua experiência com programas automatizados que permitem identificação de dados em tempo real, que deve apresentar um custo ainda maior.

O simples fornecimento de um inclinômetro no Sistema de Custos da Prefeitura da Cidade do Rio de Janeiro, referência junho de 2021, apresenta custo de R\$ 280,43/m, excluindo-se a perfuração. No Sistema de Custos Referenciais de Obras do governo federal, utilizado para rodovias, não foram encontrados valores de referência para serviços de inclinômetro. A concorrência n° 017/2014 do Desenvolvimento Rodoviário S.A. – DERSA apresentou custo de R\$ 1.204,00/m para fornecimento e instalação. No Edital 840/2009-08 para instrumentação na BR-459/SP

apresentou custo de R\$ 414,37/m com previsão de perfuração para instalação de inclinômetro em material de 2° categoria.

A dificuldade na obtenção de informações de referências de custos e os altos custos, quando registrados, inibem a capacidade de previsão e monitoração de instrumentação geotécnica na malha rodoviária nacional, que é de 1.720.630,2 km ou 119.953,5 km sob jurisdição Federal.

A Figura 18 indica um monitoramento pontual com equipamentos a serem utilizados: 1 pluviômetro, 6 piezômetros de corda vibrante, dentre outros, condição que indica inviabilidade financeira para monitorar constantemente toda extensão de rodovias federais.

Figura 18 – Monitoração pontual (Autopista Litoral Sul, 2018)

O Brasil por ter dimensões continentais apresenta seus microclimas e suas características peculiares nas diversas regiões. A incidência de deslizamentos e escorregamentos de terraplenos e taludes está mais associada a períodos chuvosos, pois além de aumentar o peso do solo, torna maior a poro-pressão, consequentemente reduzindo a tensão efetiva e a coesão aparente entre os grãos do solo que compõe o maciço.

Para a condição de taludes rodoviários, a chuva tem o aspecto mais relevante de afetação na estabilidade, seguindo certa frequência conforme regiões e estação

do ano. Devido à extensão de trecho rodoviário e a definição dos índices pluviométricos ao longo dos anos, propõe-se no desenvolvimento desta pesquisa que os levantamentos de monitoração tenham periodicidade anual sistemática.

3.2 Levantamento In situ

Esta modalidade é a mais recomendada, pois a presença do profissional visualizando e identificando em detalhes as condições do maciço, torna o monitoramento mais realista, já que a sensibilidade profissional dificilmente consegue ser substituída.

Além de profissionais geotécnicos, equipes de apoio de levantamento topográfico são necessárias, a fim de que todas as informações de medidas sejam identificadas. Para um levantamento mais completo, também são necessários boletins de sondagens nos pontos identificados pelos profissionais responsáveis pela análise. Este modelo de levantamento além de mais demorado, pode ser oneroso. Atualmente os levantamentos com estas características são realizados em rodovias concedidas à iniciativa privada, quando há previsão contratual.

3.3 Levantamento Remoto

Com o intuito de permitir um levantamento com custos mais módicos, existe a possibilidade do levantamento remoto, utilizando *softwares* de fácil obtenção, para identificação das dimensões e curvas de níveis, que possibilitam informações de inclinação do terrapleno. São variados os procedimentos e as versões de programas que podem ser utilizados. A seguir, serão descritos dois procedimentos em programas reconhecidos, que disponibilizam até versões gratuitas:

a) Procedimento 1

- Através do programa Google Earth Pro ou compatível, é possível delimitar o polígono da área;
- A importação pode ser feita pela ferramenta do AutoCad Civil 3D ou compatível;
- Como produto do processo, as curvas de níveis são obtidas;

b) Procedimento 2

- Definição de uma poligonal no trecho desejado, utilizando a ferramenta
 Google Earth em qualquer versão disponível;
- Salvar a poligonal e importar para o Global Mapper, extraindo as curvas de níveis em extensão dwg.
- Utilizar o programa AutoCad, para abrir as curvas de níveis salvas no programa Global Mapper.

c) Procedimento 3

- No Google Earth Pro fazer um polígono no terrapleno desejado;
- Fazer traçado na polilyne seguindo o contorno estabelecido;
- Salvar o polígono e a polilyne;
- Importar ambos para o Global Mapper,
- Sequência, obtenção das curvas de níveis;
- Salvar em extensão DWG;
- Salvar no Global Mapper,
- Abrir o arquivo no AutoCad;
- Aparição da curva de nível de metro em metro.

O Google Earth Pro permite, de forma visual, identificar e localizar qualquer região do planeta que esteja a céu aberto, e além disso, permite recolher dados referentes às características específicas de pontos pertencentes a essa região, por exemplo, cotas e coordenadas UTM. A Figura 19 mostra imagem de marcação de polígono no software Google Earth Pro, para em seguida, resguardados os procedimentos, extrair curvas de níveis da região, conforme Figura 20.

Figura 19 – Marcação de polígono no Google Earth Pro

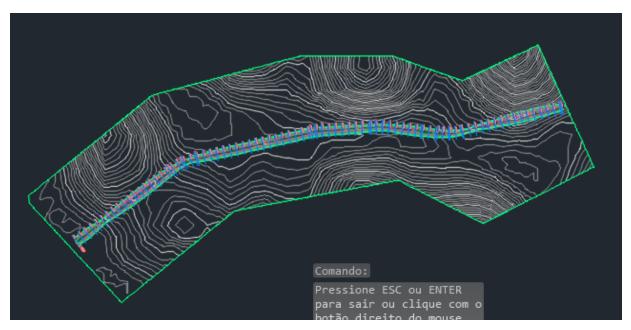


Figura 20 - Apresentação das curvas de níveis extraídas do Google Earth

Essa alternativa de levantamento de dados geométricos pode reduzir consideravelmente os custos de levantamento topográfico e dinamizar a possibilidade de um maior número de análises, podendo ser realizada em rodovias sob gestão pública ou mesmo aquelas que, ainda que concedidas, tenham a obrigatoriedade de

realizar a monitoração de terraplenos, mas não tenham em seus contratos a especificação de levantamento topográfico.

Feito uma primeira vez o levantamento das condições dos terraplenos, nos monitoramentos seguintes haverá pouca variação, caso não haja incidente significativo que altere as características físicas do maciço.

Para registros de produtividade, em 5 (cinco) dias úteis, 4horas/dia, utilizando as técnicas de levantamento remoto prévio, seguida de idas a campo para registro das informações, foi possível registrar 50 terraplenos, sendo 2,5 terraplenos/hora; enquanto nos levantamentos estritamente de campo, foi possível registrar 5 (cinco) terraplenos nas mesmas 4horas, 1,25 terraplenos/hora. Há significativo ganho de produtividade, 100%, na utilização do expediente de levantamento remoto com cadastro prévio em escritório, desde que os programas já estejam instalados na central de mídia. Esta condição também permite trabalhos de levantamentos em dias muito chuvosos e períodos noturnos, o que não seria possível no levantamento de campo.

O levantamento remoto necessita que o sistema *Google Earth* tenha dados recentes do terrapleno, mas há possibilidade da perda de precisão. Em 5 (cinco) terraplenos comparados, as medidas de altura e inclinação no levantamento remoto, apresentaram variações da ordem de mais ou menos 5% dos valores do levantamento de campo, que é considerado mais preciso. Portanto, os pontos negativos para o levantamento remoto, quando comparados ao levantamento de completo de campo, ficam por conta da redução do detalhamento e da precisão dos dados.

Para casos de levantamentos específicos, onde já se tenha verificado o significativo risco, o uso de drones pode complementar o levantamento de campo realizado por profissional com conhecimentos geotécnicos.

4 IDENTIFICAÇÃO DE CRITÉRIOS

Sabe-se que há uma infinidade cenários possíveis na geologia, sendo muitos os fatores que fazem parte de estudos de estabilidade de encostas. As condicionantes de susceptibilidade ao deslizamento e gradação de fatores acoplados devem ser considerados conjuntamente, do contrário podem mascarar determinadas avaliações. É impossível prever com perfeito grau de certeza os movimentos de massas ao longo do tempo, mesmo que se tenha acesso a muitas informações. Obter determinadas informações é de extrema dificuldade até mesmo para terraplenos que tem monitoração constante, por exemplo: condições de pressão neutra durante um evento de ruptura.

Como a grande maioria dos terraplenos não passa por processos de sistemática de monitoramento devido a escassez de recursos físicos e financeiros, informações como trincas, surgências d'água e erosões, somente serão identificadas após a ocorrência do evento. Para um estudo diagnóstico de ocorrência a avaliação posterior pode ajudar, mas também não garante as projeções, tendo em vista que as condições naturais são mutáveis.

Com o objetivo de estruturar a prática do monitoramento, esta proposta metodológica se assenta na importância de levantamentos para acompanhamentos periódicos, em condições de escassez de recursos físicos e financeiros, por isso a definição de critérios passa pela identificação visual. Existe certa uniformidade dos diversos autores ao descrever a complexidade de interações entre diversos fatores que ocasionam a ruptura dos solos. Ademais, as características geomorfológicas e topológicas são peculiares em diversas regiões, condição que dificulta a previsão de ocorrências.

A identificação dos critérios a serem utilizados na pesquisa para desenvolvimento da sistemática de monitoramento de terraplenos, foi iniciada a partir de extensa pesquisa bibliográfica, adoção do método observacional e visitas *in loco*. As visitas de campo possibilitam a visualização, mas tal condição não deve ser considerada como suficiente, pois são necessários dados para a aprimorar ideias, descobrir intuições e, posteriormente, construir hipóteses. A considerar a especificidade do tema estudos de casos abrangentes mostraram-se compatíveis, necessitando de consonância com referências bibliográficas e contatos com especialistas. Toda metodologia pode ser enquadrada como pesquisa exploratória,

que segundo GIL (2007) tem como objetivo proporcionar maior familiaridade com o problema, com vistas a torná-lo mais explícito ou a construir hipóteses. A maioria dessas pesquisas envolve:

- a) Levantamento bibliográfico;
- b) Contato ou entrevistas com pessoas que tiveram experiências práticas com o problema pesquisado;
 - c) Análise de exemplos que estimulem a compreensão.

Tanto a composição intrínseca do solo como as formas externas da crosta terrestre, são decisivas no processo de formação, pois exercem influência direta na atuação dos agentes responsáveis pelo intemperismo. Com esta analogia, as condições topográficas dos maciços terrosos e/ou rochosos e a geometria atribuída aos terraplenos, passam a ter real importância na perspectiva de risco de incidentes.

Na fase de planejamento de obras de infraestrutura para o sistema de transportes terrestres tem sido necessário realizar levantamentos prévios, distinguindo características amplas dos solos na região do traçado, tem sido importante identificar se o solo é do tipo residual, provenientes da decomposição das rochas, mas que conservam suas características não tendo sido submetidos às ações de transporte; se são solos transportados ou sedimentares, que passaram por processo de alteração decorrentes do transporte e se tem características orgânicas, alto teor de matéria orgânica em decomposição apresentando coloração escura e os de evolução pedogenética.

Para elaboração de projeto básico o levantamento por meio de sondagens visa identificar o tipo de solo existente apresentando características de tamanho das partículas, constituição mineralógica, forma das partículas, estrutura dos solos argilosos, análise granulométrica, índices de consistência, etc, condição determinante para definição de traçado.

Para a identificação da perspectiva de risco, a infraestrutura viária já está implantada e sob ação da natureza, devendo ser monitorada de tempos em tempos. A ausência de monitoramento, conservação e manutenção tem permitido a ocorrência de graves incidentes evitáveis. Então a sistemática de monitoramento periódica, pode garantir mais segurança às pessoas que utilizam as vias trafegáveis, evitando custos excessivos em decorrência de incidentes e recomposição tanto da pista, quanto do terrapleno.

A respeito do vocábulo "Perspectiva" utilizada nesta pesquisa, o dicionário brasileiro da língua portuguesa, Michaelis, descreve como sendo:

- Visão que se estende ao longe, até onde os olhos podem alcançar;
 prospectiva;
- Ponto de vista; modo particular com que cada pessoa, influenciada por seu tipo de personalidade e por suas experiências, vê o mundo;
- o Aparência, visão ou aspecto sob o qual algo se representa.

A palavra está relacionada ao modo através do qual alguma coisa é representada ou vista, ponto de vista, como se analisa determinada situação ou objeto, fazendo com que o termo "Perspectiva" tenha total aderência à proposta de pesquisa na sistemática de monitoramento periódica para identificação do risco de incidentes em terraplenos rodoviários.

4.1 Intervenções de Conservação em Terraplenos

Como base de dados foram utilizadas informações da equipe de conservação da Rodovia Presidente Dutra BR-116/RJ, no trecho fluminense, extensão de 170,5 km. Foram analisadas 886 (oitocentas e oitenta e seis) intervenções pontuais em um período de 132 (cento e trinta e dois) meses, de março de 2007 a março de 2018, para conservação da estabilidade de terraplenos. Foram cadastrados 5 (cinco) motivos e 4 (quatro) tipos de intervenções.

Na Figura 21 estão representados os motivos da conservação, com taxa média de ocorrências corresponde a 7,38 intervenções de conservação por mês, sendo subdivididos em 5 motivos, dentre os quais a conservação de rotina é predominante com 57% das atividades, seguida da necessidade de intervenção decorrente de eventos da natureza com 37%.

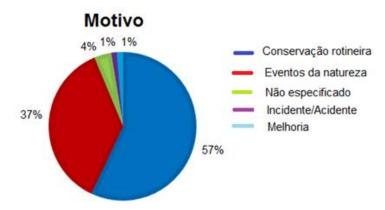


Figura 21 - Motivo da Conservação

Na Figura 22, quesito tipo de intervenção, a contenção de erosão é predominante com 78%, seguida da necessidade de limpeza manual com 17%.

Figura 22 - Tipo da Conservação

Ao longo do período de 10 anos, apenas duas ocorrências mais contundentes podem ser descritas, um escorregamento de terrapleno no km 226 (Serra das Araras) e um deslizamento de material no km 279. Isso indica que uma monitoração frequente, com atuação constante das equipes de conservação pode evitar desastres e incidentes diversos.

Através do processo de chegada da distribuição de Poisson é possível indicar a probabilidade de intervenções e dimensionamento de equipes. A considerar a taxa média de ocorrência de 7,38 intervenções de conservação por mês, a distribuição de Poisson possibilita distribuir a probabilidade de variável aleatória discreta que expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo se estes eventos ocorrem independentemente de quando ocorreu o último evento.

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} \tag{3}$$

Sendo:

P − Probabilidade;

X – Quantidade de eventos;

e – base do logaritmo natural (e = 2.71828...);

x − inteiro não negativo;

 λ – taxa média de ocorrências, um número real, igual ao número esperado de ocorrências que ocorrem num dado intervalo de tempo.

Como em qualquer gestão de infraestrutura de rodovias, a previsão de custos é essencial. A partir do cálculo da probabilidade de ocorrência é possível dimensionar equipe de conservação para atuar nas demandas de intervenções. A considerar a taxa de ocorrências, é possível definir a probabilidade, por exemplo, de que sejam observados no mínimo seis e no máximo oito eventos com necessidade de conservação em um mês.

$$Px(x) = P(6 \le X \le 8) = P(X = 6) + P(X = 7) + P(X = 8) = 0.423551$$
 (4)

4.1.1 Regressão Linear Simples

A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis, as variáveis explicativas, visando estimar e/ou prever o valor médio da primeira em termos dos valores conhecidos ou fixados (em amostragens repetidas) das segundas. A análise da dependência de uma variável em relação a uma única variável independente, é chamada de análise de regressão simples (Gujarati e Porter, 2011).

De acordo com Pessanha (2018) o modelo de regressão linear que permite prever o valor da variável dependente em função dos valores conhecidos das variáveis independentes é conhecido como equação da regressão linear simples.

$$Y_i = \beta_0 + \beta_1 \cdot X_i + \varepsilon_i \tag{5}$$

Onde:

Y_i: Variável dependente para a i-ésima observação;

 X_i : Variável independente para a i-ésima observação;

 β_0 e β_1 : São coeficientes desconhecidos da reta que relaciona as variáveis X e Y (estimados a partir dos dados da amostra);

 ε_i : Erro aleatório, que representa a imprecisão na relação linear entre X e Y.

A Figura 23 expressa regressão linear simples é uma reta, onde E(Y) é o valor esperado de Y para determinado X, β_0 é o ponto onde a reta de regressão intercepta o eixo Y, e β_1 é o coeficiente angular (inclinação) da reta.

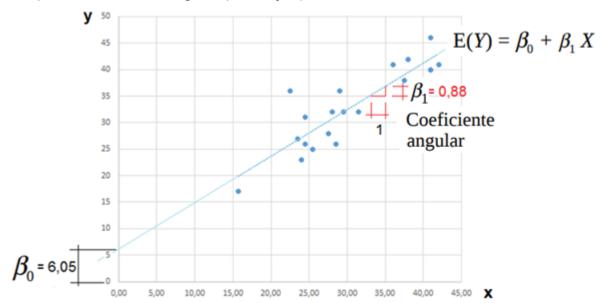


Figura 23 – Reta de regressão linear simples (adaptado de Garcia, 2018)

Gujarati e Porter (2011) descrevem que o método dos mínimos quadrados é o método mais utilizado na estimativa dos coeficientes do modelo de regressão linear. Como a Equação 6 não pode ser observada diretamente pelo não conhecimento do valor dos coeficientes, é preciso que ela seja estimada para regressão.

$$\widehat{Y}_{t} = \widehat{\beta}_{0} + \widehat{\beta}_{1}.X_{i} + \widehat{\varepsilon}_{i} \tag{6}$$

Esta Equação 7 mostra que \hat{Y}_i é o valor estimado de Y_i e que $\hat{\varepsilon}_i$ é o erro aleatório estimado (ou resíduo), o qual é a diferença entre os valores observados e estimados de Y.

$$\hat{\varepsilon}_i = Y_i - \widehat{Y}_i \tag{7}$$

Substituindo a Equação 6 na Equação 7, chega-se à Equação 8.

$$\hat{\varepsilon}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i) \tag{8}$$

Em particular, o método dos mínimos quadrados requer que seja considerada a soma dos quadrados dos erros, como na Equação 9.

$$f = \sum_{i=1}^{n} \hat{\varepsilon_i}^2 = \sum_{i=1}^{n} [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot X_i)]^2$$
(9)

De acordo com este método, os estimadores de β_0^- e β_1^- são aqueles denotados por $\hat{\beta}_0^-$ e $\hat{\beta}_1^-$, que tornam mínimo o valor de f.

As Equações 10 e 11 trazem a derivada da função f. No ponto mínimo as derivadas parciais são nulas.

$$\frac{\partial f}{\partial \hat{\beta}_0} = 0 \to \sum_{i=1}^n \left[Y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot X_i) \right] = 0 \tag{10}$$

$$\frac{\partial f}{\partial \hat{\beta}_1} = 0 \to \sum_{i=1}^n X_i \cdot [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot X_i)] = 0$$

$$\tag{11}$$

Resolvendo as Equações 10 e 11, chega-se ao sistema de equações normais, Equações 12 e 13, onde n é o tamanho da amostra. A solução deste sistema fornece os estimadores de $\hat{\beta}_0$ e $\hat{\beta}_1$.

$$n.\,\hat{\beta}_0 + \hat{\beta}_1.\sum_{i=1}^n X_i = \sum_{i=1}^n Y_i \tag{12}$$

$$\hat{\beta}_0.\sum_{i=1}^n X_i + \hat{\beta}_1.\sum_{i=1}^n X_i^2 = \sum_{i=1}^n X_i.Y_i$$
(13)

Assim, resolvendo simultaneamente as equações normais, os estimadores dos mínimos quadrados são obtidos nas Equações 14 e 15.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X}).(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$
(14)

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1.\bar{X} \tag{15}$$

Onde:

 \bar{Y} : Média dos valores de Y;

 \bar{X} : Média dos valores de X;

n: Total de observações na amostra.

O coeficiente de determinação é uma medida que fornece a qualidade do ajustamento do modelo de regressão. Este coeficiente é representado por r^2 quando se trata de uma regressão simples (Gujarati e Porter, 2011).

O r^2 varia entre 0 e 1, em porcentagem, é uma medida estatística que indica a proximidade dos dados na linha de regressão ajustada, ou seja, quanto maior o valor do coeficiente de determinação, melhor ele se ajusta à amostra.

Segundo Pessanha (2018), a soma de quadrados total (SQT) é a soma dos quadrados dos desvios de Y em relação a sua média (\overline{Y}), ou seja, é a medida da variação total da variável dependente. A SQT é dada na Equação 16.

$$SQT = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
 (16)

Esse mesmo autor define que a soma de quadrados da regressão (SQR) é a soma dos quadrados dos desvios entre a reta de regressão estimada e a média de *Y*. Logo, a SQR é uma medida da variação total da variável dependente que é explicada pelo modelo de regressão, mostrada na Equação 17.

$$SQR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$
(17)

Ele ainda indica que a soma de quadrados dos erros ou resíduos (SQE) é a soma dos quadrados dos desvios de *Y* em relação à reta de regressão. A SQE expressa a parcela da variação de *Y* não explicada pela reta de regressão. A Equação 18 mostra a equação da SQE.

$$SQE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$
(18)

A relação entre essas somas de quadrados é dada na Equação 19 mostra que "[...] a variação total dos valores observados de *Y* em torno de sua média pode ser dividida em duas partes, uma atribuível à linha de regressão e a outra a forças aleatórias, porque nem todas as observações efetivas de *Y* situam-se sobre a linha ajustada." (Gujarati e Porter, 2011).

$$SQT = SQR + SQE \tag{19}$$

Dividindo-se ambos os lados da Equação 20 por SQT, obtém-se a Equação (20).

$$1 = \frac{SQR}{SOT} + \frac{SQE}{SOT} \tag{20}$$

A partir destas equações, o coeficiente de determinação r² pode ser definido como na Equação 21.

$$r^{2} = \frac{SQE}{SQT} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = 1 - \frac{SQR}{SQT}$$
(21)

Gujarati e Porter (2011), destacam que duas propriedades de r^2 devem ser consideradas:

- 1. É um valor não negativo;
- 2. Seus limites são: $0 \le r^2 \le 1$. Um r^2 próximo de 1 significa que a variável X explica a maior parte da variação total de Y, e um r^2 igual a 1 significa um ajustamento perfeito, isto é $\widehat{Y}_i = Y_i$ para cada i. No entanto, se r^2 estiver próximo de 0, a variável X explica muito pouco da variação total de Y, e se for igual a 0 significa que não há qualquer relação entre elas.

O coeficiente de correlação, representado por r, é uma medida do grau de associação entre duas variáveis. A Equação 22 mostra como este coeficiente é calculado.

$$r = \frac{n. \sum X_i. Y_i - (\sum X_i). (\sum Y_i)}{\sqrt{[n. \sum X_i^2 - (\sum X_i)^2]. [n. \sum Y_i^2 - (\sum Y_i)^2]}}$$
(22)

A correlação entre duas variáveis pode ter diferentes graus de associação, variando de acordo com a dependência entre elas. Se a variável Y for totalmente dependente da variável X e, não houver nenhum outro fato que interfira entre elas, haverá uma correlação perfeita, de acordo com Crespo, 2009. Porém, caso existam outras variáveis que interfiram na relação X e Y, a correlação diminuirá, podendo até deixar de existir.

Os limites de r são: $-1 \le r \le 1$. É observado que para o valor de r=1, as duas variáveis X e Y estão perfeitamente relacionadas em um sentido linear positivo, ou seja, todos os pontos de dados estão em uma linha reta que tem uma inclinação positiva. Já para um valor de r=-1, X e Y estão relacionados em um sentido linear negativo, com todos os pontos de dados em uma linha reta com inclinação negativa. Valores do coeficiente de correlação próximos de zero indicam que X e Y não estão linearmente relacionados. (Bezerra, 2016).

A Tabela 23 apresenta os intervalos de valores do coeficiente de correlação r e a interpretação destes.

Tabela 23 - Coeficiente de correlação (Shimakura, 2016 apud Aguiar, 2019)

Coeficiente de Correlação (r)	Interpretação	
0,00 a 0,19	Correlação muito fraca	
0,20 a 0,39	Correlação fraca	
0,40 a 0,69	Correlação moderada	
0,70 a 0,89	Correlação forte	
0,90 a 1,00	Correlação muito forte	

Na Figura 24 estão registrados oito exemplos de padrões de correlação com valores de r.

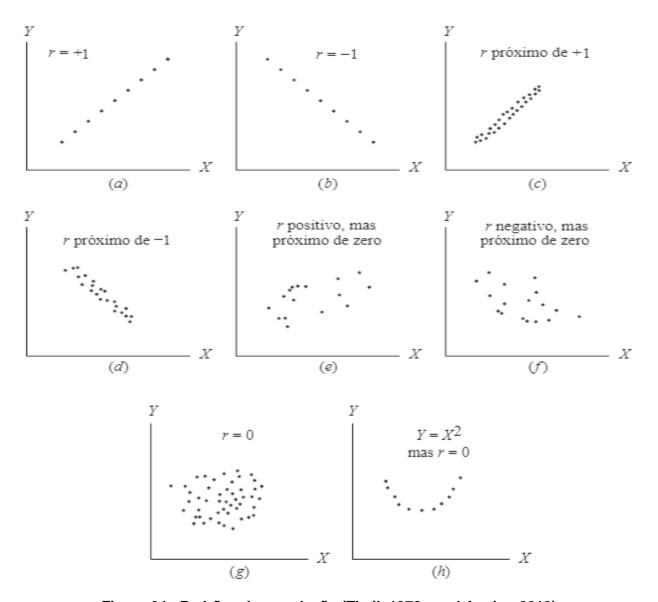


Figura 24 - Padrões de correlação (Theil, 1978 apud Aguiar, 2019)

O erro padrão da estimativa S_e , tem como objetivo medir o desvio entre os valores reais de Y e os valores estimados de \hat{Y} . Ele informa de forma aproximada quão grande são os erros de estimativa (os resíduos) do grupo de dados, medindo-se na própria unidade de Y. Pode-se interpretá-lo também como um desvio padrão dos resíduos.

O cálculo do S_e é mostrado na Equação 23, sendo n o total de observações na amostra.

$$S_e = \sqrt{\frac{\sum (Y - \hat{Y})^2}{n - 2}}$$
 (23)

Sendo cumpridas as premissas da regressão linear, se espera que aproximadamente 95% dos dados observados de *Y*, se encontrem dentro do intervalo ± 1 de seus respectivos valores projetados pela reta de regressão.

Teste de hipóteses é um procedimento estatístico que permite rejeitar ou não rejeitar uma hipótese estatística, com base nos dados observados de uma amostra.

Na estatística, de acordo com Gujarati e Porter (2011), a hipótese estabelecida é denominada hipótese nula e é representada pelo símbolo H_0 . A hipótese nula é, em geral, testada contra uma hipótese alternativa, sendo esta denotada por H_1 .

Para esses autores, a teoria do teste trata da formulação de regras a serem adotadas para decidir se a hipótese nula deve ser rejeitada ou não. Se a amostra fornece evidência contra H_0 , então se rejeita esta hipótese, caso contrário, decide-se não rejeitar a hipótese nula.

O erro tipo I consiste em rejeitar uma hipótese H_0 , quando esta é verdadeira. A probabilidade de cometer este erro é denotada por α e leva o nome de nível de significância, sendo α pré-especificado, em geral: 1%, 5% ou 10%. O erro tipo II consiste em não rejeitar uma hipótese H_0 quando esta é falsa, e a probabilidade de cometer este erro é denotada por β . (Gujarati e Porter, 2011).

São dois os tipos de erros, indicados na Tabela 24, tipo I e tipo II que podem ser cometidos no teste de hipóteses.

Realidade Decisão	H_0 é verdadeira	H ₁ é verdadeira
Não rejeitar H_0	Decisão correta	Erro do tipo II
Rejeitar H ₀	Erro do tipo I	Decisão correta

Tabela 24 – Tipos de erros (Aguiar, 2019)

Dentre os métodos utilizados para realizar o teste de hipóteses, destaca-se o teste de significância para o coeficiente de correlação de Pearson e o teste F.

Em estatística, utiliza-se o teste de significância do coeficiente de correlação, para verificar se existe ou não correlação entre as variáveis, com base na estimativa do coeficiente.

As hipóteses a serem testadas são: H_0 : $\beta=0$ ou H_1 : $\beta\neq0$. Observa-se que a hipótese nula assume que não existe correlação entre as variáveis.

O estimador da estatística de teste é dado pela Equação 24, e segue distribuição t com graus de liberdade.

$$t_{n-2} = r \sqrt{\frac{n-2}{1-r^2}} \tag{24}$$

Onde:

r: Coeficiente de correlação;

n: Total de observações na amostra.

Se o valor de *t* encontrado na Equação 24 é especificado sob a hipótese nula, este pode servir como teste estatístico. E, como o teste estatístico segue a distribuição t, pode se encontrar o intervalo de confiança através da Equação 25, erro padrão da estimativa.

$$Pr\left[\beta_1^* - t_{\frac{\alpha}{2}} ep(\hat{\beta}_1) \le \hat{\beta}_1 \le \beta_1^* + t_{\frac{\alpha}{2}} ep(\hat{\beta}_1)\right] = 1 - \alpha$$
(25)

Onde:

 β_1^* : Valor de β_1 sob H_0 ;

 $t_{\frac{\alpha}{2}}$: Valores críticos de t, obtidos na Tabela t, no anexo A, para o nível de significância $\frac{\alpha}{2}$ e n-2 graus de liberdade.

A Equação 25 fornece o intervalo em que $\hat{\beta}_1$ cairá dentro da probabilidade $1-\alpha$, dado $\beta_1=\beta_1^*$. O intervalo de confiança é conhecido como a região de aceitação (da hipótese nula) e a(s) região(ões) fora do intervalo de confiança é (são) chamada(s) de região(ões) de rejeição (de H_0) ou de região(ões) crítica(s). Já os limites de confiança, os pontos extremos do intervalo de confiança, são chamados de valores críticos.

Chega-se então à conclusão de que uma estatística é dita significativa se o valor de t se situar na região crítica. Nesse caso, a hipótese nula é rejeitada. Do mesmo modo, um teste é considerado estatisticamente não significativo se o valor de t se situar na região de aceitação. Nesse caso, a hipótese nula não é rejeitada. A Figura 25 apresenta o resumo, se o valor de t é maior que $t_{crítico}\left(t_{\frac{\alpha}{2}}\right)$ rejeita-se H_0 . Caso contrário, não se rejeita H_0 .

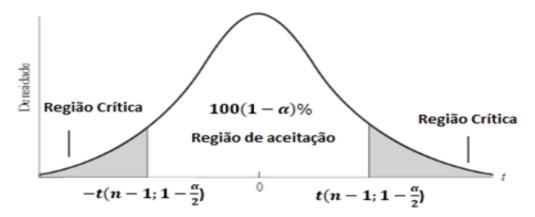


Figura 25 - Intervalo de confiança (Gujarati e Porter, 2011)

A estatística F é usada para testar a significância dos coeficientes da equação da reta estimada em um modelo de regressão linear, quando o modelo é ajustado aos dados pelo método dos mínimos quadrados, ou seja, ele testa se a variação da variável independente influencia significativamente na variação da variável dependente. Sendo assim, as hipóteses a serem testadas são: H_0 : $\beta = 0$ ou H_1 : $\beta \neq 0$. (Faria, 2011).

Esse mesmo autor afirma que a variabilidade total dos valores da variável dependente Y é observada através da SQT dos desvios de Y, expressa na Equação (14), e pode ser desmembrada em duas componentes: uma explicada pela SQR, observada na Equação 17 e a outra pela SQE, na Equação 18.

"A fração da variância total em Y explicada pelo modelo de regressão e a da variância atribuída aos resíduos podem ser estimadas respectivamente pela divisão dos valores de SQR e SQE pelos seus graus de liberdade." (Faria, 2011). Estas estimativas são chamadas de quadrados médios da regressão (QMR) e quadrados médios dos erros (QME), respectivamente. Tem-se então a Equação 26 e a Equação 27:

$$QMR = \frac{SQR}{1} \tag{26}$$

$$QME = \frac{SQE}{(n-2)} \tag{27}$$

A qualidade do ajuste do modelo de regressão é avaliada pela comparação das estimativas de SQR e SQE. Quando a estimativa SQR é significativamente maior que a estimativa de SQE, pode-se concluir que o modelo é significativo. (Faria, 2011).

De acordo com esse autor, a estatística de teste, que segue a distribuição F com k = 1 e n - 2 graus de liberdade é dada conforme a Equação 28.

$$F = \frac{\frac{SQR}{k}}{\frac{SQE}{n-k-1}} \sim F_{1,n-2} \tag{28}$$

A partir das expressões anteriores, foi possível criar a Tabela 25, de análise da variância.

Fonte de variação Grais de liberdade Soma dos quadrados Quadrados médios Estatística de teste F Regressão 1 SQR QMR $F = \frac{QMR}{QMF}$ Resíduos n-2 SQE QME Total n-3 SQT

Tabela 25 - Análise da variância (Faria, 2011)

O valor da estatística de teste F deve ser comparado ao valor de F tabelado (F_{tab}) , que é obtido na Tabela da distribuição F, encontrada no anexo B deste trabalho, de acordo com o nível de significância do teste e o número de graus de liberdade.

Portanto, a regra decisória para o teste F é a seguinte: Se $F \ge F_{tab}$, então se rejeita H_0 ao nível de significância que foi realizado o teste. Logo, pode-se inferir que o modelo proposto é significativo. Caso contrário, não se rejeita H_0 .

Ao aplicar os conceitos teóricos nos dados reais, Tabela 26, na relação entre quantidade de intervenções no intervalo de tempo de 12 meses, obtém-se a equação da regressão linear Figura 26, a partir da linha de tendência e o coeficiente de correlação.

Tempo (meses)	Intervenções (un)		
12	24		
24	88		
36	203		
48	215		
60	45		
72	45		
84	95		
96	36		
108	50		
120	64		
132	21		

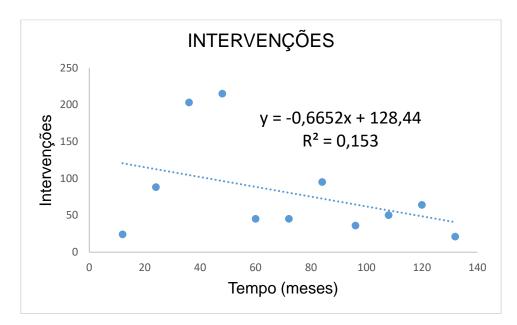


Figura 26 – Regressão linear simples Intervenção x Tempo

Sendo r^2 próximo de 0, a variável X (tempo) explica pouco da variação total de Y, quantidade de intervenções. Mesmo com a interpretação indicando correlação muito fraca, cada período equivale a 12 (doze) meses, a considerar a característica da rodovia da qual os dados foram extraídos, é possível observar, que a partir de dois períodos iniciais com menos de 100 (cem) intervenções, foi necessário intervir de forma intensa por dois períodos consecutivos com mais de 200 (duzentas) intervenções, pois as condições de manutenção dos terraplenos podem ter se

agravado. Entretanto, após este período mais intenso, observa-se novamente, quantidades inferiores a 100 intervenções com uma tendência de queda.

Na ausência de mais dados, fica aparente que um período com poucas intervenções pode gerar consequências de manutenção/conservação, e assim que os serviços são realizados com frequência, a demanda reduz, indicando que pode ser importante a constância no monitoramento e realização de serviços, evitando-se picos e vales. Outra característica que vale ressaltar são os custos, normalmente gestões rodoviárias têm abrangência de muitos quilômetros, então monitorações e intervenções devem prever responsabilidade nos gastos, sem comprometer a segurança rodoviária. Por isso a importância dos gestores e fiscais que têm o dever de cobrar condições confortáveis e seguras para todos aqueles que se utilizam das rodovias.

4.2 Definição de Dados dos Critérios Geométricos

Para estabelecimento dos critérios geométricos, foi realizado um levantamento de novembro de 2017 a março de 2018, no qual foram verificados 400 terraplenos, dos quais foram extraídos os dados. Na Tabela 27 estão os valores referentes aos 10 primeiros terraplenos. Os demais serão discutidos na Aplicação da Sistemática.

Tabela 27 – Dados geométricos dos terraplenos

Torronlone	Dados dos Terraplenos			
Terrapleno	Altura (m)	Dist. Acost. (m)	Extensão (m)	Inclinação (graus)
1	5,7	2	10	80
2	6	1	256	80
3	6	0	154	80
4	5	1	27	90
5	6	0	336	90
6	5	0	41	90
7	5	1	72	90
8	2,5	0	186	90
9	1,5	1	198	90
10	7	0,5	500	90

As amplitudes indicaram os seguintes valores:

Altura – Variando de 0 a 65 m;

Distância do Acostamento – Variando de 0 a 25 m;

Extensão – Variando de 4 m a 1076 m;

Inclinação (graus) - Variando de 20° a 90°;

Para ajustarem-se às diversas realidades de rodovias federais, os limites e intervalos podem sofrer variações. Entretanto, na elaboração da sistemática proposta, as amplitudes do levantamento serão utilizadas tal como os dados obtidos, a partir das quais são definidas 4 classes, com os seguintes intervalos apresentados na Tabela 28.

Classes Altura (m) Dist. Acost. (m) Extensão (m) Inclinação (graus) 1 - 17 4 - 273 0 - 6.2520 - 37,5 Ш 17,1 - 33 6,26 - 12,5 273,1 - 542 38 - 55,5 Ш 33,1 - 49 12,51 -18,75 542,1 - 811 56 - 73.5 IV 49,1 - 65 18,76 - 25 811,1 - 1076 74 - 90

Tabela 28 - Classes dos dados geométricos

4.3 Convergência dos Critérios com a Proposta

Fernandes e Amaral (1996) citam a declividade como o principal, ou mesmo o único parâmetro de caráter topográfico incorporado aos estudos de previsão e definição de áreas instáveis gerando, com frequência, distorções nas análises dos deslizamentos. Como consequência dessa interpretação, áreas de menor declividade, inicialmente definidas como de baixa susceptibilidade mostram, com frequência, a presença de deslizamentos no campo, principalmente na forma de corridas de massa. Tal fato evidencia que outros fatores condicionantes devem ser também considerados.

Contribuições significativas foram dadas pelos estudos realizados na Virgina (USA), a partir da análise de centenas de deslizamentos deflagrados pelo furação Camille em 1969 (Gao, 1993), e em Porto Rico (Larsen e Torres- Sanchez, 1998), onde foram mapeadas mais de 3000 cicatrizes. De um modo geral, estes trabalhos avaliaram, com base em modelos digitais de terreno, o papel desempenhado por algumas das variáveis topográficas (elevação, orientação e declividade) na localização espacial dos deslizamentos (Fernandes e Amaral, 1996).

Foram identificados 05 (cinco) métodos para Monitoração de Risco de Taludes (Metodologia FMEA e FMECA, Método DER-SP (1991), Método COPPETEC/ANTT,

Método Rockfall Hazard Ratting System (RHRS) e Norma Brasileira 11682/2009), sendo aquele desenvolvido pelo Instituto de Pesquisas Tecnológicas – IPT e DER (1991), o institucionalmente mais divulgado e com ampla utilização. Este método descreve os seguintes critérios a serem utilizados: Altura, Inclinação, Extensão, Declividade e Volume aproximado de material envolvido na instabilização. No desenvolvimento desta pesquisa, o critério volume será suprimido, pois se trata de monitoração prévia, pressupondo levantamento antes da ocorrência do evento. Portanto, não haverá identificação de volume, uma vez, que o levantamento de mapeamento tem a finalidade de evitar a ocorrência de instabilização, propondo tratamento prévio.

A metodologia a ser desenvolvida está pautada no monitoramento anual com definição de perspectiva de risco de incidentes em terraplenos, com a finalidade de prevenir a instabilidade do maciço ou parte. Para o desenvolvimento da sistemática, propõe-se a identificação de 8 (oito) critérios, para o consequente estabelecimento de graus de perspectiva de risco. Os critérios são:

a) Altura

A amplitude de relevo refere-se à variação de altura, em metros, dada pela diferença entre as cotas máxima e mínima. Quando esta variação tem como cota mínima o nível de base geral, tem-se a altitude. A amplitude está relacionada ao encaixamento dos vales. Quanto mais elevado o valor da amplitude, maior a energia cinética aplicada às vertentes e, consequentemente, maior é a capacidade de deslocamento de material, principalmente se associada a elevadas declividades, (Thomas, 1979).

Na pesquisa desenvolvida por Silva (2008) foi obtida a previsão de risco baixo (61,5%) para taludes baixos, e uma previsão de risco médio/alto, para taludes altos. Portanto, as Previsões de Risco de Escorregamento obtidas através da variação na altura remetem coerência, mas não certeza, pois o risco de escorregamento depende sempre de outras variáveis. A susceptibilidade ao deslizamento é função da inclinação, perfil do terreno (tipo de materiais), posição do Nível de água, dentre outras tantas.

Estando o critério altura mais relacionado à probabilidade de ocorrência de incidente, conforme pode ser acompanhado na Figura 27.

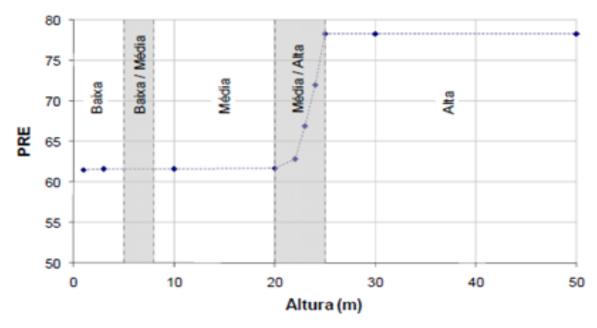


Figura 27 – Variação de PRE com a Altura do Talude (Silva, 2008)

Segundo a Norma DNIT 104/2009, a denominação "Cota Vermelha" é usualmente adotada para as alturas de corte e aterro ou mesmo como sendo a distância vertical entre o eixo da estrada e o nível do terreno. Na elaboração de projeto geométrico de rodovia, a boa prática recomenda estabelecer um limite para cota.

b) Distância do Acostamento

Em DNIT (2017) o acostamento é parte da rodovia, contígua à pista de rolamento, destinado ao suporte lateral do pavimento e proteção aos efeitos da erosão e, eventualmente, em caso de emergência, parada ou trânsito de veículos. Portanto, a distância do terrapleno até o acostamento, pode ser descrita no caso da seção da rodovia em corte, como sendo a faixa que vai da borda do acostamento até o pé do corte. No caso da seção em aterro é a faixa que vai da borda do acostamento até a crista do aterro na Figura 28.

Em rodovias bem estruturadas e com volume de tráfego intenso, os acostamentos também são pavimentados.

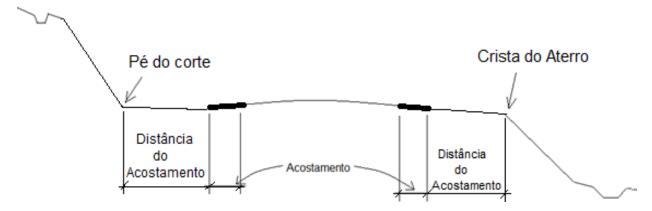


Figura 28 - Distância do Acostamento - Seção transversal mista

Nos Estados Unidos uma distância lateral de 10m é geralmente recomendada para a área livre de obstáculos nas vias expressas, e valores maiores são adotados em alguns países da Europa. Quando a aquisição das áreas laterais ou as características do terreno tornam inviável atender as áreas livres recomendadas, barreiras laterais devem ser instaladas para proteger os usuários da rodovia dos perigos provocados pelas condições da área lateral (DNIT, 2010).

A Figura 29 mostra a probabilidade de incidentes rodoviários relacionados à distância de invasão, que seria a distância de saída de um veículo da pista de rolamento até um obstáculo. Na ausência de dados que indiquem a distância de terraplenos até a pista de rolamento e a parte da pista afetada por movimentos de massa, a relação distância de invasão x probabilidade (%) registrada em DNIT(2010) pode ser considerada inicialmente como parâmetro.

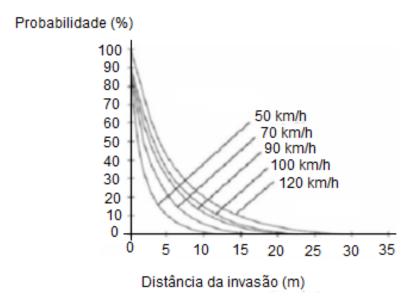


Figura 29 – Distância da invasão x Probabilidade de incidente (DNIT, 2010)

Não por questões de estabilidade de terraplenos ou taludes, mas por questões de segurança rodoviária, DNIT (2010) indica que taludes laterais muito inclinados também constituem um tipo de obstáculo lateral que deve ser evitado. As inclinações máximas admissíveis que podem ser controladas por veículos desgovernados são da ordem de 1,0:3,0 a 1,0:4,0, conforme Tabela 29. Os ângulos entre o acostamento e o talude e entre o talude e a área adjacente também devem ser substituídos por concordâncias suaves.

Tabela 29 - Redução de acidentes por aumento das áreas laterais (Zeeger *et al.* 1992 *apud* DNIT, 2010)

Aumento da lateral de segurança (m)	Redução de acidentes (%)
1,5	9
2,4	14
3,0	17
3,7	19
4,6	23
6,1	29

A distância dos terraplenos até o acostamento é fator preponderante na segurança do tráfego. Para ilustrar, a Figura 30 apresenta desprendimento de bloco de rocha, mas devido a uma distância segura do acostamento, não houve incidentes ou prejuízos à circulação. O critério distância do acostamento está mais relacionado aos danos que podem ser causados aos usuários da rodovia.

Figura 30 – Desprendimento de rocha em terrapleno rodoviário

c) Drenagem

A água está em um movimento entre a superfície e a atmosfera terrestre, no que se constitui o denominado "ciclo hidrológico". O vapor d'água das nuvens se condensa, sob o efeito de mudança de temperatura e precipita, de modo que a maior parte atinge o solo e segue os seguintes caminhos: evapora-se sobre o solo ou escoa sob a forma de água de escoamento *run-off*.

A água de infiltração e a água superficial de escoamento são importantes fatores no aspecto de instabilização dos terraplenos e, tal condição justifica a importância dos dispositivos de drenagem superficial e profunda.

DNIT (2010), no Manual de Drenagem de Rodovias, descreve os tipos de dispositivos de drenagens a serem instalados:

Sarjetas de corte

A sarjeta de corte tem como objetivo captar as águas que se precipitam sobre a plataforma e taludes de corte e conduzi-las, longitudinalmente à rodovia, até o ponto de transição entre o corte e o aterro, de forma a permitir a saída lateral para o terreno natural ou para a valeta de aterro, ou então, para a caixa coletora de um bueiro de greide.

Sarjetas de aterro

A sarjeta de aterro tem como objetivo captar as águas precipitadas sobre a plataforma, de modo a impedir que provoquem erosões na borda do acostamento e/ou no talude do aterro, conduzindo-as ao local de deságue seguro.

Descidas d'água

As descidas d'água têm como objetivo conduzir as águas captadas por outros dispositivos de drenagem, pelos taludes de corte e aterro.

Tratando-se de cortes, as descidas d'água têm como objetivo principal conduzir as águas das valetas quando atingem seu comprimento crítico ou de pequenos talvegues, desaguando numa caixa coletora ou na sarjeta de corte.

No aterro, as descidas d'água conduzem as águas provenientes das sarjetas de aterro quando é atingido seu comprimento crítico e, nos pontos baixos, através das saídas d'água, desaguando no terreno natural.

Saídas d'água

As saídas d'água nos meios rodoviários, são dispositivos destinados a conduzir as águas coletadas pelas sarjetas de aterro, lançando-as nas descidas d'água. São, portanto, dispositivos de transição entre as sarjetas de aterro e as descidas d'água.

Caixas coletoras

As caixas coletoras têm como objetivos principais:

- Coletar as águas provenientes das sarjetas e que se destinam aos bueiros de greide;
- Coletar as águas provenientes de áreas situadas a montante de bueiros de transposição de talvegues, permitindo sua construção abaixo do terreno natural;
- Coletar as águas provenientes das descidas d'água de cortes, conduzindo-as ao dispositivo de deságue seguro;

Dissipadores de energia

Dissipadores de energia, como o nome indica, são dispositivos destinados a dissipar energia do fluxo d'água, reduzindo consequentemente sua velocidade, quer no escoamento, através do dispositivo de drenagem, quer no deságue para o terreno natural.

Bacias de amortecimento

As bacias de amortecimento ou dissipadores localizados são obras de drenagem destinadas, mediante a dissipação de energia, a diminuir a velocidade da água, quando esta passa de um dispositivo de drenagem superficial qualquer para o terreno natural, de modo a evitar o fenômeno da erosão.

A considerar a necessidade do sistema de drenagem é importante que haja programação de manutenção, estando este quesito mais relacionado a probabilidade de ocorrência.

O critério sistema de drenagem está mais relacionado à probabilidade de ocorrência de incidente.

As ações de estabilização de encosta passam por mudança em sua geometria, construção de sistemas de drenagem, e/ou reforço do maciço com obras de contenção. Filho e Virgili (1998) indicam como alternativas de projeto, sempre partir das soluções mais simples e baratas, como implantação de sistema de Drenagem (superficial, subterrânea, de obras), em obras sem estrutura de contenção.

d) Extensão

A justificativa da extensão paira na possibilidade de ocorrência de trechos com falhas geológicas, entendidas como descontinuidades que podem condicionar a evolução do relevo de extensas regiões, definindo a localização de morros, cadeias de montanhas e vales. Grandes zonas de falhas podem originar formas abruptas de relevo que se tornam palco de fenômenos de instabilização de terraplenos. Colabora para observância da extensão, a possibilidade de identificar a xistosidade das rochas, decorrente da orientação paralela dos minerais, que permitem a formação de descontinuidades litológicas que emergem do talude. Esses planos de fraqueza tornam-se mais instáveis com a presença do intemperismo diferencial.

Diante do exposto, quanto mais extenso o terrapleno maior a suscetibilidade de condições destoantes e zonas de instabilidade que podem estar inseridas no maciço.

Nos dados já coletados e apresentados foram registrados três tipos de intervenções: remoção de barreiras, limpeza manual e contenção de erosão, sendo esta última predominante. Em todas as circunstâncias a extensão do terrapleno é de fundamental importância também para o dimensionamento do material a ser utilizado e das equipes que irão compor a campanha de serviços de estabilização.

A potencialidade do desenvolvimento de processos erosivos depende de fatores externos e internos. Dentre os externos está a topografia, com a declividade e o comprimento da encosta (Gerscovich, 2010).

O critério extensão está mais relacionado à probabilidade de ocorrência de incidente.

e) Inclinação

A declividade natural ou resultante da intervenção humana nos terraplenos, taludes ou encostas, também é fundamental no desencadeamento de movimentos de massa, o que é largamente comprovado pelas leis da mecânica dos solos e das rochas.

Os condicionantes geomorfológicos incluem as formas de vertentes e as variáveis morfométricas, como a dissecação, declividade, aspecto, amplitude de relevo, etc. Conforme observado por Netto (1994).

A declividade fornece a medida de inclinação (em graus ou percentual) do relevo em relação ao plano do horizonte. A velocidade de deslocamento de material e, portanto, a capacidade de transporte de massas sólidas e líquidas, é diretamente

proporcional à declividade. Esta variável tem grande importância nos processos geomorfológicos, condicionando cursos de água e deslocamento de solos coluvionares (Thomas, 1979).

As declividades acima de 30° apresentam risco de deslizamentos mais frequente. Acima de 60°, a camada de solo residual é menos espessa o que, teoricamente, diminuiria o risco de escorregamentos. No entanto, fenômenos desse tipo já foram verificados em áreas cujo manto de solo residual era pouco espesso, principalmente em épocas de pluviosidade elevada, tornando exposta a rocha de base (Fernandes e Amaral, 1996).

As inclinações dos taludes afetam a redução de acidentes. A Tabela 30 mostra que inclinações dos taludes são diretamente proporcionais aos acidentes. Os taludes estão com indicações na horizontal: vertical. Observa-se que a redução na inclinação do talude de 26,5° (2,0:1,0) para 9,5° (6,0:1,0), diminui em 12% a quantidade de acidentes.

Tabela 30 – Redução de acidentes por diminuição das inclinações (Zeeger *et al.* 1992 *apud* DNIT, 2010)

Redução de acidentes após a diminuição do talude (%)				
Inclinação do talude antes da	Inclinação do talude após diminuição			
diminuição	4:1	5:1	6:1	7:1
2:1	6	9	12	15
3:1	5	8	11	15
4:1	-	3	7	11
5:1	-	-	3	8
6:1	-	-	-	5

As causas da instabilidade podem ser externas: modificações da geometria do terrapleno, retirada de proteção superficial vegetal ou de solo mais resistente, condições climáticas e solicitações sísmicas e internas: diminuição da resistência do terreno, variação do nível d'água, erosão interna e liquefação espontânea. As ações de estabilização de encosta envolvem a mudança em sua geometria, a construção de sistemas de drenagem, e/ou reforço do maciço com obras de contenção (ABGE, 2008).

Escorregamento devido à inclinação ocorre sempre que a inclinação do talude excede aquela imposta pela resistência ao cisalhamento do maciço e nas condições

de presença de água. A prática tem indicado, para taludes de corte de até 8m de altura, constituídos por solos, a inclinação de 1,0V:1,0H como a mais generalizável (Marangon, 2006).

Os padrões de inclinações estabelecidas empiricamente indicam as inclinações associadas aos gabaritos estabelecidos nos triângulos retângulos, como referência inicial, vide Figura 31. Estes gabaritos são frequentemente usados na prática da Engenharia, porém, para um grande número de taludes não se obtém a sua estabilidade com estas inclinações, sendo necessária a realização de uma análise de estabilidade (Marangon, 2006).

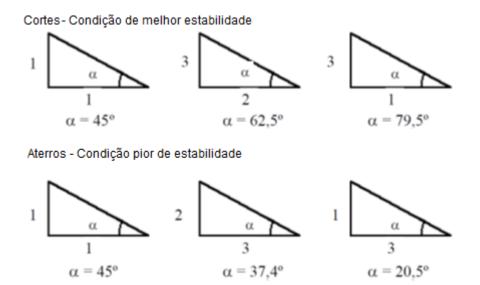


Figura 31 – Padrões de inclinação para taludes, estabelecidas empiricamente, como referência (Marangon, 2006)

O critério inclinação está mais relacionado a probabilidade de ocorrência de incidente.

f) Obras de Contenção/Estabilização

DER (1991), descreve as principais obras de estabilização de taludes:

- i. Muros de arrimo
 - Muro de pedra seca
 - Muro de pedra argamassada
 - Muro de concreto ciclópico
 - Crib-walls
 - Gabiões
 - Muro de arrimo de solo-cimento ensacado

- Muros de concreto armado
- Cortinas cravadas
- ii. Obras especiais
 - Tirantes e chumbadores
 - · Cortinas atirantadas

A Figura 32 apresenta um modelo de microestacas ou estacas tipo raiz combinada com cortina atirantada em obra de estabilização de terraplenos ou taludes.

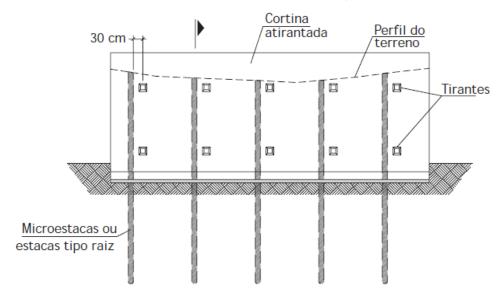


Figura 32 - Microestacas ou estaca tipo raiz (Gerscovich et al, 2016)

- iii. Soluções alternativas em aterros
 - Terra armada
 - Aterro reforçado com geotêxtil

Na Figura 33 são apresentadas três tipos de cortinas.

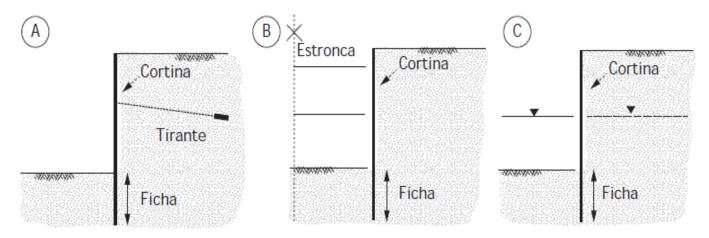


Figura 33 – Exemplos de cortinas: (A) atirantada; (B) estroncada; (C) em balanço (Gerscovich *et al*, 2016)

iv. Bermas de Equilíbrio

As bermas são obras de terra realizadas lateralmente nos aterros assentes sobre terrenos de baixa capacidade de suporte, destinada a manter o equilíbrio destes, impedindo refluxo do solo-adjacente (DNER, 1997).

As bermas são empregadas para estabilizar e suavizar a inclinação média de um talude de um aterro, levando a um aumento do fator de segurança contra a ruptura (DNER, 1998).

Na Figura 34 é apresenta um tipo de berma, cuja estrutura é implantada com a finalidade de garantir fisicamente a estabilidade do talude, sem qualquer modificação nas propriedades do solo existente.

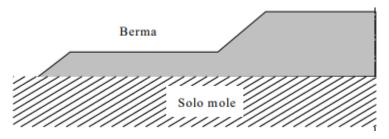


Figura 34 – Berma de equilíbrio (DNIT, 1998)

Estruturas de contenção são obras que têm a finalidade de conter maciços de solos ou de rejeitos (Maccaferri, 2017).

São variadas as obras com finalidade de contenção. A cortina atirantada é uma técnica que consiste na execução de uma "cortina" de contenção de concreto armado, projetado, parede diafragma ou perfis metálicos cravados, concomitantemente à perfuração, aplicação, injeção e protensão dos tirantes (SETE Engenharia, 2019).

Muros de Gravidade são estruturas corridas que se opõem aos empuxos horizontais pelo próprio peso. Geralmente, são utilizadas para conter desníveis pequenos ou médios, inferiores a cerca de 5m. Os muros de gravidade podem ser construídos de pedra ou concreto (simples ou armado), gabiões ou ainda, pneus usados (Gerscovich, 2016).

Muros de gabiões são constituídos por gaiolas metálicas preenchidas com pedras arrumadas manualmente e construídas com fios de aço galvanizado em malha hexagonal com dupla torção, modelo na Figura 35. As dimensões usuais dos gabiões são: comprimento de 2 m e seção transversal quadrada com 1 m de aresta. No caso de muros de grande altura, gabiões mais baixos (altura de 0,5 m), que apresentam

maior rigidez e resistência, devem ser posicionados nas camadas inferiores, onde as tensões de compressão são mais significativas. Para muros muito longos, gabiões com comprimento de até 4m podem ser utilizados para agilizar a construção.

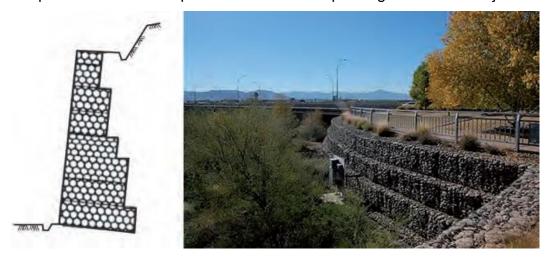


Figura 35 – Muro de gabião (Gerscovich et al, 2016)

O critério obras de contenção está mais relacionado à probabilidade de ocorrência de incidente.

g) Rochas

De acordo com Vallejo (2002) apud Costa (2007) tratam-se de agregados naturais duros e compactos de partículas minerais com fortes uniões coesivas permanentes que habitualmente se consideram um sistema contínuo. A proporção dos diferentes minerais, a estrutura granular, a textura e a origem da rocha, características intrinsecamente geológicas, servem também para a sua classificação em termos de engenharia.

Os fatores associados à heterogeneidade de um corpo rochoso e a sua variação traduzem-se, na prática, pela dispersão dos resultados, para cada propriedade determinada em ensaios conduzidos no corpo considerado (Graça, 1984 *apud* Costa, 2007).

Hoek and Brown (1980) propuseram graduação na transição de rocha intacta para rocha fortemente fragmentada, conforme Figura 36.

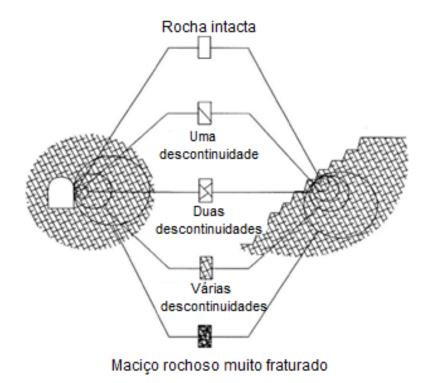


Figura 36 - Graduação de transição de rocha (Hoek, 2002)

As rupturas em maciços rochosos ocorrem em função da constante variação volumétrica de dilatância e contração, nas quais atuam as tensões de tração e compressão, agravando as diaclases. Barton (1987) descreve três categorias básicas de rupturas: furos profundos, minas profundas e túneis, que apresentam rupturas predominantes por cisalhamento, tração e ambas, respectivamente.

A abordagem desta pesquisa cita terraplenos, incluídos os rochosos ou mistos, que dispõem em sua composição de variação de rocha, desde sã até decomposta, cujo comportamento pode ser comparado ao de solo.

Nos terraplenos as rupturas podem ocorrer em virtude de tensões de compressão, pois após a implosão de rochas são agravadas diaclases e registrados surgimentos de blocos e fraturas, que ao longo do tempo sofrem com intemperismo e inserção de água, tendo como consequência desprendimento de pequenos blocos.

Não há modelo ideal para caracterização das rochas, pois cada caso dependerá do tamanho da escavação relativo ao espaçamento das descontinuidades, as condições de contorno, o nível de tensão imposto e as orientações das forças e descontinuidades.

O critério obras de contenção está mais relacionado aos danos que podem ser causados aos usuários da rodovia.

h) Vegetação

A vegetação, de maneira geral, protege o solo de fatores que condicionam os deslizamentos, como o aumento de escoamento superficial. A cobertura vegetal intercepta as águas pluviais reduzindo a energia cinética e favorecendo a infiltração.

Nos períodos de elevada pluviosidade, a água das chuvas penetra entre as descontinuidades do estrato superior da formação vegetal, o dossel, atingindo o solo, gerando e/ou reativando ravinas e canais de primeira ordem, que ocorrem, especialmente se não houver uma cobertura composta de flora de porte arbustivo (Guerra et al, 1994).

A presença de vegetação em taludes e encostas naturais é de grande importância no processo para mitigar os efeitos de instabilização dos terraplenos. As raízes das plantas tendem a melhorar a qualidade do solo, aumentando sua resistência através do reforço mecânico das raízes e reduzindo o teor de umidade do solo, função desenvolvida pelas plantas através dos processos de transpiração e absorção.

Kanji (1997) salienta que esta contribuição fica restrita à espessura alcançada pelo comprimento das raízes. Suarez (1997) ressalta que um efeito positivo importante é a ancoragem das massas de solo pelas raízes.

Guidicini e Nieble (1983) destacam a importância do papel desempenhado pela cobertura vegetal na estabilidade dos taludes. As florestas reduzem a intensidade da ação dos agentes do clima no maciço natural, evitando bruscas variações na umidade e temperatura do solo da encosta, com claras vantagens do ponto de vista de estabilidade. A cobertura vegetal também promove a deposição de matéria orgânica sobre a superfície do talude, a qual absorve parte da água precipitada e promove a proteção da erosão superficial.

Quanto ao revestimento superficial do terreno, é necessário analisar todas as variáveis que alteram o balanço hídrico do solo: a evapotranspiração realizada por espécies vegetais, a interceptação da precipitação pela vegetação, o reforço da camada superficial por meio do sistema radicular da vegetação e a execução de revestimentos aplicados sobre a superfície (Franch, 2008).

De acordo com Suarez (1997) a influência da vegetação na estabilidade de taludes tem sido muito debatida nos últimos anos, deixando dúvidas na quantificação dos efeitos de estabilização da vegetação. No entanto, a experiência tem

demonstrado o efeito positivo da vegetação. O autor comenta que o desmatamento tem sido identificado como um importante agente na instabilização de encostas urbanas. O critério vegetação está relacionado à vulnerabilidade de ocorrência de incidentes. A Figura 37 mostra implantação de placas de grama em terrapleno, para garantir maior estabilidade.

Figura 37 – Implantação de placas de grama em terrapleno

5 PROPOSTA METODOLÓGICA DE IDENTIFICAÇÃO DE RISCO

As intervenções para restabelecimento das condições normais em rodovias que de alguma forma tenham sido afetadas por movimentações de massa em seus terraplenos, podem ser difíceis, onerosas e não retiram o prejuízo causado. A fim de mitigar tais efeitos deletérios, a precaução é a medida mais adequada, com intervenções apenas de conservação e pequenas obras. Para isso, a identificação de riscos é um processo de natureza permanente, estabelecido, direcionado e monitorado pela equipe de gestão, que contempla as atividades de avaliar e gerenciar potenciais incidentes que possam comprometer a segurança e a eficiência rodoviária.

A identificação de risco é tema de relevante importância para gestão de uma atividade. Trata-se, porém de uma perspectiva relativamente nova na Administração Pública, tendo sido introduzida por intermédio do Acórdão 1.273/2015-TCU que recomendou à Casa Civil da Presidência da República, ao Conselho Nacional de Justiça e ao Conselho Nacional do Ministério Público que elaborassem um modelo de governança que contemplasse medidas para a solução de fragilidades relacionadas ao gerenciamento de risco.

No ano seguinte, o Ministério do Planejamento, Orçamento e Gestão e a Controladoria Geral da União, publicaram a Instrução Normativa Conjunta MP/CGU nº 001/2016 que dispõe sobre controles interno, gestão de riscos e governança no âmbito do Poder Federal e determina que os órgãos e entidades do Poder Executivo Federal implementem controles interno da gestão tendo por base a identificação, a avaliação e o gerenciamento de riscos.

Ainda que a proposta aqui desenvolvida não trate de riscos institucionais, a abordagem é convergente com a identificação de riscos em elementos de uso público, que podem comprometer a segurança da vida, em especial a humana.

Na sistemática proposta, a ponderação de valores relativos entre os 8 (oito) critérios, será sucedida da ponderação relativa de 4 (quatro) estágios para caracterização da perspectiva de risco de incidentes em terraplenos.

Para desenvolvimento da sistemática de monitoramento que cria a Perspectiva de Risco de Incidentes, é necessário estabelecer a relação hierárquica entre critérios, para cada alternativa. A Figura 38 apresenta os 8 (oito) critérios propostos, que compõem o levantamento de identificação de risco do terrapleno, a saber:

- Altura;
- Distância do acostamento;
- Drenagem;
- Extensão;
- Inclinação;
- Obras de Contenção;
- Rochas;
- Vegetação.

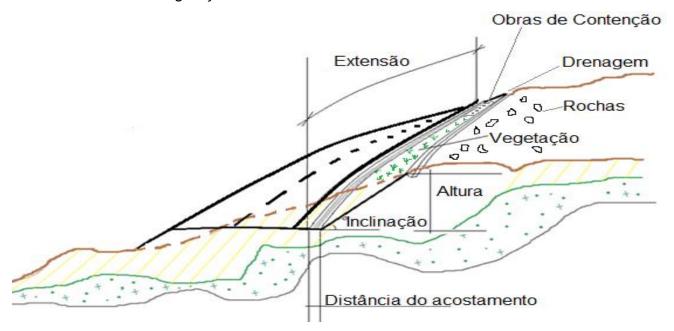
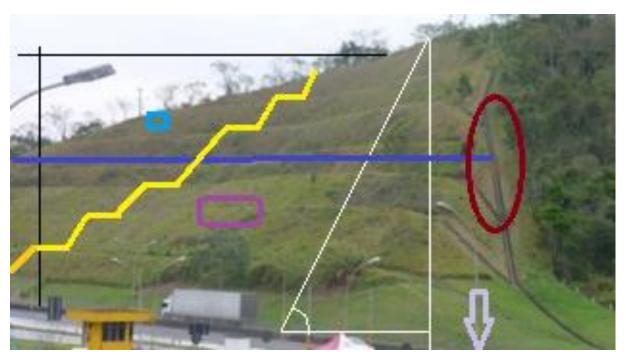



Figura 38 – Indicação dos 8 critérios de composição

Há uma interação entre o conjunto de critérios, que indicam uma perspectiva de risco de incidentes nas encostas rodoviárias. A fotografia de acervo pessoal, indicada na Figura 39 ilustra essa interação, mesmo não permitindo visualização do acostamento, indica sua posição.

Legenda:

Altura; - Distância do acostamento; Drenagem; - Extensão; - Inclinação; - Obras de Contenção/Estabilização; - Rochas e Vegetação

Figura 39 - Fotografia com os 8 critérios propostos para sistemática

No item 5.2, foi realizado tratamento de dados dos critérios geométricos dos terraplenos analisados, tendo sido verificados 400 terraplenos de novembro de 2017 a março de 2018, que apresentaram:

- a) Altura Variando de 1 m a 65 m;
- b) Distância do Acostamento Variando de 0 a 25 m;
- c) Extensão Variando de 4 m a 1076 m;
- d) Inclinação (graus) Variando de 20° a 90°;

Cada critério tem 4 estágios, que seguirão os valores das classes, sendo enumerados I, II, III e IV, a fim de auxiliar na identificação da perspectiva de risco de incidentes.

Além dos estágios dos critérios geométricos propõem-se outros quatro estágios, também enumerados I, II, III e IV, para cada um dos outros quatro critérios. A Tabela 31 apresenta os oito critérios propostos e a gradação, dos respectivos 4 estágios.

Tabela 31 - Estágios dos Critérios aplicados na Perspectiva de Risco de Incidentes

Altura

I – Até 17 m

II – 17,1 m a 33m

III – 33,1 m a 49m

IV – Acima de 49,1 m

Distância do acostamento

I – Acima de 18,75 m

II – 12,51 m a 18,75m

III - 6,26 m a 12,5 m

IV – Até 6,25m

Drenagem

I – Bom Estado

II - Demanda Manutenção

III – Parcial ou Natural

IV – Inexistente

Extensão

I – Até 273 m

II - 273,1 m a 542 m

III – 542,1 m a 811 m

IV – Acima de 811 m

Inclinação

I – Até 37,5°

II - 37,6°a 55,5°

III $-55,6^{\circ}$ a $73,5^{\circ}$

IV - Acima de 74°

Obras Contenção/Estabilização

I – Bom Estado

II – Demanda Manutenção

III - Desgastada

IV – Inexistente

Rochas

I – Inexiste ou Sã

II – Pouco Alterada

III – Severamente Alterada

IV - Decomposta

Vegetação

I – Consolidada ou Desnecessária

II - Parcial

III – Pouca ou Inconsistente

IV - Inexistente

Como são oito critérios e quatro estágios em cada critério, serão 65.536 possibilidades diferentes de perspectivas de risco de incidentes com terraplenos.

Na hipótese de terraplenos muito extensos, não havendo homogeneidade deve ser considerada a condição predominante.

No caso das rochas, propõe-se a adaptação do modelo de Hoek (2002) variando de rocha sã até decomposta.

Para casos do sistema de drenagem, obras de contenção/estabilização e vegetação, propõem-se as seguintes definições:

<u>Drenagem</u>

- I Bom Estado É o sistema de drenagem bem dimensionado, que não está danificado, nem desgastado e vem cumprindo suas funções de escoamento das águas precipitadas;
- II Demanda Manutenção É o sistema de drenagem, que embora bem dimensionado, pode estar danificado ou assoreado, não cumprindo temporariamente suas funções de escoamento de águas precipitadas, para o qual foi implantada;
- III Parcial É o sistema de drenagem, que embora esteja em funcionamento, foi implantado em parte do terrapleno, podendo ser drenagem superficial ou profunda, mas não ambas;

IV – Inexistente – É a ausência do sistema de drenagem.

Obras de Contenção/Estabilização

- I Bom Estado É a obra de contenção (cortina atirantada, terra armada, concreto projetado, muro de pedra argamassada, etc.) bem dimensionada, que não está danificada, nem desgastada e vem cumprindo suas funções de estabilização do terrapleno;
- II Demanda Manutenção É a obra de contenção, que embora bem dimensionada, pode estar danificada, não cumprindo temporariamente suas funções de estabilização. Considera-se Manutenção, qualquer ação que mantém a rodovia em condições satisfatórias de operação. Pode ser preventiva ou corretiva. De maneira geral, Manutenção Rodoviária se dá com a utilização de vários tipos de intervenções ou por intermédio de programas de manutenção (DNIT, 2017).
- III Desgastada É a obra de contenção, que embora bem dimensionada outrora, pode ter sofrido desgaste natural ou em decorrência da ação humana, não cumprindo na integralidade suas funções de estabilização. Esta condição requer serviços de conservação. Considera-se conservação, as operações destinadas a preservar as características técnicas e operacionais de uma obra, de acordo com sua concepção original ou conjunto de trabalhos necessários para que a obra se mantenha em boas condições de serviço (DNIT, 2017).

IV – Inexistente – É a ausência de obras de contenção/estabilização

Vegetação

I – Consolidada ou Desnecessária – O termo Consolidada é para terraplenos em solo e vegetação assente e integrada. Este termo serve para distinguir o caso de hidrossemeadura recente, na qual as placas gramíneas levam um tempo para consolidação. O termo Desnecessária serve para caracterizar o terrapleno estabilizado apenas com obra de contenção, sendo, portanto, desnecessária a presença de vegetação com a finalidade de proteção.

II – Parcial – Quando há vegetação, mas esta não está em toda região do terrapleno (altura e extensão) ou o tipo não aparenta ser ideal para contribuir com a estabilização do terrapleno.

III – Pouca ou Inconsistente – Quando há vegetação, mas a quantidade ou a condição
 é ínfima e irrisória para contribuir com a estabilidade do terrapleno.

 IV – Inexistente – É a ausência de vegetação em terrapleno de solo, onde a presença da vegetação poderia contribuir com a estabilidade.

Na ausência de termos específicos, já nesta fase é proposta certa caracterização, como: Bom Estado, Necessita de Conservação, Parcial, Inexistente, Apresenta Desgaste, Consolidada ou Desnecessária, Pouca ou Inconsistente.

Observa-se, que no quesito Drenagem, o termo Parcial corresponde ao estágio III, enquanto no quesito Vegetação a correspondência refere-se ao estágio II, pois o escalonamento das características é distinto.

Para as características geométricas não cabe ilustração, todavia, para indicação dos estágios dos termos supraindicados, seguem imagens do autor, como proposições de identificação:

<u>Drenagem</u>

I –Bom Estado, a Figura 40 apresenta um sistema de drenagem em bom estado de conservação e com os elementos condizentes com o dimensionamento.

Figura 40 - Drenagem - Bom Estado

II – Demanda Manutenção, a Figura 41 apresenta sistema de drenagem que requer manutenção, pois a obstrução da entrada d'água, compromete a funcionalidade do sistema.

Figura 41 – Drenagem – Demanda Manutenção

III – Parcial ou Natural, o conjunto de fotos da Figura 42 apresenta sistema de drenagem parcial ou natural. O sistema Parcial, se caracteriza quando a obra deveria ser estendida até região de deságue mais apropriada ou deveria ter dissipador de energia. No Natural, há elementos de depressão no terreno que facilitam e indicam o caminho da água superficial.

Figura 42 - Drenagem - Parcial ou natural

Obras de Contenção/Estabilização

 I – Bom Estado, a Figura 43 apresenta um dos diversos tipos de obras de contenção de terraplenos e taludes. No caso uma cortina atirantada.

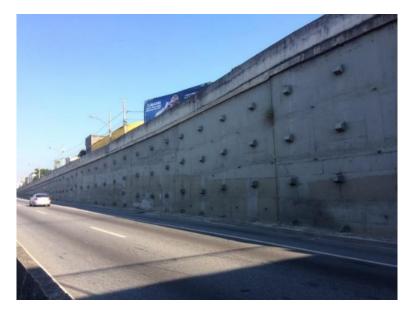


Figura 43 – Obras de contenção/ estabilização – Bom estado

II – Demanda Manutenção, a Figura 44 indica obra de contenção de talude rochoso com tela atirantada, porém partes da tela estão com aberturas superiores às previstas, ocasionando risco de queda de lascas.

Figura 44 – Obras de contenção/estabilização – Demanda manutenção

III – Desgastada, a Figura 45 apresenta obra de contenção de talude com concreto projetado, tirantes e telas. O termo desgaste designa que a obra já não cumpre mais sua funcionalidade. Neste caso a parte inferior das telas está totalmente solta. Portanto não contém mais blocos e lascas desprendidos do maciço.

Figura 45 - Obras de contenção/estabilização - Desgastada

<u>Vegetação</u>

I – Consolidada ou Desnecessária, a Figura 46 apresenta vegetação gramínea rasteira consolidada no terrapleno. Em caso de terraplenos com obras de contenção/estabilização, o critério vegetação pode receber a denominação de desnecessária.

Figura 46 - Vegetação - Consolidada

II – Parcial, a Figura 47 apresenta terrapleno com vegetação parcial, ou seja, nem todo o terrapleno está coberto com grama. Considerando que a vegetação auxilia na estabilidade do talude, se estiver parcialmente coberto, está com parte de sua estabilidade comprometida neste quesito.

Figura 47 - Vegetação - Parcial

III – Pouca ou Inconsistente, a Figura 48 apresenta terrapleno com pouca vegetação ou vegetação inconsistente, que auxilia pouco na estabilização do terrapleno.

Figura 48 - Vegetação - Pouca ou inconsistente

5.1 Perspectiva de Incidentes - PRI pelo Processo Hierárquico Analítico - AHP

O termo descrito como Perspectiva irá compor a Matriz de Riscos como Probabilidade de Incidentes em terraplenos rodoviários e será designada como a possibilidade de ocorrência de um evento de incidente, consolidada a partir do Processo Hierárquico Analítico (AHP), adotado nesta Tese.

Existe uma série de técnicas de análise de decisão multicritérios (ADMC), muitas das quais exigem que o tomador de decisão atribua diretamente pesos às alternativas, apresentando uma série de questões. Zeleny (1974) argumentou que tentar extrair preferências questionando diretamente o tomador de decisão é um processo inutilmente defeituoso, pois os seres humanos são inerentemente incapazes de processar a informação relevante sobre todos os critérios em pesos estáveis. Além disso, os métodos que provocam pesos diretamente não são adequados para a

tomada de decisões em grupo, como forjar algum acordo entre os pontos de vista divergentes é muitas vezes impossível (Barron e Barret, 1996).

O processo hierárquico analítico (AHP) elaborado por Saaty (1980) tende a superar essas falhas, porque os pesos não são atribuídos diretamente. O método estabelece comparações subjetivas do tomador de decisão e, em seguida, sintetiza estes julgamentos em pesos de proporção-escala. Notadamente, esses pesos individuais podem ser agregados para derivar pesos de grupo.

O AHP foi originalmente proposto por Saaty (1980), tendo seus fundamentos matemáticos aprofundados e ampliados em Zahedi (1984) e Saaty (1987), sendo baseado em três etapas básicas:

- Organização do problema em uma estrutura hierárquica que reflita as relações existentes entre os critérios de decisão e as alternativas candidatas;
- Comparação pareada entre elementos posicionados em um nível hierárquico com relação a elementos no nível superior adjacente;
- Análise das matrizes de comparações geradas, a partir do cálculo de autovetores e autovalores principais, e de indicadores de desempenho deles derivados, tais como os índices de consistência das avaliações.

O método de análise de decisão Analytic Hierarchy Process (AHP), desenvolvido pelo matemático Saaty (1980) fundamenta-se na comparação de alternativas de escolhas, duas a duas, onde o decisor realiza pares de comparações relativas a duas alternativas em mesmo nível da estrutura de decisão, julgando qual elemento satisfaz mais e quanto mais, identificando, assim, o ranking de cada alternativa candidata a solucionar o problema (Azeredo *et al*, 2009).

Portanto o Processo Analítico Hierárquico (AHP - Analytic Hierarchy Process) é a ferramenta de apoio à tomada de decisão, que permite identificar a melhor alternativa em um conjunto de possibilidades, com critérios de seleção pré-definidos. Os dados são coletados para a operacionalização do AHP sendo obtidos com o preenchimento de matrizes de comparações pareadas.

Limitações do AHP foram analisadas por diversos autores e estão vinculadas a diferentes aspectos do método. Uma discussão sobre as principais críticas ao AHP pode ser encontrada em Belton e Steward (2002). De acordo com Schoner e Wedley (1989), o método possui uma restrição matemática que gera dependência entre a importância relativa dos critérios e as importâncias das alternativas. Os autores

questionam a veracidade do terceiro axioma proposto por Saaty (1986) uma vez que acreditam que critérios em níveis diferentes deveriam ser independentes entre si.

A comparação aos pares proposta por Saaty (1990) utiliza uma escala de medidas de 1 a 9. Tal escala, segundo discussão na literatura, pode induzir a resultados discutíveis. Forman e Gass (2001) discutem a escala sob diversos aspectos, tais como a inexistência de um zero absoluto que a torna uma escala ordinal. Barzilai (1997) questiona a utilização do método do autovetor principal para derivar os vetores de prioridade. O trabalho de Bana *et al.* (2008) tem como principal conclusão que a utilização do método do autovetor principal pode violar a ordem das alternativas que é fundamental para a tomada de decisão, que deve respeitar os valores e julgamentos.

Schoner e Wedley (1989) apontam a principal limitação do AHP, relacionada à mudança da posição relativa de algumas das opções no momento da introdução de novas opções no problema (conhecido como problema da reversão de *ranking*). A legitimidade do problema de reversão de *ranking* continuou a ser discutida após a sua proposição original. Com objetivo de contornar o problema, Belton e Gear (1982) sugeriram a normalização dos autovetores de pesos das alternativas utilizando seu valor máximo ao invés de sua soma.

Apesar das limitações teóricas identificadas na técnica, o AHP continua sendo uma opção na análise de decisão multicriterial, vastamente aplicada. A Figura 49 apresenta o modelo da estrutura hierárquica aplicada, com o objetivo no topo e linhas escalonadas de critério e avaliação. A Tabela 32 descreve o valor dos graus de importância que variam de um a nove, com definição nos valores ímpares e possibilidade de gradação intermediária representada pelos números pares.

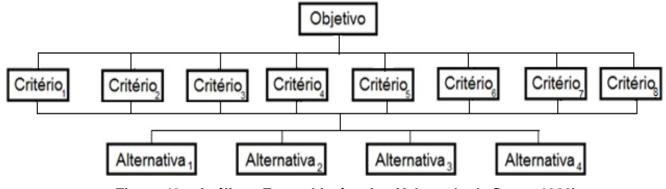


Figura 49 – Análise - Forma hierárquica (Adaptado de Saaty, 1980)

		· · · · · · · · · · · · · · · · · · ·
Valor	Definição	Explicação
1	Igual Importância	Contribuição Idêntica
3	Fraca Importância	Julgamento Irrelevante
5	Forte Importância	Julgamento Fortemente a Favor
7	Muito Forte Importância	Dominância Reconhecida
9	Importância Absoluta	Dominância Comprovada
2, 4, 6, 8	Valores Intermediários	Dúvidas

Tabela 32 – Escala fundamental (adaptado de Saaty, 1980)

O Método de Análise Hierárquica permite a utilização de dados qualitativos e/ou quantitativos mensuráveis, sendo estes tangíveis ou intangíveis, na análise de critérios, sendo ideal para sistemática proposta, que se utiliza de valores geométricos dos terraplenos, juntamente com a avaliação escalonada perspectiva a respeito dos demais critérios. O método é desenvolvido em 7 etapas, apresentadas por Saaty (1980):

Etapa 1. Definição do problema e respectivos critérios.

Nesta Etapa, procede-se à descrição dos valores de Perspectiva de Risco de Incidentes de Terraplenos Rodoviários, considerando 8 (oito) critérios: Altura (m), Distância do Acostamento (m), Drenagem, Extensão (m), Inclinação (graus), Obras de Contenção/Estabilização, Rochas e Vegetação. Como resultado das correlações são estabelecidas 4 graduações de probabilidade: Improvável, Possível, Provável e Muito Provável.

Etapa 2. Estrutura de decisão hierárquica.

Na Etapa 2, é feita a subdivisão em graus hierárquicos, indicando cada um dos oitos critérios, seguidos dos seus respectivos quatro estágios. A Figura 50 já delineada com a proposta desenvolvida nesta pesquisa, mostra como objetivo a Perspectiva de Incidentes e traz no campo de critérios os oito aspectos a serem analisados em cada um dos terraplenos e no campo das alternativas, a gradação de cada estágio escalonado de cada um dos oito critérios. A partir daí, obtém-se como resultados as probabilidades, variando de "Improvável" a "Provável".

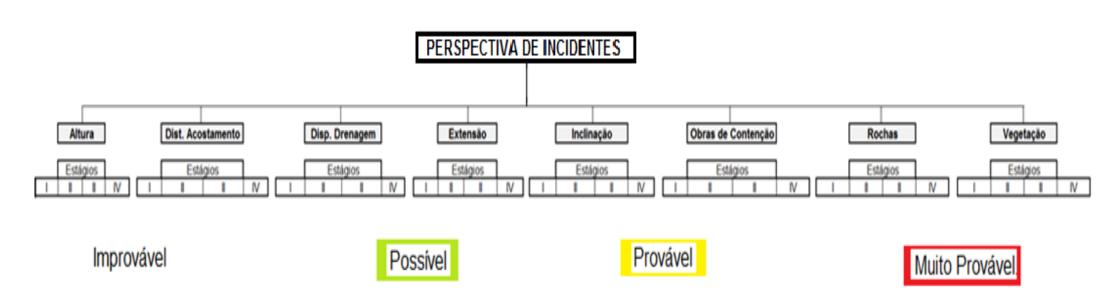


Figura 50 - Hierarquização de critérios e estágios (adaptado de Saaty, 1980)

1.00

0,33

0,33

Na decisão sobre determinada análise, o especialista faz sua avaliação com base em fatos que encontra e hipóteses que formula, buscando em sua memória um conhecimento prévio armazenado durante anos, no período de sua formação e durante sua vida profissional. A decisão é obtida, conforme sua experiência, seu conhecimento acumulado a respeito do assunto.

A decisão para atribuição de fator de escala na relação entre os pares que compõem o desenvolvimento da metodologia AHP, deve ser calibrada por especialistas na área específica de atuação, a fim de definir a importância relativa par a par. O conceito de experiência envolve dois fatores cruciais: seu alcance limitado quando aplicado para um indivíduo (ou possivelmente um grupo pequeno) e excelência em desempenho.

Lancaster (1993) relatou que as tarefas intelectuais associadas à profissão de especialistas em ciência da informação não podem ser facilmente delegadas para máquinas.

A opção por um especialista na área de pesquisa, se pauta nas fontes de conhecimento destes profissionais dentre as quais estão: livros e periódicos, relatórios e textos, base de dados, estudo de casos, dados empíricos e experiência pessoal, ainda que suas interpretações sejam distintas.

Etapa 3.1. Elaboração da matriz de comparações binárias, criando o impacto de cada elemento sobre cada critério de referência do nível superior, coleta e comparação par a par. Na Tabela 33, a matriz é recíproca, são graduadas as comparações critério a critério, ou seja, na escala de importância quando determinado critério é mais ou menos importante que o outro.

Obras de C/ Altura Dist. Acostam Disp. Drenagem Extensão Inclinação Rochas Vegetação Estabilização 1,00 Altura 5,00 3,03 5,00 1,00 5,00 5,00 Dist. Acostam 1,00 3,03 0,50 3,03 0,20 5,00 0,33 0,33 Disp. Drenagem 0,33 0,33 1,00 3,03 0,50 0,33 0,33 2,00 1,00 0,50 Extensão 0,20 0,33 0,33 0,33 0,33 0,50 Inclinação 1,00 2,00 3,00 1,00 3,03 3,03 5,00 2,00 Obras de 1,00 3,00 3,00 3,00 0,33 1,00 2,00 3,03 C/Estabilização 1,00 Rochas 0,20 2,00 3,00 2,00 0,33 0,50 3,03

2,00

0,20

0,50

Vegetação

0,20

0,33

Tabela 33 - Matriz de Preferência

Σ 4,13 13,99 17,86 22,06 4,19 6,86 12,53 22,59

Ao considerar o critério "Altura" na primeira coluna, comparando-o com os demais critérios em cada linha, têm-se as importâncias relativas.

Na Tabela 34, o critério "Altura" do terrapleno tem importância forte (5), quando comparado à "Distância do acostamento"; importância fraca (3) na comparação com a existência de "Dispositivos de drenagem"; importância forte (5) na comparação com a "Extensão"; igual importância (1) quando comparado à "Inclinação"; igual importância (1) quando comparado a "Obras de contenção/estabilização"; importância forte (5) na comparação com o critério "Rochas" e importância forte (5) na comparação com "Vegetação".

Etapa 3.2. Elaboração da matriz de comparações binárias, com coleta e comparação par a par dos Estágios.

Na Tabela 34 propõem-se pesos equânimes para as subdivisões de estágios de todos os critérios, considerando que as gradações são equivalentes dentro de cada critério.

Tabela 34 – Matriz de Preferência Comparação entre Estágios

Altura	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Distância do acostamento	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Dispositivo de drenagem	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Extensão	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Inclinação	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Obtas de contenção	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Rochas	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Vegetação	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	1,00	0,50	0,33	0,25
Estágio II	2,00	1,00	0,50	0,33
Estágio III	3,00	2,00	1,00	0,50
Estágio IV	4,00	3,00	2,00	1,00

Etapa 4.1. Obtenção de autovetores e autovalores para os Critérios

Horn e Johnson (1985) descrevem que se A é uma matriz de ordem n, real ou complexa, então um vetor não nulo v em \mathbb{C}^n é chamado um autovetor de A se Av é um múltiplo escalar de v, ou seja, $Av = \lambda v$ para algum escalar λ . Este escalar será chamado de autovalor de A e v é um autovetor associado a λ .

Mesmo que a matriz seja composta por números reais, seus autovalores e autovetores podem ser complexos. O vetor v pode ser qualquer, exceto o vetor nulo. Do ponto de vista algébrico, um autovetor de uma matriz A é um vetor cuja multiplicação por A pode ser feita de forma muito simples: basta multiplicar este vetor por um escalar. A Tabela 35 apresenta o autovetor normalizado, pois em termos de aplicações, o cálculo dos autovetores e autovalores de uma matriz, frequentemente pode nos conduzir a soluções de equações diferenciais.

Tabela 35 - Autovetor normalizado

Média Geométrica	•
Auto Vetor	Auto Vetor Normalizado
2,568	26,09%
0,908	9,23%
0,662	6,72%
0,396	4,02%
2,201	22,35%
1,646	16,72%
1,023	10,39%
0,441	4,48%
9,85	100,00%

A obtenção do autovetor é a média geométrica dos valores da linha de cada critério e sua normalização possibilita descrição do valor em porcentagem, cujo somatório deve ser sempre 100 %. Trata-se do vetor de prioridade, ou seja, a preferência que se tem pelo respectivo critério, no caso da proposta, o peso em que incide na perspectiva de risco de incidentes.

Para obtenção do autovalor realiza-se o produto de duas matrizes, sendo a linha do somatório de cada critério e a coluna os valores correspondentes aos autovalores normalizados. A Tabela 36 apresenta o somatório das linhas correspondentes a cada critério. Como resultado é uma matriz com o mesmo número

de linhas que a matriz 1 e o mesmo número de colunas da matriz 2, Autovalor, representado por $\lambda_{m\acute{a}x}=8,7.$

Tabela 36 – Linha com somatórios dos valores dos critérios

7	Σ	4,13	13,99	15,89	22,06	4,19	6,86	12,69	22,59	
---	---	------	-------	-------	-------	------	------	-------	-------	--

Etapa 4.2. Obtenção de autovetores e autovalores para os Estágios

Na Tabela 37 estão descritos os autovetores de cada estágio, correspondente a cada um dos oito critérios, sendo as importâncias dos estágios em cada critério, iguais.

Tabela 37 – Autovetor normalizado

	Média Geométrica			Média Geométrica	
Altura	Autovetor	Autovetor Normalizado	Distância do	Autovetor	Autovetor Normalizado
Estágio I	0,45	9,53%	acostamento		
Estágio II	0,76	16,03%	Estágio I	0,45	9,53%
Estágio III	1,32	27,76%	Estágio II	0,76	16,03%
Estágio IV	2,21	46,68%	Estágio III	1,32	27,76%
Σ	5	100,00%	Estágio IV	2,21	46,68%
			Σ	5	100,00%
	Média Geométrica			Média Geométrica	
Dispositivo de	Autovetor	Autovetor Normalizado	Extensão	Autovetor	Autovetor Normalizado
drenagem			Estágio I	0,45	9,53%
Estágio I	0,45	9,53%	Estágio II	0,76	16,03%
Estágio II	0,76	16,03%	Estágio III	1,32	27,76%
Estágio III	1,32	27,76%	Estágio IV	2,21	46,68%
Estágio IV	2,21	46,68%	Σ	5	100,00%
Σ	5	100,00%			
	Média Geométrio	ca		Média Geométri	ca
Inclinação	Autovetor	Autovetor Normalizado	Obtas de	Autovetor	Autovetor Normalizado
Estágio I	0,45	9,53%	contenção		
Estágio II	0,76	16,03%	Estágio I	0,45	9,53%
Estágio III	1,32	27,76%	Estágio II	0,76	16,03%
Estágio IV	2,21	46,68%	Estágio III	1,32	27,76%
Σ	5	100,00%	Estágio IV	2,21	46,68%
			Σ	5	100,00%
	Média Geométrio			Média Geométri	
Rochas	Autovetor	Autovetor Normalizado	Vegetação	Autovetor	Autovetor Normalizado
Estágio I	0,45	9,53%	Estágio I	0,45	9,53%
Estágio II	0,76	16,03%	Estágio II	0,76	16,03%
Estágio III	1,32	27,76%	Estágio III	1,32	27,76%
Estágio IV	2,21	46,68%	Estágio IV	2,21	46,68%
Σ	5	100,00%	Σ	5	100,00%

Para obtenção do autovalor realiza-se o produto de duas matrizes, sendo a linha do somatório de cada critério e a coluna os valores correspondentes aos autovalores normalizados. Na Tabela 36, está o somatório de cada estágio com valores oriundos da matriz de preferência. Como resultado obtém-se uma matriz com o mesmo número de linhas que matriz 1 e o mesmo número de colunas da matriz 2, Autovalor, representado por $\lambda_{m\acute{a}x}=4$.

Tabela 38 – Linha com somatórios dos valores dos estágios

	Estágio I	Estágio II	Estágio III	Estágio IV	
Σ	10	7	4	2	

Etapa 5.1. Normalização dos Critérios

A Tabela 39 apresenta a normalização dos critérios, que consiste na divisão, tendo como numerador o valor de cada célula da matriz de preferência e no denominador o somatório da respectiva coluna.

Altura Dist. Acostam Disp. Drenagem Extensão Inclinação Obras de Rochas Vegetação C/Estabilização Altura 0,2421 0,3574 0,1907 0,2266 0,2385 0,1458 0,3939 0,2213 0,0484 0,0715 0,1907 0,1374 0,0486 Dist. Acostam 0,1192 0,0394 0,1341 Disp. Drenagem 0,0799 0,0236 0,0629 0,1374 0,1192 0,0486 0,0263 0,0885 0,0484 0,0236 0,0795 0.0486 Extensão 0,0208 0,0453 0,0394 0,0221 Inclinação 0,2421 0,1430 0,1259 0,1360 0,2385 0,4417 0,2387 0,2213 Obras de 0,2421 0,2144 0,1888 0,1360 0,0787 0,1458 0,1576 0,1341 C/Estabilização Rochas 0,0484 0,1430 0,1888 0,0907 0,0787 0,0729 0,0788 0,1341 Vegetação 0,0484 0,0236 0,0315 0,0907 0,0477 0,0481 0,0260 0,0443 Σ 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Tabela 39 - Normalização dos Critérios

Etapa 5.2. Normalização dos Estágios

A Tabela 40 apresenta a normalização dos estágios, que consiste na divisão, tendo como numerador o valor de cada célula da matriz de preferência e no denominador o somatório da respectiva coluna. Cabe lembrar que os valores atribuídos aos estágios de cada critério são iguais.

	Estágio I	Estágio II	Estágio III	Estágio IV
Estágio I	0,100	0,077	0,087	0,120
Estágio II	0,200	0,154	0,130	0,160
Estágio III	0,300	0,308	0,261	0,240
Estágio IV	0,400	0,462	0,522	0,480
Σ	1	1	1	1

Tabela 40 - Normalização dos Estágios

Etapa 6.1. Razão de Consistência da matriz de decisão de Critérios

A consistência de uma matriz de comparações é medida a partir da Razão de Consistência - RC, que é a divisão entre o IC – Índice de Coerência (numerador) e o IR – Índice Randômico.

Como regra geral, se o IC for maior do que 0.1 recomenda-se que julgamentos sejam refeitos, como recategorização dos elementos, até que haja consistência para prosseguir com os cálculos Saaty (1980).

IC – Índice de Coerência é dado por:

$$IC = (\lambda_{m\acute{a}x} - n)/(n - 1)$$
 (29)
 $IC = (8,7 - 8)/(8 - 1)$
 $IC = 0,1$

A Tabela 41 apresenta, os valores correspondentes ao IR — Índice Randômico, para matrizes de diferentes ordens (Saaty, 1980). Observa-se que os valores de IR aumentam com a ordem n da matriz.

Tabela 41 – Valores de IR para matrizes de ordem 8 (Saaty, 1980)

D	3	4	5	6	7	8	9	10
RI	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,51

Sendo a razão de consistência (RC) a divisão entre IC e IR, tem-se:

$$RC = 0.1/1.41$$

$$RC = 7\%$$

Saaty. (1980) indica que se RC < 20% a Razão é coerente. Uma matriz de comparações com RC > 1 deve ter suas comparações revistas em busca de uma melhor consistência.

Etapa 6.2. Razão de Consistência da matriz de decisão de Estágios

O IC – Índice de Coerência é dado por:

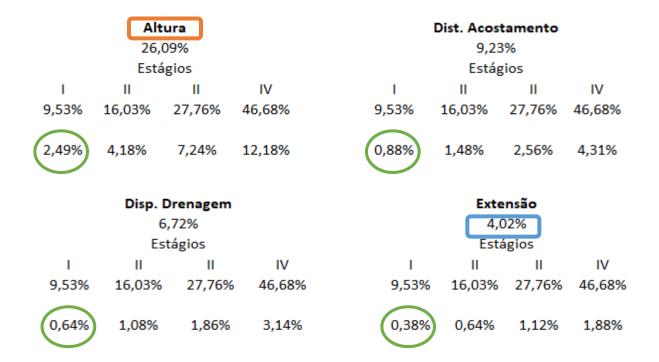
$$IC = (\lambda_{m\acute{a}x} - n)/(n - 1)$$
 (30)
 $IC = (4 - 4)/(4 - 1)$
 $IC = 0.0$

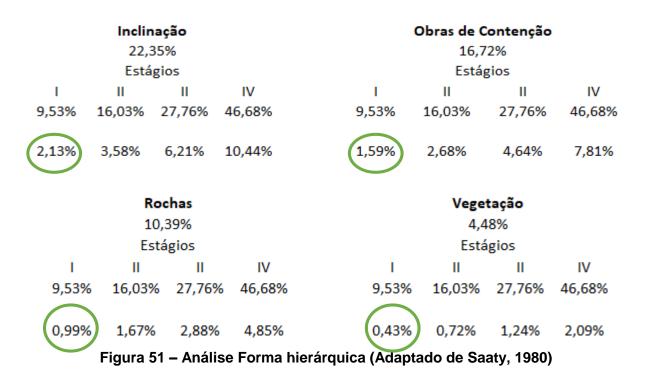
A Tabela 42 apresenta, os valores correspondentes ao IR — Índice Randômico, para matrizes de diferentes ordens são apresentados por Saaty (1980). Observa-se que os valores de IR aumentam com a ordem n da matriz.

Tabela 42 – Valores de IR para matrizes de ordem 4 (Saaty, 1980)

D	3	4	5	6	7	8	9	10
RI	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,51

A RC é dada por:


RC = 0.0/1.41


RC = 0.0%

Saaty (1980), indica que se RC < 20% a Razão é coerente. Uma matriz de comparações com RC > 1 deve ter suas comparações revistas em busca de uma melhor consistência.

Etapa 7. Processo de agregação dos valores de prioridade

A Figura 51 apresenta os resultados da análise, sob forma hierárquica, que compõem o peso relativo da graduação das variáveis utilizadas, na proposta da Perspectiva de Risco de Incidentes, de modo que o produto dos autovetores correspondentes a cada Critério e cada Estágio.

O estabelecimento de intervalos para os quatro graus propostos (Improvável, Possível, Provável e Muito Provável), parte do somatório dos produtos dos autovetores em cada Critério x Estágio. A partir desta identificação será registrada a amplitude, obtida a partir da diferença entre o maior e o menor valor. As classes serão equânimes, correspondentes à quantidade de graus, apresentados na Tabela 43, com 4 (quatro) classes.

Tabela 43 – Soma dos valores Critério x Estágio

_	9,53%	
II	16,03%	
III	27,76%	
IV	46,68%	

Amplitude = 46,68 - 9,53

Amplitude = 37,15

Classes = 37,15/4

Classe = 9.28

A Tabela 44, descreve os valores dos intervalos da modelagem de Perspectiva proposta, escalonando os níveis que variam de baixo a muito alto.

Tabela 44 - Intervalos entre Graus da PRI

Perspectiva de Incidentes - PRI em terraplenos

Improvável ≤	18,82%	<	Possível	≤	28,11%	<	Provável	≤	37,40%	<	Muito. Provável

A Figura 52 mostra que a soma de cada um dos 4 (quatro) Estágios nos 8 (oito) Critérios, coincide com o valor de cada Estágio no Critério.

Figura 52 – Análise – Coincidindo valores dos Estágios

Como *input* a perspectiva do método utiliza 8 (oito) critérios, sendo inseridos valores geométricos e características dos terraplenos. Como *output* são estabelecidos graus de Probabilidade de Incidentes para cada terrapleno. A partir da Tabela 45 é possível correlacionar as probabilidades de incidentes: Improvável, Possível, Provável e Muito Provável, enquadradas, conforme o valor correspondente.

Tabela 45 - Graus de Probabilidade de Incidentes

Terrapleno						
Perspectiva de Incidente	Valor					
Improvável	PRI ≤ 18,82%					
Possível	$18,82\% < PRI \le 28,11\%$					
Provável	$28,11\% < PRI \le 37,40\%$					
Muito provável	37,4% < PRI					

Improvável: A ocorrência pode ser registrada em circunstâncias excepcionais;

Possível: A ocorrência é pouco provável em algum momento;

Provável: A ocorrência deve ocorrer em algum momento;

Muito provável: A ocorrência é esperada na maioria das circunstâncias.

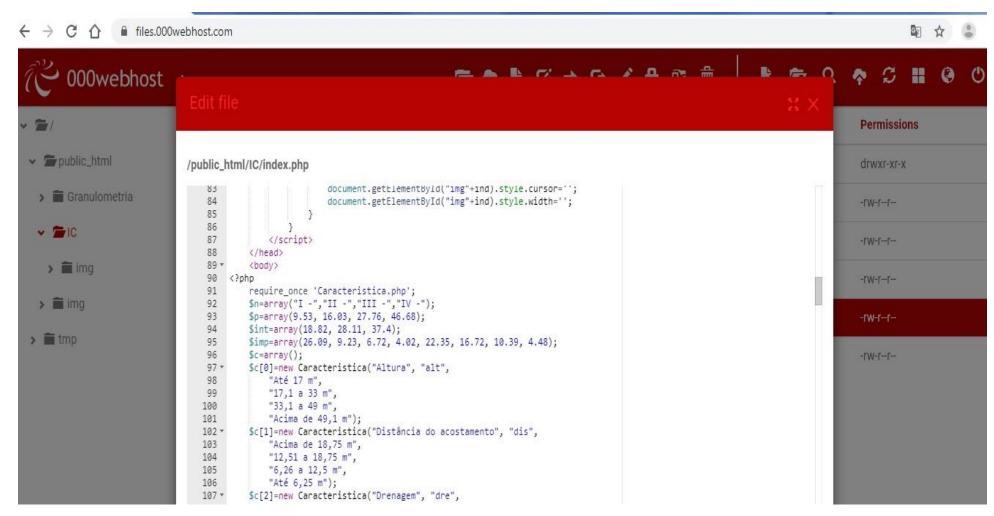


Figura 53 - Plataforma de desenvolvimento do site



Figura 54 - Página inicial do site - PRI

	Pesos gerais	- Intervalos -	
1- 9,5	3 %	Improvável ≤ 18,85 % < Poss	sível
II - 16,0	3 %	Possível ≤ 18,85 % < Prov	ável
III - 27,7	6 %	Provável ≤ 18,85 % < Muite	o Provável
IV - 46,6	8 %	Redefinir int	ervalos
os pesos	Redefinir pesos gerais tha os valores padrão ou altere que serão aplicados a cada (I a IV), inicialmente, em todos metros.	Mantenha os valores padrã os intervalos a serem conside análise final da PRI.	io ou altere
Altura	Distância do acostamento	Drenagem	Extensão
) I - Até 17 m	○ I - Acima de 18,75 m	○ I - Bom estado	○ I - Até 273 m
) II - 17,1 a 33 m	○ II - 12,51 a 18,75 m	○ II - Demanda manutenção	○ II - 273,1 a 542 m
) III - 33,1 a 49 m	○ III - 6,26 a 12,5 m	○ III - Parcial ou natural	○ III - 542,1 a 811 m
V - Acima de 49,1 m	○ IV - Até 6,25 m	O IV - Inexistente	O IV - Acima de 811 m
Importância: 7,17 %	Importância: 9,16 %	Importância: 11,07 %	Importância: 4,99 %
Definir pesos específicos	Definir pesos específicos	Definir pesos específicos	Definir pesos específicos
Selecione o parâmetro relativo a altura ride imagem 3). Mantenha o valor adrão ou altere a importância desta ategoria. Use os pesos gerais ou defina esos específicos para os parâmetros esta categoria.	Selecione o parâmetro relativo a distância do acostamento (víde imagem 3). Mantenha o valor padrão ou altere a importância desta categoria. Use os pesos gerais ou defina pesos específicos para os parâmetros nesta categoria.	Selecione o parâmetro relativo a drenagem (vide imagem 3). Mantenha o valor padrão ou altere a importância desta categoria. Use os pesos gerais ou defina pesos específicos para os parâmetros nesta categoria.	Selecione o parâmetro relativo a extensão (vide imagem 3). Mantenha o valor padrão ou altere a importância desta categoria. Use os pesos gerais ou defina pesos específicos para os parâmetros nesta categoria.
Inclinação	Obras de contenção	Rochas	Vegetação
) I - Até 37,5°	○ I - Bom estado	○ I - Inexistente ou sã	I - Consolidada ou desnecessária
○ II - De 37,6° a 55,5°	○ II - Demanda manutenção	○ II - Pouco alterada	○ II - Powered by 🏀 000webhost
O W B FF F0 70 F0	0 11 6 11	0.11.0	0 11 0 1 1 1

Figura 55 - Página inicial do site - Critérios

Figura 56- Página inicial do "site" - Nível de Serviço

Figura 57 - Página final do site - Resultado

A Perspectiva de Incidentes - PRI é de fácil aplicação. As Figuras 53 a 57 apresentam a plataforma de desenvolvimento de página na web que pode ser acessada por meio remoto para identificar a PRI de terraplenos, estando o programa disponível na internet, através do endereço: https://mritr.000webhostapp.com/

Os graus de Perspectiva de Incidentes são originários de consultas realizadas a especialistas em Geotecnia, mestres e doutores na área.

A modelagem proposta abrange a possibilidade de 65.536 (48) combinações distintas, traduzindo-se na quantidade de possibilidades. Assim que o produto dos critérios x estágios for identificado, avalia-se o nível de probabilidade, que possa ser a causa de Incidentes em terraplenos e afetar a circulação de tráfego das rodovias.

5.2 Impacto relacionado ao Nível de Serviço

Na hipótese de ocorrência de modos de ruptura ou movimentos gravitacionais de massas nos terraplenos, as consequências do incidente terão mais impacto para os usuários do sistema e para operacionalidade rodovia, quando envolvem os seguintes atributos:

- a) Quantidade de veículos (carros de passeios) em determinada extensão da rodovia (quilômetro) por faixa de tráfego ou carrocável;
- b) Velocidade média;
- c) Razão entre quantidade de veículos e a capacidade da via;
- d) Quantidade de veículos (carros de passeio) por unidade de tempo (hora) por faixa de tráfego.

Para representação da consequência na Matriz de Riscos, o indicador de Nível de Serviço permite descrever impactos na mobilidade, apresentando características necessárias e suficientes, que o torna aderente aos possíveis efeitos deletérios na segurança rodoviária, resultante de incidentes com terraplenos.

O Nível de Serviço representa uma medida da qualidade das condições operacionais na rodovia, procura refletir a percepção dos usuários em função de diversos fatores, tais como possibilidade de velocidade a ser desenvolvida, tempo de viagem, liberdade de manobras, interrupções do tráfego, fluidez e conforto.

Em TRB (2000) o Nível de Serviço é a representação da estratificação quantitativa de uma medida de desempenho ou medidas que representam a qualidade do serviço em uma escala que varia de "A" até "F", sendo "A" a representação das

melhores condições e "F" as piores, na perspectiva do viajante, com as seguintes descrições de implicações dos incidentes nos níveis de serviço da rodovia:

- i. Nível "A" Os efeitos dos incidentes ou avarias pontuais são facilmente absorvidos neste nível;
- ii. Nível "B" Os efeitos de incidentes menores e avarias pontuais, ainda são facilmente absorvidos;
- iii. Nível "C" Os incidentes menores podem ainda ser absorvidos, mas a deterioração local para montante será substancial. A formação de filas pode ser esperada para montante de qualquer bloqueio significativo;
- iv. Nível "D" Mesmo pequenos incidentes podem criar filas, porque o fluxo de tráfego tem pouco espaço para absorver as perturbações;
- v. Nível "E" Descreve a operação em capacidade. Qualquer incidente pode produzir prejuízos graves, com filas extensas;
- vi. Nível "F" Descreve falhas no fluxo de veículos, cujas condições geralmente existem dentro de filas formadas atrás dos pontos de quebra ou avarias. Estas condições podem ocorrer por uma série de razões, dentre elas o incidente de tráfego, que causa uma redução temporária da capacidade de um curto segmento, de modo que o número de veículos que o número de veículos que pode se mover através dele.

Da Figura 58 à Figura 61 apresentam-se situações com diferentes níveis de serviço em um mesmo trecho homogêneo da rodovia. Na Figura 58, a pista lateral permite aos condutores ter boa liberdade de seleção de velocidade, na pista central os condutores podem selecionar velocidades sem restrições com liberdade de manobra.

Figura 58 - Nível de Serviço I

Na Figura 59, a pista lateral permite aos condutores uma boa liberdade de seleção de velocidade. Na pista central há predominância de baixas velocidades e formação de filas.

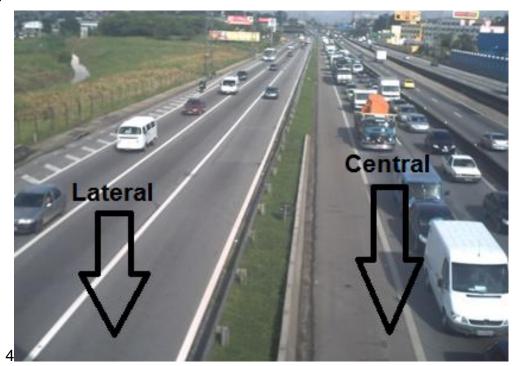


Figura 59 - Nível de Serviço II

Na Figura 60 a pista sentido RJ apresenta velocidades baixas e densidade elevada, na pista sentido SP os condutores tem boa liberdade de seleção de velocidade.

Figura 60 - Nível de Serviço III

Na Figura 61 a pista lateral sentido SP apresenta fluxo muito forçado e congestionado, na principal a operação é instável e com baixas velocidades. Na pista lateral sentido RJ o fluxo apresenta liberdade para velocidades e mudanças de faixa, na pista central o fluxo é estável, porém a escolha de velocidade é afetada e as manobras devem ser realizadas com cautela.

Figura 61 - Nível de Serviço IV

A avaliação do Nível de Serviço de rodovias é aspecto relevante durante o processo de planejamento, projeto, execução e operação do sistema.

Em TRB (2000) o HCM estabelece como *multilane highways* as rodovias convencionais de pista dupla, em que o controle de acesso é menos limitado do que nas *freeways*, que são nas rodovias de pista dupla expressa caracterizadas por duas ou mais faixas de tráfego para cada sentido de tráfego, com separação central entre pistas de sentidos opostos. Nessas rodovias, a entrada ou saída dos veículos é feita de forma controlada, tendo por finalidade maior mobilidade dos veículos e fluidez do tráfego, em detrimento da mobilidade. A Tabela 46 apresenta os dados referentes aos Níveis de Serviço em *freeways*,

Tabela 46 - Níveis de Serviço freeways TRB (2000)

Ouis fair		Nív	el de serv	iço	
Critério	Α	В	С	D	E
Velocidade de	fluxo livre	120 km/h			
Densidade máxima (cp/km/fx)	7	11	16	22	28
Mínima Velocidade (km/h)	120,0	120,0	114,6	99,6	85,7
Razão máxima volume / capacidade	0,35	0,55	0,77	0,92	1,00
Máxima taxa de fluxo por serviço (cp/h/fx)	840	1320	1840	2200	2400
Velocidade de	fluxo livre	110 km/h			
Densidade máxima (cp/km/fx)	7	11	16	22	28
Mínima Velocidade (km/h)	100,0	110,0	108,5	97,2	83,9
Razão máxima volume / capacidade	0,33	0,51	0,74	0,91	1,00
Máxima taxa de fluxo por serviço (cp/h/fx)	770	1210	1740	2135	2350
Velocidade de	fluxo livre	100 km/h			
Densidade máxima (cp/km/fx)	7	11	16	22	28
Mínima Velocidade (km/h)	100,0	100,0	100,0	93,8	82,1
Razão máxima volume / capacidade	0,30	0,48	0,70	0,90	1,00
Máxima taxa de fluxo por serviço (cp/h/fx)	700	1100	1600	2065	2300
Velocidade de	fluxo livre	90 km/h			
Densidade máxima (cp/km/fx)	7	11	16	22	28
Mínima Velocidade (km/h)	90,0	90,0	90,0	89,1	80,4
Razão máxima volume / capacidade	0,28	0,44	0,64	0,87	1,00
Máxima taxa de fluxo por serviço (cp/h/fx)	630	990	1440	1955	2250

Tabela 47 - Níveis de Serviço multilane highways (DNIT, 2006)

Critérios	Δ.	Níveis de serviço						
	Α	В	С	D	E			
Densidade máxima (ucp/km/faixa)	7	11	16	22	25			
Velocidade (km/h)	100,0	100,0	96,4	91,5	88			
Razão máx. Volume / Capacidade	0,32	0,50	0,72	0,92	1,0			
Fluxo máximo (ucp/h/faixa)	700	1100	1575	2015	2200			
Densidade máxima (ucp/km/faixa)	7	11	16	22	26			
Velocidade (km/h)	90,0	90,0	89,8	84,7	80,8			
Razão máx. Volume / Capacidade	0,30	0,47	0,68	0,89	1,0			
Fluxo máximo (ucp/h/faixa)	630	990	1435	1860	2100			
Densidade máxima (ucp/km/faixa)	7	11	16	22	27			
Velocidade (km/h)	80,0	80,0	80,0	77,6	74,1			
Razão máx. Volume / Capacidade	0,28	0,44	0,64	0,85	1,0			
Fluxo máximo (ucp/h/faixa)	560	880	1280	1705	2000			
Densidade máxima (ucp/km/faixa)	7	11	16	22	28			
Velocidade (km/h)	70,0	70,0	70,0	69,6	67,9			
Razão máx. Volume / Capacidade	0,26	0,41	0,59	0,81	1,0			
Fluxo máximo (ucp/h/faixa)	490	770	1120	1530	1900			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Razão máx. Volume / Capacidade Fluxo máximo (ucp/h/faixa) Densidade máxima (ucp/km/faixa) Velocidade (km/h) Razão máx. Volume / Capacidade Fluxo máximo (ucp/h/faixa) Densidade máxima (ucp/km/faixa) Velocidade (km/h) Razão máx. Volume / Capacidade Fluxo máximo (ucp/h/faixa) Densidade máxima (ucp/km/faixa) Velocidade (km/h) Razão máx. Volume / Capacidade Fluxo máximo (ucp/h/faixa) Velocidade (km/h) Razão máx. Volume / Capacidade Fluxo máximo (ucp/h/faixa)	Razão máx. Volume / Capacidade 0,32 Fluxo máximo (ucp/h/faixa) 700 Densidade máxima (ucp/km/faixa) 7 Velocidade (km/h) 90,0 Razão máx. Volume / Capacidade 0,30 Fluxo máximo (ucp/h/faixa) 630 Densidade máxima (ucp/km/faixa) 7 Velocidade (km/h) 80,0 Razão máx. Volume / Capacidade 0,28 Fluxo máximo (ucp/h/faixa) 560 Densidade máxima (ucp/km/faixa) 7 Velocidade (km/h) 70,0 Razão máx. Volume / Capacidade 0,26 Fluxo máximo (ucp/h/faixa) 490	Razão máx. Volume / Capacidade 0,32 0,50 Fluxo máximo (ucp/h/faixa) 700 1100 Densidade máxima (ucp/km/faixa) 7 11 Velocidade (km/h) 90,0 90,0 Razão máx. Volume / Capacidade 0,30 0,47 Fluxo máximo (ucp/h/faixa) 630 990 Densidade máxima (ucp/km/faixa) 7 11 Velocidade (km/h) 80,0 80,0 Razão máx. Volume / Capacidade 0,28 0,44 Fluxo máximo (ucp/h/faixa) 560 880 Densidade máxima (ucp/km/faixa) 7 11 Velocidade (km/h) 70,0 70,0 Razão máx. Volume / Capacidade 0,26 0,41 Fluxo máximo (ucp/h/faixa) 490 770	Razão máx. Volume / Capacidade 0,32 0,50 0,72 Fluxo máximo (ucp/h/faixa) 700 1100 1575 Densidade máxima (ucp/km/faixa) 7 11 16 Velocidade (km/h) 90,0 90,0 89,8 Razão máx. Volume / Capacidade 0,30 0,47 0,68 Fluxo máximo (ucp/h/faixa) 630 990 1435 Densidade máxima (ucp/km/faixa) 7 11 16 Velocidade (km/h) 80,0 80,0 80,0 Razão máx. Volume / Capacidade 0,28 0,44 0,64 Fluxo máximo (ucp/h/faixa) 560 880 1280 Densidade máxima (ucp/km/faixa) 7 11 16 Velocidade (km/h) 70,0 70,0 70,0 Razão máx. Volume / Capacidade 0,26 0,41 0,59 Fluxo máximo (ucp/h/faixa) 490 770 1120	Razão máx. Volume / Capacidade 0,32 0,50 0,72 0,92 Fluxo máximo (ucp/h/faixa) 700 1100 1575 2015 Densidade máxima (ucp/km/faixa) 7 11 16 22 Velocidade (km/h) 90,0 90,0 89,8 84,7 Razão máx. Volume / Capacidade 0,30 0,47 0,68 0,89 Fluxo máximo (ucp/h/faixa) 630 990 1435 1860 Densidade máxima (ucp/km/faixa) 7 11 16 22 Velocidade (km/h) 80,0 80,0 80,0 77,6 Razão máx. Volume / Capacidade 0,28 0,44 0,64 0,85 Fluxo máximo (ucp/h/faixa) 560 880 1280 1705 Densidade máxima (ucp/km/faixa) 7 11 16 22 Velocidade (km/h) 70,0 70,0 70,0 69,6 Razão máx. Volume / Capacidade 0,26 0,41 0,59 0,81			

O Nível de serviço F apresenta tráfego instável, em que os valores das variáveis representativas selecionadas são de difícil apuração.

Em DNIT (2006), os critérios para determinação dos níveis de serviço em rodovias com quatro ou mais faixas de tráfego, considera o conceito de densidade máxima, velocidade máxima e razão máxima e fluxo máximo, a Tabela 47 apresenta Níveis de Serviço *multilane highways*.

A Figura 62 é elucidativa e mostra situações que representam cada um dos níveis de serviço em um mesmo segmento de uma hipotética pista simples, conforme critérios extraídos do HCM (2000).



Figura 62 - Nível de Serviço ilustrativo

5.2.1 Efeitos na Rodovia Resultantes de Incidentes em Terraplenos

Os efeitos dos incidentes resultantes de instabilização de terraplenos em rodovias afetam a segurança, a fluidez do tráfego, o conforto e os custos:

- a) Segurança Após a ocorrência do incidente a preocupação com as condições de segurança deve ser redobrada, pois o local sofre alterações, sendo por vezes uma surpresa para os demais condutores. As condições pós-acidente podem ser severas ou amenas. Dentre os fatores que podem intensificar o comprometimento da segurança está o período do dia, a existência de vítimas, a fatalidade e as características geométricas. Há possibilidade de ocorrência de outro incidente em virtude de um primário, por ser um fator comprometedor de segurança, assim como todo aparato operacional e de equipamentos possíveis a serem utilizados na cena do incidente;
- b) Fluidez do tráfego Sendo o incidente um evento não recorrente que tende a restringir o escoamento do tráfego, alterando o Nível de Serviço, tal alteração no comportamento das condições de operação da rodovia afeta

diretamente a capacidade, o que pode implicar muitas vezes em atrasos nos tempos de viagens dos usuários.

O TRB (2000) conceitua capacidade, como sendo a vazão máxima na qual os veículos ou as pessoas atravessam um ponto ou segmento uniforme de uma pista ou rodovia, durante um período de tempo especificado, considerando condições de tráfego, geométricas, ambientais e de controle, geralmente é expressa em veículos por hora. A Tabela 48 apresenta a capacidade remanescentes por faixas de tráfego, quando há alteração no acostamento ou faixas estão bloqueadas.

Número de faixas por sentido na <i>freeway</i>	Acostamento desabilitado	Acidente no acostamento	Uma faixa bloqueada	Duas faixas bloqueadas	Três faixas bloqueadas
2	0,95	0,81	0,35	0	Não se aplica
3	0,99	0,83	0,49	0,17	0
4	0,99	0,85	0,58	0,25	0,13
5	0,99	0,87	0,65	0,40	0,20
6	0,99	089	0,71	0,50	0,26
7	0,99	0,91	0,75	0,57	0,36
8	0,99	0,93	0,78	0,63	0,41

Tabela 48 - Capacidade remanescente (TRB, 2000)

- c) Conforto Está relacionado a bem-estar, quando da ocorrência de incidente que implique na necessidade de desvio de tráfego ou paralisação momentânea da circulação. O usuário do sistema tem sua perspectiva de comodidade alterada;
- d) Custo O incidente pode ser com o próprio veículo do condutor, trazendo prejuízos e custos diretos ou indiretos com aumento do tempo da viagem, que por sua vez aumenta o gasto de combustível e custo de manutenção.

DNIT (2011) elaborou um amplo estudo sobre os custos de acidentes na malha federal, ou seja, se o universo dos incidentes fosse considerado, os valores seriam superiores. Os custos totais, por itens para o ano de 2007, foram:

- Funerais R\$ 14.920.496,32;
- Médico-hospitalar R\$ 89.267.031,20;
- Perda de rendimentos futuros R\$ 1.387.526.290,88;
- Atendimentos na via R\$ 178.593.353,80;
- Administração de seguros R\$ 114.765.882,02;

- Danos às cargas R\$ 123.451.377,46;
- Danos aos veículos R\$ 2.169.490.309,50;
- Danos a terceiros R\$ 498.860,20;
- Custos Judiciais R\$ 7.962.991,20;
- Dor e sofrimento R\$ 1.473.855.992,00.

Os custos totais foram superiores a R\$ 5,5 bilhões de reais, para 2007. Para o ano de 2008, foi verificado um acréscimo de aproximadamente 11%, com custos totais de acidentes superiores a R\$ 6,1 bilhões de reais. De 2008 para 2009, foi verificado um aumento de aproximadamente 37% dos custos totais de acidentes, chegando próximo aos R\$ 8,5 bilhões de reais.

Segundo DNIT (2004), os dados referentes a custos de congestionamento em rodovias federais são: com mortos R\$ 22.386.989, com feridos R\$ 312.106.772 e sem vítimas R\$ 45.202.295; totalizando R\$ 379.696.056 para o ano de 2004. Porém, conforme descrito em DNIT (2011), a partir de 2011, não foi possível calcular o custo de congestionamento, pois o Departamento de Polícia Rodoviária Federal parou de incluir nos Boletins de Registros de Acidentes de Trânsito, as informações de dados sobre congestionamento. Tal ausência de informações, a respeito da existência de congestionamento, o tipo de restrição na via parcial ou total e sua duração, impede o cálculo deste custo específico.

Nesta proposta metodológica os seis Níveis de Serviços: A, B, C, D, E e F serão agrupados em 4 impactos básicos (A/B, C, D e E/F), para compor juntamente com as 4 gradações de probabilidade (improvável, possível, provável e muito provável) a Matriz de Riscos.

Com a finalidade de reduzir a subjetividade nos julgamentos, para o cálculo do impacto foram respeitadas as graduações de Níveis de Serviço, apenas atribuindo pesos sequenciais os pesos de 1 a 4 (1 - Pequeno; 2 - Moderado; 3 - Grande; 4 - Muito Grande). A Tabela 49 apresenta os pesos relativos aos Graus de Impacto de Incidentes.

Terrapleno

Impacto de Incidente Peso

Pequeno 1

Moderado 2

Grande 3

Muito Grande 4

Tabela 49 - Graus de Impacto de Incidentes

5.3 Matriz de Risco de Incidentes em Terraplenos Rodoviários

As atividades inerentes ao ser humano, estão intrinsecamente ligadas a um potencial de riscos. A considerar a relativa frequência, os riscos podem resultar em lesões físicas, perdas temporárias ou permanentes de capacidade para executar as tarefas e morte. A gerência de riscos convive com o ser humano desde os primórdios da civilização, pois o homem sempre esteve envolvido com riscos e com decisões sobre estes riscos. (Ruppenthal, 2013)

A incerteza de eventos em potencial é avaliada a partir de duas perspectivas – probabilidade e impacto. A probabilidade representa a possibilidade de que um determinado evento ocorrerá e o impacto representa a sua consequência/efeito. Assim, a matriz de riscos é uma ferramenta que permite aos gestores mensurar, avaliar e ordenar os eventos de riscos que podem afetar o alcance dos objetivos do processo. (Ministério do Planejamento, 2016)

Ao analisar riscos, cabe perceber que uma ou mais causas geram um risco, de modo que o risco pode ocasionar um ou mais efeitos, por isso torna-se importante buscar a identificação dos variados níveis de riscos. Esses níveis são resultados dos desenvolvimentos da combinação de pesos da perspectiva impacto e da perspectiva probabilidade.

Cada nível de risco será representado por uma tonalidade específica em função do cálculo a perspectiva "probabilidade", no eixo das abscissas (improvável, possível, provável e muito provável) e do cálculo a perspectiva "impacto", no eixo das ordenadas (Pequeno; Moderado; Grande e Muito Grande).

Os quadrantes da Matriz foram estabelecidos pela correlação impacto x probabilidade, que determina o ponto de corte entre os níveis de riscos. Os eventos

de riscos identificados devem ser avaliados sob a perspectiva de impacto e probabilidade, considerando as possíveis causas e as possíveis consequências levantadas. Os valores referentes à probabilidade de ocorrência, foram extraídos da aplicação do AHP: improvável, possível, provável e muito provável.

No julgamento do peso para o cálculo do impacto foram consideradas as definições de Níveis de serviço, havendo a atribuição dos valores sequenciais, conforme agrupamento. Portanto, identificação dos pesos de 1 a 4 (1 - Pequeno; 2 - Moderado; 3 - Grande; 4 – Muito Grande).

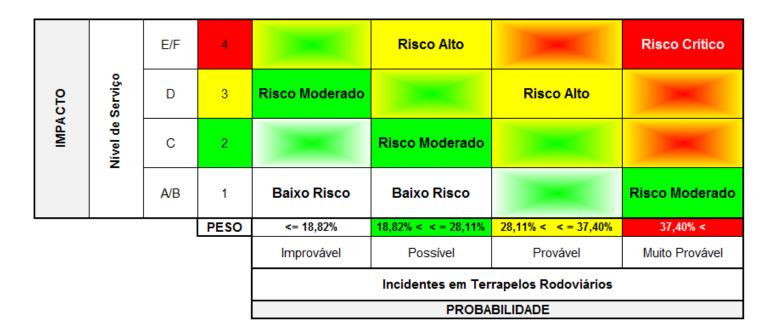

Os intervalos de pontuação para preenchimento dos quadrantes dos Níveis de Risco são compostos pelo produto dos valores atribuídos à probabilidade encontrada pela metodologia AHP e a média aritmética entre dois pesos consecutivos (1.5, 2.5 e 3.5) atribuídos aos Níveis de Serviço, que correspondem ao impacto da Matriz (Tabela 50).

Tabela 50 - Intervalo dos Níveis de Risco

Nível de Risco	Pontuação				
Baixo Risco	≤ 28,23%				
Risco Moderado	28,23% < <u><</u> 70,27%				
Risco Alto	70,27% < <u><</u> 130,9%				
Risco Crítico	130,9% <				

A partir da definição dos intervalos dos valores dos Níveis de Risco a Tabela 51 representa a Matriz de Risco de Incidentes em Terraplenos Rodoviários composta em função do produto entre os pesos correspondentes a cada terrapleno (probabilidade) e cada nível de serviço (impacto).

Tabela 51 - Matriz de Riscos de Incidentes

De acordo com cada Nível de Risco, a metodologia propõe-se a adoção de medidas, conforme Tabela 52, que descreve a intervenção e o prazo.

Tabela 52 - Intervenção e prazo

Nível de Risco	Prazo para início de intervenção
Baixo Risco	Terrapleno de baixo risco, não necessita de intervenção imediata, podendo aguardar nova avaliação no ano seguinte.
Risco Moderado	Terrapleno de risco moderado, estágio de observação e adoção de medidas de conservação em até 12 meses.
Risco Alto	Terrapleno de risco alto, estágio atenção e adoção de medidas de conservação e estabilização em até 6 meses.
Risco Crítico	Terrapleno de risco crítico, estágio de urgência, necessitando de inspeção específica imediata e adoção de medidas de estabilização em até 3 meses.

6 APLICAÇÃO DA METODOLOGIA

A proposta da Perspectiva de Risco de Incidentes com Terraplenos em Rodovias, será aplicada em dados de elementos obtidos de levantamentos realizados e cadastro de monitoração da Rodovia Presidente Dutra BR-116/RJ, ou seja, entre o Trevo das Margaridas, no município do Rio de Janeiro e a divisa com o Estado São Paulo.

6.1 Caracterização do trecho

A Rodovia Presidente Dutra, BR-116/RJ foi inaugurada no ano de 1951, substituindo a antiga estrada Rio-São Paulo, construída em 1928. Trata-se de Rodovia Federal (BR) que liga os dois Estados com maiores produtos internos brutos do país, São Paulo com R\$ 2,038 trilhões e Rio de Janeiro com R\$ 640 bilhões, correspondendo a 40% do PIB nacional, IBGE (2012). A considerar o modo rodoviário na matriz de transportes com participação de 52%, tem-se que a rodovia Presidente Dutra transporta potencialmente até 20% do PIB nacional, se consolidando como principal eixo econômico do país. As características geométricas e de traçado são distintas ao longo da Rodovia, prevalecendo duas faixas em cada sentido e acostamentos pavimentados. Em determinados trechos, o acostamento foi convertido em terceira faixa para caminhões lentos ou como faixa de aceleração ou desaceleração.

Na região metropolitana do Rio de Janeiro, há trechos em que a faixa de domínio coincide com muros das residências lindeiras, para o tráfego urbano há rotas paralelas à via expressa principal. A região do médio vale do rio Paraíba do Sul consiste em uma extensa depressão interplanáltica, ladeada pelo reverso da Serra do Mar e pela escarpa da Serra da Mantiqueira, entre as localidades de Três Rios e Engenheiro Passos, estendendo-se a oeste, pelo Vale do Paraíba paulista. Historicamente, essa região é a principal via de ligação entre Rio de Janeiro e São Paulo, sendo atravessada longitudinalmente pela Via Dutra.

Ao longo da Rodovia desenvolveram-se importantes núcleos urbanos industriais, com destaque para o polo siderúrgico de Volta Redonda e o polo metal - mecânico de Resende-Porto Real. Entretanto, o desenvolvimento urbano-industrial experimentado pela região promoveu uma série de problemas ambientais decorrentes

do desenvolvimento econômico, sendo que dentre os mais impactantes, destaca-se a contaminação das águas superficiais por efluentes domésticos e industriais, principalmente no rio Paraíba do Sul. Esse tipo de impacto é bastante preocupante pois coloca em questão não somente o abastecimento de água de vários municípios situados no médio Paraíba, como também a própria Região Metropolitana (Dantas, 2019). Na Figura 63 está descrita geomorfologia do trecho Fluminense da Rodovia.

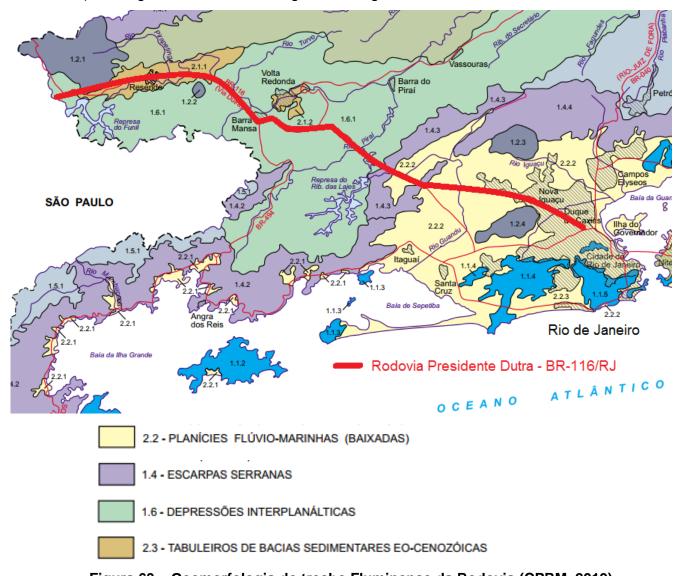


Figura 63 – Geomorfologia do trecho Fluminense da Rodovia (CPRM, 2019)

O levantamento dos terraplenos foi realizado entre o km 163 (Trevo das Margaridas) e o km 333,5 (divisa entre Rio de Janeiro e São Paulo), são 170 km percorridos em diferentes épocas do ano, que apresentam condições distintas.

6.2 Probabilidade: Perspectiva de Incidentes - PRI

No conjunto de Tabelas, denominado 53 foram registradas informações da perspectiva de probabilidade de incidentes nos 400 (quatrocentos) terraplenos.

Tabela 53 – Dados dos Terraplenos e Resultados da Perspectiva de Incidentes

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
1	5,7	2	Parcial	10	80	Bom Estado	Inexistente	Desnecessária	19,59%
2	6	1	Parcial	256	80	Inexistente	Inexistente	Consolidada	24,46%
3	6	0	Parcial	154	80	Bom Estado	Inexistente	Desnecessária	19,59%
4	5	1	Bom Estado	27	90	Bom Estado	Inexistente	Consolidada	17,58%
5	6	0	Parcial	336	90	Bom Estado	Inexistente	Parcial	20,32%
6	5	0	Parcial	41	90	Bom Estado	Inexistente	Consolidada	19,59%
7	5	1	Inexistente	72	90	Bom Estado	Inexistente	Consolidada	21,69%
8	2,5	0	Parcial	186	90	Bom Estado	Inexistente	Desnecessária	19,59%
9	1,5	1	Inexistente	198	90	Bom Estado	Inexistente	Desnecessária	21,69%
10	7	0,5	Inexistente	500	90	Bom Estado	Inexistente	Desnecessária	22,01%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
11	8	0	Inexistente	337	90	Bom Estado	Inexistente	Desnecessária	22,01%
12	16	2	Parcial	194	90	Bom Estado	Inexistente	Desnecessária	19,59%
13	7	0	Parcial	400	90	Bom Estado	Inexistente	Desnecessária	19,92%
14	10	0	Inexistente	790	90	Bom Estado	Inexistente	Desnecessária	22,60%
15	7	0,5	Parcial	504	90	Bom Estado	Inexistente	Desnecessária	19,92%
16	10	2	Inexistente	109	70	Bom Estado	Inexistente	Desnecessária	19,32%
17	6	0	Inexistente	29	60	Bom Estado	Inexistente	Desnecessária	19,32%
18	8	0	Inexistente	379	90	Bom Estado	Inexistente	Desnecessária	22,01%
19	8,5	1,5	Inexistente	350	90	Bom Estado	Inexistente	Desnecessária	22,01%
20	6	1,5	Inexistente	163	90	Bom Estado	Inexistente	Desnecessária	21,69%

Terrapleno		los dos aplenos							PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
21	4	0	Inexistente	317	90	Bom Estado	Inexistente	Desnecessária	22,01%
22	4,5	2	Inexistente	93	90	Bom Estado	Inexistente	Desnecessária	21,69%
23	10	0	Bom Estado	304	90	Bom Estado	Inexistente	Desnecessária	22,01%
24	6	1	Parcial	349	90	Bom Estado	Inexistente	Desnecessária	19,92%
25	3	0	Inexistente	32	90	Bom Estado	Inexistente	Desnecessária	21,69%
26	6	1,5	Inexistente	161	50	Inexistente	Inexistente	Consolidada	27,72%
27	8	6	Inexistente	233	60	Inexistente	Inexistente	Consolidada	29,19%
28	20	2	Parcial	213	50	Inexistente	Inexistente	Consolidada	26,09%
29	10	2,5	Inexistente	203	70	Inexistente	Inexistente	Consolidada	29,19%

30 3 0 Inexistente 500 50 Inexistente Inexistente Consolidada 28,05%

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
31	4	1,5	Inexistente	167	60	Inexistente	Inexistente	Consolidada	29,19%
32	7	3	Inexistente	202	70	Inexistente	Inexistente	Parcial	29,59%
33	6	2,5	Inexistente	200	70	Inexistente	Inexistente	Consolidada	29,19%
34	5	0,5	Inexistente	232	80	Inexistente	Inexistente	Consolidada	31,55%
35	5	1	Parcial	222	60	Inexistente	Inexistente	Consolidada	27,09%
36	5	1	Inexistente	198	40	Inexistente	Inexistente	Consolidada	27,72%
37	6	3	Inexistente	110	45	Inexistente	Inexistente	Consolidada	27,72%
38	3	8	Inexistente	81	70	Inexistente	Inexistente	Consolidada	27,45%
39	2,5	8	Inexistente	402	45	Inexistente	Inexistente	Consolidada	26,31%
40	7,5	2,5	Parcial	148	60	Inexistente	Inexistente	Parcial	27,50%

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
41	8	1	Inexistente	111	60	Inexistente	Inexistente	Consolidada	29,19%
42	7,5	2,5	Inexistente	131	60	Inexistente	Inexistente	Parcial	29,59%
43	6,5	1	Inexistente	126	50	Inexistente	Inexistente	Parcial	28,13%
44	5	3,5	Inexistente	143	70	Inexistente	Inexistente	Parcial	29,59%
45	8	1	Natural	100	50	Inexistente	Inexistente	Consolidada	25,63%
46	20	0	Parcial	100	70	Bom Estado	Inexistente	Desnecessária	17,70%
47	25	1	Inexistente	114	70	Inexistente	Inexistente	Inconsistente	30,79%
48	5	14	Inexistente	121	30	Inexistente	Inexistente	Consolidada	24,10%
49	12	1,5	Inexistente	167	50	Inexistente	Inexistente	Consolidada	27,72%
50	20	5	Parcial	4	60	Inexistente	Inexistente	Parcial	27,96%

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
51	4	2	Inexistente	12	40	Inexistente	Inexistente	Consolidada	27,72%
52	8	10	Inexistente	71	30	Inexistente	Inexistente	Parcial	25,58%
53	5	12	Inexistente	102	70	Inexistente	Inexistente	Consolidada	27,45%
54	6	1	Inexistente	645	50	Inexistente	Inexistente	Consolidada	28,63%
55	6	10	Inexistente	312	60	Inexistente	Inexistente	Parcial	28,18%
56	12	0	Inexistente	152	60	Inexistente	Inexistente	Parcial	29,50%
57	12	5	Inexistente	367	60	Inexistente	Inexistente	Parcial	29,92%
58	2,5	15	Inexistente	174	80	Inexistente	Inexistente	Parcial	29,15%
59	3	5	Inexistente	49	80	Inexistente	Inexistente	Parcial	31,96%
60	1,5	1,5	Natural	182	30	Inexistente	Inexistente	Parcial	25,22%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E.	Rocha	Vegetação	
61	15	5	Inexistente	311	60	Inexistente	Inexistente	Parcial	28,45%
62	5	0,5	Inexistente	229	60	Inexistente	Inexistente	Consolidada	29,19%
63	12	3	Inexistente	310	50	Inexistente	Inexistente	Consolidada	28,05%

64	15	0,5	Inexistente	52	70	Inexistente	Inexistente	Consolidada	29,19%
65	2,5	0,5	Parcial	233	45	Inexistente	Inexistente	Consolidada	25,63%
66	6	4	Inexistente	57	60	Inexistente	Inexistente	Consolidada	29,19%
67	12	10	Inexistente	106	70	Inexistente	Inexistente	Pouca	27,45%
68	4	8	Inexistente	150	50	Inexistente	Inexistente	Consolidada	25,99%
69	7	3	Inexistente	192	50	Inexistente	Inexistente	Consolidada	27,72%
70	8	7	Inexistente	85	20	Inexistente	Inexistente	Consolidada	25,18%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E.	Rocha	Vegetação	
71	4	10	Inexistente	69	60	Inexistente	Inexistente	Consolidada	27,45%
72	5	8	Inexistente	66	50	Inexistente	Inexistente	Consolidada	25,99%
73	12	1,5	Inexistente	60	70	Inexistente	Pouco Alterada	Parcial	31,04%
74	8	1	Natural	145	45	Inexistente	Inexistente	Consolidada	25,63%
75	8	0,5	Inexistente	182	80	Inexistente	Severame nte Alterada	Pouca	36,76%
76	3	5	Inexistente	212	60	Inexistente	Pouco alterada	Pouca	31,78%
77	8	6	Inexistente	33	50	Bom Estado	Inexistente	Consolidada	17,86%
78	8	0	Inexistente	96	50	Bom Estado	Inexistente	Consolidada	17,86%
79	36	2	Bom Estado	258	80	Bom Estado	Severame nte Alterada	Inexistente	25,27%
80	5	5	Bom Estado	11	40	Inexistente	Inexistente	Parcial	24,01%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
81	20	1	Inexistente	272	80	Bom Estado	Pouco Alterada	Inconsistente	24,74%
82	35	0	Parcial	176	90	Bom Estado	Severame nte Alterada	Inconsistente	26,11%
83	20	0,5	Parcial	117	90	Bom Estado	Severame nte Alterada	Inconsistente	25,27%
84	6	2	Parcial	863	45	Inexistente	Inexistente	Consolidada	27,48%
85	10	0,1	Inexistente	140	80	Inexistente	Inexistente	Consolidada	31,55%
86	10	0,5	Inexistente	95	90	Inexistente	Pouco alterada	Parcial	33,41%
87	20	0,5	Inexistente	90	90	Inexistente	Inexistente	Parcial	32,42%
88	50	1	Parcial	100	80	Inexistente	Inexistente	Parcial	32,53%
89	50	0,5	Bom Estado	201	85	Inexistente	Inexistente	Consolidada	30,10%
90	8	8	Bom Estado	82	40	Inexistente	Inexistente	Consolidada	21,88%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E.	Rocha	Vegetação	
91	25	1	Inexistente	693	70	Bom Estado	Pouco Alterada	Parcial	22,56%
92	50	0,5	Bom Estado	518	90	Demanda Manutenção	Inexistente	Parcial	22,70%
93	10	1	Inexistente	65	85	Inexistente	Pouco Alterada	Parcial	33,41%
94	20	2	Inexistente	164	60	Inexistente	Inexistente	Consolidada	29,65%
95	5	2,5	Parcial	166	50	Inexistente	Inexistente	Consolidada	25,63%
96	10	2,5	Parcial	97	60	Inexistente	Inexistente	Consolidada	27,09%
97	8	0	Inexistente	128	45	Inexistente	Inexistente	Consolidada	27,72%

98	8	2	Inexistente	97	60	Inexistente	Inexistente	Consolidada	29,19%
99	9	2	Inexistente	171	80	Inexistente	Inexistente	Consolidada	31,55%
100	6	15	Inexistente	119	70	Inexistente	Inexistente	Consolidada	29,19%

Terrapleno			Da	dos dos Terr	aplenos				PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
101	8	6	Inexistente	77	85	Inexistente	Pouco Alterada	Parcial	33,41%
102	5	2	Natural	150	60	Inexistente	Inexistente	Consolidada	27,09%
103	25	0	Inexistente	227	60	Inexistente	Pouco Alterada	Parcial	31,51%
104	30	0,5	Bom Estado	225	85	Bom Estado	Pouco Alterada	Desnecessária	19,49%
105	2	0,5	Bom Estado	50	60	Inexistente	Inexistente	Consolidada	25,08%
106	15	1	Inexistente	275	80	Inexistente	Pouco Alterada	Parcial	33,73%
107	15	1	Inexistente	45	90	Inexistente	Pouco Alterada	Parcial	33,73%
108	25	0	Inexistente	297	90	Inexistente	Pouco Alterada	Parcial	34,20%
109	20	0,5	Inexistente	76	70	Inexistente	Inexistente	Consolidada	29,65%
110	20	0	Inexistente	440	75	Inexistente	Pouco Alterada	Parcial	34,20%

Terrapleno				Dados	dos Terraplenos	5			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
111	10	4	Inexistente	70	70	Inexistente	Inexistente	Parcial	29,59%
112	15	1	Inexistente	95	60	Inexistente	Inexistente	Consolidada	29,19%
113	35	1,5	Inexistente	650	70	Inexistente	Inexistente	Parcial	31,81%
114	35	4	Inexistente	42	75	Inexistente	Inexistente	Consolidada	32,86%
115	35	1	Inexistente	156	75	Inexistente	Inexistente	Inconsistente	34,00%
116	10	0	Inexistente	131	60	Inexistente	Inexistente	Parcial	29,59%
117	35	8	Inexistente	142	70	Inexistente	Inexistente	Consolidada	28,76%
118	20	3	Inexistente	47	60	Inexistente	Inexistente	Parcial	30,06%
119	2,5	8	Inexistente	34	60	Inexistente	Inexistente	Parcial	27,86%
120	5	3	Parcial	92	50	Inexistente	Inexistente	Parcial	26,03%

Terrapleno		Dados dos Terraplenos									
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação			
121	8	1	Demanda Manutenção	4	60	Inexistente	Inexistente	Consolidada	25,79%		
122	25	0	Demanda Manutenção	52	50	Inexistente	Inexistente	Consolidada	24,79%		
123	15	3	Inexistente	8	55	Inexistente	Inexistente	Parcial	28,13%		
124	10	3	Parcial	161	50	Inexistente	Inexistente	Consolidada	26,03%		
125	15	6	Inexistente	300	50	Inexistente	Inexistente	Consolidada	28,05%		
126	8	1	Inexistente	145	60	Inexistente	Inexistente	Consolidada	29,19%		
127	30	0	Inexistente	298	70	Inexistente	Inexistente	Inconsistente	31,12%		
128	40	0	Inexistente	60	60	Inexistente	Inexistente	Consolidada	30,49%		
129	25	3	Natural	69	85	Inexistente	Inexistente	Consolidada	29,92%		
130	30	1	Parcial	497	85	Inexistente	Inexistente	Parcial	30,65%		

Terrapleno				Dados	dos Terraplenos	5			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	

131	30	3	Inexistente	194	65	Inexistente	Inexistente	Consolidada	29,65%
132	15	0	Inexistente	69	60	Inexistente	Inexistente	Parcial	29,59%
133	30	1	Parcial	200	80	Bom Estado	Inexistente	Parcial	20,47%
134	8	0,5	Inexistente	70	50	Inexistente	Inexistente	Consolidada	27,72%
135	15	1	Natural	100	90	Inexistente	Inexistente	Consolidada	29,46%
136	15	5	Parcial	41	65	Bom Estado	Inexistente	Consolidada	17,23%
137	25	0	Inexistente	117	60	Inexistente	Inexistente	Consolidada	29,65%
138	30	0,5	Parcial	500	85	Bom Estado	Inexistente	Consolidada	20,39%
139	30	4	Bom Estado	61	90	Bom Estado	Inexistente	Consolidada	18,04%
140	20	1	Natural	57	90	Demanda Manutenção	Inexistente	Consolidada	21,79%

Terrapleno		Dados dos Terraplenos									
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação			
141	25	0,5	Inexistente	84	70	Demanda Manutenção	Severamer nte Alterada	Parcial	25,99%		
142	35	0,5	Bom Estado	40	90	Bom Estado	Inexistente	Parcial	19,29%		
143	50	0	Bom Estado	350	90	Bom Estado	Inexistente	Consolidada	20,56%		
144	25	1	Inexistente	402	70	Bom Estado	Inexistente	Consolidada	20,11%		
145	30	2	Parcial	100	65	Inexistente	Inexistente	Consolidada	29,92%		
146	65	0	Bom Estado	400	90	Bom Estado	Inexistente	Consolidada	20,56%		
147	35	1	Bom Estado	21	90	Bom Estado	Pouco Alterada	Parcial	20,74%		
148	35	1	Bom Estado	40	85	Bom Estado	Pouco Alterada	Desnecessária	20,33%		
149	30	4	Inexistente	200	60	Bom Estado	Inexistente	Consolidada	19,79%		
150	30	1	Inexistente	145	85	Desgastada	Pouco Alterada	Parcial	28,85%		

Terrapleno		Dados dos Terraplenos P									
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação			
151	40	0,1	Inexistente	57	80	Bom Estado	Inexistente	Consolidada	23,00%		
152	40	0	Inexistente	96	90	Bom Estado	Inexistente	Desnecessária	23,00%		
153	18	0,5	Inexistente	42	70	Bom Estado	Pouco Alterada	Parcial	22,49%		
154	8	1	Inexistente	77	80	Inexistente	Inexistente	Consolidada	29,92%		
155	30	3	Inexistente	100	90	Bom Estado	Inexistente	Consolidada	22,16%		
156	18	0	Natural	275	70	Inexistente	Inexistente	Parcial	28,29%		
157	7	0	Inexistente	12	90	Bom Estado	Inexistente	Desnecessária	21,69%		
158	18	5	Inexistente	51	60	Bom Estado	Inexistente	Consolidada	19,79%		
159	15	7	Parcial	72	90	Bom Estado	Inexistente	Consolidada	17,86%		
160	18	0,5	Inexistente	325	70	Inexistente	Pouco Alterada	Parcial	31,83%		

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
161	5,5	2	Bom Estado	53	90	Bom Estado	Inexistente	Consolidada	17,58%
162	25	0	Inexistente	688	55	Inexistente	Inexistente	Consolidada	29,10%
163	50	6	Inexistente	550	55	Bom Estado	Inexistente	Consolidada	21,43%
164	50	0,1	Inexistente	49	90	Bom Estado	Inexistente	Consolidada	24,35%
165	10	0,1	Parcial	100	70	Bom Estado	Pouco Alterada	Desnecessária	18,68%
166	30	0	Inexistente	703	65	Bom Estado	Pouco Alterada	Inconsistente	23,29%

167	50	0	Bom Estado	114	90	Bom Estado	Inexistente	Consolidada	20,24%
168	8	0	Inexistente	229	80	Bom Estado	Inexistente	Inconsistente	21,69%
169	50	0,5	Inexistente	692	70	Bom Estado	Inexistente	Consolidada	22,90%
170	25	4	Inexistente	34	60	Bom Estado	Inexistente	Consolidada	18,32%

Terrapleno		Dados dos Terraplenos										
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação				
171	20	2	Inexistente	250	60	Inexistente	Pouco Alteração	Parcial	31,10%			
172	20	0	Inexistente	45	65	Inexistente	Inexistente	Parcial	29,65%			
173	60	5	Parcial	400	60	Bom Estado	Inexistente	Consolidada	20,22%			
174	40	1	Parcial	185	85	Bom Estado	Inexistente	Consolidada	20,90%			
175	60	5	Parcial	550	60	Bom Estado	Inexistente	Consolidada	20,80%			
176	50	5	Inexistente	40	90	Bom Estado	Inexistente	Consolidada	24,35%			
177	35	0,5	Parcial	168	50	Bom Estado	Inexistente	Consolidada	17,07%			
178	14	0,5	Inexistente	248	70	Inexistente	Inexistente	Parcial	29,59%			
179	12	1	Bom Estado	49	80	Bom Estado	Inexistente	Desnecessária	17,58%			
180	10	0,1	Inexistente	361	60	Demanda Manutenção	Inexistente	Consolidada	21,37%			

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
181	18	0,1	Parcial	265	70	Inexistente	Inexistente	Consolidada	27,56%
182	12	0,1	Inexistente	280	70	Inexistente	Inexistente	Consolidada	29,92%
183	7	1	Parcial	380	50	Inexistente	Inexistente	Consolidada	26,36%
184	25	0	Inexistente	202	70	Inexistente	Inexistente	Consolidada	30,06%
185	15	4	Inexistente	144	50	Inexistente	Inexistente	Parcial	29,59%
186	15	0,5	Inexistente	150	70	Inexistente	Inexistente	Consolidada	29,59%
187	4	0	Inexistente	122	45	Inexistente	Inexistente	Consolidada	27,72%
188	4	1	Parcial	197	45	Inexistente	Inexistente	Consolidada	25,63%
189	30	0,5	Inexistente	171	50	Inexistente	Inexistente	Consolidada	28,19%
190	5	0,5	Parcial	214	45	Inexistente	Inexistente	Consolidada	25,63%

Terrapleno				Dados	dos Terraplenos	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
191	30	1	Bom Estado	172	50	Bom Estado	Inexistente	Consolidada	14,21%
192	12	1,5	Inexistente	150	60	Inexistente	Inexistente	Consolidada	29,19%
193	20	1,5	Inexistente	185	50	Inexistente	Inexistente	Consolidada	28,19%
194	4	0	Parcial	471	60	Inexistente	Inexistente	Consolidada	27,42%
195	19	0,1	Inexistente	450	70	Inexistente	Inexistente	Consolidada	29,98%
196	20	1	Inexistente	358	70	Inexistente	Inexistente	Parcial	30,38%
197	5	1,5	Parcial	181	50	Inexistente	Inexistente	Consolidada	29,98%
198	10	3,5	Inexistente	161	70	Inexistente	Inexistente	Consolidada	29,19%
199	30	4	Inexistente	278	50	Inexistente	Inexistente	Consolidada	28,21%
200	5	1,5	Parcial	249	50	Inexistente	Inexistente	Consolidada	25,63%

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost.	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	

201	15	0,5	Inexistente	217	50	Inexistente	Pouco alterada	Parcial	29,58%
202	6	1	Parcial	86	50	Inexistente	Inexistente	Consolidada	25,63%
203	10	2,5	Inexistente	289	80	Inexistente	Inexistente	Consolidada	31,88%
204	10	1	Parcial	184	50	Inexistente	Inexistente	Consolidada	25,63%
205	18	0,1	Inexistente	190	80	Demanda	Pouco	Parcial	25,74%
206	4	8	Inexistente	196	50	Manutenção Inexistente	alterada Inexistente	Consolidada	27,72%
207	4	0,5	Parcial	73	80	Inexistente	Inexistente	Consolidada	29,46%
208	20	8	Inexistente	82	60	Inexistente	Inexistente	Parcial	28,33%
209	4	3	Inexistente	71	70	Bom Estado	Inexistente	Consolidada	19,32%
210	15	7	Parcial	53	70	Bom Estado	Inexistente	Consolidada	17,23%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
211	28	1	Inexistente	297	50	Bom Estado	Inexistente	Parcial	19,05%
212	30	6	Inexistente	42	70	Bom Estado	Inexistente	Consolidada	19,79%
213	1,5	3	Inexistente	548	40	Inexistente	Inexistente	Consolidada	28,63%
214	11	3	Parcial	281	60	Bom Estado	Inexistente	Consolidada	17,55%
215	4	1	Bom Estado	14	60	Inexistente	Inexistente	Parcial	25,48%
216	8	6	Inexistente	100	60	Inexistente	Inexistente	Parcial	29,59%
217	9	0,1	Inexistente	100	60	Inexistente	Pouco alterada	Parcial	31,04%
218	12	6	Inexistente	103	80	Inexistente	Inexistente	Consolidada	31,55%
219	10	0,5	Inexistente	113	70	Inexistente	Inexistente	Parcial	29,59%
220	30	2,5	Parcial	251	60	Bom Estado	Inexistente	Consolidada	17,70%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E.	Rocha	Vegetação	
221	15	5	Inexistente	250	60	Inexistente	Inexistente	Inconsistente	30,33%
222	30	4	Parcial	850	50	Inexistente	Inexistente	Consolidada	27,95%
223	14	0,5	Parcial	970	50	Inexistente	Inexistente	Consolidada	27,48%
224	15	0	Parcial	699	50	Bom Estado	Inexistente	Consolidada	15,76%
225	15	0	Inexistente	401	80	Inexistente	Pouco alterada	Parcial	33,73%
226	12	1	Inexistente	211	60	Inexistente	Pouco alterada	Parcial	31,04%
227	8	0	Inexistente	174	60	Inexistente	Pouco alterada	Consolidada	30,64%
228	12	0,5	Inexistente	277	60	Inexistente	Severame nte alterada	Inconsistente	34,72%
229	8	8	Inexistente	38	70	Inexistente	Inexistente	Consolidada	27,45%
230	12	2	Parcial	173	60	Inexistente	Inexistente	Consolidada	27,09%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
231	12	0,5	Inexistente	207	70	Inexistente	Inexistente	Consolidada	29,19%
232	10	0	Bom Estado	305	60	Bom Estado	Inexistente	Consolidada	15,54%
233	15	0	Inexistente	447	50	Inexistente	Severame nte alterada	Parcial	32,52%
234	10	2	Inexistente	413	60	Inexistente	Inexistente	Consolidada	29,51%
235	5	1	Natural	239	60	Inexistente	Inexistente	Consolidada	25,63%

236	18	2	Inexistente	250	50	Inexistente	Inexistente	Consolidada	28,19%
237	7	0,1	Inexistente	134	60	Inexistente	Inexistente	Consolidada	27,72%
238	8	7	Bom Estado	136	40	Inexistente	Inexistente	Consolidada	21,88%
239	15	0	Inexistente	140	45	Inexistente	Pouco	Consolidada	29,17%
240	18	25	Inexistente	108	80	Inexistente	alterada Inexistente	Pouca	29,75%

Terrapleno	Dados dos Terraplenos								
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
241	5	6	Inexistente	123	60	Inexistente	Pouco alterada	Consolidada	31,10%
242	6	1,5	Inexistente	181	60	Inexistente	Inexistente	Consolidada	29,65%
243	10	1	Inexistente	96	80	Bom Estado	Pouco alterada	Consolidada	23,61%
244	8	1	Inexistente	383	80	Inexistente	Inexistente	Consolidada	32,34%
245	12	2	Inexistente	292	50	Inexistente	Inexistente	Consolidada	28,51%
246	5	5	Natural	130	50	Inexistente	Inexistente	Consolidada	26,09%
247	20	1	Inexistente	1019	60	Inexistente	Inexistente	Consolidada	31,51%
248	20	1,5	Inexistente	1015	70	Inexistente	Inexistente	Consolidada	31,51%
249	4	0,1	Inexistente	150	70	Inexistente	Inexistente	Consolidada	29,65%
250	3	0,1	Parcial	50	40	Inexistente	Inexistente	Consolidada	26,09%

Terrapleno	Dados dos Terraplenos									
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação		
251	15	2	Inexistente	465	50	Inexistente	Inexistente	Consolidada	28,05%	
252	5	0,1	Parcial	228	70	Inexistente	Inexistente	Consolidada	27,09%	
253	6	2	Bom Estado	594	40	Inexistente	Inexistente	Consolidada	24,52%	
254	5	0,1	Inexistente	133	60	Inexistente	Inexistente	Consolidada	29,19%	
255	8	0,5	Inexistente	93	50	Inexistente	Inexistente	Consolidada	27,72%	
256	15	15	Inexistente	336	60	Inexistente	Inexistente	Consolidada	27,29%	
257	3,5	0,5	Bom Estado	40	70	Inexistente	Inexistente	Consolidada	25,08%	
258	7	1,5	Bom Estado	219	50	Bom Estado	Inexistente	Consolidada	13,75%	
259	15	0	Inexistente	900	50	Inexistente	Pouco alterada	Consolidada	31,03%	
260	4	5	Inexistente	634	60	Inexistente	Inexistente	Consolidada	30,10%	

Terrapleno		Dados dos Terraplenos									
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação			
261	30	2,5	Inexistente	1000	50	Inexistente	Inexistente	Consolidada	30,04%		
262	12	1	Inexistente	292	70	Inexistente	Inexistente	Consolidada	29,51%		
263	22	6	Inexistente	274	70	Inexistente	Pouco alterada	Consolidada	31,43%		
264	8	1	Natural	487	70	Inexistente	Inexistente	Consolidada	28,87%		
265	12	2	Inexistente	241	60	Inexistente	Pouco alterada	Consolidada	30,64%		
266	18	0	Inexistente	208	50	Inexistente	Pouco alterada	Consolidada	29,17%		
267	16	1	Inexistente	200	70	Inexistente	Pouco alterada	Consolidada	29,19%		
268	12	0,1	Bom Estado	200	60	Inexistente	Inexistente	Consolidada	25,08%		
269	6	5	Inexistente	115	80	Inexistente	Pouco alterada	Consolidada	33,00%		
270	7	0,5	Bom Estado	43	60	Inexistente	Inexistente	Consolidada	25,08%		

Terrapleno				Dados	dos Terraplenos	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
271	8	1	Bom Estado	167	60	Inexistente	Inexistente	Consolidada	25,08%
272	15	2	Inexistente	129	50	Inexistente	Inexistente	Consolidada	27,72%
273	4	0,1	Bom Estado	111	45	Inexistente	Inexistente	Consolidada	23,61%
274	10	3	Natural	310	60	Inexistente	Inexistente	Consolidada	27,42%
275	12	0	Inexistente	122	50	Inexistente	Inexistente	Consolidada	27,72%
276	10	1	Bom Estado	500	50	Inexistente	Inexistente	Consolidada	23,93%
277	8	2	Natural	83	45	Inexistente	Inexistente	Consolidada	25,63%
278	8	0,5	Bom Estado	286	55	Inexistente	Inexistente	Consolidada	23,93%
279	16	1	Inexistente	400	70	Inexistente	Inexistente	Consolidada	29,51%
280	4	1	Bom Estado	1080	50	Bom Estado	Inexistente	Consolidada	15,60%

Terrapleno	Dados dos Terraplenos									
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação		
281	16	10	Inexistente	591	45	Inexistente	Pouco Alterada	Consolidada	28,35%	
282	40	0	Inexistente	245	50	Inexistente	Inexistente	Consolidada	29,03%	
283	16	1	Natural	78	60	Bom Estado	Inexistente	Consolidada	17,23%	
284	15	2	Inexistente	50	70	Inexistente	Inexistente	Consolidada	29,19%	
285	35	0,5	Bom Estado	377	65	Bom Estado	Inexistente	Desnecessária	16,84%	
286	9	0,5	Inexistente	226	70	Inexistente	Pouco alterada	Consolidada	30,64%	
287	5	2	Parcial	122	50	Inexistente	Pouco alterada	Consolidada	27,08%	
288	3	0,5	Bom Estado	100	70	Inexistente	Inexistente	Consolidada	25,08%	
289	20	0,5	Inexistente	226	70	Inexistente	Pouco Alterada	Consolidada	31,10%	
290	3,5	0,5	Bom Estado	158	45	Inexistente	Inexistente	Consolidada	23,61%	

Terrapleno				Dados	dos Terraplenos	5			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
291	6	0,5	Bom Estado	297	50	Inexistente	Inexistente	Consolidada	23,93%
292	20	0,5	Natural	699	50	Inexistente	Inexistente	Consolidada	27,00%
293	8	0	Bom Estado	15	70	Inexistente	Inexistente	Consolidada	25,08%
294	10	0	Inexistente	87	60	Inexistente	Pouco alterada	Consolidada	30,64%
295	20	2	Inexistente	205	80	Inexistente	Pouco alterada	Consolidada	33,47%
296	7	0	Inexistente	121	80	Inexistente	Pouco alterada	Consolidada	33,00%
297	15	0	Inexistente	136	70	Inexistente	Pouco alterada	Consolidada	30,64%
298	8	0	Inexistente	350	50	Inexistente	Inexistente	Consolidada	25,08%
299	7	1	Inexistente	25	60	Inexistente	Pouco alterada	Inconsistente	31,78%
300	10	0,5	Inexistente	20	70	Inexistente	Inexistente	Consolidada	29,19%

Terrapleno				Dados	dos Terrapleno	S			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
301	8	1	Inexistente	100	60	Inexistente	Inexistente	Consolidada	29,19%
302	30	1	Parcial	348	60	Bom Estado	Pouco Alterada	Consolidada	19,47%
303	25	2,5	Inexistente	327	60	Demanda Manutenção	Pouco Alterada	Consolidada	23,29%
304	20	1	Inexistente	167	60	Bom Estado	Pouco Alterada	Consolidada	21,24%

305	18	0,5	Inexistente	291	60	Inexistente	Severame nte alterada	Parcial	34,45%
306	18	5	Inexistente	88	60	Inexistente	Inexistente	Consolidada	29,65%
307	10	0,5	Inexistente	317	70	Inexistente	Pouco Alterada	Consolidada	30,96%
308	20	1,5	Inexistente	96	50	Inexistente	Pouco Alterada	Consolidada	29,64%
309	11	2	Parcial	247	70	Inexistente	Pouco Alterada	Consolidada	28,54%
310	20	0	Inexistente	850	50	Inexistente	Inexistente	Consolidada	30,04%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E.	Rocha	Vegetação	
311	16	0,5	Inexistente	567	60	Inexistente	Pouco alterada	Consolidada	30,64%
312	8	1	Inexistente	264	50	Bom Estado	Inexistente	Consolidada	17,86%
313	7	0,5	Natural	235	90	Bom Estado	Inexistente	Consolidada	19,59%
314	15	0,5	Inexistente	193	70	Inexistente	Inexistente	Consolidada	29,19%
315	10	2	Parcial	334	60	Inexistente	Pouco alterada	Consolidada	28,87%
316	5	0,5	Inexistente	267	70	Inexistente	Inexistente	Consolidada	29,19%
317	25	0,5	Inexistente	333	65	Bom Estado	Pouco alterada	Consolidada	21,57%
318	8	2	Inexistente	72	60	Inexistente	Pouco alterada	Consolidada	30,64%
319	15	3	Inexistente	82	60	Inexistente	Inexistente	Consolidada	29,19%
320	10	0,5	Inexistente	267	70	Bom Estado	Pouco alterada	Consolidada	20,77%

Terrapleno				Dados	dos Terraplenos	5			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
321	4	2,5	Natural	197	60	Inexistente	Inexistente	Consolidada	27,09%
322	25	0,1	Inexistente	210	60	Inexistente	Inexistente	Consolidada	29,65%
323	10	8	Bom estado	124	60	Inexistente	Inexistente	Consolidada	23,34%
324	25	0,5	Inexistente	319	60	Bom estado	Pouco alterada	Consolidada	21,57%
325	10	0,1	Inexistente	89	60	Inexistente	Inexistente	Consolidada	29,19%
326	15	0,5	Inexistente	534	50	Bom estado	Sâ	Consolidada	18,18%
327	18	1	Bom estado	992	70	Bom estado	Pouco alterada	Consolidada	18,98%
328	20	0	Bom estado	839	65	Bom estado	Pouco alterada	Consolidada	18,98%
329	16	0,5	Bom estado	348	80	Bom estado	Pouco alterada	Consolidada	19,35%
330	4,5	1	Bom estado	485	45	Inexistente	Inexistente	Consolidada	23,93%

Terrapleno	Dados dos Terraplenos								
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
331	11	2,5	Inexistente	505	70	Bom Estado	Inexistente	Consolidada	19,65%
332	15	1	Inexistente	125	70	Inexistente	Inexistente	Desnecessária	29,19%
333	11	3	Inexistente	227	70	Inexistente	Pouco alterada	Consolidada	30,64%
334	16	1	Inexistente	137	80	Inexistente	Pouco alterada	Consolidada	33,00%
335	25	12	Inexistente	151	60	Bom Estado	Pouco alterada	Consolidada	19,51%
336	8	2	Inexistente	55	70	Inexistente	Pouco alterada	Consolidada	30,64%
337	8	0,5	Inexistente	101	60	Inexistente	Inexistente	Consolidada	29,19%
338	20	0,5	Inexistente	880	70	Inexistente	Inexistente	Consolidada	31,04%
339	30	2	Inexistente	474	50	Bom Estado	Pouco alterada	Consolidada	20,10%

340 6 1,5 Bom estado 645 50 Inexistente Inexistente Consolidada 24,52%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
341	8	0,1	Inexistente	269	60	Inexistente	Inexistente	Consolidada	29,19%
342	30	1,5	Inexistente	56	70	Inexistente	Pouco Alterada	Consolidada	31,10%
343	15	0,1	Inexistente	114	80	Inexistente	Pouco Alterada	Parcial	33,41%
344	18	1	Inexistente	342	70	Inexistente	Pouco Alterada	Consolidada	31,43%
345	1,5	9	Natural	204	70	Inexistente	Inexistente	Consolidada	25,36%
346	5	2	Natural	637	60	Inexistente	Pouco Alterada	Consolidada	29,45%
347	10	2	Inexistente	186	80	Inexistente	Pouco Alterada	Consolidada	33,00%
348	20	0,5	Inexistente	550	70	Inexistente	Pouco Alterada	Consolidada	32,01%
349	12	0,5	Natural	4	60	Bom Estado	Inexistente	Parcial	17,64%
350	16	1	Inexistente	449	70	Bom Estado	Pouco Alterada	Parcial	21,50%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
351	16	0,5	Inexistente	178	70	Inexistente	Inexistente	Consolidada	29,19%
352	14	0,5	Inexistente	474	70	Inexistente	Inexistente	Consolidada	29,51%
353	1	0,5	Inexistente	222	70	Inexistente	Severame nte alterada	Parcial	33,66%
354	1,5	10	Inexistente	98	60	Inexistente	Inexistente	Consolidada	27,45%
355	3	7	Inexistente	423	70	Inexistente	Pouco Alterada	Consolidada	29,23%
356	5	9	Inexistente	149	60	Inexistente	Pouco Alterada	Consolidada	28,91%
357	25	10	Inexistente	47	60	Inexistente	Severame nte alterada	Parcial	32,40%
358	4	10	Inexistente	94	60	Inexistente	Pouco Alterada	Consolidada	28,91%
359	10	1	Inexistente	247	70	Inexistente	Pouco Alterada	Consolidada	30,96%
360	10	0,5	Inexistente	33	80	Bom estado	Pouco Alterada	Parcial	23,55%

Terrapleno	Dados dos Terraplenos								
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
361	14	7	Bom Estado	356	60	Inexistente	Inexistente	Consolidada	23,67%
362	5,5	6	Inexistente	128	70	Inexistente	Pouco Alterada	Parcial	31,04%
363	6	10	Inexistente	86	85	Inexistente	Pouco Alterada	Parcial	31,68%
364	6	25	Inexistente	95	60	Inexistente	Inexistente	Parcial	26,19%
365	7	1	Bom Estado	1023	70	Bom Estado	Inexistente	Consolidada	17,07%
366	6	15	Inexistente	25	70	Inexistente	Pouco Alterada	Parcial	28,24%
367	8	15	Inexistente	350	70	Inexistente	Pouco Alterada	Consolidada	28,16%
368	5	3	Bom Estado	44	70	Inexistente	Inexistente	Consolidada	25,08%
369	5	0,5	Inexistente	200	60	Inexistente	Inexistente	Consolidada	29,19%
370	8	3	Inexistente	200	70	Inexistente	Inexistente	Consolidada	29,19%

Terrapleno				Dados	dos Terraplenos	3			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	

371	5	0,5	Inexistente	260	60	Inexistente	Pouco	Parcial	31,37%
372	8	1	Bom Estado	135	70	Inexistente	alterada Pouco alterada	Consolidada	26,53%
373	7	13	Inexistente	255	70	Inexistente	Pouco alterada	Parcial	29,64%
374	5	1	Natural	43	70	Inexistente	Inexistente	Consolidada	27,09%
375	4	15	Inexistente	141	80	Inexistente	Pouco alterada	Consolidada	31,27%
376	4	5	Bom Estado	88	70	Inexistente	Inexistente	Consolidada	25,08%
377	4	0	Natural	67	60	Inexistente	Inexistente	Consolidada	27,09%
378	7	12	Inexistente	200	70	Inexistente	Pouco alterada	Consolidada	28,91%
379	4	0,1	Inexistente	33	60	Inexistente	Inexistente	Consolidada	29,19%
380	5	2	Bom Estado	355	70	Inexistente	Pouco alterada	Consolidada	26,85%

Terrapleno				Dados	dos Terrapleno	s			PRI
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação	
381	7	0,5	Bom estado	256	70	Bom estado	Pouco alterada	Parcial	17,07%
382	3	7	Bom estado	55	50	Inexistente	Inexistente	Consolidada	21,88%
383	10	1	Bom estado	129	70	Inexistente	Inexistente	Consolidada	25,08%
384	3	14	Inexistente	159	80	Inexistente	Pouco alterada	Parcial	30,60%
385	2,5	3	Inexistente	72	50	Inexistente	Inexistente	Consolidada	27,72%
386	6	5	Bom estado	101	60	Inexistente	Inexistente	Consolidada	25,08%
387	7	1	Bom estado	100	80	Inexistente	Inexistente	Consolidada	27,44%
388	4	1	Inexistente	416	80	Inexistente	Inexistente	Consolidada	31,88%
389	4,5	1	Parcial	304	70	Inexistente	Inexistente	Consolidada	27,42%
390	12	2,5	Inexistente	293	60	Bom estado	Inexistente	Consolidada	19,65%

Terrapleno		Dados dos Terraplenos								
	Altura (m)	Dist. Acost. (m)	D. Drenagem	Extensão (m)	Inclinação (graus)	Obras C/E	Rocha	Vegetação		
391	3	0,5	Bom Estado	50	80	Inexistente	Inexistente	Consolidada	27,44%	
392	4	3	Bom Estado	200	45	Inexistente	Inexistente	Consolidada	23,61%	
393	8	10	Inexistente	296	70	Inexistente	Pouco alterada	Consolidada	29,23%	
394	11	0,5	Inexistente	338	80	Inexistente	Inexistente	Consolidada	31,88%	
395	16	0,5	Inexistente	358	80	Inexistente	Inexistente	Consolidada	31,88%	
396	4	1,5	Parcial	424	70	Inexistente	Inexistente	Consolidada	27,42%	
397	25	3	Inexistente	176	60	Inexistente	Inexistente	Consolidada	29,65%	
398	2	3	Bom Estado	8	30	Bom estado	Inexistente	Consolidada	12,93%	
399	20	0,1	Inexistente	126	70	Inexistente	Pouco alterada	Consolidada	31,10%	
400	50	0,1	Inexistente	370	70	Inexistente	Inexistente	Consolidada	32,18%	

6.2.1 Análise dos Resultados

Em relação aos critérios serão indicadas as predominâncias percentuais, a respeito dos dados geométricos. Serão apresentadas as frequências, média ponderada, aritmética e o histograma para cada quesito analisado.

Além disso, serão apresentadas as quantidades de terraplenos por níveis de risco, em decorrência da aplicação da Perspectivas de Risco de Incidentes

<u>Altura</u>

A Tabela 54 apresenta o tratamento estatístico dos valores correspondentes ao critério altura, que apresenta valores da média ponderada e aritmética de 15,25 m e 16,4 m, respectivamente. A Figura 64 possibilita a observação das frequências, de maneira mais elucidativa.

Frequência Altura (m) Ponto Médio Simples Relativa PMéd x Freq Acumulada 1 - 17 9 286 0,72 286 2574 17,1 - 33 25,05 85 0,21 371 2129,25 0,04 387 33,1 - 4941,05 16 656,8 49,1 - 65 57,05 13 0,03 400 741,65 15,25 Média Ponderada 6101,7 Σ = Média Aritmética 16,4

Tabela 54 - Altura - Tratamento de dados

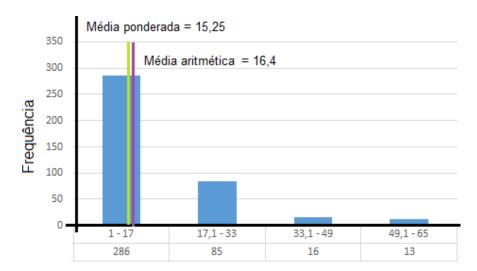


Figura 64 - Altura - médias

Distância do acostamento

A Tabela 55 representa o tratamento estatístico dos valores correspondentes ao critério distância do acostamento, que apresenta valores da média ponderada e aritmética de 4,02 m e 2,2 m, respectivamente. Na Figura 65 é possível perceber que as médias estão inseridas no intervalo que concentra 89% dos terraplenos.

Tabela 55 – Distância do acostamento - Tratamento de dados

		Frequ	iência		
Dist. Acost. (m)	Ponto Médio	Simples	Relativa	Acumulada	PMéd x Freq
0 - 6,25	3,125	356	0,89	356	1112,5
6,26 - 12,5	9,38	33	0,08	389	309,54
12,51 -18,75	15,63	9	0,02	398	140,67
18,76 - 25	21,88	2	0,01	400	43,76
Média Ponderada	4,02			Σ =	1606,47
Média Aritmética	2.2				

Figura 65 – Distância do acostamento – médias

Drenagem

A Tabela 56 apresenta os valores percentuais de cada estágio, com predominância para inexistência de dispositivos de drenagem. Na Figura 66 é visível que a condição ideal "Bom Estado" ainda é pouco registrada, mesmo em uma importante rodovia.

Tabela 56 - Drenagem - Quantidade

Drenagem	Quantidade	%
Bom Estado	57	14,25%
Demanda Manutenção	2	0,50%
Parcial ou Natural	83	20,75%
Inexistente	258	64,50%

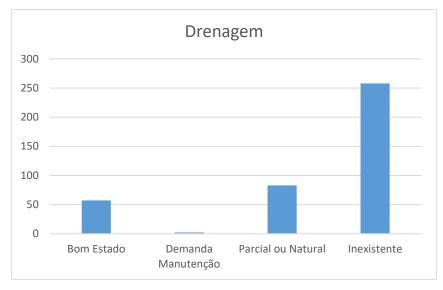


Figura 66 - Drenagem - Quantidade

<u>Extensão</u>

A Tabela 57 apresenta o tratamento estatístico dos valores correspondentes ao critério extensão, que apresenta valores da média ponderada e aritmética de 248,07 m e 196,5 m, respectivamente. A Figura 67 possibilita a observação das frequências, de maneira mais elucidativa.

Tabela 57 - Extensão - Tratamento de dados

		Frequ	ência				
Extensão (m)	Ponto Médio	Simples	Relativa	Acumulada	PMéd x Freq		
4 - 273	138,5	282	0,71	282	39057		
273,1 - 542	407,55	86	0,22	368	35049,3		
542,1 - 811	676,55	19	0,05	387	12854,45		
811,1 - 1076	943,55	13	0,03	400	12266,15		
Média Ponderada	248,07			Σ =	99226,9		
Média Aritmética	196,5						

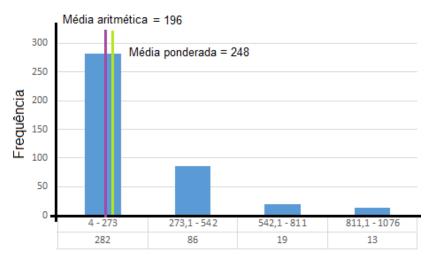


Figura 67 - Extensão - médias

<u>Inclinação</u>

A Tabela 58 apresenta o tratamento estatístico dos valores correspondentes ao critério inclinação, que apresenta valores da média ponderada e aritmética de 64,43m e 68,2m, respectivamente. Na Figura 68 é possível perceber que as médias estão inseridas no intervalo que concentra 51,5% dos terraplenos.

Tabela 58 – Inclinação - Tratamento de dados

Inclinação (graus)	Ponto Médio	Simples	Relativa	Acumulada	PMéd x Freq
20 - 37,5	28,75	5	0,01	5	143,75
38 - 55,5	46,75	91	0,23	96	4254,25
56 - 73,5	64,75	206	0,52	302	13338,5
74 - 90	82	98	0,25	400	8036
Média Ponderada	64,43			Σ =	25772,5
Média Aritmética	68,2				

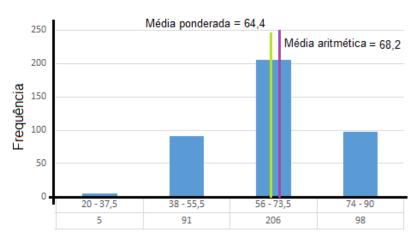


Figura 68 - Inclinação - médias

Obras de Contenção/Estabilização

A Tabela 59 apresenta os valores percentuais de cada estágio, com predominância para inexistência de obras de contenção/estabilização. Na Figura 69 é visível que a condição ideal "Bom Estado" é significativa, talvez por se tratar de uma importante rodovia, que permite boas condições de circulação.

Obras de Contenção/Estabilização	Quantidade	%
Bom Estado	101	25,25%
Demanda Manutenção	6	1,50%
Desgastada	1	0,25%
Inexistente	292	73,00%

Tabela 59 - Obras de Contenção/Estabilização - Quantidade

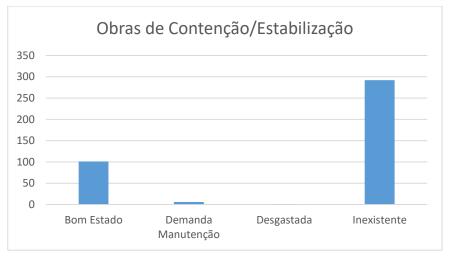


Figura 69 - Obras de Contenção/Estabilização - Quantidade

Rochas

A Tabela 60 apresenta os valores percentuais de cada estágio, com predominância para inexistência de rocha ou rocha sã. A Figura 70 permite visualizar as boas condições inerentes às rochas no trecho rodoviário em estudo, podendo haver tratamentos pontuais, quando necessários.

Tabela 60 - Rochas - Quantidade

Rochas	Quantidade	%
Inexiste ou Sã	299	74,75%
Pouco Alterada	91	22,75%
Severamente Alterada	10	2,50%
Decomposta	0	0,00%

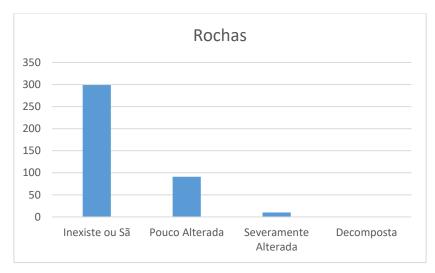


Figura 70 - Rochas - Quantidade

Vegetação

A Tabela 61 apresenta os valores percentuais de cada estágio, com predominância para vegetação consolidada ou presença desnecessária de vegetação. A Figura 71 possibilita a observação de maneira mais elucidativa.

Tabela 61 – Vegetação - Quantidade

Vegetação	Quantidade	%
Consolidada ou Desnecessária	307	76,75%
Parcial	77	19,25%
Pouca ou Inconsistente	15	3,75%
Inexistente	1	0,25%

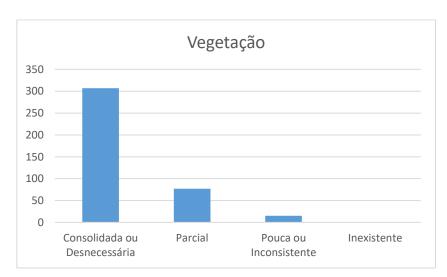


Figura 71 - Vegetação - Quantidade

Quantidade de Terraplenos por PRIs

A Tabela 62 representa a quantidade e percentuais de terraplenos avaliados, conforme metodologia da Perspectiva de Incidentes, tendo como resultado a ocorrência de 7% de baixo risco, nenhum terrapleno com perspectiva muita alta e com risco médio e alto, percentuais próximos.

PRI	Terraplenos	%		
Improvável	28	7,00%		
Possível	187	46,75%		
Provável	185	46,25%		
Muito provável	0	0,00%		
Σ	400	100.0%		

Tabela 62 – Quantidade de Terraplenos por PRIs

Nas características geométricas dos terraplenos, as médias, tanto ponderada quanto aritméticas dos valores da altura, distância do acostamento e extensão pertencem ao primeiro intervalo, enquanto as mesmas médias no quesito inclinação pertencem ao terceiro intervalo, mostrando que as características predominantes nos terraplenos pesquisados têm altura até 17m, distância do acostamento até 6,25 m, extensão até 273 m e inclinação variando de 53° a 73,5°.

Nos atributos altura, extensão e inclinação, maior valor pode apresentar maior propensão a risco, enquanto o atributo distância do acostamento é inversamente proporcional, pois sendo maior essa distância, mais resguardado estará o corpo estradal.

Ao verificar os dados Geométricos, foi identificada baixa quantidade de valores discrepantes, podendo ser considerada a média para distribuições numéricas normais.

Dentre os critérios adotados, naqueles em que o homem pode executar dispositivos e obras que mitigam os efeitos do risco de incidentes em terraplenos, como nos casos da Drenagem e Obras de contenção/estabilização, a ausência é predominante, sendo 64,50% terraplenos identificados com inexistência de Drenagem e 73,00% com inexistência de obras. No caso das Rochas, na maioria dos terraplenos 74,75% são inexistentes ou trata-se de rocha sã, que mitiga o risco da ocorrência de

incidentes, devido a desprendimento de lascas. Já no caso da vegetação que pode nascer naturalmente ou pode ser implantada pelo homem em 76,75% dos casos estudados ela encontra-se consolidada ou sua presença não se faz necessária.

O terrapleno composto pela predominância de valores ou condições, enquadrase no Estágio I da Altura, Estágio IV da Distância do acostamento, Estágio I da Drenagem, Estágio I da Extensão, Estágio III da Inclinação, Estágio IV das Obras de contenção, Estágio I das Rochas e Estágio I da Vegetação, tendo como produto a Perspectiva de Risco de Incidentes o valor 25,08%, que corresponde a graduação média. Ao realizar o cálculo da média aritmética dos valores correspondentes a cada terrapleno, encontra-se 26,51%, que também correspondente a Perspectiva média de Risco de Incidentes.

6.2.2. Limites de Confiança da Reta de Probabilidade

A verificação quantitativa e qualitativa do resultado, permite avaliar a confiabilidade. Para identificar a Incerteza da Reta de Regressão, calcula-se o Erro Médio Quadrado (MSE), que é a dissipação em torno da posição média da reta (reta média), mas não leva em consideração a incerteza de inclinação da reta. A sequência de Equações, indica: variável dependente da linha de tendência (31), MSE (32), variância média (33) e variância individual (34) e INV.T.BC (35), que retorna o inverso bicaudal da distribuição t de Student, tendo como complemento a raiz da variância (36) e t(student) (37).

$$y^{\hat{}} = A^{\hat{}} + B^{\hat{}}.x \tag{31}$$

$$MSE = \frac{\Sigma (y_{i} - y^{*})^{2}}{N - 2}$$
 (32)

$$V[y]m\acute{e}dia = MSE \left[\frac{1}{N} + \frac{(x_i - x)^2}{\Sigma (x_i - x)^2} \right]$$
 (33)

$$V[y]individual = V[y]m\acute{e}dia + MSE$$
 (34)

$$V[B] = y^{\hat{}} \pm t(student)(N-2)\sigma[y]$$
 (35)

$$\sigma[y] = raiz da variância$$
 (36)

$$t(student) = probabilidade(0,10); grau de liberdade(398)$$
 (37)

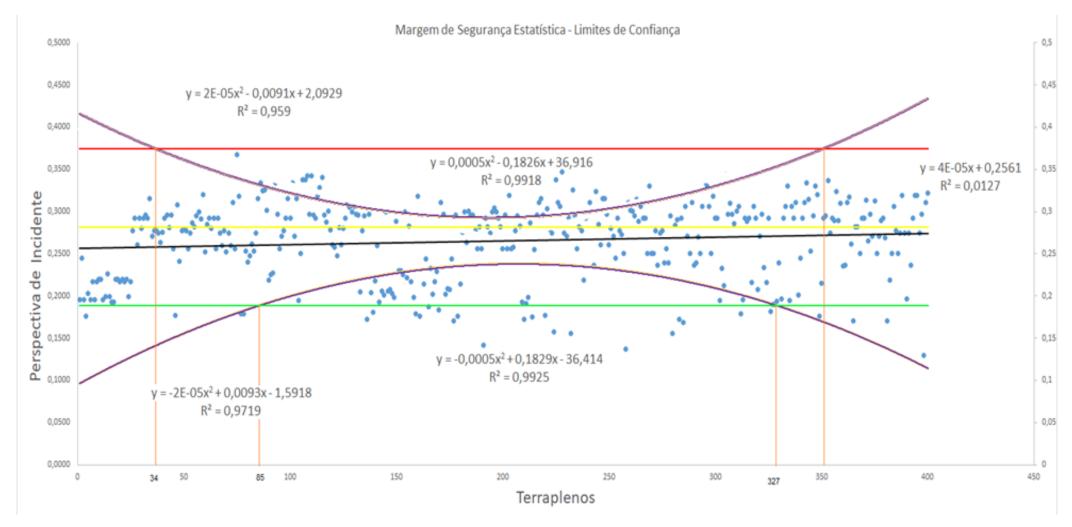


Figura 72 – Limites de Confiança

Aplicando os cálculos estatísticos dos limites de confiança da média e individuais, infere-se da Figura 72, que estes são quase coincidentes no máximo e no mínimo. Segundo os cálculos da margem de segurança para os limites de confiança máximos, 84 terraplenos (21%) poderiam extrapolar o valor limite da Perspectiva de Risco de Incidentes Alta e se enquadrarem em Muito Alta, condição não encontrada no universo pesquisado. Abaixo dos limites mínimos de confiança, 158 terraplenos ou 39,5% poderiam estar enquadrados na Perspectiva de Risco de Incidentes Baixa, condição que superaria os 7% reais encontrados no universo pesquisado.

Na sequência de equações a 33 expressa o limite de confiança individual máximo, a 34 o limite de confiança máximo da média, a 35 reta de tendência, 36 o limite de confiança mínimo da média e a 37 o limite de confiança individual mínimo. As equações e coeficientes de correlação gerados pelo software Excel, da Microsoft Office.

$$y = 2E - 05x2 - 0.0091x + 2.0929$$

$$R^2 = 0.959$$
(38)

$$y = 0.0005x2 - 0.1826x + 36.916$$

$$R^2 = 0.9918$$
(39)

$$y = 4E-05x + 0.2561$$

$$R^2 = 0.0127$$
(40)

$$y = -0.0005x2 + 0.1829x - 36.414$$

$$R^{2} = 0.9925$$
(41)

$$y = -2E - 05x2 + 0,0093x - 1,5918$$

$$R^{2} = 0,9719$$
(42)

Os limites de confiança apresentam coeficiente de correlação de Pearson (r) ou correlação produto-momento entre as duas variáveis quantitativas muito forte, enquanto a reta de tendência apresenta correlação muito fraca, para o segmento pesquisado.

6.3 Impacto: Avaliação dos Níveis de Serviços

Para verificação do Nível de Serviço é necessário identificar trechos homogêneos, condição que consiste em obter informações detalhadas das características da rodovia, a saber:

- Extensão;
- Condição geométrica;
- Rampas críticas;
- Tipo de Pista (laterais ou expressas);
- Número de faixas;
- Local e extensão de terceiras faixas existentes;
- Demais pontos de referência.

Na Tabela 63 são indicadas as características físicas e operacionais da rodovia.

Tabela 63 – Características Físicas e Operacionais da Rodovia (adaptado de Nova Dutra, 2018)

EXTENSÃO	(km – km)	FAIXA DE DOMÍNIO	CANTEIRO	P. SIMPLES	Extensão - Km			EXTENSÃO	CLASSE DA RODOVIA	VELOCIDADE MÁXIMA (km/h)
					PISTA	DUPLA				
					2 FAIXAS	3 FAIXAS	4 FAIXAS			
15,5	333,5 - 318	80 / 70 / 60	Barreiras	0	190,5	16,5	0	0	I-A	100, 110, 90 e 80
111	318 - 207	80 / 70 / 60	Barreiras ou canteiro de 8 a 11	0	215	7	0	2	I-A	100, 110, 90, 80 e 40
44	207 - 163	60	m Barreiras ou canteiro de 7 m	0	88	0	0	20,25	I-A	100, 110, 90 e 80

Além dos trechos homogêneos, o volume médio diário anual – VMDA de tráfego é parte integrante das verificações dos Níveis de Serviço, que estão pautadas na Metodologia descrita no TRB (2000) no programa Highway Capacity Manual. Nos trechos onde há pista lateral, considera-se a pista expressa como uma freeway, assim como as pistas laterais com mais de duas faixas de tráfego. Pistas laterais com duas faixas são tratadas como multilane highways, bem como todo o restante da rodovia, onde não há pistas laterais.

A Tabela 64 identifica os trechos Homogêneos a extensão e o respectivo volume de tráfego por sentido da rodovia.

Tabela 64 – Volume médio diário anual de tráfego (adaptado de Nova Dutra, 2018)

Trecho Homogêneo	Início	Km	Fim	Km	Extensão		io Médio Anual ráfego
	Referência		Referência			Pista Sul	Pista Norte
1	Trevo das Margaridas / Av. Brasil	163	Viaduto Linha Vermelha	166,2	3,2	49337	42219
2	Viaduto Linha Vermelha	166,2	Vilar dos Teles	168,5	2,3	87134	85032
3	Vilar dos Teles	168,5	Viaduto de Acesso a Coelho da Rocha	172,6	4,1	77971	68175
4	Viaduto de Acesso a Coelho da Rocha	172,6	Acesso a Belford Roxo	175,6	3	68808	51318
5	Acesso a Belford Roxo	175,6	Viaduto Miguel Couto	179,6	4	52340	55972
6	Viaduto Miguel Couto	179,6	Viaduto de Acesso a Austin	185,1	5,5	46588	33840
7	Viaduto de Acesso a Austin	185,1	Viaduto de Acesso a Cabuçu / Queimados	190,4	5,3	27657	35168
8	Viaduto de Acesso a Cabuçu / Queimados	190,4	Acesso a RJ-127 / Miguel Pereira	206	15,6	17550	19102
9	Acesso a RJ-127 / Miguel Pereira	206	Seropédica	208,8	2,8	17015	12006
10	Seropédica	208,8	Acesso a Vassouras / Paracambi	211,6	2,8	18770	16820
11	Acesso a Vassouras / Paracambi	211,6	Fim da Serra	219,7	8,1	13870	13671
12	Fim da Serra	219,7	Início da Serra	227,2	7,5	12822	12406
13	Início da Serra	227,2	Acesso a Piraí	238,8	11,6	11774	11140
14	Acesso a Piraí	238,8	Acesso a Volta Redonda / 3 Rios / Salvador	258,5	19,7	18222	21654
15	Acesso a Volta Redonda / 3 Rios / Salvador	258,5	Acesso a Volta Redonda / Vassouras	265	6,5	21390	21910
16	Acesso a Volta Redonda / Vassouras	265	Acesso a Porto Real	290,4	25,4	19664	17940
17	Acesso a Porto Real	290,4	Acesso a Resende	304,7	14,3	24048	22394
18	Acesso a Resende	304,7	Viaduto de Acesso a Penedo	311	6,3	21326	23798
19	Viaduto de Acesso a Penedo	311	Viaduto Eng. Passos	330,2	19,2	15583	12043

Os dados na Tabela 65 foram extraídos do estudo elaborado pela Concessionária gestora da Rodovia Presidente Dutra BR-116/RJ, de modo a identificar o Nível de Serviço nos trechos homogêneos da rodovia no ano de 2018, sendo a análise feita por sentido e separadamente para pistas laterais e expressas na 200ª hora mais carregada do ano.

Tabela 65 –Níveis de Serviço por trecho homogêneo (adaptado de Nova Dutra, 2018)

						Nível d	e Serviç	o Ano 2018	- k200
Tueslas	Início	Km	Fim	Km	Extensão	Pista la	iteral	Pista Ex	pressa
Trecho Homogêneo	Referência		Referência		ZXIOIIGGG	Norte	Sul	Norte	Sul
1	Trevo das Margaridas / Av. Brasil	163	Viaduto Linha Vermelha	166,2	3,2	E	E	D	С
2	Viaduto Linha Vermelha	166,2	Vilar dos Teles	168,5	2,3	F	F	D	С

3	Vilar dos Teles	168,5	Viaduto de Acesso a Coelho da Rocha	172,6	4,1	F	F	D	С
4	Viaduto de Acesso a Coelho da Rocha	172,6	Acesso a Belford Roxo	175,6	3	Е	F	D	D
5	Acesso a Belford Roxo	175,6	Viaduto Miguel Couto	179,6	4			E	F
6	Viaduto Miguel Couto	179,6	Viaduto de Acesso a Austin	185,1	5,5			Е	F
7	Viaduto de Acesso a Austin	185,1	Viaduto de Acesso a Cabuçu / Queimados	190,4	5,3			С	D
8	Viaduto de Acesso a Cabuçu / Queimados	190,4	Acesso a RJ-127 / Miguel Pereira	206	15,6			D	С
9	Acesso a RJ-127 / Miguel Pereira	206	Seropédica	208,8	2,8			С	С
10	Seropédica	208,8	Acesso a Vassouras / Paracambi	211,6	2,8			D	D
11	Acesso a Vassouras / Paracambi	211,6	Fim da Serra	219,7	8,1			С	В
12	Fim da Serra	219,7	Início da Serra	227,2	7,5			D	D
13	Início da Serra	227,2	Acesso a Piraí	238,8	11,6			С	С
14	Acesso a Piraí	238,8	Acesso a Volta Redonda / 3 Rios / Salvador	258,5	19,7			С	С
15	Acesso a Volta Redonda / 3 Rios / Salvador	258,5	Acesso a Volta Redonda / Vassouras	265	6,5			С	С
16	Acesso a Volta Redonda / Vassouras	265	Acesso a Porto Real	290,4	25,4			С	В
17	Acesso a Porto Real	290,4	Acesso a Resende	304,7	14,3			С	С
18	Acesso a Resende	304,7	Viaduto de Acesso a Penedo	311	6,3			С	С
19	Viaduto de Acesso a Penedo	311	Viaduto Eng. Passos	330,2	19,2			В	В

Os piores Níveis de Serviço E e F ficam na Baixada Fluminense, refletindo grave problema de capacidade da rodovia. Trata-se de região Metropolitana com alta densidade populacional, que tem na principal Rodovia do país seus principais acessos.

6.4 Aplicação da Matriz de Riscos de Incidentes em Terraplenos Rodoviários

Como foram estabelecidos os percentuais correspondentes às perspectivas de probabilidade de incidentes e os pesos referentes aos Níveis de Serviço, que traduzem os impactos de tais incidentes com terraplenos nas rodovias, a aplicação dos valores resultará na Matriz de Risco. A Tabela 66 apresenta o produto da probabilidade dos 400 terraplenos com o respectivo peso do Nível de Serviço, o que resulta na Matriz de Riscos de incidentes de terraplenos rodoviários.

Tabela 66 - Valores da Matriz de Riscos

Terrapleno	PRI	KM	Sentido	NS	Peso NS	Matriz de Riscos
1	19,59%	165+500	N	Е	4	78,36%
2	24,46%	166+150	N	Е	4	97,84%
3	19,59%	167+100	N	F	4	78,36%
4	17,58%	167+150	S	F	4	70,32%
5	20,32%	168+100	N	F	4	81,28%
6	19,59%	168+500	N	F	4	78,36%
7	21,69%	168+600	S	F	4	86,76%
8	19,59%	168+800	N	F	4	78,36%
9	21,69%	168+800	S	F	4	86,76%
10	22,01%	170+000	S	F	4	88,04%
11	22,01%	170+200	N	F	4	88,04%
12	19,59%	170+200	S	F	4	78,36%
13	19,92%	170+700	Ν	F	4	79,68%
14	22,60%	170+800	S	F	4	90,40%
15	19,92%	171+100	Ν	F	4	79,68%
16	19,32%	172+300	Ν	F	4	77,28%
17	19,32%	174+100	N	Е	4	77,28%
18	22,01%	174+100	S	Е	4	88,04%
19	22,01%	174+400	N	F	4	88,04%
20	21,69%	174+800	N	F	4	86,76%
21	22,01%	174+800	S	Е	4	88,04%
22	21,69%	175+000	N	F	4	86,76%
23	22,01%	175+000	S	Е	4	88,04%

					i .	
24	19,92%	175+500	S	E	4	79,68%
25	21,69%	177+500	N	E	4	86,76%
26	27,72%	182+800	S	F	4	110,88%
27	29,19%	183+150	S	F	4	116,76%
28	26,09%	183+550	S	F	4	104,36%
29	29,19%	184+050	S	F	4	116,76%
30	28,05%	184+400	S	F	4	112,20%
31	29,19%	184+700	N	E	4	116,76%
32	29,59%	184+950	N	E	4	118,36%
33	29,19%	185+000	S	F	4	116,76%
34	31,55%	185+300	N	E	4	126,20%
35	27,09%	185+350	S	D	3	81,27%
36	27,72%	186+000	N	С	2	55,44%
37	27,72%	186+700	S	D	3	83,16%
38	27,45%	187+400	N	С	2	54,90%
39	26,31%	187+400	S	D	3	78,93%
40	27,50%	188+000	Ν	С	2	55,00%
41	29,19%	188+000	S	D	3	87,57%
42	29,59%	188+400	N	С	2	59,18%
43	28,13%	188+600	N	С	2	56,26%
44	29,59%	189+600	N	С	2	59,18%
45	25,63%	189+850	S	D	3	76,89%
46	17,70%	190+000	S	D	3	53,10%
47	30,79%	190+600	Ν	D	3	92,37%
48	24,10%	191+350	S	С	2	48,20%
49	27,72%	191+900	S	С	2	55,44%
50	27,96%	192+400	N	D	3	83,88%
51	27,72%	192+500	S	С	2	55,44%
52	25,58%	192+550	N	D	3	76,74%
53	27,45%	193+000	S	С	2	54,90%
54	28,63%	193+400	S	С	2	57,26%
55	28,18%	193+650	N	D	3	84,54%
56	29,50%	194+600	S	D	3	88,50%
57	29,92%	194+850	N	D	3	89,76%
58	29,15%	194+900	S	С	2	58,30%
59	31,96%	195+500	S	С	2	63,92%
60	25,22%	195+550	S	С	2	50,44%
61	28,45%	196+100	N	D	3	85,35%
62	29,19%	196+150	S	С	2	58,38%
63	28,05%	196+700	s	С	2	56,10%
64	29,19%	197+650	N	D	3	87,57%
65	25,63%	199+500	s	С	2	51,26%
66	29,19%	200+500	s	С	2	58,38%
67	27,45%	200+700	N	D	3	82,35%
68	25,99%	200+800	s	С	2	51,98%
69	27,72%	201+ 100	N	D	3	83,16%
70	25,18%	201+350	s	С	2	50,36%
					l	

71	27,45%	201+600	N	D	3	82,35%
71 72						
	25,99%	202+050	S	С	2	51,98%
73 74	31,04%	202+200	S S	C	2 2	62,08%
	25,63%	203+100				51,26%
75 70	36,76%	205+350	S	С	2	73,52%
76 	31,78%	205+450	N	D	3	95,34%
77	17,86%	205+950	S	С	2	35,72%
78 70	17,86%	206+050	S	С	2	35,72%
79	25,27%	206+400	N	С	2	50,54%
80	24,01%	206+500	N	С	2	48,02%
81	24,74%	209+550	S	С	2	49,48%
82	26,11%	209+650	N	С	2	52,22%
83	25,27%	209+800	N	D	3	75,81%
84	27,48%	210+600	S	D	3	82,44%
85	31,55%	210+660	N	D	3	94,65%
86	33,41%	210+900	N	D	3	100,23%
87	32,42%	210+940	N	D	3	97,26%
88	32,53%	211+200	N	D	3	97,59%
89	30,10%	211+230	N	D	3	90,30%
90	21,88%	211+500	S	D	3	65,64%
91	22,56%	212+000	S	D	3	67,68%
92	22,70%	212+600	N	С	2	45,40%
93	33,41%	213+330	N	С	2	66,82%
94	29,65%	213+600	N	С	2	59,30%
95	25,63%	213+700	S	В	1	25,63%
96	27,09%	213+820	S	В	1	27,09%
97	27,72%	213+950	S	В	1	27,72%
98	29,19%	214+000	N	С	2	58,38%
99	31,55%	214+150	N	С	2	63,10%
100	29,19%	214+400	S	В	1	29,19%
101	33,41%	215+100	S	В	1	33,41%
102	27,09%	215+800	N	С	2	54,18%
103	31,51%	216+050	S	В	1	31,51%
104	19,49%	216+750	S	В	1	19,49%
105	25,08%	217+050	S	В	1	25,08%
106	33,73%	217+900	S	В	1	33,73%
107	33,73%	218+300	N	С	2	67,46%
108	34,20%	218+300	S	В	1	34,20%
109	29,65%	218+300	S	В	1	29,65%
110	34,20%	218+700	S	В	1	34,20%
111	29,59%	218+900	S	В	1	29,59%
112	29,19%	218+950	N	С	2	58,38%
113	31,81%	219+200	N	С	2	63,62%
114	32,86%	219+250	N	С	2	65,72%
115	34,00%	219+320	N	С	2	68,00%
116	29,59%	219+350	S	В	1	29,59%
117	28,76%	220+000	N	D	3	86,28%

118	30,06%	220+100	S	D	3	90,18%
119	27,86%	220+200	S	D	3	83,58%
120	26,03%	220+250	S	D	3	78,09%
121	25,79%	220+480	S	D	3	77,37%
122	24,79%	220+500	S	D	3	74,37%
123	28,13%	220+550	N	D	3	84,39%
124	26,03%	220+600	S	D	3	78,09%
125	28,05%	220+800	S	D	3	84,15%
126	29,19%	220+850	S	D	3	87,57%
127	31,12%	221+000	S	D	3	93,36%
128	30,49%	221+150	S	D	3	91,47%
129	29,92%	221+320	N	D	3	89,76%
130	30,65%	221+400	N	D	3	91,95%
131	29,65%	221+550	S	D	3	88,95%
132	29,59%	221+600	S	D	3	88,77%
133	20,47%	221+700	N	D	3	61,41%
134	27,72%	221+700	S	D	3	83,16%
135	29,46%	221+800	N	D	3	88,38%
136	17,23%	221+900	S	D	3	51,69%
137	29,65%	222+000	S	D	3	88,95%
138	20,39%	222+050	N	D	3	61,17%
139	18,04%	222+100	S	D	3	54,12%
140	21,79%	222+150	N	D	3	65,37%
141	25,99%	222+250	S	D	3	77,97%
142	19,29%	222+400	N	D	3	57,87%
143	20,56%	222+450	N	D	3	61,68%
144	20,11%	222+450	S	D	3	60,33%
145	29,92%	222+550	S	D	3	89,76%
146	20,56%	222+600	N	D	3	61,68%
147	20,74%	222+630	N	D	3	62,22%
148	20,33%	222+650	N	D	3	60,99%
149	19,79%	222+850	S	D	3	59,37%
150	28,85%	222+930	N	D	3	86,55%
151	23,00%	223+000	N	D	3	69,00%
152	23,00%	223+300	N	D	3	69,00%
153	22,49%	223+350	N	D	3	67,47%
154	29,92%	223+400	N	D	3	89,76%
155	22,16%	223+400	S	D	3	66,48%
156	28,29%	223+500	S	D	3	84,87%
157	21,69%	223+550	N	D	3	65,07%
158	19,79%	223+550	S	D	3	59,37%
159	17,86%	223+750	S	D	3	53,58%
160	31,83%	223+900	N	D	3	95,49%
161			N			
	17,58%	223+900		D	3	52,74%
162 163	29,10%	223+900	S	D	3	87,30%
163 164	21,43%	224+250	S	D	3	64,29%
164	24,35%	224+700	N	D	3	73,05%

					_	
165	18,68%	224+800	N	D	3	56,04%
166	23,29%	224+850	S	D	3	69,87%
167	20,24%	225+050	S	D	3	60,72%
168	21,69%	225+600	N	D	3	65,07%
169	22,90%	225+800	N	D	3	68,70%
170	18,32%	225+800	S	D	3	54,96%
171	31,10%	225+850	N	D	3	93,30%
172	29,65%	226+100	S	D	3	88,95%
173	20,22%	226+300	S	D	3	60,66%
174	20,90%	226+500	S	D	3	62,70%
175	20,80%	226+650	S	D	3	62,40%
176	24,35%	227+200	N	D	3	73,05%
177	17,07%	227+200	N	D	3	51,21%
178	29,59%	227+900	N	D	3	88,77%
179	17,58%	228+050	N	С	2	35,16%
180	21,37%	228+400	N	С	2	42,74%
181			N			
	27,56%	229+500		С	2	55,12%
182	29,92%	230+000	N	С	2	59,84%
183	26,36%	230+180	S	С	2	52,72%
184	30,06%	230+200	S	С	2	60,12%
185	29,59%	230+750	S	С	2	59,18%
186	29,59%	230+850	N	С	2	59,18%
187	27,72%	230+850	S	С	2	55,44%
188	25,63%	231+000	S	С	2	51,26%
189	28,19%	231+200	S	С	2	56,38%
190	25,63%	231+450	S	С	2	51,26%
191	14,21%	231+600	S	С	2	28,42%
192	29,19%	231+900	N	С	2	58,38%
193	28,19%	232+100	S	С	2	56,38%
194	27,42%	232+550	S	С	2	54,84%
195	29,98%	232+900	N	С	2	59,96%
196	30,38%	233+350	N	С	2	60,76%
197	29,98%	233+500	S	С	2	59,96%
198	29,19%	233+700	N	С	2	58,38%
199	28,21%	233+950	S	С	2	56,42%
200	25,63%	234+100	S	С	2	51,26%
201	29,58%	234+650	S	С	2	59,16%
202	25,63%	234+900	S	С	2	51,26%
203	31,88%	235+100	S	С	2	63,76%
204	25,63%	235+200	N	С	2	51,26%
205	25,74%	235+350	S	С	2	51,48%
206	27,72%	235+400	N	С	2	55,44%
207	29,46%	236+450	S	С	2	58,92%
208	28,33%	237+500	N	С	2	56,66%
209	19,32%	237+550	S	С	2	38,64%
210	17,23%	237+650	N	С	2	34,46%
211	19,05%	238+300	N	C	2	38,10%
Z11	13,03%	200 1 000	IN	0	۷	30,1076

212	19,79%	238+300	S	С	2	39,58%
213	28,63%	238+850	N	С	2	57,26%
214	17,55%	238+950	S	С	2	35,10%
215	25,48%	239+300	N	С	- 2	50,96%
216	29,59%	239+450	S	С	2	59,18%
217	31,04%	239+500	S	С	2	62,08%
218	31,55%	239+600	N	С	2	63,10%
219	29,59%	239+700	N	С	2	59,18%
220	17,70%	239+800	N	С	2	35,40%
221	30,33%	239+800	S	С	2	60,66%
222	27,95%	240+100	S	С	- 2	55,90%
223	27,48%	240+400	S	С	2	54,96%
224	15,76%	241+000	N	С	2	31,52%
225	33,73%	241+300	S	С	2	67,46%
226	31,04%	241+550	N	С	2	62,08%
227	30,64%	241+800	N	С	2	61,28%
228	34,72%	242+050	S	С	- 2	69,44%
229	27,45%	242+300	N	С	- 2	54,90%
230	27,09%	242+550	S	С	- 2	54,18%
231	29,19%	242+800	S	С	- 2	58,38%
232	15,54%	242+800	N	С	2	31,08%
232	32,52%	243+100	S	С	2	65,04%
233			S	С		
235	29,51% 25,63%	243+450 243+600	S N	С	2 2	59,02% 51,26%
236	28,19%	244+360	S	С	2	56,38%
237	27,72%	244+700	S	С	2	55,44%
238	21,88%	245+300	N	С	2	43,76%
239	29,17%	245+300	S	С	2	58,34%
240	29,75%	245+400	S	С	2	59,50%
		i.				
241	31,10%	245+600	N	С	2	62,20%
242	29,65%	246+200	N	С	2	59,30%
243	23,61%	246+200	S	С	2	47,22%
244	32,34%	246+800	N	С	2	64,68%
245	28,51%	247+300	N	С	2	57,02%
246 247	26,09%	247+300	S S	C C	2	52,18%
	31,51%	247+550			2	63,02%
248	31,51%	248+000	S	С	2	63,02%
249	29,65%	249+700	S	С	2	59,30%
250	26,09%	250+800	N	С	2	52,18%
251	28,05%	250+900	N	С	2	56,10%
252	27,09%	250+900	S	С	2	54,18%
253	24,52%	251+000	N	С	2	49,04%
254	29,19%	251+600	S	С	2	58,38%
255	27,72%	251+950	N	С	2	55,44%
256	27,29%	252+100	N	С	2	54,58%
257	25,08%	252+400	S	С	2	50,16%
258	13,75%	252+800	N	С	2	27,50%

259	31,03%	253+750	N	С	2	62,06%
260	30,10%	253+800	S	С	2	60,20%
261	30,04%	254+250	N	С	2	60,08%
262	29,51%	255+150	S	С	2	59,02%
263	31,43%	256+000	S	С	2	62,86%
264	28,87%	256+500	N	С	2	57,74%
265	30,64%	256+500	s	С	2	61,28%
266	29,17%	257+100	N	С	2	58,34%
267	29,19%	257+100	S	С	2	58,38%
268	25,08%	257+350	N	С	2	50,16%
269	33,00%	257+500	N	С	2	66,00%
270	25,08%	257+800	N	С	2	50,16%
271	25,08%	257+950	N	С	2	50,16%
272	27,72%	258+350	S	С	2	55,44%
273	23,61%	258+450	S	С	2	47,22%
274	27,42%	258+700	N	С	2	54,84%
275	27,72%	259+100	S	С	2	55,44%
276	23,93%	259+500	S	С	2	47,86%
277	25,63%	260+350	S	С	2	51,26%
278	23,93%	260+950	S	С	2	47,86%
279	29,51%	261+400	S	С	2	59,02%
280	15,60%	261+500	N	С	2	31,20%
281	28,35%	261+950	S	С	2	56,70%
282	29,03%	262+400	N	С	2	58,06%
283	17,23%	263+050	S	С	2	34,46%
284	29,19%	263+250	N	С	2	58,38%
285	16,84%	263+450	S	С	2	33,68%
286	30,64%	263+700	S	С	2	61,28%
287	27,08%	265+200	N	С	2	54,16%
288	25,08%	265+600	S	В	1	25,08%
289	31,10%	265+800	N	С	2	62,20%
290	23,61%	266+000	N	С	2	47,22%
291	23,93%	266+100	N	С	2	47,86%
292	27,00%	266+550	N	С	2	54,00%
293	25,08%	266+800	S	В	1	25,08%
294	30,64%	267+850	S	В	1	30,64%
295	33,47%	267+900	S	В	1	33,47%
296	33,00%	268+100	N	С	2	66,00%
297	30,64%	268+100	S	В	1	30,64%
298	25,08%	268+400	S	В	1	25,08%
299	31,78%	268+800	S	В	1	31,78%
300	29,19%	268+850	S	В	1	29,19%
301	29,19%	269+650	N	С	2	58,38%
302	19,47%	270+250	S	В	1	19,47%
303	23,29%	271+200	S	В	1	23,29%
304	21,24%	271+300	N	С	2	42,48%
305	34,45%	271+700	N	С	2	68,90%

306	29,65%	272+150	N	С	2	59,30%
307	30,96%	272+200	S	В	1	30,96%
308	29,64%	272+500	N	С	2	59,28%
309	28,54%	272+800	S	В	1	28,54%
310	30,04%	273+500	N	С	2	60,08%
311	30,64%	273+850	S	В	1	30,64%
312	17,86%	274+600	N	С	2	35,72%
313	19,59%	274+650	S	В	1	19,59%
314	29,19%	274+800	N	С	2	58,38%
315	28,87%	274+950	S	В	1	28,87%
316	29,19%	275+500	N	С	2	58,38%
317	21,57%	275+800	N	С	2	43,14%
318	30,64%	276+300	S	В	1	30,64%
319	29,19%	276+650	S	В	1	29,19%
320	20,77%	276+700	S	В	1	20,77%
321	27,09%	276+800	N	С	2	54,18%
322	29,65%	276+800	S	В	1	29,65%
323	23,34%	277+100	S	В	1	23,34%
324	21,57%	277+300	S	В	1	21,57%
325	29,19%	277+400	S	В	1	29,19%
326	18,18%	277+950	S	В	1	18,18%
327	18,98%	278+050	N	С	2	37,96%
328	18,98%	279+150	N	С	2	37,96%
329	19,35%	279+200	S	В	1	19,35%
330	23,93%	280+000	N	С	2	47,86%
331	19,65%	280+250	N	С	2	39,30%
332	29,19%	280+700	N	С	2	58,38%
333	30,64%	280+900	S	В	1	30,64%
334	33,00%	281+100	N	С	2	66,00%
335	19,51%	282+150	N	С	2	39,02%
336	30,64%	282+600	N	С	2	61,28%
337	29,19%	282+650	S	В	1	29,19%
338	31,04%	282+750	S	В	1	31,04%
339	20,10%	283+ 200	S	В	1	20,10%
340	24,52%	284+300	N	С	2	49,04%
341	29,19%	284+600	S	В	1	29,19%
342	31,10%	284+900	S	В	1	31,10%
343	33,41%	285+150	S	В	1	33,41%
344	31,43%	285+250	S	В	1	31,43%
345	25,36%	285+400	N	С	2	50,72%
346	29,45%	285+950	N	С	2	58,90%
347	33,00%	286+250	S	В	1	33,00%
348	32,01%	286+430	S	В	1	32,01%
349	17,64%	287+000	N	С	2	35,28%
350	21,50%	287+300	N	С	2	43,00%
351	29,19%	289+050	N	С	2	58,38%
352	29,51%	289+300	N	С	2	59,02%

353	22 660/	200.700	N		2	67 220/
353 354	33,66% 27,45%	289+700	N N	C	2 2	67,32%
		290+600	N	С		54,90%
355	29,23%	291+100			2	58,46% 57,82%
356	28,91%	291+500	N	С	2	
357	32,40%	291+600	N	С	2	64,80%
358	28,91%	291+800	S	С	2	57,82%
359	30,96%	292+000	N	С	2	61,92%
360	23,55%	292+500	N	С	2	47,10%
361	23,67%	292+900	N	С	2	47,34%
362	31,04%	298+500	N	С	2	62,08%
363	31,68%	302+900	N	С	2	63,36%
364	26,19%	303+700	N	С	2	52,38%
365	17,07%	307+100	S	С	2	34,14%
366	28,24%	307+300	N	С	2	56,48%
367	28,16%	307+300	S	С	2	56,32%
368	25,08%	307+500	S	С	2	50,16%
369	29,19%	311+900	S	С	2	58,38%
370	29,19%	312+100	S	В	1	29,19%
371	31,37%	312+200	N	В	1	31,37%
372	26,53%	312+450	S	В	1	26,53%
373	29,64%	312+600	S	В	1	29,64%
374	27,09%	312+800	N	В	1	27,09%
375	31,27%	314+400	S	В	1	31,27%
376	25,08%	314+850	N	В	1	25,08%
377	27,09%	318+000	S	В	1	27,09%
378	28,91%	319+400	S	В	1	28,91%
379	29,19%	319+800	N	В	1	29,19%
380	26,85%	320+300	N	В	1	26,85%
381	17,07%	320+700	S	В	1	17,07%
382	21,88%	320+800	N	В	1	21,88%
383	25,08%	321+300	S	В	1	25,08%
384	30,60%	321+800	S	В	1	30,60%
385	27,72%	322+800	N	В	1	27,72%
386	25,08%	324+100	S	В	1	25,08%
387	27,44%	324+250	N	В	1	27,44%
388	31,88%	324+300	S	В	1	31,88%
389	27,42%	324+700	S	В	1	27,42%
390	19,65%	324+900	N	В	1	19,65%
391	27,44%	325+000	S	В	1	27,44%
392	23,61%	325+550	S	В	1	23,61%
393	29,23%	325+700	S	В	1	29,23%
394	31,88%	326+000	S	В	1	31,88%
395	31,88%	326+300	S	В	1	31,88%
396	27,42%	326+700	S	В	1	27,42%
397	29,65%	326+850	N	В	1	29,65%
398	12,93%	327+150	S	В	1	12,93%
399	31,10%	327+240	S	В	1	31,10%
400	32,18%	327+350	S	В	1	32,18%

A Tabela 67, Matriz de Riscos, consolida as quantidades dos níveis de riscos. Como não foram registradas nas probabilidades de perspectivas de incidentes (PRIs) condições "muito prováveis" de ocorrência, a possibilidade de risco crítico ficou reduzida, mesmo havendo maiores graus de impacto nos níveis de serviço. Caso fosse registrado risco crítico, tal condição demandaria ações urgentes como inspeção imediata e adoção de medidas de mitigação em curto prazo.

Menos de 10% dos terraplenos foram registrados com risco baixo. A situação encontrada com mais frequência foi de risco moderado, quase 70% dos terraplenos, situação que possibilita aguardar nova inspeção, conforme periodicidade proposta no estudo, de 12 meses.

Tabela 67 – Matriz de Risco de Incidentes em Terraplenos Rodoviários

		E/F	4	Risco Alto (1)	Risco Alto (27)	Risco Alto (6)	Risco Crítico (0)	
IMPACTO	Serviço	D	3	Risco Moderado (8)	Risco Alto (22) Risco Moderado (26)	Risco Alto (33)	(0)	
IMPA	Nível de Serviço	С	2	Risco Moderado (16)	Risco Moderado (83)	Risco Alto (1) Risco Moderado (98)	(0)	
		A/B	1	Baixo Risco (3)	Baixo Risco (31)	Risco Moderado (45)	Risco Moderado (0)	
			PESO	<= 18,82%	18,82% < < = 28,11%	28,11% < < = 37,40%	37,40% <	
				Improvável	Possível	Provável	Muito Provável	
					Incidentes em Terrapelos Rodoviários			
				PROBABILIDADE				

A Tabela 68 resume a quantidade de terraplenos e apresenta o percentual de cada nível de risco, condição que permite aos gestores de rodovias realizar o devido planejamento para atuação nas condições de estabilização e conservação dos terraplenos, priorizando a realização de serviços nos níveis de risco alto e moderado, respectivamente.

Tabela 68 – Percentual de Níveis de Risco

Risco	Terraplenos	%
Baixo	34	8,5%
Moderado	276	69,0%
Alto	90	22,5%
Crítico	0	0,0%
Σ	400	100,0%

6.5 Vantagens x Desvantagens e limitações

Vantagens

- Simplificação no levantamento das características dos terraplenos;
- A metodologia pode ser aplicada em outras rodovias;
- Facilidade na aplicação da metodologia;
- Não há necessidade de dados provenientes de laboratório;
- Indica prazo para início de intervenção;
- Possibilita a hierarquização dos terraplenos, como uma forma de planejamento de ações de conservação e melhorias. Quanto maior a pontuação, maior a atenção ao terrapleno.

Desvantagens e limitações

- Não se trata de metodologia de estabilização de taludes;
- Não indica se haverá movimentos de massa;
- Não leva em consideração os índices pluviométricos;
- Não utiliza dados obtidos em laboratório, tais como ângulo de atrito e coesão;

- O processo de instabilização de encosta é dinâmico e deve ser avaliado periodicamente, para definição da susceptibilidade e riscos envolvidos.
- A proposta está pauta em uma avaliação ampla inicial e acompanhamento periódico/permanente, não podendo ser confundida com análise específica e pormenorizada, pois os fenômenos inerentes aos riscos são acoplados, ou seja, não podem ser considerados isoladamente.

7 CONSIDERAÇÕES FINAIS

No cenário em que as Rodovias têm cada vez mais importância na economia e na mobilidade, a não interrupção do tráfego torna-se um desafio constante. Ao se projetar uma rodovia existem parâmetros geométricos a serem seguidos, devendo ser consideradas as condições topográficas e geológicas, como existência de rocha e demais tipos de solo, das diversas regiões que serão cruzadas, sendo de fundamental importância requisitos de altura, inclinação e extensão dos cortes e aterros, além da distância destes até o acostamento. Além disso, deve-se ainda considerar a implantação de dispositivos de drenagem e obras de contenção/estabilização. Todos esses fatores associados darão indícios da perspectiva de probabilidade de ocorrência de incidentes com terraplenos, sendo parte do reflexo de uma circulação de tráfego segura. Para complementar a perspectiva de consequência na operação rodoviária, decorrente dos impactos oriundos de incidentes, as características físicas e operacionais têm crucial importância, pois podem agravar ou mitigar os efeitos para os usuários do sistema.

Devido à grande variedade de incidentes oriundos de movimentos gravitacionais de massa, quedas e escorregamentos, especialmente nos meses com maior incidência de chuvas, propõe-se uma metodologia que permita hierarquizar as ações que devem ser adotadas nos terraplenos, a fim de prevenir a ocorrência de incidentes nas rodovias.

A metodologia é baseada na análise de riscos, a partir de um levantamento de monitoração simples com periodicidade anual e aplicação objetiva. A proposta define a perspectiva de probabilidade de incidentes em terraplenos associada às perspectivas de impacto, de acordo com características físicas e operacionais da rodovia, definindo qual terrapleno tem maior propensão de apresentar risco de incidente. A proposta foi aplicada, a partir de um levantamento em 400 terraplenos ao longo da BR-116, trecho fluminense, entre o Trevo das Margaridas km 163 e a divisa com o Estado de São Paulo.

Na parte da probabilidade do risco, foi adotada a metodologia do Processo Hierárquico Analítico – AHP, cujos valores correspondentes aos oito critérios e quatro estágios, designam a perspectiva de riscos de incidentes de terraplenos em rodovias. No quesito da consequência, foi adotado o atributo Nível de Serviço da rodovia,

condição já consolidada pela academia, sendo atribuído valores de pesos sequenciais.

Na aplicação da proposta foram identificados 7% dos terraplenos em perspectiva de probabilidade "improvável" de ocorrência, as condições "possível" e "provável" de probabilidade foram registradas em quantidades percentuais, 46%, praticamente iguais e nenhuma probabilidade de incidentes foi graduada como "muito provável".

Na avaliação dos impactos descritos pelos níveis de serviços, 8,5% dos terraplenos encontram-se em regiões com níveis de serviços "E ou F", com maior grau de impacto. Ao longo dos 170km de rodovia 22,25% dos terraplenos estão em trechos com nível de serviço "D", 49,5% em trechos com nível de serviço "C" e 19,75% em trechos com níveis de serviço "A ou B". Para o caso em tela, os trechos homogêneos com níveis de serviços "E ou F" são localidades, em que qualquer incidente com terrapleno pode atingir um grande número de pessoas e causar graves impactos, essa região é mais adensada com a faixa de domínio estendendo-se até os lotes lindeiros, ou seja, são áreas urbanas que passaram por processo de grande ocupação e receberam a devida estrutura de obras de contenção/estabilização, além de estarem sob observação constante de diversos usuários do sistema rodoviário.

Ao consolidar a matriz e identificar os riscos de incidentes, derivados do produto dos valores das probabilidades e dos pesos atribuídos aos impactos, obtém-se 8,5% categorizados como de "baixo" risco, que designam não ser necessária a intervenção imediata, podendo aguardar nova avaliação em 12 meses; enquadrados como risco "moderado" foram 69% dos casos, condição que remete a um estágio de observação e adoção de medidas de conservação em até 12 meses; em 22% dos casos foram registrados "alto" risco, configurando estágio de atenção com adoção de medidas de conservação e estabilização em até 6 meses. Não foram registradas situações, cujo risco seja considerado "crítico", que caracterizaria urgência com necessidade de inspeção específica imediata e adoção de medidas de estabilização em até 3 meses. Esta condição de ausência de risco "crítico", se deve ao fato do trecho rodoviário em estudo estar concedido à iniciativa privada há 24 anos.

Como sugestão de trabalhos futuros:

 A base de dados deve ser ampliada, aplicando-se a metodologia em outros trechos rodoviários;

- Realização de monitoramento no mesmo trecho ao longo dos anos, a fim de comparar os níveis de risco;
- Reavaliação da metodologia, aplicação e comparando com dados de possíveis incidentes futuros;
 - Estabelecer uma matriz de dados baseada em histórico de acidentes;
 - Avaliação da proposta, considerando eventos chuvosos;
- Aplicação da metodologia, onde se tenha bancos de dados com registros do tipo de ocorrência de movimentos de massa, quedas de blocos e/ou escorregamentos, fazendo comparativo;
 - Inserir novos critérios, como índices pluviométricos.

REFERÊNCIAS

ABGE, Associação Brasileira de Geologia de Engenharia e IPT, Instituto de Pesquisas Tecnológicas. Glossário – Geotecnologia Ambiental. São Paulo. 2008

AGUIAR, R.A.R. Previsão do Custo de Passarelas pelo Método da Regressão Linear Simples – CEFET/RJ. 2019.

ALMEIDA, M.S e MARQUES, M. E. S,. 2ª Ed. Aterro Sobre Solos Moles – Projeto e Desempenho. Rio de Janeiro, Oficina de Textos. 2014.

ARANHA, M.L.A e MARTINS, M. H. P. Filosofando – Introdução à Filosofia. São Paulo, Editora Moderna. 2009.

AZEREDO, J. S., PAULA, G. G., Jr., SANTOS, R. B. O., BARRETO, D. N. S., & GONÇALVES, T. J. M. Utilização do método de análise hierárquica (AHP) para a seleção de um sistema integrado de gestão (ERP). Anais do Encontro Nacional de Engenharia de Produção, Salvador, BA. Brasil. 2009.

BANA e COSTA, C. A. e VANSNICK, J. C. A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research. 2008.

BARRON, A.H. e BARRETT, B.E. The efficacy of SMARTER – Simple Multi-Attribute Rating Technique Extended to Ranking. Acta Psychologica. 1996.

BARTON, N. Predicting the Behaviour of Underground Openings in Jointed Rock. 4° Manual Rocha Memorial Lecture. Lisbon. 1987.

BARZILAI, J. Deriving weights from pairwise comparison matrices. J. Operational Research Society. 1997.

BELTON V. e GEAR T. On a shortcoming of Saaty's Method of Analytic Hierarchies. Omega. 1982.

BELTON, V. e STEWART, T.J. Multiple criteria decision analysis: an integrated approach. Kluwer Academic Publishers, Massachusetts. 2002.

CAPUTO, H. P,. Mecânica dos Solos e Suas Aplicações. 6a Edição. Volume 1. Rio de Janeiro. LTC - Livros Técnicos e Científicos Editora S.A. 1988

CARREGÃ, D. L. Estudo de Movimentações de Encostas Aplicado ao Perfil de Intemperismo em Ambientes Tropicais. In: 8º CBGE, Rio de Janeiro. Anais: ABGE, v.2, p. 415-427. 1996.

COSTA, C. N. Notas de aula, Fundamentos de Geotecnia – Introdução à Descrição e Classificação das Rochas. Universidade Nova de Lisboa. 2007.

COUTINHO, R. Q. Characterization and Engineering Properties of Recife Soft Clays. (P. H. Tan, Ed.). Volume 3, p. 2049 – 2100. 2007.

COUTINHO, R. Q. O. J. &. O. A. Estudo Quantitativo da Qualidade de Amostras de Argilas Moles Brasileiras - Recife e Rio de Janeiro. COBRAMSEG, Volume 2, pp. 927-936. 1998.

CPRM – Companhia de Pesquisa de Recursos Minerais. Geomofologia do Rio de Janeiro, disponível em: https://www.cprm.gov.br/publique/Gestao-Territorial/Geologia%2C-Meio-Ambiente-e-Saude/Projeto-Rio-de-Janeiro-3498.html. Acesso em: 11 de setembro de 2019.

CRAIG, R. F. & KNAPPETT, J. A. Craig's soil mechanics. 8^a ed. New York: Spon Press. 2012.

DANTAS, M. E. et al. DIAGNÓSTICO GEOAMBIENTAL DO ESTADO DO RIO DE JANEIRO. (Serviço Geológico do Brasil/CPRM), http://arquivos.proderj.rj.gov.br/inea_imagens/downloads/pesquisas/APA_Mangaratib a/Dantas_etal_2005.pdf, acessado em 31/08/2019.

DANZIGER, B. R. Notas de aula do curso: Fundações Especiais. Rio de Janeiro: UERJ. 2017.

DER, Departamento de Estradas de Rodagem do Estado de São Paulo e IPT. Instituto de Pesquisas Tecnológicas. Manual de Geotecnia: Taludes de Rodovias – Orientação para Diagnóstico e Soluções de seus Problemas. São Paulo. 1991.

DNER, Departamento de Nacional de Estradas de Rodagem. Instituto de Pesquisas Rodoviárias – IPR, Glossário de Termos Técnicos Rodoviários. Rio de Janeiro. 1997. DNER, Departamento de Nacional de Estradas de Rodagem. Instituto de Pesquisas Rodoviárias – IPR, Projeto de aterros sobre solos moles para obras viárias. Rio de Janeiro. 1998.

DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, Pesquisa Para Ampliação de Metodologia Desenvolvida Para Tratamento Matemático e Cálculo Atualizado dos Custos de Acidentes de Trânsito para Análise Econômica de Projetos de Engenharia na Malha Rodoviária. Rio de Janeiro. 2004.

DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, 710. Manual de Conservação Rodoviária. Rio de Janeiro. 2005. DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, 723. Manual de Estudo de Tráfego. Rio de Janeiro. 2006.

DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, 724. Manual de Drenagem de Rodovias. Rio de Janeiro. 2010.

DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, 741. Manual de Projeto e Práticas Operacionais para Segurança nas Rodovias. Rio de Janeiro. 2010.

DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, 742. Manual de Implantação Básica de Rodovias. Rio de Janeiro. 2010.

DNIT, Departamento Nacional de Infraestrutura de Transportes. Instituto de Pesquisas Rodoviárias – IPR, Pesquisa Para Ampliação de Metodologia Desenvolvida Para Tratamento Matemático e Cálculo Atualizado dos Custos de Acidentes de Trânsito para Análise Econômica de Projetos de Engenharia na Malha Rodoviária. Rio de Janeiro. 2011.

EHRLICH, M e SILVA, R, C. Monitoração de Terraplenos e Estruturas de Contenção - km 002+100 ao km 144+600. Rio de Janeiro. COPPETEC. 2017.

FARIA, B. F. Regressão Linear Múltipla para Dados Temporais com Correlação Serial.. 96 f. Projeto de Mestrado, Universidade Aberta, Portugal. 2011

FERNANDES, N. F.; AMARAL, C. P. Movimentos de massa: uma abordagem geológico-geomorfológica. In Guerra, A.J.T. e Cunha, S.B. (org.) Geomorfologia e Meio Ambiente. Bertrand, Rio de Janeiro. 1996.

FHWA - Federal Highway Administration. Disponível em https://www.fhwa.dot.gov/about/. Acesso em: 06 e 07 de junho de 2020.

FORMAN, E. and Gass, S. The Analytic Hierarchy Process—An Exposition. Operations Research. 2001.

FRANCH, F. A. J. P. Influência do tipo de revestimento superficial no fluxo não saturado e sua influência na estabilidade de taludes. 223 f. Dissertação de Mestrado, USP, São Paulo. 2008.

FUTAI, M. M. Disponível em: https://www.abms.com.br/membro-da-abms-fala-sobre-escorregamentos-e-prevencao/. ABMS, 2013. Acesso em: 11 de novembro de 2019.

GARCIA, N. L. Regressão Linear Simples. Disponível em: https://www.ime.unicamp.br/~nancy/Cursos/me104/regressao.pdf. Acesso em: 19 de agosto de 2019.

GERSCOVICH, D. DANZIGER, B. SARAMAGO, R., Contenções: Teoria e Aplicações em Obras. São Paulo: Oficina de Textos. 2016.

GERSCOVICH, D. M. S., Estabilidade de taludes. 2ª ed. São Paulo: Oficina de Textos. 2016.

GERSCOVICH, D. M. S. Apostila de Resistência ao Cisalhamento. Rio de Janeiro. 2010

GIL, A. C. Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas. 2007.

GRAMANI, M. F. e KANJI, M. A. Metodologia para determinação da vulnerabilidade a corridas de detritos em pequenas bacias hidráulicas. Anais. Rio de Janeiro, RJ: ABMS. 2001.

GUERRA, A.J.T. e CUNHA, S. Geomorfologia: uma atualização de conceitos e bases. 1994. Rio de Janeiro: Bertrand Brasil. 1994.

GUIDICINI, G. e NIEBLE, C.M. Estabilidade de taludes naturais de escavação. 1993. 2 ed. São Paulo: Edgard Blücher. 1993.

HEAD, Kenneth H.; EPPS, R. Manual of Soil Laboratory Testing. III ed. London: Pentech Press, 1986. v. 3

HORN, R. A. e JOHNSON, C. R. Matrix Analisys. Cambridge: University Press. 1985. HOEK, E. and BROWN, E., T. Underground excavations in rock Institution of Mining

and Metallurgy, London. 1980.

HOEK, E. Rock Mass Properties for Underground Mines. Society for Mining, Metallurgy and Exploration (SME). Litleton, Colorado. 21 p. 2002.

IBGE, Instituto Brasileiro de Geografia e Estatística. Manual Técnico de Geomorfologia. Rio de Janeiro. 2009.

IBGE, Instituto Brasileiro de Geografia e Estatística. Disponível em https://www.ibge.gov.br/explica/pib.php. Acessado em 30/09/2019.

ITE, Institute of Transportation Engineers and AASHTO, American Association of State Highway Transportation Officials. Traffic. Disponível em https://ops.fhwa.dot.gov/eto_tim_pse/docs/incident_mgmt_perf/section2.htm.

Acessado em 25/08/2019.

JAMIOLKOWSKI, M., LADD, C., GERMAINE, J. & LANCELLOTA, R., New developments in field and laboratory testing of soil. Theme Lecture, 11 th ICSMFE, San Francisco, USA, Volume 1, pp. 57-153. 1985.

KANJI, M.A. Estabilização e Remediação de Taludes – Relato Geral. 1997. II PSL / II COBRAE, Rio de Janeiro, Vol. 3. 1997.

KOBIYAMA, M.; MENDONÇA, M.; MORENO, D.A.; MARCELINO, I.P.V.O; MARCELINO, E.V.; GONÇALVES, E.F.; BRAZETTI, L.L.P.; GOERL, R.F.; MOLLERI,

G.S.F.; RUDORFF, F.M. 2006. Prevenção de Desastres Naturais: Conceitos Básicos.

Curitiba: Ed. Organic Trading. 109 p. Disponível em: http://www.labhidro.ufsc.br/publicacoes.html.

LADD, C. C. &. L. T. W. The strength of undisturbed clay determined from undrained tests. American Society for Testine and Materials. 1963.

LAMBE, T. W. & WHITMAN, R. V., 1969. Soil Mechanics. New York: s.n.

LAMBE, W,. Soil test for engineers. New York: John Wiley e Sons. 1951.

LEROUEIL, S. e. J. M. Exploration of soft soil and determination of design parameters. General Report, Session 1 - GEO-COAST '91 - Japan. 1991.

LNEC. "Vocabulário de Estradas e Aeródromos ".1962.

MACCAFERRI DO BRASIL. Catálogo: Obras de Contenção. São Paulo. 2017.

MARANGON, M. Notas de aula: Tópicos em Geotecnia e Obras de terra. Estabilidade de Taludes. UFJF, 2006. Disponível em http://www.ufjf.br/files/2009/11togot_Unid04EstabilidadeTaludes01.pdf. Acessado em 22/08/2019.

MASSAD, F. Obras de terra: curso básico de geotecnia. São Paulo: Oficina de Textos, 2010.

MATTOS, K. C. A, São Paulo. Processo de Instabilização em Taludes Rodoviário em Solos Residuais arenosos: Estudo na Rodovia Castello Branco (SP 280), Km 305 a 313, Dissertação de mestrado. Universidade São Carlos. 2009.

MENEZES, A. P., Notas de aula do curso: Mecânica das Rochas. Rio de Janeiro: UERJ. 2018.

MINISTÉRIO DO PLANEJAMENTO, DESENVOLVIMENTO E GESTÃO, Matriz de Riscos - Gestão de Integridade, Riscos e Controles Internos da Gestão. Brasília. 2016. MOREIRA, J.E. 1974. Estabilidade de Taludes de Solos Residuais de Granito e de Gnaisse. Universidade Federal do Rio de Janeiro, UFRJ, dissertação de mestrado. 1974.

MORGENSTERN, N.R., PRICE, V.E. 1965. The Analysis of the Stability of General Slip Surfaces. Géotechnique, 15, pp.79–93.

NOVA DUTRA CCR, Avaliação do Nível de Serviço 2018, Rodovia Presidente Dutra. Rio de Janeiro. ANTT. 2018

ORTIGÃO, J.A.R., Introdução à Mecânica dos Solos dos Estados Críticos, 3ª Edição, Terratek. 2007.

OLIVEIRA, F. F. P., Padronização e Eficácia dos Procedimentos de Controle Externo em Obras Rodoviária de Contenção de Taludes. Tribunal de Contas da União. Brasília: UnB. 2018.

PARIZZI, M.G.. Condicionantes e Mecanismos de ruptura de taludes da região metropolitana de Belo Horizonte. Universidade Federal de Ouro Preto, UFOP, tese de doutorado, 213 p. 2004

PACHECO, M. P., Notas de aula do curso: Tensões e resistência ao cisalhamento. Rio de Janeiro: UERJ. 2017.

PEIXOTO, A. A., Topografia – Curso Geral. Departamento de Matemática da FCTUC. 1991.

PFEIL, W., Rio de Janeiro. Curso Básico – Pontes. Editora Campus.

PIERSON, L.A.; VAN VICKIE, R. (1993). Rockfall Hazard Rating System. 1983.

PINHEIRO, R. J. B., Estudo de Alguns Casos de Instabilidade da Encosta da Serra Geral no Estado do Rio Grande do Sul: Rio Grande do Sul: Tese de doutorado. UFRS. 2000.

PINTO, C. D. S., Curso básico de mecânica dos solos em 16 aulas. 3ª ed. São Paulo: Oficina de Textos. 2006.

RUPPENTHAL, J. E., Gerenciamento de Riscos. Santa Maria. UFSM. Rio Grande do Sul. 2013.

SAATY, T.L., "The Analytic Hierarchy Process." McGraw-Hill, New York. 1980.

SAATY, T.L. "Rank generation, preservation, and reversal int the analytic hierarchy decision process", Decision Sciences, Vol.18. 1987.

SANDRONI, S. S.,. Obtendo Boas Estimativas de Recalque em Solos Muito Moles: O Caso da Barra da Tijuca, Rio de Janeiro. Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, ABMS. 2006

SAYÃO, A. S. F. J., Ensaios de laboratório na argila mole da escavação experimental de Sarapuí. Rio de janeiro: Dissertação de mestrado. PUC-Rio. 1980.

SCHONER, B. and WEDLEY, W. C. Ambiguous Criteria Weights in AHP: Consequences and Solutions, Decision Sciences. 1989.

SETE ENGENHARIA. Disponível em http://sete.eng.br/cortina-atirantada-1025-servico-231111. Acessado em 23/08/2019.

SIEIRA, A. C. C. F., Notas de aula de fundamentos geotécnicos. Rio de Janeiro: UERJ. 2017.

SILVA, M.A. Aplicação de Lógica Nebulosa para Previsão do Risco de Escorregamentos de Taludes em Solo Residual, Rio de Janeiro, RJ. s.l.: Dissertação (Mestrado em Geotecnia) – Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 2008.

SPENCER, E., 1967. A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique, 17, pp. II-26. APUD: FREITAS, M. A. C., Análise de Estabilidade de Taludes Pelos Métodos de Morgentern-Price e Correia, Tese de M.Sc., FEUP, Porto, Portugal, 2011.

SUAREZ, J.D.. La Vegetación en la Estabilización de Deslizamientos. 1997. II PSL / II COBRAE, Rio de Janeiro, Vol. 2. 1997

TERZAGHI, K. Theoretical Soil Mechanics. John Wiley and Sons. INC. Londres, 1943. TERZAGHI, K. Mecanismo dos Escorregamentos de Terra. (Tradução de Mechanics os Landslides) In. São Paulo: Revista Politécnica USP, 1950.

THOMAS, M.F. Tropical Geomorphology: A Study of Weathering and Landform Development in Warm Climates. London: MacMillan. 1979.

TOMINAGA, L.K. Avaliação de metodologias de análise de risco a escorregamentos: aplicação de um ensaio em Ubatuba, SP. s.l.: Tese (Doutorado em Geografia) – Universidade de São Paulo (USP), São Paulo, 2007.

TRB - Transportation Research Board. Highway Capacity Manual - HCM, Washington, D.C. (2000)

VARNES, D.J. Landslide Types and Processes. In: ECKEL, E.B. (eds), Highway Research Board, Special Report, v. 29, p. 20-47. 1958.

VARNES, D.J. Slope Movement Types and Process. In: Lanslides Analysis and Control. Washington: National Academy of Sciences. 1978.

VARNES, D.J. Landslide Hazard Zonation: A Review of Principles and Practice, Natural Hazards. UNESCO, Paris. 1984.

VIEIRA, V. P. P. B. Análise de riscos em recursos hídricos – fundamentos e Aplicações. Porto Alegre-RS: Associação Brasileira de Recursos Hídricos (ABRH), nov. 2005.

ZAHEDI, F. Estimation Techniques and their Statistical Properties in the Analytic Hierarchy Process. University of Massachusetts Working Paper. 1984.

ZELENY, M. A Concept of Compromise Solutions and the Method of the Displaced Ideal, Computers and Operations Research. 1974.

ANEXO 1 PLANILHA PARA LEVANTAMENTO DOS TERRAPLENOS

TERRAPLENO - PERSPECTIVA DE RISCO DE INCIDENTE					
	DAI	DOS DO LO	OGRADOURO		
RODOVIA					
км	TIPO		TIPO	CORTE	
SENTIDO			IIPO	ATERF	
		CADASTR	AMENTO		
COORDENADAS				N/S	
				LIO	
	D	ADOS GEO	OMÉTRICOS		
ALTURA (m)			DIST. ACOSTAMENTO (m		
EXTENSÃO (m)			INCLINAÇÃO (*)		
DEMAIS PARÂMETROS					
DRENAGE	М		OBRAS DE CON	TENÇ	ÃO
Bom Estado	I		Bom Estado	ı	
Demanda Manutenção	II		Demanda Manutenção	II	
Parcial ou Natural	III		Desgastada	Ш	
Inexistente	IV		Inexistente	IV	
ROCHA			VEGETAÇÃO		
Inexistente ou Sã	I		Consolidada ou Denecessária	Ι	
Pouco Alterada	II		Parcial	II	
Severamente Alterada	III		Pouca ou Inconsistente	Ш	
Decomposta	IV		Inexistente	IV	
P	OTEN	CIAL RISC	O DE INCIDENTE		
BAIXO					
MÉDIO					
ALTO					
MUITO AL	го				
	OE	BSERVAÇÔ	DES GERAIS		

RELATÓRIO FOTOGRÁFICO			
Foto Anterior	Foto Atual		
CROQUI ELI	UCIDATIVO		
ELEVAÇÃO CORTE AA			
PISTA NORTE RIO DE JANEIRO	30 m PISTA SILI - SÃO PAULO.▶		
SEÇÃO E 2,0 m PISTA NORTE - RE	O SE JANEIRO PISTA SUL - SÃO PAULO		
CORTE AA			

ANEXO 2

AMOSTRA DAS TABELAS DE CÁLCULO DOS LIMITES DE CONFIANÇA

	x	у		
n	Terrapleno	PRI	X ²	x.y
1	1	0,1959	1	0,1959
2	2	0,2446	4	0,4892
3	3	0,1959	9	0,5877
4	4	0,1758	16	0,7032
5	5	0,2032	25	1,016
6	6	0,1959	36	1,1754
7	7	0,2169	49	1,5183
8	8	0,1959	64	1,5672
9	9	0,2169	81	1,9521
10	10	0,2201	100	2,201
11	11	0,2201	121	2,4211
12	12	0,1959	144	2,3508
13	13	0,1992	169	2,5896
14	14	0,2260	196	3,164
15	15	0,1992	225	2,988
16	16	0,1932	256	3,0912
17	17	0,1932	289	3,2844
18	18	0,2201	324	3,9618
19	19	0,2201	361	4,1819
20	20	0,2169	400	4,338
21	21	0,2201	441	4,6221
22	22	0,2169	484	4,7718
23	23	0,2201	529	5,0623
24	24	0,1992	576	4,7808
25	25	0,2169	625	5,4225
26	26	0,2772	676	7,2072
27	27	0,2919	729	7,8813
28	28	0,2609	784	7,3052
29	29	0,2919	841	8,4651
30	30	0,2805	900	8,415
31	31	0,2919	961	9,0489
32	32	0,2959	1024	9,4688
33	33	0,2919	1089	9,6327
34	34	0,3155	1156	10,727
35	35	0,2709	1225	9,4815
36	36	0,2772	1296	9,9792
37	37	0,2772	1369	10,2564
38	38	0,2745	1444	10,431
39	39	0,2631	1521	10,2609
40	40	0,2750	1600	11
41	41	0,2919	1681	11,9679

42	42	0,2959	1764	12,4278
43	43	0,2813	1849	12,0959
44	44	0,2959	1936	13,0196
45	45	0,2563	2025	11,5335
46	46	0,1770	2116	8,142
47	47	0,3079	2209	14,4713
48	48	0,2410	2304	11,568
49	49	0,2772	2401	13,5828
50	50	0,2796	2500	13,98
51	51	0,2772	2601	14,1372
52	52	0,2558	2704	13,3016
53	53	0,2745	2809	14,5485
54	54	0,2863	2916	15,4602
55	55	0,2818	3025	15,499
56	56	0,2950	3136	16,52
57	57	0,2992	3249	17,0544
58	58	0,2915	3364	16,907
59	59	0,3196	3481	18,8564
60	60	0,2522	3600	15,132
61	61	0,2845	3721	17,3545
62	62	0,2919	3844	18,0978
63	63	0,2805	3969	17,6715
64	64	0,2919	4096	18,6816
65	65	0,2563	4225	16,6595
66	66	0,2919	4356	19,2654
67	67	0,2745	4489	18,3915
68	68	0,2599	4624	17,6732
69	69	0,2772	4761	19,1268
70	70	0,2518	4900	17,626
71	71	0,2745	5041	19,4895
72	72	0,2599	5184	18,7128
73	73	0,3104	5329	22,6592
74	74	0,2563	5476	18,9662
75	75	0,3676	5625	27,57
76	76	0,3178	5776	24,1528
77	77	0,1786	5929	13,7522
78	78	0,1786	6084	13,9308
79	79	0,2527	6241	19,9633
80	80	0,2401	6400	19,208
81	81	0,2474	6561	20,0394
82	82	0,2611	6724	21,4102
83	83	0,2527	6889	20,9741
84	84	0,2748	7056	23,0832
85	85	0,3155	7225	26,8175
86	86	0,3341	7396	28,7326
87	87	0,3242	7569	28,2054
88	88	0,3253	7744	28,6264

89	89	0,3010	7921	26,789
90	90	0,2188	8100	19,692
91	91	0,2256	8281	20,5296
92	92	0,2270	8464	20,884
93	93	0,3341	8649	31,0713
94	94	0,2965	8836	27,871
95	95	0,2563	9025	24,3485
96	96	0,2709	9216	26,0064
97	97	0,2772	9409	26,8884
98	98	0,2919	9604	28,6062
99	99	0,3155	9801	31,2345
100	100	0,2919	10000	29,19
101	101	0,3341	10201	33,7441
102	102	0,2709	10404	27,6318
103	103	0,3151	10609	32,4553
104	104	0,1949	10816	20,2696
105	105	0,2508	11025	26,334
106	106	0,3373	11236	35,7538
107	107	0,3373	11449	36,0911
108	108	0,3420	11664	36,936
109	109	0,2965	11881	32,3185
110	110	0,3420	12100	37,62
111	111	0,2959	12321	32,8449
112	112	0,2919	12544	32,6928
113	113	0,3181	12769	35,9453
114	114	0,3286	12996	37,4604
115	115	0,3400	13225	39,1
116	116	0,2959	13456	34,3244
117	117	0,2876	13689	33,6492
118	118	0,3006	13924	35,4708
119	119	0,2786	14161	33,1534
120	120	0,2603	14400	31,236
121	121	0,2579	14641	31,2059
122	122	0,2479	14884	30,2438
123	123	0,2813	15129	34,5999
124	124	0,2603	15376	32,2772
125	125	0,2805	15625	35,0625
126	126	0,2919	15876	36,7794
127	127	0,3112	16129	39,5224
128	128	0,3049	16384	39,0272
129	129	0,2992	16641	38,5968
130	130	0,3065	16900	39,845
131	131	0,2965	17161	38,8415
132	132	0,2959	17424	39,0588
133	133	0,2047	17689	27,2251
134	134	0,2772	17956	37,1448
135	135	0,2946	18225	39,771

136	136	0,1723	18496	23,4328
137	137	0,2965	18769	40,6205
138	138	0,2039	19044	28,1382
139	139	0,1804	19321	25,0756
140	140	0,2179	19600	30,506
141	141	0,2599	19881	36,6459
142	142	0,1929	20164	27,3918
143	143	0,2056	20449	29,4008
144	144	0,2011	20736	28,9584
145	145	0,2992	21025	43,384
146	146	0,2056	21316	30,0176
147	147	0,2074	21609	30,4878
148	148	0,2033	21904	30,0884
149	149	0,1979	22201	29,4871
150	150	0,2885	22500	43,275
151	151	0,2300	22801	34,73
152	152	0,2300	23104	34,75
153	153	0,2349	23409	34,4097
154	154	0,2992	23716	46,0768
155	155	0,2992	24025	34,348
156	156	0,2829	24336	44,1324
157	157	0,2829	24330 24649	
				34,0533
158 159	158 159	0,1979 0,1786	24964	31,2682
			25281	28,3974
160	160	0,3183	25600	50,928
161	161	0,1758	25921	28,3038
162	162	0,2910	26244	47,142
163	163	0,2143	26569	34,9309
164	164	0,2435	26896	39,934
165	165	0,1868	27225	30,822
166	166	0,2329	27556	38,6614
167	167	0,2024	27889	33,8008
168	168	0,2169	28224	36,4392
169	169	0,2290	28561	38,701
170	170	0,1832	28900	31,144
171	171	0,3110	29241	53,181
172	172	0,2965	29584	50,998
173	173	0,2022	29929	34,9806
174	174	0,2090	30276	36,366
175	175	0,2080	30625	36,4
176	176	0,2435	30976	42,856
177	177	0,1707	31329	30,2139
178	178	0,2959	31684	52,6702
179	179	0,1758	32041	31,4682
180	180	0,2137	32400	38,466
181	181	0,2756	32761	49,8836
182	182	0,2992	33124	54,4544

183	183	0,2636	33489	48,2388
184	184	0,3006	33856	55,3104
185	185	0,2959	34225	54,7415
186	186	0,2959	34596	55,0374
187	187	0,2772	34969	51,8364
188	188	0,2563	35344	48,1844
189	189	0,2819	35721	53,2791
190	190	0,2563	36100	48,697
191	191	0,1421	36481	27,1411
192	192	0,2919	36864	56,0448
193	193	0,2819	37249	54,4067
194	194	0,2742	37636	53,1948
195	195	0,2998	38025	58,461
196	196	0,3038	38416	59,5448
197	197	0,2998	38809	59,0606
198	198	0,2919	39204	57,7962
199	199	0,2821	39601	56,1379
200	200	0,2563	40000	51,26
201	201	0,2958	40401	59,4558
202	202	0,2563	40804	51,7726
203	203	0,3188	41209	64,7164
204	204	0,2563	41616	52,2852
205	205	0,2574	42025	52,767
206	206	0,2772	42436	57,1032
207	207	0,2946	42849	60,9822
208	208	0,2833	43264	58,9264
209	209	0,1932	43681	40,3788
210	210	0,1723	44100	36,183
211	211	0,1905	44521	40,1955
212	212	0,1979	44944	41,9548
213	213	0,2863	45369	60,9819
214	214	0,1755	45796	37,557
215	215	0,2548	46225	54,782
216	216	0,2959	46656	63,9144
217	217	0,3104	47089	67,3568
218	218	0,3155	47524	68,779
219	219	0,2959	47961	64,8021
220	220	0,1770	48400	38,94
221	221	0,3033	48841	67,0293
222	222	0,2795	49284	62,049
223	223	0,2748	49729	61,2804
224	224	0,1576	50176	35,3024
225	225	0,3373	50625	75,8925
226	226	0,3104	51076	70,1504
227	227	0,3064	51529	69,5528
228	228	0,3472	51984	79,1616
229	229	0,2745	52441	62,8605

230	230	0,2709	52900	62,307
231	231	0,2919	53361	67,4289
232	232	0,1554	53824	36,0528
233	233	0,3252	54289	75,7716
234	234	0,2951	54756	69,0534
235	235	0,2563	55225	60,2305
236	236	0,2819	55696	66,5284
237	237	0,2772	56169	65,6964
238	238	0,2188	56644	52,0744
239	239	0,2917	57121	69,7163
240	240	0,2975	57600	71,4
241	241	0,3110	58081	74,951
242	242	0,2965	58564	71,753
243	243	0,2361	59049	57,3723
244	244	0,3234	59536	78,9096
245	245	0,2851	60025	69,8495
246	246	0,2609	60516	64,1814
247	247	0,3151	61009	77,8297
248	248	0,3151	61504	78,1448
249	249	0,2965	62001	73,8285
250	250	0,2609	62500	65,225
251	251	0,2805	63001	70,4055
252	252	0,2709	63504	68,2668
253	253	0,2452	64009	62,0356
254	254	0,2919	64516	74,1426
255	255	0,2772	65025	70,686
256	256	0,2729	65536	69,8624
257	257	0,2508	66049	64,4556
258	258	0,1375	66564	35,475
259	259	0,3103	67081	80,3677
260	260	0,3010	67600	78,26
261	261	0,3004	68121	78,4044
262	262	0,2951	68644	77,3162
263	263	0,3143	69169	82,6609
264	264	0,2887	69696	76,2168
265	265	0,3064	70225	81,196
266	266	0,2917	70756	77,5922
267	267	0,2919	71289	77,9373
268	268	0,2508	71824	67,2144
269	269	0,3300	72361	88,77
270	270	0,2508	72900	67,716
271	271	0,2508	73441	67,9668
272	272	0,2772	73984	75,3984
273	273	0,2361	74529	64,4553
274	274	0,2742	75076	75,1308
275	275	0,2772	75625	76,23
276	276	0,2393	76176	66,0468

277	277	0,2563	76729	70,9951
278	278	0,2393	77284	66,5254
279	279	0,2951	77841	82,3329
280	280	0,1560	78400	43,68
281	281	0,2835	78961	79,6635
282	282	0,2903	79524	81,8646
283	283	0,1723	80089	48,7609
284	284	0,2919	80656	82,8996
285	285	0,1684	81225	47,994
286	286	0,3064	81796	87,6304
287	287	0,2708	82369	77,7196
288	288	0,2508	82944	72,2304
289	289	0,3110	83521	89,879
290	290	0,2361	84100	68,469
291	291	0,2393	84681	69,6363
292	292	0,2700	85264	78,84
293	293	0,2508	85849	73,4844
294	294	0,3064	86436	90,0816
295	295	0,3347	87025	98,7365
296	296	0,3300	87616	97,68
297	297	0,3064	88209	91,0008
298	298	0,2508	88804	74,7384
299	299	0,3178	89401	95,0222
300	300	0,2919	90000	87,57
301	301	0,2919	90601	87,8619
302	302	0,1947	91204	58,7994
303	303	0,2329	91809	70,5687
304	304	0,2124	92416	64,5696
305	305	0,3445	93025	105,0725
306	306	0,2965	93636	90,729
307	307	0,3096	94249	95,0472
308	308	0,2964	94864	91,2912
309	309	0,2854	95481	88,1886
310	310	0,3004	96100	93,124
311	311	0,3064	96721	95,2904
312	312	0,1786	97344	55,7232
313	313	0,1959	97969	61,3167
314	314	0,2919	98596	91,6566
315	315	0,2887	99225	90,9405
316	316	0,2919	99856	92,2404
317	317	0,2157	100489	68,3769
318	318	0,3064	101124	97,4352
319	319	0,2919	101761	93,1161
320	320	0,2077	102400	66,464
321	321	0,2709	103041	86,9589
322	322	0,2965	103684	95,473
323	323	0,2334	104329	75,3882
			ĺ	

324	324	0,2157	104976	69,8868
325	325	0,2919	105625	94,8675
326	326	0,1818	106276	59,2668
327	327	0,1898	106929	62,0646
328	328	0,1898	107584	62,2544
329	329	0,1935	108241	63,6615
330	330	0,2393	108900	78,969
331	331	0,1965	109561	65,0415
332	332	0,2919	110224	96,9108
333	333	0,3064	110889	102,0312
334	334	0,3300	111556	110,22
335	335	0,1951	112225	65,3585
336	336	0,3064	112896	102,9504
337	337	0,2919	113569	98,3703
338	338	0,3104	114244	104,9152
339	339	0,2010	114921	68,139
340	340	0,2452	115600	83,368
341	341	0,2919	116281	99,5379
342	342	0,3110	116964	106,362
343	343	0,3341	117649	114,5963
344	344	0,3143	118336	108,1192
345	345	0,2536	119025	87,492
346	346	0,2945	119716	101,897
		,		,
347	347	0,3300	120409	114,51
	347 348	0,3300 0.3201		114,51 111.3948
348	348	0,3201	121104	111,3948
		0,3201 0,1764		·
348 349 350	348 349 350	0,3201 0,1764 0,2150	121104 121801 122500	111,3948 61,5636 75,25
348 349 350 351	348 349 350 351	0,3201 0,1764 0,2150 0,2919	121104 121801 122500 123201	111,3948 61,5636 75,25 102,4569
348 349 350 351 352	348 349 350 351 352	0,3201 0,1764 0,2150 0,2919 0,2951	121104 121801 122500 123201 123904	111,3948 61,5636 75,25 102,4569 103,8752
348 349 350 351 352 353	348 349 350 351 352 353	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366	121104 121801 122500 123201 123904 124609	111,3948 61,5636 75,25 102,4569 103,8752 118,8198
348 349 350 351 352 353 354	348 349 350 351 352 353 354	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745	121104 121801 122500 123201 123904 124609 125316	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173
348 349 350 351 352 353 354 355	348 349 350 351 352 353 354 355	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923	121104 121801 122500 123201 123904 124609 125316 126025	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665
348 349 350 351 352 353 354 355 356	348 349 350 351 352 353 354 355 356	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891	121104 121801 122500 123201 123904 124609 125316 126025 126736	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196
348 349 350 351 352 353 354 355 356 357	348 349 350 351 352 353 354 355 356 357	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668
348 349 350 351 352 353 354 355 356 357 358	348 349 350 351 352 353 354 355 356 357 358	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978
348 349 350 351 352 353 354 355 356 357 358 359	348 349 350 351 352 353 354 355 356 357 358 359	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464
348 349 350 351 352 353 354 355 356 357 358 359 360	348 349 350 351 352 353 354 355 356 357 358 359 360	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78
348 349 350 351 352 353 354 355 356 357 358 359 360 361	348 349 350 351 352 353 354 355 356 357 358 359 360 361	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168 0,2619	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984 95,3316
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168 0,2619 0,1707	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496 133225	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984 95,3316 62,3055
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168 0,2619 0,1707 0,2824	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496 133225 133956	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984 95,3316 62,3055 103,3584
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168 0,2619 0,1707 0,2824 0,2816	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496 133225 133956 134689	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984 95,3316 62,3055 103,3584 103,3472
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168 0,2619 0,1707 0,2824 0,2816 0,2508	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496 133225 133956 134689 135424	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984 95,3316 62,3055 103,3584 103,3472 92,2944
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367	348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367	0,3201 0,1764 0,2150 0,2919 0,2951 0,3366 0,2745 0,2923 0,2891 0,3240 0,2891 0,3096 0,2355 0,2367 0,3104 0,3168 0,2619 0,1707 0,2824 0,2816	121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496 133225 133956 134689	111,3948 61,5636 75,25 102,4569 103,8752 118,8198 97,173 103,7665 102,9196 115,668 103,4978 111,1464 84,78 85,4487 112,3648 114,9984 95,3316 62,3055 103,3584 103,3472

371	371	0,3137	137641	116,3827
372	372	0,2653	138384	98,6916
373	373	0,2964	139129	110,5572
374	374	0,2709	139876	101,3166
375	375	0,3127	140625	117,2625
376	376	0,2508	141376	94,3008
377	377	0,2709	142129	102,1293
378	378	0,2891	142884	109,2798
379	379	0,2919	143641	110,6301
380	380	0,2685	144400	102,03
381	381	0,1707	145161	65,0367
382	382	0,2188	145924	83,5816
383	383	0,2508	146689	96,0564
384	384	0,3060	147456	117,504
385	385	0,2772	148225	106,722
386	386	0,2508	148996	96,8088
387	387	0,2744	149769	106,1928
388	388	0,3188	150544	123,6944
389	389	0,2742	151321	106,6638
390	390	0,1965	152100	76,635
391	391	0,2744	152881	107,2904
392	392	0,2361	153664	92,5512
393	393	0,2923	154449	114,8739
394	394	0,3188	155236	125,6072
395	395	0,3188	156025	125,926
396	396	0,2742	156816	108,5832
397	397	0,2965	157609	117,7105
398	398	0,1293	158404	51,4614
399	399	0,3110	159201	124,089
400	400	0,3218	160000	128,72
SOMA	80200	106,0498	21413400	21502,0375
MÉDIA	200,5	0,3	53533,5	53,8

		у^		y-y^	(y-y^) ²
В	r	0,2561	(x1-xm) ²	-0,0602	0,0036
4,48226E-05	0,112548735	0,2562	39800,25	-0,0603	0,0036
•	•	0,2562	39402,25	-0,0116	0,0001
		0,2563	39006,25	-0,0604	0,0036
		0,2563	38612,25	-0,0805	0,0065
		0,2564	38220,25	-0,0532	0,0028
		0,2564	37830,25	-0,0605	0,0037
		0,2565	37442,25	-0,0396	0,0016
		0,2565	37056,25	-0,0606	0,0037
		0,2565	36672,25	-0,0396	0,0016
		0,2566	36290,25	-0,0365	0,0013
		0,2566	35910,25	-0,0365	0,0013
		0,2567	35532,25	-0,0608	0,0037
		0,2567	35156,25	-0,0575	0,0033
		0,2568	34782,25	-0,0308	0,0009
		0,2568	34410,25	-0,0576	0,0033
		0,2569	34040,25	-0,0637	0,0041
		0,2569	33672,25	-0,0637	0,0041
		0,2569	33306,25	-0,0368	0,0014
		0,2570	32942,25	-0,0369	0,0014
		0,2570	32580,25	-0,0401	0,0016
		0,2571	32220,25	-0,0370	0,0014
		0,2571	31862,25	-0,0402	0,0016
		0,2572	31506,25	-0,0371	0,0014
		0,2572	31152,25	-0,0580	0,0034
		0,2573	30800,25	-0,0404	0,0016
		0,2573	30450,25	0,0199	0,0004
		0,2573	30102,25	0,0346	0,0012
		0,2574	29756,25	0,0035	0,0000
		0,2574	29412,25	0,0345	0,0012
		0,2575	29070,25	0,0230	0,0005
		0,2575	28730,25	0,0344	0,0012
		0,2576	28392,25	0,0383	0,0015
		0,2576 0,2577	28056,25	0,0343	0,0012
		0,2577	27722,25 27390,25	0,0578 0,0132	0,0003
		0,2578	27060,25	0,0132	0,0004
		0,2578	26732,25	0,0194	0,0004
		0,2578	26406,25	0,0167	0,0003
		0,2579	26082,25	0,0052	0,0000
		0,2579	25760,25	0,0171	0,0003
		0,2580	25440,25	0,0339	0,0012
		0,2580	25122,25	0,0379	0,0014
		0,2581	24806,25	0,0232	0,0005
		0,2581	24492,25	0,0378	0,0014
		.,		.,	-,

0,2582	24180,25	-0,0019	0,0000
0,2582	23870,25	-0,0812	0,0066
0,2582	23562,25	0,0497	0,0025
0,2583	23256,25	-0,0173	0,0003
0,2583	22952,25	0,0189	0,0004
0,2584	22650,25	0,0212	0,0005
0,2584	22350,25	0,0188	0,0004
0,2585	22052,25	-0,0027	0,0000
0,2585	21756,25	0,0160	0,0003
0,2586	21462,25	0,0277	0,0008
0,2586	21170,25	0,0232	0,0005
0,2586	20880,25	0,0364	0,0013
0,2587	20592,25	0,0405	0,0016
0,2587	20306,25	0,0328	0,0011
0,2588	20022,25	0,0608	0,0037
0,2588	19740,25	-0,0066	0,0000
0,2589	19460,25	0,0256	0,0007
0,2589	19182,25	0,0330	0,0011
0,2590	18906,25	0,0215	0,0005
0,2590	18632,25	0,0329	0,0011
0,2591	18360,25	-0,0028	0,0000
0,2591	18090,25	0,0328	0,0011
0,2591	17822,25	0,0154	0,0002
0,2592	17556,25	0,0007	0,0000
0,2592	17292,25	0,0180	0,0003
0,2593	17030,25	-0,0075	0,0001
0,2593	16770,25	0,0152	0,0002
0,2594	16512,25	0,0005	0,0000
0,2594	16256,25	0,0510	0,0026
0,2595	16002,25	-0,0032	0,0000
0,2595	15750,25	0,1081	0,0117
0,2595	15500,25	0,0583	0,0034
0,2596	15252,25	-0,0810	0,0066
0,2596	15006,25	-0,0810	0,0066
0,2597	14762,25	-0,0070	0,0000
0,2597	14520,25	-0,0196	0,0004
0,2598	14280,25	-0,0124	0,0002
0,2598	14042,25	0,0013	0,0000
0,2599	13806,25	-0,0072	0,0001
0,2599	13572,25	0,0149	0,0002
0,2599	13340,25	0,0556	0,0031
0,2600	13110,25	0,0741	0,0055
0,2600	12882,25	0,0642	0,0041
0,2601	12656,25	0,0652	0,0043
0,2601	12432,25	0,0409	0,0017
0,2602	12210,25	-0,0414	0,0017
0,2602	11990,25	-0,0346	0,0012
0,2603	11772,25	-0,0333	0,0011

0,2603	11556,25	0,0738	0,0054
0,2604	11342,25	0,0361	0,0013
0,2604	11130,25	-0,0041	0,0000
0,2604	10920,25	0,0105	0,0001
0,2605	10712,25	0,0167	0,0003
0,2605	10506,25	0,0314	0,0010
0,2606	10302,25	0,0549	0,0030
0,2606	10100,25	0,0313	0,0010
0,2607	9900,25	0,0734	0,0054
0,2607	9702,25	0,0102	0,0001
0,2608	9506,25	0,0543	0,0030
0,2608	9312,25	-0,0659	0,0043
0,2608	9120,25	-0,0100	0,0001
0,2609	8930,25	0,0764	0,0058
0,2609	8742,25	0,0764	0,0058
0,2610	8556,25	0,0810	0,0066
0,2610	8372,25	0,0355	0,0013
0,2611	8190,25	0,0809	0,0065
0,2611	8010,25	0,0348	0,0012
0,2612	7832,25	0,0307	0,0009
0,2612	7656,25	0,0569	0,0032
0,2612	7482,25	0,0674	0,0045
0,2613	7310,25	0,0787	0,0062
0,2613	7140,25	0,0346	0,0012
0,2614	6972,25	0,0262	0,0007
0,2614	6806,25	0,0392	0,0015
0,2615	6642,25	0,0171	0,0003
0,2615	6480,25	-0,0012	0,0000
0,2616	6320,25	-0,0037	0,0000
0,2616	6162,25	-0,0137	0,0002
0,2617	6006,25	0,0196	0,0004
0,2617	5852,25	-0,0014	0,0000
0,2617	5700,25	0,0188	0,0004
0,2618	5550,25	0,0301	0,0009
0,2618	5402,25	0,0494	0,0024
0,2619	5256,25	0,0430	0,0019
0,2619	5112,25	0,0373	0,0014
0,2620	4970,25	0,0445	0,0020
0,2620	4830,25	0,0345	0,0012
0,2621	4692,25	0,0338	0,0011
0,2621	4556,25	-0,0574	0,0033
0,2621	4422,25	0,0151	0,0002
0,2622	4290,25	0,0324	0,0011
0,2622	4160,25	-0,0899	0,0081
0,2623	4032,25	0,0342	0,0012
0,2623	3906,25	-0,0584	0,0034
0,2624	3782,25	-0,0820	0,0067
0,2624	3660,25	-0,0445	0,0020

0,2625	3540,25	-0,0026	0,0000
0,2625	3422,25	-0,0696	0,0048
0,2625	3306,25	-0,0569	0,0032
0,2626	3192,25	-0,0615	0,0038
0,2626	3080,25	0,0366	0,0013
0,2627	2970,25	-0,0571	0,0033
0,2627	2862,25	-0,0553	0,0031
0,2628	2756,25	-0,0595	0,0035
0,2628	2652,25	-0,0649	0,0042
0,2629	2550,25	0,0256	0,0007
0,2629	2450,25	-0,0329	0,0011
0,2630	2352,25	-0,0330	0,0011
0,2630	2256,25	-0,0381	0,0015
0,2630	2162,25	0,0362	0,0013
0,2631	2070,25	-0,0415	0,0017
0,2631	1980,25	0,0198	0,0004
0,2632	1892,25	-0,0463	0,0021
0,2632	1806,25	-0,0653	0,0043
0,2633	1722,25	-0,0847	0,0072
0,2633	1640,25	0,0550	0,0030
0,2634	1560,25	-0,0876	0,0077
0,2634	1482,25	0,0276	0,0008
0,2634	1406,25	-0,0491	0,0024
0,2635	1332,25	-0,0200	0,0004
0,2635	1260,25	-0,0767	0,0059
0,2636	1190,25	-0,0307	0,0009
0,2636	1122,25	-0,0612	0,0037
0,2637	1056,25	-0,0468	0,0022
0,2637	992,25	-0,0347	0,0012
0,2638	930,25	-0,0806	0,0065
0,2638	870,25	0,0472	0,0022
0,2638	812,25	0,0327	0,0011
0,2639	756,25	-0,0617	0,0038
0,2639	702,25	-0,0549	0,0030
0,2640	650,25	-0,0560	0,0031
0,2640	600,25	-0,0205	0,0004
0,2641	552,25	-0,0934	0,0087
0,2641	506,25	0,0318	0,0010
0,2642	462,25	-0,0884	0,0078
0,2642	420,25	-0,0505	0,0026
0,2643	380,25	0,0113	0,0001
0,2643	342,25	0,0349	0,0012
0,2643	306,25	-0,0007	0,0000
0,2644	272,25	0,0362	0,0013
0,2644	240,25	0,0315	0,0010
0,2645	210,25	0,0314	0,0010
0,2645	182,25	0,0127	0,0002
0,2646	156,25	-0,0083	0,0001

0,2646	132,25	0,0173	0,0003
0,2647	110,25	-0,0084	0,0001
0,2647	90,25	-0,1226	0,0150
0,2647	72,25	0,0272	0,0007
0,2648	56,25	0,0171	0,0003
0,2648	42,25	0,0094	0,0001
0,2649	30,25	0,0349	0,0012
0,2649	20,25	0,0389	0,0015
0,2650	12,25	0,0348	0,0012
0,2650	6,25	0,0269	0,0007
0,2651	2,25	0,0170	0,0003
0,2651	0,25	-0,0088	0,0001
0,2651	0,25	0,0307	0,0009
0,2652	2,25	-0,0089	0,0001
0,2652	6,25	0,0536	0,0029
0,2653	12,25	-0,0090	0,0001
0,2653	20,25	-0,0079	0,0001
0,2654	30,25	0,0118	0,0001
0,2654	42,25	0,0292	0,0009
0,2655	56,25	0,0178	0,0003
0,2655	72,25	-0,0723	0,0052
0,2656	90,25	-0,0933	0,0087
0,2656	110,25	-0,0751	0,0056
0,2656	132,25	-0,0677	0,0046
0,2657	156,25	0,0206	0,0004
0,2657	182,25	-0,0902	0,0081
0,2658	210,25	-0,0110	0,0001
0,2658	240,25	0,0301	0,0009
0,2659	272,25	0,0445	0,0020
0,2659	306,25	0,0496	0,0025
0,2660	342,25	0,0299	0,0009
0,2660	380,25	-0,0890	0,0079
0,2660	420,25	0,0373	0,0014
0,2661	462,25	0,0134	0,0002
0,2661	506,25	0,0087	0,0001
0,2662	552,25	-0,1086	0,0118
0,2662	600,25	0,0711	0,0051
0,2663	650,25	0,0441	0,0019
0,2663	702,25	0,0401	0,0016
0,2664	756,25	0,0808	0,0065
0,2664	812,25	0,0081	0,0001
0,2664	870,25	0,0045	0,0000
0,2665	930,25	0,0254	0,0006
0,2665	992,25	-0,1111	0,0124
0,2666	1056,25	0,0586	0,0034
0,2666	1122,25	0,0285	0,0008
0,2667	1190,25	-0,0104	0,0001
0,2667	1260,25	0,0152	0,0002

0,2668	1332,25	0,0104	0,0001
0,2668	1406,25	-0,0480	0,0023
0,2669	1482,25	0,0248	0,0006
0,2669	1560,25	0,0306	0,0009
0,2669	1640,25	0,0441	0,0019
0,2670	1722,25	0,0295	0,0009
0,2670	1806,25	-0,0309	0,0010
0,2671	1892,25	0,0563	0,0032
0,2671	1980,25	0,0180	0,0003
0,2672	2070,25	-0,0063	0,0000
0,2672	2162,25	0,0479	0,0023
0,2673	2256,25	0,0478	0,0023
0,2673	2352,25	0,0292	0,0009
0,2673	2450,25	-0,0064	0,0000
0,2674	2550,25	0,0131	0,0002
0,2674	2652,25	0,0035	0,0000
0,2675	2756,25	-0,0223	0,0005
0,2675	2862,25	0,0244	0,0006
0,2676	2970,25	0,0096	0,0001
0,2676	3080,25	0,0053	0,0000
0,2677	3192,25	-0,0169	0,0003
0,2677	3306,25	-0,1302	0,0170
0,2677	3422,25	0,0426	0,0018
0,2678	3540,25	0,0332	0,0011
0,2678	3660,25	0,0326	0,0011
0,2679	3782,25	0,0272	0,0007
0,2679	3906,25	0,0464	0,0022
0,2680	4032,25	0,0207	0,0004
0,2680	4160,25	0,0384	0,0015
0,2681	4290,25	0,0236	0,0006
0,2681	4422,25	0,0238	0,0006
0,2682	4556,25	-0,0174	0,0003
0,2682	4692,25	0,0618	0,0038
0,2682	4830,25	-0,0174	0,0003
0,2683	4970,25	-0,0175	0,0003
0,2683	5112,25	0,0089	0,0001
0,2684	5256,25	-0,0323	0,0010
0,2684	5402,25	0,0058	0,0000
0,2685	5550,25	0,0087	0,0001
0,2685	5700,25	-0,0292	0,0009
0,2686	5852,25	-0,0123	0,0002
0,2686	6006,25	-0,0293	0,0009
0,2686	6162,25	0,0265	0,0007
0,2687	6320,25	-0,1127	0,0127
0,2687	6480,25	0,0148	0,0002
0,2688	6642,25	0,0215	0,0005
0,2688	6806,25	-0,0965	0,0093
0,2689	6972,25	0,0230	0,0005

0,2689	7140,25	-0,1005	0,0101
0,2690	7310,25	0,0374	0,0014
0,2690	7482,25	0,0018	0,0000
0,2690	7656,25	-0,0182	0,0003
0,2691	7832,25	0,0419	0,0018
0,2691	8010,25	-0,0330	0,0011
0,2692	8190,25	-0,0299	0,0009
0,2692	8372,25	0,0008	0,0000
0,2693	8556,25	-0,0185	0,0003
0,2693	8742,25	0,0371	0,0014
0,2694	8930,25	0,0653	0,0043
0,2694	9120,25	0,0606	0,0037
0,2694	9312,25	0,0370	0,0014
0,2695	9506,25	-0,0187	0,0003
0,2695	9702,25	0,0483	0,0023
0,2696	9900,25	0,0223	0,0005
0,2696	10100,25	0,0223	0,0005
0,2697	10302,25	-0,0750	0,0056
0,2697	10506,25	-0,0368	0,0014
0,2698	10712,25	-0,0574	0,0033
0,2698	10920,25	0,0747	0,0056
0,2699	11130,25	0,0266	0,0007
0,2699	11342,25	0,0397	0,0016
0,2699	11556,25	0,0265	0,0007
0,2700	11772,25	0,0154	0,0002
0,2700	11990,25	0,0304	0,0009
0,2701	12210,25	0,0363	0,0013
0,2701	12432,25	-0,0915	0,0084
0,2702	12656,25	-0,0743	0,0055
0,2702	12882,25	0,0217	0,0005
0,2703	13110,25	0,0184	0,0003
0,2703	13340,25	0,0216	0,0005
0,2703	13572,25	-0,0546	0,0030
0,2704	13806,25	0,0360	0,0013
0,2704	14042,25	0,0215	0,0005
0,2705	14280,25	-0,0628	0,0039
0,2705	14520,25	0,0004	0,0000
0,2706	14762,25	0,0259	0,0007
0,2706	15006,25	-0,0372	0,0014
0,2707	15252,25	-0,0550	0,0030
0,2707	15500,25	0,0212	0,0004
0,2707	15750,25	-0,0889	0,0079
0,2708	16002,25	-0,0810	0,0066
0,2708	16256,25	-0,0810	0,0066
0,2709	16512,25	-0,0774	0,0060
0,2709	16770,25	-0,0316	0,0010
0,2710	17030,25	-0,0745	0,0055
0,2710	17292,25	0,0209	0,0004

0,2711	17556,25	0,0353	0,0012
0,2711	17822,25	0,0589	0,0035
0,2712	18090,25	-0,0761	0,0058
0,2712	18360,25	0,0352	0,0012
0,2712	18632,25	0,0207	0,0004
0,2713	18906,25	0,0391	0,0015
0,2713	19182,25	-0,0703	0,0049
0,2714	19460,25	-0,0262	0,0007
0,2714	19740,25	0,0205	0,0004
0,2715	20022,25	0,0395	0,0016
0,2715	20306,25	0,0626	0,0039
0,2716	20592,25	0,0427	0,0018
0,2716	20880,25	-0,0180	0,0003
0,2716	21170,25	0,0229	0,0005
0,2717	21462,25	0,0583	0,0034
0,2717	21756,25	0,0484	0,0023
0,2718	22052,25	-0,0954	0,0091
0,2718	22350,25	-0,0568	0,0032
0,2719	22650,25	0,0200	0,0004
0,2719	22952,25	0,0232	0,0005
0,2720	23256,25	0,0646	0,0042
0,2720	23562,25	0,0025	0,0000
0,2720	23870,25	0,0203	0,0004
0,2721	24180,25	0,0170	0,0003
0,2721	24492,25	0,0519	0,0027
0,2722	24806,25	0,0169	0,0003
0,2722	25122,25	0,0374	0,0014
0,2723	25440,25	-0,0368	0,0014
0,2723	25760,25	-0,0356	0,0013
0,2724	26082,25	0,0380	0,0014
0,2724	26406,25	0,0444	0,0020
0,2725	26732,25	-0,0106	0,0001
0,2725	27060,25	-0,1018	0,0104
0,2725	27390,25	0,0099	0,0001
0,2726	27722,25	0,0090	0,0001
0,2726	28056,25	-0,0218	0,0005
0,2727	28392,25	0,0192	0,0004
0,2727	28730,25	0,0192	0,0004
0,2728	29070,25	0,0409	0,0017
0,2728	29412,25	-0,0075	0,0001
0,2729	29756,25	0,0235	0,0006
0,2729	30102,25	-0,0020	0,0000
0,2729	30450,25	0,0398	0,0016
0,2730	30800,25	-0,0222	0,0005
0,2730	31152,25	-0,0021	0,0000
0,2731	31506,25	0,0160	0,0003
0,2731	31862,25	0,0188	0,0004
0,2732	32220,25	-0,0047	0,0000

0,2732	32580,25	-0,1025	0,0105
0,2733	32942,25	-0,0545	0,0030
0,2733	33306,25	-0,0225	0,0005
0,2733	33672,25	0,0327	0,0011
0,2734	34040,25	0,0038	0,0000
0,2734	34410,25	-0,0226	0,0005
0,2735	34782,25	0,0009	0,0000
0,2735	35156,25	0,0453	0,0020
0,2736	35532,25	0,0006	0,0000
0,2736	35910,25	-0,0771	0,0059
0,2737	36290,25	0,0007	0,0000
0,2737	36672,25	-0,0376	0,0014
0,2738	37056,25	0,0185	0,0003
0,2738	37442,25	0,0450	0,0020
0,2738	37830,25	0,0450	0,0020
0,2739	38220,25	0,0003	0,0000
0,2739	38612,25	0,0226	0,0005
0,2740	39006,25	-0,1447	0,0209
0,2740	39402,25	0,0370	0,0014
0,2741	39800,25	0,0477	0,0023

5333300,0000

Limites de Confianca n-2 $(y-y^{2})(n-2)$ MSE Variância média Variância Individual Média Máx Média Mín Indiv Máx Indiv Mín 1,10561E-05 0,007473677 0.398712448 0.003633966 0.007462621 0,398606983 0.113757782 0.113652318 0.398043857 1.10521F-05 0.007387996 0.007399048 0.397937901 0.11451651 0.114410553 1 0.000135192 1 0,003644782 1,10481E-05 0,007313745 0,007324793 0,397268818 0,115275238 0,397375272 0,115168784 2 0,003241482 1,10441E-05 0,00723987 0,007250914 0,396599736 0,116033966 0,396706693 0,115927009 3 0,000942055 1,10401E-05 0,007166369 0,007177409 0,395930653 0,116792693 0,396038118 0,116685229 4 0,000915259 1,10362E-05 0,007093244 0,00710428 0,395261571 0,117551421 0,395369549 0,117443443 5 0,000312861 1,10322E-05 0.007020493 0,007031526 0,394592488 0,118310149 0,394700986 0.118201652 6 0,000611982 1,10283E-05 0.006948118 0,006959146 0,393923406 0,119068877 0.394032428 0.118959855 7 0.006876117 0,119718052 0.000224487 1.10245E-05 0.006887142 0.393254323 0.119827605 0.393363875 8 0,000166402 1,10206E-05 0,006804492 0,006815513 0,392585241 0,120586332 0,392695329 0,120476244 9 0.000148276 1,10167E-05 0.006733241 0.006744258 0.391916158 0.392026788 0.12134506 0.12123443 10 0,000369365 1,10129E-05 0,006662366 0,006673379 0,391247076 0,122103788 0,391358254 0,12199261 0,00030078 1,10091E-05 0,006591866 0,006602875 0,390577993 0,390689725 0,122750784 11 0,122862516 12 7,88742E-05 1,10053E-05 0,00652174 0,006532745 0,389908911 0,123621243 0,390021203 0,123508952 13 0.0002553 1,10016E-05 0,00645199 0.006462991 0,389239829 0,124379971 0,389352687 0,124267113 0,388570746 0,125025268 14 0.000289423 1,09978E-05 0.006382614 0.006393612 0,125138699 0,388684177 15 0.000270509 1.09941F-05 0.006313614 0.006324608 0.387901664 0.125897426 0.388015673 0.125783417 8,48442E-05 1,09904E-05 0.006244988 0.006255979 0,387232582 0,387347177 0,126541559 16 0.126656154 17 8.00478E-05 1,09867E-05 0,006176738 0,006187725 0,386563499 0,127414881 0,386678686 0.127299694 18 8,94855E-05 1,0983E-05 0,006108863 0,006119846 0,385894417 0,128173609 0,386010203 0,128057823 1,09794E-05 0.006052341 19 7.19702E-05 0,006041362 0,385225335 0,128932337 0,385341727 0.128815945 20 8,08971E-05 1,09758E-05 0,005974237 0,005985212 0,384556252 0,129691064 0,384673257 0,129574059 21 6,5432E-05 1,09722E-05 0,005907486 0,005918458 0,38388717 0,130449792 0,384004795 0,130332167 0,005852079 0,383218088 0,131208519 22 0.38333634 0.000152979 1,09686E-05 0.005841111 0,131090267 23 7,08165E-05 1.0965F-05 0.00577511 0,005786075 0.382549006 0.131967247 0.382667892 0.13184836 24 1,64955E-05 1,09615E-05 0.005709485 0.005720446 0.381879923 0,132725974 0.381999452 0.132606446 25 4,77543E-05 1,0958E-05 0,005644235 0,005655193 0,381210841 0,133484702 0,38133102 0,133364523 0,005579359 0,380541759 26 4,7315E-07 1,09545E-05 0,005590314 0,134243429 0,380662595 0,134122594 27 4,39878E-05 1,0951E-05 0,005514859 0,00552581 0,379872677 0,135002157 0,379994178 0,134880656

28	1,8922E-05	1,09475E-05	0,005450733	0,005461681	0,379203595	0,135760884	0,379325769	0,13563871
29	4,07413E-05	1,09441E-05	0,005386983	0,005397927	0,378534513	0,136519611	0,378657368	0,136396756
30	4,89681E-05	1,09407E-05	0,005323607	0.005334548	0,377865431	0,137278339	0,377988976	0,137154793
31	3,79143E-05	1,09373E-05	0,005260607	0,005271544	0,377196349	0,138037066	0,377320592	0,137912822
32	0,00010454	1,09339E-05	0,005197982	0,005208916	0,376527267	0,138795793	0,376652217	0,138670843
33	5,27492E-06	1,09305E-05	0,005135731	0,005146662	0,375858185	0,139554521	0,375983851	0,139428855
34	1,11252E-05	1,09272E-05	0,005073856	0,005084783	0,375189103	0,140313248	0,375315493	0,140186858
35	1,07576E-05	1,09238E-05	0,005012356	0,005023279	0,374520021	0,141071975	0,374647145	0,140944851
36	7,70912E-06	1,09206E-05	0,00495123	0,004962151	0,373850939	0,141830702	0,373978806	0,141702836
37	7,34852E-07	1,09173E-05	0,00489048	0,004901397	0,373181857	0,14258943	0,373310476	0,142460811
38	7,66761E-06	1,0914E-05	0.004830104	0,004841018	0,372512775	0,143348157	0,372642156	0,143218776
39	2,95099E-05	1,09108E-05	0,004770104	0,004781015	0,371843693	0,144106884	0,371973846	0,143976731
40	3,58721E-05	1,09106E-05	0,004710479	0,0047313186	0,371174611	0,144865611	0,371305545	0,144734677
41	1,31675E-05	1,09070E-05	0,004710479	0,004721380	0,370505529	0,145624338	0,370637255	0,145492612
42	3,40024E-05	1,09044E-05	0,004592353	0,004603254	0,369836447	0,146383065	0,369968975	0,146250537
43	7,99875E-08	1,0898E-05	0,004533852	0,00454475	0,369167366	0,147141792	0,369300706	0,147008452
43 44	•	•	0,004475727	•	•	0,147141792	0,368632448	-
	0,000149849	1,08949E-05	*	0,004486622	0,368498284		•	0,147766355
45 46	5,47932E-05	1,08918E-05	0,004417977	0,004428868	0,367829202	0,148659246	0,367964201	0,148524248
46	6,49807E-06	1,08887E-05	0,004360601	0,00437149	0,367160121	0,149417973	0,367295964	0,14928213
47	7,573E-06	1,08856E-05	0,004303601	0,004314487	0,366491039	0,1501767	0,36662774	0,15004
48	9,38216E-06	1,08825E-05	0,004246976	0,004257858	0,365821957	0,150935427	0,365959527	0,150797858
49	7,19503E-06	1,08795E-05	0,004190725	0,004201605	0,365152876	0,151694154	0,365291325	0,151555704
50	1,42401E-07	1,08765E-05	0,00413485	0,004145726	0,364483794	0,152452881	0,364623136	0,152313539
51	5,01135E-06	1,08735E-05	0,00407935	0,004090223	0,363814713	0,153211608	0,36395496	0,153071361
52	1,48004E-05	1,08705E-05	0,004024224	0,004035095	0,363145631	0,153970335	0,363286795	0,15382917
53	1,0153E-05	1,08676E-05	0,003969474	0,003980341	0,36247655	0,154729061	0,362618644	0,154586967
54	2,44721E-05	1,08646E-05	0,003915099	0,003925963	0,361807468	0,155487788	0,361950506	0,15534475
55	2,98338E-05	1,08617E-05	0,003861098	0,00387196	0,361138387	0,156246515	0,361282382	0,15610252
56	1,91678E-05	1,08588E-05	0,003807473	0,003818332	0,360469305	0,157005242	0,360614271	0,156860276
57	6,48915E-05	1,08559E-05	0,003754222	0,003765078	0,359800224	0,157763968	0,359946174	0,157618019
58	7,57173E-07	1,08531E-05	0,003701347	0,0037122	0,359131143	0,158522695	0,359278091	0,158375746
59	1,11323E-05	1,08502E-05	0,003648847	0,003659697	0,358462061	0,159281421	0,358610023	0,15913346
60	1,81318E-05	1,08474E-05	0,003596721	0,003607569	0,35779298	0,160040148	0,35794197	0,159891158
61	7,60511E-06	1,08446E-05	0,003544971	0,003555816	0,357123899	0,160798874	0,357273932	0,160648841
62	1,74516E-05	1,08419E-05	0,003493596	0,003504438	0,356454818	0,161557601	0,35660591	0,161406509
63	1,2013E-07	1,08391E-05	0,003442595	0,003453435	0,355785737	0,162316327	0,355937903	0,162164161
64	1,68142E-05	1,08364E-05	0,00339197	0,003402807	0,355116656	0,163075053	0,355269913	0,162921796
65	3,62937E-06	1,08337E-05	0,00334172	0,003352554	0,354447575	0,16383378	0,354601939	0,163679415
66	7,73501E-09	1,0831E-05	0,003291845	0,003302676	0,353778494	0,164592506	0,353933983	0,164437017
67	4,81954E-06	1,08283E-05	0,003242344	0,003253173	0,353109413	0,165351232	0,353266044	0,165194601
68	8,21732E-07	1,08257E-05	0,003193219	0,003204045	0,352440332	0,166109958	0,352598123	0,165952168
69	3,33961E-06	1,0823E-05	0,003144469	0,003155292	0,351771251	0,166868685	0,351930219	0,166709716
70	4,09213E-09	1,08204E-05	0,003096093	0,003106914	0,35110217	0,167627411	0,351262335	0,167467246
71	3,662E-05	1,08178E-05	0,003048093	0,003058911	0,350433089	0,168386137	0,35059447	0,168224757
72	1,38201E-07	1,08153E-05	0,003000468	0,003011283	0,349764009	0,169144863	0,349926624	0,168982248
73	0,000160079	1,08127E-05	0,002953217	0.00296403	0,349094928	0,169903589	0,349258798	0,169739719
74	4,58615E-05	1,08102E-05	0,002906342	0,002917152	0,348425847	0,170662315	0,348590992	0,17049717
75	8,7456E-05	1,08077E-05	0,002859842	0,002870649	0,347756767	0,17142104	0,347923208	0,1712546
76	8,64009E-05	1,08052E-05	0,002813716	0,002824522	0,347087686	0,172179766	0,347255445	0,172012008
77	6,32469E-07	1,08027E-05	0,002767966	0,002778769	0,346418606	0,172938492	0,346587704	0,172769394
78	4,93688E-06	1,08003E-05	0,002722591	0,002733391	0,345749525	0,173697218	0,345919985	0,173526758
79	1,93636E-06	1,07978E-05	0,002677591	0,002688388	0,345080445	0,174455943	0,34525229	0,174284099
80	2,07041E-08	1,07954E-05	0,002632965	0,002643761	0,344411365	0,175214669	0,344584618	0,175041416
81	6,32527E-07	1,0793E-05	0,002588715	0,002599508	0,343742285	0,175973394	0,343916971	0,175798708
82	2,70647E-06	1,07907E-05	0,00254484	0,00255563	0,343073204	0,17673212	0,343249348	0,176555976
83	3,71817E-05	1,07883E-05	0,002501339	0,00253363	0,342404124	0,177490845	0,342581751	0,170333970
84	6,53804E-05	1,0786E-05	0,002301339	0,002312128	0,341735044	0,177490843	0,341914181	0,177313216
85	4,84338E-05	1,07837E-05	0,002438214	0,002426248	0,341065964	0,179008296	0,341246637	0,178827623
86	4,94581E-05	1,07814E-05	0,002413464	0,002426246	0,340396885	0,179008298	0,340579121	0,170027023
87	4,94561E-05 1,92025E-05	1,07614E-05 1,07791E-05	0,002373089	0,002341868	0,340396665	0,179767021	0,340579121	0,179564765
	•	•	•		•	•	•	•
88	1,94501E-05	1,07769E-05	0,002289463	0,00230024	0,339058725	0,181284471	0,339244174	0,181099022
89	1,3464E-05	1,07746E-05	0,002248213	0,002258988	0,338389645	0,182043196	0,338576745	0,181856096
90	1,22923E-05	1,07724E-05	0,002207338	0,00221811	0,337720566	0,182801921	0,337909347	0,182613139
91	5,98412E-05	1,07703E-05	0,002166837	0,002177608	0,337051486	0,183560646	0,337241981	0,183370151

92	1,42039E-05	1,07681E-05	0,002126712	0,00213748	0,336382407	0,18431937	0,336574647	0,18412713
93	1,80375E-07	1,07659E-05	0,002086962	0,002097728	0,335713327	0,185078095	0,335907347	0,184884076
94	1,16383E-06	1,07638E-05	0,002047587	0,00205835	0,335044248	0,18583682	0,335240081	0,185640987
95	2,94083E-06	1,07617E-05	0,002008586	0,002019348	0,334375169	0,186595544	0,33457285	0,186397863
96	1,02507E-05	1,07596E-05	0,001969961	0,001980721	0,33370609	0,187354268	0,333905656	0,187154703
97	3,11006E-05	1,07576E-05	0,001931711	0,001942468	0,333037011	0,188112993	0,333238499	0,187911505
98	9,98418E-06	1,07555E-05	0,001893836	0,001904591	0,332367932	0,188871717	0,33257138	0,188668268
99	5,44722E-05	1,07535E-05	0,001856335	0,001867089	0,331698853	0,189630441	0.331904302	0,189424992
100	1,03847E-06	1,07515E-05	0,00181921	0,001829962	0,331029775	0,190389165	0.331237264	0,190181675
101	2,92421E-05	1,07495E-05	0,00178246	0,001793209	0,330360696	0,191147889	0,330570269	0,190938316
102	4,25754E-05	1,07475E-05	0,001746085	0,001756832	0,329691618	0,191906612	0,329903317	0,191694913
103	9,79424E-07	1,07456E-05	0,001710084	0,00172083	0,329022539	0,192665336	0,329236409	0,192451466
104	5,61411E-05	1,07437E-05	0,001674459	0,001685203	0,328353461	0,19342406	0,328569549	0,193207972
105	5,55412E-05	1,07418E-05	0,001639209	0,001649951	0,327684383	0,194182783	0,327902735	0,19396443
106	6,19292E-05	1,07399E-05	0,001604334	0,001615074	0,327015305	0,194941506	0,327235971	0,19472084
107	1,17626E-05	1,0738E-05	0,001569834	0,001580572	0,326346227	0,195700229	0,326569258	0,195477198
108	6,0648E-05	1,07362E-05	0,001535708	0,001546444	0,325677149	0,196458952	0,325902598	0,196233504
109	1,11022E-05	1,07344E-05	0,001501958	0,001512692	0,325008072	0,197217675	0,325235992	0,196989755
110	8,59172E-06	1,07326E-05	0,001468583	0,001479315	0,324338994	0,197976398	0,324569442	0,19774595
111	2,91651E-05	1,07308E-05	0,001435583	0,001475313	0,323669917	0,198735121	0,32390295	0,198502088
112	4,05034E-05	1,07306E-05	0,001402957	0,001440313	0,323009917	0,199493843	0,323236518	0,199258165
113	5,48223E-05	1,07273E-05	0,001370707	0,001381435	0,322331763	0,200252565	0,322570148	0,20001418
114	1,0479E-05	1,07275E-05	0,001370707	0,001349558	0,321662686	0,200232303	0,321903842	0,200770131
115	•	1,07239E-05	0,001338832	0,001349336	0,320993609	•	0,321903642	•
	5,97733E-06	•	•	0,001318036		0,201770009	*	0,201526015 0,20228183
116 117	1,32289E-05	1,07222E-05	0,001276207	,	0,320324533	0,202528731	0,320571433	•
	2,50758E-06	1,07205E-05	0,001245456	0,001256177	0,319655456	0,203287453	0,319905335	0,203037574
118	1,25367E-08	1,07189E-05	0,001215081	0,0012258	0,31898638	0,204046174	0,319239311	0,203793244
119	1,12636E-07	1,07173E-05	0,001185081	0,001195798	0,318317304	0,204804895	0,318573364	0,204548836
120	1,56544E-06	1,07157E-05	0,001155456	0,001166172	0,317648229	0,205563616	0,317907496	0,205304349
121	3,19085E-06	1,07141E-05	0,001126206	0,00113692	0,316979153	0,206322337	0,317241712	0,206059779
122	1,5964E-08	1,07125E-05	0,001097331	0,001108043	0,316310078	0,207081058	0,316576013	0,206815122
123	2,86116E-06	1,0711E-05	0,00106883	0,001079541	0,315641003	0,207839778	0,315910404	0,207570377
124	7,31371E-06	1,07095E-05	0,001040705	0,001051415	0,314971928	0,208598498	0,315244889	0,208325538
125	1,94991E-05	1,0708E-05	0,001012955	0,001023663	0,314302853	0,209357218	0,31457947	0,209080602
126	1,46918E-05	1,07065E-05	0,00098558	0,000996286	0,313633779	0,210115938	0,313914152	0,209835565
127	1,09435E-05	1,0705E-05	0,00095858	0,000969285	0,312964705	0,210874657	0,313248939	0,210590423
128	1,54954E-05	1,07036E-05	0,000931954	0,000942658	0,312295631	0,211633376	0,312583835	0,211345172
129	9,22176E-06	1,07022E-05	0,000905704	0,000916406	0,311626558	0,212392095	0,311918846	0,212099807
130	8,81186E-06	1,07008E-05	0,000879829	0,00089053	0,310957484	0,213150814	0,311253975	0,212854323
131	2,51499E-05	1,06994E-05	0,000854329	0,000865028	0,310288411	0,213909532	0,310589229	0,213608714
132	1,71734E-06	1,0698E-05	0,000829204	0,000839902	0,309619339	0,21466825	0,309924612	0,214362976
133	7,89848E-06	1,06967E-05	0,000804454	0,00081515	0,308950267	0,215426967	0,309260132	0,215117102
134	6,03584E-05	1,06954E-05	0,000780078	0,000790774	0,308281195	0,216185684	0,308595793	0,215871086
135	8,67502E-06	1,06941E-05	0,000756078	0,000766772	0,307612123	0,216944401	0,307931603	0,216624922
136	2,50975E-05	1,06928E-05	0,000732453	0,000743146	0,306943052	0,217703117	0,307267568	0,217378602
137	4,90419E-05	1,06916E-05	0,000709203	0,000719895	0,306273982	0,218461833	0,306603696	0,218132119
138	1,43578E-05	1,06903E-05	0,000686328	0,000697018	0,305604911	0,219220549	0,305939995	0,218885465
139	4,70581E-08	1,06891E-05	0,000663828	0,000674517	0,304935842	0,219979264	0,305276474	0,219638632
140	3,46035E-05	1,06879E-05	0,000641703	0,000652391	0,304266772	0,220737979	0,304613141	0,22039161
141	2,29999E-05	1,06868E-05	0,000619952	0,000630639	0,303597704	0,221496693	0,303950006	0,22114439
142	2,66287E-05	1,06856E-05	0,000598577	0,000609263	0,302928635	0,222255406	0,30328708	0,221896961
143	9,3487E-06	1,06845E-05	0,000577577	0,000588262	0,302259568	0,223014119	0,302624374	0,222649313
144	2,26272E-05	1,06834E-05	0,000556952	0,000567635	0,3015905	0,223772831	0,301961899	0,223401433
145	2,11105E-05	1,06823E-05	0,000536702	0,000547384	0,300921434	0,224531543	0,301299668	0,224153309
146	2,42249E-05	1,06812E-05	0,000516827	0,000527508	0,300252368	0,225290254	0,300637695	0,224904927
147	2,86674E-05	1,06801E-05	0,000497327	0,000508007	0,299583303	0,226048965	0,299975995	0,225656273
148	4,44163E-06	1,06791E-05	0,000478202	0,000488881	0,298914239	0,226807674	0,299314583	0,22640733
149	7,26705E-06	1,06781E-05	0,000459451	0,00047013	0,298245175	0,227566383	0,298653477	0,227158081
150	7,23828E-06	1,06771E-05	0,000441076	0,000451753	0,297576112	0,228325091	0,297992695	0,227908509
151	9,611E-06	1,06761E-05	0,000423076	0,000433752	0,296907051	0,229083798	0,297332257	0,228658592
152	8,60216E-06	1,06752E-05	0,000405451	0,000416126	0,29623799	0,229842505	0,296672184	0,22940831
153	1,12484E-05	1,06742E-05	0,000388201	0,000398875	0,29556893	0,23060121	0,296012501	0,230157639
154	2,53803E-06	1,06733E-05	0,000371326	0,000381999	0,294899871	0,231359914	0,295353232	0,230906553
155	1,38152E-05	1,06724E-05	0,000354826	0,000365498	0,294230813	0,232118617	0,294694405	0,231655025

156	2,73503E-05	1,06716E-05	0,000338701	0,000349372	0,293561757	0,232877319	0,294036052	0,232403024
157	4,56564E-05	1,06707E-05	0,000322951	0,000333621	0,292892702	0,233636019	0,293378204	0,233150517
158	1,91392E-05	1,06699E-05	0,000307575	0,000318245	0,292223648	0,234394718	0,292720898	0,233897468
159	4,8212E-05	1,06691E-05	0,000292575	0,000303244	0,291554596	0,235153415	0,292064175	0,234643837
160	4,7614E-06	1,06683E-05	0,00027795	0,000288619	0,290885545	0,235912111	0,291408076	0,23538958
161	1,50006E-05	1,06675E-05	0,0002637	0,000274368	0,290216497	0,236670805	0,290752652	0,23613465
162	2,46629E-06	1,06668E-05	0,000249825	0,000260492	0,28954745	0,237429497	0,290097955	0,236878992
163	3,61227E-05	1,0666E-05	0,000236325	0,000246991	0,288878405	0,238188187	0,289444043	0,237622549
164	5,7387E-06	1,06653E-05	0,0002232	0,000233865	0,288209363	0,238946875	0,288790983	0,238365255
165	2,27167E-05	1,06646E-05	0,00021045	0,000221114	0,287540323	0,23970556	0,288138846	0,239107037
166	1,3176E-05	1,0664E-05	0,000198075	0,000208739	0,286871285	0,240464243	0,287487715	0,239847814
167	7,21535E-06	1,06633E-05	0,000186075	0,000196738	0,286202251	0,241222922	0,286837679	0,240587495
168	3,8628E-05	1,06627E-05	0,00017445	0,000185112	0,28553322	0,241981599	0,286188841	0,241325978
169	1,31812E-05	1,06621E-05	0,0001632	0,000173862	0,284864192	0,242740272	0,285541314	0,24206315
170	6,27185E-06	1,06615E-05	0,000152324	0,000162986	0,284195169	0,243498941	0,28489523	0,242798879
171	2,22567E-05	1,06609E-05	0,000141824	0,000152485	0,28352615	0,244257605	0,284250734	0,243533021
172	1,75468E-05	1,06604E-05	0,000131699	0,00014236	0,282857135	0,245016265	0,283607993	0,244265407
173	1,81152E-05	1,06599E-05	0,000121949	0,000132609	0,282188127	0,245774919	0,282967199	0,244995846
174	2,42144E-06	1,06594E-05	0,000112574	0,000123234	0,281519124	0,246533567	0,282328569	0,245724121
175	4,98181E-05	1,06589E-05	0,000112074	0.000114233	0,280850128	0,247292208	0,281692356	0.246449979
176	5,7399E-06	1,06584E-05	9,49491E-05	0,000114233	0,28018114	0,248050841	0,281058852	0,247173129
177	4,41109E-05	1,0658E-05	8,66991E-05	9,7357E-05	0,279512161	0,248809465	0,280428394	0,247893232
178	1,43304E-05	1,06575E-05	7,8824E-05	8,94816E-05	0,278843192	0,24956808	0,279801379	0,248609893
	,	•	•	8.19811E-05	•	•	•	0.249322645
179	7,19621E-07	1,06571E-05	7,1324E-05	-,	0,278174235	0,250326682	0,279178272	-,
180	6,76855E-06	1,06568E-05	6,41989E-05	7,48557E-05	0,277505292	0,25108527	0,278559621	0,250030942
181	3,02626E-09	1,06564E-05	5,74489E-05	6,81053E-05	0,276836364	0,251843843	0,277946078	0,250734129
182	7,20622E-06	1,0656E-05	5,10738E-05	6,17299E-05	0,276167456	0,252602397	0,277338423	0,251431429
183	5,41189E-06	1,06557E-05	4,50738E-05	5,57295E-05	0,27549857	0,253360928	0,276737592	0,252121906
184	5,36716E-06	1,06554E-05	3,94488E-05	5,01042E-05	0,274829712	0,254119431	0,276144717	0,252804426
185	8,69177E-07	1,06551E-05	3,41987E-05	4,48539E-05	0,274160887	0,254877902	0,275561178	0,253477611
186	3,6719E-07	1,06549E-05	2,93237E-05	3,99786E-05	0,273492103	0,25563633	0,274988661	0,254139773
187	1,59881E-06	1,06546E-05	2,48237E-05	3,54783E-05	0,272823372	0,256394707	0,274429247	0,254788832
188	3,71208E-07	1,06544E-05	2,06986E-05	3,1353E-05	0,272154708	0,257153017	0,273885509	0,255422215
189	7,95261E-05	1,06542E-05	1,69486E-05	2,76028E-05	0,271486132	0,257911238	0,273360642	0,256036728
190	3,88145E-06	1,0654E-05	1,35736E-05	2,42276E-05	0,270817675	0,25866934	0,272858622	0,256628393
191	1,53303E-06	1,06539E-05	1,05736E-05	2,12274E-05	0,270149385	0,259427275	0,272384385	0,257192276
192	4,56968E-07	1,06537E-05	7,94856E-06	1,86023E-05	0,269481339	0,260184967	0,271944016	0,257722289
193	6,3189E-06	1,06536E-05	5,69854E-06	1,63521E-05	0,268813669	0,260942282	0,271544916	0,258211035
194	7,79091E-06	1,06535E-05	3,82353E-06	1,4477E-05	0,268146625	0,261698971	0,271195852	0,258649744
195	6,22202E-06	1,06534E-05	2,32352E-06	1,29769E-05	0,267480738	0,262454503	0,270906786	0,259028456
196	3,68847E-06	1,06534E-05	1,19852E-06	1,18519E-05	0,266817377	0,26320751	0,270688317	0,25933657
197	1,47439E-06	1,06533E-05	4,48511E-07	1,11018E-05	0,26616141	0,263953122	0,270550606	0,259563926
198	3,91297E-07	1,06533E-05	7,35085E-08	1,07268E-05	0,265549089	0,264655088	0,270501848	0,259702329
199	4,72167E-06	1,06533E-05	7,35085E-08	1,07268E-05	0,265593912	0,264699911	0,270546671	0,259747152
200	3,95315E-07	1,06533E-05	4,48511E-07	1,11018E-05	0,266295878	0,26408759	0,270685074	0,259698394
201	1,42738E-05	1,06534E-05	1,19852E-06	1,18519E-05	0,26704149	0,263431623	0,27091243	0,259560683
202	3,99333E-07	1,06534E-05	2,32352E-06	1,29769E-05	0,267794497	0,262768262	0,271220544	0,259342214
203	3,09481E-07	1,06535E-05	3,82353E-06	1,4477E-05	0,268550029	0,262102375	0,271599256	0,259053148
204	6,85905E-07	1,06536E-05	5,69854E-06	1,63521E-05	0,269306718	0,261435331	0,272037965	0,258704084
205	4,15471E-06	1,06537E-05	7,94856E-06	1,86023E-05	0,270064033	0,260767661	0,272526711	0,258304984
206	1,54486E-06	1,06539E-05	1,05736E-05	2,12274E-05	0,270821725	0,260099615	0,273056724	0,257864615
207	2,52564E-05	1,0654E-05	1,35736E-05	2,42276E-05	0,27157966	0,259431325	0,273620607	0,257390378
208	4,18059E-05	1,06542E-05	1,69486E-05	2,76028E-05	0,272337762	0,258762868	0,274212272	0,256888358
209	2,69822E-05	1,06544E-05	2,06986E-05	3,1353E-05	0,273095983	0,258094292	0,274826785	0,256363491
210	2,1851E-05	1,06546E-05	2,48237E-05	3,54783E-05	0,273854293	0,257425628	0,275460168	0,255819753
211	2,01416E-06	1,06549E-05	2,93237E-05	3,99786E-05	0,27461267	0,256756897	0,276109227	0,255260339
212	3,84027E-05	1,06551E-05	3,41987E-05	4,48539E-05	0,275371098	0,256088113	0,276771389	0,254687822
213	5,65437E-07	1,06554E-05	3,94488E-05	5,01042E-05	0,276129569	0,255419288	0,277444574	0,254104283
214	4,22828E-06	1,06557E-05	4,50738E-05	5,57295E-05	0,276888072	0,25475043	0,278127094	0,253511408
215	9,22534E-06	1,0656E-05	5,10738E-05	6,17299E-05	0,277646603	0,254081544	0,278817571	0,252910577
216	1,13855E-05	1,06564E-05	5,74489E-05	6,81053E-05	0,278405157	0,253412636	0,279514871	0,252302922
217	4,13263E-06	1,06568E-05	6,41989E-05	7,48557E-05	0,27916373	0,252743708	0,280218058	0,251689379
218	3,63337E-05	1,06571E-05	7,1324E-05	8,19811E-05	0,279922318	0,252074765	0,280926355	0,251070728
219	6,33816E-06	1,06575E-05	7,8824E-05	8,94816E-05	0,28068092	0,251405808	0,281639107	0,250447621
•	=,==== ==	,	.,	-, 	-, 	5,=1	5,=5.300.01	.,

220	8,17622E-07	1,0658E-05	8,66991E-05	9,7357E-05	0,281439535	0,250736839	0,282355768	0,249820606
221	3,39895E-07	1,06584E-05	9,49491E-05	0,000105608	0,282198159	0,25006786	0,283075871	0,249190148
222	5,31043E-05	1,06589E-05	0,000103574	0,000114233	0,282956792	0,249398872	0,283799021	0,248556644
223	2,26547E-05	1,06594E-05	0,000112574	0,000123234	0,283715433	0,248729876	0,284524879	0,247920431
224	8,695E-06	1,06599E-05	0,000121949	0,000132609	0,284474081	0,248060873	0.285253154	0,247281801
225	7,14233E-06	1.06604E-05	0,000131699	0,00014236	0,285232735	0,247391865	0.285983593	0,246641007
226	2,89185E-05	1,06609E-05	0,000141824	0,000152485	0,285991395	0,24672285	0,286715979	0,245998266
227	•	•	0,000141024	0,000162986	•	•	•	· ·
	2,88892E-07	1,06615E-05	·	·	0,286750059	0,246053831	0,287450121	0,24535377
228	8,69793E-08	1,06621E-05	0,0001632	0,000173862	0,287508728	0,245384808	0,28818585	0,244707686
229	2,81916E-06	1,06627E-05	0,00017445	0,000185112	0,288267401	0,24471578	0,288923022	0,244060159
230	5,37013E-05	1,06633E-05	0,000186075	0,000196738	0,289026078	0,244046749	0,289661505	0,243411321
231	1,48751E-05	1,0664E-05	0,000198075	0,000208739	0,289784757	0,243377715	0,290401186	0,242761285
232	3,49468E-06	1,06646E-05	0,00021045	0,000221114	0,29054344	0,242708677	0,291141963	0,242110154
233	4,6161E-07	1,06653E-05	0,0002232	0,000233865	0,291302125	0,242039637	0,291883745	0,241458017
234	9,85311E-07	1,0666E-05	0,000236325	0,000246991	0,292060813	0,241370595	0,292626451	0,240804957
235	4,63756E-07	1,06668E-05	0,000249825	0,000260492	0,292819503	0,24070155	0,293370008	0,240151045
236	9,76489E-06	1,06675E-05	0,0002637	0,000274368	0,293578195	0,240032503	0,29411435	0,239496348
237	2,60554E-06	1,06683E-05	0,00027795	0,000288619	0,294336889	0,239363455	0,29485942	0,238840924
238	3,93557E-06	1,06691E-05	0,000292575	0,000303244	0,295095585	0,238694404	0,295605163	0,238184825
	•	•	•	•	0.295854282	*	•	•
239	8,12259E-06	1,06699E-05	0,000307575	0,000318245	-,	0,238025352	0,296351532	0,237528102
240	3,62982E-06	1,06707E-05	0,000322951	0,000333621	0,296612981	0,237356298	0,297098483	0,236870796
241	3,96943E-06	1,06716E-05	0,000338701	0,000349372	0,297371681	0,236687243	0,297845976	0,236212948
242	1,31099E-05	1,06724E-05	0,000354826	0,000365498	0,298130383	0,236018187	0,298593975	0,235554595
243	1,3305E-06	1,06733E-05	0,000371326	0,000381999	0,298889086	0,235349129	0,299342447	0,234895768
244	1,60807E-07	1,06742E-05	0,000388201	0,000398875	0,29964779	0,23468007	0,300091361	0,234236499
245	9,36152E-06	1,06752E-05	0,000405451	0,000416126	0,300406495	0,23401101	0,30084069	0,233576816
246	9,30602E-06	1,06761E-05	0,000423076	0,000433752	0,301165202	0,233341949	0,301590408	0,232916743
247	3,45236E-06	1,06771E-05	0,000441076	0,000451753	0,301923909	0,232672888	0,302340491	0,232256305
248	1,674E-07	1,06781E-05	0,000459451	0,00047013	0,302682617	0,232003825	0,303090919	0,231595523
249	6,90455E-07	1,06791E-05	0,000478202	0.000488881	0,303441326	0,231334761	0,30384167	0,230934417
250	4,80841E-08	1,06801E-05	0,000497327	0,000508007	0,304200035	0,230665697	0,304592727	0,230273005
251	1,97727E-06	1,06812E-05	0,000516827	0,000527508	0,304958746	0,229996632	0,305344073	0,229611305
	•	•	•	·	•	0,229327566	•	
252	2,35818E-06	1,06823E-05	0,000536702	0,000547384	0,305717457	•	0,306095691	0,228949332
253	3,66752E-07	1,06834E-05	0,000556952	0,000567635	0,306476169	0,2286585	0,306847567	0,228287101
254	1,10084E-07	1,06845E-05	0,000577577	0,000588262	0,307234881	0,227989432	0,307599687	0,227624626
255	1,11434E-06	1,06856E-05	0,000598577	0,000609263	0,307993594	0,227320365	0,308352039	0,22696192
256	6,62207E-05	1,06868E-05	0,000619952	0,000630639	0,308752307	0,226651296	0,30910461	0,226298994
257	7,04587E-06	1,06879E-05	0,000641703	0,000652391	0,309511021	0,225982228	0,30985739	0,225635859
258	4,27445E-06	1,06891E-05	0,000663828	0,000674517	0,310269736	0,225313158	0,310610368	0,224972526
259	4,0942E-06	1,06903E-05	0,000686328	0,000697018	0,311028451	0,224644089	0,311363535	0,224309005
260	2,8495E-06	1,06916E-05	0,000709203	0,000719895	0,311787167	0,223975018	0,312116881	0,223645304
261	8,23968E-06	1,06928E-05	0,000732453	0,000743146	0,312545883	0,223305948	0,312870398	0,222981432
262	1,64009E-06	1,06941E-05	0,000756078	0,000766772	0,313304599	0,222636877	0,313624078	0,222317397
263	5,60215E-06	1,06954E-05	0,000780078	0,000790774	0,314063316	0,221967805	0,314377914	0,221653207
264	2,11679E-06	1,06967E-05	0,000804454	0,00081515	0,314822033	0,221298733	0,315131898	0,220988868
265	2,13657E-06	1,0698E-05	0,000829204	0,000839902	0,31558075	0,220629661	0,315886024	0,220324388
266	1,13167E-06	1,06994E-05	0,000854329	0,000865028	0,316339468	0,219960589	0,316640286	0,219659771
267	1,43067E-05	1,07008E-05	0,000879829	0,00089053	0,317098186	0,219291516	0,317394677	0,218995025
		•	•	,			•	
268	1,13486E-06	1,07022E-05	0,000905704	0,000916406	0,317856905	0,218622442	0,318149193	0,218330154
269	1,13646E-06	1,07036E-05	0,000931954	0,000942658	0,318615624	0,217953369	0,318903828	0,217665165
270	2,91441E-07	1,0705E-05	0,00095858	0,000969285	0,319374343	0,217284295	0,319658577	0,217000061
271	3,84362E-06	1,07065E-05	0,00098558	0,000996286	0,320133062	0,216615221	0,320413435	0,216334848
272	1,22869E-07	1,0708E-05	0,001012955	0,001023663	0,320891782	0,215946147	0,321168398	0,21566953
273	2,79566E-07	1,07095E-05	0,001040705	0,001051415	0,321650502	0,215277072	0,321923462	0,215004111
274	3,11366E-06	1,0711E-05	0,00106883	0,001079541	0,322409222	0,214607997	0,322678623	0,214338596
275	5,45988E-07	1,07125E-05	0,001097331	0,001108043	0,323167942	0,213938922	0,323433878	0,213672987
276	3,1101E-06	1,07141E-05	0,001126206	0,00113692	0,323926663	0,213269847	0,324189221	0,213007288
277	2,52696E-06	1,07157E-05	0,001155456	0,001166172	0,324685384	0,212600771	0,324944651	0,212341504
278	4,56783E-05	1,07173E-05	0,001185081	0,001195798	0,325444105	0,211931696	0,325700164	0,211675636
279	7,81622E-07	1,07189E-05	0,001215081	0,0012258	0,326202826	0,21126262	0,326455756	0,211009689
	1,65434E-06	1,07109E-05	0,001213081	0,001256177	0,326961547	0,210593544	0,327211426	0,211009689
280	•	•	•	·	•	•	•	-
281	3,3155E-05	1,07222E-05	0,001276207	0,001286929	0,327720269	0,209924467	0,32796717	0,209677567
282	1,88124E-06	1,07239E-05	0,001307332	0,001318056	0,328478991	0,209255391	0,328722985	0,209011397
283	3,56985E-05	1,07256E-05	0,001338832	0,001349558	0,329237712	0,208586314	0,329478869	0,208345158

284	4,93659E-06	1,07273E-05	0,001370707	0,001381435	0,329996435	0,207917237	0,33023482	0,207678852
285	1,13475E-08	1,0729E-05	0,001402957	0,001413686	0,330755157	0,20724816	0,330990835	0,207012482
286	1,16411E-06	1,07308E-05	0,001435583	0,001446313	0,331513879	0,206579083	0,331746912	0,20634605
287	6,11965E-06	1,07326E-05	0,001468583	0,001479315	0,332272602	0,205910006	0,33250305	0,205679558
288	3,78953E-06	1,07344E-05	0,001501958	0,001512692	0,333031325	0,205240928	0,333259245	0,205013008
289	3,08952E-06	1,07362E-05	0,001535708	0,001546444	0,333790048	0,204571851	0,334015496	0,204346402
290	2,067E-09	1,0738E-05	0,001569834	0,001580572	0,334548771	0,203902773	0,334771802	0,203679742
291	1,17238E-06	1,07399E-05	0,001604334	0,001615074	0,335307494	0,203233695	0,33552816	0,203013029
292	4,70982E-06	1,07418E-05	0,001639209	0,001649951	0,336066217	0,202564617	0,33628457	0,202346265
293	1,45709E-05	1,07437E-05	0,001674459	0,001685203	0,33682494	0,201895539	0,337041028	0,201679451
294	1,24889E-05	1,07456E-05	0,001710084	0,00172083	0,337583664	0,201226461	0,337797534	0,201012591
295	4,62817E-06	1,07475E-05	0,001746085	0,001756832	0,338342388	0,200557382	0,338554087	0,200345683
296	1,18072E-06	1,07495E-05	0,00178246	0,001793209	0,339101111	0,199888304	0,339310684	0,199678731
297	7,842E-06	1,07515E-05	0,00181921	0,001829962	0,339859835	0,199219225	0,340067325	0,199011736
298	1,6711E-06	1,07535E-05	0,001856335	0,001867089	0,340618559	0,198550147	0,340824008	0,198344698
299	1,65883E-06	1,07555E-05	0,001893836	0,001904591	0,341377283	0,197881068	0,341580732	0,19767762
300	1,8737E-05	1,07576E-05	0,001931711	0,001942468	0,342136007	0,197211989	0,342337495	0,197010501
301	4,50374E-06	1,07596E-05	0,001969961	0,001980721	0,342894732	0,19654291	0,343094297	0,196343344
302	1,0896E-05	1,07617E-05	0,002008586	0,002019348	0,343653456	0,195873831	0,343851137	0,19567615
303	1,8412E-05	1,07638E-05	0,002047587	0,00205835	0,34441218	0,195204752	0,344608013	0,195008919
304	2,33568E-06	1,07659E-05	0,002086962	0,002097728	0,345170905	0,194535673	0,345364924	0,194341653
305	5,168E-06	1,07681E-05	0,002126712	0,00213748	0,34592963	0,193866593	0,34612187	0,193674353
306	2,2875E-06	1,07703E-05	0,002166837	0,002177608	0,346688354	0,193197514	0,346878849	0,193007019
307	7,73737E-07	1,07724E-05	0,002207338	0,00221811	0,347447079	0,192528434	0,347635861	0,192339653
308	2,99409E-06	1,07746E-05	0,002248213	0,00221811	0,348205804	0,191859355	0,348392904	0,192539655
	•	,	•	•	•	•	0,349149978	0,191072233
309	4,26968E-06	1,07769E-05	0,002289463	0,00230024	0,348964529	0,191190275	•	
310	2,70204E-05	1,07791E-05	0,002331088	0,002341868	0,349723254	0,190521195	0,349907082	0,190337367
311	1,7735E-05	1,07814E-05	0,002373089	0,00238387	0,350481979	0,189852115	0,350664215	0,189669879
312	1,50761E-06	1,07837E-05	0,002415464	0,002426248	0,351240704	0,189183036	0,351421377	0,189002363
313	1,08676E-06	1,0786E-05	0,002458214	0,002469	0,35199943	0,188513956	0,352178566	0,188334819
314	1,48565E-06	1,07883E-05	0,002501339	0,002512128	0,352758155	0,187844876	0,352935782	0,187667249
315	9,48007E-06	1,07907E-05	0,00254484	0,00255563	0,35351688	0,187175796	0,353693024	0,186999652
316	4,10328E-06	1,0793E-05	0,002588715	0,002599508	0,354275606	0,186506715	0,354450292	0,186332029
317	1,45332E-06	1,07954E-05	0,002632965	0,002643761	0,355034331	0,185837635	0,355207584	0,185664382
318	1,23944E-05	1,07978E-05	0,002677591	0,002688388	0,355793057	0,185168555	0,355964901	0,18499671
319	4,39354E-10	1,08003E-05	0,002722591	0,002733391	0,356551782	0,184499475	0,356722242	0,184329015
320	2,10107E-06	1,08027E-05	0,002767966	0,002778769	0,357310508	0,183830394	0,357479606	0,183661296
321	4,31457E-06	1,08052E-05	0,002813716	0,002824522	0,358069234	0,183161314	0,358236992	0,182993555
322	9,38078E-06	1,08077E-05	0,002859842	0,002870649	0,35882796	0,182492233	0,3589944	0,182325792
323	1,39081E-06	1,08102E-05	0,002906342	0,002917152	0,359586685	0,181823153	0,35975183	0,181658008
324	2,44199E-05	1,08127E-05	0,002953217	0,00296403	0,360345411	0,181154072	0,360509281	0,180990202
325	2,0185E-05	1,08153E-05	0,003000468	0,003011283	0,361104137	0,180484991	0,361266752	0,180322376
326	2,01453E-05	1,08178E-05	0,003048093	0,003058911	0,361862863	0,179815911	0,362024243	0,17965453
327	1,83129E-05	1,08204E-05	0,003096093	0,003106914	0,362621589	0,17914683	0,362781754	0,178986665
328	3,04999E-06	1,0823E-05	0,003144469	0,003155292	0,363380315	0,178477749	0,363539284	0,178318781
329	1,68582E-05	1,08257E-05	0,003193219	0,003204045	0,364139042	0,177808668	0,364296832	0,177650877
330	1,3213E-06	1,08283E-05	0,003242344	0,003253173	0,364897768	0,177139587	0,365054399	0,176982956
331	3,77241E-06	1,0831E-05	0,003291845	0,003302676	0,365656494	0,176470506	0,365811983	0,176315017
332	1,04465E-05	1,08337E-05	0,00334172	0,003352554	0,36641522	0,175801425	0,366569585	0,175647061
333	1,73696E-05	1,08364E-05	0,00339197	0,003402807	0,367173947	0,175132344	0,367327204	0,174979087
334	3,71013E-06	1,08391E-05	0,003442595	0,003453435	0,367932673	0,174463263	0,368084839	0,174311097
335	1,27379E-06	1,08419E-05	0,003493596	0,003504438	0,368691399	0,173794182	0,368842491	0,17364309
336	4,55291E-06	1,08446E-05	0,003544971	0,003555816	0,369450126	0,173125101	0,369600159	0,172975068
337	1,46785E-05	1,08474E-05	0,003596721	0,003607569	0,370208852	0,17245602	0,370357842	0,17230703
338	2,02736E-06	1,08502E-05	0,003648847	0,003659697	0,370967579	0,171786939	0,37111554	0,171638977
339	1,23701E-06	1,08531E-05	0,003701347	0,0037122	0,371726305	0,171117857	0,371873254	0,170970909
340	4,59666E-06	1,08559E-05	0,003754222	0,003765078	0,372485032	0,170448776	0,372630981	0,170302826
341	1,14877E-05	1,08588E-05	0,003807473	0,003818332	0,373243758	0,169779695	0,373388724	0,169634729
342	5,34211E-06	1,08617E-05	0,003861098	0,00387196	0,374002485	0,169110613	0,37414648	0,168966618
343	9,4475E-07	1,08646E-05	0,003915099	0,003925963	0,374761212	0,168441532	0,37490425	0,168298494
344	1,5183E-06	1,08676E-05	0,003969474	0,003980341	0,375519939	0,16777245	0,375662033	0,167630356
345	9,85489E-06	1,08705E-05	0,004024224	0,004035095	0,376278665	0,167103369	0,37641983	0,166962205
346	6,76038E-06	1,08735E-05	0,00407935	0,004090223	0,377037392	0,166434287	0,377177639	0,16629404
347	2,62175E-05	1,08765E-05	0,00413485	0,004145726	0,377796119	0,165765206	0,377935461	0,165625864

348	9,27913E-06	1,08795E-05	0,004190725	0,004201605	0,378554846	0,165096124	0,378693296	0,164957675
349	1,14954E-06	1,08825E-05	0,004246976	0,004257858	0,379313573	0,164427043	0,379451142	0,164289473
350	1,53582E-06	1,08856E-05	0,004303601	0,004314487	0,3800723	0,163757961	0,380209	0,16362126
351	1,19041E-05	1,08887E-05	0,004360601	0,00437149	0,380831027	0,163088879	0,38096687	0,162953036
352	1,76879E-08	1,08918E-05	0,004417977	0,004428868	0,381589754	0,162419798	0,381724752	0,162284799
353	1,1617E-06	1,08949E-05	0,004475727	0,004486622	0,382348481	0,161750716	0,382482645	0,161616552
354	8,1692E-07	1,0898E-05	0,004533852	0,00454475	0,383107208	0,161081634	0,383240548	0,160948294
355	7,57616E-06	1,09012E-05	0,004592353	0,004603254	0,383865935	0,160412553	0,383998463	0,160280025
356	8,03789E-07	1,09044E-05	0,004651228	0,004662133	0,384624662	0,159743471	0,384756388	0,159611745
357	3,91204E-06	1,09076E-05	0,004710479	0,004721386	0,385383389	0,159074389	0,385514323	0,158943455
358	3,77739E-06	1,09108E-05	0,004770104	0,004781015	0,386142116	0,158405307	0,386272269	0,158275154
359	3,53393E-06	1,0914E-05	0,004830104	0,004841018	0,386900843	0,157736225	0,387030224	0,157606844
360	4,01885E-06	1,09173E-05	0,00489048	0,004901397	0,38765957	0,157067143	0,387788189	0,156938524
361	5,45882E-06	1,09206E-05	0,00495123	0,004962151	0,388418298	0,156398061	0,388546164	0,156270194
362	3,0764E-07	1,09238E-05	0,005012356	0,005023279	0,389177025	0,155728979	0,389304149	0,155601855
363	2,85477E-05	1,09272E-05	0,005073856	0,005084783	0,389935752	0,155059897	0,390062142	0,154933507
364	2,66943E-07	1,09305E-05	0,005135731	0,005146662	0,390694479	0,154390815	0,390820145	0,154265149
365	2,22536E-07	1,09339E-05	0,005197982	0,005208916	0,391453207	0,153721733	0,391578157	0,153596783
366	1,30232E-06	1,09373E-05	0,005260607	0,005271544	0,392211934	0,153052651	0,392336178	0,152928408
367	1,00686E-06	1,09407E-05	0,005323607	0,005334548	0,392970661	0,152383569	0.393094207	0,152260024
368	9,99451E-07	1,09441E-05	0,005386983	0,005397927	0,393729389	0,151714487	0,393852244	0,151591632
369	4,54073E-06	1,09475E-05	0,005450733	0,005461681	0,394488116	0,151045405	0,39461029	0,150923231
370	1,52497E-07	1,0951E-05	0,005514859	0,00552581	0,395246843	0,150376323	0,395368344	0,150254822
371	1,49407E-06	1,09545E-05	0,005579359	0,005590314	0,396005571	0,149707241	0,396126406	0,149586405
372	1,07659E-08	1,0958E-05	0,005644235	0,005655193	0,396764298	0,149038159	0,396884477	0,14891798
373	4,23693E-06	1,09615E-05	0,005709485	0,005720446	0,397523026	0,148369077	0,397642554	0,148249548
374	1,31667E-06	1,0965E-05	0,00577511	0,005786075	0,398281753	0,147699994	0,39840064	0,147581108
375	1,21632E-08	1,09686E-05	0,005841111	0,005852079	0,399040481	0,147030912	0,399158733	0,14691266
376	6,8251E-07	1,09722E-05	0,005907486	0,005918458	0,399799208	0,14636183	0,399916833	0,146244205
377	9,34981E-07	1,09758E-05	0,005974237	0,005985212	0,400557936	0,145692748	0,400674941	0,145575743
378	5,76996E-08	1,09794E-05	0,006041362	0,006052341	0,401316663	0,145023665	0,401433055	0,144907273
379	2,77291E-05	1,0983E-05	0,006108863	0,006119846	0,402075391	0,144354583	0,402191177	0,144238797
380	7,80492E-06	1,09867E-05	0,006176738	0,006187725	0,402834119	0,143685501	0,402949306	0,143570314
381	1,32929E-06	1,09904E-05	0,006244988	0,006255979	0,403592846	0,143016418	0,403707441	0,142901823
382	2,79073E-06	1,09941E-05	0,006313614	0,006324608	0,404351574	0,142347336	0,404465583	0,142233327
383	3,7816E-08	1,09978E-05	0,006382614	0,006393612	0,405110301	0,141678254	0,405223732	0,141564823
384	1,33471E-06	1,10016E-05	0,00645199	0,006462991	0,405869029	0,141009171	0,405981887	0,140896313
385	2,17973E-09	1,10053E-05	0,00652174	0,006532745	0,406627757	0,140340089	0,406740048	0,140227797
386	5,30955E-06	1,10091E-05	0,006591866	0,006602875	0,407386484	0,139671007	0,407498216	0,139559275
387	1,014E-09	1,10129E-05	0,006662366	0,006673379	0,408145212	0,139001924	0,40825639	0,138890746
388	1,5328E-05	1,10167E-05	0,006733241	0,006744258	0,40890394	0,138332842	0,40901457	0,138222212
389	1,39551E-09	1,10206E-05	0,006804492	0,006815513	0,409662668	0,137663759	0,409772756	0,137553671
390	3,62658E-06	1,10245E-05	0,006876117	0,006887142	0,410421395	0,136994677	0,410530948	0,136885125
391	8,79786E-07	1,10243E-05	0,006948118	0,006959146	0,411180123	0,136325594	0,411289145	0,136216572
392	5,16635E-06	1,10322E-05	0,000948118	0,000939140	0,411180123	0,135656512	0,4112047348	0,135548014
393	5,14294E-06	1,10362E-05	0,007020433	0,00710428	0,412697579	0,134987429	0,412805557	0,134879451
394	2,48134E-10	1,10401E-05	0,007093244	0,007177409	0,413456307	0,134318347	0,413563771	0,134210882
395	1,28939E-06	1,10441E-05	0,007100309	0,007177409	0,414215034	0,133649264	0,414321991	0,133542307
396	5,28571E-05	1,10441E-05	0,00723987	0,007230314	0,414973762	0,132980182	0,415080216	0,132873728
397	3,4443E-06	1,10521E-05	0,007313743	0,007324793	0,414973702	0,132311099	0,415838447	0,132205143
398	5,72481E-06	1,10561E-05	0,007367990	0,007473677	0,416491218	0,131642017	0,416596682	0,131536552
000	5,7 Z-10 1 L 100	1,100012-00	3,001 702021	0,007-170077	3,710701210	3,101072017	J, 10000002	3,10100002

0.4050	0.2446	0.4050	0.4750	0.0000	0.4050	0.0460	0.4050	0.0460	0.0004	0.0004	0.4050	0.4000	0.0000
0,1959 (y-y^) ² 1	0,2446 (y-y^) ² 2	0,1959 (y-y^) ² 3	0,1758	0,2032	0,1959	0,2169	0,1959	0,2169	0,2201	0,2201	0,1959	0,1992	0,2260
0,0036	0,0001	0,0036	0,0065	0,0028	0,0036	0.0015	0,0036	0,0015	0.0013	0,0013	0.0036	0,0032	0,0009
0,0036	0,0001	0,0036	0,0065	0,0028	0,0036	0,0015	0,0036	0,0015	0,0013	0,0013	0,0036	0,0033	0,0009
0,0036	0,0001	0,0036	0,0065	0,0028	0,0036	0,0016	0,0036	0,0016	0,0013	0,0013	0,0036	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0028	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0028	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0028	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0028	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0028	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0028	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0029	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0029	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0029	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0065	0,0029	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0001	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0013	0,0013	0,0037	0,0033	0,0009
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0033	0,0010
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0033	0,0010
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0033	0,0010
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0033	0,0010
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0033	0,0010
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0033	0,0010
0,0037	0,0002	0,0037	0,0066	0,0029	0,0037	0,0016	0,0037	0,0016	0,0014	0,0014	0,0037	0,0034	0,0010
0,0038 0,0038	0,0002 0,0002	0,0038 0,0038	0,0066 0,0066	0,0029 0,0029	0,0038	0,0016 0,0016	0,0038	0,0016 0,0016	0,0014 0,0014	0,0014 0,0014	0,0038	0,0034 0,0034	0,0010 0,0010
0,0038	0,0002	0,0038	0,0066	0,0029	0,0038	0,0016	0,0038	0,0016	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0066	0,0029	0,0038	0,0016	0,0038	0,0016	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0029	0,0038	0,0016	0,0038	0,0016	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0.0002	0,0038	0,0067	0,0029	0,0038	0,0016	0,0038	0,0016	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0029	0,0038	0,0016	0,0038	0,0016	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0029	0,0038	0,0016	0,0038	0,0016	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014	0,0014	0,0038	0,0034	0,0010
0,0038	0,0002	0,0038		0,0030		0,0017			0,0014			0,0034	0,0010
0,0038	0,0002	0,0038	0,0067	0,0030	0,0038	0,0017	0,0038	0,0017	0,0014		0,0038	0,0034	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0014	0,0014	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0014	0,0014	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0014	0,0014	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0014	0,0014	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039 0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0014 0,0015	0,0014	0,0039	0,0035	0,0010
0,0039 0,0039	0,0002 0,0002	,	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017 0,0017	0,0015	0,0015	0,0039	0,0035 0,0035	0,0010
0,0039	0,0002	0,0039 0,0039	0,0068	0,0030	0,0039	0,0017 0,0017	0,0039	0,0017	0,0015	0,0015 0,0015	0,0039	0,0035	0,0010 0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0010
0,0039	0,0002	0,0039	0,0068	0,0030	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0011
0,0039	0,0002	0,0039	0,0068	0,0031	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0011
0,0039	0,0002	0,0039	0,0068	0,0031	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0011
0,0039	0,0002	0,0039	0,0069	0,0031	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0011
0,0039	0,0002	0,0039	0,0069	0,0031	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0011
0,0039	0,0002	0,0039	0,0069	0,0031	0,0039	0,0017	0,0039	0,0017	0,0015	0,0015	0,0039	0,0035	0,0011
0,0039	0,0002	0,0039	0,0069	0,0031	0,0039	0,0018	0,0039	0,0018	0,0015	0,0015	0,0039	0,0035	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011

0,0040	0.0002	0,0040	0.0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0.0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0.0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0069	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0.0040	0,0070	0,0031	0,0040	0.0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0.0040	0,0070	0,0031	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0032	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0032	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0032	0,0040	0,0018	0,0040	0,0018	0,0015	0,0015	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0032	0,0040	0,0018	0.0040	0,0018	0,0016	0,0016	0,0040	0,0036	0,0011
0,0040	0,0002	0,0040	0,0070	0,0032	0,0040	0,0018	0,0040	0,0018	0,0016	0,0016	0,0040	0,0036	0,0011
0,0041	0,0002	0,0041	0,0070	0,0032	0,0041	0,0018	0,0041	0,0018	0,0016	0,0016	0,0041	0,0036	0,0011
0,0041	0,0002	0,0041	0,0070	0,0032	0,0041	0,0018	0,0041	0,0018	0,0016	0,0016	0,0041	0,0030	0,0011
0,0041	0,0002	0,0041	0,0070	0,0032	0,0041	0,0018	0,0041	0,0018	0,0016	0,0016	0,0041	0,0037	0,0011
0,0041	0,0002	0,0041	0,0070	0,0032	0,0041	0,0018	0,0041	0,0018	0,0016	0,0016	0,0041	0,0037	0,0011
		•	•				•		•				•
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0018	0,0041	0,0018	0,0016	0,0016	0,0041 0.0041	0,0037	0,0011
0,0041	0,0002	0,0041	0,0071	0,0032 0,0032	0,0041	0,0018	0,0041	0,0018	0,0016 0,0016	0,0016	-,	0,0037	0,0011
0,0041	0,0002	0,0041	0,0071 0,0071	,	0,0041	0,0018	0,0041	0,0018	•	0,0016 0,0016	0,0041 0,0041	0,0037 0,0037	0,0011 0,0011
0,0041	0,0002	0,0041	•	0,0032	0,0041	0,0018	0,0041	0,0018	0,0016	,	•	,	•
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0032	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0033	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0033	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0041	0,0002	0,0041	0,0071	0,0033	0,0041	0,0019	0,0041	0,0019	0,0016	0,0016	0,0041	0,0037	0,0012
0,0042	0,0002	0,0042	0,0071	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0037	0,0012
0,0042	0,0002	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0037	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0016	0,0016	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0017		,	0,0038	0,0012
0,0042	0,0003	0,0042		0,0033	0,0042	0,0019		0,0019			0,0042	-	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0017	0,0017	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	-	0,0017	0,0017	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0072	0,0033	0,0042	0,0019	0,0042	0,0019	0,0017	0,0017	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0073	0,0033	0,0042	0,0019	0,0042	0,0019	0,0017	0,0017	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0073	0,0033	0,0042	0,0019	0,0042	0,0019	0,0017	0,0017	0,0042	0,0038	0,0012
0,0042	0,0003	0,0042	0,0073	0,0033	0,0042	0,0020	0,0042	0,0020	0,0017	0,0017	0,0042	0,0038	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0038	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0038	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0038	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0038	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0012
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0073	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0074	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0074	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0074	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0074	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0074	0,0034	0,0043	0,0020	0,0043	0,0020	0,0017	0,0017	0,0043	0,0039	0,0013
0,0043	0,0003	0,0043	0,0074	0,0034	0,0043	0,0020	0,0043	0,0020	-	0,0017	0,0043	0,0039	0,0013

0,0044 0,0003 0,0044 0,0074 0,0034 0,0043 0,0020 0,0044 0,0020 0,0017 0,0017 0,0015 0,0014 0,0044 0,0020 0,0014 0,0020 0,0014 0,0020 0,0014 0,0020 0,0014 0,0020 0,0014 0,0020 0,0014 0,0020 0,0014 0,0020 0,0018 0,0018 0,0018 0,0044 0,0044 0,0020 0,0018 0,0018 0,0018 0,0044 0,0044 0,0020 0,0018 0,0018 0,0018 0,0044 0,0044 0,0044 0,0020 0,0018 0,0018 0,0018 0,0018 0,0044 0,0044 0,0044 0,0020 0,0018 0
0,0044 0,0003 0,0044 0,0074 0,0034 0,0024 0,0020 0,0044 0,0020 0,0017 0,0017 0,0044 0,0044 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0,0044 0,0044 0,0044 0,0003 0,0044 0,0074 0,0035 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0
0,0044 0,0003 0,0044 0,0074 0,0035 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0,0044 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,00075 0,0035 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0,0004 0,0004 0,0003 0,0044 0,00075 0,0035 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0,0004 0,0044 0,0003 0,0044 0,00075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0044 0,0044 0,0045 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0044 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0044 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044
0.0044 0.0003 0.0044 0.0074 0.0035 0.0044 0.0020 0.0044 0.0020 0.0018 0.0018 0.0044 0.0044 0.0044 0.0040 0.0044 0.0040 0.0044 0.0045 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0045 0.0044 0
0,0044 0,0003 0,0044 0,0074 0,0035 0,0044 0,0020 0,0018 0,0018 0,0014 0,0004 0,0020 0,0044 0,0003 0,0044 0,0074 0,0035 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0021 0,0045 0,0048 0,0044 0,0021 0,0044 0,0021 0,0045 0,0018<
0,0044 0,0003 0,0044 0,0074 0,0035 0,0044 0,0020 0,0018 0,0018 0,0014 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0020 0,0044 0,0020 0,0044 0,0020 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0018 0,0044 0,0044 0,0033 0,0044 0,0035 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0044 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0048 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 <t< td=""></t<>
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0,0044 0,0044 0,0045 0,0044 0,0020 0,0044 0,0021 0,0018 0,0018 0,0044 0
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0020 0,0044 0,0020 0,0018 0,0018 0,0044 0,0044 0,0044 0,0045 0,0044 0,0020 0,0044 0,0021 0,0018 0,0018 0,0044 0
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0018 0,0014 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0014 0,0021 0,0044 0,0021 0,0018 0,0044 0,0021 0,0018 0,0018 0,0044 0,0021 0,0018 0,0018 0,0044 0,0021 0,0018 0,0018 0,0041 0,0021 0,0018 0,0018 0,0041 0,0021 0,0018 0,0018 0,0041 0,0021 0,0018 0,0018 0,0041 0,0021 0,0018 0,0018 0,0041 0,0021<
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0018<
0,0044 0,0003 0,0044 0,0005 0,0035 0,0044 0,0021 0,0045 0,0018 0,0041 0,0045 0,0021 0,0045 0,0018 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045<
0,0044 0,0003 0,0044 0,0005 0,0035 0,0044 0,0021 0,0045 0,0018 0,0041 0,0045 0,0021 0,0045 0,0018 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045<
0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,00075 0,0035 0,0044 0,00021 0,0018 0,0018 0,0018 0,0014 0,0044 0,0003 0,0044 0,00075 0,0035 0,0044 0,0021 0,0014 0,0018 0,0014 0,0014 0,0004 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0044 0,0003 0,0045 0,0075 0,0035 0,0044 0,00021 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0018 0,0044 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,00075 0,0035 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0048 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0003 0,0044 0,0004 0,00045 0,0003 0,0044 0,00021 0,0045 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0021 0,0045 0,0018 0,0018 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0041 0,0018 0,0044 0,0044 0,0044 0,0003 0,0044 0,0035 0,0044 0,0021 0,0044 0,00718 0,0044 0,0044 0,0044 0,0003 0,0044 0,00035 0,0044 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,00075 0,0035 0,0044 0,0021 0,0044 0,0018 0,0018 0,0044 0,0045 0,0003 0,0045 0,0003 0,0045 0,0003 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0001 0,0045 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0021 0,0045
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0048 0,0021 0,0018 0,0044 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0018 0,0018 0,0044 0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0048 0,0021 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0018 0,0018 0,0044 0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0044 0,0021 0,0048 0,0021 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0018 0,0018 0,0044 0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0044 0,0021 0,0018 0,0018 0,0044 0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0018 0,0018 0,0018 0,0045 0,0021 0,0044 0,0021 0,0018 0,0018 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0045 0,0045 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021
0,0044 0,0003 0,0044 0,0075 0,0035 0,0044 0,0021 0,0045 0,0018 0,0018 0,0044 0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0045 0,0033 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021
0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0
0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0018 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0045 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0007 0,0036 0,0045 0,0021 0,0045 0,00018 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0045 0,0021
0,0045 0,0003 0,0045 0,0075 0,0035 0,0045 0,0021 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0018 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0045 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0007 0,0036 0,0045 0,0021 0,0045 0,00018 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0021 0,0045 0,0021
0,0045 0,0003 0,0045 0,0076 0,0035 0,0045 0,0021 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0035 0,0045 0,0021 0,0021 0,0018 0,0018 0,0015 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0018
0,0045
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0048 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0041 0,0019 0,0045 0,0045 0,0003 0,0445 0,0077 0,0036 0,0455 0,0021
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0046 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0046 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0019 0,0018 0,0018 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0045 0,0021 0,0045 0,0019 0,0045 0,0019 0,0045 0,0046 0,0021 0,0045 0,0019 0,0046 0,0046 0,0021 0,0045 0,0019 0,0046 0,0021 0,0045 0,0019 0,0046 0,0021 0,0046 0,0021 0,0046<
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0021 0,0045 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0045 0,0021 0,0045 0,0021 0,0045 0,0019 0,0045 0,0021 0,0045 0,0021 0,0045 0,0019 0,0045 0,0019 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0045 0,0021 0,0046 0,0021 0,0046<
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0021 0,0018 0,0018 0,0018 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0019 0,0045 0,0021 0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0004 0,0046 0,0077 0,0036 0,0045 0,0022 0,0045 0,0022 0,0019 0,0019 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 </td
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0018 0,0045 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0019 0,0045 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0019 0,0045 0,0045 0,0076 0,0036 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0077 0,0036 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0045 0,0021 0,0019 0,0019 0,0045 0,0046 0,0022 0,0046 0,0021 0,0019 0,0019 0,0045 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0019<
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0045 0,0045 0,0046 0,0022 0,0045 0,0019 0,0019 0,0019 0,0045 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0049 0,0046 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022<
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0036 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0045 0,0045 0,0046 0,0022 0,0045 0,0019 0,0019 0,0019 0,0045 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0049 0,0046 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022<
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0019 0,0019 0,0045 0,0045 0,0036 0,0045 0,0021 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0019 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0022 0,0045 0,0021 0,0019 0,0019 0,0019 0,0045 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022<
0,0045 0,0003 0,0045 0,0076 0,0036 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0019 0,0045 0,0045 0,0021 0,0045 0,0019 0,0019 0,0019 0,0045 0,0045 0,0022 0,0045 0,0022 0,0019 0,0019 0,0045 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0045 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046<
0,0045 0,0003 0,0045 0,0077 0,0036 0,0045 0,0021 0,0045 0,0019 0,0045 0,0045 0,0036 0,0045 0,0022 0,0045 0,0019 0,0019 0,0019 0,0045 0,0046 0,0022 0,0045 0,0022 0,0019 0,0019 0,0045 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019<
0,0045 0,0004 0,0045 0,0077 0,0036 0,0045 0,0022 0,0045 0,0022 0,0019 0,0019 0,0045 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0019 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0004 0,0046 0,0077 0,0037
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0019 0,0046 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0077 0,00
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0077 0,00
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046<
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00047 0,0036 0,0046 0,0022 0,0046 0,00022 0,0019 0,0019 0,0046 0,0046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00047 0,0037 0,0046 0,00022 0,0019 0,0019 0,0046 0,0046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00047 0,0046 0,00022 0,0046 0,00022 0,0019 0,0019 0,0046 0,0046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,00046 0,0004
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0019 0,0019<
0,0046 0,0004 0,0046 0,0077 0,0036 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0019<
0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046<
0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046<
0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019<
0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022<
0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0046 0,0019 0,0046 0,0046 0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0049 0,0019 0,0019 0,0046 0,0046 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0049 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0019 0,0019 0,0046 0,0022 0,0019 0,0019
0,0046 0,0004 0,0046 0,0077 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0 0,0046 0 0 0,0046 0
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0 0 0,0046 0<
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0 0 0,0046 0<
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0047 0,0004 0,0046 0,0078 0,0037 0,0047 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0047 0,0004 0,0047 0,0078
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0047 0,0004 0,0047 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0 0,0047 0,0004 0,0047 0,0078
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0 0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0019 0,0019 0,0046 0 0,0047 0,0004 0,0047 0,0037 0,0047 0,0022 0,0047 0,0022 0,0049 0,0019 0,0046 0 0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0 0,0047 0,0004 0,0047 0,0038 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0046 0,0046 0,0046 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0046 0 0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0 0,0047 0,0004 0,0047 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0
0,0046 0,0004 0,0046 0,0078 0,0037 0,0046 0,0022 0,0046 0,0022 0,0019 0,0019 0,0019 0,0046 0 0,0047 0,0040 0,0047 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0 0,0047 0,0004 0,0004 0,0047 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0,0047 0,0047 0,00047 0,00047 0,0022 0,0019 0,0019 0,0047
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0,0047 0,0047 0,00047 0,00047 0,0022 0,0019 0,0019 0,0047
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0
0.0047 0.0004 0.0047 0.0078 0.0027 0.0047 0.0022 0.0047 0.0022 0.0040 0.0040 0.0047 0
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0019 0,0019 0,0047 0
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0022 0,0047 0,0022 0,0020 0,0020 0,0047 0
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 0
0,0047 0,0004 0,0047 0,0078 0,0037 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 (
0,0047 0,0004 0,0047 0,0079 0,0037 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 (
0,0047 0,0004 0,0047 0,0079 0,0038 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 (
0,0047 0,0004 0,0047 0,0079 0,0038 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 0
0,0047 0,0004 0,0047 0,0079 0,0038 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0020 0,0047 0 0,0047 0,0004 0,0004 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 0
0,0047 0,0004 0,0047 0,0079 0,0038 0,0047 0,0023 0,0047 0,0023 0,0020 0,0020 0,0047 0

0,0047	0.0004	0,0047	0,0079	0,0038	0,0047	0.0023	0,0047	0,0023	0,0020	0,0020	0,0047	0,0043	0,0015
0,0047	0.0004	0,0047	0,0079	0,0038	0,0047	0,0023	0,0047	0,0023	0,0020	0,0020	0,0047	0,0043	0,0015
0,0047	0,0004	0,0047	0,0079	0,0038	0,0047	0,0023	0,0047	0,0023	0,0020	0,0020	0,0047	0,0043	0.0015
0,0048	0,0004	0,0048	0,0079	0,0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0,0048	0,0079	0,0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0.0004	0.0048	0,0079	0,0038	0,0048	0.0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0,0048	0,0080	0,0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0,0048	0,0080	0,0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0,0048	0,0080	0.0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0.0048	0,0080	0,0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0,0048	0,0080	0.0038	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0043	0,0015
0,0048	0,0004	0,0048	0,0080	0,0038	0,0048	0,0023	0,0048	0,0023	0,0020	0.0020	0,0048	0,0044	0,0015
0,0048	0,0004	0,0048	0,0080	0,0038	0,0048	0,0023	0.0048	0,0023	0,0020	0.0020	0,0048	0,0044	0,0015
0,0048	0,0004	0,0048	0,0080	0,0039	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0044	0,0015
0,0048	0,0004	0,0048	0,0080	0,0039	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0044	0,0015
0,0048	0,0004	0,0048	0,0080	0,0039	0,0048	0,0023	0,0048	0,0023	0,0020	0,0020	0,0048	0,0044	0,0016
0,0048	0,0004	0,0048	0,0080	0,0039	0,0048	0.0024	0,0048	0,0024	0,0020	0,0021	0,0048	0,0044	0,0016
0,0048	0,0004	0,0048	0,0080	0,0039	0,0048	0,0024	0,0048	0,0024	0,0021	0,0021	0,0048	0,0044	0,0016
0,0048	0,0004	0,0048	0,0080	0,0039	0,0048	0.0024	0,0048	0,0024	0,0021	0,0021	0,0048	0,0044	0,0016
0,0049	0,0004	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0044	0,0016
0,0049	0,0004	0,0049	0,0081	0.0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0044	0,0016
0,0049	0,0004	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0.0049	0,0044	0,0016
0,0049	0,0004	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0044	0,0016
0,0049	0,0004	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0044	0,0016
0,0049	0,0004	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0.0044	0,0016
0,0049	0,0005	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0044	0,0016
0,0049	0,0005	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0044	0,0016
0,0049	0,0005	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0081	0,0039	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0081	0,0033	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0082	0,0040	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0082	0,0040	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0049	0,0082	0,0040	0,0049	0,0024	0,0049	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0049	0,0005	0,0050	0,0082	0,0040	0,0049	0,0024	0,0050	0,0024	0,0021	0,0021	0,0049	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0,0024	0,0050	0,0024	0,0021	0,0021	0,0050	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0,0024	0,0050	0,0024	0,0021	0,0021	0,0050	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0,0025	0,0050	0,0025	0,0021	0,0021	0,0050	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0,0025	0,0050	0,0025	0,0021	0,0021	0,0050	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0.0025	0.0050	0,0025	0.0021	0.0021	0,0050	0.0045	0.0016
0,0050	0,0005	0,0050	•	0,0040	0,0050	0,0025	0,0050	0,0025	0,0022	-,	0,0050	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0045	0,0016
0,0050	0,0005	0,0050	0,0082	0,0040	0,0050	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0045	0,0017
0,0050	0,0005	0,0050	0,0083	0,0040	0,0050	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0046	0,0017
0,0050	0,0005	0,0050	0,0083	0,0040	0.0050	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0046	0,0017
0,0050	0,0005	0.0050	0,0083	0,0040	0,0050	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0046	0,0017
0,0050	0,0005	0,0050	0,0083	0.0040	0,0050	0,0025	0,0050	0,0025	0,0022	0,0022	0.0050	0,0046	0,0017
0,0050	0,0005	0,0050	0,0083	0,0041	0,0050	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0046	0,0017
0,0050	0,0005	0,0050	0,0083	0,0041	0,0050	0,0025	0.0050	0,0025	0,0022	0,0022	0,0050	0.0046	0,0017
0,0050	0,0005	0,0050	0,0083	0,0041	0,0050	0.0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0046	0,0017
0,0051	0,0005	0,0051	0,0083	0,0041	0,0051	0,0025	0,0050	0,0025	0,0022	0,0022	0,0050	0,0046	0,0017
0,0051	0,0005	0,0051	0,0083	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0083	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0083	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0083	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0046	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0025	0,0051	0,0025	0,0022	0,0022	0,0051	0,0040	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0026	0,0051	0,0026	0,0022	0,0022	0,0051	0,0047	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0026	0,0051	0,0026	0,0022	-	0,0051	0,0047	0,0017
0,0001	0,0000	0,0001	0,0004	3,0071	0,0001	0,0020	0,0001	0,0020	3,0022	0,0022	5,5001	3,0077	0,0017

0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0026	0,0051	0,0026	0,0023	0,0023	0,0051	0,0047	0,0017
0,0051	0,0005	0,0051	0,0084	0,0041	0,0051	0,0026	0,0051	0,0026	0,0023	0,0023	0,0051	0,0047	0,0017
0,0051	0,0005	0,0051	0,0084	0,0042	0,0051	0,0026	0,0051	0,0026	0,0023	0,0023	0,0051	0,0047	0,0017
0,0052	0,0005	0,0052	0,0084	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0017
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0017
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0.0017
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
			,	•			•		•				,
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
0,0052	0,0005	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
0,0052	0,0006	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
0,0052	0,0006	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0047	0,0018
0,0052	0,0006	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0048	0,0018
0,0052	0,0006	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0048	0,0018
0,0052	0,0006	0,0052	0,0085	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0048	0,0018
0,0052	0,0006	0,0052	0,0086	0,0042	0,0052	0,0026	0,0052	0,0026	0,0023	0,0023	0,0052	0,0048	0,0018
0,0052	0,0006	0,0052	0,0086	0.0042	0,0052	0,0026	0,0052	0.0026	0.0023	0.0023	0,0052	0.0048	0,0018
0,0053	0,0006	0,0053	0,0086	0.0042	0,0053	0,0026	0,0053	0,0026	0,0023	0,0023	0,0053	0,0048	0,0018
0,0053	0.0006	0,0053	0,0086	0.0043	0,0053	0,0027	0,0053	0,0027	0,0023	0,0023	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0023	0,0023	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0023	0,0023	0,0053	0,0048	0,0018
•	•		•						•	•			•
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0023	0,0023	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0086	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0087	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0048	0,0018
0,0053	0,0006	0,0053	0,0087	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0049	0,0018
0,0053	0,0006	0,0053	0,0087	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0049	0,0018
0,0053	0,0006	0,0053	0,0087	0,0043	0,0053	0,0027	0,0053	0,0027	0,0024	0,0024	0,0053	0,0049	0,0018
0,0053	0,0006	0,0053	0,0087	0.0043	0,0053	0,0027	0,0053	0.0027	0,0024	0.0024	0,0053	0.0049	0,0018
0,0054	0,0006	0,0054	0,0087	0,0043	0,0054	0,0027	0,0054	0,0027	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0087	0,0043	0,0054	0,0027	0,0054	0,0027	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0087	0,0043	0,0054	0,0027	0,0054	0,0027	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0.0054	0,0087	0,0044	0,0054	0,0027	0,0054	0,0027	0,0024	0,0024	0,0054	0,0049	0,0019
•		•	•	•			•	0,0027	•	0,0024			•
0,0054	0,0006	0,0054	0,0087	0,0044	0,0054	0,0027	0,0054	,	0,0024	•	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0087	0,0044	0,0054	0,0027	0,0054	0,0027	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0087	0,0044	0,0054	0,0027	0,0054	0,0027	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0024	0,0024	0,0054	0,0049	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0024	0,0024	0,0054	0,0050	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0025	0,0025	0,0054	0,0050	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0025	0,0025	0,0054	0,0050	0,0019
0,0054	0,0006	0,0054	0,0088	0,0044	0,0054	0,0028	0,0054	0,0028	0,0025	0,0025	0,0054	0,0050	0,0019
0,0055	0,0006	0,0055	0,0088	0,0044	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0006	0,0055	0,0088	0,0044	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0006	0,0055	0,0088	0,0044	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0006	0,0055	0,0089	0,0044	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0006	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0006	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
			-			-	-	-	•				
0,0055	0,0006	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0006	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0019
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0020
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0020
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0028	0,0055	0,0028	0,0025	0,0025	0,0055	0,0050	0,0020
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0029	0,0055	0,0029	0,0025	0,0025	0,0055	0,0051	0,0020
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0029	0,0055	0,0029	0,0025	0,0025	0,0055	0,0051	0,0020
0,0055	0,0007	0,0055	0,0089	0,0045	0,0055	0,0029	0,0055	0,0029	0,0025	0,0025	0,0055	0,0051	0,0020

0,0056	0,0007	0,0056	0,0090	0,0045	0,0056	0,0029	0,0056	0,0029	0,0025	0,0025	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0045	0,0056	0,0029	0,0056	0,0029	0,0025	0,0025	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0045	0,0056	0,0029	0,0056	0,0029	0,0025	0,0025	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0045	0,0056	0,0029	0,0056	0,0029	0,0025	0,0025	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0045	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0.0090	0.0046	0.0056	0,0029	0,0056	0.0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0,0056	0,0090	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0051	0,0020
0,0056	0,0007	0.0056	0,0091	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0052	0,0020
0,0056	0,0007	0,0056	0,0091	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0052	0,0020
0,0056	0,0007	0,0056	0,0091	0,0046	0,0056	0,0029	0,0056	0,0029	0,0026	0,0026	0,0056	0,0052	0,0020
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0029	0,0057	0,0029	0,0026	0,0026	0,0057	0,0052	0,0020
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0029	0,0057	0,0029	0,0026	0,0026	0,0057	0,0052	0,0020
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0029	0,0057	0,0029	0,0026	0,0026	0,0057	0,0052	0,0020
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0020	0,0057	0,0030	0,0026	0,0026	0,0057	0,0052	0,0020
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0030	0,0057	0,0030	0,0026	0,0026	0,0057	0,0052	0,0020
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0030	0,0057	0,0030	0,0026	0,0026	0,0057	0,0052	0,0021
0,0057	0,0007	0,0057	0,0091	0,0046	0,0057	0,0030	0,0057	0,0030	0,0026	0,0026	0,0057	0,0052	0,0021
0,0057	0,0007	0,0057	0,0091	0,0047	0,0057	0,0030	0,0057	0,0030		0,0026	0,0057		0,0021
•	0,0007	•	0,0091	0,0047			•		0,0026			0,0052	•
0,0057	•	0,0057	•	•	0,0057 0,0057	0,0030	0,0057	0,0030	0,0026	0,0026	0,0057	0,0052 0,0052	0,0021 0,0021
0,0057	0,0007	0,0057	0,0092	0,0047 0,0047	0,0057	•	0,0057	0,0030	0,0026	0,0026 0,0026	0,0057	•	,
0,0057	0,0007	0,0057	0,0092		•	0,0030	0,0057	0,0030	0,0026	•	0,0057	0,0052	0,0021
0,0057	0,0007	0,0057	0,0092	0,0047	0,0057	0,0030	0,0057	0,0030	0,0027	0,0027	0,0057	0,0052	0,0021
0,0057	0,0007	0,0057	0,0092	0,0047	0,0057	0,0030	0,0057	0,0030	0,0027	0,0027	0,0057	0,0052	0,0021
0,0057	0,0007	0,0057	0,0092	0,0047	0,0057	0,0030	0,0057	0,0030	0,0027	0,0027	0,0057	0,0053	0,0021
0,0058	0,0007	0,0058	0,0092	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0007	0,0058	0,0092	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0007	0,0058	0,0092	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0007	0,0058	0,0092	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0007	0,0058	0,0092	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0007	0,0058	0,0092	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0047	0,0058	0,0030	0,0058	0,0030	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0048	0,0058	0,0031	0,0058	0,0031	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0048	0,0058	0,0031	0,0058	0,0031	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0048	0,0058	0,0031	0,0058	0,0031	0,0027		0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0048	0,0058	0,0031	0,0058	0,0031	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0048	0,0058	0,0031	0,0058	0,0031	0,0027	0,0027	0,0058	0,0053	0,0021
0,0058	0,0008	0,0058	0,0093	0,0048	0,0058	0,0031	0,0058	0,0031	0,0027	0,0027	0,0058	0,0054	0,0021
0,0059	0,0008	0,0059	0,0093	0,0048	0,0059	0,0031	0,0059	0,0031	0,0027	0,0027	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0093	0,0048	0,0059	0,0031	0,0059	0,0031	0,0027	0,0027	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0027	0,0027	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0048	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0049	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0049	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0049	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0094	0,0049	0,0059	0,0031	0,0059	0,0031	0,0028	0,0028	0,0059	0,0054	0,0022
0,0059	0,0008	0,0059	0,0095	0,0049	0,0059	0,0032	0,0059	0,0032	0,0028	0,0028	0,0059	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
				-					-				

0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0022
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0023
0,0060	0,0008	0,0060	0,0095	0,0049	0,0060	0,0032	0,0060	0,0032	0,0028	0,0028	0,0060	0,0055	0,0023
0,0060	0,0008	0,0060	0,0096	0,0049	0,0060	0,0032	0,0060	0,0032	0,0029	0,0029	0,0060	0,0055	0,0023
0,0060	0,0008	0,0060	0,0096	0,0050	0,0060	0,0032	0,0060	0,0032	0,0029	0,0029	0,0060	0,0055	0,0023
0,0060	0,0008	0,0060	0,0096	0,0050	0,0060	0,0032	0,0060	0,0032	0,0029	0,0029	0,0060	0,0055	0,0023
0,0060	0,0008	0,0060	0,0096	0,0050	0,0060	0,0032	0,0060	0,0032	0,0029	0,0029	0,0060	0,0055	0,0023
0,0061	0,0008	0,0061	0,0096	0,0050	0,0061	0,0032	0,0061	0,0032	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0008	0,0061	0,0096	0,0050	0,0061	0,0032	0,0061	0,0032	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0096	0,0050	0,0061	0,0032	0,0061	0,0032	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0096	0,0050	0,0061	0,0032	0,0061	0,0032	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0096	0,0050	0,0061	0,0032	0,0061	0,0032	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0096	0,0050	0,0061	0,0033	0,0061	0,0033	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0096	0,0050	0,0061	0,0033	0,0061	0,0033	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0096	0,0050	0,0061	0,0033	0,0061	0,0033	0,0029	0,0029	0,0061	0,0056	0,0023
0,0061	0,0009	0,0061	0,0097	0,0050	0,0061	0,0033	0,0061	0,0033	0,0029	0,0029	0,0061	0,0056	0,0023

0.2772	0,2919	0,2609	0.2010	0,2805	0.2010	0.2050	0.2010	0.2155	0.2700	0.2772	0 2772	0,2745	0.2621	0,2750	0,2919	0.2050
0,2112	0,2919	0,2009	0,2919	0,2005	0,2919	0,2959	0,2919	0,3155	0,2709	0,2112	0,2112	0,2745	0,2031	0,2750	0,2919	0,2959
0.0004	0.0013	0,0000	0,0013	0,0006	0.0013	0.0016	0,0013	0.0035	0,0002	0.0004	0.0004	0.0003	0,0000	0,0004	0.0013	0,0016
0.0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0016	0,0013	0.0035	0,0002	0.0004	0,0004	0,0003	0,0000	0,0004	0,0013	0,0016
0.0004	0.0013	0.0000	0,0013	0,0006	0,0013	0,0016	0,0013	0,0035	0.0002	0,0004	0,0004	0,0003	0,0000	0,0004	0,0013	0.0016
0,0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0016	0,0013	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0013	0,0016
0,0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0016	0,0013	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0013	0,0016
0.0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0016	0,0013	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0013	0,0016
0,0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0016	0,0013	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0013	0,0016
0,0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0016	0,0013	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0013	0,0016
0,0004	0,0013	0,0000	0,0013	0,0006	0,0013	0,0015	0,0013	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0013	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0035	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0006	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	,	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0034	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0015	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0015
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0014	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0014
0,0004	0,0012	,	0,0012	0,0005	0,0012	0,0014	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0014
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0014	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0014
0,0004	0,0012	0,0000	0,0012	0,0005	0,0012	0,0014	0,0012	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0012	0,0014
0,0004	0,0011	0,0000	0,0011	0,0005	0,0011	0,0014	0,0011	0,0033	0,0002	0,0004	0,0004	0,0003	0,0000	0,0003	0,0011	0,0014

```
0,0004 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011 0,0033 0,0002
                                                                         0,0004
                                                                                 0,0004
                                                                                        0,0003
                                                                                                0,0000
                                                                                                       0,0003 0,0011
                                                                                                                      0,0014
0,0004 0,0011 0,0000 0,0011
                             0,0005
                                    0,0011 0,0014 0,0011
                                                          0,0033 0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0,0003
                                                                                                0.0000
                                                                                                       0,0003
                                                                                                               0.0011
                                                                                                                      0.0014
0,0004 0,0011 0,0000 0,0011
                             0,0005
                                    0,0011
                                            0,0014 0,0011
                                                           0,0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0,0003
                                                                                                0,0000
                                                                                                       0.0003
                                                                                                              0.0011
                                                                                                                      0.0014
                             0,0005
                                    0.0011
                                            0,0014 0,0011
                                                           0,0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0.0003
                                                                                                0.0000
0.0004 0.0011 0.0000 0.0011
                                                                                                       0.0003
                                                                                                               0.0011
                                                                                                                      0.0014
                                                   0,0011
                             0.0005
                                    0.0011
                                            0,0014
                                                           0.0033
                                                                  0.0002
                                                                          0.0004
                                                                                 0.0004
                                                                                        0.0003
                                                                                                0.0000
0.0004
      0.0011 0.0000 0.0011
                                                                                                       0.0003
                                                                                                               0.0011
                                                                                                                      0.0014
      0,0011 0,0000 0,0011
                             0,0005
                                    0,0011
                                            0,0014
                                                   0,0011
                                                           0.0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0.0003
                                                                                                0.0000
                                                                                                       0.0003
                                                                                                               0,0011
                                                                                                                      0,0014
0.0004
              0,0000 0,0011
                             0,0005
                                    0,0011
                                            0,0014 0,0011
                                                           0,0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                         0.0003
                                                                                                0.0000
                                                                                                       0,0003
                                                                                                               0,0011
                                                                                                                      0,0014
       0.0011
0,0004 0,0011 0,0000 0,0011 0,0005
                                    0,0011
                                            0,0014 0,0011
                                                           0,0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0,0003
                                                                                                0,0000
                                                                                                       0,0003
                                                                                                              0,0011
                                                                                                                      0,0014
0,0004 0,0011 0,0000 0,0011 0,0005 0,0011
                                            0,0014 0,0011
                                                           0,0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0.0003
                                                                                                0.0000
                                                                                                       0,0003
                                                                                                              0,0011
                                                                                                                      0,0014
0,0004 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011
                                                           0,0033
                                                                  0,0002
                                                                          0,0004
                                                                                 0,0004
                                                                                        0,0003
                                                                                                0,0000
                                                                                                       0,0003
                                                                                                              0,0011
                                                                                                                      0,0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011
                                                           0,0032
                                                                  0,0002
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0003
                                                                                                0,0000
                                                                                                       0,0003
                                                                                                              0,0011
                                                                                                                      0,0014
                                                                  0.0002
0.0003
      0,0011 0,0000 0,0011
                             0,0005 0,0011 0,0014 0,0011
                                                           0,0032
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0003
                                                                                                0.0000
                                                                                                       0,0003
                                                                                                              0,0011
                                                                                                                      0,0014
              0,0000 0,0011
                             0,0005
                                    0,0011 0,0014 0,0011
                                                           0,0032
                                                                  0,0002
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0003
                                                                                                0,0000
                                                                                                       0.0003
                                                                                                              0.0011
                                                                                                                      0.0014
0.0003
      0.0011
0,0003
      0,0011
              0,0000 0,0011
                             0,0005
                                    0,0011 0,0014 0,0011
                                                           0,0032
                                                                  0,0002
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0003
                                                                                                0.0000
                                                                                                       0.0003
                                                                                                               0,0011
                                                                                                                      0,0014
                             0,0005
                                    0,0011
                                            0,0014 0,0011
                                                           0,0032
                                                                  0,0001
                                                                          0,0003
       0,0011
              0,0000 0,0011
                                                                                 0,0003
                                                                                         0,0002
                                                                                                0,0000
                                                                                                       0,0003
                                                                                                               0,0011
                                                                                                                      0,0014
              0,0000 0,0011
                             0,0005
                                     0,0011
                                            0,0014 0,0011
                                                           0,0032
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0003
                                                                                                               0,0011
                                                                                                                      0,0014
0.0003
      0.0011
0,0003 0,0011 0,0000 0,0011
                             0,0005
                                    0,0011
                                            0,0014 0,0011
                                                           0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0003
                                                                                                               0,0011
                                                                                                                      0,0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011
                                                           0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                                0,0000
                                                                                        0,0002
                                                                                                       0,0003
                                                                                                              0.0011
                                                                                                                      0.0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011
                                                          0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0003
                                                                                                              0,0011
                                                                                                                      0.0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011
                                                          0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0003 0,0011 0,0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011
                                                          0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0,0003 0,0011 0,0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011 0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0003 0,0011
                                                                                                                      0,0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011 0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0003 0,0011
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011 0,0032
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0003 0,0011
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0014 0,0011 0,0032 0,0001
                                                                          0,0003 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0003 0,0011 0,0014
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0013 0,0011 0,0032 0,0001
                                                                          0,0003 0,0003
                                                                                        0,0002
                                                                                               0,0000
                                                                                                      0,0003 0,0011 0,0013
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0013 0,0011 0,0032 0,0001
                                                                          0,0003 0,0003
                                                                                        0.0002
                                                                                               0,0000
                                                                                                       0,0002 0,0011 0,0013
0,0003 0,0011 0,0000 0,0011 0,0005 0,0011 0,0013 0,0011 0,0032 0,0001
                                                                          0,0003 0,0003
                                                                                        0,0002
                                                                                               0,0000
                                                                                                       0,0002 0,0011 0,0013
0.0003 0.0011 0.0000 0.0011 0.0004 0.0011 0.0013 0.0011 0.0032 0.0001
                                                                          0.0003
                                                                                 0,0003
                                                                                        0.0002
                                                                                               0,0000
                                                                                                       0,0002 0,0011 0,0013
0.0003 0.0011 0.0000 0.0011 0.0004
                                    0.0011 0.0013 0.0011 0.0032
                                                                  0.0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0.0002 0.0011
                                                                                                                      0.0013
              0,0000 0,0011
                             0,0004
                                    0,0011
                                            0,0013 0,0011
                                                          0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                               0,0011
                                                                                                                      0.0013
      0,0011 0,0000 0,0011
                             0,0004 0,0011 0,0013 0,0011
                                                           0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0.0002
                                                                                                               0,0011
                                                                                                                      0.0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                               0,0010
                                                                                                                      0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                                 0,0003
                                                                          0,0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0.0002
                                                                                                               0.0010 0.0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                                0,0000
                                                          0,0031
                                                                                        0.0002
                                                                                                       0.0002
                                                                                                              0.0010 0.0013
0,0003 0,0010 0,0000 0,0010 0,0004
                                    0,0010 0,0013
                                                   0,0010
                                                          0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0.0002
                                                                                                               0.0010 0.0013
0,0003
      0,0010 0,0000 0,0010 0,0004
                                    0,0010 0,0013
                                                   0,0010
                                                           0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                               0,0010
                                                                                                                      0,0013
      0,0010 0,0000 0,0010 0,0004
                                    0,0010 0,0013 0,0010
                                                          0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                               0,0010
                                                                                                                     0.0013
      0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010
                                                          0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                               0,0010
                                                                                                                     0,0013
      0,0010 0,0000 0,0010 0,0004
                                    0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                               0,0010
                                                                                                                     0.0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                              0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002 0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0,0000
                                                                                                       0.0002
                                                                                                              0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                              0,0010 0.0013
                                                                                                       0.0002
0.0003
      0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0.0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0.0002
                                                                                                              0.0010 0.0013
       0,0010 0,0000 0,0010 0,0004
                                    0,0010 0,0013 0,0010 0,0031
0,0003
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                               0,0010
                                                                                                                      0.0013
       0,0010 0,0000 0,0010
                            0,0004
                                    0,0010 0,0013
                                                   0,0010 0,0031
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                               0,0010
0.0003
                                                                                                                      0.0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                               0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                  0,0001
                                                                          0,0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                               0.0010 0.0013
                                                                  0,0001
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0031
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                              0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0030
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002
                                                                                                              0.0010 0.0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0030
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                              0,0010 0,0013
0.0003 0.0010 0.0000 0.0010 0.0004 0.0010 0.0013 0.0010 0.0030
                                                                  0.0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0.0002
                                                                                                              0.0010
                                                                                                                     0.0013
0.0003 0.0010 0.0000 0.0010 0.0004 0.0010 0.0013 0.0010 0.0030
                                                                  0,0001
                                                                          0.0003
                                                                                 0,0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0,0002
                                                                                                              0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0030
                                                                  0,0001
                                                                          0,0003
                                                                                 0,0003
                                                                                        0.0002
                                                                                                0,0000
                                                                                                       0,0002 0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0013 0,0010 0,0030
                                                                  0,0001
                                                                          0.0003 0.0003
                                                                                        0,0002
                                                                                                0.0000
                                                                                                       0,0002 0,0010 0,0013
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0012 0,0010 0,0030
                                                                  0,0001
                                                                          0,0003 0,0003
                                                                                        0,0002
                                                                                                0,0000
                                                                                                       0,0002 0,0010 0,0012
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0012 0,0010 0,0030 0,0001
                                                                          0,0003 0,0003 0,0002 0,0000 0,0002 0,0010 0,0012
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0012 0,0010 0,0030 0,0001
                                                                          0,0003 0,0003 0,0002 0,0000 0,0002 0,0010 0,0012
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0012 0,0010 0,0030 0,0001
                                                                          0,0003 0,0003 0,0002 0,0000 0,0002 0,0010 0,0012
                                                                                                      0,0002 0,0010 0.0012
0.0003 0.0010 0.0000 0.0010 0.0004 0.0010 0.0012 0.0010 0.0030
                                                                  0.0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
0.0003 0.0010 0.0000 0.0010 0.0004 0.0010 0.0012 0.0010 0.0030
                                                                  0,0001
                                                                          0.0003
                                                                                 0.0003
                                                                                        0.0002
                                                                                                0.0000
                                                                                                       0,0002 0,0010 0,0012
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0012 0,0010 0,0030 0,0001
                                                                          0,0003 0,0003
                                                                                        0,0002
                                                                                                0.0000 0.0002 0.0010 0.0012
0,0003 0,0010 0,0000 0,0010 0,0004 0,0010 0,0012 0,0010 0,0030 0,0001 0,0003 0,0003 0,0002 0,0000 0,0002 0,0010 0,0012
```

0,0003	0,0010	0,0000	0,0010	0,0004	0,0010	0,0012	0,0010	0,0030	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0010	0,0012
0,0003	0,0010	0,0000	0,0010	0,0004	0,0010	0,0012	0,0010	0,0030	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0010	0,0012
0,0003	0,0010	0,0000	0,0010	0,0004	0,0010	0,0012	0,0010	0,0030	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0010	0,0012
0,0003	0,0010	0,0000	0,0010	0,0004	0,0010	0,0012	0,0010	0,0030	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0010	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0030	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0030	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0003	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0003	0,0003	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002 0.0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0004	0,0009	0,0012 0,0012	0,0009	0,0029	0,0001	0,0002 0,0002	0,0002 0,0002	0,0002 0,0002	0,0000	0,0002	0,0009	0,0012 0,0012
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0012	0.0009	0,0029	0,0001	0,0002	0,0002	0,0002	0.0000	0,0002	0,0009	0,0012
0.0002	0,0009	0,0000	0.0009	0,0003	0.0009	0,0012	0,0009	0.0029	0,0001	0,0002	0,0002	0,0002	0.0000	0.0002	0,0009	0,0012
0.0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0012	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0012
0.0002	0,0009	0,0000	0,0009	0,0003	0,0009	0.0012	0,0009	0,0029	0,0001	0,0002	0,0002	0.0002	0.0000	0.0002	0,0009	0,0012
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0029	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0.0009	0,0029	0,0001	0,0002	0.0002	0,0002	0.0000	0,0002	0.0009	0,0011
0.0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0.0009	0,0028	0,0001	0,0002	0.0002	0,0002	0.0000	0,0002	0.0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0.0002	0,0002	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0002	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0009	0,0000	0,0009	0,0003	0,0009	0,0011	0,0009	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0002	0,0009	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002 0,0002	8000,0 8000,0	0,0000	0,0008 8000,0	0,0003	0,0008 0,0008	0,0011 0,0011	0,0008	0,0028 0,0028	0,0001 0,0001	0,0002 0,0002	0,0002 0,0002	0,0001	0,0000	0,0001 0,0001	0,0008	0,0011 0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0028	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0011	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0011
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010

0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0001	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0027	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0008	0,0000	0,0008	0,0003	0,0008	0,0010	0,0008	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0008	0,0010
0,0002	0,0007	0,0000	0,0007	0,0003	0,0007	0,0010	0,0007	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0007	0,0010
0,0002 0.0002	0,0007 0,0007	0,0000	0,0007 0,0007	0,0003	0,0007 0,0007	0,0010 0,0010	0,0007	0,0026 0.0026	0,0000	0,0002 0,0002	0,0002 0,0002	0,0001 0,0001	0,0000	0,0001 0,0001	0,0007 0,0007	0,0010 0,0010
0,0002	0,0007	0,0000	0,0007	0,0003	0,0007	0,0010	0,0007 0,0007	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0007	0,0010
0,0002	0,0007	0,0000	0.0007	0.0003	0,0007	0,0010	0,0007	0.0026	0,0000	0,0002	0,0002	0,0001	0,0000	0.0001	0,0007	0.0010
0,0002	0,0007	0,0000	0,0007	0.0002	0,0007	0,0010	0,0007	0.0026	0,0000	0.0002	0,0002	0,0001	0,0000	0,0001	0,0007	0,0010
0,0002	0,0007	0,0000	0,0007	0.0002	0,0007	0,0010	0,0007	0,0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0007	0,0010
0.0002	0,0007	0,0000	0.0007	0,0002	0.0007	0.0010	0.0007	0.0026	0,0000	0,0002	0,0002	0,0001	0,0000	0,0001	0,0007	0,0010
0,0002	0,0007	0,0000	0.0007	0,0002	0,0007	0,0010	0,0007	0.0026	0,0000	0,0002	0,0002	0.0001	0.0000	0,0001	0,0007	0.0010
0.0002	0,0007	0,0000	0,0007	0,0002	0,0007	0,0010	0.0007	0.0026	0,0000	0,0002	0.0002	0,0001	0.0000	0,0001	0,0007	0.0010
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0010	0,0007	0,0026	0,0000	0,0001	0.0001	0.0001	0,0000	0,0001	0,0007	0,0010
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0010	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0010
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0010	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0010
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001 0,0001	0,0007 0,0007	0,0000	0,0007 0,0007	0,0002 0,0002	0,0007 0,0007	0,0009	0,0007 0,0007	0,0025 0,0025	0,0000	0,0001 0,0001	0,0001 0,0001	0,0001 0,0001	0,0000	0,0001 0,0001	0,0007 0,0007	0,0009 0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0.0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0.0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0025	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0.0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0007	0,0000	0,0007	0,0002	0,0007	0,0009	0,0007	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0007	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009

0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0009	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0009
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0024	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0001	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001 0,0001	0,0006 0,0006	0,0000	0,0006	0,0002 0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001 0,0001	0,0001 0,0001	0,0000	0,0000	0,0001 0,0001	0,0006 0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0.0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0.0006	0,0008	0,0006	0.0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0.0000	0,0006	0,0002	0,0006	0,0008	0,0006	0.0023	0,0000	0.0001	0.0001	0,0000	0.0000	0,0001	0,0006	0.0008
0.0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0.0023	0,0000	0.0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0.0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0.0001	0,0001	0,0000	0.0000	0.0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0.0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0001	0,0006	0,0008
0,0001	0,0006	0,0000	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0002	0,0006	0,0008	0,0006	0,0023	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0002	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0002	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0002	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0002	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0001	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0001	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0001	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0006	0,0001	0,0006	0,0001	0,0006	0,0008	0,0006	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0006	0,0008
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0008	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0008
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0008	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0008
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007 0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007 0,0007
0,0001 0,0001	0,0005 0,0005	0,0001 0,0001	0,0005 0,0005	0,0001 0,0001	0,0005 0,0005	0,0007	0,0005 0,0005	0,0022 0,0022	0,0000	0,0001 0,0001	0,0001 0,0001	0,0000	0,0000	0,0000	0,0005 0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0.0000	0,0005	0.0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0022	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007

0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0001	0,0001	0,0000	0,0000	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0021	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0007	0,0005	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0007
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0006	0,0005	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0006
0,0000	0,0005	0,0001	0,0005	0,0001	0,0005	0,0006	0,0005	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0005	0,0006
0.0000	0.0005	0,0001	0.0005	0,0001	0.0005	0,0006	0.0005	0,0020	0,0000	0,0000	0,0000	0.0000	0,0001	0,0000	0,0005	0,0006
0,0000	0.0005	0,0001	0,0005	0,0001	0,0005	0,0006	0.0005	0,0020	0,0000	0,0000	0.0000	0,0000	0,0001	0,0000	0,0005	0.0006
0,0000	0.0005	0.0001	0,0005	0,0001	0,0005	0.0006	0.0005	0.0020	0,0000	0.0000	0.0000	0,0000	0,0001	0,0000	0,0005	0,0006
0,0000	0,0005	0,0001	0.0005	0,0001	0,0005	0,0006	0,0005	0.0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0.0005	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0.0000	0,0004	0,0001	0.0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0.0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0.0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0.0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0.0004	0.0020	0.0000	0,0000	0.0000	0,0000	0.0001	0,0000	0.0004	0,0006
0,0000	0,0004	0.0001	0,0004	0,0001	0.0004	0.0006	0,0004	0.0020	0,0000	0.0000	0.0000	0,0000	0,0001	0.0000	0,0004	0,0006
0,0000	0,0004	0.0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0.0000	0,0000	0,0001	0.0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0.0001	0,0004	0.0001	0,0004	0.0006	0,0004	0.0020	0,0000	0.0000	0.0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0020	0,0000	0,0000	0,0000		0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	•	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
-,	0.0004	U.UUU I				-,	-,000 1	-,5510	-,5500	2,0000	-	-	•	-,5500	-	-
0.0000	0,0004 0.0004	-	-	-	-	0.0006	0.0004	0.0019	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0004	0.0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006 0,0006	0,0004 0,0004	0,0019 0,0019	0,0000	0,0000	0,0000	0,0000	0,0001 0,0001	0,0000	0,0004 0,0004	0,0006
0,0000	0,0004 0,0004	0,0001 0,0001	0,0004 0,0004	0,0001 0,0001	0,0004 0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
-	0,0004	0,0001	0,0004	0,0001	0,0004	-				•		•				

0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0006	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0006
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0019	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0001	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0004	0,0002	0,0004	0,0001	0,0004	0,0005	0,0004	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0004	0,0005
0,0000	0,0003	0,0002	0,0003	0,0001	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0001	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0001	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0001	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0001	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0018	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005
0,0000	0,0003	0,0002	0,0003	0,0000	0,0003	0,0005	0,0003	0,0017	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0003	0,0005