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ABSTRACT

CORRÊA, Lívia Mantuano. Thermal Analysis of Heat Sinks: An Analytical Approach using
Integral Transforms. 2020. 146 p. Master’s Thesis (Master in Mechanical Engineering) –
Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil,
2020.

The present work develops an analytical approach using the Classical Integral Trans-
form Technique (CITT) for solving heat transfer problems in heat sinks. The mathematical
formulation is composed of a three-dimensional base and two-dimensional fins. The on-
coming heat flux from a heated chip attached at the bottom of the base needs to be cooled to
ensure its good performance and long service life. Fins coupled at the heat sink base’s top are
responsible for increase the heat transfer, and the air flows between fins contributing to the
temperature’s reduction of the system. The analytical methodology used is the Classical Inte-
gral Transform Technique, it is applied to solve the base and fins formulations. The fin-base
coupling condition is then used to obtain the temperature field. OpenFOAM simulations are
also performed for comparison purposes and to evaluate different shaped fins effectiveness.
The developed analytical methodology innovates the study of heat transfer in heat sinks pre-
senting the importance of 2D fin modeling for symmetrical and non-symmetrical cases.

Keywords: Heat Sinks; Heat Transfer; Classical Integral Transform Technique;

Computational Fluid Dynamics.



RESUMO

CORRÊA, Lívia Mantuano. Análise Térmica de Dissipadores de Calor: Uma Abordagem
Analítica usando a Técnica da Transformada Integral. 2020. 146 f. Master’s Thesis (Master in
Mechanical Engineering) – Faculdade de Engenharia, Universidade do Estado do Rio de
Janeiro, Rio de Janeiro, Brazil, 2020.

O presente trabalho desenvolve uma abordagem analítica usando a Técnica de Trans-
formação Integral Clássica (CITT) para resolver problemas de transferência de calor em dis-
sipadores de calor. A formulação matemática é composta por uma base tridimensional e
aletas bidimensionais. O fluxo de calor que se aproxima de um chip aquecido preso na parte
inferior da base precisa ser resfriado para garantir seu bom desempenho e longa vida útil.
As aletas acopladas na parte superior da base do dissipador de calor são responsáveis por
aumentar a taxa de transferência de calor e, consequentemente, resfriar o sistema de forma
mais eficiente. A metodologia utilizada é a Técnica da Transformada Integral Clássica, apli-
cada para resolver a formulação das aletas e da base, assim como um acoplamento de base-
aleta é realizado em nos limites de seus domínios para obter o seu campo de temperatura.
Simulações computacionais utilizando o software OpenFOAM também são realizadas para a
verificação da metodologia analítica e análise da eficácia das diferentes geometrias de aleta.
A metodologia desenvolvida inova no estudo da transferência de calor em dissipadores de
calor, apresentando a importância da modelagem 2D de aletas para casos simétricos e não
simétricos.

Palavras-chave: Dissipadores de Calor; Transferência de Calor; Técnica da Transformada

Integral Clássica; Fluido-Dinâmica Computacional.
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INTRODUCTION

The Solid-State Electronics (SSE) thermal management is a rolling and critical issue

for modern electronic devices design found in diverse industrial applications such as high-

performance computers, solar power generation, nuclear plant industries, aircraft, and so

on.

The Moore’s Law (MOORE, 1965) predicted the worldwide trend of miniaturization in

the semiconductors industry and, as consequence, several innovative applications such as

limited weight and space operations, high-performance computers, and consumer-aimed

products, i.e. watches, smartphones, and intelligent cars became a reality (STREETMAN;

BANERJEE et al., 1995).

These electronics have had their size decreased and, with more internal components

concentrated, more power dissipation is required to ensure safe and efficient performance of

the system, especially in multilayer chip stacks (RENFER et al., 2013). Electronic chip stacks

technology can reach as high as 250 W/cm2 in multilayer chip stacks of less than 0.3 cm3

(ALFIERI et al., 2010). Peterson and Ortega (1994) assert that the average component tem-

perature must be maintained equal or below the manufacturer’s maximum specified ser-

vice temperature in order to guarantee an effective performance and a long service life; in

contrast, a violation of which can significantly compromise the reliability of the device. Ac-

cording to Lee, Early and Pellilo (1997), the failure rates of electronic components almost

double when junction temperature increases by 10oC beyond operating temperatures; thus,

the electronic components’ cooling has been substantially studied for over 30 years.

Cost-effective modifications such as heat sinks coupling are considered a key point

to minimize SSE’s temperature and ensure reliability. Heat Sinks are passive heat exchang-

ers transferring the thermal energy from a heated electronic component to a cooling fluid

medium, often air or a liquid coolant. They are designed to significantly increase the contact

surface area between solid and fluid, thereby increasing the heat transfer and, consequently,

regulating the device’s temperature at optimal levels. Heat sinks are generally composed by

a set of fins and can be designed as (PINHEIRO; SPHAIER; ALVES, 2018):

Closed-sandwich configuration: fins are perpendicularly connected to two parallel base

surfaces as schematically depicted in Figure 1a. Mostly used on microchannel heat

sinks design (QU; MUDAWAR, 2002).

Open-sandwich configuration: fins are perpendicularly connected to one single base sur-

face as shown in Figure 1b. Air-cooled microelectronics, power electronics compo-

nents, and solar energy are some of this heat sink design applications (ANAND; KIM;

FLETCHER, 1992; ARULARASAN; VELRAJ, 2010).

The performance of heat sinks is dependent on several parameters such as the ge-
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Figure 1 - Parallel plate heat sink configuration examples. This type of heat exchanger is composed

by a set of fins and may be connected by one or two parallel plates on the fins edges.

(a) Closed Sandwich configuration (b) Open Sandwich configuration

ometry of the fin, quantity of fins, fluid’s properties, and the heat sink’s thermal properties

(LEHTINEN, 2005). These parameters define the thermal resistance of the heat sink.

Thermal resistance of the Heat Sink

Thermal resistance is considered an essential index to demonstrate the thermal dissi-

pation capability and is usually determined experimentally using an infrared technique (LU

et al., 2012). It indicates if the heat is being well conducted in a device and is widely consid-

ered when choosing and designing heat sinks (SIMONS, 2015). The series thermal resistance

of a heat sink system is usually composed by:

• The resistance from the device requiring more power dissipation (diodes, integrated

circuits). It is usually given by the device manufacturer.

• The resistance between the device and the heat sink. It depends on factors such as the

assembly method, the surface roughness, and the thermal grease type. This resistance

can be neglected in most models (COROMINAS, 2010).

• The resistance between the base of the heat sink and the environment air. Hence, the

set of fins and fluid channels compose a parallel thermal resistance.

Figure 2 describes an example of a heat sink thermal resistance scheme, where the

resistance between the device and the heat sink is neglected. As the engineering keeps de-

veloping more efficient materials, compositions, and geometries for the fins and channels,

solve the heat sink differential equation formulations and obtain their temperature fields

becomes essential in order to closely analyze the heat sink performance modifications.
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Figure 2 - Example of a heat sink (HS) thermal resistance. The left image shows its layout, the

components of the thermal system, and the temperature range of the system where Tchi p

and Tai r are the maximum and minimum temperatures, respectively. The right scheme

describes the thermal circuit for the HS exemplified.
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Literature Review

The reduction of the temperature of Solid-State Electronics provides a wide range of

industrial applications; hence, it has been motivating a significant variety of studies in this

field. Incropera (1988) published a comprehensive review of convection cooling options in

which different types of heat sinks are mentioned.

The review performed by Adham, Mohd-Ghazali and Ahmad (2013) was devoted to

the overall thermal and hydrodynamic performance enhancement of microchannel heat

sinks. An extensive comparative study of the available literature on forced convection in

microchannel heat sinks is provided considering different coolant types, channel geome-

tries, flow conditions, heat sink materials, and the nature of work (analytical, numerical, or

experimental). Several conclusions can be drawn from this review, for instance, the grow-

ing interest in microchannel heat sinks asserting the development of research in this area.

Recent studies also indicate that nanofluids possess a promising prospective for new elec-

tronics cooling devices, reducing working temperatures and decreasing the size of cooling

devices are the main benefits of employing nanofluids as a coolant in electronics in com-

parison with ordinary liquids. The review from Kumar et al. (2018) explores the nanofluids

interest and applications in microchannel heat sinks for performance improvement.

The parallel plate heat sink can suffer some improvements for an enhanced heat

transfer, thus a continuing research theme on heat sinks is the thermal dissipation promoted

by the fins. Several works about analysis and optimization of their fins were published. Ong

et al. (2005), for instance, analyzed different geometries fins optimizations for maximum

heat dissipation on electronic components. Rectangular, parabolic, cylindrical, and concave

spines profiles were evaluated. Azarkish, Sarvari and Behzadmehr (2010), Azarkish, Farahat
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and Sarvari (2012) investigated the geometry of the longitudinal fins with a variable cross-

sectional area achieving its optimum fin profile by genetic algorithm and Particle Swarm Op-

timization to optimize the maximum heat loss for a specific fin volume. Another interesting

work evaluating fin profile was published by Cuce and Cuce (2014), where the heat transfer

from a longitudinal fin with step change was analyzed. Different rectangular fins configura-

tions were tested to produce the maximum heat loss in a specific volume and length numeri-

cally exposed to convection and radiation heat transfer. Mosayebidorcheh et al. (2015) devel-

oped a formulation for rectangular, triangular, and parabolic fin profiles and optimize them

for different materials. A recent paper from Shaeri and Bonner III (2019) proposed an analyt-

ical model of laterally perforated-finned heat sinks to predict the average Nusselt numbers

in forced convection laminar flows. The developed model used experimental data acquired

from testing air-cooled heat sinks including square cross-sectional perforations distributed

equidistantly along the length of the fins. In summary, the fins’ geometry is a relevant topic

to be evaluated for heat transfer enhancement in heat sinks.

Several works (AZARKISH; SARVARI; BEHZADMEHR, 2010; AZARKISH; FARAHAT;

SARVARI, 2012; CUCE; CUCE, 2014; MOSAYEBIDORCHEH et al., 2015; BABAELAHI; ESHRAGHI,

2017; PINHEIRO; SPHAIER; ALVES, 2018; SINGH; KUMAR; RAI, 2018) analyze fins consider-

ing one-dimensional heat conduction. The applicability of assuming a one-dimensional fin

with a two-dimensional coating instead of considering both two-dimensional was evaluated

by Xia and Jacobi (2004). The heat conduction of a composite medium composed of fin

and coating material was analyzed and, despite some one-dimensional fin formulation ad-

vantages such as a simpler calculation and a fast convergence, the two-dimensional fins as-

sumption provides a more accurate model. The necessity of the traditional one-dimensional

fin model replacement to a two-dimensional heat conduction model is explained by Aziz and

Makinde (2010) to ensure accurate thermal performance predictions on orthotropic char-

acteristics of advanced heat sink materials. The two-dimensional orthotropic pin fin heat

conduction is solved by Zubair, Arif and Sharqawy (2010), moreover, an isotropic fin is con-

sidered instead of an orthotropic one. Ma, Behbahani and Tsuei (1991), Lehtinen (2005),

Malekzadeh and Rahideh (2009), Bouaziz (2009), Moitsheki and Rowjee (2011) have also de-

veloped two-dimensional fins studies.

As mentioned previously, the thermal resistance of heat sinks depends on several de-

signs and material parameters that directly impacts its performance. For this reason, op-

timization studies are relevant to the purpose of the thermal performance of heat sinks en-

hancement. Kim (2004) presents different optimization methods for the minimization of the

thermal resistance of the microchannel heat sink. The fin model considers unidirectional

conduction, constant heat transfer coefficient, and uniform fluid temperature assumptions,

while the porous medium model is based on the volume-averaging of velocity and tempera-

tures in the direction perpendicular to the flow direction. Both analytical models were veri-

fied with a three-dimensional numerical optimization method. The minimization of overall
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thermal resistance with genetic algorithms is used by Wei and Joshi (2003). In this work, the

thermal resistance for a two-layered stacked microchannel heat sink can be minimized by

optimizing the aspect ratio, fin width, and the channel to fin width ratio. From this study’s

conclusions, the thermal resistance of an optimized stacked microchannel has a strong de-

pendence on the channel length. The shorter the channel, the smaller the thermal resis-

tance for the optimized microchannel. The minimization of the thermal resistance was also

considered by Copeland (2000) to calculate the optimum dimensions of fin thickness and

pitch under realistic operating conditions for forced convection heat sinks. Also, there is

the research developed by Türkakar and Okutucu-Özyurt (2012) regarding a dimensional

optimization of silicon heat sinks for located multiple heat sources by minimizing the ther-

mal resistance at constant pumping power. Khan, Yovanovich and Culham (2006) used the

entropy generation minimization (EGM) procedure to minimize the overall performance of

microchannel heat sinks. From the optimization performed, the combined effects of ther-

mal resistance and pressure drop assessed simultaneously as the heat sink interacts with the

surrounding flow field. As can be seen, there are several optimization studies in heat sinks

available in the literature. The heat sinks thermal design optimization review presented by

Ahmed et al. (2018) summarizes investigations for developing the thermal performance of

the heat sinks, limitations, and unsolved proposed solutions regarding the passive and ac-

tive techniques utilized for enhancing the heat removal from heat sinks.

Integral Transform Technique

The Integral Transform Technique (MIKHAILOV; OZISIK, 1984; COTTA, 1993) is a

powerful method for solving differential equations based on expansions of the sought so-

lution in terms of an infinite orthogonal basis of eigenfunctions (CHALHUB, 2015), and is

classified as Classical or Generalized. The method has advanced through both mathemati-

cal and computational aspects, as described by Cotta et al. (2020), to challenge applications

that may pose difficulties to the well-established numerical methods.

The Classical Integral Transform Technique (CITT) is an all analytical method, es-

pecially applied in linear problems. The method transforms Partial Differential Equations

(PDE) into a system of Ordinary Differential Equations (ODE) that can be solved using avail-

able computational implementation, subroutines, and libraries.

Due to the technique’s evolutionary development, an integral transforms generaliza-

tion can be applied to non-transformable systems, including nonlinear problems, making

the method applicable to a virtually infinite number of problems (CHALHUB, 2015). The

Generalized Integral Transform Technique (GITT) is usually applied in cases where a term

cannot be transformed; thus, the Generalized method is classified as a hybrid computational-

analytical technique (COTTA et al., 2020).
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The results achieved using integral transforms match with other well-established ex-

perimental and fully-numerical methodologies (Naveira-Cotta; COTTA; ORLANDE, 2011).

According to Cotta (1993) and Chalhub (2011), the systematic solution methodology; the re-

duction of processing time; prescribed error control; fast convergence; and the solution in

a continuous domain because of the non-existence of discretization meshes are significant

advantages presented by the CITT analytical approach against numerical methodologies.

The Integral Transform Technique was previously applied to electronic problems.

Dantas (1996), Dantas and Orlande (1996) applied the integral transform technique on an

encapsulated microchip and obtained the solution considering different thermal conduc-

tivity layers over the chip thickness. More recently, the thermal behavior of electronic com-

ponents, with one or multiple hot spots, was studied by Corrêa (2018) using single and dou-

ble transformations of the Classical Integral Transform Technique (CITT). Even though both

methodologies achieved the same final values, the single transformation was evaluated as

more efficient for this problem because it required fewer terms to be summed to the full

convergence. The verification between analytical and numerical results confirmed that CITT

and Finite Difference Method (FDM) converge to the same final value.

Motivated with heat sinks for electronic components applications, Knupp (2010) pro-

vided experimental and theoretical results using the Generalized Integral Transform Tech-

nique to thermally analyze a nanocomposite made from the dispersion of aluminum oxide

in a polyester matrix. Also, two recent works using the Integral Transform Technique on heat

sinks were published. The application of the Integral Transforms for solving the conjugated

radiation-conduction in a finned-tube configuration problem for transient closed and open

sandwich configurations was proposed by Pinheiro, Sphaier and Alves (2018). In the same

year, Corrêa and Chalhub (2018) presented an integral transforms approach for heat sinks

considering different values for the heat transfer coefficient depending on the position of

the fins. This work is attached in Appendix D.

Finite Volume Method

Finally, an efficient way to verify the consistency of an analytical method is by com-

paring it using Computational Fluid Dynamics. Computational Fluid Dynamics (CFD) has

revolutionized engineering design practices since its start in the late 1950s and has impacted

practically all areas of human economy and social activities: energy, electronics, transporta-

tion, health physics, food processing, propulsion, pharmaceutical sciences, and many oth-

ers fields (RUNCHAL, 2020). Patankar and Spalding (1971) presented a general, numer-

ical, marching procedure for the calculation of transport processes in three-dimensional

flows. Further advances in the prediction of parabolic flows came from the development of

the models for turbulence, radiation, and chemical reaction (PATANKAR; SPALDING, 1973;
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PATANKAR, 1980; LAUNDER; SPALDING, 1983). Some developments in the various aspects

of computational techniques are reviewed by Patankar (1988) and Spalding (2013).

CFD methods divide the domain into discrete components, and evaluate the math-

ematical formulations, mostly partial differential equations (PDE), in the discrete domain.

The methods differ by the type of the discrete component (node, volume, or element) and

how the formulations are expressed. The Finite Difference Method (FDM) is based on ex-

pressing the "derivatives" in terms of Taylor series and the Finite Element Method (FEM) is

based on linear or non-linear mathematical function, both primarily "mathematical" meth-

ods. The Finite Volume Method (FVM) developed by Spalding and his students, however, has

its concepts in terms of the transferred rates between adjacent volumes, an approach based

on the physics of the problem (RUNCHAL, 2020).

The Finite Volume Method (FVM) uses the integral form of the conservation equa-

tions directly in the physical space. The computational domain is divided into a finite num-

ber of control volumes and an algebraic equation for each control volume is obtained. One

advantage of FVM is the representation of the grid by either structured or unstructured mesh.

Another attractive feature is that the method does not require equations transformation in

terms of the body-fitted coordinate system as required in the Finite Difference Method (TU;

YEOH; LIU, 2018).

A substantial variety of works about heat sinks using numerical methods were pub-

lished recently. A detailed approach of metal foams applied on heat sinks was implemented

by Al-Athel et al. (2017) in a finite element analysis and validated with experiments. Lim-

basiya, Roy and Harichandan (2017) presented a numerical study using the SIMPLE algo-

rithm for cooling of fins with forced air convection in a single microchannel heat sink where

it was concluded the better performance of staggering heat sinks over standard ones. Zaretabar,

Asadian and Ganji (2018) present a numerical heat transfer simulation of a heat sink in-

stalled on a square chip of a computer using the fourth-order Runge-Kutta method to solve

the non-linear heat transfer equation. Also, the research developed by Malek and Shabani

(2018) simulates macro and microscope heat transfer utilizing different formulations for dif-

ferent scales. The used methodology is based on spectral methods, solving it numerically

by spectral discretization and finite differences method. The microscope analysis uses the

dual-phase lag formulation and for the macroscope problems, based on the Fourier Law,

commercial software was used for the simulations.

The finite volume method (FVM) has been utilized for analyzing heat transfer in heat

sinks. A hybrid heat sink was solved by Krishnan, Garimella and Kang (2005) using a finite-

volume method on an orthogonal, rectangular grid. Bushehri, Ramin and Salimpour (2015)

proposed a new method for coupling equations between fluid and solid domains with tem-

perature jump boundary conditions and implemented in the open-source computational

fluid dynamics package, the finite volume method based OpenFOAM. The recent publica-

tion from Lampio and Karvinen (2018) compares some simple analytical and computational
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fluid dynamics (CFD) solutions using OpenFOAM. The presented method solves convection

heat transfer from analytical equations while conduction is used is solved numerically. In

summary, due to its large number of works available, especially in heat sinks, the finite vol-

ume method leads to be an excellent numerical method to verify the integral transforms of

the analytical results.

In summary, the available literature shows different numerical approaches for con-

ducting heat in heat sinks. However, analytical methodologies are still little explored for this

type of problem, especially considering the fin’s heat conduction in more than one direction.

Objectives

The main goal of the present work is to propose an analytical approach to solve heat

transfer problems in heat sinks (HS). The analytical methodology solves the three-dimensional

base and two-dimensional fins’ formulations, and couple the analytical solutions to obtain

the HS’ temperature field. This approach suits open-sandwich 1 parallel plate heat sink. In

addition, the dimensionless problem facilitates the overall value group visualization within

a range of intervals in the parameters. The methodology used in this work is the Classical In-

tegral Transform Technique (CITT). The CITT results are verified using OpenFOAM, a FVM

open-source software.

Dissertation Organization

The present dissertation is organized in chapters. Chapter 1 demonstrates the formu-

lations used in this work, divided into the sections of fin and base formulations, the fin-base

coupling condition, and the heat transfer coefficient.

The analytical methodology is described in Chapter 2, where the Classical Integral

Transform Technique is applied in the different parts of the heat sink. The 3D base and 2D

fin formulations are solved separately and coupled. Then, a simplified model of the heat sink

considering 2D base and 1D fin is solved and used as a benchmark.

In Chapter 3, the verification methodology using the OpenFOAM software is described.

The results are presented and discussed in Chapter 4. First, the methodology con-

vergence is shown as well as the comparison between the CITT formulations, considering

three different heat sink cases for different applications. The comparison between Open-

FOAM numerical results and CITT are presented as well as different fin-shaped heat sinks

1 Figure 1b
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thermal analysis using OpenFOAM. Symmetric and non-symmetric heat sink problems are,

then, solved using the proposed methodology. Finally, different possibilities to enhance the

heat transfer promoted by heat sinks are shown.

Finally, Chapter 5 concludes the presented work and enumerates possible future works.
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1 MATHEMATICAL FORMULATION

The purpose of this chapter is to present the mathematical model for the heat con-

duction in heat sinks utilized for cooling electronic components. The model is composed of

two-dimensional fins coupled to a three-dimensional base.

The fins coupled at the top of the heat sink’s base are responsible for increasing the

heat transfer and, consequently, cool the system. They are thermally connected to the base

by the interface contact surface (HAHN; OZISIK, 2012), in this work a perfect contact is con-

sidered. The base and fins are considered to be manufactured using the same material,

therefore, base and fins have the same physical properties.

Figure 3 shows a scheme of the parts of the heat sink: the fin in 3a, the base and the

fin-base contact interface in 3b, and the complete scheme of a one-fin heat sink in 3c.

This chapter is divided in the following parts:

• Fins formulations

• Base formulations

• Fin-base coupling condition

• The Convection-Radiation Heat Transfer Coefficient

1.1 Fins formulations

An extended surface is an extrusion of a relatively small cross-sectional area from a

large body into a fluid at a different temperature. Extended surfaces have wide industrial

applications such as fins attached to the walls of heat transfer equipment to increase the

rate of cooling (KREITH; MANGLIK; BOHN, 2012).

An energy balance for a small element of the fin is performed to derive an equation

for temperature distribution in steady-state for the fins. Figure 4 illustrates the scheme of

the fin. Since the fin thickness is much smaller when compared to its height and width, the

thickness is partially lumped (HAHN; OZISIK, 2012; CORRÊA, 2018). The enlargement of the

dimensions must be noticed for better visualization and the direction of fluxes in the control

volume (CV). The dimensions of the fin are Ha , W and δ. This present formulation considers

a rectangular geometry for the fin.
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Figure 3 - One-fin heat sink scheme. The problem formulation is divided in three parts: the fins, the

base and the solutions coupling.

(a) Fin

- Contact interface between base and fin

(b) Base and fin-base contact
interface

(c) Heat sink

rate of heat flow rate of heat flow rate of heat flow by rate of heat flow by rate of heat flow

by conduction + by conduction = conduction out of + conduction out of + leaving

into element at z into element at y element at z + dz element at y + dy from surface

q̇ ′′
z δ∆y + q̇ ′′

yδ∆z = q̇ ′′
z+∆zδ∆y + q̇ ′′

y+∆yδ∆z +2q̇ ′′
conv∆y∆z (1)

where:

q̇ ′′
z → heat flux entering z-direction

q̇ ′′
y → heat flux entering y-direction

q̇ ′′
z+∆z → heat flux leaving z-direction

q̇ ′′
y+∆y → heat flux leaving y-direction

q̇ ′′
out → Heat flux leaving the fin by its walls

∆z → z-direction CV dimension

∆y → y-direction CV dimension

δ→ thickness on x-direction CV dimension

Expanding the outlet heat flux term and dividing by (∆y∆z), the following equation

is found:

−
q̇ ′′

z+∆z − q̇ ′′
z

∆z
δ−

q̇ ′′
y+∆y − q̇ ′′

y

∆y
δ= 2h(T −T f ) (2)
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Figure 4 - Infinitesimal volume control for the fin. The heat fluxes indicate the heat conduction for

the two directions, y and z. Since the temperature does not vary in its thickness δ, the

x-direction is lumped. Heat is dissipated in both sides of the fin as indicated by q̇ ′′
out .
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where h is the heat transfer coefficient, T is the temperature, and T f is the surrounding air

temperature. The heat transfer coefficient h estimation is described in Section 1.4.

The partial derivatives are obtained using the definition of limits for the heat fluxes

on (3). Then, on equation (4), the heat flux is rewritten applying the Fourier law of heat

conduction:

−∂
(
q̇ ′′

z

)
∂z

δ−
∂
(
q̇ ′′

y

)
∂y

δ= 2h(T −T f ) (3)

∂

∂z

(
kz

∂T

∂z

)
+ ∂

∂y

(
ky

∂T

∂y

)
= 2h(T −T f )

δ
(4)

where kz and ky are the thermal conductivity in z-direction and y-direction, respectively.

Considering that kz and ky do not depend on their partial derivatives:

kz

(
∂2T

∂z2

)
+ky

(
∂2T

∂y2

)
= 2h(T −T f )

δ
(5)

Equation (5) is the formulation for two-dimensional fins considering orthotropic ma-

terials, whose thermal conductivity differ along orthogonal axes (HAHN; OZISIK, 2012). In

this work, the material is considered isotropic. The thermal conductivity is independent of

direction on isotropic media (HAHN; OZISIK, 2012). In other words, kz = ky = k.

k

(
∂2T

∂z2

)
+k

(
∂2T

∂y2

)
= 2h(T −T f )

δ
(6)
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1.1.1 2D fin formulation

The formulation for rectangular isotropic 2D fins is written as:

∂2T

∂z2
+ ∂2T

∂y2
= 2h(T −T f )

kδ
for 0 ≤ y ≤W and 0 ≤ z ≤ Ha (7a)

−k
∂T

∂z

∣∣∣∣
z=0

= q̇ ′′
base;

∂T

∂z

∣∣∣∣
z=Ha

= 0;
∂T

∂y

∣∣∣∣
y=0

= 0;
∂T

∂y

∣∣∣∣
y=W

= 0 (7b)

where q̇ ′′
base is the fin-base contact interface flux, W and Ha are the dimensions of the fin in y

and z directions respectively and δ is half of the thickness of the fin. The surfaces z = Ha , y =
0, and y = W present much smaller surface areas. For this reason, insulation is considered

for the fins’ top (z = Ha) and width (y = 0 and y =W ) boundaries.

The non-dimensionalization of the two-dimensional fins leads to the following math-

ematical formulation:

∂2Θ

∂ζ2
a
+γ2

a
∂2Θ

∂η2
− (2BiHaβa)Θ= 0 for 0 ≤ η≤ 1 and 0 ≤ ζa ≤ 1 (8a)

∂Θ

∂ζa

∣∣∣∣
ζa=0

=−A1q̇ ′′
base ;

∂Θ

∂ζa

∣∣∣∣
ζa=1

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0, (8b)

The non-dimensional groups are defined as:

ζa = z

Ha
; η= y

W
; Θ= T −T f

∆T
; (9a)

βa = Ha

δ
; γa = Ha

W
; BiHa =

hHa

k
; A1 =

Ha

k∆T
, (9b)

where ζa and η are the dimensionless versions of z and y , Θ is the dimensionless tempera-

ture, βa and γa are aspect ratios, BiHa is the Biot number and A1 is a value which combines

the height of the fin, its thermal conductivity and the range of temperature expected for the

problem (∆T ).

The Biot number is the ratio of conductive thermal resistance to convective resis-

tance and is used in problems concerning simultaneous conduction and convection heat

transfer mechanisms (REMSBURG, 2011). For this work, the heat transfer coefficient h is a

combination of convection and radiation, described in section 1.4.

1.1.2 1D fin formulation

The formulation for the one-dimensional fin is also obtained using the energy equa-

tion in steady-state. Çengel (2012) and several authors had demonstrated how to obtain this

formulation. The fin dimensionless formulation considering the variables used in this work
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is:

d2Θ

dζ2
a
−m2

aΘ= 0 (10a)

dΘ

dζa

∣∣∣∣
ζa=0

=−A1q̇ ′′
base ;

dΘ

dζa

∣∣∣∣
ζa=1

= 0. (10b)

The dimensionless groups are:

BiHa =
hHa

k
; m2

a = BiaPHa

Ac
; A1 =

Ha

k∆T
(11)

where Bia is the Biot number for the fin, P is the perimeter of the fin, h is the heat trans-

fer coefficient, k is the thermal conductivity, Ac is the transversal area in ζa direction. The

dimensionless group A1 was mentioned on section 1.1.1.

1.2 Base formulations

1.2.1 3D base formulation

The 3D-base heat conduction formulation is obtained from the first law of thermo-

dynamics:

DĖ

Dt
=

∑
Ėi n −

∑
Ėout + Ėg en (12)

E = e∆x∆y∆z; e = ec +ep +u; du = cv dT (13)

where e is the total energy, Ėi n and Ėout are the total energy entering and leaving the control

volume (CV), respectively, Ėg en is the generated energy in the CV, ec is the kinetic energy, ep

is the potential energy, u is the internal energy, cv is the specific heat at constant volume and

ρ is the specific mass.

The following simplifying assumptions are presented:

1. Kinetic and potential energies variations are negligible.

2. Heat conduction is the heat transfer mechanism for steady solids and liquids, therefore

the velocity stream is negligible.

3. The base is composed of solid material, therefore the volume variation is negligible

and the specific heat at constant volume is considered the same as the specific heat at

constant pressure (cv = cp ).

4. Pressure drop is negligible.
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Figure 5 - Infinitesimal volume control for the heat sink’s base. The heat fluxes indicate the heat

conduction for the three dimensions.
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q̇ ′′
z+∆z
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5. The base of the heat sink is isotropic and presents the same material properties of the

fins.

6. Steady-state.

7. Heat generation by Joule effect, physical or chemical reactions (PONTES; MANGIAVAC-

CHI, 2016) non-existent.

Figure 5 illustrates the volume control scheme, the heat fluxes the dimensions of the

3D base. Considering the assumption 1 and 7, the equation is rewritten as:

Du

Dt
∆x∆y∆z = q̇ ′′

x∆y∆z + q̇ ′′
y∆x∆z + q̇ ′′

z ∆x∆y −
(
q̇ ′′

x+∆x∆y∆z + q̇ ′′
y+∆y∆x∆z+

q̇ ′′
z+∆z∆x∆y

)
(14)

Using the assumption 2:

ρ
∂u

∂t
=−

q̇ ′′
x+∆x − q̇ ′′

x

∆x
−

q̇ ′′
y+∆y − q̇ ′′

y

∆y
−

q̇ ′′
z+∆z − q̇ ′′

z

∆z
(15)

Applying the limits in the heat fluxes, expanding the heat fluxes by the Fourier law

and, using assumptions 3 and 4, the Biot-Fourier equation is obtained:

ρcp
∂T

∂t
= ∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂z

(
kz

∂T

∂z

)
(16)

The assumption 5 and 6 are considered and the following formulation on equation

(17) is proposed for the heat sink base.

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
= 0 (17)

Figure 6 shows the front view of an one-fin heat sink example and indicates the prob-

lem schematic, their dimensions, and heat fluxes positions. The fin receives the contact

interface flux in all its width extension and the increased surface contact area is responsible
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Figure 6 - Heat sink front view. The arrows indicate the heat flux vectors. q̇ ′′
o indicates the heat flux

from the electronic device to the base of the heat sink and the color red was designated to

indicated a higher gradient. The orange arrows indicate the heat flux moving from the

base’s top to the fin’s bottom edge. Finally, the light blue arrows indicate convection at the

top of the heat sink base, except where the fin is located. The dimensions of the heat sink

are indicated in darker blue.

q̇ ′′
o

W

L

H

Ha

z
y

x

δ
q̇ ′′

out :↑
q̇ ′′

f i n :↑

for more efficient heat dissipation. The vacancy of fins, which allows the airflow to cool the

remaining parts of the top surface of the HS, is indicated by the convection heat flux in light

blue. The oncoming heat flux q̇ ′′
o , from a heated chip, is indicated by the red arrow at the

bottom of the base. Because heat sinks are widely applied in industry, there is a vast range of

different chips and heat sinks dimensions. Two different heated electronic devices’ contact

areas are exemplified in Figure 7, where the HS’s bottom z = 0 is observed.

The present work considers a perfect contact between base and fin, assuming they are

manufactured together. The oncoming chip heat flux is described as the boundary condition

on the bottom of the base of the heat sink and, in this work, insulation is considered for the

other boundaries. The fin-base contact interface heat flux is combined with the convective
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Figure 7 - Examples of heated chips at the HS’s base

y

x

z = 0

chip

y

x

z = 0

chip

heat flux to produce a switch function.

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 for 0 ≤ x ≤ L, 0 ≤ y ≤W and 0 ≤ z ≤ H (18a)

−k
∂T

∂z

∣∣∣∣
z=0

= q̇ ′′
o (x, y); −k

∂T

∂z

∣∣∣∣
z=H

=α(x)q̇ ′′
out + (1−α(x))q̇ ′′

fin; (18b)

∂T

∂x

∣∣∣∣
x=0

= 0;
∂T

∂x

∣∣∣∣
x=L

= 0;
∂T

∂y

∣∣∣∣
y=0

= 0;
∂T

∂y

∣∣∣∣
y=W

= 0; , (18c)

where T is the temperature, k is the thermal conductivity, q̇o is the oncoming heat flux from

the chip, q̇ ′′
out is the outlet heat flux at the top of the base, q̇ ′′

fin is the fin-base contact interface

heat flux and L, W and H are the dimensions of the fin in x, y and z directions respectively.

The surfaces x = 0, x = L, y = 0, and y =W present much smaller surface areas. For this rea-

son, insulation is considered for those boundaries. The parameter α is the switch function,

it simplifies the integral transform technique solution and, defined as 0 or 1, indicates the

position of the fins and, the output flow present at a given position of x-direction:

α=
0 if the top is in contact with the fin,(q̇ ′′

fin)

1 if there is only outlet heat flux in this position,(q̇ ′′
out = h(T −T f ))

(19)

The nondimensionalization of the 3D base is expressed on equation (20):

∂2Θ

∂ζ2
+β2∂

2Θ

∂ξ2
+γ2∂

2Θ

∂η2
= 0 for 0 ≤ ξ≤ 1, 0 ≤ η≤ 1 and 0 ≤ ζ≤ 1 (20a)

∂Θ

∂ζ

∣∣∣∣
ζ=0

=−A2q̇ ′′
o (ξ,η);

∂Θ

∂ζ

∣∣∣∣
ζ=1

= (−α(ξ))BiHΘ+ (α(ξ)−1)A2q̇ ′′
fin; (20b)

∂Θ

∂ξ

∣∣∣∣
ξ=0

= 0;
∂Θ

∂ξ

∣∣∣∣
ξ=1

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0, (20c)
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The non-dimensional groups are defined as:

ζ= z

H
; ξ= x

L
; η= y

W
; Θ= T −T f

∆T
; (21)

β= H

L
; γ= H

W
; BiH = hH

k
; A2 =

H

k∆T
, (22)

where ζ, ξ and η are the dimensionless versions of z, x and y , Θ is the dimensionless tem-

perature, β and γ are aspect ratios, BiH is the Biot number and A2 is a value which combines

the height of the fin, its thermal conductivity and the range of temperature expected for the

problem(∆T ). The parameter α is shown depending on the position of the fin, now indicated

as α(ξ).

1.2.2 2D base formulation

The 2D base (x,z) formulation considers heat conduction only in ζ and ξ directions,

dimensionless versions of z and x, respectively, and shown in the following equation (23).

This formulation will be used as a benchmark problem. Figure 8a shows a scheme for this

base formulation coupled to one fin.

∂2Θ

∂ζ2
+β2∂

2Θ

∂ξ2
= 0 for 0 ≤ ξ≤ 1 and 0 ≤ ζ≤ 1 (23a)

∂Θ

∂ξ

∣∣∣∣
ξ=0

= 0;
∂Θ

∂ξ

∣∣∣∣
ξ=1

= 0; (23b)

∂Θ

∂ζ

∣∣∣∣
ζ=0

=−A2q̇ ′′
o (ξ);

∂Θ

∂ζ

∣∣∣∣
ζ=1

= [−α(ξ)]BiHΘ+ [α(ξ)−1]A2q̇ ′′
fin, (23c)

A 2D base formulation considering heat conduction in directions ξ and η, dimen-

sionless versions of x and y , was developed and solved on (CORRÊA; CHALHUB, 2018). This

conference proceeding article is available on Appendix D.

An 1D base formulation for benchmark purposes, considering heat conduction only

in the ζ-direction, dimensionless z, was developed in Appendix B.

1.3 Fin-base coupling

Hahn and Ozisik (2012) define, for one-dimensional problems, the interface bound-

ary conditions in an imperfect thermal contact as the equality between the heat conduction

in the first solid, the heat transfer across the gap, and the heat conduction in the second
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Figure 8 - Schemes for the 2D base-1D fin and fin-base contact interface. The arrows indicate the

heat fluxes. The left scheme indicates the heat fluxes entering and leaving the 2D base

while the right scheme focus on the fin-base contact interface heat fluxes considering a

perfect interface contact.

2D Base

1D Fin

q̇′′o

•

q̇′′out

q̇′′
f i n

ξ

ζ

(a) Scheme of the 2D base-1D fin formulation

Base

Fin

q̇′′
f i n

q̇′′
base

•

(b) Fin-base coupling scheme

solid, obtained from the energy equation and shown below:

−k1
dT1

dx

∣∣∣∣
z=i c

= hc (T1 −T2)i c =−k2
dT2

dz

∣∣∣∣
z=i c

(24)

where hc is the contact conductance for the interface, i c is the contact interface and k1 and

k2 are the thermal conductivity for each solid. If hc →∞, a perfect contact is considered and,

consequently, the temperature continuity in z-direction (T1 = T2) (LEHTINEN, 2005).

Two assumptions are performed in order to couple the fin and base equations, which

are considered having perfect contact:

1. Temperature continuity.

Θbase(position of the fin, top of the base) =Θfin(bottom of the fin) (25)

2. Flux continuity.

q̇ ′′
base = q̇ ′′

fin (26)

Figure 8b shows the fin-base coupling scheme and the required conditions for the perfect

interface contact.

These mathematical equalities are performed with the base and fins’ analytical solu-

tions and the value of q̇ ′′
base and q̇ ′′

fin are obtained. The base and fins’ equations are solved
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again replacing the unknown values for the new calculated values and finally, obtaining the

temperature field for the coupled fin-base heat sink.

1.4 The Convection-Radiation Heat Transfer Coefficient

The heat transfer coefficient used in this work combines both convection and radia-

tion effects, as defined by Çengel and Ghajar (2011) in Equation (27).

h = hconv +hrad (27)

where hconv is estimated from a natural convection correlation, and hrad is estimated from

the linearized radiative heat transfer coefficient.

1.4.1 Convective heat transfer coefficient

For the convection heat transfer coefficient, the correlation for its average value along

isothermal vertical channels spaced s unit apart is defined on Equation (28) (BEJAN; KRAUS,

2003; FURUKAWA; YANG; TORII, 2008).

hconv =
k f

s

(
576

El2 + 2.873

El1/2

)−1/2

(28)

The Elenbaas number (El) is a gap-based Rayleigh number used to find the Nusselt number

of natural convection flow between vertical plates (REMSBURG, 2011). This dimensionless

number is applied in the design of heat sinks and on the flow between cards in electronic

boards. The Elenbaas number is a tribute to W. Elenbaas by Bejan and Kraus (2003) and

is defined on equation (29) (BAR-COHEN; IYENGAR; KRAUS, 2003; LAMPIO; KARVINEN,

2018).

El = %g Pr s4∆Tb

ν2W
, Pr = ν

α f
(29)

where k f is the thermal conductivity, s is the channel’s thickness (or the space between two

fins), % is the volumetric expansion coefficient, g is the gravity, Pr is the Prandtl number,

ν is the kinematic viscosity, W is the vertical channel’s length, α f is the thermal diffusivity

and ∆Tb is the average temperature difference between the heat sink and the environment

air (FURUKAWA; YANG; TORII, 2008). Hence, %, ν, k f , α f and Pr are evaluated at the fluid

bulk temperature(T f ). Figure 9 illustrates the design parameters scheme of the plate-fin heat

sink, indicating also the fin thickness and the channel spacing.
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Figure 9 - Design parameters of plate-fin heat sink. W is the vertical channel’s length, s is the

channel spacing, δ is the fin thickness, L is the HS base length, H is the base height and Ha

is the fin height.
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This work estimates the convective heat transfer coefficient for natural convection.

However, the formulation can be implemented for forced convection situations if the appro-

priate correlation is considered.

1.4.2 Radiative heat transfer coefficient

The radiative heat transfer between two surfaces or between a surface and its sur-

roundings is not linearly dependent on the temperature difference (BEJAN; KRAUS, 2003).

The heat transfer rate by radiation is defined by Çengel and Ghajar (2011) as:

q̇ ′′
rad = εσ

(
T 4 −T 4

sur

)
(30)

where Tsur is the temperature in its surroundings surfaces (BEJAN; KRAUS, 2003). ε is the

surface emissivity, which varies in the 0 ≤ ε ≤ 1 range and σ = 5.67 × 10−8W/m2K4 is the

Stefan-Boltzmann constant (SHABANY, 2008). The mutual irradiation between fins (SPAR-

ROW; ECKERT, 1962; SOBRAL, 2017) is not considered in this work.

Kalogirou (2013) states the linearized of the equation in terms of the differences of

temperatures to the first power, similar to the heat transfer rate by convection.

q̇ ′′
rad = εσ

(
T 2 +T 2

sur

)(
T 2 −T 2

sur

)
(31)

q̇ ′′
rad = εσ

(
T 2 +T 2

sur

)
(T +Tsur)× (T −Tsur) (32)
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Considering the heat transfer rate by radiation as:

q̇ ′′
rad = hrad × (T −Tsur) (33)

The heat transfer coefficient by radiation is, then, defined as:

hrad = εσ
(
T 2 +T 2

sur

)
(T +Tsur) (34)

The following manipulations are performed considering the characteristic tempera-

ture as Tchar (FOKAIDES; KALOGIROU, 2011):

• For (T +Tsur):

Tchar =
T +Tsur

2
(35)

T +Tsur = 2Tchar (36)

• For (T 2 +T 2
sur):

(T +Tsur)2 = (2Tchar)2 (37)

T 2 +2T ×Tsur +T 2
sur = 4T 2

char (38)

T 2 +T 2
sur = 4T 2

char −2T ×Tsur, T 2
char ≈ T ×Tsur (39)

T 2 +T 2
sur ≈ 2T 2

char (40)(
T 2 +T 2

sur

)
(T +Tsur) ≈ 2T 2

char ×2Tchar ≈ 4T 3
char (41)

It must be noticed that Equation (39) is valid when T and Tsur have close values. This ap-

proximation was also mentioned by Marin (2009).

Substituting the terms, the linearized radiative heat transfer coefficient (KALOGIROU,

2013) can be estimated as:

hrad ≈ 4εσT 3
char (42)

This approach considers the minimum temperature to obtain the lowest heat trans-

fer coefficient by radiation. Therefore, the characteristic temperature (Tchar) assumes the

same magnitude as the surrounding fluid temperature (Tchar ≈ T f ). This approximation es-

timates the radiative heat transfer coefficient by its minimum value, consequently, the heat

sink would not operate at a higher temperature than the calculated.
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2 CLASSICAL INTEGRAL TRANSFORM TECHNIQUE

The Integral Transform Technique provides a systematic, efficient, and straightfor-

ward approach for homogeneous, nonhomogeneous, steady-state, transient boundary value

problems. The steps for the application of the method are enumerated:

1. Define the transformed directions. For this work, the integral transformation is applied

in one or two spatial directions, leaving the remaining direction not transformed.

2. Solve the appropriate Sturm-Liouville eigenvalue problem (HAHN; OZISIK, 2012). The

Helmholtz’s equation is suited by cartesian coordinates.

3. Define the transformation pair.

4. Apply the integral transformation in the differential equation.

5. Solve the transformed equations, utilizing the transformed boundary conditions.

6. Apply the inversion formula and sum to a finite value until the full convergence for the

desired solution.

Each heat sink solution is going to be described in the following sections.

2.1 3D base and 2D fin

2.1.1 Solution by CITT for the 2D rectangular fin

The Classical Integral Transform Technique (CITT) is applied to solve the 2D fin for-

mulation. The rectangular isotropic fin formulation (equation, boundary conditions, and

non-dimensional groups) demonstrated in section 1.1.1 are shown again:

∂2Θ

∂ζ2
a
+γ2

a
∂2Θ

∂η2
− (2BiHaβa)Θ= 0 for 0 ≤ η≤ 1 and 0 ≤ ζa ≤ 1 (43a)

∂Θ

∂ζa

∣∣∣∣
ζa=0

=−A1q̇ ′′
base(η);

∂Θ

∂ζa

∣∣∣∣
ζa=1

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0 (43b)

ζa = z

Ha
; η= y

W
; Θ= T −T f

∆T
; (43c)

βa = Ha

δ
; γa = Ha

W
; BiHa =

hHa

k
; A1 =

Ha

k∆T
, (43d)

In order to establish the transformation pair, the temperature field is written firstly

as functions of orthogonal eigenfunctions obtained from the following auxiliary eigenvalue
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problem known as the Helmholtz classic problem in cartesian coordinates. The η-direction

is transformed for the 2D-fin. The eigenvalue problem proposed to be solved on the fin is in

the η direction, where the corresponding solutions Ψn(η) are called eigenfunctions and λn

are the eigenvalues. For this particular problem, the case where λ= 0 also exists.

Ψ′′
n(η)+λ2

nΨn(η) = 0 (44a)

Ψ′
n(0) = 0; Ψ′

n(1) = 0. (44b)

The eigenfunctions are, in fact, orthogonal functions (HAHN; OZISIK, 2012):

∫ 1

0
Ψn(η)Ψl (η)dη=

0 if n 6= l

Ny n if n = l
(45)

where the norm, or normalization integral, is defined as:

Ny n =
∫ 1

0
Ψ2

n(η)dη (46)

Solving the differential equation, the general eigenfunction solution is formed by

sines and cosines. The boundary conditions exclude the sine term from the solution and

eigenvalues λn are obtained. The solutions for the eigenvalue problem are:

For λ> 0:

λn = nπ; (47)

Ψn(η) = cos(λnη); (48)

For λ= 0:

λ0 = 0; (49)

Ψ0(η) = 1. (50)

After solving the auxiliary eigenvalue problem, the transformation pair must be de-

fined before transform the dimensionless differential equation and the boundary conditions.

The transformation pair is defined as:

Transformation ⇒ Θ̄n(ζa) =
∫ 1

0
ΘΨn(η)dη (51)

Inversion ⇒ Θ(η,ζa) =
∞∑

n=0

Θ̄n(ζa)Ψn(η)

Nyn

(52)

The integral transformation in η-direction is then applied in the dimensionless equa-
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tion (43a):∫ 1

0

∂2Θ

∂ζ2
a
Ψndη+γ2

a

∫ 1

0

∂2Θ

∂η2
Ψndη−2BiHaβa

∫ 1

0
ΘΨndη= 0 (53)

The transformed equations (54) and (56) are obtained from the equation (53) using the trans-

formating procedure (51), which consists in substitute the transformation integrals for the

transformation term Θ̄n(ζa) and obtain the transformed equations.

• For λ> 0:

Θ̄′′
n − (γ2

aλ
2
n +2BiHaβa)Θ̄n = 0 (54)

The transformed boundary conditions are:

Θ̄′
n(0) =−A1

∫ 1

0
q̇ ′′

base(η)Ψndη; Θ̄′
n(1) = 0 (55)

• For λ= 0:

Θ̄′′
0 − (2BiHaβa)Θ̄0 = 0 (56)

The transformed boundary conditions are:

Θ̄′
0(0) =−A1

∫ 1

0
q̇ ′′

base(η)dη; Θ̄′
0(1) = 0 (57)

The analytical solutions for the differential transformed equations are:

Θ̄n(ζa) =
A1e

(
−ζa

p
2BiHaβa+π2γ2

a n2
) (

e2ζa

p
2BiHaβa+π2γ2

a n2 +e2
p

2BiHaβa+π2γ2
a n2

)
(
e2
p

2BiHaβa+π2γ2
a n2 −1

)√
2BiHaβa +π2γ2

an2

×
∫ 1

0
q̇ ′′

base(η)cos(nπη)dη (58)

Θ̄0(ζa) =
A1e−ζa

p
2BiHaβa

(
e2ζa

p
2BiHaβa +e2

p
2BiHaβa

)
(
e2
p

2BiHaβa −1
)√

2BiHaβa

∫ 1

0
q̇ ′′

base(η)dη (59)

The final temperature field, finally, is obtained using the inversion formula (60). The

inversion formula combines the transformed equations solutions Θ̄(ζa), the eigenfunction
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Ψ(η), and the norm Nyn . The summation is truncated to a finite value (nmax).

Θ(η,ζa) =
∞∑

n=0

Θ̄n(ζa)Ψn(η)

Nyn

(60)

This summation ends up as literal because q̇ ′′
base is not defined at this point.

2.1.2 Solution by CITT for the 3D base

The three-dimensional model requires two transformed directions. The consequence

of using a double transformation is having a double summation for the inversion term, there-

fore, the solution’s convergence requires more terms summed (CHALHUB, 2015). Neverthe-

less, the method is still full analytical, the reason which turns the CITT such an efficient

method.

The transformed directions for the base are ξ and η, the dimensionless versions of x

and y . The appropriate eigenvalue problems are shown below and, because both directions

present the same boundary conditions, they are similar.

The eigenvalue problem in the direction ξ is:

Ξ′′
m(ξ)+µ2

mΞm(ξ) = 0 (61a)

Ξ′
m(0) = 0; Ξ′

m(1) = 0. (61b)

For m > 0:

µm = mπ; (61c)

Ξm(ξ) = cos(µmξ); (61d)

For m = 0:

µ0 = 0; (61e)

Ξ0(ξ) = 1; (61f)

The eigenvalue problem in the direction η is:

Ψ′′
n(η)+λ2

nΨn(η) = 0 (62a)

Ψ′
n(0) = 0; Ψ′

n(1) = 0. (62b)
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For n > 0:

λn = nπ; (62c)

Ψn(η) = cos(λnη); (62d)

For n = 0:

λ0 = 0; (62e)

Ψ0(η) = 1. (62f)

Following to the step 3, the transformation pair for the 3D base is:

Transformation ⇒ ¯̄Θnm(ζ) =
∫ 1

0

∫ 1

0
ΘΨn(η)Ξm(ξ)dηdξ (63)

Inversion ⇒ Θ=
∞∑

n=0

∞∑
m=0

¯̄Θnm(ζ)Ψn(η)Ξm(ξ)

Nyn Nx m
(64)

The norms (CHALHUB, 2015) are defined as:

Ny n =
∫ 1

0
Ψ2

n(η)dη; Nx m =
∫ 1

0
Ξ2

m(ξ)dξ (65)

The base formulation (20) is written again:

∂2Θ

∂ζ2
+β2∂

2Θ

∂ξ2
+γ2∂

2Θ

∂η2
= 0 for 0 ≤ ξ≤ 1, 0 ≤ η≤ 1 and 0 ≤ ζ≤ 1 (66a)

∂Θ

∂ζ

∣∣∣∣
ζ=0

=−A2q̇ ′′
o (ξ,η);

∂Θ

∂ζ

∣∣∣∣
ζ=1

= (−α(ξ))BiHΘ+ (α(ξ)−1)A2q̇ ′′
fin; (66b)

∂Θ

∂ξ

∣∣∣∣
ξ=0

= 0;
∂Θ

∂ξ

∣∣∣∣
ξ=1

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0, (66c)

The integral transformation (63) is applied on equation (20), including the boundary

conditions. The objective of this step substitute the transformation integrals for the trans-

formation term ¯̄Θnm(ζ) and obtain the transformed equations.

∫ 1

0

∫ 1

0

∂2Θ

∂ζ2
Ψn(η)Ξm(ξ)dηdξ+β2

∫ 1

0

∫ 1

0

∂2Θ

∂ξ2
Ψn(η)Ξm(ξ)dηdξ

+γ2
∫ 1

0

∫ 1

0

∂2Θ

∂η2
Ψn(η)Ξm(ξ)dηdξ = 0 (67)

¯̄Θ′(0) =−A2

∫ 1

0

∫ 1

0
q̇ ′′

o (ξ,η)Ψn(η)Ξm(ξ)dηdξ=−A2
¯̄Q (68)
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Figure 10 - Boundary condition at the top of the base. This condition is ξ-dependent. On

ξ-positions where the fins are located, the heat is transferred at the fin-base interface.

Between fins, the convection is the cooling mechanism.
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ξi3
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•
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•
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¯̄Θ′(1) =
∫ 1

0

∫ 1

0
−α(ξ)BiHΘ(ξ,η,1)Ξm(ξ)Ψn(η)dηdξ

+ A2

∫ 1

0

∫ 1

0
(α(ξ)−1)q̇ ′′

fin(η)Ξm(ξ)Ψn(η)dηdξ (69)

For the first term of Equation (67), the partial derivatives in ζ are removed from the

integration. The final form of this term is: ¯̄Θ′′. For the second and third terms, integration by

parts is necessary to obtain the transformed terms. The transformed equation is shown on

Equation (70).

¯̄Θ′′
nm − (β2µ2

m +γ2λ2
n) ¯̄Θnm = 0 (70)

2.1.2.1 Boundary condition transformation

Due to the transformed boundary condition ¯̄Θ′(1) complexity, which is shown in equa-

tion (69), some simplifications are performed to obtain a full analytical solution. Figure 10

shows an example scheme of fin limits at the base domain.

Convective term: The parameter α(ξ), which was defined previously as a switch function

(19), and its ξ-dependence turns the transformation impracticable to be obtained for

the convective term. Consequently, α(ξ) is approximated to an average value αavg,

described in Equation (71). This approximation simplifies the achievement of the an-

alytical solution because the convective term is able to be transformed using Equation

(71).

αavg =
∫ 1

0
α(ξ)dξ (71)
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The convection term (72) is then written considering an average value for α, αavg, a

constant value for the ξ-domain:

−
∫ 1

0

∫ 1

0
α(ξ)BiHΘ(ξ,η,1)Ξm(ξ)Ψn(η)dηdξ=

−αavgBiH

∫ 1

0

∫ 1

0
Θ(ξ,η,1)Ξm(ξ)Ψn(η)dηdξ=−αavgBiH

¯̄Θnm (72)

Fin-base interface term: The term which connects fin-base is rewritten substituting theα(ξ)

for 0 at the regions where the fins are located.

A2

∫ 1

0

∫ 1

0
(α(ξ)−1)q̇ ′′

fin(η)Ξm(ξ)Ψn(η)dηdξ=

− A2

nfin∑
j=1

∫ ξ f j

ξi j

∫ 1

0
q̇ ′′

fin(η)Ξm(ξ)Ψn(η)dηdξ (73)

where nfin is the number of fins, ξi refers to the position where the fin begins and ξ f

where it ends, as shown in figure 10.

Base’s top transformed boundary condition: After using the simplifications, convection and

interface contact terms are reunited and the transformed top boundary condition is

defined.

¯̄Θ′(1) =−αavgBiH
¯̄Θ(1)− A2

nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)Ψn(η)Ξm(ξ)dξdη (74)

2.1.2.2 Transformed equations

The transformed equations for the 3D base are shown below with the boundary con-

ditions. Each combination of the eigenvalues λ and µ has a different transformed equation,

and consequently, a different analytical solution.

• For λ and µ> 0:

¯̄Θ′′
nm − (β2µ2

m +γ2λ2
n) ¯̄Θnm = 0 (75)

The transformed boundary conditions are:

¯̄Θ′
nm(0) =−A2

∫ 1

0

∫ 1

0
q̇ ′′

o (ξ,η)Ξm(ξ)Ψn(η)dηdξ=−A2
¯̄Qnm (76)

¯̄Θ′
nm(1) =−αavgBiH

¯̄Θnm(1)− A2

nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)Ψn(η)Ξm(ξ)dξdη (77)
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The analytical solution for the general transformed equation is:

¯̄Θnm(ζ) = Cnm(ζ)−Dnm(ζ)−Enm(ζ)×Fnm

Gnm +Hnm
(78)

where:

Cnm(ζ) = A2
¯̄Qnmπ

√
β2m2 +γ2n2 cosh

[
π(ζ−1)

√
β2m2 +γ2n2

]
(79)

Dnm(ζ) = A2
¯̄QnmαavgBiH sinh

[
π(ζ−1)

√
β2m2 +γ2n2

]
(80)

Enm(ζ) =πA2

√
β2m2 +γ2n2 cosh

(
πζ

√
β2m2 +γ2n2

)
(81)

Fnm =
nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)cos(λnη)cos(µmξ)dξdη (82)

Gnm =παavgBiH

√
β2m2 +γ2n2 cosh

(
π

√
β2m2 +γ2n2

)
(83)

Hnm =π2 (
β2m2 +γ2n2)sinh

(
π

√
β2m2 +γ2n2

)
(84)

• For λ> 0 and µ= 0:

¯̄Θ′′
n0 − (γ2λ2

n) ¯̄Θn0 = 0 (85)

The transformed boundary conditions are:

¯̄Θ′
n0(0) =−A2

∫ 1

0

∫ 1

0
q̇ ′′

o (ξ,η)Ψn(η)dηdξ=−A2
¯̄Qn0 (86)

¯̄Θ′
n0(1) =−αavgBiH

¯̄Θn0(1)− A2

nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)Ψn(η)dξdη (87)

The analytical solution for the transformed equation where λ> 0 and µ= 0 is:

¯̄Θn0(ζ) = Cn0(ζ)−Dn0(ζ)−En0(ζ)×Fn0

Gn0 +Hn0
(88)
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where:

Cn0(ζ) = A2
¯̄Qn0πγn cosh

[
π(ζ−1)γn

]
(89)

Dn0(ζ) = A2
¯̄Qn0αavgBiH sinh

[
π(ζ−1)γn

]
(90)

En0(ζ) =πA2γn cosh
(
πζγn

)
(91)

Fn0 =
nfin∑
j=1

(ξ f j −ξi j )
∫ 1

0
q̇ ′′

fin(η)cos(λnη)dη (92)

Gn0 =παavgBiHγn cosh
(
πγn

)
(93)

Hn0 =π2γ2n2 sinh
(
πγn

)
(94)

• For λ= 0 and µ> 0:

¯̄Θ′′
0m − (β2µ2

m) ¯̄Θ0m = 0 (95)

The transformed boundary conditions are:

¯̄Θ′
0m(0) =−A2

∫ 1

0

∫ 1

0
q̇ ′′

o (ξ,η)Ξm(ξ)dηdξ=−A2
¯̄Q0m (96)

¯̄Θ′
0m(1) =−αavgBiH

¯̄Θ0m(1)− A2

nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)Ξm(ξ)dξdη (97)

The analytical solution for the transformed equation where λ= 0 and µ> 0 is:

¯̄Θ0m(ζ) = C0m(ζ)−D0m(ζ)−E0m(ζ)×F0m

G0m +H0m
(98)

where:

C0m(ζ) = A2
¯̄Q0mπβm cosh

[
π(ζ−1)βm

]
(99)

D0m(ζ) = A2
¯̄Q0mαavgBiH sinh

[
π(ζ−1)βm

]
(100)

E0m(ζ) =πA2βm cosh
(
πζβm

)
(101)

F0m =
nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)cos(µmξ)dξdη (102)

G0m =παavgBiHβm cosh
(
πβm

)
(103)

H0m =π2 (
β2m2)sinh

(
πβm

)
(104)

• For λ= 0 and µ= 0:

¯̄Θ′′
00 = 0 (105)
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The transformed boundary conditions are:

¯̄Θ′
00(0) =−A2

∫ 1

0

∫ 1

0
q̇ ′′

o (ξ,η)dηdξ=−A2
¯̄Q00 (106)

¯̄Θ′
00(1) =−αavgBiH

¯̄Θ00(1)− A2

nfin∑
j=1

∫ 1

0

∫ ξ f j

ξi j

q̇ ′′
fin(η)dξdη (107)

The analytical solution for the transformed equation where λ= 0 and µ= 0 is:

¯̄Θ00(ζ) =
A2

¯̄Q00[1+BiH (αavg −αavgζ)]− A2
∑nfin

j=1(ξ f j −ξi j )
∫ 1

0 q̇ ′′
fin(η)dη

BiHαavg
(108)

2.1.2.3 Reordering Procedure

The inversion formula indicated in equation (64) is applied to obtain the dimension-

less temperature field (Θ) for the HS base.

Θ(ξ,η,ζ) =
∞∑

n=0

∞∑
m=0

¯̄Θnm(ζ)Ψn(η)Ξm(ξ)

Nyn Nx m
(109)

The consequence of having a double summation is the necessity of more terms to

be summed for full convergence. The double summation may be reduced to one if the re-

ordering procedure is performed. The reordering procedure (COTTA; MIKHAILOV, 1997) se-

lects the combinations of n and m with more significant values to be summed first, enabling

faster convergence to the final solution of the temperature field of the base of the HS. For

this reordering procedure, the CITT index pair (n,m) is sorted in descending order, whose

summation order is indicated by the single index k.

∞∑
n=0

∞∑
m=0

→
∞∑

k=0
(110)

2.1.3 Analytical solutions coupling

In this step of the methodology, the fin-base interface heat flux is calculated. The

unknown heat fluxes q̇ ′′
base and q̇ ′′

fin are obtained using assumptions to couple fin and base

equations. As it was mentioned previously on section 1.3, a perfect contact on the fin-base

interface is considered and, for this reason:

q̇ ′′
base(η) = q̇ ′′

fin(η) = q̇ ′′
i c (η) (111)
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Figure 11 - 2D view of the fin-base coupling. The direction of the heat fluxes are indicated on the

scheme. Also, the base-fin perfect contact interface is defined as both heat fluxes with the

same magnitude and the temperature at the top of the base at the same ξ of the fin,

having the same magnitude as bottom of the fin.

Base

Fin
Base-fin contact

interface
q̇′′

base
= q̇′′

f i n
θ(•,1) = θ(0)

q̇′′o

•

q̇′′out

q̇′′
base

q̇′′
f i n

ξ

ζ

which is now denominated as q̇ ′′
i c , contact interface heat flux.

For dealing with two equations and two variables, one more condition is required to

solve the system. The temperature of the contact between fin and base must be equal. The

coupling equations are solved, in this case, considering η coordinate.

Θbase(ξavg,ηx ,1) =Θfin(ηx ,0), ξavg =
ξi +ξ f

2
(112)

q̇ ′′
base(ηx) = q̇ ′′

fin(ηx) = q̇ ′′
i c (ηx) (113)

where Θbase is the temperature of the base, Θfin is the temperature of the fin, ξi is the position

where the fin begins, ξ f is the position where the fin ends, ξavg is the fin’s middle position

and ηx is a selected position in η-direction. The figure 11 illustrates the fin-base coupling for

one-fin heat sink. The heat flux for each fin is calculated from the equations (112) and (113),

using the base and fins CITT solutions.

The fin-base interface heat flux is approached using the eigenfunction expansion. In

other words, the heat flux is defined as an inversion term and its transformation is used to

find the fin-base coupling. The great advantage of the eigenfunction expansion heat flux is to

solve the system in several different positions and increase its accuracy as more positions are



47

Figure 12 - η-positions scheme for fin-base coupling. The more positions are selected, the more

accurate is the fin-base coupling.

0 1

• • • • • • • • • • •

0 1

• • •

η

considered. It is a more accurate approach than the polynomial function approach2, which

considers limited positions depending on the polynomial degree. As can be concluded in

Figure 12, the more ηx-positions are considered, the more accurate is the fin-base coupling.

The fin-base interface heat flux transformation pair and its norm are defined as:

Inversion ⇒ q̇ ′′
i c (η) =

∞∑
p=0

q̄ ′′
i cp

Ψp (η)

NΨp
= q̇ ′′

fin(η) = q̇ ′′
base(η) (114)

Transformation ⇒ q̄ ′′
i cp

=
∫ 1

0
q̇ ′′

i c (η)Ψp (η)dη (115)

Norm ⇒ NΨp =
∫ 1

0
Ψ2

p dη (116)

where Ψp is a generic eigenfunction and p is summed until nmax η-positions.

For the 2D fin formulation, the transformed boundary condition at the bottom edge

is described on equation (55) as:

Θ̄′
n(0) =−A1

∫ 1

0
q̇ ′′

ic(η)Ψndη=−A1q̄ ′′
i cp

(117)

For the 3D base formulation, the top boundary condition is described on equation

2 The use of polynomial functions is a different approach to model the heat fluxes that may vary for different
η-positions. It is described in Appendix C and was previously implemented by Corrêa and Chalhub (2019).
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(74), the fin-base interface part is rewritten on Equation (118).

nfin∑
j=1

∫ ξ f j

ξi j

(∫ 1

0
q̇ ′′

ic(η)Ψn(η)Ξm(ξ)dη

)
dξ=

nfin∑
j=1

q̄ ′′
i cn j

∫ ξ f j

ξi j

Ξm(ξ)dξ (118)

The transformed boundary condition for the top of the 3D base, used before the fin-

base coupling, becomes:

¯̄Θ′
nm(1) =−αavgBiH

¯̄Θnm(1)− A2

nfin∑
j=1

q̄ ′′
i cn j

∫ ξ f j

ξi j

Ξm(ξ)dξ (119)

where the transformed q̄ ′′
i cn j

are now the values to be obtained and nmax different positions

are summed.

After performing the fin-base coupling, each q̄ ′′
i cn

for each j fin is obtained. Then, q̄ ′′
i cn

is used on equations (117) and (119) to solve the fins and base solutions and the temperature

field is obtained.

2.2 2D base and 1D fin: Benchmark problem

The simplified formulation for the heat sink, considering one-dimensional fins and

two-dimensional base, is a benchmark problem. The scheme for this model is illustrated on

Figure 13.

The general analytical solution for the 1D fin is indicated in (10a):

Θ(ζa) =C1emaζa +C2e−maζa (120)

where C1 and C2 are constants.

Applying the boundary conditions, the solution for 1D fin is:

Θ j (ζa) = A1e−ζa ma
(
e2ζa ma +e2ma

)(
e2ma −1

)
ma

q̇ ′′
base j

(121)

where q̇ ′′
base is an unknown value and the index j indicates this solution is applicable to each

unique fin j fin.
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Figure 13 - 1D fins and 2D base scheme illustration. This benchmark problem considers heat

conduction only the ξ and ζ directions, as indicated by the axes, which are the

dimensionless versions x and z, respectively. The heated chip is indicated in red attached

on the bottom surface of the HS’s base.

ζ

ξ

2.2.1 Solution by CITT of the 2D base

The Helmholtz problem is used again as the auxiliary eigenvalue problem:

Ξ′′
m(ξ)+µ2

mΞm(ξ) = 0 (122a)

Ξ′
m(0) = 0; Ξ′

m(1) = 0. (122b)

For µ= 0, the solution of the eigenvalue problem is given by:

Ξ0(ξ) = 1; µ0 = 0; (123)

and for µ> 0:

Ξm(ξ) = cos(µmξ); µm = mπ, for m = 1,2,3, . . . (124)

To apply the CITT, the transformation pair is defined.

Transformation ⇒ Θ̄m(ζ) =
∫ 1

0
ΘΞm(ξ)dξ (125)

Inversion ⇒ Θ=
∞∑

m=0

Θ̄(ζ)Ξm(ξ)

Nm
, Nm =

∫ 1

0
Ξ2

mdξ (126)

where Θ̄m(ζ) and Ξm(ξ) are the functions to be solved separally in order to find the temper-

ature field and are eigenfunctions. Θ̄m(ζ) is also the transformed version of Θ. Nm is the

norm.

The Equation (23a) is written again, multiplied by Ξm and integrated in the domain
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for ξ.∫ 1

0

∂2Θ

∂ζ2
Ξmdξ+β2

∫ 1

0

∂2Θ

∂ξ2
Ξmdξ= 0 (127a)

• For µ> 0:

Θ̄′′
m − (β2µ2

m)Θ̄m = 0 (128)

The transformed boundary conditions are:

Θ̄′
m(0) =−A2

∫ 1

0
q̇ ′′

o (ξ)Ξmdξ (129a)

Θ̄′
m(1) = Θ̄′

m(1) =−αavgBiH Θ̄m(1)− A2

nfin∑
j=1

∫ ξ f j

ξi j

q̇ ′′
fin j

Ξm(ξ)dξ (129b)

where nfin is the number of fins, ξi refers to the position where the fin begins and ξ f where

it ends, as shown in figure 10. αavg is the average value for α.

The transformed equation admits an analytical solution for µ> 0.

Θ̄m(ζ) =
A2e−mπβζ

mπβ[BiHαavg(1+e2mπβ)+mπβ(−1+e2mπβ)]

[
BiHαavg

(
e2mπβ−e2mπβζ

)
+

mπβ
(
e2mπβ+e2mπβζ

)∫ 1

0
q̇ ′′

o (ξ)cos(mπξ)dξ+

−mπβemπβζ(1+e2mπβζ)
nfin∑
j=1

q̇ ′′
fin j

(sin(mπξ f j )− sin(mπξ fi ))

mπ

]
(130)

• For µ= 0, the transformed equation is similar to the 1D LaPlace equation:

Θ̄′′
0 = 0 (131)

The transformed boundary conditions are:

Θ̄′
0(0) =−A2

∫ 1

0
q̇ ′′

o (ξ)dξ; (132a)

Θ̄′
0(1) =−αavgBiH Θ̄0(1)− A2

nfin∑
j=1

∫ ξ f j

ξi j

q̇ ′′
fin j

dξ (132b)

The transformed equation for admits the following analytical solution µ= 0.

Θ̄0(ζ) = A2

∫ 1

0
q̇ ′′

o (ξ)dξ

(
1

BiHαavg
+1−ζ

)
− A2

BiHαavg

nfin∑
j=1

q̇ ′′
fin j

(ξ f j −ξi j ) (133)
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where q̇ ′′
fin is also an unknown value. The inversion formula (126) is used and the summation

is truncated to a finite value (nmax) and literal, with the q̇ ′′
fin summation terms.

The fin-base coupling is also performed for the 2D base and 1D fin. In this case, the

η-direction is not considered and, consequently, the heat flux for each fin is a constant value.

The fin-base coupling equations are shown below.

q̇ ′′
base = q̇ ′′

fin = q̇ ′′
i c (134)

Θbase(ξavg,1) =Θfin(0), ξavg =
ξi +ξ f

2
(135)

where Θbase is the temperature of the base, Θfin is the temperature of the fin, ξi is the position

where the fin begins, ξ f is the position where the fin ends, and ξavg is exactly in the middle

of the fin.

The equations (134) and (135) create a system of equations which is solved and q̇ ′′
i c

is obtained. The value obtained for q̇ ′′
i c is inserted on the solutions (121) for the 1D fin and

(130) and (133) for the 2D base.
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3 COMPUTATIONAL FLUID DYNAMICS

Simulations using numerical analysis provide faster and cheaper results when com-

pared to experimental validation. To obtain an approximate solution numerically, discretiza-

tion methods approximate the differential equations by a system of algebraic equations,

which can then be solved on a computer. The approximations are applied to spatial and time

small domains so the numerical solution provides results at discrete locations in space and

time (FERZIGER; PERIĆ, 2002). Based on partial differential equation discretization meth-

ods, Computational Fluid Dynamics (CFD) has been used for several applications such as

mechanical, aerospace, biological, meteorological, and environmental fields. The literature

review section indicated the Finite Volume Method as an efficient verification method and,

for this reason, it was chosen as the discretization method for the heat sinks CFD simulation

to be used on this present work.

The Finite Volume Method (FVM) is a numerical technique that, using conservation

laws, transforms the partial differential equations representing over differential volumes into

discrete algebraic equations over finite volumes (MOUKALLED et al., 2016). In FVM, some

terms in the conservation equation are turned into face fluxes and evaluated at the finite

volume faces. Because the flux entering a given volume is identical to that leaving the ad-

jacent volume, the FVM is strictly conservative. This inherent conservation property of the

FVM makes it the preferred method in CFD. Another important attribute of the FVM is the

formulation in the physical space using unstructured polygonal meshes. Hence, it allows the

implementation of a variety of boundary conditions in a non-invasive manner, since the un-

known variables are evaluated at the centroids of the volume elements, not at their boundary

faces (MOUKALLED et al., 2016).

3.1 OpenFOAM

OpenFOAM (Open Field Operation and Manipulation) is an opensource software pack-

age and C++ modules library based on the cell-centered Finite Volume Method with ex-

tensive CFD and multiphysics capabilities. It solves computational continuum mechanics

problems utilizing features of Objected Oriented Programming (OOP).

Some advantages of OpenFOAM are cost-effectiveness, parallel computing, source

code, redistribution of code, and collaborative development. It lacks enhancement on the

documentation and GUI user-friendliness, though.
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3.2 The CFD simulation for the heat sink

The Computational Fluid Dynamics simulations, in general, are composed of the

steps enumerated below. Hence, the implementation performed in this present works is

also described.

1. Define the geometry to be analyzed.

The geometry and the mesh of the heat sink simulation were generated using the open-

source mesh generator Gmsh. After setting the characteristic length of the base of the

HS, the other dimensions were defined following this parameter by the aspect ratio.

The developed script allows us to define the number and shape of the fins, rectangular,

triangular, or parabolic, and generate multiple different geometries using the same

code.

2. Generate the mesh from the geometric model

The 3D mesh was generated using the Graphical User Interface (GUI) of Gmsh. The

software generates triangular and tetrahedral elements by default because it gener-

ates unstructured meshes. Unstructured meshes are well suited for handling arbi-

trary shape geometries, especially for domains having high curvature boundaries (TU;

YEOH; LIU, 2018). When the geometry does not present curve complexities, however,

structured meshes are preferred because this type of mesh allows easy data manage-

ment and connectivity to occur regularly, which makes programming easy. The con-

nectivity is straightforward as the adjacent cells to a given elemental face are identi-

fied by the indices, and the cell edges form continuous mesh lines that begin and end

on opposite elemental faces. Because the heat sink geometric model is composed of

squared and rectangular sides, the elements were recombined to generate quadrilat-

eral shapes.

3. Define the problem solution:

(a) Mathematical model

One advantage of the OpenFOAM package is the implementation of several mul-

tiphysics solvers and tutorials. The chosen solver used in the simulation was

the laplacianFoam. This application solves the Laplace equation for unsteady,

isotropic diffusion.

(b) Boundary conditions

The same boundary conditions applied in the analytical problem were imple-

mented in the OpenFOAM simulation. This convective boundary condition, con-

sidering the combined heat transfer coefficient and T f , was applied at the base’s
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top and in the fins wet area. The source heat flux from the heated chip was in-

troduced at the base’s bottom boundary as a fixed constant gradient. The other

boundaries were considered as zeroGradient.

(c) Spatial and Temporal discretization schemes

The Euler discretization is used on the temporal scheme and the Gauss linear is

used on the spatial scheme.

4. Process the problem:

Run the solver on the meshed geometry using the defined boundary and initial condi-

tions. Version 7 of OpenFOAM was used for the simulation.

5. Visualization and interpretation of results:

The post-processing analysis of the simulations is performed using the opensource

software paraview. This step is described in the Results section.
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4 RESULTS

This chapter provides results and analysis from the formulations and methodologies

presented in the previous chapters. Heat sinks have wide heat transfer enhancement ap-

plications, different scales of passive heat exchanger devices can then be found in the in-

dustry. The present work handles with dimensionless parameters and part of the selected

values were based on the examples from the work of Lehtinen (2005) and Mosayebidorcheh

et al. (2015). Dimensionless formulations reduce the number of parameters in the problem

with a clearer perspective about the effect of these key-parameters on the overall problem

(CORRÊA, 2018). Table 1 indicates the heat sink dimensions considering two different in-

dustry applications: for overheated chips in electronics cooling, and to promote a better

heat transfer for photovoltaic cell in photovoltaics efficiency enhancement (POPOVICI et al.,

2016). Heat sinks in mm-scale and cm-scale are usually used in those cases, respectively.

Figure 9 is shown again aiming a clearer view of the chosen dimensions.

4.1 Formulations comparison and CITT convergence

The objective of this section is to present the 2Dbase-1Dfin and 3Dbase-2Dfin formu-

lations results. The same values for the parameters, source heat flux, and six-equally spaced

fins are considered in both formulations. The fins are enumerated from left to right, the fin

whose initial edge is in ξ= 0 is enumerated as 1 and the fin whose final edge is in ξ= 1 is enu-

merated as 6. This layout is presented in Table 2, also with an illustrating scheme. Because

all the fins have the same properties, dimensions, and convection rates, they are considered

equal to each other. The thermal properties of aluminum were considered for the heat sink

and the air is the cooling fluid at 25oC. For this layout, the αavg = 0.76.

The heated chip, in this case, occupies the entire HS bottom base surface domain

with the constant heat flux of q̇ ′′
o = 2000 W/m2. Table 3 shows the selected dimensionless

values for the approach on both photovoltaic case and electronic case heat sinks. More de-

tails about the chosen values are explained in Appendix A.

4.1.1 cm-scaled heat sink

The first heat sink case is cm-scaled and simulates an application in the photovoltaics

(PV) industry, reasoning the case’s name, although this type of heat sink may be also used in

several engineering fields.

Figure 14 presents the thermal profile of the base and fins for the cm-scaled heat sink
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Table 1 - Heat sink design parameters for photovoltaics and electronics applications. The fin

thickness δ is defined as 0.04×W and two different fin height are used in this chapter:

Ha = 0.8×W and Ha = 1.0×W , where W is the HS width. Figure 9 is shown again.

cm-scaled HS mm-scaled HS
L 20 cm L 10 mm

W 20 cm W 10 mm
H 2 cm H 1 mm

W

L

H

Ha

s
δ

ζ
η

ξ

Table 2 - Six-fin heat sink layout. The dark blue strips indicate the location of the fins while the

channels are indicated in yellow. δ is defined as 0.04×W , ξi and ξ f indicate the fin

edges. W is the HS width.

Fin 1 2 3 4 5 6
ξi 0 0.192 0.384 0.576 0.768 0.96
ξ f 0.04 0.232 0.424 0.616 0.808 1

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

ξ

η
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Table 3 - Dimensionless parameters for the formulations results using the thermal properties

of aluminum as the HS material and air as cooling fluid at 25oC. The aspect ratios

β,γ,βa , and γa are the same for both photovoltaics and electronics heat sink. The

photovoltaics heat sink presents, conversely, higher values for the

convective-parameters BiH ,BiHaβa , and ma than the electronics HS. The fin height is

Ha = 0.8×W , where W is the HS width.

cm-scaled case HS mm-scaled case HS

3D Base-2D Fin 2D Base-1D Fin 3D Base-2D Fin 2D Base-1D Fin

BiH = 8.03×10−4 BiH = 8.03×10−4 BiH = 1.965×10−5 BiH = 1.965×10−5

β= γ= 0.1 β= 0.1 β= γ= 0.1 β= 0.1

A1 = 8.0×10−6 A1 = 8.0×10−6 A1 = 4.0×10−7 A1 = 4.0×10−7

A2 = 1.0×10−6 A2 = 1.0×10−6 A2 = 5.0×10−8 A2 = 5.0×10−8

BiHaβa = 0.12848 ma = 0.52 BiHaβa = 0.003144 ma = 0.08

γa = 0.8 γa = 0.8

considering the heated chip attached to the base. The inlet heat flux presents constant inten-

sity and the same length and width dimensions of the HS base. The heat transfer coefficient

is 3 and 5.03 for radiation and convection, respectively, which leads to the combined heat

transfer coefficient as 8.03W/m2K.

The results in Figure 14 confirm a similar behavior of heat dissipation in the heat sink

base using the different formulations. A kindred thermal profile can be observed for the

fins in Figures 14a and 14b. The six-fin layout is symmetric, the fins located in the middle

of the domain, 2-5 and 3-4, present higher temperatures, also observing the proximity of

these fins curves at Figures 14a-14b. Analyzing the isotherms for the thermal profile of the

base on Figures 14c and 14d, the source of heat flows from the bottom of the base, the heat

dissipation is majorly promoted by the fins at the top of the base. It must be noticed the

existence of aspect ratio in the Figures 14c and 14d, for a better examination of the achieved

results, the results are shown in a square plot. The temperature range of the base is shown at

the right of the contour plots.

Heatlines (DENG; TANG, 2002) are also shown with isotherms in Figure 14d. Isotherms

of the primitive variables, such as temperature, velocity, or pressure, are important to visu-

alize the levels of the variables through the domain (COSTA, 1999). Stream functions and

streamlines are widely used tools to visualize the momentum transport of fluid flow. To ob-

serve the heat transfer by fluid flow, Kimura and Bejan (1983) introduced in 1983 the energy

analog concept of heat function and heatlines. Heatlines complement the visualization of

the energy flow in the domain and have been used in different types of problems like con-

vective heat transfer, reactive and turbulent flows (MAHAPATRA et al., 2018).

For the heat sink problem, a simplified heat function considering only heat conduc-

tion at the HS’s base is considered for better visualization of the heat fluxes from the heated

chip to the coupled fins.
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Figure 14 - Temperature field Θ for the cm-scaled case heat sink comparing the 2Dbase-1Dfin and

the 3Dbase-2Dfin formulations. The solutions were calculated for nmax = 500 and

kmax = 128000, respectively. The six-fin layout is symmetrical.
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(a) Thermal profile of the fins considering the
1D formulation.
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(b) Thermal profile of the fins considering the
2D formulation.
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(c) Thermal profile of the base considering the 2D
formulation.
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(d) Thermal profile of the base considering the 3D
formulation for η= 0.5 and heatlines.
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Table 4 - CITT Convergence Table of the temperature at the fin-base contact-interface for the

cm-scaled heat sink case. The six-fin layout is symmetric. nmax are the terms summed for

the 2D base, and kmax refers to the summed sorted terms for the 3D base.

Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6
nmax 2Dbase-1DFin

50 0.246253 0.248338 0.249199 0.249199 0.248338 0.246253
100 0.246241 0.248353 0.249215 0.249215 0.248353 0.246241
200 0.246243 0.248350 0.249212 0.249212 0.248350 0.246241
300 0.246241 0.248347 0.249209 0.249209 0.248347 0.246241
400 0.246244 0.248350 0.249211 0.249211 0.248350 0.246244
500 0.246244 0.248349 0.249211 0.249211 0.248349 0.246244
600 0.246244 0.248349 0.249211 0.249211 0.248349 0.246244
700 0.246244 0.248349 0.249211 0.249211 0.248349 0.246244
kmax 3Dbase-2DFin
1800 0.257256 0.259322 0.260176 0.260176 0.259322 0.257256
3200 0.257235 0.259337 0.260195 0.260195 0.259337 0.257235
5000 0.257233 0.259340 0.260200 0.260200 0.259340 0.257233
6050 0.257231 0.259341 0.260200 0.260200 0.259341 0.257231
7200 0.257232 0.259339 0.260199 0.260199 0.259339 0.257232
9800 0.257239 0.259334 0.260194 0.260194 0.259334 0.257239

11250 0.257238 0.259334 0.260194 0.260194 0.259334 0.257238
12800 0.257239 0.259334 0.260194 0.260194 0.259334 0.257239

The heatlines for the base of the heat sinks are obtained by:

q̇ ′′
z =−k

∂T

∂z
→ q̇ ′′

ζ =−k∆T

H

∂Θ

∂ζ
=− 1

A2

∂Θ

∂ζ
(136)

q̇ ′′
x =−k

∂T

∂x
→ q̇ ′′

ξ =−k∆T

L

∂Θ

∂ξ
=− 1

A3

∂Θ

∂ξ
(137)

The heatlines in Figure 14d indicate the heat leaving the heated chip source, and con-

verging at the fins’ proximities.

The CITT convergence at the fin-base interface is shown at the middle position of the

six fins in Table 4. As can be seen, the 2Dbase-1Dfin CITT methodology obtains the six-digit

convergence summing 500 terms. For the 3Dbase-2Dfin CITT methodology, however, more

terms need to be added because of the double summation and, therefore, it was necessary

to sum 12800 in order to achieve the six-digit convergence.

The solutions in Figure 14 have several similarities for both the base and the fins,

despite the use of a more simplified formulation (2Dbase-1Dfin). The dimensionless tem-

perature magnitudes in Table 4, however, exhibit small variations between the formulations.

This effect can be explained by obtaining the fin-base contact interface heat fluxes q̇ ′′
i c .
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4.1.2 Fin-base contact interface heat flux

The results for the CITT were based on the contact-interface heat fluxes q̇ ′′
i c conver-

gence. Before the fin-base coupling step, the base solutions were summed to a maximum

value, and the truncated temperature field was compared with the fin solution, as well as

the fin-base heat fluxes(q̇ ′′
base = q̇ ′′

fin). For the 2D base, the maximum value was indicated by

nmax. For the 3D base, the solution was summed until the maximum value of kmax = n2
max÷2,

after the reordering procedure, where nmax is the number of summed values for the 2D fin

solution. The Tables 5 and 6 show the q̇ ′′
i c j

convergence for the j = 6 fins.

The results from Table 5 demonstrate that the six-digit convergence was easily achieved

using the 2Dbase-1Dfin formulation. This precision was achieved after summing 500 terms

for the cm-scaled case. For the 3Dbase-2Dfin formulation, the results achieved a six-digit

convergence precision after summing 12800 terms. The necessity of having more terms is

justified by the double transformation of the 3D base and the coupling using truncated re-

sults for the 2D fins and the 3D base.

Different behavior is observed in the results from Table 6, where the six-digit con-

vergence for both formulations required fewer terms summed for the mm-scaled case. The

2Dbase-1Dfin formulation converged with 100 terms and 4050 terms for most positions us-

ing the 3Dbase-2Dfin formulation for the electronic heat sink case.

The relative deviation percentage is used to verify the accuracy between the analytical

methodologies and is described as:

%Rε=
q̇ ′′

i c2D1D
− q̇ ′′

i c3D2D

q̇ ′′
i c2D1D

×100 (138)

where q̇ ′′
i c2D1D

is the converged value of 2Dbase-1Dfin with nmax = 500 and q̇ ′′
i c3D2D

is the value

for each one of the described kmax.

As can be seen, the relative deviation is paltry, between 0.128016% and 0.386216%.

However, as the heat fluxes hit high intensities as 7×103, a small variation in the temperature

field between the 2Dbase-1Dfin and 3Dbase-2Dfin formulations is exposed on Tables 7 and

8.

The more complete physical modeling, the more accurate is implemented formula-

tion. For this reason, the results from the 3Dbase-2Dfin formulation are the most accurate.
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Table 5 - Convergence Table of the contact interface heat flux q̇ ′′
i c for the cm-scaled heat sink case.

For the 2D base, the solution is summed for nmax values before performing the fin-base

coupling. The underlined terms indicate the six-digit convergence achieved. The

kmax = n2
max ÷2 highest sorted terms were summed in the 3D base inversion, where nmax is

the number of terms summed in the 2D fin inversion. The six-fin layout is symmetric and,

consequently, q̇ ′′
i c1

= q̇ ′′
i c6

, q̇ ′′
i c2

= q̇ ′′
i c5

, and q̇ ′′
i c3

= q̇ ′′
i c4

. The relative deviation is calculated

between the converged value of 2Dbase-1Dfin with nmax = 500 and each one of the

described kmax for the 3Dbase-2DFin. The more terms are summed for the 3Dbase-2Dfin,

the lower is the relative deviation among the fins.

q̇ ′′
i c1

q̇ ′′
i c2

q̇ ′′
i c3

q̇ ′′
i c4

q̇ ′′
i c5

q̇ ′′
i c6

nmax 2Dbase-1Dfin
50 7646.28 7711.01 7737.75 7737.75 7711.01 7646.28

100 7645.90 7711.49 7738.25 7738.25 7711.49 7645.90
200 7645.98 7711.40 7738.16 7738.16 7711.40 7645.98
300 7645.99 7711.38 7738.14 7738.14 7711.38 7645.99
400 7646.00 7711.38 7738.14 7738.14 7711.38 7646.00
500 7646.00 7711.38 7738.13 7738.13 7711.38 7646.00
600 7646.00 7711.38 7738.13 7738.13 7711.38 7646.00
700 7646.00 7711.38 7738.13 7738.13 7711.38 7646.00
kmax 3Dbase-2Dfin

50 7613.93 7686.63 7714.06 7714.06 7686.63 7613.93
200 7617.18 7684.32 7711.45 7711.45 7684.32 7617.18
450 7620.86 7683.04 7708.38 7708.38 7683.04 7620.86
800 7621.17 7682.52 7707.91 7707.91 7682.52 7621.17

1250 7620.86 7682.47 7707.94 7707.94 7682.47 7620.86
1800 7621.20 7682.40 7707.75 7707.75 7682.40 7621.20
2450 7621.07 7682.59 7707.88 7707.88 7682.59 7621.07
3200 7620.59 7682.86 7708.26 7708.26 7682.86 7620.59
4050 7620.47 7682.92 7708.42 7708.42 7682.92 7620.47
5000 7620.52 7682.94 7708.42 7708.42 7682.94 7620.52
6050 7620.44 7682.98 7708.42 7708.42 7682.98 7620.44
7200 7620.49 7682.91 7708.37 7708.37 7682.91 7620.49
9800 7620.68 7682.75 7708.25 7708.25 7682.75 7620.68

11250 7620.65 7682.76 7708.25 7708.25 7682.76 7620.65
12800 7620.67 7682.75 7708.25 7708.25 7682.75 7620.67
kmax Relative deviation between formulations

50 0.419523% 0.320931% 0.311090% 0.311090% 0.320931% 0.419523%

200 0.376990% 0.350799% 0.344786% 0.344786% 0.350799% 0.376990%

450 0.328858% 0.367393% 0.384544% 0.384544% 0.367393% 0.328858%

800 0.324770% 0.374135% 0.390556% 0.390556% 0.374135% 0.324770%
1250 0.328765% 0.374833% 0.390259% 0.390259% 0.374833% 0.328765%

1800 0.324381% 0.375716% 0.392669% 0.392669% 0.375716% 0.324381%

2450 0.326041% 0.373255% 0.390971% 0.390971% 0.373255% 0.326041%

3200 0.332406% 0.369831% 0.386121% 0.386121% 0.369831% 0.332406%

4050 0.333902% 0.368961% 0.383959% 0.383959% 0.368961% 0.333902%
5000 0.333332% 0.368762% 0.384034% 0.384034% 0.368762% 0.333332%
6050 0.334264% 0.368244% 0.384044% 0.384044% 0.368244% 0.334264%
7200 0.333597% 0.369132% 0.384617% 0.384617% 0.369132% 0.333597%
9800 0.331192% 0.371176% 0.386230% 0.386230% 0.371176% 0.331192%

11250 0.331504% 0.371068% 0.386230% 0.386230% 0.371068% 0.331504%
12800 0.331180% 0.371149% 0.386216% 0.386216% 0.371149% 0.331180%
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Table 6 - Convergence Table of the contact interface heat flux q̇ ′′
i c for the mm-scaled heat sink case.

For the 2D base, the solution is summed for nmax values before performing the fin-base

coupling. The underlined terms indicate the six-digit convergence achieved. The

kmax = n2
max ÷2 highest sorted terms were summed in the 3D base inversion, where nmax is

the number of terms summed in the 2D fin inversion. The six-fin layout is symmetric and,

consequently, q̇ ′′
i c1

= q̇ ′′
i c6

, q̇ ′′
i c2

= q̇ ′′
i c5

, and q̇ ′′
i c3

= q̇ ′′
i c4

. The relative deviation is calculated

between the converged value of 1DFin-2Dbase with nmax = 500 and each one of the

described kmax for the 3Dbase-2DFin. The more terms are summed for the 3Dbase-2DFin,

the lower is the relative deviation among the fins.

q̇ ′′
i c1

q̇ ′′
i c2

q̇ ′′
i c3

q̇ ′′
i c4

q̇ ′′
i c5

q̇ ′′
i c6

nmax 2Dbase-1DFin
50 7729.26 7730.97 7731.69 7731.69 7730.97 7729.26

100 7729.25 7730.98 7731.70 7731.70 7730.98 7729.25
200 7729.25 7730.98 7731.70 7731.70 7730.98 7729.25
300 7729.25 7730.98 7731.70 7731.70 7730.98 7729.25
400 7729.25 7730.98 7731.70 7731.70 7730.98 7729.25
500 7729.25 7730.98 7731.70 7731.70 7730.98 7729.25
kmax 3Dbase-2DFin

50 7719.17 7721.15 7721.91 7721.91 7721.15 7719.17
200 7719.26 7721.09 7721.84 7721.84 7721.09 7719.26
450 7719.36 7721.06 7721.76 7721.76 7721.06 7719.36
800 7719.37 7721.05 7721.75 7721.75 7721.05 7719.37

1250 7719.36 7721.04 7721.75 7721.75 7721.04 7719.36
1800 7719.37 7721.04 7721.74 7721.74 7721.04 7719.37
2450 7719.37 7721.05 7721.75 7721.75 7721.05 7719.37
3200 7719.35 7721.05 7721.76 7721.76 7721.05 7719.35
4050 7719.35 7721.06 7721.76 7721.76 7721.06 7719.35
5000 7719.35 7721.06 7721.76 7721.76 7721.06 7719.35
6050 7719.35 7721.06 7721.76 7721.76 7721.06 7719.35
7200 7719.35 7721.06 7721.76 7721.76 7721.06 7719.35
9800 7719.35 7721.05 7721.76 7721.76 7721.05 7719.35

11250 7719.35 7721.05 7721.76 7721.76 7721.05 7719.35
12800 7719.35 7721.05 7721.76 7721.76 7721.05 7719.35
kmax Relative deviation between formulations

50 0.130376% 0.127153% 0.126634% 0.126634% 0.127153% 0.130376%

200 0.129244% 0.127940% 0.127508% 0.127508% 0.127940% 0.129244%

450 0.127948% 0.128370% 0.128588% 0.128588% 0.128370% 0.127948%

800 0.127836% 0.128545% 0.128742% 0.128742% 0.128545% 0.127836%

1250 0.127942% 0.128560% 0.128728% 0.128728% 0.128560% 0.127942%

1800 0.127822% 0.128585% 0.128797% 0.128797% 0.128585% 0.127822%

2450 0.127868% 0.128521% 0.128753% 0.128753% 0.128521% 0.127868%
3200 0.128041% 0.128430% 0.128622% 0.128622% 0.128430% 0.128041%

4050 0.128082% 0.128408% 0.128565% 0.128565% 0.128408% 0.128082%
5000 0.128066% 0.128403% 0.128568% 0.128568% 0.128403% 0.128067%
6050 0.128099% 0.128380% 0.128559% 0.128559% 0.128380% 0.128099%
7200 0.128082% 0.128403% 0.128573% 0.128573% 0.128403% 0.128082%
9800 0.128016% 0.128457% 0.128616% 0.128616% 0.128457% 0.128016%

11250 0.128025% 0.128454% 0.128616% 0.128616% 0.128454% 0.128025%
12800 0.128016% 0.128457% 0.128616% 0.128616% 0.128457% 0.128016%
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Table 7 - Temperature field Θ for the cm-scaled heat sink case with nmax = 500 and kmax = 12800. The

fins’ locations ξi and ξ f are indicated on Table 2, and ξavg = (ξi +ξ f )÷2.

Position Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6 Description
2Dbase-1Dfin

Θfin(1) 0.216331 0.218181 0.218938 0.218938 0.218181 0.216331 Top of fin
Θfin(0) 0.246244 0.248349 0.249211 0.249211 0.248349 0.246244 Bottom of fin

Θbase(ξavg,1) 0.246244 0.248349 0.249211 0.249211 0.248349 0.246244 Top of Base
Θbase(ξavg,0) 0.250057 0.251565 0.252433 0.252433 0.251565 0.250057 Bottom of Base

3Dbase-2Dfin
Θfin(0.5,1) 0.227392 0.229244 0.230005 0.230005 0.229244 0.227392 Top of fins
Θfin(0.5,0) 0.257239 0.259334 0.260194 0.260194 0.259334 0.257239 Bottom of fins

Θbase(ξavg,0.5,1) 0.257239 0.259334 0.260194 0.260194 0.259334 0.257239 Top of Base
Θbase(ξavg,0.5,0) 0.261050 0.262554 0.263421 0.263421 0.262554 0.261050 Bottom of Base

Table 8 - Temperature field Θ for the mm-scaled heat sink case with nmax = 500 and kmax = 12800.

The fins’ locations ξi and ξ f are indicated on Table 2, and ξavg = (ξi +ξ f )÷2.

Position Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6 Description
2Dbase-1Dfin

Θfin(1) 0.482563 0.482671 0.482716 0.482716 0.482671 0.482563 Top of fins
Θfin(0) 0.484108 0.484217 0.484262 0.484262 0.484217 0.484108 Bottom of fins

Θbase(ξavg,1) 0.484108 0.484217 0.484262 0.484262 0.484217 0.484108 Top of Base
Θbase(ξavg,0) 0.484300 0.484377 0.484422 0.484422 0.484377 0.484300 Bottom of Base

3Dbase-2Dfin
Θfin(0.5,1) 0.490539 0.490647 0.490692 0.490692 0.490647 0.490539 Top of fins
Θfin(0.5,0) 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082 Bottom of fins

Θbase(ξavg,0.5,1) 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082 Top of Base
Θbase(ξavg,0.5,0) 0.492274 0.492351 0.492396 0.492396 0.492351 0.492274 Bottom of Base

Tables 7 and 8 show the final temperature using both formulations at key positions:

the ζ-edges of the base and fins. As expected by the perfect contact at the fin-base coupling,

Θfin(0) = Θbase(ξavg,1) and Θfin(0.5,0) = Θbase(ξavg,0.5,1). The symmetric problem is once

again exhibited by the fins temperature, Θat 1stfin =Θat 6thfin, Θat 2ndfin =Θat 5thfin andΘat 3rdfin =
Θat 4thfin.
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Figure 15 - Fin-base contact-interface heat fluxes q̇ ′′
i c . For the case where the heated chip occupies

the whole base surface domain, the problem does not vary in η-direction. The six-fin

layout is symmetric and, consequently, q̇ ′′
i c1

= q̇ ′′
i c6

, q̇ ′′
i c2

= q̇ ′′
i c5

, and q̇ ′′
i c3

= q̇ ′′
i c4

.
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(a) Heat fluxes in the cm-scaled case.
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(b) Heat fluxes in the mm-scaled case.

It is important to notice, for this first section 4.1, the heated chip heat flux does

not vary in η-direction and, consequently, this problem preserves the same behavior on the

width domain. Consequently, the heat fluxes do not vary in the η-direction, as can be seen

in Figure 15, for both photovoltaic and electronic cases.

Another interesting remark in Figures 15a and 15b is the heat flux intensities passing

through the fins. For both cases, lower intensities are noticed in the fins 1 and 6, compared

with the other fins. For the cm-scaled heat sink case 15a, however, there is a significant

intensity range between the middle-domain fins to the edge-domain fins. This behavior

is not seen in the cm-scaled heat sink case 15b, where the heat fluxes fit a less expressive

magnitude range.

4.1.3 mm-scaled heat sink

The mm-scaled heat sink is a necessity from the electronics industry and several en-

gineering fields, which require heat dissipation from heated components to ensure the safe

and efficient performance of these systems.

Figure 16 presents the thermal profile of the base and fins. Once again, the chip has

the same length and width dimensions of the HS base. The heat transfer coefficients are

3 for radiation and 0.93 for convection, which leads, in this problem, to the utilization of

the combined heat transfer coefficient as 3.93W/m2K. One of the consequences of using a

lower heat transfer coefficient is a less expressive temperature reduction on the heat sink

profile, which is remarked on the thermal profile amplitudes of Figure 16. This behavior is

also applicable to the heat flux intensities passing through the fins, Figure 15b.
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Figure 16 - Temperature field Θ for the mm-scaled heat Sink comparing the 2Dbase-1Dfin and the

3Dbase-2Dfin formulations. The solutions were calculated for nmax = 500 and

kmax = 12800, respectively. The six-fin layout is symmetrical. The temperature reduction

is less expressive than the previous photovoltaics case.
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(a) Thermal profile of the fins considering the 1D
formulation.
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(b) Thermal profile of the fins considering the 2D
formulation.
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(c) Thermal profile of the base considering the 2D
formulation.
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(d) Thermal profile of the base considering the 3D
formulation for η= 0.5 and heatlines.
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Table 9 - CITT Convergence Table of the temperature at the fin-base contact-interface for the

mm-scaled heat sink case using the 3Dbase-2Dfin methodology. The six-fin layout is

symmetric.

kmax Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6
1800 0.492083 0.492189 0.492234 0.492234 0.492189 0.492083
3200 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082
5000 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082
6050 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082
7200 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082
9800 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082

11250 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082
12800 0.492082 0.492190 0.492235 0.492235 0.492190 0.492082

The CITT convergence for the mm-scaled heat sink case is shown in Table 9. The di-

mensionless temperature field presented a similar convergence behavior as previously seen

in Table 6, a faster convergence rate to achieve the six-digit precision when compared with

the cm-scaled HS case.

4.1.4 Small heated chip heat sink case

The cm-scaled heat sink is shown in this case coupled to a small heated chip. The

constant intensity of q̇ ′′
o = 25 W/cm2 is illustrated in Figure 17b, with a surface area of 0.01×

W 2, based on the HS width W , and located at the bottom center of the base. The 2Dbase-

1Dfin formulation cannot be used in this problem because the source term varies in the

η-direction.

The same parameters on Table 3 for the cm-scaled heat sink case were used, the same

heat transfer coefficient 8.03 W/m2K is considered. The symmetric HS layout is shown in

Figure 17a and the contact-interface heat fluxes is shown of Figure 18. Figures 17 and 19

present the thermal profile for the 3D base and 2D fins, respectively.

A significant increase of the heat flux magnitude is noticed between η = 0.4 and η =
0.6, at the small chip location proximities, when Figure 18 is analyzed. The temperatures in

this region, consequently, are higher than in other parts of the HS, as can be seen in Figures

17c, 17d, 17e and 17f. Figure 17c exhibits the base’s thermal profile and heatlines directing to

the six fins for η= 0.5, it must be noticed also the existence of aspect ratio on the for a better

examination, the achieved results are shown in a square plot. Figure 17f also indicates the

position of the fins by examining the temperature reduction strips in the base contour plot

for ζ= 1.

The CITT convergence for the small heated chip case is shown in Table 10 at the fin-

base contact interface for the six fins. This case presents a difficulty to obtain the six-digit
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Figure 17 - Results for the 3D base of the seven-fin case. ξ, η, and ζ are the dimensionless length,

width, and height, respectively. The solutions were calculated for kmax = 12800. The

temperatures in the heated chip’s neighborhood are higher than in other parts of the HS.

Temperature reduction is noticed at the fins’ proximities. The heatlines 17c indicate the

fins positions at the top of the base.
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(a) Six-fin heat sink layout.
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(b) Chip intensity at the bottom of the 3D base.
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(c) Base’s isotherms and heatlines at η= 0.5.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

ξ

η

�����

�����

�����

�����

�����

�����

�����

(d) Thermal profile of the base at ζ= 0.
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(e) Thermal profile of the base at ζ= 0.5.
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(f) Thermal profile of the base at ζ= 1.
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Table 10 - CITT Convergence Table of the temperature at the fin-base contact-interface for the small

heated chip heat sink case using the cm-scaled heat sink. This case uses 3Dbase-2Dfin

formulation. The six-fin layout is symmetric.

kmax Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6
1800 0.314899 0.325671 0.356061 0.356061 0.325671 0.314899
3200 0.314879 0.325706 0.356171 0.356171 0.325706 0.314879
5000 0.314875 0.325721 0.356218 0.356218 0.325721 0.314875
6050 0.314871 0.325722 0.356212 0.356212 0.325722 0.314871
7200 0.314874 0.325717 0.356195 0.356195 0.325717 0.314874
9800 0.314882 0.325706 0.356162 0.356162 0.325706 0.314882

11250 0.314881 0.325706 0.356159 0.356159 0.325706 0.314881
12800 0.314882 0.325706 0.356163 0.356163 0.325706 0.314882

Figure 18 - Six-fin contact-interface heat fluxes q̇ ′′
i c for the cm-scaled heat sink with the small chip

attached at the center of the base’s bottom. A significant increase of the heat flux

magnitude can be noticed in the fins near the chip location. This problem is symmetric

and, consequently, q̇ ′′
i c1

= q̇ ′′
i c6

, q̇ ′′
i c2

= q̇ ′′
i c5

, and q̇ ′′
i c3

= q̇ ′′
i c4

.

��� ��� ��� ��� ���
η

����

�����

�����

�����

�����

���(η)
������� ��������� ���� ����� ���(η)

��� �

��� �

��� �

��� �

��� �

��� �

convergence especially for fins 3 and 4, near the heated chip’s location.

A 2D fin scheme is illustrated in Figure 19a to indicate the selected η positions for the

fins’ thermal profiles. The contact-interface heat fluxes q̇ ′′
i c for six fins are shown in Figure

18 with the small chip attached at the center of the base’s bottom. A significant increase of

the heat flux magnitude can be noticed in the fins near the chip location. This problem is

symmetric and, consequently, q̇ ′′
i c1

= q̇ ′′
i c6

, q̇ ′′
i c2

= q̇ ′′
i c5

, and q̇ ′′
i c3

= q̇ ′′
i c4

.

This small squared heat source case succeeds in exemplifying the importance of 2D-

Fin modeling. For sources where the heat flux is not uniform in the η-direction, the temper-

ature profile varies in distinct width positions, as can be seen in Figure 19. Fins 1, 2, 5, and

6 located far from the heat source present a similar behavior for different η-positions during

the fin’s length ζa . Fins 3 and 4 at the HS center, however, present an expressive tempera-

ture variation near the fin-base contact interface. The fins’ tip, however, converges to the

same temperature despite the η-position. Hence, it can be concluded that the temperature

variation in the fins’ width is more expressive in fins near non-uniform heat sources.
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Figure 19 - 2D fins thermal profile of the six-fin small heated chip case. The selected η-positions are

indicated by the blue vertical lines in 19a. The fins temperature varies for different η

positions, especially for fins located closer to the heated chip (fins 3 and 4) near the

fin-base contact interface.
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(a) 2D-fin scheme.
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(b) Thermal profile for fin 1.

��� ��� ��� ��� ���
ζ�

����

����

����

����

����

Θ
������� ������ ��� ��� �� � η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

(c) Thermal profile for fin 2.
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(d) Thermal profile for fin 3.
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(e) Thermal profile for fin 4.
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(f) Thermal profile for fin 5.
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(g) Thermal profile for fin 6.
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Table 11 - Number of elements for the different tested meshes used on the OpenFOAM simulations.

cm-scaled HS case mm-scaled HS case small heated chip HS case
Type Number of nodes Number of elements Number of nodes Number of elements Number of nodes Number of elements

40 35875 45904 35834 45862 26022 132066
60 104737 127454 104554 127454 77587 419003
80 233199 273358 233847 274014 166580 933767

100 429351 491516 429856 492026 290908 1639868

4.2 OpenFOAM mesh convergence and methodologies comparison

4.2.1 Mesh convergence

The heat sink cases in the previous section 4.1 are compared with simulations using

the CFD software OpenFOAM in this section.

Four different meshes were tested to evaluate the mesh convergence of the heat sink

for the cm-scaled heat sink, for the mm-scaled heat sink, and the small heated chip cm-

scaled heat sink cases. The grid size (W /R) is composed of W dimension, which is the heat

sink’s width, divided by the arbitrary number R, which represents the quantity of elements

lengths in one HS line, defined during the geometry creation. The mesh refinement was

performed increasing the R number, initially 40, then, 60, 80, and 100. The number of nodes

and elements for each tested mesh is shown in Table 11.

The mesh convergence is evaluated considering the relative error percentage between

two meshes. The relative error percentage (RεR ) was calculated as:

RεR =
∣∣∣∣TOpenFOAMR+20

−TOpenFOAMR

TOpenFOAMR+20

∣∣∣∣×100% (139)

where R indicates the mesh types 40,60 and 80. TOpenFOAMR+20
indicates the more refined

mesh type and TOpenFOAMR
the less refined mesh type results.
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Figure 20 - OpenFOAM mesh convergence. Four different meshes were tested, where the initial grid

size (W /R) is composed of the heat sink’s width W divided by the arbitrary number R.

The refinement was performed reducing the grid size, changing the initial arbitrary

number 40 to 60, 80, and 100. The meshes for the cm-scaled heat sink case are presented.

(a) Heat sink mesh for W ÷40 elements length. (b) Heat sink mesh for W ÷60 elements length.

(c) Heat sink mesh for W ÷80 elements length. (d) Heat sink mesh for W ÷100 elements length.

4.2.1.1 cm-scaled heat sink

Firstly, the results for the cm-scaled heat sink are presented. The meshes utilized

in this case are exhibited in Figure 20. Initially, a fewer elemented mesh 20a is used, then

followed by more refined meshes, 20b, 20c and 20d. Table 12 shows the achieved results, in

Kelvin, for the selected positions indicated in Figure 21 using OpenFOAM, for x and z. Figure

22 presents the relative error percentage between the meshes, calculated using Equation

(139), and indicates the relative error reduction as the mesh is refined.
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Figure 21 - Enumerated selected positions for mesh convergence for the cm-scaled heat sink case.

The 2D view indicates the x and z locations of each selected position. For the evaluated

cases in this section, the results do not vary in y-direction. Two positions are at the HS’s

base, one at the fin-base contact interface and two at the fins.

Table 12 - Temperature field TOpenFOAM at different positions (x, y, z) using OpenFOAM for the

cm-scaled heat sink case. The two first positions are located at the HS’s base, the third is

located at the fin-base contact interface, and the final positions at the HS’s fins. The

selected positions are indicated in Figure 21.

Type R T (0.1000,0.10,0) T (0.004,0.15,0.01) T (0.1576,0.08,0.02) T (0.196,0.18,0.05) T (0.0808,0.07,0.16)
Type 40 324.330 323.974 323.925 322.709 321.030
Type 60 324.229 323.857 323.828 322.660 321.094
Type 80 324.307 323.941 323.899 322.681 321.030

Type 100 324.296 323.925 323.890 322.690 321.052

As can be seen in Figure 22, the relative error percentage is reduced as the mesh is

refined, hence the mesh convergence is confirmed. The base and interface positions present,

also, a similar convergence behavior as the mesh is refined.

Figure 23 shows the heat sink and fins thermal profile for the most refined mesh, type

100, in the cm-scaled heat sink case. Analyzing Figure 23b, it can be noticed the temperature

profile poorly variation in y-direction. The thermal amplitude between the base’s bottom

and fin’s top is 3.546K.
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Figure 22 - Relative error percentage for the cm-scaled heat sink mesh refinement. The selected

positions converge as the mesh is refined. In special, the base, blue tones, and interface,

indicated in green, positions present a similar convergence behavior as the mesh is

refined.
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Figure 23 - Results for the six-fin for the cm-scaled heat sink case using OpenFOAM type 100.

(a) 2D view of the six-fin heat sink thermal profile.

(b) 3D view of the six-fin heat sink thermal profile.
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Table 13 - Temperature field TOpenFOAM at different positions (x, y, z) using OpenFOAM for the

mm-scaled heat sink case.

Type R T (0.004,0.001,0) T (0.007,0.0008,0.0005) T (0.0002,0.0004,0.0015) T (0.00596,0.00025,0.0090)
Type 40 347.237 347.233 347.190 347.069
Type 60 347.232 347.227 347.185 347.071
Type 80 347.236 347.231 347.189 347.069

Type 100 347.235 347.230 347.187 347.069

Figure 24 - Relative error percentage for the mm-scaled heat sink mesh refinement. The selected

positions converge as the mesh is refined.
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4.2.1.2 mm-scaled heat sink

The mesh convergence was also performed for the mm-scaled heat sink, SSE, case. In

this case, Table 13 shows the temperature fields for the different meshes using OpenFOAM.

Only four positions were selected for this case because of the less expressive temperature

variation among the domain. The temperature for the different positions and different mesh

types expresses a very small variation. Figure 24 confirms graphically the relative error per-

centage reduction as the mesh is refined with very low errors. Equation (139) was used to

calculate the relative error percentage.

Figure 25 shows the mm-scaled heat sink (HS) and fins thermal profile for the most

refined mesh, type 100. Previously mentioned in section 4.1.3, the HS thermal amplitude

does not achieve 0.2K.
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Figure 25 - Results for the six-fin for the SSE heat sink case using OpenFOAM type 100.

(a) 2D six-fin heat sink thermal profile.

(b) 3D six-fin heat sink thermal profile.
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Table 14 - Temperature field TOpenFOAM at different positions (x, y, z) using the OpenFOAM for the

small heated chip cm-scaled heat sink case. The first and second positions are located at

the HS’s base, the third is located at the fin-base contact interface, the fourth e fifth

positions are located at the HS’s fins. Positions 6 and 7 at the lower table are also located at

the HS’s base.

Type R T (0.1000,0.10,0) T (0.004,0.15,0.01) T (0.1576,0.08,0.02) T (0.196,0.18,0.05) T (0.0808,0.07,0.16) T (0.1000,0.10,0.01) T (0.1000,0.10,0.02)
Type 40 342.428 329.594 330.462 328.019 327.855 337.602 335.748
Type 60 342.958 329.527 330.321 328.049 327.792 337.326 335.672
Type 80 343.272 329.496 330.312 328.029 327.788 337.156 335.616

Type 100 343.495 329.506 330.328 328.036 327.774 337.136 335.612

Figure 26 - Relative error percentage for the small heated chip case mesh refinement. The selected

positions converge as the mesh is refined. The first HS position is exactly in the middle of

the HS bottom, the region under the heated chip heat flux. This position presented a

higher relative error. Positions 6 and 7, at the base, presented lower relative errors as the

mesh is refined.
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4.2.1.3 Small heated chip heat sink case

The final mesh convergence analysis is performed for the small heated chip heat sink

case. In this case, the cm-scaled heat sink receives the source heat from a small heated chip

at the base’s bottom. The heated chip dissipates the constant intensity of q̇ ′′
o = 25 W/cm2

from the schematic heated chip on Figure 17b, with a surface area of 0.01×W 2, based on

the HS width W , and located at the bottom center of the base. Table 14 shows the achieved

results, in Kelvin, for seven different positions. Figure 26 presents the relative error percent-

age between the meshes, calculated using equation (139). The mesh refinement indicates its

convergence as the relative error percentage is reduced.

As can be seen in Figure 26, the relative error percentage is reduced as the mesh is

refined, hence the mesh convergence is confirmed. The first position is located at the heat

chip contact interface z = 0 and presented a higher relative error percentage. Other positions

were analyzed for the same length and width (x = 0.1 and y = 0.1) but different heights.

Position 6 (0.1000,0.10,0.01) and 7 (0.1000,0.10,0.02) have the solutions converging as the

mesh is refined and present lower relative errors.
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Figure 27 - Results for the six-fin for the small heated chip heat sink case using OpenFOAM type 100.

(a) 2D bottom view of the six-fin heat sink thermal profile.

(b) 3D six-fin heat sink thermal profile.

Figure 27 shows the heat sink and fins thermal profile for the most refined mesh, type

100, in the cm-scaled heat sink case with the small heated chip. Analyzing Figure 27, it can

be noticed the notorious temperature variation along y-direction. The thermal amplitude

between the base’s bottom and fin’s top is 17.715K.
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4.2.2 Verification of the analytical methodology using OpenFOAM

After the mesh convergence verification, the results between the analytical and nu-

merical methodologies are compared. The objective is to verify the analytical approach,

which is based on the CITT solutions coupling using the 3Dbase-2Dfin formulations. The

cm-scaled heat sink case and the small heated chip heat sink case are verified.

The temperature field T , in Kelvin, is obtained from OpenFOAM. To compare with

CITT results, the dimensionless variable Θ is calculated using equation (140) for the CFD

simulation:

ΘOpenFOAM = TOpenFOAM −T f

∆T
(140)

where T f = 298K and ∆T = 100K.

4.2.2.1 cm-scaled heat sink case

Figure 28 shows the six fins thermal profiles for the cm-scaled heat sink case using

both methodologies. The CITT coupling solution for the 3Dbase-2Dfin and solved on sec-

tion 4.1.1, present their fins’ thermal profile in the continuum grayscale lines. The type 100

OpenFOAM simulation, solved in section 4.2.1.1 present their fins’ thermal profile by the

colored nodes. ζa indicates the fins’ dimensionless z−direction and Θ the dimensionless

temperature.

In this case, the η-variation is not expressive because of the uniform heat flux source

at the HS’s bottom. For this reason, Figure 28 shows one thermal profile for each fin solved

by OpenFOAM and, because the problem is symmetric, the CITT solutions are plotted in

similar fins pairs: Fin 1 = 6; Fin 2 = 5; and Fin 3 = 4.

Both solutions present a similar behavior and thermal amplitudes, with small devia-

tions, hence, the analytical methodology accuracy is confirmed.
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Figure 28 - Comparison between fins solutions OpenFOAM and CITT in the cm-scaled heat sink

case. The CITT solutions are indicated by the gray scaled lines. The fins thermal profiles

from the OpenFOAM type 100 simulation are indicated by the colored nodes.
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4.2.2.2 Small heated chip heat sink case

Figure 29 shows the fins’ profiles for the six-fin small heated chip case using the

cm-scaled heat sink. This case verifies the analytical methodology accuracy in different η-

positions. This problem is symmetric. The CITT coupling fins solutions for the 3Dbase-2Dfin

and solved in section 4.1.4 are indicated by the red-scaled lines. The fins thermal profiles

from the OpenFOAM type 100 simulation solved in section 4.2.1.3 are indicated by the blue-

scaled nodes.

The thermal behavior observed in Figure 19 is confirmed with the OpenFOAM veri-

fication. For sources where the heat flux is not uniform in the η-direction, the temperature

profile varies in distinct width positions, as can be seen in Figure 19. As previously observed,

fins located far from the heat source, 29b, indicate a similar behavior for different η-positions

during the fin’s length ζa . The thermal variation in the fins’ width is, then, more expressive

in fins near non-uniforms heat sources.

A small variation in the fins’ thermal profile is observed on Figures 29b and 29d. Once

again, analytical and numerical solutions present a similar behavior and thermal ampli-

tudes, with small deviations, hence, the analytical methodology accuracy is confirmed.
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Figure 29 - Comparison between CITT and OpenFOAM for different η-positions in the small heated

chip HS case. The CITT coupling fins solutions for the 3Dbase-2Dfin are indicated by the

red-scaled lines. The fins thermal profiles from the OpenFOAM type 100 simulation are

indicated by the blue-scaled nodes.
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4.2.3 Formulation limitation

The purpose of this current section is to show the analytical approach limitations.

The CITT and OpenFOAM solutions are compared during this evaluation.

4.2.3.1 One fin: cm-scaled heat sink case

One-fin heat sinks are considered with different thicknesses to evaluate if the ana-

lytical formulation is also valid. This case considers an uniform heat flux as the problem’s

heat source at the base’s bottom. δ = 0.04×W , δ = 0.1×W , δ = 0.15×W , and δ = 0.2×W

fin thicknesses are tested. Figure 30 presents these results. The left column images 30a,30d,

30g, and 30j show the temperature Θ for the 3D base solved using CITT and its heatlines for

η= 0.5. It must be noticed the existence of ratio aspect in the Figures 30a,30d, 30g, and 30j,

for a better examination of the achieved results. The heat sink composed by the δ= 0.1×W

fin presented the lowest maximum and minimum temperatures for the HS base.

The center column images 30c,30f, 30i, and 30l indicate the thermal profiles of the

overall heat sink using OpenFOAM. The lowest maximum temperature for the heat sink is

shown for δ= 0.1×W (30f). The lowest temperature for the fin’s top is, conversely, achieved

on the case with the thinnest fin with δ= 0.04×W , indicated in Figures 30b and 30c.

The right column images 30b,30e, 30h, and 30k show the CITT and OpenFOAM solu-

tions comparison. Figures 30b and 30e indicate a well-suited approximation between both

methodologies. Figure 30h demonstrates a fin-thickness limit where the analytical method-

ology is valid. Figure 30k, however, indicates the mismatch between the numerical and ana-

lytical methodologies.

In summary, Figure 30 shows that the limit thickness used in one-fin cm-scaled heat

sink cases solved using CITT is δ= 0.15×W . The analytical methodology, hence, is not valid

for greater thicknesses. The use of αavg, an average value for α when solving the base’s top

boundary condition, and the partial lumping in x-direction caused the miscalculation of the

heat sink temperature field, in these particular cases. The use of larger thickness in fins,

however, is less advantageous for heat dissipation and, consequently, do not have industrial

applications. This case considers an uniform heat flux as the problem’s heat source at the

base’s bottom.
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Figure 30 - Comparison between CITT and OpenFOAM (OF) solutions for one fin with different fin’s

thicknesses δ. At left, the CITT solution is shown for η= 0.5, the OF solution is at center

and the figure at right presents the fin’s thermal profile for both methodologies for ξ= 0.5

and η= 0.5.
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(d) HS base for δ= 0.1×W
using CITT.
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(g) HS base for δ= 0.15×W
using CITT.
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(j) HS base for δ= 0.2×W
using CITT.
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4.2.3.2 One fin: small heated chip heat sink case

One-fin heat sinks are also considered for the small heated chip heat sink case. In

this case, the cm-scaled heat sink receives the source heat from a small heated chip at the

base’s bottom. The heated chip dissipates the constant intensity of q̇ ′′
o = 25 W/cm2 from the

schematic heated chip on Figure 17b, with a surface area of 0.01×W 2, based on the HS width

W , and located at the bottom center of the base.

Once again, δ = 0.04×W , δ = 0.1×W , δ = 0.15×W , and δ = 0.2×W fin thicknesses

are tested in the cm-scaled heat sink to evaluate if the analytical formulation is also valid.

Figures 31 presents the thermal profile using OpenFOAM simulations, and Figure 32 present

the fins results for both CITT and OpenFOAM.

The comparison between OpenFOAM and CITT fins’ solutions on Figures 32a, 32b,

32c, and 32d indicate the analytical solution to be consistent with the numerical solution.
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Figure 31 - OpenFOAM one-fin heat sinks with small heated chip.

(a) One-fin heat sink with δ= 0.04×W . (b) 2D bottom of one-fin with δ= 0.04×W .

(c) One-fin heat sink with δ= 0.1×W . (d) 2D bottom of one-fin with δ= 0.1×W .

(e) One-fin heat sink with δ= 0.15×W . (f) 2D bottom of one-fin with δ= 0.15×W .

(g) One-fin heat sink with δ= 0.2×W . (h) 2D bottom of one-fin with δ= 0.2×W .
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Figure 32 - Fins’ thermal profile comparison between CITT and OpenFOAM solutions for different

fin’s thicknesses δ for the small heated chip case.
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Figure 33 - Comparison between CITT and OpenFOAM (OF) solutions non-symmetrical fins array.

Both fins have the same thickness δ= 0.1×W . At left, the CITT solution is shown for

η= 0.5, the OF solution is at center and the figure at right presents the fin’s thermal profile

for both methodologies.
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4.2.3.3 Non-simmetric fins array: cm-scaled heat sink case

A non-symmetric heat sink design 33b was tested to evaluate the accuracy of the an-

alytical methodology with a non-symmetric fins array. Two fins with δ = 0.1×W were con-

sidered for the cm-scaled heat sink, presenting different thermal profiles as can be seen in

Figure 33. A constant heat flux source q̇ ′′
o = 2000 W/m2 is considered at all the base’s bottom

domain.

Figure 33a presents the temperature field Θ and the heatlines for the HS’s base, Figure

33b shows the heat sink thermal profile using OpenFOAM, and the right 33c image presents

the comparison between the fins’ temperatures using both methodologies. It must be no-

ticed the existence of the aspect ratio in Figure 33a for a better examination of the achieved

results, where the results are shown in a square plot.

The CITT solution, in this case, is shown to be consistent with the numerical solution.

The same αavg = 0.8 was considered for the fin with δ= 0.2×W thickness, indicated in Figure

30k, and in this present case.
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Figure 34 - Non-symmetric contact-interface heat fluxes q̇ ′′
i c for the cm-scaled heat sink with the

small chip attached at the center of the base’s bottom.

0.2 0.4 0.6 0.8 1.0
η

8000

10 000

12 000

14 000

16 000

18 000

20 000
qic(η)
Contact interface heat fluxes qic(η)

Fin 1

Fin 2

4.2.3.4 Non-simmetric fins array: small heated chip heat sink case

The non-symmetric fins array is now evaluated for the small heated chip heat sink.

Once again, two fins with δ= 0.1×W were considered for the cm-scaled heat sink, presenting

different thermal profiles as can be seen in Figures 35c and 35d. The fin-base contact inter-

face heat fluxes is shown in Figure 34. Even though different curves modeled the fin-base

heat fluxes, the η-direction is symmetric for each fin.

Figures 35c and 35d show that CITT and OpenFOAM solutions are match mostly in

all the fins’ domain. Also, the base thermal profile for both methodologies are similar. The

CITT solution, in this case, is shown to be consistent with the numerical solution.

In summary, the analytical solution solved using CITT is consistent in most of the

studied cases. The CITT may present solution unconsistency in one-fin cases with large fin

thickness, δa > 0.15.
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Figure 35 - Comparison between CITT and OpenFOAM (OF) solutions for the non-symmetrical fins

array HS.

(a) OF heat sink thermal profile. (b) OF heat sink base for z = 0.
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4.2.4 Verification of the 2D fin formulation

Two-dimensional heat conduction is considered on the fins formulation after lump-

ing the x-direction. Since the thickness of the fin is much smaller when compared to its

height and width, this assumption is considered for the analytical solution.

The following Figure 36 aims to verify the lumping assumption. The temperature

variation in the six-fins thicknesses from the cm-scaled heat sink case is evaluated using

the OpenFOAM type 100 simulation in different heights ζa .The vertical axis indicates the

Θ dimensionless temperature for the six fins at three different positions, ζa =0.25, 0.5, and

0.75. The horizontal axis shows the thickness length of δ for the fins. The x-direction may

be considered lumped when the temperature at the thickness keeps a constant value during

its length of δ. Higher temperatures are noticed for the fins at the lower height, as well as the

fins located in the heat sink domain’s middle, fins 3, and 4. Fins located at the HS’s edge fins

1 and 6, and higher positions leads to a lower temperature field. The temperature maintains

as constant on the thickness for all fins. Then, the x-direction lumping is valid.

As can be seen, the temperature is maintained mostly constant during the fins thick-

ness for the different fins and at different positions. Hence, the two-dimensional heat con-

duction assumption on fins is valid.
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Figure 36 - Temperature field Θ in different positions at the fins’ thickness using the OpenFOAM

type 100 simulation. The horizontal axis shows the thickness length δ for the fins. The

vertical axis indicates the dimensionless temperature for the six fins at three different

positions ζa . The temperature mantains constant on the thickness for all fins.
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4.2.5 Base height evaluation

The heat transfer is now evaluated for different heat sink’s base heights. The purpose

is to analyze if the base should have a higher dimension to enhance heat transfer. Two cases

are once again considered:

cm-scaled heat sink case: An constant heat flux source q̇ ′′
o = 2000 W/m2 is considered at

all the base’s bottom domain. Figure 37 shows two heat sinks with different design

configurations. Both HS cases present six-fins with δ = 0.02×W and the same total

height, however, one case presents a higher base (H) with smaller fins’ height (Ha).

The left images 37a, 37c, and 37e refer to the heat sink with H = 0.1×W and Ha =
0.8×W . The right images 37b, 37d, and 37f refer to the heat sink with H = 0.2×W and

Ha = 0.7×W .

Small heated chip heat sink case: In this case, the cm-scaled heat sink receives the source

heat from a small heated chip at the base’s bottom. The heated chip dissipates the

constant intensity of q̇ ′′
o = 25 W/cm2 from the schematic heated chip on Figure 17b,

with a surface area of 0.01×W 2, based on the HS width W , and located at the bottom

center of the base.

For both cases, the lowest temperatures are noticed in the higher fins and smaller

base height heat sinks, Figures 37a; 37c; 37e for the cm-scaled HS, and 38a; 38c; 39a; 39c; 39e

for the small heat chip HS.

From this observation, the heat dissipation enhancement is promoted by larger fins’

transversal surfaces, with higher heights for the fins rather than a taller base’s height.
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Figure 37 - Heat transfer evaluation when the base height is changed. An constant heat flux source in

the base’s bottom is considered. CITT and OF solutions are shown with the same total HS

height but different heights for base and fins. As can be seen on the left figures, the higher

fins’ surface areas enhance thermal dissipation and, consequently, reduce the HS

temperatures.

(a) OF for H = 0.1×W . (b) OF for H = 0.2×W .
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Figure 38 - Heat transfer evaluation when the base height is changed for small heated chip case.

CITT and OF solutions are shown with the same total HS height but different heights for

base and fins. As can be seen on the left figures, the higher fins’ surface areas enhance

thermal dissipation and, consequently, reduce the HS temperatures.

(a) OF for H = 0.1×W . (b) OF for H = 0.2×W .
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Figure 39 - OpenFOAM one-fin heat sinks with small heated chip.
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4.3 Longitudinal fin profiles

The objective of this section is to present different longitudinal fin profiles with their

performance characteristics and evaluate the thermal enhancement promoted by the dis-

tinct fin geometries. Rectangular, triangular, and convex parabolic fins are evaluated. The

cm-scaled heat sink and the same heat transfer coefficient were considered in the different

heat sinks tested. An constant heat flux source q̇ ′′
o = 2000 W/m2 is considered for the bases’

bottom domain.

The performance characteristics are based on Bejan and Kraus (2003) and Çengel and

Ghajar (2011) for one-dimensional longitudinal fins.

Efficiency ηfin: Ratio of the heat transferred from the fin to the ideal heat transfer.

ηrectangular =
tanh(mHa)

mHa
(141)

ηtriangular =
I1(2mHa)

mHa I0(2mHa)
(142)

ηparabolic =
1

mHa

I2/3
(4

3 mHa
)

I−1/3
(4

3 mHa
) (143)

where m =
√

2h/(kδa), h is the heat transfer coefficient, k is the thermal conductivity,

δa is the fin thickness, and Ha is the fin’s height. I is a modified Bessel function. The

efficiency of these fin profiles are plotted as a function of mHa in Figure 40.

Fin effectiveness εfin: Ratio of the heat transfer from the fin to the heat that would be dissi-

pated from the same surface area without fin.

εfin = Afin

Abase
×ηfin, Afin = 2×Ha ×W, Abase = δa ×W (144)

where Afin is the fin’s wet area, Abase is the fin cross-sectional area and ηfin is the fin’s

efficiency. δa is the fin thickness, W is the HS base width and Ha is the fin’s height.

Heat sink effectiveness εHS: Ratio of the heat transfer from the heat sink to the heat that

would be dissipated from the HS without fins.

εHS =
(Afin ×ηfin ×nfin)+ (1−δa ×nfin)W ×L

W ×L
(145)

where nfin is the number of fins, δa is the fin thickness, W is the HS base width, and L

is the HS base length.

Table 15 evaluates the efficiency and effectiveness for the cm-scaled heat sink with

Ha = 0.16, 6 fins and mHa = 0.506912. The type 100 heat sink was simulated on OpenFOAM
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Figure 40 - Fin profiles as function of mHa . The rectangular fin presents the highest fin efficiency.
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Table 15 - Performance characteristics for different fin profiles. The cm-scaled heat sink was

considered with Ha = 0.16, 6 fins, and mHa = 0.506912.

Fin profile ηfin εfin εHS

Rectangular 0.922321 36.8928 9.80628
Triangular 0.890227 35.6202 9.50085
Parabolic 0.908894 36.3709 9.68102

with different fin profiles. The different geometries are compared in Figure 41 to show the

maximum and minimum temperatures achieved by the heat sinks.

As can be seen, the rectangular fin profile presents the highest parameters of fin ef-

ficiency and effectiveness for the fin and the heat sink. This conclusion is confirmed by an-

alyzing Figure 41. The most efficient fin profile must present the HS lowest temperature

range, which is 3.546K, 5.98K, and 4.927K for the rectangular, triangular, and parabolic heat

sinks, respectively. The rectangular profile 41a achieved the lowest range and temperature

at the bottom of the heat sink. The heat transfer enhancement promoted by the triangu-

lar shape 41b, which presented the lowest fin efficiency, achieved the highest temperature

range. From the results, the rectangular profile is the most efficient and effective fin shape,

hence, the most appropriate shape to obtain the lowest temperature at the neighborhood of

the heated chip.
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Figure 41 - Results for different shaped six-fin heat sinks using OpenFOAM type 100. The rectangular

profile presented the lowest temperature at the HS base’s bottom and the highest

temperature at the fins’ top. Conversely, the triangular fin shape presented the highest

temperature at the bottom of the base and the lowest temperature at the fins’ top.

(a) Rectangular fin geometry.

(b) Triangular fin geometry.

(c) Parabolic fin geometry.
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Figure 42 - Seven-fins contact-interface heat fluxes q̇ ′′
i c on the cm-scaled heat sink with the

non-symmetric chip attached at the center of the base’s bottom. A significant increase of

the heat flux magnitude can be noticed in the fins near the chip location, especially on

the fin 4.
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4.4 Non-symmetric cases.

4.4.1 Small heated chip with two different intensities

In this case, a non-symmetric heated chip is considered on the seven-fins cm-scaled

heat sink to evaluate the thermal behavior of heat sinks for non-symmetric cases. The same

heated chip from section 4.1.4 is considered dissipating a constant intensity of q̇ ′′
o = 25 W/cm2

in the right-half and q̇ ′′
o = 15 W/cm2 in the left-half, as shown in Figure 43b. The contact-

interface heat fluxes q̇ ′′
i c , in this case, are non-symmetric, as can be seen in Figure 42. The

thermal profiles for the base are presented in Figures 43c, 43d, 43e and 43f. The fins tem-

perature fields are presented in Figure 44. The thermal profiles for both base and fins are,

consequently, also non-symmetrical.
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Figure 43 - Results for the 3D base of the non-symmetric cm-scaled case. ξ, η, and ζ are the

dimensionless length, width, and height, respectively. The non-symmetric heated chip

caused non-symmetric thermal profiles for the HS’s base.
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(a) Symmetric seven-fin heat sink
layout.
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(b) Non-symmetric chip intensity at the bottom
of the 3D base.
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(c) Base’s isotherms and heatlines at η= 0.5.
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(d) Thermal profile of the base at ζ= 0.
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(e) Thermal profile of the base at ζ= 0.5.
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(f) Thermal profile of the base at ζ= 1.
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Figure 44 - Results for the 2D fins of the non-symmetric cm-scaled case. The non-symmetric heated

chip caused non-symmetric thermal profiles for all the HS’s fins, especially for the fins

located closer to the heated chip (fins 3,4 and 5).
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(a) 2D-fin scheme.
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(b) Thermal profile for fin 1.
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(c) Thermal profile for fin 2.

��� ��� ��� ��� ���
ζ�

����

����

����

����

����
Θ

������� ������ ��� ��� �� � η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

(d) Thermal profile for fin 3.
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(e) Thermal profile for fin 4.

��� ��� ��� ��� ���
ζ�

����

����

����

����

����

Θ
������� ������ ��� ��� �� � η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

(f) Thermal profile for fin 5.
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(g) Thermal profile for fin 6.
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(h) Thermal profile for fin 7.
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Table 16 - Temperature field Θ for the mm-scaled case with several non-symmetric hot spots on the

heated chip heat sink with kmax = 5000. ξi and ξ f are indicated on Table 2, and

ξavg = (ξi +ξ f )÷2.

Position Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6 Description
Θfin(0.5,1) 0.412752 0.412883 0.412956 0.412986 0.412991 0.412896 Top of fins
Θfin(0.5,0) 0.414066 0.41421 0.414282 0.414326 0.414307 0.414182 Bottom of fins

Θbase(ξavg,0.5,1) 0.414066 0.41421 0.414282 0.414326 0.414307 0.414182 Top of Base
Θbase(ξavg,0.5,0) 0.414214 0.414434 0.414432 0.414482 0.414479 0.414323 Bottom of Base

4.4.2 Heat sinks in solid-state electronics (SSE) with hot spots

A simulation for the electronics heat sink case in subsection 4.1.3 is now performed

considering also several hot spots in the heated chip. The hot spot effect, in electronics, is

caused during the electrical energy conversion and this problem was widely discussed and

several solid-state electronics (SSE) cases with hot spots were solved on (CORRÊA; CHAL-

HUB, 2017) and (CORRÊA, 2018).

The mm-scaled heat sink is considered in this case, and the heated chip dissipates

uniformly q̇ ′′
o = 1000 W/m2 in all the bottom base surface, as presented in blue on Figure

45a. Several hot spots are observed with different intensities.

The thermal profiles in Figures 45b, 45c and 45d indicate the several heated regions

and the thermal profile of the heat sink’s base. Hence, Figure 45e shows the non-symmetric

contact-interface heat fluxes for the six fins and Figure 46 shows the fins thermal profile. The

thermal profiles and Table 16 show a less expressive temperature reduction on the heat sink’s

thermal profile.
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Figure 45 - Results for the 3D base of the mm-scaled case with several non-symmetric hot spots on

the heated chip. ξ, η, and ζ are the dimensionless length, width, and height, respectively.

The non-symmetric hot spot intensities (W/m2) of a heated chip caused non-symmetric

thermal profiles for the HS’s base. A less expressive temperature reduction on the base’s

thermal profile in the subsection 4.1.3 is also noticed in this case.
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(a) Non-symmetric hot spot intensities at the
bottom of the 3D base.
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(b) Thermal profile of the base at ζ= 0.
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(c) Thermal profile of the base at ζ= 0.5.
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(d) Thermal profile of the base at ζ= 1.
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(e) Non-symmetric mm-scaled case contact-interface heat fluxes.
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Figure 46 - Results for the 2D fins of the non-symmetric mm-scaled case. A similar thermal behavior

between the 2D fins in different η-positions and a less expressive temperature reduction

on the fins thermal profile in the subsection 4.1.3 is also noticed in this case.
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(a) Thermal profile for fin 1.
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(b) Thermal profile for fin 2.

��� ��� ��� ��� ���
ζ�

������

������

������

Θ
������� ������ ��� ��� �� � η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

(c) Thermal profile for fin 3.
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(d) Thermal profile for fin 4.
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(e) Thermal profile for fin 5.
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(f) Thermal profile for fin 6.
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4.5 Heat transfer enhacement promoted by heat sinks

Finally, the objective of this section is to present different possibilities of heat transfer

enhancement promoted by heat sinks and temperature reduction.

The equally spaced cm-scale heat sink dissipates the constant intensity of q̇ ′′
o = 25

W/cm2 from the schematic heated chip on Figure 17b, with a surface area of 0.01×W 2, based

on the HS width W , and located at the bottom center of the base. This problem is symmetric

and the 2Dbase-1Dfin formulation cannot be used in this problem because the source term

varies in the η-direction.

The heat dissipation may be increased using a more conductive material, larger sur-

face area, or more fins. Table 17 indicates the parameters used for each case, which are:

1. Seven-fin cm-scale heat sink with the small heated chip, on Figures 47a, 48a, 49a, 50a,

51a, and 52.

The same parameters on Table 3 for the cm-scaled heat sink case were used and the

same heat transfer coefficient is considered. A significant increase of the heat flux

magnitude is noticed between η = 0.4 and η = 0.6, at the small chip location neigh-

bor, when Figure 47a is analyzed. The temperatures in heated chip neighborhoods

are, consequently, higher than in other parts of the HS, as can be seen in Figures 48a,

49a, 50a and 51a. Figure 51a also indicates the position of the fins by examining the

temperature reduction strips in the contour plot, especially at the fourth fin, whose

q̇ ′′
i c is indicated in green on Figure 47a. The fins located at the HS’s center, have a

higher variation in their thermal profiles for different η-width positions, especially in

centered fins 52d, 52e, and 52f.

2. Change the material thermal properties, on Figures 47b, 48b, 49b, 50b, 51b, and 53.

The more conductive material reduced the BiH , BiHaβa , A1 and A2 parameters justified

by the implementation of higher thermal conductivity. The expected effect analyzing

these new parameters is an efficient heat removal for the heated chip source and a less

efficient convective heat dissipation by the top of the base and fins.

3. Increase the fin’s height, on Figures 47c, 48c, 49c, 50c, 51c, and 54.

The longer extension of the fins increased all Ha-dependent parameters, which are

BiHaβa , A1 and γa . The enhancement consequence is a more efficient convective heat

dissipation promoted by the base’s top and fins.

4. Increase the number of fins, on Figures 47d, 48d, 49d, 50d, 51d, and 55.

The fins’ number increase reduced the channel’s spacing, consequently, reducing the

Biot parameters BiH and BiHaβa for each fin. It must be noticed the use of more fins,

in this case, still increased the convective heat dissipation in the overall heat sink.
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Table 17 - Dimensionless parameters for the seven-fin cm-scaled heat sink with the small

heated chip and the three different heat transfer improving mechanisms heat sinks.

Seven-fins heat sink Material’s change Fin’s height change Fin’s number change
BiH = 8.03×10−4 BiH = 4.015×10−4 BiH = 8.03×10−4 BiH = 7.97×10−4

β= γ= 0.1 β= γ= 0.1 β= γ= 0.1 β= γ= 0.1

A1 = 8.0×10−6 A1 = 4.0×10−6 A1 = 1.0×10−5 A1 = 8.0×10−6

A2 = 1.0×10−6 A2 = 5.0×10−7 A2 = 1.0×10−6 A2 = 1.0×10−6

BiHaβa = 0.12848 BiHaβa = 0.06424 BiHaβa = 0.20075 BiHaβa = 0.12752

γa = 0.8 γa = 0.8 γa = 1.0 γa = 0.8

αavg = 0.72 αavg = 0.72 αavg = 0.72 αavg = 0.60

Figure 47 - Contact-interface heat fluxes for the seven-fin cm-scaled heat sink, and using different

heat transfer improving mechanisms. A significant increase in the heat flux magnitude

can be noticed near the chip location. No expressive modification on q̇ ′′
i c is noticed by

material modification on 47b, and neither using a larger surface contact on 47c. The

more fins, the more heat is distributed by the fins and the lower are the q̇ ′′
i c intensities, as

seen on 47d.
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(a) Seven-fins cm-scaled heat sink.
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(b) Thermal properties similar to Copper.
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(c) HS with the fin’s height Ha = 1×W .
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(d) HS with 10 fins.
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Figure 48 - Base’s isotherms and heatlines at η= 0.5. ξ, η, and ζ are the dimensionless length, width,

and height. The three mechanisms succeeded in reducing the base’s temperature. The

10-fin mechanism achieved the lowest temperatures in the overall base, in 48d. Hence,

this higher quantity of fins promoted a more disperse flow on the system. Although the

more conductive material did not perform that temperature reduction at the overall HS,

this mechanism was very efficient in the heat removal from the heated chip, indicated by

the lower temperature at the chip-base contact region, in 48b. It must be noticed also the

existence of aspect ratio on the for a better examination, the achieved results are shown

in a square plot.
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(a) Seven-fins cm-scaled heat sink.
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(b) Thermal properties similar to Copper.
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(c) HS with the fin’s height Ha = 1×W .
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(d) HS with 10 fins.
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Figure 49 - Results for the bottom of the 3D base. ξ and η are the dimensionless length and width,

respectively, and ζ= 0. The three mechanisms succeeded in reducing the bottom base’s

temperature. The 10-fin mechanism achieved the lowest thermal amplitude. Although

the more conductive material did not perform that temperature reduction at the overall

HS, this mechanism was very efficient in heat removal from the heated chip region.
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(a) Seven-fins cm-scaled heat sink.
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(b) Thermal properties similar to Copper.
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(c) HS with the fin’s height Ha = 1×W .
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Figure 50 - Results for the bottom of the 3D base. ξ and η are the dimensionless length and width,

respectively, and ζ= 0.5. The three mechanisms succeeded in reducing the bottom base’s

temperature. The 10-fin mechanism achieved the lowest thermal amplitude values.
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(a) Seven-fins cm-scaled heat sink.
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(b) Thermal properties similar to Copper.
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(c) HS with the fin’s height Ha = 1×W .

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

ξ

η

������

������

������

������

������

������

������

(d) HS with 10 fins.



110

Figure 51 - Results for the bottom of the 3D base. ξ and η are the dimensionless length and width,

respectively, and ζ= 1. The three mechanisms succeeded in reducing the bottom base’s

temperature. The 10-fin mechanism achieved the lowest thermal amplitude values. Also,

the higher quantity of fins for the 10-fins HS caused a different isotherm profile.
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(a) Seven-fins cm-scaled heat sink.
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(b) Thermal properties similar to Copper.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

ξ

η

������

������

������

������

������

������

������

(c) HS with the fin’s height Ha = 1×W .
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Figure 52 - 2D fins thermal profile of the seven-fin cm-scaled heat sink with the small heated chip.

The selected η-positions are indicated by the blue vertical lines in 52a. The fins

temperature varies for different η positions, especially for fins located closer to the heated

chip (fins 3,4 and 5) near the fin-base contact interface.
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(a) 2D-fin scheme.
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(b) Thermal profile for fin 1.
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(c) Thermal profile for fin 2.
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(d) Thermal profile for fin 3.
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(e) Thermal profile for fin 4.
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(f) Thermal profile for fin 5.
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(g) Thermal profile for fin 6.
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(h) Thermal profile for fin 7.
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Figure 53 - 2D fins thermal profile of the seven-fin case with the material’s change.
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(a) 2D-fin scheme.
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(b) Thermal profile for fin 1.
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(c) Thermal profile for fin 2.
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(d) Thermal profile for fin 3.

��� ��� ��� ��� ���
ζ�

����

����

����

����

Θ
������� ������ ��� ��� �� � η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

(e) Thermal profile for fin 4.
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(f) Thermal profile for fin 5.

��� ��� ��� ��� ���
ζ�

�����

�����

�����

�����

Θ
������� ������ ��� ��� �� � η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

η=���

(g) Thermal profile for fin 6.
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(h) Thermal profile for fin 7.
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Figure 54 - 2D fins thermal profile of the seven-fin case with the fin’s height change.
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(a) 2D-fin scheme.
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(b) Thermal profile for fin 1.
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(c) Thermal profile for fin 2.
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(d) Thermal profile for fin 3.
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(e) Thermal profile for fin 4.
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(f) Thermal profile for fin 5.
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(g) Thermal profile for fin 6.
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(h) Thermal profile for fin 7.
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Figure 55 - 2D fins thermal profile of the seven-fin for the fins’ number change case. This problem is

symmetric.
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(a) 2D-fin scheme.
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(b) Thermal profile for fin 1=10.
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(c) Thermal profile for fin 2=9.
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(d) Thermal profile for fin 3=8.
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(e) Thermal profile for fin 4=7.
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(f) Thermal profile for fin 5=6.
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Table 18 - Θ temperature field Table for the seven-fin cm-scaled heat sink with the small heated chip

and using three different heat transfer improving mechanisms.

Position Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Fin 6 Fin 7 Description
Seven-fins cm-scaled heat sink with small heated chip

Θfin(0.5,1) 0.239813 0.244914 0.254654 0.264224 0.254654 0.244914 0.239813 Top of fins
Θfin(0.5,0) 0.272751 0.28038 0.299604 0.327962 0.299604 0.28038 0.272751 Bottom of fins

Θbase(ξavg,0.5,1) 0.272751 0.28038 0.299604 0.327962 0.299604 0.28038 0.272751 Top of Base
Θbase(ξavg,0.5,0) 0.276042 0.283365 0.305237 0.428365 0.305237 0.283365 0.276042 Bottom of Base

Change of material
Θfin(0.5,1) 0.250027 0.252795 0.258048 0.263179 0.258048 0.252795 0.250027 Top of fins
Θfin(0.5,0) 0.266995 0.270873 0.280576 0.294816 0.280576 0.270873 0.266995 Bottom of fins

Θbase(ξavg,0.5,1) 0.266995 0.270873 0.280576 0.294816 0.280576 0.270873 0.266995 Top of Base
Θbase(ξavg,0.5,0) 0.268671 0.272396 0.283380 0.344943 0.283380 0.272396 0.268671 Bottom of Base

Change in the fin’s height
Θfin(0.5,1) 0.188118 0.192862 0.201887 0.210734 0.201887 0.192862 0.188118 Top of fins
Θfin(0.5,0) 0.228639 0.236243 0.255411 0.283731 0.255411 0.236243 0.228639 Bottom of fins

Θbase(ξavg,0.5,1) 0.228639 0.236243 0.255411 0.283731 0.255411 0.236243 0.228639 Top of Base
Θbase(ξavg,0.5,0) 0.231930 0.239218 0.261087 0.384154 0.261087 0.239218 0.231930 Bottom of Base

Change in the number of fins
Position Fin 1=10 Fin 2=9 Fin 3=8 Fin 4=7 Fin 5=6 Description
Θfin(0.5,1) 0.171723 0.17416 0.178664 0.18546 0.193254 Top of fins
Θfin(0.5,0) 0.195215 0.198724 0.206093 0.219915 0.242125 Bottom of fins

Θbase(ξavg,0.5,1) 0.195229 0.198718 0.206076 0.219910 0.242139 Top of Base
Θbase(ξavg,0.5,0) 0.197646 0.200898 0.208758 0.224878 0.292212 Bottom of Base

It can be noticed that the fins’ number increase has consequently increased the heat

dissipation on the overall heat sink. In summary, the more fins, the lower the temperature of

the HS, and broader is heat dissipation by the dispersed fins contribution. Even though the

chip’s flux maintained the same value for both tested cases, the increase in heat dissipation

reduced the temperature even at the bottom of the base, where the flux is located.

The enhancement mechanisms are also clear in Table 18, the fourth fin’s maximum

temperature was initially calculated 0.428365, it was then reduced to much lower values such

as 0.344943 and 0.384154, changing the material and the fin’s height, respectively. The fins

number increase reduced the maximum temperature to 0.292212, on fins 5 and 6.

In summary, the three mechanisms of heat transfer enhancement are efficient. The

application of a more conductive material, higher thermal conductivity, promotes a more

efficient removal of the heat at its source, but the convective heat transfer is compromised.

Increasing the fin’s height, the wet area is increased and, consequently, the heat exchange

area is larger, increasing the convective heat transfer. The heat removal at the heated chip is

not as efficient as expected. Finally, more fins not only increased the total exchange area but

also dissipated the heat more homogeneously at the base’s top, with lower contact-interface

heat fluxes to each fin, removing efficient heat from its source and increasing the convective

heat transfer.
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CONCLUSIONS

This work presented an analytical approach to obtain the temperature fields of open-

sandwich heat sinks using the Classical Integral Transform Technique (CITT). A three-dimension

formulation for the base and two-dimension formulation for fins were solved analytically us-

ing the CITT and coupled to obtain the interface contact heat fluxes (q̇ ′′
i c ) on each fin. The

obtained q̇ ′′
i c is applied on the base and fins solutions, and the dimensionless temperature

field Θ is calculated for the base and fins.

The eigenfunction expansion heat flux was used to find the interface contact heat

fluxes. With this approach, the heat flux is defined as an inversion term and its transfor-

mation is used to perform the fin-base coupling. The great advantage of the eigenfunction

expansion heat flux approach is the coupling in nmax different positions, a much more accu-

rate approach than using polynomial functions.

The achieved results were compared with a simplified version of the methodology

to demonstrate the CITT convergence and the relative deviation percentage between the

different formulations. Simulations using the open-source CFD software OpenFOAM were

also used to compare the achieved results and confirm the analytical methodology accuracy.

The computational cost of CITT is much lower when compared with OF simulations. Differ-

ent geometries were tested and the rectangular fin profile is shown to be the most effective

shape.

The developed methodology innovates the study of heat transfer in heat sinks pre-

senting the importance of 2D fin modeling for symmetrical and non-symmetrical cases. In-

creasing the number of fins, the convective heat transfer is enhanced in the overall heat sink

and dissipates the heat in a more homogeneous manner, consequently, it ensures a safe and

efficient performance of the heated chip.

Some future works can be performed from the developed methodology presented:

1. Optimization studies.

2. Develop a new formulation for fins and base considering the radiative heat transfer

and mutual irradiation between fins.

3. Solve the problem considering the closed sandwich heat sink configuration and for

other cooling fluids.



117

REFERENCES

ADHAM, A. M.; MOHD-GHAZALI, N.; AHMAD, R. Thermal and hydrodynamic analysis of
microchannel heat sinks: a review. Renewable anf Sustainable Energies Reviews, v. 21, p.
614–622, 2013.

AHMED, H. E.; SALMAN, B.; KHERBEET, A. S.; AHMED, M. Optimization of thermal design
of heat sinks: A review. International Journal of Heat and Mass Transfer, Elsevier, v. 118, p.
129–153, 2018.

AL-ATHEL, K. S.; ALY, S. P.; ARIF, A. F. M.; MOSTAGHIMI, J. 3d modeling and analysis of the
thermo-mechanical behavior of metal foam heat sinks. International Journal of Thermal
Sciences, Elsevier, v. 116, p. 199–213, 2017.

ALFIERI, F. et al. 3d integrated water cooling of a composite multilayer stack of chips.
Journal of Heat Transfer, American Society of Mechanical Engineers Digital Collection,
v. 132, n. 12, 2010.

ANAND, N.; KIM, S.; FLETCHER, L. The effect of plate spacing on free convection between
heated parallel plates. Journal of Heat Transfer (Transactions of the ASME (American
Society of Mechanical Engineers), Series C);(United States), v. 114, n. 2, 1992. Disponível em:
<https://www.osti.gov/biblio/7265173>.

ARULARASAN, R.; VELRAJ, R. Modeling and simulation of a parallel plate heat sink using
computational fluid dynamics. The International Journal of Advanced Manufacturing
Technology, Springer, v. 51, n. 1-4, p. 415–419, 2010.

AZARKISH, H.; FARAHAT, S.; SARVARI, S. M. H. Comparing the performances of the particle
swarm optimization and the genetic algorithm on the geometry design of longitudinal fins.
International Journal of Sciences and Engineering Investigations, v. 1, p. 70–74, 2012.

AZARKISH, H.; SARVARI, S. M. H.; BEHZADMEHR, A. Optimum design of a longitudinal fin
array with convection and radiation heat transfer using genetic algorithm. International
Journal of Thermal Sciences, v. 49, p. 2222–2229, 2010.

AZIZ, A.; MAKINDE, O. Heat transfer and entropy generation in a two-dimensional
orthotropic convection pin fin. International Journal of Exergy, Inderscience Publishers,
v. 7, n. 5, p. 579–592, 2010.

BABAELAHI, M.; ESHRAGHI, H. Optimum analytical design of medical heat sink with
convex parabolic fin including variable thermal conductivity and mass transfer. Extreme
Mechanics Letters, Elsevier, v. 15, p. 83–90, 2017.

BAR-COHEN, A.; IYENGAR, M.; KRAUS, A. D. Design of optimum plate-fin natural
convective heat sinks. J. Electron. Packag., v. 125, n. 2, p. 208–216, 2003.

BEJAN, A.; KRAUS, A. D. Heat transfer handbook. [S.l.]: John Wiley & Sons, 2003. v. 1.

BOUAZIZ, N. Fin efficiency in 2d with convection at the tip and dissymmetry of exchange.
Energy Conversion and Management, Elsevier, v. 50, n. 6, p. 1618–1624, 2009.

https://www.osti.gov/biblio/7265173


118

BUSHEHRI, M. R. S.; RAMIN, H.; SALIMPOUR, M. R. A new coupling method for slip-flow
and conjugate heat transfer in a parallel plate micro heat sink. International Journal of
Thermal Sciences, Elsevier, v. 89, p. 174–184, 2015.

CHALHUB, D. J. N. M. Desenvolvimento de soluções para problemas de advecção-difusão
combinando transformação integral e métodos discretos. Dissertação (Mestrado) —
Universidade Federal Fluminense- UFF, 2011.

CHALHUB, D. J. N. M. Solution of the Incompressible Navier-Stokes Equations by projection
methods using the Integral Transform Technique. Tese (Doutorado) — Universidade Federal
Fluminense, 2015.

COPELAND, D. Optimization of parallel plate heatsinks for forced convection. In: IEEE.
Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(Cat. No. 00CH37068). [S.l.], 2000. p. 266–272.

COROMINAS, J. Heat Sink Analytical Modelling. Dissertação (Mestrado) — Universitat
Politècnica de Catalunya, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona,
(Enginyeria Industrial), 2010. Disponível em: <https://books.google.com.br/books?id=
LR8ZywEACAAJ>.

CORRÊA, L. M. Solution of Heat Conduction in Solid-State Electronics utilizing Integral
Transforms. [S.l.], 2018. Bachelor’s Thesis.

CORRÊA, L. M.; CHALHUB, D. J. N. M. Solution of the heat conduction in solid-state
electronics by integral transforms. In: 24th ABCM International Congress of Mechanical
Engineering - COBEM 2017. Curitiba, Brazil: [s.n.], 2017.

CORRÊA, L. M.; CHALHUB, D. J. N. M. Thermal analysis of heat sinks on solar panels.
In: 17th Brazilian Congress of Thermal Sciences and Engineering - ENCIT 2018. Águas de
Lindóia, Brazil: [s.n.], 2018.

CORRÊA, L. M.; CHALHUB, D. J. N. M. Thermal analysis of heat sinks: an analytical
approach. In: 25th ABCM International Congress of Mechanical Engineering - COBEM 2019.
Uberlândia, Brazil: [s.n.], 2019.

COSTA, V. Unification of the streamline, heatline and massline methods for the visualization
of two-dimensional transport phenomena. International Journal of Heat and Mass Transfer,
Elsevier, v. 42, n. 1, p. 27–33, 1999.

COTTA, R. M. Integral Transforms in Computational Heat and Fluid Flow. [S.l.]: CRC Press,
1993.

COTTA, R. M. et al. Integral transform benchmarks of diffusion, convection–diffusion, and
conjugated problems in complex domains. In: 50 Years of CFD in Engineering Sciences. [S.l.]:
Springer, 2020. p. 719–750.

COTTA, R. M.; MIKHAILOV, M. D. Heat conduction: lumped analysis, integral transforms,
symbolic computation. [S.l.]: Wiley-Blackwell, 1997.

CUCE, P. M.; CUCE, E. Optimization of configurations to enhance heat transfer from a
longitudinal fin exposed to natural convection and radiation. International Journal of
Low-Carbon Technologies, v. 9, p. 305–310, 2014.

https://books.google.com.br/books?id=LR8ZywEACAAJ
https://books.google.com.br/books?id=LR8ZywEACAAJ


119

DANTAS, L. B. Heat Transfer Study of Plastic Encapsulated Chips using the Generalized
Integral Transform Technique. Dissertação (Mestrado) — Universidade Federal do Rio de
Janeiro, 1996.

DANTAS, L. B.; ORLANDE, H. R. B. A function estimation approach for determining
temperature dependent thermophysical properties. Inverse Problems in Engineering, v. 3, p.
261–279, 1996.

DENG, Q.-H.; TANG, G.-F. Numerical visualization of mass and heat transport for conjugate
natural convection/heat conduction by streamline and heatline. International Journal of
Heat and Mass Transfer, Elsevier, v. 45, n. 11, p. 2373–2385, 2002.
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improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia,
Elsevier, v. 85, n. 2016, p. 425–432, 2016.

QU, W.; MUDAWAR, I. Analysis of three-dimensional heat transfer in micro-channel heat
sinks. International Journal of heat and mass transfer, Elsevier, v. 45, n. 19, p. 3973–3985,
2002.

REMSBURG, R. Advanced thermal design of electronic equipment. [S.l.]: Springer Science &
Business Media, 2011.

RENFER, A. et al. Microvortex-enhanced heat transfer in 3d-integrated liquid cooling of
electronic chip stacks. International Journal of Heat and Mass Transfer, Elsevier, v. 65, p.
33–43, 2013.



122

RUNCHAL, A. 50 Years of CFD in Engineering Sciences: A Commemorative Volume in
Memory of D. Brian Spalding. [S.l.]: Springer Nature, 2020.

SHABANY, Y. Radiation heat transfer from plate-fin heat sinks. In: IEEE. 2008 Twenty-fourth
Annual IEEE Semiconductor Thermal Measurement and Management Symposium. [S.l.],
2008. p. 132–136.

SHAERI, M. R.; Bonner III, R. W. Analytical heat transfer model for laterally perforated-finned
heat sinks. International Journal of Heat and Mass Transfer, Elsevier, v. 131, p. 1164–1173,
2019.

SIMONS, R. Estimating parallel plate-fin heat sink thermal resistance. Electronics cooling,
v. 9, n. 1, p. 8–9, 2015. Disponível em: <http://s3.electronics-cooling.com/wp-content/
uploads/2016/10/Electronics-Cooling-December-2015.pdf#page=10>.

SINGH, S.; KUMAR, D.; RAI, K. Analytical solution of fourier and non-fourier heat transfer
in longitudinal fin with internal heat generation and periodic boundary condition.
International Journal of Thermal Sciences, Elsevier, v. 125, p. 166–175, 2018.

SOBRAL, R. L. Simulação numérica de aletas num contexto de altas temperaturas. Tese
(Doutorado) — Universidade do Estado do Rio de Janeiro, 2017.

SPALDING, B. Trends, tricks, and try-ons in cfd/cht. In: Advances in heat transfer. [S.l.]:
Elsevier, 2013. v. 45, p. 1–78.

SPARROW, E.; ECKERT, E. Radiant interaction between fin and base surfaces. 1962.

STREETMAN, B. G.; BANERJEE, S. et al. Solid state electronic devices. [S.l.]: Prentice Hall
Englewood Cliffs, NJ, 1995. v. 4.

TU, J.; YEOH, G. H.; LIU, C. Computational fluid dynamics: a practical approach. [S.l.]:
Butterworth-Heinemann, 2018.

TÜRKAKAR, G.; OKUTUCU-ÖZYURT, T. Dimensional optimization of microchannel heat
sinks with multiple heat sources. International Journal of Thermal Sciences, Elsevier, v. 62, p.
85–92, 2012.

WEI, X.; JOSHI, Y. Optimization study of stacked micro-channel heat sinks for micro-
electronic cooling. IEEE transactions on components and packaging technologies, IEEE, v. 26,
n. 1, p. 55–61, 2003.

XIA, Y.; JACOBI, A. An exact solution to steady heat conduction in a two-dimensional slab
on a one-dimensional fin: application to frosted heat exchangers. International Journal of
Heat and Mass Transfer, Elsevier, v. 47, n. 14-16, p. 3317–3326, 2004.

ZARETABAR, M.; ASADIAN, H.; GANJI, D. Numerical simulation of heat sink cooling in the
mainboard chip of a computer with temperature dependent thermal conductivity. Applied
Thermal Engineering, Elsevier, v. 130, p. 1450–1459, 2018.

ZUBAIR, S. M.; ARIF, A.; SHARQAWY, M. H. Thermal analysis and optimization of orthotropic
pin fins: a closed-form analytical solution. Journal of Heat Transfer, American Society of
Mechanical Engineers, v. 132, n. 3, p. 031301, 2010.

http://s3.electronics-cooling.com/wp-content/uploads/2016/10/Electronics-Cooling-December-2015.pdf#page=10
http://s3.electronics-cooling.com/wp-content/uploads/2016/10/Electronics-Cooling-December-2015.pdf#page=10


123

ÇENGEL, Y. A. Transferência de Calor e Massa: Uma abordagem prática. [S.l.]: McGraw Hill
Education, 2012.

ÇENGEL, Y. A.; GHAJAR, A. J. Heat and Mass Transfer:Fundamentals and Applications, 4th
Edition. [S.l.]: The McGraw-Hill Companies, Inc, 2011.



124

APPENDIX A – FiBaCITS algorithm comments

The FiBaCITS algorithm was developed to analyze the heat transfer in heat sinks with

multiple rectangular equally-spaced fins. Non-symmetrical fins and one fin cases may be

added manually. The αavg for every fin array is calculated in the code as well as the channel

spacing. The default fin thickness is δa = 0.04, other fin thicknesses may be added.

Two possible dimensions for the problem are described. The "large" type simulates

cm-scaled heat sinks, and the "small" type simulates mm-scaled heat sinks. The fins’ height

Ha and the base’s height H are width W -dependents. The default fins’ height is Ha = 0.8×W

and the base’s height is H = 0.1×W , other values may be added.

The heat transfer coefficient is calculated considering T f = 298K , ε = 0.5, σ = 5.67×
10−8W/m2.K4, thermal conductivity of air k f = 0.02551 W/(m× K), the volumetric expansion

coefficient %= 0.0034, the Prandtl number Pr= 0.73, the kinematic viscosity ν= 1.562∗10−5

m2/s, the gravity g = 9.81 m/s2, and the average temperature difference between the heat

sink and the environment air ∆Tb = 25 K. These values were considered after studing the

works (BAR-COHEN; IYENGAR; KRAUS, 2003) and (FURUKAWA; YANG; TORII, 2008).

The formulation parameters βa ,BiHa ,γa ,ma , A1, A2,β,γ,BiH were calculated in the

code considering different material properties and heat sinks dimensions for H , Ha , δa and

W .

Both 2Dbase-1Dfin and 3Dbase-2Dfin formulations are included in the code, how-

ever, the 2Dbase-1Dfin is only used for problems where the y-direction variation vanishes.

The comparison between the 2Dbase-1Dfin, 3Dbase-2Dfin, and the OpenFOAM so-

lutions is provided in the code.
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APPENDIX B – 3D base benchmark: 1D problem

During the 3D base solution development, a benchmark test was performed. The

base is simplified to a 1D problem, where the analytical solution is known and can be easily

demonstrated to verify the obtained solution. The scheme of this 1D problem is illustrated

in figure 56.

d2T

dz2
= 0 (146a)

T ′(0) =−A2q̇ ′′
gen T ′(H) =−1

k
q̇ ′′

conv(T ) =−h

k

(
T (H)−T f

)
(146b)

where q̇ ′′
gen is the heat flux entering at the bottom of the base. This test doesn’t consider fins,

only convection, q̇ ′′
conv(T ) = h(T −T f ), on the overall top surface of the base.

The base formulation (20) is simplified to the following ODE:

d2Θ

dζ2
= 0 (147a)

Θ′(0) =−A2q̇ ′′
gen Θ′(1) =−BiΘ(1) (147b)

The analytical solution, applying the boundary conditions, is:

Θ(ζ) =−A2q̇ ′′
g enζ+

A2q̇ ′′
g en

Bi
+ A2q̇ ′′

g en (148)

This solution (148) is the same obtained solving the transformed equation for the

base, considering no fins and q̇o as q̇ ′′
g en . Because 1D problems don’t present transformed

direction, the solution for the inverse term is the same of the transformed equation when

n = 0 and m = 0.

Figure 56 - Simplified 1D base scheme where the system considers the heat moving from the bottom

of the base of the heat sink to be cooled by the convection heat transfer mechanism.

q̇ ′′
conv

q̇ ′′
g en

q̇ ′′
conv

q̇ ′′
g en
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APPENDIX C – Polynomial function heat flux approach

For a first attempt to identify the fin-base interface heat flux, q̇ ′′
base(η) and q̇ ′′

fin(η) are

modeled as a third-degree polynomial function, described on equation (149). Having the

heat flux as a polynomial function, the objective of the fin-base coupling is to obtain the

coefficients. It was chosen to use a third-degree function because higher-order polynomials

can manifest large oscillations and, consequently, numerical errors.

q̇ ′′
base(η) = q̇ ′′

fin(η) = a jη
3 +b jη

2 + c jη+d j (149)

where a,b,c, and d are coefficients of the heat flux function which must be determined and

j is the index for the fin. Each fin has a different heat flux value and, for each j -fin, the four

coefficients must be obtained. To obtain the a,b,c and d coefficients, two random positions

ηx must be used. In summary, two ηx values are used to solve the coupling equations (112

and 113) twice for one fin, four values of ηx are used for 2 fins, six values of ηx are used for

3 fins and so on. After the coefficients are found, q̇ ′′
i c is rewritten substituting the unknowns

for the obtained coefficients.

The attempt of considering the fin-base interface heat flux as polynomial functions,

however, is not a precise approach. The coupling using polynomials needs a few points to

be matched, only the required to find the polynomial coefficients. The selected points de-

termine that equality occurs only at those positions and not at the entire domain, hence, it

provides different functions depending on the selections. Appendix D shows some results

using this approach (CORRÊA; CHALHUB, 2019).
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APPENDIX D – Research Publications

This appendix mentions the published and presented works during the studies at the

Mechanical Engineering Graduate Program of the Universidade do Estado do Rio de Janeiro.

The article "COMPARISON BETWEEN SINGLE AND DOUBLE INTEGRAL TRANS-

FORMATION SOLUTIONS OF HEAT CONDUCTION IN SOLID-STATE ELECTRONICS" was

published on RETERM - Revista da Engenharia Térmica, volume 18, number 2. Two different

integral transform approaches are implemented in this work for modeling the temperature

field in Solid State Electronics (SSE) with several heat generations in the domain of the mi-

crochip and external convection.

The article "THERMAL ANALYSIS OF HEAT SINKS FOR ELECTRONIC COMPONENTS

COOLING USING INTEGRAL TRANSFORMS" was published on "Revista de Engenharia da

Universidade Católica de Petrópolis" - REUCP, volume 14, number 1.

The proceeding article "THERMAL ANALYSIS OF HEAT SINKS IN SOLAR PANELS"

was presented at the 17th Brazilian Congress of Thermal Sciences and Engineering in 2018.

This work presents an initial approach of heat sinks using integral transforms, and the trans-

formed equation is solved numerically.

The proceeding article "THERMAL ANALYSIS OF HEAT SINKS: AN ANALYTICAL AP-

PROACH" was presented at the 25th International Congress of Mechanical Engineering in

2019. This work presents a similar analytical approach of heat sinks using integral trans-

forms. For the interface contact heat flux, the third-degree polynomial function was used.
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Abstract. This work proposes an analytical approach of the heat transfer analysis in heat sinks applied on cooling
electronic components of solar panels. On the bottom of the base of the heat sink, the presence of the oncoming heat flux
from a heaten solid-state electronic needs to have its heat dissipated, in order to ensure a profitable performance of the
solar panel. Since the thickness of the base is small compared to other dimensions of the heat sink, a partial lumping
approach in z-direction is performed and the final mathematical formulation is two dimensional, considering also the
heat flux source term. In order to obtain the final solution, the Classical Integral Transform Technique is applied and four
diferent cases are presented: the heat sink without any fin, with one, two fins and with four fins. The achieved results are
compared by the increase of the heat dissipation affecting the final temperature of the heat sink.

Keywords: Thermal Analysis, Heat Sink, Classical Integral Transform Technique

1. INTRODUCTION

The solar energy has been used since ancient civilizations for heating and light purposes. Archeological evidence has
shown that many ancient cultures built their houses according the principles of passive solar design, Chen (2011). In
the last centuries, however, the sun energy has been applied directly to make electricity. In 1839, Alexandre Becquerel
discovered that certain materials produced small amounts of electric current when exposed to light, Shah et al. (1999). In
1954, D.M. Chapin, C.S. Fuller and G.L. Pearson, of Bell Laboratory, patented a way of making electricity directly from
sunlight using silicon-based solar cells, Gotzberger et al. (2002). The solar energy and specially photovoltaics (PV) is
a promising alternative source due to its advantages: abundance, pollution free and renewability and has been more and
more implemented all over the world, Singh (2013).

Several researches have been studying how to enhance photovoltaic systems. It is known that high temperatures
decrease the efficiency of PV systems, (Cuce and Cuce, 2012). The electronic components of solar panels system present
high temperatures when in operation and this heat may affect the system’s performance. Cooling them with cost-effetive
modifications such as heat sinks may be a considered key point to minimize the electronic components temperature.

The thermal dissipation promoted by heat sinks has motivated several works about analysis and optimization of fins
in heat sinks. The work of Teertstra et al. (2000) presented an analytical model to approach the average heat transfer rate
for forced convection, air cooled, plate fin heat sinks. The work of Lehtinen (2005) analyzed both heat conduction and
convection in fins applying well-known analytical and experimental results for convective heat transfer. The geometry of
the fin was also studied for maximizing the heat transfer. The work of Ong et al. (2005), for instance, analysed different
geometries of rectangular and cylindrical fins optimizations for maximum heat dissipation on electronic components. The
behavior of different geometric parameter heat sinks with rectangular fins was also analyzed by Anselmo (2016). The work
of Azarkish et al. (2010) investigated the geometry of the longitudinal fins with variable cross sectional area achieving its
optimum fin profile using genetic algorithm. On the other hand, Cuce and Cuce (2014) tested different rectangular fins
configurations to produce the maximum heat loss in a specific volume and length of fin numerically exposed to convection
and radiation heat transfer.

The Integral Transform Technique is a powerful method to solve differential equations based on separation of variables
method and is classified as Classical (CITT) or Generalized (GITT). The CITT is an all analytical method and is most
applied in linear problems, Chalhub et al. (2014). The GITT is a hybrid analytical-numerical technique and transforms
nonlinear partial differential equation models to a coupled nonlinear system of ordinary differential equations (ODEs) to
be solved numerically. Sphaier and Cotta (2000) applied the Integral Transform Technique on the solution of a multidi-
mensional partial differential models within irregularly shaped domains. Braga Junior (2015) also applied the GITT in
order to obtain the heat transfer solution in heterogeneous mediums such as Functionally Graded Materials with variable
properties. The Integral Transform Technique has been previouly applied on electronic problems. Dantas (1996) have
applied the GITT for the solution of heat transfer in microchips. She considered an encapsulated microchip and also
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different thermal conductivity layers over the chip thickness. Recently, Corrêa and Chalhub (2017) presented the solution
of Solid State Electronics with one heat generation on its domain and solved by Classical Integral Transform Technique.

This work proposes an analytical approach to analyze the heat transfer occurence in heat sinks applied on electronic
components of solar panels. On the bottom of the base of the heat sink, there is the presence of the oncoming heat flux
from the heaten solid-state electronic, which needs its heat to be dissipated. The top of the base of the heat sink presents
fins to increase the heat dissipation to the environment and, consequently, cool the chip. The mathematical formulation
for the fins is developed and the heat transfer coefficient for convection depends on the position of the fins. The final
formulation for the problem is applied on the base of the heat sink. Since the thickness of the base is small compared
to other dimensions of the heat sink, a partial lumping approach in z-direction is performed and the final mathematical
formulation is two dimensional, considering also the heat flux source term. In order to obtain the final solution, the
Classical Integral Transform Technique is applied. In this case, however, the transformed equation cannot be solved
analitically and requires a numerical discretization. A truncation error is involved since the infinite summation must
be truncated. This error decreases as the number of summation terms (truncation order) is increased, and the solution
converges to a final value. The results show an analysis of the proposed approach for comparison purposes of the final
temperature of the heat sink without any fin, with one, with two fins and with four fins.

2. MATHEMATICAL FORMULATION OF PARALLEL PLATE FINS

For this approach, rectangular fins were modelled on the heat sink working on steady state. The boundary conditions
applied on the fin are fixed temperature at the base of the heat sink (isothermal base) and convection at the fin longitudinal
end.

d

dxa

(
kaAa

dT

dxa

)
− Pah(T − Tf ) = 0 for 0 ≤ xa ≤ La (1a)

T |xa=0 = Tb; −ka
dT

dxa

∣∣∣∣
x=La

= h(T (La)− Tf ) (1b)

where ka is the thermal conductivity of the fin, Aa is the transversal area of the fin, Pa is the perimeter of the fin, h is the
heat transfer coefficient by convection and La is the length of the fin.

The nondimensionalization leads to the following mathematical formulation for the fin:

d2Θ

dξ2a
−m2Θ = 0 for 0 ≤ ξa ≤ 1 (2a)

Θ(0) = 1
dΘ

dξa

∣∣∣∣
x=1

= −BiaΘ(1) (2b)

The non-dimensional groups are defined as:

ξa =
xa
La

; Θ =
T − Tf
Tb − Tf

; Bia =
hLa
ka

; m2 =
BiaPaLa

Aa
; (3)

The solution for (2a) is:

Θ(ξa) =
m cosh(m(1− ξa)) +Bia sinh(m(1− ξa))

m cosh(m) +Bia sinh(m)
(4)

The heat flux in each fin of the heat sink is:

q̇′′a = −ka(T − Tf )
dΘ

dξa

∣∣∣∣
ξa=0

→ q̇a
′′ = ka(T − Tf )

m (Bia cosh(m) +m sinh(m))

m cosh(m) + Bia sinh(m)
= hfin(T − Tf ) (5)

where:

hfin = ka
m (Bia cosh(m) +m sinh(m))

m cosh(m) + Bia sinh(m)
(6)

3. PROBLEM FORMULATION

The mathematical formulation of the heat conduction at the base of the heat sink is given by the energy equation in
steady-state after applying a partial lumping approach in z-direction.
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x

y

Figure 1: Schematical view of heat sink

For this work, it is considered a heat flux from the chip (q̇o′′) acting over the heat sink. The convection flux (q̇′′c )
happens in the top surface of the heat sink, however, where the fin is located, the heat flux is the heat flux from the fin
(q̇a′′) of the heat sink:

q̇′′h(x) =

{
q̇a

′′ = hfin(T − Tf ) if xaiK ≤ x ≤ xafK
q̇c

′′ = hconv(T − Tf ) if x < xaiK or x > xafK

For this reason, is possible define the heat transfer coefficient for convection (h) dependent of its location on the base of
the heat sink. On the region where the fins are located, h assume hfin value and where there isn’t fin h assume hconv
value:

h(x) =

{
hfin if xaiK ≤ x ≤ xafK
hconv if x < xaiK or x > xafK

where xaiK and xafK indicates the boundaries of the K fins.
The formulation is showed bellow with its respective boundary conditions.

k

(
∂2T (x, y)

∂x2
+
∂2T (x, y)

∂y2

)
=
q̇′′h(x)

δ
− q̇′′o (x, y)

δ
for 0 ≤ x ≤ L and 0 ≤ y ≤ H (7)

∂T

∂x

∣∣∣∣
x=0

= 0;
∂T

∂x

∣∣∣∣
x=L

= 0;
∂T

∂y

∣∣∣∣
y=0

= 0;
∂T

∂y

∣∣∣∣
y=H

= 0; (8)

where T is the temperature, k is the thermal conductivity of the plate, q̇′′o is the heat flux from the chip to the heat sink, Tf
is the environment air temperature, h is the convection heat transfer coefficient and L, H and δ are the dimensions of the
chip in x, y and z directions respectively.

The nondimensionalization of the problem leads to the following mathematical formulation:

∂2Θ

∂ξ2
+
β2∂2Θ

∂η2
− Bi(ξ)γΘ = −Q(ξ, η) for 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 (9)

∂Θ

∂ξ

∣∣∣∣
ξ=0

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂ξ

∣∣∣∣
ξ=1

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0; (10)

The non-dimensional groups are defined as:

ξ =
x

L
; η =

y

H
; Θ =

T − Tf
Tb − Tf

; β =
L

H
; γ =

L

δ
; Bi(ξ) =

h(ξ)L

k
; Q(ξ, η) =

q̇′′oL
2

kδ∆T
. (11)

where β and γ are aspect ratios, Bi(ξ) is the Biot number and depends of ξ, Θ is the dimensionless temperature, ξ and η
are the dimensionless versions of x and y; and Q is the heat flux acting over the domain from the chip to the base of the
heat sink. The chip is located at the center of the base.

4. SOLUTION BY CLASSICAL INTEGRAL TRANSFORM TECHNIQUE

In order to solve the proposed problem, the Classical Integral Transform Technique (CITT) is applied. This is an
analytical technique that uses expansions of the sought solution in terms of an infinite orthogonal basis of eigenfunc-
tions, keeping the solution process always within a continuous domain. In order to establish the transformation pair, the
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temperature field is written as function of an orthogonal eigenfunctions obtained from the following auxiliary eigenvalue
problem known as the Helmholtz classic problem in cartesian coordinates, where Ψ(η) are the eigenfunctions and λn are
the eigenvalues. For this particular problem, the case where λ= 0 also exists.

The solution of the equation (9) is defined as:

Θ =

∞∑

n=0

Θ̄(ξ)Ψn(η)

Nn
(12)

where Θ̄n(ξ) and Ψn(η) are the functions to be solved separally in order to find the temperature field and are eigenfunc-
tions. Θ̄n(ξ) is also the transformed version of Θ. Nn is the norm and is defined as:

Nn =

∫ 1

0

Ψ2
ndη (13)

In order to establish the transformation pair, the temperature field is written as functions of an orthogonal eigenfunc-
tions obtained from the following auxiliary eigenvalue problem known as the Helmholtz classic problem in cartesian
coordinates, where Ψ(η) are the eigenfunctions and λn are the eigenvalues. For this particular problem, the case where
λ = 0 also exists.

This step is solved just as separation of variables and the objective is to find the values of the eigenfunction Ψn(η).

Ψ′′
n(η) + λ2nΨn(η) = 0 (14a)

Ψ′
n(0) = 0; Ψ′

n(1) = 0. (14b)

Solving the differential equation, the solution shows that the eigenfunction is formed by sines and cosines. Applying
the boundary conditions, the term formed by sines is eliminated from the solution and the values of the eigenvalues λn
are found.

For λ = 0, the solution of the eigenvalue problem is given by:

Ψ0(η) = 1; λ0 = 0; (15)

and for λ > 0:

Ψn(η) = cos(λnη); λn = nπ, for n = 1, 2, 3, . . . (16)

To apply the CITT, the transformation pair is defined.

Transformation ⇒ Θ̄n(ξ) =

∫ 1

0

ΘΨn(η)dη (17)

Inversion ⇒ Θ =
∞∑

n=0

Θ̄n(ξ)Ψn(η)

Nn
(18)

The equation (9) is written again, multiplied by Ψn and integrated in the domain for η. The objective in this step is obtain
the transformed equation by the replacement of the terms with the transformation input for the transformation term.

∫ 1

0

∂2Θ

∂ξ2
Ψndη + β2

∫ 1

0

∂2Θ

∂η2
Ψndη − Bi(ξ)γ

∫ 1

0

ΘΨndη = −
∫ 1

0

QΨndη (19a)

Finally, the transformed equation is obtained:

• For λ > 0:

Θ̄′′
n − (β2λ2n + Bi(ξ)γ)Θ̄n = −Q̄n(ξ) (20)

where Q̄n is given by:

Q̄n(ξ) =

∫ 1

0

Q(ξ, η)Ψn(η)dη (21)

The transformed boundary conditions are:

Θ̄′
n(0) = 0; Θ̄′

n(1) = 0 (22)

This equation cannot be solved analytically because of the dependence of ξ on Biot number. For this reason, the
equation (20) is solved numerically using partial differential equation discretization with Finite Element Method.
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• For λ = 0:

Θ̄′′
0 − (Bi(ξ)γ)Θ̄0 = −Q̄0(ξ) (23)

where Q̄0 is given by:

Q̄0(ξ) =

∫ 1

0

Q(ξ, η)Ψ0(η)dη =

∫ 1

0

Q(ξ, η)dη (24)

The transformed boundary conditions are:

Θ̄′
0(0) = 0; Θ̄′

0(1) = 0 (25)

Again, the equation cannot be solved analytically for the same previous reason and the equation (23) is solved
numerically using Finite Element Method.

Finally, in order to obtain the final temperature field, the inversion formula (18) must be utilized and the summation
must be truncated to a finite value (nmax).

5. RESULTS AND DISCUSSION

After describing the problem, the parallel plate fins formulation and the solution methodology, in this section the
results are shown. The heat sink (HS) presents an square dimension and, consequently, β values 1. The value of Biγ for
convection is 0.1 and on the regions where the fins are located Biγ is 3. The heat flux from the chip is shown is figure 2a.

In the current work, four different cases were tested. The first one was the heat sink without fins, under the effects of
heat flux from the chip and convection. The second case has its heat dissipation increased by one fin with width of 0.1 of
the length of the heat sink. The 2D view of the heat sink is shown on figure 2b. Third case introduces two fins on the heat
sink. It must be noticed that the width of each sink must be same as the previous case for heat dissipation comparison.
The width of the fin affects the value of Biot and, for this reason, the same width is applied in all the fins of this work.
Figure 2c shows the two-fin heat sink. Finally, a four-fin layout heat sink was tested, which is a more common heat-sink
layout and is shown on figure 2d. The edges of the chip and the fins are indicated on table 1.
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(a) Heat flux of the chip
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(d) Four fins
Figure 2: Contour plot of the heat flux and the fin layout for the considered cases.
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Table 1: Edges of chip and fins
Components of HS ξi ξf ηi ηf Components of HS ξi ξf ηi ηf

heat flux 0.45 0.55 0.45 0.55 4-fin case 0.12 0.22 0 1
1-fin case 0.45 0.55 0 1 4-fin case 0.34 0.44 0 1
2-fin case 0.3 0.4 0 1 4-fin case 0.56 0.66 0 1
2-fin case 0.6 0.7 0 1 4-fin case 0.78 0.88 0 1

The results of convergence for the four different cases solved by CITT are presented on table 2. For analyzing the
convergence of the solution six different positions of the heat sink were selected. One position is at the center of the heat
sink and at the region were the chip is located, (0.5,0.5). This position (0.5,0.5) is also where is found the maximum
temperature of the heat sink. Also, two positions which are not at the chip location very close, though, were selected to
be analyzed, which are positions (0.42,0.58) and (0.56,0.44). The position (0.6,0.7) is next to the chip, not as close as the
previous positions. And, finally, two positions far from the chip, which were (0.2,0.7) and (0.8,0.3). nmax refers to the
number of terms which are summed before truncated.

The first part of table 2 shows the convergence obtained for no-fins case. It can be noticed that the solution converged
very fast on the far-from-chip locations, in contrast, the center of the heat sink location, which is where the chip is
located, the temperature is higher. At the locations near the chip, the temperature was also higher and took more terms to
converge. While 10 terms were sufficient for fully convergence at (0.2,0.7), 200 terms were necessary for the convergence
at (0.56,0.44).

The convergence results for one-fin case is shown on the second part of the table 2. First, it can be noticed a decreased
on the temperature at all the selected positions of the heat sink, justifying the application of fins in order to increase the
heat dissipation. As can be seen, a truncation order of nmax = 150 was necessary for the convergence of position (0.5,0.5)
while only 10 terms were necessary for the convergence for position (0.8,0.3). At (0.6,0.7), 20 terms were required for its
fully convergence.

The convergence results for the two-fin heat sink layout are presented on the third part of table 2. The addiction of
the second fin increased the heat dissipation and, consequently, the temperature of the heat sink was lower in this case.
In this case, also, at the center of the heat sink, the fully convergence required 250 terms instead of 150 of the previous
cases. The complexity of this case may be a reason which justify more terms to be summed. This increase of terms to be
summed also happens at positions (0.42,0.58) and (0.56,0.44), which required also 250 terms for these positions solution
convergence.

Finally, the last part of table 2 shows the results for the four-fin layout heat sink. Similarly from the two-fin layout,
more terms were necessary for the fully convergence at (0.5,0.5), 350 terms in this position. In contrast, in this case, the
position (0.42,0.58) had converged requiring less terms, 150, and (0.6,0.7) converged summing 100 terms, the same as
the previous case. The temperature along the heat sink had reduced about half from the two-fin layout, which states that
the efficiency of increasing fins to heat sinks in order to increase the heat dissipation and reduce the temperature.

After analyzing the CITT convergence table 2, now it is shown the thermal profile of the solution by CITT in all the
four different layouts of heat sink. The figure 3a shows the solution for the heat sink without fins, the one-fin heat sink
solution is shown on figure 3b and the two-fin and four-fin layout solution are figures 3c and 3d, respectively.

Analyzing figure 3a, it can be noticed at first the isotherms curves that bounds the region where the chip is located.
One important detail to be noticed is also the size of the inner dark red isotherm, which presents similar dimensions as the
chip. The temperature in the no-fin heat sink varies between a little more than 0.6175 and a little less than 0.5975. Figure
3b presents one fin at the center of the heat sink and the increase of the heat dissipation on the region of the fin is noticed
by the darker blue stains exactly where the fin is found. The size of the inner dark red isotherm is smaller in this case,
indicating again a more intense heat dissipation. Also, all the heat sink presents lower temperatures in comparison with
the previous case without fins.

Figure 3c shows the CITT solution for the two-fin case, which has a visual expressive reduction of temperature where
the fins are located, at 0.3 ≤ ξ ≤ 0.4 and 0.6 ≤ ξ ≤ 0.7. Also, the inner dark red isotherm is smaller from the one-fin
case and all the heat sink presents lower temperatures from the previous cases, the maximum temperature on this heat
sink does not achieve 0.1. Finally, the four-fin layout heat sink is shown in figure 3d. Because, this layout present equally
spaced fins in all the extension of the heat sink, the thermal profile of this case resemble with the no-fin case. However,
the inner dark red isotherm is reduced to a small point on the profile and maximum temperature at the heat sink is reduced
from 0.619608, of the no-fin case, to 0.0576527 with this current layout. This four-fin case is, then, the most efficient heat
sink layout shown in this work, dissipating more heat and reducing the temperature for the lower values.
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Table 2: Temperature Θ(ξ, η) convergence for different layouts of heat sink solved by CITT
No fin

nmax Θ(0.2, 0.7) Θ (0.42, 0.58) Θ(0.5, 0.5) Θ(0.56, 0.44) Θ(0.6, 0.7) Θ(0.8, 0.3)
10 0.599113 0.608526 0.619605 0.611228 0.602554 0.599113
20 0.599113 0.608530 0.619775 0.611252 0.602550 0.599113
50 0.599113 0.608526 0.619605 0.611228 0.602551 0.599113

100 0.599113 0.608526 0.619610 0.611224 0.602551 0.599113
150 0.599113 0.608526 0.619608 0.611224 0.602551 0.599113
200 0.599113 0.608526 0.619608 0.611225 0.602551 0.599113
250 0.599113 0.608526 0.619608 0.611225 0.602551 0.599113
300 0.599113 0.608526 0.619608 0.611225 0.602551 0.599113
350 0.599113 0.608526 0.619608 0.611225 0.602551 0.599113

One fin
nmax Θ(0.2, 0.7) Θ(0.42, 0.58) Θ(0.5, 0.5) Θ(0.56, 0.44) Θ(0.6, 0.7) Θ(0.8, 0.3)

10 0.153132 0.159512 0.168785 0.161935 0.153887 0.153132
20 0.153132 0.159414 0.169485 0.161726 0.153883 0.153132
50 0.153132 0.159411 0.169315 0.161702 0.153883 0.153132

100 0.153132 0.159411 0.169320 0.161698 0.153883 0.153132
150 0.153132 0.159411 0.169318 0.161698 0.153883 0.153132
200 0.153132 0.159411 0.169318 0.161699 0.153883 0.153132
250 0.153132 0.159411 0.169318 0.161699 0.153883 0.153132
300 0.153132 0.159411 0.169318 0.161699 0.153883 0.153132

Two fins
nmax Θ(0.2, 0.7) Θ(0.42, 0.58) Θ(0.5, 0.5) Θ(0.56, 0.44) Θ(0.6, 0.7) Θ(0.8, 0.3)

10 0.0763385 0.0842956 0.0948784 0.0871884 0.0782018 0.0763385
20 0.0763385 0.0841974 0.0955795 0.0869797 0.0781976 0.0763385
50 0.0763385 0.0841937 0.0954094 0.0869557 0.0781982 0.0763385

100 0.0763385 0.0841937 0.0954142 0.0869515 0.0781981 0.0763385
150 0.0763385 0.0841936 0.0954121 0.0869519 0.0781981 0.0763385
200 0.0763385 0.0841935 0.0954119 0.0869521 0.0781981 0.0763385
250 0.0763385 0.0841936 0.0954122 0.0869520 0.0781981 0.0763385
300 0.0763385 0.0841936 0.0954122 0.0869520 0.0781981 0.0763385
350 0.0763385 0.0841936 0.0954122 0.0869520 0.0781981 0.0763385

Four fins
nmax Θ(0.2, 0.7) Θ(0.42, 0.58) Θ(0.5, 0.5) Θ(0.56, 0.44) Θ(0.6, 0.7) Θ(0.8, 0.3)

10 0.0374997 0.0465666 0.057119 0.0494305 0.0405881 0.0374997
20 0.0374997 0.0464686 0.0578201 0.0492219 0.0405839 0.0374997
50 0.0374997 0.0464649 0.0576499 0.0491979 0.0405845 0.0374997

100 0.0374997 0.0464648 0.0576547 0.0491937 0.0405844 0.0374997
150 0.0374997 0.0464647 0.0576527 0.0491941 0.0405844 0.0374997
200 0.0374997 0.0464647 0.0576525 0.0491943 0.0405844 0.0374997
250 0.0374997 0.0464647 0.0576527 0.0491943 0.0405844 0.0374997
300 0.0374997 0.0464647 0.0576528 0.0491942 0.0405844 0.0374997
350 0.0374997 0.0464647 0.0576527 0.0491942 0.0405844 0.0374997
400 0.0374997 0.0464647 0.0576527 0.0491942 0.0405844 0.0374997
450 0.0374997 0.0464647 0.0576527 0.0491942 0.0405844 0.0374997

6. CONCLUSION

This paper presented the thermal analysis of a heat sink dissipating heat from a solid-state electronic utilized on a solar
panel solved by Classical Integral Transform Technique. The mathematical formulation of parallel plate fins was described
and applied on the problem formulation. The ξ dependence on the Biot number made unworkable the achievement of an
analytical solution for the problem. However, the numerical discretization by Finite Element Method made possible to
solve the differential equations (20) and (23). To obtain the final value of θ, the nmax terms needed to be summed until
its fully convergence.

The convergence analysis showed that CITT has a great performance having no difficulties to obtain high accuracy
with very few terms in the solution summation far from the heat flux, and required more terms near the chip. The Classical
Integral Transform Technique has shown to be a good alternative method for this kind of problem. Finally, the inclusion
of fins performed the expected solution, which was the progressive reduction of the temperature as the number of fins with
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Figure 3: Contour plot of the CITT solutions for the considered cases.

same width was increased. The four-fin layout was the most efficient for dissipating the oncoming heat flux and reducing
the temperature.
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Abstract. In this work, the thermal analysis of heat sinks is proposed using an analytical approach. The mathematical
modeling is composed of a three-dimensional base and two-dimensional fins. The oncoming heat flux from a heated chip
attached at the bottom of the base needs to be cooled to ensure its good performance and long service life. For this reason,
fins coupled at the top of the base of the heat sink are responsible for increasing the heat transfer and cool the system.
Also at the top of the base, the air is flowing between fins contributing to the temperature’s reduction of the system. The
Classical Integral Transform Technique is applied for solving the formulation of fins and the base. The results show the
more fins attached to the base, the lower is the temperature of the base in the heat sink.

Keywords: Thermal Analysis, Heat Sink, Classical Integral Transform Technique

1. INTRODUCTION

The thermal management in Solid-State Electronics (SSE) has been one critical issue in the design of modern electronic
devices. The size reduction and the need for a better and more efficient power dissipation have motivated several studies
about the cooling of electronic components. Cost-effective modifications such as heat sinks are considered a key point to
minimize SSE’s temperature.

Heat sinks and, more specifically, their heat dissipation instigated several works about analysis and optimization of
their fins and how to enhance it for minimum temperature, consequently avoiding over-heated SSE. The work of Teertstra
et al. (2000) presented an analytical model to approach the average heat transfer rate for forced convection, air-cooled,
plate-fin heat sinks. The work of Lehtinen (2005) analyzed both heat conduction and convection in fins applying well-
known analytical and experimental results for convective heat transfer. The geometry of the fin was also studied for
maximizing the heat transfer. The work of Azarkish et al. (2010) investigated the geometry of the longitudinal fins with
variable cross-sectional area achieving its optimum fin profile using a genetic algorithm. On the other hand, Cuce and
Cuce (2014) tested different rectangular fins configurations to produce the maximum heat loss in a specific volume and
length of fin numerically exposed to convection and radiation heat transfer.

Some recent heat sink problems were analyzed using analytical and numerical methodologies. One can mention
the research developed by Türkakar and Okutucu-Özyurt (2012) regarding a dimensional optimization of silicon heat
sinks for located multiple heat sources by minimizing the thermal resistance at constant pumping power. Furthermore,
the work from Singh et al. (2018) used the LaPlace transform technique to solve the temperature distribution of 1D
fin with internal heat generation and periodic boundary condition. The work (Zaretabar et al., 2018) presents a heat
transfer numerical simulation of a heat sink installed on a square chip of a computer using the fourth-order Runge-Kutta
method to solve the non-linear heat transfer equation. Another numerical research which was developed by Malek and
Shabani (2018) simulates macro and microscope heat transfer utilizing different formulations for different scales. The
used methodology is based on spectral methods, solving it numerically by spectral discretization and finite differences
method. The microscope analysis uses the dual-phase lag formulation and for the macroscope problems, commercial
software was used for the simulations.

The Classical Integral Transform Technique is a powerful analytical method based on the separation of variables
method and is mainly applied in linear problems, (Chalhub et al., 2014). Integral transforms have been previously applied
to electronic problems. Dantas (1996), for example, applied the integral transform technique on an encapsulated microchip
problem and obtained the solution considering different thermal conductivity layers over the chip thickness. More recently,
Corrêa and Chalhub (2017) presented the solution of Solid-state Electronics with one heat generation on its domain and
solved by Classical Integral Transform Technique. For dealing with heat sinks, previously, Corrêa and Chalhub (2018b)
presented a heat sink analysis considering different values for the heat transfer coefficient depending on the position
of the fins. Also, Pinheiro et al. (2018) proposed the application of the Integral Transforms for solving the conjugated
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radiation-conduction in a finned-tube configuration problem.
In this work, a thermal analysis of heat sinks (HS), which dissipate the oncoming heat from a Solid State Electronic,

is proposed using an analytical approach. The mathematical modeling is composed of a three-dimensional base and bi-
dimensional fins. First, the Classical Integral Transform Technique is used for solving the fins formulation, in the function
of the heat flux which arrives from the base, which is an unknown value. To obtain the final solution for the 3D base, the
Classical Integral Transform Technique is also applied. For the base, however, two directions instead of one, as happened
on the fins, need to be transformed. For this reason, it is necessary to have a double summation for the inversion term and,
as a consequence, more terms were required for its full convergence. The achieved solution depends on the heat flux which
leaves the base to the fin, which is an unknown value. After achieving the solutions for fins and base, they are coupled
to find the value of the heat flux in the fin-base contact interface. Finally, fins and base solutions are calculated again
applying the heat flux value. The results show an analysis of the proposed approach of the heat sink base’s temperature
with one, two and six equally spaced fins. This developed routine also includes the possibility of having non-equally
spaced fins.

2. TWO-DIMENSIONAL PARALLEL PLATE FINS FORMULATION

The mathematical formulation for the heat transfer on the rectangular fins is given by the energy equation in steady
state. The material is considered isotropic. Since the thickness of the fin is much smaller when compared to its height
and width, a partial lumping approach is performed in the x-direction and the final formulation is two-dimensional. The
convection heat flux is also considered both sides of the fin. The fin is connected to the base on its bottom surface, as
indicated in Figure 2. For this reason, the lower boundary is the contact interface flux between fin-base, q̇′′base, which
varies on y-direction. Hence, insulation is considered on the upper end of the fin.

k

(
∂2T (y, z)

∂z2
+
∂2T (y, z)

∂y2

)
=

2h(T − Tf )

∆x
for 0 ≤ y ≤W and 0 ≤ z ≤ Ha (1a)

−k∂T
∂z

∣∣∣∣
z=0

= q̇′′base(y);
∂T

∂z

∣∣∣∣
z=Ha

= 0;
∂T

∂y

∣∣∣∣
y=0

= 0;
∂T

∂y

∣∣∣∣
y=W

= 0 (1b)

where T is the temperature in oC, k is the thermal conductivity of the fin in W/(m.K), h is the convection heat transfer
coefficient in W/(m2.K), Tf is the temperature of the surrounding air in oC, q̇′′base is the contact interface flux between
fin-base in W/m2. ∆x, W and Ha are the dimensions of the fin in x, y and z directions, respectively, in m.

The non-dimensionalization of the problem leads to the following mathematical formulation:

∂2Θ

∂ζ2a
+ γ2a

∂2Θ

∂η2
− (2BiHaβa)Θ = 0 for 0 ≤ η ≤ 1 and 0 ≤ ζa ≤ 1 (2a)

∂Θ

∂ζa

∣∣∣∣
ζa=0

= −A1q̇
′′
base(η);

∂Θ

∂ζa

∣∣∣∣
ζa=1

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0 (2b)

The non-dimensional groups are defined as:

ζa =
z

Ha
; η =

y

W
; Θ =

T − Tf
∆T

; βa =
Ha

∆x
; γa =

Ha

W
; BiHa

=
hHa

k
; A1 =

Ha

k∆T
(3)

where ζa and η are the dimensionless versions of z and y, Θ is the dimensionless temperature, βa and γa are aspect ratios,
Bia is the Biot number and A1 is a value which combines the height of the fin, its thermal conductivity and the expected
temperature range for the problem (∆T ).

3. THREE-DIMENSIONAL HEAT SINK BASE FORMULATION

The base of the heat sink presents the same materials properties of the fin and a total contact between base and fin is
considered. The energy equation on the steady-state was also used for the mathematical formulation for the base, dealing
now with a three-dimensional heat conduction problem. The contact interface flux between base and fin is combined
with the convection flux when there is a vacancy of fins and then applied as a boundary condition on the top of the base.
The oncoming heat flux from the chip is described as the boundary condition on the bottom of the base of the HS and
insulation is considered for the other boundaries, in this work.

Figure 1 describes the schematic problem, their dimensions, and heat fluxes positions. It can be noticed the presence
of one fin that receives the fin-base flux in all the extension of its width and the increase of the surface contact area on
the system is responsible for more efficient heat dissipation of the system. The vacancy of fins allows that air cools the
remain parts of the top surface of the HS, indicated by the convection flux by light blue arrows. The oncoming heat flux
from the heated chip, q̇′′o , is indicated by the red square at the bottom surface of the base.
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q̇′′o

W

L
H

Ha

q̇′′conv :↑
q̇′′fin :↑

x

y

z

Figure 1: Heat sink front view.

The formulation for the base is shown below:

k

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
= 0 for 0 ≤ x ≤ L, 0 ≤ y ≤W and 0 ≤ z ≤ H (4a)

∂T

∂x

∣∣∣∣
x=0

= 0;
∂T

∂x

∣∣∣∣
x=L

= 0;
∂T

∂y

∣∣∣∣
y=0

= 0;
∂T

∂y

∣∣∣∣
y=W

= 0 (4b)

−k∂T
∂z

∣∣∣∣
z=0

= q̇′′o (x, y); −k∂T
∂z

∣∣∣∣
z=H

= [α(x)]q̇′′conv + [1− α(x)]q̇′′fin(y) (4c)

where T is the temperature in oC, k is the thermal conductivity of the base in W/(m.K), q̇′′o is the oncoming flux from the
heated chip, q̇′′conv is the convection flux at the top of the base and q̇′′fin is the contact interface flux between fin-base, all of
them in W/m2. L, W and H are the dimensions of the fin in x, y, and z directions, respectively, in m. The parameter α is
an embracing parameter to simplify the integral transform technique solution and defined as 0 or 1, indicates the position
of the fins and the output flow present at a given position of x:

α =

{
0 if the top is in contact with the fin, (q̇′′fin) is the boundary heat flux
1 if there is only convection in this position, (q̇′′conv) is the boundary heat flux

(5)

The convection flux at the top of the base q̇′′conv is defined as:

q̇′′conv = h(T − Tf ) (6)

where h is the convection heat transfer coefficient in W/(m2.K) and Tf is the temperature of the surrounding air in oC.
The non-dimensionalization of the problem leads to the following mathematical formulation:

∂2Θ

∂ζ2
+ β2 ∂

2Θ

∂η2
+ γ2

∂2Θ

∂ξ2
= 0 for 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1 (7a)

∂Θ

∂ξ

∣∣∣∣
ξ=0

= 0;
∂Θ

∂ξ

∣∣∣∣
ξ=1

= 0;
∂Θ

∂η

∣∣∣∣
η=0

= 0;
∂Θ

∂η

∣∣∣∣
η=1

= 0 (7b)

∂Θ

∂ζ

∣∣∣∣
ζ=0

= −A2q̇
′′
o (ξ, η);

∂Θ

∂ζ

∣∣∣∣
ζ=1

= [−α(ξ)]BiHΘ + [α(ξ)− 1]A2q̇
′′
fin(η) (7c)

The non-dimensional groups are defined as:

ζ =
z

H
; η =

y

W
; ξ =

x

L
; Θ =

T − Tf
∆T

; β =
H

L
; γ =

H

W
; BiH =

hH

k
; A2 =

H

k∆T
(8)

where ζ, η and ξ are the dimensionless versions of z, y and x, Θ is the dimensionless temperature, β and γ are aspect
ratios, BiH is the Biot number and A2 is a value which combines the height of the fin, its thermal conductivity and the
range of temperature expected for the problem (∆T ).

4. FIN-BASE COUPLING

Two assumptions are performed to couple the fin and base equations, which are considered having perfect contact. On
the contact interface between fin and base, the temperature of the base at the top boundary and the position of the fin is the
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Figure 2: Fin-base coupling.

same temperature of the fin at the bottom boundary. This also happens to the heat fluxes, where the flux leaving the base
on the position of the fin has the same intensity of the one which enters on the fin. Figure 2 shows a scheme in fin-base
and the required conditions for the perfect interface contact, which are described below:

q̇′′base(η) = q̇′′fin(η) = q̇′′ic(η) (9)

Θbase(position of the fin, prescripted value of η, top of base) = Θfin(prescripted value of η, bottom of fin) (10)

Solving the equations separately so that q̇′′base and q̇′′fin are unknown values yet then, these mathematical equalities are
performed and the value of q̇′′base and q̇′′fin are obtained. For this work, the heat fluxes may vary on η-direction and, for
this reason, the heat fluxes q̇′′base and q̇′′fin are defined as:

q̇′′ic(η) = q̇′′base(η) = q̇′′fin(η) = aiη
3 + biη

2 + ciη + di (11)

where a, b, c and d are the coefficients for the heat flux and i defines the fin which the heat flux belongs.
The fin and base equations are solved again replacing the unknown values for the new calculated values and finally,

obtaining the temperature field for the coupled fin-base heat sink.

5. SOLUTION BY CLASSICAL INTEGRAL TRANSFORM TECHNIQUE

The analytical approach of this work will be achieved utilizing the Classical Integral Transform Technique. This is an
analytical technique that uses expansions of the sought solution in terms of an infinite orthogonal basis of eigenfunctions,
keeping the solution process always within a continuous domain. Because we are dealing with a 2D fin and a three-
dimensional base, the inversion term would have a single summation for the fin while a double summation would be
necessary for the base. The single and double summation had been already discussed and compared in (Chalhub et al.,
2014) and (Corrêa and Chalhub, 2018a), and for both previous works, it was concluded that the double requires more
terms for the full convergence. The methodology of each part of the heat sink is described below.

5.1 CITT Solution for fin

To obtain the solution for the fin, the Classical Integral Transform Technique (CITT) is applied. As a precondition to
establishing the transformation pair, the temperature field is written as a function of orthogonal eigenfunctions obtained
from the following auxiliary eigenvalue problem known as the Helmholtz classic problem in cartesian coordinates. The
eigenvalue problem proposed to be solved on the fin is in the η direction, where Ψ(η) are the eigenfunctions and λn are
the eigenvalues. For this particular problem, the case where λ = 0 also exists.

Ψ′′n(η) + λ2nΨn(η) = 0 (12a)
Ψ′n(0) = 0, Ψ′n(1) = 0 (12b)

Solving the differential equation, the solution shows that the eigenfunction is formed by sines and cosines. Applying
the boundary conditions, the term formed by sines is eliminated from the solution and the values of the eigenvalues λn
are found.

For λ = 0 , the solution of the eigenvalue problem is given by:

Ψ0(η) = 1; λ0 = 0 (13)

and for λ > 0 :

Ψn(η) = cos(λnη); λn = nπ, for n = 1, 2, 3, . . . (14)
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The transformation pair for the fin is defined as:

Transformation ⇒ Θ̄n(ζ) =

∫ 1

0

ΘΨn(η)dη (15)

Inversion ⇒ Θ =

∞∑

n=0

Θ̄n(ζ)Ψn(η)

Nyn
(16)

where Nyn is the norm and is described in equation (32).
The equation (2a) is written again, multiplied by Ψn and integrated into the domain for η. The objective in this step

is to obtain the transformed equation by the replacement of the terms with the transformation input for the transformation
term.

∫ 1

0

∂2Θ

∂ζ2a
Ψndη + γa

∫ 1

0

∂2Θ

∂η2
Ψndη − 2BiHaβa

∫ 1

0

ΘΨndη = 0 (17)

Finally, the transformed equation is obtained:

• For λ > 0 :

Θ̄a
′′
n − (γ2aλ

2
n + 2BiHa

βa)Θ̄n = 0 (18)

The transformed boundary conditions are:

Θ̄′n(0) = −A1q̇
′′
base(η); Θ̄′n(1) = 0 (19)

• For λ = 0 :

Θ̄a
′′
0 − (2BiHa

βa)Θ̄0 = 0 (20)

The transformed boundary conditions are:

Θ̄′0(0) = −A1q̇
′′
base(η); Θ̄′0(1) = 0 (21)

The transformed equation achieve an analytical solution, shown on equations (22) and (23):

Θ̄n(ζa) =
A1e

ζa
(
−
√

2Biβa+π2γa2n2
) (
e2ζa
√

2Biβa+π2γa2n2
+ e2
√

2Biβa+π2γa2n2
)

(
e2
√

2Biβa+π2γa2n2 − 1
)√

2Biβa + π2γa2n2
×
∫ 1

0

q̇′′base(η) cos(nπη)dη

(22)

Θ̄0(ζa) =
A1e

−√2Biβaζa
(
e2
√
2Biβaζa + e2

√
2Biβa

)

√
2Biβa

(
e2
√
2Biβa − 1

)
∫ 1

0

q̇′′base(η)dη (23)

5.2 CITT Solution for the base

After solving the transformed equation for the fin depending on q̇′′base, the solution using the Classical Integral Trans-
form Technique for the base is developed. As it was mentioned before, the three-dimensional base must be transformed
in two directions, which are η, presenting a similar eigenvalue problem as the fin, and ξ.

Ψ′′n(η) + λ2nΨn(η) = 0 (24a)
Ψ′n(0) = 0, Ψ′n(1) = 0 (24b)

Ξ′′m(ξ) + µ2
mΞm(ξ) = 0 (25a)

Ξ′m(0) = 0, Ξ′m(1) = 0 (25b)

The eigenfunctions Ψ(η) and Ξ(ξ) are solved. λn are the eigenvalues of Ψ(η) and µm are the eigenvalues of Ξ(ξ).
For λ > 0 :

Ψn(η) = cos(λnη); λn = nπ, for n = 1, 2, 3, . . . (26)
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For λ = 0 :

Ψ0(η) = 1; λ0 = 0 (27)

For µ > 0 :

Ξm(ξ) = cos(µmξ); µm = mπ, for m = 1, 2, 3, . . . (28)

For µ = 0 :

Ξ0(ξ) = 1; µ0 = 0 (29)

The transformation pair for the base is defined as:

Transformation ⇒ ¯̄Θnm(ζ) =

∫ 1

0

∫ 1

0

ΘΨn(η)Ξm(ξ)dηdξ (30)

Inversion ⇒ Θ =
∞∑

n=0

∞∑

m=0

¯̄Θnm(ζ)Ψn(η)Ξm(ξ)

NynNxm
(31)

where ¯̄Θnm is the transformed version of Θ. Nyn and Nxm are the norms and are defined in (32).

Nxm =

∫ 1

0

Ξ2
mdξ; Nyn =

∫ 1

0

Ψ2
ndη (32)

The equation (7a) is written again, multiplied by Ψn and Ξm and integrated in the domain for η and ξ. The objective
in this step is to obtain the transformed equation by the replacement of the terms with the transformation input for the
transformation term.

∫ 1

0

∫ 1

0

∂2Θ

∂ζ2
ΨnΞmdηdξ + β2

∫ 1

0

∫ 1

0

∂2Θ

∂η2
ΨnΞmdηdξ + γ2

∫ 1

0

∫ 1

0

∂2Θ

∂ξ2
ΨnΞmdηdξ = 0 (33)

For dealing with the transformed boundary condition at the top of the base, some simplifications are performed. The
parameter α, which was defined previously as an embracing parameter for the integral transform simplification, and the
dependence on ξ of α turns impracticable to obtain the transformed term. Consequently, α(ξ) is approximated to an
average value αavg , described on Equation (34). This approximation was performed to simplify the obtaining of the
analytical solution. The convection term is written considering an average value for α, as shown below, becoming a
constant value in all the domain of ξ, which values 1:

αavg =

∫ 1

0

α(ξ)dξ (34)

The convection term is written again, applying the αavg :

−
∫ 1

0

∫ 1

0

α(ξ)BiHΘ(ξ, η, 1)Ξm(ξ)Ψn(η)dηdξ = −αavgBiH

∫ 1

0

∫ 1

0

Θ(ξ, η, 1)Ξm(ξ)Ψn(η)dηdξ =

− αavg(ξ)BiH
¯̄Θnm (35)

The term which connects fin-base is rewritten substituting the α(ξ) for 0 at the regions where the fins are located.

A2

∫ 1

0

∫ 1

0

(α(ξ)− 1)q̇′′fin(η)Ξm(ξ)Ψn(η)dηdξ = −A2

nfin∑

j=1

∫ 1

0

∫ ξfj

ξij

q̇′′fin(η)Ξm(ξ)Ψn(η)dξdη (36)

where nfin is the number of fins, ξi refers to the position where the fin begins and ξf where it ends.
Convection and interface contact terms are reunited and the final top boundary condition which is used for solving the

transformed equations is:

¯̄Θ′(1) = −αavgBiH
¯̄Θ(1)−A2

nfin∑

j=1

∫ 1

0

∫ ξfj

ξij

q̇′′fin(η)Ψn(η)Ξm(ξ)dξdη (37)

Finally, the transformed equation is obtained for different values of the eigenvalues:
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• For λ > 0 and µ > 0 :

¯̄Θ′′nm − (β2µ2
m + γ2λ2n) ¯̄Θnm = 0 (38)

The transformed boundary conditions are:

¯̄Θ′nm(0) = −A2

∫ 1

0

∫ 1

0

q̇′′o (ξ, η)Ξm(ξ)Ψn(η)dηdξ; (39)

¯̄Θ′nm(1) = −αavgBiH
¯̄Θnm(1)−A2

nfin∑

j=1

∫ 1

0

∫ ξfj

ξij

q̇′′fin(η)Ψn(η)Ξm(ξ)dξdη (40)

• For λ > 0 and µ = 0 :

¯̄Θ′′n0 − (γ2λ2n) ¯̄Θn0 = 0 (41)

The transformed boundary conditions are:

¯̄Θ′n0(0) = −A2

∫ 1

0

∫ 1

0

q̇′′o (ξ, η)Ψn(η)dηdξ; (42)

¯̄Θ′n0(1) = −αavgBiH
¯̄Θn0(1)−A2

nfin∑

j=1

∫ 1

0

∫ ξfj

ξij

q̇′′fin(η)Ψn(η)dξdη (43)

• For λ = 0 and µ > 0:

¯̄Θ′′0m − (β2µ2
m) ¯̄Θ0m = 0 (44)

The transformed boundary conditions are:

¯̄Θ′0m(0) = −A2

∫ 1

0

∫ 1

0

q̇′′o (ξ, η)Ξm(ξ)dηdξ; (45)

¯̄Θ′0m(1)− αavgBiH
¯̄Θ0m(1)−A2

nfin∑

j=1

∫ 1

0

∫ ξfj

ξij

q̇′′fin(η)Ξm(ξ)dξdη (46)

• For λ = 0 and µ = 0:

¯̄Θ′′00 = 0 (47)

The transformed boundary conditions are:

¯̄Θ′00(0) = −A2

∫ 1

0

∫ 1

0

q̇′′o (ξ, η)dηdξ; (48)

¯̄Θ′00(1) = −αavgBiH
¯̄Θ00(1)−A2

nfin∑

j=1

∫ 1

0

∫ ξfj

ξij

q̇′′fin(η)dξdη (49)

After performing these modifications, it was achieved an analytical solution for each equation. To obtain the final
temperature of the 3D-base, the inversion formula (31) is applied.

6. RESULTS

The problem was described, the parallel plate fins formulation and the solution methodology were explained. After
achieving an analytical solution for base and fins formulations, the fin-base coupling was performed and the heat flux q̇′′ic
was obtained. The heat flux was then applied on the base and fin solutions and now, in this section, the results are shown.
For all the tested cases, it was considered a square chip, as shown in Figure 3, with a constant flux of 200000 W/m2, β
and γ value 0.25 each. The values for the fins are BiHa

βa = 3 and γa = 0.5. A1 and A2 value 5× 10−6 and 2.5× 10−6,
respectively.

For the first layout, it was tested a heat sink with one fin at the middle of the base with 0.1 of length. It was considered
BiH = 0.01 and αavg = 0.9. The layout for this first case can be observed in Figure 4a, as well as the boundary condition
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Figure 3: Chip coupled at the bottom of the base of HS and its heat flux.

(a) Contour plot of the 1-fin Layout.
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(b) Solution for the fin.
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(c) Solution for BiH=0.01 with η fixed
in 0.5.

Figure 4: Contour plot of the CITT solution for the 3D base(ξ, η, ζ) for the case with one fin and BiH=0.01.

at the top of the base of the HS. The heat flux in the fin-base contact interface is indicated on equation (50) and the thermal
profile of the fin is shown in Figure 4b.

q̇′′ic = q̇′′base = q̇′′fin = 16386.6− 8460.39η + 72522η2 − 74769.4η3 (50)

It can be noticed a parabolic thermal profile for the 2D-fin, whose temperature achieve 0.0789451 at the position
(0.5,0), the same value at (0.5,0.5,0) on the 3D-base, which proves the assumption of the fin and base having the same
temperature at their interface. At the position (0.5,1), the fin achieves Θ = 0.0252085. The solution for the base is shown
in Figure 4c, where isotherms curves bound the region where the chip is located in dark red, indicating warmer regions,
and the position of the fin in dark blue for the regions with lower temperatures. It must be noticed the existence of ratio
aspect in all the base Figures, for a better examination of the achieved results, the results are shown in a square plot. The
base’s hottest region is next to the chip’s heat flux and the coolest region is near to the fin. Hence, it is important to be
noticed the temperature field of the heat sink is not symmetric because of the non-symmetrical interface contact heat flux
q̇′′ic.

The second and third cases aim to evaluate how the increase of convection and fins enhance the cooling of the heat sink.
The second case keeps αavg and the layout of the first case and increases the value of BiH from 0.01 to 0.1 to evaluate
how intense is the cooling of the system when the convection is intensified. The heat flux in the fin-base contact interface
for this second case is indicated on equation (51) and, again, non-symmetrical interface contact heat fluxes caused not
symmetric temperature field on the heat sink.

q̇′′ic = 7487.2− 8448.38η + 70929η2 − 72980.2η3 (51)

(a) Contour plot of the 1-fin Layout.
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(b) Solution for the fin.
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Figure 5: Contour plot of the CITT solution for the 3D base(ξ, η, ζ) for the case with one fin in the middle of the HS and
BiH = 0.1.

The enhance of convection on the heat sink promoted higher thermal dissipation and reduced the temperature field on
the HS, in comparison with the first case. The temperature of the 2D-fin at (0.5,0), which was 0.0789451, was reduced to
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0.0419756 on this second case and at the top of the fin (0.5,1) was reduced to 0.0125758 from 0.0252085 of the previous
case. However, if it is increased the number of fins in the HS, the thermal dissipation is passive and, consequently, more
interesting to the industry.

The third case presents a different layout with 2 fins equally spaced from the middle of the base, shown in Figure 6a.
It was considered BiH = 0.01 and αavg = 0.8. Both fins presented similar non-symmetrical heat flux in the fin-base
contact interface, indicated on equation (52):

q̇′′ic1 = q̇′′ic2 = 8585.24− 743.681η + 24017.7η2 − 27076.8η3 (52)

Because the fins present the same heat flux q̇′′ic, the thermal profile is also the same, shown in Figure 6b. It can be noticed
a relevant reduction on the fin temperature field in comparison with the first case tested (1 fin). This reduction in the
temperature field is also noticed at the base. The temperature at the interface fin-base is 0.0415168 for both fins. The
thermal profile for the base is shown in Figure 6c, where the location of the fins is indicated by darker blue color isotherm
region at the top of the base.

(a) Contour plot of the 2-fin Layout.
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(b) Solution for the fins.
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fixed in 0.5.

Figure 6: Contour plot of the CITT solution for the 3D base(ξ, η, ζ) for the case with two fins on the HS and BiH = 0.01.

Analyzing Figures 5b and 5c for the second case and Figures 6b and 6c for the third case, it can be noticed the
temperature ranges of the fin and base bounds the same intensity. In other words, despite different thermal profiles, the
increase in Biot number promoted a similar thermal dissipation in comparison with the increase in the number of fins.
However, it is more profitable to increase the number of fins, which promotes passive cooling, than enhance the heat
transfer coefficient convection, which would require the use of a fan or other forced convection mechanisms. For this
reason, the inclusion of fins in heat sinks is a more efficient cooling mechanism.

Finally, the final case proposes a layout with six finner fins, which is a layout more usual in the industry, shown in
Figure 7a. It was considered BiH = 0.01 and αavg = 0.7. The thermal profile for the third fin and base are shown in
Figures 7b and 7c, respectively.

(a) Contour plot of the 6-fin Layout.
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Figure 7: Contour plot of the CITT solution for the 3D base(ξ, η, ζ) for the case with six fins on the HS and BiH = 0.01.

The fact of having more fins distributed on the overall base, in fact, decreased the overall temperature of the base of
the HS, contributing for a good performance of the heated chip, which keeps sending a heat flux to the bottom base at
steady-state. In other words, the temperature along the heat sink had a sensitive reduce from the one-fin layout, which
states that the efficiency of increasing fins to heat sinks to increase the heat dissipation and reduce the temperature.

7. CONCLUSION

This paper presented the thermal analysis of a heat sink dissipating heat from a solid-state electronic, solved utilizing
the Classical Integral Transform Technique, which has shown to be a good alternative method for this kind of problem.
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The parallel plate fins were described as two-dimensional and the base was formulated as three-dimensional. First, it
was solved the formulation for the fin using the CITT single transformation. After obtained the analytical solution for
the 2D-fin, the formulation for the 3D-base was solved using double transformations of the CITT and also achieved an
analytical approach. Both solutions were coupled considering perfect contact assumptions and the interface contact heat
flux between fin and base was found. Finally, this heat flux was applied to the fins and base solutions.

Different layouts of heat sinks, consequently, promote different heat fluxes between fin-base. The temperature field
for both base and fins are not symmetric because of the non-symmetrical interface contact heat flux. The increase in the
number of fins or convection enhances the heat dissipation on heat sinks. However, it was shown that is more profitable
to add fins than enhance the heat transfer convection coefficient. Finally, the addition of fins performed the expected
solution, which was the progressive reduction of the temperature as the number of fins increased. The six-fin layout was
the most efficient for dissipating the oncoming heat flux and reducing the temperature.
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