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ABSTRACT 
 

FERREIRA, M. C. Nonperturbative free energy and phase transition for a complex 

scalar field theory. 2022. 140 f. Dissertação (Mestrado em Física) - Instituto de Física 

Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 

2022. 

 

In this work we study thermal and chemical potential contributions to the mass at 

two loops and to the free energy at three loops for a charged scalar field. We also make 

use of the optimized perturbation theory to obtain nonperturbative results and for the 

phase transition analysis of the model at finite temperature and chemical potential, in 

the high temperature approximation. 

 

Keywords: Chemical potential. Complex field. Symmetry breaking restoration. Thermal 

                   field theory. Quantum field theory at finite temperature. 

  



RESUMO 
 

FERREIRA, M. C. Energia livre e transição de fase não perturbativa para uma teoria 

escalar complexa. 2022. 140 f. Dissertação (Mestrado em Física) - Instituto de Física 

Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 

2022. 

 

Neste trabalho estudamos contribuições térmicas e de potencial químico finito 

para a massa a dois laços, e para a energia livre a três laços, de um campo escalar 

carregado. Também fazemos uso da teoria de perturbação otimizada para obter 

resultados não perturbativos e para a análise de transição de fase do modelo à 

temperatura e potencial químico finitos, na aproximação de altas temperaturas. 

 

Palavras-chave: Potencial químico. Transição de fase. Campo complexo. Quebra de  

                           simetria. Teoria de campos a temperatura e potencial químico finitos. 
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INTRODUCTION

Many systems in nature are subject to thermal effects, where the ambient temper-

ature is different from zero (KAPUSTA, 2006; LE BELLAC, 1996; KLEINERT, 1990).

Likewise, in the presence of conserved charges, chemical potentials can play an important

role. These effects may be present in the early Universe, and also in dense astrophysical

objects such as compact stars, or even materials subjected to high pressures.

Of key interest, when we examine the history of the Universe, the ideas of phase

transition emerge. Phase transitions, in the early Universe, have received much attention

(GUTH; WEINBERG, 1981b; STEINHARDT, 1981; LINDE, 2008) in conjunction with

a desire to unify the laws of particle physics. The idea is that nature has a high degree

of symmetry, which relates the various observed particles to one primordial state. The

Universe once existed in this unified state but, through a series of phase transitions, the

symmetry (or symmetries) was spontaneously broken. This phenomena (known as spon-

taneous broken symmetry) is well observed today and it is a part of the Higgs mechanism,

which is related to the electro-weak unification (PICH, 2007; SALAM, 1968; WEINBEG,

1967). The consequences of phase transitions reach beyond particle physics and can be

used to solve various cosmological questions. It is possible that a phase transition may

have driven a period of accelerated expansion of the Universe, also known as inflation

(LINDE, 2008; GUTH, 1981a).

Besides the Higgs particle, which is described by a scalar field, effective scalar

field theories can describe elements of quantum chromodynamics (QCD), for example in

the description of pions as approximate Goldstone bosons (WEINBERG, 2013). Also,

in terrestrial systems, such as atomic fluids, the atoms and their interactions can be

effectively described by a model with an interacting scalar field (YUKALOV, 2011).

As cosmologists and condensed matter theorists have learnt to exchange their ideas,

we may also examine the laboratory phenomenon of phase transition in a cosmological

setting. We may investigate how finite scalar charges may affect phase transition in

general.

Perturbation theory is one of the most important tools in physics, especially in

high energy physics. In the last topic, when temperature effects can emerge from high

energy scattering, the perturbation is not always applicable (WEINBEG, 1974; FARIAS;
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RAMOS; KREIN, 2008). In high orders of perturbation theory, the thermal corrections

can start to deviate from low order terms. This is a well known problem of thermal field

theory. All attempts to study particle physics in extreme conditions have this problem.

There are many of ways to handle this problem related to thermal fields. In this dis-

sertation, we will work with the Optimized Perturbation Theory (OPT) (STEVENSON,

1981; KNEUR; PINTO, 2015; FARIAS; RAMOS; KREIN, 2008; KNEUR, 2002; PINTO,

2004; FARIAS, 2013; FERNANDEZ; KNEUR, 2021; DUARTE, 2011; MILTON, 1987;

JONES; PARKIN, 2001), as a nonperturbative method in our calculations. The OPT has

shown to produce results that are in very good agreement with the lattice computations

(BENGHI, 2021) and gives us convergent results in terms of Feynman integrals (SEZNEC;

ZINN-JUSTIN, 1979; STEVENSON, 1981; FARIAS; RAMOS; KREIN, 2008; KNEUR;

PINTO, 2015).

Applying this technique, in this dissertation, for the thermal mass and the free

energy of a relativistic superfluid model, with spontaneous symmetry breaking, we derive

essential thermodynamic quantities. We derive the mass spectrum of the theory up to

second order using the aforementioned nonperturbative scheme (which, as we are going

to show, includes up to three loop terms explicitly). We also developed the same con-

struction for the effective thermodynamic potential of the model, which is derived by

including one, two and three loop terms, the calculation of the potential including the

effects of chemical potential is new in the literature. In the phase transition for this

model, there is an issue that appears frequently in literature. This type of theory cor-

responds to a well known universality class, which has a second order phase transition

(YUKALOV; YUKALOVA, 2014). However, since we are summing different terms, this

type of system can undergo a first-order transition. We are studying proposals to solve

this problem, using the Optimized Perturbation Theory (OPT) with the Renormalization

Group Equations (RGE).

This work is organized as follows. In chapter 1, we begin with the presentation of

the relevant field theory framework, which is necessary to tackle our problems, at the same

time we introduce the model for our applications. We also elucidate some concepts about

the theory of thermal fields and compute all the desired terms needed for the discussions

carried out throughout this work.

Chapter 2 presents the advantages and disadvantages of applying perturbative
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calculations to thermodynamic quantities and for the phase transition analysis. Along

this, we begin to show some motivations that imply that nonperturbative techniques are

required.

Chapter 3 proposes the Optimized Perturbation Theory as an alternative to deal

with most of problems discussed in previous chapters. In chapter 4, we finish the work

with a discussion about the applications of the concepts and results developed here, with

views for possible future works.
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1 THERMAL FIELD THEORY

In this chapter we present the formalism of a thermal field theory and all the

required computations for the further discussions. Throughout this work we consider the

metric signature (+−−−) and the natural units, where c = h̄ = kB = 1.

1.1 Statistical Mechanics

We shall consider a system characterization by a Hamiltonian H, and a set of

conserved charge operators Qi which satisfy [H,Qi] = 0. Equilibrium in a large volume

V is described by the grand-canonical density operator,

ρ = e−β(H−µiQi). (1)

The β is related to the temperature by β = T−1 and µi are the chemical potentials. After

defining the partition function as

Z = Tr{ρ} , (2)

we can relate it to various thermodynamic quantities,

Ni = T
∂

∂µi

lnZ , (3)

S =
∂

∂µi

T lnZ , (4)

P = T
∂

∂V
lnZ , (5)

E = TS − T lnZ + µiNi , (6)
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which corresponds to the particles number, entropy, pressure and energy respectively. By

performing the differentiation in these expressions, we have:

Ni =
1

Z
Tr{ρQi} , (7)

S = lnZ − 1

Z
Tr{ρ ln ρ} , (8)

E =
1

Z
Tr{ρH} . (9)

The above quantities are constructed as weighted averages over a complete set of quantum

field states. In the next few sections we shall demonstrate how the grand partition function

Z is typically calculated, through a path integral formalism.

1.2 Path Integrals

The path integral quantization (KLEINERT, 1990) follows a different methodol-

ogy than the canonical quantization, in a sense that, instead of promoting the fields to

operators, we will think in terms of a functional that can give us the probability amplitude

of a particle. The probability amplitude can be a superposition, for example, of the two

possible amplitudes if you have a double slit experiment. Now, if you have more slits in

this ”experiment”, you could have more and more ways or paths that the amplitude could

assume. In this way, we can build a functional that considers all paths, from a point A

to B. It is possible from the amplitude transition representation of two quantum states

to obtain

⟨ϕa|e−iHt|ϕa⟩ =
∫

[dπ]

∫ ϕ(x⃗,t)=ϕa(x⃗)

ϕ(x⃗,0)=ϕa(x⃗)

[dϕ]ei
∫ t
0 dt′

∫
d3x
(
π(x⃗,t)

∂ϕ(x⃗,t)
∂t

−H(π(x⃗,t),ϕ(x⃗,t))
)
, (10)

where the symbols [dπ] and [dϕ] denote functional integration. The integration over π(x⃗, t)

is unrestricted, but the integration over ϕ(x⃗, t) is such that the field starts at ϕa(x⃗) at
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t′ = 0 and ends at ϕa(x⃗) at t
′ = t . Note that,

Z = Tre−β(H−µiNi) =
∑
a

∫
dϕa⟨ϕa|e−β(H−µiNi)|ϕa⟩ , (11)

where the sum runs over all states and we have used a completeness relation built with

the field ket state |ϕa⟩ to write the trace operation. This expression is very similar to

that for the transition amplitude defined in the previous section. In fact we can express

Z as an integral over fields and their conjugate momenta by making use of (10). In order

to make that connection, we switch to an imaginary time variable t → iτ . The trace

operator in (11) simply means that we must integrate over all ϕa. Finally, if the system

admits a conserved charge then we must make the replacement

H → H− µN (12)

where H and N are the Hamiltonian and conserved charge density. We arrive at,

Z =

∫
[dπ]

∫
periodic

[dϕ]e
∫ β
0 dτ ′

∫
d3x
(
iπ ∂ϕ

∂τ
−H(π,ϕ)+µN

)
, (13)

where “periodic” means that the integration over the field is constrained in such a way that

ϕ(x⃗, 0) = ϕ(x⃗, β). This follows from the trace operation, setting ϕa(x⃗) = ϕ(x⃗, 0) = ϕ(x⃗, β),

(LE BELLAC, 1996).

The periodic conditions discussed above, gives also origin to the so called Kubo-

Martin-Schwinger (KMS) relation (KAPUSTA, 2006; LE BELLAC, 1996). Given some

two-point correlation functions, we have

⟨ϕ(x⃗,−iβ)ϕ(y⃗,−iτ)⟩ = ⟨ϕ(x⃗, 0)ϕ(y⃗,−iτ)⟩, where β ≡ 1/T . (14)

The relation above is called the KMS condition. It is a fundamental result that follows

from the fact that for a system in a thermal equilibrium, any measure of some observable

O is written in terms of the ensemble,

⟨O(t)⟩ = 1

Z
Tr(e−βHO(t)). (15)
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But since O(t) = etHiO(0)e−tHi and using the trace cyclicity,

⟨O(t)⟩ = 1

Z
Tr(e−βHO(t)) = (e−βHeiH(t−iβ)O(0)e−iH(t−iβ)) = ⟨O(t− iβ)⟩ , (16)

we extract once more the thermal condition ϕ(x⃗, 0) = ϕ(x⃗, β) for the fields. The observ-

ables of the theory are described in terms of these two-point correlation functions (14)

called propagators and they obey the same periodicity (for simplicity, we will omit the

space labeling),

∆(τ) = ∆(τ − β) . (17)

In order to capture physical answers, the propagators and the fields need to be single-

valued functions and, because of that, the time component of the field has to be discrete.

Because of the periodic conditions the fields are delimited to the interval like [0, β] and

our correlation functions appear in terms of Bose-Einstein factors (LE BELLAC, 1996),

which will give us a precise description about some observable quantities, like temper-

ature (T ), chemical potential (µ), in the case of charged fields, entropy (S) and others

thermodynamic variables. Now, we need to show how to compute these propagators.

The functional (13) has the same general structure of an integral over all possible con-

figurations of an exponential statistical weight. Observable properties of a system can

be extracted from the correlation functions, or the Green’s functions. This applies to

extensive thermodynamical quantities such as the energy and charge density. The n-leg

scalar Green’s function is defined as

G(x1...xn) = ⟨0|Tϕ(x1)ϕ(x2)...ϕ(xn)|0⟩

= Z[0]−1

(
− i

δ

δJ(x1)

)(
− i

δ

δJ(x2)

)
...

(
− i

δ

δJ(xn)

)
Z[J ]|J=0 , (18)
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where T is the time-ordering operator1 (DYSON, 1949),

T
(
O1(t2), O2(t1)

)
=

{
O1(t1)O2(t2) t1 > t2

O1(t1)O2(t2) t1 > t2
, (19)

and Z[J ] is

Z[J ] = Z[0]−1

∫
d[ϕ][dπ]e

∫ β
0 dτ

∫
d3x
(
iπϕ̇−H+µN+Jϕ

)
, (20)

where the source J(x) plays the role of an external field. In fact, our method of computing

correlation functions by differentiating them with respect to J(x), give us the correlation

functions of our model. The Z[0] is just the thermodynamic partition function without

external sources.

1.2.1 U(1) Scalar Field Theory

In this work we shall investigate a model consisting of one complex scalar field

ϕ = (ϕ1 + iϕ2)/
√
2, with U(1)-invariant Hamiltonian and conserved charge Q:

H =
1

2

[
ϕ̇2
1 + ϕ̇2

2 + (∇ϕ1)
2 + (∇ϕ2)

2 +mϕ2
1 +mϕ2

2

]
+

1

24
λ(ϕ2

1 + ϕ2
2)

2 , (21)

Q =

∫
d3xN =

∫
d3x
(
ϕ2ϕ̇1 − ϕ1ϕ̇2

)
, (22)

where ϕ̇ ≡ π. The complex field ϕ describes bosons of positive and negative electric

charge, where they represents the particle and the anti-particle of the model. Note that,

if ϕ2 = 0 we can get a Z2 theory there will be no charge associated with this theory,

because Q = 0. The Lagrangian density, that follows from Eq. (21) is,

L = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ− λ

3!
(ϕ∗ϕ)2 . (23)

1Introduced by Freeman Dyson (DYSON, 1949), in order to deal with situations like [H(t1), H(t2)] ̸= 0
as well.
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Now, let us turn our attention to the partition function (13). Using (21) and (22) in (13),

we obtain

Z[J ] = N ′
∫
periodic

d[ϕ1]d[ϕ2] exp

{∫ β

0

dτ

∫
d3x

[
− 1

2

(
ϕ̇1 − iµϕ2

)2 − 1

2

(
ϕ̇2 + iµϕ1

)2

−1

2
(∇ϕ1)

2 − 1

2
(∇ϕ2)

2 − 1

2
m2ϕ2

1 −
1

2
m2ϕ2

2 −
λ

24
(ϕ2

1 + ϕ2
2)

2 + J1ϕ1 + J2ϕ2

]}
, (24)

where we have integrated out the conjugate momenta π1 and π2 and N
′ is just a normal-

ization factor. Let us use the notation ϕa, (a = 1, 2) and split the Lagrangian density

into free and interaction components, in the Minkowiski space we have

L0 =
1

2
(∂tϕ1 + µϕ2)

2 +
1

2
(∂tϕ2 + µϕ1)

2 − 1

2
(∇ϕa)

2 − 1

2
m2ϕ2

a , (25)

LI = − λ

24
(ϕaϕa)

2. (26)

In the same way that functional differentiation can be used to generate Green functions

from the generating functional, we may account for the interaction Lagrangian density as

follows,

Z[J ] = N exp

{∫ β

0

dτ

∫
d3xLI

[
δ

iδJ(z)

]}
Z0[J ] . (27)

Here, Z0[J ] is the generating functional for the free theory,

Z0[J ] = N

∫
[dϕ1,2]e

i
∫
d4x[L0+Jaϕa] . (28)

It becomes convenient to write the free Lagrangian density in the form,

L0 =
1

2
ϕaKabϕb , (29)
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where K is a differential operator given by,

Kab =

 −∂2t +∇2 −m2 + µ2 −2µ∂t

2µ∂t −∂2t +∇2 −m2 + µ2

 , (30)

which allow us to define the propagator matrix of the theory,

Gab(k⃗) =
1

detKab

 k24 + k⃗2 +m2 − µ2 −2µk4

2µk4 k24 + k⃗2 +m2 − µ2

 =

 G11 G12

G21 G22


(31)

where, in passing from Eq. (30) to (31), we have gone to momentum space and considered

the transformation to Euclidean space, where k0 = ik4 and

detKab = [(k4 + iµ)2 + k⃗2 +m2][(k4 − iµ)2 + k⃗2 +m2] . (32)

To show how we can handle with these propagators, let us take lnZ0[0],

lnZ0[0] = V ln{Gab(k⃗)
−1/2}

= −1

2

∑
n

∑
p

ln{β2[ω2
n + (ωp − µ)2]− 1

2

∑
n

∑
p

ln{β2[ω2
n + (ωp + µ)2] (33)

where ωn = 2πnT (with n ∈ Z) are the Matsubara frequencies and ωp =
√
p⃗2 +m2.

Using the following identities,

ln[(β2ω2
n + β2ω2

p)] =

∫ β2ω2
p

1

dθ2

θ2 + ω2
n

+ ln[1 + ω2
n] , (34)

∞∑
n=−∞

1

ω2
n + ω2

p

=
1

2ωp

[
1 +

2

eβ(ωp) − 1

]
, (35)
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and dropping a temperature-independent term, we can write

lnZ = −
∑
p⃗

∫ βωp

1

dθ

(
1

2
+

1

eθ − 1

)
. (36)

Carrying out the integral and dropping terms that are independent of temperature and

volume, we finally get,

lnZ0 = −V
∫

d3p

(2π)3
[
βωp + ln

(
1− e−β(ωp−µ)

)
+ ln

(
1− e−β(ωp+µ)

)]
.

The F0 = −(lnZ0)/β is the free energy of the system. For that we have,

F0 = V

∫
d3p

(2π)3
[
ωp +

1

β
ln
(
1− e−β(ωp−µ)

)
+

1

β
ln
(
1− e−β(ωp+µ)

)]
, (37)

where the first term represents the zero point energy and the second the thermal contri-

bution to the vacuum of the theory. For the first term we need to define the regularization

method that we will use here and along the work. We will use the dimension regular-

ization with the modified minimal subtraction scheme (MS) (T’HOOFT; VELTMAN,

1972), which means,

∫
d4p

(2π)4
→
(
eγEM

4π

)2−d/2 ∫
ddp

(2π)d
(38)

where M is a regularization scale which has dimension of mass, d = 4− 2ϵ and γE is the

Euler-Mascheroni constant (γE = 0.5772156649). Here is a good moment to make some

important observations about dimensional regularization:

1.2.2 Dimensional Regularization

This regularization scheme was introduced by t’Hoof and Veltman (T’HOOFT;

VELTMAN, 1972). It consists of treating loop integrals over arbitrary d-dimensional mo-

menta and then, taking the limit d→ 4. The divergences of the integrals arise in the form

of singularities with poles in (d− 4)−1 and have to be subtracted out. By choice, we will

work with the modified minimal subtraction renormalization scheme (MS) (T’HOOFT;

VELTMAN, 1972). In dimensional regularization we replace the four-momenta integrals
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by a d-dimensional integral of the form

∫
d4k

(2π)4
→ (M ′2)2−d/2

∫
ddk

(2π)d
(39)

where the (MS) meansM ′2 →M2eγE/(4π). The parameterM is called the regularization

scale, all the parameters of the theory will depend on him, defining naturally a ”validation

scale” of our model. For example, the behavior of the coupling constant λ as a function of

M determines the strength of the interaction and the conditions under which perturbation

theory is valid. Now, before we start applying the method, it is useful to discuss the

power counting2. We can count the degree of the divergence by an algebraic analysis of

the momenta dependency in the propagators or simply apply that:

d(γ) = dL− 2I (40)

where d(γ) is the superficial degree of divergence of a certain diagram, where d is the

dimension of the theory, L the loops and I the internal legs of the desired topology. In

case of a tadpole, we have d(γ) = 2, which means a quadratic divergence. If d(γ) = 0 we

have a logarithm divergence. Applying the dimensional regularization to the first term of

(37),

(
eγEM

4π

)2−d/2 ∫
dd−1p

(2π)d−1

1

(p⃗2 +m2)−1/2
=

m4

(4π)2

(
M

m

)2ϵ

eγE ·ϵΓ[ϵ− 1]

(1− ϵ)
(41)

where we use the formula in the Appendix A and set d = 4−2ϵ. The second term is finite

and can be written in terms of the thermal functions of the Appendix B,

F0 =
m4

(4π)2

(
M

m

)2ϵ

eγE ·ϵΓ[ϵ− 1]

(1− ϵ)
− 8T 4

π2
he5(y, r) , (42)

where y = mβ, r = µ/m and he5 is the integral in Eq. (37), also defined in Appendix

B. We will understand the meaning of this result in the next sections, but basically the

first term of the equation above (42) will give us the conterterms required to subtract

the divergence associated with this contribution. The second term of (42) gives us all the

information about the temperature and the chemical potential of this interaction.

2For details about the power counting or anything on renormalization theory, see (PIGUET;
SORELLA, 1995)
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1.2.3 Interacting Fields and Feynman Diagrams

Considering the interaction, the Ja-independent path integral of (27) is the free

partition function Z0[0] and we have,

Z[J ] = Z0[0]
−1 exp

{
i

∫
d4xLI

[
δ

iδJ(z)

]}

× exp

{
− i

∫
d4xd4y

[
1

2
Ja(x)Gab(x− y)Jb(y)

]}
. (43)

It is not trivial to do the identification ϕ → δ/δJ(x); for this and other details, see

(RYDER, 1996). The functional above can give us all possible interactions that the

theory can assume, but doing all those functional derivatives can be a little exhausting

for high order interactions. For that, Feynman has created a beautiful way to write down

any desired interaction that came from this functional.

Basically, we will separate them in two types: Figure 1. Any other topology can

be built by the combination of those two.

Figure 1. - Diagrammatic description of the propagators in a QFT

Source: The author, 2022.

All diagrams come with a symmetry factor, that can be determined explicitly

doing the functional derivatives, or via Wick theorem (PESKIN; SCHROEDER, 1995).

It basically states that a string of creation and annihilation operators can be rewritten

as the normal-ordered product of the string plus the normal-ordered product, after all

single contractions among operator pairs. But there is a simple way to understand this

theorem, in terms of diagrams. Take the interaction term in terms of the real fields

λ

24
(ϕϕ∗)2 =

λ

24
(ϕ2

1 + ϕ2
2)

2 . (44)
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Now, write down the desired diagram. Let us take, for example, the tadpole diagram.

Once we have two fields ϕ1 and ϕ2, we will have two tadpole diagrams like the one at

Figure 2. - Tadpole Feynman diagram

Source: The author, 2022.

Figure 2. The black dot is the vertex of the diagram, meaning a (−iλ) insertion. We

already know how many diagrams there are, but we don’t know the symmetry factor. For

that, we need to re-write these two tadpole diagrams in terms of the interaction, counting

Figure 3. - Possible combinations of the interaction three level

Source: The author, 2022.

all the possible ways to connect two legs and form the tadpoles. By doing that, and

multiplying by λ/24 we get the symmetry factors identifying the diagrams of Figure 3 as

the following figure, in other words connecting the legs of Figure 3 in all possibilities to

form Figure 4.

The result in terms of the propagators are, what stands for one possible contribu-

tions of the chemical potential ±µ, for both possible signs:

G(2)(0) =
1

2

2λ

3

∫
d4kE
(2π)4

(−1)

(k4 + iµ)2 + k⃗2 +m2
+
1

2

2λ

3

∫
d4kE
(2π)4

(−1)

(k4 − iµ)2 + k⃗2 +m2
,

(45)

where the superscript in G(2)(0) means a two point correlation function (in the limit
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Figure 4. - Wick theorem for Feynman diagram involving the leading order correction
for the propagator of the ϕ1 field

Source: The author, 2022.

x → y). In the above equations we have also expressed the momentum integrals in

Euclidean space, with d4kE = dk4d
3k⃗. These propagators are Green’s function. Using the

translation property

∫
ddp∆F (p+ q) =

∫
ddp∆F (p) (46)

satisfied by the propagators, we can re-write them as

G(2)(0) =
−2λ

3

∫
d4kE
(2π)4

1

k24 + k⃗2 +m2
. (47)

Note that, it is not always possible to get rid of the chemical potential! Actually, we can

do it for the vacuum contributions of the theory, since in the vacuum µ = 0 and T = 0.

For any other diagram that has external legs, we need to look carefully. In case of two

external legs diagrams, even with the translation property (46), the chemical potential

does not vanish in the propagators. Instead of using the imaginary time formalism, we

can also apply the real-time formulation, elucidated by Dolan and Jackiw in the 70’s

(DOLAN; JACKIW, 1974), meaning (in the Minkowiski space):

i

(p0 + µ)2 − ω2
p + iσ

→ i

[
i

(p0 + µ)2 − ω2
p + iσ

+ n(µ)(p0sgn(p0 + µ))

×2πδ((p0 + µ)2 − ω2
p)

]
, (48)
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where ωp =
√
p⃗2 +m2. The n(µ)is defined as

n(µ)(p0sgn(p0 + µ)) =

{
n(p0), for p0 + µ > 0

n(−p0), for p0 + µ < 0
, (49)

and the n(p0) is the Bose-Einstein distribution. The time variable of those fields goes

from some initial time t = ti to t = ti − iβ. We can then express the fields in terms

of a contour in the complex time plane. In the imaginary time formalism this contour

involves only the imaginary axis, a straight line from t = ti down to t = ti − iβ. We

can always make an appropriate choice of contour in order to include the real time axis.

One possible choice of contour that satisfies the above requirements is the one shown in

Figure 5, called the Keldysh contour (KAPUSTA, 2006; LE BELLAC, 1996). For the

complex scalar field with a chemical potential, the components of the propagator in the

closed time (or Keldysh contour) path formalism become complicated:

Figure 5. - The Keldysh Contour

Source: The author, 2022.

The initial and final times are then set to infinity: ti → −∞ and tf → +∞.

GKeldysh(x− x′) = i

∫
d4k

(2π)4
eik(x−x′)

(
G

(T,µ)
++ G

(T,µ)
+−

G
(T,µ)
−+ G

(T,µ)
−−

)
, (50)

where,

G
(T,µ)
++ =

i

(p0 + µ)2 − ω2
p − iσ

+ n(µ)(p0sgn(p0 + µ))2πδ
(
(p0 + µ)2 − ω2

p

)
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G
(T,µ)
+− = 2π

[
θ(−p0 − µ) + n(µ)(p0sgn(p0 + µ))

]
δ
(
(p0 + µ)2 − ω2

p

)
G

(T,µ)
−+ = 2π

[
θ(p0 + µ) + n(µ)(p0sgn(p0 + µ))

]
δ
(
(p0 + µ)2 − ω2

p

)

G
(T,µ)
−− =

−i
(p0 + µ)2 − ω2

p + iσ
+ n(µ)(p0sgn(p0 + µ))2πδ

(
(p0 + µ)2 − ω2

p

)
. (51)

The consequence of this choice gives us a right prescription of the theory, eliminat-

ing all the pinch singularities (DADIĆ, 1999). Those singularities came from all diagrams

that have two or more loops, because of the product of the delta functions in the propa-

gators. This is well understood in literature (LE BELLAC, 1996; KAPUSTA, 2006) and

you can see explicitly in the work of Ramos and Gleiser (GLEISER; RAMOS, 1994). Let

us show an explicitly example: the two loop self-energy diagram (Figure 6). Using the

wick theorem as discussed above, is quite easy determinate the symmetry factor and the

propagator,

Figure 6. - Two loop self-energy diagram

Source: The author, 2022.

G
(2)
Keldysh = −4λ

9

∫
d4p

(2π)4
1

(p24 − ω2
p + iσ)2

∫
d4k

(2π)4
1

k24 − ω2
k + iσ

. (52)

Now, if we apply Eq. (48), making the change of variable p0 → p0 − µ and k0 → k0 − µ,

we obtain

G
(2)
Keldysh =

4λ

9

[ ∫
d4p

(2π)4
−1

(p20 − ω2
p + iσ)

+ in((p0 − µ)sgn(p0))2πδ(p
2
0 − ω2

p)

]2
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×
[ ∫

d4k

(2π)4
−1

(k20 − ω2
k + iσ)

+ in((k0 − µ)sgn(k0))2πδ(k
2
0 − ω2

k)

]

=
4λ

9

∫
p

∫
k

{
1

(p20 − ω2
p + iσ)2

× −1

(k20 − ω2
k + iσ)

+
i

(p20 − ω2
p + iσ)2

×n((k0 − µ)sgn(k0))2πδ(k
2
0 − ω2

k) + 2n((p0 − µ)sgn(p0))2πδ(p
2
0 − ω2

p)

× i

(k20 − ω2
k + iσ)

1

(p20 − ω2
p + iσ)

+
8π2

p20 − ω2
p + iσ

n((p0 − µ)sgn(p0))δ(p
2
0 − ω2

p)

×n((k0 − µ)sgn(k0))δ(k
2
0 − ω2

k) +
4π2

(k20 − ω2
k + iσ)

[
n((p0 − µ)sgn(p0))δ(p

2
0 − ω2

p)

]2

−i8π3n((k0 − µ)sgn(k0))δ(k
2
0 − ω2

k)

[
n((p0 − µ)sgn(p0))δ(p

2
0 − ω2

p)

]2}
, (53)

where
∫
p
=
∫
d4p/(2π)4. Note that the last two lines of (53) are problematic, these

terms generate what we called before as the pinch singularities. These singularities are

not physical, they are related to prescription of the real-time formulation, this is the

main reason why we need a good prescription, in other words the reason why we used

the Keldysh contour Figure 5. There is a simple way to apply the Keldysh contour (or

the closed real-time path formalism): writing the Feynman diagrams for this formalism

(Figure 7). Now the desired interaction become:

Figure 7. - Real-time path formalism, the consistent description of the Feynman
diagrams in the real-time formulation

Source: The author, 2022.

G
(2)
Keldysh = −4λ

9

∫
p

∫
k

[
G

(T,µ)
++ (p)G

(T,µ)
++ (p)G

(T,µ)
++ (k)−G

(T,µ)
+− (p)G

(T,µ)
+− (p)G

(T,µ)
−− (k)

]
,

(54)
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where fields from above and below the real time axis (Figure 5) are not mixed at a vertex

and the vertex of these fields has an additional minus sign coming from the anti-time

ordering of the fields below the real time axis. For the term G
(T,µ)
+− (p)G

(T,µ)
+− (p)G

(T,µ)
−− (k) in

Eq. (54) what remains if integrated in p0 will be the delta product, which is a divergent

term and the exact delta product we have in G
(T,µ)
++ (p)G

(T,µ)
++ (p)G

(T,µ)
++ (k), then these non-

physical divergences cancel out. The Eq. (54) can be rewritten as follows,

G
(2)
Keldysh = −4λ

9
I1

∫
p

[
G

(T,µ)
++ (p)G

(T,µ)
++ (k)−G

(T,µ)
+− (p)G

(T,µ)
+− (p)

]
, (55)

and using that,

δ(p2 −m2) = − 1

π
lim
σ→0

(
Im

1

p2 −m2 + iσ

)
, (56)

we have

∫
p

G
(T,µ)
++ (p)G

(T,µ)
++ (k)−G

(T,µ)
+− (p)G

(T,µ)
+− =

∫
d4p

(2π)4

(
1

p2 −m2 + iσ

)2

−n((p0 − µ)sgn(p0))

[(
1

p2 −m2 + iσ

)2

−
(

1

p2 −m2 − iσ

)2
]
= I2 (57)

The solution of these integrals are represented explicitly in the Appendix A as,

G
(2)
Keldysh = −4λ

9
I1I2. (58)

All other pinch singularities are handle in the same manner, if the reader still have doubts

or do not understand the procedure, these concepts are well understood in many textbooks

(LE BELLAC, 1996; KAPUSTA, 2006; DAS, 1997) and it is well known in literature

(GLEISER; RAMOS, 1994; BRANDT, 2006), the reader should consult them.

1.3 Effective Potential

To have a complete description of our theory it is convenient to define the effective

potential, which is very useful to study the phase transition and spontaneous symmetry
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breaking.

The generating functional is related to the connected diagrams by,

W [J ] = −i lnZ[J ] . (59)

The effective action is related to W [J ] by a Legendre transform

Γ[ϕ] = W [J ]−
∫
ddxϕ(x)J(x) , (60)

where ϕ is the background field, a classical field that is related to an external source J(x).

We take ϕ to be the expectation value of the field in the limit that J → 0,

ϕ[J = 0] =
δW

δJ

∣∣∣∣
J=0

=
δZ

δJ

∣∣∣∣
J=0

= ⟨ϕ⟩ . (61)

Extending the definition of ϕ to all J values,

δW

δJ
= ϕ[J ] , (62)

which implicates that,

δΓ

δϕ
= J . (63)

The effective action Γ[ϕ] (not be confused with the Γ functions) can be treated in the

same way as the action S. We find its extrema with respect to the fields by computing

δΓ/δϕ at J = 0. The solution ϕ[0], corresponds to the quantum expectation value of the

field. Summarizing, by Eq. (59) we have the effective action in terms of the classical

action,

Γ[ϕ] = S[ϕ]−
∫
ddxϕ(x)J(x) , (64)

In order to show the association of Γ with the effective action, let us start by evaluating

W [J ] by the method of saddle-points for path integrals. Let us restore the Planck constant
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to Z[J ] for a moment. We have that

Z[J ] = e
i
h̄
W [J ] =

∫
[dϕ1,2]e

i
h̄

∫
d4x[L0+Jaϕa], (65)

where S[ϕ, J ] =
∫
d4x[L0 + h̄Jaϕa]. If S is stationary for some ϕ0:

δS[ϕ, J ]

δϕ

∣∣∣∣
ϕ0

= 0. (66)

Now, by expanding the action around ϕ0,

S[ϕ, J ] = S[ϕ0, J ] + ϕa(x)
δS[ϕ, J ]

δϕa

∣∣∣∣
ϕ0

+ ϕa(x)ϕa(y)
δ2S

δϕa(x)δϕa(y)

∣∣∣∣
ϕ0

+

+ϕa(x)ϕb(y)
δ2S

δϕa(x)δϕb(y)

∣∣∣∣
ϕ0

+ ... (67)

Applying (66), we have

S[ϕ, J ] = S[ϕ0, J ] + ϕa(x)ϕa(y)
δ2S

δϕa(x)δϕa(y)

∣∣∣∣
ϕ0

+ ϕa(x)ϕb(y)
δ2S

δϕa(x)δϕb(y)

∣∣∣∣
ϕ0

+ ...

(68)

In this construction we retain only even powers of these derivatives, as a pedagogical

example we will show explicit for these quadratic terms (68). For are model they are,

S[ϕ0, J ] = −
∫
d4x
(1
2
ϕ0(x)2ϕ0(x) + V (ϕ0)− h̄Jϕ0(x)

)
,

ϕa(x)ϕa(y)
δ2S

δϕa(x)δϕa(y)

∣∣∣∣
ϕ0

= −1

2

∫
d4xϕa(x)

(
2+m2 +

λ

6
ϕ2
0

)
ϕa(x),

ϕa(x)ϕb(y)
δ2S

δϕa(x)δϕb(y)

∣∣∣∣
ϕ0

= −1

2

∫
d4xϕa(x)

(
2+m2 +

λ

2
ϕ2
0

)
ϕb(x), (69)

where 2 = ∂20 − ∇2. Replacing (69) in (68) and applying the Legendre transformation
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(64), we have

Γ[ϕ0] = S[ϕ0] +
ih̄

2
tr ln [det(−2+m2 +

λ

6
ϕ2
0)] +

ih̄

2
tr ln [det(−2+m2 +

λ

2
ϕ2
0)]

(70)

where we used,

Z[J ] = e
i
h̄
W [J ] = e

i
h̄
S[ϕ0,J ][det(−2+ V ′′(ϕ0))]

−1/2 . (71)

If ϕ0(x) = ϕc = constant, then

Γ[ϕc] = S[ϕc] +
ih̄

2
tr ln [det(−2+m2 +

λ

6
ϕ2
c)] +

ih̄

2
tr ln [det(−2+m2 +

λ

2
ϕ2
c)]

=

∫
d4xV (ϕc) +

ih̄

2
tr ln [det(−2+m2 +

λ

6
ϕ2
c)] +

ih̄

2
tr ln [det(−2+m2 +

λ

2
ϕ2
c)],

(72)

what can be understood as,

Veff (ϕc) = V (ϕc) +
1

βV

(
Quantum Corrections

)
, (73)

or

Veff (ϕc) = V (ϕc) +
h̄

2β

∑
n

∫
d3k⃗

(2π)3
ln [det(ω2

n + k⃗2 +m2 +
λ

6
ϕ2
c)]

+
h̄

2β

∑
n

∫
d3k⃗

(2π)3
ln [det(ω2

n + k⃗2 +m2 +
λ

2
ϕ2
c)], (74)

where the first term of (73) is the classical action written in terms of these constant

background fields ϕc and the ”quantum corrections” are the corrections that came from

the Taylor series of the action S of the theory, Eq. (68), that depends on the physical

fields and the external source J . There are many ways to establish an effective potential
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or a effective action, we can build the effective action/potential in terms of the loop

corrections, like we shown above, or we could construct the above quantities in terms

of the background fields, that is, expanding the effective action Γ in terms of ϕc. This

choice give us the 1PI diagrams as corrections of the classical action. There are another

possible choices, like expand the effective action to λ, that can lead us to catch 2PI

diagrams if we goo to high orders like O(λ2) and so on. There are many ways, but a

important comment is needed: the effective action described here (which is, using Eq.

(68)) is already a perturbative quantity, expand with respect other variable would be a

perturbative approach inside another perturbative approach, what lead us to think: Are

we losing physical information, using so many approximations? This question will be

answered in the next chapters. Among others constructions for the effective potential,

this one that is shown here, is the most standard one. We could construct an effective

potential with only 2PI diagrams, a interesting can be find in (GERGELY, 2014). These

choices establish different models for the same theory, where a theory here means the

same Lagrangian (83). Diagrammatically, the effective potential stands for We will see,

Figure 8. - Pictorial diagrammatic representation of the effective potential, up to
two-loop order

Source: The author, 2022.

for a complex scalar theory, the number of diagrams are increased, since we have more

then one field (e.g.,ϕ1 and ϕ2 for the real components of the complex scalar field ϕ).

1.3.1 U(1) One-loop effective potential

Applying (73) to the complex scalar theory, we have

Veff (ϕc) =
1

2
m2ϕ2

c −
1

2
µ2ϕ2

c +
λ

4!
ϕ4
c +

1

2β

∑
n

∫
d3k⃗

(2π)3
ln
[
ω2
n + k⃗2 +m2 +

λ

2
ϕ2
c

]
+
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+
1

2β

∑
n

∫
d3k⃗

(2π)3
ln
[
ω2
n + k⃗2 +m2 +

λ

6
ϕ2
c

]
, (75)

where the presence of the chemical potential is only at the tree level, since the one-loop

here is a vacuum contribution. We can define two different masses,

m2
H(ϕ

2
0) = m2 +

λ

2
ϕ2
c ,

m2
G(ϕ

2
0) = m2 +

λ

6
ϕ2
c . (76)

By doing that, it becomes clear the contribution of two different fields. We call them

the Higgs (corresponding to m2
H) and the Goldstone fields (corresponding to m2

G), they

follow the fact that the system has a spontaneous symmetry breaking. The vacuum of

the theory or the configuration of minimal energy, do not share the same symmetry of

the original Lagrangian (23), the symmetry is broken. As a consequence of that we have

in this broken phase two different contributions, the Higgs particle and the Goldstone

particle. We will see in the next chapters that, when we consider temperature effects, this

broken phase can occur for a specific value of T or for a critical temperature Tc. By using

the following trick,

∫
ddk

(2π)d
ln
(
k2 +m2

)
=

∂

∂α

∫
ddk

(2π)d
1

(k2 +m2)α

∣∣∣∣
α=0

(77)

we can regularize the effective potential applying the the integral equation from Appendix

A,

Veff (ϕc) =
1

2
m2ϕ2

c −
1

2
µ2ϕ2

c +
λ

4!
ϕ4
c −

m2
H(ϕ

2
c)

2(4π)2

(
M2eγE

m2
H(ϕ

2
c)

)ϵ

Γ(ϵ− 2)+

− 4

π2
he5
(
mH(ϕc)/T, µ/mH(ϕc)

)
− m2

G(ϕ
2
c)

2(4π)2

(
M2eγE

m2
G(ϕ

2
c)

)ϵ

Γ(ϵ− 2) .
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− 4

π2
he5
(
mG(ϕc)/T, µ/mG(ϕc)

)
, (78)

Expanding in ϵ we will have divergences and for that we need a coupling correction, a

mass correction and a vacuum counterterm. Applying the following,

δm2 = −d
2Veff
dϕ2

c

∣∣∣∣
ϕc=0,µ=0

→ δm2 =
λm2

24π2ϵ

δλ = −d
4Veff
dϕ4

c

∣∣∣∣
ϕc=0,µ=0

→ δλ =
5λ2

48π2ϵ
(79)

summing the vacuum counterterm,

∆E (1)
0 =

m4

(4π)22ϵ
, (80)

and re-writing the tree level m2 → m2 + δm2, λ→ λ+ δλ, we have

VR−eff (ϕc) =
1

2
m2ϕ2

c −
1

2
µ2ϕ2

c +
λ

4!
ϕ4
c +

M4
H(ϕ

2
c)

64π2

[
ln

(
M2

H(ϕ
2
c)

M2

)
− 3

2

]

− 4

π2
he5
(
mH(ϕc)/T, µ/mH(ϕc)

)
+
M4

G(ϕ
2
c)

64π2

[
ln

(
M2

G(ϕ
2
c)

M2

)
− 3

2

]

− 4

π2
he5
(
mG(ϕc)/T, µ/mG(ϕc)

)
, (81)

This is the renormalized one-loop effective potential for the U(1) theory and it can be

understood diagrammatically as Figure 9.
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Figure 9. - Diagrammatically representation of the effective potential, up to one-loop
order with the finite temperature contributions, where the n± stands for the
Bose-Einstein distribution factor

Source: The author, 2022.

1.4 Free Energy

The free energy is an important quantity that can tell us about the different phases

of matter. The free energy is defined by

F = −T
V

logZ , (82)

where Z is the (grand) partition function. We will compute the contributions to the

free energy up to the O(λ2), which will correspond to all the Feynman diagrams that

contribute to the vacuum until three-loops. Our theory is described by the following

Lagrangian density,

L = ∂µϕ∂
µϕ∗ −m2|ϕ|2 − 1

3!
λ(ϕϕ∗)2 +∆L, (83)

where m and λ are the bare mass and bare coupling constant and ∆L includes the

counterterms that are needed to render a finite theory. The field can be decomposed in

two real scalar fields,

ϕ =
1√
2

(
ϕ1(x) + iϕ2(x)

)
. (84)

The free energy can be separated in some sets of diagrams: The vacuum diagrams, the

mass diagrams and the vertex diagram (with four external legs). There is a subtle dif-

ference in computing those contributions in the physical mass or the in bare parameters.

This difference relies in which analysis we expect to do. If one is interested in thermody-

namical observables, like entropy, for example, it would be better to study the system by
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computing it in the physical mass, since it can be associated with a high-energy scatter-

ing, that could be simulated in this laboratory. The other analysis, considering the mass

and the coupling functions that runs with the temperature, can only be associated with

situations in the early Universe but, for a phase transition analysis, this computation can

be very useful.

1.4.1 Vacuum Contributions

All the contributions to the vacuum until second order in perturbation theory

O(λ2) at T = 0, are quantified by the diagrams shown in Figure 10. As we saw in the

Figure 10. - Free energy of a scalar theory at order λ2

Source: The author, 2022.

previous section, when we impose the KMS condition, thermal contributions arise (or

thermal diagrams). Separating the vacuum by loop order (Figure 10), let us compute

each on of these terms separately.

F = F1 + F2 + F3 . (85)
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1.4.1.1 One-loop

First of all, since we are doing the computation diagrammatically, we need to be

careful with the divergences,

F1 = F1a +∆1E0 , (86)

where the above equation, F1a represents the diagram 1a in the Figure 10 and ∆1E0 is

the counterterm for the zero point energy of the theory, or the vacuum. It is possible

to make the analogy between some quantum field theories as a infinite coupled harmonic

oscillators, it is expected that, at the zero point energy we find infinities this is the reason

why we need the vacuum counter-terms. The calculation of F1a is done in (42) and it is,

F1a =
m4

(4π)2

(
M

m

)2ϵ

eγE ·ϵγE[ϵ− 1]

(1− ϵ)
− 8T 4

π2
he5(y, r) .

The temperature functions are defined in the same convention of Haber and Weldon’s

work (HABER; WELDON, 1982). Expanding the first term of F1a in ϵ, taking only

the divergent part and summing the vacuum counterterm explicited as defined in the

appendix C, we obtain the finite result

F1 = − m4

(4π)2

[
3

4
+ ln

(
M

m

)]
− 8T 4

π2
he5(y, r) , (87)

where,

he5(y, r) = − 1

16

∫ ∞

0

x2dx

[
ln
(
1− e−(ω−r)

)
+ (r → −r)

]
. (88)

To simplify our expressions and align them with other results found in the literature

(ANDERSEN, 2000), let us define

ln

(
M2

m2

)
≡ L ,

λ

(4π)2
≡ α . (89)
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Re-writing the one-loop free energy using (89), we then obtain

F1 = − m4

(4π)2

[
3

4
+
L

2

]
− 8T 4

π2
he5(y, r) , (90)

at µ = 0 that is r = 0 reproduces the result of Andersen, Braaten and Strickland (AN-

DERSEN, 2000).

1.4.1.2 Two-Loops

For the free energy at two-loop order, we have a contribution of order λ shown

by the term 2a in Figure 10. It can be rendered finite by adding to it two types of

counterterms: a mass and vacuum counterterm of renormalization (ANDERSEN, 2000).

F2 = F2a +
∂F1a

∂m2 ∆1m
2 +∆2E0 (91)

where,

F2a =
λ

3
I21 ,

and the terms In and the counter-terms are explicitly given in the Appendix A and C.

The explicit result for the term F2a is

F2a =
1

3
λ

[
m2

(4π)2

(
M

m

)2ϵ

eγE ·ϵΓ[−1 + ϵ] +
T 2

π2
he3(y, r)

]2
Expanding in ϵ, we obtain

F2a =
1

3

λm4

(4π)4

(
M

m

)4ϵ [
1

ϵ2
+

2

ϵ
+

1

6

(
18 + π2

) ]

+
2

3

λ

16π4

(
M

m

)2ϵ [(
−1

ϵ
− 1

)
he3(y, r)

]
m2T 2

+
1

3

λ

π4
T 4he3(y, r)

2 . (92)
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Summing the counter-terms (Appendix C), we have

F2 =
λ

3

m4

(4π)4

[
1 + 4 ln

(
M

m

)
+ 4 ln2

(
M

m

)]

−2

3

λm2T 2

16π4

[
1 + 2 ln

(
M

m

)]
he3(y, r) +

1

3

λ

π4
T 4he3(y, r)

2 (93)

or

F2 =
α

3

[
m4

(4π)2

(
1+ 2L+L

2
)
− 2

π2

(
1+L

)
m2T 2he3(y, r) +

16

π2
T 4he3(y, r)

2

]
, (94)

which is the renormalized result for the diagram 2a shown in Figure 10, at µ = 0 that is

r = 0 reproduces the result of Andersen, Braaten and Strickland (ANDERSEN, 2000).

1.4.1.3 Three Loops

The free energy at second order in λ comes from the three-loop diagrams labeled

3a and 3b in Figure 10. These diagrams are rendered finite by both mass, vertex and

vacuum counterterms (ANDERSEN, 2000),

F3 = F3a + F3b +
∂F2a

∂m2 ∆1m
2 +

F2a

λ
∆1λ+

1

2

∂2F1a

(∂m2)2
(∆1m

2)2

+
∂F1a

∂m2 ∆2m
2 +∆2E0 . (95)

The explicit expressions for the diagrams 3a and 3b are

F3a = −2

9
λ
2
I21I2 (96)

and

F3b = − 1

18
λ
2
Iball (97)
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By using the results shown in the Appendix A and B, we have that

F3a = −2

9
λ
2
[
m4

(4π)6

(
M

m

)6ϵ(
1

ϵ3
+

2

ϵ2
+

3

ϵ
+
π2

4ϵ
+
π2

6

)
+

−m2T 2

128π6

(
M

m

)4ϵ(
1

ϵ2
+

1

ϵ
+
π2

6
+ 1

)
he3(y, r)+

−m
2T 2

32π6

(
M

m

)2ϵ(
1

ϵ
+ 1

)
he3(y, r)h

e
1(y, r) +

m4

1024π6

(
1

ϵ2
+

2

ϵ
+

+
π2

6
+ 3

)(
M

m

)4ϵ

he1(y, r) +
T 4

16π6ϵ

(
M

m

)2ϵ

he3(y, r)
2+

+
T 4

4π6
he3(y, r)

2he1(y, r)

]
. (98)

The basketball diagram (the term 3b in Figure 10) deserves a special attention: we com-

pute this contribution step by step in the Section 1.7 of this chapter. The final result is

the following,

F3b = −λ
2

18

{
m4

(4π)6

(
M2

m2

)3ϵ[
2

ϵ3
+

23

ϵ2
+

(35 + π2)

2ϵ
+ C2

]
+

m2

(4π)4

(
M

m

)4ϵ[
− 6

ϵ2

−17

ϵ
− 15µ2

2m2 − 4B1

](
T 2

π2
he3(y, r)

)
+ 6

1

(4π)2

[(
M

m

)2ϵ
1

ϵ
+ 2

](
T 4

π4
he3(y, r)

2

)

+
T 4

(4π)6

(
6 K2 + 4 K3

)}
. (99)

The counter-terms (Appendix C) required to make (99) finite come not only from the

vacuum of the theory, but from the coupling and the mass terms as well. Summing all of

them, we can finally write the result for three-loop contributions as

F3 =
2α2

9(4π)2

{
m4

4

[
− C2 − 6L

3 − 19L
2 − 43

2
L+

23π2

12
+ 23 + ψ(2)(1)

]
+

−4m2T 2
(
6B1 − 14L

2 − 30L+ π2 + 12
)
he3(y, r)− 128T 4

(
6 + 5L

)
he3(y, r)

2
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−4he1(y, r)
(
(L+ 1)m2 − 16T 2he3(y, r)

)2
+30T 2µ2he3(y, r)−

3

2
K2T

4−K3T
4

}
, (100)

where B1 = 1.47856, C2 = 39.429, ψ(2)(1) = −2.40411 and

K2 = −4

∫ ∞

0

p2dp
n+
p + n−

p

ωp

∫ ∞

0

q2dq
n+
q + n−

q

ωp

∑
σ

∫ |p⃗+q⃗|

|p⃗−q⃗|

A

pq
dA×

×
(
E2

σ − A2 + 4m2

E2
σ − A2

)1/2

ln

[
(E2

σ − A2)1/2 + (E2
σ − A2 − 4m2)1/2

(E2
σ − A2)1/2 − (E2

σ − A2 − 4m2)1/2

]
, (101)

K3 ≡
2

T 4

∫ ∞

0

pdp
n+
p + n−

p

ωp

∫ ∞

0

qdq
n+
q + n−

q

ωq

∫ ∞

0

rdr
n+
r + n−

r

ωr

∑
j,k=±1

[
f(ωjk, p+q+r)+

−f(ωjk, p+ q − r)− f(ωjk, p− q + r) + f(ωjk, p− q − r)

]
, (102)

with ωjk = ωp + jωq + kωr and

f(ω, p) = p ln
|m2 − ω2 + p2|

m2 + (ω2 −m2)1/2 ln

∣∣∣∣(ω2 −m2)1/2 + p

(ω2 −m2)1/2 − p

∣∣∣∣ . (103)

It is useful to look at the limit m→ 0, corresponding the high temperature expansion of

(101) and (102), to obtain

K2 = −(4π)4

72

[
ln

(
4πT

m

)
− 1

2
− ζ ′(−1)

ζ(−1)

]
,

K3 =
1

4

1

(4π)2

[
− 1

3

ζ ′(−3)

ζ(−3)
+

1

3

ζ ′(−1)

ζ(−1)
− 7

45

]
=

14.1723

32π6
. (104)

The constants can be re-organized to write a more compact result,

C3 = −C2 +
23π2

12
+ 23 + ψ

(2)
1 , (105)
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C4 = 6B1 + π2 + 12 (106)

and

K3 = 1024π6K3 = 453.514. (107)

Our result then becomes,

F3 =
2α2

9(4π)2

{
m4

4

[
− 6L

3 − 19L
2 − 43

2
L+ C3

]
+

−4m2T 2
(
−14L

2 − 30L+ C4

)
he3(y, r)− 128T 4

(
5 + 6L

)
he3(y, r)

2

−4he1(y, r)
(
(L+ 1)m2 − 16T 2he3(y, r)

)2
+30T 2µ2he3(y, r)−

3

2
K2T

4−K3T
4

}
(108)

All of those contributions came from the vacuum of our theory, at µ = 0 that is

r = 0 reproduces the result of Andersen, Braaten and Strickland (ANDERSEN, 2000).

To evaluate the total free energy, we need to compute the bare parameters in terms of

the physical parameters. For that we will need to investigate both contributions, to the

mass and to the coupling constant.

1.5 Setting Sun

In order to establish the free energy of the theory, we will need the calculation of

the diagrams that contribute to the mass and coupling of the fields. One of them needs

to be evaluated off-shell, since all contributions to the effective potential are off-shell

(WEINBERG, 2013). This diagram is called ”setting sun” diagram, represented by the

Figure 11 that can be read as the following integral,

Ssun(p) = CSi
2λ2
∫
k,q

1

(k2 −m2 + iϵ)

1

(q2 −m2 + iϵ)

1

((p− k − q)2 −m2 + iϵ)
.

(109)
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Figure 11. - The setting sun diagram, a Feynman diagram with two loops and two
external legs

Source: The author, 2022.

where CS is the symmetry factor of the diagram. For the complex scalar field theory we

have CS = 2/9.

1.5.1 Non-thermal Contribution

The calculation of the setting sun diagram is rather difficult, because a naive intro-

duction of the Feynman parameters results in divergences in its evaluation (KLEINERT,

1990; T’HOOFT; VELTMAN, 1972). The problem is solved by lowering the degree of di-

vergence through partial integration (KLEINERT, 1990; T’HOOFT; VELTMAN, 1972).

Using the following identity.

1 =
1

2d

(
∂kµ

∂kµ
+
∂qµ

∂qµ

)
, (110)

where d = 4− 2ϵ. Inserting this identity into (109) and performing a partial integration,

in which the surface term is discarded, we obtain a sum of two integrals,

Ssun(p) =
i2λ2

d− 3

[
3m2ξ(p) + χ(p)

]
, (111)

where

ξ(p) =

∫
d4k

(2π)4
d4q

(2π)4
1

(k2 +m2)

1

(q2 +m2)

1

((p+ k + q + iµ)2 +m2)2
, (112)
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and

χ(p) = −p
µ

2

∂

∂pµ

∫
d4k

(2π)4
d4q

(2π)4
1

(k2 +m2)

1

(q2 +m2)

1

((p+ k + q + iµ)2 +m2)
.

(113)

Let us start dealing with ξ(p). For that, we make the change of variables q′ → p+iµ+q+k

and dq′ = dq. Next we introduce the Feynman parameters (Appendix A),

A = k2 +m2 , (114)

and

B = (p+ iµ+ q + k)2 +m2 . (115)

Working out the denominator of (113) with the Feynman parameters, we have

xA+(1−x)B = k2+(p+iµ+q)2+2(p+iµ+q)k+m2−x(p+iµ+q)2−2x(p+iµ+q)k .

(116)

Performing the exchange of variables k + r → k′ (where we did it r = (p + iµ + q)),

dk = dk′ and suming x2r2 − x2r2 to construct (k′ − xr)2 + x(1− x)r2 +m2, we obtain the

result

ξ(p) =

∫
d4q

(2π)4
1

((q4)2 + q⃗2 +m2)2
×

×
∫ 1

0

dx

∫
d4k′

(2π)4
1(

(k′ − xr)2 + x(1− x)r2 +m2
)2 . (117)

Now, imposing the dimensional regularization in the MS scheme, we obtain that Eq.

(117) becomes

ξ(p) =

(
eγEM2

4π

)ϵ ∫
ddq

(2π)d
1

(q2 +m2)2
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×
∫ 1

0

dx

∫
ddk′

(2π)d
1(

(k′ − xr)2 + x(1− x)r2 +m2
)2 , (118)

where M is the renormalization constant and γE is the Euler-Mascheroni constant. Mak-

ing q′−xr → q′′, dq′ = dq′′, x(1−x)r2+m2 → ∆, and using the integration result written

in the Appendix A, we can easily integrate Eq. (118).

ξ(p) =
Γ
(
2− d/2

)
Γ(2)

(
eγEM2

4π

)2ϵ
1

(4π)d/2

∫ 1

0

dx

∫
ddq

(2π)d
1

(q2 +m2)2

×
(

1

x(1− x)r2 +m2

)2−d/2

. (119)

Now, to perform the integrals in (119), we use the Feynman parameters one more time

(Appendix A), factorizing the x(1− x) term, we obtain

ξ(p) =
Γ
(
4− d/2

)
Γ(2)

(
eγEM2

4π

)2ϵ
1

(4π)d/2

∫ 1

0

dx[x(1− x)]d/2−2×

×
∫ 1

0

dy

∫
ddq

(2π)d
y(1− y)1−d/2

[y(q2 +m2) + (1− y)((p− iµ− q)2 + m2

x(1−x)
)]4−d/2

. (120)

Working the denominator of expression above,

(yA+(1−y)B) = q2−2(p−iµ)q(1−y)+(1−y)(p−iµ)2+[y+
1− y

x(1− x)
]m2 , (121)

and summing (1− y)2(p− iµ)2 − (1− y)2(p− iµ)2, we have

(yA+(1−y)B) = [q−(1−y)(p−iµ)]2+(1−y)y(p−iµ)2+
[
y+

1− y

x(1− x)

]
m2 . (122)
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Now, the integral is quite easy. Doing q − (1 − y)(p − iµ) → q′ and denoting by ∆ the

rest of the above equation, using the results from Appendix A, we find

ξ(p) =
Γ
(
4− d/2

)
Γ(2)

(
eγEM2

4π

)ϵ
1

(4π)d/2

∫ 1

0

dx[x(1− x)]d/2−2

×
∫ 1

0

dyy(1− y)1−d/2 1

(4π)d/2
Γ(4− d)

Γ(4− d/2)

(
1

∆

)4−d

. (123)

Simplifying and setting d→ 4− 2ϵ,

ξ(p) =
Γ
(
2ϵ
)
e2γE ·ϵ

Γ(2)

(
M2

m2

)2ϵ
1

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ×

×
∫ 1

0

dyy(1− y)−1+ϵ 1

[(1− y)y (p−iµ)2

m2 +
(
y + 1−y

x(1−x)

)
]2ϵ

. (124)

Then, expanding the denominator until O(ϵ):

ξ(p) =
Γ
(
2ϵ
)
e2γE ·ϵ

Γ(2)

(
M2

m2

)2ϵ
1

(4π)4

[
Γ(1− ϵ)2

Γ(2− 2ϵ)

Γ(ϵ)

Γ(2 + ϵ)
+

−2ϵ

∫ 1

0

dx[x(1−x)]−ϵ

∫ 1

0

dyy(1− y)−1+ϵ ln

(
y− µ2(1− y)y

m2
+

1− y

x(1− x)

)]
. (125)

Let us begin analyzing the first line of (125). When we add it to (111), we have

l1 =
−3λ2m2Γ

(
2ϵ
)
e2γE ·ϵ

(1− ϵ)Γ(2)

(
M2

m2

)2ϵ
1

(4π)4

[
Γ(1− ϵ)2

Γ(2− 2ϵ)

Γ(ϵ)

Γ(2 + ϵ)

]
. (126)

Expanding the above result for ϵ→ 0,

l1 ≈ −3λ2m2

2(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+ 3

]
+ ln

(
M2

m2

)(
3 + ln

(
M2

m2

))
+
π2

12
+

9

2

}
.

(127)
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This result contemplates the off-shell computation without chemical potential (that is for

µ = 0). Now, we need to recover some information for µ. Let us start by analyzing the

second term of (125)and adding it to equation (111),

l2 =
3λ2m2

(1− 2ϵ)

Γ
(
2ϵ
)
e2γE ·ϵ

Γ(2)

(
M2

m2

)2ϵ
2ϵ

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ×

×
∫ 1

0

dyy(1− y)−1+ϵ ln

(
y − µ2(1− y)y

m2
+

1− y

x(1− x)

)]
. (128)

The environment contributions, that came from the Bose-Einstein integrals, have a limited

range for m ≥ |µ| (we will discuss a little about that in the next chapter ). But for the

vacuum contributions we have a different range that is m ≥ µ, where m = µ is the

condition to the Bose-Einstein condensation. This allow us to expand the logarithm term

in Eq. (128) up to O(µ2) (for high orders we have very small contributions since they

come µ2/m4, what become neglectable),

l2 =
3λ2m2

(1− 2ϵ)

Γ
(
2ϵ
)
e2γE ·ϵ

Γ(2)

(
M2

m2

)2ϵ
2ϵ

(4π)4

∫
dxdy

{
µ2(x− 1)xy2((1− x)x)−ϵ(1− y)ϵ

m2 (x2y − xy + y − 1)
+

+y((1− x)x)−ϵ(1− y)ϵ−1 log

(
1− y

(1− x)x
+ y

)}
. (129)

As a standard procedure, taking the limit ϵ→ 0 and integrating in dx and dy, we have

l2 =
λ2

(4π)4

[
− µ2

2
+ 6.51586m2

]
. (130)

The final answer is (summing l1 + l2),

l1 + l2 ≈ −3λ2m2

2(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+ 3

]
+ ln

(
M2

m2

)(
3 + ln

(
M2

m2

))
+

+
µ2

3m2
− 4.34391 +

π2

12
+

9

2

}
. (131)
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This is the off-shell result for the setting sun diagram, for non-zero chemical potential,

without the term χ(p) in (113). For the term χ(p) we have already calculated this con-

tribution by using the Feynman parameters. The result is

χ(p) = −p
µ

2

(
eγEM2

4π

)2ϵΓ
(
3− d

)
(4π)d/2

∂

∂pµ

{∫ 1

0

dx[x(1− x)]d/2−2×

×
∫ 1

0

dy(1− y)1−d/2 1

(4π)d/2

[
(1− y)y(p− iµ)2 +

(
y +

1− y

x(1− x)

)
m2

]d−3}
. (132)

The notation pµ means pµ = (p4, p⃗). The whole point here is to identify the external

momenta as,

pµ = (|p4|, p⃗) , (133)

so, what is written inside the brackets is in fact this pµ. Making the derivative of (125),

χ(p) = p2
(
eγEM

4π

)2ϵ (3− d)Γ
(
3− d

)
(4π)d

{∫ 1

0

dx[x(1− x)]d/2−2×

×
∫ 1

0

dyy(1− y)2−d/2

[
(1− y)y(p− iµ)2 +

(
y +

1− y

x(1− x)

)
m2

]d−4}
, (134)

where, p2 = pµpµ = (|p4|, p⃗)2 and (3− d)γE(3− d) = γE(4− d). Now, we need to choose

how to evaluate the contribution on-shell. The choice will be p4 = 0, in other words,

p2 = p⃗2 (static frame).

χ(p) = (+p⃗2)

(
eγEM

4π

)2ϵ Γ
(
2ϵ
)

(4π)4−2ϵ

{∫ 1

0

dx[x(1− x)]−ϵ×

×
∫ 1

0

dyy(1− y)ϵ
[
(1− y)y(p⃗2 − µ2) +

(
y +

1− y

x(1− x)

)
m2

]−2ϵ}
(135)
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which, when simplifying, gives

χ(p) = (+p⃗2)

(
M2

m2

)2ϵΓ
(
2ϵ
)
e2ϵγE

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ

∫ 1

0

dyy(1− y)ϵ

{
1− 2ϵ ln

[
y(1− y)

(−µ2 + p⃗2)

m2
+
(
y +

1− y

x(1− x)

)]}
. (136)

Here, we cannot do the same approximation we did for ξ(p). The reason is quite simple:

The momenta dependency. Since we have an external momentum, we can factorize it and

treat the argument of the logarithm function as small. We can separate Eq (136) in two

parts χ(p) = χ1(p) + χ2(p) and replacing this in (111), the equation will be l3(p) and the

second line denoted by l4(p), where l3(p) is explicitly given by

l3(p) =
i2λ2

d− 3
χ1(p)

=
−λ2p⃗2

(1− 2ϵ)

(
M2

m2

)2ϵΓ
(
2ϵ
)
e2ϵγE

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ

∫ 1

0

dyy(1− y)ϵ , (137)

where here, we need to be careful. Proceeding like Kleinert (see Quantum Field Theory

and particle physics, Kleinert (1996), page 541), we have

l3(p) =
−λ2p⃗2

(1− 2ϵ)

(
M2

m2

)2ϵΓ
(
2ϵ
)
eϵγE

(4π)4
lim
ϵ→0

{
Γ(1− ϵ)2Γ(1− ϵ)

Γ(2− 2ϵ)Γ(3− ϵ)

}
(138)

Taking this limit, the term in the parenthesis will be a constant 1/2; the rest of the terms

can be expanded for ϵ→ 0, giving

l3(p) =
−λ2

(4π)4

[
p2

4

(
log

(
M2

m2

)
+ 2

)
+
p2

4ϵ

]
(139)

with the choice p = im, we have

l3(im) =
λ2

(4π)4

[
m2

4

(
log

(
M2

m2

)
+ 2

)
+
m2

4ϵ

]
. (140)
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Now, considering the term l4(p) = i2λ2χ2(p)/(d− 3), we obtain

l4(p) =
−λ2p⃗2

(1− 2ϵ)

(
M2

m2

)2ϵΓ
(
2ϵ
)
e2ϵγE

(4π)4

{∫ 1

0

dx[x(1− x)]−ϵ

∫ 1

0

dyy(1− y)ϵ×

×(−2ϵ) ln

[
y(1− y)

(−µ2 + p⃗2)

m2
+
(
y +

1− y

x(1− x)

)]}
. (141)

Separating the logarithm term in (141) as

l4(p) =
−λ2p⃗2

(1− 2ϵ)

(
M2

m2

)2ϵΓ
(
2ϵ
)
e2ϵγE

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ

∫ 1

0

dyy(1− y)ϵ×

(−2ϵ)

{
log

[
m2

yp2(x(1− x))
+

m2

p2(1− y)
− µ2

p2
+ 1

]
+ log

[
y(1− y)

m2

]
+ log

[
p2
]}

,

(142)

and using the approximation ln(1 + z) ≈ z, we obtain

l4(p) =
−λ2p⃗2

(1− 2ϵ)

(
M2

m2

)2ϵΓ
(
2ϵ
)
e2ϵγE

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ

∫ 1

0

dyy(1− y)ϵ×

−2ϵ

{
m2

yp2(x(1− x))
+

m2

p2(1− y)
− µ2

p2
+ log

[
y(1− y)

m2

]
+ log

[
p2
]}

. (143)

All of the integrals in (143) can be evaluated analytically. We can neglect the first two

terms of the second line, since they remains proportional to ϵ in the end of the computa-

tions. Doing that, we have:

l4(p) =
−λ2p⃗2

(1− 2ϵ)

(
M2

m2

)2ϵΓ
(
2ϵ
)
e2ϵγE

(4π)4

∫ 1

0

dx[x(1− x)]−ϵ

∫ 1

0

dyy(1− y)ϵ×

−2ϵ

{
− µ2

p2
+ log [y(1− y)] + log

[
p2

m2

]}
. (144)
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Let us now use the identity:

ln [y(1− y)] + ln

[
p2

m2

]
= log

[
y(1− y)p2

m2

]
. (145)

When applying in the limits of integration in (144) this term does not contain any singu-

larities (see (KLEINERT, 1996), page 540) and can be neglected. So what remains is the

chemical potential contribution. Summing into the divergent part, we have

l4(p) =
−λ2

(4π)4

[
p2

4

(
log

(
M2

m2

)
+ 2

)
+
p2

4ϵ
+
µ2

2

]
. (146)

Now, we can write the on-shell and off-shell results, for the setting sun diagram. Taking

the choice p = im, we have for the on-shell result:

Ssun(−m2) ≈ −3λ2m2

2(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+

17

6

]
+ 2 ln

(
M2

m2

)[
17

6
+

ln

(
M2

m2

)]
+

5µ2

6m2
+B1

}
, (147)

where B1 = 1.47856. The off-shell result, on the other hand, gives

Ssun(0) ≈ −3λ2m2

2(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+ 3

]
+ ln

(
M2

m2

)(
3 + ln

(
M2

m2

))
+

+
µ2

3m2
+B0

}
, (148)

where B0 = 0.978557.

Now, for a complex scalar theory, we need to compute for all possible permutations

due to the Feynman rules,

−2λ2

9

1

8

∫
k

∫
q

[
G(k4 + iµ)G(q4 + iµ)G(k4 + q4 + iµ)+

+G(k4 + iµ)G(q4 + iµ)G(k4 + q4 − iµ)+
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+G(k4 + iµ)G(q4 − iµ)G(k4 + q4 + iµ)+

+G(k4 − iµ)G(q4 + iµ)G(k4 + q4 + iµ)+

+G(k4 − iµ)G(q4 − iµ)G(k4 + q4 + iµ)+

+G(k4 + iµ)G(q4 − iµ)G(k4 + q4 − iµ)+

+G(k4 − iµ)G(q4 + iµ)G(k4 + q4 + iµ)+

+G(k4 − iµ)G(q4 − iµ)G(k4 + q4 − iµ)

]
. (149)

By using the translation property (46), which was discussed in Section 1.2.3 we can re-

write the propagators,

Ssun(p) =
−2λ2

9

1

8

∫
k

∫
q

[
3G(k4)G(q4)G(k4 + q4 + iµ)+

+3G(k4)G(q4)G(k4 + q4 − iµ)+

+G(k4)G(q4)G(k4 + q4 + 3iµ)+

+G(k4)G(q4)G(k4 + q4 − 3iµ)

]
.

The same procedure is addressed in the literature as the Silver Blaze property (GERGELY,

2014), which makes a shift in the temporal coordinate of the momenta p4 → p4−iµ. Since

we already have calculated the propagators off-shell, the result with the correct symmetry

factor for the complex scalar field is,

Ssun(0) =
−2λ2

9

1

8

{
9m2

(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+ 3

]
+ ln

(
M2

m2

)(
3 + ln

(
M2

m2

))

+
µ2

3m2
+ C0

}
+

3m2

(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+ 3

]
+ ln

(
M2

m2

)(
3 + ln

(
M2

m2

))

+
9µ2

3m2
+ C0

}}
. (150)
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Simplifying,

Ssun(0) =
−2λ2

9

{
λ2m2

(4π)4

{
− 3

2ϵ2
− 3

2ϵ

(
2 ln

(
M2

m2

)
+ 3

)
−9 ln

(
M2

m2

)
−3 ln2

(
M2

m2

)

− 3µ2

2m2
− C0

}
, (151)

where C0 = 9.45154. The result above is the off-shell result for the setting sun. The

on-shell result is,

Ssun(−m2) =
−2λ2

9

m2

(4π)4

{
− 3

2ϵ2
− 3

2ϵ

[
2 ln

(
M2

m2

)
+

17

6

]
− 6

2
ln

(
M2

m2

)[
17

6

ln

(
M2

m2

)]
− 3µ2

m2
+ C1

}
, (152)

where C1 = −7.82654. The off-shell (151) result at µ = 0 reproduces the same result of

Gergely Markó, Urko Reinosa, and Zsolt Szép (MARKÓ, 2012), and the on-shell (152) at

µ = 0 reproduces the result of Andersen, Braaten and Strickland (ANDERSEN, 2000).

1.6 Thermal Setting Sun

Now, let us investigate the computation of the thermal contributions for the setting

sun diagram. Applying the Keldysh prescription (Figure 5) as discussed in Section 1.2.3,

we can write the setting sun diagram as follows,

ISun(p0, p⃗) = I ′0 + 3(I ′+1 + I ′−1 ) + 3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) . (153)

where the I ′0 is just the non-thermal contribution, which we have already computed above.

The other terms are the thermal contributions. The superscript I−+ stand for the sign

of the chemical potential in the Bose-Einstein (BE) distribution. We will write their

expressions explicitly, but first let us represent diagrammatically. Figure 12 shows di-

agrammatically the thermal contributions to the setting sun diagram. In momentum
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Figure 12. - Pictorial representation of the setting sun diagram at finite temperature
and chemical potential

Source: The author, 2022.

space-time, we have explicitly,

ISun(k0, k⃗) =

∫
p

∫
q

i

p2 −m2

i

(q2 −m2)

−1

((k − p− q)2 −m2)

+3

∫
p

∫
q

δ(p)n((p0 − µ)sgn(p0))
i

q2 −m2

−1

(k − p− q)2 −m2

−3

∫
p

∫
q

δ(p)δ(q)n((p0 − µ)sgn(p0))n((q0 − µ)sgn(q0))
1

(k − p− q)2 −m2
. (154)

where,

∫
p

≡
∫

d4p

(2π)4
. (155)

Since the first term was already evaluated (the first term corresponds to the T = 0

contribution), we only have to deal with the other two integrals, that involves the one

and two Bose-Einstein (BE) factors, respectively.
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1.6.1 Off-Shell Contributions

There is a difference in considering k = im, or k = 0 for the thermal contributions.

We will start with the off-shell contributions.

1.6.1.1 One Bose-Einstein Contribution

The one Bose-Einstein integral can be identified as the eye diagram (a bubble with

two external legs) plus the thermal factor, shown in Figure 12,

3(I ′+1 + I ′−1 ) = −3

∫
p

∫
q

δ(p)n((p0 − µ)sgn(p0))
i

q2 −m2

1

(k − p− q)2 −m2
. (156)

First, let us take the off-shell contribution,

3(I ′+1 + I ′−1 )

∣∣∣∣
off−shell

= 3

(
eγEM2

4π

)2ϵ ∫
d4−2ϵp

(2π)4−2ϵ
δ(p)n((p0 − µ)sgn(p0))

×
∫ 1

0

dx
Γ[ϵ]

(4π)2−ϵ

1

(x(x− 1)p2 +m2)ϵ
. (157)

After we integrate the frequencies, it becomes n+(ωp) and we will write n+
p . The delta

functions are,

δ(p) ≡ 2πδ(p2 −m2) = 2π
1

2ωp

(
δ(p0 + ωp) + δ(p0 − ωp)

)
, (158)

where ω2
p = p⃗2+m2. Integrating in p0 and expanding the last term of (157) that depends

on ϵ, we have

3(I ′+1 + I ′−1 )
∣∣
k=0

=
3

(2π)4

(
M2

m2

)ϵ[
T 2he3
ϵ

]
− 3T 2he3

(2π)4

(
π√
3
− 2

)
. (159)
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1.6.1.2 Two Bose-Einstein Contribution

The two Bose-Einstein contributions are finite and given by the following expres-

sion,

3(I ′−−
1 +I ′−+

1 +I ′+−
1 +I ′−−

1 ) = −3

∫
p

∫
q

δ(p)δ(q)n((p0−µ)sgn(p0))n((q0−µ)sgn(q0))

× 1

(k − p− q)2 −m2
. (160)

As before, we first evaluate it first off-shell (k = 0), opening the integrals and integrating

in the four momenta,

3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) = −3

∫
dd−1p

(2π)d−1

n+
p + n−

p

2ωp

×
∫

dd−1q

(2π)d−1

n+
q + n−

q

2ωq

2
∑
σ=±1

[
1

ω2
σ − A2 −m2

]
, (161)

where, A2 ≡ |p⃗+ q⃗|2 and ω2
σ = (ωp + σωq)

2, with σ = ±1. Now, we have to integrate the

angle between p and q,

3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) = −3

4

4

(2π)4

∫
dpp2

n+
p + n−

p

2ωp

×
∫
dqq2

n+
q + n−

q

2ωq

∑
σ=±1

∫ 1

−1

dt

[
1

ω2
σ − p2 − q2 − 2pqt−m2

]
Integrating in dt and making the sum in σ,

3(I ′−−
1 +...) = −3

8

1

(2π)4

∫
pdp

n+
p + n−

p

ωp

∫
qdq

n+
q + n−

q

ωq

log

[
−3m2 − 4(p2 − pq + q2)

−3m2 − 4(p2 + pq + q2)

]
.

This integral is not analytical, therefore and we will define this result as,

G2BE(0, 0⃗) ≡
∫
pdp

n+
p + n−

p

ωp

∫
qdq

n+
q + n−

q

ωq

log

[
−3m2 − 4(p2 − pq + q2)

−3m2 − 4(p2 + pq + q2)

]
.
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(162)

where G2BE(0, 0⃗) stands for the off-shell contribution. The complete answer, without any

approximation is,

ISun(0) =
−2λ2

9

{
λ2m2

(4π)4

{
− 3

2ϵ2
− 3

2ϵ

(
2 ln

(
M2

m2

)
+ 3

)
− 9 ln

(
M2

m2

)
+

−3 ln2

(
M2

m2

)
− 3µ2

2m2
− C0

}
+

−2λ2

9

{
3

(2π)4

(
M2

m2

)ϵ[
T 2he3
ϵ

]
− 3T 2he3

(2π)4

(
π√
3
− 2

)
− 3

8

1

(2π)4
G2BE(0, 0⃗)

}
, (163)

where C0 = 9.45154.

1.6.1.3 Off-Shell High-T Expansion

To solve G2BE(0, 0⃗) analytically, we will consider only the contributions that are

relevant in the T ≫ m regime. For that reason, we need to separate G2BE(0, 0⃗) in two

different regions of integration: the high momenta p ≥ Λ and low momenta p ≤ Λ regions.

Let us begin with the high momenta region p ≥ Λ. For this region, we have the liberty

to make m→ 0

G2BE(0, 0⃗)

∣∣∣∣
p≥Λ

= − 3× 2

2(2π)4

∫ ∞

Λ

dp
1

eβp − 1

∫ p

0

dq
1

eβq − 1
log

[
p2 − pq + q2

p2 + pq + q2

]
,

where the the factor 2 appears because we divide the integral in two regions. Making

βp = x, βq = y and summing adn subtracting a 1/y term to suppress the UV divergence,

G2BE(0, 0⃗)

∣∣∣∣
p≥Λ

= − 3T 2

(2π)4

∫ ∞

0

dx
1

ex − 1

∫ x

0

dy

(
1

ey − 1
−1

y

)
log

[
|x2 − xy + y2|
|x2 + xy + y2|

]
+

− 3T 2

(2π)4

∫ ∞

Λβ

dx
1

ex − 1

∫ x

0

dy

(
1

y

)
log

[
|x2 − xy + y2|
|x2 + xy + y2|

]
.

Note that in the first integral we made Λβ → 0, because it was already finite, since we

subtracted the remaining infinity. By solving numerically the first integral and integrating
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the second one, we have

G2BE(0, 0⃗)

∣∣∣∣
p≥Λ

= − 3T 2

(2π)4
(
0.523151

)
− 3T 2

(2π)4
π2

6
log

(
Λ

T

)
. (164)

For the low-momenta limit, we can’t simply throw away the mass, because we have di-

vergences associated with those terms. In this regime, we will set the approximation

n± ≈ T
ω±µ

,

G2BE(0, 0⃗)

∣∣∣∣
p≤Λ

= −3T 2 × 2

2(2π)4

∫ Λ

0

pdp

ω2
p − µ2

∫ p

0

qdq

ω2
q − µ2

log

[
1 + 4

3
(p

2−pq+q2

m2 )

1 + 4
3
(p

2+pq+q2

m2 )

]
.

(165)

By making p/m ≡ x, q/m ≡ y and µ/m ≡ r,

G2BE(0, 0⃗)

∣∣∣∣
p≤Λ

= − 3T 2

(2π)4

∫ Λ/m

0

xdx

1 + x2 − r2

∫ x

0

ydy

1 + y2 − r2

× log

[
1 + 4

3
(x2 − xy + y2)

1 + 4
3
(x2 + xy + y2)

]
, (166)

and proceeding a last substitution y = xt, we can separate the problematic part from the

logarithm,

G2BE(0, 0⃗)

∣∣∣∣
p≤Λ

= − 3T 2

(2π)4

∫ 1

0

dt

∫ Λ/m

0

tx3dx

(1 + x2 − r2)(1 + x2t2 − r2)

{

log

[
4x2 + 3/(1− t+ t2)

4x2 + 3/(1 + t+ t2)

]
+ log

[
1− t+ t2

1 + t+ t2

]}
. (167)

By taking out the problematic part of the logarithm function, the first integral with

respect the first log term, is finite. The second demands a little care, subtracting the

infinite like before

G2BE(0, 0⃗)

∣∣∣∣
p≤Λ

= − 3T 2

(2π)4

∫ 1

0

dt

∫ Λ/m

0

tx3dx

(1 + x2 − r2)

(
1

x2t2

)
log

[
1− t+ t2

1 + t+ t2

]
+
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− 3T 2

(2π)4

∫ 1

0

dt

∫ Λ/m

0

tx3dx

(1 + x2 − r2)

(
1

(1 + x2t2 − r2)
− 1

x2t2

)
log

[
1− t+ t2

1 + t+ t2

]
.

(168)

The first line of (168) is trivial, the second demands a few additional manipulation,

− 3T 2

(2π)4

∫ 1

0

dt

∫ Λ/m

0

tx3dx

x2t2

(
r2 − 1

(1 + x2t2 − r2)(1 + x2 − r2)

)
log

[
1− t+ t2

1 + t+ t2

]

=
3T 2

(2π)4

∫ 1

0

dt

t
log

[
1− t+ t2

1 + t+ t2

] ∫ Λ/m

0

xdx

1− t2

(
1

(1 + x2 − r2)
− t2

(1 + x2t2 − r2)

)
(169)

=
3T 2

(2π)4

∫ 1

0

dt

t− t3
log

[
1− t+ t2

1 + t+ t2

]
1

2
ln

(
1 + x2 − r2

1 + x2t2 − r2

)∣∣∣∣Λ/m
0

(170)

where,

1

2
ln

(
1 + x2 − r2

1 + x2t2 − r2

)∣∣∣∣Λ/m
0

=
1

2

[
ln (1 + Λ2/m2 − r2)− ln (1 + t2Λ2/m2 − r2)

]

=
1

2

[
− ln t2 + ln (1 +

m2 −m2r2

Λ2
)− ln (1 +

m2 −m2r2

t2Λ2
)

]
≈ − ln t. (171)

In the above equation, we take the limit Λ → ∞. Finally,

G2BE(0, 0⃗)

∣∣∣∣
T≫m

= − 3T 2

(2π)4

∫ 1

0

ln t dt

t− t3
log

[
1− t+ t2

1 + t+ t2

]
−3

6

T 2π2

(2π)4

[
1

2
log

(
m2 − µ2

T 2

)

−1

2
log

(
Λ2

T 2

)]
. (172)
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Summing the high momenta with the low momenta contributions we have

G2BE
T≫m(0, 0⃗) ≈ −3

6

T 2π2

(2π)4

[
1

2
log

(
m2 − µ2

T 2

)]
− 3T 2

(2π)4

∫ 1

0

ln t dt

t− t3
log

[
1− t+ t2

1 + t+ t2

]

− 3T 2

(2π)4

∫ ∞

0

dx
x

ex − 1

∫ 1

0

dt

(
1

ext − 1
− 1

xt

)
log

[
|1− t+ t2|
|1 + t+ t2|

]

− 3T 2

(2π)4

∫ 1

0

dt

∫ ∞

0

tx3dx

(1 + x2 − r2)(1 + x2t2 − r2)
log

[
4x2 + 3/(1− t+ t2)

4x2 + 3/(1 + t+ t2)

]
. (173)

The above result is in agreement with the term found by Parwani (PARWANI, 1992), in

the limit µ→ 0 (the same thing as r → 0, since r = µ/m) and multiplied by the symmetry

factor 1/6 (symmetry factor for a real scalar field). The first and the second integral in

(173) are evaluated numerically. The last one needs a different treatment because of the

r dependence. For that, we will expand it in terms of r until order O(r12)

R(r) = 0.135541 + 0.10529r2 + 0.0874081r4 + 0.0753038r6+

+0.0664521r8 + 0.0596447r10 + 0.0542177r12 . (174)

In this order, we have very good agreement with the exact numerical result. In fact, the

error is 0.00002%, when comparing the numerical with the approximation (174). Our final

expression for the two Bose-Einstein off-shell contribution to the setting sun diagram is,

3(I ′−−
1 +I ′−+

1 + ....)

∣∣∣∣
k=0

=
T 2

64π2

[
log

(
m2 − µ2

T 2

)]
+

3T 2

16π4

[
2.73381+R(r)

]
. (175)

Now, we can write the complete non-thermal and thermal contributions, off-shell,

with the right symmetry factor for a λ|ϕ|4 theory, result for the setting sun diagram,

IT≫m
Sun (0) =

−2λ2

9

{
λ2m2

(4π)4

{
− 3

2ϵ2
− 3

2ϵ

(
2 ln

(
M2

m2

)
+ 3

)
− 9 ln

(
M2

m2

)
+
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−3 ln2

(
M2

m2

)
− 3µ2

2m2
− C0

}
+

−2λ2

9

{
3

(2π)4

(
M2

m2

)ϵ[
T 2he3
ϵ

]
− 3T 2he3

(2π)4

(
π√
3
− 2

)
+

+
T 2

64π2

[
log

(
m2 − µ2

T 2

)]
+

3T 2

16π4

[
2.73381 +R(r)

]}
, (176)

where C0 = 9.45154 . The above result is consistent with the known literature and brings

new information about the chemical potential. In the case µ = 0 retrieves the results of

(PARWANI, 1992) and (MARKÓ, 2012).

1.6.2 On-Shell Setting sun Diagram

Let us now evaluate the on-shell thermal contributions for the setting sun diagram.

Starting with the term with one Bose-Einstein factor.

1.6.2.1 One Bose-Einstein

The one Bose-Einstein momentum integral term can be identified as the eye dia-

gram plus the thermal factor, shown in Figure 12 and given by

3(I ′+1 + I ′−1 ) = −3

∫
p

∫
q

δ(p)n((p0 − µ)sgn(p0))
i

q2 −m2

1

(k − p− q)2 −m2
. (177)

Since we are interested in the correction for the mass spectrum, we will take the real part

in the contribution for one Bose-Einstein on-shell. Taking it on-shell and, as shown before,

applying the Feynman parameters (Appendix A) and using the regularization formulas

in the Appendix A, we have

3(I ′+1 + I ′−1 ) =
3

2

(
eγEM2

4π

)2ϵ ∫
d4−2ϵp

(2π)4−2ϵ
δ(p)n((p0 − µ)sgn(p0))

×
∫ 1

0

dx
γE[ϵ]

(4π)2−ϵ

1

(x(x− 1)(m2 + p2) +m2)ϵ

∣∣∣∣
k=(0,im)

. (178)
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The equation (178) has real and imaginary parts. We recall that the imaginary part is

associated with the decay of the field, while the real part gives the contribution for the

mass spectrum of the theory.

3(I ′+1 + I ′−1 )
∣∣
k⃗=im

=
3T 2h3
(2π)4

[
1

ϵ
+ 2 + ln

(M2

m2

)]
+

3T 2he3
(2π)4

(
2− π

2

)
. (179)

1.6.2.2 Two Bose-Einstein

The contribution with two Bose-Einstein factors is finite and given by the following

expression,

3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) = −3

∫
p

∫
q

δ(p)δ(q)n(µ)((p0 − µ)sgn(p0))

×n(µ)((q0 − µ)sgn(q0))
1

(k − p− q)2 −m2
, (180)

which, when taking on-shell k = (0, im) and opening the integrals and integrating in the

four momenta, we obtain

3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) = −3

∫
dd−1p

(2π)d−1

n+
p + n−

p

2ωp

×
∫

dd−1q

(2π)d−1

n+
q + n−

q

2ωq

2
∑
σ

[
1

ω2
σ − A2 −m2

]
,

where we have defined, A2 ≡ (−im+ p⃗+ q⃗) · (−im+ p⃗+ q⃗)∗ and ω2
σ = (ωp + σωq)

2, with

σ = ±1. Now, we have to integrate the angle between p and q,

3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) = − 3

(2π)4

∫ ∞

0

dpp2
n+
p + n−

p

ωp

×
∫ ∞

0

dkk2
n+
k + n−

k

ωk

∑
σ

∫ 1

−1

dt

ω2
σ − p2 − q2 − 2pqt−m2

.
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Integrating in t and summing in σ in the frequencies, we get

3(I ′−−
1 + I ′−+

1 + I ′+−
1 + I ′−−

1 ) =
−3

2(2π)4
G2BE(0, im), (181)

where,

G2BE(0, im) =

∫ ∞

0

dpp
n+
p + n−

p

ωp

∫ ∞

0

dkk
n+
k + n−

k

ωk

×

× ln

[
4m2 (2p2 + 3pq + 2q2) + 5m4 + 4(p+ q)2 (p2 + q2)

4m2 (2p2 − 3pq + 2q2) + 5m4 + 4(p− q)2 (p2 + q2)

]
. (182)

The complete answer when summing Eqs. (152) , (179) and (181) without any approxi-

mation is,

ISun(−m2) =
−2λ2

9

m2

(4π)4

{
− 3

2ϵ2
− 3

2ϵ

[
2 ln

(
M2

m2

)
+

17

6

]
− 6

2
ln

(
M2

m2

)[
17

6
+

ln

(
M2

m2

)]
− 3µ2

m2
+ C1

}

−2λ2

9

{
3T 2h3
(2π)4

[
1

ϵ
+ 2 + ln

(M2

m2

)]
+

3T 2he3
(2π)4

(
2− π

2

)
− 3

2(2π)4
G2BE(im)

}
, (183)

where C1 = −7.82654. The above result is also known in literature (JONES; PARKIN,

2001), but for the High-T expansion, the new thing here is the analytical evaluation of

the one Bose-Einstein factor, that is, the result in terms of the thermal function.

1.6.2.3 On-Shell High-T Expansion

Let us now consider the on-shell contribution for the setting sun diagram in the high

temperature approximation. We have two ways of computing an analytical approximation

for the on-shell approximation. The first is setting the logarithm part of G2BE(im) to

m→ 0 (i.e., considering the high temperature approximation),

G2BE(0, im)

∣∣∣∣
T≫m

≈ 2

∫ ∞

0

kdk

ωk

(n+
k + n−

k )

∫ ∞

0

qdq

ωq

(n+
q + n−

q ) ln

∣∣∣∣k + q

k − q

∣∣∣∣ , (184)
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and next dividing the region of integration, introducing a cutoff Λ. For k ≤ 0 one can

make the approximation n±
k = T/(ωk ± µ) to simplify the integration,

G2BE(0, im)

∣∣∣∣
k≤0

≈ 16T 2

∫ Λ

0

kdk

ω2
k − µ2

∫ k

0

qdq

ω2
q − µ2

ln

∣∣∣∣k + q

k − q

∣∣∣∣. (185)

We now write q = kt and subtract off a 1/(k2t2) factor from the 1/(ω2
k − µ2) term, such

that we can isolate the logarithmic piece:

G2BE(0, im)

∣∣∣∣
k≤0

= 16T 2

∫ Λ

0

dk
k3

k2 +m2 + µ2

∫ 1

0

dt
t

k2t2
ln

∣∣∣∣1 + t

1− t

∣∣∣∣+

+16T 2

∫ Λ

0

dk
k3

k2 +m2 + µ2

∫ 1

0

tdt

(
1

k2t2 +m2 + µ2
− 1

k2t2

)
ln

∣∣∣∣1 + t

1− t

∣∣∣∣. (186)

Solving the first line of (186) and defining as Gl1,

Gl1 = 2T 2π2

[
ln

(
Λ2

T 2

)
− ln

(
m2 − µ2

T 2

)]
. (187)

To compute the second line of (186), we first change the order of integration to obtain

16T 2

∫ 1

0

tdt ln

(
1 + t

1− t

)∫ Λ

0

dk
k3

k2t2
−Ω2 + µ2

(k2t2 + Ω2 − µ2)(Ω2 − µ2 + k2)

= 16T 2

∫ 1

0

dt

t
ln

(
1 + t

1− t

)∫ Λ

0

dk
dk

1− t2

(
k

(Ω2 − µ2 + k2)
− kt2

(Ω2 − µ2 + k2t2)

)

= 16T 2

∫ 1

0

dt ln

(
1 + t

1− t

)
1

t− t3
1

2
ln

(
Ω2 − µ2 + k2

Ω2 − µ2 + k2t2

)Λ

0

= 16T 2

∫ 1

0

dt ln

(
1 + t

1− t

)
1

t− t3
1

2

[
ln (Ω2 − µ2 + Λ2)− ln (Ω2 − µ2 + Λ2t2)

]

= 16T 2

∫ 1

0

dt ln

(
1 + t

1− t

)
1

t− t3
1

2

[
ln (Ω2 − µ2 + Λ2)− ln (Ω2 − µ2 + Λ2t2)

]

= 16T 2

∫ 1

0

dt ln

(
1 + t

1− t

)
1

t− t3
1

2

[
ln Λ2 + ln (

Ω2 − µ2

Λ2
+ 1)

− ln Λ2 − ln (
Ω2 − µ2

Λ2
+ t2)

]
.
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In the limit Λ → ∞ we can define the second line of (186) as Gl2

Gl2 = 16T 2

∫ 1

0

dt ln

(
1 + t

1− t

)
ln t

t− t3
. (188)

Collecting all k ≤ 0 terms, Eqs. (187) and (188) (summing Gl1 +Gl2) we have that

G2BE(im)

∣∣∣∣∣
k≤0

= 4π2T 2

[
1

2
ln

(
Λ2

T 2

)
−1

2
ln

(
Ω2 − µ2

T 2

)
+

4

π2

∫ 1

0

dt ln

(
1 + t

1− t

)
ln t

t− t3

]
.

(189)

For k ≥ 0 we can set m = 0, because we don’t have any lnm singularities,

G2BE(im)

∣∣∣∣∣
k≥0

= 16

∫ ∞

Λ

dk
1

(eβk − 1)

∫ k

0

dq
1

(eβq − 1)
ln

(
q + k

q − k

)

= 16T 2

∫ ∞

Λ/T

dx
1

(ex − 1)

∫ x

0

dy
1

(ey − 1)
ln

(
x+ y

x− y

)
.

Adding and subtracting a 1/y term,

G2BE(im)

∣∣∣∣∣
k≥0

= 16T 2

∫ ∞

Λ/T

dx
1

(ex − 1)

∫ x

0

dy
1

y
ln

(
x+ y

x− y

)

+16T 2

∫ ∞

Λ/T

dx
1

(ex − 1)

∫ x

0

dy

[
1

(ey − 1)
− 1

y

]
ln

(
x+ y

x− y

)
. (190)

First let us define

G2BE(im)

∣∣∣∣∣
k≥0

≡ I1k≥0 + I2k≥0. (191)

Solving the first line in equation (190),

I1k≥0 = 4π2T 2

[
− x+ ln(−1 + ex)

]∞
Λ/T
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≈ 4π2T 2

[
− ln(

Λ

T
)

]
+O(Λ) . (192)

To solve the second line of equation (190), we can just set Λ = 0, since the integral is

finite,

I2k≥0 = 16T 2

∫ ∞

0

dx
1

(ex − 1)

∫ x

0

dy

[
1

(ey − 1)
− 1

y

]
ln

(
x+ y

x− y

)
.

Making y = xt ,

I2k≥0 = 16T 2

∫ 1

0

dt

∫ ∞

0

dx
x

ex − 1

[
1

(ext − 1)
− 1

xt

]
ln

(
1 + t

1− t

)
+O(Λ) . (193)

Collecting all the k ≥ 0 results, Eqs. (192) and (193), we have that

G2BE(im)
∣∣∣
k≥0

= 4π2T 2

[
− 1

2
ln(

Λ2

T 2
) +

4

π2

∫ 1

0

dt

∫ ∞

0

xdx

ex − 1

[
1

(ext − 1)
− 1

xt

]

× ln

(
1 + t

1− t

)]
. (194)

Finally, we can write the high-T approximation for G2BE(im) in the form

G2BE(im)

∣∣∣∣∣
T≫m

≈ 4π2T 2

[
− 1

2
ln

(
m2 − µ2

T 2

)
− 1.50699

]
, (195)

where we have evaluated numerically the finite integrals.

Following the same logic, Jones and Parkin (JONES; PARKIN, 2001) have used

a little different approximation. They make use of the imaginary time formalism (or

Matsubara formalism) and set approximations not only for the two BE term, but for the

one BE as well. Their result is,

3(I ′−−
1 + I ′−+

1 + ....)

∣∣∣∣
k=im

=
T 2

(8π2)2
ln2

(
1 + r

1− r

)
+
T 2r2

(2π)4
(ln 2− 1/2)+
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− 3T 2

128π2
ln

(
Ω2 − µ2

T 2

)
− 3T 2

(8π)2
(
1.50699

)}
. (196)

The difference between Jones and Parkin’s pioneering result (197) and ours (196) is that

they handle all contributions in the high-T approximation and we establish analytic ex-

pressions for them, which can be evaluated at both limits (T ≫ m and T ≪ m). In

our computation it is possible to take the high-temperature or the low-temperature limit,

for the one BE terms. Summing Eqs. (152), (179) and (195), the complete setting sun

diagram in the high temperature approximation (T ≫ m) is,

ISun(−m2) =
−2λ2

9

m2

(4π)4

{
− 3

2ϵ2
− 3

2ϵ

[
2 ln

(
M2

m2

)
+

17

6

]
− 6

2
ln

(
M2

m2

)[
17

6
+

ln

(
M2

m2

)]
− 3µ2

m2
+ C1

}

−2λ2

9

{
3T 2h3
(2π)4

[
1

ϵ
+ 2 + ln

(M2

m2

)]
+

3T 2he3
(2π)4

(
2− π

2

)
+

−12π2T 2

2(2π)4

[
− 1

2
ln

(
m2 − µ2

T 2

)
− 1.50699

]}
, (197)

where C1 = −7.82654. Once again, the above result is known in the literature (JONES;

PARKIN, 2001), but in this work, we can analytically treat the one BE factor, that is, the

only term that needed an approximation was the two Bose-Einstein factor, for the others

we can use the high temperature expansion of the thermal functions (Appendix B).
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1.7 Basketball Diagram

Let us now evaluate the basketball diagram of Figure 13. We start with the with

no BE factors, the term vacuum contribution for this diagram.

1.7.1 I0 Term

Figure 13. - The basketball diagram

Source: The author, 2022.

The diagram in Figure 13 can be read as follow

Basket = CSi
2λ2
∫
p,k,q

1

(p2 −m2)

1

(k2 −m2)

1

(q2 −m2)

1

((−p− k − q)2 −m2)

(198)

where CS is the symmetry factor, which for our model is CS = 1/18, λ is the coupling

constant of the theory and the integral measure means

∫
p,k,q

≡
∫

d4p

(2π)4
d4k

(2π)4
d4q

(2π)4
. (199)

Defining I0 as,

I0 ≡
∫
p,k,q

1

(p2 −m2)

1

(k2 −m2)

1

(q2 −m2)

1

((−p− k − q)2 −m2)
,

that was calculated by Andersen, Strickland and Braaten in (ANDERSEN, 2000). Since

we have divergent integrals, we need to do some regularization process. We choose to
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work with dimensional regularization in the MS scheme.

I0 =

(
eγEM

2

4π

)3ϵ ∫
ddk

(2π)d
ddq

(2π)d
ddp

(2π)d
1

(k2 +m2)

1

(q2 +m2)

1

(p2 +m2)

× 1

((p+ k + q)2 +m2)
,

where M is just a scale parameter that came from the regularization procedure and

d = 4 − 2ϵ. Using the Feynman parameters (Appendix A), where A ≡ (k2 + m2),

B ≡ (q2 +m2), C ≡ (p2 +m2) and D ≡ ((p + k + q)2 +m2) and expressing in terms of

Bessel functions the propagators in (198)

I0 =
m4

(4π)6

(
eγEM

2

m2

)3ϵ
32

γE(2− ϵ)

∫ ∞

0

dtt−t+2ϵK4
1−ϵ(2t)

where,

K1−ϵ(2t) =
γE(1− ϵ)t−1+ϵ

2
+
γE(1− ϵ)γE(ϵ)

2

∑
j=0

(
t2j+1+ϵ

(j + 1)!γE(j + 1 + ϵ)

− t2j+1−ϵ

j!γE(2 + j − ϵ)

)
.

Putting d = 4 − 2ϵ and integrating in dt we obtain the following result for the above

expression,

I0 ≈
m4

(4π)6

(
M2

m2

)3ϵ[
2

ϵ3
+

23

3ϵ2
+

(35 + π2)

2ϵ
+ 39.429

]
. (200)

Next we will show step by step the derivation of the thermal and chemical contributions

for the basketball diagram.

1.8 Thermal Basketball

Applying the real-time propagator in the Keldysh formulation (which was ex-

plained in the end of the subsection 1.2.3) and after some algebra we can eliminate the

four delta product, after that we identify the terms that have the step functions and when
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integrated in p0 will be vanish. With this we can find

Iball = I0 + 4(I+
1 + I−

1 ) + 6
(
I++
2 + I+−

2 + I−−
2 + I−+

2

)
+ 4
(
I+++
3 + I−−−

3 +

+I−−+
3 + I−+−

3 + I+−−
3 + I−++

3 + I+−+
3 + I++−

3

)
, (201)

where the subscript number means the quantity of BE factors and the superscript means

the BE with the sign of the chemical potential. These terms with BE factors will give

the thermal contribution, for the basketball diagram for the complex scalar complex field.

It is important to note that, if we set µ = 0 we recover the same result obtained in

(ANDERSEN, 2000). Remembering that, the terms with four BE cancel in the Keldysh

prescription and we do not have any pinch singularities. That would come along these

terms. The above expression Eq. (201), can be better understood diagrammatically, as

shown in Figure 14.
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Figure 14. - Pictorial representation of the basketball contributions

Legend: The first diagram is the standard basketball diagram at T = 0,

the others are representing the thermal contributions.

Source: The author, 2022.

The thermal contribution with one BE factor can be expressed as

I±
1 =

[(
eγEM2

4π

)ϵ ∫
d4−2ϵp

(2π)4−2ϵ
n((p0 − µ)sgn(p0))2πδ(p

2 −m2)

](
eγEM2

4π

)2ϵ

×
∫

d4−2ϵq

(2π)4−2ϵ

∫
d4−2ϵr

(2π)4−2ϵ

1

q2 −m2

1

r2 −m2

1

(p+ q + r)2 −m2
. (202)

It is important to note that, the integral above has only one BE, corresponding to a

thermal integral times the setting sun diagram which is evaluated at T = 0 and on-shell,

I±
2 =

[(
eγEM2

4π

)ϵ ∫
d4−2ϵp

(2π)4−2ϵ
n((p0 − µ)sgn(p0))2πδ(p

2 −m2)

]

×
[(

eγEM2

4π

)ϵ ∫
d4−2ϵq

(2π)4−2ϵ
n((q0 − µ)sgn(q0))2πδ(q

2 −m2)

]
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×
(
eγEM2

4π

)ϵ ∫
d4−2ϵr

(2π)4−2ϵ

1

r2 −m2

1

(p+ q + r)2 −m2
. (203)

The above term can be represented by two thermal integrals times the eye diagram,

I±
3 =

[(
eγEM2

4π

)ϵ ∫
d4−2ϵp

(2π)4−2ϵ
n((p0 − µ)sgn(p0))2πδ(p

2 −m2)

]

×
[(

eγEM2

4π

)ϵ ∫
d4−2ϵq

(2π)4−2ϵ
n((q0 − µ)sgn(q0))2πδ(q

2 −m2)

]

×
(
eγEM2

4π

)ϵ ∫
d4−2ϵr

(2π)4−2ϵ
n((r0 − µ)sgn(r0))2πδ(r

2 −m2)
−1

(p+ q + r)2 −m2
(204)

where the last integral in (204) will be the only true challenge that we need to solve, since

the others are well solved in literature.

1.8.1 One Bose-Einstein factor

Let us begin with the easiest part, the term that contains only one BE factor:

4(I+
1 + I−

1 ) = 4
(
Settingsun

)
×
[(

eγEM2

4π

)ϵ ∫
d4−2ϵp

(2π)4−2ϵ
n((p0 − µ)sgn(p0))

×2πδ(p2 −m2)

]
. (205)

Using that,

δ(p2 −m2) =
1

2ωp

[δ(p0 − ωp) + δ(p0 + ωp)],

and integrating in the p0, we have

∫
d4−2ϵp

(2π)4−2ϵ
n((p0 − µ)sgn(p0))2πδ(p

2 −m2) =

∫
d3−2ϵp

(2π)3−2ϵ

n+
p + n−

p

2ωp

.
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Evaluating for the limit ϵ→ 0

1

2π2

∫
p2dp

1

n+
p + n−

p

2ωp

≡ 1

2β2π2

[
h3(y, r) + h3(y,−r)

]
.

But,

n+
p =

1

eβ(ωp+µ) − 1
, ωp =

√
p2 +m2.

which leave us with,

1

2β2π2

[
h3(y, r) + h3(y,−r)

]
=
T 2

π2
he3(y, r) , y ≡ β ·m, r ≡ µ/m .

Finally, the contribution with one BE factor reads

4(I+
1 + I−

1 ) = 4
(
Settingsun

)
× T 2

π2
he3(y, r) .

Using the result for the setting sun (152) calculated in the previous section (noting that

β = 1/T ), we obtain

4(I+
1 + I−

1 ) =
m2

(4π)4

(
M

m

)4ϵ[
− 6

ϵ2
− 17

ϵ
− 12µ2

m2
+ 4C1

]
× T 2

π2
he3(y, r), (206)

where C1 = −7.82654.

1.8.2 Two Bose-Einstein factors

For the terms F±
2 with two BE factors, the procedure is the same. We have to

collect the terms that have, at least, one BE sign in common, making possible to write

just one expression for those terms,

6
(
I++
2 + I+−

2 + I−−
2 + I−+

2

)
= 6

[ ∫
d3−2ϵp

(2π)3−2ϵ

n+
p + n−

p

2ωp

×
∫

d3−2ϵq

(2π)3−2ϵ

n+
q + n−

q

2ωq

]
×
(
Eyediagram

)
. (207)
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For the thermal part we can take the limit ϵ→ 0, leaving us with

6
(
I++
2 +I+−

2 +I−−
2 +I−+

2

)
=

3

2

[
1

(4π)2

(
M

m

)2ϵ
4

ϵ

T 4

π4

(
he3(y, r)

)2−∫ d3p

(2π)3
n+
p + n−

p

ωp

×
∫

d3q

(2π)3
n+
q + n−

q

ωq

∑
i,j

∫ 1

0

ln

(
m2 + x(1− x)(ω2

i,j − A2)

m2

)
dx

]
, (208)

where A ≡ |p⃗+ q⃗| and ωij = i · ωp + j · ωq. The above integral in x, give us

∑
i,j

∫ 1

0

ln

(
m2 + x(1− x)(ω2

i,j − A2)

m2

)
dx =

{
− 2

+
∑
i,j

(
ω2
ij − A2 + 4m2

ω2
ij − A2

)1/2

ln

[
(ω2

ij − A2)1/2 + (ω2
ij − A2 − 4m2)1/2

(ω2
ij − A2)1/2 − (ω2

ij − A2 − 4m2)1/2

]}
. (209)

The above term corresponds to the A2 < E2 − 4m2 condition. Integrating the constant

term in (1/pq)
∫
AdA, we obtain

8

(2π)4

∫
p2dp

n+
p + n−

p

ωp

∫
q2dq

n+
q + n−

q

ωq

[
A2

pq

]|p⃗+q⃗|

|p⃗−q⃗|
= 8

T 4

π4

(
he3(y, r)

)2
, (210)

and plugging in our calculations, we have

6
(
I++
2 +I+−

2 +I−−
2 +I−+

2

)
=

6

(4π)2

((
M

m

)2ϵ
1

ϵ
+2

)
T 4

π4
he3(y, r)

2+
6

(4π)4
K2 . (211)

Now, the problem remains in solving K2, where we choose the follow substitution

d

dt′
(A2) =

d

dt′
(p2 + q2 + 2pqt′) = 2A

dA

dt′
= 2pq ,

where t′ ≡ cos θp,q and

dt′ =
A

pq
dA .
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Plugging these definitions, we can obtain the term K2, as

K2 = −4

∫ ∞

0

p2dp
n+
p + n−

p

ωp

∫ ∞

0

q2dq
n+
q + n−

q

ωp

∑
σ

∫ |p⃗+q⃗|

|p⃗−q⃗|

A

pq
dA

×
(
ω2
σ − A2 + 4m2

ω2
σ − A2

)1/2

ln

[
(ω2

σ − A2)1/2 + (E2
σ − A2 − 4m2)1/2

(ω2
σ − A2)1/2 − (ω2

σ − A2 − 4m2)1/2

]
, (212)

where ωσ = ωp + σωq. Summing the frequencies ωp + ωq and ωp − ωq (note that here,

we’ve already multiplied by 2, since the summations will give the same answer), making

the integral in dA and taking the limit m→ 0,

K2 = −(4π)4

72

[
ln

(
4πT

m

)
− 1

2
− ζ ′(−1)

ζ(−1)

]
, (213)

which reproduce the result obtained in (ANDERSEN, 2000).

1.8.3 Three Bose-Einstein factors

For the last term F±
3 with three BE factors, we will proceed in the same way. By

putting all the pieces together and using the Dirac delta function to integrate over the

time component of the momenta. After that, we can set ϵ→ 0,

4
(
I+++
3 + I−−−

3 + ...) = 4

∫
d3p

(2π)3
n+
p + n−

p

2ωp

∫
d3q

(2π)3
n+
q + n−

q

2ωq

×
∫

d3r

(2π)3
n+
r + n−

r

2ωr

1,−1∑
i,k,j

−1

(ωijk)2 +m2

=
1

(2π)6

∫ ∞

0

p2dp
n+
p + n−

p

ωp

∫ ∞

0

∫ 1

−1

q2dqdt′
n+
q + n−

q

ωq

∫ ∞

0

∫ 1

−1

r2drdt
n+
r + n−

r

ωr

×

×
1,−1∑
i,k,j

−1

(ωijk)2 +m2
, (214)
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where, t and t′ are different angles. The frequencies are defined as,

ωijk = i · ωp + j · ωq + k · ωr , (215)

where i, j, k = ±. Defining A⃗ ≡ p⃗ + q⃗, we can make the integral over the first angle

t ≡ cos θr,A, where θr,A is the angle between r⃗ and A⃗,

∫ 1

−1

dt
−1

ω2
ijk + |A+ r⃗|2 +m2

=

∫ 1

−1

dt
−1

ω2
ijk + (A2 + r2 + Art) +m2

=
1

Ar
arctan

[
2Ar

A2 − ω2
ijk +m2 + r2

]

=
1

2Ar

[
ln

(
1 +

2Ar

A2 − ω2
ijk +m2 + r2

)
− ln

(
1− 2Ar

A2 − ω2
ijk +m2 + r2

)]

=
1

2Ar

[
ln

(
A2 − ω2

ijk +m2 + r2 + 2Ar

A2 − ω2
ijk +m2 + r2 − 2Ar

)]
.

Now, instead of integrating the next angle t′, we will perform the following replacement

dt′ = d cos θp,q = AdA/(pq),

∫ |p+q|

|p−q|

AdA

pq

1

2Ar

[
ln

(
A2 − ω2

ijk +m2 + r2 + 2Ar

A2 − ω2
ijk +m2 + r2 − 2Ar

)]

=
1

2pqr

∫ |p+q|

|p−q|
dA ln

(
A2 − ω2

ijk +m2 + r2 + 2Ar

A2 − ω2
ijk +m2 + r2 − 2Ar

)
. (216)

The integral result will be,

∫ |p+q|

|p−q|
dA ln

(
A2 − ω2

ijk +m2 + r2 + 2Ar

A2 − ω2
ijk +m2 + r2 − 2Ar

)
= f(ωijk, p+ q + r)+

−f(ωijk, p+ q − r)− f(ωijk, p− q + r) + f(ωijk, p− q − r), (217)
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where,

f(ω, p) = p ln |m2 − ω2 + p2|+ (ω2 −m2)1/2 ln

∣∣∣∣(ω2 −m2)1/2 + p

(ω2 −m2)1/2 − p

∣∣∣∣ . (218)

The above result, allow us to define a useful quantity,

K3 ≡
2

T 4

∫ ∞

0

pdp
n+
p + n−

p

ωp

∫ ∞

0

qdq
n+
q + n−

q

ωq

∫ ∞

0

rdr
n+
r + n−

r

ωr

∑
j,k=±1

[
f(ωjk, p+q+r)

−f(ωjk, p+ q − r)− f(ωjk, p− q + r) + f(ωjk, p− q − r)

]
. (219)

If we limit the region of integration by r < q < p and set µ = 0 the constant fator 2

become 96, since we will have 8 plus 3! multiplying the integral, which gives us the same

result found by the authors of (ANDERSEN, 2000). The result is still not complete, we

have to sum all the frequencies ω2, we will proceed as follows,

1,−1∑
i,k,j

(i ∗ ωp + j ∗ ωq + k ∗ ωr)
2 = 2

1,−1∑
k,j

(ωp + j ∗ ωq + k ∗ ωr)
2 . (220)

After that, we expand in a Taylor series until first order with respect to the mass. Tak-

ing this result, summing the others answers corresponding to the choices (−p,−q, r),

(−p, q,−r), (p,−q,−r) and multiplying all by 2, we have the final finite term of this

integration, which is

= 2× 2
[
(p+ q + r) ln (p+ q + r)− (−p+ q + r) ln (−p+ q + r)

−(p− q + r) ln (p− q + r)− (p+ q − r) ln (p+ q − r)
]
. (221)

Let us make a reflection about the result above. As one can see, there is no IR divergent

term, what suggests that there will be no cutoff dependence and even more, no chemical

potential. Since we do not have IR term, we just need to consider the high momenta

regime or the hard momenta (when m → 0 and µ → 0). Plugging the result in the
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equation (214) we can calculate it numerically. This had been done by Frenkel and Sá

in (FRENKEL; SAA; TAYLOR, 1992). In order to give an analytical answer, we will

proceed as indicated by Arnold and Zhai in (ARNOLD; ZHAI, 1994). Taking all the

pieces until now, we have

4
(
I+++
3 + I−−−

3 + ...) =
32

(2π)6

∫
dp

1

eβp − 1

∫
dq

1

eβq − 1

∫
dr

1

eβr − 1
×

×
[
(p+ q + r) ln (p+ q + r)− (−p+ q + r) ln (−p+ q + r)+

−(p− q + r) ln (p− q + r)− (p+ q − r) ln (p+ q − r)
]
, (222)

we can easily see that this expression can be recovered from

4
(
I+++
3 + I−−−

3 + ...)

∣∣∣∣
m,µ=0

=

∫
d3p

(2π)3
d3q

(2π)3
d3r

(2π)3
np

p

nq

q

nr

r

1

|p⃗+ q⃗ + r⃗|2
.

Making a Fourier transformation to the coordinate space,

∫
d3p

(2π)3
np

p
eip⃗x⃗ =

1

2π2x

∫ ∞

0

dp
sin (βpx)

eβp − 1
=

1

4πxβ

(
cos (πx)− 1

πx

)
, (223)

leads us to,

∫
d3x

[
1

4πxβ

(
cothπx− 1

πx

)]3
1

4πxβ

=
1

4

1

(4π)2β4

∫ ∞

0

dx
1

x2

(
cothx− 1

x

)3

=
1

4

1

(4π)2β4

[
− 1

3

ζ ′(−3)

ζ(−3)
+

1

3

ζ ′(−1)

ζ(−1)
− 7

45

]
, (224)

and then

4
(
I+++
3 + I−−−

3 + ...) ≈ 14.1723

32π6β4
. (225)
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After all of this, we can write the final answer for the basketball diagram, by summing

Eqs. (200), (206), (211) and (219), to obtain

Iball = I0 + 4(I+
1 + I−

1 ) + 6
(
I++
2 + I+−

2 + I−−
2 + I−+

2

)
+ 4
(
I+++
3 + I−−−

3 +

+I−−+
3 + I−+−

3 + I+−−
3 + I−++

3 + I+−+
3 + I++−

3

)
,

which gives,

Iball =
m4

(4π)6

(
M2

m2

)3ϵ[
2

ϵ3
+

23

3ϵ2
+

(35 + π2)

2ϵ
+ C2

]
+

m2

(4π)4

(
M

m

)4ϵ[
− 6

ϵ2

−17

ϵ
− 12µ2

m2
+ 4C1

](
T 2

π2
he3(y, r)

)
+ 6

1

(4π)2

[(
M

m

)2ϵ
1

ϵ
+ 2

](
T 4

π4
he3(y, r)

2

)

+
T 4

(4π)6

(
6 K2 + 4 K3

)
, (226)

where C1 = −7.82654, C2 = 39.429. In the high temperature limit T ≫ m,

K2 → −(4π)4

72

[
ln

(
4πT

m

)
− 1

2
− ζ ′(−1)

ζ(−1)

]
, K3 → 453.514 . (227)

The above result brings of new the chemical potential and it is in agreement with the

literature (ANDERSEN, 2000), in the case µ = 0 we recover the result of (ANDERSEN,

2000). Before we continue, another calculation is needed: the computation of the bare

parameters in terms of the physical ones.

1.9 Physical Parameters

For a complete/correct description of the free energy we need to compute the bare

mass and coupling, otherwise, the contributions calculated above just represent the vacua

of the theory.
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1.9.1 Physical Mass

Any physical mass should not depend on the temperature (or chemical potential),

meaning that, for a scalar particle (the Higgs particle for example), we should be able

to use the parameters that are used to compute the Higgs in the LHC, since we have a

λϕ4 potential, that is the same potential for the Higgs particle in the Standard Model of

Particle Physics.

Figure 15. - Self-energy contributions to the scalar field at T=0

Source: The author, 2022.

Amass of a particle is given by the location of the pole in the propagator (LEHMANN,

1955). If Σ(p2) is the self-energy function, then

p2 +m2 + Σ(p2) = 0 at p2 = −m2 . (228)

Until two loops, the contributions to Σ(p2) that establish the mass of the theory are shown

in the Figure 15. We will compute these contributions order by order in perturbation

theory.

1.9.1.1 One-Loop Contribution

The one-loop contribution does not depend on any external momenta and it is

given by,

Σ1 = Σ1a +∆1m
2 , (229)
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where the tadpole term is,

Σ1a =
2λ

3
I1

∣∣∣∣
T=0,µ=0

,

and ∆1m
2 is the counterterm (see Appendix C). Summing up the counter-term (Appendix

C) we have the one-loop contribution,

Σ1 = −2λ

3

m2

(4π)2

(
1 + 2 ln

(
M

m

))
. (230)

1.9.1.2 Two-Loop Contributions

The two loops contributions to Σ(p2) are more complicated, because of the setting

sun diagram, diagram 2b from Figure 15, which has an external momenta and need to be

integrated on-shell

Σ2(p
2) = Σ2a + Σ2b(p

2) +
∂Σ1a

∂m
∆1m

2 +
Σ1a

λ
∆1λ+∆2m

2 , (231)

and the last two terms in Eq. (231) are the counterterms required to make Σ2 finite. The

tadpole with one-loop insertion is given by the term 2a shown in Figure 15 and it is

Σ2a = −4λ
2

9
I1I2

∣∣∣∣
T=0

.

Using the expressions for I1 and I2 in the Appendix C, we have that

Σ2a = −4λ
2

9

[
m2

(4π)2

(
M

m

)2ϵ

eγE ·ϵγE[−1+ϵ]

]
×
[

1

(4π)2

(
M

m

)2ϵ

eγE ·ϵγE[ϵ−1](ϵ−1)

]
.

The remaining is the setting sun diagram, already calculated in Section 1.5. The answer

for the on-shell contribution is,

Σ2b(−m2) =
m2λ

2

3(4π)4

{
1

ϵ2
+

1

ϵ

[
2 ln

(
M2

m2

)
+

17

6

]
+ 2 ln

(
M2

m2

)[
17

6
+

+ ln

(
M2

m2

)]
+

3µ2

m2 + C1

}
,
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where C1 = −7.82654. Since we are interested in the physical mass, which means the mass

of the field in the vacuum, we have to set µ = 0. Summing up all of the counter-terms,

we can write an expression for the physical mass m in terms of the bare mass m. By

inverting this expression, we can write m in terms of m:

m2 = m2 + Σ(P 2) , (232)

such that,

m2 = m2 − 2

3
α m2(1 + L) +

2

9
α2m2

(
13

2
L
2
+

31

4
L− π2

4
− 2

3
+

1

3
C1

)
. (233)

Taking into account the constants, we can have a more compact answer,

m2 = m2 − 2

3
α m2(1 + L) +

2

9
α2m2

(
13

2
L
2
+

31

4
L+B2

)
, (234)

where,

B2 = −π
2

4
− 2

3
+

1

3
C1 . (235)

Inverting the expression (234), we obtain

m2 = m2 +
2

3
αm2(1 + L) +

2

9
α2m2

(
13

2
L2 +

31

4
L+B2

)
, (236)

which gives us the bare mass m expressed in terms of the physical mass m. The above

results can be found in many textbooks, in special we indicate the Hagen Kleinert book

about scalar theories (KLEINERT; SCHULTE-FROHLINDE’S, 2001).

1.9.2 Physical Coupling

A good way to define the coupling is using some renormalization condition for

a scattering 2 → 2 process. The amplitude should be −λ at the threshold p = (m, 0)

(on-shell at µ = 0). It is often useful to express scattering amplitudes in terms of the

Mandelstam variables,

s = (p+ p′)2 = (k + k′)2, t = (k − p)2 = (k′ − p′)2; u = (k′ − p)2 = (k − p′)2.
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Each channel (it is we how denominate the variables above) represents a possible con-

figuration for a 2 → 2 process. For any process, s is the square of the total initial

4-momentum. The definitions of t and u appear to be interchangeable (by renaming

k → k′); it is conventional to define t as the squared difference of the initial and final

momenta of the most similar particles. The rernomalization condition for the vertex in-

teraction follows by setting λ equal to the magnitude of the scattering amplitude at zero

momentum, which means that at the threshold s = 4m2 and t = u = 0. By applying

that,

λ = λ−
[
G(4)(m2) + 2G(4)(0)

]
, (237)

where,

G(4)(p2) = −5λ
2

9

∫
d4k

(2π)4
1

k2 +m2

1

(k + p)2 +m2 . (238)

By using dimensional regularization and applying the Feynman parameters (3.4.1), we

can easily obtain that

G(4)(p2) = −5λ
2

9

(
M2eγE

4π

)ϵ ∫ 1

0

dx

∫
ddk

(2π)d
1[

k2 − x(1− x)p2 +m2
]2 . (239)

Applying the formulas of Appendix C,

G(4)(p2) = − 5λ
2

9(4π)2

(
M2

m2

)ϵ

γE(ϵ)e
γE ·ϵ
∫ 1

0

dx

[
m2

m2 − x(1− x)p2

]ϵ
, (240)

and expanding to O(ϵ0) and summing the counterterm (Appendix C), we obtain

λ = λ− 5λ
2

9(4π)2

[
3 ln

(
M2

m2

)
+ 2

]
. (241)

Inverting (241) and putting in the notation of Eq. (89), we have

α = α +
5

9
α2(3L+ 2) . (242)

The above result also can be found in literature (KLEINERT; SCHULTE-FROHLINDE’S,

2001).
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2 PERTURBATIVE ANALYSES

Plugging the bare mass and the bare coupling in the two and three-loop contribu-

tions, we can compute the free energy of our theory and since we are interested in the

thermal free energy, thus we will discart the vacuum (T = 0) contributions. The one-loop

free energy is just the thermal part of equation (90). Since the one loop vacuum contri-

bution is the ring diagram (diagram 1a from Figure 10), the bare mass is calculated only

until one-loop (the tadpole diagram). The one-loop result gives us the ideal gas contri-

bution (FIdealGas = −π2T 4/45). For one-loop there is no need to consider the corrections

that came from the coupling. A simple way to see that is to compare the ideal gas free

energy with the one loop computation expanded in the physical mass until α order and

the one loop computation until α0.

Figure 16. - One-loop pressure P varying with T

α≂0.4, μ /M= 0.5

α≂0, μ /M= 0.9

Ideal Gas
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T/M

P
/M

4

Legend: The blue and red curves are the free-energy with the mass and coupling cor-

-rections. The green is the ideal gas pressure.

Source: The author, 2022.

In a numerical computation,we do not need to consider any expansion for the

temperature functions, we just compute the thermal integral numerically. The same

holds for different values of α and µ. This is shown in the Figure 16. For small (or high)

temperature values, the ideal gas still is a good approximation.
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Figure 17. - One-Loop Pressure P varying with T

α≂0.4, μ /M= 0.5

α≂0, μ /M= 0.5

α≂0, μ /M= 0.9

Ideal Gas
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Legend: The blue and red curves are the free energy with the mass and coupling cor-

-rections, the green is the ideal gas pressure.

Source: The author, 2022.

Even when we look more closely (see Figure 17), we do not have too much dif-

ference between the computations considering α (the blue curve and the dashed red are

matching). Then, we conclude that the α corrections are irrelevant for one-loop approxi-

mation. However, when the chemical potential µ is taken into account (see the red curves

of Figure 17), there is a difference. In this order, it is possible to write down an analytical

expression for both limits, small and high T .

For small temperature, we have

PT≪m ≈ T

(
mT

2π

)3/2

e−m/T
(
eµ/T + e−µ/T

)
. (243)

The sign at the exponential inside the parenthesis, stands for particle +µ and antiparticle

−µ. Note that by setting µ = 0 in (243), we recover the usual result for the ideal gas, in

the T << m regime.

For high temperatures,

PT≫m ≈ π2T 4

45
− m2T 2

12
+
µ2m2

8π2
+
µ2T 2

6
− µ4

24π2
. (244)
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At the above approximation, we consider only the even terms of the high-temperature

expansion. The ideal gas takes only the first term of the expansion (in µ = 0 case).

In order to recover information about the chemical potential, we need to consider other

terms of the expansion. A good approximation, that already gives us relevant information

about the charge and the number of particles, is

PT≫m ≈ π2T 4

45
+
µ2T 2

6
. (245)

The advantage to work in a thermal field theory is that we are able to compute the

pressure, the entropy and any desired thermodynamic quantity, not only with respect to

the temperature but with respect to the chemical potential and others quantities as well.

Figure 18. - One-loop entropy S varying with the temperature T

1 Loop, μ /M≂0.8

1 Loop, μ /M≂0.4

Ideal Gas
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Legend: The blue curve is the one loop approximation and the green curve is the ideal

gas entropy. For curves we take T = 0.2, M = T and m2 = M2.

Source: The author, 2022.

The Figure 18 shows how the entropy, defined as S = ∂P/∂T , changes for different

values of the chemical potential. A difference begins at T/M ≈ 0.2. We are able to

see that because the chemical potential become more sensible for small values of T . An

important thing to notice here is the range of µ/M ∈ [0, 1]; all of our analysis will be

following this range. The explanation for that relies at the convergence of the thermal

integrals. The Bose-Einstein integrals only give a convergent result if |µ| ≤ m. A simple
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way to visualize that is doing the numerical analysis of those integrals.

Figure 19. - Bose-Einstein integrals h′s varying with µ

n=1

n=3

n=5

-2 -1 0 1 2

-1

0

1

2

μ/m

h n

Legend: The blue curve is the h1, the red curve is h3 and h5 the green curve . For all

curves we take T = M and m = M .

Source: The author, 2022.

From Figure 19 it is clear that only h5 has some convergent result for µ ≥ m.

However, even when µ > m, the function h5 (explicitly given in the Appendix A) does

not have a physical answer because, for those regions, the free energy assumes a complex

value. A natural question arises: What does it happen with the pressure (or other ther-

modynamical quantity) as we increase the order of perturbation theory? We know that,

in the equilibrium, when there is no time evolution of the system, those quantities should

converge. We investigate that next.

2.1 Two and Three loops Free energy

We saw that, for one loop, it is enough to consider terms until O(α0), which means

that, for two loops, we will only have terms until O(α) and for three loops, until O(α2).

By taking all the vacuum contributions (90), (94), (108), replacing the bare mass (236)

and the bare coupling (241), expanding to order O(α2) and subtracting the non-thermal

contributions, we find the three-loop free energy for the complex scalar field in the physical
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mass,

FThermal = Fµ,T ̸=0 −Fµ,T=0, (246)

where F = F1−loop + F2−loop + F3−loop. Finally,

FThermal = − 8

π2

[
he5−

2αhe23
3

+
α2

3

(
16he23
9

−µ2he3
4T 2

+
16he1h

e2
3

3
+

K2

8 ∗ 16
+

K3

8 ∗ 24

)]
T 4 .

(247)

The above result is completely new, which is, the perturbative free energy computed in

the physical parameters up to O(α2) (or O(λ2)) for a complex scalar ϕ4 field theory. The

known result in the literature is for a non-complex scalar ϕ4 field theory (ANDERSEN,

2000). Before computing the pressure P = −F , let us evaluate the impact of the high

order thermal contributions against the one-loop contribution, by plotting F/F1 for two

and three-loops.

Figure 20. - Thermal Free energy normalized by the one-loop free energy, for α = 0.1
and α = 0.4
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Legend: The dashed and solid lines are the two and three-loop approximation.

Source: The author, 2022.

The effect of the interaction on the free energy, which is the negative of the pres-

sure, is illustrated in Figure 20. An important thing to notice here is that, even with
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the consideration of the chemical potential, the impact of the one-loop diagram in the

high order ones, is quite the same as µ = 0. The reason for that is, at high orders of

perturbation theory the soft contributions, that is, the p < T contributions become less

relevant, if compared with the hard p > T contributions. This is in agreement with the

hard thermal loop technique (BRAATEN; PISARSKI, 1990). The only difference appears

in the three-loop contribution, where the chemical potential makes the curve start closer

to 1.0 but not exactly in 1.0. For µ = 0, the result is the same as in Andersen, Braaten

and Strickland work (ANDERSEN, 2000). We normalize the free energy to the one-loop

with the same physical mass, which gives F1 in Eq. (247). We plot in Figure 20 F/F1

as a function of T (setting m = M) on a logarithmic scale for two different values of the

physical coupling constant: α = 0.1 and α = 0.4, which corresponds to λ = 15.7914 and

λ = 63.1655, respectively. The dashed lines are the free energies truncated at α and the

solid lines are the free energies truncated at α2. It is usual to use λ ≡ g2, that looks like

a strong fine-structure constant α = λ/(4π)2 = g2/(4π)2 . We will use this definition in a

further analysis.

Only with the above analysis (i.e., whether it is converging), we cannot know

exactly if the perturbative computation is making sense or not. The only clue we observe

is a big difference between α and α2 order, for values that are closer to ≈ 0.4. Let us

refine our analysis by plotting the pressure for our model.

Figure 21. - Thermal pressure (P ≡ PT ̸=0 − PT=0) as a function of the temperature T ,
at µ/M = 0.5, for α = 0.4, normalized by the ideal gas pressure Pideal
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Source: The author, 2022.



94

As one can see in Figure 21, for small values of T like T/M = 0.6, we already

have a non-converging result. Since we are in the thermodynamic equilibrium, this non-

convergence indicates a break down in the perturbation computations. The same problem

is shown varying the chemical potential, see Figure 22. The blue curve show a very

different behavior from the others, with the temperature fixed at T/M = 4.

Figure 22. - Thermal pressure (P ≡ PT ̸=0 − PT=0) as a function of the chemical
potential µ, at T/M = 4, for α = 0.4, normalized by the ideal gas pressure Pideal
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Source: The author, 2022.

A final and conclusive analysis is the thermodynamical observable (that shows

us this problem), varying with the coupling, since this non convergence in the pressure

emerges from considering contributions at high orders in λ. Based on that, we can have

a clue about when the theory start to break.
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Figure 23. - The normalized thermal pressure at µ/M = 0.5, T/M = 20 and m2 =M2

varying with the coupling λ
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Source: The author, 2022.

From Figure 23, it is clear that the perturbation theory gets broken when we con-

sider couplings with values higher than 0.1. The reader should not mistake the regimes

the of analysis. In Figure 21, we are considering a rather large coupling (α = 0.4), which

changes the regime of high-T. As we increase the coupling, what used to be small-T,

becomes high-T. A nice way to understand this, is considering the first thermal contri-

bution of the tadpole (first diagram of the self-energy contributions, Figure 15) and the

first crossed thermal contribution (proportional to h1 × h2) that comes from the tadpole

plus a bubble (second diagram of the self-energy contributions, Figure 15), in the high

temperature approximation:

δm
2 (1)
β ≈ λT 2

18
, δm

2 (2)
β ≈ λ2T 3

216π
√
m2 − µ2

. (248)

Comparing both approximations,

δm
2 (2)
β /δm

2 (1)
β =

λT 2

12π
√
m2 − µ2

, (249)

we need to be careful for a larger values of λ, the perturbation theory can break for small

values of T since T/M >> 1.
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Our concern relies on theories at weak couplings. Considering the λ|ϕ|4 theory as

a weak coupled theory in a thermal bath, for high values of the temperature, the theory

loses the perturbative reliability, as we discussed above. The result of Figure 23 was

calculated at µ = 0 by Krein, Ramos and Farias (FARIAS; RAMOS; KREIN, 2008). A

good observation is the following,

Figure 24. - The normalized thermal pressure at µ/M = 0.6 and µ/M = 0. T/M = 20
and m2 =M2 varying with the coupling
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Source: The author, 2022.

The consideration of the chemical potential (see Figure 24) only starts to make

difference, for high orders in the coupling. What is the relevance in considering the

chemical potential? A beautiful way to answer that is comparing the exact (numerical)

result, with the high temperature approximations, by expanding the h′s functions and

evaluating the high order diagrams (from the last sections) in the limit T ≫ m. Note that,

for T ≫ m we can use the limit m→ 0 for some diagrams (like for the basketball diagram

evaluated in the last section), which makes us loose a small percentage of information

about the soft contributions (p < T ). Even with that, the results are quite the same, see

Figure 25. For the thermal functions (the ones that include the Bose-Einstein integrals),

we cannot simply take the limit m→ 0. We need to make the correct expansion, as

he3(m/T, µ/m) ≈ π2T 2

12
− mπT

4

√
1− µ2

m2
− m2

8

(
µ2

m2
+ log

( m

4πT

)
+

1

2
(2γ − 1)

)
,
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(250)

considering all the information about the chemical potential and the temperature.

Figure 25. - The normalized thermal pressure at µ/M = 0.5, T/M = 20 and m2 =M2

varying with the coupling
√
λ/24

Exact O(λ 2 )

Exact O(λ 1 )

High-T O(λ 2 )

High-T O(λ 1 )

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.96

0.98

1.00

1.02

1.04

1.06

(λ /24)1/2

P
/P
id
ea
l

Source: The author, 2022.

For small values of T , we do not have too many problems. The perturbation theory

is a good and reliable approximation. In order to establish an analytical expression for

both regimes, we can apply the approximations (see Appendix B).

For low temperatures:

Fm≫T = −T 4
( m

2πT

)3/2 (
e

2µ
T + 1

)
e−(

µ
T
+m

T )
{
1− α2µ2

3mT
− 1

3

(
α

−8α2

9

)√
2πT

m
e

µ−m
T +−1

3

(
α− 8α2

9

)√
2πT

m
e−

m+µ
T

}
, (251)

while for high temperatures:

FT≫m = Fideal

{
1 +

(
10
√
m2 − µ2

πT
− 5

3

)
α +

[
20πT

9
√
m2 − µ2

+
20

9

(
1
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−6
√
m2 − µ2

πT

)
ln
(m
T

)
+

(
100

9π
− 20γE

3π
+

40 log(2)

3π
+

20 log(π)

3π

)

×
√
m2 − µ2

T
− 14.8173

]
α2

}
, (252)

where we have neglected terms of O(m2/T 2), O(µ2/T 2) and bigger, due to the hierarchy

scale T ≫ m > µ. The above expression in the limit m → 0 (which means for µ = 0)

is in agreement with previous results found in the literature (for a Z2 theory). This

analytical expression does not depend on the regularization scale M . This is the reason

why we are working at the physical mass and physical coupling. This situation could

be understood as a hypothetical Hadron collider simulation. Let us suppose we have

a high energy scattering, where the temperature effects start to become relevant. The

pressure and others thermodynamical quantities could be described by this free energy

approximation. However, the story is not over! We still need to handle the break down of

the perturbation theory. Before we do that, we could think about a different situation, for

example: What if the mass of the field thermalizes? What if the field parameters change

with the temperature of the environment? Those situations could happen in the early

Universe, in the radiation dominated regime for example. It is relevant to see how the

quantities behave if they run with T and µ. We start this analysis looking at the thermal

mass.

2.2 The Thermal Mass

Now, considering the diagrams of Figure 15 in a thermal environment, which means

apply (48) in Eq. (47),

Σ1 = Σ1a +∆1m
2 (253)

the tadpole diagram is (Note that the equation below is written with m instead m, all

the masses and couling here and so on in the work are the bare quantities),

Σ1a =
2λ

3

∫
p

1

p2 +m2
=

2λ

3
I1 ,
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where,

I1 =

(
eγEM

2

4π

)ϵ[ ∫
d4−2ϵp

(2π)4−2ϵ

i

(k2 −m2)
+

∫
d4−2ϵp

(2π)4−2ϵ
n(µ)(p0sgn(p0 + µ)))

×2πδ(p2 −m2)

]

=

(
eγEM

2

4π

)ϵ ∫
d4−2ϵp

(2π)4−2ϵ

−1

(k2 +m2)
+

∫
d3p⃗

(2π)3
n+(ωp) + n−(ωp)

2ωp

=
m2

(4π)2

(
M

m

)2ϵ

eγE ·ϵγE[−1 + ϵ] +
T 2

2π2

∫ ∞

0

x2dx
n+(ωx,y) + n−(ωx,y)

2ωx,y

=
m2

(4π)2

(
M
m

)2ϵ

eγE ·ϵγE[−1 + ϵ] +
T 2

π2
he3(y, r) . (254)

Taking the counterterm in the Appendix C, we can calculate the thermal contributions

to the self-energy interactions, which are,

Σ(−m2) = Σ1−loop + Σ2−loop(−m2) . (255)

The renormalized thermal one-loop contribution will be,

Σ1−loop =
32

3
αT 2he3(y, r)−

2αm2

3
− 2

3
αm2L , (256)

where L = ln(M2/m2). Note that the counter-terms are the same as the in T = 0 case

(Appendix C). The two-loop thermal contributions evaluated on-shell are,

Σ2−loop(−m2) = Σ2a + Σ2b(−m2) +
∂Σ1a

∂m
∆1m

2 +
Σ1a

λ
∆1λ∆2m

2. (257)

The tadpole with one loop insertion is given by the 2a in figure (Figure 15) is,

Σ2a = −16λ2

9

1

4

∫
p

1

p2 +m2

∫
q

1

(q2 +m2)2
= −4λ2

9
I1I2

Using the explicit expressions for I1, I2 (Appendix A), summing the counterterms (Ap-

pendix C) and taking the off-shell result for the setting sun diagram (1.5) we have the
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renormalized result,

Σ2−loop(−m2) = −2α2m2

3
− 1

18
π2α2m2+

5

3
α2Lm2+

7

9
α2L2m2− 2

9
α2C1m

2+
2α2µ2

3

−8

3
α2G2BE(0, im) +

16

9
α2Lm2he1(y, r) +

16

9
α2m2he1(y, r)−

16

3
πα2T 2he3(y, r)

−160

9
α2LT 2he3(y, r)−

256

9
α2T 2he1(y, r)h

e
3(y, r) . (258)

Now, we can write the effective mass of the field as3

m2
eff (T, µ) = m2 + Σ(−m2)

∣∣∣∣
T,µ=0

+ Σ(−m2)

∣∣∣∣
T,µ̸=0

, (259)

where we have separated the result of equation (258) in two parts, such that the effective

mass is written in terms of the tree-level, the vacuum contributions of the self-energy and

the medium contributions,

m2
eff (T, µ) = m2 − 2αm2

3

(
1 + L

)
+

32α

3
T 2he3(y, r)−

2α2m2

3
− π2

18
α2m2

+
5

3
α2Lm2 +

7

9
α2L2m2 − 2

9
α2C1m

2 +
2α2µ2

3
+−8

3
α2G2BE(0, im)

+
16

9
α2m2he1(y, r)−

16

3
πα2T 2he3(y, r)−

160

9
α2LT 2he3(y, r)

−256

9
α2T 2he1(y, r)h

e
3(y, r) . (260)

Subtracting the vacuum contributions, we can define the thermal mass as,

m2
Thermal(T, µ) = m2 +

32

3
αT 2he3(y, r) +

2α2µ2

3
+

8α2

3
G2BE(0, im)

−256

9
α2T 2he1(y, r)h

e
3(y, r) +

16

9
α2Lm2he1(y, r)−

1

9
160α2LT 2he3(y, r)

3Usually, the convention that is considered for the effective mass (KAPUSTA, 1981) is m2
eff =

m2(T, µ)− µ2.
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+
16

9
α2m2he1(y, r)−

16

3
πα2T 2he3(y, r) . (261)

There is an attempt to obtain this result, in the literature, by Jones and Parkin (JONES;

PARKIN, 2001). However, there are a couple of differences in their results already ex-

plained in Section 1.5. Now, it is relevant to discuss the motivation of the Jones and

Parkins work, because in their work, they did the computation of the critical temperature

for a λ|ϕ|4 theory, by calculating the effective mass. In their pioneer work they consid-

ered a perturbative and also a nonpertubative approach, using the OPT technique. It

appears that the chemical potential of coexistence (called critical point in their pioneer

work) found by OPT is to much different than the perturbative critical point, what differs

from our analyses. We can show why is different by calculating the critical point with

the thermal mass. For a charged scalar field theory, the condition to obtain the minimal

energy configuration is µ = |m| (See chapter 2 of Ref. (KAPUSTA, 2006)),

m2
eff

∣∣∣∣
T ̸=0

= m2 − µ2 = 0, (262)

which gives us the critical temperature. For our analyzes, this is equivalent to set the

thermal mass to zero,

µ2 = m2 +
32α

3
T 2he3(y, r)

∣∣∣∣
T=Tc

+O(α2) , (263)

getting the first-order contribution,

µ2(Tc) ≈ m2 +
2λT 2

c

3π2
he3(y, r)

∣∣∣∣
T=Tc

, (264)

where α = λ2/(4π)2. The thermal function is evaluated in the high temperature approx-

imation, once we can have thermal excitations in the condensed phase,

µ(Tc)

Tc
=

√
m2

T 2
c

+
λ

18
. (265)

The above expression is the chemical potential of coexistence of the phase transition. We

will show that the mass term in (265) is the reason why the nonperturbative computations
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of Jones and Parkin seems to be to much different then the perturbative. We can express

the critical temperature in terms of µ,

T 2
c (µ) =

18

λ
(µ2 −m2) . (266)

Finally we can show why Jones and Parkin result differs from ours.

Figure 26. - Perturbative critical point
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Legend: Without neglecting the mas term (blue curve) and neglecting the mass term

(black dashed curve). For the blue curve we set m2 = −M2, that means we

are in the broken phase. For both curves we use λ = 0.5.

Source: The author, 2022.

As one can see in Figure 26, the perturbative result already reproduces a similar

numerical result that Jones and Parkin found, by applying the OPT to the thermal mass

(JONES; PARKIN, 2001). Because of the mass term that Jones and Parkin threw away,

they lost the information about the broken phase (when setting m2 = −1). In order to

make that clear, we will compare the blue curve of Figure 26, which is the equation (265),

with the OPT critical point, that came from the optimized thermal mass. Before we start

making the nonperturbative analysis or applying the OPT, we should show first why this

technique can be so powerful. For the phase transition analysis at one-loop order, we have

problems to compute all the contributions.

A complex scalar λ|ϕ|4 field theory belongs to a well-known universality class of
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theories, meaning that the criticality of this theory is described by the same critical

exponents of any other scalar theory with O(N) symmetry. These critical exponents have

a direct interpretation on statistical physics and they are measured by realistic cases, such

as in magnet systems. For N = 1 we have one fluctuating spin component in a preferred

axis, for N = 2 a preferred plane and for N = 3 an isotropic three-dimensional set of

spins. We have in our case (U(1) symmetry with a (ϕϕ∗)2 interaction), the representation

of a relativistic superfluid Bose-Einstein condensation, that has a second-order phase

transition (YUKALOV; YUKALOVA, 2014).

2.3 Phase Transition

For the phase transition analysis, it is convenient to compute the thermodynamic

potential. This means computing with the bare mass and the bare coupling. Knowing

that, we will omit the notation m, for economic reasons. But, the reader should not get

confused: We are computing in the bare mass and coupling!

2.3.1 The One-Loop Thermodynamic Potential

The thermodynamic potential, that we have computed so far, takes into account

only the perturbative behavior of the theory and allows us to separate the interactions by

regions, as we showed in section 1.3. The Feynman graph for the one-loop thermodynamic

potential, is the same as in Eq. (81) for two fields and with m2 → m2
H,G(ϕ) (Eqs. 76).

For economic reasons, let us define the thermal effective potential as follows,

V T ̸=0
R−eff = VR−eff (ϕc)−

4

π2

[
he5
(
mH(ϕc)/T, µ/mH(ϕc)

)
+he5

(
mG(ϕc)/T, µ/mG(ϕc)

)]
,

(267)

where VR−eff (ϕc) is given by Eq. (81), and, as before, mH and mG denote the Higgs and

Goldstone masses defined in Eq. (76). Let us analyze these thermal contributions. As an

example, we can expand the first h5 term in the high temperature expansion,

V T ̸=0
R−eff ≈ VR−eff (ϕc)−

π2T 4

45
− µ2T 2

6
+

µ4

24π2
+
m2

H(ϕc)T
2

12
− µ2m2

H(ϕc)

8π2
+
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+
µ2mH(ϕc)T

6π

(
1− µ2

m2
H(ϕc)

)1/2

− m3
H(ϕc)T

6π

(
1− µ2

m2
H(ϕc)

)1/2

+

−m
4
H(ϕc)

16π2
ln

(
mH(ϕc)

4πT

)
+O(m6

H) +O(m6
G) . (268)

Now, we must observe that if we apply

∂V 1−loop
R−eff(T ̸=0)

∂ϕ

∣∣∣∣
ϕ=ξ

= 0 , (269)

for the minimum energy configuration, we run into troubles. The difficulty is that Tc is

determined by V T
eff at ϕc = 0. But, for small values of ϕc, m

2
H,G(ϕc) < 0 (since the broken

phase happens when m2 < 0). This leads to a physically unacceptable result: A complex

critical temperature. The problem is that the terms that become imaginary as ϕc → 0, or

T → Tc are higher order in the coupling constant (order λ2 and above). Here, it relies the

main problem that we can handle with the OPT. In a perturbative description, we need

to expand the one-loop result (that is perturbative already) in λ to obtain the physical

results. With the OPT, we expand to another parameter and because of that we can

retain information about the missing diagrams of the perturbative approach. We can

handle the original form of the effective potential. Now, expanding the effective potential

in the coupling constant and retaining only the first order correction of order λ, we obtain

V
O(λ)
R−eff(T ̸=0) ≈

m2

2
ϕ2
c−

µ2

2
ϕ2
c+

λ

4!
ϕ4
c+

λ

3
ϕ2
c

[
− m2

(4πc)2

(
1+L

)
+
T 2

π2
he3(y, r)

]
. (270)

This is the same as considering the first diagram of Figure 15. Now we can reproduce,

approximately, the criticality of the theory. By calculating the minima of our poten-

tial Eq.(269), taking the high temperature approximation for h3 and throwing away the

log terms, we can find a well known result for the relativistic superfluid Bose-Einstein

condensation,

ξ2(T ) ≈ −T
2

3
− 6

λ
(m2 − µ2) (271)
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where ξ(T ) is ξ(t) = ⟨ϕ⟩, the thermal average of the scalar field. And the critical temper-

ature, where ξ(Tc) = 0, is given by

T 2
c ≈ −18

λ
(m2 − µ2) . (272)

For the effective mass computation, we just take

m2
eff =

∂2V 1−loop
R−eff(T ̸=0)

∂ϕ2

∣∣∣∣
ϕ=0

(273)

considering again the high-T approximation for the thermal function he3 and throwing

away the log terms,

m2
eff ≈ m2 − µ2 +

λT 2

18
. (274)

We obtained the same result as in the thermal mass analysis. The Figure 27 shows

us how the expectation value changes with the temperature T . Note that there is no

discontinuities, as the field ξ assumes the critical temperature. The same holds for the

mass of the theory: there isn’t any discontinuity, see Figure 28, which seems to characterize

the phase transition as second order.
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Figure 27. - The scalar field expectation value ξ against T in the minima energy
configuration of the theory
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Legend: We set m2 = −M2, that means we are considering the broken phase. For both

curves we use λ = 1.

Source: The author, 2022.

Figure 28. - Perturbative critical point, without neglecting the mas term (blue curve)
and neglecting the mass term (black dashed curve)
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Legend: For the blues curve we set m2 = −M2, that means the broken phase. For

both curves we use λ = 0.5.

Source: the author, 2022.
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Figure 29. - Veff against ϕ showing the vacuum degeneracy, the broken phase

μ /M= 0.5

μ /M= 0

-4 -2 0 2 4

-2

-1

0

1

2

ϕ/M

V
ef
f(
ϕ
)/
M
4

Legend: We set m2 = −M2, λ = 1 and T/M = 0.1.

Source: The author, 2022.

Plotting the effective potential Eq.(270), we only get one degenerated vacua. Then,

Figure 29, Figure 30 and Figure 28 allow us to conclude that the theory may have a second-

order phase transition. But, how do we understand this phase transition in terms of a

field theory? To answer that, we need to discuss a little bit more about symmetries. The

Lagrangian density Eq.(83), is invariant for any U(1) transformation. But, the minimal

energy configuration, when m2 < 0, is not invariant. This is called spontaneous symmetry

breaking (SSB), which means that the vacua of the theory does not share the same

symmetry of the original action or the Lagrangian that defines the theory. To be more

specific, the original symmetry U(1) is broken at the lowest energy configuration, what

we call the condensate Eq.(271). The ordered phase has two different degrees of freedom:

The Higgs and the Goldstone particle. In order to show what this means explicitly, we

need to compute the Higgs and the Goldstone masses, re-writing the original fields as

ϕ =
1√
2

(
ξ20 + ϕ1 + iϕ2

)
. (275)

Replacing (275) in the effective potential (270), expanding with respect the desired field

and using (273), we have

m2
1 ≈

1

2
(m2 − µ2) +

T 2λ

36
− λµ2

24π2
+
ξ20λ

8
, (276)
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m2
2 ≈

1

2
(m2 − µ2) +

T 2λ

36
− λµ2

24π2
+
ξ20λ

24
. (277)

Choosing the shifted field to be ϕ1, we are choosing m1 to have ξ ̸= 0. In other words, ϕ1

is the Higgs field and ϕ2 is the Goldstone field.

Figure 30. - The physical masses against T
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Legend: We set ⟨ϕ2
1,2⟩ = 0, λ = 1 and m2 = −M2 for

all curves.

Source: The author, 2022.

Figure 30 shows us the difference at the two physical masses that the theory can

assume in the broken phase, with the parameters λ = 1 and m2 = −M2. Since we

have a second-order phase transition, we have a broken (ordered) and a symmetric phases

(disordered). Actually, what happens here is that, above the critical point, the symmetry

is restored. This is known as Symmetry Restoration (SR).
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Figure 31. - Veff against ϕ showing the symmetry restoration
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Source: The author, 2022.

Figure 31 makes clear the SR, once we increase the temperature. The last curve,

for T/M = 6, matches exactly with the curve in the symmetric phase m2 = M2. We list

many reasons why we need something beyond the standard perturbative approach. We

have shown the need for it since we compute high orders of perturbation theory. In the

thermal mass, we showed a mistake in the literature that still needs some proof about

the use of a resummation technique. Finally, in low orders of perturbation, the effective

potential approach already has problems to handle the fully one-loop potential. To fix all

those problems, and for further applications, we will apply the Optimized Perturbation

Theory (OPT).
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3 OPTIMIZED PERTURBATION THEORY

The Optimized Perturbation Theory (OPT) (DUARTE, 2011; FARIAS, 2013;

CHIKU; HATSUDA, 1998; POLITZER, 1982), also called linear delta expansion (LDE)

(FARIAS; RAMOS; KREIN, 2008; JONES; PARKIN, 2001), has some origins in other

methods like the variational method (KLEINERT, 1990), or even the exponential ex-

pansion method (EMM) (MILTON, 1987; BENDER, 1989). The central idea about this

technique relies in the fact that the path integral, elucidated by Feynman and Wheeler

[7], does not converge, in sense that the measure
∫
Dϕ assumes all possible paths, in-

cluding the discontinued ones. There is a way to compute perturbatively, the correlation

functions and obtain some convergent sequence with nonperturbative results. Instead of

expanding our interaction term as a Taylor series, we can modify the Taylor expansion

itself, multiplying the integrand by some characteristic function or summing a variational

parameter in the action. This procedure can cut off areas of field-space for which the or-

dinary perturbative expansion does not exhibit dominated convergence. This convergence

is the main reason why we choose to work with the OPT, you can see that in (SEZNEC;

ZINN-JUSTIN, 1979; STEVENSON, 1981; FARIAS; RAMOS; KREIN, 2008; KNEUR,

2002). Let’s outline the philosophy behind this method: There are two application paths,

the main method starts with inserting an arbitrary non-physical parameter (η for exam-

ple) into the action, replacing the original action with a modified action of the form ,

Sδ = S0(η) + δ(S − S0(η)) . (278)

The δ is a expansion parameter that gives us control over the perturbation expansions,

and it is set to 1 at the end. At any finite order expansion in δ, any quantity computed

from (278) will depend on η, which needs to be fixed. We use and optimization principle

for that. Now, to do the optimization, we need to find out the best choice of η. There

are many ways of doing that (STEVENSON, 1981; KNEUR, 2002; BENGHI, 2021) and

we will discuss this issue in the following sections. For the first analysis, we will use the
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Principle of Minimal Sensitivity (PMS),

∂ON

∂η

∣∣∣∣
η=η̄

= 0 . (279)

The ON represents a physical quantity calculated up to N-th order in delta, δN . Since η

is an artificial parameter added by hand, the physical quantities should not depend on it.

Summing the variational parameter in the mass and multiplying the coupling constant

1 : m2 → m2 + η2(1− δ) ,

2 : λ→ δλ . (280)

The Lagrangian density takes the form,

Lδ = L0(η) + δ[L − L0(η)] (281)

where, in the case of our problem,

Lδ = ∂µϕ∂
µϕ∗ − Ω2|ϕ|2 − δλ

3!
(ϕϕ∗)2 + δη2|ϕ|2 +∆Lct , (282)

where Ω2 = m2 + η2. How does that affect the effective potential? We construct an

effective action with (282) and build the effective potential for the model, but now, we

will expand with respect to δ instead of λ. Note that, the OPT modify the Feynman

diagrams, such that we have the identification (280), modifying the interaction vertex

and the propagator. An important point is, all the fields ϕ that appear in these effective

potential sections are in fact the background fields ϕc, they are constants in our approach.
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3.1 OPT Effective Potential at order δ

Computing the effective potential and expanding with respect to δ , we find at first

order in δ the expression

V OPT−δ
eff =

Ω2

2
ϕ2
c −

µ2

2
ϕ2
c −

δη2

2
ϕ2
c +

δλ

4!
ϕ4
c +

∫
p

ln (p2 + Ω2)− δη2ϕ2
c

∫
p

1

p2 + Ω2

+
δλ

3
ϕ2
c

∫
p

1

p2 + Ω2
+
δλ

3

[ ∫
p

1

p2 + Ω2

]2
, (283)

where Ω2 ≡ m2 + η2. As one can see, the OPT does gives additional contributions

than the perturbative expansion, in particular already at order δ it includes a two-loop

contribution, given by the last term in (283), which is absent in a perturbative expansion

at one-loop order. In the following figure below, we show the η dependency, a new mass-

like term in tree level and a tadpole with the η as a vertex (the green dot in Figure 32),

where

V OPT
tree = V0 −

δη2

2
ϕ2
c

=
Ω2

2
ϕ2
c −

µ2

2
ϕ2
c −

δη2

2
ϕ2
c +

δλ

4!
ϕ4
c . (284)

All those contributions are proportional to δ, that has to be set equal to one, in the end

of the computations (δ = 1).
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Figure 32. - OPT effective potential up to order δ, where the green dot is the η insertion

Source: The author, 2022.

There is another way of applying this technique, which is we could simply take the

two-loop renormalized effective potential and apply (280).

Let us start by the effective potential. All contributions of Figure 32 have already

been computed in the previous sections. Then, the renormalized optimized effective po-

tential is,

V OPT−δ
R−eff =

m2

2
ϕ2
c−

µ2

2
ϕ2
c+

η2(1− δ)

2
ϕ2
c+

δλ

4!
ϕ4
c−

δΩ4

64π2
(2Lη+3)−512T 4

64π2
he5
(
y(η), r

)
+

−δη
2T 2

π2
he3
(
y(η), r

)
+
δη2Ω2

16π2
(Lη + 1)− δλϕ2

c

48π2

[
Ω2(Lη + 1)− 16T 2he3(y(η), r)

]
+

+
δλΩ4

768π4
(1 + Lη)

2 +
δλT 2he3

(
y(η), r

)
24π4

[
8T 2he3

(
y(η), r

)
− (Lη + 1)Ω2

]
, (285)

where Lη = ln(M2/Ω2) and y(η) = Ω/T . Now, applying the PMS Eq.(279), we find

η2 =
λϕ2

c

3
+

λ

24π2

[
16T 2he3

(
y(η), r

)
− Ω2(Lη + 1)

]
, (286)

ϕc
2
=

6

λ

(
µ2 −m2

)
− 1

4π2

[
16T 2he3(y(η), r)− Ω2(Lη + 1)

]∣∣∣∣
η=η

. (287)

The two equations above will determine all the dynamics of the optimized theory. The

determination of the critical point will be a direct application of these equations. Next
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section is devoted to that.

3.1.1 Critical Point in the OPT Approach

Taking the variational parameter η at ϕc = 0, we have the critical value η(Tc),

which is the optimum η at T = Tc. In the critical temperature,

η2(Tc) =
λ

24π2

{
16T 2

c h
e
3

(
y(η), r

)∣∣∣∣
T=Tc

+ Ω2(Lη − 1)

}
, (288)

but, one observes that for ϕc = 0, we also have

0 =
6

λ

(
µ2 −m2

)
− 1

4π2

{
16T 2

c h
e
3(y(η), r)

∣∣∣∣
T=Tc

+ Ω2(Lη − 1)

}
, (289)

=⇒ η2(Tc) +m2 = µ2 , (290)

meaning Ω = |µ| is the exact condition for the condensation at order δ. Combining the

result above with Eq.(288), we have

λ

24π2

{
16T 2

c h
e
3

(
y(η(Tc)), r

)∣∣∣∣
T=Tc

+ µ2(Lµ − 1)

}
+m2 = µ2 . (291)

For the case µ = 0, the above procedure reproduces exactly the critical temperature of

the model (for this case, the thermal integrals are analytical), see (DUARTE, 2011). This

result is obtained without throw away the vacuum diagrams, differently than to the one-

loop result (270) that is obtained only for O(λ) order. Working out the expression (291),

we find the critical temperature,

T 2
c =

18

λ
(µ2 −m2) +

3µ2

2π2

[
ln

(
eγE

4π

)
+ ln

(
µ2

M · Tc

)]
, (292)

where we expand the thermal function and did Ω → µ. Observe that, if µ = 0, we

get the same result as (DUARTE, 2011). We also can simplify this expression setting

M →MeγE/4π (in the MS scheme) and M → T , which gives us

T 2
c =

18

λ
(µ2 −m2) +

3µ2

2π2
ln

(
µ2

T 2
c

)
(293)



115

where the only approximation we needed, was for the Bose-Einstein integrals, since they

are not analytical, even when Ω = µ. The second term of the above equation is very small

if compared to the first, so we can write

T 2
c |OPT ≈ 18

λ
(µ2 −m2) . (294)

Equation (291) shows us that the critical temperature is approximately the same

as the one found at the O(λ) in one-loop computation (272).

Figure 33. - Critical point of the theory, via OPT and perturbation theory, considering
λ = 10
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Source: The author, 2022.

Figure 33 shows us that the critical temperature from the OPT matches in a good

range of µ with the perturbative approximation, where we set m2 = −M2 and considered

λ = 10. This result leads us to Jones and Parkin work (JONES; PARKIN, 2001) once

again. By this first analysis, the critical temperature should not differ much from the

perturbative one.

3.1.2 OPT Phase Transition

Let us continue to analyze the criticality of the theory. The OPT and the pertur-

bative condensate are compared in Figure 34.
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Figure 34. - Comparison between the OPT condensate with the perturbative one,
where m2 = −M2 and λ = 1
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Source: The author, 2022.

We can see from Figure 34 the difference between the OPT and PT. It seems that

the perturbative case have a second-order phase transition and the OPT do not approach

zero smoothly, we observe a slight beak for ϕ ≈ 0.4. We can see the effect of the chemical

potential in the OPT computations in Figure 35, we also note that the beak (around

ϕ ≈ 0.4) observed in Figure 34 was in fact a discontinuity.

Figure 35. - Comparison between the OPT condensed for λ = 1, m2 = −M2
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Source: The author, 2022.
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Figure 36. - Comparison between the OPT effective mass and the perturbative one, for
λ = 1 and m2 = −M2
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Source: The author, 2022.

Figure 37. - Effective OPT mass with λ = 1 and m2 = −M2
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The OPT and the perturbative effective masses are compared in Figure 36. The

apparent discontinuity in the curves in Figure 36 indicate that the OPT effective potential

have a first order phase transition. We can see the difference about considering the

chemical potential for OPT, in Figure 36 and Figure 37.

The final piece for the OPT phase transition analysis is the effective potential in

the broken phase. There is no need to plot the perturbative result for the broken phase



118

because the difference, in both results, is very clear. Figure 38 shows a degenerate minima

with the origin which is contrary to the behavior seen in Figure 29, indicates that the

OPT seems to show a first-order phase transition at order δ.

Figure 38. - Degenerate vacua, an OPT effective potential with three minimum
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Legend: The result obtained for λ = 1 when the temperature is close to Tc

in the OPT at order δ.

Source: The author, 2022.

This generates a doubt: What is the real phase transition for this model? In

the perturbative approach, we found a second-order phase transition. However, with

the nonperturbative (the OPT method), we find a first-order. Which one is right? As we

discussed, at the end of the thermal mass section, this theory is well known in the literature

and to have a second-order phase transition. This problem of a first-order transition

is a recurrent problem in literature, not just for the OPT, but for other resummation

techniques as well (see (YUKALOV; YUKALOVA, 2014)). The reader could ask if this

problem persist for high orders of δ. For that we need to compute more interactions.

Next, we carry out the calculations for the effective potential up to order δ2 .
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3.1.2.1 OPT Effective Potential at order δ2

The OPT effective potential to order δ2 takes into account more Feynman diagrams

as you can seen by Figure 39.

Figure 39. - OPT effective potential diagrams until order δ2, the green dot is the an η2

insertion

Source: The author, 2022.

The diagrams 1a, 2a, 3a, 3b can be generated straightforward from the free energy

calculation (Section 1.4) and the basketball (Section 1.7). The diagrams 1b, 2b, 2s from

the self-energy calculation (Section 2.2) and the setting sun (Section 1.5). Let us compute

the missing pieces of Figure 39, the two OPT insertion

1ov = −1

2
δ2η4

∫
d4p

(2π)4
1

(p2 + Ω2)2
= −1

2
δ2η4I2 (295)

and the two-loop vacuum diagram with a OPT insertion is,

2o =
2

3
δ2η2λ

∫
d4p

(2π)4
1

(p2 + Ω2)

∫
d4q

(2π)4
1

(q2 + Ω2)2
=

2

3
δ2η2λI1I2 . (296)
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Taking the counterterms in the Appendix C we have,

GOPT
vacuum(η

4) = − δ2η4

16π2

[
2he1(y, r) + ln

(
M

Ω

)]
, (297)

and

GOPT
two-loop(η

2) = − δ2η2λ

192π4

[
2he1(y, r) + ln

(
M

Ω

)][
m2

(
2 ln

(
M

Ω

)
+ 1

)
− 16T 2he3(y, r)

]
.

(298)

The self-energy diagram with one OPT insertion,

1ob =
2

3
δ2η2λ

∫
d4p

(2π)4
1

(p2 + Ω2)2
=

2

3
δ2η2λI2 (299)

summing the counterterm,

∆1ob = − 4δ2η2λ

3 32π2ϵ
; (300)

we obtain

GOPT
self−energy(η

2) = ϕ2
c

δ2η2λ

24π2

[
2he1(y, r) + ln

(
M

Ω

)]
. (301)

The only calculation we have not done explicitly is the off-shell vertex diagram, but it

was done by Benson, Bernstein and Dodelson in Ref. (BENSON, 1991) and the result is,

G(4)(0, 0⃗) = −λ
2ϕ4

c

288

{
1

4π2
ln

(
M2

Ω2

)
− 2Ω

4µπ2
arctan

(
µ

Ω

)
+

1

4π2

[
2+ln

(
M2

Ω2 − µ2

)]}

+
λ2ϕ4

c

288

∫ ∞

0

T 2z2dz

2π2ω3
z

[
1

µ (µ− ωz)
−4(η−z )

2ωz−4(η+z )
2ωzη

−
z

(
T 3z2+η2T+4η2µ+4µT 2z2

+4µωz(T − µ) +m2(4µ+ T )− 4µ2T

)
+

1

µ (ωz + µ)
η+z

(
m2(T − 4µ) + T 3z2 + η2T

−4η2µ− 4µωz(µ+ T )− 4µT 2z2 − 4µ2T

)]
, (302)
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where ωz =
√
η2 +m2 + T 2z2, η±z = 1/(e(ωz±µ)/T − 1) and η is the variational parameter.

Now, we have all the missing pieces. Note that the critical temperature (Figure

40) receives a little correction due to the computation of these new diagrams as show in

Figure 39, but seems like quite the same as the result obtained at order δ.

Figure 40. - Critical point from OPT δ2 and δ and considering λ = 1
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Source: The author, 2022.

However, the effective potential in the broken phase to order δ2 share the same

problem that the order δ, as one can see in Figure 41 .
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Figure 41. - Broken phase OPT effective potential to δ2 order
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This problem seems to rely on the prescription, at least, for the Optimized Per-

turbation Theory. What do we mean about prescription? The determination of the

variational parameter η. Here, we do not just use the PMS, but we do minimize the free

energy of our system. We could use the PMS in other thermodynamical quantity, like

entropy or energy density. Not only what to minimize, but also, how. We could also try

another principle, or even better, we could use another tool in order to establish a more

rigorous prescription, like the renormalization group equations (RGE) (BENGHI, 2021).

All of those possibilities have generated different approaches in the literature.

3.2 OPT Thermal Mass

By the analysis of the previous sections, it became clear that the pertubative

critical temperature coincides with the OPT result. The only remaining question is if

this happens when we minimize the effective mass. To demonstrate that, we take the

result (260), re-write the constants in the same notation as Jones and Parkin (JONES;

PARKIN, 2001),

α =
λ

(4π)2
,
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L = ln

(
M2

m2

)
, (303)

and apply the OPT procedure (280) to obtain the effective mass. Expanding to O(δ2)

order and applying the PMS (279), we can analyze the OPT critical temperature, via a

mass minimization.

Figure 42. - Chemical potential of coexistence and the critical temperature extracted
from the effective mass
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Legend: The blue and red curves are the perturbative computation for m2 = 0 and

m2 = −M2. The black curve is the OPT result. For all curves we used λ = 0.2.

Source: The author, 2022.

In Figure 42, it is clear that Jones and Parkin did not find a result very different

from the first-order perturbative. As they threw away them2 from the perturbative result,

it appears that the OPT gives a very different result, but thanks to their previous analysis

we are able to refine this study. Then we confirm our argument and shows that the result

given by the minimization of the effective mass is not so different than the perturbative

one. We are still studying the possibility to use the variational parameter obtained by

the mass minimization in the thermodynamic potential.
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3.3 Symmetric Phase

In the symmetric phase, we do not have the same problem about the prescription

of η. The PMS applied in the usual way already provides us a convergent result, which

allow us to go beyond the usual perturbation theory.

Figure 43. - Pressure against the coupling, via OPT and perturbation theory. We used
µ/M = 0.5, m2 =M2 and M = T
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Source: The author, 2022.

Figure 43 shows how the optimized perturbation theory gets things fixed. An

observable at equilibrium should display convergence, as we consider more and more high

order corrections. So, the OPT fixes the perturbation computations, as far convergence

at high orders is concerned. The resummation did seem to add the missing pieces of the

Feynman diagrams, which a thermal field theory needed. So, the OPT seems to fix the

perturbation computations. We can see how is the impact of the chemical potential for

this analysis in Figure 44.



125

Figure 44. - Pressure against the coupling, via OPT. We used m2 =M2 and M = T
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Now, we can (without any concern) analyze the pressure, note that α = λ/(4π)2,

so for α = 0.2 (this was the value used in the perturbative analysis) we have λ ≈ 31.

Comparing all the orders, we have Figure 45.

Figure 45. - Pressure against Temperature for all orders, via OPT and perturbation
theory. We used µ/M = 0.5, m2 =M2 , α = 0.2 → λ ≈ 31 and M = T
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Source: The author, 2022.

An important thing to notice is the proximity that the OPT curves have with the

O(λ0), that is a good approximation for low orders of perturbation. The OPT result
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can be conceived as a correction, since the result did not diverge, differently of those

perturbative ones (the blue curves). In particular the perturbative O(λ2) result does not

obey the Stefan-Boltzmann law at high temperatures as we would expected.

3.4 Changing the prescription for the OPT optimization

We will make use of the freedom on how to evaluate η. We could minimize the

entropy, for example, but what we cannot do is to compute different η’s. If we do that,

in the end, all the observables will have a different η and they will not be related to each

other: a total mess!!! We need a consistent prescription for it.

3.4.1 PMS

The reader could ask if there is any difference in this choice. Of course, the param-

eter will be different if we choose to minimize S (entropy), or F(free energy), but they

behave in the same manner.

Figure 46. - Different variational parameters, with and without chemical potential. For
all of them λ = 31 and m2 =M2

ηEntropy (μ/M = 0.5)

ηEntropy (μ/M = 0)

ηFreeEnergy (μ/M = 0.5)

ηFreeEnergy (μ/M = 0)

0.5 1.0 1.5 2.0 2.5 3.0
0.0
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T/M

η
2
(T
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M
2

Source: The author, 2022.

In Figure 46, we see that it does not make any difference to choose the entropy

or the free energy when obtaining the optimum value for η. The point is about what we

can do. With the free energy, we can compute any thermodynamic observable. But it

only makes sense if we choose always the same η. If the problem of the first-order phase
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transition relies in the variational parameter, as we say previously, we should propose an

improvement for the η computation. This is a problem we are currently working with

and whose results will be referred elsewhere. This new prescription involves the use of

the optimized renormalization group equations (FERNANDEZ; KNEUR, 2021; KNEUR;

PINTO, 2015), but in a little different way.
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CONCLUSIONS

We have calculated the free energy of a complex scalar field (ϕ4 in d = 4 dimensions

with U(1) symmetry) taking into account the effects of finite temperature and chemical

potential. The calculation was performed until second order in the coupling constant,

which considers terms of two and three loops. Among these contributions, complicated

diagrams as the setting sun (two-loops) and basketball diagrams (three-loops). The cal-

culation of these terms is quite extensive and non-trivial, and we have performed in this

dissertation the details of their derivation.

The setting sun diagram was done both in the off-shell and on-shell context. The

off-shell contribution enters in the derivation of the thermodynamical potential, which

here we have derived up to quadratic order in the coupling constant. And in the on-shell

computation, which take into account explicitly the dependence on the external moment,

enters as auxiliary part of the calculation of the basketball diagram at three-loop order.

It also enters in the derivation of the effective thermal mass, with we have discussed at

the end of this work.

It was analyzed the free energy and also the thermodynamical potential in the

perturbative case up to second order in the coupling constant. We show that the per-

turbation theory ends up not being applicable in these studies, due to non-convergence

of the same at high temperatures and with increasing the of magnitude of the coupling.

To address this problem, we extended the calculation using a nonperturbative method.

The nonperturbative method that we have considered in this work was the Optimized

Perturbation Theory.

Although OPT with PMS leads to convergent results for the free energy, it pre-

dicts a fisrt-order phase transition in the complex scalar field model studied here, which

disagrees with what we expect for the phase transition for its class of model: it should be

a second-order phase transition .

To address this issue, we are currently trying to implement this model in the

context of the renormalization group procedure. More investigation are required to better

understand this problem and we are conducting such studies, whose results will be report

elsewhere.
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APPENDIX A - REGULARIZATION FORMULAS

All the integrals, except for the setting sun and the basketball diagram, can be

calculated recursively. Let us define some quantities for that. The one-loop vacuum

energy term (the bubble diagram shown in Figure 10) is given by,

I0 =

∫
p

log [p2 +m2] . (304)

The momentum integral: The tadpole diagram and similars are given in terms of the

momentum integral,

I1 =

∫
p

1

p2 +m2
(305)

but,

∂

∂m2
I0 = I1 . (306)

Generalizing this relation, we have

∂

∂m2
In = −nIn+1 , (307)

where,

In =

∫
p

1

(p2 +m2)n
, n ≥ 1 . (308)

For the thermal contributions, we have the following relations, that can be derived from

Haber and Weldon (HABER; WELDON, 1982),

∂hen+1

∂m2
= − 1

T 2

hen−1

2n
, (309)

where the thermal functions hen are explicitly defined in Appendix B. With these relations,

the regularization of the 1st, 2nd and 3rd diagrams of Figure 10, the 1st and 2nd from

Figure 15 and the vertex diagram, becomes easy. Since we chose to work in the MS
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scheme, the regularization for the I ′ns are,

I0 =
m4

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[ϵ− 1]

(2− ϵ)
− 8T 4

π2
he5(y, r) , (310)

I1 =
m2

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[−1 + ϵ] +
T 2

π2
he3(y, r) , (311)

I2 =
1

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[ϵ− 1](ϵ− 1) +
he1(y, r)

4π2
,

where the vacuum terms (first term) in the above integrals are obtained from the relation,

∫
ddk

(k2)α

(k2 +m2)β
= πd/2(m2)

d
2
+α−β ×

Γ
(
α + d

2

)
Γ
(
β − α− d

2

)
Γ
(
d
2

)
Γ
(
β
) . (312)

Feynman Parameters:

1

A1A2 · · · An

=

∫ 1

0

dx1 · · · dxnδ(
∑

xi − 1)
(n− 1)!

[x1A1 + x2A2 + ...+ xnAn]n
(313)

1

AαBβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dy
yα−1(1− y)β−1

(yA+ (1− y)B)α+β
. (314)
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APPENDIX B - THERMAL FUNCTIONS

The thermal functions are defined as follow,

he1(y, r) =
1

2

∫ ∞

0

dx

(x2 + y2)1/2

[
1

e(x2+y2)1/2−ry − 1
+

1

e(x2+y2)1/2+ry − 1

]
, (315)

he3(y, r) =
1

4

∫ ∞

0

x2dx

(x2 + y2)1/2

[
1

e(x2+y2)1/2−ry − 1
+

1

e(x2+y2)1/2+ry − 1

]
, (316)

and

he5(y, r) = − 1

16

∫ ∞

0

x2dx{log [1− e−(x2+y2)1/2+ry] + (r → −r)} , (317)

where y = m/T and r = µ/m. All these functions are generalized and evaluated in

different limits of T in the work of Haber and Weldon (HABER; WELDON, 1982).

Where, in the approximation y << 1, we have for instance that (HABER; WELDON,

1982),

he2l+1 =
πy2l−1

2Γ(2l + 1)
(−1)l

(
1− r2

)l− 1
2 +

(−1)l2−2ly2l

(2(Γ(l + 1)))2

×
{[

lr2 3F2

(
1, 1, 1− l;

3

2
, 2; r2

)
+

1

2
(γ − ψ(0)(l + 1)) + ln

(
y

4π

)]}

+
1

2Γ(1 + l)

l−1∑
k=0

[
(−1)k2−2ky2kζ(2l − 2k)Γ(l − k) 2F1

(
−k, l − k; 1

2
; r2
)

Γ(k + 1)

]

+
(−1)l

2Γ(l + 1)

(y
2

)2l ∞∑
k=1

(−1)k
( y
4π

)2k ζ(2k + 1)Γ(2k + 1) 2F1

(
−k,−k − l; 1

2
; r2
)

Γ(k + 1)Γ(k + l + 1)

(318)

where 2l + 1 = n, which means that this formula (318) is valid for odd n’s.
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APPENDIX C - COUNTERTERMS AND CORRECTIONS

Free energy counter-terms:

Figure 47. - Mass counterterms that cancel all the divergences associated to the two
point function of a U(1) λϕ4 theory up to two-loop

Source: The author, 2022.

Here we show all the counter-terms that are needed to renormalize the free energy

for a U(1) scalar field theory with quartic interaction, until second-order in perturbation

theory. The mass counter-terms (Figure 47) are,

∆m2 =
2

3ϵ

λ

(4π)2
m2 +

λ2m2

(4π)4

(
7

9ϵ2
− 5

18ϵ

)
. (319)

Figure 48. - Vertex counterterm

Legend: Correction that cancel the divergence associate to a 2 → 2 scattering for a

U(1) λϕ4 theory.

Source: The author, 2022.
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The vertex counter-term (Figure 48) is,

∆1λ =
5

3

λ2

(4π)2ϵ
. (320)

Corrections to the vacuum of the theory:

Figure 49. - Zero point energy corrections, the vacuum counterterms of a U(1) λϕ4

theory

Source: The author, 2022.

The zero point corrections (Figure 49), or the vacuum counter-terms are,

∆E0 =
m4

(4π)22ϵ
+

λm4

(4π)43ϵ2
+
λ2m4

(4π)6

(
1

3ϵ3
− 5

27ϵ2
+

1

36ϵ

)
. (321)
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Figure 50. - Bubble corrections

Legend: The first can be understood as a mass counterterm, the second a mass counter-

-term for a two-loop diagram, the third a second order mass countertem and

the last also a vertex counterterm for a two-loop diagram.

Source: The author, 2022.

The bubble corrections (Figure 50) are given, as follow,

1c ≡ ∂F1a

∂m2
∆1m

2 = ∆2m
2I1 , (322)

2c ≡ ∂F2a

∂m2
∆1m

2 = −2

3
∆1m

2λI1I2 , (323)

3d ≡ 1

2

∂2F1a

(∂m2)2
(∆1m

2)2 = −1

2
(∆1m

2)2I2 , (324)

4e ≡ F2a

λ
∆1λ =

1

3
∆1λI

2
1 , (325)

which can be written as,

∆2m
2I1 =

λ2m2

(4π)4

(
7

9ϵ2
− 5

18ϵ

)[
m2

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[−1 + ϵ] +
T 2

π2
he3(y, r)

]
,
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and

1

3
∆λ(I1)

2 =
1

3

5

3

λ2

(4π)2ϵ

[
m2

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[−1 + ϵ] +
T 2

π2
he3(y, r)

]2
,

−1

2
(∆1m

2)2I2 = −1

2

(
2

3ϵ

λ

(4π)2
m2

)2[
1

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[ϵ−1](ϵ−1)+
he1(y, r)

4π2

]
,

−2

3
∆m2λI1I2 = −2λ

3

(
2

3ϵ

λ

(4π)2
m2

)[
m2

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[−1 + ϵ] +
T 2

π2
he3(y, r)

]

×
[

1

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[ϵ− 1](ϵ− 1) +
he1(y, r)

4π2

]
,

where we have expand the expressions in ϵ.

Figure 51. - OPT Bubble corrections, the OPT mass counterterms

Source: The author, 2022.

The OPT bubble corrections (Figure 51) are given, as follow,

∆1o = −δη
2Ω2

16π2ϵ
, (326)

∆1ov =
δ2η4

2 (16π2) ϵ
, (327)

where for the two-loop diagram, we have three corrections, one with a mass insertion,
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other with a OPT mass insertion and a vacuum OPT correction,

∆2o

∣∣∣∣
η2

= −
(
δ2η2λ

24π2ϵ

)
I1, (328)

∆2o

∣∣∣∣
Ω2

=

(
δΩ2λ

24π2ϵ

)
δη2I2, (329)

∆2o = −δ
2η2λΩ2

384π4ϵ2
. (330)

Mass Counter-terms:

The self-energy corrections are given by,

∂Σ1a

∂m2
∆1m

2 = −2λ

3

ϕ2

2
I2∆1m

2 , (331)

Σ1a

λ
∆1λ =

2

3

ϕ2

2
I1δ1λ , (332)

where Σ1a is the 1a diagram of Figure 15. Equation (331) is explicitly given by,

−2λ

3

ϕ2

2
I2∆1m

2 = −2λ

3

ϕ2

2

[
1

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ[ϵ− 1](ϵ− 1) +
he1(y, r)

4π2

]
2λm2

3(4π)2ϵ
,

and Eq. (332) is

Σ1a

λ
∆1λ =

2

3

ϕ2

2

[
m2

(4π)2

(
M
m

)2ϵ

eγE ·ϵΓ(−1 + ϵ) +
T 2

π2
he3(y, r)

]
5λ2

3(4π)2ϵ
.

Proceeding, as we have already explained, we remove all the divergences from the self-

energy and free energy (effective potential) by appropriately adding these counterterms

to the tree-level potential.
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