

Universidade do Estado do Rio de Janeiro

Centro Biomédico

Instituto de Biologia Roberto Alcântara Gomes

Andrezza Maria Côrtes Thomé Lima

Fotobiomodulação por laser de baixa potência com duplo comprimento de onda em feridas crônicas

Rio de Janeiro 2020 Andrezza Maria Côrtes Thomé Lima

Fotobiomodulação por laser de baixa potência com duplo comprimento de onda em

feridas crônicas

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Biociências da Universidade do Estado do Rio de Janeiro.

Orientador: Prof. Dr. Adenilson de Souza da Fonseca

Rio de Janeiro 2020

CATALOGAÇÃO NA FONTE UERJ/REDE SIRIUS/CBA

L732 Lima, Andrezza Maria Côrtes Thomé.

Fotobiomodulação por laser de baixa potência com comprimento de onda duplo em feridas crônicas / Andrezza Maria Côrtes Thomé Lima.- 2020. 98 f.

Orientador: Adenilson de Souza da Fonseca

Tese (Doutorado) – Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes. Programa de Pós-graduação em Biociências.

1. Cicatrização de feridas – Teses. 2. Laser – Teses 3. Terapia com Luz de Baixa Intensidade. 4. Ferimentos e Lesões. 5. *Pantoea*. I. Fonseca, Adenilson de Souza da. II. Universidade do Estado do Rio de Janeiro. Instituto de Biologia Roberto Alcântara Gomes. III. Título.

CDU 616-003.9

Bibliotecária: Angela da Silva Velho CRB7/4780

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Data

Andrezza Maria Côrtes Thomé Lima

Fotobiomodulação por laser de baixa potência com duplo comprimento de onda em feridas crônicas

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Biociências da Universidade do Estado do Rio de Janeiro.

Aprovada em 28 de maio de 2020.

Banca Examinadora:

Prof. Dr. Adenilson de Souza da Fonseca (Orientador) Instituto de Biologia Roberto Alcântara Gomes – UERJ

Prof. Dr. André Mencalha Instituto de Biologia Roberto Alcântara Gomes – UERJ

Prof^a. Dra. Flavia de Paoli Universidade Federal de Juiz de Fora

Prof. Dr. Eduardo Tavares Lima Trajano Universidade de Vassouras

> Rio de Janeiro 2020

DEDICATÓRIA

À minha família que me deu todo suporte para que eu alcançasse meus objetivos. Aos amigos, por tornarem mais leve a jornada. Aos meus pacientes, a inspiração para este trabalho.

AGRADECIMENTOS

Agradeço primeiramente, a Deus pelo dom da vida, pela proteção e perseverança que me concedeu para ultrapassar os obstáculos encontrados durante a pós-graduação, a Nossa Senhora de Aparecida que a todo instante se faz presente em minha vida, me cobrindo com seu manto de luz e conduzindo para o caminho da sabedoria.

Desde a graduação, passei por pessoas que me cativaram e acreditaram no meu potencial, estes eu chamo de orientadores ou ainda de amigos. Importante mencionar aqueles que ousaram em afirmar que seria impossível conseguir conciliar a pratica clínica e a vida acadêmica, a estes vôs digo, o impossível está materializado nestas folhas,

Durante minha jornada no laboratório de Biofotônica fiz colegas, amigos e família. Construí uma vida em paralelo: enfrentei novos desafios profissionais, casei e formei família. Isto foi possível, pois as pessoas deste seleto grupo não foram figurantes nesta história, mas protagonistas das conquistas, oferecendo suporte para que tudo isto acontecesse. Aos companheiros de orientação nesta reta final, Luiz Philippe e Keila Canuto, vocês são gigantes e maior ainda é minha admiração por vocês. Larissa, Juliana, Isis, Matheus, Pryciane, Adilson e Diego, vocês são a família cientifica mais engraçada, feliz e companheira que formei na vida.

E, claro, minha família foi meu alicerce, minha base. Aos meus pais, dedico toda vitória. Que eu possa ser para minhas filhas, a alavanca de força que vocês sempre foram para mim, incansáveis. Ao Thiago, meu esposo, pai das minhas filhas, meu companheiro de jornada, você é o cara! O cara que não desistiu de mim, o ser humano incrível que veio me auxiliar na busca pela evolução e juntos, realizamos a produção mais significativa, grandiosa e sublime, nossas filhas. Liz e Lia, vocês são a razão, o início, o meio e a continuidade disto tudo.

Aqui encontra-se o trabalho que chamei de sonho, da bancada para a clínica, que este crie asas e voe longe, chegando nas mãos que irão curar. Assim, que este trabalho não seja um ponto final, mas o início de um novo paragrafo na vida de muitas pessoas, incluindo a minha.

A todos o meu muitíssimo obrigado!

É preciso estudar todos os dias e sempre Madre Maria São Miguel

RESUMO

LIMA, Andrezza Maria Côrtes Thomé. **Fotobiomodulação por laser de baixa potência com comprimento de onda duplo em feridas crônicas.** 2020. 98 f. Tese (Doutorado em Biociências) – Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

O objetivo deste estudo foi avaliar os efeitos da fotobiomodulação (FBM) por lasers de baixa potência com duplo comprimento de onda na cicatrização e carga bacteriana de modelos de lesão por pressão (LP). Além disto, descrever relatos de casos com o objetivo de avaliar efeitos do laser de baixa potência com duplo comprimento de onda no fechamento de feridas crônicas em pacientes na rede de Atenção Básica do Município de Quatis/RJ qualitativamente e quantitativamente através da mensuração da área lesionada. Vinte e cinco camundongos Swiss machos foram divididos em cinco grupos. Ciclos de reperfusão isquêmica foram empregados para causar formação de LP pela aplicação externa de placas magnéticas. Imediatamente após o ferimento, uma suspensão de Pantoea agglomerans foi aplicada na base de todas as feridas dos grupos infectados, usando uma pipeta calibrada. FBM (emissão simultânea a 660 e 808 nm, 142,8J/cm², em modo de emissão de onda contínua, 100mW, densidade de potência de 3,571 W/cm²) foi aplicada às LPs por 14 sessões. Após o tratamento, os animais foram eutanasiados e os tecidos foram analisados quanto à avaliação da contração e re-epitelização da ferida, espessura da epiderme, sobrevivência bacteriana, avaliação dos níveis relativos de RNAm dos genes IL-1ß e IL-10. As áreas de LP apareceram maiores nos camundongos dos grupos infectados do que naquelas do grupo de laser 4 dias após a indução da LP, e apresentaram re-epitelização incompleta 14 dias após a indução da LP. No entanto, a FBM acelerou a cicatrização de feridas no grupo infectado + laser em comparação com o grupo infectado 11 e 14 dias após a indução da LP. As LPs infectadas e irradiadas exibiram uma neo-epiderme mais fina do que aquelas no grupo infectado, e a sobrevivência bacteriana diminuiu no grupo laser; os níveis de mRNA de IL-1ß demonstraram uma tendência crescente, enquanto os níveis de mRNA de IL-10, uma tendência decrescente nos grupos laser e infectados + laser. Estes resultados sugerem que a FBM melhora a cicatrização inativando ou inibindo as bactérias nas LPs, bem como acelerando a cicatrização da ferida, resultando no reparo tecidual. Corroborando com estes achados, com os resultados encontrados nos relatos de casos é possível sugerir que o laser de baixa potência com comprimento de onda duplo simultâneo contribui para induzir a reparação de feridas crônicas, como os efeitos induzidos por estes poderiam ser aditivos.

Palavras-chave: Comprimento de onda duplo, Laser de baixa potência, Pantoea agglomerans,

Feridas Crônicas

ABSTRACT

LIMA, Andrezza Maria Côrtes Thomé. **Photobiomodulation by low power laser by dualwavelength on chronic wounds.** 2020. 98 f. Tese (Doutorado em Biociências) – Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.

The aim of this study was to evaluate the effects of photobiomodulation (FBM) by dual-wavelength low-power lasers on the healing and bacteria bioburden of pressure ulcer (PU) models. Then, case series is evaluating the therapeutic efficacy of dual-wavelength lowpower lasers treatment of chronic wounds. Twenty-five male Swiss mice were divided into five equal groups. Ischemia reperfusion cycles were employed to cause PU formation by the external application of magnetic plates. Immediately after wounding, a suspension of Pantoea agglomerans was applied at the base of all the wounds of the infected groups, using a calibrated pipette. FBM (simultaneous emission at 660 and 808 nm, 142.8 J/cm², in continuous wave emission mode) was applied to the PUs for 14 sessions. The animals were euthanized 14 days after PU induction and their tissues were analyzed for wound contraction and reepithelialization, epidermis thickness, bacterial survival, IL-1β, and IL-10 mRNA relative level evaluations. The PU areas appeared larger in the mice from the infected groups than in those in the laser groups 4 days after PU induction, and presented incomplete reepithelialization 14 days after PU induction. However, the FBM accelerated the wound healing in the infected + laser groups compared to the infected groups 11 and 14 days following the PU induction. The infected and irradiated PUs exhibited a thinner neoepidermis than those in the infected groups, and the bacterial survival decreased in the laser groups; the IL-1β mRNA levels demonstrated an increasing tendency while the IL-10 mRNA levels demonstrated a decreasing tendency in the infected + laser and laser groups. These results suggest that FBM improves healing by killing or inhibiting bacteria in PUs as well as by accelerating the wound healing, resulting in tissue repair. In addition, based on case series, the findings show that exposure to low power dichromatic lasers was effective to improve healing in chronic wounds, such as the effects induced by infrared and red lasers could be additive.

Keywords: Dual-wavelength radiation, low-power laser, Pantoea agglomerans, Chronic

Wounds.

LISTA DE FIGURAS

Figura 1 –	Representação esquemática da cadeia de transporte de elétrons mitocondrial						
	e da transferência de elétrons entre centros metálicos ativos redox na						
	citocromo c oxidase	22					
Figura 2 –	Representação esquemática da penetração de radiações em tecidos						
	biológicos	24					
Figura 3 –	Representação esquemática para penetração de radiação em tecidos						
	biológicos em diferentes comprimentos de onda	37					
Figura 4 –	Fotografias dos das lesões por pressão expostos a lasers de baixa potência						
	com duplo comprimento de onda 0, 4, 11 e 14 dias após o						
	ferimento	49					
Figura 5 –	Quantificação da área de cicatrização das lesões por pressão em						
	camundongos	50					
Figura 6 –	Análise microscópica da cicatrização de feridas	52					
Figura 7 –	Taxa de sobrevivência de bactérias de feridas nos grupos infectados e						
	infectados + laser 14 dias após o ferimento	53					
Figura 8 –	Níveis relativos de mRNA de IL1 β e IL10 em lesões por						
	pressão	54					
Figura 9 –	Imagens da lesão por pressão exposta a lasers vermelho e infravermelho						
	simultaneamente	59					
Figura 10 –	Áreas da lesão por pressão expostas a lasers vermelho e infravermelho						
	simultâneo de baixa potência	60					
Figura 11 –	Escores da escala PUSH	50					
Figura 12 –	Imagens da úlcera venosa exposta a laser de baixa potência vermelhos e						
	infravermelho simultâneo	61					
Figura 13 –	Áreas da úlcera venosa expostas a lasers de baixa potência vermelho e						
	infravermelho simultâneo	62					
Figura 14 –	Imagens da úlcera diabética exposta a lasers de baixa potência vermelho e						
	infravermelho simultâneo	63					
Figura 15 –	Áreas da úlcera diabética expostas a lasers de baixa potência vermelho e						
	infravermelho simultâneo	63					

Figura 16 –	 Imagens da úlcera venosa exposta a lasers vermelhos e infravermelhos 					
	simultâneo	65				
Figura 17 –	As áreas da úlcera venosa expostas a lasers vermelho e infravermelho de					
	baixa potência simultâneo	65				
Figura 18 –	Imagens da úlcera venosa exposta a lasers vermelhos e infravermelhos					
	simultâneo	67				
Figura 19 –	As áreas da úlcera venosa expostas a lasers vermelho e infravermelho de					
	baixa potência simultâneo	67				
Figura 20 –	Imagens da úlcera venosa exposta a lasers vermelhos e infravermelhos					
	simultâneo	68				
Figura 21 –	As áreas da úlcera venosa expostas a lasers vermelho e infravermelho de					
	baixa potência simultâneo	69				

LISTA DE TABELA

Tabela 1 –	Efeitos do laser de baixa potência com comprimento de onda duplo em	
	culturas bacterianas	26
Tabela 2 –	Efeitos do laser de baixa potência com comprimento de onda duplo em	
	tecido biológicos	29
Tabela 3 –	Efeitos da combinação do laser de baixa potência e light-emitting	
	diodes (LED)	33
Tabela 4 –	RT-qPCR primer	45

LISTA DE ABREVIATURAS E SIGLAS

ANOVA	Análise de variância
ATP	Adenosina trifosfato
cDNA	Complementary DNA (DNA complementar)
CCO	Citocromo C Oxidase
DEPC	diethylpyrocarbonate
DNA	Deoxyribonucleic acid (ácido desoxirribonucléico)
ERO	Espécies reativas de oxigênio
FBM	Fotobiomodulação
IL-1β	Interleucina 1 beta
IL-6	Interleucina 6
IL-10	Interleucina 10
Laser	Light Amplification by Stimulated Emission of Radiation (amplificação da
	luz por emissão estimulada de radiação)
LBP	Lasers de Baixa Potência
LBPD	Lasers de Baixa Potência com Duplo Comprimento de Onda
LED	light-emitting diode
LP(s)	Lesão (s) por Presão
IR	Isquemia e Reperfusão
Maser	Microwave Amplification by Stimulated Emission of Radiation
	(amplificação de microondas por emissão estimulada de radiação)
NPUAP	National Presure Ulcer Advisory Panel
PCR	polymerase chain reaction (reação em cadeia da polimerase)
qRT-PCR	Reverse transcription polymerase chain reaction (reação em cadeia da
	polymerase por transcrição reversa)
RNA	Ribonucleic acid (ácido ribonucléico)
RNAm	Ácido ribonucléico mensageiro
TBP	TATA box binding protein
TLBP	Terapia Laser de Baixa Potência
UFC	Unidade Formadora de Colônia
VEGF	Vascular endothelial growth fator

LISTA DE SÍMBOLOS

mW	Miliwatts
nm	Nanômetros
W	Watt
S	segundo
J/cm ²	Joules por centímetro quadrado
λ	lâmbda / comprimento de onda
<	menor que
β	Beta
=	igual
g	grama
%	por cento
=	igual
h	hora
±	mais ou menos
°C	graus Celsius
mg	miligrama
kg	quilograma
V	Volts
mA	miliAmpére
rpm	rotação por minuto
μL	microlitro
mL	mililitro

SUMÁRIO

	INTRODUÇÃO	15
1	REVISÃO DE LITERATURA	17
1.1	Lesão por pressão	17
1.2	Fotobiomodulação	18
1.2.1	Conceitos históricos	18
1.2.2	Conceitos físicos do Laser	20
1.2.3	Absorção de radiação e indução de fotobiomodulação (FBM) em tecidos	
	biológicos	21
1.2.4	Efeitos de lasers de baixa potência com duplo comprimento de onda (LBPD)	
	em bactérias	25
1.2.5	Efeitos de lasers de baixa potência com duplo comprimento de onda (LBPD)	
	em tecidos biológicos	27
1.2.6	Efeitos da combinação de laser de baixa potência e LED	31
1.2.7	Possíveis efeitos da aplicação de diferentes radiações	36
2	OBJETIVOS	39
2.1	Objetivos gerais	39
2.2.1	Estudo 1	39
2.2.2	Estudo 2	39
2.2	Objetivos específicos	39
2.2.1	Estudo 1	39
2.2.2	Estudo 2	39
3	MATERIAIS E MÉTODOS	40
3.1	Estudo 1: Fotobiomodulação por lasers de baixa potência em dois	
	comprimentos de onda em lesões por pressão infectadas	40
3.1.1	Animais	40
3.1.2	Modelo de lesão induzida por isquemia e reperfusão (IR)	40
3.1.3	Inoculação da ferida	41
3.1.4	Laser de baixa potência (LBP)	41
3.1.5	Sobrevivência bacteriana	42
3.1.6	Análise Macroscópica	42

3.1.7	Análise Histológica.	43
3.1.8	Extração de RNA total	43
3.1.9	Síntese Complementar de DNA.	44
3.1.10	Reação em cadeia da polimerase quantitativa em tempo real (RT-qPCR)	44
3.1.11	Análise estatística.	45
3.2.	Estudo 2: Os lasers de baixa potência com duplo comprimento de onda	
	poderiam ser um tratamento alternativo para feridas crônicas?	46
3.2.1	Relato de Casos	46
3.2.2	Laser de baixa potência (LBP)	46
3.2.3	Quantificação da área da ferida	47
3.2.4	Avaliação da lesão por pressão por escala PUSH	47
4	RESULTADOS E DISCUSSÃO	48
4.1	Estudo 1: Fotobiomodulação por lasers de baixa potência com dois	
	comprimentos de onda (LBPD) em lesões por pressão infectadas	48
4.1.1	Resultados	48
4.1.2	Discussão	55
4.2	Estudo 2: O laser de baixa potência com duplo comprimento de onda	
	(LBPD) poderiam ser um tratamento alternativo para feridas crônicas?	58
4.2.1	Resultados	58
4.2.1.1	Relato de Caso 1: lesão por pressão	58
4.2.1.2	Relato de Caso 2: úlcera venosa	61
4.2.1.3	Relato de Caso 3: úlcera diabética	62
4.2.1.4	Relato de Caso 4: úlcera venosa em paciente diabético	64
4.2.1.5	Relato de Caso 5: úlcera venosa em paciente diabético	66
4.2.1.6	Relato de Caso 6: úlcera venosa	68
4.2.2	Discussão	69
	CONCLUSÕES	71
	REFERÊNCIAS	72
	APÊNDICE – Artigos publicados	87

INTRODUÇÃO

As feridas crônicas são caracterizadas por cicatrização tardia e seu tratamento é um importante problema de saúde pública e socioeconômica (AMMONS *et al.*, 2015), com uma estimativa de custo total de mais de 25 bilhões de dólares por ano. Há piora na qualidade de vida dos pacientes e podem resultar na perda de membros ou na vida de muitos destes (RHOADS *et al.*, 2012). Em particular, as lesões por pressão (LPs) são um problema devastador para os idosos e deficientes (STOJADINOVIC *et al.*, 2013). A pressão prolongada e a isquemia tecidual são os principais processos no desenvolvimento de LP (STOJADINOVIC *et al.*, 2013), que é uma causa significativa de morbidade em pacientes hospitalizados e residentes na comunidade (COLETTI *et al.*, 2013).

Diferentes doenças, assim como o processo de cicatrização de feridas, poderiam se beneficiar dos efeitos da fotobiomodulação (FBM) (HAMBLIN, 2016), que altera a atividade biológica por meio de fótons em uma irradiância não térmica (AVCI *et al.*, 2013). A FBM por laser (*light amplification by stimulated of emission radiation*) de baixa potência e LED (*light emitting diode*) tem sido considerado para fins terapêuticos pelos efeitos em tecidos biológicos (AMMONS *et al.*, 2013; RHOADS *et al.*, 2012). Esta abordagem, de baixo risco e não invasiva, é amplamente utilizada por dentistas, enfermeiros, médicos e fisioterapeutas para o tratamento de várias doenças em medicina regenerativa (STOJADINOVIC *et al.*, 2013). A FBM é utilizada para promover a reparação tecidual, diminuir a inflamação e produzir analgesia (COLETTI *et al.*, 2013).

Os efeitos da FBM dependem da absorção de energia de uma radiação incidente por cromóforos (fotoaceptores) em células, que provocam eventos fotofísicos e fotoquímicos em níveis moleculares e celulares (FEKRAZAD *et al.*, 2019). Esses eventos são influenciados pelos parâmetros físicos de irradiação, como comprimento de onda, densidade de energia, densidade de potência, modo de emissão (onda pulsada ou contínua), tempo de irradiação, modo de irradiação (DA FONSECA, 2019), bem como parâmetros clínicos de irradiação, como número de pontos irradiados, área irradiada, técnica de aplicação e frequência de tratamento (ZEIN et al., 2018).

A absorção de energia de uma radiação incidente em diferentes comprimentos de onda e densidades de energia, ou visando diferentes fotoaceptores, poderia iniciar diferentes respostas celulares (FEKRAZAD *et al.*, 2019). Menezes e colaboradores (1998) sugeriram que a exposição prévia à radiação infravermelha (por exemplo, durante o nascer do sol) é um processo natural em que as células são protegidas contra a radiação ultravioleta solar, que foi adquirida e preservada através da seleção evolutiva e desempenha um papel importante no suporte de vida. Portanto, uma combinação de diferentes radiações (diferentes comprimentos de onda) poderia produzir diferentes efeitos nos tecidos, como proliferação e diferenciação celular, quando comparados com aqueles produzidos por uma única radiação (SANTOS *et al.*, 2011).

Em estudos anteriores, foram observados os efeitos de diferentes parâmetros de irradiação com laser de baixa potência (LBP) *in vitro* sobre a inibição ou estimulação do crescimento de culturas bacterianas (THOMÉ *et al.*, 2017; THOMÉ *et al.*, 2018). Em geral, os efeitos biológicos induzidos pela FBM com lasers de baixa potência de mais de um comprimento de onda diferem daqueles induzidos pela radiação LBP de comprimento de onda (808 e 630 nm) a 142,8J/cm² diminuiu a taxa de sobrevivência bacteriana e a formação de biofilme (THOMÉ *et al.*, 2017; THOMÉ *et al.*, 2018; MARTINS *et al.*, 2015). Além disso, constatouse que o FBM contribui para o reparo de feridas cutâneas, que comprometem os vasos sanguíneos e nervos, quando atuam em camadas mais superficiais, alcançadas pelo laser vermelho de baixa potência, e nas camadas mais profundas, obtidas por lasers infravermelhos de baixa potência (LIMA *et al.*, 2014).

No entanto, as infecções são fatores retardadores do processo de cicatrização de feridas e nos biofilmes de feridas agudas, porque as transformam em feridas crônicas, e a FBM com lasers de baixa potência com duplo comprimento de onda (LBPD) poderia ser uma nova opção para o seu tratamento. Portanto, levantamos a hipótese de que o FBM com LBPD poderia contribuir para a cicatrização de feridas de duas maneiras: 1. reduzindo os fatores associados à cronicidade da ferida, como infecções, e 2. Acelerando o processo de cicatrização de feridas.

1 REVISÃO DE LITERATURA

1.1 Lesão por pressão

A lesão por pressão (LP), também chamadas de úlcera de decúbito, escaras ou úlceras por pressão, são lesões na pele e/ou tecidos moles subjacentes, geralmente sobre uma proeminência óssea, como resultado de pressão ou pressão em combinação com cisalhamento e/ou atrito (BLUESTEIN *et al.*, 2008; EDSBERG, 2016; SEN *et al.*, 2009).

O *National Presure Ulcer Advisory Panel* (NPUAP - Conselho Consultivo Nacional sobre Úlceras por Pressão), uma organização norte-americana independente formada em 1987 e dedicada à prevenção, manejo, tratamento e pesquisa sobre lesão por pressão, a classifica como (EDSBERG, 2016):

- 1) Estágio 1 pele íntegra com eritema que não embranquece;
- 2) Estágio 2 perda da pele em sua espessura parcial com exposição da derme;
- 3) Estágio 3 perda da pele em sua espessura total;
- 4) Estágio 4 perda da pele em sua espessura total e perda tissular;
- Não Classificável perda da pele em sua espessura total e perda tissular não visível;
- 6) Tissular Profunda descoloração vermelho escura, marrom ou púrpura, persistente e que não embranquece;
- 7) Relacionada a Dispositivo Médico;
- 8) Em Membranas Mucosas.

As LPs podem levar a consequências significativas para os pacientes. Causam dor, aumentam as taxas de morbidade e mortalidade, além de elevar o custo financeiro para os sistemas de saúde e diminuirem a qualidade de vida do paciente, desenvolvem-se rapidamente, com dificuldade no tratamento em alguns pacientes, sendo então um problema de saúde doloroso e caro (CANO et al., 2015; LATIFA *et al.*, 2016; LYDER *et al.*, 2008;; THOMAS *et al.*, 2014). Adicionalmente, a LP prolonga a hospitalização, dificulta a recuperação do doente e aumenta o risco para o desenvolvimento de outras complicações, como infecções bacterianas. Para o paciente, representa um acréscimo no sofrimento físico e

emocional, reduzindo a sua independência e funcionalidade na realização das atividades da vida diária, comprometendo qualquer processo reparo tecidual. As LPs merecem por parte da equipe multiprofissional toda a atenção, no sentido de prevenir o seu aparecimento ou favorecer o seu tratamento (BLANES *et al.*, 2004).

Estima-se que existam mais de 7,4 milhões de casos no mundo e a prevalência no Brasil é de 16,9% (SEN *et al.*, 2009; LYDER *et al.*, 2008; BRITO *et al.*, 2013). Nos Estados Unidos, as LPs atingem 2,5 milhões de pacientes e o custo do tratamento foi estimado em US\$ 11 bilhões por ano, com custo entre US\$ 500 e US\$ 70.000 por paciente dependendo do estágio da LP (SEN *et al.*, 2009; CANO *et al.*, 2015). Além disto, com uma população estimada de 1,5 milhões de idosos vivendo em instituições de longa permanência nos EUA, as LPs têm ganhado grande importância, uma vez que 25% a 33% dos pacientes chegam nas instituições com LPs e aproximadamente 35% dos pacientes as desenvolverão em algum tempo de sua estadia (COSTA *et al.*, 2005). Assim, a prevalência de LP tem aumentado nos últimos anos, devido ao aumento da expectativa de vida da população, associada aos avanços da medicina moderna, que tornaram possível a sobrevivência de pacientes com doenças graves e anteriormente letais, transformadas em doenças crônicas e lentamente debilitantes (WADA *et al.*, 2010). A terapia *laser* de baixa potência (TLBP) foi introduzida há mais de 50 anos, primeiramente na dermatologia, no reparo de feridas cutâneas, como LPs, devido ao seu efeito bioestimulador na cicatrização de feridas (KUJAWA *et al.*, 2004).

1.2 Fotobiomodulação (FBM)

1.2.1 Conceitos Históricos

Historiadores reportam que civilizações antigas, como a egípcia, a grega e a asteca, conheciam os benefícios da exposição do corpo à luz solar: os egípcios teriam usado para tratar desordens da pele, Heródoto observou o fortalecimento dos ossos e Apolo ensinou medicina aos homens e passou a ser chamado de "o Deus da Luz" (GARCEZ *et al.*, 2012). A partir do século XVIII, relatos esporádicos começaram a aparecer na literatura médica,

indicando que a luz solar poderia ser usada para tratar uma grande variedade de doenças. Na segunda metade do século XIX, a aplicação terapêutica da luz solar, conhecida como helioterapia, gradualmente tornou-se popular (HAMBLIN *et al.*, 2017a). Essas seriam as primeiras observações do que hoje é conhecida como fototerapia (GARCEZ *et al.*, 2012).

Porém, a terapia com luz, a fototerapia moderna, começou com Niels Ryberg Finsen (1860-1904), o pai da terapia com a radiação ultravioleta. Finsen tratou mais de 800 pacientes com *lúpus vulgar*, no total, 80% dos pacientes foram curados (MOSKVIN, 2017). Por isto, recebeu o Prêmio Nobel de Fisiologia e Medicina em 1903 (HAMBLIN *et al.*, 2017a).

Entretanto, uma nova perspectiva foi apresentada com os postulados de Albert Einstein em 1916, considerando as implicações da física quântica recém desenvolvida, e então estabelecida as bases teóricas que as radiações eletromagnéticas poderiam estimular os átomos a emitirem mais radiações do mesmo comprimento de onda (HAMBLIN *et al.*, 2017a). Baseado nestes postulados de Einstein, em 1951, Charles H. Townes propôs o conceito do *maser*, um acrômio para *microwave amplification by stimulated emission of radiation* (emissão estimulada de radiação por amplificação de microondas). Enquanto Gordon Gould, em 1957, registrou pela primeira vez o termo *laser* como um acrômio de: *Light Amplification by Stimulated Emission of Radiation* (amplificação de luz por emissão estimulada de radiação) (CONVISSAR, 2011).

A partir disto, iniciou-se a busca pela construção do *laser*. Theodore Maiman (1927-2007) em 1960, após a montagem de um cristal de rubi associado a uma lâmpada de flash em espiral, observou a emissão dos primeiros feixes de *laser* vermelho (HAMBLIN *et al.*, 2017). Em 1961, Ali Javan, W. R. Bennett e D. R. Herriott anunciaram o funcionamento bemsucedido de um feixe laser contínuo com comprimento de onda de 1152,3 nm a partir de uma mistura de Hélio-Neônio (He-Ne) como meio emissor laser. O *laser* de He-Ne foi um dos mais estudados para aplicações médicas, emitindo principalmente na faixa visível do espectro eletromagnético (633 nm) e fornecendo alguns miliwatts de potência contínua (GARCEZ *et al.*, 2012).

Contudo, a primeira evidência da ação da irradiação com Laser de Baixa Potência (LBP) veio das experiências do Dr. Endre Mester em 1967 (DE FREITAS *et al.*, 2016). Mester observou que camundongos irradiados com *laser* de rubi de baixa potência (694 nm), estimulava o crescimento de pêlos no dorso do animal, chamando isso de "Bioestimulação a *Laser*" (HUANG *et al.*, 2009). Assim, a Terapia com *Laser* de Baixa Potência (TLBP) foi

descoberta há quase 50 anos por Mester. Recentemente foi tomada uma decisão de consenso para usar a terminologia fotobiomodulação, uma vez que o termo "baixa potência" era muito subjetivo (HAMBLIN *et al.*, 2017a).

Várias sociedades profissionais e acadêmicas são agora dedicadas à fotobiomodulação: *World Association of Laser Therapy (WALT); North American Association for Photobiomodulation Therapy (NAALT);* ou parcialmente dedicado: *International* Society *for Optics and Photonics (SPIE); American Society of Lasers in Medicine and Surgery (ASLMS)*; e *Optical Society of America (OSA)*. Diversos protocolos terapêuticos estão disponíveis nos manuais de equipamentos emissores laser e LED, de forma que diferentes doenças e condições têm sido tratadas com base nos efeitos benéficos da FBM. O Brasil tem um número notável de laboratórios produtivos que investigam temas relacionados à esta terapia (HAMBLIN *et al.*, 2017a).

1.2.2 Conceitos Físicos do Laser

O *laser* se enquadra em um tipo de fonte de radiação eletromagnética, que apresenta características únicas por emitir feixes com características especiais; assim, um *laser* difere de fontes de luz comuns em decorrência do meio emissor emitir radiação coerente. Além disso, a radiação *laser* é quase monocromática, sendo emitida em um feixe colimado com pouca divergência, isso permite a entrega de grandes quantidades de energia em pequenas áreas, ou seja, com grande densidade superficial de energia (NIEMZ, 2017).

De maneira geral, a radiação eletromagnética, interpretada como ondas eletromagnéticas, são emitidas pela oscilação de campos elétricos e magnéticos (CHUNG *et al.*, 2012). A amplitude de uma onda é a distância entre o ponto máximo (crista), ou mínimo (vale), de deslocamento e o ponto de deslocamento nulo. O número de oscilações completas por unidade tempo é a frequência e, a distância entre, duas cristas, ou vales, consecutivos é o comprimento de onda (NIEMZ, 2017).

Na natureza, há uma grande variedade de radiações eletromagnéticas, portanto, de diferentes comprimentos de onda. Estas diferentes radiações são organizadas no que se denomina espectro eletromagnético (BAGNATO, 2008). Neste, as radiações emitidas pelos

lasers de baixa potência de uso terapêutico (a chamada janela terapêutica) estão na faixa que vai do vermelho ao infravermelho próximo, compreendendo comprimentos de onda de 600 a 1100 nm (DE FREITAS *et al.*, 2016).

Com o desenvolvimento da física quântica, as radiações eletromagnéticas foram melhores compreendidas e podem ser interpretadas como constituídas por partículas sem massa e carga elétrica, os fótons (NIEMZ, 2017). Se uma radiação (fóton) interage com a matéria, pode promover elétrons de seus níveis de menor energia (estados fundamentais) para níveis de energia superiores. Assim, estes átomos podem mudar para o estado de maior energia (excitado), se a energia do fóton for transferida para os mesmos. Este é o processo de absorção da energia eletromagnética. Átomos excitados decaem para um estado fundamental espontaneamente, ocorrendo processo de emissão espontânea de um fóton pelo sistema atômico. Estes fótons são emitidos em todas as direções e sem relação de fase entre si.

No entanto, há um terceiro processo que pode ocorrer em sistemas de átomos, além da absorção e da emissão espontânea, e que se é fundamental para o entendimento do funcionamento dos *lasers*, a emissão estimulada. Um fóton externo estimula o decaimento do elétron excitado e, ao passar para o estado de mais baixa energia, o elétron emite um fóton que emerge do sistema juntamente com aquele que causou a transição. Desse modo, dois fótons emergem do sistema juntos com a mesma energia, propagando-se em fase, sendo praticamente indistinguíveis (BAGNATO, 2008).

1.2.3 Absorção de radiação e indução de fotobiomodulação (FBM) em tecidos biológicos

A radiação pode ser entendida como constituída de "pacotes" de energia eletromagnética, ou fótons, que também possuem propriedades físicas semelhantes aquelas das ondas eletromagnéticas (NIEMZ, 2017). Sugere-se que o mecanismo de ação envolvido na FBM é o processo fotobiológico, que envolve a absorção de energia de fótons incidentes por fotoaceptores (DA FONSECA, 2019). Apesar da hemoglobina, melanina, porfirina e algumas flavoproteínas serem capazes de absorver radiações na chamada janela terapêutica para lasers e LED de baixa potência, estas moléculas não são consideradas responsáveis pelo efeito de FBM (DA FONSECA, 2019).

Figura 1. Representação esquemática da cadeia de transporte de elétrons mitocondrial e da transferência de elétrons entre centros metálicos ativos redox na citocromo c oxidase.

Legenda: I: complexo I (NADH desidrogenase); II: complexo II (succinato desidrogenase); III: complexo III (ubiquinol citocromo c oxidorredutase); IV: complexo IV (citocromo c oxidase); V: complexo V (ATP sintase). CuA, CuB, heme a e heme a3: centros redox de metal ativo. c: citocromo c.

Fonte: O autor

A estrutura dos fotoaceptores e seu estado redox determinam quais radiações são absorvidas (HAMBLIN, 2018). Assim, as radiações em 330, 404-420, 680 e 825 nm são absorvidas pela forma parcialmente oxidada de CCO, entretanto as radiações na banda azulvioleta e as radiações nas bandas distintas de vermelho-infravermelho (620 e 760 nm) são absorvidas pela forma parcialmente reduzida desta enzima (KARU, 1999).

A absorção de energia de uma radiação incidente oxida CCO, dioxigênio é reduzido, e os prótons são bombeados da matriz mitocondrial para o citosol. A energia livre resultante dessa química redox é convertida em um potencial eletroquímico através da membrana interna da mitocôndria, o que, em última instância, impulsiona a produção de ATP (KARU, 1999). Além disso, foi sugerido que a absorção da energia da radiação provoca foto-dissociação do óxido nítrico (uma molécula que é conhecida por inibir a CCO por ligação não covalente entre heme-a3 e CuB) da CCO (POYTON *et al.*, 2011). Estas reações causam alterações na permeabilidade da membrana celular com alterações nos níveis de cálcio intracelular, aumento de ATP, espécies reativas de oxigênio e produção de AMP cíclico (KARU, 2008). Estas reações iniciam a transdução de fotossinais e uma cadeia de amplificação por vias de sinalização celular, aumentando síntese de DNA, RNA e proteínas, que, por sua vez, constituem a base do efeito de estimulação induzida por LBP em tecidos biológicos (PASSARELLA *et al.*, 2014).

Interações de radiação com tecidos biológicos dependem de características e parâmetros da radiação (GAVISH *et al.*, 2019). Alguns processos biológicos podem ser modulados por reações fotoquímicas desencadeadas por fótons em comprimentos de onda mais curtos ou mais longos dentro da janela terapêutica, variando entre 600-1100 nm (HAMBLIN *et al.*, 2018).

Além disso, as radiações na janela terapêutica induzem a FBM, pois sua penetração através das camadas superficiais da pele é mais significativa, devido à menor dispersão e absorção pelos fotoaceptores teciduais (DE FREITAS *et al.*, 2016). Radiações em comprimentos de onda mais curtos (600 a 700 nm) são consideradas as melhores para tratamento de doenças em tecidos superficiais, enquanto aquelas em comprimentos de onda mais profundos (ZEIN *et al.*, 2018).

A penetração de uma radiação no tecido é parcialmente determinada pelo seu comprimento de onda, dependendo dos processos de dispersão e absorção. As radiações de

comprimentos de onda mais curtos (no espectro visível) dispersam mais do que as radiações dos comprimentos de onda mais longos e, portanto, essas atingem profundidades mais baixas. Se uma radiação tiver penetração profunda, é improvável que sua energia seja absorvida por estruturas superficiais (Figura 2) (LAASKO *et al.*, 1993).

Figure 2. Representação esquemática da penetração de radiações em tecidos biológicos. Diferenças entre radiações vermelhas, infravermelhas e com duplo comprimento de onda.

Fonte: O autor

Assim, os efeitos biológicos resultantes de radiações com múltiplos comprimentos de onda poderiam ser atribuídos a diferentes níveis de absorção, porque os tecidos superficiais e profundos poderiam absorver as radiações em quantidades diferentes. De fato, aceita-se que a penetração das radiações nos tecidos depende da absorção e do espalhamento, que ocorrem devido às moléculas e estruturas nos tecidos. Tanto a absorção quanto a dispersão se tornam significativamente baixas à medida que o comprimento de onda da radiação aumenta, como a profundidade de penetração da radiação infravermelha próxima é máxima em 810 nm, e em comprimentos de onda maiores a água torna-se um absorvedor importante e a penetração da radiação diminui novamente (HAMBLIN, 2017).

<u>1.2.4 Efeitos de lasers de baixa potência com duplo comprimento de onda (LBPD) em</u> <u>bactérias</u>

Alguns autores relataram efeitos de radiações a laser de baixa potência com duplo comprimento de onda nas bactérias. Martins e colaboradores (2015) mostraram que a irradiação laser consecutiva de baixa potência (laser infravermelho imediatamente após laser vermelho) reduz a viabilidade celular em culturas de *Escherichia coli* selvagens em fase exponencial de crescimento, mas a viabilidade celular é maior em culturas expostas à combinação de comprimentos de onda da radiação laser naqueles expostos ao laser infravermelho. No entanto, Thomé e colaboradores (2017) irradiaram culturas de *Pantoea agglomerans* e a sobrevivência bacteriana na fase exponencial de crescimento foi diminuída pela exposição ao laser de baixa potência com comprimento de onda duplo (LPBD) mas a sobrevivência nessas culturas bacterianas foi aumentada após a exposição ao laser vermelho nas mesmas fluências. Apesar dessa discrepância, ambos relataram que a exposição a radiações de baixa potência com duplo comprimento de onda (em sequência ou simultânea) é capaz de induzir efeitos biológicos, que diferem daqueles induzidos por cada laser separadamente, sugerindo que outros efeitos terapêuticos podem ser obtidos através da irradiação de LPBD, ou comprimento de onda múltiplo.

O biofilme, comunidades complexas de bactérias agregadas, é um dos principais agravantes para a cicatrização tardia de feridas e positivamente associado à transição do estado agudo para o estado crônico, mesmo sem sinais clássicos de infecção (ASHRAFI *et al.*, 2018). Em estudos anteriores, a formação de biofilmes foi avaliada em culturas de *P. agglomerans* expostas à radiação LBP vermelha, infravermelha ou com duplo comprimento de onda. Curiosamente, o laser vermelho aumentou a formação de biofilmes na menor fluência (THOMÉ *et al.*, 2018). No entanto, o laser de baixa potência, vermelho e infravermelho simultâneo, diminuiu a formação de biofilme em culturas de *P. agglomerans* na maior fluência avaliada (THOMÉ *et al.*, 2017; THOMÉ *et al.*, 2018).

Primeiro Autor	Título	Referências	Parâmetros	Modo	Cultura	Resultados
Martins et al	Dichromatic laser radiation effects on DNA of <i>Escherichia</i> <i>coli</i> and plasmids	Laser Phys. 2015; 25:045603	808 e 660 nm; 100 mW; 25, 50 e 100 J cm ⁻²	Consecutivo	<i>Escherichia coli</i> AB1157 e BH20	O laser vermelho e com comprimento de onda duplo diminuíram a fração de sobrevivência, porém a viabilidade celular é maior em culturas expostas à combinação de comprimentos de onda da radiação laser naqueles expostos ao laser infravermelho e aumenta significativamente a porcentagem de filamentação bacteriana.
Thomé et al	Dichromatic and monochromatic laser radiation effects on survival and morphology of <i>Pantoea agglomerans</i>	Laser Phys 2017; 27(5): 055602	808 e 660 nm; 100 mW; contínuo; 35, 70 e 140 J cm ⁻² ; 1, 2 e 4 J; 10, 20 e 40s; Spot size 0,028 cm ²	Simultâneo	<i>Pantoea</i> <i>agglomerans</i> (isolada de lesão por pressão)	O laser com duplo comprimento de onda diminuiu a sobrevivência bacteriana na fase exponencial, enquanto a irradiação com único comprimento de onda aumentou na mesma fluência.
Thomé et al	Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of <i>Pantoea agglomerans</i>	Laser Phys 2018; 28: 065606	808 e 660 nm; 100 mW; contínuo; 35, 70 e 140 J cm ⁻² ; 1, 2 e 4 J; 10, 20 e 40s; Spot size 0,028 cm ²	Simultâneo	<i>Pantoea</i> <i>agglomerans</i> (isolada de lesão por pressão)	O laser com duplo comprimento de onda diminuiu a formação de biofilme, enquanto a irradiação com laser vermelho aumentou a formação de biofilme.

Tabela 1. Efeitos do laser de baixa potência com comprimento de onda duplo em culturas bacterianas

1.2.5 Efeitos de lasers de baixa potência com duplo comprimento de onda (LBPD) em tecidos biológicos

Alguns micro-organismos patogênicos podem favorecer desequilíbrio no ambiente residente. Neste sentido, a infecção pós-cirúrgica é uma complicação potencial e o reparo dos tecidos infectados ocorre somente após a resolução do processo infeccioso. Algumas radiações apresentam efeitos fotobiológicos positivos no processo de cicatrização e os resultados indicam que a FBM por lasers de baixa potência tem efeitos positivos na cicatrização de feridas infectadas, sendo isto mais evidente com radiações de comprimentos de onda duplos de 680 e 790 nm (SANTOS *et al.*, 2009). Por outro lado, a exposição a lasers com duplo comprimento de onda (670nm e 810nm) não melhorou os parâmetros de cicatrização de feridas em um modelo de diabetes em ratos, porém, deve ser levada em consideração a utilização de altas fluências (JAHANGIRI *et al.*, 2010).

Análises histológicas mostraram que FBM por laser com duplo comprimento de onda (830 nm e 685 nm) a 20 J/cm² foi mais eficiente para a proliferação fibroblástica, bem como aumento da produção e organização de colágeno no modelo de ferida (MENDEZ *et al.*, 2004). Estes resultados sugerem que o uso de duas radiações diferentes, apresentando absorção e penetração diferentes nos tecidos biológicos, pode causar simultaneamente uma estimulação das camadas profunda e superficial da ferida.

Apesar disso, a exposição a radiações com duplo comprimento de onda teve efeitos diferentes que não poderiam ser previstos a partir dos efeitos de cada radiação isolada em um modelo de células-tronco mesenquimais de medula óssea ilíaca de coelho exposta a radiações vermelhas, infravermelhas ou com duplo comprimento de onda. De fato, a exposição a radiações com duplo comprimento de onda (infravermelho e vermelho) foi capaz de suprimir a diferenciação das células mesenquimais em células osteogênicas e a síntese/produção de colágeno, enquanto a exposição somente à radiação infravermelha foi capaz de estimular esses eventos (FEKRAZAD *et al.*, 2019).

A FBM, como base para uma forma de tratamento alternativo, reduz a perda de cabelo e estimula o crescimento do cabelo em casos de alopecia. Barikbin e colaboradores (2017) mostram que pacientes expostos ao laser vermelho de 655 nm a 2 J/cm² associado ao infravermelho de 808 nm a 1J/cm² apresentaram menor perda de cabelo, aparentemente sem nenhum efeito adverso ou efeitos colaterais.

Também foram relatados efeitos positivos na regeneração nervosa após FBM por lasers com duplo comprimento de onda no espectro infravermelho (905nm e 808nm), que foram capazes de melhorar a reparação nervosa, a recuperação funcional e de massa muscular, após a neurorrafia término-lateral de nervo mediano em ratos (GIGO-BENATO *et al.*, 2004).

Primeiro	Título	Referência	Parâmetros	Modo	Tecido/Células	Resultados
Autor						
Santos et al	Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by <i>Staphylococcus</i> <i>aureus</i> .	Photomed Laser Surg. 2011; 29(3):177-82.	680 (30mW, 424 mW/cm ² , 11.8 s) and 790 (40mW; 566 mW/cm ² , 8.8s) nm; contínuo; 0.35 J; 20 J cm ⁻²	Não é claro	Lesão infectada em modelo animal (rato)	A fibras de colágeno apresentaram-se mais maduras e melhor organizadas, especialmente nos animais do grupo irradiado com comprimento de onda duplo
Jahangiri et al	A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats.	Photomed Laser Surg. 2010;28(5):621- 7.	670 (500mW, 10 J/cm ⁻² , 10 J, 48 s, 10 J/cm ⁻²) e 810 nm (250mW, 12 J, 50 s, 1.33 J/cm ⁻²)	Não é claro	Ferida Diabética em modelo animal (rato)	A combinação das irradiações não modificou os parâmetros do processo de cicatrização
Mendez et al	Dose and wavelength of laser light have influence on the repair of cutaneous wounds.	J Clin Laser Med Surg. 2004;22(1):19- 25.	685 nm e 830 nm; 35 mW; 20 and 50 J/cm ⁻²	Não é claro	Ferida cutanea dorsal em modelo animal (rato)	Foi observado evidência de melhor organização da matriz de colágeno através da irradiação do laser com duplo comprimento de onda à 50 J/cm2
Fekrazad et al	Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation	Lasers Med Sci. 2019;34(1):115- 126.	810 (IR), 660 (R), 532 (G) e 485 (B) nm; 4 J/cm ⁻² ; IR 3 s, R 24 s, G 15 s, e B 15s.	Consecutivo	Células mesenquimais derivadas do osso iliaco de um coelho	A combinação de dois comprimentos de onda é em geral menos efetiva que IR ou R apenas, porém a combinação de B-G aparece mais eficiente do que sozinhas, em algumas situações

Tabela 2. Efeitos do laser de baixa potência com duplo comprimento de onda em tecidos biológicos

	and differentiation to					
Barikbin et al	Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia	J Cosmet Laser Ther. 2017; 17.	655 nm com 3 J/cm ⁻² ; 655 nm com 2 J/cm ⁻² associado à 808 nm com 1 J/cm ⁻²	Simultâneo	90 pacientes com alopecia	Os efeitos da combinação da irradiação <i>laser</i> demonstrou melhores resultados, aumentando a densidade capilar
Gigo- Benato et al	Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model.	Lasers Med Sci. 2004;19(1):57- 65.	808 (contínuo; spot area 0.28 cm2; 29 J/cm ⁻²) and 905 nm (28 W; 10 kHz; spot area 0.1 cm2; 40 J/cm ⁻²) nm	Não é claro	Modelo de neurorrafia em modelo animal (rato)	A fotobiomodulação por laser de baixa potência gerou rápida recuperação muscular e funcional da lesão, regeneração das fibras nervosas. Os melhores resultados funcionais foram obtidos através da irradiação de laser com duplo comprimento de onda

1.2.6 Efeitos da combinação de laser de baixa potência e LED

Os benefícios terapêuticos dos lasers de baixa potência em lesões teciduais têm sido relatados desde a década de 1960 e os do LED somente a partir da década de 1990 (HAMBLIN *et al.*, 2018). As radiações do LED diferem das radiações dos lasers, pois estas fontes emitem radiações nas bandas mais altas do que as emitidas pelos lasers, bem como emitem radiações não coerentes (PAGIN *et al.*, 2014).

Embora algumas descobertas sugiram que a coerência de um feixe de radiação laser não é responsável pelos efeitos biológicos induzidos por lasers de baixa potência (VINCK *et al.*, 2003). Segundo Karu (1987), a propriedade da coerência é perdida durante a interação das radiações com o tecido biológico, não sendo um pré-requisito para o processo de FBM.

Um ensaio clínico para analisar os efeitos agudos do FBM pelo laser de baixa potência (pulsado, 905nm) e LED (875nm e 640nm) no desempenho muscular durante um teste de exercício cardiopulmonar progressivo em esteira mostrou que a exposição à combinação de lasers e LED aumentou o tempo, distância e ventilação pulmonar, e diminuiu o escore de dispneia durante o teste cardiopulmonar (MIRANDA *et al.*, 2016). Resultados semelhantes foram obtidos em um estudo que avaliou os efeitos agudos do mesmo protocolo em pacientes com doença pulmonar obstrutiva crônica, diminuindo a sensação de dispneia, bem como fadiga nos membros inferiores (MIRANDA *et al.*, 2015). Antonialli e colaboradores (2014) relataram que as radiações com duplo comprimento de onda melhoraram os marcadores bioquímicos relacionados ao dano muscular esquelético, diminuição dos níveis bioquímicos de creatina cinase e dor. A FBM por radiações de múltiplos comprimento de onda pode ser mais eficaz que aquela induzida por uma radiação de comprimento de onda único no desempenho do músculo esquelético, o que poderia representar uma vantagem terapêutica em situações clínicas.

Além disso, a FBM induzida pela exposição simultânea ao laser de baixa potência e ao LED tem surgido como uma alternativa interessante para o manejo farmacológico da dor. A eficácia da FBM por LBP (904 nm, em modo de emissão pulsada, 38 mW) foi semelhante àquela induzida por LED (945 nm, 100 mW) associada à posição de decúbito lateral e exercícios de flexão em pacientes com hérnia de disco lombar. No entanto, observou-se que a FBM pela exposição ao LED foi mais eficaz na melhora da dor radicular do que a FBM pela exposição ao LBP (de CARVALHO *et al.*,

2016). Os dispositivos híbridos constituídos de LED e lasers de baixa potência foram sugeridos para melhorar a eficácia do clareamento e ajudar a controlar a sensibilidade dentária. No entanto, FBM por radiações de dispositivos híbridos LED-laser não foram mais eficazes do que FBM de radiações de dispositivos LED usados sozinhos para prevenir ou reduzir a sensibilidade dos dentes (FARHAT *et al.*, 2014).

Um estudo duplo-cego randomizado com o objetivo de investigar os efeitos da FBM pelo LBP de 905 nm no modo de emissão pulsada, e LED de 875 e 640 nm, na dor inespecífica no joelho demonstrou que a FBM com múltiplos comprimentos de onda é efetiva em diminuir a dor e melhorar a qualidade de vida dos pacientes (LEAL-JUNIOR *et al.*, 2014). Uma revisão sistemática forneceu evidências de que a exposição a radiações simultâneas visíveis e infravermelhas causa alteração neural, em particular em fibras A δ e C de pequeno diâmetro, que transmitem estímulos nociceptivos à dor (CHOW *et al.*, 2011).

Primeiro Autor	Título	Referência	Parâmetros	Modo	Tecido/Células	Resultados
Miranda et al	Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests.	J Athl Train. 2016;51(2):129- 35.	Utilizaram um cluster com 12 saídas. Cada cluster consistia em: 4 diodos de 905 nm laser superpulsado (0.07125 J, 0.3125 mW, 12.5 W), 4 diodes de 875 nm LEDs (17.5 mW, 3.99 J) e 4 diodes de 640nm LEDs (15 mW, 3.42 J)	Simultâneo	Aplicaram em 9 lugares do grupamento muscular extensor de joelho, 6 lugares do grupamento muscular dos flexores de joelhos.	A combinação aumentou o tempo, distância, a ventilação pulmonar diminuiu a escala de dispneia durante o teste cardiopulmonar
Miranda et al	Phototherapy with combination of superpulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular	Lasers Med Sci. 2015;30(1):437– 443.	Utilizaram um cluster com 12 saídas. Cada cluster consistia em: 4 diodos de 905 nm laser superpulsedo (0.07125 J, 0.3125 mW, 12.5 W), 4	Simultâneo	30pacientescomDoençaPulmonarObstrutivaCrônicaforaminclusosnoestudo.Aaplicaçãodafototerapiafoirealizadaem	A combinação diminuiu a sensação de dispneia e fadiga nos pacientes.

Tabela 3. Efeitos da combinação do laser de baixa potência e *light-emitting diodes* (LED)

	endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease.		diodos de 875 nm LEDs (17.5 mW, 3.99 J) e 4 diodos de 640nm LEDs (15 mW, 3.42 J)		lugares do quadríceps femoral.	
Antonialli et al	Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes.	Lasers Med Sci. 2014; 29(6):1967-76.	Utilizaram um cluster com 12 saídas. Cada cluster consistia em: 4 diodos de 905 nm laser superpulsedo (0.07125 J, 0.3125 mW, 12.5 W), 4 diodos de 875 nm LEDs (17.5 mW, 3.99 J) e 4 diodes de 640nm LEDs (15 mW, 3.42 J)	Simultâneo	A aplicação da fototerapia foi realizada em 6 lugares do quadríceps femoral em voluntários saudáveis	A combinação aumentou a performance e melhora do marcador bioquímico relacionado ao dano muscular.
Farhat et al	Evaluation of the efficacy of LED- laser treatment and control of tooth sensitivity during in- office bleaching procedures.	Photomed Laser Surg. 2014; 32(7):422-6.	Utilizaram um aparelho hibrido apresentando seis LEDs azuis (425–480 nm, 300mW) e três lasers infravermelhos	Simultâneo	Dente	A combinação não foi mais efetiva que o LED para sentibilidade dentária.
			(810 nm, 200mW)			
-----------	----------------------	------------------	-----------------	------------	-----------------	-----------------------
Leal-	Adjunctive use of	Lasers Med Sci.	Utilizaram dois	Simultâneo	Tratamento	A combinação foi
Junior et	combination of	2014;29(6):1839-	clusters, que		local e em	efetiva na diminuição
al	super-pulsed laser	47.	consistiam em 4		alguns pontos	da dor e melhora na
	and light-emitting		diodos de 905		sistêmicos em	qualidade de vida dos
	diodes phototherapy		nm laser		pacientes com	pacientes
	on nonspecific knee		superpulsedo, 4		dor não em	
	pain: double-blinded		diodes de 875		específica em	
	randomized		nm LEDs e 4		joelho	
	placebo-controlled		diodos de			
	trial.		640nm LEDs.			
Figurová	Histological	Photomed Laser	Laser 685 nm (4	Simultâneo	Modelo animal	A combinação acelerou
et al	Assessment of a	Surg. 2016;	laser diodos,		(porco) de	a reepitelização e
	Combined Low-	34(2):53-5.	0.05 W) e LED		incisão de pele	formação de fibras de
	Level Laser/Light-		470 nm (13			colágeno comparado
	Emitting Diode		diodes, 0.016			ao grupo controle.
	Therapy		W).			
	(685 nm/470 nm) for					
	Sutured Skin					
	Incisions in a					
	Porcine Model: A					
	Short Report.					

A FBM pode se apresentar como sendo tanto estimulante, quanto inibitório (JAHANGIRI *et al.*, 2010). À medida que o número de fótons aumenta, além de um determinado nível, a estimulação celular desaparece, e se o número de fótons é ainda maior, ocorre inibição e dano celular (ZEIN *et al.*, 2018). Há uma curva dose-resposta bifásica, que segue a "Lei Arndt-Schulz", que afirma que estímulos fracos aceleram levemente a atividade celular, estímulos fortes aumentam ainda mais até atingir um pico, enquanto estímulos ainda mais fortes suprimem até que uma resposta negativa seja alcançada. Em consequência, se os parâmetros incorretos forem aplicados, o tratamento provavelmente será ineficaz (DE FREITAS *et al.*, 2016).

A exposição à radiação apropriada em um comprimento de onda específico pode desencadear processos moleculares nas células (SOLMAZ et al., 2017), como a síntese de DNA e RNA (PASSARELA et al., 2014). De fato, os efeitos fotobiológicos envolvem a absorção da energia de fótons de comprimento de onda específico por fotoaceptores (CHAVES et al., 2014). Assim, a exposição à radiação com comprimento de onda de 760 nm seguida de radiação a 633 nm aumenta a síntese de DNA em culturas de células HeLa, mas a exposição a essas radiações na sequência inversa diminui. Esses resultados sugerem que a exposição à radiação com duplo comprimento de onda poderia produzir efeitos diferentes daqueles induzidos por uma radiação de comprimento de onda único (KARU et al., 1985). Estes resultados sugerem que existe uma relação entre os fotoaceptores. É provável que essa relação exista nos estágios iniciais de fotoabsorção ou foto-resposta. É possível que exista uma relação entre os fotoaceptores que absorvem em diferentes regiões e/ou possam ser funcionalmente conectados por moléculas de sinalização (TIPHLOVA et al., 1991). Em exposições consecutivas à radiação com duplo comprimento de onda, a magnitude da resposta foto-induzida final também é influenciada pelo intervalo entre elas. Pode-se presumir que o fotoaceptor é um conjunto de moléculas inter-relacionadas e que existem alguns estágios comuns na realização dos efeitos causados pelas radiações em diferentes comprimentos de onda (KARU, 1987; KARU, 1985). No entanto, a exposição a radiações de banda mais largas, incluindo ou não um intervalo entre as exposições, não provoca praticamente efeitos estimulantes. Nestes casos, os parâmetros correspondem aproximadamente aos da radiação solar, aos quais os sistemas biológicos se adaptaram através da sua evolução (KARU, 1987).

Além disso, a capacidade de um meio ou tecido absorver a radiação eletromagnética depende de vários fatores, principalmente a distribuição eletrônica em seus átomos e moléculas, a espessura da camada absorvente, parâmetros internos como concentração de fotoaceptores e o comprimento de onda da radiação (Figura 3) (NIEMZ, 2007).

Figura 3. Representação esquemática para penetração de radiação em tecidos biológicos em diferentes comprimentos de onda.

Fonte: O autor

Além disso, foi sugerido que a interação das radiações nos tecidos poderia depender do número de mitocôndrias nesses tecidos. Assim, quando o FBM é realizado por radiações de baixa intensidade, os fótons são absorvidos pelos cromóforos subcelulares nas organelas celulares, principalmente mitocôndrias. Desta forma, as células que apresentam maior número de mitocôndrias poderiam responder melhor ao FBM do que as que apresentam menor número de mitocôndrias (ZEIN *et al.*, 2018). Além disso, protocolos baseados em fontes de radiação de múltiplos comprimentos de onda podem apresentar uma vantagem terapêutica ao fornecer energia concorrente para tecidos biológicos em diferentes profundidades (LEAL-JUNIOR *et al.*, 2014).

As características e parâmetros variáveis dos dispositivos de laser e LED são fatores que dificultam a interpretação dos resultados experimentais e clínicos sobre os efeitos da FBM (CHAVES *et al.*, 2014). No entanto, a FBM tem sido considerada uma ferramenta valiosa na medicina regenerativa (NADERI *et al.*, 2017) e a FBM induzida por radiações de múltiplos comprimentos de onda pode melhorar os resultados dos protocolos clínicos baseados em radiações de LBP.

2. OBJETIVOS

2.1. Objetivos gerais

2.1.1 Estudo 1

Investigar efeitos do laser de baixa potência com comprimento de onda duplo em modelo experimental de lesão por pressão infectada.

2.1.2 Estudo 2

Investigar efeitos do laser de baixa potência com comprimento de onda duplo em feridas crônicas.

2.2. Objetivos específicos

2.2.1 Estudo 1

Avaliar efeitos do laser de baixa potência com duplo comprimento de onda no (a):

- Sobrevivência bacteriana a partir da contagem de unidades formadoras de colônia (UFC);

- Fechamento da LP através da mensuração da área lesionada;

- Histoarquitetura da LP através da análises morfológicas;

- Expressão relativa de RNAm de *IL-1 e IL-10* através de RT-qPCR.

2.2.2 Estudo 2

Descrever relatos de casos com o objetivo de avaliar efeitos do laser de baixa potência com duplo comprimento de onda no fechamento de feridas crônicas em pacientes na rede de Atenção Básica do Município de Quatis/RJ qualitativamente e quantitativamente através da mensuração da área lesionada.

3. MATERIAIS E MÉTODOS

3.1 Estudo 1: Fotobiomodulação por lasers de baixa potência em dois comprimentos de onda em lesões por pressão infectadas

3.1.1 Animais

Camundongos *Swiss* machos (8–12 semanas) foram alojados em uma sala com temperatura (20–24°C) e umidade (45–55%) controlada em um ciclo claro/escuro de 12 horas com acesso livre a comida e água. Todos os procedimentos foram realizados de acordo com a Legislação Brasileira (nº 11.794, de 8 de outubro de 2008) e foram aprovados pelo Comitê de Ética para Uso Animal da Universidade Severino Sombra (CEUA / 007/2015). Os animais foram divididos da seguinte forma: grupo controle (n = 5) - camundongos não lesionados e não irradiados; grupo lesão (n = 5) - camundongos lesionados e não irradiados; grupo laser (n = 5) - camundongos lesionados e irradiados; grupo infectado (n = 5) - camundongos lesionados, com a lesão infectada e não irradiado; grupo infectado + laser (n = 5) - camundongos lesionados, com a lesão infectada e irradiados.

3.1.2 Modelo de lesão induzida por isquemia e reperfusão (IR)

Todos os animais foram anestesiados por via intraperitoneal com cetamina (150 mg/kg) e xilazina (15 mg / kg) e os seus dorsos foram raspados e limpos. A pele dorsal (epiderme, derme e hipoderme) foi suavemente pinçada para cima e posicionada entre 2 magnetos circulares de 8 mm de diâmetro e 4 mm de espessura, com peso médio de 1,47 g (Eudes Ângelo de Almeida Produtos ME, São Paulo, Brasil). A pressão de compressão gerada entre os dois magnetos foi superior a 50 mmHg. Os magnetos foram posicionados por um período de 16 horas de isquemia, seguidos por um período de reperfusão de 8 horas para 1 ciclo. Os ratos foram expostos a dois ciclos de IR, resultando em 2 duas úlceras circulares por camundongo com 50,24 mm² área cada, sendo este momento foi considerado dia 0. Esse

procedimento foi usado para criar uma lesão crônica semelhante à de uma lesão por pressão de estágio II (BRITO *et al.*, 2014).

3.1.3 Inoculação da ferida

Uma suspensão (200 μ l) de *Pantoea agglomerans* em solução salina estéril foi aplicada na base de todas as feridas dos grupos infectados, imediatamente após o ferimento, usando uma pipeta calibrada, equivalente a 10⁴ unidades formadoras de colônia (UFC)/ml (NUSSBAUM, 2014). *P. agglomerans* foi escolhido por estar frequentemente associado à deterioração de feridas encontradas em estudos anteriores, sendo a mais incidente dentro de um perfil microbiano de lesão por pressão de pacientes internados em hospital universitário (THOMÉ *et al.*, 2018a).

3.1.4 Laser de baixa potência (LBP)

As feridas foram irradiadas 24 horas após inoculação da ferida no grupo infectado + laser. Para o grupo laser, o procedimento de irradiação começou 24 horas após o modelo de lesão IR. Este momento foi considerado como dia 1. Em estudos anteriores, as suspensões bacterianas foram expostas a lasers de baixa potência de baixa com emissão em vermelho (660 nm; InGaAIP) e infravermelho (808 nm; AsGaAI), fluência de 35 a 142,8 J/cm². Nestes estudos, a FBM por lasers de baixa potência (808 nm e 660 nm) emitidos simultaneamente a 142,8 J / cm² diminuiu a sobrevivência bacteriana e a formação de biofilme (THOMÉ *et al.*, 2017; THOMÉ *et al.*, 2018). Desta forma, os procedimentos experimentais foram realizados com laser de baixa potência em dois comprimentos de onda (Terapia, DMC Equipamentos Ltda, São Carlos-SP, Brasil), emissão simultânea em comprimentos de onda vermelho (660 nm) e infravermelho (808 nm), *spot size* 0,028 cm², 4J, aproximadamente 142,8 J / cm², 20 segundos por ponto, em modo de emissão contínua (potência de saída de 100mW, densidade de potência de 3.571 W/cm²). A irradiação foi realizada de forma pontual, sendo aplicada na

região central das feridas em um único ponto e uma vez ao dia por 14 sessões consecutivas. Os animais foram eutanasiados 14 dias após a formação da ferida. Todos os animais foram eutanasiados por overdose de anestésico.

3.1.5 Sobrevivência bacteriana

As amostras foram coletadas por *swab* estéril 14 dias após o modelo de lesão em grupos infectados e infectados + laser. As amostras foram inoculadas em caldo Infusão de Cérebro e Coração (BHI) e incubadas a $35 \pm 2^{\circ}$ C por 24 horas. Em seguida, as amostras de cultura foram semeadas em placas de Petri contendo meio rico solidificado (1,5% de ágar). Foi realizada contagem de colônias bacterianas após a incubação (37 ° C, 18 horas). Os experimentos foram realizados em duplicata e os resultados apresentados através da média de quatro ensaios independentes.

3.1.6 Análise Macroscópica

As feridas foram fotografadas no dia final do modelo da lesão (0d) e quatro (4d), onze (11d) e quatorze (14d) dias após a indução da lesão. As imagens das feridas foram capturadas por uma câmera digital Samsung DV100 (São Paulo, Brasil). Posteriormente, as imagens foram analisadas pelo software Image J para Windows XP (Media Cybernetics, Inc., EUA) com o objetivo de medir as áreas das feridas. A borda de cada lesão por pressão foi traçada na imagem para medir a área. A reepitelização foi estimada pela diferença entre a área da lesão total e a área da lesão não coberta por neoepiderme. Os dados foram expressos através da porcentagem da área de lesão por pressão inicial e a porcentagem de área da lesão pressão reepitelizada em cada dia fotografado (NASCIMENTO *et al.*, 2006).

Amostras de pele de todas as feridas foram cuidadosamente coletadas para incluir o tecido saudável adjacente e o tecido cicatrizado. Os fragmentos de tecido foram fixados em formaldeído (pH 7,2) e depois processadas para a incorporação de parafina. Os cortes histológicos (5 μ m) foram corados com hematoxilina e eosina (H&E) para análise microscópica da espessura da epiderme (μ m). As imagens histológicas foram adquiridas usando Carl Zeiss Axio Lab A1, capturado com um objetiva de 5x, 10x e 20x a cores 5M Axiocam ERc5S Rev. 2.0, 20 / 0.40, utilizando o software Zen 2 (edição azul) (Zeiss, Alemanha).

Análises da distância entre a parte superior e a parte inferior da epiderme foi medida usando o software Image J em três pontos diferentes e a média foi calculada para cada ferida (TRAJANO *et al.*, 2015).

3.1.8 Extração de RNA total

As amostras de feridas foram maceradas em microtubos contendo 500 µl de Trizol Reagent® (Sigma-Aldrich, EUA), homogeneizadas e incubadas (temperatura ambiente, 10 minutos). Foi adicionado clorofórmio (100 µl), incubado (temperatura ambiente, 5 minutos) e as preparações foram centrifugadas (12000 x g, 4°C, 15 minutos). As fases aquosas foram transferidas para novo microtubos, sendo adicionado isopropanol (250 µl). Após a incubação (temperatura ambiente, 15 minutos), as preparações foram centrifugadas (12000 × g, 4°C, 15 minutos), os sobrenadantes foram descartados e os precipitados lavados com solução etanol-DEPC (80% etanol, DEPC 0,1% em água) e centrifugado (12 000 × g, 4°C, 5 minutos). Os sobrenadantes foram retirados, e o RNA total foi suspendido em solução de água-DEPC (0,1%) e armazenado (a -80 ° C) até o procedimento de síntese de DNA complementar (TEIXEIRA *et al.*, 2016).

Determinou-se a concentração e a pureza do RNA em espectrofotômetro, calculando a razão da densidade óptica a um comprimento de onda de 260 nm/280 nm. A fim de evitar a contaminação do DNA genômico, um tratamento com DNase I (Invitrogen, EUA) foi realizado de acordo com o protocolo do fabricante. A síntese complementar de DNA (cDNA) foi realizada utilizando um kit de síntese de DNAc em dois passos (Promega, USA). Dois microgramas de RNA foram transcritos reversamente em cDNA usando o sistema de transcriptase reversa GoScript [™] (Promega, EUA), de acordo com o protocolo do fabricante, com um total de 20 µl de reação (TEIXEIRA *et al.*, 2016).

3.1.10 Reação em cadeia da polimerase quantitativa em tempo real (RT-qPCR)

Cada RT-qPCR foi realizada utilizando 5 µl de GoTaq® qPCR Master Mix (Promega) num volume final de 10 µl. Para quantificar o cDNA relativo inicial, as amostras foram amplificadas com os *primers* descritos na tabela 4. Os primers foram desenhados manualmente através do oligoanalyzer IDT e a especificidade dos primers verificados através do NCBI Primer BLAST. As reações foram realizadas em Rotor-Gene Q (Qiagen, EUA) em duplicata para cada amostra. As soluções foram inicialmente desnaturadas a 95 °C durante 10 min. A PCR consistiu em 45 ciclos nas seguintes condições: desnaturação a 95 °C por 20 s, anelamento a 55 ° C por 20 s, e um período de extensão a 72 ° C por 20 s. A análise da curva de fusão foi realizada para todos os genes para a especificidade do produto (TEIXEIRA *et al.*, 2016). A expressão relativa foi normalizada pelos níveis do gene de referência (TBP). O TBP foi considerado como gene de referência, como sugerido por Turabelidze e colaboradores (2010) (TURABELIDZE *et al.*, 2010) e este foi validado por geNorm, Bestkeeper e NormFinder. Valores de CT duplicados foram analisados em Microsoft Excel (Microsoft) usando o método comparativo CT (2 – Δ CT) (LIVAK *et al.*, 2001).

Para comparação dos níveis relativos de RNAm de IL1β e IL10, a normalização dos níveis de RNAm para os grupos controle e lesão foi realizada pela diferença entre os valores

CT dos genes avaliados (IL1 β e IL10) e CT do gene de referência (TBP) seguida da diferença entre os grupos lesão e controle (Fig5a e Fig5b). Os níveis relativos de RNAm no grupo controle foram realizados pela diferença entre os valores de CT dos genes avaliados (IL1 β e IL10) e valores de CT do gene de referência (TBP) seguido da diferença entre cada valor CT no grupo controle e o valor médio CT do controle grupo (Figura 8a e Figura 8b). Para comparação dos níveis de RNAm de IL1 β e IL10 nos grupos infectados + laser e laser com aqueles no grupo de lesão, a normalização dos níveis relativos de RNAm para os grupos lesionado, infectado, infectado + laser e laser foi realizada pela diferença entre os valores de CT avaliados genes (IL1 β e IL10) e valores de CT do gene de referência (TBP) seguido pela diferença entre cada grupo (infectado, infectado + laser e grupos laser) e grupo lesão (Figura 8c e Figura 8d). Os níveis relativos de RNAm no grupo lesionado foram realizados pela diferença entre os valores de CT dos genes avaliados (IL1 β e IL10) e valores de CT do gene de referência (TBP) seguido pela diferença entre os valores de CT do gene de referência (TBP) seguido pela diferença entre cada valor de CT e o valor da média da lesão no grupo (Figura 8c e Figura 8d). Os experimentos foram realizados em duplicata.

Gene	Sequência	Melting Temperature (°C)
TBP	F: CAGCCTTCCACCTTATGCTC	55.7
	R: TTGCTGCTGTCGTCTTTGTT	55.3
<i>IL-1β</i>	F: 5'-CACAGCAGCACATCAACAAG	54.7
	R: 5'-GTGCTCATGTCCTCATCCTG	54.2
IL-10	F: 5'-ATTTGAATTCCCTGGGTGAGAAG	55.1
	R: 5'-CACAGGGGAGAAATCGATGACA	56.8

		DT	DOD	•
			שיותו	nrimor
ганега	H .	N I -0		DETER
				primer

3.1.11 Análise estatística

Os dados foram apresentados como média e desvio padrão (média ± DP). O teste ANOVA foi realizado para verificar as diferenças estatísticas seguidas pelo pós-teste de

Tukey da análise macroscópica, análise histológica e níveis relativos de RNAm. Um p <0,05 foi considerado como o menor nível significativo. O teste *t* Student foi realizado para verificar as diferenças estatísticas dos níveis relativos de RNAm entre os grupos controle e lesão; e sobrevivência bacteriana. O software InStat Graphpad foi utilizado para realizar análises estatísticas (GraphPad InStat para Windows XP, GraphPad Software, San Diego, Califórnia, EUA).

3.2 Estudo 2: Os lasers de baixa potência com duplo comprimento de onda poderiam ser um tratamento alternativo para feridas crônicas?

3.2.1 Relato de Casos

Aqui descrevemos quatro casos de feridas crônicas (lesão por pressão, úlcera venosa não cicatrizante, úlcera diabética e úlcera venosa não cicatrizante em paciente diabético) tratadas com laser de baixa potência com comprimento de onda duplo simultâneo. O consentimento escrito dos pacientes foi anteriormente obtido ao tratamento da ferida e bem como para publicar fotografias (CEP/2.263.135).

3.2.2 Laser de baixa potência (LBP)

Os procedimentos experimentais foram realizados com laser de baixa potência com comprimento de onda duplo (Terapia, DMC Equipamentos Ltda, São Carlos-SP, Brasil), emissão simultânea em comprimentos de onda vermelho (660 nm) e infravermelho (808 nm), *spot size* 0,028 cm², 4J, aproximadamente 142,8 J/cm², 20 segundos por ponto, em modo de emissão contínua (potência de saída de 100mW, densidade de potência de 3.571 W/cm²).

As feridas foram fotografadas em cada sessão. As imagens das feridas foram capturadas por uma câmera digital Samsung DV100 (São Paulo, Brasil). Posteriormente, as imagens foram analisadas pelo software Image J (Media Cybernetics, Inc., EUA) para mensurar as áreas da ferida. A borda de cada lesão foi traçada em uma imagem para medir a área da ferida.

3.2.4 Avaliação da lesão por pressão através da escala PUSH

A escala de avaliação da lesão por pressão para cicatrização (ferramenta PUSH) foi idealizada pelo National Pressure Ulcer Advisory Panel (NPUAP), que classifica as lesões por pressão com base no tamanho da ferida, tipo de tecido do leito da ferida e quantidade de exsudato. Sendo esta utilizada para classificação da lesão por pressão (SANTOS *et al.*, 2005).

4. RESULTADOS E DISCUSSÃO

4.1 Estudo 1: Fotobiomodulação por lasers de baixa potência com dois comprimentos de onda (LBPD) em lesões por pressão infectadas

4.1.1 Resultados

A figura 4 ilustra as áreas da pele dorsal dos animais de todos os grupos analisados 4, 11 e 14 dias após as lesões. No dia 4, as lesões apresentavam-se maiores nos grupos infectado e infectado + laser do que aqueles dos grupos de lesão e lesão + laser. Aparentemente, a FBM por lasers de baixa potência com comprimentos de onda simultâneos acelerou a cicatrização de feridas ao comparar o grupo infectado e o grupo infectado + laser 14 dias após o ferimento. As áreas das feridas foram medidas para confirmar essa análise qualitativa (Figuras 4a e 4b).

A cicatrização da ferida ocorre principalmente pela contração da primeira ferida e, em seguida, pela re-epitelização via migração e proliferação de queratinócitos. Todos os grupos apresentaram uma redução significativamente progressiva na área da ferida durante o experimento. No 40 dia após a lesao, as áreas da ferida no grupo infectado foram significativamente (p<0,001) mais elevadas que as áreas no dia 0, enquanto as lesões infectadas e expostas ao FBM não apresentaram alteração significativa (p>0,05) (Figura 5a).

Figura 4. Fotografias das lesões por pressão expostos a lasers de baixa potência com duplo comprimento de onda 0, 4, 11 e 14 dias após o ferimento.

Figura 5. Quantificação da área de cicatrização das lesões por pressão em camundongos.

Legenda: (a) Porcentagem da área original da ferida 0, 4, 11 e 14 dias após o ferimento (representação gráfica por grupo). (**) p<0,01, (***) p<0,001 comparando as áreas iniciais da ferida com aqueles 4, 11 e 14 dias após o ferimento. (b) Porcentagem da área inicial da ferida 0, 4, 11 e 14 dias após o ferimento (representação gráfica por dia). (**) p<0,01, (***) p<0,001, comparando a porcentagem da área inicial da ferida no grupo da lesão com os grupos infectado, infectado + laser e laser; (##) p<0,01, (###) p<0,001 comparando a porcentagem da área inicial da lesão na lesão infectada

com lesão + infectada + laser e grupos de laser. (c e d) Porcentagem de áreas de feridas reepitelizadas 11 (c) e 14 (d) dias após o ferimento (representação gráfica por grupo). (**) p<0,01, (***) p<0,001 comparando os grupos infectado, infectado + laser e laser com o grupo lesionado; (##) p<0,01, (###) p <0,001 comparando os grupos infectado + laser e laser com o grupo infectado.

Além disso, a área da ferida nos grupos infectado e infectado + laser foi significativamente (p<0,001; p<0,01) maior do que no grupo lesão no dia 4. As lesões, infectadas ou não (grupo infectado + laser e laser), expostas a FBM por lasers de baixa potência emitidos simultaneamente mostraram uma diminuição significativa na área 11 (p<0,001; p<0,01) e 14 (p<0,001; p<0,01) dias após a indução da lesão, em comparação com as áreas das lesões nos grupos não irradiados (grupo lesão e infectado) (Figura 5b).

A porcentagem das áreas reepitelizadas das lesões no grupo infectado foi significativamente (p<0,01) reduzida quando comparada com o grupo lesão, indicando reepitelização incompleta 14 dias após a indução da lesão (Figura 5d). No entanto, lesões expostas a FBM por lasers de baixa potência emitidos simultaneamente mostraram áreas significativamente maiores 11 (p<0,001; p<0,01, respectivamente) e 14 (p<0,001; p<0,01, respectivamente) dias após a indução da lesão quando comparado aos grupos lesão e infectado.

O grupo lesão apresentou aumento da espessura da neo-epiderme ao final do processo de cicatrização em relação ao grupo controle. A infecção bacteriana potencializou esse efeito quando comparado ao grupo lesão (Figura 6a). No entanto, lesões infectadas expostas a FBM por lasers de baixa potência emitidos simultaneamente (grupo infectado + laser) resultaram em uma neo-epiderme mais fina do que no grupo infectado, mas a exposição a FBM por lasers de baixa potência no grupo laser comparado com o grupo lesão não modificou significativamente a espessura da neo-epiderme 14 dias após a indução da lesão (Figura 6b).

Os dados da sobrevivência bacteriana obtidas de lesões infectadas expostas a FBM por lasers de baixa potência (grupo infectado + laser) são mostrados na Figura 7. Estes dados mostram que a exposição ao FBM por lasers de baixa potência a 142,8 J/cm² diminuiu significativamente (p<0,001) a sobrevivência bacteriana quando comparado ao grupo infectado.

Figura 7. Taxa de sobrevivência de bactérias de feridas nos grupos infectados e infectados + laser 14 dias após o ferimento.

Legenda: (***) p<0,001 comparando o grupo infectado com o grupo infectado + laser.

Os dados dos níveis relativos de RNAm de IL1 β e IL10 nas lesões por pressão após 14 dias da indução da lesão estão apresentados nas figuras 8a e 8b, respectivamente. Esses dados mostram que os níveis relativos de RNAm de IL10 não foram significativamente modificados (p>0,05), mas um aumento significativo (p<0,001) na expressão relativa de RNAm de IL1 β foi obtido em comparando o grupo lesão com o grupo controle.

Figura 8. Níveis relativos de RNAm de IL1β e IL10 em lesões por pressão.

Legenda: (a) IL1β e (b) níveis relativos de RNAm de IL10 em LPs. Os níveis relativos de RNAm no grupo lesionado foram relativos aos do grupo controle. (***) p <0,001 comparando o grupo da lesão com o grupo controle. O gene TBP foi utilizado como padrão interno para normalização. (c) IL1β e (d) níveis relativos de RNAm de IL10 em LPs após exposição a LBPD. Os níveis relativos de RNAm nos grupos infectado, infectado + laser e laser foram relativos aos do grupo das lesões. (*) p<0,05, (**) p<0,01, comparando os grupos infectado, infectado + laser e laser com o grupo lesionado. O gene TBP foi utilizado como padrão interno para normalização.

As Figuras 8c e 8d mostram dados dos níveis relativos de RNAm de IL1 β e IL10 em lesões por pressão expostas a FBM por lasers de baixa potência emitidos simultaneamente. Estes dados indicam uma redução significativa (p<0,05) nos níveis relativos de RNAm de IL1 β no grupo infectado quando comparado com o grupo de lesão. Por outro lado, as lesões por pressão expostas ao laser (grupo laser) em comparação com o grupo lesionado apresentaram um aumento significativo (p<0,05) nos níveis relativos de RNAm de IL1 β .

Os níveis relativos de mRNA de IL10 apresentou uma redução significativa (p<0,05) nos grupos infectados e laser quando comparados com o grupo lesionado. Pode-se argumentar que os dados do grupo infectado + laser mostram uma tendência de diminuição (em comparação com o grupo da lesão) dos níveis relativos de RNAm de IL1 β .

Além disso, amostras do tecido da lesão expostas ao laser mostram uma tendência de aumento na IL10 em comparação com as do grupo infectado, bem como as do grupo infectado + laser.

4.1.2 Discussão

A cicatrização de feridas envolve três estágios diferentes: inflamação, granulação tecidual e remodelação (GURTNER *et al.*, 2008). Feridas crônicas exibem um processo de reparo interrompido, levando a uma resposta inflamatória prolongada, freqüentemente exacerbada por efeitos indiretos de micro-organismos na ferida (TAKEO *et al.*, 2015; EBRIGHT *et al.*, 2005).

Em nossos experimentos, 4 dias após o ferimento, a área ferida foi maior nos camundongos dos grupos infectados (Figura 5a). Isso pode ser atribuído à presença de uma carga bacteriana maior na ferida, causando dano tecidual local e impedindo a cicatrização de feridas (IWII, 2016). No entanto, as áreas das feridas infectadas expostas a FBM (grupo infectado + laser) não foram significativamente alteradas 4 dias após o ferimento (Figura 5a) e diminuíram significativamente após 11 e 14 dias após a indução da lesão, diferentemente dos não irradiados (grupo lesão e grupo infectado) (Figura 5b). Estes resultados sugerem que a FBM com lasers de baixa potência com comprimento de onda duplo simultâneo diminui o atraso na cicatrização de feridas infectadas.

O biofilme é um dos principais contribuintes para o atraso na cicatrização de feridas, estando associado à transição para um estado de ferida crônica (TAKEO *et al.*, 2015; EBRIGHT *et al.*, 2005; IWII, 2016; ASHRAFI *et al.*, 2018). Em estudos anteriores, a formação de biofilme foi avaliada em culturas de *Pantoea agglomerans* expostas a FBM com lasers de baixa potência de comprimento de onda simples e duplo. Curiosamente, o laser vermelho de baixa potência aumentou a formação de biofilme em baixas fluências de laser.

Por outro lado, FBM com lasers de baixa potência com comprimento de onda duplo simultâneo diminuiu a formação de biofilme em culturas de *Pantoea aglomerans* em altas fluências. Além disso, a FBM com lasers de baixa potência com comprimento de onda duplo simultâneo diminuiu a taxa de sobrevivência das bactérias, enquanto com lasers vermelhos ou infravermelhos de comprimento de onda único aumentou (THOMÉ *et al.*, 2017; THOMÉ *et al.*, 2018). Vale ressaltar que os resultados atuais mostram que a exposição ao FBM com lasers de baixa potência com comprimento de onda duplo simultâneo diminuiu a taxa de sobrevivência das bacterianas das feridas infectadas (Figura 7). No entanto, a FBM com LBPD inibiu o crescimento bacteriano reduzindo os fatores associados à cronicidade da ferida, incluindo o biofilme.

Além disso, a espessura da epiderme pode ser usada como um indicador do processo de reparo, uma vez que a epiderme é considerada completamente formada quando a espessura da neo-epiderme é mais fina (TRAJANO *et al.*, 2015) e nossos resultados mostraram que as feridas irradiadas têm uma neo-epiderme mais fina que as feridas infectadas no dia 14 (Figura 5b). Uma alternativa promissora ao uso de lasers de baixa potência para alcançar esses resultados é a combinação de comprimentos de onda vermelho e infravermelho (LBPD). Enquanto, a FBM com lasers de baixa potência de comprimento de onda único pode induzir a reparação de feridas cutâneas (TRAJANO *et al.*, 2015), um estudo anterior demonstrou que um melhor efeito pode ser alcançado pelo LBPD (DE LIMA *et al.*, 2014; RODRIGO *et al.*, 2009).

A *IL-1* (tanto α como β) é uma peça chave no processo de cicatrização, pois amplifica os mediadores inflamatórios; os níveis de *IL-1* tornam-se detectáveis nas primeiras 24 horas da indução de lesão em um modelo experimental, com um pico entre o primeiro e o terceiro dia (MacLEOD *et al.*, 2016). Alguns autores relataram que a maioria das citocinas próinflamatórias é *up-regulated* 12 horas após a indução da lesão e são gradualmente *downregulated* nos modelos de lesão por pressão (JIANG *et al.*, 2014). No entanto, nossos resultados indicam que a expressão relativa de mRNA de *IL-1* β aumentou no grupo de lesão, mas foi ainda maior no grupo de laser 14 dias após o ferimento.

Além disso, os estudos que comparam as feridas agudas e crônicas mostraram um aumento significativo nos níveis de citocinas pró-inflamatórias em casos crônicos (JIANG *et al.*, 2014; GOHEL *et al.*, 2008). Marcadores inflamatórios como a *IL-1* β se mostraram presentes em níveis mais elevados em feridas crônicas do que em feridas agudas, e a

expressão de citocinas inflamatórias é *up-regulated* e/ou prolongada na primeira (ZIRALDO *et al.*, 2015). Os níveis de mRNA de *IL-1* β na pele normal são significativamente menores do que aqueles em feridas agudas, centros de LP e bordas de LP. No entanto, os níveis de RNAm de *IL-1* β em centros de LP e margens de LP são maiores que em feridas agudas (JIANG *et al.*, 2014) e são mais altos que outras citocinas (KUROSE *et al.*, 2015).

Apesar disso, uma concentração local de *IL-1* β acima de um limiar ativa macrófagos para um fenótipo M1 (pró-inflamatório) e, acima de um limiar mais elevado, a *IL-1* β induz macrófagos a um fenótipo M2 (anti-inflamatório/reparativo) (ZIRALDO *et al.*, 2015). Um exemplo desse mecanismo é a mudança da população de macrófagos M1 para M2, responsável pela transição de um microambiente necrótico para um microambiente propício à migração e diferenciação de células-tronco, o que, por sua vez, resulta na cicatrização de feridas. Esta proliferação não é apenas necessária para fornecer um número suficiente de células para a diferenciação e reparação de danos prolongados, mas também para reconstituir o conjunto de células estaminais específicas do tecido (COLETTI *et al.*, 2013).

Além disso, a exposição de células à FBM tem sido aplicada associada à resposta inflamatória e aos marcadores de reparo tecidual, como as citocinas (ZHEVAGO *et al.*, 2006). O efeito da FBM induzido por lasers de baixa potência é atribuído às características monocromáticas e colimadas dos feixes de laser (NIEMZ *et al.*, 2007), que permitem a absorção de fótons por um fotoaceptor específico (KARU, 2003). Este efeito modula a expressão de citocinas envolvidas na aceleração do reparo tecidual (KARU, 2003).

Se o grupo infectado for comparado com o grupo infectado + laser e o grupo lesionado for comparado ao grupo laser, os níveis de RNAm de *IL-1* β mostraram uma tendência crescente à irradiação, enquanto os níveis de RNAm de IL10 mostram tendência decrescente (Figura 8). A *IL-1* é uma subfamília de citocinas e é mediadora importante de reações imunes inflamatórias e inatas; eles demonstraram ter um papel central em várias doenças autoinflamatórias humanas (YAN *et al.*, 2016). Por outro lado, as citocinas *IL-10* receberam particular atenção devido à sua potente ação anti-inflamatória (JETTEN *et al.*, 2014. Ambos foram sugeridos como potenciais agentes terapêuticos para o tratamento do reparo tardio da ferida (YAN *et al.*, 2016; JETTEN *et al.*, 2014). Além disso, estudos prévios relataram que *IL-1* β e *IL-6* apresentam-se aumentados e *IL-10* estava diminuída em modelos de LP, o que poderia indicar um papel importante de *IL-1* β e *IL-6* em LPs (KUROSE *et al.*, 2015) e um desequilíbrio citocinas inflamatórias e anti-inflamatórias nessas lesões. Curiosamente, isso também é consistente com a observação de que o tratamento com macrófagos induzidos por *IL-10* retarda a cicatrização de feridas cutâneas em um modelo de camundongo diabético experimental (JETTEN *et al.*, 2014). Assim, é possível que as feridas crônicas mostrem um desarranjo das citocinas inflamatórias e anti-inflamatórias, que poderiam atuar de maneira diferente no processo de cicatrização.

4.2 Estudo 2: O laser de baixa potência com duplo comprimento de onda (LBPD) poderia ser um tratamento alternativo para feridas crônicas?

4.2.1 Resultados

4.2.1.1 Relato de Caso 1: lesão por pressão

Uma mulher de 71 anos apresentou uma fratura de fêmur e necessitou de imobilização gessada e isto ocorreu 1 (um) mês antes do surgimento da lesão por pressão. Em maio de 2017, a paciente apresentou uma lesão de pressão de estágio 3 na região sacral, perda de pele em toda a espessura, significativamente doloroso, secreção serossanguinolosa de odor fétido e área de necrose. A ferida foi limpa com solução salina morna com NaCl a 0,9% e detergente de clorexidina e tratada topicamente com sulfadiazina de prata antes da aplicação do curativo.

Após sete dias, houve redução do odor, com pequena quantidade de material fibroso e tecido de granulação na base da ferida e foi tratado topicamente com óleo de girassol na região de perilesional e kollagenase no interior. Em junho de 2017, houve formação de tecido de granulação na superfície da lesão, mas, até aquele momento, não havia redução da área da ferida e apresentava tunelamento. Em julho de 2017, foi iniciada a aplicação do LBPD simultâneo, realizada uma vez por semana, durante oito sessões.

As fotografias da lesão por pressão estão na Figura 9. A evolução das fotografias também foi analisada durante o processo de cicatrização das feridas, indicando melhora da cicatrização após oito sessões (Figura 9).

Figura 9. Imagens da lesão por pressão exposta aos lasers vermelho e infravermelho simultaneamente.

Legenda: D1: dia um, D4: dia quatro e D8: dia oito.

Os dados da Figura 10 mostram as áreas da lesão por pressão medida no procedimento com LBPD.

Figura 10. Áreas da lesão por pressão expostas aos lasers vermelho e infravermelho simultâneos de baixa potência.

Legenda: D1: dia um, D2: dia dois, D4: dia quatro, D7: dia sete e D8: dia oito.

Os dados nesta figura mostram que a exposição aos lasers de baixa potência vermelho e infravermelho simultâneos é capaz de reduzir a área da ferida. Para confirmar os dados das medições da área, os escores da escala PUSH foram obtidos.

Figura 11. Escores da escala PUSH.

Legenda: D1: dia um, D2: dia dois, D4: dia quatro, D7: dia sete e D8: dia oito.

A evolução dos escores baseados na escala PUSH também foi analisada em cinco momentos diferentes durante o processo de cicatrização da ferida, indicando melhora da cicatrização (Figura 11). 4.2.1.2 Relato de Caso 2: úlcera venosa

Um homem de 54 anos apresentou uma úlcera venosa em maléolo medial esquerdo. A lesão iniciou há três anos e apresentava tecido de granulação, bordas regulares, sem odor e exsudato. Este paciente tinha uma história de insuficiência venosa e doença psiquiátrica.

Em setembro de 2017, foi iniciada a aplicação do laser baixa potência com comprimento de onda duplo simultâneo, realizada duas vezes por semana, durante quinze sessões. A ferida foi limpa com solução salina morna com NaCl a 0,9% e detergente de clorexidina, tratada topicamente com óleo de girassol antes da aplicação do curativo.

As áreas da úlcera venosa são mostradas na Figura 12. A evolução das fotografias também foi analisada durante o processo de cicatrização da ferida. A fotografia de novembro/2017 mostra que o LBPD simultâneo melhora a cicatrização de feridas.

Figura 12. Imagens da úlcera venosa exposta aos lasers de baixa potência vermelhos e infravermelho simultâneos.

Setembro/2017	Outubro/2017	Novembro/2017
		ANN -
16 17 18 10	17 18	17 18 1

Figura 13. Áreas da úlcera venosa expostas aos lasers de baixa potência vermelho e infravermelho simultâneos.

Os dados nesta figura (Figura 13) mostram que os lasers de baixa potência vermelho e infravermelho simultâneos reduziram a área da úlcera venosa, indicando melhora da cicatrização.

4.2.1.3 Relato de Caso 3: úlcera diabética

Um homem de 69 anos apresentou uma ferida crônica devido a traumas físicos consecutivos. Esta ferida apresentava tecido fibrinoso, bordos regulares, odor fétido, desidratada e região perilesional escamosa. Este paciente possui histórico de diabetes não controlada e, até aquele momento, não houve redução da área da ferida. Em dezembro de 2016, foi iniciada a aplicação dos lasers de baixa potência com comprimento de onda duplo simultâneos, realizada duas vezes por semana, durante vinte e cinco sessões. A ferida foi limpa com solução salina morna com NaCl a 0,9% e detergente de clorexidina e tratada topicamente com óleo de girassol antes da aplicação do curativo.

Áreas da úlcera diabética são mostradas na Figura 14. A evolução das fotografias mostra a alteração do tecido dentro e ao redor da ferida. Cinco meses após o início do tratamento, a ferida e a região perilesional apresentam-se mais superficiais e saudáveis.

Figura 15. Áreas da úlcera diabética expostas aos lasers de baixa potência vermelho e infravermelho simultâneos

A área da úlcera diabética exposta aos lasers de baixa potência com comprimento de onda duplo simultâneos reduziu progressivamente, indicando melhora da cicatrização (Figura 15).

Figura 14. Imagens da úlcera diabética exposta aos lasers de baixa potência vermelho e infravermelho simultâneos.

4.2.1.4 Relato de Caso 4: úlcera venosa em paciente diabético

Uma mulher de 69 anos apresentou uma úlcera venosa em maléolo medial esquerdo. A lesão começou há cinco anos e apresentava tecido fibrinoso, com margens significativamente dolorosas, regulares e levemente inclinadas, mas sem odor e exsudato. Esta paciente tinha uma história de insuficiência venosa com edema persistente de membros inferiores e diabetes.

Em 2016, iniciou-se o tratamento na atenção primária, mas até o momento não houve redução da área da ferida. Em janeiro de 2017, foi iniciada a aplicação do LBPD simultâneo, realizada duas vezes por semana, durante setenta e nove sessões. A ferida foi limpa com solução salina morna com NaCl a 0,9% e detergente de clorexidina e tratada topicamente com óleo de girassol antes da aplicação do curativo.

Áreas da úlcera venosa são mostradas na Figura 16 e 17. A evolução da ferida foi analisada durante o processo de cicatrização. A fotografia de abril de 2017 mostra uma mudança na qualidade da base da ferida em relação a janeiro de 2017, houve formação de tecido de granulação na superfície da lesão. Aparentemente, laser de baixa potência com comprimento duplo simultâneo diminuiu o atraso na cicatrização de feridas depois da aplicação.

Figura 16. Imagens da úlcera venosa exposta aos lasers vermelhos e infravermelhos simultâneos.

A área desta ferida em cada procedimento de exposição aos lasers baixa potência com comprimento de onda duplo simultâneos é mostrada na Figura 17.

Figura 17. As áreas da úlcera venosa expostas aos lasers vermelho e infravermelho de baixa potência simultâneos.

Os dados nesta figura mostram que o LBPD simultâneo reduziu a área da úlcera venosa, indicando melhora da cicatrização.

4.2.1.5 Relato de Caso 5: úlcera venosa em paciente diabético

Um homem de 63 anos apresentou uma úlcera venosa em região superior ao maléolo lateral direito. O paciente procurou assistência na Unidade Básica de Saúde em Outubro de 2018, relatando apresentar a lesão há cerca de 3 meses. A lesão apresentava tecido necrótico, com a região perilesional dolorosa e hiperêmica, bordas irregulares e odor fétido. Este paciente tinha uma história de insuficiência venosa e diabetes. Desde então, iniciou-se o tratamento na atenção primária, mas até o momento não houve redução da área da ferida com o tratamento convencional.

Em novembro de 2018, foi iniciada a aplicação do LBPD simultâneo, realizada duas vezes por semana, totalizando 24 sessões. A ferida foi limpa com solução salina morna com NaCl a 0,9% e detergente de clorexidina e tratada topicamente com óleo de girassol antes da aplicação do curativo.

Áreas da úlcera venosa são mostradas na Figura 18 e 19. A evolução da ferida foi analisada durante o processo de cicatrização. A fotografia de janeiro de 2019 mostra uma mudança na qualidade da base da ferida em relação a novembro de 2018, destaca-se no início do tratamento a formação de tecido de granulação na superfície da lesão em sua totalidade com redução do tecido desvitalizado, posteriormente redução da área da lesão e da queixa álgica. Aparentemente, o laser de baixa potência com comprimento duplo simultâneo acelerou o processo de cicatrização, estimulando a formação do tecido de granulação, consequente fechamento da área lesionada e gerando efeito de analgesia.

Figura 18. Imagens da úlcera venosa exposta aos lasers vermelhos e infravermelhos simultâneos.

Figura 19. As áreas da úlcera venosa expostas aos lasers vermelho e infravermelho de baixa potência simultâneos.

4.2.1.6 Relato de Caso 6: úlcera venosa

Um homem de 76 anos apresentou uma ferida crônica após trauma físico local. Esta ferida apresentava tecido de granulação, bordos regulares, sem odor fétido, desidratada e região perilesional hiperêmica. Este paciente possui histórico de insuficiência venosa, até aquele momento, não houve redução da área da ferida. Foram realizadas 7 sessões com a aplicação dos lasers de baixa potência com comprimento de onda duplo simultâneos, durante os meses de janeiro e fevereiro de 2019. A ferida foi limpa com solução salina morna com NaCl a 0,9% e detergente de clorexidina e tratada topicamente com óleo de girassol antes da aplicação do curativo.

Áreas da úlcera venosa são mostradas na Figura 20. A evolução das fotografias (Figura 21) mostra a evolução e epitelização completa da área lesionada.

Figura 20. Imagens da úlcera venosa exposta aos lasers vermelhos e infravermelhos simultâneos.

Figura 21. As áreas da úlcera venosa expostas aos lasers vermelho e infravermelho de baixa potência simultâneos.

Os efeitos da irradiação com LBP sobre os tecidos biológicos baseiam-se na absorção de energia e transdução de seus fótons em um efeito biológico, principalmente na produção de ATP, DNA e síntese protéica (MACHADO *et al.*, 2017). Alguns estudos foram realizados para entender esses efeitos na reparação tecidual e processos de cicatrização de feridas (TARADAJ *et al.*, 2013; TCHANQUE-FOSSUO *et al.*, 2016).

Nosso estudo mostrou uma diminuição significativa do tamanho das feridas expostas a LBP. Além disso, houve aumento da granulação tecidual e de epitelização, bem como melhora da cicatrização, não apenas no tecido interno, mas ao redor da ferida. Esses achados sugerem que os cuidados preventivos devem ser introduzidos mais cedo para serem efetivos, embora em alguns casos a prevenção não tenha sido capaz de garantir a cicatrização de feridas, o que requer tratamento efetivo quando isso acontece (PALAGI *et al.*, 2015).

Neste caso de lesão por pressão, considerando a história de fratura do fêmur, a paciente apresentou restrição para mudanças de posição no leito por um longo período de tempo. Além disso, em outros casos, há insuficiência venosa e diabetes, que são doenças comuns na população e geram complicações importantes. Estes fatores restringem as possibilidades de prevenção e tratamento de feridas crônicas, causando lento processo de cicatrização, o que reforça a importância dos lasers de baixa potência para acelerar o processo de cicatrização.

Alguns autores relataram dados sobre os efeitos de lasers de baixa potência no processo de cicatrização de feridas crônicas. De fato, Ruh *et al.* (2018) demonstraram que LBP é uma ferramenta promissora para reduzir o tamanho da lesão por pressão, uma vez que, após a exposição ao LBP, as lesões apresentaram melhora na aparência geral, com aumento nos níveis de VEFG e TGF- β . Taradaj *et al.* (2013) mostram que a exposição a LBP a 658nm pareceu ser eficaz para a cicatrização de feridas, mas 808 e 940nm não tiveram nenhum efeito no processo de cicatrização. Semelhante às conclusões obtidas em uma revisão sistemática, as evidências não foram encontradas com lasers de baixa potência em comprimentos de onda superiores a 658nm (MACHADO *et al.*, 2017)

A FBM representa um tratamento eficaz em pacientes com diferentes comorbidades. Níveis aumentados de espécies reativas de oxigênio (EROs) estão associados ao diabetes e também prejudicam os mecanismos de cicatrização de feridas. Tatmatsu-Rocha *et al.* (2016) demonstraram efeito protetor da exposição ao LBP com comprimento de onda de 904 nm na microvasculatura, com baixos níveis de nitrito e maior proteção contra o dano oxidativo em membranas lipídicas em feridas de animais diabéticos. Entretanto, estudos sobre o uso de FBM em pacientes com úlcera venosa são escassos. No caso de úlcera venosa em nosso estudo, a exposição aos lasers de baixa potência vermelho e infravermelho simultâneos foi capaz de melhorar a cicatrização de feridas.
CONCLUSÃO

Em conclusão, nossos resultados sugerem que a exposição simultânea a lasers vermelhos e infravermelhos de baixa potência melhora e acelera a cicatrização de feridas por efeito bactericida ou inibidor do crescimento bacteriano. Portanto, o FBM com LBPD simultâneo poderia ser considerado uma opção para o tratamento de feridas infectadas. Em pesquisas futuras, a segurança e a eficácia desse método devem ser confirmadas em ensaios clínicos randomizados multicêntricos.

E possível sugerir que laser de baixa potência com comprimento de onda duplo simultâneo contribui para induzir a reparação de lesões por pressão, úlceras venosas não cicatrizantes e úlceras diabéticas, como os efeitos induzidos por estes poderiam ser aditivos. No entanto, o número de sessões é variável de acordo com o tipo de ferida, tamanho, comorbidade, aderência às recomendações e tratamento.

REFERÊNCIAS

AMMONS, M. C. B. *et al.* Biochemical Association of Metabolic Profile and Microbiome in Chronic Pressure Ulcer Wounds. **PLoS ONE**, v. 10, n. 5, e0126735. 2015.

ANTONIALLI, F. C. *et al.* Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. **Lasers Medical Science**, v. 29, n. 6, p. 1967-76. 2014.

ASHRAFI M. *et al.* Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. **Science Reports**, v. 8 n. 1, p. 9431. 2018.

AVCI P. *et al.* Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. **Seminars in Cutaneous Medicine and Surgery**, v. 32, n. 1, p. 41-52. 2013.

BARIBIN B. *et al.* Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia. **Journal of Cosmetic and Laser Therapy**. *in press*. 2017.

BAGNATO, V. S. Laser e suas aplicações em Ciência e Tecnologia. São Paulo: Editora Livraria da Física, 2008.

BLANES, L. *et al.* Avaliação clínica e epidemiológica das úlceras por pressão em pacientes internados no Hospital São Paulo. **Revista da Associação Médica Brasileira**, v. 50, n. 2. 2004.

BRITO T. L. A. *et al.* Propranolol impairs the closure of pressure ulcers in mice. Life Sciences, v. 100, p. 138–146. 2014.

BLUESTEIN, D.; JAVAHERI, A. Pressure ulcers: prevention, evaluation, and management. **American Family Physician**, v. 78, n. 10, p.1186-1194. 2008.

CANO, A. *et al.* Improving Outcomes by Implementing a Pressure Ulcer Prevention Program (PUPP): Going beyond the Basics. **Healthcare**, v. 3, n. 3, p.574–585. 2015.

CHAVES M. E. *et al.* Effects of low-power light therapy on wound healing: LASER x LED. **Anais Brasileiros de Dermatologia**, v. 89, n. 4, p. 616-23. 2014.

CHOW R. *et al.* Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. **Photomedicine Laser Surgery**, v. 29, n. 6, p. 365-81. 2011.

CHUNG, H. *et al.* The Nuts and Bolts of Low-level Laser (Light) Therapy. **Annals of Biomedical Engineering**, v. 40, n. 2, p.516–533. 2012.

COLETTI D. *et al.* Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. **Regenerative Medicine Research**, v. 1, n. 1, p. 4. 2013.

COSTA, A. F.; ASSIS J. C. In vitro assessment of the bactericidal effect of low-power arsenium-gallium (AsGa) laser treatment. **Anais Brasileiros De Dermatologia**, v. 87, n. 4, p.654-656. 2012.

CONVISSAR, R. A. **Princípios e práticas do laser na Odontologia**. Rio de Janeiro: Elsevier, 2011.

DA FONSECA A. S. Is there a measure for low power laser dose? Lasers in Medical Science, v. 34, n. 1, p. 223-234. 2019.

DE CARVALHO M. E. *et al.* Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial. **Lasers in Medical Science**, v. 31, n. 7, p. 1455-63. 2016.

DE FREITAS, L. F.; HAMBLIN M. R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. **IEEE Journal of Selected Topics in Quantum Electronics**, v. 22, n. 3. 2016.

DE LIMA, F. J. C. *et al.* Use alone or in Combination of Red and Infrared Laser in Skin Wounds. Lasers in Medical Science, v. 5, n. 2, p. 51-57. 2014.

EBRIGHT J. R. Microbiology of chronic leg and pressure ulcers: clinical significance and implications for treatment. **Nursing Clinics of North America**, v. 40, n. 2, p. 207-16. 2015.

EDSBERG L. E. *et al.* Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. **Journal of Wound Ostomy & Continence Nursing**, v. 43, n. 6, p.1-13. 2016.

FARHAT, P. B. A. *et al.* Evaluation of the efficacy of LED-laser treatment and control of tooth sensitivity during in-office bleaching procedures. **Photomedicine and Laser Surgery**, v. 32, n. 7, p. 422-6. 2014.

FEKRAZAD, R. *et al.* Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. **Lasers in Medical Science**, v. 34, n. 1, p. 115-126. 2019.

GARCEZ, A. S., NUNES, S. C., RIBEIRO, M. S. Laser de Baixa Potência: Princípios Básicos e Aplicações Clínicas na Odontologia. Rio de Janeiro: Elsevier. 2012.

GAVISH, L., HOURELD N. N. Therapeutic Efficacy of Home-Use Photobiomodulation Devices: A Systematic Literature Review. Photomedicine and Laser Surgery, v. 37, n. 1, p. 4-16. 2019. GIGO-BENATO D. *et al.* Low-power laser biostimulation enhances nerve repair after end-toside neurorrhaphy: a double-blind randomized study in the rat median nerve model. **Lasers in Medical Science**, v. 19, n. 1, p. 57-65. 2004.

GOHEL M. S. *et al.* The relationship between cytokine concentrations and wound healing in chronic venous ulceration. **Journal of Vascular Surgery**, v. 48, n. 5, p. 1272-7. 2008.

GURTNER, G. C. *et al.* Wound repair and regeneration. **Nature**, v. 453, n. 7193, p. 314-21. 2008.

HAMBLIN, M. R. Photobiomodulation or low-level laser therapy. **Journal of Biophotonics**, v. 9, p. 1122-1124. 2016.

HAMBLIN, M. R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. **AIMS Biophysics**, v. 4, n. 3, p. 337-361. 2017.

HAMBLIN, M. R.; SOUSA, M. V. P.; AGRAWAL, T. Handbook of Low-Level Laser Therapy. Singapore: Pan Stanford Publishing Pte. Ltd. 2017a.

HAMBLIN M. R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. **Journal of Photochemistry and Photobiology B**, v 94, n. 2, p. 199-212. 2018.

HAMBLIN M. R. *et al.* Low-Level Light Therapy: Photobiomodulation. Washington, USA: SPIE Press. 2018.

HUANG, Y. *et al.* Biphasic dose response in low level light therapy. **Dose Response**, v. 7, n. 4, p.358–383. 2009.

INTERNATIONAL WOUND INFECTION INSTITUTE (IWII). Wound infection in clinical practice. Wounds International. 2016.

JAHANGIRI, Y. *et al.* A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. **Photomedicine and Laser Surgery**, v. 28, n. 5, p. 621-7. 2010.

JETTEN, N. *et al.* Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. **PLoS One**, v. 9, n. 7, e102994. 2014.

JIANG, L. *et al.* Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing. **Spinal Cord**, v. 52, n. 2, p. 145-51. 2014.

KARU, T. Biostimulation of HeLa cells by low-intensity visible light: IY. – Dichromatic irradiation. **II Nuovo cimento D**, v. 5, n. 6, p. 483. 1985.

KARU, T. Biostimulation of HeLa cells by low-intensity visible light: V. Stimulation of cell proliferation in vitro by He-Ne laser radiation. **II Nuovo cimento D**, v. 9, p. 1485-1494. 1987.

KARU, T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. **Journal of Photochemistry and Photobiology B**, v. 49, n. 1, p. 1-17. 1999.

KARU, T. Low-power laser therapy. In: **Vo Dinh T (ed) Biomedical photonics handbook**. CRC Press, Boca Raton. 2003.

KARU, T. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Journal of Photochemistry and Photobiology B, v. 84, n. 5, p. 1091-9. 2008.

KARU, T. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. **IUBMB Life**, v. 62, n. 8, p. 607-10. 2010.

KARU, T. Cellular and molecular mechanisms of photobiomodulation (low-power laser therapy). **IEEE Journal of Selected Topics in Quantum Electronics**, v. 20, n. 2. 2014.

KUJAWA, J. *et al.* Effect of low-intensity (3.75-25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. **Journal of Clinical Laser Medicine & Surgery**, v. 22, n. 2, p.111-117. 2004.

KUROSE, T. *et al.* Analysis of Gene Expression in Experimental Pressure Ulcers in the Rat with Special Reference to Inflammatory Cytokines. **PLoS ONE**, v. 10, n. 7, e0132622. 2015.

LAASKO, L. *et al.* Factors affecting Low Level Laser Therapy. Australian Journal of Physiotherapy. v. 39, n. 2, p. 95-9. 1993.

LATIFA, K. *et al.* Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer. **Scientific Reports**, v. 6, n. 29371. 2016.

LEAL-JUNIOR, E. C. *et al.* Adjunctive use of combination of super-pulsed laser and lightemitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebocontrolled trial. **Lasers in Medical Science**, v. 29, n. 6, p. 1839-47. 2014.

LIMA, F. J. C. *et al.* Use alone or in Combination of Red and Infrared Laser in Skin Wounds. Lasers in Medical Science, v. 5, n. 2, p. 51-7. 2014

LIVAK, K. J. *et al.* Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). **Methods**, v. 25, n. 4, p. 402-8. 2001.

LYDER, C. H; AYELLO, E. A. **Pressure Ulcers: A Patient Safety Issue.** Rockville: AHRQ. 2008.

MACHADO, R. S. *et al.* Low-level laser therapy in the treatment of pressure ulcers: systematic review. **Lasers in Medical Science**, v. 32, n. 4, p. 937-944. 2017

MacLEOD, A. S. *et al.* (2016) The Innate Immune System in Acute and Chronic Wounds. Advanced Wound Care, v. 5 n. 2, p. 65-78. 2016.

MARTINS, W. A. *et al.* Dichromatic laser radiation effects on DNA of *Escherichia coli* and plasmids. Laser Physics, v. 25, n. 4, 045603. 2015.

MENEZES, S. *et al.* Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. **Journal of Investigative Dermatology**, v. 111, n. 4, n. 629–633. 1998.

MENDEZ, T. M. *et al.* Dose and wavelength of laser light have influence on the repair of cutaneous wounds. **Journal of Clinical Laser Medicine & Surgery**, v. 22, n. 1, p. 19-25. 2004

MIRANDA, E. F. *et al.* Phototherapy with combination of superpulsed laser and lightemitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. **Lasers in Medical Science**, v. 30, n. 1, p. 437–443. 2015.

MIRANDA, E. F. *et al.* Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. **Journal of Athletic Training**, v. 51, n. 2, p. 129-35. 2016.

MOSKVIN, S. V. Low-Level Laser Therapy in Russia: History, Science and Practice. Lasers in Medical Sciences, v. 8, n. 2, p.56-65. 2017.

NADERI, M. S. *et al.* A Comparative Study of 660 nm Low-Level Laser and Light Emitted Diode in Proliferative Effects of Fibroblast Cells. **Lasers in Medical Sciences**, v. 8, Suppl 1, S46-S50. 2017.

NASCIMENTO, A. P., MONTE-ALTO-COSTA, A. Overweight induced by high-fat diet delays rat cutaneous wound healing. **British Journal of Nutrition**, v. 96, n. 1069–1077. 2006.

NIEMZ, M. H. Laser-tissue interactions: Fundamentals and applications. New York: Springer-Verlag. 2007.

NUSSBAUM, E. L. *et al.* Effects of low intensity laser irradiation during healing of infected skin wounds in the rat. **Photonics & Lasers in Medicine**, v. 3, n. 1, p.23-36. 2014.

PAGIN, M. T. *et al.* Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers in Medical Sciences, v. 29, n. 1, p. 55-9. 2014.

PALAGI, S. *et al.* Laser therapy in pressure ulcers: evaluation by the Pressure Ulcer Scale for Healing and Nursing Outcomes Classification. **Revista da Escola de Enfermagem da USP**, v. 49, n. 5, p. 820-826. 2015.

PASSARELA, S., KARU, T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. **Journal of Photochemistry and Photobiology B**, v. 140, p. 344-58. 2014.

POYTON, R. O., BALL, K. A. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. **Discovery medicine**, v. 11, n. 57, p. 154-9. 2011.

RHOADS, D. D. *et al.* Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds. **International Journal of Molecular Sciences**, v. 13, n. 3, p. 2535–2550. 2012.

RODRIGO, S. M. *et al.* Analysis of the systemic effect of red and infrared laser therapy on wound repair. **Photomedicine and Laser Surgery**, v. 27, n. 6, p. 929–35. 2009.

RUH, A. C. *et al.* Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. **Lasers in Medical Sciences**, v. 33, n. 1, p. 165-171. 2018.

SANTOS, V. L. C. G. et al. Adaptação transcultural do pressure ulcer scale for healing (PUSH) para a língua portuguesa. **Revista Latino-Americana de Enfermagem [online]**, v. 13, n. 3, pp.305-313. 2005.

SANTOS, N. R. *et al.* Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. **Photomedicine and Laser Surgery**, v. 29, n. 3, p. 177-82. 2011.

SEN, C. K. *et al.* Human skin wounds: a major and snowballing threat to public health and the economy. **Wound Repair** Regen, v. 17, n. 6, 763-771. 2009.

SOLMAZ, H. *et al.* Photobiomodulation of Wound Healing via Visible and Infrared Laser Irradiation. **Lasers in Medical Science**, v. 32, n. 4, p.903-910. 2017.

STOJADINOVIC, O. *et al.* Deep Tissue Injury in Development of Pressure Ulcers: A Decrease of Inflammasome Activation and Changes in Human Skin Morphology in Response to Aging and Mechanical Load. **PLoS ONE**, v. 8, n. 8, e69223. 2013.

TAKEO, M. *et al.* Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, v. 5, n. 1, a023267. 2015.

TAEADAJ, J. *et al.* Effect of Laser Irradiation at Different Wavelengths (940, 808, and 658 nm) on Pressure Ulcer Healing: Results from a Clinical Study. **Evidence-Based Complementary** and **Alternative Medicine**, 2013: 960240. 2013.

TATMATSU-ROCHA, J. C. *et al.* Low-level laser therapy (904nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. **Journal of Photochemistry and Photobiology B**, v. 164, p. 96-102. 2016.

TCHANQUE-FOSSUO, C. N. *et al.* Low-level Light Therapy for Treatment of Diabetic Foot Ulcer: A Review of Clinical Experiences. **Journal of Drugs in Dermatology**, v. 15, n. 7, p. 843-8. 2016.

TEIXEIRA, A.F. *et al.* Low-level lasers and mRNA levels of reference genes used in Escherichia coli. Laser Physics Letters, v. 13, n. 11: 115602. 2016.

THOMAS, D. R.; COMPTON, G. **Pressure Ulcers in the Aging Population: A Guide for Clinicians**. New York: Humana Press. 2014.

THOMÉ, A. M. C. *et al.* Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Physics, v. 27, n. 5, p. 055602. 2017.

THOMÉ, A. M. C. *et al.* Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans. **Laser Physics**, v. 28, n. 6, p. 065606. 2018.

THOMÉ, A. M. C. *et al.* Isolamento de bactérias de úlceras por pressão de pacientes internados em hospital universitário. **Revista Pró-UniverSUS**, v. 09, n. 1, p. 46-50. 2018a.

TIPHLOVA, O. A.; KARU, T. Action of low-intensity laser radiation on Escherichia coli division rate. **Critical Reviews in Biomedical Engineering**, v. 18, n. 6, p. 387-412. 1991.

TRAJANO, E. T. *et al.* Low-level red laser improves healing of second-degree burn when applied during proliferative phase. **Lasers in Medical Science**, v. 30, n. 4, p. 1297-304. 2015.

TURABELIDZE, A. *et al.* Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model. **Wound Repair and Regeneration**, v. 18, n. 5, p. 460–466. 2010.

VINCK, E. M. *et al.* Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. **Lasers in Medical Science**, v. 18, n. 2, p. 95-9. 2003.

WADA, A.; NETO, N. T.; FERREIRA, M. C. Úlceras por pressão. **Revista de Medicina** (**São Paulo**), v. 89, n. 3/4, p.170-177. 2010.

YAN, C. *et al.* Targeting Imbalance between IL-1 β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. **American Journal of Pathology**, v. 186, n. 6, p. 1466-80. 2016.

ZEIN, R. *et al.* Review of light parameters and photobiomodulation efficacy: dive into complexity. **Journal of Biomedical Optics**, v. 23, n. 12, p. 1-17. 2018.

ZHEVAGO, N. A.; SAMOILOVA, K. A. Pro- and anti-inflammatory cytokine content in human peripheral blood alter its transcutaneous (in vivo) and direct (in vitro) irradiation with polychromatic visible and infrared light. **Photomedicine and Laser Surgery**, v. 24, p. 129-139. 2006.

ZIRALDO, C. *et al.* A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury. **PLoS Computational Biology**, v. 11, n. 6, e1004309. 2015.

APÊNDICE A -Artigos publicados

Author's personal copy

Lasers in Medical Science https://doi.org/10.1007/s10103-019-02862-w

ORIGINAL ARTICLE

Photobiomodulation by dual-wavelength low-power laser effects on infected pressure ulcers

Maria Maria Côrtes Thomé Lima¹ () - Luiz Philippe da Silva Sergio¹ - Larissa Alexsandra da Silva Neto Trajano² -Bianca Paschoal de Souza² - João Pedro da Motta Mendes² - Adriano Fonseca Ribeiro Cardoso² -Caroline Pisa Figueira² - Beatriz dos Anjos Tavares² - Daniella Sousa Figueira² - André Luiz Mencalha¹ -Eduardo Tavares Lima Trajano² - Adenilson de Souza da Fonseca^{1,2}

Received: 21 January 2019 / Accepted: 16 August 2019 © Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

The aim of this study was to evaluate the effects of photobiomodulation (PBM) by dual-wavelength low-power lasers on the healing and bacterial bioburden of pressure ulcer (PU) models. Twenty-five male Swiss mice were divided into five equal groups. Ischemia reperfusion cycles were employed to cause PU formation by the external application of magnetic plates. Immediately after wounding, a suspension of *Pantona agg lowernus* was applied at the base of all the wounds of the infected groups, using a calibrated pipette. PBM (simultaneous emission at 660 and 808 nm, 142.8 J/cm², in continuous wave emission mode) was applied to the PUs for 14 sessions. The animals were enthnized 14 days after PU induction, and their tissues were analyzed for wound construction and respithelialization, epidemis thickness, bacterial survival, and IL-16 and IL-10 mRNA level evaluations. The PU areas appeared larger in the mice from the infected groups than in those in the laser group 4 days after PU induction. The infected and imadiated PU sexhibited a thinner neo-epidemis that those in the infected group, and the bacterial survival decreased in the laser group compared with the infected group 11 and 14 days following the PU induction. The infected and imadiated PUs exhibited a thinner neo-epidemis that those in the infected group, and the bacterial survival decreased in the laser group, the relative expression IL-16 mRNA levels demonstrated an increasing tendency while the relative expression IL-10 mRNA levels demonstrated an increasing tendency while the relative expression IL-10 mRNA levels demonstrated an increasing tendency while the relative expression IL-10 mRNA levels demonstrated and increasing tendency while the relative expression IL-10 mRNA levels demonstrated and increasing tendency while the relative expression IL-10 mRNA levels demonstrated and increasing tendency while the relative expression IL-10 mRNA levels demonstrated and increasing tendency while the relative expression IL-10 mRNA levels demonstrated and increasi

Keywords Dual-wavelength radiation - Low-power laser - Pantoea agg lomerans - Pressure ulcer

Di Maria Maria Côrtes Thomé Lima andrezza met@hotmail.com

¹ Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gornes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, Avenida 28 de Setembro, 87, Vita Isabel, Rio de Janeiro 2055/030, Brazil

- ² Pró Reitoria de Pesquisa e Pós Graduação, Universidade de Vassouras, Av. Expedicionário Oswaldo de Almeida Ramos, 280, Centro, Vasouras 277000000, Brazil
- ³ Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro 25964004, Brazil

Introduction

Chronic wounds are characterized by delayed healing, and their treatment is a major socioeconomic public health problem [1] with a total cost estimation of over 25 billion dollars a year. They worsen patients' lives and may result in the loss of limbs or life for far too many patients [2].

In particular, pressure ulcers (PUs) are a devastating issue for the elderly and the disabled, as well as for wounded soldiers [3]. Prolonged pressure and tissue ischemia are the key processes in PU development[3], which is a significant cause of morbidity in hospitalized and community-dwelling patients [4].

In the USA, PUs are the second most common reason for hospital readmissions and affect between 1.3 and 3 million people. Furthermore, approximately 2.5 million people require advanced treatment [5].

Published online: 31 August 2019

n Springer

Lasers Med Sci

In chronic wounds, the main cause of wound persistence is bacterial colonization and proliferation [1]. Bacterial infection occurs in the form of biofilms in wounds, which are aggregates of bacteria embedded in a self-secreted extracellular polymeric substance matrix [6, 7]. The bacteria in biofilms are different when in "planktonic" form, owing to a number of inherent virulence and defense factors [8].

Different diseases as well as the wound healing process could benefit from the effects of photobiomodulation (PBM) [9], which modifies biological activity by using photons at a non-thermal irradiance [10]. The basic biological mechanism comprises the energy absorption by chromophores, one of the most important being cytochrome c o xidase (unit IV in the mitochondrial respiratory chain), which increases the electron transport, mitochondrial membrane potential, and ATP production [11]. This induces intracellular signaling path way activation and changes the cell proliferation, survival, and regenemation processes by changing the activity of the transcription factors [12].

The PBM parameters and doses applied are critical for PBM treatments. In fact, the treatment could be ineffective if incorrect PBM parameters are used [13]. The effective tissue penetration and specific wavelength of the mdiation absorbed by photoacceptors are two of the most important parameters to be considered [14]. Therefore, PBM treatments with dualwavelength low-power lasers (a combination of two lasers) may have different effects on cell proliferation and differentiation than treatments with a single-wavelength laser [15].

PBM with low-power lasers has been studied for more than 30 years and has gained considerable interest for the treatments of different conditions, such as the wound healing process. Cell proliferation is a critically important physiological aspect for laser-induced PBM, particularly in wound healing [16]. Moreover, it has been reported that low-power laser irradiation results in infection inhibition and inflammation response reduction [17].

In previous studies, the effects of different in vitro lowpower laser irradiation parameters on the inhibition or stimulation of bacterial growth were observed. In general, the biological effects induced by PBM with dual-wavelength lowpower lasers differ from those induced by single-wavelength low-power laser radiation. In these studies, PBM with dualwavelength (808 and 630 nm) low-power lasers at 142.8 J/ cm² decreased the bacterial survival rate and biofilm formation [18, 19]. Moreover, PBM was found to contribute to the repair of cutaneous wounds, which compromise the blood vessels and nerves, when acting in more superficial layers, achieved by red low-power lasers, and in the deepest layers, achieved by infinzed low-power lasers [20].

However, infections are delaying factors in the wound healing process and the biofilms on acute wounds, because they turn these into chronic wounds, and the PBM with dualwavelength low-power lasers could be a new option for their

D Springer

treatment. Therefore, we hypothesized that PBM with dualwavelength low-power lasers could contribute to wound healing in two ways: by reducing the factors associated with wound chronicity, such as infections, and by PBM wound healing. Nevertheless, the effects of PBM with dualwavelength low-power lasers on infected and/or chronic wounds have not been understood well yet. Thus, this study evaluated effects of PBM with dual-wavelength low-power laser mdiation on the healing and bacterial bioburden of a PU model.

Materials and methods

Animals

Male Swiss mice (8–12 weeks old) were housed in a room with controlled temperature (20–24 °C) and humidity (45– 55%) on a 12-h light/dark cycle with free access to food and water. All procedures were carried out in accordance with the Brazilian Legislation (no. 11.794, from October 8th, 2008) and were approved by the Ethical Committee for Animal Use of Universidade Severino Sombra (CEUA/007/2015). The animals were divided as follows: control group (n = 5) with mice not lesioned and not irradiated; lesion group (n = 5) with mice lesioned and not irradiated; laser group (n = 5) with mice lesioned and irradiated; infected group (n = 5) with mice lesioned and irradiated; infected group (n = 5) with mice lesioned and wound infected and not irradiated; infected + laser group (n = 5) with mice lesioned and wound infected and irradiated.

Ischemia and reperfusion-induced injury model

All animals were intraperitoneally anesthetized with k etamine (150 mg/kg) and xylazine (15 mg/kg), and their dorsa were shaved and cleaned. The dorsal skin (epidemiis, demiis, and hypodermis) was gently pulled up and positioned between two circular magnets with an 8-mm diameter, a 4-mm thickness, and an average weight of 1.47 g (Eudes Angelo de Almeida Produtos ME, São Paulo, Brazil). The compressive pressure genemated between the two magnets was above 50 mmHg. The magnets were applied for 16 h, followed by a release period of 8 h for 1 cycle, this time being considered day 0. The mice were exposed to two ischemia and reperfusion (IR) cycles, resulting in two 50.24-mm² circular ulcers per mouse. This procedure was used to create a chronic lesion similar to that of a stage II PU, as previously described [21].

Wound inoculation

A suspension (200 µl) of *Pantoaa agglomorans* in sterile saline was applied at the base of all the wounds of the infected groups immediately after wounding, using a calibrated

Lasers Med Sd

pipette, equivalent to 10⁶ colony-forming units (CFU)/ml [22]. Pantoca agglomerans was chosen due to its frequent association with deteriorating wounds in previous studies [23].

Low-power laser

The wound irradiation was started 24 h after the suspension of Panto a agglomerans was applied at the base of all wounds in the infected + laser group. For the laser group, the irradiation procedure was started 24 hafter wounding. This is considered day 1. In previous studies, bacterial suspensions were exposed to low-power single- and dual-wavelength lasers with emission in the red (660 nm; InGaAIP) and infrared (808 nm; AsGaAI) regions and fluence between 35 and 142.8 J/cm² In these studies, the PBM with dual-wavelength (808 and 660 nm) low-power lasers at 142.8 J/cm² leads to a decrease in the bacterial survival rate and biofilm formation [18, 19]. In this study, the experiments were carried out with a dualwavelength low-power laser (Therapy, DMC Equipamentos Ltda., São Carlos-SP, Brazil) with simultaneous emission in the red (660 nm) and infrared (808 nm) wavelen gths, spot size of 0.028 cm², energy of 4 J, and fluence of approximately 142.8 J/cm², 20 s per point, in continuous emission wave mode (power output of 100 mW, power density of 3.571 W/ cm2). The laser irradiation was performed on a spot basis on the central region of the wounds once a day for 14 sessions. Animals were enthanized by anesthetic overdose, 14 days after wounding.

Bacterial survival

The samples were gathered by a sterile swab 14 days after wounding in the infected and infected + laser groups. These stains were inoculated in a bmin heart infusion broth and incubated at 35 ± 2 °C for 24 h. Then, the culture samples were spread onto Petri dishes containing a solidified rich medium (1.5% agar). The bacterial colonies were counted after incubation (37 °C, 18 h). The experiments were conducted in duplicate results representing the mean of four independent assays.

Macroscopic analysis

The wounds were photographed on the day of the lesion and four, eleven, and 14 days after the lesion. The images from the wounds were captured by a Samsung digital camera DVI 00 (São Paulo, Brazil) and analyzed by ImageJ software for Windows XP (Media Cybernetics, Inc., USA) to mensure the wound areas. The bottler of each PU was tanced on an image to mensure the PU area. The reepithelization was estimated by the difference between the total PU area and the PU area not covered by neo-epidermis. The data are expressed as a percentage of early PU area and reepithelized PU area, at each interval considered [2.4].

Histological examination

Skin samples of all the wounds were carefully collected to include the adjacent healthy tissue and the healed tissue. The tissue fragments were formalin-fixed (pH 7.2) and paraffinembedded. Sections (5 μ m) were stained with hematoxylin and cosinto analyze the epidemis thickness (μ m) microscopically. The distance between the top and bottomo f the rete was measured using ImageJ so flware; three different areas representing the lesion were measured and the average area was calculated for each wound [25].

Total RNA extraction

Wo und samples were crushed into tubes with 500 µl TRIzol Reagent@ (Sigma-Aldrich, USA), which were then homogenized and incubated (10 min). Then, chloroform (100 µl) was added to the samples, which were then incubated (5 min) and centrifuged (12,000 ×g, 4 °C, 15 min). Aqueous phases were transferred to other tubes and isoprop anol (250 µl) was added. After incubation (room tempenture, 15 min), the mixtures were centrifuged (12,000 ×g, 4 °C, 15 min), supernatants were discarded, and precipitates were washed with ethanol-DEPC (80% ethanol, DEPC 0.1% in water) solution and centrifuged (12,000 × g, 4 °C, 5 min). The supematants were removed, and the total RNA was suspended in water-DEPC (0.1%) solution and stored (at - 80 °C) until the complementary DNA synthesis procedure was completed [26].

Complementary DNA synthesis

The RNA concentration and purity were determined with a spectrophotometer by calculating the optical density ratio at a 260–280-nm wavelength. To avoid genomic DNA contamination, a DNase I (Invitrogen, USA) treatment was carried out according to the manufacturer's protocol. Complementary DNA (cDNA) synthesis was carried out using a two-step cDNA synthesis kit (Promega, USA). Two micrograms of RNA was reverse-transcribed into cDNA using the GoScript™ reverse transcriptase system (Promega, USA), according to the manufacturer's protocol, with a total 20-µI reaction [26].

Real-time quantitative polymerase chain reaction

Each real-time quantitative polymerase chain reaction (RTqPCR) was performed using 5 μ l of GoTaq® qPCR Master Mix (Promega) at a final volume of 10 μ l. To quantify the initial relative cDNA, the samples were amplified with the primers described in Table 1. The primers were manually

n Springer

Author's personal copy

Table 1 RT-qPCR prin sequences

OR primer	Gene	Sequence	Melting temperature (°C)
	TBP	F: CAGCCTTCCACCTTATGCTC	55.7
		R: TTGCTGCTGTCGTCTTTGTT	55.3
	IL-16	F: 5-CACAGCAGCACATCAACAAG	54.7
		R:54GT GCTCATGTOCTCATCCTG	54.2
	IL-10	F: S-ATTTGAATTCOCTGGGTGAGAAG	55.1
		R:5'-CACAGGGGAGAAATOGATGACA	56.8

designed through the IDT oligo analyzer, and their specificity was verified using the NCBI Primer BLAST. The reactions were performed on a Rotor-Gene Q machine (Qiagen, USA) in duplicate for each sample. The mixtures were initially denatured at 95 °C for 10 min. The PCR consisted of 45 cycles in the following conditions: denaturation at 95 °C for 20 s, annealing at 55 °C for 20s, and an extension period at 72 °C for 20 s. A melt-curve analysis was performed for all genes, and PCR was performed for product specificity [26]. The TATAbox binding protein (TBP) mRNA levels were used as reference gene as suggested by Turabelidze and coworkers [27]. TBP as reference gene for normalization of CT values was validated by geNorm, Bestkeeper, and NormFinder. Duplicate CT values were analyzed in Microsoft Excel (Microsoft) using the $2 - \Delta \Delta CT$ method [28]. To verify if IL-16 and IL-10 expression is altered in wounds, normalization by subtracting the CT value of housekeeping gene from CT values of IL-1ß and IL-10 was performed by comparing the lesion group to the control group (Fig. 5a, b). To verify if exposure to dual lasers alters the IL-1 ß and IL-10 expression in infected wounds, infected, infected + laser, and laser groups were compared with the lesion group (Fig. 5c, d). To calculate the internal variations of mRNA levels in the lesion group, normalized CT value from IL-16 and IL-10 for each experimental sample was compared with the mean of normalized CT value lesion group. The RT-qPCR was performed twice for each sample.

Statistical analysis

The data are reported as the mean and standard deviation (mean \pm SD). The one-way analysis of variance test (ANOVA) was performed to verify the statistical differences followed by the Tukey post-test for bacterial survival mate, macroscopic analysis, histological examination, and mRNA relative expression. Ap value of less than 0.05 was considered as the lesser significant level. A Student *t* test was performed to verify the statistical differences in the mRNA normalized expression between the control and lesion groups. InStat GraphPad software was used to perform the statistical analysis (GmphPad InStat for Windows XP, GraphPad Software, San Diego, California, USA).

n Springer

Results

As illustrated in Figs. 1 and 4 days after wounding, the wounded areas appeared larger in the mice from the infected and infected + laser groups than those from the lesion and laser groups. Apparently, the PBM accelerated the wound healing. The wound areas were measured to confirm this qualitative analysis (Fig. 2a, b).

The main steps in wourd healing are wound contraction and reepithelialization via kentinocyte migration and proliferation. All groups presented a significantly progressive reduction in wound area during the experiment. It was found that, 4 days after wounding, the wound areas in the infected group were significantly (p < 0.001) higher than at day 0, but the infected lesions exposed to PBM (infected + laser group) presented no significant (p > 0.05) alteration in the wound area (Fig. 2a).

In addition, wounds areas in the infected and infected + laser groups were significantly (p < 0.001; p < 0.01) higher than those in the lesion group at day 4. The lesions, infected or not (infected + laser and laser groups), exposed to PBM showed a significant decrease in their area, 11 and 14 days (p < 0.001 and p < 0.01, respectively) after wounding compared with the not irradiated groups (lesion and infected groups) (Fig. 2b).

The percentage of re-epithelialized wounds reduced in the infected group (Fig. 2d). We ascertained that the percentage of re-epithelialized wounds in the infected group was significantly (p < 0.01) lower than that in the lesion group, indicating an incomplete re-epithelialization 14 days after wounding. However, the lesions exposed to PBM were significantly larger than tho se of the mice in the lesion and infected groups (Fig. 2c, d) 11 and 14 days (p < 0.001 and p < 0.01, respectively) after wounding.

The lession group presented a greater neo-epidemiis thickness at the end of the tissue repair process compared with the control group. The bacterial infection potentiated this effect when compared with the lesson group (Fig. 3a). On the other hand, the infected lessons exposed to PBM (infected + laser group) resulted in a thinner neo-epidermis than those in the infected group. However, the exposure to PBM in the laser group compared with the lesson group did not significantly modify the neo-epidermis thickness 14 days after wounding (Fig. 3b).

Lasers Med Sci

Author's personal copy

Lasers Med Sd

Fig. 1 Photographs of the wounded mice exposed to dualwavelength low-powerlasers 0, 4, 11, and 14 days after wounding

The data on the survival rate in the bacterial cultures of the infected wounds exposed to PBM (infected + laser group) are depicted in Fig. 4. These data show that exposure to PBM at 1428 J/cm² signi ficantly (p < 0.001) decreased the bacterial survival rate.

The normalized IL-1 β and IL-10 mRNA level data in the PUs 14 days after wounding are shown in Fig. 5 a and b, respectively. This shows that the normalized IL-10 mRNA levels were not significantly modified (p > 0.05), but a significant (p < 0.001) increase in the IL-1 β normalized mRNA levels was obtained in the PUs in the lesion group.

Figure 5c and d show the IL-18 and IL-10 mRNA relative expression measured in the PUs exposed to PBM. These results indicate significantly lower (p < 0.05) IL-1 β mRNA relative expression in the infected group compared with the lesion group. On the other hand, the PUs exposed to the laser (laser group) had a significantly higher (p < 0.05) IL-1 ß mRNA relative expression compared with the lesion group. In contrast, the IL-10 mRNA relative expression was significantly lower (p < 0.05) in the infected and laser groups than in the lesion group. It can be argued that the data from the infected + laser group show a decrease (compared with the lesion group) in the IL-1 ß mRNA relative expression. Furthermore, the samples of wound tissue exposed to the laser show a higher IL-10 expression than those from the infected and infected + laser groups.

Discussion

Wo und healing involves three different stages: inflammation, tissue granulation, and remodeling [29]. Chronic wounds exhibit a disrupted repair process, leading to a prolonged inflammatory response, frequently exacerbated by indirect effects of microorganisms on the wound [30, 31].

In our experiments, 4 days after wounding, the wounded area was larger in the mice from the infected groups (Fig. 2 a). This may be attributed to the presence of microorganisms in the wound causing local tissue damage and impeding wound healing [32]. However, the wound areas of the infected lesions exposed to PBM with dual-wavelength low-power lasers (infected+laser group) were not significantly altered 4 days after wounding (Fig. 2a) and significantly decreased after 11 and 14 days after wounding, unlike the ones not irmdiated (lesion group and infected group) (Fig. 2b). These results suggest that PBM with dual-wavelength low-power lasers decreases the delay in infected wound healing.

The biofilm is a major contributor to the wound healing delay, being associated with the transition to a chronic wound state [30-33]. In previous studies, the biofilm formation was evaluated in *Pantoaa agg lowerans* cultures exposed to PBM with single- and dual-wavelength low-power lasers. Interestingly, the red low-power laser increased the biofilm formation at low laser fluences. Conversely, PBM with simultaneous dual-wavelength low-power lasers decreased biofilms

n Springer

Fig. 2 Macroscopic analysis of wound healing in laser-exposed mice a Percentage of original wound are a 0, 4, 11, and 14 days after wounding (graphical representation per group). **p < 0.01, **p < 0.01 comparing initial wound areas with those 4, 11, and 14 days after wounding. b Percentage of initial wound area 0, 4, 11, and 14 days after wounding (graphical representation per day). **p < 0.01, **p < 0.01 comparing the percentage of initial wound area in the lesion group with the infected,

in Pantoea agglomerans cultures at high laser fluences. Furthermore, PBM with dual-wavelength low-power lasers decreased the bacterial survival rate, while with singlewavelength red or infrared lasers, it increased it [18, 19]. It is worth mentioning that the current results show that exposure to PBM with dual-wavelength low-power lasers decreased the bacterial survival rate in the bacterial cultures in the infected wounds (Fig. 4). Nevertheless, PBM with dualwavelength low-power lasers inhibited the bacterial growth by reducing the factors associated with wound chronicity, including the biofilm.

Moreover, the epidermis thickness can be used as an indicator of the repair process, the epidermis is completely formed when neo-epidermis thickness is thinner [25], and our results showed that the irradiated wounds have a thinner neo-epidermisthan the infected wounds atd ay 14 (Fig, 3b). A

🙆 Springer

in facted + laser, and laser groups; "p < 0.01, ""p < 0.001 comparing the percentage of initial wound area in lesion infected with lesion, in facted + laser, and laser groups c, d Percentage of resplicit/end wound areas 11 (c) and 14 (d) days after wounding (graphical representation per group). "p < 0.01, ""p < 0.001 comparing the infected, infected + laser, and laser groups with the lesion group; "p < 0.01, ""p < 0.001 comparing the infected, infected + laser, and laser groups with the laser groups with the laser groups with the infected group.

promising alternative to the use of low-power lasers to achieve these results is the combination of red and infrared wavelengths (PBM with dual-wavelength low-power lasers). While PBM with single-wavelength low-power lasers can induce skin wound repair [25], a previous study demonstrated that a better effect can be achieved by PBM with dualwavelength low-power lasers [20, 34].

IL-1 (both α and β) is a key player in the wound response because it amplifies the inflammatory mediators; the IL-1 levels become detectable within the first 24 h of experimental wounding, peaking between the first and third days [35]. Some authors reported that most pro-inflammatory cytokines are upregulated 12 h after wounding and are gradually down-regulated in PU models [36]. However, our results indicate that the IL-1 β mRNA relative expression increased in the lesion group, but was even higher in the laser group 14 days after wounding.

Author's personal copy

Lasers Med Sd

Fig. 3. Microscopic analysis of wound heating, a Photographs of lestioned epidemia. Scale her = 100 µm. Is Measure of neoepidemia hickness of the control, lesion, infected, infected + laser, and laser groups 14 days after wounding. **p < 0.01, ***p < 0.001 comparing the lesion, infected, infected + laser, and laser groups with the control group. **p < 0.001 comparing the infected, infected + laser, and laser groups with the lasion group. **p < 0.001 comparing the infected, infected + laser, and laser groups with the lasion group. **p < 0.001 comparing the infected + laser and laser groups with the infected group

Puthermore, the comparisons between the acute and chronic wounds showed a significant increase in the pro-inflammatory cytokine levels [36, 37]. Inflammatory markers such as IL-1 β have been shown to be present in higher levels in chronic wounds than in acute wounds, and inflammatory cytokine expression is upregulated and/or prolonged in the former [38]. The IL-1 β mRNA levels in normal skin are significantly lower than those in acute wounds, PU centers, and PU edges. However, the IL-1 β mRNAs levels in PU centers and PU margins are higher than those in acute wounds [36] and are higher than those in other cytokines [44].

Despite this, a local concentration of IL-1 β above a threshold activates macrophages to a M1 (pro-inflammatory) phenotype, and, above a higher threshold, IL-1 β induces macrophages to a M2 (anti-inflammatory/reparative) phenotype [38]. An example of this mechanism is the change from the

Fig. 4 Survival note of bacteria from wounds in the infected and infected + laser groups 14 days after wounding. ***p<0.001 comparing the infected group with the infected + laser group

Springer

Author's personal copy

Fig. 5 Normalized and relative expression of IL-1 β and IL-10 mRNA in pressure injuries. a Normalized IL-1 β and b normalized IL-10 mRNA levels in PUs. The normalization of mRNA levels in the lesion group was performed to those in the control group. ***p <0.001 comparing the lesion group with the control group. The TBP gene was used as an internal standard for normalization e IL-1 β mRNA relative expression and d

M1 to the M2 macrophage population, responsible for the transition from a necrotic to a propitious microenvironment for stem cell migration and differentiation, which in turn results in wound healing. This proliferation is needed not only to provide a sufficient number of cells for differentiation and repair of extended damage but also to reconstitute the tissuespecific stem cell pool [4].

Moreover, PBM to cells has been applied associated with inflammatory response and tissue repair markers, such as cytokines [39]. The PBM effect induced by low-power lasers is attributed to the monochromatic and collimated characteristics of laser beams [40], which allow photon absorption by a specific photoacceptor [41]. This effect has been reported to modulate the expression of cytokines involved in accelerating tissue repair [41].

If the infected group is compared with the infected + laser group and the lesion group is compared with the laser group, the IL-1 β mRNA relative expression shows an increasing tendency upon irradiation, while the IL-10 mRNA relative expression shows a decreasing tendency (Fig. 5). IL-1 is a subfamily of cytokines, which are the major mediators of inflammatory and innate immune reactions; they have been shown to have a central role in several human autoinflammatory

D Springer

IL-10 mRNA relative expression in PUs after exposure to dualwavelength low-power lasers. The mRNA relative expression in the infected, infected + laser, and laser groups was performed to hose in the lesion group. *p < 0.05, **p < 0.01 comparing the infected, infected + laser, and laser groups with the lesion group. The TBP gene was used as an internal standard for normalization

diseases [42]. On the other hand, the IL-10 cytokines received particular attention due to their potent anti-inflammatory action [43]. Both have been suggested as potential therapeutic agents for the treatment of delayed wound repair [42, 43]. Furthermore, previous studies have reported that IL-1 β and IL-6 were increased upon irradiation, while IL-10 was decreased, which could indicate a major role of IL-1 β and IL-6 in PUs [44] and an imbalance in inflammatory and antiinflammatory cytokines in these injuries. Interestingly, this is also consistent with the observation that the addition of macrophages stimulated with IL-10 delays cutaneous wound healing in an experimental diabetic mouse model [43]. Thus, it is possible that chronic wounds show a demagement of the inflammatory and anti-inflammatory cytokines, which could act on the healing process in a different way.

In conclusion, our research suggests that exposure to simultaneous low-power red and infrared lasers improves and accelerates wound healing by killing or inhibiting bacteria. Therefore, the PBM with simultaneous dual-wavelength low-power lasers could be considered an option for treatment of infected pus. In future research, the safety and efficacy of this method should be confirmed in multicentric randomized clinical trials.

Lasers Med Sd

Funding information This study was funded by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Deenwolvimento Gentifico e Tecnológico (CNPq), Universidade do Estado do Rio de Janeiro (UERJ), and Universidade Severino Sombra (USS).

Compliance with ethical standards

Ethical approval AI procedures were carried out in accordance with the Brazilian Legislation (no. 11.794, from October 8th, 2008) and were approved by the Ethical Committee for Animal Use of Universidade Severino Sombra (CEUAA0072015).

Conflict of interest. The authors declare that they have no conflict of interest.

References

- Ammons MCB, Monissey K, Tripet BP, Leaven JTV, Han A, La zerus GS et al (2015) Biochemical association of metabolic profile and microbiome in chronic pressure ulter wounds. PLoS One 10(5):e0126735
- Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and mole cular identification of bacteria in chronic wounds. Int J Mol Sci 13(3):2535–2550
- Stojadinovic O, Minkiewicz J, Sawaya A, Bourne JW, Torzilli P, de Rivero Vaccari JP et al (2013) Deep tissue injury in development of pressure ulcers: a decrosse of inflarm assome activation and changes in human skin morphology in response to aging and mechanical load. PLoS One 8(8):e69223
- Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S (2013) Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 1(1):4
- Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M (2016) Revised national pressure ulcer advisory panel pressure injury staging system: revised pressure injury staging system. J Wound Oxtomy Continence Nass 43(6):585-597
- Rahim K, Sakha S, Zhu X, Huo L, Basit A, Franco OL (2017) Bacterial contribution in chronicity of wounds. Microb Ecol 73(3)710–721
- Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229
- Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD et al (2013) Bacteriophage therapy for Stephylococus sureus biofim-infected wounds: a new approach to chronic wound care. Plast Reconstr Starg 131(2):225-234
- Hamblin MR (2016) Photobiomodulation or low-level later them py. J Biophotonics 9(11–12):1122–1124
- Avei P, Gupta A, Sadasivam M et al (2013) Low-level later (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52
- Hamblin MR (2017) Mechanisms and applications of the antiinflummatory effects of photobiomodulation. AIMS Biophys 4(3): 337–361
- Hamblin MR, Sousa MVP, Agrawal T (2017) Handbook of lowlevel laser therapy. Pan Stanford Publishing, Singapore
- Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417
- Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasie dose response in low level light therapy - an update. Dose-Response 9(4):602–618

- Feknazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR (2018) Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 27:1–12
- Solmaz H, Ulgen Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Mul Sci 32(4):903–910
- Silva DCOO, Plapler H, da Costa M.M, Silva SRG, de Sá MCA, Silva BSL (2013) Low level laser therapy (AlGalnP) applied at 51/ em² reduces the proliferation of Staphylicoccus surcus MRSA in infected wounds and intact skin of rats. An Bras Dernatol 88(1): 50-55
- Thomé AMC, Souza BP, Mendos JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichermatic and monochromatic laser radiation effects on survival and morphology of Panto ca agglomerans. Laser Phys 27(5):055602
- Thomé AMC, Souza BP, Mondes JPM, Cardoso AFR, Soares LC, Trajano ETL et al (2018) Dishromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm firmation, and division rate of Pantoes agglomenas. Laser Phys 28(6):065606
- De Lima FJC, Barbosa FT, de Sousa-Rodrigues CF (2014) Use alone or in combination of red and infrared laser in skin wounds. J Lasers Med 5(2):51–57
- Brito TLA, Monte-Alto-Costa A, Romana-Souza B (2014) Propranolol impairs the closure of pressure ulcers in mice. Life Sci 100:138-146
- Nusshaam EL (2014) Effects of low intensity later irradiation during healing of infected skin wounds in the nat. Photonics Lasers Med 3(1):23–36
- Thomé AMC, Francisco NLSG, Amara IJPV, Soares LC, Trajano EDL (2018) Isolamento de bactérias de tálcer as por pressão de pacientes internados em hospital universitário. Revista Pró-UniverSUS 09(1):46-50
- Nascimento AP, Monte-Alto-Costa A (2006) Overweight induced by high-fat diet delays rateuts neous wound healing. Br J Nutr 96: 1069–1077
- Tnjano ET, Tnjano LA, Dos Santos Silva MA, Venter NG, de Porto LC, de Fonseca A et al (2015) Low-level red laser improves healing of second-degree hum when applied during proliferative phase. Lasers Med Sci 30(4):1297–1304
- Teixeirs AF, Machado YLRC, Fonseca AS, Mencalha AL (2016) Low-level lasers and mRNA levels of reference genes used in Escherichia coli. Laser Phys Lett 13(11):115602 (6pp)
- Turabelidze A, Guo S, DiPietro LA (2010) Importance of housekeeping gene selection for accurate reverse transcriptionquantitative polymerase chain reaction in a wound heating model. Wound Repair Regen 18(5):460–466
- Livak KJ, Schmitgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408
- Gurtner OC, Werner S, Barrandon Y, Longsker MT (2008) Wound repair and regeneration. Nature 453(7193):314-321
 Taken M, Lee W, Jin M (2015) Wound begins and skin reserves.
- Takeo M, Lee W, Ho M (2015) Wound healing and skin regeneration. Cold Spring Harb Perspect M ed 5(1):a023 267
- Ebright JR (2005) Microbiology of chronic leg and pressure ulcers: clinical significance and implications for treatment. Nurs Clin North Am 40(2):207–216
- International Wound Infection Institute (TWII) (2016) Wound infection in clinical practice. Wounds International
- Ashra fi M, Novak-Frazer L, Bates M, Baganeid M, Alonso-Rasgado T, Xia G et al (2018) Validation of biofilm formation on human skin wound models and demonstration of clinically translatable batteria-specific volatile signatures. Sci Rep 8(1):9431

n Springer

Author's personal copy

- 34. Rodrigo SM, Canha A, Pozza DH, Blaya DS, Moraes JF, Weber JB et al (2009) Analysis of the systemic effect of red and in fisred laser
- therapy on wound repair. Photomed Laser Surg 27(6):929–935 35. MacLeodAS, Mansbridge JN (2016) The imate immune system in acute and chronic wounds. Adv Wound Care (New Rochelle) 5(2): 65-78
- 36. Jiang L, Dai Y, Cui F, Pan Y, Zhang H, Xiao J et al (2014) Expression of cytokines, growth factors and apoptosis-related sig-nal molecules in chronic pressure ulcer wounds healing. Spinal Cord 52(2):145-151
- 37. Gohel MS, Windhaber RA, Tarlton JF, Whyman MR, Poskitt KR (2008) The relationship between cytokine concentrations and wound healing in chronic venous ulteration. J Vasc Surg 48(5): 1272-1277
- 38. Ziraldo C, Solovyev A, Allegretti A, Krishnan S, Henzel MK, Sowa GA et al (2015) A computational, tissue-realistic model of pressure ulcer formation in individuals with spinal cord injury. PLoS Comput Biol 11(6) ±1004309
- 39. Zheyago NA, Samoibya KA (2006) Po- and anti-inflammatory cytokine content in human peripheral blood alter its transcutaneous

(in vivo) and direct (in vitro) irradiation with polychromatic visible and infrared light. Photomed Laser Surg 24:129-139

- 40. Nienz MH (2007) Laser-fissue interactions: fundamentals and ap-
- plications. Springer-Verlag, New York 41. Karu TI (2003) Low-power laser therapy. In: Vo Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton 42. Yan C, Guo N, Sun H, Yin J, Lee P, Zhou L, Bin X, Yu FS (2016)
- Targeting imbalance between $II_{\rm e}1\beta$ and $II_{\rm e}1$ receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. Am J Pathol 186(6):1466-1480
- Jeten N, Roumans N, Gijhels MJ et al (2014) Wound administra-43. tion of M2-polarized macrophages does not improve murine cuta-neous healing responses. PLoS One 9(7):e102994
- Kurose T, Hashimoto M, Ozawa J, Kawamata S (2015) Analysis of gene expression in experimental pressure ulcers in the rat with special reference to inflammatory cytokines. PLoS One 10(7): d) 32.622

Publisher's note Springer Nature remains neutral with regard to jurislictional claims in published maps and institutional affiliations.

88

D Springer

Lases in Medical Science https://doi.org/10.1007/s10103-019-0287.9.1

REVIEW ARTICLE

Photobiomodulation via multiple-wavelength radiations

Andrezza Maria Côrtes Thomé Lima 10 - Luiz Philippe da Silva Sergio 1 - Adenilson de Souza da Fonseca 12

Received: 25 May 2019 / Accepted: 6 September 2019 © Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

Photobiomodulation via a combination of different indiations can produce different effects on biological tissues, such as cell proliferation and differentiation, when compared to those produced via a single indiation. The present study aims to conduct a review of the literature addressing the results and applications of photobiomodulation induced by a combination of two or more indiations as well as their possible effects. PubMed was used to search for studies with restrictions on the year (< 50 years old) and language (English), including studies using human and animal models, either under healthy orpathologic conditions. Several studies have been conducted to evaluate the combination of different indiation effects on cells and biological tissues. Positive effects could about different levels of radiations. Multiple-wavelength multiations from devices combining in diations emitted by low power lases and light-mitting diodes could be a new approach for promoting photobiomedulation-induced benefic al effects.

Keywords Photobiomodulation - Low power laser - Multi-wavelength - LED

In tro duction

Photobiomodulation (PBM), via a low power laser (light amplification via stimulation of emission milition) and light-emitting diode (LED), has been considered a basis of effects in biological tissues for thenpeutic purposes [1, 2]. This low-risk and noninvasive approach is widely used by dentists, nurses, physic hus, and laser thempist for treatment of a number of diseases in regenerative medicine [3]. PBM is used for promoting tissue repair, decreasing inflammation, and producing analgesia [4].

PBM effects depend on the absorption of energy of an incident indiation by chromophores (photoacceptors) into cells, which elicit photophysical and photochemical events at molecular and cellular levels [5]. These events are influenced by physical irradiation parameters, such as wave length, energy density, power density, emission mode (pulsed or continuous wave), itradiation time, and itradiation mode [6], as well as clinical intradiation parameters, such as immiliated point number, intradiated area, application technique, and treatment frequency [7].

Absorption of energy from incident miliation at different wavelengths and energy densities, or targeting different photoacceptors, can initiate different cellular responses [5]. Menezes and coworkers (1998) suggested that previous exposure to inflared miliation (e.g., during sunrise) is a natural process whereby cells are protected against solar ultraviolet miliation, which was acquired and preserved through evolutionary selection and plays an important role in life support [8]. Therefore, a combination of different radiations (different wavelengths) could produce different effects on tissues, such as cell proliferation and differentiation, when compared to those produced by a single radiation [9].

The present study aimed to conduct a review of the litenture addressing the results and applications of PBM induced by a combination of two or more indiations as well as their possible effects. Before the research was started, selection criteria were established for the research question (Fig. 1).

Absorption of radiation from lasers and LED in biological tissues

Radiation consists of packets of electromagnetic energy, or photons, that also have wave-like properties [10]. The

🙆 Syringer

Andrezes Maria Cônes Thomé Lima andrezes met@hotmail.com

¹ Departam unto de Biofísica e Biomatria, Iratituto de Biologia Roberto Alcantara Gormas, Universidade do Estudo do Río de Janeiro, Avenida 28 de Satembro, 87, Vila Isabel, Río de Janeiro 205 51030, Brazil

² Centro de Ciên das da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresépo Es, Río de Janeiro 2596 4004, Brazil

Published online: 16 September 2019

theoretical mechanism behind photobiomodulation is suggested to be a photobiological process, which involves the absorption of energy of incident photons by photoacceptors [6, 11]. Despite hemoglobin, melanin, pophyrin, and some flavoproteins being capable of absorbing indiation in the socalled thempeutic window of low power lasers and LED, these molecules are not considered responsible themselves for the photobiomodulation effect [6].

This therapeutic window is delineated between approximately 600 and 1200 nm. Within this spectral range, this indiation, which is most often used in PBM, penetrates biological tissues at its lowest losses [12], being absorbed by and promoting the photoexcitation of cytochrome c oxidase (CCO) [13]. The photoexcitation of CCO induces changes in its activity, in particular via four redox active metal centers: the binuclear CuA, CuB, heme a, and heme a3 (Fig. 2) [13, 14]. This is the terminal enzyme of the respiratory chain in eukaryotic cells mediating the transfer of electrons from cytochrome c to molecular oxygen [15].

The structure of photoacceptors and their redox state determine which indiations are absorbed [16]. Thus, radiations at 330, 404-420, 680, and 825 nm are absorbed by the partially oxidized form of CCO, while radiations in the blue-violet

🕑 öpringer

band and red-infrared distinct bands (at 620 and 760 nm) are absorbed by the partially reduced form of this enzyme [11].

The absorption of energy of an incident radiation oxidizes CCO, dioxygen is reduced, and protons are pumped from the mitochondrial matrix to the cytosol. Free energy resulting from this redox chemistry is converted into an electrochemical potential across the inner membrane of the mitochondrion, which ultimately drives the production of adenosine triphosphate (ATP) [11]. In addition, it has been suggested that absorption of indiation energy causes photo-dissociation of inhibitory nitric oxide (a molecule that is known to inhibit CCO by non-covalently binding between heme-a3 and CuB) from CCO [17]. These reactions cause alterations in cell membrane permeability with changes in intracellular calcium levels, increase in ATP, reactive oxygen species, and cyclic AMP production [18]. These reactions initiate photosignal transduction and an amplification chain via cellular signaling pathways, increasing DNA, RNA, and protein synthesis, which, in turn, constitute the basis of the laser-induced stimulation effect on biological tissues [13].

Radiation interactions with biological tissues depend on maintion characteristics and parameters [3]. Some biological processes can be modulated by photochemical reactions triggered by photons at wave lengths either shorter or longer than

Lates Med Sd

Fig. 2 Scharastic representation of the mitochondrial respiratory electron transport chain and electron transformera among redex active metal centurs in cytochrome c oxidane. I: complex I (NADH dehydro genare); II: complex II (succinate dehydro genare); III: complex III (ubiquinol cytochrome c oxiderodactase); IV: complex III (cytochrome c oxidase); V: complex V (ATP synthase). CuA, CuB, herne a, an dherne a3: r ubox active m dial centurs. c: cytochrome c

the thempeutic window, ranging between 600 and 1100 nm [19].

Moreover, indiations in the therapeutic window induce photobiomodulation because their penetration through superficial skin layers is more significant as a result of lower scattering and absorption by tissue photoncceptors [4]. Radiations at shorter wavelengths (600 to 700 nm) are considered the best for treatment of diseases in superficial tissue whereas those at longer wavelengths (780 to 950 nm) are preferred for treatment of diseases affecting deeper tissues [7].

Penetration of miliation into tissue is partly determined by its wavelength, depending on scatter and absorption processes. Shorter wavelength miliation (in the visible spectrum) scatters more than longer wavelength radiation and, therefore, achieves the greatest depths. If a radiation has deep penetration, its energy is unlikely to be absorbed by superficial structures (Fig. 3) [20].

Thus, positive effects resulting from multiple-wavelength indiations can be attributed to different absorption levels because superficial and deep tissues can absorb the indiations at a different amount. In fact, it is accepted that indiation penetration into tissues depends on both absorption and scattering, which because of tissue molecules and structures. Both absorption and scattering significantly lower as the indiation wavelength increases, such as the penetration depth of nearinfrared midiation is at a maximal at approximately 810 nm. However, at longer wavelengths, water becomes an important absorber and radiation penetration shortens again [21].

Effects of dual-wavelength low power lasers on bacteria

Some authors have reported effects of dual-wavelength laser radiations on bacteria (Table 1). Martins and coworkers (2015) showed that low power consecutive laser iradiation (infrared laser immediately following red laser) reduces cell viability in wild *Escharichia coli* cultures during an exponential growth place, but cell viability is higher in cultures exposed to a combination of wavelengths of laser radiation than in those exposed to infrared laser [22]. However, Thomé et al. (2017) iradiated *P. applomerans* cultures and bacterial

🙆 Springer

survival during the exponential growth phase decreased via exposure to a dual-wave length low power laser; however, survival in these bacterial cultures increased after exposure to red laser at the same fluences [23]. Despite this discrepancy, both reported that exposure to dual-wavelength low power laser indiations (sequentially or simultaneously) is able to induce biological effects, which differ from those induced by each laser indiation above, suggesting that other thempeutic effects could be obtained using dual-wavelength, or multiple-wavelength, low power laser irridiation. Biofilm, complex communities of aggregated bacteria, is a major contributor to delayed wound healing and positively associated with the transition from an acute to chronic state even without classic infection signs [25]. In previous studies, biofilm formation was evaluated in *P. agglomarans* cultures exposed to red, infrared, or dual-wavelength low power have radiation. Interestingly, red laser increased biofilm formation at the lower fluence [24]. However, dual-wavelength red and infrared low power laser decreased biofilm formation in *P. agglomarans* cultures at the higher fluence evaluated [23; 25].

Table 1 Effects of dual-wavelength low power lasers on bacteria

First author	Title	Reference	Parameters	Mo de	Culture	Hndings
Martins et al. [22]	Dichromatic baser radiation effects on DNA of <i>Exchanichia coll</i> and phomids	Lasor Phys. 2015; 25:045- 603	808 and 660 nm; 100 mW; 25, 50, and 100 J cm ⁻²	Consultive	Ercherichia colt AB1157 and BH20	Red and dich romatic laser radiations document the servival fractions of cultures, but after dichromatic later radiation are significantly higher and increased the per centage of bacterial filament is at the highest filaments.
Thomé et al. [23]	Dichromatic and monochromatic lasar nadiation effects on survival and morphology of Pantoea agglomerata	Lasar Phys 2017; 27: 055602	808 and 660 mm; 100 mW; continuas wave; 3.5, 70, and 140 J cm ⁻² ; 1, 2, and 4 J; 10, 20, and 40 s; spot size 0.028 cm ²	Smultineous	Panton aggiomer- are (isolated from pressure ulcen)	Dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers in creased bacterial survival at the same fluence.
Thomé et al. [24]	Dichromatic and monochromatic lear radiation efforts on artibiotic resistance, biofilm formation, and division rate of Pantoea agglomeratu	Lasar Phys 2018; 28: 065606	808 and 660 nm; 100 mW; continuat wave; 3.5, and 140 J cm ² ; 1 and 4 J; 10 and 40 s; spot size 0.028 cm ²	Smalteneous	Pantoan agg kaner- ann (isolatal from pressure ulcom)	Dichromatic laser adiation dareased biofilm formation, while a monochromatic red laser at low dose in reased bio film formation and infrared at high dose decreased at high dose decreased an thiotic resistance to ampicillin.

🙆 öpringer

Effects of dual-wavelength low power lasers on biological tissues

Some microorganisms can favor pathogens because of an imbalance in the resident environment. Postaurgical infection is a potential complication after surgical procedures and arises from multiple factors; the repair of infected tissues occurs only following the resolution of the infectious process. Some radiations present positive photobiological effects on the healing process and results indicate that PBM via low power lasers has positive effects on the healing of infected wounds, which is more evident with dual-wavelengths of 680 and 790 nm [9]. However, exposure to dual-wavelength lasers (670 and 810 nm) did not improve the wound healing parameters in a model of diabetic rats. Some of the inhibitory effects on wound healing parameters in the diabetic rats could have resulted from excessive laser fluences [26].

Histological analysis showed that PBM via dualwavelength lasers (830 and 685 nm) at 20 J/cm² was better able to induce fibroblastic proliferation as well as increase collagen production and organization in a wound model [27]. These results suggest that using two different radiations, presenting different absorptions and penetrations in biological tissues, cause stimulation of both deep and superficial layers of the wound (Table 2).

Despite this, exposure to dual-wavelength laser indiations had different effects that could not be predicted from the effects of each indiation alone in a model of mesenchymal stem cells from mbbit illiacbone mantow exposed to red, infrared, or dual-wavelength radiations. In fact, exposure to dualwavelength indiations (infrared and red) suppressed collagenous and osteogenic differentiation, while exposure to infrared radiation alone stimulated them [5].

PBM, as the basis for a form of alternative treatment, reduces hair loss and stimulates hair growth in alopecia. Barikhin and coworkers (2017) show that patients exposed to a 655-mm red laser at 2 J/cm² and an 808-mm infrared laser at 1 J/cm² showed lower hair loss in alopecia apparently without any adverse events or side effects [28].

In addition, positive effects on nerve regeneration were reported following PBM via dual-wavelength lasers in the infrared spectrum (808 and 905 nm), which were able to enhance nerve repair, in functional and muscle mass recovery, after end-to-side neurorhaphy in a rat median nerve [29].

Effects of a combination of low power laser and LED

The therapeutic benefits of low power lases on tissue injuries have been reported since the 1960s and those of LED only since the 1990s [19] (Table 3). Radiations from LED differ from those from lases because they emit radiations into higher hands than those from lasers as well as non-coherent indiations [36].

Coherence is related to stimulated emission mechanisms in a cooperative manner, with laser radiations being formed by the same frequency, direction, and wave planse [10]. However, some findings suggest that the coherence of a laser beam is not responsible for the biological effects induced by low power lasers [37]. According to Karu (1987), the property of coherence is lost during the interaction of indiations with biological tissue and is not a prerequisite for the PBM process [14].

A clinical trial to analyze the acute effects of PBM via low power laser (pulsed, 905 nm) and LED (640 and 875 nm) on muscle performance during a progressive cardiopulmomry exercise test on a treadmill showed that exposure to the con bination of lasers and LED increased the time, distance, and pulmonary ventilation and decreased the score of dysprea during the cardiopulmonary test [30]. Similar results were obtained in a study evaluating the acute effects of the same protocol on patients with chronic obstructive pulmomry disease, decreasing the sensation of dyspnea as well as fatigue in the lower limbs [31]. Antonialli and coworkers (2014) reported that dual-wavelength radiations improved biochemical markers related to skeletal muscle damage and decreased biochemical levels of creatine kinase and pain. PBM via multiplewavelength indiations could be better than PBM via a single wavelength in terms of skeletal muscle performance, which could represent a therapeutic advantage in clinical situations **B21**

In addition, PBM induced by exposure to simultaneous low power laser and LED has arisen as an interesting alternative to pharmacological pain management. The effectiveness of PBM via laser (904 nm, in pulsed emission mode, 38 mW) was similar to that via LED (945 nm, 100 mW) associated with the lateral decubitus position and flexion exercises in patients with lumbar disk herniation. However, it was observed that PBM via LED exposure was more effective in improving the radicular pain than PBM via laser exposure [38]. Hybrid devices consisting of LED and low power lases were suggested to improve the efficacy of bleaching and help control tooth sensitivity. However, PBM via radiation from hybrid LED-laser devices was not more effective than PBM from radiation from LED devices used alone to prevent or reduce tooth sensitivity [33].

A double-blinded randomized placebo-controlled trial to investigate the effects of PBM via 905-nm low power laser in a pulsed emission mode and 640- and 875-nm LED on nonspecific knee pain showed that exposure to PBM via multiplewavelength radiations is effective to decrease pain and improve the quality of life in patients [34]. A systematic review provided evidence that exposure to simultaneous visible and infrared militations causes neural impainment, in particular in small-diameter $A\delta$ and C fibers, which convey nociceptive stimuli to relevant pain [39].

🔁 Springer

I interaction	
the second se	

Table 2 Effacts of dual-wavelength low power lasers on biological tissues						
First author	Title	Reference	Parameters	Mode	Tisuo/Cels	Findings
Sentos et al. [9]	Influence of the combination of influence and red laser light on the hading of cateneous wounds infloted by Step hybroccur current	Photoned Laser Surg. 2011; 29(3):177-82.	680 nm (30 mW, 42.4 mW/cm ³ , 11.8 x) and 790 nm (40 mW, 566 mW/cm ³ , 8.8 x); continuous wave, 0.35 J; 20 J/cm ³	There is no clear.	Infocted wound in rats	The collagen fibers were mostly mature and well organized in these subjects at the end of the experimental time expectally when both wavelengths were used.
Jahangiri et al. [26]	A combination of 670 nm and 810 nm diode lasors for wourd hading acceleration in diabetic rats.	Photemed Later Surg. 2010;28(5):621 7.	670 nm (500 mW, 10 J/cm ² , 10 J, 48 x, 10 J/cm ²) and 810 nm (250 mW, 12 J, 50 x, 1.33 J/cm ²)	There is no clear.	Diabetic wound nat modul.	Combination of irradiations did not improve physical wound healing parameters in diabetic or non-diabetic rats.
Man dazı et al. [27]	Dose and wavelength of laser light have influence on the repair of cutaneous wounds.	J Clin Laser Med Surg. 2004;22(1):19-2- 5.	685 nm and 830 nm; 35 mW; 20 and 50 J/cm ²	There is no clear.	Cutaneous wounds in the dorsum of the rat.	This was v aty much evident dichromatic laser radiation at 50 Jecn ² , in which a large amount of well-organized as lagen matrix.
Februrad et al. [5]	Photobiomodulation with single and combination later wavelengths on bone marrow meson drytmal stem cells: proliferation and differentiation to bone or cartilage.	Lawar Med Sci. 2019;34(1):115– 126.	810 nm, 660 nm, 532 nm, and 485 nm; 4 Jicm ² ; 810 nm for 3 x, 660 nm for 24 x, 532 for 15 x, and 485 for 15 x.	Consecutive	Meson di ymal stem colls darived from rabbit iliac bone marrow.	Combinations of two wavelengths were generally less effective than other IR or R alone, and interestingly, the IRR combination appared to be a lot works. In some catas, the BQ combination was better than either wavelength alone.
Barikbin et al. [28]	Comparison of the effacts of 665 mm low-level di- ode Laser Hat versus and a combination of 665 mm and 808 mm low-lovel diode laser scenner of hair growth in androgenic alopecia.	J Cosmet Laser The: 2017;17.	655 nm at 3 Jem ² ; 655 nm at 2 Jem ² plue 808 nm at 1 Jem ²	Simultan at us	90 patients with andro genic alopecia. later imadiation placed over the patient's h aud.	The effects of ambin all laser imaliation had b diterroaults and showed a higher increase in terminal heir dataity. All of the subjects were satisfied at the end of the tratment.
Oigo-Benato et al. (29)	Low power load binstitudation enhances nerve repair after end-twords neurontaphy: x double-bind markom- ized study in the net me- dian nerve model	Later x Med Sci. 2004;19(1):57-6- 5.	808 nm (continuous wave; spot size 0.28 cm ² ; 29 J/cm ²) and 905 nm (28 W; 10 kHz; spot size 0.1 cm ² ; 40 J/cm ²) nm	There is no clear.	Neuro map by model in mats	Results showed that laser binstimulation indu case faster near very of the lesioned function and muscle mass; faster my diraction of the regenerated nerve fibers. However, the best functional outcome was obtained by means of publied confinuous-combined laser biostimulation.

from low power laser and LED at 660 nm and a power output of 50 and 35 mW, respectively, in a continuous emission

Human skin fibroblast cultures were exposed to indiations was more effective for increasing the production of ROS in these cell cultures than LED radiation and for causing oxidative stress [40]. However, PBM effects via simultaneous low mode. The findings indicated that low power laser indiation power laser (685 nm) and LED (470 nm) indiations on the

🙆 öpringer

Lates Med Sd

Table 3 Efforts of combination low power later and LED Firstauthor Title Reference Mode Tisus/cels Endings Brameters Mininda Using Pre-Itserdise J Athl Thain. They use used a 12 diode Simultaneous They applied cluster in The combination of Photobiomodulation Therapy Combining cluster of superpulsed layers and LHDs. Each et al. 2016;51(2):129direct contact with the lasers and LEID [30] 35. skin at 9 sites on the increased the time. Super-Pulsed Laters cluster consisted of 4 distance, and knæ ætensor pulmonary ventilation and decreased the diode of 905 nm musder, 6 sites on the and Light-Itatting Diode to Improve knee fexors, and 2 super-public hear Performance in (0.071251, sites on the califin score of dyspnea 0.3125 mW(125 W) Programme volunteers. during a cardiopulmonary test Cardiopulmonary Itercine Tarts 4 LHD at 875 nm (17.5 mW, 3.99 J) and 4 LHD at 640 nm (15 mW, 342 J) Mininda Phototherapy with Laters Med Sci. They use used a 12 Simultaneous Thirteen patients were Phototherapy with a et al. (31) combination of 2015;30(1):437-clusters of recruited from the combination of super-pubed laters super-pulsed later and super-pulsed laters 443. outpatient dironic ight-emiting diodes a beneficial in impulmonary diseases (COPD) The and LED. Each cluster and LED prior to exconsisted of 4 ercite also led to deprovement of muscu super-pulsed learns at application of created serution of phototherapy was held at six sites of the ar performance of 905 nm dyappen and fitigat in (strength and muscular endurance), dyspnea, (0.3125 mW), 4LED the lower limbs in paat 875 nm (17.5 mW) quadrice ps femorie. tights with Chronic and 4 L100 at 640 nm and fatigue sensation obstructive pulmonary in patients with drop (15 m/W) distant. ic obstructive pulmonary da auso. Phototherapy in skeletal Laters MedSd. They use used a 12 Simulaneous The application of Antonia III Pre-exercise et al. mus de performance 2014; 29(6):1967-76. clusters of phototherapy was held at six sites of the phototherapy with [32] super-public laters and recovery after combination of evendage: effect of and LED. Each cluster quadriceps femorie of low-level later and combination of consisted of 4 haithy voluntars. LED at 30J, signifisuper-pulsed laters at super-pulsed laser and canfly increases of 905 nm (0.3125 mW), 41.820 performance, deight-emiting diodes. creases delayed onset at 875 nm (17.5 mW) muscle scremus, and and 4 LHD at 640 nm improves biochemical (15 mW) rior related to skdetal muscle damage. Parhat et al. Evaluation of the officacy Photomed Laser Hybrid source device Simultaneous Teatmentand the control Hybrid LHD-laser de [33] of LHD-harringt-Surg. 2014; used in this present of annitivity caused vice were not more study wassix LHD (425-480 nm, ment and control of 32(7):422-6. by in-office blanding effective than LHD both smallivity durdevices used alone to 300 mW) and three ing in-office bleaching prevent or reduce the proædure. laters (810 nm, southing of tech 200 mW1 Laser console system using the laser show or Simultaneous Teatment protocol includes both local and LaiJunior Adjunctive use of Laters Med Sci. Combination of 2014;29(6):183super-pulsed laser, red combination of et al. [34] speepulaed laar and and S125 emiter. and infrared L2DD is 9-47. systemic argets on the Both cluster consisted ight-emiting diodes affected side of effective to decrease phototherapy on of 4 super-pulsed later volunteers. pain and improve non-specific knee at 905 nm, 41.8D at quality of life in papain: double-blinded tients with knee pain. 875 nm and 4LED at burden burd 640 nm. placebo-cen trolled tri-Combined red and bias Figzovi Hitological Assessment Photomed Laser 4 laams at 685 nm Simultaneous, Skin inchions in a et al. Surg. 2016; (0.05 W) and 13 LED PBM accorated the of a Combined pordine model. [35] Low-Level 34(2):53-5. at 470 nm (0.016 W). process of LaserLight-Breiting respitheit ation and Diode Thump y (685 nm/470 nm) for formation of cross-linked collagen Sutured Skin Incitions fibers compared with in a Porcine Model: A sham insdated con-Short Report. trol wounds.

2 Springer

Lasers Med Sci

incisional wound-healing process demonstrated that a daily exposure to wavelength-specific indiations at a fluence of 3.36 J/cm² accelerates healing [35]. PBM via dualwavelength radiations causes different effects, but the molecular mechanisms involved in these cases need to be clarified.

Possible effects of different radiations

PBM can be both stimulatory and inhibitory [26]. As the number of photons increases beyond a particular level, cellular stimulation ceases; if the number of photons is even further increased, inhibition and cellular damage occurs [7]. There is a biphasic dose response curve, following the "Amdt-Schulz Law," which states that weak stimuli slightly accelerate cellular activity, strong stimuli increase it further until a peak is reached, while even stronger stimuli suppress it until a negative response is achieved. Consequently, if incorrect parameters are applied, treatment is likely to be ineffective [4].

Exposure to appropriate radiation at a specific wavelength can trigger molecular processes int cells [2], such as DNA and RNA synthesis [13]. In fact, photobiological effects involve absorption of energy from photons of a specific wavelength via photoacceptors [41]. Thus, exposure to mdiation at 760 nm followed by mdiation at 633 nm increases the DNA synthesis in Helacell cultures, but exposure to these mdiations in the inverse sequence decreases it. These results suggest that exposure to dual-wavelength radiation could produce different effects compared to those induced by single-wavelength radiation [42]. These results suggest that there is a relationship

between the photoac ceptors. This relationship is likely to exist during the initial stages of photoabscrpt on or photoresponse. It is possible that there is a relationship between the photoacceptors absorbing in different regions and/or they could functionally connect via signaling molecules [43]. In consecutive dual-wavelength radiation exposures, the magnitude of the final photo-induced response is also influenced by the interval between them. It can be presumed that the photoacceptor is a set of interrelated molecules and that there are some common stages in the realization of the effects caused by radiations at different wavelengths [14; 42]. However, exposure to wide-band mdiations, including, or not, an interval between the exposures, as well as simultaneous exposures to wide-band visible and red mdiations, causes practically no stimulative effects. In these cases, pammeters approximately correspond to those in solar indiation, to which biological systems have become adapted through their evolution [14].

Moreover, the ability of a medium or tissue to absorb electromagnetic radiation depends on a number of factors, mainly the electronic distribution in its atoms and molecules, absorbing layer thickness, internal parameters such as the concentration of photoacceptors, and miliation wavelength (Fig. 4) [12].

In addition, it has been suggested that interaction of mdations in tissues could depend on the number of mitochondria in these tissues. Thus, when PBM is conducted via mdiations at very low power, photons are absorbed by subcellular chromophores in the cell organelles, mainly mitochondria; thus, cells with higher number of mitochondria respond better to PBM than those with lower numbers [7]. In addition,

Fig. 4 Schematic representation of the penetration of radiations into biological tissues at different wavdeneths

🙆 öpringer

protocols based on multiple-wavelength radiation sources can present a thempeutic advantage by providing concurrent energy delivery to biological tissues at different depths [34].

The variable characteristics and parameters of laser and LED devices are factors that complicate the interpretation of experimental and clinical results regarding PBM effects [41]. However, PBM has been considered a valuable tool in regenerative medicine [40] and PBM via multiple-wavelength mdations could improve the outcomes of clinical protocols based on mdiations from red or infrared low power laser and LED devices.

Con clusion

PBM-induced effects are influenced by clinical and physical intadiation parameters. Therefore, a combination of miliations, simultaneous or in sequence, produce different effects on tissues and cells compared to those induced by singlewavelength miliation. This result can be attributed to both superficial and deep absorption in the tissue and the relationship between the photoacceptors. Thus, multiple-wavelength miliations from devices combining radiations emitted by low power laters and LEDs could be a new approach for promoing PBM-induced beneficial effects. However, studies are necessary to evaluate the therapeutic advantages of these devices compared to those based on a single wavelength.

Funding information This study was fund at by Fundação de Amparo a Pesquina do Estado do Rio de Janeiro (FAPERU), Conselho Nacional de Datar volvimento Ciantífica e Turno lógico (CNPs), and Universidade do Estado do Rio de Janeiro (UERU).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

- Heiskanen V, Hamblin MR (2018) Photobiorno dulation: kostrs vs. ight emitting dio das? Photochem Photobiol. Sci 17(8):1003–1017
- Solmae H, Ulgan Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasars Mad Sci 32(4):903–910
- Gavish L, Hourdd NN (2019) Therapeutic difficacy of homo-use photobiomodulation devices: a systematic literature review. Photomed Laser Sarg 37(1):4–16
- de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22 (3):7000417
- Fekracad R., Asefi S., Eslemin giad MB, Taghiar L, Bordhar S, Henblin MR (2019) Photobiomodulation with single and combination laser wavelengths on hone merrow mean drymai stem cells: prolifestion and differentiation to hone or cartilage. Lasers Med Sci 34(1):115–126

- da Fonsata A.S. (2019) Is there a measure for low power laser dosd? Lasers Matl Sci 34(1):223–234
- Zain R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):1–17
- Manazas S, Coulomb B, Labarton C, Dubertent L (1998) Noncoherent nair infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 111(4): 629–633
- Sentos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangasui MC, dos Santos JN, Finheiro AL (2011) Influence of the combination of influend and rul laser light on the healing of cutaneous wounds influend by Staphylococcus sureus. Photomal Laser Surg 29(3):177–182
- 10. Walker J (2011) Fundamentals of physics. Wiley, Hoboken
- Kara T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photocham Photobiol B 49(1):1–17
- Nierrez MH (2007) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, New York
- Passerella S, Karu T (2014) Absorption of monochromatic and narrow hand radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 140:344-358
- Karu T (1987) Biostimulation of HeLa calls by low-intensity visible light: V. Stimulation of cell proliferation in vitro by He-Ne laser radiation IINuovo cimento D. 9:1485–1494
- Kara TI (2010) Multiple roles of cytochrome c oxidau in mammaian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610
- Hamblin MR (2018) Machanisms and mits-th-orderial rodex signaling in photo bio modulation. Photochem Photo biol. 94(2):199–212.
- Phyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial sytochrome c oxidane. Discov Med 11(57):154–159
- Karu TI (2008) Mitochendrial signaling in mammalian adle activated by rul and near-IR radiation. Photochem Photobiol 84(5): 1091–1099
- Hamblin MR, Fernarosi C, Haang Y, de Freitas L, Carroll JD (2018) Low-level light therapy: photobiomodulation. SPIE Press, Washington
- Laskso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39(2):95–99
- Hamb En MIR (2017) Mechanisms and applications of the antiinflammatory effects of photobiomodulation. AIMS Biophys 4(3): 337–361
- Martins WA, Poligrano GAC, Otimarkas OR, Geller M, Paoli F, Fonsaca AS (2015) Dichromatic lasar radiation effects on DNA of Eacherichia coli and plasmids. Lasar Phys 25(4):045603
- Thomé AMC, Souxa BP, Mandas JPM, Soaras LC, Thajano ETL, Fon seca AS (2017) Dichor matic and mono-thromatic laser multition effects on stary ival and morphology of Partosa agglomeran's Laser Hyp x 27(5):055-002
- Thomé AMC, Souza BP, Mendas JPM, Cardoso AFR, Soares LC, Trajano ETL et al (2018) Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoes agglomerans. Laser Phys 28(6):065606
- Ashrafi M, Novak -Frazer L, Bates M, Baganeid M, Alorso-Ragado T, Xia G et al (2018) Validation of biofilm formation on human skin wound models and demonstration of dinically translatable bacteria-specific volatile signatures. Sci Rep 8(1):9431
- Jahan giri Noadah Y, Shahari M, Vatankhah N, Hashamian SJ, Akhari K (2010) Acombination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rate. Photomed Laser Surg 28(5):621–627

🕘 öpringer

98

- Mender TM, Finheiro AL, Pacharo MT, Nascimento PM, Ramaho IM (2004) Dose and wavelength of later light have influence on the repair of extensous wounds. JC in Later Med Strg 22(1):19–25
- Barkb in B, Khodamrdi Z, Kholoosi L, Akh gri MR, Huj Abhaoi M, Hujab hasi M, Razzaghi Z, Akhap our S (2017) Comparison of the effects of 665 nm low kevel diode laser hat venue and a combination of 665 nm and 808nm low kevel diode laser search or fair growth in androgenic alopecia. J Cosmit Laser Thar in press
- Gigo-Benato D, Geana Š, de Castro Rodrigaes A, Tox P, Fornaro M, Boax E, Battiston B, Giacobini-Robeachi MG (2004) Lowpower laser biostimulation enhances nerve repair after end-to-side neurorthaphy: a doublo-bind randomized study in the rat median nerve model. Lasers Med Sci 1 9(1):57–65
- Miranda EF, Vanin AA, Tornacrori SS, Oran dinatti Vdos S, de Paiva IR, Machado Cdos S, Monteiro KK, Coselechi HL, de Tarso P, de Carvalho C, Leal-Jurior EC (2016) Using pre-exercise photobio-modulation therapy combining super-pulsed lasers and light-emiting diodes to improve performance in progressive cardiopalmonary or orcise tasts. J Athl Train 51(2):129–135
- 31. Miranda EF, de Olivaira LV, Antoniali FC, Vanin AA, de Carvaho PT, Leal-Junior EC (2015) Phototherapy with combination of superpulsed laser and light-antiting dodexis beneficial in improvement of mascular performance (strength and mascular endurance), dypma, and fatigue sensation in patients with chronic obstructive pathemary disease. Lasers Med Sci 30(1):437–443
- Antonialii RC, De Marchi T, Tormezoni SS, Varin AA, dos Santes OV, de Paiva PR, Pinto HD, Miranda EF, de Tarso Carrillo de Carvaho P, Leai-Junior EC (2014) Phototherap yin skolatal musele per formance and recovery after exercise: effact of combination of super-patient laser and light-emitting diodes. Lasers Mul Sci 29(6): 1967–1976
- Farhat PBA, Santos FA, Gornes JC, Gornes OM (2014) Evaluation of the difficacy of LED-laser treatment and control of tooth sensitivity during in-office blanching procedures. Photo and Laser Surg 32(7):422–426.
- Leal-Janior EC, Johnson DS, Saltmarche A, Durnchak T (2014) Adjunctive use of combination of super-pulsed laser and lightmitting diodas phototherapy on nonpacific lense pair: doubleblinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839–1847

- Hgurová M, Ledecký V, Karasová M, Huchý M, Trbolová A, Capíle I, Horňák S, Reichel P, Bjordal JM, Gál P (2016) Histological assessment of a combined low-level lasar/fightemiting dio de therapy (685 nm470nm) for suturadskin indisions in a porcine modul: a short report. Photomal Lasar Sug 34(2):53– 55
- Pagin MT, de Oiveira FA, Oiveira RC, Sent'Ana AC, de Rozende ML, Oraghi SL, Darnante CA (2014) Laser and light-emitin gelooke effects on pro-osteob ket growth an ddifferen fation. Lasers Med Sci 29(1):55-59
- Vinck EM, Caprie BJ, Cornelissen MJ, Declarcq HA, Cambier DC (2003) Increased fibroblest pro Eferation induced by Eght emitting diode and low power laser imadiation. Lasers Med Sci 18(2):95–99
- 38. de Carvalho ME, de Carvalho R.M. Jr, Marques AP, de Carvalho Lucio LM, de Olivaira AC, Neto OP, Vilaverde AB, de Lima CJ (2016) Low intensity laser and LED therapies associated with lateral decubits position and flexion or orcises of the lower limbs in patients with lumbar disk hemistion: clinical randomized trial Lasers Med Sci 31(7):1455–1463
- Chow R, Annati P, Luakso EL, Bjondal JM, Baster GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgoric effects: a systematic review. Photomed Laser Surg 29(6):365–381
- Naderi MS, Razzag hi M, Esmaneli Djavid O, Hajdo abimi Z (2017) A comparative study of 660 nm low-level loar and light emitted diode in proliferative effects of fibroblast calls. J Lasers Med Sci 8(Suppl 1):546–830
- Chaves ME, Andjo AR, Piancastelli AC, Pinoté M (2014) Effects of kw-power light therapy on wound healing LASER x IED. An Bras Damatol 89(4):616-623
- Karu T (1985) Biostimulation of HeLa calls by low-intensity visible light: IY – dichromatic imadiation. II Nuovo cimento D. 5(6):483
- Tiphlova O, Karu T (1991) Action of low-intensity laser radiation on Eucherichia coli division rate. Crit. Rev. Biomal Eng 18(6):387– 412.

Publisher's note Springer Nature remains neutral with regard to jurisdictional dains in published maps and institutional affiliations.