

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Geologia

Letícia Muniz da Costa Cardoso

Idades U-Pb por LA-ICP-MS em veios de carbonatos de calcários da Formação Jandaíra, região sudoeste da Bacia Potiguar, NE do Brasil

> Rio de Janeiro 2022

Idades U-Pb por LA-ICP-MS em veios de carbonatos de calcários da Formação Jandaíra, região sudoeste da Bacia Potiguar, NE do Brasil

Orientador: Prof. Dr. Mauro César Geraldes (UERJ) Coorientador: Dr. Carlos Eduardo Ganade (CPRM-SGB)

> Rio de Janeiro 2022

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/C

C268 Cardoso, Letícia Muniz da Costa. Idades U-Pb por LA-ICP-MS em veios de carbonatos de calcários da Formação Jandaíra, região sudoeste da Bacia Potiguar, NE do Brasil / Letícia Muniz da Costa Cardoso. – 2022. 125 f. : il.
Orientador: Mauro César Geraldes. Coorientador: Carlos Eduardo Ganade. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Geologia.
1. Geociências – Teses. 2. Minerais – Potiguar, Bacia (RN e CE) – Teses. 3. Geocronologia – Teses. I. Geraldes, Mauro César. II. Ganade, Carlos Eduardo. III. Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. IV. Título.

Bibliotecária: Júlia Vieira - CRB7/6022

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte.

Assinatura

Data

Letícia Muniz da Costa Cardoso

Idades U-Pb por LA-ICP-MS em veios de carbonatos de calcários da Formação Jandaíra, região sudoeste da Bacia Potiguar, NE do Brasil.

Dissertação apresentada, como requisito parcial para a obtenção do título de Mestre, ao Programa de Pós-Graduação em Geociências, da Universidade do Estado do Rio de Janeiro. Área de concentração: Geociências.

Apresentado em 29 de julho de 2022.

Orientador: Prof. Dr. Mauro César Geraldes Faculdade de Geologia - UERJ Coorientador: Dr. Carlos Eduardo Ganade Serviço Geológico do Brasil - CPRM

Banca Examinadora:

Alexis Nummer Faculdade de Geologia - UFRRJ

Anelize Manuela Bahniuk Rumbelsperger Faculdade de Geologia - UFPR

Ticiano José Saraiva dos Santos Instituto de Geociências - UNICAMP Rio de Janeiro 2022

AGRADECIMENTOS

Agradeço à minha família, principalmente ao meu parceiro de vida Guilherme, pelo apoio incondicional e paciência durante os dois anos de mestrado. Sua companhia e da Lola durante um mestrado pandêmico foram essenciais para não desistir e seguir até o final deste trabalho, principalmente nos últimos meses com as mudaças de rotina junto ao novo trabalho. Agradeço também aos meus pais, Jorge e Leir pelo apoio desde sempre.

Agradeço aos meus amigos geólogos que mesmo distantes, principalemte por motivos sanitários, se mostraram presentes nas aulas da pós graduação e discussões sobre a vida acadêmica e pandêmica: Giovanni Oliveira, Juliana Fernandes, Uly Marangoni, Beatriz Oliveira e Fernanda Polessa. Muito obriga pelo apoio durante este período, sempre dando o suporte necessário para que concluíssemos nossos ciclos, seja na graduação, vida profissional e pós graduação.

Agradeço aos meus orientadores, pela grande paciência, compreensão e auxílio nas discussões deste trabalho. Ao professor Mauro Geraldes, pelo acolhimento desde os tempos de graduação na UERJ, pelos aprendizados no Multilab e discussões sobre a metodologia U-Pb em carbonatos. Ao Dr. Carlos Eduardo (Caê) pelo convite para participar no projeto o qual esta dissertação faz parte e pela parceria que vem desde a época do estágio durante a graduação na CPRM. Agradeço também ao grupo de pesquisa do Projeto "Geocronologia de falhas do NE Brasil", pelas discussões em reuniões e por compartilhar tanto conhecimento sobre a Província Borborema, em especial ao Professor Ticiano Santos que me acompanhou no trabalho de campo e estava sempre disposto a me ajudar com todas as dúvidas que surgiram até a conclusão deste trabalho.

Agradeço aos técnicos do laboratório equipe do Multilab-UERJ: Marco, Felipe Romero e Tiago, pelo suporte durante as análises.

Este trabalho foi financiado pelo Termo de Compromisso entre o Serviço Geológico do Brasil e a Petrobras, no projeto intitulado "Geocronologia de falhas do NE". Agradeço as agências de fomento pela bolsa de mestrado durante o período de 24 meses.

Irmão, você não percebeu que você é o único representante do seu sonho na face da terra se isso não fizer você correr, chapa eu não sei o que vai. *Emicida*

RESUMO

CARDOSO, Letícia Muniz da Costa. *Idades U-Pb por LA-ICP-MS em veios de carbonatos de calcários da Formação Jandaíra, região sudoeste da Bacia Potiguar, NE do Brasil.* 2022. 125 f. Dissertação (Mestrado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.

Recentemente, minerais que preenchem estruturas rúpteis e veios têm recebido atenção tanto da academia quanto da indústria devido ao seu potencial como geocronômetro de deformação. Podendo ser utilizado em diversas áreas das geociências, como estudos de eventos tectônicos, hidrocarbonetos, metalogenia, sismologia, avaliações ambientais e hidrogeológicas. Diversos métodos geocronológicos têm sido aplicados para datar deformações rúpteis, e a datação U-Pb em carbonatos precipitados em planos de falhas ou veios é um deles. Minerais carbonáticos como calcita, aragonita e dolomita, formam-se em diversos ambientes geológicos, esses minerais podem acumular urânio durante sua formação, tornando-os úteis para a geocronologia U-Pb. Entretanto, a implementação da rotina em laboratório utilizando estes minerais não é trivial, devido a diversos fatores, como o baixo conteúdo Urânio em carbonatos, dificuldade no desenvolvimento de padrões carbonáticos e procedimentos laboratoriais (equipamentos, softwares de tratamento). Este trabalho possui como objetivo a implementação do método U-Pb em carbonatos na rotina do Multilab UERJ e a aplicação da metologia em amostras provenientes da Bacia Potiguar. No nordeste do Brasil, bacias intracontinentais relacionadas à abertura do Atlântico Sul se desenvolveram sobre o embasamento pré-cambriano da Província Borborema. A Bacia Potiguar e outras bacias rifte intracontinentais nesta região (ex. Araripe, Rio do Peixe, Jatobá, etc) são segmentos chave para a compreensão da evolução das margens Equatorial e Sul, devido à sua associação com a intersecção entre dois ramos do rift Atlântico, juntamente com registro estratigráfico e estruturas relacionadas a sistemas de rift abortados desenvolvidos durante o Neocomiano. Essas bacias são controladas por falhas rúpteis proveniente de reativações de zonas de cisalhamento neoprotetozóicas, fornecendo evidências diretas de que a herança tectônica Precambriana da Província Borborema desempenhou um papel no desenvolvimento do rift atlântico. A área de estudo deste trabalho localiza-se na porção sudoeste da Bacia Potiguar, em um vale cárstico formado pelo rio Apodi-Mossoró. É composto pelos calcários da Formação Jandaíra depositada durante o Eoturioniano-Eocampaniano (Cretáceo Superior) relacionada ao estágio pós-rifte e drift da evolução da Bacia Potiguar. Os afloramentos da área de estudos são fraturados, e algumas dessas fraturas são preenchidas com carbonatos, sua formação está relacionada ao campo de tensões pós-rifte que afetou não apenas os calcários de Jandaíra, mas também outras unidades desta bacia, e reativaram sistemas de falhas regionais. Este trabalho relata as as primeiras idades U-Pb de veios carbonáticos preenchendo estruturas rúpteis da Bacia Potiguar. As idades foram obtidas durante a implementação do método U-Pb em carbonato no Multilab UERJ, realizado por este trabalho. As idades encontradas para os veios que possuem direção N-S, fornecem as idades mínimas de formação dessas estruturas entre 45 e 30 Ma. As idades obtidas estão associadas a tectônica extensional da crosta continental na região durante a abertura do Oceano Atlântico e relacionadas à deriva da placa da América do Sul após o rompimento da Pangea, além disso

estas idades também podem ser associadas a eventos de magmatismo na Bacia Potiguar e a Orogenia Andina.

Palavras-chave: U-Pb em carbonatos. LA-ICP-MS. Bacia Potiguar. Geocronologia U-Pb.

ABSTRACT

CARDOSO, Letícia Muniz da Costa. *U-Pb ages via LA-ICP-MS on carbonates veins from Jandaira Formation limestones, southwestern region of Potiguar Basin, NE Brazil.* 2022. 125 f. Dissertação (Mestrado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.

Lately, minerals that fill brittle structures and veins are on the spotlight for academic and industry studies due to their potential as a geochronometer for deformation. These minerals can be used in different geosciences studies, such as tectonics, hydrocarbons, metallogeny, seismology, and environmental and hydrogeological assessments. Several geochronological methods have been applied to date brittle deformations, and the U-Pb dating of carbonates precipitated in fault planes or veins is one of them. Carbonate minerals such as calcite, aragonite, and dolomite form in diverse geological environments, these minerals can accumulate U during their formation, making them useful for U-Pb geochronology. However, the implementation of a routine in the laboratory using these minerals isn't trivial, due to several factors, such as the low uranium content in carbonates, difficulties in the development of carbonate standards, and laboratory procedures (equipment, software). The purpose of this work is the implementation of the U-Pb method in carbonates in the Multilab UERJ routine and the application on samples from the Potiguar Basin. In northeastern Brazil, intracontinental basins related to the opening of the South Atlantic developed over the Precambrian basement of the Borborema Province. The Potiguar Basin and other intracontinental rift basins in this region (eg Araripe, Rio do Peixe, Jatobá, etc.) are key segments for the comprehension and evolution of Equatorial and South Atlantic margins, due to their relationship with two branches of Atlantic rif system, along with stratigraphic record and structures related to aborted rift systems developed during the Neocomian. These basins are controlled by brittle faults from reactivations of Neoproterozoic shear zones, providing direct evidence that the Precambrian tectonic heritage of the Borborema Province played an important role in the development of the

Basin, in a karst valley formed by the Apodi-Mossoró River. It is composed of the Jandaíra Formation limestones that were deposited during the Eoturionian-Eocampanian (Upper Cretaceous), related to the post-rift and drift stage of the Potiguar Basin evolution. The outcrops in the study area are intensively fractured, and some of these fractures are filled with carbonates, their formation is related to the post-rift stress field that affected not only Jandaíra limestones, but also other units of this basin, and reactivated regional fault systems. This work reports the first U-Pb ages of carbonate veins filling brittle structures in the Potiguar Basin. The ages were obtained during the implementation of the U-Pb method in carbonate at the Multilab UERJ, carried out by this work. The ages found for the N-S direction veins provide the minimum ages of formation of these structures between 45 and 30 Ma. The ages obtained are associated with extensional tectonics of the continental crust in the region during the opening of the Atlantic Ocean and related to the drift of the South American plate after the breakup of Pangea, in addition, these ages can also be related to magmatism events in the Potiguar Basin and the Andean Orogeny.

Keywords: U-Pb on carbonates. LA-ICP-MS. Potiguar Basin. U-Pb geochronology

LISTA DE FIGURAS

Figura 1 – Localização área de estudo	19
Figura 2 – Mapa Geológico da Bacia Potiguar com o polígono da área de estudo	20
Figura 3 - Mapa Geológico da Província Borborema	23
Figura 4 – Reconstrução Pré-drift do NE do Brasil. Arcabouço tectônico durante a fase	sin-rift
Ι	25
Figura 5 – Reconstrução Pré-drift do NE do Brasil. Arcabouço tectônico durante a fase	sin-rift
Π	26
Figura 6 - Arcabouço Estrutural da Bacia Potiguar	28
Figura 7- Mapa com os principais campos de tensão que afetaram as sequências pós rift	e na
Bacia Potiguar	30
Figura 8 - Carta estratigráfica da Bacia Potiguar	32
Figura 9 - Seção geológica esquemática na bacia Potiguar (parte terrestre), mostrando o	
arcabouço estrutural e estratigráfico das sequências sin rifte e pós rifte	33
Figura 10 - Modelo esquemático para a formação dos veios preenchidos por calcita na	
Formação Jandaíra	36
Figura 11. Procedimento de normatização do 238U/206Pb da amostra usando o valor m	edido
da calcita WC1 como padrão de referência	40
Figura 12 - Interceptos na datação U-Pb em carbonatos	42
Figura 13 - Imagens de screening inicial em carbonatos	43
Figura 14 - Diagrama concórdia do material de referência WC1	49
Figura 15 - Diagrama concórdia do material de referência ASH15D.	50
Figura 16 - Diagrama concórdia do material de referência JT calcite	50
Figura 17. Mapa de Pontos do Trabalho de Campo	53
Figura 19 - Equipamento de Cathodoluminescência óptica do Multilab UERJ	56
Figura 20 - Termos para caracaterização textural e classificação de veios	57
Figura 22 - Gráficos com a abundância de ²³⁸ U em cada padrão utilizado neste trabalho.	60
Figura 23. Diagramas da razão ²⁰⁶ Pb/ ²³⁸ U dos padrões utilizados neste trabalho, mostrar	ndo
fracionamento isotópico.	61

Figura 24 - Gráficos dos testes iniciais do zircão BB junto aos padrões de carbonato WC1,
ASH15D e JT calcite
Figura 25 - Gráfico dos testes iniciais do zircão Plesovice junto aos padrões de carbonato
WC1, ASH15D e JT calcite64
Figura 26 - Gráfico dos testes iniciais do zircão GJ1 junto aos padrões de carbonato WC1,
ASH15D e JT calcite
Figuras 27 - Gráfico dos testes iniciais do Nist 612 junto aos padrões de carbonato WC1 e JT
calcite
Figura 28 - Aplicação do Fator de correção 1,0216 nos padrões JT calcite e Ash 15D
normatizado pelo zircão BB67
Figura 29 - Aplicação do Fator de correção 1,1616 nos padrões JT calcite e Ash 15D
normatizado pelo zircão Plesovice67
Figura 30 - Aplicação do Fator de correção 0,9457 nos padrões JT calcite e Ash 15D
normatizado pelo zircão GJ168
Figura 31 - Aplicação do Fator de correção 1,0871 no padrão JT calcite normatizado pelo Nist
612
Figura 31 - Imagem de satélite dos 3 afloramentos mais detalhados para análises estrutural. 70
Figura 32 - Fotos de estruturas e veios encontradas na área de estudo
Figura 33 - Imagens de cathodoluminescência óptica das amostras coletadas na atividade de
campo73
Figura 34 - Imagens de cathodoluminescência óptica das amostras coletadas na atividade de
campo74
Figura 35 - Gráficos da amostra PTG 02 II, idade 45,10 Ma76
Figura 36 - Gráficos da amostra PTG 03 II, idade 30,1 Ma77
Figura 37 - Gráficos da amostra PTG 05 II, idade 44, 5 Ma78
Figura 38 – Compilação das idades U-Pb em carbonatos preenchendo estruturas rúpteis na
Província Borborema e eventos de mesma idade

LISTA DE TABELAS

Tabela 1. Compilação de análises U-Pb em carbonatos na literatura	45
Tabela 2 – Configurações analíticas de laboratórios para método U-Pb em calcita via I	LA-ICP-
MS	48
Tabela 3. Configurações do sistema LA-ICP-MS utilizado nos testes	51
Tabela 4 – Tabela de Pontos do Trabalho de Campo	54
Tabela 5. Fatores de correção 238U/206Pb utilizados nos testes iniciais	66

SUMÁRIO

INTRODUÇÃO	14
1. OBJETIVOS	17
2. APRESENTAÇÃO DA DISSERTAÇÃO E LOCALIZAÇÃO DA ÁREA DE	ESTUDO
2.1 Apresentação da Dissertação de Mestrado	18
2.2 Localização	18
3. CONTEXTO GEOLÓGICO	21
3.1 A Província Borborema	21
3.2 A Bacia Potiguar	24
3.3 A Formação Jandaíra e a formação dos veios preenchidos por carbonatos	
4. MATERIAIS E MÉTODOS	
4.1 Levantamento Bibliográfico	
4.2 Sistemática do método U-Pb em carbonatos	
4.2.1 Datação U-Pb via LA-ICP-MS em carbonatos	37
4.2.2 Screening Inicial	42
4.2.3 Histórico de aplicação do método e configurações analíticas	44
4.2.4 Parâmetros analíticos dos testes iniciais no MULTILAB UERJ	51
4.3 Atividade de Campo	52
4.3.1 Análise estrutural	52
4.3.2 Trabalho de campo	52
4.4 Preparação das amostras coletadas e configurações analíticas	54
4.4.1 Preparação das amostras pós campo	54
4.4.2 Cathodoluminescência óptica	55
4.4.3 Análises das amostras coletadas no LA-ICP-MS	57
5. RESULTADOS	59
5.1 Resultados dos testes iniciais em padrões de carbonato no Multilab-UERJ	J59
5.1.1 Abundância dos isótopos de interesse nos padrões	59
5.1.2 Diagramas concórdia dos testes iniciais em padrões de carbonatos no Mult	ilab UERJ
	62
5.1.3 Aplicação do fator de correção da razão ²³⁸ U/ ²⁰⁶ Pb utilizando WC1	66

5.2 Análise Estrutural
5.3 Imagens de Cathodoluminescência71
5.4 Idades U-Pb dos veios de calcita da região de sudoeste da Bacia Potiguar74
6. DISCUSSÕES
6.1 Discussões acerca dos testes iniciais e implementação do método U-Pb em
carbonatos no MULTILAB UERJ79
6.2 As idades encontradas para os veios preenchidos por carbonato na Formação
Jandaíra
7. CONCLUSÕES
REFERÊNCIAS
ANEXO A - Dados isotópicos dos testes iniciais102
ANEXO B - Tabelas de Azimutes extraídos do ArcMap116
ANEXO C - Dados Isotópicos das amostras coletadas122

INTRODUÇÃO

A Província Borborema é uma das regiões brasileiras mais conhecidas do ponto de vista geológico, com um grande acúmulo de dados nas últimas décadas (ALMEIDA et al., 1977, BRITO NEVES et al., 1991, 2000; NEVES et al., 2003, 2012; GANADE et al., 2013; VIEGAS et al., 2014; CAXITO et al., 2016, entre muitos outros). O mapeamento geológico da Província gerou um grande número de dados estruturais que podem ser acessados por meio do banco de dados do Serviço Geológico do Brasil, trabalhos na literatura e bancos de teses e dissertações de diversas universidades brasileiras. Adicionalmente, levantamentos aerogeofísicos recentes realizados pela CPRM, promoveram uma considerável melhora na visualização do arcabouço estrutural da Província, permitindo investigações integradas em escalas mais amplas. Embora muitos dados estruturais estejam disponíveis, os dados relacionados às reativações tectônicas e estruturas rúpteis superficiais geradas nestes eventos são carentes de informações geocronológicas robustas que possam contextualizar o *timing* da sua formação.

O estudo de estruturas como falhas e fraturas são de grande interesse, tanto acadêmico, como econômico, pois são responsáveis pelo controle e geração de depósitos de hidrocarbonetos e depósitos minerais diversos, essas estruturas são condutos por onde migram fluidos responsáveis pelas acumulações e mineralizações (FOSSEN, 2012). Os veios, que são um tipo de fraturas de extensão, são estruturas comuns em rochas e úteis para determinar fatores como deformação, tensão, pressão, temperatura, composição e origem do fluido durante a sua formação. Eles estão presentes em diversos tipos de rochas e são facilmente reconhecidos em atividades de campo, principalmente pelo contraste de cores distintos dos minerais que preenchem os veios e a rocha hospedeira. Eles representam fases de atividade geológica que ocorreram após a formação da rocha hostepedeira, e por este motivo, são importantes para desvendar a história geológica da mesma. A forma, orientação e estruturas internas dessas estruturas apontam informações sobre campos de paleotensão, cinemática de deformação e pressão do fluido (BONS et al., 2012).

Os minerais carbonáticos, como a calcita, aragonita e dolomita, se formam em uma ampla variedade de ambientes geológicos como uma fase mineral primária e secundária, incluindo ambientes diagenéticos, biogênicos, ígneos, metamórficos e hidrotermais. Estes minerais podem acumular Urânio em sua formação, tornando-se um cronômetro potencialmente adequado para a geocronologia U-Pb e U-Th (RASBURY et al., 2009; LI et al., 2014; ROBERTS et al., 2020).

A datação pontual de carbonatos pelo método U-Pb via LA-ICP-MS (*Laser Ablation Inductively Coupled Mass Spectrometer*) vem ganhando grande interesse por parte da academia e da indústria nos últimos anos. A metodologia é a mesma utilizada para minerais ricos em U, como zircão, no LA- ICP-MS. Um laser é acoplado a um espectrômetro de massa, onde há contagem dos isótopos referentes ao decaimento do U, Th e Pb (ROBERTS et al., 2019). Atualmente, existem alguns laboratórios no Brasil que estão implementando esse método, seguindo a técnica relatada em trabalhos internacionais publicados e bem sucedidos como os de LI et al. (2014), YOKOYAMA et al. (2018), ROBERTS et al. (2017, 2019, 2020, entre outros.

No nordeste do Brasil, bacias intracontinentais relacionadas à abertura do Atlântico Sul se desenvolveram sobre o embasamento pré-cambriano da Província Borborema (MATOS, 1992, 2000). A Bacia Potiguar e outras bacias rifte intracontinentais nesta região (ex. Araripe, Rio do Peixe, Jatobá, etc) são segmentos chave para a compreensão da evolução das margens Equatorial e Sul, devido à sua associação com a intersecção entre dois ramos do rift do Atlântico (Equatorial e Sul), juntamente com registro estratigráfico e estruturas relacionadas a sistemas de rift abortados desenvolvidos durante o Neocomiano (MATOS,1992, DE CASTRO et al., 2012). Essas bacias são rodeadas e controladas por estruturas rúpteis proveinientes de reativações de zonas de cisalhamento neoprotetozóicas, fornecendo evidência direta de que a herança tectônica do Pré-cambriana da Província Borborema desempenhou um papel no desenvolvimento do rift atlântico (MATOS, 1992, 2000).

A Bacia Potiguar está em uma região que foi o último segmento a se separar durante o rompimento da Pangeia (AZEVEDO, 1986; MATOS, 1992); estudos sobre estruturas de evolução pós-rifte nesta bacia são, portanto, de grande importância. A área de estudo deste trabalho localiza-se na porção sudoeste da Bacia Potiguar no NE-Brasil e os locais de amostragem situam-se em um vale cárstico formado pelo rio Apodi-Mossoró (Figura 1). É uma das maiores exposições (mais de 100 km2) do calcário da Formação Jandaíra que foi depositado durante o Eoturioniano-Eocampaniano (Cretáceo Superior), relacionado ao estágio pós-rifte e drift da evolução da Bacia Potiguar (PESSOA NETO et al., 2007). A região possui uma grande quantidade de estruturas rúpteis, com diferentes direções e algumas delas são preenchidas por carbonatos. De acordo com trabalhos de Bertotti et al. (2017) e Graaf et al. (2017) sua formação

está relacionada aos campos de tensões pós-rifte que afetou não apenas os calcários da Formação Jandaíra, mas também outras unidades desta bacia, e reativaram sistemas de falhas regionais.

Dois campos de tensões afetaram as sequências pós-rifte da Bacia Potiguar (BEZERRA et al., 2020). Um primeiro campo de tensão (SF1) consistiu em uma compressão máxima subhorizontal N-S e extensão E-W, que ocorreu do Creatáceo Superior ao Mioceno Médio; um segundo campo de tensões (SF2) do Mioceno médio até os dias atuais, consiste em compressão subhorizontal E-W a NW-SE combinada com extensão subhorizontal N-S e NE-SW. Esta dissertação de mestrado relata as primeiras idades U-Pb em veios de carbonatos de estruturas rúpteis associadas a campos de tensões pós-rifting que afetaram a Bacia Potiguar. Esses veios têm direção N-S e os dados fornecem as idades mínimas para essas estruturas entre 45 e 30 Ma.

Este trabalho integra o Projeto "Geocronologia de Falhas do NE do Brasil" financiado pela parceria entre a Petrobras e o Serviço Geológico do Brasil (CPRM), liderado pelo Dr. Carlos Eduardo Ganade. Além da datação de estruturas rúpteis, também possui como objetivo a implementação da rotina U-Pb em carbonatos no Laboratório MultiUsuário e de Meio Ambiente (Multilab) da UERJ, sendo um dos primeiros laboratórios de isótopos no Brasil com essa rotina em funcionamento.

1. OBJETIVOS

O objetivo desta dissertação é a implementação da rotina U-Pb em carbonatos no Laboratório MultiUsuário e de Meio Ambiente (Multilab) da UERJ. Avançando no entendimento e validação da obtenção de idades pelo método U-Pb em carbonatos via LA-ICP-MS e sua utilização nas diversas áreas das geociências.

Obtenção de idades a partir do método U-Pb via LA-ICP-MS em carbonatos que preenchem estruturas rúpteis localizadas na região sudoeste da Bacia Potiguar, na Província Borborema; Visando a obtenção do *timing* de formação dessas estruturas, relacionando-as com eventos tectônicos regionais, contribuindo assim, com novos dados geocronológicos acerca da Província Borborema, Bacia Potiguar e estruturas rúpteis relacionadas a abertura do Atlântico Sul.

2. APRESENTAÇÃO DA DISSERTAÇÃO E LOCALIZAÇÃO DA ÁREA DE ESTUDO

2.1 Apresentação da Dissertação de Mestrado

Esta dissertação está estruturada em 8 Capítulos:

- Capítulo 1: Introdução e Objetivos;
- Capítulo 2: Apresentação da dissertação e localização da área de estudo;
- Capítulo 3: Contexto geológico geral e local da área de estudo;
- Capítulo 4: Materiais e Métodos;
- Capítulo 5: Resultados;
- Capítulo 6: Discussões;
- Capítulo 7: Conclusão e Considerações finais;
- Capítulo 8: Referências Bilbiográficas.

Como anexos se encontram as tabelas dos dados isotópicos adquiridos nas análises via LA-ICP-MS em laboratório e dados estruturais.

2.2 Localização

A área de estudo deste trabalho (Figura 1) está localizada na cidade de Felipe Guerra, próximo aos municípios de Apodi e Gov. Dix-Sept Rosado, no estado do Rio Grande do Norte, na porção Nordeste do Brasil. Está inserida no contexto geológico da Bacia Potiguar, mais precisamente nos calcários da Formação Jandaíra, aflorantes nessa região (Figura 2).

Figura 1 - Localização área de estudo.

Legenda: Polígono vermelho representa área de estudo da dissertação, imagem de satélite do GoogleEarth com as principais cidades da região nomeadas. Fonte: A AUTORA, 2022

Figura 2 - Mapa Geológico da Bacia Potiguar com o polígono da área de estudo.

Legenda: Mapa geológico da Bacia Potiguar e polígono da área de estudo, base de dados do Serviço geológico do Brasil.

Fonte: A AUTORA, 2022.

3. CONTEXTO GEOLÓGICO

3.1 A Província Borborema

A Província Borborema é uma extensa faixa orogênica definida por Almeida et al. (1977) como uma complexa região de domínios tectono-estratigráficos, compreendendo os terrenos geológicos do Nordeste do Brasil fortemente afetada pelos eventos tectônicos de idade Neoproterozóica. Compreende uma área de aproximadamente 450.000 km², é limitada a sul pelo Cráton São Francisco, a oeste pela Bacia do Parnaíba e a norte e a leste pelas bacias sedimentares da margem costeira brasileira.

A evolução geológica da Província Borborema tem sido tema de um longo debate. Alguns autores (e.g., BRITO NEVES et al., 2000; SANTOS et al., 2010; OLIVEIRA et al., 2010; GANADE et al., 2013; CAXITO et al., 2016) defendem a ideia de que a província se desenvolveu através de Ciclos de Wilson. Neves et al., (2003) possuem teorias que a Província foi essencialmente formada no Paleoproterozóico e permaneceu estável como um único grande bloco continental, onde somente a formação e inversão de bacias intracontinentais ocorreram posteriormente no seu embasamento Arqueano-Paleoproterozóico.

Apesar das divergências acerca da evolução tectônica da Província Borborema, é importante destacar que a mesma ocupa uma posição estratégica nas reconstruções do supercontinente Gondwana Ocidental, e que foi estabelecido no final do Neoproterozóico durante a Orogenia Brasiliana (BRITO NEVES et al., 2000; NEVES, 2003). Sua formação se deu pela convergência dos crátons Amazônico - São Luiz - Oeste Africano e São Francisco-Congo, com a participação do bloco Parnaíba, na intitulada colagem Brasiliana/Pan-Africana, que culminou na formação da parte oeste do supercontinente Gondwana (BRITO NEVES & CORDANI, 1991, GANADE et al., 2013).

A geologia da Província Borborema (Figura 3) é diversa e compreende vários núcleos arqueanos constituídos principalmente por ortognaisses TTG (DANTAS et al., 2013). Apresenta um embasamento Paleoproterozóico formado por ortognaisses, migmatitos e rochas supracrustais. Possui também uma série de intrusões graníticas meso a neoproterozóicas, rochas metassedimentares e zonas de cisalhamento (eg. Patos, Pernambuco e Transbrasiliano, etc.) que

se desenvolveram no final do Neoproterozóico (VIEGAS et al., 2014). Plútons pós cisalhamentos também são encontrados.

De acordo com Brito Neves et al. (2000) e Hasui et al. (2012), a Província Borborema pode ser dividida em três grandes domínios estruturais:

- Borborema Norte ou Setor Setentrional, formado pelos domínios Médio Coreaú, Ceará Central e Rio Grande do Norte. Limitado a sul pela zona de cisalhamento Patos;

- Borborema Central ou Zona Transversal, constituída pelos terrenos Pianco-Alto Brígida, Alto Pajeú, Alto Moxotó e Rio Capibaribe. Limitado ao norte pela zona de cisalhamento Patos e a sul pela zona de cisalhamento Pernambuco;

- Borborema Sul ou Setor Meridional, limitado ao norte pela zona de cisalhamento Pernambuco e a sul pelo Cráton São Francisco, composto pelos Orógenos Riacho do Pontal e Sergipano, além do terreno Pernambuco-Alagoas.

Estruturalmente, no embasamento da Província Borborema o Sistema Cisalhante Orogênico Borborema (SCOB) compreende uma série de zonas de cisalhamento de escala continental que se desenvolveram a partir do Lineamento Transbrasiliano em função da endentação tectônica promovida pelo Cráton São Francisco contra a parte sul da Província (GANADE et al., 2013). Na porção norte da província predominam zonas de cisalhamento dextrais de direção NE-SW, enquanto na sua porção central as Zonas de Cisalhamento Patos e Pernambuco configuram um sistema conjugado E-W dextral com zonas internas ao sistema de direção NE-SW e cinemática sinistral (NEVES et al., 2012)

Esta província é frequentemente individualizada como parte dos blocos tectônicos que subdividem o continente Sul-Americano nas reconstruções geodinâmicas, que abordam a abertura do Oceano Atlântico. De acordo com Heine et al. (2013), a deformação litosférica que afetou a Província Borborema durante o Cretáceo foi causada por movimentos das placas circundantes que afetaram a província durante a translação da América do Sul em relação à África levando à reativação das estruturas do embasamento e criando espaço para deposição de sedimentos, formando as bacias cretácicas do NE do Brasil: Recôncavo, Tucano, Jatobá, Potiguar, Araripe, Rio do Peixe, entre outras (MATOS 1992, 2000).

Figura 3 - Mapa Geológico da Província Borborema.

Legenda: Mapa geológico da Provícia Borborma, polígono azul representa a localização da área de estudo na Bacia Potiguar.

Fonte: Modificado de GANADE et al. 2013

3.2 A Bacia Potiguar

A Bacia Potiguar localiza-se no extremo nordeste brasileiro, compreendendo aproximadamente uma faixa E-W, segundo a direção da costa local. É limitada a N e E pelo oceano Atlântico até a cota batimétrica de -2.000 m; a NW, pelo Alto de Fortaleza; a S e W, pelo embasamento cristalino da província Borborema, formado essencialmente por complexos gnáissico-migmatíticos intensamente deformados e intrudidos por suítes de rochas plutônicas (ANGELIM et al., 2006). O Alto de Fortaleza define seu limite oeste com a Bacia do Ceará, enquanto que o Alto de Touros define seu limite leste. Pessoa Neto et al. (2007) apontam uma área de aproximadamente 48.000 km² para a bacia, sendo 45% de áreas emersas, possuindo, portanto, porções onshore e offshore, sendo a área de estudo deste trabalho localizada na porção onshore.

A origem da Bacia Potiguar, segundo Matos (1992), é datada do Neocomiano, ela é classificada como uma bacia do tipo rifte, associada à fragmentação do Gondwana Oeste, iniciada no Jurássico Inferior. Seu contexto tectônico é o mesmo das bacias intracratônicas do nordeste do Brasil (Jatobá, Reconcavo, Rio do Peixe, entre outras), que são áreas sedimentares cretáceas com sua origem e evolução controladas por reativações dos alinhamentos estruturais das rochas do embasamento Pré-Cambriano, unindo elementos tanto da Zona Tectônica Equatorial como do Atlântico Sul (PONTE et al., 1991; MATOS 1992, 2000; MILANI et al., 1998). Os processos geológicos e tectônicos ligados à abertura do Oceano Atlântico durante o Cretáceo, ocasionaram um regime de transcorrência, onde esforços tracionais levaram à formação de falhas normais com abertura de grabens e semi-grabens na região e o seu preenchimento com sedimentos (MATOS, 1992, 2000).

O desmembramento do supercontinente Gondwana e a subsequente abertura da Margem Equatorial são divididos em três fases principais, denominadas sin-rift I, II e III. Os estágios I (Figura 4) e II foram desenvolvidos sob tectônica extensional, levando ao desenvolvimento de bacias do tipo rifte, enquanto o último é controlado por tectônica transtensional (CHANG et al., 1988, MATOS 1992).

A geometria das bacias cretácicas do NE do Brasil foi fortemente controlada pela reativação de extensas zonas de cisalhamento E-W e NE-SW durante o estágio sin-rifte II (Figura 5) (FRANÇOLIN E SZATMARI, 1987; MATOS, 1992; SÉNNANT E POPOFF, 1991;

FRANÇOLIN et al., 1994; CASTRO et al., 2011). Durante o estágio inicial do sin-rifte II (Berriasiano inicial), o rift foi confinado ao *trend* Recôncavo-Tucano-Jatobá (RTJ) e Gabão-Sergipe-Alagoas (GSA), enquanto durante o estágio intermediário do sin-rifte II (Berriasiano tardio - Barremiano inicial), o *rifting* ocorreu ao longo do *trend* Cariri-Potiguar (CP). A última etapa deste estágio é responsável pela geração de semi-grabens assimétricos ao longo dos *trends* NE-SW, separados por altos do embasamento, falhas de transferência e zonas de acomodação. (MATOS, 1992)

O estágio Syn-rift III (final do Barremiano) representa a principal fase de estiramento ao longo do ramo sul. Durante este episódio foi desenvolvida a geometria final do rift desde as bacias marginais do leste brasileiro até a zona de cisalhamento Pemambuco-Ngaoundere. A transição Barremiano-Barremiano tardio (Aratu-Buracica) representa uma grande mudança no estilo de deformação na Província da Borborema e vincula a deformação no ramo sul com a fase inicial de rifting do domínio equatorial leste. Durante esta fase, houve uma grande mudança na cinemática do rifte, onde a sedimentação nas regiões dos riftes do Vale do Cariri e a porção onshore da Bacia do Potiguar foi abortada, além do início de grandes deformações no ramo Equatorial (MATOS, 1992, 2000).

Figura 4 - Reconstrução Pré-drift do NE do Brasil. Arcabouço tectônico durante a fase sin-rift I

Fonte: Modificado de MATOS, 1992

Figura 5 - Reconstrução Pré-drift do NE do Brasil. Arcabouço tectônico durante a fase sin-rift II.

Legenda: O Estágio Sin-rift II, é dividido em dois momentos. No Sin-rift-a (inicial), esforços foram acomodados ao longo do *trend* Recôncavo-Tucano-Jatobá (RTJ) e Gabão-Sergipe-Alagoas (GSA). Na etapa seguinte, concentra-se ao longo do *trend* Cariri-Potiguar (CP), originando a grupo de bacias rifte intracontinental do nordeste brasileiro, ao qual pertence a Bacia do Potiguar Fonte: Modificado de MATOS, 1992

Na Bacia Potiguar, as unidades litoestratigráficas e estruturas econtradas são relacionáveis aos três estágios de separação do supercontinente Gondwana. A fase Sin-rifte I desenvolvida do final do Jurássico ao início do Berriasiano, é representada por importante atividade magmática na bacia, o enxame de diques Rio Ceará Mirim, com diques de direções NE-SW e E-W, que intrudiram o embasamento pré-cambriano. Na fase Sin-rifte II, compreendida entre o Neocomiano Superior e o Barremiano, desenvolveram-se os meio-grabens assimétricos separados por horsts do embasamento (eg. Grábens Boa Vista e Alto Quixabá), falhas de transferências e/ou zonas de acomodação. A fase Sin-rifte III, que ocorreu durante o Barremiano Superior, representa a principal fase de estiramento na Margem Leste, onde o rifte da parte onshore da bacia foi abortado (CHANG et al. 1988; MATOS 1992). Evidências deste estágio estão associadas às reativações das falhas de transferências no interior

do rifte, formação dos grabens na porção NW da Plataforma de Aracati e os grábens de Algodão e Bica, ao sul do Rifte Potiguar (MATOS, 1992; DE CASTRO & BEZERRA 2015).

A arquitetura estrutural da Bacia Potiguar é composta de três unidades básicas: grabens, altos internos e plataformas do embasamento (Figura 6), as quais comportam seqüências sedimentares neocomianas a terciárias distintas para cada compartimento (BERTANI et al., 1990). O quadro estrutural da Bacia Potiguar inclui uma porção rifte, com sequências de grabens e horsts, circundada por plataformas deposicionais. O Rifte Potiguar é limitado a leste pelo Sistema de Falhas de Carnaubais, a sul pelas falhas de Apodi e Baixa Grande e a oeste pela Zona de Charneira Areia Branca (ANGELIM et al., 2006). As falhas do Sistema de Falhas de Carnaubais e Apodi constituem um duplo sistema de falhas lístricas normais, que teriam se desenvolvido durante a reativação mesozóica de importantes zonas de cisalhamento neoproterozoicas na região (MATOS, 1992). Hackaspacker et al., (1985 e 1989) relaciona esse sistema de falhas a reativação da zona de cisalhamento Porto Alegre. Dados de sísmica porfunda da bacia, também sugerem uma ligação entre essas falhas lístricas e estruturas prévias do embasamento (SOUZA, 2015)

Os grabens são assimétricos e dividem-se em partes emersas e submersas. Na parte emersa, os mais importantes são os do Apodi, Umbuzeiro, Guamaré e Boa Vista, com feições lineares e eixos orientados na direção NE-SW, levemente oblíquos em relação aos principais lineamentos do embasamento sul da bacia, os quais estão orientados para NNE SSW, estes desenvolveram-se sobre falhas normais (ANGELIM et al., 2006; SOUZA, 2015). Os da parte submersa da bacia possuem eixos orientados aproximadamente paralelos à atual linha da costa. Os altos internos principais são os Altos de Quixaba, Serra do Carmo e Macau, e são formados por cristas do embasamento separando os principais grabens, compostos por blocos de gnaisse, migmatitos ou xistos soerguidos por falhas normais. De um lado, são limitados por escarpas abruptas e, do lado oposto, por uma rampa com falhas sintéticas secundárias (BERTANI et al. 1990).

As principais plataformas são as de Touros (a leste) e Aracati (a oeste). De acordo com Angelim et al (2006), essas plataformas são normalmente recobertas por sedimentos do Aptiano e Cretáceo Superior, na parte terrestre, e por sequências terciárias, na parte marítima. Associadas a estas feições, observam-se falhas E-W com rejeitos significativos, cortando e deslocando os lineamentos dos altos internos SW-NE. Além das estruturas de direção NE-SW presentes na bacia, são observadas outras importantes estruturas de direção NW-SE, interpretadas como produto de reativações pós campanianas (HACKSPACKER et al., 1985; BEZERRA et al., 2020). Cremonini et al. (1996) caracterizaram este padrão de falhamentos NW-SE e NE-SW, na porção submersa da bacia, como sendo o produto de superposição de fases de rifteamento.

Figura 6 - Arcabouço Estrutural da Bacia Potiguar.

Fonte: Modificado de ANGELIM, 2006

Dois campos de tensões ortogonais entre si, afetaram as sequências pós-rifte da bacia Potiguar (Figura 7) (BERTOTTI et al., 2017; BEZERRA et al., 2020). Bezerra et al., (2020) utilizam dados de campo, topográficos, linhas de reflexão sísmica 2D, sondagens elétricas verticais, dados geocronológicos e de poços para restringir a evolução dos campos de tensões na Bacia Potiguar do final Cretáceo ao Quaternário. O primeiro campo de tensões (SF-1), ocorrido do Cretáceo Superior ao Mioceno Médio (Figura 7A), consiste em uma compressão subhorizontal máxima orientada para N-S e uma extensão orientada para E-W. Essa deformação é responsável pela formação de uma rede interligada de fraturas N-S, algumas preenchidas por veios de calcita, e estilólitos tectônicos E-W, distribuídos regionalmente ao longo da Bacia Potiguar (BERTOTTI et al., 2017; DE GRAAF et al., 2017; BEZERRA et al., 2020). Eventos de resfriamento crustal foram registrados no mesmo período, por traços de fissão de apatita, em rochas cristalinas da Província Borborema Oriental, sugerindo soerguimento e denudação, especialmente entre o Maastrichtiano-Paleoceno (MORAIS NETO et al., 2009).

O segundo campo de tensões (SF-2) ocorre desde o Mioceno Médio até os dias atuais (Figura 7B) e inclui compressão subhorizontal E-W a NW-SE combinada com feições de extensão subhorizontal N-S e NE-SW (BEZERRA et al., 2020). Essa deformação foi responsável pela reativação e inversão de falhas NE-SW no rift (Figura 7C), com dobras e fraturas associadas (HACKSPACKER et al., 1985; MORAIS NETO, 2003; BEZERRA et al., 2020; BAGNI et al., 2020). Os eventos tectônicos que originaram estes campos de tensão são discutíveis, podendo estar relacionada à zona de convergência na Cordilheira dos Andes ocorrida no Paleógeno (ARRIAGADA et al., 2008; GARZIONE et al., 2008), eventos de magmatismo durante este período na Bacia Potiguar (MIZUSAKI et al., 2002), e à expansão da cadeia meso-oceânica do Atlântico Sul, por meio da propagação de esforços dentro da placa sul-americana (MARQUES et al., 2014; BEZERRA et al., 2020).

Localmente, na região da área de trabalho Bagni *et al.* (2020; 2022) caracteriza um dobramento suave, denominada Dobra de Apodi, nos carbonatos da Formação Jandaíra. Essa dobra possui cerca de 10km de largura e 20km de comprimento, com eixo orientado na direção NE-SW e caimento da charneira para NE. Estudos apontam que a dobra foi formada pelo campo de tensão SF2 (BEZERRA et al., 2020), e o seu eixo é encaixado no vale no Rio Apodi-Mossoró.

Figura 7- Mapa com os principais campos de tensão que afetaram as sequências pós rifte na Bacia Potiguar.

Legenda: Mapas com o resumo dos três campos de tensões, destacando as direções horizontais máximas de compressão e extensão e cinemática de falhas. A) SF 1. B) SF 2. C) Campo de tensão atual. Fonte: Modificado de BEZERRA et al. (2020)

Segundo Araripe & Feijó (1994), as rochas sedimentares da Bacia Potiguar (Figuras 8 e 9) estão agrupadas em três grupos: Areia Branca, que é composto pelas formações Pendência, Pescado e Alagamar; Apodi, composto pelas formações Açu, Ponta do Mel, Quebradas e Jandaíra; e Grupo Agulha, constituído pelas formações Ubarana, Guamaré e Tibau.

Pessoa Neto et al (2007) identificam sequências Rifte, Pós-rifte e Drifte na bacia. A Supersequência Rifte corresponde a duas fases de rifteamento e foi depositada durante o Cretáceo Inferior, representada pelos depósitos flúvio-deltaicos e lacustres das Formações Pendência e Pescada (Berriasiano/ Eoaptiano). A Supersequência Pós-rifte foi depositada durante o Andar Alagoas, sendo caracterizada pela deposição de uma sequência flúvio-deltaica, com os primeiros registros de ingressão marinha, representada pela formação Alagamar. A Supersequência Drifte, correspondente à fase de evolução tectônica termal, foi depositada entre o Albiano e o Recente, é composta por uma sequência flúvio-marinha transgressiva, representada pelas Formações Açu, Ponta do Mel, Quebradas, Jandaíra e Ubarana, e é recoberta

por uma sequência clástica e carbonática regressiva, representada pelas Formações Ubarana, Tibau e Guamaré. Rochas vulcânicas associadas à Formação Macau foram depositadas entre o Eoceno e o Oligoceno na bacia. Recobrindo estas formações, ocorrem depósitos quaternários: Aluvionares Antigos, Mangues, Litorâneos Praiais, Dunas, Aluvionares de Canal, Aluvionares de Planície de Inundação, Flúvio-lacustrinos e Flúviomarinhos (ANGELIM 2006; SOUZA, 2015).

São identificados três eventos de magmatismo na Bacia Potiguar, denominados Rio Ceará-Mirim, Serra do Cuó e Macau (ANGELIM et al., 2006, PESSOA NETO et al., 2007). O Magmatismo Rio Ceará -Mirim é um magmatismo básico que ocorre como diques descontínuos ao longo da borda sul da bacia Potiguar, intrudido nas rochas do embasamento cristalino. Apresentam comprimentos métricos de até 10 km de extensão, com direção preferencial E-W (ANGELIM et al., 2006). Segundo Pessoa Neto et al (2007), este magmatismo está associado à gênese do rifte potiguar e foi datado pelo método Ar/Ar, com pulso principal em 132 Ma. Rochas vulcanoclásticas intercaladas aos sedimentos da porção basal da Formação Pendência na porção emersa da bacia, também são correlacionadas com este evento. De acordo com Matos 1992, este magmatismo está associado a fase syn-rifte I.

O magmatismo pós rift Serra do Cuó ocorre como derrames e soleiras a leste da cidade de Açu, na borda sul da Bacia Potiguar, é composto principalmente por olivina basaltos de afinidade química alcalina (ANGELIM et al., 2006). Apresenta idade radiométrica Ar/Ar de 93,1 Ma (PESSOA NETO et al., 2007).

O magmatismo Macau é o mais expressivo na Bacia Potiguar, ocorrendo em uma extensão de cerca de 100 km. Compreende rochas alcalinas tipo olivinas basaltos, basanitos, ankaratritos e nefelinitos. Ocorrem sob a forma de derrames, diques, plugs e necks. De acordo com Pessoa Neto et al (2007) foram datados pulsos no Eoceno/Oligoceno com idades distribuídas entre 70-65 e 9-6 Ma, com picos entre 48,9 e 31,4 Ma, com um pulso mais novo, de idade 14,7 Ma ocorrido no Mioceno. Sua origem pode estar associada à passagem da Margem Equatorial sobre o hot spot Fernando de Noronha ou a colocação de magmas em zonas de alívio, a partir de ajustes tectônicos intraplaca.

Fonte: Modificado de PESSOA NETO et al., 2007

Figura 9 - Seção geológica esquemática na bacia Potiguar (parte terrestre), mostrando o arcabouço estrutural e estratigráfico das sequências sin rifte e pós rifte.

3.3 A Formação Jandaíra e a formação dos veios preenchidos por carbonatos

Na área de estudo afloram rochas pertencentes a Formação Jandaíra. Esta formação foi definida por Sampaio & Schaller (1968). É composta por sedimentos depositados do Eoturoniano (93 Ma) ao Eocampaninano (80 Ma). Possui um pacote carbonático com espessura que varia de 50 a 600 metros, com uma espessura média de 300 metros, com mergulho regional N-NE, distribuindo-se tanto na porção submersa quando emersa da bacia (ARARIPE & FEIJÓ, 1994; PESSOA NETO et al., 2007). Está sotoposta concordantemente sobre as rochas siliciclásticas da Formação Açu, possuindo contato superior discordante com as Formações Tibau, Guamaré e Ubarana (CREMONINI et al., 1996).

Os sedimentos dessa formação foram depositados em ambiente marinho plataformal, em forma de rampa carbonática. Inicialmente, os sedimentos foram depositados num contexto de transição com sedimentos estuarinos da Formação Açu, entretanto a ocorrência de um clima árido e a ampla transgressão marinha durante o Neoceonamaniano favoreceram a dimunuição gradativa do influxo de terrígenos na bacia, contribuindo para o aumento da produtividade carbonática nas águas rasas (CÓRDOBA, 2001; GARCIA, 2014). As principais litofácies variam desde *grainstones-packstones* bioclásticos, peloidais e oolíticos, até as fácies lamosas de *wackestones-mudstones* bioclásticos e peloidais, com *bird-eyes*, frequentemente dolomitizados. Rochas híbridas carbonato-siliciclásticas também são reconhecidas, especialmente próximas ao limite de contato da Formação Açu (PESSOA NETO et al., 2007; CÓRDOBA, 2001).

Durante e após a sua deposição, as rochas da Formação Jandaíra foram submetidas a diversos episódios de soerguimento, associados a dois principais campos de tensão pós-rifte na Bacia Potiguar, SF1 e SF2 (BERTOTTI et al 2017; BEZERRA et al., 2020) que provocaram exposição subaérea e erosão, resultando em intenso fraturamento, carstificação e dissolução, dos calcários (XAVIER NETO *et al.*, 2008; BEZERRA et al 2020; BAGNI et al., 2020).

Os veios de carbonato, são encontrados em toda extensão da Bacia Potiguar nos calcários da Formação Jandaíra (BERTOTTI et al., 2017). Os veios são todos sub-verticais, chegando à escala métrica de comprimento, variando de milímetros a centímetros de espessura. Veios mais finos exibem paredes opostas iguais indicando a falta de dissolução, enquanto veios mais grossos não possuem essas características, sendo mais irregulares e não coincidentes. A direção dessas estruturas são N-S e NNE-SSW, seu preenchimento é composto por cristais de calcita geralmente em blocos com propriedades ópticas e cathodoluminescência semelhante (BERTOTTI et al., 2017; GRAAF et al., 2017; BAGNI et al., 2022). GRAAF et al. (2017) relata composição isotópica de oxigênio muito homogênea desses veios, mostrando que a precipitação de calcita foi associada a um único tipo de fluido que circulou pelo sistema de fraturas.

Neste sentido, durante sua subsidência regional, nos carbonatos da formação Jandaíra houve a formação de redes de veios subverticais e estilólitos, associados aos campos de tensão SF1 na Bacia Potiguar (BEZERRA et al., 2020). De acordo com uma reconstrução da evolução estrutural e hidrogeológica das rochas da Bacia Potiguar durante sua evolução pós-rifte apresentada por Bertotti et al (2017) e Graaf et al. (2017), a formação dos veios aconteceu da seguinte sequência: primeiramente, antes dos esforços responsáveis pelo fraturamento, a Formação Jandaíra funcionava como um aquitardo, as águas de origem meteórica caíam no relevo a SW da Bacia Potiguar, e penetravam os sedimentos da Formação Açu (arenitos). Devido aos campos de tensão e a formação das redes de fraturas distribuídas regionalmente, a

permeabilidade dos carbonatos da Formação Jandaíra aumentou e os fluidos fluíram para cima, e dessa forma houve a precipitação de calcita nessas fraturas. Evidências petrográficas, imagens de cathodoluminescência óptica e dados estruturais de campo, corroboram para que a formação desses veios tenha ocorrido junto a abertura das fraturas. A textura blocky e syntaxial dos veios são características de eventos *crack-seal*, onde a abertura e precipitação de calcita são praticamente concomitantes (GRAAF et al., 2017). Ao ocorrer a formação dos veios, a Formação Jandaíra voltou a se comportar como um aquitardo, pois suas fraturas foram cimentadas, diminuindo a sua porosidade. Por fim, os eventos SF2, foram responsáveis por uma inclinação das camadas na Bacia Potiguar, formação de outros sets de fraturas e exumação dos carbonatos para a superfície, evidenciando as estruturas formadas, expondo as rochas a erosão, formando assim a geometria e estruturas atuais (BERTOTTI et al 2017; GRAAF et al., 2017).

De acordo com Graaf et al., (2017), os campos de tensão SF2 não conseguiram fraturar a Formação Jandaíra na mesma extensão que o SF1, responsável por gerar um network de fraturas interconectadas. Desta forma, a circulação do fluido e formação dos veios ocorreu sob o regime do campo de tensão SF1 e foi inexistente no Mioceno. Bagni (2021) também correlaciona a formação dos veio de calcita a etapa de mesodiagênese dos calcários da Formação Jandaíra, relacionando essas estruturas à época de regressão marinha e compressão N-S ocorrido durante o Paleoceno.

Figura 10 - Modelo esquemático para a formação dos veios preenchidos por calcita na Formação Jandaíra.

Legenda: As três principais etapas da evolução estrutural e geo-hidrológica de um transecto ao longo do eixo da Bacia Potiguar. (I) antes da fratura, a formação Janda atuava como um aquitardo, águas meteóricas escorriam pelo relevo a SW da Bacia Potiguar e entraram na bacia fluindo pelos arenitos porosos da Formação Açu; (II) com a ativação da rede de fraturas distribuída regionalmente, a permeabilidade nos carbonatos de Jandaíra aumentou e os fluidos fluíram para cima; uma vez que o cimento se precipitou nos veios, a Fm Jandaíra se comportou novamente como aquitardo; (III) A inclinação terciária causou a exumação das rochas para a superfície ocasionando na geometria e estruturas atuais.

Fonte: Modificado de BERTOTTI et al., 2017.

4. MATERIAIS E MÉTODOS

4.1 Levantamento Bibliográfico

Primeiramente, foi realizado um levantamento bibliográfico sobre o contexto geológico da área de estudo, visando o entendimento da geodinâmica, formação da bacia sedimentar, tipos de rochas e geologia estrutural, entendendo a formação das falhas e fraturas na região, podendo assim, definir possíveis áreas alvos para coleta de amostras em campo. Após a atividade de campo, foram levantados dados geológicos e estruturais mais detalhados da área de estudo onde foram encontrados os veios preenchidos por carbonatos, seu contexto de formação e correlação com a evolução da Bacia Potiguar. Também foi realizado uma compilação de dados acerca do método U-Pb em calcita, visando entender como a técnica funciona, parâmetros analíticos para sua implementação em laboratório, histórico, aplicações, preparação das amostras e configuração dos equipamentos.

4.2 Sistemática do método U-Pb em carbonatos

4.2.1 Datação U-Pb via LA-ICP-MS em carbonatos

Os minerais carbonáticos (calcita, aragonita, dolomita, magnesita), se formam em uma ampla variedade de ambientes geológicos como uma fase mineral primária e secundária, incluindo ambientes diagenéticos, biogênicos, ígneos, metamórficos e hidrotermais. Estes minerais podem acumular urânio em sua formação, tornando-se um cronômetro potencialmente adequado para a geocronologia U-Pb e U-Th (RASBURY et al., 2009; LI et al., 2014). A datação pontual de carbonatos pelo método U-Pb via LA-ICP-MS vem ganhando grande interesse por parte da academia e da indústria nos últimos anos. A capacidade do método de resolver problemas tectônicos, deposicionais, metalogenéticos, além de poder ser usado na indústria de óleo e gás, tanto no estudo diagenético, quanto nas reativações das bacias, o coloca como um método ainda em desenvolvimento muito promissor (ROBERTS et al., 2017, 2020).

As primeiras tentativas de datação usando a calcita, foram pelos métodos de dissolução química e diluição isotópica, com medição por espectrometria de massa de ionização térmica (TIMS) ou espectrometria de massa com plasma acoplado (ICP-MS) (SMITH E FARQUHAR, 1989; DEWOLF E HALLIDAY, 1991; RASBURY et al., 1997; RICHARDS et al., 1998; WOODHEAD et al., 2006; PICKERING et al., 2010). Recentemente, houve uma propagação no uso de ablação a laser (LA-) ICP-MS aplicado à geocronologia dos carbonatos (LI et al., 2014; ROBERTS & WALKER, 2016; RING & GERDES, 2016; METHNER et al., 2016; GOODFELLOW et al., 2017; BURISCH et al., 2017, 2018; DRAKE et al., 2017, HANSMAN et al., 2018; HELLWIG et al., 2018; GODEAU et al., 2018; BEADOUIN et al., 2018; DROST et al., 2018; NURIEL et al., 2017, 2019, 2021; PARRISH et al., 2018; SMERAGLIA et al., 2019; SCARDIA et al., 2019; MOTTRAM et al., 2020, MIRANDA et al., 2020, JIN et al., 2021; GANADE et al., 2022).

O sistema U-Th-Pb tem sido utilizado para fornecer idades radiométricas desde a primeira metade do século passado. O princípio do método se baseia no decaimento do U e do Th para os isótopos estáveis de Pb, três séries de decaimento são importantes neste método. O decaimento do ²³⁸U gera uma série de isótopos intermediários com vida curta e que são instáveis que vão decaindo até a geração do isótopo estável ²⁰⁶Pb. O ²³⁵U é o isótopo radioativo inicial de uma série de decaimentos que apresenta isótopos intermediários de vida curta que finaliza com a geração do isótopo estável ²⁰⁷Pb. O ²³²Th é o elemento radioativo inicial da terceira série de decaimento de interesse para o método, que apresenta isótopos intermediários radioativos de vida curta que decaem até gerar o isótopo estável ²⁰⁸Pb (GERALDES, 2010).

Um cronômetro ideal para datação U-Pb requer que, durante sua cristalização, seja incorporado uma considerável quantidade de Urânio (os isótopos-pai ²³⁸U e ²³⁵U que decaem para ²⁰⁶Pb e ²⁰⁷Pb, respectivamente), e nenhum ou muito pouco chumbo comum. Essa razão é frequentemente expressa por ²³⁸U/²⁰⁴Pb (o único isótopo de Pb que não é radiogênico), ou μ , ou seja, quanto maior for o valor de μ , maior é a proporção entre Urânio e Pb comum. Outro fator importante, é que o sistema tenha se mantido fechado para adição ou perda tanto dos isótopos pai quanto filho (Pb). Grande parte dos cronômetros não satisfazem plenamente essas condições, contudo, métodos cada vez mais sofisticados para a datação de minerais ricos em

Pb comum estão sendo desenvolvidos, entre eles, o uso de minerais carbonáticos como geocronômetros (ROBERTS et al., 2020).

A metodologia U-Pb em carbonatos via LA-ICP-MS é similar a utilizada para minerais ricos em U, como o zircão. Um laser é acoplado a um espectrômetro de massa, onde há contagem dos isótopos referentes ao decaimento do U, Th e Pb. As configurações existentes para o uso em carbonatos, abrangem diversos tipos de espectrômetros, tanto monocoletores, multi-coletores e quadrupolos, variando assim a precisão e os tipos de isótopos analizados. De acordo com Roberts et al. (2020), o principal benefício do uso desta técnica, é a alta resolução espacial que a mesma possui, sendo possível correlacionar a idade U-Pb e outras análises geoquímicas com texturas imageadas. Isso é muito importante, principalmente em carbonatos, por serem um material heterogêneo em sua composição elementar, isotópica e textural. Desta forma, com a precisão analítica adquirida pela utilização do LA-ICP-MS, datações U-Pb em nestes minerais, com suas limitações de precisão (< 3%) podem ser utilizadas para aplicação estratigráficos e paleoclimáticos.

Um dos principais desafios para se conseguir idades acuradas ao utilizar um LA-ICP-MS é a escolha e aplicação das correções ou normatizações adequadas para eliminar o *mass bias* e fracionamento elemental. Isso pode ser contornado ao utilizar um padrão externo de razões isotópicas conhecidas que é intercalado aos cristais da amostra desconhecida durante a análise (VOLL, 2015). Outras correções possíveis são matemáticas e se baseiam na relação entre a profundidade do furo e a variação na razão U/Pb.

Roberts et al. (2017, 2019 e 2020), relata uma normatização em relação aos isótopos ²⁰⁷Pb/²⁰⁶Pb feita por um vidro com a composição isotópica conhecida, o NIST 614 (JOCHUM et al., 2014), e a normatização ²³⁸U/²⁰⁶Pb é feita pela calcita WC-1 (ROBERTS et al., 2017), o material de referência mais utilizado e distribuído, até o momento. Os dados são tratados utilizando o software *Iolite v.2* (PATON et al., 2011) e planilha própria do laboratório elaborada no Excel, além do uso do *Isoplot* (LUDWIG, 2013) ou Isoplot R (VEERMESCH, 2008, 2018) para cálculo das idades e confecção dos gráficos da concórdia.

Entretanto, outros trabalhos relatam sucesso analítico, com outras abordagens, como por exemplo o uso do Nist 612 (YOKOYAMA et al., 2018) ou Nist 610 (GUILLONG et al., 2020) para correção de *mass bias* de Pb, e o uso do zircão 91500 (LI et al., 2014) para o mesmo tipo de correção dos isótopos de U e Pb, essas correções geralmente são realizadas por uso de

softwares de redução de dados e/ou planilhas próprias dos laboratórios. O uso do padrão WC1 como correção complementar do fracionamento isotópico ²³⁸U/²⁰⁶Pb é reportado em todos os trabalhos encontrados, e é justificado por ser um material de matriz igual ao das amostras desconhecidos (matrix-matched material), corrigindo assim o fracionamento elementar causado pela ablasão do laser nos carbonatos. Desta forma, cada laboratório tende a adaptar a rotina de acordo com os padrões, softwares e planilhas disponíveis para redução e tratamentos dos dados.

De forma geral, a correção e normatização no método U-Pb em carbonatos é realizada da seguinte forma: primeiramente é feita a correção *mass bias* dos isótopos de Pb ou U-Pb utilizando-se os padrões de vidros ou zircão, e posteriormente a normatização de ²³⁸U/²⁰⁶Pb é realizada seguindo o trabalho de ROBERTS et al., 2017. Um fator de correção é calculado a partir da razão XRc/XRm (Figura 11), onde XRc é a idade relatada na literatura para o material de referência WC1 (254,4 Ma) e XRm a idade encontrada para o WC1 durante as análises sessão das amostras desconhecidas, este fator é então aplicado nas razões ²³⁸U/²⁰⁶Pb medidas nas amostras desconhecidas, e assim são gerados os gráficos concórdia para encontrar as idades dessas amostras.

Figura 11. Procedimento de normatização do 238U/206Pb da amostra usando o valor medido da calcita WC1 como padrão de referência.

Fonte: Modificado de ROBERTS et al., 2017

Outro grande desafio da datação de carbonatos por LA-ICP-MS, é encontrar áreas ausentes de alteração posterior, com quantidades apreciáveis de U e baixa quantidade de Pb comum. A quantidade de U necessária para gerar uma idade depende basicamente de dois fatores: (1) a idade do material e (2) a razão μ inicial (²³⁸U/²⁰⁴Pb). Quanto mais jovem for uma amostra, menos Pb radiogênico ela terá, e quanto maior for o μ , a razão entre Pb radiogênico medido e Pb comum será maior, fornecendo maior precisão e acurácia para determinação das idades (ROBERTS et al., 2020). Portanto, é usual que antes de se realizar os spots, seja realizada uma análise de mapas composicionais (principalmente de U e Pb), ou mesmo o *screening* inicial, com análises rápidas aleatórias para que haja a checagem da quantidade de U e Pb na amostra, com o objetivo de avaliar a viabilidade de datação, para posterior análise mais robusta.

Devido a quantidade de U e Pb radiogênico em carbonatos serem baixas (geralmente < 1 ppm), as incertezas de cada análise costumam ser altas (elipses maiores no diagrama Tera-Wasseburg), por isso é desejável uma ampla variação entre a quantidade de Pb comum (spots mais próximos do intercepto superior, com ²⁰⁷Pb/²⁰⁶Pb maiores) e Pb radiogênico (mais próximos do intercepto inferior), fornecendo assim interceptos na Concordia Tera-Wasseburg com boa precisão (Figura 12).

Figura 12 - Interceptos na datação U-Pb em carbonatos.

Legenda: (a) Exemplo de gráfico de concordia Tera – Wasserburg demonstrando a funcionalidade deste gráfico para dados U – Pb com chumbo comum. (b) Modelo esquemático de um cristal de calcita com zonação de urânio indicada pela escala de cores. Tamanho de amostra relativo típico para baixo U (<1 ppm) ID mostrado pelos quadrados pretos e LA-ICP-MS pelos círculos. (c) Dados U-Pb resultantes na concordia Tera-Wasserburg assumindo concentração de Pb constante em toda a amostra, para LA-ICP-MS versus amostragem "em massa" e análises de ID, conforme representado pela amostragem em (b). As incertezas nos pontos de dados são 2% –3% (2 s) para LA-ICP-MS e 0: 8% para ID.

Fonte: Modificado de ROBERTS et al., 2020

4.2.2 Screening Inicial

Até o momento, não existe um critério que ajude a prever em campo ou em laboratório, a olho nu, locais com alta concentração de U e Pb radiogênico em carbonatos. Desta forma, antes de se obter as análises robustas no LA-ICP-MS para a confecção das concórdias e obtenção das idades, é feito um *screening* inicial na amostra com objetivo de identificar locais mais propícios para se obter sucesso analítico. Além de se obter a caracterização espacial do conteúdo de U e Pb na amostra, este *screening* também proporciona contexto petrográfico e composicional de mecanismo de crescimento do mineral, e também pode apontar texturas de alteração, que auxiliam na interpretação e obtenção das idades.

Existem técnicas de *screening* destrutivas e não destrutivas às amostras. As técnicas não destrutivas consistem em imageamento da amostra, sendo feito por microscopia óptica, catodoluminescência (CL), imageamento por elétron espalhado (BSE), imagem de contraste de carga (CCI), técnicas de autoradigrafia digital e imagens de luz refletida e transmitida. Todas essas técnicas, cada uma com sua particularidade, conseguem mostrar através das suas imagens, contrastes existentes na amostra. Esses contrastes são comumente relacionados à composição local, que pode ser enriquecido em determinado elemento, ou diferentes fases minerais. Esses contrastes podem aparecer como zoneamentos, cores mais fortes ou mais fracas, maior ou menor fluorescência (ROBERTS et al., 2020).

Figura 13 - Imagens de screening inicial em carbonatos.

Legenda: Imagens de exemplo da variedade de técnicas usadas para seleção e caracterização de amostras. (a) Calcita venosa hospedada por Mudstone; (b) calcita de veia hospedada em lamito; (c) veia de calcita hospedada por concreção carbonática; (d) cristais de calcita individuais crescidos em uma fratura dentro da rocha cristalina; (e) veia de calcita e cimento dentro do preenchimento de sedimentos de uma fratura exposta; (f) espeleotema cavernoso.

Fonte: ROBERTS et al., 2020

As técnicas destrutivas utilizam o sistema LA-ICP-MS. Este mapeamento inicial pode incluir pontos de análises sistemáticos ou aleatórios que atravessam a amostra, ou incluir análises completas (30 segundos de ablação seguindo de uma pré ablação) ou análises mais curtas (com ou sem pré-ablação). Diversas abordagens podem ser utilizadas para esse mapeamento, elementos maiores e traços podem ser analisados individualmente, e um conjunto de elementos para determinação de idade podem ser medidos, ou, dependendo da instrumentação ICP-MS, ambos podem ser combinados, isto é, usando um quadrupolo ICP-MS (DROST et al., 2018) ou uma configuração de fluxo dividido (*split-stream*) utilizando dois ICP-MS. Roberts et al. (2020) relata como mapas de elementos-traço foram usados para comparação de conteúdos de U e Pb em uma amostra com zonação, utilizando uma correlação de V, Mn, Y e REEs, os autores conseguiram distinguir zonas primárias em veios de calcita, distiguindo as que foram alteradas por processos posteriores. Elementos e razões elementares com Ba/Ca também podem ser utilizadas com o mesmo propósito.

Outra alternativa é a geração direta de mapas de conteúdo de U e Pb, utilizando a razão ou idade ²⁰⁶Pb/²³⁸U. Em seu trabalho, Roberts et al. (2020) relata que é realizado inicialmente um *screening* da amostra, datando com baixa precisão (menos tempo de ablação) transectas aleatórias ao longo do cristal, para se ter uma ideia geral das quantidades de urânio e chumbo, fornecendo um diagrama Tera-Wasserburg. Após identificar possíveis áreas com grandes chances de serem datáveis, foram realizadas outras análises pontuais, localizadas em porções de maiores concentrações de urânio, evitando as porções alteradas, fornecendo uma regressão linear muito mais precisa.

Neste trabalho as técnicas de screening inicial adotadas foram a cathodoluminescência óptica e varredura rápida por LA-ICP-MS, com a primeira técnica, foram realizadas imagens dos veios após colocação na resina de epóxi e polimento de slabs, a partir da segunda análise foi possível identificar áreas promissoras de serem datadas, devido ao seu conteúdo de Urânio.

4.2.3 Histórico de aplicação do método e configurações analíticas

O primeiro trabalho de análise U-Pb pontual em carbonatos (LA-ICP-MS) foi publicado em 2014, onde Li et al. (2014) realizaram análises em cimentos calcíticos em fósseis de amonóides. Trabalhos posteriores avançaram com foco na geologia estrutural, com datações de falhas rúpteis (BEAUDOIN et al., 2018; GOODFELLOW et al., 2017; HANSMAN et al., 2018; NURIEL et al., 2017, 2019; PARRISH et al., 2018; RING & GERDES, 2016; ROBERTS & WALKER, 2016; SMERAGLIA et al., 2019; MIRANDA et al., 2020; SIMPSON et al., 2021), a datação e caracterização de veios pegmatíticos mineralizados em prata, bismuto, cobalto, ouro, níquel e arsênio (BURISCH et al., 2017, 2018; JIN et al., 2021), migração de hidrocarbonetos (HOLDSWORTH et al., 2019), *fluid-flow* hidrotermal (INCERPI et al., 2019; MACDONALD et al., 2019; MAZUREK et al., 2018; WALTER et al., 2018), pedogênese (LIIVAMÄGI et al., 2018; METHNER et al., 2016), veios e alteração de crosta oceânica (COOGAN et al., 2016), diagênese em depósitos sedimentares (GODEAU et al., 2018; LAWSON et al., 2018; MANGENOT et al., 2018; PAGEL et al., 2018) e deposição sedimentar (DROST et al., 2018) e de espeleotema (HOPLEY et al., 2019; SCARDIA et al., 2019).

A Tabela 1 mostra um resumo com as informações de diversas publicações realizadas contendo análises U-Pb via LA-ICP-MS em carbonatos em diversos laboratórios. Os seguintes aboratórios tem aplicado a técnica: NERC – Serviço Geológico Britânico em Nottingham, Inglaterra; GUF – Goethe Universidade em Frankfurt, Alemanha; Gott – Universidade de Gottingen, Alemanha; UCSB – Universidade da Califórnia em Santa Barbara, Estados Unidos; Portsmouth – Universidade de Portsmouth, Inglaterra; UT – Universidade de Toronto, Canadá; Stony Brook – Universidade Estadual de Nova York, Stony Brook, USA; TCD – Trinity College Dublin, Irlanda; OUS - Okayama University of Science, Okayama, Japão; UQ - University of Queensland, Austrália; CEREGE - Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Aix-en-Provence, França.

Tabela 1. Compilação de análises U-Pb em carbonatos na literatura

Tipo de material	Laboratório	Idades Obtidas	Referência
Cimento calcítico em amonóides	NERC	165,5 ±3,3 a 158,8 ±4,3 Ma	LI et al., 2014
Veios calcíticos em crosta oceânica	NERC	148,3 a 80,8 Ma	COOGAN et al.,2016
calcita em zona de falha	NERC	44,8 ±2 a 11,2 ±1,1 Ma	ROBERTS & WALKER, 2016
Cimento calcítico em veio	NERC	89,7 ±2,9 a 1,75 ±0,58 Ma	BEAUDOIN et al., 2018
cimento calcítico em dique clástico	NERC	254,4 ±1,6 Ma	ROBERTS et al., 2017
Fratura com calcita	NERC	173,2 ±7,6 Ma	DRAKE et al., 2017
Calcita em reservatório de óleo	NERC	71,9 ±2,6 a 89,5 ±4,0 Ma	HOLDSWORTH et al., 2019
Veios de calcita em basaltos	NERC	224 ±8 e 291 ±33 Ma	MACDONALD et al., 2019
Espeleotema	NERC	5,66 ±0,17 Ma	HOPLEY et al., 2019
calcitas em falha	NERC	$135 \pm 4.7 \text{ Ma}$	MIRANDA et al., 2020
Veios de calcita em falha	NERC	$\begin{array}{c} 63.9 \pm 2.6, 63.4 \pm 5.3, 54.9 \pm 3.1 \\ Ma \end{array}$	ROBERTS et al., 2020
Flowstone (material de referência)	NERC	2.952 ± 0.043 Ma	NURIEL et al., 2020
Calcitas em falha	NERC	221 ± 7 Ma and 216 ± 3 Ma	SIMPSON et al., 2021
Calcitas em falhas	NERC	20.37 Ma to 12.89 Ma	CRADDOCK et al., 2021
Carbonato pedogênico	GUF	39,5 ±1,4 a 40,1 ±0,8 Ma	METHNER et al., 2016
Fibras de calcita (slickenside)	GUF	22,3 ±4,6 a 24,0 ±6,3 Ma	RING & GERDES, 2016
Calcita em pegmatito	GUF	178,6 ±2,9 a 61,59 ±0,47 Ma	BURISCH et al., 2017
calcita em reservatórios microporosos	GUF	96,7 ±4,9 a 90,5 ±1,6 Ma	GODEAU et al., 2018
Calcita diagenética e calcita em falha	GUF	147 ±6 a 1,6 Ma	HANSMAN et al., 2018
Nódulos pedogênicos e carbonáticos	GUF	23 ±3,4 Ma	HELLWIG et al., 2018
Veios calcíticos e slickenfiber	GUF	2,89 ±0,50 a 10,5 ±2,5 Ma	SMERAGLIA et al., 2019
Calcita, dolomita e siderita hidrotermal	GUF - Gott	246 ±10 a 5,18 ±0,3 Ma	WALTER et al., 2018
calcita e dolomita hidrotermal	GUF	20,8 a 0,6 Ma	BURISCH et al., 2018
Veios de calcita em margens extensionais	GUF	176,7 ±4,7 a 211,5 ±2,6 Ma	INCERPI et al., 2019
Dolomita e calcita pedogenética em paleossolos	GUF	548 ±19 e 74,0 ±8,1 Ma	LIIVAMÄGI et al., 2018
Calcita diagenética	GUF	61,1 ±2,5 a 154,2 ±5,1 Ma	MANGENOT et al., 2018
Calcrete	GUF	1,69 ±0,32 a 2,86 ±0,76 Ma	SCARDIA et al., 2019
calcita sin tectônica	GUF	70.7±1.8, 74±13, 60.1±2.4 e 13.2±1.3 Ma	CARMINATI et al., 2020
Calcita em zona de falha	UCSB	15,83 ±0,4 a 13,65 ±0,5 Ma	NURIEL et al., 2017
Fibras de calcita (slickenside)	UCSB	64,8 ±6,5 a 54,7 ±5,3 Ma	GOODFELLOW et al., 2017

Calcita sintectônica em falha	UCSB	11,4 ±2.4 a 43,0 ±0,7 Ma	NURIEL et al., 2019
Dolomitas de diferentes idades	UCSB	6.5 ± 1 a 277 ± 59 Ma	ELISHA et al., 2020
calcita sin-tectonica	UCSB	10 Ma a 70 Ma	OREN et al., 2020
Veios de calcita em falha	Portsmouth	55 a 25 Ma	PARRISH et al., 2018
Fibras de calcita (slickenside)	Portsmouth	56.2 a 12.6 Ma	MOTTRAM et al., 2020
Veios de calcita em aquitarde argiloso	UT	11 ±5 a 39 ±3 Ma	MAZUREK et al., 2018
Calcita diagenética	UT	34,9 ±1,2 a 43,1 ±1,0 Ma	PAGEL et al., 2018
veios de calcita em falha	UT	96.8 ± 1.1 Ma	SPALDING et al., 2020
Cimentos carbonáticos	Stony Brook	77,1 ±3.6 Ma±	LAWSON et al., 2018
Calcitas biogênicas e em calcário	TCD	64,33 ±0,86 a 465 ±11 Ma	DROST et al., 2018
Calcita (calcrete)	OUS	$95.9 \pm 6.0 \text{ e } 89.6 \pm 4.0 \text{ Ma}$	KURUMADA et al., 2020
Carbonatos de depósitos hidrotermais de Sb (calcita)	UQ	115.3 ±1.5 Ma e 60 ±.9 Ma	LUO et al., 2020
calcitas em zonas de falha	UQ	83 ±.31 Ma	LOPES et al., 2019
Calcitas em zona de falha	UQ	456 ± 11 Ma,454.7 ± 7.2 Ma,450. 4 ± 6.2 Ma,435.2 ± 9.7 Ma,328.0 ± 9.2 Ma e 307.6 ± 7.1 Ma	YANG et al., 2021
Calcita em zonas de falha cataclasiticas	CEREGE	3.4±1.5, 2.6±0.3 e 2.3±0.3 Ma	BILAU et al., 2020
Calcita em zona falhas	NERC	63 Ma a 216 Ma	GANADE et al., 2022
Breccia de carbonatos	NERC	94.9 ± 2.1/3.8 Ma e 80.2 ± 1.4/3.0 Ma	CELESTINO et al., 2021

A Tabela 2 mostra informações sobre as configurações analíticas dos laboratórios que já produziram idades LA-ICP-MS em carbonatos. As informações estão contidas nos artigos clássicos de caracterização do método ou em repositórios dos artigos em que foram detalhados a metodologia e na tabela 1. É possível notar que há uso de diversos tipos espectrômetros, tanto monocoletores, multi-coletores e quadrupolos. Cada laboratório tem a sua configuração do laser, e ela não é fixa, podendo variar de trabalho para trabalho, a depender da quantidade e distribuição do U e Pb no carbonato e rotina interna de análises.

Equipamento	NERC	GUF	USCB	Portsmouth	UT	Stony Brook	TCD	OUS	UQ	CEREGE
Laser	New Wave Research 193UC excimer	Resolution S-155 (Resonetics) 193nm ArF excimer laser	Photon Machin es 193 nm	Photon Machines 193 nm	 (1) New Wave UP- 213 (2) New Wave UP 	New Wave UP- 213	Photon Machines Analyte Excite ArF 193 nm excimer	ArF Excimer Laser Analyte G2 (Teledyne- Photon Machines)	Resoluti on 193nm excimer	ESI excimer Laser Ablation system
					193			(indefinites)		
Tempo de ablação	30s	20s	~20s	30s	25s	30s	20-40 µm/s	300 pulsos	25s	20s
Fluência	7 a 8 J/cm2	< 2 J/cm2	~1 J/cm2	2-3 J/cm2	~5 J/cm2	~0,15 mJ/cm2	2,5 J/cm2	7.52 J/ cm2	3 J/cm2	1.1-1.15 J.cm-2
Tamanho do spot	100 µm	235 µm	85-110 μm	80 µm	100- 150 μm	80µm	47-95 μm	110 µm	100 µm	150 μm
Taxa de repetição	10 Hz	5 Hz	10 Hz	8 Hz	10-20 Hz	-	35-40 Hz	10 Hz	10 Hz	10 Hz
Pré ablação	150 μm	-	-	90 µm	> 150 µm	-	-		8 s	3s
Tempo de pré ablação	4s	3s	-	5 pulsos	-	-	-			
Espectrômetro	Nu Instrume nts Attom Single- collector SF-ICP- MS	Thermo Scientific Element 2 sector field ICP-MS	Nu Plasma HR	PlasmaQuan t MS Elite (quadrupole) from Analytik Jena	1) VG Series 2 Plasm aquad	Agilent 7500ex quadrupol e ICP-MS	Agilent 7900 Quadrupole	iCAP-RQ single- collector quadrupole ICP-MS (Thermo Scientific)	Nu Plasma II Multi- Collecto r ICP- MS	Element XR SF-ICP-MS
Modelo			MC- ICP- MS		(2) Agilen t 7900 quad.					
Frequência do plasma	1300W	-	-	1300 W	-	-	1550 W			1300 W
Fluxo de gás	0,7 L/min Ar	-	-	0,87 L/min Ar	-	-	0,55 L/min Ar			0.8-0.9 l/min Ar

Tabela 2 - Configurações analíticas de laboratórios para método U-Pb em calcita via LA-ICP-MS

É consenso de que para avançar no entendimento do método e sua aplicação e precisão, é necessário encontrar, ou até mesmo produzir, novos materiais de referência com matriz carbonática (matrix-matched) e ser relativamente homogênea em relação a distribuição de U e Pb. Um material de referência ideal é aquele que: (1) possui uma alta proporção de chumbo radiogênico (>98%); (2) o conteúdo de urânio não é excessivo, para que a contagem de sinais entre o material de referência e a amostra desconhecida sejam similares; e (3) baixa concentração de chumbo comum (<1 ppm). O cálculo da reprodutibilidade de materiais de referência primário e secundário (padrão para demais silicatos e fosfatos por LA-ICP-MS), que é necessário para a propagação da incerteza e determinação da real acurácia e precisão do método, é dificultado pelo fato de que os materiais de referência que são empregados atualmente têm a razão U/Pb heterogêneas, fornecendo incertezas iguais ou muito maiores do que a incerteza do método em si (ROBERTS et al., 2017, 2019).

O material de referência mais utilizado nas publicações é o WC-1 (Walnut Canyon) de Roberts et al., 2017, composto por um cimento calcítico de origem marinha que preenche um dique clástico, no Reef Complex, oeste do Texas, USA e possui idade de 254, $4 \pm 1,6$ Ma (Figura 14).

Figura 14 - Diagrama concórdia do material de referência WC1.

Fonte: ROBERTS et al., 2017

Outro material de referência reportado é o *flowstone* ASH-15 de Nuriel et al. (2020), caracterizado com um material de referência com matriz mista, proveniente da Ashalim Cave, do deserto Negev, localizado em Israel, com idade $2,965 \pm 0,011$ Ma (Figura 15).

Figura 15 - Diagrama concórdia do material de referência ASH15D.

Fonte: NURIEL et al., 2020

Outro possível material de referência é relatado por Guillong et al (2020) com idade de 13,75±0,11 Ma (Figura 16), o JT é um veio de calcita proveniente de um poço profundo no norte da Bacia Molássica Suíça e é hospedado por um calcário micrítico do Grupo Muschelkalk, do Jurássico médio. Além destes há o conjunto de carbonatos utilizados na Universidade de Queensland, os AHX-3B, AHX-01A e AHX-01B, que forneceram idades de aproximadamente 200 Ma, relatado por Cheng et al., 2020, Luo et al., 2020 e Lopes et al., 2019.

Fonte: GUILLONG et al., 2020

4.2.4 Parâmetros analíticos dos testes iniciais no MULTILAB UERJ

Os testes preliminares deste trabalho, ocorreram anteriormente ao trabalho de campo, com o objetivo de preparar o método no MULTILAB UERJ para as posteriores análises, além de configurar os equipamentos para aplicação da nova metodologia. Devido a disponibilidade do laboratório, materiais de referência disponíveis (padrões) e software de tratamento (Glitter – GEMOC), inicialmente foram utilizados três zircões: GJ1 de idade 608,5±0,5Ma (JACKSON et al., 2004), BB de idade 561 ± 2 Ma (SANTOS et al., 2017) e Plesovice de 337,13 ± 0.37 Ma (SLÁMA et al., 2008) como padrões de correção de *mass bias* dos isótopos de U e Pb, através do software de redução de dados *Glitter* (Griffin, 2008).

Nos testes iniciais, foram combinados o uso dos zircões e com a devida atualização no software Glitter, foi possível a realização de alguns testes utilizando o vidro NIST 612. Além do padrão de calcita WC1, outros materiais de referência relatados na literatura também foram utilizados, o carbonato ASH 15D (NURIEL et al., 2020) e o JT calcite (GUILLONG et al., 2020). Desta forma, os padrões de matriz carbonática ASH 15D e JT, serviram como materiais "desconhecidos" nos testes iniciais para obtenção das primeiras idades em carbonatos no MULTILAB-UERJ. Como segundo passo, após exportar os dados para uma planilha Excel interna, foi aplicado o fator de correção na razão ²³⁸U/²⁰⁶Pb, conforme relatado no item 4.2.1, utilizando o padrão de calcita WC1 (ROBERTS et al., 2017).

As configurações do sistema LA-ICP-MS no MULTILAB-UERJ para os testes iniciais se encontram na tabela abaixo:

Laser	Espectrômetro	Frequência do plasma	Fluxo de gás	Tempo de ablação	Fluência	Tamanho do spot	Taxa de repetição
Photon Machines Analyte Excite ArF 193 nm excimer	Thermo Scientific Element 2 SF- ICP-MS	1300W	0,55 L/min Ar	40s	2 J/cm2	150 μm E 50 μm	10Hz

Tabela 3. Configurações do sistema I	LA-ICP-MS utilizado nos testes	iniciais
--------------------------------------	--------------------------------	----------

4.3 Atividade de Campo

4.3.1 Análise estrutural

Primeiramente, para análise estrutural e identificação dos conjuntos de fraturas na área de estudo, foi utilizado imagem de satélite do Google Earth para selecionar áreas que pareciam promissoras para investigação de campo mais detalhada e coleta de amostras. Após selecionar três grandes áreas de interesse, onde os afloramentos apresentavam grande número de fraturas em diferentes direções, as imagens foram examinadas no ArcMap do software ArcGis® juntamente com o plugin ArcSDM (SAWATZKY et al., 2009) para destacar estruturas e encontrar suas orientações. Posteriormente à identificação das fraturas e extração de seus azimutes, foi feita um mapa com os lineamentos interpretados e confecção de três diagramas de rosetas para cada afloramento visitado no software Stereonet, para que assim, os conjuntos de fraturas fossem separados por orientação e essa informação pudesse ser utilizada para entender as relações de contexto tectônico e campos de tensão que afetaram a área, localmente e regionalmente.

4.3.2 Trabalho de campo

Entre os dias 21 e 27 de outubro de 2021 foi realizado o trabalho de campo para identificação e coleta de veios de calcita para datação pelo método U-Pb via LA-ICP-MS na área de estudo. O campo foi realizado pela discente e um dos pesquisadores do Projeto a qual a dissertação está vinculada, o Professor Dr. Ticiano Santos da UNICAMP.

O trabalho de campo foi realizado nas cidades de Apodi e Felipe Guerra – RN. Nesta região há ocorrência de lajedos de calcário fraturados que possuem fraturas preenchidas por calcita. Foram coletadas amostras de carbonatos que preenchiam as fraturas com direção N-S nos afloramentos encontrados na área de estudo (Figura 17). Também foi avaliado o

comportamento das fraturas em cada afloramento (Tabela 3) comparando com o que foi visto e interpretado nas imagens de satélite e literatura, para posterior contextualização do desenvolvimento dessas estruturas rúpteis juntamente com a datação dos veios de carbonatos.

Figura 17. Mapa de Pontos do Trabalho de Campo

Legenda: Localização dos pontos visitados na atividade de campo em imagem de satélite. Pontos azuis representam amostras imageadas na cathodo, testadas para datação, mas que não foram bem sucedidas. Pontos vermelhos são amostras com imagem de cathodo e que foram datadas. (Google Earth) Fonte: A AUTORA, 2022

Ponto	LAT	LONG	DATA	Estrutura	Direção	Observação
PTG - TJLM -01	5° 33.672'S	37° 41.692'W	22/10/2021	fraturas	N20E; N10E	veios preenchidos N-S
PTG - TJLM -02	5° 33.655'S	37° 39.527'W	23/10/2021	fraturas e veio	N10E	veios preenchidos N-S
PTG - TJLM -03	5° 33.620'S	37° 39.575'W	23/10/2021	fraturas e veio	N10E	veios preenchidos N-S
PTG - TJLM -04	5° 33.272'S	37° 39.322'W	23/10/2021	fraturas e veio	N350; N20E; N0E	veios preenchidos N-S.
PTG - TJLM -05	5° 33.882'S	37° 39.132'W	24/10/2021	fraturas e veio	N320; N350; N60; N70; N10	veios preenchidos N-S
PTG - TJLM -06	5° 33.792'S	37° 39.268'W	24/10/2021	fraturas e veio	N10E	veios preenchidos N-S
PTG - TJLM -07	5° 33.538'S	37° 38.982'W	24/10/2021	fraturas e veio	N320; N20	veios preenchidos
PTG - TJLM -08	5° 35.795'S	37° 49.677'W	24/10/2021	fraturas e veio	N10E	veios preenchidos N-S

Tabela 4 - Tabela de Pontos do Trabalho de Campo

4.4 Preparação das amostras coletadas e configurações analíticas

4.4.1 Preparação das amostras pós campo

Devido a competência dos lajedos de calcário visitados durante a atividade de campo, objetivo do trabalho (aplicação do método U-Pb em estruturas rúpteis) e materiais de campo (martelo e talhadeira), foram coletadas pequenas amostras de minerias carbonáticos que preenchiam fraturas, as quais eram possíveis de ser retiradas do afloramento, salvo algumas exceções de amostras de mão maiores. Após o retorno do campo, amostras de diversos pontos foram colocadas em resina epóxy (Figura 18 A) quando pequenas e outras foram cortadas em slabs e polidas para que se pudesse visualizar o veio (Figura 18 B).

Figura 18. Preparação de amostras pós campo.

Legenda: Amostras em preparação e preparadas após o campo. (A) chips dos veios em resina de epóxy. (B) slab polido cortado de amostra de mão. Fonte: A AUTORA, 2022

4.4.2 Cathodoluminescência óptica

Um microscópio óptico de mesa equipado com um detector de Catodoluminescência (CL) e uma platina a vácuo do MULTILAB-UERJ (Figura 19) foi usado para visualizar nove amostras de veios carbonáticos coletadas na área de estudo, após a preparação da etapa anterior. As análises foram realizadas com os seguintes parâmetros: vácuo de ~ 50 mTorr, tensão de 18 a 20 kV e feixe de elétrons de ~ 200 μ A. A técnica de CL é um dos métodos mais utilizados como screening inicial em amostras de carbonatos antes da análise de U-Pb em LA-ICP-MS. A imagem da amostra é uma importante ferramenta para avaliar o crescimento cristalino do veio. Com estas imagens foi possível avaliar padrões de crescimento mineral, interações de bordas dos grãos, feições petrográficas e alterações de texturas que são essenciais para vincular idades a processos de formação (BEAUDOIN et al., 2015, ROBERTS et al. 2020).

Usando imagens de CL, os veios carbonáticos foram descritos por termos reportados em BONS et al. 2012 e ROBERTS et al., 2022. Estes autores utilizam termos como blocky e elongated blocky para descrever o intercrescimento dos grãos dentro de um veio, além de utilizar a classificação antytaxial e syntaxial para descrever o padrão de crescimento do veio do seu interior para as paredes e das paredes para o interior, respectivamente. Além disso, Roberts et al., 2022 sugere uma classificação dos tipos de veio e suas características com padrões cinemáticos além de correlacionar a estrutura com eventos de crack-seal (Figura 20).

Figura 19 - Equipamento de Cathodoluminescência óptica do Multilab UERJ.

```
Fonte: A AUTORA, 2022
```


Figura 20 - Termos para caracaterização textural e classificação de veios.

Legenda: Classificação textural dos veios. (A) termos utilizados em BONS et al., 2012, mostrando a relação dos planos de crescimentos com o número de crack-seal events. (B) Classificação utilizadas por ROBERTS et al., 2022 para contextualizar tipos de veios de alta a baixa confiança para caracterização de cinemática de deslizamento da falha e datação.

Fonte: modificado de BONS et al. (2012) e Roberts et al. (2022)

4.4.3 Análises das amostras coletadas no LA-ICP-MS

Após a realização das imagens de CL, as amostras foram levadas ao equipamento LA-ICP-MS do laboratório Multilab UERJ (Figura 21), onde foi realizado, primeiramente, uma varredura aleatória em diversas áreas de cada amostra, observando o gráfico de teor base de U que aparecia instantaneamente no software do equipamento, procurando zonas onde um conteúdo significativo de U, cerca de 10.000 cps aparecia no gráfico. Após essa varredura constatou-se que das 9 amostras imageadas e preparadas após atividade de campo, somente 3 eram promissoras para datação, devido ao seu conteúdo de U. Após a varredura, as amostras promissoras foram analisadas seguindo o protocolo similares ao dos testes iniciais, com uma modificação analítica na fluência do laser, aumentando de 2 J/cm² para 5 J/cm² e spot size de 150 μ m. Optou-se pela o uso vidro NIST 612 como padrão de correção de *mass bias* dos isótopos de Pb, através do software de redução de dados *Glitter* (GRIFFIN, 2008). E como segundo passo, após exportar os dados para uma planilha Excel interna, foi aplicado o fator de correção 1,0119 na razão ²³⁸U/²⁰⁶Pb das amostras coletdas no campo, conforme relatado no tópico 4.2.1, utilizando a idade de 251 ± 1.98 Ma (Figura 21) encontrada para o padrão de calcita WC1 durante as rodadas de análises.

As sessões de análises ocorreram em rodadas sequenciais compostas por 40 spots em cada rodada, sendo 6 análises de NIST 612, 14 análises de amostras desconhecidas, 6 análises de WC-1 e 14 análises de amostras desconhecidas. Esta abordagem foi escolhida devido a configuração do equipamento ICP-MS e a planilha de tratamento de dados disponível no laboratório, os diagramas finais Tera-Wasseburg foram confeccionados no Isoplot R (VERMEESCH, 2008).

Legenda: Gráfico das análises do material de referência WC1 obtido nas rodas deste trabalho, normatizado pelo vidro NIST 612. Fonte: A AUTORA, 2022

5.1 Resultados dos testes iniciais em padrões de carbonato no Multilab-UERJ

5.1.1 Abundância dos isótopos de interesse nos padrões

Os padrões foram analisados por espectrometria de massa e inicialmente observou-se as abundâncias dos isótopos de interesse para a datação U-Pb. Os isótopos de interesse são ²³⁸U, ²³⁵U, ²³²Th, ²⁰⁸Pb, ²⁰⁷Pb, ²⁰⁶Pb e ²⁰⁴Pb. Segundo Roberts et al., 2017, 2019 e 2020 a datação U-Pb em carbonato tem como parâmetro mais importante a abundância de Urânio na amostra. Nesses termos, os padrões de carbonato para datação U-Pb foram desenvolvidos a partir de amostras com teores de Urânio suficientes para os tratamentos estatísticos. Como pode ser constatado na Figura 22, o padrão WC1 tem abundâncias de ²³⁸U entre 1.250.000 e 1.600.000 cps. O padrão ASH-15D e JT apresentam abundância de ²³⁸U entre 600.000 e 750.000 cps.

Os padrões de zircão utilizados neste trabalho apresentam as seguintes abundâncias de ²³⁸U: zircão BB entre 2.000.000 e 25.000.000 cps; o zircão GJ-1 entre 6.000.000 e 8.000.000 cps; o zircão Plesovice entre 6.000.000 e 9.000.000 cps. Os dois vidros Nist 612 e Nist 614, aqui analisados, variaram entre 300.000 e 600.000 cps e 25.000 e 100.000 cps, respectivamente.

A partir destes resultados, pode-se constatar que o Nist 614 pode não ser o mais adequado para utilização como normalizador de fracionamento isotópico na datação U-Pb em carbonato, devido a baixa abundância de Urânio, enquanto os outros materiais apresentam abundância adequada deste elemento.

Figura 22 - Gráficos com a abundância de ²³⁸U em cada padrão utilizado neste trabalho.

Legenda: Diagramas mostrando a contagem do isótopo ²³⁸U durante um ponto de análises no LA-ICP-MS. Os primeiro 300 pontos fazem parte da leitura do branco e os pontos posteriores são as contagens após o disparo do laser na amostra e suas contagens. (A) WC1; (B)BB; (C) JT calcite; (D) Plesovice; (E) ASH-15D; (F) GJ-1; (G) NIST 612; (H) NIST 614

Fonte: A AUTORA, 2022

Também foram confeccionados diagramas para mostrar a ocorrência do fracionamento isotópico de massas de elementos de interesse para a datação U-Pb em carbonato. Conforme a literatura (LI et al., 2014; ROBERTS et al., 2019; GUILLONG et al., 2020) o fracionamento isotópico observado durante a ablasão da cratera por laser durante a datação pontual precisa ser corrigido. Na Figura 23, pode-se observar a variação dos valores da razão ²⁰⁶Pb/²³⁸U ao longo da perfuração da cratera em cada padrão utilizado. Neste sentido, confirma-se a existência desse fracionamento em todos os padrões utilizados, e constata-se um maior fracionamento nos padrões de zircão.

Figura 23. Diagramas da razão ²⁰⁶Pb/²³⁸U dos padrões utilizados neste trabalho, mostrando fracionamento isotópico.

Legenda: Gráficos do fracionamento isotópico no momento da ablasão do laser, observa-se uma inclinação e dispersão dos pontos nos gráficos de cada padrão durante um ponto de análise no LA-ICP-MS. (A) WC1; (B)BB; (C) JT calcite; (D) Plesovice; (E) ASH-15D; (F) GJ-1; (G) NIST 612; (H) NIST 614. Fonte: A AUTORA, 2022

5.1.2 Diagramas concórdia dos testes iniciais em padrões de carbonatos no Multilab UERJ

Os testes iniciais deste trabalho combinaram o uso dos zircões GJ1, BB e Plesovice, e o vidro NIST 612 com os materiais de referência de matriz carbonática WC1 (ROBERTS et al., 2017), ASH-15D (NURIEL et al., 2020) e JT (GUILLONG et al., 2020). Uma rodada de análise corresponde a seis análises no zircão de interesse junto a quatorze análises em um material de referência de matriz carbonática. Durante uma sessão de análise, foram realizadas diversas rodadas com combinações diferentes de zircão + carbonatos e NIST 612 + carbonatos. Ao fim de várias sessões de análises, os dados foram reunidos em diagramas concórdia feitos no software Isoplot R (VERMEESCH, 2008). Para entender o efeito da correção de fracionamento isotópico e mass bias no software Glitter, decorrentes da interação laser e matéria durante a ablasão da cratera foram elaborados diagramas concórdia a partir dos dados sem a normatização inicial e com a normatização utilizando os padrões disponíveis.

Desta forma, foram feitos as combinações BB + WC1 (Figura 24 A), BB + ASH-15D (Figura 24 B) e BB + JT (Figura 24 C); Plesovice + WC1 (Figura 25 A), Plesovice + ASH 15 D (Figura 25 B), Plesovice + JT calcite (Figura 25C); GJ1 + WC1 (Figura 26 A), GJ1 + ASH 15 D (Figura 26 B) e GJ1 + JT calcite (Figura 26 C); NIST 612 + WC1 (Figura 27 A) e NIST 612 + JT calcite (Figura 27 B).

Figura 24 - Gráficos dos testes iniciais do zircão BB junto aos padrões de carbonato WC1, ASH15D e JT calcite.

Legenda: (A) diagrama com normatização, onde a idade do WC1 é 249 \pm 12 Ma. (B) diagrama com normatização, onde a idade do ASH 15D é 2.80 \pm 0.36 Ma. (C) diagrama com normatização, onde a idade do JT é 19.89 \pm 5.85 Ma.

Fonte: A AUTORA, 2022

Figura 25 - Gráfico dos testes iniciais do zircão Plesovice junto aos padrões de carbonato WC1, ASH15D e JT calcite.

Legenda: (A) diagrama com normatização, onde a idade do WC1 é 219 \pm 3 Ma. (B) diagrama com normatização, onde a idade do ASH-15D é 4.41 \pm 0.88 Ma. (C) diagrama com normatização, onde a idade do JT é 14.30 \pm 0.39 Ma.

Figura 26 - Gráfico dos testes iniciais do zircão GJ1 junto aos padrões de carbonato WC1, ASH15D e JT calcite.

Legenda: (A) diagrama com normatização, onde a idade do WC1 é 269 ± 9.7 Ma. (B) diagrama com normatização, onde a idade do ASH-15D é 3.12 ± 3.48 Ma. (C) diagrama com normatização, onde a idade do JT é $16,36 \pm 1,05$ Ma.

Fonte: A autora, 2022

Figuras 27 - Gráfico dos testes iniciais do Nist 612 junto aos padrões de carbonato WC1 e JT calcite.

Legenda: (A) diagrama com normatização, onde a idade do WC1 é 234.88 \pm 5.92 Ma. (B) diagrama com normatização, onde a idade do JT é 18,8 \pm 3.01 Ma. Fonte: A AUTORA, 2022

5.1.3 Aplicação do fator de correção da razão ²³⁸U/²⁰⁶Pb utilizando WC1

Como relatado no tópico da metodologia, além da correção *mass bias* feita no software *Glitter* para isótopos de U e Pb durante as análises no LA-ICP-MS, também é preciso realizar uma correção de fracionamento isotópico da razão 238 U/²⁰⁶Pb, esta correção é feita a partir de um fator de correção calculado pela razão entre a idade relatada na literatura para o WC1 de 254,4 ± 1,6 Ma e a idade encontrada durante as análises do WC1 da mesma sessão analítica de amostras desconhecidas (ROBERTS et al., 2017). Desta forma, a partir das quatro idades encontradas para o padrão WC1 neste trabalho: 249 ± 2.9 Ma (BB + WC1); 219 ± 3 Ma (Plesovice + WC1); 269 ± 9.7 Ma (GJ1 + WC1); 234 ± 6 Ma (Nist 612 + WC1), foram calculados quatro valores de fator de correção 238 U/²⁰⁶Pb ao dividir pelo valor do material de referência na literatura. Após calculado, o fator de correção foi aplicado nas razões 238 U/²⁰⁶Pb encontradas nas sessões analíticas dos padrões JT calcite e ASH-15D, os quais em seus trabalhos de referência são relatados com idade 13,7 5± 0,11 Ma (GUILLONG et al., 2020) e 2,965 ± 0,01 Ma (NURIEL et al., 2020), respectivamente. Os fatores de correção aplicados encontram-se na Tabela 4. Novos diagramas concórdia foram gerados para a obtenção das novas idades (Figuras 28, 29, 30 e 31).

Padrões	Idade do WC1 (ROBERTS et al.,2017)	Idades encontradas neste trabalho	Fator de correção 238U/206Pb
BB + WC1	254,4±6,4 Ma	249 ± 2,9 Ma	1,0216
Plesovice + WC1		$219\pm3~Ma$	1,1616
GJ1 + WC1		269 ± 9,7 Ma	0,9457
Nist 612 + WC1		234 ± 6 Ma	1,0871

Tabela 5. Fatores de correção 238U/206Pb utilizados neste trabalho

Figura 28 - Aplicação do Fator de correção 1,0216 nos padrões JT calcite e Ash 15D normatizado pelo zircão BB.

Legenda: (A) Diagrama após a aplicação do fator de correção na razão 238 U/ 206 Pb do padrão JT com nova idade de 20.35 ± 5.98 Ma. (B) Diagrama após a aplicação do fator de correção na razão 238U/206Pb do padrão ASH-15D com nova idade de 2.86 ± 0.36 Ma Fonte: A AUTORA, 2022

Figura 29 - Aplicação do Fator de correção 1,1616 nos padrões JT calcite e Ash 15D normatizado pelo zircão

Legenda: (A) Diagrama após a aplicação do fator de correção na razão 238U/206Pb do padrão JT com nova idade de $16,82 \pm 0,46$ Ma. Diagrama após a aplicação do fator de correção na razão 238U/206Pb do padrão JT com nova idade de $5.17 \pm 1,03$ Ma. Fonte: A AUTORA, 2022

Figura 30 - Aplicação do Fator de correção 0,9457 nos padrões JT calcite e Ash 15D normatizado pelo zircão GJ1.

Legenda: Diagramas concórdia antes e após aplicação do fator de correção de fracionamento isotópico (A) Diagrama após a aplicação do fator de correção na razão 238U/206Pb do padrão JT com nova idade de 15.44 \pm 0.99 Ma. (B) Diagrama após a aplicação do fator de correção na razão 238 U/ 206 Pb do padrão ASH-15D com nova idade de 2.98 \pm 3.28 Ma. Fonte: A AUTORA, 2022

Figura 31 - Aplicação do Fator de correção 1,0871 no padrão JT calcite normatizado pelo Nist 612.

Legenda: Diagrama apenas normatizado pela primeira etapa de correção com idade para o JT de 18,9±5,9 Ma. (B) Diagrama após a aplicação do fator de correção na razão 238 U/ 206 Pb do padrão JT com nova idade de 20,5 ± 6,5 Ma.

Fonte: A AUTORA, 2022

5.2 Análise Estrutural

Três afloramentos foram selecionados para análise estrutural detalhada devido à sua alta concentração de fraturas visíveis nas imagens de satélite. A área de estudo abriga uma das maiores exposições da plataforma carbonática da Formação Jandaíra, com extensos afloramentos de calcários, variando de 1 a 2 km de extensão. Quatro conjuntos de fraturas foram identificados através de imagens de satélite e estão representados com mapas de lineamentos traçados e diagramas de rosetas (Figura 31), alguns deles vistos em afloramento na atividade de campo (Figuras 32). Os quatro conjuntos têm orientações diferentes: N-S, E-W, NE-SW e NW-SE. Em campo, o conjunto N-S foi reconhecido por estruturas com direção N0E, N10E e N350, algumas delas preenchidas por carbonatos. O conjunto E-W foi identificado por fraturas e estilólitos com direção N70W e N80W. Estruturas com direção N320 e N340 estão relacionadas ao conjunto NW-SE. Por fim, as estruturas com direção N20E encontradas em alguns afloramentos estão relacionadas ao conjunto NE-SW. Os conjuntos NE-SW e NW-SW são os mais predominantes na área. Devido aos processos de carsificação na área, algumas fraturas são ampliadas devido à dissolução do carbonato, com aberturas atingindo uma escala métrica. Essas feições variam de 1m a 100m de comprimento e algumas têm profundidade em escala métrica, atingindo cavernas e cavidades, que são feições comum na região. Durante o campo não foi enontrado nenhuma estrutura indicando cinemática nas fraturas preenchidas por cabonatos, como tension gashes ou en-echelon.

Figura 31 - Imagem de satélite dos 3 afloramentos mais detalhados para análises estrutural.

Legenda: Imagem de satélite da área estudada com análise de estruturas rúpteis. Os três grandes afloramentos (I, II e III) estudados estão em evidência com os principais conjuntos de fraturas identificados com cores diferentes. Os pontos azuis são afloramentos visitados em campo onde algumas amostras foram analisadas por catodoluminescência e testadas para serem datadas. Os pontos vermelhos são aquelas onde as amostras imageadas por CL e datadas pelo método U-Pb via LA-ICP-MS.

Fonte: A AUTORA, 2022

Figura 32 - Fotos de estruturas e veios encontradas na área de estudo.

Legenda: Afloramentos e estruturas visitadas na atividade de campo. (A) afloramento mostrando a relação de estilólitos, veio de calcita (N10E) e fratura de N340; (B) fratura N-S (N10E) preenchida por carbonato; (C) Interseção da fratura de N20E com fratura de N340 no afloramento; (D) afloramento com fraturas de grande escala, interação entre os conjuntos E-W, NW-SE e N-S. (E) vista de um afloramento típico do Calcário Jandaira na área de estudo, apresentando fraturas e feições cársticas. Fonte: A AUTORA, 2022

5.3 Imagens de Cathodoluminescência

Nove amostras de veios de carbonato foram imageadas por CL, duas delas são slabs polidos e as outras são *chips* dos veios montados em resina epóxi (Figura 33). As características e texturas encontradas nesses veios foram controladas por mecanismos de fratura que fornecem o espaço para a precipitação dos minerais. Pollard & Segall (1987) e Scholz (2002) discutiram
tipos de *end-members* de modos de falhas de estruturas rúpteis, relacionados a fraturas extensionais e de cisalhamento. Os veios encontrados na área são classificados como Modo I (modo de abertura) nas fraturas extensionais, como visto nas imagens de CL e na investigação de campo, o vetor de deslocamento da fratura é perpendicular ao plano de fratura, proporcionando espaço para o crescimento mineral.

As amostras apresentam morfologia cristalina variando de cristais em blocos a alongados, classificados como veios syntaxiais, devido à direção de crescimento ser da parede da fratura para dentro ou de um lado para o outro (BONS et al., 2012). Outra importante microestrutura observada é a forte competição de crescimento entre os grãos, sem sinais de estiramento ou fibras nos carbonatos, sem indicação de movimentação ou qualquer interferência cinemática pós precipitação dos grãos. Além disso, é possível avaliar a linha de sutura mediana em algumas amostras, sem que cristais a atravessem, delimitando o crescimento sintaxial dos veios.

As amostras PTG 02 I, PTG 02 II, PTG 04 I, PTG 07 I, PTG 07 slab e PTG 07 II (Figura 33) são veios sintaxiais com cristais grossos, apresentam textura *blocky* e *blocly-elongated* na direção de crescimento dos grãos. Nestas amostras é possível visualizar a direção de crescimento, das bordas para o centro, melhor do que nas outras amostras, e a linha de sutura mediana é evidência de formação a partir de um único evento crack-seal. Por outro lado, as amostras PTG 03 II, PTG 04 II e PTG 05 II (Figura 34), apresentam uma única fase de abertura de fratura e preenchimento, com grãos grossos e textura blocky, crescendo de uma parede a outra da fratura, apresentando também competição de crescimento entre os grãos. Além disso, as amostras podem ser classificadas como veios do tipo V relatadas por Roberts et al. 2022, evidências de um único evento crack-seal e sem texturas que sejam indicadores cinemático.

Figura 33 - Imagens de cathodoluminescência óptica das amostras coletadas na atividade de campo.

Legenda: Imganes das amostras PTG 02 I, PTG 02 II, PTG 04 I, PTG 07 I, PTG 07 slab e PTG 07 II coletadas em campo utilizadas neste trabalho. Além da imagem da amostras, CL há uma interpretação das texturas internas. Nas amostras PTG 02 II foram colocados os pontos analíticos e região onde foram adquiridas os dados U-Pb que geraram os gráficos de idade deste trabalho. Fonte: A AUTORA, 2022

Figura 34 - Imagens de cathodoluminescência óptica das amostras coletadas na atividade de campo.

Legenda: Imganes das amostras PTG 03 II, PTG 04 II e PTG 05 II coletadas em campo utilizadas neste trabalho. Além da imagem da amostras, CL há uma interpretação das texturas internas. Nas amostras PTG 03 II e PTG 05 II foram colocados os pontos analíticos e região onde foram adquiridas os dados U-Pb que geraram os gráficos de idade deste trabalho. Fonte: A AUTORA, 2022

5.4 Idades U-Pb dos veios de calcita da região de sudoeste da Bacia Potiguar

Os veios de carbonato pertencentes ao conjunto de fraturas N-S foram coletados e datados. A análise textural do CL garantiu que os cristais de calcita precipitaram durante ou logo após a abertura dos veios pela classificação dos veios como sintaxiais, apresentando textura *elongated-blocky* e *blocky* dos grãos, evidências de eventos crack-seal e veios de fase única de abertura. Além disso, dados de isótopos de oxigênio de Graaf et al. (2017) relatam que a precipitação de calcita nos veios carbonáticos desta área está relacionada a circulação de um único tipo de fluido proveniente dos arenitos da formação Açu. De todas as amostras testadas, três amostras tinham conteúdo de U suficiente para gerar dados de idade confiáveis, PTG 02 II apresenta a U-Pb idade de $45,1 \pm 5,5$ Ma (Figura 35), PTG 03 II apresenta idade de $30,1 \pm 1,21$ Ma (Figura 36) e PTG 05 II apresenta idade de $44,7 \pm 5,2$ Ma (Figura 37). As idades foram determinadas a partir de interceptos inferiores no diagrama Tera-Wasserburg, utilizando o program Isoplot R (VERMEESCH, 2008, 2018).

Conforme relatado por Roberts et al. (2019) grandes elipses em gráficos T-W no método U-Pb aplicado a carbonatos estão relacionadas ao teor de U da amostra. Devido a heterogeneidade dos carbonatos, algumas elipses são maiores devido ao conteúdo de U ser um pouco mais baixo no local de análise, principalmente em amostras mais jovens, entretanto como se pode avaliar a partir dos gráficos gerados de cada amostra deste trabalho, ao retirar as elipses com contagens mais baixas de U não há interferência signaficativa na idade final de cada amostra. Portanto, com a retirada dessas elipses é possível visualizar melhor a dispersão dos pontos, melhorando a representação das idades a partir da diminuição do erro e MSWD, a partir da visualização das elipses menores que possuem maior conteúdo de U.

Figura 35 - Gráficos da amostra PTG 02 II, idade 45,10 Ma.

Legenda: Gráficos da amostra PTG 02 II. (A) Gráfico com 40 pontos e idade 42.37 ± 5.16 Ma. (B) Gáfico com 32 pontos e idade 42.87 ± 5.19 Ma. (C) e (D) Gráficos com 25 pontos e idade de 45.10 ± 5.51 Ma. (E) Gráfico com 24 pontos e 45.1 ± 5.5 Ma. Fonte: A AUTORA, 2022

Legenda: Gráficos da amostra PTG 03 II. (A) Gráfico com 54 pontos e idade 30.33 ± 1.20 Ma. (B) Gáfico com 43 pontos e idade 30.0 ± 1.2 Ma. Fonte: A AUTORA, 2022

Figura 37 - Gráficos da amostra PTG 05 II, idade 44, 5 Ma

Legenda: Gráficos da amostra PTG 05 II. (A) Gráfico com 48 pontos e idade $42,75 \pm 2,64$ Ma. (B) Gáfico com 38 pontos e idade $43,75 \pm 2,62$ Ma. (C) e (D) Gráfico com 25 pontos e idade de $44,5 \pm 5.2$ Ma. Fonte: A AUTORA, 2022

6. DISCUSSÕES

6.1 Discussões acerca dos testes iniciais e implementação do método U-Pb em carbonatos no MULTILAB UERJ

De acordo com Roberts et al., (2017, 2019 e 2020) o uso do vidro Nist 614, é a principal forma de correção elementar do Pb no método U-Pb em carbonatos via LA-ICP-MS. Seu uso é justificado como a melhor alternativa em relação a outros materias, devido à sua homogeneidade, evitando o efeito matriz, que pode ocorrer ao utilizar padrões com matriz diferentes dos carbonatos para a normatização. Ao mudar de um material para o outro durante as análises, durante a ablasão da cratera no laser pode ocorrer fracionamento isotópico, e isto pode interferir nas contagens dos elementos pelo espectrômetro de massa, e consequentemente nas idades obtidas.

Entretanto, a utilização do Nist 614 como normatizador de U e Pb para o *mass bias* não é um processo trivial. Quando não se tem disponível o software de redução Iolite em laboratório, esta etapa é dificultada, e por este motivo os testes iniciais no Multilab UERJ utilizaram zircões e o NIST 612 para esta primeira etapa de redução de dados. Esta alternativa de normatização foi respaldada por trabalhos como o de YOKOYAMA et al., 2018, GUILLONG et al., 2020 e LI et al., 2014, que relatam o uso de outros vidros e também zircão nesta etapa de redução de dados iniciais.

Como visto nos gráficos concórdia dos resultados, pode-se perceber, que a utilização dos zircões como normatizadores do conteúdo de Pb e U nas amostras parece ser bastante promissor, de todas as combinações utilizadas de zircão + calcita (9 no total), a maioria chegou próxima, dentro do erro, às idades relatadas na literatura. Entretanto, como observados em algumas combinações como Plesovice + WC1 e BB + JT calcite, as idades não estão tão próximas do relatado na literatura, estas distorções podem ser explicadas por características isotópicas do grão, principalmente devido a heterogeneidade dos carbonatos. Ao serem analisados no LA-ICP-MS, dependendo do local escolhido para a análise pode haver variação no conteúdo de U e Pb e consequentemente, mudança na idade final.

Outro aspecto importante que pode ser observado a partir dos gráficos ²⁰⁶Pb/²³⁸U que mostram o fracionamento isotópico a partir da ablasão do laser nas amostras, é o fracionamento isotópico maior nos grãos de zircão do que nos grãos de carbonatos. Isso ocorre devido ao efeito do tamanho da cratera do laser durante a ablasão. Paton et al., 2010 relata como o tamanho do spot interfere no fracionamento dependendo do material utilizado, devido a crateras mais rasas com spots de tamanhos maiores e crateras mais profundas com spot menores. Neste trabalho foi utilizado o spot de 50µm para os grãos de zircão e 150 µm para o Nist 612 e padrões de carbonato. Estes tamanhos foram escolhidos devido a rotina com zircão no laboratório e a partir da compilação de dados dos carbonatos, que apontam crateras entre 100 µm e 200 µm. Guillong et al. 2020 também discutem o efeito do tamanho da cratera na acurácia dos dados nos carbonatos WC1, JT e ASH15D, relatando testes feitos com crateras entre 50 µm e 250 µm, e como o tamanho interferiu na acurácia das idades, onde crateras com tamanhos maiores e mais rasas reproduziram idades mais jovens para os padrões nas configurações laboratorias desses autores.

A utilização do Nist 612 nos testes iniciais, demorou a ser estabelecida no laboratório e por isso, não se obteve tantos dados nos testes. Isto ocorreu devido ao software de redução disponível no laboratório, onde teve-se que configurar manualmente a entrada das razões isotópicas deste padrão no sistema, o que não é uma atividade trivial, para que a normatização fosse feita corretamente. Outra questão relevante, que se notou ao comparar os dados dos testes iniciais com as amostras datadas da Bacia Potiguar, foram mudanças feitas nas configurações do sistema LA-ICP-MS. Nos testes inciais as configurações do laser estavam diferentes das que foram utilizadas nas amostras coletadas no campo, a alteração na configuração da fluência do laser foi benéfica e é perceptível ao observar a mudança na idade do padrão WC1, que na primeira combinação foi de 234 Ma e nas análises finais é de 251 Ma, ficando mais próxima da idade relatada na literatura que é de 254 Ma (ROBERTS et al., 2017), respaldando portanto que as amostras datadas neste trabalham, foram feitas nas configurações analíticas adequadas para aquisição de dados confiáveis.

Por isso, é importante a realização de testes preliminares nos laboratórios, visando a melhor forma de configuração analítica, antes de implementar uma nova metodologia de datação. Esta nova rotina pode variar para cada laboratório, respeitando protocolo já estabelecido dentro da literatura, mas levando em consideração as particularidades de cada um, como equipamentos, padrões e softwares de tratamento disponíveis.

6.2 As idades encontradas para os veios preenchidos por carbonato na Formação Jandaíra

Até o momento, as idades de estruturas rúpteis na Bacia Potiguar eram inferidas por relações de campo, estudos estruturais e estudos estratigráficos (BERTOTTI et al., 2017, GRAAF et al., 2017, BEZERRA et al., 2020, BAGNI et al., 2020 e 2022), este trabalho relata as primeiras idades feitas pelo método U-Pb aplicado a carbonatos em estruturas rúpteis nesta bacia, colaborando com dados das idades mínima de formação para estas estruturas. São também, as primeiras idades feitas por um laboratório brasileiro aplicando o método U-Pb via LA-ICP MS em carbonatos de estruturas rúpteis na Província Borborema.

Apesar de todas as limitações acerca do método U-Pb em carbonatos, devido as particularidades da amostra e ocorrência em campo, a estratégia adotada neste trabalho foi bem sucedida. O levantamento bibliográfico acerca da Bacia Potiguar e do Calcário Jandaíra, indicaram possíveis regiões onde poderia haver a ocorrência de estruturas rúpteis preenchidas por carbonatos. A análise estrutural de imagens de satélite e o levantamento das direções dos lineamentos vistos nas imagens, auxiliaram na identificação de regiões com alta densidade de fraturas, que poderiam ser regiões promissoras na atividade de campo, e também as direções das estruturas, podendo correlacioná-las com a cinemática e sistemas de falhas da Bacia Potiguar e estruturas locais.

Os quatro sets de fraturas identificados na área de estudos N-S, E-W, NW-SE e NE-SW são correlacionáveis a eventos tectônicos, estruturas e sistemas de falhas na Bacia Potiguar. O set de fraturas N-S, no qual foram encontrados os veios de carbonatos, tem sua formação relacionado ao primeiro campo de tensão (SF1) pós campaniano que afetou a Bacia Potiguar em escala regional (BEZERRA et al., 2020), sua formação tem relação com a recirculação de fluidos da Formação Açu para a Formação Jandaíra, responsáveis pela precipitação de carbonatos nas fraturas geradas pela reativação de estruturas formação de fraturas nesse sob regime desse campo de tensão (GRAAF et al., 2017 e BERTOTTI et al., 2017). O set E-W, representado por estilolitos verticais e fraturas sem preenchimento, também foi formado no mesmo contexto do trend N-S, como um resultado da compressão N-S e extensão E-W dos esforços sofridos pelas sequências sedimentares na bacia.

Um dos sets mais predominantes, NW-SE, possui a mesma direção que as falhas Afonso Bezerra, Caraúbas e Algodão-Juazeiro. Localmente, este set é paralelo ao eixo da dobra Apodi (BAGNI et al., 2022). O set de fratura NE-SW tem a mesma direção do sistema de falhas Carnaubais e é paralelo a direção do Rio Apodi-Mossoró, uma evidência do controle geomorfológico das estruturas em escala regional, além de serem evidências de reativação de estruturas de mesma direção do embasamento da Província Borborema, como por exemplo, a zona de cisalhamento Porto Alegre. Ambos os sets estão relacionados a esforços tectônicos do campo de tensão SF2 que ocorre desde do final do Mioceno ao Recente (BEZERRA et al., 2020; BAGNI et al., 2022). Como os veios preenchidos por carbonatos só foram encontrados em um dos sets de fratura (N-S), pode-se inferir que os eventos deformacionais posteriores não foram suficientes para ativar a recirculação de fluidos para que ocorresse a precipitação de carbonatos em estruturas mais jovens e de outras direções.

O uso da cathodoluminescência óptica também se mostrou uma ferramenta de grande importância para a caracterização das estruturas internas dos veios, avaliação dos crescimentos dos grãos e preenchimento das estruturas rúpteis, além de servir como um mapa na etapa de identificar regiões que poderiam possuir conteúdo significativo de U na estapa de screening inicial das amostras. A caracterização dos veios com identificação de texturas blocky, elongated-blocky e classificação syntaxial, são evidências de um único evento *crack-seal* (BONS et al., 2012), demonstrando que a precipitação de carbonatos datados ocorreu concomitante ou logo depois a abertura da fratura, sendo caracterizado como veios de abertura de fase única, tipo V (ROBERTS et al., 2022). Este tipo de informação é essencial para que a idade encontrada seja diretamente relacionada ao timing de formação da estrutura rúptil e a sua correlação com os eventos tectônicos corretos. Como os veios não apresentavam texturas que indicavam movimentação ou cinemática, e também não fora encontradas estas estruturas na atividade de campo, o que seria melhor para relacionar à eventos e determinar timing de formação das estruturas (ROBERTS et al., 2022), o uso das imagens e classificação das texturas a partir de CL foi essencial este trabalho.

A datação de carbonatos provenientes de estruturas rúpteis no Brasil é recente e há poucos trabalhos publicados utilizando o método U-Pb. Estudos recentes realizados em estruturas rúpteis em algumas bacias sedimentares da Província Borborema relacionam sua formação aos eventos tectônicos que culminaram na abertura do Oceano Atlântico Sul durante o rompimento do Gondwana (MATOS et al. 1992, 2021). Miranda et al. (2020) reportam uma

idade U-Pb de 135 \pm 4,7 Ma de calcita *slikenfibers* da zona de cisalhamento Cruzeiro do Nordeste na borda da Bacia Jatobá, restringindo o tempo de reativação rúptil para a eventos tectônicos da abertura do Atlântico Sul. Celestino et al. (2021) relatam idades U-Pb de 94,9 \pm 3,8 Ma e 80,2 \pm 3,0 Ma em brechas carbonáticas da falha de Triunfo, na bacia do Araripe. Relacionando essas idades a dois episódios de reativações rúpteis entre Cenomaninano e Campaniano. Ganade et al. (2022) publicaram idades U-Pb em carbonatos de 206 \pm 14 Ma e 63 \pm 5 Ma na bacia do Rio do Peixe; 216 \pm 9 Ma e 167 \pm 33 Ma na bacia do Araripe; 162 \pm 16 Ma, 130 \pm 8 Ma, 127 \pm 7 Ma e 130 \pm 26 Ma na bacia do Jatobá. Todas as amostras foram coletadas em estruturas rúpteis nas bacias sedimentares e essas idades estão relacionadas aos eventos de rifting do Jurássico-Cretáceo, sistemas de rift do Oceano Atlântico e dois grandes eventos ígneos (CAMP e EQUAMP) na Província Borborema. Vale ressaltar, que todos esses dados foram adquiridos em laboratórios fora do Brasil, como o NERC na Inglaterra e o ETH na Suíça.

As idades relatadas neste trabalho de $45,1 \pm 5,5$ Ma, $44,7 \pm 5,2$ Ma e $30,1 \pm 1,21$ Ma, são provenientes de estruturas rúpteis com direção N-S. De acordo com Bezerra et al., 2020 estas estruturas estão relacionadas ao SF1, e foram originadas por esforços tectônicos que ocorreram no Cretáceo Superior até o Mioceno Médio. A origem deste campo de tensão é discutível, podendo estar relacionada a abertura do Atlâtico Sul, eventos de magmatismo na Bacia Potiguar (Macau) e esforços tectônicos da orogênese Andina. As idades mais jovens encontradas neste trabalho, quando comparadas às reportadas pelo mesmo método em outras bacias (MIRANDA et al., 2020; CELESTINO et al 2021; GANADE et al., 2022) do mesmo contexto regional, são explicadas pelo fato da Bacia Potiguar estar localizada no último segmento da Placa América do Sul a se separar da Placa África no Neocomiano (AZEVEDO, 1991; MATOS 1992).

Na Bacia Potiguar, o evento magmático que originou as rochas vulcânicas da Formação Macau, possuem idades K-Ar e Ar-Ar entre 48 e 7,4 Ma (SIAL et al. 1981; ASMUS E GUAZZELI, 1981; MISUZAKI et al., 2002; SOUZA, 2003; KNESEL et al 2011) sendo os mais expressivos em 48 Ma, 31 Ma e 24 Ma (PESSOA NETO et al., 2007). Comparando as idades encontradas neste trabalho com as idades reportadas para essa formação, é possível correlacionar que o stress causado pelo magmatismo seja um dos responsáveis pela retivação das estruturas rúpteis e formação dos veios de calcita na Formação Jandaíra. Outra explicação para a origem dessas estruturas é a propagação dos esforços causados quando eventos compressionais e transpressionais afetaram os Andes Central (Evento Incaic), que ocorreu no Paleógeno, entre 45 e 25 Ma (ARRIAGADA et al., 2008). Modelos de reconstrução da separação do Pangea com dados Arraguiada et al. (2008) e Muller (2019), mostram evidências de encurtamento na região Andina nesse período, devido a interação da Placa de Nazca com a Placa Sul Americana. Nesses modelos, a interação nessa região se inicia em 45 Ma, idade correlaionável aos esforços de tensão do SF1.

As idades encontradas neste trabalho podem ser divididas em dois grupos, 45 Ma e 30 Ma, desta forma, pode-se infereir que estas estruturas podem estar relacionadas a dois momentos distintos de reativações deformacionais das estruturas rúpteis na Bacia Potiguar, durante este intervalo de tempo. Estas épocas deformacionais podem ter sido originadas pelos eventos citados anteriormente, que afetaram a Bacia Potiguar como um todo, reativando estruturas rúpteis e originando os veios preenchidos por carbonatos a partir da recirculação de fluidos. Na Figura 38, tem-se uma compilação das idades publicadas até o momento das estruturas rúpteis preenchidas por carbonatos na região da Província Borborema, incluindo as deste trabalho. Os globos foram projetados no software GPlates, utilizando o modelo de Muller et al (2019). As idades foram retiradas dos trabalhos de Miranda et al. (2020), Celestino et al. (2021) e Ganade et al. (2022) e os eventos indicados são os relatados pelos autores nestes artigos.

Figura 38 – Compilação das idades U-Pb em carbonatos preenchendo estruturas rúpteis na Província Borborema e eventos de mesma idade.

Legenda: Idades U-Pb em carbonatos das bacias Araripe, Rio do Peixe, Jatobá e Potiguare sua correlação com os eventos durante a separação da Pangeia. Os globos gerados no software Gplates (Gurnis et al., 2018) exibem os limites de placas em 4 momentos chave do rifiting do Atlântico (Muller et al., 2019) exibe a placa configuração em três momentos-chave do rifiting atlântico (depois de Müller et al., 2019). Os continentes na cor cinza, as áreas submersas atuais na cor azul e os limites das placas são linhas pretas. Barras inferiores mostram as idades encontradas com suas incertezas. Idades de MIRANDA et al. (2020) (*1), CELESTINO et al. (2021) (*2), GANADE et al (2022) (*3) e este trabalho. As idades do rift do Atlântico Central de Olsen (1997), Rift Sul de Matos (2021) e orogenia Andia de Arriagada et al., (2008). As idades dos eventos magmáticos são de Davies et al. (2017) para o magmático do Atlântico Central província (CAMP), Rocha et al. (2020) para a província (EQUAMP) e Pessoa Neto et al., 2007 para o Magmatismo Macau. Fonte: Modificado de GANADE et al., 2022.

7. CONCLUSÕES

A partir da interpretação dos resultados dos testes preliminares é possível concluir que a utilização de zircão como normatizador das razões de Pb e U combinado às análises em carbonato podem ser utilizadas por laboratórios que possuam limitações de padrões Nist e softwares de redução, sendo uma alternativa na datação de carbonatos. Mesmo o uso do zircão se mostrando promissor como alternativa no tratamento dos dados, optou-se pela utilização do vidro Nist 612 neste trabalho, devido aos trabalhos encontrados na literatura e redução do efeito matriz, sendo o padrão que gerou a idade mais próxima para o padrão WC1, com baixo erro, após alterações nas configurações analíticas do equipamento.

A combinação de levantamento bibliográfico junto ao uso de imagens de satélite, se mostrou uma boa ferramenta para identificação de estruturas rúpteis em área com ocorrência de calcário com feições carsticas e extensos afloramentos. Onde se identificou primeiramente grandes estruturas, suas direções relacionando com o contexto tectônico regional e local, e na atividade de campo foram encontrados veios preenchidos por carbonatos, otimizando o tempo de localização dessas estruturas no trabalho de campo. Podendo ser utilizado como estratégia em outros trabalhos que possuem como objetivo a datação de materiais que preenchem estruturas rúpteis.

O uso de cathodoluminescência óptica junto ao LA-ICP-MS é uma ferramenta robusta para screening inicial das amostras de carbonatos, conhecidas pela sua heterogeneidade e baixa concentração de U. A combinação dessas técnicas foi essencial para o sucesso analítico deste trabalho, auxiliando na avaliação de áreas com maior concentração de U nas amostras, além de descartar amostras onde não seria possível a obtenção de idades, economizando tempo de laboratório e recursos dos equipamentos.

As idades econtradas neste trabalho, $45,1 \pm 5,5$ Ma, $44,7 \pm 5,2$ Ma e $30,1 \pm 1,21$ Ma, se correlacionam com eventos encontrados na liteartura e tectônica regional. Podendo ser relacionada a dois períodos diferentes de reativações tectônicas na Bacia Potiguar relacionados aos esforços tectônicos ocasionados pelo magmatismo Macau, abertura do Atlântico Sul e eventos da Orogenia Andina. Os veios encontrados somente em uma direção de fraturas, mostram que somente um campo de tensão foi responsável pela recirculação do fluido

proveniente da formação Açu, para precipitação de carbonatos nas estruturas da formação Jandaíra.

Como indicações para trabalhos futuros, recomenda-se uma maior investigação na área de estudo e outros locais da Formação Jandaíra na Bacia Potiguar, para identificação de estruturas preenchidas por carbonatos que possam ter algum indicador cinemático (tension gashes, en echelon, calcita slikenfibers) gerando dados ainda mais robustos sobre o timing de formação das estruturas rúpteis. Também é recomendado um estudo mais detalhado das estruturas rúpteis, suas relações em campo e atributo das fraturas. Outra abordagem futura pode ser o estudo microestrutural dos veios aliada a datação U-Pb, fazendo análise petrográfica, cathodoluminescência óptica e imagens em MEV (Microscópio Eletrônico de Varredura).

Por fim, conclui-se que o laboratório MULTILAB-UERJ está com a rotina U-Pb via LA-ICP-MS em carbonatos implementada, e que pode ser aplicada em amostras de outros contextos, seguindo os mesmos protocolos analíticos utilizados neste trabalho.

REFERÊNCIAS

ALMEIDA F.F.M., HASUI Y., BRITO NEVES B.B. & FUCK H.A. 1977. Províncias Estruturais Brasileiras. In: SBG-Núcleo Nordeste, Simpósio de Geologia do Nordeste, 80, Campina Grande, Atas, Boletim 6, p. 363-391.

ANGELIM, L. D. A., NESI, J. R., TORRES, H. H. F., MEDEIROS, V. C., SANTOS, C. A., VEIGA JÚNIOR, J. P., & MENDES, V. A. (2006). Geologia e recursos minerais do Estado do Rio Grande do Norte-Escala 1: 500.000. *Recife: CPRM-Serviço Geológico do Brasil*.

ARARIPE, P. D. T., & FEIJO, F. J. (1994). Potiguar Basin; Bacia Potiguar. Boletim de Geociências da PETROBRAS, 8.

ARRIAGADA, C., ROPERCH, P., MPODOZIS, C., & COBBOLD, P. R. (2008). Paleogene building of the Bolivian Orocline: Tectonic restoration of the central Andes in 2-D map view. *Tectonics*, 27(6).

ASMUS, H. E., & GUAZELLI, W. (1981). Descrição Sumária das Estruturas da Margem Continental Brasileira e das Áreas Oceânicas e Continentais Adjacentes-Hipóteses Sobre o Tectonismo Causador e Implicações Para os Prognósticos do Potencial de Recursos Minerais. *Série Projeto RMAC*, *9*, 187-269.

AZEVEDO, R. D. (1986). Interpretação geodinâmica da evolução mesozóica da Bacia de Barreirinhas. *Congr. Bras. Geol, 3*, 1115-1130.

BAGNI, F. L., BEZERRA, F. H., BALSAMO, F., MAIA, R. P., & DALL'AGLIO, M. (2020). Karst dissolution along fracture corridors in an anticline hinge, Jandaíra Formation, Brazil: implications for reservoir quality. *Marine and Petroleum Geology*, *115*, 104249.

BAGNI, F. L., ERTHAL, M. M., TONIETTO, S. N., MAIA, R. P., BEZERRA, F. H., BALSAMO, F., ... & FONSECA, J. P. T. (2022). Karstified layers and caves formed by superposed epigenic dissolution along subaerial unconformities in carbonate rocks–Impact on reservoir-scale permeability. *Marine and Petroleum Geology*, *138*, 105523.

BASILE, C., MASCLE, J., & GUIRAUD, R. (2005). Phanerozoic geological evolution of the Equatorial Atlantic domain. Journal of African Earth Sciences, 43(1), 275-282.

BEAUDOIN, N., LACOMBE, O., ROBERTS, N. M., & KOEHN, D. 2018. U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology, 46(11), 1015-1018.

BERTANI, R. T., Costa, I. G. D., & MATOS, R. M. D. D. (1990). Evolução tectonosedimentar, estilo estrutural e habitat do petróleo na Bacia Potiguar. *Origem e evoluçao de bacias sedimentares. Rio de Janeiro, PETROBRAS*, 291-301.

BERTOTTI, G., DE GRAAF, S., BISDOM, K., OSKAM, B., VONHOF, H. B., BEZERRA, F. H., ... & CAZARIN, C. L. (2017). Fracturing and fluid-flow during post-rift subsidence in carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil. *Basin Research*, *29*(6), 836-853.

BEZERRA, F. H. R., AMARAL, R. F. D., SILVA, F. O. D., SOUSA, M. O. L., VIEIRA, M. M., LIMA, E. N. D. M., ... & FONSECA, V. P. D. (2009). Nota explicativa da folha Macau, SB. 24-XD-II.

BEZERRA, F. H. R., SRIVASTAVA, N. K., & SOUSA, M. O. L. (2014). *Geologia e recursos minerais da folha Mossoró, SB. 24-XDI: estado do Rio Grande do Norte.* CPRM.

BEZERRA, F. H., DE CASTRO, D. L., MAIA, R. P., SOUSA, M. O., MOURA-LIMA, E. N., ROSSETTI, D. F., ... & NOGUEIRA, F. C. (2020). Postrift stress field inversion in the Potiguar Basin, Brazil–Implications for petroleum systems and evolution of the equatorial margin of South America. *Marine and Petroleum Geology*, *111*, 88-104.

BEZERRA, L. J. C. (2009). Caracterização dos tabuleiros pré-litorâneos do Estado do Ceará.

BILAU, A., ROLLAND, Y., SCHWARTZ, S., GODEAU, N., GUIHOU, A., DESCHAMPS, P., ... & GAUTHERON, C. (2020). Extensional reactivation of the Penninic Frontal Thrust 3 Ma ago as evidenced by U-Pb dating on calcite in fault zone cataclasite. *Solid Earth Discussions*, 1-24.

BIZZI, L. A., SCHOBBENHAUS, C., GONÇALVES, J. H., BAARS, F. J., DELGADO, I. D.M., ABRAM, M. B., ... & SANTOS, J. O. S. (2003). Geologia, Tectônica e Recursos Minerais do Brasil: texto, mapas e SIG.

BONS, P. D., ELBURG, M. A., & GOMEZ-RIVAS, E. (2012). A review of the formation of tectonic veins and their microstructures. *Journal of structural geology*, *43*, 33-62.

BRITO NEVES, B. B. D., SANTOS, E. D., & VAN SCHMUS, W. R. (2000). Tectonic history of the Borborema Province. *Tectonic Evolution of South America*, *31*, 15.

BRITO NEVES, B. B., & CORDANI, U. G. (1991). Tectonic evolution of South America during the late Proterozoic. *Precambrian Research*, *53*(1-2), 23-40.

BUCK, W. R., LAVIER, L. L., & POLIAKOV, A. N. (1999). How to make a rift wide. Philosophical Transactions-Royal Society of London Series a Mathematical Physical and Engineering Sciences, 671-689

BURISCH, M. et al. Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany. Geochimica et Cosmochimica Acta, v. 223, p. 259–278, 2018.

BURISCH, M. et al. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geology Reviews, v. 81, p. 42–61, 2017.

CARMINATI, E., ALDEGA, L., SMERAGLIA, L., SCHARF, A., MATTERN, F., ALBERT, R., & GERDES, A. (2020). Tectonic Evolution of the Northern Oman Mountains, Part of the Strait of Hormuz Syntaxis: New Structural and Paleothermal Analyses and U-Pb Dating of Synkinematic Calcite. *Tectonics*, *39*(4), e2019TC005936.

CASTRO, D. L., DE OLIVEIRA, D. C., & BRANCO, R. M. G. C. (2007). On the tectonics of the Neocomian Rio do Peixe Rift Basin, NE Brazil: Lessons from gravity, magnetics, and radiometric data. *Journal of South American Earth Sciences*, *24*(2-4), 184-202.

CAXITO, F. A., UHLEIN, A., DANTAS, E. L., STEVENSON, R., SALGADO, S. S., DUSSIN, I. A., & DA NÓBREGA SIAL, A. (2016). A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: Implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. *Precambrian Research*, *282*, 97-120.

CELESTINO, M. A. L., MIRANDA, T. S., MARIANO, G., ALENCAR, M. L., BUCKMAN, J., ROBERTS, N. M., ... & ROEMERS-OLIVEIRA, E. (2021). Structural control and geochronology of Cretaceous carbonate breccia pipes, Crato Formation, Araripe Basin, NE Brazil. *Marine and Petroleum Geology*, *132*, 105190.

CHANG, H. K., KOWSMANN, R. O., & DE FIGUEIREDO, A. M. (1988). New concepts on the development of East Brazilian marginal basins. *Episodes Journal of International Geoscience*, *11*(3), 194-202.

CHENG, T., ZHAO, J., FENG, Y., PAN, W., & LIU, D. (2019). In-situ LA-MC-ICPMS U-Pb dating method for low-uranium carbonate minerals. *Chinese Science Bulletin*, 65(2-3), 150-154.

COOGAN, L. A.; PARRISH, R. R.; ROBERTS, N. M. W. Early hydrothermal carbon uptake by the upper oceanic crust: Insight from in situ U-Pb dating. Geology, v. 44, n. 2, p. 147–150, 2016

CÓRDOBA, V. C. (2001). A evolução da plataforma carbonática Jandaíra durante o Neocretáceo na Bacia Potiguar: análise paleoambiental, diagenética e estratigráfica (Doctoral dissertation, Instituto de Geociências e Ciências Exatas da Universidade Estadual Paulista, 11/05/2001.).

CRADDOCK, J. P., NURIEL, P., KYLANDER-CLARK, A. R., HACKER, B. R., LUCZAJ, J., & WEINBERGER, R. (2021). Long-term (7 Ma) strain fluctuations within the Dead Sea transform system from high-resolution U-Pb dating of a calcite vein. *GSA Bulletin*.

CREMONINI, O. A. (1996). Tectonic evolution of the Ubarana area, offshore portion of the Potiguar Basin, Brazil; Evolucao tectonica da area de Ubarana, porcao submersa da Bacia Potiguar. *Boletim de Geociencias da Petrobras*, *10*.

DANTAS, E. L., DE SOUZA, Z. S., WERNICK, E., HACKSPACHER, P. C., MARTIN, H., XIAODONG, D., & LI, J. W. (2013). Crustal growth in the 3.4–2.7 Ga São José de Campestre Massif, Borborema Province, NE Brazil. *Precambrian Research*, *227*, 120-156.

DAVIES, J.H.F.L., MARZOLI, A., BERTRAND, H., YOUBI, N., ERNESTO, M., AND SCHALTEGGER, U., 2017, End-Triassic mass extinction started by intrusive CAMP activity: Nature Communications, v. 8, 15596

DE CASTRO, D. L. (2011). Gravity and magnetic joint modeling of the Potiguar Rift Basin (NE Brazil): Basement control during Neocomian extension and deformation. *Journal of South American Earth Sciences*, *31*(2-3), 186-198.

DE CASTRO, D. L., & BEZERRA, F. H. R. (2015). Fault evolution in the Potiguar rift termination, equatorial margin of Brazil. *Solid Earth*, 6(1), 185-196.

DE CASTRO, D. L., BEZERRA, F. H., SOUSA, M. O., & FUCK, R. A. (2012). Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data. *Journal of Geodynamics*, *54*, 29-42.

DEWOLF, C. P. AND HALLIDAY, A. N.: U-Pb dating of a remagnetized Paleozoic limestone, Geophys. Res. Lett., 18, 1445–1448, 1991.

DRAKE, H. et al. Isotopic evidence for microbial production and consumption of methane in the upper continental crust throughout the Phanerozoic eon. Earth and Planetary Science Letters, v. 470, p. 108–118, 2017.

DROST, K. et al. An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation. Geochemistry, Geophysics, Geosystems, v. 19, n. 12, p. 4631–4648, 2018.

ELISHA, B., NURIEL, P., KYLANDER-CLARK, A., & WEINBERGER, R. (2020). Towards in-situ U–Pb dating of dolomites. *Geochronology Discussions*, 1-17.

FOSSEN, H. 2012. Geologia Estrutural (trad. F.R.D. de Andrade). Editora Oficina de Textos. São Paulo. 584 p.

FRANÇOLIN, J. B. D. L., & SZATMARI, P. (2018). Mecanismo de rifteamento da porção oriental da margem norte brasileira. *Revista Brasileira de Geociências*, *17*(2), 196-207.

FRANÇOLIN, J. B. L., COBBOLD, P. R., & SZATMARI, P. (1994). Faulting in the Early Cretaceous Rio do Peixe basin (NE Brazil) and its significance for the opening of the Atlantic. *Journal of Structural Geology*, *16*(5), 647-661.

GANADE, C. E., CIOFFI, C. R., MACHADO, J. P., MIRANDA, T., LOPES, L. B., WEINBERG, R. F., ... & ROBERTS, N. M. (2022). Recurrent tectonic activity in northeastern Brazil during Pangea breakup: Constraints from U-Pb carbonate dating. *Geology*.

GANADE, C. E., WEINBERG, R. F., & CORDANI, U. G. 2013. Extruding the Borborema Province (NE- Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2), 157-168.

GARCIA, G. (2014). Modelagem estratigráfica do intervalo Cenomaniano-Turoniano, formações Açu e Jandaíra, na borda sudoeste da Bacia Potiguar.

GARZIONE, C. N., HOKE, G. D., LIBARKIN, J. C., WITHERS, S., MACFADDEN, B., EILER, J., ... & MULCH, A. (2008). Rise of the Andes. *science*, *320*(5881), 1304-1307.

GERALDES, M. C. (2010). Introdução à geocronologia. Sociedade Brasileira de Geologia. São Paulo-SP, 146p.

GILES, P. T., & FRANKLIN, S. E. (1998). An automated approach to the classification of the slope units using digital data. *Geomorphology*, *21*(3-4), 251-264.

GODEAU, N., DESCHAMPS, P., GUIHOU, A., LEONIDE, P., TENDIL, A., GERDES, A., ... & GIRARD, J. P. 2018. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France. Geology, 46(3), 247-250.

GOODFELLOW, B. W., VIOLA, G., BINGEN, B., NURIEL, P., & KYLANDER-CLARK, A. R. 2017. Palaeocene faulting in SE Sweden from U–Pb dating of slickenfibre calcite. Terra Nova, 29(5), 321-328.

GRAAF, S., REIJMER, J. J., BERTOTTI, G. V., BEZERRA, F. H., CAZARIN, C. L., BISDOM, K., & VONHOF, H. B. (2017). Fracturing and calcite cementation controlling fluid flow in the shallow-water carbonates of the Jandaíra Formation, Brazil. *Marine and Petroleum Geology*, *80*, 382-393.

GUILLONG, M., WOTZLAW, J. F., LOOSER, N., & LAURENT, O. (2020). Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material. *Geochronology*, *2*(1), 155-167.

GURNIS, M., MÜLLER, D., CANNON, J., & WILLIAMS, S. (2018, December). GPlates and pyGPlates: Open-source software for building a virtual Earth through deep time. In *AGU Fall Meeting Abstracts* (Vol. 2018, pp. NS53A-0546).

HACKSPACHER, P. C., & LEGRAND, J. M. (1989). Microstructural and metamorphic evolution of the Portalegre shear zone, northeastern Brazil. *Revista brasileira de geociências*, 19(1), 63-75.

HACKSPACHER, P. C., Corsino, A. R., Srivastava, N. K., & Tiriba, V. F. (1985). A Falha de Afonso Bezerra como evidência de significativo tectonismo frágil NW-SE, na Bacia Potiguar emersa–RN. *Boletim do Departamento de Geologia/UFRN, Natal, 10*, 33-44.

HANSMAN, R. J., ALBERT, R., GERDES, A., & RING, U. 2018. Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology, 46(3), 207-210.

HASUI, Y., CARNEIRO, C. D. R., DE ALMEIDA, F. F. M., & BARTORELLI, A. (Eds.). (2012). *Geologia do Brasil* (p. 900). São Paulo: Beca.

HEINE, C., ZOETHOUT, J., & MÜLLER, R. D. 2013. Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253.

HELLWIG, A. et al. Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (south-eastern Kazakhstan, Central Asia). Sedimentology, v. 65, n. 2, p. 517–539, 2018.

HOLDSWORTH, R. E., MCCAFFREY, K. J. W., DEMPSEY, E., ROBERTS, N. M. W., HARDMAN, K., MORTON, A., ... & ROBERTSON, A. 2019. Natural fracture propping and earthquake-induced oil migration in fractured basement reservoirs. Geology, 47(8), 700-704.

HOLLANDA, M.H.B.M., ARCHANJO, C.J., MACEDO FILHO, A.A., FOSSEN, H., ERNST, R.E., DE CASTRO, D.L., MELO, A.C., AND OLIVEIRA, A.L., 2019, The Mesozoic Equatorial Atlantic Magmatic Province (EQUAMP): A new large igneous province in South America, in Srivastava, R.K., et al., eds., Dyke Swarms of the World: A Modern Perspective: Singapore, Springer, p. 87–110

HOPLEY, P. J. et al. Speleothem evidence for C 3 dominated vegetation during the Late Miocene (Messinian) of South Africa. Review of Palaeobotany and Palynology, v. 264, p. 75–89, 2019.

INCERPI, N., MARTIRE, L., MANATSCHAL, G., BERNASCONI, S. M., GERDES, A., CZUPPON, G., ... & FIGUEREDO, P. H. 2020. Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre-to post-rift sedimentary sequence (SE Switzerland, N ITALY). Basin Research, 32(1), 91-115.

JIN, X. Y., ZHAO, J. X., FENG, Y. X., HOFSTRA, A. H., DENG, X. D., ZHAO, X. F., & LI, J. W. (2021). Calcite U-Pb dating unravels the age and hydrothermal history of the giant Shuiyindong Carlin-type gold deposit in the Golden Triangle, South China. *Economic Geology*, *116*(6), 1253-1265.

JOCHUM, K. P., STOLL, B., WEIS, U., JACOB, D. E., MERTZ-KRAUS, R., & ANDREAE, M. O. (2014). Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200 nm femtosecond LA-ICP-MS: A comparison with nanosecond lasers. *Geostandards and Geoanalytical Research*, *38*(3), 265-292.

KNESEL, K. M., SOUZA, Z. S., VASCONCELOS, P. M., COHEN, B. E., & SILVEIRA, F. V. (2011). Young volcanism in the Borborema Province, NE Brazil, shows no evidence for a trace of the Fernando de Noronha plume on the continent. *Earth and Planetary Science Letters*, *302*(1-2), 38-50.

KURUMADA, Y., AOKI, S., AOKI, K., KATO, D., SANEYOSHI, M., TSOGTBAATAR, K., ... & ISHIGAKI, S. (2020). Calcite U–Pb age of the Cretaceous vertebrate-bearing Bayn Shire Formation in the Eastern Gobi Desert of Mongolia: Usefulness of caliche for age determination. *Terra Nova*.

LAWSON, M. et al. Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating. Bulletin of the Geological Society of America, v. 130, n. 3–4, p. 617–629, 2018.

LI, Q., PARRISH, R. R., HORSTWOOD, M. S. A., & MCARTHUR, J. M. 2014. U–Pb dating of cements in Mesozoic ammonites. Chemical Geology, 376, 76-83.

LIIVAMÄGI, S. et al. Paleosols on the Ediacaran basalts of the East European Craton: A unique record of paleoweathering with minimum diagenetic overprint. Precambrian Research, v. 316, n. July, p. 66–82, 2018.

LOPES, L. B. et al. Cretaceous reactivation of the Neoproterozoic Pernambuco Shear Zone: initial results based on LA-ICP-MS U-Pb dating of calcite infilling in faults. XVII Simpósio Nacional de Estudos Tectônicos. Anais...2019

LUO, K., ZHOU, J. X., FENG, Y. X., UYSAL, I. T., NGUYEN, A., ZHAO, J. X., & ZHANG, J. (2020). In situ U-Pb dating of calcite from the South China antimony metallogenic belt. *Iscience*, *23*(10), 101575.

MACDONALD, J. M., FAITHFULL, J. W., ROBERTS, N. M. W., DAVIES, A. J., HOLDSWORTH, C. M., NEWTON, M., ... & JOHN, C. M. 2019. Clumped-isotope palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal calcite veins. Contributions to Mineralogy and Petrology, 174(7), 63.

MANGENOT, X. et al. An emerging thermochronometer for carbonate-bearing rocks: $\Delta 47 / (U-Pb)$. Geology, v. 46, n. 12, p. 1067–1070, 2018.

MANGENOT, X. et al. An emerging thermochronometer for carbonate-bearing rocks: $\Delta 47 / (U-Pb)$. Geology, v. 46, n. 12, p. 1067–1070, 2018.

MARKL, G. 2018. The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting: Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany. Geochimica et Cosmochimica Acta, 240, 11-42.

MARQUES, F. O., NOGUEIRA, F. C. C., BEZERRA, F. H. R., & DE CASTRO, D. L. (2014). The Araripe Basin in NE Brazil: An intracontinental graben inverted to a high-standing horst. *Tectonophysics*, *630*, 251-264.

MATOS, R. M. D. (1992). The northeast Brazilian rift system. Tectonics, 11(4), 766-791.

MATOS, R. M. D. (1999). History of the northeast Brazilian rift system: kinematic implications for the break-up between Brazil and West Africa. *Geological Society, London, Special Publications*, *153*(1), 55-73.

MATOS, R. M. D. (2000). Tectonic evolution of the equatorial South Atlantic. *Atlantic rifts* and continental margins, 115, 331-354.

MATOS, R.M.D. Sistema de riftes cretáceos do Nordeste Brasileiro. Natal: PETROBRAS/DEPEX/DEBAR, Relatório Interno, 34 p., 1987.

MATOS, R. M. D., NORTON, I., CASEY, E., & KRUEGER, A. (2019). An orthogonal zone between the Equatorial and South Atlantic margins: relevance and control in the evolution of the Afro-Brazilian basins. In 16th International Congress of the Brazilian Geophysical Society, SBGf-Sociedade Brasileira de Geofísica-Rio de Janeiro, August 2019. Expanded Abstract.

MATOS, R. M. D., KRUEGER, A., NORTON, I., & CASEY, K. (2021). The fundamental role of the Borborema and Benin–Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system. *Marine and Petroleum Geology*, *127*, 104872

MAZUREK, M. et al. Veins in clay-rich aquitards as records of deformation and fluid-flow events in northern Switzerland. Applied Geochemistry, v. 95, n. December 2017, p. 57–70, 2018.

METHNER, K. et al. Rapid Middle Eocene temperature change in western North America. Earth and Planetary Science Letters, v. 450, p. 132–139, 2016.

MILANI, E. J., & DAVISON, I. 1988. Basement control and transfer tectonics in the Recôncavo-Tucano-Jatobá rift, Northeast Brazil. Tectonophysics, 154(1-2), 4153-5070.

MIRANDA, T. S., NEVES, S. P., CELESTINO, M. A. L., & Roberts, N. M. (2020). Structural evolution of the Cruzeiro do Nordeste shear zone (NE Brazil): Brasiliano-Pan-African-ductileto-brittle transition and Cretaceous brittle reactivation. *Journal of Structural Geology*, 104203. MIZUSAKI, A. M. P., THOMAZ-FILHO, A., MILANI, E. J., & DE CÉSERO, P. (2002). Mesozoic and Cenozoic igneous activity and its tectonic control in northeastern Brazil. *Journal of South American Earth Sciences*, *15*(2), 183-198.

MOHRIAK, W. U., MELLO, M. R., BASSETTO, M., VIEIRA, I. S., & KOUTSOUKOS, E. A. M. 2000. AAPG Memoir 73, Chapter 20: Crustal Architecture, Sedimentation, and Petroleum Systems in the Sergipe-Alagoas Basin, Northeastern Brazil.

MORAIS NETO, J. M. (2003). Expressão sísmica da deformação frágil pós-Mioceno na Bacia Potiguar submersa, nordeste do Brasil. In *Proceedings of the 9th Simpósio Nacional de Estudos Tectônicos and the 3rd International Symposium on Tectonics of the SBG, Búzios* (pp. 269-272). MORAIS NETO, J. M., HEGARTY, K. A., KARNER, G. D., & ALKMIM, F. F. D. (2009). Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema Province, northeastern Brazil. *Marine and Petroleum Geology*, *26*(7), 1070-1086.

MOTTRAM, C. M., KELLETT, D. A., BARRESI, T., ZWINGMANN, H., FRIEND, M., TODD, A., & PERCIVAL, J. B. (2020). Syncing fault rock clocks: Direct comparison of U-Pb carbonate and K-Ar illite fault dating methods. *Geology*.

MÜLLER, R. D., ZAHIROVIC, S., WILLIAMS, S. E., CANNON, J., SETON, M., BOWER, D. J., ... & GURNIS, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. *Tectonics*, *38*(6), 1884-1907.

NEVES, S.P., 2003. Proterozoic history of the Borborema Province (NE Brazil): correlations with neighboring cratons and Pan-African belts, and implications for the evolution of western Gondwana. Tectonics 22, 1031.

NEVES, S.P., MONIE, P., BRUGUIER, O. AND DA SILVA, J.M.R. 2012. Geochronological, thermochronological and thermobarometric constraints on deformation, magmatism and thermal regimes in eastern Borborema Province (NE Brazil). J. S. Am. Earth Sci., 38, 129–146 NURIEL, P. et al. Reactivation history of the North Anatolian fault zone based on calcite age-strain analyses. Geology, v. 47, n. 5, p. 465–469, 2019.

NURIEL, P. et al. The onset of the dead sea transform based on calcite age-strain analyses. Geology, v. 45, n. 7, p. 587–590, 2017.

NURIEL, P. et al. The onset of the dead sea transform based on calcite age-strain analyses. Geology, v. 45, n. 7, p. 587–590, 2017.

NURIEL, P., ROSENBAUM, G., ZHAO, J. X., FENG, Y., GOLDING, S. D., VILLEMANT, B., & WEINBERGER, R. 2012. U-Th dating of striated fault planes. Geology, 40(7), 647-650. NURIEL, P., WOTZLAW, J. F., OVTCHAROVA, M., VAKS, A., STREMTAN, C., ŠALA, M., ... & KYLANDER-CLARK, A. R. (2020). The use of ASH-15 flowstone as a matrixmatched reference material for laser-ablation U-Pb geochronology of calcite. *Geochronology Discussions*, 1-26.

OLIVEIRA, E. P., WINDLEY, B. F., & ARAÚJO, M. N. (2010). The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. *Precambrian Research*, *181*(1-4), 64-84.

OLSEN, P.E., 1997, Stratigraphic record of the early Mesozoic breakup of the Pangea in the LaurasiaGondwana rift system: Annual Review of Earth and Planetary Sciences, v. 25, p. 337–401,

OREN, O., NURIEL, P., KYLANDER-CLARK, A. R., & HAVIV, I. (2020). Evolution and Propagation of an Active Plate Boundary: U-Pb Ages of Fault-Related Calcite From the Dead Sea Transform. *Tectonics*, *39*(8), e2019TC005888.

PAGEL, M. et al. Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining $\Delta 47$ temperature, $\delta 180$ water and U-Pb age. Chemical Geology, v. 481, n. December 2017, p. 1–17, 2018.

PAOLA, N. DE et al. Partitioned transtension : an alternative to basin inversion models. Journal of Structural Geology, v. 27, n. 4, p. 607–625, 2005.

PARRISH, R. R., PARRISH, C. M., & LASALLE, S. 2018. Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. Journal of the Geological Society, 175(3), 425-442.

PATON, C. et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, v. 26, n. 12, p. 2508, dez. 2011.

PATON, C., WOODHEAD, J. D., HELLSTROM, J. C., HERGT, J. M., GREIG, A., & MAAS, R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry, Geophysics, Geosystems*, *11*(3).

PESSOA NETO, O. D. C., SOARES, U. M., SILVA, J. D., ROESNER, E. H., FLORENCIO,
C. P., & SOUZA, C. D. (2007). Bacia potiguar. *Boletim de Geociências da PETROBRÁS*, 15(2), 357-369.

PEVEAR, D. R. (1999). Illite and hydrocarbon exploration. *Proceedings of the National Academy of Sciences*, 96(7), 3440-3446.

PICKERING, R., KRAMERS, J. D., PARTRIDGE, T., KODOLANYI, J., AND PETTKE, T.: U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS,Quat. Geochronol., 5, 544–558, 2010.

PINET, N., DAVIS, W. J., PETTS, D. C., SACK, P., MERCIER-LANGEVIN, P., LAVOIE, D., & JACKSON, S. E. (2022). U-Pb vein calcite dating reveals the age of Carlin-type gold deposits of central Yukon and a contemporaneity with a regional intrusion-related metallogenic event. *Economic Geology*, *117*(4), 905-922.

POLLARD, D.D., SEGALL, P., 1987. Theoretical displacements and stresses near fractures in rocks: with applications to faults, joints, dikes and solution surfaces. In: Atkinson, B.K. (Ed.), Fracture Mechanics of Rock. Academic Press, London, pp. 277e348.

PONTE, F. C., HASHIMOTO, A. T., & DINO, R. (1991). Geologia das bacias mesozóicas do interior do Nordeste do Brasil. *Petrobrás SA, Rio de Janeiro*.

RASBURY, E. T., & COLE, J. M. (2009). Directly dating geologic events: U-Pb dating of carbonates. *Reviews of Geophysics*, 47(3).

RASBURY, E. T., HANSON, G. N., MEYERS, W. J., AND SALLER, A. H.: Dating of the time of sedimentation using U-Pb ages for paleosol calcite, Geochim. Cosmochim. Ac., 61, 1525–1529, 1997.

RICHARDS, D. A., BOTTRELL, S. H., CLIFF, R. A., STRÖHLE, K., AND ROWE, P. J.: U-Pb dating of a speleothem of Quaternary age, Geochim. Cosmochim. Ac., 62, 3683–3688, 1998. RING, U.; GERDES, A. Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics, v. 35, n. 6, p. 1367–1391, 2016.

ROBERTS, N. M. W. et al. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems, v. 18, n. 7, p. 2807–2814, 2017.

ROBERTS, N. M. W. et al. LA-ICP-MS U-Pb carbonate geochronology: strategies, progress, and application to fracture-fill calcite. Geochronology Discuss., v. 2019, n. November, p. 1–67, 6 nov. 2019.

ROBERTS, N. M. W.; WALKER, R. J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, v. 44, n. 7, p. 531–534, 2016.

ROBERTS, N. M., & HOLDSWORTH, R. E. (2022). Timescales of faulting through calcite geochronology: A review. *Journal of Structural Geology*, 104578.

ROBERTS, N., DROST, K., HORSTWOOD, M., CONDON, D., DRAKE, H., MILODOWSKI, A., ... & IMBER, J. 2020. LA-ICP-MS U-Pb carbonate geochronology: strategies, progress, and application to fracture-fill calcite. Geochronology Discussion.

ROCHA, B.C., DAVIES, J.H.F.L., JANASI, V.A., SCHALTEGGER, U., NARDY, A.J.R., GREBER, N.D., LUCCHETTI, A.C.F., AND POLO, L.A., 2020, Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event: Geology, v. 48, p. 1174–1178.

SAWATZKY, D., RAINES, G., & BONHAM-CARTER, G. (2009). Spatial data modeller. *Recuperado de http://www. ige. unicamp. br/sdm/ArcSDM93/source/ReadMe ArcSDM2009. pdf.*

SCARDIA, G. et al. Chronologic constraints on hominin dispersal outside Africa since 2.48 Ma from the Zarqa Valley, Jordan. Quaternary Science Reviews, v. 219, p. 1–19, 2019.

SCHOLZ, C.H., 2002. The Mechanics of Earthquakes and Faulting, second ed. Cam- bridge University Press, Cambridge.

SÉNANT, J., & POPOFF, M. (1991). Early Cretaceous extension in northeast Brazil related to the South Atlantic opening. *Tectonophysics*, *198*(1), 35-46.

SIAL, A. N., LONG, L. E., PESSOA, D. A., & KAWASHITA, K. O. J. I. (1981). Potassiumargon ages and strontium isotope geochemistry of Mesozoic and Tertiary basaltic rocks, northeastern Brazil. *Academia Brasileira de Ciências*, *53*(1), 115-121.

SIMPSON, A., GLORIE, S., MORLEY, C. K., ROBERTS, N. M., GILLESPIE, J., & LEE, J. K. (2021). In-situ calcite U-Pb geochronology of hydrothermal veins in Thailand: new constraints on Indosinian and Cenozoic deformation. *Journal of Asian Earth Sciences*, 206, 104649.

SMERAGLIA, L. et al. Development of an Intrawedge Tectonic Mélange by Out-of-Sequence Thrusting, Buttressing, and Intraformational Rheological Contrast, Mt. Massico Ridge, Apennines, Italy. Tectonics, v. 38, n. 4, p. 1223–1249, 2019.

SMITH, P. E. AND FARQUHAR, R. M.: Direct dating of Phanerozoic sediments by the 238U–206Pb method, Nature, 341, p. 518, 1989.

SOUZA, S. F. D. (2015). Cartografia geofísica do arcabouço estrutural da bacia potiguar emersa, com base em dados gravimétricos e magnéticos (Master's thesis, Universidade Federal do Rio Grande do Norte).

SOUZA, Z. S., VASCONCELOS, P. M., Nascimento, M. A. L., Silveira, F. V., Paiva, H. S., Dias, L. G. S., ... & Carmo, I. O. (2003, January). 40Ar/39Ar geochronology of Mesozoic and Cenozoic magmatism in NE Brazil. In *Short Papers of the IV South American Symposium on Isotope Geology* (Vol. 2).

SPALDING, J., SCHNEIDER, D. A., & BROWN, J. Geochronology of calcite-filled joints, southeast Canada: Insight into Late Cretaceous deformation of eastern North America. *Terra Nova*.

TILLBERG, M., DRAKE, H., ZACK, T., KOOIJMAN, E., WHITEHOUSE, M. J., & ÅSTRÖM, M. E. 2020. In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults. Scientific Reports, 10(1), 1-13.

VAN DER PLUIJM, B. A., HALL, C. M., VROLIJK, P. J., PEVEAR, D. R., & COVEY, M. C. 2001. The dating of shallow faults in the Earth's crust. Nature, 412(6843), 172-175

VERMEESCH, P. (2008). Three new ways to calculate average (U–Th)/He ages. *Chemical Geology*, 249(3-4), 339-347.

VERMEESCH, P. (2018). IsoplotR: A free and open toolbox for geochronology. *Geoscience Frontiers*, *9*(5), 1479-1493.

VIEGAS, L. G. F., ARCHANJO, C. J., HOLLANDA, M. H. B., & VAUCHEZ, A. (2014). Microfabrics and zircon U–Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). *Precambrian Research*, *243*, 1-17.

VOLL, K. (2015). Determinação isotópica pelo método U-Pb em zircão com aplicação em padrões geológicos.

WALTER, B. F. et al. The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting: Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany. Geochimica et Cosmochimica Acta, v. 240, p. 11–42, 2018.

WOODHEAD, J., HELLSTROM, J., MAAS, R., DRYSDALE, R., ZANCHETTA, G., DEVINE, P., AND TAYLOR, E.: U–Pb geochronology of speleothems by MC-ICPMS, Quatern. Geochronol., 1, 208–221, 2006.

XAVIER-NETO, P., BEZERRA, F. H. R., SILVA, C. D., & CRUZ, J. B. (2008). O condicionamento estrutural do Carste Jandaíra e da espeleogênese associada pela tectônica póscampaniana da Bacia Potiguar. In *Congresso Brasileiro de Geologia* (Vol. 44).

YANG, P., WU, G., NURIEL, P., NGUYEN, A. D., CHEN, Y., YANG, S., ... & ZHAO, J. X. (2021). In situ LA-ICPMS UPb dating and geochemical characterization of fault-zone calcite in the central Tarim Basin, northwest China: Implications for fluid circulation and fault reactivation. *Chemical Geology*, *568*, 120125.

YOKOYAMA, T., Kimura, J. I., Mitsuguchi, T., Danhara, T., Hirata, T., Sakata, S., ... & Saito-Kokubu, Y. (2018). U-Pb dating of calcite using LA-ICP-MS: Instrumental setup for nonmatrix-matched age dating and determination of analytical areas using elemental imaging. *Geochemical Journal*, *52*(6), 531-540. ANEXO A - Dados isotópicos dos testes iniciais

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho
	CPS	CPS	ppm							
GJ1 + WC1 NZ 01	9501.53	998.131	35.1651	0.10505	5.07933	0.615435	10.0977	0.04249	8.72714	0.86427
GJ1 + WC1 NZ 02	9696.41	1367.91	30.9984	0.141073	11.3394	0.956805	33.3613	0.04919	31.375	0.94046
GJ1 + WC1 NZ 03	7106.29	972.377	24.4744	0.136833	6.59975	0.861448	18.7362	0.04566	17.5354	0.93591
GJ1 + WC1 NZ 04	9400.71	1441.12	29.3432	0.153299	4.6212	1.064877	12.8556	0.05038	11.9962	0.93316
GJ1 + WC1 NZ 05	9949.42	1574.41	30.5407	0.158241	6.37582	1.117751	19.494	0.05123	18.4218	0.945
GJ1 + WC1 NZ 06	9487.4	1440.36	30.5413	0.151818	9.1381	1.022561	28.5276	0.04885	27.0244	0.94731
GJ1 + WC1 NZ 07	10192.8	1355.01	33.575	0.132938	5.40293	0.875052	14.6106	0.04774	13.5749	0.92911
GJ1 + WC1 NZ 08	11196.2	1214.73	39.3885	0.108495	7.15147	0.668679	17.8505	0.0447	16.3553	0.91624
GJ1 + WC1 NZ 09	9236.1	1560.28	30.071	0.168932	4.13902	1.125021	9.84014	0.0483	8.92731	0.90723
GJ1 + WC1 NZ 10	8933.56	894.225	32.4596	0.100097	10.7745	0.597325	25.5004	0.04328	23.1123	0.90635
GJ1 + WC1 NZ 11	11095.8	1258.53	35.0095	0.113424	11.3861	0.77944	27.6082	0.04984	25.151	0.911
GJ1 + WC1 NZ 12	9386.4	1357.16	30.0869	0.144588	3.90497	0.978047	9.84992	0.04906	9.04279	0.91806
GJ1 + WC1 NZ 13	7608.65	871.867	24.7825	0.114589	8.18263	0.762802	19.2097	0.04828	17.3798	0.90474
GJ1 + WC1 NZ 14	8105.98	1069.09	26.234	0.131889	6.4914	0.883602	16.0925	0.04859	14.7251	0.91503
GJ1 + WC1 NZ 15	8287.86	1211.6	24.6652	0.146189	11.1892	1.065075	31.7138	0.05284	29.6744	0.93569
GJ1 + WC1 NZ 16	7285	1146.86	22.0818	0.157428	6.66092	1.126113	18.0911	0.05188	16.8202	0.92975
GJ1 + WC1 NZ 17	7478.58	685.163	26.2745	0.091617	8.53565	0.565413	12.6367	0.04476	9.31815	0.73739
GJ1 + WC1 NZ 18	7313	847.284	23.9485	0.11586	4.55722	0.767109	9.31284	0.04802	8.12162	0.87209
GJ1 + WC1 NZ 19	8663.7	776.79	29.1675	0.08966	14.6131	0.577446	30.3151	0.04671	26.5606	0.87615
GJ1 + WC1 NZ 20	9208.48	1064.32	29.0139	0.11558	9.95202	0.795374	23.77	0.04991	21.5864	0.90813
GJ1 + WC1 NZ 21	8135.85	891.946	25.5167	0.109632	12.4362	0.757916	28.2126	0.05014	25.3238	0.8976
GJ1 + WC1 NZ 22	7175.92	803.109	23.32	0.111917	5.01148	0.746713	10.3193	0.04839	9.02074	0.87416
GJ1 + WC1 NZ 23	7865.86	871.878	25.5991	0.110843	4.60378	0.738478	9.22712	0.04832	7.99656	0.86664
GJ1 + WC1 NZ 24	7556	1196.49	22.7498	0.15835	4.15535	1.140353	9.01754	0.05223	8.00306	0.8875
GJ1 + WC1 NZ 25	9230.76	1448.44	27.513	0.156914	4.34703	1.141481	11.1299	0.05276	10.2458	0.92057
GJ1 + WC1 NZ 26	9151.01	1167.62	28.2443	0.127594	4.23825	0.896347	9.81903	0.05095	8.85723	0.90205
GJ1 + WC1 NZ 27	7361.68	997.331	22.6327	0.135476	4.89444	0.955453	10.6787	0.05115	9.49097	0.88878

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	206Pb/238U
	CPS	CPS	ppm								com FC 0.9457
GJ1 + ASH 15D 01	453.4564	221.7756	2.573568	0.77816	31.3406	3.111488	31.34061	0.029	35	1.116762	0.0274253
GJ1 + ASH 15D 02	1064.858	607.5466	0.854315	0.83569	13.52655	23.6384	13.5281	0.20515	23.10505	1.707929	0.194010355
GJ1 + ASH 15D 03	1533.023	945.8957	1.725363	0.83856	9.750048	16.90836	9.751144	0.14624	20.89032	2.142345	0.138299168
GJ1 + ASH 15D 04	1257	1177.998	1.3944	0.93715	45.25209	19.17152	45.25234	0.14837	52.57127	1.161736	0.140313509
GJ1 + ASH 15D 05	722.5661	395.183	1.035667	0.79674	18.14896	12.61459	18.14932	0.11483	25.47244	1.403493	0.108594731
GJ1 + ASH 15D 06	986.9711	682.6264	0.997688	0.90534	12.60963	20.32454	12.61068	0.16282	22.57094	1.789827	0.153978874
GJ1 + ASH 15D 07	1321.841	918.5981	5.434903	0.76999	9.610514	4.249834	9.610598	0.04003	20.73445	2.157457	0.037856371
GJ1 + ASH 15D 08	1056.471	743.0545	12.78548	0.75437	11.32601	1.41457	11.32602	0.0136	21.32353	1.882704	0.01286152
GJ1 + ASH 15D 09	3885.915	2712.718	11.80681	0.79974	5.806887	5.973226	5.80714	0.05417	19.38342	3.33786	0.051228569
GJ1 + ASH 15D 10	1272.573	727.2086	3.636287	0.78363	11.44418	6.223502	11.44432	0.0576	21.52778	1.881088	0.05447232
GJ1 + ASH 15D 11	1196.094	707.7665	1.89091	0.82683	11.78477	11.86889	11.78523	0.10411	21.85189	1.854176	0.098456827
GJ1 + ASH 15D 12	1045.537	712.9266	2.19914	0.79479	11.50493	8.575077	11.50519	0.07825	21.59744	1.877191	0.074001025
GJ1 + ASH 15D 13	1721.609	986.7744	2.260339	0.7614	10.52797	13.16052	10.52872	0.12536	8.42374	0.800072	0.118552952
GJ1 + ASH 15D 14	1011	793.5238	1.067957	0.78489	10.7531	16.86186	10.75423	0.15581	8.497529	0.790157	0.147349517
GJ1 + ASH 15D 15	1113.996	766.9036	5.122949	0.88557	11.49542	4.370045	11.49548	0.03579	8.661637	0.753482	0.033846603
GJ1 + ASH 15D 16	764.4597	554.9044	2.592107	0.84204	14.11809	5.635517	14.11818	0.04854	9.229501	0.653732	0.045904278
GJ1 + ASH 15D 17	546.9651	341.3352	0.466203	0.87973	22.07495	23.42248	22.0758	0.1931	11.65199	0.527818	0.18261467
GJ1 + ASH 15D 18	517.5195	210.2706	0.230764	0.76185	31.2765	38.77275	31.27868	0.36911	15.81642	0.505662	0.349067327
GJ1 + ASH 15D 19	591.8118	382.7645	0.446648	0.80582	18.80817	24.2301	18.80943	0.21808	10.6383	0.565583	0.206238256
GJ1 + ASH 15D 20	294	228.8437	0.638712	0.77838	29.18369	8.130793	29.18379	0.07576	13.27878	0.455005	0.071646232
GJ1 + ASH 15D 21	390.1693	153.8005	3.456252	0.77677	41.31982	1.989937	41.31983	0.01858	17.22282	0.416817	0.017571106
GJ1 + ASH 15D 22	607.4317	416.4357	3.094273	0.80393	18.17571	3.58143	18.17574	0.03231	10.21356	0.561933	0.030555567
GJ1 + ASH 15D 23	786.5952	477.104	3.184848	0.77831	15.57734	4.362289	15.57739	0.04065	9.495695	0.609582	0.038442705
GJ1 + ASH 15D 24	741.9831	546.9464	2.253579	0.76496	13.77327	5.715565	13.77338	0.05419	9.042259	0.656503	0.051247483

GJ1 + ASH 15D	931.57	9 539.2676	1.256158	0.81215	14.46531	13.66819	14.46582	0.12206	0.339669 0.6	45637 0.115	432142
Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	J 2s (%)	Rho	206Pb/238U
	CPS	CPS	ррт								com FC 0.9457
GJ1 + JT NZ 01	583.944349	386.6635	1.53184865	0.82975	18.40554384	7.601129989	18.40566376	0.06644	27.7694160	1.508742982	0.062832308
GJ1 + JT NZ 02	1216.299187	801.93113	2.185909909	0.80113	11.56366632	10.71239183	11.56407298	0.09698	24.1802433	5 2.090979829	0.091713986
GJ1 + JT NZ 04	805.4716469	428.4126	7.289000781	0.70812	16.4774332	1.880461379	16.47744446	0.01926	26.22014538	8 1.591274997	0.018214182
GJ1 + JT NZ 05	990.3685618	780.98722	2.036959565	0.84614	11.18018295	9.886258468	11.18050409	0.08474	24.13264102	2.158457332	0.080138618
GJ1 + JT NZ 06	1392.747308	958.9506	3.178093687	0.81267	9.696432746	8.558450767	9.696733569	0.07638	23.4354543	2.416840077	0.072232566
GJ1 + JT NZ 07	1036.850494	794.45278	2.179106698	0.81818	11.03913564	9.355387901	11.03944714	0.08293	23.99614132	2 2.173672379	0.078426901
GJ1 + JT NZ 08	991.8234634	533.86956	2.456174044	0.82899	14.89040881	8.044514318	14.89057514	0.07038	25.93066212	2 1.74141441	0.066558366
GJ1 + JT NZ 09	1322.791641	887.88075	3.241250935	0.81085	10.01911574	7.952333858	10.01936823	0.07113	23.47813862	2 2.343275352	0.067267641
GJ1 + JT NZ 10	2342.924303	896.06118	33.17219628	0.64326	9.227994901	1.091806999	9.228003112	0.01231	23.15190902	2 2.508875294	0.011641567
GJ1 + JT NZ 11	551.9567175	427.17825	1.94659814	0.83925	17.7873101	5.718674342	17.78737875	0.04942	11.00768919	0.618848305	0.046736494
GJ1 + JT NZ 12	1386.625538	958.0662	3.209080183	0.81886	9.984612754	8.502831629	9.984896767	0.07531	9.40114194′	0.941536219	0.071220667
GJ1 + JT NZ 13	950.8347361	473.6106	3.805317529	0.73428	15.20945688	4.409112025	15.20951923	0.04355	10.24110218	8 0.673335036	0.041185235
GJ1 + JT NZ 14	2069.341187	1170.61623	25.34552104	0.67161	8.213099865	1.31772058	8.213112192	0.01423	8.99508081	5 1.095209782	0.013457311
GJ1 + JT NZ 15	743.3686404	223.06324	34.27570988	0.36931	22.75595029	0.192479349	22.7559506	0.00378	10.58201058	8 0.465021689	0.003574746
GJ1 + JT NZ 16	693.1462433	250.39584	23.05513177	0.42876	21.61582237	0.309775327	21.61582301	0.00524	10.6870229	0.494407402	0.004955468
GJ1 + JT NZ 17	286.8695476	377.28845	2.150480522	0.79765	19.66777409	2.557034582	19.66778783	0.02325	11.44086022	0.581705493	0.021987525
GJ1 + JT NZ 18	286.763755	205.45684	2.023491234	0.76663	32.52155538	2.610862727	32.52156476	0.0247	14.89878543	0.45812019	0.02335879
GJ1 + JT NZ 19	1553.018508	775.85116	25.58379613	0.61187	10.02827398	0.892577845	10.02827956	0.01058	9.262759924	0.923663911	0.010005506
GJ1 + JT NZ 20	1186.787201	877.18869	11.16878404	0.70119	9.646458164	1.79051503	9.646475942	0.01852	9.287257019	0.962761642	0.017514364

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho
	CPS	CPS	ppm							
BB + WC1 NZ 01	30419.7255925	3150.8824700	21.6652299	0.1035802	3.7423829	0.7160816	7.7298031	0.0501400	6.7634625	0.8749851
BB + WC1 NZ 02	28712.3077810	2678.3049400	21.0538478	0.0932807	4.8460864	0.6263573	9.8205222	0.0487000	8.5415515	0.8697655
BB + WC1 NZ 03	15764.7300000	1966.8538800	10.8428685	0.1247629	6.6990446	0.8931441	16.2946612	0.0519200	14.8539148	0.9115817
BB + WC1 NZ 04	14471.1550665	1923.8594000	10.0656001	0.1329444	7.5650671	0.9410816	19.8740708	0.0513400	18.3779338	0.9247191
BB + WC1 NZ 05	21803.0729116	2159.6592600	16.2004202	0.0990530	4.7198210	0.6563758	9.8627090	0.0480600	8.6600415	0.8780591
BB + WC1 NZ 06	24886.0612124	2473.1901500	17.8666333	0.0993805	3.0461763	0.6815668	5.6382829	0.0497400	4.7445804	0.8414939
BB + WC1 NZ 07	25384.8805144	2504.0425000	18.2872560	0.0986431	2.7912178	0.6741969	4.9423262	0.0495700	4.0786875	0.8252566
BB + WC1 NZ 08	25192.8539202	2818.4320000	17.7724609	0.1118743	3.6057380	0.7808248	7.5576217	0.0506200	6.6420101	0.8788493
BB + WC1 NZ 09	26651.9986815	2475.8684200	19.7827547	0.0928962	3.7536864	0.6162180	6.4569136	0.0481100	5.2537198	0.8136581
BB + WC1 NZ 10	27217.3248828	3084.2572900	20.2065747	0.1133196	5.2267280	0.7515390	12.4501729	0.0481000	11.2999168	0.9076112
BB + WC1 NZ 11	18942.2227298	2266.5198400	14.0047754	0.1196544	5.3887958	0.7968508	13.0751708	0.0483000	11.9130588	0.9111207
BB + WC1 NZ 12	26707.9299867	3219.0952500	19.3026846	0.1205296	4.7506759	0.8211259	11.5156173	0.0494100	10.4900201	0.9109386
BB + WC1 NZ 13	12875.4851361	2183.6979500	8.4503990	0.1696012	3.2338758	1.2723569	6.7857695	0.0544100	5.9656278	0.8791380
BB + WC1 NZ 14	8521.8684238	820.4719800	13.9208545	0.0962784	5.2380757	0.5769258	9.2766130	0.0434600	7.6562466	0.8253278
BB + WC1 NZ 15	9308.4898931	770.5986400	15.8857123	0.0827845	7.5933645	0.4748360	14.8505716	0.0416000	12.7624563	0.8593916
BB + WC1 NZ 16	7767.8199603	886.5375000	12.9971135	0.1141295	6.4212061	0.6676860	15.2600930	0.0424300	13.8433576	0.9071608
BB + WC1 NZ 17	10847.8503191	934.0135200	19.5019187	0.0861013	4.3827381	0.4688111	7.2932811	0.0394900	5.8295417	0.7993030
BB + WC1 NZ 18	6391.7541690	674.2417500	10.5431065	0.1054862	4.8945745	0.6259925	7.3941245	0.0430400	5.5422214	0.7495440
BB + WC1 NZ 19	6570.0584822	591.9735500	10.6833214	0.0901017	7.5455171	0.5423980	12.6522777	0.0436600	10.1560476	0.8027051
BB + WC1 NZ 20	9211.0000000	930.9557700	15.4009526	0.1010700	3.7597705	0.5917027	4.7607336	0.0424600	2.9203957	0.6134340
BB + WC1 NZ 21	8168.5111672	805.3111600	14.3578643	0.0985873	4.4637888	0.5490298	7.2987658	0.0403900	5.7746491	0.7911816

BB + WC1 NZ 22	9550.6293639	1151.5196000	17.0446467	0.1205700	3.7240048	0.6613105	6.9028093	0.0397800	5.8121050	0.8419912
BB + WC1 NZ 23	6873.0358630	758.0285600	11.5845999	0.1102902	6.4599768	0.6405110	14.2713410	0.0421200	12.7255598	0.8916863
BB + WC1 NZ 24	11029.7865531	1239.4067400	19.8440731	0.1123691	9.3482739	0.6113714	26.6216992	0.0394600	24.9263845	0.9363183
BB + WC1 NZ 25	9705.7991323	1089.7647000	20.3200280	0.1122797	5.0816950	0.5249652	13.7623067	0.0339100	12.7897404	0.9293312
BB + WC1 NZ 26	9321.0000000	1087.7607000	16.3998457	0.1167000	3.4447301	0.6492555	4.5186665	0.0403500	2.9244114	0.6471846
BB + WC1 NZ 27	9009.2401846	843.9625700	16.8271702	0.0936774	8.6252901	0.4909465	20.8061040	0.0380100	18.9340523	0.9100239
BB + WC1 NZ 28	10080.3311904	1288.7508000	21.9876019	0.1278481	3.3073031	0.7363086	13.4104161	0.0417700	12.9961920	0.9691118
BB + WC1 NZ 29	10369.9188109	1144.6134000	23.0834730	0.1103782	5.6185412	0.6229117	18.5004778	0.0409300	17.6266750	0.9527686
BB + WC1 NZ 30	9426.4029421	1319.6079600	19.7798831	0.1399906	5.9136178	0.8380888	21.2741807	0.0434200	20.4357503	0.9605893
BB + WC1 NZ 31	9930.7869093	1315.1803800	21.1203806	0.1324347	6.3152467	0.7822623	22.0734373	0.0428400	21.1507516	0.9581993
BB + WC1 NZ 32	9946.9170879	1563.3972000	20.6438891	0.1571740	3.2250436	0.9513638	13.9410239	0.0439000	13.5628625	0.9728742
BB + WC1 NZ 33	8747.5971340	1439.7055500	17.5743399	0.1645830	3.3284964	1.0291140	14.0128980	0.0453500	13.6118486	0.9713800
BB + WC1 NZ 34	10987.6537098	1945.9595400	19.7921821	0.1771042	3.8226771	1.2351194	16.2808722	0.0505800	15.8257366	0.9720448
BB + WC1 NZ 35	9316.6850622	1101.6170000	20.8254684	0.1182413	3.8580409	0.6645148	14.2468159	0.0407600	13.7144917	0.9626356
BB + WC1 NZ 36	11742.0621940	1989.4900600	22.9133211	0.1694328	3.7929849	1.0907433	16.3673544	0.0466900	15.9217950	0.9727776
BB + WC1 NZ 37	12818.3642491	2528.1897400	23.7568181	0.1972319	2.9334817	1.3368732	14.3901500	0.0491600	14.0879772	0.9790014
BB + WC1 NZ 38	11647.7458681	1622.0072500	24.8008827	0.1392550	4.4524224	0.8215887	16.3135803	0.0427900	15.6942294	0.9620346
BB + WC1 NZ 39	10587.6280656	2022.0725600	19.7915902	0.1909845	2.8643614	1.2834674	13.6195491	0.0487400	13.3149371	0.9776342
BB + WC1 NZ 40	9906.2592080	1808.3397000	18.4686388	0.1825452	4.6919958	1.2300250	19.4357928	0.0488700	18.8609442	0.9704232
BB + WC1 NZ 41	10868.7782629	2048.0350800	18.3891883	0.1884329	6.4249752	1.3990835	22.5809936	0.0538500	21.6476550	0.9586671
BB + WC1 NZ 42	10317.0884779	2049.9739000	17.7860579	0.1986969	3.1271751	1.4478962	14.3541437	0.0528500	14.0093617	0.9759803
BB + WC1 NZ 43	10663.7252866	2353.6236000	17.3464622	0.2207131	2.8026100	1.7044918	13.6783787	0.0560100	13.3881822	0.9787843
BB + WC1 NZ 44	12358.2461967	2513.1290400	20.6031780	0.2033564	3.3992957	1.5323197	15.5570037	0.0546500	15.1810788	0.9758356
BB + WC1 NZ 45	10052.1422043	1157.5288800	20.3840157	0.1151525	5.7459914	0.7133635	18.2495672	0.0449300	17.3213823	0.9491393
BB + WC1 NZ 46	14350.9208416	3275.1995000	21.2846637	0.2282223	4.0142951	1.9330353	17.8378520	0.0614300	17.3802876	0.9743487
BB + WC1 NZ 47	13892.6833122	3011.7139900	21.6629595	0.2167842	4.0343154	1.7464846	17.8189527	0.0584300	17.3562488	0.9740331
BB + WC1 NZ 48	15853.8687910	3147.5811200	25.3902434	0.1985371	4.6492508	1.5573237	19.2605737	0.0568900	18.6910184	0.9704290
BB + WC1 NZ 49	17994.2873203	3697.3257100	27.7499179	0.2054722	3.4292068	1.6737663	15.7959491	0.0590800	15.4192266	0.9761507
----------------	---------------	--------------	------------	-----------	-----------	-----------	------------	-----------	------------	-----------
BB + WC1 NZ 50	14137.8158148	2814.8908500	22.4095481	0.1991037	2.9838682	1.5779647	14.3146974	0.0574800	14.0002533	0.9780335
BB + WC1 NZ 51	12305.0648525	2656.6002200	18.4152154	0.2158949	4.2423581	1.8122504	17.9756366	0.0608800	17.4678536	0.9717516
BB + WC1 NZ 52	13894.7548090	2639.2476000	22.6670629	0.1899456	4.5320445	1.4626947	18.5458138	0.0558500	17.9835420	0.9696820
BB + WC1 NZ 53	13874.6337191	2740.2997800	21.2994477	0.1975043	4.2873935	1.6162128	17.5277222	0.0593500	16.9952729	0.9696225

Identifier	207Pb	206Pb	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	206Pb/238U
	CPS	CPS								com FC 1.0216
BB + JT NZ 01	274.4382	143.6559	0.523454	20.29738	0.705139	88.64395	0.00977	86.28886	0.973432	0.009981032
BB + JT NZ 02	572.2013	335.0301	0.585511	14.23126	1.143948	252.65	0.01417	252.2489	0.998412	0.014476072
BB + JT NZ 03	9620.918	4726.332	0.491256	27.35734	3.596017	50.49689	0.05309	42.44423	0.840531	0.054236744
BB + JT NZ 04	1097.642	609.4092	0.555199	6.90656	0.613937	176.6335	0.00802	176.4985	0.999235	0.008193232
BB + JT NZ 05	1122.437	603.8294	0.537963	7.373681	0.47249	244.7737	0.00637	244.6626	0.999546	0.006507592
BB + JT NZ 06	2265.041	1324.668	0.584832	5.923194	1.419205	126.2134	0.0176	126.0744	0.998898	0.01798016
BB + JT NZ 07	1475.046	706.9392	0.479266	6.496499	0.620502	92.95826	0.00939	92.73097	0.997555	0.009592824
BB + JT NZ 08	694.7631	295.1715	0.424852	29.57801	3.365341	141.0597	0.05745	137.9238	0.977769	0.05869092
BB + JT NZ 09	3112.971	2637.78	0.847351	4.396134	4.05293	68.92773	0.03469	68.78739	0.997964	0.035439304
BB + JT NZ 10	1153.753	683.6491	0.592544	8.510944	2.327632	103.6477	0.02849	103.2977	0.996623	0.029105384
BB + JT NZ 11	4060.864	3659.635	0.901196	4.443978	5.843803	51.74309	0.04703	51.5519	0.996305	0.048045848
BB + JT NZ 12	2162.757	1673.794	0.773917	4.259357	1.867384	84.13115	0.0175	84.02326	0.998718	0.017878
BB + JT NZ 13	2321.757	1985.424	0.855138	4.744894	4.393196	65.9179	0.03726	65.7469	0.997406	0.038064816
BB + JT NZ 14	420.3285	258.9565	0.616081	13.44511	1.569789	70.4639	0.01848	69.16928	0.981627	0.018879168
BB + JT NZ 15	922.6192	406.6876	0.440797	16.18421	1.549207	207.2983	0.02549	206.6656	0.996948	0.026040584
BB + JT NZ 16	1130.104	702.3371	0.62148	7.848113	3.964862	58.63741	0.04627	58.10984	0.991003	0.047269432
BB + JT NZ 17	1480.219	947.7038	0.640246	4.95311	1.462751	52.91468	0.01657	52.68235	0.995609	0.016927912
BB + JT NZ 18	691.4005	492.7334	0.71266	14.41582	5.377855	93.15579	0.05473	92.03361	0.987954	0.055912168
BB + JT NZ 19	1330.404	512.2117	0.385005	19.07158	2.342615	144.9164	0.04413	143.656	0.991302	0.045083208

BB + JT NZ 20	801.5601	436.4774	0.544535	15.84319	8.511872	53.34096	0.11337	50.93379	0.954872	0.115818792
BB + JT NZ 21	344.9204	208.4633	0.604381	17.29166	1.039984	159.2603	0.01248	158.3188	0.994088	0.012749568
BB + JT NZ 22	2345.35	1839.05	0.784126	4.769605	2.47584	87.30641	0.0229	87.17603	0.998507	0.02339464
BB + JT NZ 23	1079.243	713.5203	0.661131	6.191144	0.891512	60.53827	0.00978	60.22086	0.994757	0.009991248

SPOT	207Pb	206Pb	207Pb/206Pb	2s%	207Pb/235U	2s%	206Pb/238U	2s%	RHO	206Pb/238U
	CPS	CPS								com FC 1.0216
BB + ASH 15 NZ 01	1645	1290.0748	0.78424	33.71926961	0.889918222	33.71927062	0.00823	33.41433779	0.990956719	0.008407768
BB + ASH 15 NZ 02	1361	956.783	0.703	42.58321479	0.734726671	42.58321547	0.00758	37.59894459	0.882952219	0.007743728
BB + ASH 15 NZ 03	2005.397125	812.87388	0.74439	47.5234756	0.461864219	47.52347581	0.0045	44.4444444	0.935210308	0.0045972
BB + ASH 15 NZ 04	3309.681362	703.5603	0.70006	52.67548496	0.411193402	52.67548513	0.00426	45.77464789	0.86899338	0.004352016
BB + ASH 15 NZ 05	1173.798938	1348.7421	0.80763	29.40455407	0.485512266	29.40455439	0.00436	30.96330275	1.05301044	0.004454176
BB + ASH 15 NZ 06	5835.777011	3580.74918	0.68361	9.128011586	2.067037299	9.128037929	0.02193	14.13588691	1.548622719	0.022403688
BB + ASH 15 NZ 07	661.9328455	506.1716	0.54136	65.02881631	0.164960404	65.02881635	0.00221	47.51131222	0.730619361	0.002257736
BB + ASH 15 NZ 08	1262	1112.3899	0.88145	40.91894038	1.057348636	40.91894131	0.0087	43.10344828	1.053386205	0.00888792
BB + ASH 15 NZ 09	2915.497517	1252.08622	0.73913	37.49272794	0.722550723	37.49272861	0.00709	35.26093089	0.940473852	0.007243144
BB + ASH 15 NZ 10	919	450.19053	0.48987	76.85304264	0.210059587	76.85304271	0.00311	46.62379421	0.606661657	0.003177176
BB + ASH 15 NZ 11	2583.146005	792.7257	0.7059	47.026491	0.514873013	47.0264913	0.00529	41.5879017	0.884350513	0.005404264
BB + ASH 15 NZ 12	1793.53837	809.07497	0.82643	57.89722058	0.4603506	57.89722072	0.00404	58.16831683	1.004682368	0.004127264
BB + ASH 15 NZ 13	2585.198264	984.86784	0.42746	8.599635054	1.768145544	8.599687381	0.03	23.33333333	2.713276925	0.030648
BB + ASH 15 NZ 14	780.2594375	272.29033	0.62309	25.60785761	0.382306839	25.607858	0.00445	31.46067416	1.228555475	0.00454612
BB + ASH 15 NZ 15	369.9655148	235.58618	0.83246	33.0778656	0.531429478	33.07786593	0.00463	38.87688985	1.175314331	0.004730008
BB + ASH 15 NZ 16	218.2266415	116.21368	0.70862	59.28142023	0.223743364	59.28142027	0.00229	58.95196507	0.994442522	0.002339464
BB + ASH 15 NZ 17	531.251704	324.79145	0.78263	24.55310939	0.388472488	24.55310965	0.0036	31.9444444	1.301034569	0.00367776
BB + ASH 15 NZ 18	311.0895784	136.773	0.501	44.65469062	0.108452272	44.65469065	0.00157	41.40127389	0.927142777	0.001603912
BB + ASH 15 NZ 19	223.9039177	233.31424	0.91856	36.34819718	0.328026227	36.34819727	0.00259	42.47104247	1.168449763	0.002645944
BB + ASH 15 NZ 20	408.5611014	305.79052	0.74221	24.72076636	0.310077822	24.72076655	0.00303	31.35313531	1.268291388	0.003095448
BB + ASH 15 NZ 21	496.6074149	172.13108	0.58949	38.26358378	0.191005371	38.26358385	0.00235	38.29787234	1.000896113	0.00240076
BB + ASH 15 NZ 22	280.2271497	190.50711	0.67317	36.65641666	0.220903697	36.65641673	0.00238	39.91596639	1.088921666	0.002431408
BB + ASH 15 NZ 23	234.4755681	178.36929	0.60057	37.17135388	0.315493114	37.17135408	0.00381	38.05774278	1.023846016	0.003892296
BB + ASH 15 NZ 24	334.0222416	151.11729	0.79119	49.24733629	0.429811752	49.24733645	0.00394	20.30456853	0.412297801	0.004025104
BB + ASH 15 NZ 25	331.0002671	108.77482	0.65527	61.58072245	0.137329914	61.58072247	0.00152	22.36842105	0.363237392	0.001552832
BB + ASH 15 NZ 26	283.038509	78.8067	0.62545	82.55815813	0.155226683	82.55815815	0.0018	28.88888889	0.349921674	0.00183888
BB + ASH 15 NZ 27	157.6850717	96.21504	0.66816	70.70162835	0.167669139	70.70162838	0.00182	26.37362637	0.373027142	0.001859312
BB + ASH 15 NZ 28	324.6423993	204.55932	0.69578	35.08005404	0.695522561	35.08005479	0.00725	15.17241379	0.43250827	0.0074066
BB + ASH 15 NZ 29	153.9582284	115.38512	0.84842	66.70281229	0.177809827	66.7028123	0.00152	27.63157895	0.414249085	0.001552832
BB + ASH 15 NZ 30	429.6265941	210.52146	0.74653	35.50292688	0.326293034	35.50292702	0.00317	15.77287066	0.444269585	0.003238472
BB + ASH 15 NZ 31	756.6690478	317.16894	0.69861	23.74429224	0.595284463	23.74429304	0.00618	12.29773463	0.517923806	0.006313488
BB + ASH 15 NZ 32	174.0550343	61.44495	0.44205	95.70863025	0.102395755	95.70863026	0.00168	27.38095238	0.286086556	0.001716288
BB + ASH 15 NZ 33	233.0285115	211.277	0.76828	36.37215598	0.201267848	36.37215603	0.0019	15.78947368	0.434108819	0.00194104

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho
	CPS	CPS	ppm							
Ple + WC1 NZ 01	8845	626.5798	40.17148529	0.07084	7.792207792	0.365203804	7.792297497	0.03739	7.354907729	0.943868959
Ple + WC1 NZ 02	8672.065839	647.08575	37.43378385	0.07555	7.412309729	0.40979825	7.412414124	0.03934	7.371631927	0.994498122
Ple + WC1 NZ 03	6600.13516	584.07404	27.35661653	0.08909	8.396004041	0.503264385	8.396104001	0.04097	7.566512082	0.90119323
Ple + WC1 NZ 04	9685.822597	659.56896	44.22683381	0.06984	7.502863688	0.358122563	7.502955859	0.03719	7.394460877	0.985539701
Ple + WC1 NZ 05	9816.477814	641.49669	45.89711283	0.06759	7.752626128	0.33847731	7.752711205	0.03632	7.433920705	0.958880127
Ple + WC1 NZ 06	8153.072057	595.8	36.48253585	0.075	8.106666667	0.39244095	8.106755494	0.03795	7.509881423	0.926373249
Ple + WC1 NZ 07	7937.189093	561.81492	36.40875513	0.07284	8.401976936	0.371798494	8.402058492	0.03702	7.5634792	0.90019359
Ple + WC1 NZ 08	7999.620279	606.24032	34.53110965	0.07712	8.246887967	0.418314242	8.246981798	0.03934	7.498729029	0.909269502
Ple + WC1 NZ 09	6549.453024	489.762	27.78401207	0.0828	7.874396135	0.457001054	7.874497882	0.04003	7.619285536	0.967590017
Ple + WC1 NZ 10	7681	578.53292	35.14813843	0.07532	9.240573553	0.385391863	9.240648069	0.03711	7.814605228	0.845677183
Ple + WC1 NZ 11	4789.740293	493.54162	20.21294114	0.10151	9.969461137	0.56320704	9.969542347	0.04024	7.828031809	0.7851947
Ple + WC1 NZ 12	9826.678605	607.31136	43.1081215	0.06192	8.074935401	0.330487771	8.075028185	0.03871	7.362438646	0.911753926
Ple + WC1 NZ 13	7391.155285	508.3918	33.63149778	0.0697	9.239598278	0.358654008	9.239673648	0.03732	7.502679528	0.812006984
Ple + WC1 NZ 14	8845	627.19895	32.78087675	0.07091	7.784515583	0.338579962	7.78459261	0.03463	6.930407161	0.890272299
Ple + WC1 NZ 15	8671.924438	664.38705	30.526291	0.07757	7.477117442	0.389952519	7.477206335	0.03646	6.99396599	0.935371538
Ple + WC1 NZ 16	6536.615582	561.28321	22.10631651	0.08581	8.577088917	0.449004772	8.577172873	0.03795	7.114624506	0.829483632
Ple + WC1 NZ 17	9722.815355	683.09616	36.08629279	0.07192	7.285873192	0.342906678	7.285955253	0.03458	6.940427993	0.952576258
Ple + WC1 NZ 18	9812.217597	641.61504	37.44686996	0.06751	7.643312102	0.313037416	7.643386086	0.03363	6.839131728	0.89477774
Ple + WC1 NZ 19	8184.786639	605.51452	29.89377936	0.07586	7.962035328	0.367549529	7.962112872	0.03514	6.972111554	0.875660979
Ple + WC1 NZ 20	8014.862603	569.48211	29.91156423	0.07317	8.200082001	0.346949691	8.200154114	0.03439	6.978772899	0.851053871
Ple + WC1 NZ 21	8012.994991	599.46786	28.33110186	0.07621	8.08292875	0.381434403	8.08301026	0.0363	7.024793388	0.86908134
Ple + WC1 NZ 22	6587.265432	602.81217	22.51492173	0.10133	7.934471529	0.524625334	7.934560381	0.03755	7.190412783	0.906214388
Ple + WC1 NZ 23	7752	556.36104	30.02178284	0.07177	8.415772607	0.327941761	8.415837857	0.03314	6.94025347	0.824665778
Ple + WC1 NZ 24	5256.289198	672.87874	16.64066688	0.13058	7.474345229	0.729897176	7.47445517	0.04054	7.27676369	0.973551051
Ple + WC1 NZ 25	9785.475881	592.98858	35.081176	0.06067	8.175374979	0.29947343	8.175453363	0.0358	6.843575419	0.837088185
Ple + WC1 NZ 26	7416.276336	508.38146	27.54148727	0.06947	9.039873327	0.331033776	9.039939389	0.03456	7.08912037	0.784199989

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	206Pb/238U
	CPS	CPS	ppm								com FC 1.1616
Ple + Jt NZ 01	1132.567056	242.697600	9.338933	0.254400	18.506289	0.139605	18.506290	0.003980	16.331658	0.882492	0.004623
Ple + Jt NZ 02	556.152753	190.820420	1.659273	0.436660	26.968351	0.662273	26.968353	0.011000	24.090909	0.893303	0.012778
Ple + Jt NZ 03	1131.525255	146.224660	12.894015	0.157910	26.496105	0.062705	26.496106	0.002880	15.625000	0.589709	0.003345
Ple + Jt NZ 04	679.325850	130.036480	8.077658	0.206080	30.434783	0.078423	30.434783	0.002760	19.927536	0.654762	0.003206
Ple + Jt NZ 05	1004.278104	132.372020	13.078859	0.124060	28.695792	0.043106	28.695792	0.002520	6.349206	0.221259	0.002927
Ple + Jt NZ 06	1039.500838	237.798880	10.496823	0.209330	18.382458	0.093803	18.382459	0.003250	6.153846	0.334767	0.003775
Ple + Jt NZ 08	868.445468	286.901140	5.599396	0.397370	17.132647	0.278878	17.132648	0.005090	7.072692	0.412820	0.005913
Ple + Jt NZ 09	688.087734	169.475160	4.376335	0.430140	27.935091	0.306028	27.935091	0.005160	10.077519	0.360748	0.005994
Ple + Jt NZ 10	923.668241	401.225250	4.524365	0.517710	14.255085	0.478258	14.255086	0.006700	6.865672	0.481630	0.007783
Ple + Jt NZ 11	984.376500	511.759630	4.125873	0.520610	12.131922	0.562051	12.131925	0.007830	6.385696	0.526355	0.009095
Ple + Jt NZ 12	734.068398	314.334420	3.242382	0.596460	20.433893	0.611042	20.433895	0.007430	8.882907	0.434714	0.008631
Ple + Jt NZ 13	801.966684	284.179790	3.021722	0.558310	19.365585	0.670494	19.365587	0.008710	8.495982	0.438715	0.010118
Ple + Jt NZ 14	841.074410	282.400010	4.911504	0.413470	17.645778	0.320392	17.645779	0.005620	7.473310	0.423518	0.006528
Ple + Jt NZ 15	449.826547	206.739000	2.460426	0.441750	23.569892	0.365451	23.569893	0.006000	9.000000	0.381843	0.006970
Ple + Jt NZ 16	368.177533	83.813400	3.365730	0.328680	49.787027	0.162693	49.787027	0.003590	13.370474	0.268553	0.004170
Ple + Jt NZ 17	312.564013	144.637380	1.835032	0.373740	30.855675	0.288060	30.855676	0.005590	10.017889	0.324669	0.006493
Ple + Jt NZ 18	611.788118	338.655960	1.304863	0.675960	18.261436	3.117586	18.261466	0.033450	10.284006	0.563153	0.038856
Ple + Jt NZ 19	788.408362	422.277820	0.752992	0.669220	14.243448	6.892722	14.243643	0.074700	9.317269	0.654135	0.086772
Ple + Jt NZ 20	1084.980634	510.332620	1.550006	0.562660	11.239470	3.874323	11.239581	0.049940	8.490188	0.755383	0.058010
Ple + Jt NZ 21	1357.071302	822.156480	1.335993	0.628560	8.495609	6.280674	8.495918	0.072470	8.086105	0.951763	0.084181
Ple + Jt NZ 22	570.656819	262.890460	1.356201	0.601580	20.146946	2.490034	20.146969	0.030020	10.592938	0.525783	0.034871
Ple + Jt NZ 23	1033.539973	517.101750	1.300252	0.626790	12.208236	4.900981	12.208367	0.056710	8.746253	0.716415	0.065874
Ple + Jt NZ 24	357.185009	271.642770	0.548851	0.615970	21.825738	3.943297	21.825788	0.046430	11.070429	0.507218	0.053933
Ple + Jt NZ 25	1253.934399	728.605920	0.659889	0.601160	10.872314	11.237118	10.873159	0.135570	8.467950	0.778794	0.157478
Ple + Jt NZ 26	840.170535	389.176320	1.154274	0.623680	17.111339	4.465616	17.111418	0.051930	9.936453	0.580691	0.060322
Ple + Jt NZ 27	943.529294	615.509180	4.059445	0.689260	12.111540	5.852266	12.111696	0.061580	9.093862	0.750833	0.071531
Ple + Jt NZ 28	804.534970	491.656700	1.794840	0.665300	14.050804	10.894041	14.051306	0.118760	9.498148	0.675962	0.137952
Ple + Jt NZ 29	1525.814570	821.278710	9.736332	0.620770	9.407671	3.553770	9.407763	0.041520	8.574181	0.911394	0.048230
Ple + Jt NZ 30	1240.340310	989.514630	7.594600	0.939710	9.939237	5.606373	9.939331	0.043270	8.828287	0.888217	0.050262

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	206Pb/238U
	CPS	CPS	ppm								com FC 1.1616
Ple +ash 15 NZ 01	211.868758	80.435440	5.467876	0.490460	59.380989	0.123077	59.380989	0.001820	49.450549	0.832767	0.002114
Ple +ash 15 NZ 02	319.687946	113.463830	7.433580	0.570170	46.231826	0.158802	46.231826	0.002020	44.554455	0.963718	0.002346
Ple +ash 15 NZ 03	463.676641	169.560000	7.535994	0.678240	34.778250	0.270260	34.778250	0.002890	15.224913	0.437771	0.003357
Ple +ash 15 NZ 04	156.601653	41.515740	4.970016	0.329490	103.590397	0.067237	103.590397	0.001480	25.675676	0.247858	0.001719
Ple +ash 15 NZ 05	676.668954	471.138000	5.118089	0.759900	15.459929	0.650653	15.459930	0.006210	9.983897	0.645792	0.007214
Ple +ash 15 NZ 06	94.011821	124.535950	2.983623	0.508310	40.715312	0.103727	40.715312	0.001480	14.864865	0.365093	0.001719
Ple +ash 15 NZ 07	660.144584	270.085860	10.034685	0.731940	23.941853	0.311842	23.941853	0.003090	12.297735	0.513650	0.003589
Ple +ash 15 NZ 08	254.041037	132.459040	3.190476	0.583520	40.828078	0.300904	40.828078	0.003740	16.042781	0.392935	0.004344
Ple +ash 15 NZ 09	300.882270	154.174020	4.388983	0.647790	37.271338	0.287602	37.271338	0.003220	15.527950	0.416619	0.003740
Ple +ash 15 NZ 10	399.693332	49.910630	12.515805	0.648190	107.388266	0.134059	107.388266	0.001500	38.666667	0.360064	0.001742
Ple +ash 15 NZ 11	358.183232	264.124640	4.534762	0.717730	24.354562	0.367144	24.354563	0.003710	11.859838	0.486966	0.004310
Ple +ash 15 NZ 12	402.942580	70.595680	10.514626	0.569320	74.523994	0.141296	74.523994	0.001800	25.555556	0.342917	0.002091
Ple +ash 15 NZ 13	416.466308	211.627100	4.337370	0.717380	29.418161	0.446095	29.418161	0.004510	13.747228	0.467304	0.005239
Ple +ash 15 NZ 14	21.220675	50.891660	0.760871	0.480110	93.595218	0.086719	93.595218	0.001310	29.007634	0.309926	0.001522
Ple +ash 15 NZ 15	210.411336	147.670660	4.017512	0.653410	38.646485	0.221627	38.646485	0.002460	16.260163	0.420741	0.002858

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho
	CPS	CPS	CPS							
Nist 612 + WC1 01	6825.76875	957.76437	548924	0.140315971	4.113519243	0.828235056	9.63712787	0.04281	8.715112909	0.90432679
Nist 612 + WC1 02	6856.956005	1146.63876	519543	0.167222709	4.271289414	1.035705488	12.02168377	0.04492	11.23730249	0.934752794
Nist 612 + WC1 03	7719.56309	1881.96255	497878	0.24379133	4.166594901	1.718345049	16.17954729	0.05112	15.63384909	0.966272344
Nist 612 + WC1 04	7884	1903.67064	535032	0.24146	2.824484387	1.648977763	7.348279552	0.04953	6.783767414	0.923177645
Nist 612 + WC1 05	9020.799297	1595.17885	626341	0.176833427	6.287177235	1.136679183	22.71955314	0.04662	21.83230399	0.960947773
Nist 612 + WC1 06	8741.730547	2232.4947	581249	0.255383609	2.932821288	1.786319577	9.212683306	0.05073	8.733389548	0.947974576
Nist 612 + WC1 07	7473.307564	1599.6507	486874	0.214048557	6.124098491	1.462369895	24.4158808	0.04955	23.63536869	0.968032605
Nist 612 + WC1 08	6499.601974	1136.0708	473476	0.174790826	4.870022045	1.092219212	15.50332792	0.04532	14.71856182	0.949380797
Nist 612 + WC1 09	6193.362815	1338.2247	432365	0.216074004	3.401295273	1.443436142	8.934282041	0.04845	8.261512334	0.924697955
Nist 612 + WC1 10	7187.759222	972.9421	580755	0.135360975	4.153316328	0.790775516	10.22886497	0.04237	9.347707855	0.913855826
Nist 612 + WC1 11	6175.760436	1051.16493	447604	0.170208178	5.070754525	1.092918896	14.6167342	0.04657	13.70898856	0.937896822
Nist 612 + WC1 12	8103.016857	2097.03671	494276	0.258797032	6.060125937	1.831605039	28.15867203	0.05133	27.4988306	0.976567026
Nist 612 + WC1 13	4276.917716	650.00133	344686	0.151978919	4.750873751	0.904411469	8.840462162	0.04316	7.455398704	0.843326804
Nist 612 + WC1 14	6149	963.24085	495825	0.15665	3.676986914	0.928968775	7.926122672	0.04301	7.021622878	0.8858837
Nist 612 + WC1 15	5872.148819	625.0064	516431	0.106435722	6.290144717	0.570871402	13.03442212	0.0389	11.41622702	0.87585218
Nist 612 + WC1 16	6727.59546	826.69296	563257	0.122880896	4.516148296	0.698044101	9.941149383	0.0412	8.856119671	0.890854702
Nist 612 + WC1 17	6629.325779	1344.65114	480740	0.20283377	3.434861484	1.328698877	8.830872259	0.04751	8.135479792	0.921254385
Nist 612 + WC1 18	6400	747.84	556551	0.11685	4.364569961	0.647673376	8.346529502	0.0402	7.114427861	0.852381563
Nist 612 + WC1 19	7391.261211	1382.12767	535385	0.186994835	4.089352599	1.188589285	13.02029771	0.0461	12.36144602	0.949398109
Nist 612 + WC1 20	5965.63656	1556.42304	351838	0.260898066	6.076461159	1.925614633	26.54004281	0.05353	25.83506323	0.973437135
Nist 612 + WC1 21	7331.736231	1682.67593	473434	0.229505792	4.016598605	1.616705172	14.23055457	0.05109	13.65194562	0.959340379
Nist 612 + WC1 22	6330.06363	1347.76224	450036	0.212914485	3.376782928	1.409999863	8.900990078	0.04803	8.23559114	0.925244391
Nist 612 + WC1 23	6953.850126	1430.05122	479633	0.205648841	4.070964513	1.369256296	13.43247105	0.04829	12.80072367	0.95296864
Nist 612 + WC1 24	6244.535808	1037.96308	482008	0.166219414	4.882372619	1.004281341	15.02079751	0.04382	14.20516792	0.945699981
Nist 612 + WC1 25	6768.005231	1203.384	484068	0.177804827	5.681872761	1.12502683	19.674969	0.04589	18.83668567	0.95739341
Nist 612 + WC1 26	6945.644717	883.60506	549512	0.127217141	5.385416142	0.740392919	13.98092827	0.04221	12.90207923	0.922834233

Spot	207Pb	206Pb	U238	207Pb/206Pb	2s (%)	207Pb/235U	2s (%)	206Pb/238U	2s (%)	Rho	206Pb/238U
	CPS	CPS	CPS								com FC 1.0871
Nist 612 + jt NZ 01	387.791116	132.804630	69827	0.702670	47.754992	1.020190	47.754993	0.010530	18.613485	0.389770	0.011447
Nist 612 + jt NZ 02	594.332966	320.758900	141684	0.592900	19.922415	1.206616	19.922421	0.014760	10.027100	0.503307	0.016046
Nist 612 + jt NZ 03	523.604126	358.375500	55896	0.825750	20.844081	3.415632	20.844103	0.030000	11.066667	0.530926	0.032613
Nist 612 + jt NZ 04	819.610334	519.961950	49503	0.868050	15.847013	5.582189	15.847082	0.046640	9.777015	0.616960	0.050702
Nist 612 + jt NZ 05	152.141882	171.770560	36778	0.653120	35.625919	2.491744	35.625929	0.027670	14.456090	0.405774	0.030080
Nist 612 + jt NZ 06	582.475200	381.250200	142310	0.719340	18.272305	1.419303	18.272311	0.014310	10.062893	0.550718	0.015556
Nist 612 + jt NZ 07	395.756576	217.652400	33818	0.777330	32.964121	3.432920	32.964136	0.032030	14.423978	0.437566	0.034820
Nist 612 + jt NZ 08	825.544889	427.066110	247073	0.674670	16.458417	0.920933	16.458420	0.009900	9.494949	0.576905	0.010762
Nist 612 + jt NZ 09	654.537498	604.233220	101041	0.840380	13.865156	3.174882	13.865183	0.027400	9.270073	0.668586	0.029787
Nist 612 + jt NZ 10	346.553390	173.976120	252249	0.471480	31.594129	0.369244	31.594130	0.005680	11.971831	0.378926	0.006175

ANEXO B - Tabelas de Azimutes extraídos do ArcMap

			-			 AZIMUTES	DUTCF	ROP 1	Ĺ			•		
AZIMUTH	DIP	AZIMUTH	DIP	AZIMUTH	DIP	AZIMUTH	DIP		AZIMUTH	DIP	AZIMUTH	DIP	AZIMUTH	DIP
130	0	64	0	164	0	334	0		129	0	154	0	131	0
141	0	139	0	162	0	114	0		66	0	180	0	163	0
126	0	123	0	88	0	114	0		178	0	111	0	246	0
129	0	49	0	90	0	93	0		166	0	334	0	118	0
107	0	133	0	357	0	102	0		63	0	348	0	 141	0
134	0	86	0	359	0	172	0		171	0	118	0	164	0
116	0	147	0	149	0	95	0		273	0	107	0	324	0
124	0	107	0	90	0	106	0		111	0	147	0	 71	0
107	0	108	0	90	0	100	0		95	0	115	0	155	0
87	0	127	0	101	0	350	0		70	0	340	0	119	0
254	0	64	0	91	0	103	0		70	0	129	0	71	0
122	0	122	0	88	0	118	0		153	0	163	0	162	0
52	0	3	0	122	0	112	0		76	0	88	0	 94	0
67	0	67	0	105	0	148	0		143	0	86	0	145	0
78	0	1	0	111	0	119	0		172	0	164	0	117	0
125	0	152	0	109	0	120	0		105	0	68	0	76	0
269	0	75	0	96	0	178	0		108	0	65	0	83	0
326	0	159	0	94	0	180	0		196	0	64	0	170	0
50	0	97	0	145	0	293	0		99	0	89	0	155	0
126	0	165	0	146	0	111	0		14	0	76	0	 66	0
105	0	176	0	142	0	178	0		193	0	158	0	151	0
116	0	330	0	344	0	100	0		67	0	154	0	81	0
238	0	247	0	98	0	118	0		63	0	69	0	143	0
140	0	168	0	168	0	165	0		161	0	167	0	178	0
72	0	74	0	99	0	176	0		151	0	94	0	82	0
156	0	160	0	104	0	66	0		196	0	152	0	82	0
149	0	163	0	7	0	255	0		161	0	106	0	80	0
163	0	63	0	169	0	167	0		141	0	104	0	95	0
163	0	70	0	74	0	166	0		76	0	76	0	183	0
182	0	124	0	133	0	165	0		169	0	180	0	93	0
159	0	96	0	172	0	165	0		115	0	336	0	134	0
159	0	119	0	169	0	252	0		112	0	322	0	154	0
160	0	109	0	143	0	176	0		108	0	59	0	143	0
153	0	101	0	139	0	163	0		53	0	155	0	150	0
147	0	17	0	142	0	100	0		148	0	160	0	134	0
153	0	111	0	320	0	107	0		148	0	159	0	146	0
156	0	85	0	90	0	122	0		149	0	152	0	109	0
104	0	102	0	117	0	106	0		103	0	67	0	170	0
100	0	103	0	144	0	112	0		158	0	63	0	357	0
104	0	101	0	61	0	76	0		139	0	103	0	358	0
59	0	102	0	347	0	71	0		140	0	154	0		
66	0	120	0	163	0	290	0		56	0	162	0		
147	0	135	0	62	0	142	0		108	0	130	0		
64	0	350	0	63	0	49	0		141	0	159	0		
139	0	72	0	64	0	133	0		144	0	169	0		

					-			AZ	MUT	H OU	TCROP II	-				-				
AZIMUTHE	DIP		AZIMUTHE	DIP		AZIMUTHE	DIP	 AZIMUTHE	DIP		AZIMUTHE	DIP		AZIMUTHE	DIP	 AZIMUTHE	DIP		AZIMUTHE	DIP
354	0		131	0		69	0	91	0		145	0		322	0	343	0		350	0
321	0		191	0		161	0	 351	0		75	0		3/3	0	 76	0		347	0
250	0		65	0		1/12	0	02	0		67	0		74	0	 67	0		252	0
25	0		72	0		143	0	254	0		159	0		/4	0	 219	0		333	0
1	0		140	0		132	0	 70	0		74	0		66	0	 74	0		73	0
1	0		140	0		69	0	 /0	0		74	0		00	0	 74	0		07	0
39	0		1/1	0		61	0	156	0		05	0		2	0	 90	0		246	0
359	0		65	0		66	0	 69	0		/5	0		69	0	 356	0		246	0
25	0		64	0		320	0	126	0		4	0		/2	0	 8	0		249	0
20	0		1/9	0		103	0	68	0		69	0		168	0	 1	0		335	0
296	0		64	0		140	0	90	0		/1	0		152	0	 94	0		2	0
20	0		57	0		57	0	356	0		162	0		131	0	 112	0		76	0
148	0		55	0		357	0	87	0		68	0		144	0	182	0		126	0
39	0		74	0		63	0	129	0		62	0		87	0	358	0		90	0
140	0		351	0		67	0	326	0		75	0		75	0	180	0		82	0
327	0		142	0		1	0	161	0		90	0		75	0	154	0		162	0
356	0		61	0		59	0	154	0		79	0		179	0	68	0		74	0
224	0		152	0		62	0	159	0		77	0		77	0	165	0		71	0
143	0		1	0		323	0	66	0		76	0		61	0	71	0		76	0
143	0		3	0		0	0	177	0		85	0		67	0	66	0		249	0
63	0		74	0		332	0	62	0		80	0		346	0	79	0		68	0
59	0		246	0		58	0	136	0		68	0		347	0	58	0		85	0
174	0		63	0		160	0	148	0		129	0		72	0	354	0		143	0
157	0		57	0	L	301	0	57	0		67	0		68	0	74	0		72	0
78	0		330	0		59	0	324	0		352	0		69	0	65	0		61	0
142	0		55	0		63	0	328	0		76	0		132	0	338	0		313	0
174	0		1	0		59	0	54	0		86	0		72	0	68	0		313	0
167	0		67	0		349	0	71	0		180	0		65	0	7	0		249	0
163	0		239	0		156	0	80	0		68	0		144	0	66	0		184	0
322	0		342	0		138	0	127	0		68	0		83	0	68	0		255	0
329	0		64	0	1	165	0	101	0		83	0	1	68	0	74	0	1	128	0
134	0		65	0		65	0	65	0		74	0		314	0	325	0		184	0
52	0		99	0		57	0	63	0		83	0		343	0	342	0		152	0
139	0		64	0		62	0	118	0		83	0		75	0	342	0		308	0
111	0		60	0		63	0	245	0		72	0		173	0	 77	0		142	0
4	0		146	0		76	0	59	0		70	0		74	0	 74	0		121	0
152	0		65	0		180	0	 206	0		82	0		79	0	 63	0		113	0
164	0		150	0		100	0	 63	0		71	0		74	0	 73	0		63	0
337	0		77	0		301	0	 70	0		68	0		67	0	 78	0		327	0
61	0		152	0		68	0	 57	0		74	0		86	0	 96	0		78	0
227	0		65	0		65	0	207	0		67	0		162	0	 152	0		220	0
146	0		65	0		63	0	192	0		74	0		102	0	 155	0		242	0
140	0		03	0		220	0	 102	0		74	0		242	0	 170	0		102	0
140	0		92	0		329	0	194	0		69	0		342	0	 1/8	0		102	0
359	0		151	0		57	0	183	0		76	0		//	0	 188	0		70	0
185	0		282	0		/0	0	6	0		137	0		158	0	 251	0		350	0
180	0		325	0		61	0	 0	0		67	0		333	0	243	0		70	0
/5	0		62	0		69	0	62	0		/3	0		68	0	 /9	0		248	0
/8	0		55	0		146	0	 255	0		69	0		328	0	296	0		133	0
75	0		59	0		65	0	 80	0		71	0		348	0	154	0		92	0
131	0		134	0		64	0	 /2	0		11	0		59	0	11/	0		63	0
181	0		128	0		99	0	72	0		73	0		344	0	131	0		313	0
319	0		202	0		79	0	267	0		359	0		133	0	 17	0		75	0
285	0		65	0		75	0	328	0		85	0		2	0	181	0		76	0
133	0		149	0		328	0	83	0		211	0		306	0	78	0		105	0
244	0		152	0		74	0	80	0		82	0		320	0	147	0		71	0
261	0		60	0		252	0	311	0		204	0		310	0	152	0		80	0
264	0	L	60	0		81	0	261	0		74	0		307	0	147	0		73	0
81	0	L	334	0		254	0	348	0		78	0		308	0	155	0		173	0
336	0		140	0		64	0	88	0		85	0		92	0	134	0		76	0
62	0		71	0		154	0	273	0		150	0		138	0	127	0		87	0
70	0		72	0		278	0	266	0		326	0		300	0	51	0		81	0
53	0		65	0		8	0	158	0		343	0		62	0	135	0		63	0
148	0		148	0		72	0	163	0		277	0		132	0	122	0		140	0
156	0		54	0		83	0	83	0		68	0		92	0	61	0		76	0
75	0		77	0		73	0	138	0		81	0		67	0	65	0		86	0
76	0		108	0		102	0	149	0		153	0		52	0	62	0		78	0
50	0		75	0		83	0	169	0		182	0		142	0	130	0		81	0
330	0		78	0		78	0	92	0		347	0		161	0	18	0		79	0
69	0		73	0		45	0	152	0		148	0		64	0	28	0		76	0
98	0		101	0		82	0	155	0		69	0		85	0	149	0		76	0
129	0		79	0		63	0	81	0		338	0		29	0	349	0		72	0
90	0		79	0		78	0	80	0		186	0		344	0	339	0		74	0
59	0		79	0		86	0	70	0		88	0		70	0	357	0		80	0
75	0		79	0	1	0	0	77	0		140	0	1	116	0	5	0	1	138	0
50	0		86	0		172	0	77	0		103	0		186	0	131	0		142	0
85	0		73	0	1	80	0	80	0		176	0		182	0	136	0	1	167	0
72	0		73	0	1	82	0	138	0		156	0		66	0	138	0	1	165	0
89	0		76	0		275	0	83	0		333	0		0	0	121	0		81	0
6	0		68	0		258	0	259	0		328	0		82	0	143	0		69	0
202	0		83	0		264	0	 83	0		164	0		9	0	 123	0		49	0
65	n		78	n		275	0	 67	n		131	n		85	n	 120	n		154	n
149	0		.0	5		79	0	178	0		146	0		170	0	 55	0		80	0

		AZIN	1UTH	0	UTCROP II			
AZIMUTHE	DIP	AZIMUTHE	DIP		AZIMUTHE	DIP	AZIMUTHE	DIP
259	0	67	0		46	0	111	0
76	0	68	0		58	0	77	0
76	0	114	0		69	0	68	0
76	0	57	0		352	0	170	0
153	0	242	0		68	0	65	0
143	0	101	0		142	0	11	0
143	0	157	0		142	0	334	0
255	0	153	0		146	0	48	0
75	0	74	0		325	0	342	0
76	0	349	0		154	0	1	0
67	0	346	0		147	0	8	0
74	0	62	0		142	0	145	0
137	0	63	0		58	0	101	0
135	0	328	0		160	0	95	0
147	0	76	0		2	0	65	0
63	0	336	0		51	0	101	0
81	0	73	0		176	0	64	0
84	0	62	0		0	0	51	0
72	0	64	0		359	0	50	0
86	0	68	0		151	0	142	0
331	0	62	0		69	0	138	0
137	0	334	0		55	0	57	0
235	0	70	0		331	0	107	0
159	0	85	0		98	0	36	0
65	0	139	0		68	0	142	0
151	0	348	0		328	0	142	0
79	0	76	0		123	0	129	0
154	0	58	0		70	0	219	0
127	0	65	0		76	0	237	0
73	0	158	0		324	0	92	0
77	0	61	0		52	0	121	0
93	0	10	0		57	0	3	0
149	0	58	0		36	0	138	0
77	0	54	0		139	0	110	0
161	0	71	0		52	0	107	0
66	0	55	0		2	0	145	0
70	0	172	0		153	0	92	0
71	0	188	0		58	0	64	0
69	0	280	0		61	0	86	0
				-				

45	0	340	0	142	0	112	0
71	0	69	0	55	0	260	0
340	0	94	0	72	0	121	0
72	0	60	0	147	0	103	0
76	0	72	0	84	0	44	0
347	0	51	0	54	0	143	0
74	0	54	0	55	0	330	0
81	0	66	0	114	0	145	0
91	0	4	0	58	0	61	0
70	0	0	0	57	0	146	0
10	0	1	0	53	0	133	0
13	0	72	0	58	0	265	0
12	0	3	0	143	0	49	0
148	0	68	0	53	0	51	0
84	0	57	0	151	0	1	0
69	0	64	0	329	0	48	0
329	0	70	0	142	0	314	0
184	0	72	0	56	0	294	0
194	0	145	0	320	0	53	0
336	0	134	0	349	0	40	0
322	0	359	0	359	0	15	0
153	0	92	0	52	0	2	0
85	0	65	0	6	0	2	0
157	0	158	0	54	0	73	0
119	0	80	0	169	0	77	0
149	0	149	0	51	0	112	0
75	0	68	0	340	0	139	0
155	0	4	0	71	0	62	0
139	0	356	0	337	0	149	0
74	0	317	0	51	0	106	0
66	0	76	0	356	0	171	0
127	0	12	0	359	0	159	0
152	0	0	0	321	0	72	0
161	0	358	0	106	0	314	0
68	0	353	0	62	0	328	0
150	0	96	0	92	0	145	0
150	0	65	0	320	0	154	0
63	0	126	0	0	0	91	0
63	0	58	0	66	0		
331	0	61	0	132	0		
164	0	58	0	134	0		

AZIMUTH DIP AZIMUTH DIP AZIMUTH DIP AZIMUTH DIP 38 0 50 0 455 0 153 0 57 0 145 0 150 0 677 0 154 0 577 0 677 0 360 0 128 0 1533 0 677 0 677 0 366 0 128 0 1533 0 676 0 477 0 59 0 134 0 766 0 477 0 126 0 193 0 766 0 477 0 321 0 141 0 700 0 1457 0 155 0 134 0 555 0 1558 0 155 0 134 0 333 0 1484 0	AZIMUTH OUTCROP III												
380 50 0 45 0 153 0 57 0 145 0 57 0 51 0 67 0 154 0 57 0 67 0 36 0 27 0 63 0 57 0 67 0 36 0 27 0 128 0 153 0 32 0 27 0 59 0 134 0 154 0 47 0 126 0 193 0 76 0 166 0 147 0 56 0 64 0 147 000 22 0 319 0 66 0 222 0 63 0 70 0 62 0 222 0 63 0 70 0 66 0 321 0 141 0 70 0 66 0 212 0 63 0 70 0 66 0 212 0 63 0 70 0 66 0 212 0 63 0 70 0 62 0 142 0 141 0 70 0 66 0 142 0 142 0 131 0 68 0 63 0 70 0 142 0 144 0 56 0 466 0 52 0 144 0 63 0<	AZIMUTH	DIP		AZIMUTH	DIP		AZIMUTH	DIP		AZIMUTH	DIP		
57014501500 67 01540 57 0 51 0 50 0630 57 0 67 0 36 01280 153 0 32 0 27 0590 134 0 154 0 47 01260 193 0 76 0 166 01470 56 0 64 0 147 000 222 0 319 0 66 03210 141 0 70 0 622 02220 633 0 70 0 145 01420 1344 0 55 0 155 01550 1344 0 55 0 155 01420 1311 0 688 01520 388 0 333 0 1388 01520 386 0 52 0 1448 01540 455 0 358 0 711 01410 93 0 323 0 1443 01520 344 0 353 0 60 01540 456 0 323 0 1444 01550 1442 0 358 0 711 01410	38	0		50	0		45	0		153	0		
1540570510500630570670360128015303202705901340154047012601930760166014705606401470002203190660221063070062022206307001450610550620690155013405501550142014201310680630700142014305604660520144056046605201440560466052014403607103380620147047033806201470470353060014701430353069033601430353069013001430 <td>57</td> <td>0</td> <td></td> <td>145</td> <td>0</td> <td></td> <td>150</td> <td>0</td> <td></td> <td>67</td> <td>0</td>	57	0		145	0		150	0		67	0		
63 0 57 0 677 0 366 0 128 0 153 0 32 0 277 0 59 0 134 0 154 0 477 0 126 0 193 0 76 0 166 0 141 0 76 0 147 0 66 0 222 0 63 0 70 0 145 0 61 0 55 0 622 0 639 0 155 0 134 0 555 0 155 0 142 0 142 0 131 0 688 0 63 0 70 0 142 0 138 0 152 0 388 0 323 0 144 0 63 0 47 0	154	0		57	0		51	0		50	0		
128015303202705901340154047012601930760166014705606401470002203190660321014107006202220630700145061055062069015501340550155014201420131068063070014201380152038033013806305104201440560460520148041093035306201470115060014603030143035306903030143035306903030143035306903030143035306903030143014501370303051 <t< td=""><td>63</td><td>0</td><td></td><td>57</td><td>0</td><td></td><td>67</td><td>0</td><td></td><td>36</td><td>0</td></t<>	63	0		57	0		67	0		36	0		
5901340154047012601930760166014705606401470002203190660321014107006202220630700145061055062069015501340550620630700142013106801420131069015203803301380630510420144056046052014804109303230143033604503580710147011506001460130014303530690303014301370142033301430137014203330143035306903030143014501370146045 <td>128</td> <td>0</td> <td></td> <td>153</td> <td>0</td> <td></td> <td>32</td> <td>0</td> <td></td> <td>27</td> <td>0</td>	128	0		153	0		32	0		27	0		
1260 193 0 76 0 166 0 147 0 56 0 64 0 147 000 22 0 319 0 66 0 321 0 141 0 70 0 622 0 222 0 63 0 70 0 145 0 61 0 55 0 62 0 69 0 155 0 134 0 55 0 155 0 142 0 142 0 131 0 68 0 63 0 70 0 142 0 138 0 63 0 70 0 142 0 144 0 63 0 51 0 42 0 144 0 56 0 46 0 52 0 148 0 41 0 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 115 0 60 0 146 0 295 0 1444 0 353 0 69 0 303 0 143 0 353 0 69 0 303 0 143 0 137 0 146 0 336 0 51 0 178 0 137 0 303 0 51 0 55 0 <td< td=""><td>59</td><td>0</td><td></td><td>134</td><td>0</td><td></td><td>154</td><td>0</td><td></td><td>47</td><td>0</td></td<>	59	0		134	0		154	0		47	0		
1470 56 0 64 0 147 000220 319 0 66 0 321 0 141 0 70 0 62 0 222 0 63 0 70 0 145 0 61 0 55 0 62 0 69 0 155 0 134 0 555 0 155 0 142 0 1442 0 1311 0 688 0 63 0 70 0 1442 0 69 0 152 0 38 0 333 0 1348 0 63 0 511 0 422 0 1444 0 56 0 466 0 522 0 1448 0 411 0 933 0 3233 0 1443 0 336 0 455 0 3588 0 711 0 147 0 477 0 3338 0 662 0 295 0 1444 0 3533 0 600 0 74 0 1155 0 1476 0 1377 0 303 0 1433 0 1455 0 1462 0 303 0 1444 0 20 3379 0 1377 0 3146 0 551 0 1788 0 1377 0 333 0 <t< td=""><td>126</td><td>0</td><td></td><td>193</td><td>0</td><td></td><td>76</td><td>0</td><td></td><td>166</td><td>0</td></t<>	126	0		193	0		76	0		166	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	147	0		56	0		64	0		147	0		
32101410700 622 0 222 0 633 0 70 0 145 0 61 0 55 0 622 0 699 0 155 0 134 0 555 0 155 0 142 0 142 0 1311 0 688 0 63 0 70 0 1422 0 699 0 152 0 388 0 333 0 1388 0 63 0 511 0 422 0 1444 0 56 0 466 0 522 0 1448 0 411 0 933 0 3233 0 1433 0 336 0 455 0 3588 0 711 0 147 0 477 0 3383 0 662 0 295 0 1444 0 3533 0 600 0 74 0 1155 0 1786 14220 303 0 1433 0 1455 0 1377 0 146 0 599 0 1399 0 1277 0 83 0 1311 0 511 0 577 0 319 0 688 0 555 0 244 0 329 0 1444 0 800 01311 0 319 0 688 0 <td< td=""><td>0</td><td>0</td><td></td><td>22</td><td>0</td><td></td><td>319</td><td>0</td><td></td><td>66</td><td>0</td></td<>	0	0		22	0		319	0		66	0		
22206307001450610550620690155013405501550142014201310680630700142069015203803301380630510420144056046052014804109303230143033604503580710147047703380622029501440353060074011506001420530510178013701460455013901270303014305105703190680550240329014440800131031906805502403580500770500358029607705003580296<	321	0		141	0		70	0		62	0		
610 55 0 62 0 69 0 155 0 134 0 55 0 155 0 142 0 142 0 131 0 688 0 63 0 70 0 142 0 699 0 152 0 38 0 333 0 1388 0 63 0 511 0 422 0 1444 0 56 0 466 0 522 0 1448 0 411 0 933 0 3233 0 1433 0 336 0 455 0 3588 0 711 0 147 0 477 0 338 0 662 0 295 0 1444 0 3533 0 600 0 74 0 1155 0 1465 0 142 0 303 0 1433 0 1455 0 142 0 53 0 511 0 178 0 1377 0 447 0 59 0 139 0 1277 0 83 0 1311 0 555 0 244 0 329 0 1444 0 800 0 134 0 358 0 296 0 777 0 500 0 76 0 633 0 3411 0 446 0 349 0 661 <	222	0		63	0		70	0		145	0		
15501340550155014201420131068063070014206901520380330138063051042014405604605201480336045032301430336047033806201470470338060014701150600146033301430353069030301430145013701460450140013701460590139012703390131051057031906805502403580296077050060055037013403580296077050060055037013403580296077050060055 <td< td=""><td>61</td><td>0</td><td></td><td>55</td><td>0</td><td></td><td>62</td><td>0</td><td></td><td>69</td><td>0</td></td<>	61	0		55	0		62	0		69	0		
1420 142 0 131 0 68 0 63 0 70 0 142 0 69 0 152 0 38 0 33 0 138 0 63 0 51 0 42 0 144 0 56 0 46 0 52 0 144 0 41 0 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 137 0 303 0 143 0 146 0 137 0 47 0 144 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 76 0 63 0 341 0	155	0		134	0		55	0		155	0		
630 70 0 142 0 69 0 152 0 38 0 33 0 138 0 63 0 51 0 42 0 144 0 56 0 46 0 52 0 144 0 41 0 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 303 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 47 0 131 0 51 0 137 0 47 0 131 0 51 0 137 0 47 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 63 0 59 0 341 0 50 0 66 0 55 0 37 0 50	142	0		142	0		131	0		68	0		
1520 38 0 33 0 138 0 63 0 51 0 42 0 144 0 56 0 46 0 52 0 148 0 41 0 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 131 0 51 0 57 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 76 0 63 0 341 0 146 0 63 0 55 0 37 0 146 0 60 0 59 0 349 0 1	63	0		70	0		142	0		69	0		
100 100 100 42 100 144 0 56 0 46 0 52 0 144 0 41 0 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 47 0 131 0 51 0 57 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 76 0 63 0 341 0 146 0 60 0 55 0 37 0 146 0 63 0 556 <td< td=""><td>152</td><td>0</td><td></td><td>38</td><td>0</td><td></td><td>33</td><td>0</td><td></td><td>138</td><td>0</td></td<>	152	0		38	0		33	0		138	0		
56 0 46 0 52 0 148 0 41 0 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 359 0 47 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 76 0 63 0 374 0 134 0 63 0 55 0 37 0 146 0 61 0 294 0 349 0 146 0 145 0 62 0 77 0 50 0 63 0 55	63	0		51	0		42	0		144	0		
300 100 93 0 323 0 143 0 336 0 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 147 0 137 0 146 0 45 0 140 0 137 0 47 0 131 0 51 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 61 0 59 0 341 0 -60 -63 60 55 0 377 0 -60 0 61 0 294 0 349 0 -61 -61 63 0 55 0 377 0 -61 -62 0 555 0	56	0		46	0		52	0		148	0		
3360 45 0 358 0 71 0 147 0 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 353 0 69 0 303 0 51 0 178 0 137 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 144 020 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 63 0 59 0 341 0 -63 0 61 0 294 0 349 0 -61 -62 61 0 294 0 349 0 -61 -62	41	0		93	0		323	0		143	0		
1470 47 0 338 0 62 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 144 020 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 358 0 296 0 77 0 50 0 76 0 63 0 341 0 55 0 37 0 61 0 294 0 349 0 $$	336	0		45	0		358	0		71	0		
111 0 144 0 353 0 60 0 295 0 144 0 353 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 144 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 77 0 50 0 60 0 55 0 37 0 $ 60$ 0 55 0 37 0 $ 61$ 0 294 0 349 0 $ 61$ 0 62 <td>147</td> <td>0</td> <td></td> <td>47</td> <td>0</td> <td></td> <td>338</td> <td>0</td> <td></td> <td>62</td> <td>0</td>	147	0		47	0		338	0		62	0		
133 0 144 0 333 0 60 0 74 0 115 0 60 0 146 0 130 0 143 0 353 0 69 0 303 0 143 0 145 0 142 0 53 0 51 0 147 0 137 0 146 0 45 0 140 0 137 0 47 0 1444 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 511 0 577 0 319 0 68 0 555 0 244 0 329 0 1444 0 800 0 1311 0 355 0 500 0 146 0 1344 0 358 0 296 0 777 0 500 0 76 0 63 0 3411 0 -146 0 63 0 555 0 377 0 -146 0 61 0 294 0 3499 0 -146 -146 61 0 294 0 349 0 -146 0	295	0		144	0		353	0		60	0		
130 0 143 0 353 0 69 0 130 0 143 0 145 0 142 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 144 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 511 0 577 0 319 0 68 0 555 0 24 0 329 0 1444 0 800 0 131 0 355 0 500 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 777 0 50 0 63 0 559 0 377 0 -146 0 61 0 294 0 349 0 -146 -146 145 0 62 0 175 0 -146	74	0		115	0		60	0		146	0		
130 0 143 0 145 0 142 0 303 0 143 0 145 0 142 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 144 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 577 0 319 0 68 0 555 0 24 0 329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 777 0 50 0 76 0 63 0 341 0 146 0 63 0 55 0 377 0 146 0 61 0 294 0 349 0 145 0 145 0 62 0 175 0 146	130	0		143	0		353	0		69	0		
303 0 510 0 110 0 110 0 53 0 51 0 178 0 137 0 146 0 45 0 140 0 137 0 47 0 144 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 555 0 24 0 329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 777 0 50 0 63 0 559 0 341 0 146 0 61 0 294 0 349 0 1416 0 145 0 62 0 175 0 146	303	0		143	0		145	0		142	0		
33 0 45 0 140 0 137 0 47 0 144 0 2 0 359 0 40 0 59 0 139 0 127 0 83 0 131 0 51 0 577 0 319 0 68 0 555 0 24 0 329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 777 0 50 0 76 0 63 0 341 0 -146 -146 63 0 559 0 377 0 -146 -146 61 0 294 0 349 0 -146 -146 145 0 62 0 177 0 -146 0	53	0		51	0		178	0		137	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	146	0		45	0		140	0		137	0		
40 0 59 0 139 0 127 0 83 0 131 0 51 0 57 0 319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 777 0 50 0 76 0 63 0 352 0 - - 63 0 55 0 377 0 - - 61 0 294 0 349 0 - - 61 0 294 0 349 0 - - 61 0 294 0 349 0 - - 145 0 62 0 175 <t< td=""><td>47</td><td>0</td><td></td><td>144</td><td>0</td><td></td><td>2</td><td>0</td><td></td><td>359</td><td>0</td></t<>	47	0		144	0		2	0		359	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	0		59	0		139	0		127	0		
319 0 68 0 55 0 24 0 329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 777 0 500 0 76 0 63 0 341 0 146 0 63 0 59 0 377 0 50 0 61 0 294 0 349 0 145 145 145 0 62 0 175 0 145 145	83	0		131	0		51	0		57	0		
329 0 144 0 80 0 131 0 35 0 50 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 77 0 500 0 76 0 63 0 341 0 10 10 63 0 55 0 377 0 10 10 61 0 294 0 349 0 10 10 10 145 0 62 0 175 0 10 10 10	319	0		68	0		55	0		24	0		
35 0 50 0 146 0 146 0 35 0 309 0 146 0 146 0 163 0 309 0 145 0 134 0 358 0 296 0 77 0 50 0 76 0 63 0 341 0 1 1 63 0 59 0 352 0 1 1 60 0 55 0 37 0 1 1 61 0 294 0 349 0 1 1 145 0 62 0 175 0 1 1	329	0		144	0		80	0		131	0		
163 0 309 0 145 0 134 0 358 0 296 0 77 0 50 0 76 0 63 0 341 0 1 1 1 63 0 59 0 37 0 1 1 1 61 0 294 0 349 0 1 1 1 145 0 62 0 175 0 1 1 1	35	0		50	0		146	0		146	0		
100 0 100	163	0		309	0		145	0		134	0		
76 0 63 0 341 0 0 63 0 59 0 352 0	358	0		296	0		77	0		50	0		
63 0 59 0 352 0 60 0 55 0 37 0 61 0 294 0 349 0 145 0 62 0 175 0	76	0		63	0		341	0			-		
60 0 55 0 37 0 61 0 294 0 349 0 145 0 62 0 175 0 0	63	0		59	0		352	0					
61 0 294 0 349 0 145 0 62 0 175 0	60	0		55	0		37	0					
145 0 62 0 175 0	61	0		294	0		349	0					
	145	0		62	0		175	0					
	140	0		5	0		42	0					
	145	0		29	0		20	0					
	43	0		57	0		357	0					
	61	0		151	0		35	0					
	47	0		56	0		330	0					
	318	0		55	0		103	0		ļ			
	56	0		137	0		109	0					
	115	0		343	0		146	0		ļ			
	50	0		144	0		52	0					
	145	0		111	0		62	0					

ANEXO C - Dados Isotópicos das amostras coletadas

Spot	207Pb	206Pb	238U	Th/U	207Pb/206Pb	2s%	207Pb/235U	2s%	206Pb/238U	2s%	RHO
	CPS	CPS	CPS								
PTG 02 II _ 1	-	630.1996	17018	-	0.31198	29.48907	0.51791026	29.48907	0.01204	16.19601	0.549221
PTG 02 II 2	1993.196	521.8706	1818	0.019515	0.53361	80.23088	3.32775866	80.23089	0.044533	61.79527	0.770218
PTG 02 II _ 3	-	766.7724	13662	-	0.39161	29.31488	0.82720626	29.31488	0.015084	18.9295	0.64573
PTG 02 II _ 4	3829.826	1177.217	8162	0.006368	0.50633	23.68416	1.79907535	23.68417	0.025373	17.85021	0.753677
PTG 02 II _ 5	3597.458	1173.701	9078	0.007823	0.50964	18.9624	2.1916952	18.96243	0.03071	14.4277	0.760857
PTG 02 II 6	2365.105	504.0899	6065	0.00735	0.39849	44.70878	1.08733783	44.70878	0.019485	28.54977	0.638572
PTG 02 II _ 7	2772.385	654.389	2129	0.012429	0.46876	74.55414	2.43858909	74.55415	0.037149	53.00822	0.711003
PTG 02 II _ 8	3831.868	916.5971	12099	0.005	0.38724	24.11941	1.05236916	24.11942	0.019406	15.2207	0.631056
PTG 02 II _ 9	2363.713	434.5937	7202	0.006083	0.38562	43.24464	0.85070857	43.24465	0.015754	27.1875	0.628691
PTG 02 II 10	-	1302.653	6205	-	0.46177	30.50003	2.16346744	30.50005	0.033457	21.48323	0.704367
PTG 02 II _ 11	4252.137	1006.712	5963	0.00389	0.39854	72.52472	1.00120167	72.52472	0.017939	46.10318	0.635689
PTG 02 II _ 12	2857.91	845.8127	3755	0.010848	0.53431	45.49419	2.5895238	45.4942	0.034609	35.13514	0.772299
PTG 02 II _ 13	3811.52	794.7778	10619	0.003876	0.3338	43.40324	0.71153636	43.40324	0.015222	9.702458	0.223542
PTG 02 II 14	3019.647	714.3641	7707	0.006917	0.42879	26.76368	1.32550549	26.76369	0.022075	7.314897	0.273314
PTG 02 II _ 15	2552.97	635.4524	4099	0.008673	0.43346	58.24759	1.41763683	58.24759	0.023355	15.59865	0.267799
PTG 02 II _ 16	3565.565	839.3994	8749	0.004505	0.38068	38.10024	0.94793614	38.10025	0.017782	9.413068	0.247061
PTG 02 II _ 17	1949.392	306.0308	2390	0.010286	0.42153	81.75931	1.23622424	81.75931	0.020942	21.72073	0.265667
PTG 02 II _ 18	3040.147	868.0494	6481	0.012036	0.51152	27.32249	1.93177226	27.3225	0.026968	8.178167	0.29932
PTG 02 II _ 19	-	510.0587	5797	-	0.40289	35.97012	1.23155399	35.97012	0.021829	9.201624	0.255813
PTG 02 II _ 20	2849.371	765.3762	5000	0.006244	0.45235	60.3515	1.25862696	60.3515	0.019869	42.12091	0.697926
PTG 02 II _ 21	3209.631	1132.373	3860	0.008976	0.5843	47.59199	2.47168155	47.592	0.030207	38.78748	0.815
PTG 02 II _ 22	4902.68	1923.705	4162	0.013184	0.55263	30.5159	4.78667195	30.51596	0.061852	24.19612	0.7929
PTG 02 II 23	2756.68	805.2899	2593	0.014643	0.49374	63.73395	2.70605563	63.73396	0.039138	46.91824	0.736158
PTG 02 II _ 24	2377.729	691.3918	6542	0.005856	0.52778	44.38213	1.09009919	44.38213	0.014749	35.04673	0.789659
PTG 02 II _ 25	3976.933	1499.163	4912	0.013376	0.56808	29.92536	3.89754507	29.9254	0.048994	24.01527	0.802505
PTG 02 II _ 26	2571.129	740.5821	1937	0.017092	0.47231	75.98399	2.99887283	75.98401	0.045341	54.39739	0.715906
PTG 02 II 27	#VALOR!	917.4074	4284	#VALOR!	0.52907	74.08471	1.39549852	74.08472	0.018835	57.76268	0.779684
PTG 02 II _ 28	2566.258	580.5531	6675	0.005556	0.39928	63.76478	0.75587393	63.76478	0.013519	16.46031	0.258141
PTG 02 II _ 29	3829.466	1263.88	2827	0.01484	0.49936	47.59692	4.24471081	47.59696	0.0607	14.24169	0.299214
PTG 02 II _ 30	3590.818	1051.999	2882	0.013678	0.47196	61.65777	2.68689905	61.65778	0.040654	17.67983	0.286741
PTG 02 II 31	3698.499	1339.805	3861	0.023369	0.5169	33.28303	5.07229814	33.28311	0.070074	10.20093	0.30649
PTG 02 II _ 32	5304.515	2334.239	4369	0.011876	0.62799	29.47818	5.301738	29.47824	0.060287	10.19108	0.345715
PTG 02 II _ 33	-	1108.494	3158	-	0.47966	61.45186	2.33921337	61.45187	0.034825	17.86825	0.290768
PTG 02 II _ 34	3414.018	961.9107	4680	0.006082	0.43763	65.13265	1.34800508	65.13265	0.021996	17.72605	0.272153
PTG 02 II 35	840.508	419.3322	1301	0.011466	0.70476	61.46206	4.28238365	61.46207	0.043391	56.95484	0.926666
PTG 02 II _ 36	-	282.5675	1510	-	0.59866	69.46848	2.61166814	69.46849	0.031153	59.26043	0.853055
PTG 02 II _ 37	1064.851	504.3456	1356	0.016254	0.69661	62.97929	4.77169379	62.9793	0.048915	57.56844	0.914085
PTG 02 II _ 38	-	263.0216	776	-	0.60188	83.17937	4.89956514	83.17939	0.058131	28.28591	0.340059
PTG 02 II _ 39	717.7263	242.2717	1645	0.010345	0.54321	72.95889	2.30835004	72.9589	0.030345	23.94549	0.328205
PTG 02 II _ 40	790.6756	272.2968	1649	0.015592	0.5769	45.45675	3.45852842	45.45677	0.04281	15.45538	0.340002

Spot	207Pb	206Pb	238U	Th/U	207Pb/206Pb	2s%	207Pb/235U	2s%	206Pb/238U	2s%	RHO
•	CPS	CPS	CPS		1						
PTG 03 II 1	3965.718	1606.853	18981	0.005548	0.62257	14.23776	1.950284	14.23777	0.022819	12.32394	0.865581
PTG 03 II 2	4614.501	2040.672	17483	0.003918	0.63434	18.28672	1.747507	18.28673	0.020067	15.76577	0.862142
PTG 03 II 3	5386.07	2453.517	21898	0.005813	0.63794	9.474245	2.853395	9.474301	0.032581	7.860666	0.829683
PTG 03 II 4	5356.529	2512.134	20570	0.004485	0.67026	11.13001	2.669882	11.13005	0.029015	9.691935	0.87079
PTG 03 II 5	3240.231	1460.141	6212	0.012716	0.72825	20,97631	4.832787	20.97637	0.048339	19.53044	0.931069
PTG 03 II 6	4386.292	1891.945	14641	0.005116	0.64199	16.68562	2.294376	16.68564	0.026033	14.46759	0.867069
PTG 03 II 7	3763.949	1617.168	6945	0.016743	0.68034	13.90481	6.104848	13.90496	0.065363	12.52305	0.900617
PTG 03 II 8	3359.581	1404.484	3419	0.01307	0.70119	31.55208	5.154982	31.55212	0.053552	28.78845	0.912409
PTG 03 II 9	4191.763	1533.113	23157	0.003381	0.57377	15.1559	1.317205	15.15591	0.016722	12.31231	0.812377
PTG 03 II 10	4566.548	2007.176	19059	0.003778	0.61969	15.22051	1.875471	15.22053	0.022045	12.98405	0.853062
PTG 03 II 11	6401.187	3006.158	18913	0.003169	0.6392	17.24656	2.100207	17.24657	0.023933	5.958875	0.345511
PTG 03 II 12	4861.461	2378.61	4868	0.011886	0.69206	25.47756	6.03921	25.47764	0.063565	9.258967	0.363415
PTG 03 II 13	6246.309	3340.654	9582	0.005814	0.71565	19.81415	3.945966	19.8142	0.040164	7.251813	0.365991
PTG 03 II 14	5125.86	2655.896	11058	0.005107	0.74001	19.6646	3.090567	19.66462	0.030422	7.263123	0.36935
PTG 03 II 15	5420.505	2499.643	6375	0.007504	0.67394	25.94296	4.21498	25.943	0.045557	9.259259	0.356908
PTG 03 II 16	-	1360.747	4248	-	0.66152	25.17233	5.219058	25.1724	0.057468	8.912967	0.354077
PTG 03 II 17	-	1710.55	7019	-	0.69225	22.88191	3.490513	22.88194	0.036729	8.203445	0.358512
PTG 03 II 18	3847.429	1793.567	14350	0.005153	0.6933	15.13919	2.376422	15.13921	0.024968	5.470636	0.361355
PTG 03 II 19	-	1506.187	5098	-	0.66206	19.43026	5.413191	19.43035	0.059558	6.846543	0.352363
PTG 03 II 20	7021.29	3265.371	38426	0.003085	0.61264	5.869679	1.788247	5.869717	0.021262	4.015116	0.684039
PTG 03 II 21	3789.76	1403.528	18912	0.003987	0.57404	8.919239	1.404097	8.919257	0.017817	7.046223	0.790001
PTG 03 II 22	-	1972.529	14166	-	0.60322	11.86963	1.897153	11.86965	0.022909	9.644893	0.812567
PTG 03 II 23	7348.987	3074.938	12808	0.003916	0.5489	14.6329	2.298472	14.63293	0.03463	11.19526	0.765073
PTG 03 II 24	6533.08	2902.974	12429	0.004263	0.60016	12.02346	2.684412	12.0235	0.032581	9.710234	0.807604
PTG 03 II 25	6040.755	2750.885	17446	0.00434	0.62634	8.538493	2.532932	8.538544	0.029457	6.818957	0.798609
PTG 03 II 26	5844.122	1926.987	16527	0.002052	0.44772	24.02394	0.847575	24.02395	0.01379	16.75164	0.697289
PTG 03 II 27	4374.728	1804.498	6444	0.01025	0.57707	15.99806	3.22244	15.99811	0.040676	12.71605	0.794847
PTG 03 II 28	10144.61	3323.473	7077	0.012111	0.41559	22.82057	3.094857	22.82063	0.03757246	14.62692	0.640952
PTG 03 II 29	7522.534	2375.641	42339	0.002205	0.41208	11.53174	0.69772	11.53175	0.012333	7.32899	0.635549
PTG 03 II 30	7115.924	3114.972	25301	0.00364	0.5922	7.375887	2.091121	7.375931	0.025721	5.466615	0.741142
PTG 03 II 31	3665.984	1234.675	3980	0.011818	0.57507	26.55677	3.436457	26.5568	0.043528	21.45824	0.808013
PTG 03 II 32	4482.55	2070.704	9934	0.007403	0.64049	10.36706	3.303706	10.36713	0.037572	3.421545	0.330038
PTG 03 II 33	7216.029	3172.275	10016	0.004648	0.58833	15.81425	2.740198	15.81429	0.033927	5.032564	0.318229
PTG 03 II 34	5252.205	2121.585	18386	0.004032	0.57124	11.02164	1.609119	11.02166	0.020519	3.426334	0.310873
PTG 03 II 35	5529.08	2360.332	6588	0.006544	0.60382	18.85993	3.033801	18.85996	0.036598	6.201976	0.328844
PTG 03 II 36	-	1725.21	9502	-	0.57603	15.95056	1.969691	15.95058	0.024908	5.080645	0.318524
PTG 03 II 37	-	1732.417	6964	-	0.57479	16.53473	2.685852	16.53477	0.034037	5.311301	0.32122
PTG 03 II 38	3504.479	631.1508	37101	0.002157	0.2724	17.37151	0.258403	17.37151	0.00691	3.77907	0.217544
PTG 03 II 39	4852.692	1513.669	43726	0.002133	0.42868	9.890828	0.578061	9.890832	0.009822	2.658487	0.268783
PTG 03 II 40	3728.27	1126.837	21115	0.003684	0.46815	15.53348	0.705515	15.53349	0.010977	4.574565	0.294497
PTG 03 II 41	1189.597	634.1148	3438	0.015313	0.7887	34.91315	5.692851	34.91319	0.052577	34.19293	0.97937
PTG 03 II 42	1429.228	643.5546	2952	0.011854	0.71111	28.94067	5.734819	28.94073	0.058744	26.32929	0.909766
PTG 03 II 43	-	489.0263	2543	-	0.72989	36.80007	4.328407	36.80009	0.043197	34.1781	0.92875
PTG 03 II 44	1064.928	462.2433	4232	0.007562	0.68684	27.44744	2.927223	27.44746	0.031044	25.23455	0.919377
PTG 03 II 45	-	537.453	2885	-	0.68816	32.82957	4.009777	32.8296	0.042444	29.81543	0.908187
PTG 03 II 46	1015.953	482.2829	2453	0.015065	0.67264	34.93696	4.693754	34.937	0.05083	12.76428	0.365351
PTG 03 II 47	-	293.4651	3153	-	0.54649	39.4225	2.214538	39.42251	0.029518	31.98367	0.811305
PTG 03 II 48	1145.669	513.0405	2408	0.014648	0.6405	30.05152	5.148598	30.05158	0.058553	10.63465	0.35388
PTG 03 II 49	-	372.0297	3647	-	0.64365	31.1225	2.647307	31.12252	0.02996	11.12974	0.35761
PTG 03 II 50	-	327.062	4340	-	0.5639	35.68009	1.855128	35.68009	0.023964	11.90277	0.333597
PTG 03 II 51	1262.658	602.6228	6053	0.00818	0.6817	18.77659	3.249331	18.77662	0.03472	6.826728	0.363576
PTG 03 II 52	-	500.7974	3693	-	0.65208	25.18096	3.889454	25.181	0.043448	8.969025	0.356182

Spot	207Pb	206Pb	238U	Th/U	207Pb/206Pb	28%	207Pb/235U	28%	206Pb/238U	2s%	RHO
	CPS	CPS	CPS								
PTG 05 II 01	4818,48064	1980.87024	20878	0.00431529	0.59272	7.42340397	1.98344715	7.42344364	0.02427	5.56242274	0.74930491
PTG 05 II 02	6082.12189	3037.9684	21153	0.00358966	0.6652	6.67468431	2.95331239	6.67476197	0.0322	4.9689441	0.74443765
PTG 05 II 03	4447.34335	1780.09352	19436	0.00388308	0.60568	7.89195615	1.85394772	7.89198737	0.0222	6.30630631	0.79907709
PTG 05 II 04	3043.95518	1152.80064	6432	0.00762746	0.66713	13.5146073	3.07042206	13.5146486	0.03338	11.9832235	0.88668406
PTG 05 II 05	7859.50695	4446.24915	19544	0.0050781	0.71015	7.75610786	4.55209076	7.75624719	0.04649	6.66810067	0.85970709
PTG 05 II 06	6638.47253	3020.3339	34406	0.0028141	0.60226	5.98412646	1.95890437	5.98417295	0.02359	4.23908436	0.70838266
PTG 05 II 07	6405.78538	3104.45534	26851	0.0030817	0.65926	6.0613415	2.65333506	6.06141179	0.02919	4.45357999	0.73474302
PTG 05 II 08	3922.3453	1598.00008	18194	0.00434802	0.59273	9.16437501	1.74075554	9.16439976	0.0213	7.51173709	0.81966493
PTG 05 II 09	2504.99364	627.946	9293	0.00414053	0.41975	25.3674806	0.85655192	25.367485	0.0148	17.2297297	0.67920528
PTG 05 II 10	3983.0562	1636.15488	14910	0.00511622	0.62592	8.48031697	2.31288957	8.48035932	0.0268	6.90298507	0.81399677
PTG 05 II 11	3050.43191	1321.39488	8556	0.00622623	0.70512	12.4574541	2.57054824	12.4574821	0.02644	4.46293495	0.35825337
PTG 05 II 12		563.09704	11161	#VALOR!	0.43516	18.4208107	0.82379809	18.4208159	0.01373	13.1099782	0.71169368
PTG 05 II 13	3439.97562	1169.13468	18204	0.00387362	0.50307	10.4796549	1.23258569	10.47967	0.01777	3.15137873	0.30071355
PTG 05 II 14	7114.56568	3318.0948	35769	0.00289862	0.58335	6.10268278	2.06711006	6.10273689	0.0257	1.63424125	0.26778825
PTG 05 II 15	4352.2943	1861.21832	19239	0.00422356	0.61958	8.21201459	1.97423393	8.21204711	0.02311	2.59627867	0.31615487
PTG 05 II 16		1285.1616	18317	#VALOR!	0.5664	9.15254237	1.44554274	9.15256109	0.01851	2.91734198	0.31874597
PTG 05 II 17	5054.80469	1739.65533	20320	0.00264253	0.48853	13.771928	1.13364383	13.7719383	0.01683	4.04040404	0.29337948
PTG 05 II 18	3128.97225	905.7048	7665	0.00858258	0.4872	34.5238095	1.57928745	34.5238175	0.02351	25.5210549	0.73923038
PTG 05 II 19	3044.73275	713.24615	11642	0.00506281	0.38869	37.5414855	0.83229272	37.5414887	0.01553	24.1468126	0.64320339
PTG 05 II 20	7069.57072	2247.3675	5988	0.00772259	0.42807	38.1526386	3.16477528	38.1526763	0.05362	25.8299142	0.67701448
PTG 05 II 21	5009.82432	1612.17378	6139	0.00673222	0.47389	37.7978012	2.32152854	37.7978179	0.03553	27.4415986	0.72601013
PTG 05 II 22	5566.04894	1725.688	6166	0.00624854	0.436	45.2477064	2.10224533	45.2477199	0.03497	30.7406348	0.67938528
PTG 05 II 23		880.06254	6501	#VALOR!	0.51107	50.0440253	1.39311938	50.0440292	0.01977	38.6949924	0.77321896
PTG 05 II 24	960.44161	481.09122	2819	0.01080567	0.73674	24.8120097	4.24002063	24.8120448	0.04174	23.3588884	0.94143343
PTG 05 II 25	#VALOR!	901.21158	2586	#VALOR!	0.57111	41.8343226	4.17740351	41.8343563	0.05305	33.9302545	0.81106195
PTG 05 II 26	1132.807	434.9025	2632	0.00854384	0.5685	32.9639402	3.43560491	32.9639693	0.04383	26.5799681	0.80633396
PTG 05 II 27		923.4134	5329	#VALOR!	0.50737	27.9716972	3.058484	27.9717314	0.04372	20.5855444	0.73594102
PTG 05 II 28	1215.49275	327.85375	4550	0.0056221	0.37469	40.011743	1.515254	40.0117538	0.02933	10.0920559	0.25222728
PTG 05 II 29	1133.67316	554.9924	1957	0.01366376	0.7052	32.7566648	6.0576144	32.756724	0.0623	11.9101124	0.3635929
PTG 05 II 30	1311.89105	461.20286	3320	0.00840686	0.50626	27.9935211	3.25561793	27.99356	0.04664	8.44768439	0.30177242
PTG 05 II 31		606.29549	3057	#VALOR!	0.74759	19.3903075	6.32381746	19.3904046	0.06135	7.36756316	0.37995923
PTG 05 II 32	885.632647	248.55582	4514	0.00593807	0.46286	36.8491553	1.26617167	36.8491606	0.01984	27.2177419	0.73862583
PTG 05 II 33	1089.99955	430.92828	6300	0.00536274	0.61038	21.0557358	1.9743747	21.0557488	0.02346	18.5421995	0.88062408
PTG 05 II 34		375.4533	5445	#VALOR!	0.6289	24.9069804	1.84351268	24.9069895	0.02126	21.8720602	0.87814949
PTG 05 II 35	1022.86824	440.64743	6666	0.00679252	0.62681	18.3213414	2.09752414	18.3213575	0.02427	16.0692213	0.87707591
PTG 05 II 36	1174.17882	450.42371	5859	0.00757976	0.57233	18.6116401	2.39421618	18.6116649	0.03034	15.6558998	0.8411875
PTG 05 II 37	900.274865	292.82755	1827	0.00958617	0.55565	52.6014578	2.81323017	52.6014706	0.03672	42.6198257	0.81024019
PTG 05 II 38	1071.38503	383.2876	2325	0.01133806	0.6431	39.9191417	3.34908962	39.9191595	0.03777	35.2131321	0.88211106
PTG 05 II 39	1135.93856	444.1752	2903	0.00690843	0.52878	47.1349143	2.43440434	47.1349262	0.03339	14.7349506	0.31261215
PTG 05 II 40		348.61134	5297	#VALOR!	0.51954	30.2421373	1.53798574	30.2421449	0.02147	23.5211924	0.77776204
PTG 05 II 41	1059.43711	377.5408	1963	0.01414318	0.5186	51.2379483	3.38717139	51.2379702	0.04737	15.7905848	0.30818131
PTG 05 II 42	1036.03431	310.15296	5564	0.00701912	0.47424	24.1312416	1.68178479	24.1312553	0.02572	7.30948678	0.30290537
PTG 05 II 43		379.54818	1693	#VALOR!	0.52569	48.7587742	3.96839701	48.7588049	0.05475	15.3424658	0.31466041
PTG 05 II 44	1011.8516	409.66116	3685	0.0104539	0.60422	23.8191387	3.07829909	23.8191674	0.03695	8.06495264	0.33859087
PTG 05 II 45	896.921961	357.25738	2958	0.00716662	0.64838	42.6169839	2.16791688	42.6169908	0.02425	15.0103093	0.3522142
PTG 05 II 46		364.25168	3922	#VALOR!	0.61529	27.024655	2.37541319	27.0246695	0.028	9.42857143	0.34888758
PTG 05 II 47	850.468892	268.82565	2513	0.00752236	0.61799	41.8647551	2.26824924	41.8647636	0.02662	14.5755071	0.34815692
PTG 05 II 48	784.381425	244.33872		0.00640712	0.49064	34.3795858	1.37598967	34.3795919	0.02034	10.619469	0.30888875