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ABSTRACT

MARQUES, Leandro An ALE-FE Method for Blood Flow Dynamics in Coronary Arteries

Using the Vorticity-Streamfunction Formulation. 99f. Master’s Thesis (Master of Mechanical

Engineering) - Engineering Departament, State University of Rio de Janeiro (UERJ), Rio de

Janeiro, Brazil, 2020.

The present work aims at developing a computational framework to simulate blood flow

in coronary artery with drug-eluting stent placed for several Schmidt number using the Vorticity-

Streamfunction Formulation in an Arbitrary Lagrangian-Eulerian (ALE) approach. The blood

was modeled as single-phase, incompressible and newtonian fluid. The Navier-Stokes equation

is shown according to the vorticity-streamfunction formulation with species transport equation.

The Finite Element Method (FEM) is used to solve the governing equations where the Galerkin

formulation was used to discretized the governing equations in spatial domain and the semi-

Lagrangian method was used to discretized the material derivative using first order backward

difference scheme. Moreover, the mesh update procedure performs nodes regularisation allowing

to simulate moving boundary problems and the linear systems was solved using Conjugate

Gradient Iterative Method. Therefore, the new formulation proposed in this work is suitable to

simulate flows in coronary arteries with good accuracy.

Keywords: Abritary Lagrangian-Eulerian; Vorticity-Streamfunction Formulation; Finite Element

Method; semi-Lagrangian Method; Drug-Eluting Stent. d



RESUMO

MARQUES, Leandro Um Método FE-ALE para a Dinâmica do Escoamento Sanguíneo na

Artéria Coronária Usando a Formulação Corrente-Vorticidade. 99f. Dissertação de Mestrado

(Mestrado em Engenharia Mecânica) - Faculdade de Engenharia, Universidade do Estado do Rio

de Janeiro (UERJ), Rio de Janeiro, Brasil, 2020.

O presente trabalho tem como objetivo o desenvolvimento de uma estrutura computaci-

onal para simular o escoamento sanguíneo em uma artéria coronária com stent farmacológico

implantado para diversos números de Schmidt usando a Formulação Corrente-Vorticidade em

uma abordagem Lagrangeana-Euleriana Arbitrária (ALE). O fluido sanguíneo foi modelado

como incompressível e newtoniano em um escolamento monofásico. A equação de Navier-

Stokes é apresentada segundo a formulação corrente-vorticidade com a equação de transporte

de espécie química. O Método dos Elementos Finitos (FEM) é usado para resolver as equações

de governo, onde a formulação de Galerkin foi usada para discretização no espaço, enquanto

o Método semi-Lagrangeano foi usado para discretizar a derivada material usando o backward

difference scheme. Além disso, o procedimento de remalhamento realiza a regularização dos nós

possibilitando simular problemas com contornos móveis e os sistemas lineares foram resolvidos

utilizando o Método Iterativo Gradientes Conjugados. Portanto, a nova formulação proposta

nesse trabalho é apropriada para simular escoamentos em artéria coronária com boa precisão.

Palavras-chave: Lagrangeana-Euleriana Arbitrária; Formulação Corrente-Vorticidade; Método

dos Elementos Finitos; Método semi-Lagrangeano; Stent Farmacológico.
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INTRODUCTION

According to the World Health Organization (WHO), more people die each year from

cardiovascular disease (CVD) than any other cause in the world in the last 15 years [1]. It is

estimated that 15.2 million people died from CVD in 2016, representing 26.7% of all deaths

in the world. In Brazil, about 38% of deaths due to CVD is in the procutive age range (18 to

65 years) and the estimated costs of CVD were R$ 37.1 billion in 2015, that is, 0.7% GDP [2].

About 60% of CVD deaths occurred due to coronary artery disease (CAD). The main cause of

CAD is the atherosclerosis which consists of the accumulation of fatty plaques inside the artery

wall causing a decrease in lumen diameter. The Atherosclerosis can be prevented with a change

in harmful habits such as: cigarette smoking, physical inactivity/low fitness and poor dietary

habits [3]. For a corrective approach, however, two treatments can be performed: the Coronary

Artery Bypass Graft (CABG) and Percutaneous Transluminal Coronary Angioplasty (PTCA).

The PTCA a procedure minimally invasive where a wire tube, called stents is placed [4].

This work is a continuation of that developed by Marques (2018) [5], however the goals of

the current work plan are the development of a Finite Element code using the Lagragian-Eulerian

Arbitrary (ALE) description for the Vorticity-Streamfunction Formulation with Species Transport

Equation, to implement the semi-Lagrangian Method in place of the Taylor-Galerkin Method and

to know the dynamics of blood flow in a coronary artery with atherosclerosis and drug-eluting

stent placed for several Schmidt numbers.

The equations that govern the dynamics of blood flow in a coronary artery were deve-

loped according to the continuum hypothesis. In this way, the principles of mass conservation,

linear momentum conservation and chemical species were used. The blood was considered

as an incompressible, newtonian and one-phase fluid, as well as the mass diffusivity was

approximated as constant. The Navier-Stokes equation is shown according to the vorticity-

streamfunction formulation with species transport equation without internal source term in an

Arbitrary Lagrangian-Eulerian (ALE).

The domain were discretized using an unstructured triangular mesh generated by GMSH

open source [6] and the governing equations were discretized in spatial domain by the Galerkin

Method. Due to decoupling between the velocity and pressure fields provided by vorticity-

streamfunction formulation, the linear triangular element can be used without breaking the

Babuska-Brezzi restriction [7] [8]. The Navier-Stokes and Species Transport equations were
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discretized in time using the semi-Lagragian Method [9] where the searching procedure is

discussed.

The computational development was done in Python [10] using Object-Oriented Para-

digm (OOP) and the Chapter 4 presents the computational cost for each simulator process in

addition to the solution algorithm used and the Laplacian Smoothing Method is discussed. The

numerical code validation was performed by comparison between numerical and analytical

solutions in three benchmark problems: Couette Flow, Poiseuille Flow and Half Poiseuille

Flow. Moreover, the horizontal and vertical velocities in Lid-Driven Cavity was compared with

those presented by Ghia et al. [11] and Marchi et al. [12]. Then, the comparison between the

semi-Lagrangian Method for an unstructured linear triangular and a quadratic mesh is presented

in a pure convective flow.

The blood flow and the concentration transport in coronary artery were simulated in 2

geometries types as suggested by Wang et al. [13], however with some modications to the carte-

sian coordinates. These geometries types consist of one: (1) coronary artery with atherosclerosis

with 40% lumen obstruction and with drug-eluting stent placed; (2) real coronary artery with

atherosclerosis and with drug-eluting stent placed. The numerical simulation visualization was

performed using Paraview open source as proposed by Henderson (2007) [14].

This work was organized as follows:

• Introduction

• Chapter 1: Literature Review

• Chapter 2: Governing Equations

• Chapter 3: Finite Element Method

• Chapter 4: Computational Code

• Chapter 5: Validation

• Chapter 6: Results

• Conclusion
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1 LITERATURE REVIEW

1.1 Introduction

In this chapter, the literature review is presented and discussed, in order to the problem

and the methodology used in this work, such as the drug-eluting stents and the Finite Element

Method applied to the convection-diffusion equation.

1.2 Drug-Eluting Stent

According to the World Health Organization (WHO) [1], cardiovascular diseases have

remained the leading deaths causes globally in the last 15 years. It is estimated that 15.2 million

people died from CVD in 2016, representing 26.7% of all deaths in the world. In Brazil, about

38% of deaths due to CVD is in the procutive age range (18 to 65 years) and the estimated costs

of CVD were R$ 37.1 billion in 2015, that is, 0.7% GDP [2].

About 60% of CVD deaths occurred due to coronary artery disease (CAD). The main

cause of CAD is the atherosclerosis which consists of the accumulation of fatty plaques inside

the artery wall causing a decrease in lumen diameter. The Atherosclerosis can be prevented with

a change in harmful habits such as: cigarette smoking, physical inactivity/low fitness and poor

dietary habits [3]. For a corrective approach, however, two treatments can be performed: the

Coronary Artery Bypass Graft (CABG) or a procedure minimally invasive where a wire tube

is placed. The procedure development originates in 1964 with Dotter and Judkins [15], where

they introduced a new technique for obstructed femoral artery treatment due to atherosclerosis.

This technique is known as percutaneous transluminal angioplasty. Such procedure is presented

applicable to other arteries, including the coronary artery.

In 1979, Gruntzig, Senning and Seigenthaler [16] performed the percutaneous translumi-

nal technique in the artery coronary artery using a balloon catheter in order to dilate the site with

stenosis. The procedure was performed on 50 patients for 18 months and satisfactory results

were presented, mainly with patients with only a single artery with sterosis. Such procedure is

known as Coronary Angioplasty Percutaneous Transluminal (PTCA).

Although PTCA using a balloon has shown satisfactory results, over time, the artery

presented restenosis. In 1987, Sigwart et al. [4] present the result of implanting a prosthesis
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made of a self-expanding stainless steel mesh in the femoral and coronary arteries of 25 patients

who cases of restenosis. The prosthesis proved to be a interesting way to solve restenosis. This

prosthesis was called stent.

In 1994, Serruys et al. [17] present a comparison between PTCA procedures using an

balloon and stent implantation. 520 patients were analyzed, where 262 patients with implanted

stents and 258 patients with the inflatable balloon. The clinical and angiographic results were

better for the patients who had stent implantation to those who underwent the procedure only

using the balloon. Thus, the PTCA procedure with stent implantation was confirmed as a

more effective solution than PTCA using only the balloon. However, a problem persisted: the

restenosis. During the 1990s, researchers sought to solve this problem. The Figure 1 presents the

comparison between PTCA procedures using the balloon and stent.

Figure 1: Comparison PTCA procedure

(a) balloon procedure (b) stent strut procedure

Source: https://medicine.umich.edu

In 2001, Hwang, Wu and Edelman [18] presented a simulation of stent implantation

coated with a drug in a coronary artery. The simulation presented the close relationship between

drug distribution and Peclet number in addition to the importance of developing geometries

for stents that enhance the diffusion of the chemical substance. Such procedure proved to be a
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promising option for the treatment of atherosclerosis and reestonosis. This new type of stent

would be known as drug-eluting stent.

In 2009, Zunino et al. [19] presented a complete overview of mathematical models

and finite element numerical simulation applied to the modelling of drug eluting stens and

of their interaction with the coronary arteries, take into account the stent expansion, fluid

dynamics around the stent and drug release. The numerical simulation shown recirculation zones

downstream has important consequences on the drug release process. The smooth and concave

shape of stent contours shows that part of the drug released and accumulated in the neighborbood

of the links is transported away and may affect the arterial walls located downstream. However,

for the case analyzed, the authors concluded that the drug released into the lumem does not

significantly contribute to the permanent drug deposition into the arterial wall and only an small

fraction of the total amount drug stored into the stent was effectively delivered to the artery.

In 2014, Bozsak, Chomaz and Barakat [20] propose a computational model of transport

of the drugs paclitaxel and sirolimus on the artery wall. Such drugs are frequently used in

drug-eluting stents. The model takes into account the structure in multilayer of the artery wall

and these layers were modeled as porous media. Thus, the law of Darcy was used to simulate the

flow within the layers of the artery. The simulation showed that the choice of the type of drug

used is a crucial parameter in the creation of the drug-eluting stent due to transport in the artery

wall.

In 2016, Bukac et al. [21] present a fluid-structure interaction between a curved coronary

artery with an implanted stent, pulsatile blood flow and heart contractions. An finite element

numerical simulation was performed using ALE approach and the Navier-Stokes equations for

an incompressible, viscous fluid are used to model the blood flow. The performance of the four

commercially available stent geometries stent struts was evaluated based on the pathobiologic

parameters responses leading to restenosis in the curved coronary arteries and the horizontal

sinusoidal of Cypher stent struts performed the best in terms of theses parameters. However, on

limitation of the model used in the work is that it does not account for the protrusion of stent

struts into the vessel lumen. Thus, the influence of small-scale vortices around stent struts on

wall shear stress was not studied.

Recently, Wang et al. [13] present the simulation of blood flow in a coronary artery

with atherosclerosis and drug-eluting stent placed. Blood is approximated as a Newtonian and

monophase fluid and the governing equations were approximated according to the Finite Element
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Method. Several axisymmetric geometries were presented, including a real coronary artery. Such

geometries were used for this current work, but modified for a two-dimensional approach. The

simulations showed that the proposed simplified artery with atherosclerosis model produced

similar results of velocity, pressure and concentration when compared to the real artery.

The following year, Lucena et al. [22] present the simulation of the transport of the drug

sirolimus on the wall of an artery modeled as a porous and anisotropic medium. Dissolution in

the polymeric stent lining in addition to transport in the artery wall in an axisymmetric domain

was considered. The government equations were approximated according to the Finite Element

Method. The work showed that the evolution time of the transport process can be efficiently

controlled by the mass diffusivity of the polymer. It is estimated that about 47% of the drug is

diffused in the lumen and is lost in the bloodstream. The spatial distribution of the drug, however,

is greatly influenced by blood flow and the properties of the artery wall. Thus, such results are

susceptible to the patient’s health conditions.

In 2019, Gudino, Oishi and Sequeira [23] presented the influence of non-Newtonian

blood flow models on drug diffusion from a coronary drug-eluting stent. The Oldroyd-B, Phan-

Thien-Tanner and Giesekus viscoelastic models were used to describe the fluid dynamics of

blood and the finite element method was used for numerical simulations. The simulations shown

the hemodynamics captured by each model are more significant in the proximal recirculation

zones. The comparison between the newtonian and non-newtonian model were performed and

the results of total stress tensor as well as the drug concentration in the artery wall showed

significant differences between the models.

Over the past and current decade, several drug-eluting stents have been developed such

as: Ravel [24], Taxus I and Taxus II [25] [26], C-Sirius [27], Smart [28] and more recent ones as

presented in Figure 2. Currently, a new generation of stents has been developed in which the

entire structure is absorbed. Such a generation is known as bioabsorbable stent, the use of this

technology is not the subject of this work.
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Figure 2: Several models of drug-eluting stent

Source: Jaryl et al. (2016) [29].

1.3 Finite Element Method - Convection-Diffusion Equation

The mathematical basis for the Finite Element Method begins in 1909 with Ritz [30] in

which a continuous problem is replaced by a discrete problem with a finite number of degrees of

freedom where the unknowns were approximated by the product between the constants and the

base functions chosen in order to guarantee the accuracy of the result. This procedure is known

as variational formulation.

Years later, Galerkin (1915) [31] uses the Weighted Residual Method to determine the

constants of the variational formulation where the same base functions were used in the weight

functions. This procedure is known as Galerkin formulation and is widely used nowadays.

During the 1940s, Courant (1943) [32] applied variational formulation to a domain

discretized by triangular elements. In 1965, Zienkicwicz and Cheung [33] show that the Weighted

Residual Method has a good approximation of the solution and the Finite Element Method was

formalized to solve several problems. The proposed mathematical approach is often used today.

The Finite Element Method has become a very effective tool in the solution of several

problems and it has been widely used in problems of the solids mechanics. In fluid mechanics,

however, its use became possible only later due to the spurious oscillations that it can be seen

when the convective term is superior to the diffusive term. Such oscillations are present not

only in the Finite Element Method but were also observed in the Finite Difference Method by

Spalding in 1972 [34] where it is shown that the upwind effect helped to reduce these oscillations.
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In 1976, Christie et al. [35] modify weight functions for asymmetric or quadratic func-

tions to reduce spurious oscillations in one-dimensional diffusion-convection problems. Such

modifications produced a upwind effect on the solution. This procedure became known as

Petrov Galerkin Formulation. In the following year, Heinrich, Huyakorn and Zienkiewicz [36]

generalize the scheme to a two-dimensional problem. The global matrices, however, became

asymmetrical differently from those presented in the Galerkin scheme.

In 1982, Brooks and Hughes [37] proposed a new formulation that consists of the weight

functions modified in order to the diffusion operator acts only in the flow direction. This

procedure aims to eliminate the excess of diffusion perpendicular to the flow that the Petrov-

Galerkin scheme presented in some cases. The formulation does not require the use of high-order

weight functions and was efficient in eliminating perpendicular diffusion. The formulation

received the name Streamline Upwind Petrov-Galerkin (SUPG).

In the same year, Pironneau [9] presented the Characteristic trajectory applied to the Fi-

nite Element Method in solving the non-steady convection-diffusion and Navier-Stokes equations.

Thereby, the author was able to derive conservative schemes of the type upwind with first and

second order accurate. As the matrices are symmetric, this scheme proved to be advantageous

in solving linear systems compared to other upwind schemes. In addition to the method is

unconditionally stable. The numerical implementation, however, requires an complex searching

procedure. This method is known as semi-Lagrangian Method.

In 1984, Donea [38] presents an alternative for solving multidimensional and transient

convection-diffusion problems. This alternative is known as the Taylor-Galerkin scheme. The

scheme consists of using the high-order terms of the Taylor expansion to reduce spurious

oscillations. Unlike upwind schemes, in the Taylor-Galerkin scheme there is no need to use

modified weight functions. The scheme is compared with the formulations of Galerkin and Petrov

Galerkin and it showed high accuracy and low numerical diffusion. Although the computational

implementation is easy, the Taylor-Galerkin method is conditionally stable.

In the same year, Lohner et al. [39] proposed a simpler alternative to avoid the complex

searching procedure in the characteristic methods. This alternative involves to use the high-order

terms of the Taylor expansion to approximate the departure point. The procedure is known as

Characteristic Galerkin. The main advantages of method are the symmetric global matrices as

well as no searching procedure for each time step. However, the method is conditionally stable.

Although the Taylor Galerkin and Characteristic Galerkin discretization procedures are distinct,
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the system of equations is the same for the convection-diffusion equation, where the unknown is

a scalar.

Several researchers have analyzed the stability and convergencei of these methods as the

paper of Donea and Quartapelle (1992) [40]. In this paper, the authors present an analysis of

several methods for solving unsteady problems governed by advection equations. Whereas the

Petrov-Galerkin and SUPG schemes have the asymmetric matrix system, the Taylor-Galerkin,

Characteristic Galerkin and semi-Lagrangian methods have the advantage of matrices were

symmetric facilitating computational implementation. In addition to the Taylor-Galerkin and

Characteristic Galerkin methods have a simpler implementation and they can achieve a high order

accuracy, but they are only conditionally stable. For large time step, unlike, the semi-Lagrangian

method is more efficient because its unconditional stability. However, the main disadvantage of

this method is the complex searching procedure. It may lead to excessive computational cost if it

is not well designed.

All the methods presented have satisfactory results and they are well known in the

literature. These methods, therefore, made it possible to solve convective problems using

the Finite Element Method and they are presents in several complex problems today, such as

the numerical simulation for two-phase flows with dynamic boundaries presented by Anjos,

Mangiavacchi and Thome (2020) [41]. For current work, the semi-Lagrangian method was

chosen for decrease spurious oscillations, due to its unconditional stability and the symmetric

linear system of the governing equation in an finite element context.
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2 GOVERNING EQUATIONS

2.1 Introduction

In this work, the fluid is considered as a continuum body. This means that given an

element of infinitesimal fluid, it is large enough that there are no empty spaces in its domain.

Thereby, the flow can be modeled according to universal conservation principles such as:

• Mass Conservation

• Linear Momentum Conservation

• Species Transport Conservation

These are the principles that govern the flow proposed in this work. Initally, the Arbitrary

Lagrangian-Eulerian description is presented. Then, in the section 2.3, we will present the

principle of mass conservation and the continuity equation for an incompressible fluid. In the

section 2.4, the Navier Stokes equation for an incompressible fluid is presented according to

the principle of momentum linear conservation. In the section 2.5, we will present the Species

Transport Conservation. Then, the governing equations are non-dimensionalization in the

2.6 section and the Navier-Stokes equation is presented according to vorticity-streamfunction

formulation in the 2.7 section.

2.2 Arbitrary Lagrangian-Eulerian

The choice of the kinematical description of the continuum is extremely important for

the development of a computational code, since it directly affects the accuracy of the numerical

result. In the literature, two classic descriptions are commonly used, namely Lagrangian and

Eulerian.

The Lagrangian description is one where each computational mesh node (black point)

moves at the same velocity as the material point (white square), as can be seen in Figure 3a. Thus,

for each time step, we have a new computational mesh. The main advantage of this description is

that the value of the computational mesh node will have the same value as the material point and

thus, numerical diffusion will not be observed. In addition, the Lagrangian description makes it
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possible to perform fluid-structure interaction simulations. However, for large deformations, it is

necessary to implement an insetion and deletion node algorithm for computational mesh.

The Eulerian description is the one where the computational mesh node remains fixed for

each time step, as can be seen in Figure 3b. Thus, the computational mesh node value will be an

interpolation of the material point, causing the presence of numerical diffusion in the solution.

However, the computational cost is relatively attractive since it is not necessary the remeshing in

each time step.

A description, however, that combines the advantages of these two classic descriptions

as well as minimizing their disadvantages would be most appropriate. In this context that the

Arbitrary Lagrangian-Eulerian description (ALE) was developed. This description considers

that the velocity field of computational mesh is unlike than the material point and null value,

as can be seen in Figure 3c. In this way, it can be calculated as a linear combination of other

velocity fields, so that we have an optimal relationship between numerical diffusion and mesh

deformation. In addition, it is possible to assign several velocity values to specific regions of the

problem in order to improve the accuracy of the solution.

Figure 3: One-dimensional examples of the classical descriptions

t

(a) Lagrangian description

t

(b) Eulerian description

t

(c) ALE description
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The ALE description was first implemented in the finite difference method, as presented

by Hirt et al. (1974) [42] and was subsequently adopted in the finite elements context, as

presented by Donea (1982) [43]. In this description, the referential domain that describes the

computational mesh moving is different from the material domain and the spatial domain, as

shown in the Figure 4. However, it is possible to correlate these frameworks. For instance, if the

Φ operator is equal to the identity matrix (I), then the referential and material domain is the same

and, subsequently, the node velocity of the computational mesh is equivalent to the material

points velocity (Lagrangian description). But, if the Ψ operator is equal to I, the computational

mesh velocity is equivalent to null value and then the Eulerian description is obtained. For more

details, it is possible to consult the works of Donea (2004) [44] and Hughes (1981) [45].

Figure 4: Material, Spatial and Referential domains for the Artibratiry Lagrangian-Eulerian
description.

x̂ = [x̂1, . . . , x̂n]

X = [X1, . . . , Xn]

x = [x1, . . . , xn]

Φ

Ψ

Λ
Material domain

Spatial domain

Referential domain

2.3 Mass Conservation

As presented by Panton (2013) [46], the mass conservation for a region with arbitrary

motion is:

∫
V

∂ρ

∂t
dV +

∮
S

ρ (v− v̂) · ndA = 0 (2.1)
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where ρ is density, v is material velocity, v̂ the computational mesh velocity and the relative

velocity is replaced by velocity c. Applying the Gauss theorem on surface integral:

∫
V

∂ρ

∂t
dV = −

∫
V

∇ · (ρc) dV (2.2)

that is:

∫
V

[
∂ρ

∂t
+∇ · (ρc)

]
dV = 0 (2.3)

In view of the dV 6= 0, the Eq. 2.3 can be presented as:

∂ρ

∂t
+∇ · (ρc) = 0 (2.4)

Developing the equation, we have:

∂ρ

∂t
+ c · ∇ρ+ ρ∇ · v = 0 (2.5)

According to fluid incompressible assumption, the density does not depende on time

and on coordinates. Therefore, the ∂ρ/∂t e ∇ρ derivatives are null values. Thus, the mass

conservation is reduced to:

ρ∇ · v = 0 (2.6)

that is:

∇ · v = 0 (2.7)
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This equation is known as the continuity equation for an incompressible flow.

2.4 Linear Momentum Conservation

The same concept of mass conservation is applied to the linear momentum conservation.

Therefore, the linear momentum conservation for a region with arbitrary motion is:

∫
V

∂

∂t

(
ρv
)
dV = −

∮
S

ρvc · ndA+

∮
S

σ · ndA+

∫
V

ρgdV (2.8)

where σ is the stress tensor and g is gravity vector. Applying the Gauss Theorem on surface

integrals:

∫
V

∂

∂t

(
ρv
)
dV = −

∫
V

∇ ·
(
ρvc
)
dV +

∫
V

∇ · σdV +

∫
V

ρgdV (2.9)

that is:

∫
V

[
∂

∂t

(
ρv
)

+∇ ·
(
ρvc
)
−∇ · σ − ρg

]
dV = 0 (2.10)

In view of the dV 6= 0, the Eq. 2.10 can be presented as:

∂

∂t

(
ρv
)

+∇ ·
(
ρvc
)
−∇ · σ − ρg = 0 (2.11)

that is:

∂

∂t

(
ρv
)

+∇ ·
(
ρvc
)

= ∇ · σ + ρg (2.12)
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Developing the left hand side of equation, we have:

ρ
∂v
∂t

+ v
∂ρ

∂t
+ ρc · ∇v + v∇ ·

(
ρc
)

= ρ

[
∂v
∂t

+ v · ∇v

]
+ v

[
∂ρ

∂t
+∇ ·

(
ρc
)]

(2.13)

The last term of above equation is null because the continuity equation (Eq. 2.4). Thus,

the linear momentum equation can be rewritten as:

ρ

[
∂v
∂t

+ c · ∇v

]
= ∇ · σ + ρg (2.14)

The stress tensor σ can be split into two tensors:

σ = −pI + τ (2.15)

where, p is pressure field, I is the identity matrix and τ id deviatoric stress. Replacing them in

Eq. 2.14, we have:

ρ

[
∂v
∂t

+ c · ∇v

]
= ∇ ·

[
− pI + τ

]
+ ρg (2.16)

that is:

ρ

[
∂v
∂t

+ c · ∇v

]
= −∇p+∇ · τ + ρg (2.17)

The deviatoric stress τ depends on strain tensor rate and we can define it relating to

medium physical properties. Whereas a homogeneous, isotropic fluid and the deviatoric stress as

a continuous and linear function of velocity gradient, we have:

τ = µ
[
∇v +

(
∇v
)T ]

+ λI∇ · v (2.18)
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where µ is dynamic viscosity of fluid, λ is known as the second viscosity coefficient and I is

identidy matrix. Replacing them in Eq. 2.17, we have:

ρ

[
∂v
∂t

+ c · ∇v

]
= −∇p+∇ ·

[
µ
[
∇v +

(
∇v
)T ]

+ λI∇ · v
]

+ ρg (2.19)

that is:

ρ

[
∂v
∂t

+ c · ∇v

]
= −∇p+∇ ·

[
µ
[
∇v +

(
∇v
)T ]]

+∇ ·
[
λI∇ · v

]
+ ρg (2.20)

Taking into consideration that the dynamic viscosity µ does not depends on coordinates, we

have:

ρ

[
∂v
∂t

+ c · ∇v

]
= −∇p+ µ

[
∇ · ∇v +∇ ·

(
∇v
)T ]

+∇ ·
[
λI∇ · v

]
+ ρg (2.21)

that is:

ρ

[
∂v
∂t

+ c · ∇v

]
= −∇p+ µ

[
∇2v +∇

(
∇ · v

)]
+∇ ·

[
λI∇ · v

]
+ ρg (2.22)

According to Eq. 2.7, we have:

∂v
∂t

+ c · ∇v = −1

ρ
∇p+ ν∇2v + g (2.23)

where ν is the kinematic viscosity of fluid. The Eq. 2.23 is known as Navier-Stokes Equation

and is valid for a homogeneous, isotropic, incompressible fluid and with viscosity that it does

not depends on coordinates, according to the Arbitrary Lagrangian-Eulerian description [43].
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2.5 Species Transport Conservation

Similarly to the previous sections, the species transport conservation for a region with

arbitrary motion is:

∫
V

∂e

∂t
dV = −

∮
S

ec · ndA+

∮
S

D∇e · ndA+

∫
V

.

RdV (2.24)

where D is the mass diffusivity and
.

R is the chemical species source rate. Applying the Gauss

Theorem on surface integrals:

∫
V

∂e

∂t
dV = −

∫
V

∇ ·
(
ec
)
dV +

∫
V

∇ ·
(
D∇e

)
dV +

∫
V

.

RdV (2.25)

that is:

∫
V

[
∂e

∂t
+∇ ·

(
ec
)
−∇ ·

(
D∇e

)
−

.

R

]
dV = 0 (2.26)

In view of the dV 6= 0, the Eq. 2.26 can be represented by:

∂e

∂t
+∇ ·

(
ec
)
−∇ ·

(
D∇e

)
−

.

R = 0 (2.27)

that is:

∂e

∂t
+∇ ·

(
ec
)

= ∇ ·
(
D∇e

)
+

.

R (2.28)

Developing the left hand side of equation, we have:

∂e

∂t
+ v · ∇e+ e∇ · c = ∇ ·

(
D∇e

)
+

.

R (2.29)
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The last term of above equation is null because the fluid incompressibility assumption

(Eq. 2.7), thus:

∂e

∂t
+ c · ∇e = ∇ ·

(
D∇e

)
+

.

R (2.30)

Taking into consideration that the mass diffusiviy is constant and without chemical

species generation, the species transport equation can rewritten as:

∂e

∂t
+ c · ∇e = D∇2e (2.31)

The Eq. 2.31 is known as Species Transport Equation for an incompressible fluid, with

constant mass diffusivity and without chemical species generation for the Arbitrary Lagrangian-

Eulerian description.

2.6 Non-dimensionalization

In this section, the non-dimensional form of continuity, Navier-Stokes and species

transport equations are shown. The non-dimensionalization helps to understand which terms of

the equation influence most during a given simulation in addition to allowing experiments with

small scale models The following parameters was used in non-dimensionalization:

p = ρ0U
2p∗

v = Uv∗

e = (es − e0)e∗ + e0

g = g0g∗

ν = ν0ν
∗

ρ = ρ0ρ
∗

D = D0D
∗

∇ =
1

L
∇∗

x = Lx∗

t =
L

U
t∗

where the asterisk identify the non-dimensional unknowns. Replacing the above parameters in

Eq. 2.7, we have:

U

L
∇∗ · v∗ = 0 (2.32)
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Multiplying both sides by U/L:

∇∗ · v∗ = 0 (2.33)

A similar procedure is performed in Eq. 2.23, that is:

U2

L

∂v∗

∂t∗
+
U2

L
c∗ · ∇∗v∗ = −U

2

L

1

ρ∗
∇∗p∗ +

ν0U

L2
ν∗∇∗2v∗ + g0g∗ (2.34)

Multiplying both sides by L/U2:

∂v∗

∂t∗
+ c∗ · ∇∗v∗ = − 1

ρ∗
∇∗p∗ +

ν0

UL
ν∗∇∗2v∗ +

g0L

U2
g∗ (2.35)

that is:

∂v∗

∂t∗
+ c∗ · ∇∗v∗ = −∇∗p∗ +

ν0

UL
∇∗2v∗ +

g0L

U2
g∗ (2.36)

In the Eq. 2.31, a similar procedure is performed:

(es − e0)
U

L

∂e∗

∂t∗
+ (es − e0)

U

L
c∗ · ∇∗e∗ = (es − e0)

D0

L2
D∗∇∗2e∗ (2.37)

Multiplying both sides by L/U(es − e0), we have:

∂e∗

∂t∗
+ c∗ · ∇∗e∗ =

D0

UL
D∗∇∗2e∗ (2.38)
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that is

∂e∗

∂t∗
+ c∗ · ∇∗e∗ =

D0

UL
∇∗2e∗ (2.39)

where, important non-dimensional groups are found in Eqs. 2.33, 2.36 and 2.39, such that:

Reynolds Number (Re), Froude number (Fr) and Mass Péclet number (Pem). The Pem

number is often shown as the product of the Reynolds number and the Schmidt number Sc.

Replacing these non-dimensional groups in Eqs. 2.33, 2.36 and 2.39 and removing the asterisk,

we have:

∇ · v = 0 (2.40)

∂v
∂t

+ c · ∇v = −∇p+
1

Re
∇2v +

1

Fr2
g (2.41)

∂e

∂t
+ c · ∇e =

1

ReSc
∇2e (2.42)

The Eqs. 2.40, 2.41 e 2.42 are, respectively, non-dimensional form of Continuity, Navier-

Stokes and Species Transport equations for a newtonian and incompressble flow in an Arbritary

Lagrangian-Eulerian description.

2.7 Vorticity-Streamfunction Formulation

The Navier-Stokes equation has a strong coupling between the pressure field and the

velocity field. This coupling makes it difficult to implement this equation computationally. The

decoupling of pressure and velocity fields is possible by using the Vorticity-Streamfunction
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Formulation. For this, we will replace in the equation 2.41 the following vector identity:

c · ∇v = ∇ (c · v)− c×∇× v (2.43)

Therefore:

∂v
∂t

+∇ (c · v)− c×∇× v = −∇p+
1

Re
∇2v +

1

Fr2
g (2.44)

Computing the curl on both sides of the above equation:

∇× ∂v
∂t

+∇×∇ (c · v)−∇× c×∇× v = −∇×∇p+
1

Re
∇×∇2v +

1

Fr2
∇× g (2.45)

that is:

∂

∂t

[
∇×v

]
+∇×∇ (c · v)−∇×

[
c×∇×v

]
= −∇×∇p+

1

Re
∇2
[
∇×v

]
+

1

Fr2
∇×g (2.46)

The terms that contain the gradient operator cancel each other out, since the curl of

gradient of a scalar is zero. The last term is also null because the derivatives of a constant, as in

the case of g, are equal to zero. Thus, we have:

∂

∂t

[
∇× v

]
−∇×

[
c×∇× v

]
=

1

Re
∇2
[
∇× v

]
(2.47)

The vector∇× v is known as vorticity (ω). Thereby, the equation can be represented by:

∂ω

∂t
−∇×

[
c× ω

]
=

1

Re
∇2ω (2.48)
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The second term of left side in Eq. 2.48 can be replaced by following vectorial identity:

∇×
[
c× ω

]
= −c · ∇ω + ω · ∇c (2.49)

Thus the Eq. 2.48 will be:

∂ω

∂t
+ c · ∇ω − ω · ∇c =

1

Re
∇2ω (2.50)

For two-dimensional flows, as in the case of this work, the vorticity is perpendicular

to the velocity vector. Thus, the product ω · ∇c will be canceled as presented by Pontes and

Mangiavacchi (2016) [47]. Therefore:

∂ω

∂t
+ c · ∇ω =

1

Re
∇2ω (2.51)

The Eq. 2.51 is known as vorticity equation for two-dimensional flows of a Newtonian

and incompressible fluid in an Arbritary Lagragian-Eulerian description. For a steady and

two-dimensional flow of incompressible fluid, the velocity can be calculated from the volumetric

flux. Thereby, the velocity is replaced by a scalar. Such a scalar is known as streamfunction

(ψ). The relationship between the velocity components and the streamfunction is presented by

expanding the continuity equation (Eq. 2.7):

∂u

∂x
+
∂v

∂y
= 0 (2.52)

The following relationship between the streamfunction and the velocity components can

be defined so that Eq. 2.52 is satisfied:

u =
∂ψ

∂y
v = −∂ψ

∂x
(2.53)
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In addition, the relationship between streamfunction and vorticity is shown expanding

the∇× v operation for the two-dimensional case:

∇× v =
∂v

∂x
− ∂u

∂y
(2.54)

Thus, replacing the Eq. 2.53 in Eq. 2.54, we have:

ω = − ∂

∂x

∂ψ

∂x
− ∂

∂y

∂ψ

∂y
(2.55)

that is:

ω = −∇2ψ (2.56)

Therefore, the equations that govern the proposed problem in its non-dimensional form

and vorticity-streamfunction formulation are shown below:

∂w

∂t
+ c · ∇ω =

1

Re
∇2ω (2.57)

∇2ψ = −ω (2.58)

∂e

∂t
+ c · ∇e =

1

ReSc
∇2e (2.59)

For further development using bt the semi-Lagragian Method, the equations above will

be shown with the substantive derivative, thus:
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Dω

Dt
=

1

Re
∇2ω (2.60)

∇2ψ = −ω (2.61)

De

Dt
=

1

ReSc
∇2e (2.62)

where material velocity field v is calculated by: u = ∂ψ/∂y and v = −∂ψ/∂x.

2.8 Generic Initial and Boundary Conditions

In numerical simulations, the choice of initial and boundary conditions is important

to ensure result accuracy for any modeled problem by differential equations. The boundary

conditions used are briefly explained below, followed by their detailed specifications in each

particular case in the validations and results sections:

• inflow condition: this condition is specified when an mass inflow is desired. For such a

condition, u = uo and v = vo.

• wall condition: this condition is specified at wall boundaries (moving wall and noslip

conditions). All the velocity components are specified with the same wall velocity values.

• outflow condition: this condition represents a state where is close to a fully developed

profile. Usually no value is specified for the unknowns.

• free-slip condition: this condition is used on the symmetric axis. The normal velocity

component is null and the derivative of the tangent component is also null value.

• stent condition: this condition is used on the stent. The normal and tangential velocity

components are specified with null value. The concentration field is specified as e = eo.

As mentioned by Batchelor (1967) [48], the ψ is constant along a streamline, then the

streamfunction boundary condition can be calculated by ψ2 − ψ1 =
∫

(udy − vdx), where can

be used u and v velocity inflow component. The ψ1 and ψ2 are usually called bottom and top

streamlines, because the difference between two ψ values is equal to volume flow rate across
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inflow boundary. In this work, was set null value for bottom streamline. For top streamline, was

calculated using uo and vo inflow velocity components, that is, ψ2 =
∫

(uody − vodx).

Finally, in this work, the vorticity boundary contition was calculated by ω = ∇× v at

each time step.



38

3 FINITE ELEMENT METHOD

3.1 Introduction

In this chapter, we will describe the Finite Element Method (FEM). The mathematical

basis for the Finite Element Method begins in 1910s with Ritz [30] and Galerkin (1915) [31]. The

proposal of the finite element procedure is an approximation applied to the terms of the variational

formulation, for more details on the Finite Element Method see the works of Zienkiewicz and

Taylor (2000) [50] and Hughes (2000) [51].

First, we will present the variational formulation with its the strong and weak form of the

governing equations. Next, they are discretized in space using Galerkin Method with a linear

triangular element and then the semi-Lagrangian Method is used to discretize them over time.

Lastly, the matrix form of the governing equations is presented.

3.2 Variational Formulation

Governing equations in differential form with boundary conditions are known as Strong

Formulation. Thus, the strong formulation for the proposed problem is:

Dω

Dt
=

1

Re
∇2ω (3.1)

∇2ψ = −ω (3.2)

De

Dt
=

1

ReSc
∇2e (3.3)

These equations are valid in Ω ⊂ R2 domain with the following conditions in boundary Γ:

ω = ωΓ in Γ1

ψ = ψΓ in Γ2

e = eΓ in Γ3

(3.4)
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The result of the weighted governing equations over the domain is known as Weak

formulation. Then, the weak formulation for a single-phase, Newtonian and incompressible

fluid using the vorticity-streamfunction formulation with species transport equation will be

shown, for more details see the work of Brenner and Scott (1994) [52]. Therefore, as the

objective is to find an approximate solution, it is acceptable to assume that a Residue R is

produced in the governing equations, that is:

Dω

Dt
− 1

Re
∇2ω = R1 (3.5)

∇2ψ + ω = R2 (3.6)

De

Dt
− 1

ReSc
∇2e = R3 (3.7)

We will force the residue to be equivalent to zero in a weighted sense, as mentioned by

Finlayson (1972) [53], then:

∫
Ω

R1 · δdΩ = 0 (3.8)∫
Ω

R2 · φdΩ = 0 (3.9)∫
Ω

R3 · ηdΩ = 0 (3.10)

where δ, φ and η are weight functions. The weight functions are a set of arbitrary functions that

belong to a function space that will be discussed later. We then have the following integrals:

∫
Ω

{
Dω

Dt
− 1

Re
∇2ω

}
· δdΩ = 0 (3.11)

∫
Ω

{
∇2ψ + ω

}
· φdΩ = 0 (3.12)
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∫
Ω

{
De

Dt
− 1

ReSc
∇2e

}
· ηdΩ = 0 (3.13)

Developing the integrals, we have:

∫
Ω

Dω

Dt
δdΩ− 1

Re

∫
Ω

∇2ωδdΩ = 0 (3.14)

∫
Ω

∇2ψφdΩ +

∫
Ω

ωφdΩ = 0 (3.15)

∫
Ω

De

Dt
ηdΩ− 1

ReSc

∫
Ω

∇2eηdΩ = 0 (3.16)

In the diffusive term of the equations (3.14, 3.15 and 3.16), we will apply Green’s theorem

in order to decrease the derivative order and separate the term evaluated in the boundary. Thus

the diffusive term will become:

− 1

Re

∫
Ω

∇2ωδdΩ =
1

Re

∫
Ω

∇ω · ∇δdΩ− 1

Re

∫
Γ

δ∇ω · ndΓ (3.17)

∫
Ω

∇2ψφdΩ = −
∫

Ω

∇ψ · ∇φdΩ +

∫
Γ

φ∇ψ · ndΓ (3.18)

− 1

ReSc

∫
Ω

∇2eηdΩ =
1

ReSc

∫
Ω

∇e · ∇ηdΩ− 1

ReSc

∫
Γ

η∇e · ndΓ (3.19)

where n is the normal vector oriented outside the boundary Γ. The last term in the above

equations is known as a natural condition. As previously mentioned, the problem proposed in
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this work has only Dirichlet conditions (known as an essential condition). Therefore, we will

consider the assumptions δ = 0, φ = 0 and η = 0 in the equations (3.17, 3.18 and 3.19) for all Γ.

Thus, the integral in Γ will be null and the diffusive term of the equations (3.14, 3.15 and 3.16)

become:

− 1

Re

∫
Ω

∇2ωδdΩ =
1

Re

∫
Ω

∇ω · ∇δdΩ (3.20)

∫
Ω

∇2ψφdΩ = −
∫

Ω

∇ψ · ∇φdΩ (3.21)

− 1

ReSc

∫
Ω

∇2eηdΩ =
1

ReSc

∫
Ω

∇e · ∇ηdΩ (3.22)

Therefore, replacing the new diffusive terms in the governing equations:

∫
Ω

Dω

Dt
δdΩ +

1

Re

∫
Ω

∇ω · ∇δdΩ = 0 (3.23)

−
∫

Ω

∇ψ · ∇φdΩ +

∫
Ω

ωφdΩ = 0 (3.24)

∫
Ω

De

Dt
ηdΩ +

1

ReSc

∫
Ω

∇e · ∇ηdΩ = 0 (3.25)
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If we consider that:

m1(
Dω

Dt
, δ) =

∫
Ω

Dω

Dt
δdΩ

m2(ω, φ) =

∫
Ω

ωφdΩ

m3(
De

Dt
, η) =

∫
Ω

De

Dt
ηdΩ

k1(ω, δ) =

∫
Ω

∇ω · ∇δdΩ

k2(ψ, φ) =

∫
Ω

∇ψ · ∇φdΩ

k3(e, η) =

∫
Ω

∇e · ∇ηdΩ

(3.26)

The equations, thus, can be shown in the weak form respectively:

m1(
Dω

Dt
, δ) +

1

Re
k1(ω, δ) = 0 (3.27)

−k2(ψ, φ) +m2(ω, φ) = 0 (3.28)

m3(
De

Dt
, η) +

1

ReSc
k3(e, η) = 0 (3.29)

Assuming that the sets of basis functions are:

W = {ω ∈ Ω→ R :

∫
Ω

ω2dΩ <∞;ω = ωΓ}

P = {ψ ∈ Ω→ R :

∫
Ω

ψ2dΩ <∞;ψ = ψΓ}

E = {e ∈ Ω→ R :

∫
Ω

e2dΩ <∞; e = eΓ}

(3.30)

and the set of weight functions space:

D = {δ ∈ Ω→ R :

∫
Ω

δ2dΩ <∞; δΓ = 0}

F = {φ ∈ Ω→ R :

∫
Ω

φ2dΩ <∞;φΓ = 0}

N = {η ∈ Ω→ R :

∫
Ω

η2dΩ <∞; ηΓ = 0}

(3.31)

The weak formulation consists to find the solutions of ω ∈W, ψ ∈ P, and e ∈ E such that:
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m1(
Dω

Dt
, δ) +

1

Re
k1(ω, δ) = 0 (3.32)

−k2(ψ, φ) +m2(ω, φ) = 0 (3.33)

m3(
De

De
, η) +

1

ReSc
k3(e, η) = 0 (3.34)

for all δ ∈ D, φ ∈ F and η ∈ N.

3.3 The semi-discrete Galerkin Method

The weight functions δ, φ and η are sets of arbitrary functions and it have a large number

of choices. In this work to discretize the domain, we will use the Galerkin Method which

considers the same shape functions for the weight and interpolation functions of the unknowns

(w, ψ, e). Thus, Eqs. 3.23, 3.24 and 3.25 can be presented in expanded form such as:

∫
Ω

Dω

Dt
δdΩ +

1

Re

∫
Ω

{
∂ω

∂x

∂δ

∂x
+
∂ω

∂y

∂δ

∂y

}
dΩ = 0 (3.35)

−
∫

Ω

{
∂ψ

∂x

∂φ

∂x
+
∂ψ

∂y

∂φ

∂y

}
dΩ +

∫
Ω

ωφdΩ = 0 (3.36)

∫
Ω

De

Dt
ηdΩ +

1

ReSc

∫
Ω

{
∂e

∂x

∂η

∂x
+
∂e

∂y

∂η

∂y

}
dΩ = 0 (3.37)

We will now discretize the domain in ne elements and np nodes, where ne represents the

total number of elements and np the total number of nodes in the computational mesh. Thus, we

have:
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ω(x, t) '
np∑
i=1

ωi(t)Ni(x) (3.38)

ψ(x, t) '
np∑
i=1

ψi(t)Ni(x) (3.39)

e(x, t) '
np∑
i=1

ei(t)Ni(x) (3.40)

where ωi = [ω1, ..., ωnp], ψi = [ψ1, ..., ψnp] and ei = [e1, ..., enp] are the semi-discrete unknowns,

that is, these unknowns are continuous in time (t) and discrete in space (x). As they are only time

dependent, then they can leave the integrals on the domain Ω. In addition, Ni = [N1, ..., Nnp]

are the approximation functions known as basis functions or interpolation functions. These

functions can be chosen arbitrarily, however they must respect the boundary conditions. They

vary depending on the element type used for discretization. As mentioned, in this work we

will use the same type of element for each governing equation, so we will have the same basis

functions for all equations.

In Galerkin formulation, the weight functions assume the values of the basis functions,

that is:

δ(x, t) '
np∑
j=1

δj(t)Nj(x) (3.41)

φ(x, t) '
np∑
j=1

φj(t)Nj(x) (3.42)

η(x, t) '
np∑
j=1

ηj(t)Nj(x) (3.43)

Thus, the governing equations in variational form discretized in space will be:

∫
Ω

np∑
i=1

Dωi

Dt
Ni

np∑
j=1

δjNjdΩ

+
1

Re

∫
Ω

{
np∑
i=1

∂ωiNi

∂x

np∑
j=1

∂δjNj

∂x
+

np∑
i=1

∂ωiNi

∂y

np∑
j=1

∂δjNj

∂y

}
= 0

(3.44)
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−
∫

Ω

{
np∑
i=1

∂ψiNi

∂x

np∑
j=1

∂φjNj

∂x
+

np∑
i=1

∂ψiNi

∂y

np∑
j=1

∂φjNj

∂y

}
dΩ

+

∫
Ω

np∑
i=1

ωiNi

np∑
j=1

φjNjdΩ = 0

(3.45)

∫
Ω

np∑
i=1

Dei
Dt

Ni

np∑
j=1

ηjNjdΩ

+
1

ReSc

∫
Ω

{
np∑
i=1

∂eiNi

∂x

np∑
j=1

∂ηjNj

∂x
+

np∑
i=1

∂eiNi

∂y

np∑
j=1

∂ηjNj

∂y

}
dΩ = 0

(3.46)

Moving the sum symbols out of integrals, we have:

np∑
j=1

δj

[
np∑
i=1

Dωi

Dt

∫
Ω

NiNjdΩ

+

np∑
i=1

ωi

[
1

Re

∫
Ω

{
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

}
dΩ

]]
= 0

(3.47)

np∑
j=1

φj

[
−

np∑
i=1

ψi

∫
Ω

{
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

}
dΩ +

np∑
i=1

ωi

∫
Ω

NiNjdΩ

]
= 0 (3.48)

np∑
j=1

ηj

[
np∑
i=1

Dei
Dt

∫
Ω

NiNjdΩ

+

np∑
i=1

ei

[
1

ReSc

∫
Ω

{
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

}
dΩ

]]
= 0

(3.49)

Taking into account that
np∑
j=1

δj 6= 0,
np∑
j=1

φj 6= 0 and
np∑
j=1

ηj 6= 0, then the governing equations
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discretized by Galerkin method are:

np∑
j=1

np∑
i=1

[
Dωi

Dt

∫
Ω

NiNjdΩ + ωi
1

Re

∫
Ω

{
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

}
dΩ

]
= 0 (3.50)

np∑
j=1

np∑
i=1

[
− ψi

∫
Ω

{
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

}
dΩ + ωi

∫
Ω

NiNjdΩ

]
= 0 (3.51)

np∑
j=1

np∑
i=1

[
Dei
Dt

∫
Ω

NiNjdΩ + ei
1

ReSc

∫
Ω

{
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

}
dΩ

]
= 0 (3.52)

3.4 Mesh Elements

In the Finite Element context, the domain is discretized into several elements forming

a computational mesh and the governing equations are applied to each of these elements. The

computational mesh can be structured or unstructured and its the choice is of vital importance

for a good accuracy of the solution. Moreover, some parameters can influence the choice of a

certain elements group, for instance in the case where there is a restriction condition as found

in the Navier-Stokes equation due to the strong coupling between velocity and pressure fields.

This restriction is known as Babuska-Brezzi [7] [8]. When we have this restriction, we need to

have different numbers of nodes for each unkowns in the same element in order to have stability

in the solution. Therefore, we need to use a quadratic or cubic elements. This methodology is

known as Mixed Finite Element Method. But the vorticity-streamfunction formulation satisfies

the Babuska-Brezzi restriction since there is no coupling between velocity and pressure fields.

Thus, the use of a linear element does not produce instability and can be used without problems

in this work.

Some triangular elements are presented with different orders of the interpolator polyno-

mial below:

Linear Triangular Element: Due to its simplicity, it is the element most commonly used

element in FEM when we have no restrictions. The analytical elementary matrices of this element

are easily found in the literature. Since it is a linear element, the interpolation polynomial is first
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order. In this way, its interpolation functions are plane. This element is represented by the Figure

5:

Figure 5: Linear Triangular Element

1 2

3

Ni = Li i = 1, 2, 3

Quad Triangular Element: This element is generally used when we have restrictions that

prevent the use of the linear element or when we are interested in a better accuracy of the result.

The elementary matrices of this element are calculated using the Gaussian Quadrature whose

parameters can be found in the literature. Since it is a quadratic element, the interpolation

polynomial is second order. In this way, its interpolation functions are parabolic. This element is

represented by Figure 6:

Figure 6: Quad Triangular Element

1 2

3

4 5

6

Ni = Li(2Li − 1)

N4 = 4L1L3

N5 = 4L2L3

N6 = 4L3L1

i = 1, 2, 3

Mini Triangular Element: This element is used when we have restrictions that prevent the

use of the linear element. Their elementary matrices are also calculated using the Gaussian

Quadrature. Although it is an incomplete cubic element, the interpolation polynomial is still of

third order. In this way, its interpolation functions have a bubble in the center of the element.

This element is represented by Figure 7:
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Figure 7: Mini Triangular Element
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Triangular elements are the most common in 2D-FE Method because it allows a good

discretization of irregular surfaces due to its geometric simplicity. In this work, we use a

triangular element with the interpolator polynomial of order one, that is, linear. Therefore, the

elementary matrices can be defined by:

me =

∫
Ωe

N e
iN

e
j dΩ

kexx =

∫
Ωe

∂N e
i

∂x

∂N e
j

∂x

keyy =

∫
Ωe

∂N e
i

∂y

∂N e
j

∂y

(3.53)

where the me, kexx and keyy are mass and stiffness elementary matrices respectively and the size is

3× 3 for the linear triangular element. The contribution of each elementary matrix is guaranteed

by the assembly operator A that it assembles the elementary matrix in global matrix, satisfying

the local and global matrix index correspondence. Thus, the global matrix are defined as:

M = Ame (3.54)

Kxx = Akexx (3.55)

Kyy = Akeyy (3.56)

where the M , Kxx and Kyy are mass and stiffness global matrices respectively and the size is np

× np, that is, node number by node number. Finally, the governing equations in matrix form
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according to the Finite Element Method that we used in this work were:

M
Dω

Dt
+

1

Re

[
Kxx +Kyy

]
ω = 0 (3.57)

−
[
Kxx +Kyy

]
ψ +Mω = 0 (3.58)

M
De

Dt
+

1

ReSc

[
Kxx +Kyy

]
e = 0 (3.59)

3.5 The semi-Lagrangian Method

For the numerical simulation of the non-steady convection-diffusion equation in an Finite

Element context, several methods can be chosen, such as upwind, Taylor series in time and the

characteristic trajectory as is the case of the semi-Lagrangian.

The semi-Lagrangian method was initially proposed by Sawyer (1963) [54] for a nu-

merical simulation of atmospheric flow in a finite difference context. However, it was only

in the 1980s that the semi-Lagrangian Method was presented according to the Finite Element

approach by Pironneau (1982) [9], where it is shown the unconditional stability of the method

and a symmetric linear systems to solve.

The material derivate of the Eqs. 3.57 and 3.59 may be discretized in the time domain at

the xi node by an explicit first order scheme:

Dω

Dt
≈ ωn+1

i − ωn
d

∆t
(3.60)

De

Dt
≈ en+1

i − end
∆t

(3.61)

where, the variable ∆t is time step, ωn+1
i and en+1

i are the vorticity and concentration fields

calculated in current time step at the current node position and ωn
d and end are the vorticity and



50

concentration fields calculated in previous time step at the departure node position. The departure

node is calculated by solving characteristic equation:

dxd

dt
= c (3.62)

where, c is the relative velocity and t is time variable and it is varies between t ∈ [tn, tn+1].

Assuming that in the current time the mesh computational nodes are known, so the initial

condition for the Eq. 3.62 can be represented by xd(t
n+1) = xn+1

i , thus integrating both sides of

the equation:

xn+1
d − xn

d =

∫ tn+1

tn
cdt, (3.63)

that is:

xn
d = xn+1

i −
∫ tn+1

tn
cdt, (3.64)

Considering the relative velocity picewise constant in time, the departure point can be calculated

by:

xn
d = xn+1

i − c∆t, (3.65)

The Figure 8 shown the 1-dimensional characteristic trajectory of the material point in a

moving computational mesh, where the white square is the material point and the black point is

computational mesh. The dashed line is the characteristic trajectory that is represented by the Eq.

3.65. According to this scheme, the initial point xi in tn+1 is known and therefore it is used to

find the departure point xd position in tn.
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Figure 8: An one-dimensional space scheme where the departure node xd is found by the
characteristic trajectory in a moving mesh.
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xi−1 xi xi+1

The main advantages of the semi-Lagrangian Method are the unconditional stability

and the symmetric linear system to solve. Hovewer, the method has a disadvantage: the

searching procedure. The searching procedure in a 2-dimensional context may lead to excessive

computational cost if it is not well designed. In this work, this iterative procedure is implemented

using the 1-ring neighbors of the initial node, where the barycentric coordinates system is used

in each neighbor element. If it is not found, the procedure continues with the nearest neighbor

node until it finds the departure point. This procedure has presented an acceptable computational

cost, in addition to the advantage of finding the nodes even in concave domains as can be seen in

the Figure 9:

Figure 9: The searching procedure in a 2-dimensional concave domain.

domain

boundary

xi

xd

where the dashed line is the characteristic trajectory of 1st-order, the red line is the searching

procedure path, the xd is the departure point and the xi is the initial point. During the searching

procedure, three situations may occur depending on the trajectory, as shown in Figure 10: the
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first and the second situations are similar, differentiating only the trajectory length. In the first

situation, the departure node is inside near element from current node, while the second situation

the departure node is inside far element from current node. The third situation, the departure

node is outside domain then the vorticity and concentration fields receive the boundary condition

value of nearest node to departure node.

Figure 10: A two-dimensional space scheme where three situations may occur in the searching
procedure.

xi

1

2

3

domain

boundary

After the departure point is found, the vorticity (ωd) and concentration (ed) fields are

interpolated by the shape functions presented in the section 3.4. This interpolation procedure,

which is typical in the Eulerian and Arbitrary Lagrangian-Eulerian descriptions, causes the

numerical diffusion. To decrease the numerical diffusion, high-order elements can be used

as the quadratic or cubic elements. Another way is to improve the discretization accuracy of

the Eqs. 3.60 and 3.61. Therefore, the Eqs. 3.57, 3.58 and 3.59 can be shown in an implicit

semi-Lagragian discretization as:

M

[
ωn+1
i − ωn

d

∆t

]
+

1

Re
[Kxx +Kyy]ω

n+1
i = 0 (3.66)

− [Kxx +Kyy]ψ +Mω = 0 (3.67)
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M

[
en+1
i − end

∆t

]
+

1

ReSc
[Kxx +Kyy] e

n+1
i = 0 (3.68)

that is,

M

∆t
ωn+1
i +

1

Re
[Kxx +Kyy]ω

n+1
i =

M

∆t
ωn
d (3.69)

[Kxx +Kyy]ψ = Mω (3.70)

M

∆t
en+1
i +

1

ReSc
[Kxx +Kyy] e

n+1
i =

M

∆t
end (3.71)

Therefore, the Vorticity-Streamfunction Formulation with Species Transport Equation

discretized by Galerkin and semi-Lagrangian Methods in an ALE-FE context can be presented

in matrix form as:

[
M

∆t
+

1

Re
[Kxx +Kyy]

]
ωn+1
i =

M

∆t
ωn
d (3.72)

[Kxx +Kyy]ψ = Mω (3.73)

[
M

∆t
+

1

ReSc
[Kxx +Kyy]

]
en+1
i =

M

∆t
end (3.74)

whereas material velocity field v is calculated by: u = Gyψ and v = −Gxψ, where Gy and Gx

are the Gradient global matrix.
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4 COMPUTATIONAL CODE

4.1 Introduction

In this chapter, we will present the main characteristics of the computational code

developed in Python 2.7 [10] using the object-oriented paradigm (OOP) in order to reuse the

code in other simulations in the future. Initially, the UML diagram is shown by Figure 11 and

the code framework is presented. In addition, the average processing time for each process is

shown. Lastly, the Laplacian smoothing approach is presented with its applicability.

4.2 Code Framework

In order to reuse the numerical code in further simulations, the object-oriented paradigm

(OOP) was used. In the Figure 11, the UML Diagram of the code framework is shown.

Figure 11: Simplified Class Diagram

Simulator

+ getBC()
+ solver()
+ check()
+ relatory()

ImportMSH

+ coordinates()
+ IEN()
+ neighborsNodes()
+ boundaryNodes()

MeshUpdate

+ lagrangian()
+ laplacianSmoothing()
+ meshVelocity()
+ moveMesh()

ExportVTK

+ scalar()
+ vector()
+ save()

SemiLagrangian

+ searching()
+ interpolation()

ApplyBC

+ couette()
+ poiseulle()
+ halfpoiseulle()
+ cavity()
+ backwardStep()
+ pulsation()
+ stent()

Assembly

+ getTriangle()

GQuadrature

+ linear()
+ quad()
+ mini()
+ cubic()
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Initially, the triangular unstructured mesh generated by GMSH [6] was imported into

the numerical code by the ImportMSH class. This class returns important information for the

simulation such as: nodes number (np), elements number (ne), the coordinate vectors (x and y),

the connectivity matrix (IEN), the neighbors nodes and the Boundary nodes. The ImportMSH

class is enabled to import the linear, quadratic or cubic triangular elements. The Table 1 shows

the average processing time for mesh import in several unstructured linear triangular meshes.

Table 1: Average processing time for mesh import in several unstructured linear triangular
meshes

Nodes Elements AVG Processing Time (s)

3436 6670 0.3

13745 26548 1.2

53229 105656 4.7

148187 295036 14.2

After importing the .msh file, the elementary and global matrices were assembled. The

elementary matrices are created by the GQuadrature class, where it is enabled to assemble the

linear, quadratic or cubic triangular element. For the linear triangular element, it is also possible

to use elementary analytical matrices. For more details consult the work of Lewis, Nithiarasu

and Seetharamu (2004) [55].

The global matrix assembly was performed by Assembly class, satisfying the local and

global matrices index correspondence. They were initialized as sparse matrices by the Scipy

library [56] and the Table 2 shows the average processing time for global matrices assembly

using gaussian quadrature with three gauss points in several unstructured linear triangular

meshes. Whereas, the Table 3 shows the average processing time for assembly using the

analytical elementary matrices. As can be seen, the global matrices assembly using analytical

elementary matrices is about three times faster than the gaussian quadrature. However, the

gaussian quadrature can be used on quadratic or cubic elements, where calculating the analytical

elementary matrices is more costly.
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Table 2: Average processing time for global matrices assembly using gaussian quadrature in
several unstrutured linear triangular meshes

Nodes Elements AVG Processing Time (s)

3436 6670 18.4

13745 26548 70.6

53229 105656 284.3

148187 295036 815.6

Table 3: Average processing time for global matrices assembly using analytical elementary
matrices in several unstrutured linear triangular meshes

Nodes Elements AVG Processing Time (s)

3436 6670 4.8

13745 26548 22.9

53229 105656 98.1

148187 295036 264.8

Then, the boundary conditions are applied by ApplyBC class that contains the boundary

conditions for each benchmark problems of this work, namely: Couette Flow, Poiseuille Flow,

Half Poiseuille Flow, Lid-driven Cavity Flow, Backward-facing Step Flow, Pulsation Boundary

Flow and Drug-eluting Stent Problems. This class is enabled to apply the linear, quadrature

and cubic boundary elements. The Table 4 shows the average processing time for the Dirichlet

condition apply in several unstructured linear triangular meshes.

Table 4: Average processing time for Dirichlet condition in several unstrutured linear triangular
meshes

Nodes Elements AVG Processing Time (s)

3436 6670 1.4

13745 26548 6.7

53229 105656 26.9

148187 295036 81.8
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After boundary condition applied, the time loop is started and the updating mesh is done

by the MeshUpdate class. In this class, the mesh velocity is calculated by the linear combination

of Lagrangian and Laplacian smoothing velocities. Subsequently, the mesh is moved and the

coordinate vectors and the global matrices must be reassembled, in addition to the boundary

conditions reapplied. The Table 5 shows the average processing time for the mesh update

procedure in several unstructured linear triangular meshes. This processing time does not take

into account the global matrices assembly and boundary conditions apply (they are performed by

Assembly and ApplyBC as previously mentioned), only the calculate mesh velocity and nodes

mesh moving are considered. As can be seen, the processing time increases fourteen times while

the mesh changes from 105656 to 295036 elements (about three times).

Table 5: Average processing time for mesh update procedure in several unstrutured linear
triangular meshes

Nodes Elements AVG Processing Time (s)

3436 6670 0.5

13745 26548 2.8

53229 105656 26.8

148187 295036 384.4

Before solving the linear system, the semi-Lagrangian Method is applied by SemiLagran-

gian class. In this class, the searching procedure of the departure point and the interpolation

of the ωn
d and end is done. This class is enabled for the linear, quadratic and cubic triangular

elements. The Table 6 shows the average processing time for the semi-Lagragian Method.

Table 6: Average processing time for the semi-Lagrangian method in several unstrutured linear
triangular meshes

Nodes Elements AVG Processing Time (s)

3436 6670 0.6

13745 26548 2.1

53229 105656 8.5

148187 295036 24.9
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Finally, the Vorticity-Streamfunction with species transport solver is done. As previously

mentioned, the boundary condition of the vorticity is calculated for each time step and the linear

equations system is solver by Scipy Conjugate Gradient and the end of time step, the convergence

and steady state checks are done. The simulator is enabled to solver for linear, quadratic and

cubic triangular elements. The Table 7 shows the average processing time for the Vorticity Solver.

Table 7: Average processing time for Vorticity Solver in several unstrutured linear triangular
meshes

Nodes Elements AVG Processing Time (s)

3436 6670 1.3

13745 26548 5.4

53229 105656 21.2

148187 295036 63.5

Lastly, the parameters of simulation is printed and the VTK file is exported to perform

the post-processing by PARAVIEW open source [14]. The Table 8 shows the average processing

time for the VTK file export in several unstructured linear triangular meshes.

Table 8: Average processing time for VTK file export in several unstrutured linear triangular
meshes

Nodes Elements AVG Processing Time (s)

3436 6670 0.1

13745 26548 0.3

53229 105656 1.4

148187 295036 3.9

In addition, the Table 9 shows the average computational cost ratio of the numerical code

process for several linear triangular elements. As can be seen, the assembly process is the highest

computational cost and improvements are expected to improve the code performance.



59

Table 9: Average computational cost for several linear triangular elements.

Process AVG Computational Cost (%)

Mesh import 1.24

Assembly 73.87

BC Apply 6.70

Mesh update 10.05

Semi-Lagrangian 2.27

Vorticity Solver 5.51

VTK export 0.36

Therefore, the Figure 12 shows schematically the procedure used in this numerical

simulation.
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Figure 12: Solve algorithm for Vorticity-Streamfunction Formulation with Species Transport
Equation using the semi-Lagrangian Method in an ALE context
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4.3 Laplacian Smoothing

As previously mentioned, the computational mesh velocity assumes different values of

velocity from the Eulerian and Lagrangean description. Thus, it can be represented as a linear

combination of other velocities, such as:

v̂ = β1v1 + β2v2 (4.1)

where, v1 is the Lagrangian velocity, v2 is the Laplacian smoothing velocity, β1 is a parameter

controls the Lagragian motion and β2 controls the intensity of velocity smoothing. The choice of

these velocity fields and their parameters must be in order to improve the result of the numerical
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simulation and to avoid the degradation of the computational elements, especially close to the

domain boundary, where the elements are compressed making the simulation unstable.

Lagrangian velocity is the material flow velocity. This portion makes the nodes of the

computational mesh move in the same direction and sense as the flow velocity. The intensity

is proportional to the value of parameter β1. Depending on the chosen value, the insertion and

deletion of nodes are required.

The velocity of Laplacian smoothing is that nodes acquire due to their topological

redistribution. Considering a node in a non-uniform mesh, it will be moved to the centroid of the

1-ring neighbors. Thereby, it is expected the smoothing procedure converges to a more uniform

point distribution, as shown in Figure 13.

Figure 13: Laplacian smoothing in 2-dimensional space

xi x̂i

xj

1-Ring Neighbors

(a) (b)

Legend: (a) initial point position and (b) final point position after successively smoothing steps.

According to [57], the new node position x̂i can be approximated using an iterative

weighted sum of the 1-ring neighbors of a node:

x̂i = wij

N1∑
j

(xj − xi) (4.2)

where, wij is the weight and it can be calculated in several ways, N1 is the 1-ring neighbors of a

node, xj is the coordinate vector of neighbor node and xi is the coordinate vector of node that

will be moved. It is possible to choose several strategies to calculate the weight of this equation.

In this work, the weight was calculated as the sum of the inverse distance from its neighbor
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vertices, that is:

wij =

N1∑
j

1

(xj − xi)
(4.3)

Then, the Laplacian smoothing velocity can be calculated as:

v2 = wij

N1∑
j

(xj − xi)

∆t
(4.4)

In Figure 14 is shown the Laplacian smoothing application in a moving boundary problem

when it tends to the maximum compression state. In both simulation, was not considered the

β1. As can be seen, the elements close to the boundary are compressed until they leave the

domain (Figure 14a). In this case, the Laplacian smoothing velocity was not considered (β2 = 0).

However, this effect is not seen when Laplacian smoothing is applied (Figure 14b). In this case,

the β2 parameter was considered assuming the maximum value, that is, β2 = 1. In these cases,

Laplacian smoothing becomes essential to perform the numerical simulation.

Figure 14: The Laplcian smoothing application

(a) no Laplacian smoothing (b) with Laplacian smoothing
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5 VALIDATIONS

5.1 Introduction

In this chapter, we will present the results obtained from four cases with the numerical

simulation of the Navier Stokes equation using the vorticity-streamfunction formulation with the

species transport equation, where we have incompressible and monophase two-dimensional flow

for all cases in an Arbitrary Lagrangian-Eulerian context using the semi-Lagrangian Method.

In all simulations, were considered the β1 = 0 and β2 = 1. Therefore, the computational mesh

velocity is calculated using only the Laplacian smoothing velocity.

The first section is about Couette flow and the numerical solution is compared with the

analytical solution. The second section is about the Poiseuille flow, where the no-slip condition

is applied and the numerical solution is also compared with the analytical solution. The third

section refers to the flow of Poiseuille in the half domain, where the free slip condition is applied

on the axis of symmetry. The fourth section refers to the (lid-driven cavity flow) and the solution

is compared with the results presented by Ghia et al. (1982) [11] and Marchi et al. (2009) [12]

for several Reynold numbers. Lastly, the comparison of the semi-Lagrangian Method in a

unstructured linear and quadratic triangular mesh is done for the transport of a scalar submitted

to a pure advection flow is presented.

All numerical simulations were performed on the computers of Numerical Simulations

Laboratory (LEN) of Environmental Simulations in Reservoirs and Study Group (GESAR) with

the following configuration:

• AMD FX-8350 4GHz with 8 core, 32Gb RAM Memory, 1000Gb of HD. LINUX Ubuntu

16.04 LTS. The numerical code implementarion was performed using Python 2.7 language
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5.2 Couette Flow

A monophase, steady and fully developed flow of a Newtonian and incompressible fluid

between parallel horizontal plates, where the lower plate moves with Ubottom velocity and the

upper plate moves with Utop, is known as Couette flow. The Figure 15 presents schematically

this flow and the profile of the expected velocity field.

Figure 15: Couette Flow

Utop

Ubottom

y

x

The velocity profile equation is shown below:

u =
[
Utop − Ubottom

] y
L

+ Ubottom (5.1)

where Utop is the top plate velocity and its value is Utop = 1, Ubottom is the bottom plate velocity

and its value is Ubottom = −1, L is non-dimensional length between the plates and its value

is L = 1 and y is the vertical coordinates and it varies between y =
[
0, 1
]
. The domaian

was discretizes using a linear triangula mesh with 3835 nodes and 7299 elements. The Figure

16 shows the steady state velocity profile when Re = 100. It is possible to observe that the

numerical solution converges to the analytical solution.
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Figure 16: steady state velocity profile when re = 100 and the comparison between the
numerical and analytical solution for couette flow.
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5.3 Poiseuille Flow

A monophase, steady and fully developed flow of a Newtonian and incompressible fluid

between parallel and fixed horizontal plates is maintained due to a pressure gradient ∂p/∂x

imposed as mentioned by Pontes and Mangiavacchi (2016) [47]. This flow is known as Poiseuille

flow. The Figure 17 presents schematically this flow and the expected velocity field.

Figure 17: Poiseuille Flow
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The velocity profile equation is shown below:

u =
4umax

L2
y
[
L− y

]
(5.2)

where umax is maximum velocity and its value is umax = 1.5, L is non-dimensional length

between the plates and its value is L = 1 and y is the vertical coordinates and it varies between

y =
[
0, 1
]
. The domain was discretized using a linear triangular mesh with 3835 nodes and 7299

elements. The Figure 18 shows the steady state velocity profile when Re = 100. It is possible to

observe that the numerical solution converges to the analytical solution.

Figure 18: Steady state velocity profile when Re = 100 and the comparison between the
numerical and analytical solution for Poiseuille flow.
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The Table 10 shows the relative error between the numerical solution and the analytical

solution for several unstructured linear triangular meshes, ranging from 100 to 25600 linear

triangular elements. For the mesh with 7299 elements as in the case of this benchmark problem,

the estimated relative error for the velocity field is 0.4%.

Table 10: The relative error of numerical solution for several elements numbers in an
unstructured linear triangular mesh.

Elements Error (%)

100 25.00

400 7.47

1600 2.11

6400 0.61

25600 0.17

The relative error was estimated as:

Error =

√∑
(vn − va)2∑ |va|2 (5.3)

where vn is the numerical velocity fielf and va is the analytical velocity field.

The Figure 19 presents the relative error of the numerical solution with the first and

second order convergence curves on a log-log scale. As can be seen, the relative error of the

numerical solution for Poiseuille flow has the form of first order convergence. Thus, when

increasing the number of elements, the relative error of the numerical solution regresses linearly.

A possible cause is due to the vorticity boundary condition used in this work. Therefore, the

use of the 2a-order boundary condition would possibly improve the order convergence of the

numerical solution. However, it is necessary to be investigated.
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Figure 19: Convergence order in log-log scale: It is estimated the the relative error of numerical
solution has first order convergence.
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5.4 Half Poiseuille Flow

This section presents the simulation of the Poiseuille flow in half of the domain. Thus,

the free-slip condition is required on the axis of symmetry. The Figure 20 presents schematically

this flow with the specified axis of symmetry and the expected velocity field.

Figure 20: Half Poiseuille flow

y

x
symmetry
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The velocity profile equation is shown below:

u = umax

[
1− y2

L2

]
(5.4)

where umax is maximum velocity and its value is umax = 1.5, L is non-dimensional

length between the plates and its value is L = 1 and y is the vertical coordinates and it varies

between y =
[
0, 1
]
. The domain was discretized using a linear triangular mesh with 3835 nodes

and 7299 elements.

The Figure 21 shows the unsteady velocity profile when Re = 100, in addition to the

comparison between the numerical and analytical solutions in the steady state of proposed

problem. It is possible to observe that the numerical solution converges to the analytical solution

when the flow becomes steady state.

Figure 21: Unsteady velocity profile when Re = 100 and the comparison between the
numerical and analytical solution for Half Poiseuille flow.
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5.5 Lid-Driven Cavity

A flow in a cavity where the side and bottom walls are fixes and the cover moves at

a constant velocity such as Utop = 1 is known as Lid-driven Cavity flow. In addition to yhe

streamfunction is set null value in all boundary, because there is no volumetric flux crossing

the boundaries in lid-driven cavity flow. The Figure 22 presents schematically this flow and the

expected velocity field.

Figure 22: Lid-driven Cavity Flow
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The benchmark problem were simulated with the following Reynolds numbers (Re): 10,

100, 400 and 1000. The Figure 23 and Figure 24 present the profile of the horizontal and vertical

velocities, respectively, for steady state in several Reynolds number. They were compared with

Ghia et al. (1982) [11] and Marchi et al. (2009) [12]. The domain was discretized using a linear

triangular mesh with 1563 nodes and 2988 elements.
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Figure 23: The horizontal velocity profile in central line of cavity (x = 0.5) for several
Reynolds number
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(b) Re = 100
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(c) Re = 400
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(d) Re = 1000



72

Figure 24: The vertical velocity profile in central line of cavity (y = 0.5) for several Reynolds
number
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(b) Re = 100
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(c) Re = 400
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(d) Re = 1000

5.6 Pure Advection Flow

The transport of a scalar according to a parabolic function and submitted to a monophase

flow of a Newtonian and incompressible fluid with a high number of Reynolds (Re → ∞) is

known as a Pure Advection flow. In this type of flow, it is expected that the scalar will not

diffuse. For approximation methods like FEM and FDM, it is possible to observe the presence

of spurious oscillations. As mentioned earlier, several schemes can be used to reduce these

numerical oscillations. In this section, we will present the use of the semi-Lagrangian method to

reduce spurious oscillations. In addition, it will be compared to the analytical solution for an

unstructured linear and quadratic triangular mesh in order to analyze the numerical diffusion due
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to the interpolation as mentioned in the section 3.5. The Figure 25 presents schematically the

problem and the dynamics of scalar transport.

Figure 25: Transport of a scalar in Pure Advection Flow.
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The scalar transport α for a pure advection flow is shown below:

∂α

∂t
+ v · ∇α = 0 (5.5)

where v = (u, v) is velocity field and its components are defined as: u = −y e v = x. Therefore,

it is expected that given an initial scalar field, it will be displaced by the velocity field without

diffusion, that is, its profile should not be changed while the flow occurs. Any change in the

scalar field profile is considered a numerical error. For this numerical simulation, the domain

was discretized using an unstructured linear triangular mesh with 2216 nodes and 4270 elements

and an unstructured quadratic triangular mesh with 8701 nodes and 4270 elements. In addition

to the initial scalar field was defined by a parabolic profile c = 1− x2 − y2, where x and y are

space components.

The Figure 26 shows the comparison between the scalar field profile α for the numerical

solution using the semi-Lagrangian Method in an unstructured linear triangular mesh and the

analytical solution in several positions on the axis of rotation as the flow occurs. As can be seen,

the spurious oscillations are not observed, however the scalar field profile in semi-Lagrangian

Method is diffused due to the interpolation. Therefore, for this problem, the semi-Lagrangian

Method in an unstructured linear triangular mesh did not present a satisfactory result.
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Figure 26: Comparison of α profile for the semi-Lagrangian Method and analytical solution in
several positions on the axis of rotation using an unstructured linear triangular mesh
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The Figure 27 shows the comparison between the semi-Lagrangian and analytical solution

for the same previously scalar field profile α, however an unstructured quadratic triangular mesh

is used. As can be seen, the scalar field profile in semi-Lagrangian Method shows low numerical

diffusion and the numerical result is better than the previous one. In addition, the spurious

oscillations are not observed. Therefore, for this problem, the semi-Lagrangian Method in an

unstructured quadratic triangular mesh present a satisfactory result.
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Figure 27: Comparison of α profile for the semi-Lagrangian Method and analytical solution in
several positions on the axis of rotation using an unstrutured quadratic triangular
mesh
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The Figure 28 and Figure 29 show the spatial and temporal evolution of the scalar

profile for the semi-Lagrangian Method in an unstructured linear and quadratic triangular mesh

respectively. As mentioned earlier, the spurious oscillations are not presented in both simulations.

However, in the Figure 28, it is possible to observe the numerical diffusion, making its use not

recommended for high Reynolds number problem.
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Figure 28: Spatial and temporal evolution for the semi-Lagrangian Method in several positions
of the axis of rotation using an unstructured linear triangular mesh
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Figure 29: Spatial and temporal evolution for the semi-Lagrangian Method in several positions
of the axis of rotation using an unstructured quadratic triangular mesh
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6 RESULTS

6.1 Introduction

In this chapter, the results of numerical simulations for blood flow in a coronary artery

are presented. The lumen radius of the coronary artery used was R = 0.0015m, the viscosity

used was µ = 0.0035Pa.s and the density used was ρ = 1060kg/m3 as suggested by Bozsak,

Chomaz and Barakat (2014) [20]. According to Kessler et al. (1998) [58], the blood velocity in

the coronary artery is u = 12cm/s. Thus, the Reynolds number used will be Re = 54.5.

The Navier-Stokes equation is used according to the vorticity-streamfunction formulation

with the species transport equation for two geometries proposed by Wang et al. (2017) [13],

however modified to cartesian coordinates as shown in Figure 30. In the section 6.2, the

numerical simulation for the coronary artery with atherosclerosis and a drug-eluting stent in a

curved channel model is presented for several Schmidt number, such as 1, 10, 100 and 1000. In

the 6.3, the real coronary artery with atherosclerosis and a drug-eluting stent is also simulated

with several numbers of Schmidt number as in the previous section. Finally, in the 6.4 is presented

the numerical simulation for quadratic triangular element. Due to symmetry, only half of the

domain is shown. The simulation was visualized using the Paraview open-source software

proposed by Henderson (2007) [14].

Figure 30: Non-dimensional domain for the blood flow in coronary artery The radius used was
R = 1 and and the lumen length was L = 10R.

(a) Curved Channel (b) Real Channel

Source: Wang et al. (2017) [13]

6.2 Curved Channel with Drug-Eluting Stent

In this section, will be present the case where the coronary artery has atherosclerosis and

the drug-eluting stent is placed. It is modeled by 10 uniformly spaced semi-circles. The geometry

used promotes a smooth reduction of the distance between the upper wall and symmetry axis of

the channel. Due to atherosclerosis, 40% channel obstruction was considered and the domain
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was discretized using 15875 nodes and 35408 linear triangular elements.

The Figure 31 shows the unsteady state velocity profile in the middle section channel, that

is, x = 5.0R. As expected, the numerical solution tends to a similar profile to the Half Poiseuille,

as presented in the section 5.4. However, it is possible to observe an inversion of the velocity

field sense at the top of the figure. This inversion occurs in the region that is located between the

stents strut semi-circles. It is also possible to observe that the maximum horizontal velocity field

in curvel channel reaches the u = 3.43 non-dimensional value, that is, more than 3 times the

blood velocity in coronary artery without atherosclerosis and stent strut placed. This increase can

influence the dynamics of blood flow and its biological processes and a more detailed analysis

should be performed.

Figure 31: The unsteady state velocity profile in the middle (x = 5.0R) of the curved channel
with drug-eluting stent.
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The Figure 32 presents the evolution in time and space of the velocity field for half of

the domain due to the symmetry of the solution. The velocity field is represented with non-

dimensional values where the red color refers to the u = 3.43 value and the blue color u = 0

value. Conveting to dimensional values, we have u = 41.16cm/s and u = 0cm/s respectively.

As can be seen, the region with the lowest horizontal velocity magnitude is found close to the

boundary where the no-slip condition is applied. Whereas, it is increase close to the symmetric

axis. Moreover, the largest horizontal velocity value is found in the maximum contraction region.

Figure 32: Temporal and spatial evolution of the velocity field for curved channel with
drug-eluting stent.
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As mentioned by Lucena et al. (2018) [22], it is estimated that 47% of the drug is diffused

to the lumem and it is lost to the bloodstream. The Figure 33 to Figure 36 show the temporal and

spatial evolution of the concentration field for several Schmidt number, such as: 1, 10, 100 and

1000 respectively. The concentration field is represented with the non-dimensional values where

the red color represents 100% and the blue color represents 0% of the diffused concentration in

the bloodstream.

It is possible to observe in the Figure 33 that the concentration field is significally more

diffuse than in the Figure 34, where the Schmidt number is 10 times higher. This means that a
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large portion of the diffused drug in bloodstream is quickly spread in the Sc = 1 case. Moreover,

in both cases, the concentration field is more dispersed at the end of the curved channel due to

the sense of the blood flow. It is possible that the drug concentration diffused affects the density

and viscosity of the blood and consequently the Reynolds number. Thefore, the velocity field

would also be affected. However, this influence is not considered in this work.

Figure 33: Temporal and spatial evolution of the concentration fiel for curved channel with
drug-eluting stent and Sc = 1.
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Figure 34: Temporal and spatial evolution of the concentration fiel for curved channel with
drug-eluting stent and Sc = 10.
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For the Figure 35 and the Figure 36, the Schmidt number is increased to 100 and 1000

respectively. Both cases have a similar dynamic where it is possible to observe a decrease in

the drug diffusion in the bloodstream when compared to the previous cases. Another important

fact is the similarity in the concentration field for Sc = 100 and Sc = 1000. Therefore, it is

necessary to simulate for longer times. In addition, it is possible to conclude that the Schmidt

number directly influences the drug transport in the blood flow and for high values of the Schmidt

number, the transport of chemical species becomes purely convective.
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Figure 35: Temporal and spatial evolution of the concentration fiel for curved channel with
drug-eluting stent and Sc = 100.
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Figure 36: Temporal and spatial evolution of the concentration fiel for curved channel with
drug-eluting stent and Sc = 1000.
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6.3 Real Channel with Drug-Eluting Stent

For this case, the numerical simulation is performed for a real coronary artery with

atherosclerosis whose geometry was obtained through an image processing as suggested by

Wang et al. (2017) [13]. This geometry is particular to each patient due to the patient health

conditions. As in the previous case, the stent strut was modeled by 10 uniformly spaced semi-

circles. The domain was discretized using 11807 nodes and 26426 linear triangular elements.

The Figure 37 shows the unsteady state velocity profile in the middle of the real channel,

that is, x = 5.0R. Even so, the numerical solution shown a simular profile to the previous

case, however it is not observed the inversion of the velocity field sense. It is also possible

to observer that the maximum non-dimensional value of the velocity field reaches u = 3.40

close to symmetric axis. However, this velocity may vary according to the coronary artery

geometry for each patient. It compared to the curved channel, the maximum horizontal velocity

had a difference less than 1%. Therefore, the curved channel shown an acceptable approach,

besides this model being simpler to implement and to perform the numerical simulations than

real channel model.
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Figure 37: The unsteady state velocity profile in the middle of the real channel with
drug-eluting stent.
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The Figure 38 presents the evolution in time and space of the velocity field for half of

the domain. The velocity field is represented with non-dimensional values where the red color

refers to the u = 3.40 value and the blue color u = 0 value. Conveting to dimensional values, we

have u = 40.8cm/s and u = 0cm/s respectively. As in the previous case, the region with the

lowest horizontal velocity magnitue is found close to the boundary due to the no-slip condition

and the largest horizontal velocity value is found close to symmetric axis. For this real channel,

is possible to observe that there is two contraction region where the velocity field is increased.

However, this coronary artery geometry varies for each patient and its blood dynamics can be

changed.
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Figure 38: Temporal and spatial evolution of the velocity field for real channel with
drug-eluting stent.
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The Figure 39 to Figure 42 show the temporal and spatial evolution of the concentration

field for several Schmidt number, such as: 1, 10, 100 and 1000 respectively. The concentration

field is represented with the non-dimensional values where the red color represents 100% and

the blue color represents 0% of the diffused concentration in the bloodstream. It is possible to

observe that the concentration field dynamic is similar than the curved channel, no significant

differences from the previous one for each Schmidt number. Only in some regions that the

concentration field become more diffuse as a consequence of the velocity field decrease due to

irregular geometry close to the semi-circles of the stents.
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Figure 39: Temporal and spatial evolution of the concentration fiel for real channel with
drug-eluting stent and Sc = 1.
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Figure 40: Temporal and spatial evolution of the concentration fiel for real channel with
drug-eluting stent and Sc = 10.
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Figure 41: Temporal and spatial evolution of the concentration fiel for real channel with
drug-eluting stent and Sc = 100.
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Figure 42: Temporal and spatial evolution of the concentration fiel for real channel with
drug-eluting stent and Sc = 1000.
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6.4 Quadratic Curved Channel with Drug-Eluting Stent

In this section, the numerical simulation is performed for the curved channel with stent

as in the section 6.2, however the quadratic element was used. The domain was discretized using

18689 nodes and 9070 quadratic triangular elements.

The Figure 43 shows the unsteady state velocity profile in the middle section channel,

that is, x = 5.0R. As expected, the numerical solution converges to a similar profile to the

Half Poiseuille, as presented in the section 5.4. However, it is possible to observe an inversion

of the velocity field sense at the top of the figure. This inversion occurs in the region that is

located between the stents strut semi-circles. It is also possible to observe that the maximum

horizontal velocity field in curvel channel reaches the u = 3.25 non-dimensional value, that is,

more than 3 times the blood velocity in coronary artery without atherosclerosis and stent strut

placed. This increase can influence the dynamics of blood flow and its biological processes and

a more detailed analysis should be performed.
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Figure 43: The unsteady state velocity profile in the middle (x = 5.0R) of the quadratic curved
channel with drug-eluting stent.
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The Figure 32 presents the evolution in time and space of the velocity field for half of

the domain due to the symmetry of the solution. The velocity field is represented with non-

dimensional values where the red color refers to the u = 3.25 value and the blue color u = 0

value. Conveting to dimensional values, we have u = 39.0cm/s and u = 0cm/s respectively.

As can be seen, the region with the lowest horizontal velocity magnitude is found close to the

boundary where the no-slip condition is applied. Whereas, it is increase close to the symmetric

axis. Moreover, the largest horizontal velocity value is found in the maximum contraction region.

Figure 44: Temporal and spatial evolution of the velocity field for quadratric curved channel
with drug-eluting stent.
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The Figure 45 and Figure 46 show the temporal and spatial evolution of the concentra-

tion field for several Schmidt number, such as: 1 and 10 respectively for quadratic triangular

element. The concentration field is represented with the non-dimensional values where the red

color represents 100% and the blue color represents 0% of the diffused concentration in the

bloodstream.

It is possible to observe in the Figure 45 that the concentration field is significally more

diffuse than in the Figure 46, where the Schmidt number is 10 times higher. This means that a
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large portion of the diffused drug in bloodstream is quickly spread in the Sc = 1 case. Moreover,

in both cases, the concentration field is more dispersed at the end of the curved channel due to

the sense of the blood flow.

In comparison with the linear element in the section 6.2, it is possible to observe at

the end of the channel that the quadratic element has less diffusion of the concentration field.

This effect may be due to an improvement in the accuracy of the simulation, but more detailed

analyzes are necessary.

Figure 45: Temporal and spatial evolution of the concentration fiel for quadratic curved channel
with drug-eluting stent and Sc = 1.
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Figure 46: Temporal and spatial evolution of the concentration fiel for quad curved channel
with drug-eluting stent and Sc = 10.
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CONCLUSION

In this work, the Navier-Stokes equation according to the vorticity-streamfunction formu-

lation with the species transport equation was presented in a Finite Element Method approach

using the Arbitrary Lagrangian-Eulerian description. The governing equations were discretized

in spatial domain by Galerkin Method and in time domain by semi-Lagrangian Method. As

the vorticity-streamfuntion formulation does not have the coupling between the velocity and

pressure fields, we can use the linear triangular element. In addition, the unknowns are scalar, in

contrast to the primitive variables that are vectorial fields. In this way, a smooth implementation

the numerical code is possible.

A computational code was developed in a high-level programming language using the

object orientation paradigm (OOP), providing a platform for numerical simulations of the drug

transport in bloodstream. The simulator is also able to describe in detail problems involving the

flow of Newtonian fluids with scalar transport (such that the temperature) due to the generalized

construction of the code. The average computational cost of each simulation process was

measured for further improvement.

The numerical code showed satisfactory results compared to the analytical solutions

of Couette Flow, Poiseuille Flow and Half Poiseuille Flow where the free-slip condition on

the symmetry axis was applied. Moreover, the mesh convergence test was performed where

it was concluded that the numerical code error decreases linearly as the mesh is refined. The

lid-driven cavity flow was also simulated where the results were compared with those presented

by Ghia et al. (1982) [11] and Marchi et al. (2009) [12] for several Reynolds number. Finally,

the comparison between the semi-Lagrangian Method in an unstructured linear and a quadratic

triangular mesh was presented for a purely advection flow of a parabolic function where it was

possible to observe the effectiveness of the quadratic triangular element compared to linear

element for decrease the numerical diffusion in high Reynolds number. Thus, it was possible

to validate the numerical code for two-dimensional simulations in cartesian coordinates, using

the Vorticity-Streamfunction Formulation with the Species Transport Equation in an ALE-FE

context and sumitted to the Dirichlet boundary condition.

The other goal of this work was to understand the dynamics of blood flow in a coronary

artery with a drug-eluting stent placed for several Schmidt number. Thus, the simulation for two

geometries modeled in a two-dimensional cartesian coordinates was presented. The profile of
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the velocity field was shown for the two proposed geometries where it was possible to observe

the horizontal velocity increase close to symmetric axis. In addition, the curved channel model

shown an acceptable approach because the maximum horizontal velocity had a difference less

than 1% from the real channel. The simulation was done using several Schmidt numbers, such

as 1, 10, 100 and 1000. It was possible to verify in the simulation that the number of Schmidt

directly influences the transport of the drug in the bloodstream. For high values of the Schmidt

number, the transport of chemical species becomes purely convective and the diffusion in blood

flow is decreased. In addition, the comparison between linear and quadratic triangular element

was performed to curved channel with stent. It is observed that the concentration field had less

diffusion when the quadratic element was used. This effect may be due to improvement in the

accuracy of the simulation, however more detailed analyzes are necessary.

The following futher developments are proposed:

• Increase assembly performance

• Use of primitive variables in the Navier-Stokes equation in a 3D approach

• Blood flow model as a multiphase problem

• Blood model as a non-Newtonian fluid
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