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ABSTRACT

CHRISPIM, B. A. S. D. Weyl superconductor with dynamical pseudo-axion field, an
interplay between high energy and condensed matter physics. 2022. 152 f. Tese
(Doutorado em Física) – Instituto de Física Armando Dias Tavares, Universidade do
Estado do Rio de Janeiro, Rio de Janeiro, 2022.

Similar structures that arise in a different field are recurrent themes in physics,
with the classic example being the renormalization group which was developed simulta-
neously in both the high energy and condensed matter physics communities. In recent
years, another instance, the topological materials, have extended the applications of axion
physics beyond its initial purpose in high energy physics. The characterization of such
materials requires a new concept called topological order, which links different phases of
matter that are not distinguishable by symmetry considerations. Such materials, with
some noteworthy examples as topological insulators, Weyl/Dirac semimetals, and Axio-
nic insulators, possess their electromagnetic response rooted in the so-called theta term.
This term has different forms. In Weyl semimetal, the theta term has a linear space-time
dependency, akin to the CFJ action investigated in the context of Lorentz violating field
theories while in axionic insulators this term appears similar to the coupling of the axion-
like field (fluctuations of the symmetry breaking chiral condensate). To better understand
this connection, we will examine the basics of topological materials and their field the-
ory description. Also, we investigate the electromagnetic response of semimetals when a
particular quartic fermionic pairing perturbation triggers the formation of charged chi-
ral condensates resulting in an axionic superconductor (massive photons interacting with
axion-like particles). The axion fluctuations corrections to the Yukawa-like potential up
to one-loop order and compute the modifications of the London penetration length are
also analyzed.

Keywords: Quantum Field Theory. Superconductivity. Topological Materials.



RESUMO

CHRISPIM, B. A. S. D. Supercondutor de Weyl com campo pseudo-axion dinâmico, uma
interação entre alta energia e física da matéria condensada. 2022. 152 f. Tese
(Doutorado em Física) – Instituto de Física Armando Dias Tavares, Universidade do
Estado do Rio de Janeiro, Rio de Janeiro, 2022.

Conceitos semelhantes surgindo em diferentes campos são um tema recorrente na
física. Um exemplo clássico é o grupo de renormalização que foi desenvolvido simultanea-
mente em física de alta energia e matéria condensada. Nos últimos anos, outra instância,
os materiais topológicos, estenderam as aplicações da física axiônica para além de seu pro-
pósito inicial em física de altas energias. A descrição dessa fase da matéria necessita de
uma nova caracterização, chamado ordem topológica, que liga diferentes fases da matéria
que não são distinguíveis através de considerações de simetria. Tais materiais, onde pode-
mos citar alguns exemplos notáveis como isolantes topológicos, semimetais Weyl/Dirac e
isolantes axiônicos, possuem uma resposta eletromagnética enraizada no chamado termo
theta. Esse termo possui diferentes formas; os semimetais de Weyl apresentam um temo
theta com dependência linear no espaço-tempo, semelhante à ação CFJ investigada no
contexto de teorias de campo com violação de Lorentz. Em isolantes axiônicos ele apa-
rece de forma similar ao acoplamento do campo tipo-axion (flutuações do condensado
que quebra a simetria quiral). Para entender melhor essa conexão, examinaremos os fun-
damentos dos materiais topológicos e sua descrição dentro da teoria de campos. Além
disso, foi investigada a resposta eletromagnética de um semimetal quando uma perturba-
ção particular, dada por um pareamento fermiônico quártico, desencadeia a formação de
um condensado quiral carregado, resultando em um supercondutor axiônico (fótons mas-
sivos em interação com partículas tipo-axions). Também serão analisadas as correções
quânticas a 1-loop, geradas por flutuações do axiônico, para o potencial de Yukawa e as
modificações geradas no comprimento de penetração de London.

Palavras-chave: Teoria Quântica de Campos. Supercondutividade. Materiais
Topológicos.
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INTRODUCTION

Historically, axion physics originates from an intriguing problem of quantum chro-
modynamics (QCD). One expects that the existence of quark chiral condensate in QCD
would lead to a spontaneous break in the U(1) chiral symmetry resulting in the existence
of quasi-Goldstone bosons. The problem is that such particles do not occur in observations
(WEINBERG, 1975). To explain this contradiction, ’t Hooft (HOOFT, 1976; HOOFT
et al., 1980; HOOFT, 1986) proposed that the chiral anomaly could lead to an explicit
symmetry breaking due to instantons contributions, consequently solving the U(1) issue.
This solves one problem but raises another inquiry since, as a consequence, it is predicted
that violation of parity P and time-reversal T would be detectable. Again, this does not
materialize in observations, the symmetry breaking parameter is extremely small, and
this fine tuning problem is known as the strong CP problem (since charge conjugation C
is preserved). The initial axion formulation, proposed by Peccei and Quinn (PECCEI;
QUINN, 1977b; PECCEI; QUINN, 1977a) (see (PECCEI, 2008) for a review), creates a
mechanism that aims at solving the unpleasant fine-tuning by promoting the symmetry-
breaking parameter to a dynamical field along with a abelian global symmetry called
U(1)PQ and with a new pseudoscalar particle called axion (by Weinberg (WEINBERG,
1978a)). This formulation has been examined, with no success, but other formulations
based on the same “idea” are still present as a feasible option (KIM, 1979; SHIFMAN;
VAINSHTEIN; ZAKHAROV, 1980; DINE; FISCHLER; SREDNICKI, 1981). Beyond
the QCD context, axion-like particles are expected to appear in any system that shares
the same “mechanism” presented by Peccei and Quinn. That is, axion-like particles will
couple to any gauge field for which the anomalous fermions have charge since this is a
consequence of the chiral transformations of the integration measure (Fujikawa method
(FUJIKAWA; SUZUKI, 2004; FUJIKAWA, 1979)).

In recent years, topological materials (MOORE, 2010; HASAN; KANE, 2010;
QI; ZHANG, 2011; HASAN; MOORE, 2011) extended the applications of axion phy-
sics beyond its application in high energy physics (HEP). Now, the so-called axion elec-
trodynamics (WILCZEK, 1987) holds numerous applications in the condensed matter
phenomenology of such materials. The formation of such phenomena is similar to the one
in HEP, the effective emergent chiral symmetries appear in their mathematical modeling,
which has been shown to lead to the unavoidable introduction of effective axion-like ex-
citations. The axionic coupling plays an essential role in the effective description of the
electromagnetic response. In particular, because of this unique coupling with the gauge
fields, it is intertwined with the topological structure of gauge fields which appears in
some phenomena like the integer quantum Hall effect (IQHE). Beyond the IQHE, pheno-
mena the topological insulators (QI; HUGHES; ZHANG, 2008), Weyl/Dirac semimetals
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(ARMITAGE; MELE; VISHWANATH, 2018; YAN; FELSER, 2017), Axionic insulators
(WANG; ZHANG, 2013; MACIEJKO; NANDKISHORE, 2014; YOU; CHO; HUGHES,
2016), etc. have a relation with axion-like physics. In particular, the Weyl semimetal
cases present an axion-like field with linear spacetime dependency which is akin to the
system investigated in the context of Lorentz violating field theories (CARROLL; FIELD;
JACKIW, 1990), another link between the two distinct fields (GRUSHIN, 2012).

Similar structures that arise in different fields are recurrent themes in physics. A
noteworthy example is the renormalization group, which was developed simultaneously
in both the high energy and condensed matter physics communities (ZEE, 2010), leading
to other works, concentrated on the link between different fields of physics e.g. the book
Universe in a Helium Droplet by Grigory E. Volovik (VOLOVIK, 2009). This thought is
well expressed in “unifying themes, concepts, structures, and ideas are the cornerstone of
understanding physical reality” (STANESCU, 2016, p. 95).

This serves as a motivation to explore some concepts in both condensed matter
and high energy physics. This will be done in the following way, in chapter 1 I will intro-
duce the basics of spinor (Dirac/Weyl), vector and scalar fields on a need-to-know basis
(property of the spinor fields, minimal coupling to the gauge field, and their transforma-
tions rules). This part will not be the usual textbook treatment because I will include
the constant four-vector bµ in the form ψγµbµψ (similar to the minimal coupling with
the gauge field). The chapter continues with the computation of the low energy effective
description, equations of motion, and the so-called “topological currents” of different mi-
croscopic theories. The last part will be the computation of the electrodynamics coupled
to an Axion-like space-time dependent term (non-dynamical) obtained from the inclu-
sion of four fermion interaction term that breaks chiral symmetry dynamically. This is
a review of (WANG; ZHANG, 2013; MACIEJKO; NANDKISHORE, 2014; YOU; CHO;
HUGHES, 2016) that will be important to the computation in chapter 4.

The previous discussion will be the foundation for the chosen topic in condensed
matter in chapter 3. There, we will do a brief historical review and explore the connec-
tions between the previous calculation and the themes in the condensed matter. The
essential point here is the so-called quantum Hall effect. The ordinary (or normal) Hall
effect (HALL, 1879) is described as the presence of electrical resistance (Hall resistance)
proportional to the applied magnetic field. The quantum version of this phenomenon is
proportional to the factor h

e2ν
where ν can be either an integer (integer quantum Hall) or

a fraction (fractional quantum Hall). The anomalous Hall effect has the distinct behavior
that it is present at zero external magnetic field due to the spontaneous magnetization
of the ferromagnetic material sample. As we will see, those phenomena are liked to the
topological currents computed in the last chapter.

The chapter 4 will be dedicated to the computation of the axion-superconductor
with a dynamical Axion-like (real pseudo-scalar) field. This “fine-tuned” effective massive
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theory is obtained by generalizing the coupling discussed in section 2.3 the dynamical
axion case to introduce a four-fermion interaction that breaks both charge symmetry as
well as chiral symmetry. This is a new result since we arrived at this effective description
by making contact with usual superconducting couplings in doped Weyl metals (ZYUZIN;
BURKOV, 2012; CHRISPIM; BRUNI; GUIMARAES, 2021).

In chapter 5, the previous model will be investigated in the “Dirac” approximation
with the computation of the 1-loop correction to the massive photon due to pseudoscalar
fluctuations. This calculation is done by using the non-renormalizable approach and has
nuances (ghost states) that are explained in detail. The final part is the investigation of
the axion corrections to the Yukawa-like and London penetration length which has not
been computed until now.

Lastly, this thesis does not aim to be an extensive reexamination of the topics
discussed here. Most topics will be introduced as needed and the relevant citations will
be provided as best as possible.
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1 NECESSARY ELEMENTS OF DIRAC/WEYL ELECTRODYNAMICS

The beginning of this first chapter will be dedicated to introducing the basics of
Dirac/Weyl fields, and their dynamics, on a need-to-know basis. This will consist of a
brief revision of their properties and minimal coupling to the gauge field, along with the
fixation of the notation that will be used. The following section treats the inclusion of the
constant four-vector bµ, that will be essential to the development of this thesis. Motivation
for the inclusion of this term, based on concepts of high energy physics, will be given. The
central modifications are examined in the following sections with a focus on the changes
to the excitation spectrum in the presence of the bµ term. All those concepts will be
essential to making the connection with the following topics (especially to the condensed
matter part).

A necessary warning is in order: This thesis is not an extensive review of none of
the topics treated here. The topics will be introduced as needed, and relevant citations
will be provided.

1.1 Necessary concepts

Initially, the introduction of Dirac and Weyl fields occurred in the context of high-
energy physics. This area of physics treats (in the broad sense) the elementary particles
of nature and their symmetries. Dirac proposed his famous equation for the fermion
field intending to describe the dynamics of the free electron (DIRAC, 1928) (massive
charged spin 1/2 particle) and ended in predicting the positron (electrons antiparticle,
same quantum numbers with opposite charge) in the process. The Dirac equation in
natural units (c = ℏ = melectron = ϵ0 = 1, c is the speed of light in vacuum, ℏ = h

2π is the
reduced Planck constant and ϵ0 is the vacuum permittivity) is

(
i/∂ −m

)
ψ = 0, (1)

where /∂ ≡ γν∂ν , m is a mass parameter measured in terms of the electron mass, and Greek
letters in general labels the space-time components (in 3 + 1 it goes from 0 to 3). This is
a matrix equation, the Dirac field ψ(x) is a four-components quantity, and the gammas
are matrices that obey Clifford algebra (defined in appendix C.1). In this case, there are
four gamma matrices plus an “extra” one defined by γ5 = iγ0γ1γ2γ3. To describe the
antiparticle one uses the conjugate field ψ ≡ ψ†γ0 (where † is the Hermitian conjugate
operation). It was noted by Weyl (WEYL, 1929) that, for odd spatial dimensions plus
time, the four-component Dirac spinor can be written in terms of two Weyl spinors ψR
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and ψL (each one with two degrees of freedom) so that ψ(x) =

ψL
ψR

 or ψR/L = PR/Lψ

(PR/L are projectors defined as PR = 1
2(1 + γ5) and PL = 1

2(1 − γ5)). Dirac’s equation of
motion splits into two

i(∂0 − σ · ∇)ψR = mψL , and i(∂0 + σ · ∇)ψL = mψR, (2)

where was used Weyl’s representation of the gamma matrices (see the appendix C.2 for
more information) and σ are the Pauli matrices, as expected. In the massless case, the left-
and right-handed states are eigenstates of the helicity operator ĥ = σ·p

|p| (which projects
the spin on the direction of motion) with opposite signs as one can see by the equation
of motion (2) in Fourier space with m = 0, that is

i(E − σ · p)ψR/L = 0 → iE
(
1 ± ĥ

)
ψR/L = 0 (3)

since E = |p| for massless particles. This translates into the central fact that Weyl fermi-
ons propagate parallel (or antiparallel) to the spin direction. In the end, Weyl fermions
can be represented in terms of three quantum numbers; spin, helicity, and chirality. The
presence of a mass term mixes the two Weyl fermions so that helicity is no longer a good
quantum number although its total number is still conserved. A more in-depth discussion
on this topic can be found in (SCHWARTZ, 2013).

The dynamics of the field are dictated by a quantity called Lagrangian density
throughout the least action principle. Functional variations of the Lagrangian over field
configurations, together with the appropriate boundary conditions, result in the Euler-
Lagrange equations which can be used to obtain the classical equation of motion. Dirac’s
equation of motion is the result of the least action principle applied to the action

SDirac =
∫

d4xψ(x)
(
i/∂ −m

)
ψ(x). (4)

Although ψ and ψ (Dirac adjoint) are related by ψ = ψ†γ0 = ( ψ†
R ψ†

L ), they are treated as
independent fields. In quantum mechanics, to obtain the probability of some event must
sum over all possible trajectories that contribute to that event’s occurrence. Consequen-
tly, one must use the path integral formulation (which generalizes the classical concept
of a single trajectory) to compute physically observable quantities. The classical beha-
vior emerges as the tree-level approximation (first-order approximation in ℏ) of the path
integral

Z =
∫

D
(
ψ†, ψ

)
eiSDirac , (5)

which encodes the complete quantum theory at zero temperature (in this case of the sys-
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tem described by the action (4)). This also shifts the physical interest from the classical
equation of motions to the correlation functions (or n-point functions) ⟨O(x1)O(x2) · · · O(xn)⟩
which are appropriate to describe the quantum nature of the system behavior. The com-
putation of such objects is throughout the perturbation of the Lagrangian such that

L → L + J(x)O(x). (6)

Here J(x) are arbitrary functions known as sources, and the O(x) are local operators.
Now doing the functional derivative of the generating functional with respect to these
source we obtain the connected n-point functions〈∏

i

O(xi)
〉

=
∏
i

δ

δJ(xi)
logZ[J ]

∣∣∣∣∣
J=0

. (7)

These objects includes all physical phenomena of a given known action, that is, if it is
possible to compute all of the n-point functions then the theory is solvable. All measurable
pieces of information (such as scattering amplitudes, decay rates, etc.) to all orders
are, in principle, obtainable in this case. This is (obviously) not achievable in most
physical systems with the next best option being the computation to a given order of
approximation. Now if one is interested in a system on which these Dirac/Weyl fermions
interact with the electromagnetic field one must minimally couple them to the gauge field
Aµ, through ∂µ → Dµ ≡ ∂µ + iqAµ in the spinor sector, and add the appropriate action
for the gauge field, the well-known Maxwell action

SMaxwell =
∫
d4x

(
−1

4F
µνFµν − AµJ

µ
)
. (8)

where the four-vector Jµ = (ρ,J) describes the electric density ρ and current J . Variations
with respect to classical configurations of the gauge field Aµ = (ϕ,A) (A and ϕ are the
vector and scalar potentials which relates to electric and magnetic fields by E = −∇ϕ− ∂A

∂t

and magnetic B = ∇ × A) gives the Maxwell equation

∂µF
µν = Jν (9)

The description of a physical system is not complete until the gauge invariance is fixed
by imposing a gauge condition e.g. Lorenz gauge condition 1

c2
∂ϕ
∂t

+ ∇ · A = 0 reducing
the equations of motion to

□2Aµ = Jµ (10)

The symbol □2 is the Laplacian and represents ∇2 − ∂2

∂t2
. The field strength tensor in
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terms of the electric and magnetic field is

F µν = ∂Aν

∂xµ
− ∂Aµ

∂xν
=



0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , (11)

the equations of motions take the form

∇ · E = ρ, ∇ × E = −∂B

∂t
,

∇ · B = 0, ∇ × B = J + ∂E

∂t
,

(12)

these are the Maxwell equations without electric sources.
This is the very basics of what will be necessary for the next few sections. For

more information on these subjects please consult textbooks on quantum field theory like
(ZEE, 2010; SCHWARTZ, 2013; PESKIN; SCHROEDER, 1995). In the next section, I
will introduce one more ingredient to our system and explore some of the consequences.

1.2 New ingredient with the “coupling” bµ

Foreshadowing the discussion in the next sections, it is interesting to include one
extra term in the fermionic action. The inclusion of the action

S =
∫

d4xψ(x)/bγ5ψ(x), (13)

where the bµ is a constant four-vector. It is easy to see that this term modifies Dirac’s
equation of motion to

(
i /D − γ5/b −m

)
ψ = 0 (14)

or, in terms of the Weyl spinors

(
i/∂ + /bγ5

)
ψ = 0 →


σµ(i∂µ + bµ)ψR = 0

σµ(i∂µ − bµ)ψL = 0 .
(15)

The spatial component of bµ enters the equation of motion as a Zeeman term b · σ which
represents a magnetic interaction. The time-like component b0 enters the description as
an energy shift that depends on the chirality of the Weyl spinor. Beyond that, since bµ is
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a constant vector, it allows for different field behaviors depending on the direction thus
breaking particle-Lorentz symmetry (this will be explained in the next section).

The motivation, at this point, is that the realm beyond Einstein’s General theory
of Relativity and the Standard model of particle physics, that is, the unification of those
two theories, is still a mystery. This theory is generically called quantum gravity (QG)
(see (ROVELLI, 2004; THIEMANN, 2007; ORITI, 2009) for modern reviews) and is
expected to be valid for energies close to the Planck scale which is far beyond direct
experimentation in today’s technology such as the Large Hadron Collider (LHC). This
makes the only viable path to make indirect detection of possible effects that originates
from QG and survives in the effective low energy theory (DONOGHUE, 1995; LIBERATI;
MACCIONE, 2009; KOSTELECKÝ, 2004). Those relics would allow us to reconstruct
the fundamental theory without direct experimentation but the downside is that it is
necessary to guess the general features of QG. One of those suppositions is that, in the
Planck scale, space-time is no longer continuous because of the minimum fundamental
length lP = 1.6 × 10−35m (Planck length). As a consequence, one of the fundamental
symmetries of the physics, Lorentz symmetry, would be broken at that energy level. This
rationalization is the basis of extensions of the standard model that includes some form
of Lorentz Invariance Violation (LIV). In fact proposed theories for QG such as String
theory (KOSTELECKÝ; SAMUEL, 1989), loop quantum gravity (ASHTEKAR, 1986;
ROVELLI, 1998), Horava-Lifshitz gravity (HOŘAVA, 2009), non-commutative geometry
(CONNES; KREIMER, 1998) (see (POTTING, 2013) for a review on some of those
theories) predict some kind of manifestation of Lorentz symmetry breaking as an effective
low energy phenomena. The physical effects of such theories must be very small due to
various experimental constraints (LIBERATI; MACCIONE, 2009). In another words, our
universe appears to obey Lorentz invariance to a very high accuracy (KOSTELECKÝ;
RUSSELL, 2011).

Lorentz invariance and CPT symmetry are connected. The CPT theorem (STRE-
ATER; WIGHTMAN, 1964; SCHWARTZ, 2013) tells us that any local quantum field
theory that is Hermitian and Lorentz invariant must obey CPT. Beyond that, any uni-
tary interacting theory that violates CPT must also be LIV. The reciprocal affirmation is
not true, it is possible to violate Lorentz invariance but maintain CPT symmetry. This
opens for two kinds of LIV, the first one that breaks CPT and Lorentz (CPT-odd inte-
raction) and the second that violates Lorentz but keeps CPT (CPT-even interactions).

In the next section, we will see that the inclusion of the action in eq. (13) breaks
CPT and Lorentz so it falls in the CPT-odd classification. Also, we will explore some of
the previous statements regarding the symmetries and transformation rules of the action
terms exhibited in these last two sections.
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1.3 Transformation properties

Going back to the nature of the Lagrangian density, one must notice that all
elements used in its construction are Lorentz scalars, i.e. the action is Lorentz invariant.
This is a necessary restriction if one wants to obey special relativity, that is, if the original
field solves the equations of motion then the transformed fields must also solve them,
meaning that the physics is invariant under those transformations. The (pseudo-) scalar,
(pseudo-) vector, and spinor fields are elements of the general Poincaré group of which
the Lorentz transformation is part. The Poincaré group is composed of translations in
space-time, rotations, and boosts while the last two compose the Lorentz group. The
Lorentz transformations are those who preserve the Minkowski metric g, in other words,
the transformation Λ in this group must obey

ΛTgΛ = g or Λµ
σg

στΛ ν
τ = gµν . (16)

This quantity is a four-vector that can be written as

xµ → (xµ)′ = Λ ν
µ xν . (17)

This is the transformation acting on the coordinates. It is possible to represent them on
the fields. That is, if one applies transformation x → Λx then the field also transforms as

ϕ(x) → ϕ′(x) = ϕ(Λ−1x) , (18)
V µ(x) → V µ′(x) = ΛV

µ
νV

ν(Λ−1x) , (19)
ψα(x) → ψα′(x) = ΛS

α
σψ

σ(Λ−1x) , (20)

with the definitions ΛV = exp (iθµνV µν) and ΛS = exp (iθµνSµν) where V (S) are the
Lorentz group generators that acts on vector (spinor) fields. The actual form of this
transformation is not important but can be found in textbooks such as (PESKIN; SCH-
ROEDER, 1995; SCHWARTZ, 2013). These transformations form a continuous group
(called Lie group), but, beyond that, one can inquire about the discrete transformations,
which can not be achieved by continuous Lorentz transformation starting from identity
1. There are two discrete transformations that are important, called Parity conjugation
(P), and time-reversal (T). The first one reverses the handedness of space and the latter
interchanges the forward and backward light cones. One can express them as

P : (t, x⃗) → (t,−x⃗) , (21)
T : (t, x⃗) → (−t, x⃗) . (22)
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On the fields, these discrete transformations act as

P : ϕ(t, x⃗) → ±ϕ(t,−x⃗) ,
Vµ(t, x⃗) → (±V0(t,−x⃗),∓Vi(t,−x⃗)) ,

ψ(t, x⃗) → γ0ψ(t,−x⃗) =

ψR(t,−x⃗)
ψL(t,−x⃗)

 ,

(23)

and

T : ϕ(t, x⃗) → ϕ(−t, x⃗),
Vµ(t, x⃗) → +(V0(−t, x⃗),−Vi(−t, x⃗)) ,

ψ(t, x⃗) → γ1γ3ψ(−t, x⃗) =

−σ1σ3ψL(−t, x⃗)
−σ1σ3ψR(−t, x⃗)

 .

(24)

Some comments are in order. The difference in sign on the parity transformation repre-
sents the distinction between “pseudo” and “normal” behavior. If the scalar (vector) field
transforms with the plus (minus) sign it is “normal” but if it changes with the minus
(plus) sign it is an “pseudo” (it is also common to use axial vector instead of pseudo-
vector). On the spinor representation, parity conjugation acts to reverse the momentum
of a particle without flipping its spin, this also can be described as a swap between the
left-handed and right-handed components. There is one more discrete symmetry called
charge conjugation C. The distinction here is that this transformation is not directly as-
sociated with the Poincaré group but with the internal symmetry of the system. Charge
conjugation interchanges particles with antiparticles and flips the spin direction, so this
does not affect the real scalar field. This last discrete transformations acts as

C : Aµ → −Aµ ,

ψ → −iγ2ψ
∗ .

(25)

It is relevant to notice that another transformation is possible once the Dirac field is
coupled minimally to the gauge field. This transformation is a local phase rotation

ψ(x) → eiα(x)ψ ,

Aµ → Aµ − 1
e
∂µα(x) .

(26)

The system is invariant under this transformation since this is not a “physical” transfor-
mation; it originates from the redundant description of the vector field Aµ (of the four
degrees of freedom, only two have physical significance), known as gauge invariance. The
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global version (or space-time independent) of this last transformation is

ψ(x) → eiαψ . (27)

Another kind of transformation is possible, a global transformation that does not depend
on the spacetime position but that is constructed with the γ5 matrix. This transformation
is the chiral transformation, given by

ψ(x) → eiβγ5ψ . (28)

This transformation will be vital in the development done in the following sections. With
these transformations rules, it is possible to verify how the previously mentioned field
composite terms transform. This is described for the discrete transformations in table 1.
As stated before, the fermion mass term mixes the right and left chirality, meaning that

Table 1 - Discrete transformation properties

ϕ2 A2 ψψ iψγ5ψ ψγµψ ψγµγ5ψ

P +1 +1 +1 −1 +1 for µ = 0
−1 for µ = i

−1 for µ = 0
+1 for µ = i

T +1 +1 +1 −1 +1 for µ = 0
−1 for µ = i

+1 for µ = 0
−1 for µ = i

C +1 +1 +1 +1 −1 +1
CPT +1 +1 +1 +1 −1 −1

Subtitle: These are the discrete transformation properties of some compounds terms
in the fields.

Source: PESKIN; SCHROEDER, 1995, p. 71. Adapted by the author.

it transforms as

mψ(x)ψ(x) → me−i2βγ5ψ(x)ψ(x) = m
(
e2iβψ†

LψR + e−2iβψ†
RψL

)
(29)

under rule (28). After establishing the discrete transformations one can inquire if the
system described with Dirac’s and Maxwell’s action (respectively equations (4) and (8))
is invariant under any of them. The field terms ψi/∂ψ, mψψ and ieψ /Aψ obey C, P, T,
and CPT as expected.

The four-vector component, introduced in equation (13), which contains ψ/bγ5ψ,
is a special case since bµ is not technically a vector in the Poincaré group. This means
that it does not transform following the vector rule. Another form is to consider it as
a constant vector in a particular direction in space-time. Actually, it is understood that
this term transforms in the particle (or passive) Lorentz transformation rule (changes of
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the coordinate system). These transformations are different from the active Lorentz that
actually transforms the fields, e.g. a viewer can observe a particle that experiences only
a magnetic field in one frame of reference, but for an observer on another frame, this
same particle can be regarded as subjected to both magnetic and electric field influences
(GRIFFITHS, 2013). The consequence is that the transformations for terms with the
Lorentz index are not valid for bµ and the presence of these terms breaks T if b ̸= 0, P

if b0 ̸= 0 and, consequently, T and P if bµ ̸= 0. This is in consensus with the previous
affirmation that this interaction term is CPT-odd.

1.4 Excitation spectrum in the presence of bµ

To describe the behavior of particles in this model, we need to compute the dis-
persion relations (energy and momentum condition). This can be done by “squaring”
Dirac’s equation of motion (1) and using the plane-wave approximation ψ ∼ e−i(Et−p·x)

one obtains Klein-Gordon equation E2 − p2 = m2. For completeness, the 1D energy plot,
for the massive and massless case, is represented in figure 1 . When the mass term is pre-

Figure 1 - Dispersion relations for massive and massless Dirac equations
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Subtitle: Figure (a) represents the dispersion relations for massless Dirac equations, the excitation are
linear in the momentum. Figure (b) represents the dispersion relations for massive Dirac
equations, in this case the excitation present an energy gap given by the mass parameter. This
gives a physical interpretation to the notion that the ground state on the gapped system has
excitations that are well-separated from the ground state. Both cases respect T and P

symmetries and presents only one symmetric point which is kz = 0.
Source: The author, 2022.

sent there is minimum energy for the excitation of the system, this is commonly known
as the energy gap. The same “squaring” can be done in equation (14) where the bµ term
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is included. This leads to the modified dispersion relations

(
E2 − p2 + b2 −m2

)2
= 4

[
(E b0 − p · b)2 −m2b2

]
. (30)

Since this relation is more complex due to the different choices of bµ one can start by
considering (COLLADAY; KOSTELECKÝ, 1997) a pure time-like fix vector bµ = (b0,0),
resulting in

E2
± = m2 +

(
p2 ± b0

)2
, (31)

or a pure space-like fix vector bµ = (0,b), leading to

E2
± = m2 + p2 + b2 ±

√
m2b2 + (b · p)2 . (32)

Graphs 3 and 2 describe some particular choices of parameters of those two cases. We can
extract physical information from these quantities if we recall that wavelength and linear
momentum, or frequency and energy, are interchangeable by using Planck’s constant ℏ
meaning that we can investigate physical quantities like (classical or Einstein’s) causality
and stability from the relation dispersion. The first can be reached by verifying if the
theory allows superluminal propagation (ADAM; KLINKHAMER, 2001) by computing
the group velocity, defined by

vg = dω

d|k|
, (33)

which must be less than 1, otherwise, Einstein’s causality would be violated. For an pure
time-like fix vector we get (ADAM; KLINKHAMER, 2001)

vg± = |p| ± b0√
(|p| ± b0)2 +m2

≤ 1 , (34)

and for the case pure space-like vector is

vg± =
|p| − |b|

2
√

b2m2+b·p√
b2 +m2 + p2 ±

√
b2m2 + b · p

≤ 1 . (35)

Both cases respect classical causality. Next, we can check this theory’s stability by ve-
rifying if the energy is positive definite in order to guarantee that the vacuum is stable
in any frame of reference. If the energy has an imaginary contribution then it is possible
to spontaneously decay to a lower energy level. This problem can only occur due to the
influence of the zeroth component of bµ since it is the only form to introduce a negative
contribution. The expression eq. (30) is not positive for all values of b0 > 0 thus, in prin-
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Figure 2 - Excitation spectrum for fermions with space-like Lorentz breaking coupling
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Subtitle: Each graph represents the energy levels for a system, equation (32), considering
bµ = (0, 0, 0, bz) and; b2

z > 0 with m = 0 (a), b2
z < m2 (b), b2

z = m2 (c), and b2
z > m2 (d). The

distance between the two points with zero energy, i.e. E(kz) = 0, in (a) and (d) is 2bz. In the
vicinity of this points the system behaves as the spectra for massless Dirac fermions.

Source: The author, 2022.
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Figure 3 - Excitation spectrum for fermions with time-like Lorentz breaking coupling
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Subtitle: Representation of the energy level for the modified dispersion relations (31) with b2
0 > m2 (fig.

(a)) and b2
0 < m2 (fig. (b)). It is easy to see that the presence of this term breaks the parity in

the z-direction as the excitation spectrum is no longer symmetric.
Source: The author, 2022.

ciple, is unstable, although it is arguable if this violation is physical since the momentum
necessary to reach this instability is of Planck’s mass scale (KOSTELECKÝ; LEHNERT,
2001). We will come back on this topic later.

1.5 Tuning massive to massless

In the current context, U(1) chiral symmetry, unlike parity and time-reversal sym-
metries, does not survive in quantum theory. This is not a farfetched idea. There is no
good reason in the physical world suggesting that every symmetry of classical physics is
necessarily a symmetry of its quantum version. In those cases, the symmetry is dubbed
anomalous. In the chiral case, the anomaly can be traced to the path integral measure
not being invariant under the classical symmetry. This is one of the possible ways to
understand it since it is possible to compute the anomaly by other paths as in (FRASER,
1985; AITCHISON; FRASER, 1985). The fact that chiral symmetry is anomalous leads
to the expectation that it is only valid in the low energy approximation. In other words,
the system described by Weyl fermions (chiral invariant action) is generically uncommon
since any “higher” energy contribution would lead to the appearance of a mass term that
breaks chiral symmetry. The inclusion of the bµ term changes this notion because, with
the right choice of parameters, it is possible to obtain effective massless dispersion re-
lations. That is, although the Lagrangian has a mass term, the energy and momentum
relations have gapless points. Looking at graph 2d (from the last section), it is possible
to see that a fine-tune bµ (in that case b2

z > m2) closes the mass gap. More generically
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this condition translates to imposing −bµbµ = −b2
0 + b2

i < m2. The difference between the
system described by Weyl action (in graphs 2a) and the one with the special condition on
the bµ term (in graphs 2d) is the high energy spectrum (in the first is gapless, the second
is not) but this does not change the low energy description (if we measure the momentum
relative to the touching point1). Now, for a gap to be opened in the dispersion relations,
it is necessary that b2

i < m2 (as one can infer from graph 2b and 2c). The presence of the
b0 term does not change this conclusion as its main effect is to shift the touching points
as one can see in graph 3. This analysis will be necessary for the discussion in chapter
3. This finishes the chapter, and in the next one, we will do (mostly) the computation of
the effective theory that originates from the system studied here.

1 These points are also called Weyl points of nodes in general
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2 EFFECTIVE THEORY CALCULATION

In this chapter, I will compute the low energy description of the Dirac/Weyl actions
in the presence of the bµ term. The result is the electrodynamics coupled to an Axion-like
space-time dependent term (non-dynamical). Along with this calculation, we will discuss
some concepts (like the definition of effective action), as they will be essential later on.
The first one to be explored will be the fermions interacting with the gauge field in the
presence of the bµ term. This is a somehow basic example of how to proceed with the
fermionic integration to obtain an effective Lagrangian by the use of the Fujikawa method
(nontrivial transformation of the path integral by a chiral rotation). I will also discuss
(briefly) its connection with the high energy community concept of Lorentz invariance
breaking theory. Next (section 2.2), I particularize the bµ to be an angle and make the
connection with an emergent effect at the boundary of two different systems known as
the TME (topological magnetic electric) effect. Finally, section 2.3 is dedicated to the
formation of a dynamical axion in the effective theory via the inclusion of a chiral breaking
interaction term. This is a review of the works of (WANG; ZHANG, 2013; MACIEJKO;
NANDKISHORE, 2014; YOU; CHO; HUGHES, 2016) and serves as a basic calculation
for our model that will be discussed in chapter 4.

The same caveat as the last chapter is in order. This work is not an extensive
review of none of the topics treated here. The introduction of the topics will be done as
needed, and appropriate references will be provided.

2.1 Axion electrodynamics

We start with a theoretical description of a system composed of two Weyl points
that are separated in momentum and energy. This situation can be conveniently expressed
by a Dirac action where the right and left Weyl modes are arranged, again, in a Dirac
spinor ψ =

(
ψL
ψR

)
with ψ = ψ†γ0 = ( ψ†

R ψ†
L )

S0 =
∫

d4xψ(x)
(
i/∂ −m+ /bγ5 + ie /A(x)

)
ψ(x), (36)

along with electromagnetic gauge potential Aµ action

SMaxwell =
∫

d4x
(

−1
4FµνF

µν
)

(37)
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so that generating function is

Z =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell) . (38)

In this notation D
(
ψ†, ψ, A

)
stands for Dψ†DψDA that is the usual path integral measure.

In order to obtain the effective description in term of the gauge field alone we must
integrate the fermions degree of freedom in the path integral. This is a well-known
computation but, since we must include the contribution of the chiral anomaly, I will follow
it in some detail. This procedure can be found textbooks like (PESKIN; SCHROEDER,
1995; SCHWARTZ, 2013; ZEE, 2010; PESKIN; SCHROEDER, 1995) but I will follow the
more direct steps of (ZYUZIN; BURKOV, 2012) to some extent (some other details can
be found in Appendix A). The method of derivation of the anomaly contribution is based
on Fujikawa’s work (FUJIKAWA, 1979; FUJIKAWA; SUZUKI, 2004) and is cored on the
realization that the path integral measure is sensible to chiral gauge transformations.

The first step is to eliminate bµ from the Lagrangian in eq. (36). This can be done
by performing a (local) chiral transformation

ψ(x) → ψ′(x) = ei
1
2β(x)γ5

ψ(x) , (39)

leading to

S0 → S ′
0 =

∫
d4xψ(x)

(
i/∂ − /∂β(x)γ5 + /bγ5 + ie /A(x)

)
ψ(x) ,

=
∫

d4xψ(x)
(
i/∂ − /bγ5 + /bγ5 + ie /A(x)

)
ψ(x) ,

=
∫

d4xψ(x)
(
i/∂ + ie /A(x)

)
ψ(x) ,

=
∫

d4xψ(x)
(
i /D
)
ψ(x) ,

(40)

where it was used β(x) = 2bµxµ. This is, of course, not a symmetry of the action, but
just a change in the fermionic variables. The principal point in Fujikawa’s work that
in the quantum path integral formulation, this transformation gives rise to a non-trivial
contribution from the Jacobian of the fermionic integration measure

D
(
ψ†, ψ, A

)
→ D

(
ψ′†, ψ′, A

)
= J −2 · D

(
ψ†, ψ, A

)
, (41)

where J is the determinant of the chiral transformation. The explicit computation must
be carefully done since it involves the regularization of the eigenstate sum in a gauge-
invariant (a brief review can be found in appendix A, or one can use any of the previously
mentioned references like (PESKIN; SCHROEDER, 1995; SCHWARTZ, 2013; ZYUZIN;
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BURKOV, 2012)). The result is

J = exp
[
− ie2

32π2

∫
d4x β(x)ϵµνακF µνFακ

]
. (42)

Now we can add the anomaly contribution (equation (41) and (42)) to the functional (38)
resulting in

Z =
∫

D
(
ψ†, ψ, A

)
ei(S′

0+SAnomaly+SMaxwell) , (43)

with

SAnomaly = e2

32π2

∫
d4x β(x)FF̃ , (44)

where FF̃ = F µνF̃µν = 1
2ϵµναβF

µνFαβ. The resulting theory consists of fermions and
photons, and the effect of the bµ is encoded in the anomaly term. The fermions in this
context are part of the free asymptotic states allowed. If one is interested on the contri-
bution on which the fermion degree of freedom are not excited then one must integrate
out the fermions degree of freedom. Mathematically, the functional generating of the full
microscopic system is

Z(j, η) =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell+

∫
d4x(ηψ+ψη+jµAµ)) , (45)

where jµ and η are the external sources for the photon and electron fields, they are the
external perturbation which generates the n-point function (discussed briefly in section
1.1). The effective action, that lacks the “integrated out” fermionic fields, is (usually) non
renormalizable, and is valid in a certain range of energies. I will follow the notation of
(SCHWARTZ, 2013) and refer to the effective action as Γ with Γ =

∫
d4xLeff(x) so that

Leff(x) is the effective Lagrangian. The functional integration of the fermionic field is

Z(j) ≡ Z(j, η)
∣∣∣∣
η=η=0

=
∫

D(A)ei(Γ+SAnomaly+SMaxwell+
∫

d4xjµAµ). (46)

The computation of Γ in

eiΓ =
∫

D
(
ψ†, ψ

)
eiS0 = ei

∫
d4xLeff(x) , (47)

the effective Lagrangian, is not straightforward as we will see. The first step is to write
the fermionic integration as
∫

D
(
ψ†, ψ

)
eiS0 = N det

(
i /D
)
, (48)
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and, mathematically, this expression is

det
(
i /D
)

= det
(
i/∂ − e /A

)
,

= det
(
i/∂
)

det
(

1 − 1
i/∂

(
−ie /A

))
,

= exp
[
Tr
(
ln
(
i/∂
))

Tr
(

ln
(

1 − 1
i/∂

(
−ie /A

)))]
,

= eTr(ln(i/∂)) exp
[
Tr
(

ln
(

1 − 1
i/∂

(
−ie /A

)))]
.

(49)

The first term is an infinite constant and is fixed by setting Z|ψ=0 = 1, this sets N and
we can suppress this from now on. Expanding the remaining part results in

det
(
i /D
)

= exp
[
−
∑
n=1

1
n

Tr
[(

−ie /A
i/∂

)n]]
. (50)

Going back to the effective action one can write

Z(j) =
∫

D(A)ei(Seff+SAnomaly+SMaxwell+
∫

d4xjµAµ) , (51)

with

Seff =
∑
n=1

i

n
Tr
[(

−ie /A
i/∂

)n]
. (52)

In terms of Feynman’s diagrams, this expression is the fermion bubble with n insertion of
gauge lines (see (PESKIN; SCHROEDER, 1995) for more details on this computation),
which translates to

∑
n=1

i

n
Tr
[(

−ie /A
i/∂

)n]
→ + + + · · · . (53)

The problem is that this expression is ill-defined since the fermion bubble has an IR-
divergence. We can see this by opening one of the graphs

∝ Tr
(−ie /A

i/∂

)2
 = −e2 Tr

[
1
/p
/A

1
/p
/A

]

= −e2
∫ d4p

(2π)4
1

(p2)2 Tr
[
/p /A/p /A

]
= −e2A2 1

2

∫ d4p

(2π)4
1
p2

(54)

where the last integral is divergent. If we had included a mass term for the fermions, i.e.
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mψψ, in the initial action, this problem is bypassed but the computation involving the
chiral rotation becomes trickier. As we saw in equation (29) of section 1.3, the mass term
breaks chirality, meaning that it is not invariant under the chiral transformation (defined
in eq. (39) as ψ(x) → eiβγ5ψ).

I will skip the recalculation and naively introduce the mass term in the effective
action since this particular system was extensively studied in the context of an extension
of the standard model to include violations of the Lorentz symmetry in U(1) gauge sector
since the 90’s (CARROLL; FIELD; JACKIW, 1990; COLLADAY; KOSTELECKÝ, 1998;
JACKIW; KOSTELECKÝ, 1999). Beyond mathematical details, the main difference that
the inclusion of the mass term generates is the ambiguity in the exact relation between
the term microscopic parameter bµ and the generated correction kµ (JACKIW, 2000). In
the previous case, the term ψ/bγ5ψ(x) generated (with β(x) = 2bµxµ)

SAnomaly = e2

32π2

∫
d4x β(x)FF̃ =

∫
d4x ϵµνακk

µAνFακ (55)

where kµ = − ie2

16π2 b
µ. The question of the proper value of the correction triggered a

series of theoretical investigations, e.g. using Fujikawa’s method (PÉREZ-VICTORIA,
1999), non-perturbative analysis in bµ (CHEN, 2001), symmetry, and causality restraints
(COLEMAN; GLASHOW, 1999; CIMA et al., 2010; ADAM; KLINKHAMER, 2001).
Some results are (for a more detailed list/description on the results and possible origins
on the ambiguity consult (CHEN, 2001))

• kµ = 0 (ADAM; KLINKHAMER, 2001; COLEMAN; GLASHOW, 1999; CAR-
ROLL; FIELD, 1997);

• kµ = 3e2

16π2 bµ (CARROLL; FIELD; JACKIW, 1990; COLLADAY; KOSTELECKÝ,
1998; JACKIW; KOSTELECKÝ, 1999);

• kµ = Cbµ, C is an arbitrary constant, (CHUNG, 1999; FREEDMAN; JOHNSON;
LATORRE, 1992);

• kµ = e2

8π2 bµ (CHAN, 1986; GAILLARD, 1986).

Past those inquiries, it is usual to investigate the general consistency factors (namely sta-
bility, causality, and unitarity) of Lorentz violating theories. The microscopic (fermionic)
theory with the mentioned LIV term is well behaved if one ignores the stability issue, but
the effective theory does have more deep problems. The space-like constant vector does
not introduce problems on those factors, the same is not true for the time-like bµ which
introduces problems in both stability and causality (ADAM; KLINKHAMER, 2001; KOS-
TELECKÝ; LEHNERT, 2001). It is important to remember that, even if those effects
are present in nature, experimental bounds dictates that any LIV parameter is extremely
small (KOSTELECKÝ; RUSSELL, 2011).
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Beyond those points, the resulting contributions must be gauge invariant. We can
see this (and avoid doing the very extensive calculation) in a simple way. Before the
fermionic integration, the system is gauge invariant, as expected by

Z[ψ,Aµ] → Z
[
ψeiα(x), Aµ + 1

e
∂µα(x)

]
= Z[ψ,Aµ] , (56)

where the [· · · ] indicates the field content. After the integration of the spinor degree of
freedom, this must still be true, gauge symmetry is not anomalous here. That means that

Z[Aµ] → Z
[
Aµ + 1

e
∂µα(x)

]
= Z[Aµ] . (57)

The same transformation can be done in the effective Lagrangian
∫

DAeiSeff(Aµ) =
∫

DAeiSeff(Aµ+ 1
e
∂µα(x)) , (58)

so it must be true that

Leff(A) = Leff(F ) . (59)

This is one of the ways to verify the gauge invariance of the effective action. All terms
that originate from the trace expansion are powers of F 2 (akin to Euler–Heisenberg La-
grangian). In the end, the low energy effective theory does not contain external fermions
and can be schematically written as

S =
∫

d4x

[
−1

4F
2 + e2

32π2β(x)FF̃ + jµA
µ + (powers of F 2)

]
. (60)

So, in essence, this system naturally displays a non-dynamical axion-like term β(x) (this
nomenclature is due to the resemblance between the result and the hypothetical Axion
particle coupling originally introduced by Wilczek (WILCZEK, 1987)) that encodes the
energy-momentum separation of the Weyl nodes and any power of the tensor field strength.
Historically, in high energy physics, the axion was proposed to solve the CP problem
in quantum chromodynamics (QCD) (PECCEI; QUINN, 1977b; WEINBERG, 1978b;
WILCZEK, 1978). This problem consists of the non-observation of P and T symmetry2

violations in QCD experiments or, similarly, that the violating parameter theta is extre-
mely small. A solution to this to this unpleasant fine-tuning was proposed by Peccei and
Quinn (PECCEI; QUINN, 1977b; PECCEI; QUINN, 1977a) (see (PECCEI, 2008) for a
review) that promoted the theta parameter to a dynamical field associated with a new

2 In HEP it is usual to use CP instead of T since the only difference between the two transformations is
that CP is unitary and T is anti-unitary.
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pseudoscalar particle called axion (by Wilczek (WILCZEK, 1978)). This formulation has
been investigated with no success and was ultimately discarded but this generated other
constructions with different fields such as the “invisible Axion” models that are still alive
as viable options (KIM, 1979; SHIFMAN; VAINSHTEIN; ZAKHAROV, 1980; DINE;
FISCHLER; SREDNICKI, 1981). Beyond this trail, Axion physics has been revisited
repeatedly over the years upon the expectation that it can serve as a good description of
a variety of phenomena. As we will see in chapter 3, the previous action can be linked to
the phenomenology of topological materials.

On linear order (ignoring the higher-order terms in the field strength tensor), this
action is responsible for the phenomenology described by the following equations of motion

∇ · E = ρ+ e2

8π2 ∇β · B ,

∇ × E = −∂B

∂t
,

∇ · B = 0 ,

∇ × B = ∂E

∂t
+ j + e2

8π2

(
∂β

∂t
B + ∇β × E

)
.

(61)

We can extract some insight from these equations of motion as to what happens in the
region that β varies. The first equation indicates that, in this region, a magnetic field
act as a source for the electric field, and the last equation tells us that the combination
∂β
∂t

B + ∇β× E acts as a current if there is a temporal variation of beta and the magnetic
field or space variation and perpendicular electric field.

Computing the derivative of the effective Lagrangian (to linear order) in terms of
the electric field (using eq. (11)) gives the electric polarization D

D = ∂Leff

∂E
= E − e2

8π2βB , (62)

and in terms of the magnetic field the magnetic polarization H

H = −∂Leff

∂B
= B + e2

8π2βE . (63)

The presence of the β term changes the constituent relations that are necessary to unders-
tand how the electric and magnetic fields polarizes the system. The cross-field polarization
(an electric field induce an magnetization and vice-versa) is known as TME (topological
magneto-electric) effect (QI et al., 2009b; KANE; MELE, 2005; MOORE, 2010) and we
will revisit this in chapter 3.

Beyond this, we can compute the change in the action in terms of the gauge field
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Aµ. This results in what is called “topological currents” represented by

jα = e2

4π2 bjϵjναβ∂νAβ or j = e2

4π2 E × b , (64)

that describes the anomalous Hall effect (AHE). This phenomenon is characterized by
the appearance of the Hall resistance even in the absence of an external magnetic field
(here the driven factor is the presence of an external magnetic field and an orthogonal
background space-like vector b. The other relevant phenomena are given by

jα = − e2

4π2 b0ϵ0ναβ∂νAβ or j = e2

4π2 b0B , (65)

which is the chiral magnetic effect (CME). This effect is peculiar since it indicates that a
static magnetic field generates an electric current. More on these two in chapter 3.

2.2 θ = 0 or π electrodynamics

The discussion done in the last section about the chiral phase in the mass term can
be made “trivial” by removing the space-time dependency and choosing β(x) = θ with θ

being 0 or π so that

mψψ →


+mψψ, for θ = 0

−mψψ, for θ = π .
(66)

This removes completely bµ from the action since the choice of β = 2bµxµ is no longer
possible because it must now be space-time independent. The anomaly computation can
follow the same path if the mass term obey3


m > 0, for θ = 0

m < 0, for θ = π ,
(67)

and the resulting anomaly term is

SAnomaly = e2θ

32π2

∫
d4xFF̃ (68)

3 One could think that the mass parameter variates in one direction as m(z) equals +m for z > 0 and
−m < 0 (z = 0 is a smooth transition as we expect from the discussion in the next part of this section).
In this way, we only do the chiral rotation for the region z < 0 and introduce the nontrivial theta term.
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where FF̃ = F µνF̃µν = 1
2ϵµναβF

µνFαβ as always. The affirmation that θ equals 0 or π is
not fully correct. The theta term, to be compatible with the topology of the U(1) gauge
theory, is periodic mod 2π (or θ ∈ [0, 2π)). There are various derivations of this condition
based on different assumptions (see (VAZIFEH; FRANZ, 2010; WITTEN, 2016) for two
examples4) but the principal point is that, after imposing suitable boundary conditions,
the action obeys

SAnomaly = θN with N ∈ Z (69)

Following this, the generating functional becomes

exp (iSAnomaly) = eiNθ (70)

which deduces that the values of theta are periodic mod 2π. This open an interesting
case, the θ contribution, together with the Maxwell term is

Leff = 1
2(E2 − B2) + e2

8π2 θB · E (71)

Under parity P (rules in eq. (23)) and time-reversal T (rules in eq. (24)) this term
transform as

P : B · E(t, x⃗) → B · (−E)(t,−x⃗), (72)
T : B · E(t, x⃗) → (−B) · E(−t, x⃗), (73)

meaning that

P or T : θ → −θ. (74)

This translates to the affirmation that a generic θ breaks both parity and time-reversal
but, there is a clear exception which is the value of θ = 0. The interesting is that another
value is possible once we consider the definition of θ up mod 2π; the value of θ = π is
also valid in this case. Both values correspond to equivalent systems, which are P and T

invariant. If we include the fact that the origin of this quantization lies on the topology
of the U(1) gauge theory we can expect that the value of θ = π has non-trivial topology.
This is what happens in the so-called topological insulators (QI; HUGHES; ZHANG, 2008)
which have two distinct phases (or has a Z2 classification). The first one is the normal (or
trivial) insulator phase with θ = 0 (mod 2π), the second is the topological time-reversal
invariant insulator with θ = π (mod 2π). We will leave most of the discussion involving

4 Another good material is David Tong’s lectures on Gauge Theory (TONG, 2018).



36

topological insulators and their relevance in condensed matter to chapter 3. Here we will
concentrate on more generic features linked to the field theory characterization.

Let us examine a few characteristics of this model. The effect of the theta term
is non-trivial as well since a partial derivative on the effective action indicates that theta
term does not contribute to the system dynamics since it is a total derivative, e.g.

SAnomaly = e2θ

32π2

∫
d4x ∂µ(ϵµνρσAν∂ρAσ) , (75)

this suggests that the non-trivial contribution occurs due to the boundary effects. One
easy way to see this is to compute the modification of the constituent relations introduced
by the θ. Varying the Lagrangian in terms of the electric field (similar to the computation
in the final part of sec. 2.1) gives the electric polarization D

D = ∂L
∂E

= E − e2

8π2 θB , (76)

and in terms of the magnetic field the magnetic polarization H

H = −∂L
∂B

= B + e2

8π2 θE . (77)

Those modified constitutive relations indicate that it is possible to generate a mixed
polarization when θ changes from one constant value to the other one. This is exactly
what one expects to happen in the boundary between a usual and topological insulator.
The smooth change between θ = 0 and θ = π produces a magnetic polarization in the
electric field and vice-versa. Another similar form to reaching those conclusions is to do
a partial derivation on the anomaly contribution, and consider the variation of θ in the µ
“direction” at the boundary as ∂µθ, reaching

SAnomaly = − e2

32π2

∫
d4x ϵµνρσ(∂µθ)Aν∂ρAσ . (78)

Now, varying the action in terms of gauge field results in what is called “topological
currents” represented by

jα = e2

4π2∂jθϵjναβ∂νAβ or j = e2

4π2 E × ∂θ (79)

jα = − e2

4π2∂0θϵ0ναβ∂νAβ or j = e2

4π2∂tθB , (80)

that describes the anomalous Hall effect (AHE), and the chiral magnetic effect (CME)
but only on the boundary where the value of θ changes from θ = 0 to θ = π. This is
commonly known as topological magneto-electric (TME) effect (QI et al., 2009b; KANE;
MELE, 2005; MOORE, 2010) and is responsible for some interesting phenomena on its
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boundary5. An interesting effect occurs when an electric charge is placed near a topological
insulator induces, the induced mirror charge inside the material has magnetic charge and
it is possible to realize the Witten effect (QI et al., 2009a) that assign a fractional electric
charge to a magnetic monopole (thus appearing to be a dyon) (WITTEN, 1979). We will
revisit those topics in section 3.

2.3 Dynamical axion electrodynamics

As pointed out in (WANG; ZHANG, 2013; MACIEJKO; NANDKISHORE, 2014;
YOU; CHO; HUGHES, 2016), if one is interested in dynamic Axion-like field then it is
a fruitful endeavor to include an interaction. This allows for the chiral symmetry to be
dynamically broken due to the formation of a chiral condensation induced by the four
fermions pairing, as we will see. The starting point is the same as the section 2.1 but,
with the inclusion of the interaction the system is

Z =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell+

∫
d4xLint) , (81)

with S0 being given by eq. (36) and SMaxwell by (37). The pairing in this case is

Lint = −λ2
(
ψ(x)PLψ(x)

) (
ψ(x)PRψ(x)

)
, (82)

where PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) are chiral projectors and the coupling λ has
mass dimension −1 as expected to give the action term the correct mass dimension. Note
that this pairing connects left and right handed fields as one can see in

ψ(x)PLψ(x) = ψ†
R(x)ψL(x)

ψ(x)PRψ(x) = ψ†
L(x)ψR(x)

(83)

so that Lint. = −λ2
(
ψ†
RψL

)(
ψ†
LψR

)
(for more details on this interaction see appendix D).

To “decouple” the interaction term, one can use a auxiliary complex field ϕ(x). In this
case, we can choose

ϕ(x) = λψ(x)PLψ(x) ,
ϕ∗(x) = λψ(x)PRψ(x) .

(84)

5 Other intriguing topics could be discussed, like the connection between the Atiyah-Singer index theorem
and Fermi zero modes, which links to integer quantities with two distinct origins. One is an integer
because of quantum mechanics and the other because of the topology. See lectures on Gauge Theory
(TONG, 2018).
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The auxiliary field ϕ respects C,T, and U(1), but it transforms under chiral rotation
and Parity P (see, respectively, appendix D.4, D.3, D.5, D.6 and D.2 for more informa-
tion). Specifically, if the spinor field transforms under chirality as ψ → eiβγ5ψ then the
field transforms as ϕ(x) → e−2iβϕ(x). Using this auxiliary fields the interaction term
can be “decoupled” through the Hubbard-Stratanovich transformation (see (ALTLAND;
SIMONS, 2010) for more details)

e−λ2(ψ†
RψL)(ψ†

LψR) =
∫

D(ϕ, ϕ∗)e
∫

d4x(|ϕ|2−λ(ϕ∗ψPLψ+ϕψPRψ)) . (85)

This transformation introduces dynamics (it is integrated in the field functional) for the
complex scalar field ϕ(x) so that

Z[ψ,A] → Z[ψ,A, ϕ] =
∫

D
(
ψ†, ψ, A, ϕ, ϕ∗

)
ei(S0+SMaxwell+

∫
d4xLH-S) , (86)

where, again, the (· · · ) indicates the field content of the generating functional, with HS
action

LH-S = −λψ(x)(ϕ∗PL + ϕPR)ψ(x) + |ϕ|2 . (87)

Now the process is similar to section 2.1, we can eliminate the bµ term with the transforma-
tion ψ(x) → ψ′ = ei

1
2β(x)γ5

ψ(x) with β(x) = 2bµxµ. As expected, this also contribute with
a non-trivial factor to the Jacobian integration measure, the chiral anomaly. Following
similar steps as to the ones done in section 2.1, the system becomes

Z =
∫

D
(
ψ†, ψ, A, ϕ, ϕ∗

)
ei(S′

0+SMaxwell+SAnomaly+
∫

d4xL′
H-S) , (88)

with L′
0 = ψ(x)

(
i /D
)
ψ(x) and LAnomaly = e2

32π2β(x)FF̃ and, as noted before, the Hubbard-
Stratanovich auxiliary complex field ϕ(x) also transforms and their Lagrangian becomes

LH-S → L′
H-S = −λψ(x)eiβγ5(ϕ∗PL + ϕPR)ψ(x) + |ϕ|2 . (89)

It is argued in (WANG; ZHANG, 2013; MACIEJKO; NANDKISHORE, 2014) that the
strong coupling dynamics of the theory favor the formation of a condensate ⟨ϕ⟩ ≠ 0,
resulting in the dynamical break of the chiral symmetry resulting in the appearance of a
new pseudoscalar particle akin to the axion in the Peccei-Quinn mechanism. Supposing
that small fluctuations around the condensate ⟨ψ†

R(x)ψL(x)⟩ = v3 can be approximated
by

ϕ(x) = λv3ei
θ(x)

f (90)
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where f is a mass scale and v3 is a constant of mass dimension 3. This also changes
the integral measure from D(ϕ, ϕ∗) to Dθ, i.e. the only degree of freedom relevant is the
“phase” θ(x)6. This allows for the interaction part to be written as

ϕ∗PL + ϕPR = λv3

2

(
e−i θ(x)

f (1 − γ5) + ei
θ(x)

f (1 + γ5)
)

= λv3
(

cos
(
θ(x)
f

)
+ γ5 sin

(
θ(x)
f

))

= λv3ei
θ(x)

f
γ5

(91)

also |ϕ|2 = λ2v6. The Hubbard-Stratanovich Lagrangian becomes

L′
H-S = −λ2v3ψ(x)ei(β+ θ(x)

f )γ5ψ(x) + λ2v6 . (92)

Now we can do a field redefinition θ′(x)
f ′ = β(x) + θ(x)

f
, to simplify the phase of the last

equation, the scalar field leading to

L′
H-S → L′′

H-S = −λ2v3ψ(x)ei
θ′(x)

f ′ γ5ψ(x) + λ2v6 . (93)

This field redefinition does not change the scalar field integral measure (only “relabels”
Dθ to Dθ′) but allow for the cancelation with the chiral rotation

ψ → ψ′ = e
− i

2
θ′(x)

f ′ γ5ψ (94)

so that

LH-S = −λ2v3ψ(x)ψ(x) + λ2v6 , (95)

where the ′′ were dropped. We can not forget that this chiral rotation results in a new
Jacobian for the anomaly with the θ′(x)

f ′ angle leading to

SAnomaly =
∫

d4x

(
β(x) − θ′(x)

f ′

)
e2

32π2FF̃ (96)

where FF̃ = F µνF̃µν = 1
2ϵµναβF

µνFαβ as always. One major difference from the com-
putation done 2.1 is the contribution from the quadratic fermionic part leading to the
appearance of a fermionic mass −mψ(x)ψ(x) with m = λ2v3, leading to the following

6 This is equivalent to parametrizing the condensate with ϕ(x) = λv2η(x)ei
θ(x)

f and making the field
η(x) static.
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fermionic Lagrangian

Lfermion = ψ(x)
(
i /D −m− 1

2f ′γ5/∂θ
′(x)

)
ψ(x) . (97)

where the last term originates from the local chiral transformation 94. The final system
of this computation is

Z =
∫

D
(
ψ†, ψ, A, θ′

)
ei(Sfermion+SMaxwell+SAnomaly+λ2v6) , (98)

with SMaxwell given by equation (37), SAnomaly is equation (96) and Sfermion is equation
(97). This finalizes the necessary steps on the microscopic fermionic system, and we can
compute the effective action by integrating out the fermions degree of freedoms. I will
drop the ′ from the scalar field, and its factors, from now on. Following the same steps
as 2.1 we obtain

Z(j) =
∫

D(A, θ)ei(Seff+SAnomaly+SMaxwell+
∫

d4x(λ2v6+jµAµ+Jθ)) , (99)

with

Seff =
∑
n=1

i

n
Tr
−ie /A− 1

2γ5/∂
θ(x)
f

i/∂ −m

n . (100)

Again we can understand this expression in terms of Feynman’s diagrams. This trace will
generate various graphs, some are

∑
n=1

i

n
Tr
−ie /A− 1

2γ5/∂
θ(x)
f

i/∂ −m

n → + + + + + · · · ,

where the lines represent the scalar field (dashed), the photon (wave), and the fermion
(solid) field. We can see that new interaction terms can be created from this computation
and some general points can be explored here. The term proportional to the gauge field
A alone contribute with the same terms that were described in 2.1, the fermion bubble
with insertion of n insertion of gauge lines. Other terms are allowed to be included but,
since gauge invariance is still valid, the resulting effective action must obey Leff(F 2).

Another point is that there only can be generated graphs with an even number
of scalar lines since θ carries a γ5 matrix, the trace of an odd number of these is always
zero (SCHWARTZ, 2013). The first contribution (third term of right hand side of last
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equation in momentum space), therefore, is

∝ Tr


γ5/∂

θ(x)
f

i/∂ −m

2 = Tr
[

1
/p−m

γ5/∂
θ(x)
f

1
/p−m

γ5/∂
θ(x)
f

]

= 1
f 2

∫ d4p

(2π)4
1

(p2 −m2)2 Tr
[
(/p+m)γ5/∂θ(x)(/p+m)γ5/∂θ(x)

]
= 1
f 2

∫ d4p

(2π)4
1

(p2 −m2)2

(
pµ∂νθpα∂τθTr[γµγνγαγτ ] −m2∂µθ∂νθTr[γµγν ]

)

= −
(
∂θ

f

)2 ∫ d4p

(2π)4
1

(p2 −m2)2

(
p2

2 + 4m2
)

(101)

where a series of properties of Dirac’s algebra were used (SCHWARTZ, 2013). For our
purpose, we only need the leading term which is

leading∝ −m2

f 2 (∂θ)2
∫ d4p

(2π)4
1

f 2(p2 −m2)2 ∝ m2

f 2 (∂θ)2 ln m2

Λ2
cutoff

(102)

where it was used the derivative method to regularize the momentum integral, Λcutoff is a
generic cutoff (see (SCHWARTZ, 2013)). The point is that the term proportional to /∂θ

originates the dynamical part of the axion-like field θ(x) with the form ∝ m2

f2 (∂θ)2. We
will set it to the canonical form later on.

We still need to address the origin of the mass term for the scalar field. The
previous calculation shows the impossibility of generating the mass term from the dia-
grammatic expansion of the trace. This is an expected result since this term appears in a
nonperturbative way. Only a handful of special theories can be done non perturbatively.
One such example is the Gross-Neveu (GROSS; NEVEU, 1974; SAZDJIAN, 2015). This
theory describes N massless Dirac fermions with a four fermi interaction. The central
point is that in this case it is possible to compute the effective potential of the composite
field. That is, the computation of

eiΓ =
∫

D
(
ψ†, ψ

)
eiS0 = ei

∫
d4xLeff(x) (103)

can be done exactly, the relation between V(ψψ) (the potential before the fermionic
integration) and the V (θ) (potential after the integration) is computable. This includes
the extraction of the minimum of the potential. In order to avoid this computation,
we started with the supposition of the potential minimum in equation (90). With that
being said, we can illustrate the appearance of the mass term for the θ field by doing
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perturbation ϕ → λ
〈
ψ†
R(x)ψL(x)

〉
+ ϕ = λv3 + ϕ with ϕ(x) = λv3ei(

θ(x)
f

−β(x))7 in the HS
Lagrangian term LH-S = · · · + |ϕ|2. This results in

|ϕ|2 → |ϕ|2 + λ2v6 + λv3(ϕ∗ + ϕ)

= λ2v6
(

2 + ei(
θ(x)

f
−β(x)) + e−i( θ(x)

f
−β(x))

)
= 2λ2v6

(
1 + cos

(
θ(x)
f

− β(x)
))

.

(104)

Here we can see that, for small values of the pseudo-scalar field, the mass term is propor-
tional to ∝ λ2v6

f2 θ
2 since |ϕ|2 ∼ λ2v6

f2 θ
2 + · · · . The mass term for the pseudo-Axion field is

generated by the same principle that generated the mass for the spinor in equation (97)
(which originated from the condensate). This is analogous to the charge density waves
proposed in the description of a topological magnetic insulator in (LI et al., 2010) as one
can see by computing the expected value of the charge density j0 = ψ†ψ

⟨j0⟩ =
〈
ψ†ψ

〉
=
〈
ψ†(PL + PR)ψ

〉
= 1
λ

(ϕ∗ + ϕ) = 2v3 cos
(
θ(x)
f

− β(x)
)

(105)

so that the relation is |ϕ|2 ∼ λ2|⟨j0⟩|2. All those ingredients results in the effective
Lagrangian

Leff. ∝ λ2v6 + λ2v6 cos
(
θ

f
− β

)
+ m2

f 2 (∂θ)2 + combinations of
(
(∂θ)2, F 2

)
(106)

which can be expanded for small values of θ(x) and β(x) resulting in

Leff. ∝ λ2v6 + λ2v6

f 2 θ2 + m2

f 2 (∂θ)2 + λ2v6β2 + λ2v6

f
βθ + · · · (107)

where the · · · indicates combinations of θ, β (and combinations of both), (∂θ)2 and
F 2. Choosing f as to the pseudo-scalar field to be in the canonical form results in
f ∝ m ∝ λ2v3. This makes the massive term to be λ2v6

f2 ∝ λ2v6

λ4v6 ∝ 1
λ2 which motivates the

definition of a scalar mass mθ ∝ 1
λ
. Writing the full action (expanded for small θ) in its

canonical form results in

L = −1
4F

2 + e2g

32π2

(
β(x)
g

− θ

)
FF̃ + 1

2m
2
θθ

2 + 1
2(∂θ)2 + mθ

g
βθ + m2

θ

g2 β
2 + · · · , (108)

where the · · · stands for the various powers of
(
θ, β, θβ, · · · , (∂θ)2, F 2

)
and their combina-

7 To obtain this parametrization it is necessary to use eq. (90) along with redefinition θ′(x)
f ′ = β(x)+ θ(x)

f

(remember that the ′’s were dropped in the final computation).
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tions plus λ2v6. In last equation it was defined g ∼ 1/f ∼ 1/(λ2v3). The resulting system
is similar to the one proposed as a description of a topological magnetic insulator in (LI
et al., 2010) which can be called (generically) an “axion insulator” (WANG; ZHANG,
2013). This hints at a possible transition from Weyl semimetals to topological magnetic
insulators induced by the vacuum instability resulting from the four fermions interaction.

Some comments are in order. Different from the resulting effective system obtained
in section 2.1, here we have the contribution from the anomaly (composed of the term used
to cancel the bµ and the condensate’s phase) to the linear “theta” term (in this notation
the β) and the presence of the θ which is a massive dynamical field. In addition, there is a
coupling between the two which originates from cos

(
θ(x)
f

− β(x)
)
. This term generates a

space-time anisotropy linked to the beta term since mθ

g
βθ = mθ

g
(∂µbµ)θ → −mθ

g
bµ(∂µθ). If

we eliminate the β from the Lagrangian we recover the invariance under θ → −θ and the
resulting system is exactly the effective description of the topological magnetic insulator
(SEKINE; NOMURA, 2021).

Another point, it is possible to trace some analogies between the axion-like excita-
tion and the pion particle from high energy physics. In this context, the parameter f is
the “axion decay constant” and the effective action is similar to the two-photon decay of
neutral pion (WANG; ZHANG, 2013). The relation between the microscopic parameter
and the axion-photon coupling, namely g ∼ 1/g ∼ 1/(λ2v3), indicates that when the chiral
condensate gets weaker the axion-photon coupling becomes stronger. The simplification
introduced by the small theta approximation excludes from the system effects like axion
string (WANG; ZHANG, 2013; YOU; CHO; HUGHES, 2016) and other non-perturbative
effects. These singular states, such as vortices, can be described by multivalued fields
(BRAGA; GUIMARAES; PAGANELLY, 2020). These non-perturbative effects are in-
dispensable if one is interested in a comprehensive characterization of the system. The
vortices of θ are called chiral vortices in (QI; WITTEN; ZHANG, 2013). They don’t
carry magnetic flux but are responsible for a nonconservation of the naive supercurrent
of the superconductor (BRAGA et al., 2016), see also (STONE; LOPES, 2016). The
non-perturbative regime allows for the exploration of the dilution and condensation of
such configurations (BRAGA et al., 2016) but, if the goal is the perturbative analysis of
the resulting effective theory, such non-perturbative effects are not relevant. Finally, the
discussion of section 2.1 indicates that the relation between the fermionic factor bµ and
the effective description is ambiguous. I will postpone this discussion to the next section
as we enter with new information from a condensed matter perspective.

Now we can look at the equation of motions of this system. Suppressing the field
operators of higher dimension we can compute the equation of motions (sources less) for
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the gauge and pseudo-scalar fields in this system, they are

∇ · E = e2g

8π2 ∇
(
β(x)
g

− θ

)
· B ,

∇ × E = −∂B

∂t
,

∇ · B = 0 ,

∇ × B = ∂E

∂t
+ e2g

8π2

(
∂

∂t

(
β(x)
g

− θ

)
B + ∇

(
β(x)
g

− θ

)
× E

)
,

(□ −m2
θ)θ = e2g

8π2 E · B − mθ

g
β .

(109)

The electromagnetic response is also modified to

D = ∂Leff

∂E
= E − e2g

8π2

(
β(x)
g

− θ

)
B , (110)

and

H = −∂Leff

∂B
= B + e2g

8π2

(
β(x)
g

− θ

)
E . (111)

We have encountered similar equations in the previous section. The difference here is
that the effects explored in the boundary in section 2.2 were exclusive of the boundary, in
the present case this is not true since the theta filed has its dynamics (WANG; ZHANG,
2013).

Here we also see the presence of the so-called topological currents but with the
inclusion of the axion-like term. They are obtainable by variating the action in terms of
the gauge field and are represented by

jα = e2g

4π2

(
bj
g

− ∂jθ

)
ϵjναβ∂νAβ or j = e2g

4π2

(
b

g
− ∇θ

)
× E , (112)

which describes the anomalous Hall effect (AHE), and

jα = − e2g

4π2

(
b0

g
− ∂0θ

)
ϵ0ναβ∂νAβ or j = e2g

4π2

(
b0

g
− dθ

dt

)
B , (113)

which is the chiral magnetic effect (CME). More on these two in chapter 3.
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3 BRIEF CONCEPTS IN CONDENSED MATTER PHYSICS

The previous discussion, chapters 1 and 2, serves as the foundation as we proceed to
more specific topics in condensed matter. This chapter develops as follows. I start with the
very basics of Bloch’ and Wilson’s band theory and Landau’s symmetry breaking theory,
two essential points in understanding the basics of condensed matter physics. Then I
proceed to discuss the integer quantum Hall (IQH) phase which acts as a gateway to the
concept of topological order in the following section. This new kind of invariant can be
characterized using topological field theory (which Chern-Simons is part of) or thru the
Bloch-state wave function of the system. Topological field theory will be used to link the
introductory chapters and the appearance of Axion physics in condensed matter physics.
The first example is the topological insulator characterized by a topological term called
theta term, which compares the axion interaction. Despite the resemblance between
these terms, the axion-like term lacks dynamics. This is addressed as we talk about
the Weyl/Dirac semimetals. In this particular case, the presence of band-touching points
(know as Weyl points) introduces a space-time dependency encoded in the electromagnetic
response. The case on which a specific interaction is included is also approached. This
will be important to the construction of our model in the next chapter.

This work is not an extensive review of none of the topics treated here as it is not
the focus of the thesis. The topics will be introduced as needed and the relevant citations
will be provided.

3.1 Introduction

Up until the 1980s (EL-BATANOUNY, 2020), the base of description for the elec-
tronic phases were the elctronic band theory proposed by Bloch and Wilson (BLOCH,
1929; WILSON, 1931a; WILSON, 1931b) along with the symmetry-based description of
Landau (GINZBURG; LANDAU, 1950; LANDAU, 1937).

The later, Landau’s symmetry breaking theory (GINZBURG; LANDAU, 1950;
LANDAU, 1937), explains the various phases of matter (such as solid, liquid, gas, ferro-
magnetic, etc.) elegantly. Although all matter is formed by the same basic constituents
(electrons, protons, and neutrons) they can be organized in ways that effectively behave
differently. These patterns of organization are essential to the description of the emergent
behavior and are called “order”. The most basic example is the order that differentiates
the particles in the liquid from the crystal state. In the first, the particles maintain con-
tinuous translation symmetry order (i.e. can freely move), but when they lose this (in a
phase transition) they become bound to a particular set of positions in the crystal struc-
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ture. The new order now is the discrete translation symmetry thus the change between
the two states is described by a spontaneous symmetry breaking (spontaneous meaning
that the system reorganizes itself to reach a stable configuration).

Now, Bloch’ and Wilson’s band theory (BLOCH, 1929; WILSON, 1931a; WILSON,
1931b), understands that the electron states within a periodic potential created by the
material (or crystalline structure) are no longer described by a plane wave. Instead, they
are described by Bloch wave state |unk⟩ where k is the crystal momentum and n the
band index, all those quantities are defined for a specific unit cell. This way, an electron
wavefunction is represented by

ψnk(r) = unk(r)eik·r (114)

with unk(r) being a periodic function that respects the appropriate boundary conditions
of the lattice. If a is the lattice constant then unk(r) = unk(r + a). This allows for the
definition of a Bloch Hamiltonian H(k) whose eigenstate is the Bloch wave and eigenvalue
is the energy En(k). For each Brillouin zone, En(k) describes the energy bands that are
used to classify the solid into the usual phases (insulator, metalic, semimetalic, conductor
and semicondutcor).

In the next section, we examine a phenomenon that, once fully understood, expands
the paradigm created by Landau’s symmetry-breaking theory.

3.2 Integer quantum Hall and topology, changing the paradigm

This paradigm changes after the observation of the different quantum Hall effects
(QHE) (KLITZING; DORDA; PEPPER, 1980; TSUI; STORMER; GOSSARD, 1982).
The point is that distinct quantum Hall states can not be characterized by the usual
prescription with local parameters like symmetries, it is necessary to include the topo-
logical properties. For a more complete (and pedagogical) discussion on the connection
between topological nontrivial quantum phases and quantum entanglement see (STA-
NESCU, 2016), also discussed in articles like (CHEN; GU; WEN, 2010). In our discussion,
I will illustrate these topological features by examining the integer quantum Hall (IQH)
phase that was characterized by von Klitzing et al (KLITZING; DORDA; PEPPER, 1980)
(for a recent general review on the subject see (KLITZING et al., 2020)).

Figure 4a represents the basics of the quantum Hall setup. The applied voltage in
the y-direction Vy generates a current in this same direction Iy in addition to a current
in the x-direction Ix. This last is known as Hall current and is the fruit of the Lorentz
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force. More generically, we can write

V = ρI →

Vx
Vy

 =

 ρxx ρxy

−ρxy ρxx


Ix
Iy

 (115)

where ρ defines the resistance (the “usual” resistance is the ρxx). In the “normal” behavi-
our there is the presence of the electrical resistance (main diagonal) plus the Hall resistance
ρxy = B

ρe
(here ρe is the electron gas density) which indicates that the resistance is pro-

portional to the applied magnetic field. When the gas of electrons is at low temperatures,

Figure 4 - Inter quantum Hall schematics and Landau levels

(a) (b)

Subtitle: Figure (a) illustrates the experimental setup for measuring the voltage in a two-dimensional
gas of electrons under the influence of a magnetic field. Figure (b) represents the Hall
resistance, the plateau is represents the IQHE, and the “slope” is the usual Hall resistance.

Source: EL-BATANOUNY, 2020, p. 220

and under a strong magnetic field, a new phenomena occurs. Under those circumstances,
the energy spectrum exhibits flat energy bands known as Landau levels. On this pla-
teau, the system is in an insulating phase (ρxx = 0) but the Hall resistance is quantized
(ρxy = ν−1h/e2 with ν ∈ N). This is evident from the graph of the Hall resistance, each
flat line is associated with an integer value, and between then we have the expected Hall
resistance proportional behavior (figure 4b). Beyond the clue of the proportionality factor
being similar to the fine-structure constant of QED, the phenomenon is independent of the
detailed description of its constituents. Information like the geometry and impurities are
irrelevant (given that the gap between Landal levels is large enough). More information
on those topics can be found in textbooks like (EL-BATANOUNY, 2020; ALTLAND;
SIMONS, 2010). The relevant point in this discovery is the observation that this new
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phase can not be distinguished by any observable symmetry break, it is quantized and
robust against smooth changes in the system.

Since the two-dimensional system is in the insulating phase, the only form to
be a current is if the propagation occurs through the perimeter. These states, which
are confined to the edge of the system, are called edge states. Another feature is their
robustness against the effect of impurities (they can not negates the flow of current)
which leads to the idea that the current is being carried by chiral edge states. In this
context, chiral is referring to the unidirectional electron motion without any possibility
to move in the opposite direction as it occurs in the case of Weyl fermions. It is possible
to visualize these edge modes by considering the movement of particles, in a close 2d
system, in a magnetic field. They will make circular paths in a fixed direction that
depends on the orientation of the magnetic field and the electric charge (as is expected by
Lorentz force). Near the edge of the system, the orbital motion will be interrupted by the
boundary which will result in a skipping orbit running parallel to the 1-dimensional edge
(see (EL-BATANOUNY, 2020; STANESCU, 2016) for more pedagogical view). This
motivates the chiral edge states and their unidimensional movement8. In reality, the
existence of such states is enforced by topological considerations in the so-called bulk-
boundary correspondence (EL-BATANOUNY, 2020; STANESCU, 2016). This is a general
observation, valid for any system where there is an interface between a “trivial” state and a
“topologically nontrivial” state, where there will always be a gapless state at the boundary.

Here we can diverge from the historical reasoning and talk about how this effect
can be described, without knowing the internal electronic structure, in terms of gauge
fields (WITTEN, 2016)9. The basic assumptions are two; the system is in the insulator
phase (meaning that there is an energy gap between the ground state and the first excited
state) and, there are no extra relevant degrees of freedom besides the electromagnets ones,
namely the U(1) gauge field Aµ. As previously mentioned, the IQH effect occurs in a two-
dimensional scenario (or 2 + 1 dimensions). In this dimensionality, the unique term that
can be constructed that respect the previous assumptions (and is also gauge invariant) is
the Chern-Simons term

SCS = k

4π

∫
d3x ϵµνρAµ∂νAρ . (116)

The epsilon symbol ϵµνρ has tree indexes varying from 0 to 2 (as expected from 2 + 1

8 This has other interesting consequences. The chiral anomaly (in QFT) dictates that one can not
construct a system with only chiral particles in one dimension and a similar outcome is expected
in many-bode systems (Nielsen-Ninomiya theorem). The loophole, in the previous explanation, is the
detail that the 1d system is the boundary of a 2d system. For more pieces of information see (WITTEN,
2016).

9 Another good resource is David Tong’s lectures on quantum hall effect (TONG, 2016).
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dimensions) and is totally antisymmetrical. The catch in this term is that the density itself
is not gauge-invariant but the integral is up to a total derivative. This is straightforward,
doing a gauge transformation Aµ → Aµ + ∂µω results in

SCS → SCS + k

4π

∫
d3x ∂µ(ωϵµνρ∂νAρ) , (117)

the second term is a total derivative as previously mentioned. Another quality of the
Chern-Simons term is that it breaks both parity and time-reversal (as one can see by
applying the rules 23 and 24 from the section 1.3). Now to connect this term with the
IQH effect we can compute the induced current in a material that is characterized by the
Chern-Simons action. The electromagnetic response is

Ji = δSCS

δAi
= − k

2πϵijEj , (118)

where the proportional coefficient is the Hall conductivity. It is easy to see that this is
indeed the Hall current if we assume a material in the z = 0 planes, the current in the
x-direction is

Jx = − k

2πEy, σxy = k

2π , (119)

meaning that it is proportional to the electric field in the y-direction, as expected from the
Hall current. The Chern-Simons term captures the basics of the IQH but only if k = e2ν

ℏ

is an integer value identified with the energy levels ν. As a fact, this is an imposition
that originates from the consistency between the gauge fields and quantum mechanics10

(similar to the discussion in sec. 2.2) that tells us that the CS term is gauge-invariant
mod 2πZ.

The IQHE servers as an example of how the electromagnetic response of mate-
rial with non-trivial topology is expressed in the Chern-Simons term. The “reasoning”
to construct the electromagnetic description is greatly simplified in 2+1 dimensions, in
general, this kind of logic can not be applied to other cases. A more concrete approach
would be to compute the fermionic integration of the microscopic theory to obtain the
effective action. Luckily, we have already encountered the generalization of the CS term in
the previous chapter. In the next part, we will make the connection between the effective
action computed in ch. 2 and the systems in condensed matter physics.

Now we can go back to the historical view. In 1982, the connection with topology
was made by Thouless, Kohmto, Nightingale, and den Nijs (TKNN) (THOULESS et

10 The basic idea is the same employed by Dirac in the theory of magnetic monopoles that argued that
the action is only gauge-invariant mod 2πZ. See (WITTEN, 2016) or (TONG, 2018).
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al., 1982) by showing that the IQH is associated with the topological invariant known
as the first Chern number. It become clear in 1984 that these concepts were linked to
Berry’s geometric phase framework (BERRY, 1984) which is sensitive to the topology of
the momentum space spawned by Bloch wavefunction. We will leave this subject to be
discussed in the next section where we will examine the Weyl semimetal.

Topology, in an oversimplified way, is a field of mathematics focused on parti-
cular characteristics, dubbed topological properties, that are invariant under continuous
deformations. These properties can be attributed to different objects. In one example,
geometric forms are labeled by an integer number called genus g and, mathematically, the
relation between this integer and the geometric properties of the space is given by
∫

A
KdA = 2π(2 − 2g) . (120)

This is known as the Gauss-Bonnet theorem (NAKAHARA, 1990), the local dependence
is embedded in A (boundary) and K (Gaussian curvature). Any object in the same
topological class has the same genus, to change it is necessary to make a non-smooth
transformation (like punching a hole or patching two parts). A usual example is a con-
nection between a mug and a torus. It is possible to transform one into the other since
they belong to the same topological order, i.e. they have the same genus number. This
is not the case between a torus and a sphere. The fields of topology treat many objects,
including one without geometrical correspondent (STANESCU, 2016).

In physics, the topological order identifies any system that can be smoothly trans-
formed, or adiabatically, into another of the same class. Within Band theory’s perspective,
the crystal momentum is a good quantum number, allowing us to view the Block wave-
function as a mapping between the Brillouin zone and the Hilbert space. This opens
the possibility that the topology structure of the Hilbert space is relevant for the effective
description. The principal lacking point of Landau’s theory is that even without any sym-
metry breaking it is possible to change the phase of the system by changing its topological
order (CHEN; GU; WEN, 2010) 11, this is a groundbreaking concept 12.

This is a fascinating notion. The quantization number in the Hall conductivity can
be analyzed in the macroscopic description (using the Chern-Simons theory, the “topo-
logical” effective field theory13, (QI; HUGHES; ZHANG, 2008)) or using the microscopic
description (topological invariant thru the Bloch-state wave function of the system, the
TKNN invariant (THOULESS et al., 1982)), both result in a quantization condition.

11 This article presents a good discussion about topological order and long-range quantum entanglement.
If the reader wish to learn more about topological order consult (ZENG et al., 2015).

12 Acknowledged in the 2016 Nobel prize https://www.nobelprize.org/prizes/physics/2016/
prize-announcement/

13 To avoid any confusion. Here I am referring to general field theories that show topological properties.

https://www.nobelprize.org/prizes/physics/2016/prize-announcement/
https://www.nobelprize.org/prizes/physics/2016/prize-announcement/
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In the following section, we will explore more of this matter since we will discuss
some realizations of axion physics in condensed matter.

3.3 Material realizations of axion physics

3.3.1 Topological insulators

Table 2 - Discrete symmetry and value of θ term

Time-reversal Inversion Value of θ (mod 2π)

Yes Yes 0 or π
Yes No 0 or π
No Yes 0 or π
No No Arbitrary

Subtitle: These are the constraints imposed by the discrete symmetries on the value of the θ term. The
case without time-reversal and inversion will be important for the theta term with space-time
dependence.

Source: SEKINE; NOMURA, 2021, p. 4. Adapted by the author.

Historically, this new phase of matter was observed in 2005 (KANE; MELE, 2005;
HASAN; KANE, 2010), and it is very similar to the IQHE, as it is a bulk insulator (gap-
ped energy spectrum) with gapless boundary states akin to the edge states previously
discussed. In the topological field theory description of the integer Hall effect, the 2+1
dimensions Chern-Simons theory, both parity P and time-reversal T symmetries are bro-
ken. The previous affirmation does not hold in 3+1 dimensions because it is possible to
break either one of the symmetries (see table 2). It is possible to construct a topological
insulator with, at least, one of the symmetries of time-reversal and inversion. Specifi-
cally, topological/normal insulators have discrete values of the theta term because, in
the presence of time-reversal and/or parity symmetry, theta is quantized with θ = 0 for
the trivial insulator (mod 2π) and θ = π (mod 2π) for the topological insulator. It can
be expected that the interface between these two topological phases must be a smooth
transition between the two values of θ, that can occur with a spacetime varying Axion
field interpolating between 0 and π. We already encounter a similar system in section 2.2
so it is convenient to revise it briefly.

There we started with the microscopic action composed of the massive Dirac field
plus the electromagnetic interaction and action. The presence of a fermion mass in the
microscopic description indicates that the system is in the insulator state. We supposed
that the mass term would flip from +m to −m when the theta term passes from 0 to π.
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This is consistent with the change that occurs in the boundary between two topological
distinct materials, the chiral rotation (that introduces the anomaly) is only relevant in
the topological insulator region, resulting in the contribution described in eq. (68), or

SAnomaly = e2θ

32π2

∫
d4xFF̃ , (121)

where FF̃ = F µνF̃µν = 1
2ϵµναβF

µνFαβ. The computation is similar to section 2.1 but with
the simplification introduced by the theta being an angle. There are other forms to cal-
culate this contribution (SEKINE; NOMURA, 2021). The topological term in the case of
3D insulators is known as theta term, and its theoretical description, involving axion-like
interaction term, was developed in (QI; HUGHES; ZHANG, 2008). The boundary effects
of this term are explored in section 2.2, the principal is the topological magneto-electric
(TME) effect (QI et al., 2009b; KANE; MELE, 2005; MOORE, 2010), which can be des-
cribed as the generation of a cross-field polarization (an electric polarization is generated
by an external magnetic field and vice-versa). Some consequences are the appearance of
the anomalous (half-quantized) Hall effect, observed experimentally (CHANG et al., 2013;
CHECKELSKY et al., 2014), see (SEKINE; NOMURA, 2021) for more information) and
the chiral magnetic effect, and Faraday and Kerr rotations (QI; HUGHES; ZHANG, 2008;
MACIEJKO et al., 2010; TSE; MACDONALD, 2010), this last is an effect first known in
particle physics (ABBOTT; SIKIVIE, 1983; WILCZEK, 1987). Another interesting phe-
nomenon occurs when an electric charge is placed near a topological insulator, the exotic
material induces a mirror magnetic charge inside it, and is possible to realize the Witten
effect (QI et al., 2009a) that assign a fractional electric charge to a magnetic monopole
(WITTEN, 1979).

If we relax this constraint, i.e. consider a system with broken time-reversal and
parity symmetry (e.g. in a magnetically order phase breaks reversal symmetry), the theta
term can assume arbitrary values (ESSIN; MOORE; VANDERBILT, 2009) as one can
see in table 2. Beyond not being bound to the values of 0 or π, this term can also be
space-time dependent as θ(x, t) but, this does not relax the mod 2π restraint since the
origins of this are the topology of the U(1) gauge and quantum mechanics (we already
noted this in ch. 2). One system where this can be realized is the Weyl semimetal which
will be discussed in the next subsection.

3.3.2 Weyl/Dirac semimetals

The systems described above are insulators (which have an energy gap in their
electronic band), now we will address the theta term in semimetals. Semimetals refer
to a solid-state system whose electronic bandstructure (conduction and valence bands)
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touches at one point near the Fermi energy leading to a gapless phase. In 2011 it was
proposed a material called Weyl semimetal (WSM) (WAN et al., 2011) which extends
the area to Topological semimetals (TSMs). We will concentrate on the topological field
aspect of this particular system and the similar one known as Dirac Semimetals.

The definition of a topological invariant in a gapless system is not trivial since
the requirement of a global gap is a prerequisite for its basic definition. This can be
bypassed if one defines a surface around the touching points and excludes the gapless
points similarly to the construction of singular charger points in classical electrodynamics.
This interpretation can be further explored since the mathematical structure of the flux
in those singular points in momentum space resembles the dual magnetic field.

The quantity that is sensible to the topology is the Berry phase that the Bloch
wavefunction acquires in a close loop ξ around the sink/sources of Berry flux, namely

γn =
∮
ξ
dk · An(k) (122)

where An(k) = ⟨unk| i∇k |unk⟩ is the Berry connection. A non-zero Berry curvature is
similar to a non-zero “electromagnetic” curvature, that is, by Maxwell equations, the curl
of the magnetic field is non-zero only if there is a source of magnetic flux. The curl
of the Berry vector potential (or Berry connection) Bn(k) = ∇k × An(k) indicates the
presence of the singular point. That is, this term is similar to the magnetic field but in
the momentum space. Now it is possible to compute the total flux of Berry curvature
through the previously defined surface around the touching points. This results in the
topological invariant Chern number

C = 1
2π

∫
S

dS · B = n ∈ Z (123)

where S is the space containing the path ξ and the result is an integer as expected.
The Chern number is the chirality (the plus represents a source and the minus a sink
of Berry curvature in momentum space) of the Weyl/Dirac point, or topologic charge,
which describes the topology of the Weyl/Dirac semimetal. In a Weyl semimetal, the
Weyl points (band touching points) carry a topological charge (or chirality)14 ±1 and the
presence of these points are said to be topologically protected. One can view this in two
related ways.

The first one is to notice that for these band-touching points to occur one of the
discrete symmetries of parity conjugation (P) or time-reversal (T) has to be broken. The
breaking of one (or both) of these symmetries shifts the energy bands in momentum

14 This is also a consequence of the Nielsen-Ninomyia theorem (NIELSEN; NINOMIYA, 1981; FRIEDAN,
1982), which explains why Weyl fermions always appear in pairs of opposite chirality
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space of either inversion symmetry or the Weyl points are protected by the accidental
degeneracy that originates by breaking one of two symmetries. The second is to consider
that each subspace of the Brillouin zone has only one Weyl point, and to “merge” these
two subspaces a non-adiabatic transformation is required so these points are said to be
topologically protected.

The previous mechanism do not work in the Dirac semimetal since the source/sink
points are in the same subspace and thus can annihilate. Each Dirac point can be con-
sidered as the combination (at the same momentum) of two Weyl points with opposite
chirality. As stated before, Weyl points are protected in Weyl semimetals but the same
does not occur with Dirac points in Dirac semimetals. There are (at least) two different
“paths” to the construction of a Dirac semimetal, one is the unstable Dirac points, and
the other the stable and happens in quantum critical points between a 3D topological
insulator and a normal insulator. The origins of this instability are related to the discus-
sion in sections 1.4 and 1.5, where we discussed chiral symmetry violation by quantum
corrections. The other is to stabilize the Dirac points by imposing additional crystalline
symmetry. Depending on this last factor, the effective description can be constructed
with two Weyl points with chirality ±1 (linear band structure) or two Weyl points with
chirality ±2 (quadratic band structure) (YANG; NAGAOSA, 2014). The exposition done
in the previous paragraphs is brief and only serves to be introductory. It lacks some
interesting themes like the Fermi arc surface states and discussion about the Hamilto-
nian description of the energy bands in the microscopic theory. About those topics, more
comprehensive explanations can be found at (for example) (SEKINE; NOMURA, 2021;
ARMITAGE; MELE; VISHWANATH, 2018; EL-BATANOUNY, 2020).

If we restrict ourselves to the simplest possibility of Dirac semimetal (given by the
usual Dirac action) the difference in the topological description of Weyl and Dirac semi-
metals is the presence of the bµ term in the microscopic fermionic Lagrangian. In section
1.4 and 1.5 we explored the conditions around the bµ term leading to the appearance of
two touching points in the energy spectrum.

In sections 1.4 and 1.5, we explored conditions −bµbµ = −b2
0 + b2

i < m2 (where m
is the fermion mass), which led to the appearance of two touching points in the energy
spectrum. Withing this condition, we can approximate the low energy description by Weyl
action if we measure the momentum relative to the touching point (the discrepancy only
occurs in the high-energy spectrum). This results in the microscopic action considered at
the beginning of section 2.1, namely action

Z =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell) (124)
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composed of the Dirac action

S0 =
∫

d4xψ(x)
(
i/∂ + /bγ5 + ie /A(x)

)
ψ(x), (125)

(with the inclusion of the bµ term) expressed with Dirac spinors ψ =
(
ψL
ψR

)
with ψ =

ψ†γ0 = ( ψ†
R ψ†

L ), and the Maxwell action for the gauge potential Aµ. This system was
investigated, and we obtained the effective description (up to linear electrodynamics) in
equation (60) which is

Seff =
∫

d4x

[
−1

4F
2 + e2

32π2β(x)FF̃ + (powers of F 2)
]

(126)

with β(x) = 2bµxµ.
Although the theta term is similar to the topological insulator case the effect is

distinct. In the previous section, we explored the concept that the variation of the θ occurs
at the boundary between distinct topological insulators, this is the reason for the smooth
variation in theta. In the current case, the theta term has space-time dependency, meaning
that the effect is not limited to the boundary between topological distinct materials. The
effective electromagnetic response of this system (at linear order in F 2) is encoded in
current

j = e2

π2 (b × E − b0B) (127)

The electric response is called the anomalous Hall (AHE) effect and the magnetic one
chiral magnetic effect (CME) (ZYUZIN; BURKOV, 2012; GRUSHIN, 2012; WANG;
ZHANG, 2013; GOSWAMI; TEWARI, 2013; FUKUSHIMA; KHARZEEV; WARRINGA,
2008). The AHE is characterized by the appearance of the Hall resistance even when the
magnetic field is absent. In this case, the driven factor is the presence of the b perpendicu-
lar to the electric field, and it is usually said to be an intrinsic effect since it originates from
the topology factors (contrary to the extrinsic that is relater disorder of charges). There
is an interesting discussion regarding the CME. It appears that the CME allows for the
presence of a direct current along a static magnetic field even in the lack of electric fields.
This motivates the notation bµ = (µ5,b) (SEKINE; NOMURA, 2021), where µ5 = b0 is
the chemical potential between the two Weyl nodes. But, the presence of such equili-
brium current is prohibited by material considerations in crystalline solids (ARMITAGE;
MELE; VISHWANATH, 2018; BURKOV, 2018; VAZIFEH; FRANZ, 2013). That is, sta-
tic magnetic fields do not induce equilibrium currents. In other words, the system needs
to be driven out of equilibrium by applying magnetic and electric fields which generates
the chiral flow which has been experimentally observed as the negative magnetoresistance
in Weyl semimetals (SEKINE; NOMURA, 2021). The means for the generation of the
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chemical potential (or a charge pump between the nodes) is the chiral anomaly which
is the nonconservation of the number of electrons in a given Weyl cone under the effect
of parallel electric and magnetic fields. More details on this can be found in (SEKINE;
NOMURA, 2021; ARMITAGE; MELE; VISHWANATH, 2018) and, a discussion more
focused on particle physics (BURKOV, 2018).

Two points are still missing in our discussion. In ch. 1 (specifically in sections 1.2
and 1.4) the link between bµ and Lorentz invariance violation theories were made. One
of the concerns in this field is the consistency of both microscopic (Dirac action with the
inclusion of the LIV term) and the effective (induced LIV term in the electromagnetic sec-
tor). As discussed there (based on (KOSTELECKÝ; LEHNERT, 2001)), the microscopic
part is unstable, but to reach this physical violation, it is necessary to reach a momentum
scale in the order of Planck’s energy. In the material realization, this energy scale is not
reachable.

In section 2.1, it was explored some of the discussion around the ambiguity in the
calculation of the exact relation between the microscopic parameter bµ and the generated
correction kµ. It is argued in (GRUSHIN, 2012) that the ambiguity would manifest in the
Hall conductivity and the existence of a microscopic action (which considers the whole
Brillouin zone) fixed the problem. One last comment can be made here regarding the con-
nection between LIV and its realization in a material. Usually, the time-like component
of bµ introduces causality and stability problems in the context of LIV theories. Stability
is not an issue in the material realization since the presence of such a term indicates an
evanescent effect (ZHANG et al., 2015). The violation of causality (or Einstein’s causa-
lity) is considered when the group and front velocity are greater than the vacuum light
velocity (ADAM; KLINKHAMER, 2001). This criterion for the material interpretation
is controversial since it can be argued that the anomalous dispersion regime of some ma-
terial media, or a homogeneously broadened absorbing media, the relevant aspect should
be the propagation of information instead (BRILLOUIN, 1960; MILLONNI, 2004; DIE-
NER, 1996; DIENER, 1997). That is, the careful analysis leads to the conclusion that no
propagation of information occurs regardless of the group velocity being greater than c

(BRUNI; GUIMARAES; CHRISPIM, 2021).

3.3.3 Topological magnetic insulator

The next system is very similar to the Weyl/Dirac semimetal explored in the
last subsection but with the difference that, beyond the effect of the bµ term, we have
the influence of a dynamical axion-like field. This is possible if one includes a specific
interaction term that allows for the chiral symmetry to be broken dynamically (due to the
chiral condensation) and results in a new pseudo-scalar particle, akin to the Peccei-Quin
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mechanism, as pointed out in (WANG; ZHANG, 2013; MACIEJKO; NANDKISHORE,
2014; YOU; CHO; HUGHES, 2016). The microscopic action explored in section 2.3 is
similar to the one studied in sec. 2.1 (and review in the last subsection) but, with the
inclusion of the interaction. The system is

Z =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell+

∫
d4xLint) , (128)

where S0 is the Dirac action with the inclusion of the bµ term and SMaxwell is the usual
Maxwell action. The new ingredient here is the pairing which is

Lint = −λ2
(
ψ(x)PLψ(x)

) (
ψ(x)PRψ(x)

)
, (129)

where PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) is chiral projectors. Furthermore, the coupling
λ has mass dimension −1 as discussed in sec. 2.3 and it connects left and right-handed
fields. This interaction term is detailed in appendix D. As a result, the effective description
(after the condensation, i.e. ⟨ψ†

R(x)ψL(x)⟩ = v3, which is parametrized in eq. (90) as
ϕ(x) = λv3ei

θ(x)
f with f being a mass scale and v3 of mass dimension 3) of the system (at

linear order) is

S =
∫

d4x

[
−1

4F
2 + e2g

32π2

(
β(x)
g

− θ

)
FF̃ + 1

2m
2
θθ

2 + 1
2(∂θ)2 + · · ·

]
(130)

where g ∼ 1/(λ2v3) and the · · · are proportional to various powers of
(
θ, β, θβ, · · · , (∂θ)2, F 2

)
and their combinations plus λ2v6. Here, beyond the usual term which originates from
the separation of the Weyl nodes in energy and momentum, there is the presence of a
pseudo-scalar (or axion-like) field θ. The interaction term has the effect that, once the
condensation occurs, generates a mass for the fermionic field. The mass, in terms of the
microscopic variables, is m = λ2v3 (v has mass dimension 1 and was introduced in the
parametrization of the condensate). This is the reason for this system to have an effective
mass gap meaning that it is similar to a topological magnetic insulator (LI et al., 2010)
or an axion insulator (WANG; ZHANG, 2013) (indicating a possible transition between
a Weyl semimetal and topological magnetic insulators induced by the vacuum instability
resulting from the four fermions interaction). The difference here is the full coupling term
between the theta and beta which is cos

(
θ(x)
f

− β(x)
)

(obtained in sec. 2.3). This introdu-
ces a space-time anisotropy because mθ

g
βθ = mθ

g
(∂µbµ)θ → −mθ

g
bµ(∂µθ). Eliminating the

β from the Lagrangian restores the symmetry θ → −θ. The resulting system is exactly the
effective description of the topological magnetic insulator (SEKINE; NOMURA, 2021).
In this approximation non-perturbative effects are excluded as discussed previously. In
the same way that the mass for the spinor appears, the mass term for the θ (mθ ∼ λ−1)
is generated by the condensate after the integration of the fermion degree of freedom.
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Both masses have their origins in the so-called charge density waves (LI et al., 2010). The
electromagnetic response of the system is

jα = e2g

4π2

(
bj
g

− ∂jθ

)
ϵjναβ∂νAβ or j = e2g

4π2

(
b

g
− ∇θ

)
× E , (131)

which describes the anomalous Hall effect (AHE), and

jα = − e2g

4π2

(
b0

g
− ∂0θ

)
ϵ0ναβ∂νAβ or j = e2g

4π2

(
b0

g
− dθ

dt

)
B , (132)

which is the chiral magnetic effect (CME) (WANG; ZHANG, 2013; MACIEJKO; NAND-
KISHORE, 2014; YOU; CHO; HUGHES, 2016). As expected the appearance of the
axion-like term in the anomaly contribution changes the topological current15. Most of
the discussion was done in section 2.3 but further pieces of information can be found in
(WANG; ZHANG, 2013; SEKINE; NOMURA, 2021; YOU; CHO; HUGHES, 2016; LI et
al., 2010).

This finishes the relevant topics of condensed matter physics. Again most concepts
are only touched briefly and the references contain more profound discussions. In the next
chapter, our microscopic model will be constructed based on the topological field theory
using the model with dynamics axion-like excitations (obtainable by the inclusion of an
interaction term for the fermions) as a basis.

15 The presence of the axion-like term in the anomaly, together with the idea that the axion-like is linked
to charge density waves, appears to indicate that this is an extrinsic effect.
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4 WEYL-SUPERCONDUCTOR WITH DYNAMICAL PSEUDO-AXION
FIELD

In this section, I will construct the microscopic description of our model. The mo-
del is the Weyl-superconductor with a dynamical pseudo-Axion field. The understanding
of chapter 2 will come in handy in this lengthy calculation in two ways. First, the compu-
tation has similarities, and second, the basic is the generalization of the interaction studied
there. The main point of section 2.3 is the formation of a dynamical axion in the effective
theory via the inclusion of a chiral breaking interaction term. Our generalization consists
of the inclusion of an interaction term that, once condensed, breaks charge symmetry as
well as chiral symmetry. This is obtained by the introduction of a four-fermion interaction
in the microscopic model. The principal difference between this calculation and the one
done in section 2.3 is the necessity of the introduction of an “enlarged” spinor to be able
to “decouple” the interaction using an auxiliary field (Hubbard-Stratanovich transforma-
tion). This, along with the consequences, is treated in section 4.1. The following section,
namely 4.2, clarifies how gauge invariance is encoded in this system. The last section is
where we calculate the fermionic determinant resulting in the effective description of our
model in its canonical form.

This model was proposed in (CHRISPIM; BRUNI; GUIMARAES, 2021) and some
calculations will be explored in more details in this chapter.

4.1 Action transformations

With the knowledge of the second chapter (specially sections 2.1 and 2.3) we are
well-equipped to construct an microscopic theory that, once condensate, will originate
an effective massive electrodynamics with the presence of a dynamics pseudoscalar field
(Axion-like). To that end, we can inquire about the consequence of other possible pairings
in the effective axion-electromagnetic theory. An interesting proposal is to consider the
formation of condensates that breaks charge symmetry as well as chiral symmetry. This
would lead to an axionic superconductor. In this case one expects the system to be
characterized by four active degrees of freedom (two charges and two chiralities). A
simple choice is to encode those degrees of freedom in two complex fields that represent
two possible condensates, as we will see. We start this with the following system (same
as the section 2.3)

Z =
∫

D
(
ψ†, ψ, A

)
ei(SWeyl+SMaxwell+

∫
d4xLint) (133)
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but now the four fermion interaction is

Lint = −λ2
RψRψRψ

†
Rψ

†
R − λ2

LψLψLψ
†
Lψ

†
L , (134)

where the coupling λR/L has mass dimension −1. This pairing separates left and right-
handed fields into two separate quartic terms (see the appendix D and E for more details).

This interaction term introduces new complications in the mathematical procedure
because in order to “decoupled” the interaction using an auxiliary fields thru the Hubbard-
Stratanovich we must first “enlarge” the matrix structure16 But first we will write this
interaction using a charge conjugate spinor as

Lint(x) = −λ2
R(ψcPRψ)(ψPLψc) − λ2

L(ψcPLψ)(ψPRψc) , (135)

where ψc =
(

σ2ψ
†
R

−σ2ψ
†
L

)
is the charge conjugate spinor field. (see E.1.3 for more information)

and PR/L are the usual projector. Introducing the extended spinor

Ψ =

ψ
ψc

 , Ψ =
(
ψ ψc

)
, (136)

that adds another layer of matrix structure, the Pauli matrices ρ, acting on “charge space”.
The total matrix structure schematically is

Γ = σ ⊗ τ ⊗ ρ (137)

with σ, τ , and ρ are the Pauli matrices acting on the spin, handiness, and charge, respec-
tively17. The massless Weyl action thus is (see appendix E.1.2 for more details)

SWeyl =
∫

d4x
1
2Ψ

[(
i/∂ + /bγ5

)
ρ0 + ie /Aρ3

]
Ψ . (138)

The Maxwell action does not need any modification but the interaction in eq. (134) needs
to be written in terms of this new spinors. The process is explained in E.1.3 and results
in

Lint(x) = −λ2
R

(
ΨPRP−Ψ

)(
ΨPLP+Ψ

)
− λ2

L

(
ΨPLP−Ψ

)(
ΨPRP+Ψ

)
, (139)

16 This idea is similar to the Nambu spinor, which comprises the creation and annihilator operator in a
single object (see (ALTLAND; SIMONS, 2010) for more information), but with the distinction that
here the spinor, and its charge conjugate, fields.

17 The usual gamma notation can be extended too (see (CHRISPIM; BRUNI; GUIMARAES, 2021) and
the relevant matrices are given by γ0 → σ0 ⊗ τ1 ⊗ ρ0, γi → iσi ⊗ τ2 ⊗ ρ0 and γ5 → −σ0 ⊗ τ3 ⊗ ρ0 but
in this thesis I will leave this Kronecker notation implicit.
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where it was defined the operators P± = 1
2(ρ1 ± iρ2). Now we can proceed to the intro-

duction of the two sets of Hubbard-Stratanovich ϕR/L defined as

ϕR = λRψRψR = λRψcPRψ = λRΨPRP−Ψ ,

ϕ∗
R = λRψ

†
Rψ

†
R = λRψPLψc = λRΨPLP+Ψ ,

(140)

and

ϕL = λLψLψL = λLψcPLψ = λLΨPLP−Ψ ,

ϕ∗
L = λLψ

†
Lψ

†
L = λLψPRψc = λLΨPRP+Ψ .

(141)

Both auxiliary fields ϕR(x) and ϕL(x) carry the same charges (2e if e is the fermion charge)
but have opposite chirality. The full set of discrete transformations of the auxiliary field
can be found in appendix E.1.4. Using these auxiliary fields the interaction term can be
“decoupled” (similar to the computation in (85) in chapter 2). This results in

eSint. =
∫

D(ϕR, ϕL)eSH-S , (142)

where D(ϕR, ϕL) stands for Dϕ∗
RDϕRDϕ∗

LDϕL, and

SH-S =
∫

d4x
[(

|ϕR|2 + |ϕL|2
)

− Ψ(λRϕRPL + λLϕLPR)P+Ψ + h.c.
]

(143)

where h.c. stand for the hermitian conjugate of the prior term. The full system thus is

Z =
∫

D
(
Ψ†,Ψ, A, ϕR, ϕL

)
ei(SWeyl+SMaxwell+SH-S). (144)

It is a dynamical question whether these couplings can give rise to the condensates in
the same sense exposed in section 2.3 and, at this point, we can only suppose that the
condensation occurs. If this happens, the system will develop a superconducting phase
once ϕR(x) and ϕL(x) are charged. Upon condensation we have

⟨ϕR(x)⟩ = λRv
3
Re

iδR ,

⟨ϕL(x)⟩ = λLv
3
Le

iδL .
(145)

Any choice of parameters breaks T once the system undergoes condensation. If λRv3
R =

λLv
3
L then we have the following choices:

• δR = δL, P is preserved and C is broken;

• δR = −δL, C is preserved and P is broken;

• δR = δL = 0 then C and P are preserved.

The effective action can be constructed by considering fluctuations of the phases around



62

the vacuum values δR and δL

ϕR(x) = λRv
3
Re

i
R(x)
fR

ϕL(x) = λLv
3
Le

i
L(x)
fL

(146)

where R(x) and L(x) are the fluctuations that parameterize δR and δL. This effectively
locks two degrees of freedom, and the H-S Lagrangian becomes

LH-S =
((
λRv

3
R

)2
+
(
λLv

3
L

)2
)

− Ψ
(
λ2
Rv

3
Re

i
R(x)
fR PL + λ2

Lv
3
Le

i
L(x)
fL PR

)
P+Ψ + h.c. (147)

and, lastly, the functional now is D
(
Ψ†,Ψ, A,R, L

)
. Making, for simplicity, λR = λL = λ

and vR = vL = v, simplifies the expression to

LH-S = 2
(
λv3

)2
− λ2v3Ψ

(
e
i

R(x)
fR PL + e

i
L(x)
fL PR

)
P+Ψ + h.c. . (148)

Performing the redefinition

Ψ(x) → Ψ(x)′ = e
i 1

4

(
R(x)
fR

− L(x)
fL

)
γ5

Ψ(x) (149)

results in a new term in the Weyl action

SWeyl =
∫

d4x
1
2Ψ

[(
i/∂ + /bγ5 + 1

4γ5/∂

(
R(x)
fR

− L(x)
fL

))
ρ0 + ie /Aρ3

]
Ψ, (150)

a non-trivial Jacobian of the fermionic measure

SAnomaly =
∫

d4x 2
(
R(x)
fR

− L(x)
fL

)
e2

32π2FF
⋆ , (151)

and a phase for the Hubbard-Stratanovich Lagrangian

LH-S = 2
(
λv3

)2
− λ2v3Ψe

i
2

(
R(x)
fR

− L(x)
fL

)
γ5(

e
i

R(x)
fR PL + e

i
L(x)
fL PR

)
P+Ψ + h.c. ,

= 2
(
λv3

)2
− λ2v3e

i
2

(
R(x)
fR

+ L(x)
fL

)
ΨP+Ψ + h.c.

(152)

where it was used the properties described in the appendix C.1 (equation 420). Performing
now yet another field redefinition but using the new extended charge space

Ψ(x) → Ψ′(x) = e
i 1

4

(
R(x)
fR

+ L(x)
fL

)
ρ3Ψ(x) . (153)

This gauge transformation does not introduces an anomaly because it is a local transfor-
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mation, contributes with a new term for the Weyl action

SWeyl =
∫

d4x
1
2Ψ

[(
i/∂ + /bγ5 + 1

4γ5/∂

(
R(x)
fR

− L(x)
fL

))
ρ0

+
(
ie /A− 1

4
/∂

(
R(x)
fR

+ L(x)
fL

))
ρ3

]
Ψ,

(154)

and, again, a phase for the Hubbard-Stratanovich Lagrangian but that simplify it

LH-S = 2
(
λv3

)2
− λ2v3e

i
2

(
R(x)
fR

+ L(x)
fL

)
Ψe−i 1

2

(
R(x)
fR

+ L(x)
fL

)
ρ3
P+Ψ + h.c. ,

= 2
(
λv3

)2
− λ2v3e

i
2

(
R(x)
fR

+ L(x)
fL

)
e

− i
2

(
R(x)
fR

+ L(x)
fL

)
ΨP+Ψ + h.c. ,

= 2
(
λv3

)2
− λ2v3Ψ(P+ + P−)Ψ ,

= 2
(
λv3

)2
− λ2v3Ψρ1Ψ ,

(155)

where it was used propriety eq. (508) from the appendix. Now the system can be written
in a nicer form if we introduce the following fields

θ(x)
f

+ θ0(x) = 1
4

(
R(x)
fR

− L(x)
fL

)
, (156)

θ′(x)
f ′ = 1

4

(
R(x)
fR

+ L(x)
fL

)
, (157)

with θ0(x) = 2bµxµ, that cancels the bµ contribution in the same way as the done in section
2.3. The initial field fluctuations parametrization of the complex fields, ϕR(x) = λv3ei

R(x)
f

and ϕL(x) = λv3ei
L(x)

f also changes

ϕR(x) = λv3e
2i
(

θ(x)
f

+θ0(x)+ θ′(x)
f ′

)
, ϕL(x) = λv3e

2i
(

− θ(x)
f

−θ0(x)+ θ′(x)
f ′

)
, (158)

and our system thus becomes

Z =
∫

D
(
Ψ†,Ψ, A, θ, θ′

)
ei(Sfermion+SMaxwell+SAnomaly+

∫
d4x2λ2v6) , (159)

Sfermion =
∫

d4x
1
2Ψ

[(
i/∂ + γ5/∂

θ(x)
f

)
ρ0 +

(
ie /A− /∂

θ′(x)
f ′

)
ρ3 − λ2v3ρ1

]
Ψ, (160)

SAnomaly =
∫

d4x
1
2

(
θ(x)
f

+ θ0(x)
)

e2

32π2FF
⋆ . (161)

The computation is not complete yet. Apart from the fermionic integration (and the
calculation of the leading trace contributions that fixates the parameter relation), we
must understand the mechanics of the mass generation of the vector field and for the
pseudo-scalar field.
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4.2 Gauge invariance considerations

Before advancing in our effective action calculation it is convenient to describe how
gauge invariance acts on the system described by (159). The extended spinor, defined in
equation (136), transforms as (appendix E.1.1)

Ψ(x) → e−iα(x)ρ3Ψ(x) (162)

under a gauge transformation

Aµ → Aµ − i

e
∂µα(x) (163)

We have already done this transformation in equation (153). Applying the gauge trans-
formation of the extended spinor (162) on the action functional Z[Ψ, A, θ, θ′] does not
affect the anomaly, but the fermionic action (160) changes to

Sfermion → S ′
fermion = Sfermion +

∫
d4x

1
2Ψ

[
−/αρ3 − λ2v3e−2iα(x)ρ3ρ1

]
Ψ . (164)

We can see that the gauge transformation (163) cancels the first factor but not the second.
The added term e−2iαρ3 does not vanish. The main problem is that we are not taking
into account the field redefinition (153) which means that the extended spinor in our
calculation is

Ψ(x) → Ψ′(x) = e
i θ′

f ′ ρ3Ψ(x), (165)

where we already considered the definition in equation (158). Let us redo the gauge
transformation, using (162) on this spinor field amounts to

Ψ(x) → e
i

(
α(x)+ θ′

f ′

)
ρ3Ψ(x) . (166)

The presence of θ′ allows for the cancellation of the previous problematic extra contribu-
tion. If we transform the θ′ field as

θ′(x)
f ′ → θ′(x)

f ′ − α (167)

the e−2iαρ3 contribution vanishes. This eliminates the exponential factor but changes the
/∂ θ

′

f ′ to /∂
(
θ′(x)
f ′ − α(x)

)
. The total transformation (also taking into account the gauge field

transformation) is

ieAµ − ∂µ
θ′(x)
f ′ → ie

(
Aµ + i

e
∂µα

)
− ∂µ

(
θ′(x)
f ′ − α

)
= ieAµ − ∂µ

θ′(x)
f ′ . (168)
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This motivates the definition of

Aµ(x) + i

e
∂µ
θ′(x)
f ′ ≡ Cµ(x) (169)

so that the this a gauge invariant field that enters the fermion action as

Sfermion =
∫

d4x
1
2Ψ

[(
i/∂ + γ5/∂

θ(x)
f

)
ρ0 + ie /Cρ3

]
Ψ . (170)

The Maxwell term F 2 follows F 2(A) = F 2(C) due to its anti-symmetric properties. This
allows us to change Aµ → Cµ without any problems. The consequence is that now that
θ′(x) is the would-be Goldstone boson that is combined with the gauge field in the Higgs
mechanism to furnish the gauge-invariant field Cµ(x) = Aµ(x) + i

e
∂µ θ

′(x)
f ′ where i

e
∂µ θ

′(x)
f ′

represents the longitudinal term for the vector field, thus leading to a consistent mass
term for the photon, characterizing the Meissner effect. This will lead to the appearance
of a mass term in our effective action.

4.3 Effective action computation

At this point, we already encounter the fermionic integration computation in sec-
tions 2.1 and 2.3. Using the same method on the system defined by

Z(j, J, η) =
∫

D
(
Ψ†,Ψ, C, θ

)
ei(Sfermion+SMaxwell+

∫
d4x(2λ2v6+jµCµ+Jθ+ηΨ+ηΨ)) , (171)

Sfermion =
∫

d4x
1
2Ψ

[(
i/∂ + γ5/∂

θ(x)
f

)
ρ0 + ie /Cρ3 −mρ1

]
Ψ , (172)

SAnomaly =
∫

d4x
1
2

(
θ(x)
f

+ θ0(x)
)

e2

32π2FF
⋆ (173)

where Fµν = ∂µCν − ∂νCµ, and m = λ2v3, results in

Z(j, J) =
∫

D(C, θ)ei(Seff+SAnomaly+SMaxwell+
∫

d4x(λ2v6+jµAµ+Jθ)) , (174)

with

Seff =
∑
n=1

i

n
Tr
−ie /C − 1

2γ5/∂
θ(x)
f

i/∂ −mρ1

n , (175)

where the extended fermionic field has been integrated out. As in the previous instan-
ces, we can use Feynman’s diagrams to understand this expression, but with additional
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considerations. Some terms in this expansion are represented in

∑
n=1

i

n
Tr
−ie /C − 1

2γ5/∂
θ(x)
f

i/∂ −mρ1

n → + + + + + · · · ,

where the lines are the scalar field (dashed), the massive vector (wave), and the extended
fermion (solid) field. As in the case of section 2.3 we have that new interaction terms can
be created from the fermion bubble with insertion of n external fields. Let’s focus on the
gauge sector first, then compute the leading terms of the pseudo-scalar sector.

4.3.1 Gauge sector

Mathematically, the term proportional to the gauge-invariant field Cµ in the trace
contributes to the same kind of factors that one expects in sections 2.3 and 2.1 but with
the major difference that no limitation on terms proportional to C2 are present. To make
things clear, although both terms are very similar (the only apparent difference is the
letter) field Cµ is gauge invariant. This allows for the construction of terms proportional
to C2 while preserving gauge invariance 18. We can explore the leading one in the same
form that was done in equation (102), the principal steps are

∝ Tr
( −ie /C

i/∂ −mρ1

)2
 = −e2 Tr

[
1

/p−mρ1
/C

1
/p−mρ1

/C

]

= −e2
∫ d4p

(2π)4
1

(p2 −m2)2 Tr
[
(/p+mρ1)/C(/p+mρ1)/C

]
= −e2

∫ d4p

(2π)4
1

(p2 −m2)2

(
pµCνpαCτ Tr[γµγνγαγτ ] −m2CµCν Tr[γµγν ]

)
= −e2C2

∫ d4p

(2π)4
1

(p2 −m2)2

(
p2

2 + 4m2
)

leading∝ −e2m2C2
∫ d4p

(2π)4
1

(p2 −m2)2

leading∝ e2m2C2 ln m2

Λ2
cutoff

(176)

18 One could inquire how this process differs in the actual calculation. The reason is subtle and can
be traced to the lack of the Ward-Takahashi identities. It is possible to evaluate the graphs in a
gauge-invariant violating way and use the identities to write the final result in the appropriate gauge
invariant form.
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where a series of properties of Dirac’s algebra were used (SCHWARTZ, 2013) and some
properties described in appendix E. Ignoring the cutoff, the gauge sector (now massive)
is

Seff.

∣∣∣∣
gauge sector

∝ e2m2C2 + F 2(C) + powers of
(
C2, F 2

)
and their combinations . (177)

Next, I will explore the pseudoscalar sector to compute the relevant factors.

4.3.2 Pseudo-Scalar sector

The origin of the mass term for the pseudo-scalar field is the condensate as expected
from the computation done in section 2.3 which is analogous to the charge density waves
proposed in the description of a topological magnetic insulator in (LI et al., 2010). As
happens there, it is impossible to generate the mass term from the diagrammatic expansion
of the trace since it is a nonperturbative phenomenon. The leading contribution is the
kinetic term for the pseudo scalar field

leading∝ m2

f 2 (∂θ)2 ln m2

Λ2
cutoff

. (178)

We need to look at the condensate to extract the mass term. The parametrization, after
some redefinitions, took the form of equation (158) and can be used to that end. We can
follow the same steps done in sec. 2.3 to obtain the general parameter dependency of the
pseudo-scalar mass. The difference is that the perturbation must be done in both ϕR and
ϕL leading to

ϕR → λ
〈
ΨPRP−Ψ

〉
+ ϕR = λv3 + λv3e

2i
(

θ(x)
f

+θ0+ θ′(x)
f ′

)
(179)

and

ϕL → λL
〈
ΨPLP−Ψ

〉
+ ϕL = λv3 + λv3e

−2i
(

−θ(x)
f

−θ0+ θ′(x)
f ′

)
. (180)

The variation on ϕR results in

|ϕR|2 → |ϕR|2 + λ2v6 + λv3(ϕR + ϕ∗
R) = 2λ2v6

(
1 + cos

(
2
(
θ(x)
f

+ θ0 + θ′(x)
f ′

)))
(181)

and ϕL gives a similar result which is

|ϕL|2 → 2λ2v6
(

1 + cos
(

2
(

−θ(x)
f

− θ0 + θ′(x)
f ′

)))
(182)
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so the final result is

|ϕR|2 + |ϕL|2 = 4λ2v6
(

1 + cos
(

2 θ
′

f ′

)
cos
(

2
(
θ

f
+ θ0

)))
(183)

where the trigonometric identity 2 cos θ1 cos θ2 = cos(θ1 − θ2) + cos(θ1 + θ2) was used.
Using the cos expansion for small values of both θ and θ0 leads to

|ϕR|2 + |ϕL|2 ∼ 8λ2v6 − 8λ2v6
(
θ

f
+ θ0

)2

+ · · · (184)

this indicates that the scalar field was a mass term proportional to ∝ λ2v6

f2 θ
2. We can

make two remarks at this point. The first one is that we expect combination θ
f

+ θ0 to
appear since they share the same roots. Both are linked to the chiral breaking sector
of our condensate. One way to see this is to recall that the combination that originates
(156) transforms under chiral rotations (see appendixes E.1.4.4 and E.1.4.5 along with
the definition in equation (156)). The second point is the issue of the presence of the
θ′(x) in our last calculation. Although we expanded the trigonometric for small values of
θ′(x) (which is not a problem since it is a dynamical field), the problem is the presence
of this term. This contribution transforms under gauge rotation, and we expect that
no observable should include such contributions, the physical observable should be gauge
invariant as always. To understand this we can go back to section 4.2. We can demonstrate
that this problem is misleading by doing a gauge shift and “holding” the ϕ′ transformation.
This amounts to

〈
Ψρ1Ψ

〉
→
〈
Ψe−2iαρ3ρ1Ψ

〉
(185)

where we can use the more complex identity

e−2iαρ3ρ1 = ((P+ + P−) cos(2α) − i(P+ − P−) sin(2α))(PR + PL) (186)

where it was used the properties described in C.2. Computing the charged density current
again results in

〈
Ψe−2iαρ3ρ1Ψ

〉
= 4v3 cos

(
2
(
θ′

f ′ + α

))
cos

[
2
(
θ

f
+ θ0

)]
(187)

which clearly is invariant if θ′(x)
f ′ → θ′(x)

f ′ − α as expected.
Lastly, the presence of the mass term for the pseudo-scalar field can be traced to
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the density wave19 (similar to the charge density wave discussed in sec. 2.3). Using the
extended spinor definition, the current density associated with ρ1 is J0 = Ψ†ρ1Ψ

⟨J0⟩ =
〈
Ψρ1Ψ

〉
=
〈
Ψ(P+ + P−)(PR + PL)Ψ

〉
= 1
λ

(ϕR + ϕ∗
R + ϕL + ϕ∗

L)

= 4v3 cos
(

2θ′

f ′

)
cos

[
2
(
θ

f
+ θ0

)] (188)

where it was used the relations ρ1 = P+ + P− and 1 = PR + PL. Expanding results in

⟨J0⟩ ∼ 4v3 − 4v3
(
θ

f
+ θ0

)2

+ · · ·

∼ 8v3 − 8v
3

f 2 θ
2 + · · ·

(189)

where again is valid |ϕR|2 + |ϕL|2 ∼ λ2|⟨J0⟩|2.
Now we can express the effective Lagrangian for the pseudo-scalar field sector as

Leff.

∣∣∣∣
pseudo scalar sector

∝ λ2v6 + λ2v6
(
θ

f
+ θ0

)2

+ m2

f 2 (∂θ)2 + · · · . (190)

In the next section, I will combine the leading terms for the vector and pseudoscalar fields
and chose the parameters to make the Lagrangian be in the canonical form.

4.3.3 Canonical effective action and comments

In the end, the effective response of the system is

Leff. ∝ e2m2C2 + F 2(C) + λ2v6
(
θ

f
+ θ0

)2

+ m2
θ

f 2 (∂θ)2 + · · · , (191)

where the · · · stands for the various powers of
(
θ, θ0, θθ0, · · · , (∂θ)2, C2

)
and their com-

binations plus λ2v6. Now it is possible to see that the Proca mass is M ∝ em ∝ eλ2v6.
Now it is simple to choose f as to be in the canonical form (which also fixates the f in
the anomaly contribution). This results in the kinetic term results in f ∝ m ∝ λ2v3 and
the massive term to be λ2v6

f2 ∝ λ2v6

λ4v6 ∝ 1
λ2 which motivates the definition of a scalar mass

to be mθ ∝ 1
λ
. That is, the relation between the microscopic parameters and the effective

19 It is not clear what kind of wave is present here since the extended spinor formalism blurs the usual
definitions.
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ones are

g = e2

16π2f
∼ e2

λ2v3 ,

M ∼ eλ2v3 ,

mθ ∼ λv3

f
∼ 1
λ
,

(192)

This set the scaling behavior of the parameters of the effective theory as a function of the
ones of the microscopic theory, and we can see that, although there are various parameters,
they all originate from the same parameters in the microscopic Lagrangian. Again, the
relationship between parameters in the macroscopic and microscopic description indicates
that when the chiral condensate gets weaker the axion-photon coupling and the axion mass
becomes stronger but the photon mass decreases.

The full system in it’s canonical form (and ignoring the higher order terms) is

Z(j, J) =
∫

D(C, θ)ei
∫

d4x(L(C,θ)+λ2v6+jµCµ+Jθ) , (193)

with

L(C, θ) = −1
4FµνF

µν + 1
2M

2CµC
µ + 1

2(∂θ)2 − 1
2m

2
θθ

2

+ mθ

g
θθ0 + m2

θ

g2 θ
2
0 + 1

4g
(
θ + θ0

g

)
F̃µνF

µν
(194)

where Fµν = ∂µCν − ∂νCµ. Before finishing this chapter we can make some comments.
The effective action (193) describes the electromagnetic response of a microscopic

system characterized by chiral and charge condensates, whose fluctuations give rise to
the dynamic of the axion field and to the photon mass, through the Higgs mechanism.
Using our analysis in section 2.3 we can see that this system can be called a topological
magnetic “superconductor” (or the superconductor version of (LI et al., 2010) but with
the inclusion of the term θ0) or, more generically, axion “superconductor” (akin to the
terminology in (WANG; ZHANG, 2013)). It is important to comment that this is not the
only form to obtain this system. The same effective theory can be obtained by dimen-
sion reduction from a 5D theory (QI; WITTEN; ZHANG, 2013) and also from general
reasoning about condensation of charges and defects guided by symmetry considerations
(BRAGA et al., 2016). But it is important to point out that we arrived at this action
considering an interaction that makes contact with usual superconducting couplings in
doped Weyl metals (ZYUZIN; BURKOV, 2012).

The inclusion, or not, of the term θ0 is relevant (as noted in sec. 2.3) since it
breaks invariance under θ → −θ and its coupling cos

(
θ(x)
f

− β(x)
)

generates a space-time
anisotropy linked to the bµ term since mθ

g
βθ = mθ

g
(∂µbµ)θ → −mθ

g
bµ(∂µθ). This is the
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major motivation for simplification θ0 = 0 in the next chapter, this will greatly simplify
the 1-loop calculation of the correction to the massive photon propagator.

Before making some more considerations we need to recall the pairing used in sec-
tion 2.3. That interaction term establishes an inter-node connection that breaks chiral
symmetry resulting in an electromagnetic theory with axionic fluctuations. In our case,
axion superconductor, we used a pairing that breaks charge symmetry and chiral symme-
try. The question about the leading mechanism for the superconducting instability and
the different pairings that can lead to it in a Weyl semimetal system has been a subject of
intense investigation during the last few years, see (BEDNIK; ZYUZIN; BURKOV, 2015;
CHO et al., 2012; WEI; CHAO; AJI, 2014; LI; HALDANE, 2018; SCALAPINO, 2012)
for some examples. The consideration behind our choice of pairing is based on the notion
that the effective theory is essentially fixed by the general requirements of chiral symme-
try breaking and charge symmetry breaking. The specific pairing (134), which can be
classified as intra-node s-wave (CHRISPIM; BRUNI; GUIMARAES, 2021), results in an
effective theory of a superconductor with dynamical axion interaction as our calculation
indicates. The general phenomenological features of this model, such as the penetration
length to be discussed in the final part of ch. 5, are shared with any model that displays
the same symmetries and symmetry-breaking patterns.

The non-perturbative effects in our model are encoded in

|ϕR|2 + |ϕL|2 = 4λ2v6
(

1 + cos
(

2 θ
′

f ′

)
cos
(

2
(
θ

f
+ θ0

)))
. (195)

The small θ and θ0 approximation remove from the system the information about the com-
pactness (which is essential to the description of multivalued fields (BRAGA; GUIMA-
RAES; PAGANELLY, 2020)) in those terms and exclude effects like axion string (WANG;
ZHANG, 2013; YOU; CHO; HUGHES, 2016) among other possible non-perturbative ef-
fects. The vortices of θ are called chiral vortices in (QI; WITTEN; ZHANG, 2013) and
the vortices of θ′ are the usual ones from a superconductor and carry quantized magnetic
flux. Chiral vortices don’t carry magnetic flux but are responsible for a nonconservation
of the naive supercurrent of the superconductor (BRAGA et al., 2016), see also (STONE;
LOPES, 2016). Both kinds of vortices must be taken into account if one is interested in
the topological features of the superconducting state and one can construct the correspon-
ding effective topological field theories by reasoning about the dilution and condensation
of such configurations. That is, these non-perturbative effects are indispensable if one is
interested in a comprehensive description and classification of the system (GU; QI, 2015;
QI; WITTEN; ZHANG, 2013).

Now, one could ask what are modifications, to the resulting effective theories,
that distinct pairing creates. This is a complicated inquisition since the main point
in the effective description is the identification of the relevant low energy degrees of
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freedom (including possible defects) so the answer depends on the system in consideration.
But, in general, it seems to involve topological BF theories, as discussed in (HANSSON;
OGANESYAN; SONDHI, 2004) for the usual superconductor, in (HANSSON et al., 2015)
for a p-type superconductor, and in (BRAGA et al., 2016) for the axionic superconductor.
Again, in our case, the general characteristics of the electromagnetic response are fixed,
as discussed above.

4.3.4 Equation of motion and electromagnetic response

As previously commented, this system is very similar to the one we encountered
in section 2.3. Here I will comment on some differences but the major part of new effects
is discussed there. This Lagrangian results in the following equations of motion

∇ · E = −M2ϕ+ g∇
(
θ + θ0

g

)
· B ,

∇ × E = −∂B

∂t
,

∇ · B = 0 ,

∇ × B = ∂E

∂t
−M2A + g

∂
(
θ + θ0

g

)
∂t

B + ∇
(
θ + θ0

g

)
× E

 ,
(□ −m2

θ)θ = e2g

8π2 E · B − mθ

g
β .

(196)

We can see that the result is similar to the one obtained in section 2.3 but with the
modifications introduced by the Proca mass term. This also changes the current in the
system (obtainable by varying the action in terms of the massive vector field) to

jα = g

(
bµ
g

− ∂µθ

)
ϵµναβ∂νAβ +M2Aα (197)

where we have the presence of the topological currents (anomalous Hall effect and chiral
magnetic effect) plus the massive vector contribution.
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5 1-LOOP CORRECTION TO THE PHOTON SELF-ENERGY

Before starting with the topic of this chapter we need to revise the story so far.
The main focus of the previous chapters (namely chapters 1 to 3) weres the understanding
of the microscopic model with an emphasis on the description of Weyl/Dirac semimetals
and its resemblance with the Lorentz violating theories studied in high energy physics.
In chapter 4, those concepts were used to construct a theoretical microscopic model that
results in the effective theory dubbed Weyl-superconductor interacting with the dyna-
mical pseudo-Axion field. For the sake of this computation, M , m, and g as treated as
independent quantities. Another simplification will be the setting of θ0 to zero, which will
simplify, considerably, the computations. This changes the microscopic theory that no
longer has separated (in momentum space) Weyl points meaning that we will be analyzing
the physics of a Dirac semimetal (defined by bµ = 0). To compute the 1-loop correction
to the photon propagator it is necessary to revise some concepts of quantum field theory
(QFT). In special we need to make some consideration about the renormalizability of the
effective theory along with the necessary steps to guarantee a physical result thru the
renormalization process and eliminate some unphysical degrees of freedom (that are lin-
ked to ghost states). The higher-order terms in the fields, that were ignored in the trace
calculation in last chapter, will play an important role in the renormalization process of
this effective theory. In special, it will be necessary to include some of them to cancel
the divergences in the modifications on the Yukawa potential induced by axionic fluctu-
ations. This will be done in sections 5.1 and 5.2. After that, we will be able to proceed
with the main point which is the computation of the photon self-energy that arises due
to quantum fluctuations introduced by the axion field. Most of the computation is done
in section 5.3 with some of the details being reserved for appendix B. Completing this
computation, we will obtain the potential correction in section 5.5. In the last section
(sec. 5.6), the asymptotics of the quantum corrected potential will be explored to give a
physical interpretation. The bulk of this process was published in (CHRISPIM; BRUNI;
GUIMARAES, 2021).

5.1 Non-renormalization treatment

The starting point is the action obtained in chapter 4 (equation (194)) written in
terms of “bare” fields, which will be essential to the renormalization process as we will
see. The field strength tensor is fµν = ∂µaν − ∂νaµ, with the dual tensor f̃µν = 1

2ϵµνσρf
σρ.
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The action reads (in natural units and diag(gµν) = (1,−1,−1,−1))

S̃g =
∫
d4x

(
−1

4fµνf
µν + 1

2M
2
aµa

µ + 1
2∂µθ∂

µθ − 1
2m

2θ
2 + 1

4gθf̃µνf
µν
)
. (198)

The elements are the same as before, the effective action describes the dynamics of a
massive vector field (Proca) aµ(x), a massive pseudo-scalar field θ(x), and displaying
an axion-like interaction through the coupling constant g. This parameter has a mass
dimension −1 as one can see by counting the mass dimension of this Lagrangian term
(here with Lorentz index suppressed) in

[g][θ][F ][F̃ ] = [g][θ][∂][A][∂][A] = [g] + 5 . (199)

Together with the fact that [d4x] = −4 means that for the action to be mass adimensional,
e.g. [S] = 0, requires that [g] = −1 as previous mentioned.

The usual classification relies on what is called power counting which links the
mass dimension of the coupling constant to the classification of the theory as non-
renormalizable. Another classification that uses the mass dimension to classify the cou-
pling is marginal (zero mass dimension), relevant (positive mass dimension), or irrelevant
(negative mass dimension). This is the terminology of the Wilsonian renormalization
group on which the axion interaction would be called irrelevant.

The nomenclature used (that is, calling theories with negative mass dimension
coupling non-renormalizable theories) is unfortunate since such theories can be renorma-
lizable if they are considered an effective description valid up to a cutoff threshold. As
stated in the textbook (ZEE, 2010) this understanding is especially due to the work of
Kenneth G. Wilson which used the effective field theory approach to describe critical phe-
nomena in connection with phase transitions. This was recognized in 1982 by awarding
him with a Noble prize20.

Renormalizable theories have their infinities but, with only a finite number of
counter-terms (free parameter capable of absorbing it), it is possible to eliminate those
singularities and compute any physical observable given that only a handful of parameters
are known. The usual example of a renormalizable theory (which will be important in
the next sections) is quantum electrodynamics (QED). With just five parameters (the
electron mass m, its charge e, the vacuum energy density ρ, and the renormalization of
the electron ψ and photon fields A), all possible infinities can be countered. See textbooks
on QFT as (SCHWARTZ, 2013) for more details.

The negative in non-renormalizable appear to indicate that this is not the case
and one would be inclined to conclude that this theory generates no finite result or does

20 https://www.nobelprize.org/prizes/physics/1982/summary/

https://www.nobelprize.org/prizes/physics/1982/summary/
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not have any prediction power (unique results based on know quantities). In fact, these
kinds of theories develop new divergences in the computation of physical observables
as one explores higher energy phenomena. But, this is not a problem since, based on
Wilson’s work, non-renormalizable theories can be used to make predictions at a certain
precision level if the appropriate higher dimension counter-terms are included. That
is, non-renormalizable still has some forecasting power but the consequence is that this
Lagrangian must be comprehended as describing the physics at energies much lower than
the cut-off ΛUV ∼ 1/g. Furthermore, some physical quantities will be dependent on the
specific cut-off which indicates that the physics beyond this scale is still relevant.

This is not a problem and this view on nonrenormalizable theories is widely used.
Some examples of this process can be found in, quantum gravity (HOOFT; VELTMAN,
1974; STELLE, 1977; GOROFF; SAGNOTTI, 1985; GOROFF; SAGNOTTI, 1986; DO-
NOGHUE, 1994a; DONOGHUE, 1994b) , chiral perturbation theory (WEINBERG, 1979;
GASSER; LEUTWYLER, 1984; GASSER; LEUTWYLER, 1985; ECKER, 1996), nonli-
near QED (HALTER, 1993; KONG; RAVNDAL, 1998; DICUS; KAO; REPKO, 1998),
and axion-electrodynamics (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018; CHRIS-
PIM; BRUNI; GUIMARAES, 2021).

This method is based on the observation that, for a given order of precision, it
is sufficient, for the cancellation of divergences, the inclusion of the counter-terms of the
next order in that specific coupling.

The full theory (UV-completion) is not necessary in this approach (although we
know it from ch. 4), but all the counter-terms that originate from the next-to-leading
order in the coupling should be considered (in a renormalizable theory this process would
be not necessary (SCHWARTZ, 2013)).

This is an expected consequence as one can see by remembering the computation
done in chapter 4. Specifically, we skipped the computation of higher-order terms in our
effective theory but, in principle, they are present and it is only natural that those terms
do play a role here. But, leaving this computation to be done later (after we decided
which process we want to compute) has its advantages because we can reduce the list
of terms that needs to be considered. Not all terms in the Lagrangian will be relevant
to the specific quantum process, known as vacuum polarization of the photon (or Proca)
propagator, at 1 -loop. Also, those next-to-leading terms, in the appropriate coupling,
must obey the symmetries of the initial action.

5.1.1 Next-to-leading identification process

The next-of-leading in the axion coupling takes an g2 factor or, in terms of its
mass dimension, −2. This means that we need to construct field operators with mass
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dimension 6 to maintain the Lagrangian density mass adimensional. The number of such
operators that can be constructed is large, but it is possible to reduce it by considering
the previously mentioned features of this specific calculation.

If we consider only pseudo-scalar fields we can construct 12 (reducible) dimension
6 field operators though not all terms will be relevant. We can reduce the number of
terms by imposing that they obey the same symmetries of the original system (i.e. this
symmetry is not anomalous) and that it produces a relevant contribution to the photon
vacuum polarization at 1-loop. An example of this process is in order. The term ϕ6

gives a six ϕ interaction and for it to be included in the quantum correction for the
photon propagator we would need to “close” four lines and then insert it in our vacuum
polarization graph which would result in a 3-loop contribution which is outside the desired
precision (see figure 5). The same reasoning applies to ∂2ϕ4 since we will not include 2-
loop contributions. This means that we do not need to consider any combination that
includes more than two scalar fields. Terms like m5ϕ can be also ignored since they just
change the vacuum energy by the inclusion of tadpoles and they are not important for our
calculation either. In other words, we are interested in terms that will give a modification
to the pseudo-scalar propagator at the tree level. Of the possible terms, we still need to
consider the different ways we can write it following Lorentz invariance, but they all can
be transformed one into the other by partial integration meaning that we only need to
consider one and adjust the parameter.

Figure 5 - ϕ6 interaction term inclusion in the photon propagator quantum correction

(a) (b) (c)

Subtitle: Process of inclusion of a ϕ6 vertex in the photon propagator. The dashed lines represents the
pseud-scalar and the wave the massive vector field. Figure (a) represents the Feynman graph
of an six scalar field vertex, in order to include this term in the internal line of the photon
propagator loop is necessary to “close” four scalar lines, as is described in figure (b). The
inclusion of this term would generate the Feynman diagram depicted in (c), this would lead to
a 3-loop contribution which is outside the desired precision of 1-loop.

Source: The author, 2022.

Now focusing on the massive gauge sector. The lack of gauge invariance, for
example, allows for terms like M2

1 (a2)2 to be included at order g2, but an odd number of aµ
will not contribute since this would break the discrete symmetry (parity) aµ(x) → −aµ(x).
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The same does not apply to the case for the scalar field because the coupling does have
an odd number of θ’s. One contemplate possibility is (a2)3 but, following the same idea
of the six field scalar case, such a term will give a six photon vertex that is only relevant
to the propagator if taken at 2-loops (which is outside the current calculation precision).
Considering the various ways to combine the Lorentz indexes, the number of different field
operators that we can construct in the vector field is greater. One algorithm that describes
a similar process, for Proca-electrodynamics, can be found in (CADAVID; RODRIGUEZ,
2019). Lastly, the most general contribution must include terms composed with the dual
field strength f̃µν but, since we are only interested in the contribution to the massive
photon two-point function, they will be zero after we impose momentum conservation at
the vertex 21

In the end, all relevant terms of order g2 can be organized into three new Lagrangian
pieces

Lθg2 = −1
2θ

2
m2

1 + 1
2Cθ(∂θ)2 + 1

2m2
s

(∂µθ)□(∂µθ) ,

Lag2 = 1
2M

2
1a

2 − 1
4Cff

2 + 1
2m2

gh

(∂f)2 + 1
4!

1
2a

4C4 − 1
4!

1
4
a2

M
2
2
f 2 ,

Laθg2 = −1
2Caθθ

2
a2 + 1

4
θ

2

m2
θf

f 2 ,

(200)

of which (∂f)2 ≡ (∂µfµρ)(∂νf νρ ). These are the next-of-leading field operators that obey
the previously cited symmetry and precision constraints. It is important to notice that
the all Cf,4,aθ,θ, M1,2 and m1,s,gh are of order O(g2) since they are defined in terms of
Wilsons’s parameter b (which has mass dimension zero) as in

g2b2
m4ϕm

4 = m2
1 , g2b2

m2ϕm
2 = Cϕ , g2b2

ϕ = m−2
s ,

g2b2
M4a2M4 = M2

1 , g2b2
M2a2M2 = Cf , g2b2

a2 = m−2
gh ,

g2b2
M2a4M2 = C4 , g2b2

a4 = M−2
2 , g2b2

µ2a2ϕ2µ2 = Caϕ ,

g2b2
ϕf = m−2

ϕf .

(201)

In some sense, the Wilson parameters here are reminiscent of fact that we truncate the
expansion of the fermionic determinant. It is possible to determine their value by compu-
ting the full expression in the UV-complete theory (exposed in chapter 4) and matching
it with the previous expression. We will consider them arbitrary, this is the price to pay
for skipping that calculation.

21 The point is that these terms will always contribute with a tensor structure of ∼ (gµνp1p2 +pµ
1 pν

2)ϵµναβ

and, once we impose momentum conservation in the vertex, the result will be zero by the symmetry
of dummy indices. The Axion interaction does not suffer from this fate because of the loop structure.
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Further considerations can be done to decrease the number of terms. The first one
is to absorb some terms in parameter redefinitions in the normalization using the fact that
the diversion is of order g2 (subsection 5.1.2). As we will see, this will further simplify the
new terms but will not affect the terms which involve higher derivatives (i.e. (∂2f) and
(∂µθ)□(∂µθ)). The problem is that these higher derivative contributes to the quadratic
portion, modifying the free propagator of the field. This will result in the apparition of a
ghost pole (a mass pole with a “wrong” sign) for the free propagator of the pseudoscalar
field and massive vector field. This term can not be absorbed in a parameter redefinition
because they carry a □2 (or in momentum space p4) dependency, but, luckily this also
can be treated in our current theory with a field redefinition. This will be the topic of the
section 5.2 and most of the next discussion is based on (VILLALBA-CHÁVEZ; GOLUB;
MüLLER, 2018) and (GRINSTEIN; O’CONNELL; WISE, 2008; ACCIOLY; DIAS, 2005).

5.1.2 Renormalization

In the renormalization process, we must replace the “bare” field and parameters
with the renormalized ones along with the appropriate renormalization factors Z’s. As
we will see, this allows making further considerations to decrease the number of terms
in our Lagrangian by absorbing some terms in parameter redefinitions. This is only
possible because the difference between the two terms is of order g2 as will be clear in the
calculation.

Replacing the following quantities in equations (198) and (200)

aµ → Aµ , fµν → Fµν , θ → θ ,

M → M , m → m , g → g ,

m1 → m1 , Cθ → Cθ , ms → ms ,

M2 → M2 , Cf → Cf , mgh → mgh ,

C4 → C4 , M2 → M2 , Caθ → Caθ , m2
θf → m2

θf .

(202)

The renormalized action becomes

SR =
∫
d4x (LProca + Laxion + Linteraction + Lθg2 + Lag2 + Laθg2) , (203)

with the Proca and axion Lagrangians being

LProca = −1
4Z3FµνF

µν + 1
2ZMM

2AµA
µ , (204)

Laxion = 1
2Zθ∂µθ∂

µθ − 1
2Zmm

2θ2 , (205)
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the interaction term O(g1)

Linteraction = 1
4ZggθF̃µνF

µν , (206)

and the next-to-leading O(g2)

Lθg2 = −1
2Zm2θ

2m2
1 + 1

2Zθ2Cθ(∂θ)2 + Zs
2m2

s

(∂µθ)□(∂µθ) , (207)

LAg2 = 1
2ZM2M

2
1A

2 − 1
4ZfCfF

2 + Zgh
2m2

gh

(∂F )2 + 1
4!Z4C4A

4 − 1
4!Z5

A2

M2
2
F 2 , (208)

LAθg2 = −1
4ZaθCaθθ

2A2 + 1
4Zθf

θ2

m2
θf

F 2 . (209)

The inclusion of one renormalization factor Z for each term (including the next-to-leading
ones) is a necessity in the perturbative renormalization of our effective theory. Each Z

factor carries the tree-level value (namely 1) plus counterterms that are of order O(g2)
(δ’s). Generically one can write

Zi = 1 + δi . (210)

One major point is that we still can do any parameter redefinition that amounts to changes
that are outside the precision of order O(g2). This can be used to our advantage since,
as the following process will show, not all terms are necessary if we work at a certain
accuracy. In this way, some next-to-leading terms can be assimilated into the quadratic
section of the fields. As an example, the factor ZM2M

2
1 (in eq. (208)) can be absorbed in

the Proca mass term ZMM
2 (in eq. (204))

ZMM
2 + ZM2M

2
1 = ZMM

2 + (1 + δM2)M2
1 ,

= ZMM
2 +M2

1 + O
(
g4
)
,

= ZMM
2 + O

(
g4
)
,

(211)

where it was used the redefinition M2ZM → (M2 −M2
1 )ZM and kept terms of order

O(g4). This same process can be done for other factors with the following redefinitions
(and subsequent approximations to the correct order)

Z3 → (1 − Cf )Z3, M2ZM → (M2 −M2
1 )ZM ,

Zθ → (1 − Cθ)Zθ, m2Zm → (m2 −m2
1)Zm .

(212)
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This changes the next-to-leading sector to

Lθg2 = Zs
2m2

s

(∂µθ)□(∂µθ) , (213)

LAg2 = Zgh
2m2

gh

(∂F )2 + 1
4!Z4C4A

4 − 1
4!Z5

A2

M2
2
F 2 , (214)

LAθg2 = −1
4ZaθCaθθ

2A2 + 1
4Zθf

θ2

m2
θf

F 2 . (215)

The connection between the “bare” parameters and the renormalized ones is easily ob-
tained by applying the kinetic prescription, Aµ = Z

−1/2
3 aµ and θ = Z

−1/2
θ θ. The results

are

M = M
(
ZM

Z3

)1/2
, m = m

(
Zm

Zθ

)1/2
, mgh = mgh

(
Z3
Zgh

)1/2
,

ms = ms

(
Zθ

Zs

)1/2
, C4 = C4

Z3
Z

1/2
a4
, M2 = M2

Z3
Z

1/2
5
,

mθf = mθf

(
Z3Zθ

Zθf

)1/2
, Caθ = Caθ

(
Zaθ

Z3Zθ

)1/2
, g = g Zg

Z
1/2
3 Z

1/2
θ

.

(216)

The next-to-leading Lagrangian (equations (213), (214) and (215)), along with the free
sector and their renormalization factors, contain all the necessary counterterms to can-
cel any divergence in our calculation. A trained viewer can see that the process is not
done since the Lagrangians still possess higher derivative contributions to the quadratic
sector. This fact will be made clear in the topic of the section 5.2 but with some ex-
tra considerations since it involves derivatives. The process of elimination is similar to
the elimination of the parameters M1, m2, Cf , and Cθ. Most of the next discussion is
based on (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018) (and references within), and
(GRINSTEIN; O’CONNELL; WISE, 2008; ACCIOLY; DIAS, 2005).

5.2 Ghost states and elimination process

The process done in the last section, the elimination of parameters in the renorma-
lization of the counterterms up to a chance in next-to-next-leading-order, can not affect
the terms which involve higher derivatives (i.e. (∂2f) and (∂µθ)□(∂µθ) present in equa-
tions (213) and (214)). These terms can not be ignored since they contribute to the
quadratic portion, modifying the free propagator of the field and generating nonphysical
states. We will enlighten these affirmations by remembering how the computation for
the propagator is done in the scalar field case. Afterward, it will demonstrate how this
is not an issue once the perturbation nature of our calculation is considered. A similar
discussion can be found in (ACCIOLY; DIAS, 2005; GRINSTEIN; O’CONNELL; WISE,
2008; VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018). The generating function of the
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pseudo-scalar field is

Z(J) =
∫

D(θ)ei(Saxion+Sθg2)+i
∫

d4xϕJ , (217)

where Saxion is free massive pseudo scalar action of the axion field, Sθg2 is the next-to-
leading order in the coupling conteining only the pseudo-scalar field and J is a source (as
discussed in chapter 1). The Lagrangian can be written as (without the Z’s for simplicity)

Saxion + Sθg2 =
∫

d4x

(
1
2(∂θ)2 − 1

2m
2θ2 − 1

2m2
s

θ□θ

)
=
∫

d4x
1
2θ
(

−□ −m2 − p4

m2
s

)
θ .

(218)

Following the usual steps (see (SCHWARTZ, 2013)) (doing the integral using the Gaussian
integral since the integrand is quadratic in the fields) leads to Green function
(

□2

2m2
s

+ □ +m2
)

∆0(x− x′) = −δ(x− x′) , (219)

that is solved by the Feynman propagator

∆0(x− x′) =
∫ d4x

(2π)2
eip(x−x′)

p2 −m2 − □2

m2
s

+ iϵ
, (220)

or in momentum space

∆0(p2) = i

p2 −m2 − p4

m2
s

+ iϵ
= 1
p2 −m2 − 1

p2 −m2
s

+ O
(
g2
)
, (221)

where it was used that m−2
s is of order O(g2) (see relations in eq. (201)). The factor iϵ,

as usual, is included to make the propagator mathematically well defined and consistent
with physical causality due to the time ordering of events. This prescription dictated that
at the physical mass pole p2 = m2, the residue of the Green function has22 to be

Res
{
∆0(p2)

}∣∣∣∣
p2=m2

= 1 , (222)

but the modified propagator for the pseudo-scalar field has another mass pole at ms with
residue

Res
{
∆0(p2)

}∣∣∣∣
p2=m2

s

= −1 (223)

22 This is a justification since this is only true for the on-shell renormalization scheme, if one uses the
MS then the affirmation must be done using the physical mass. The significant point here is the sign
of the pole, which is the same as the Pauli-Villars ghost.
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characterizing a ghost state. These are the non-physical states mentioned before. This
spoils the quantum system since the Hilbert space no longer has a positive definite norm
when associated with this state, unitarity is thus violated (GRINSTEIN; O’CONNELL;
WISE, 2008). These terms can not be absorbed in a parameter shift (as was done in the
renormalization section) because they carry a □2 (or in momentum space, p4) dependency.

The same problem occurs in the massive vector sector in the presence of the high
derivative order term, but this fact is not straightforward to see from the propagator, as
in the scalar case, because the gauge field has unphysical states from the beginning (see
(SCHWARTZ, 2013)). The propagator in the massive gauge case

Gµν(x− x′) =
∫ d4p

(2π)4 e
ip·(x−x′) 1

p2 −M2 − p4

m2
gh

+ (pµpν − terms) (224)

or, again writing in momentum space and expanding

Gµν(p2) = 1
p2 −M2 − p4

m2
gh

= 1
p2 −M2 − 1

p2 −m2
gh

+ O
(
g2
)
, (225)

where, as in the scalar case, there is a new problematic mass pole p2 = m2
gh. The

longitudinal contribution, which is expressed in the (pµpν) terms, is irrelevant since it
does not appear in the S-matrix. The problem is the presence of the metric tensor
responsible for unphysical states that need to be removed in the quantization process.
One easy workaround is to consider the saturated Green function

G(p2) = jµG
µν(p2)jν . (226)

This process is explored in ((ACCIOLY; DIAS, 2005; NIEUWENHUIZEN, 1973; SEZ-
GIN; NIEUWENHUIZEN, 1980; VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018) and
simplify the process. The residue Res{G(p2)}|p2=M2 is positive while Res{G(p2)}|p2=m2

gh

is negative. Now, in order to remove those problems, we need to treat those terms with a
perturbative approach. These parameters, as stated before, are of order O(g2) meaning
that they are suppressed at a low energy spectrum. If this was not the case, a violation
of unitarity would be present, spoiling the quantum correction calculation. It is possible
to eliminate this kind of non-physical contribution by performing field redefinitions so
that the free propagator will remain well-behaved and unitary (up to the desired preci-
sion) without changing any observable parameter (ARZT, 1995; KNETTER, 1994). The
transformation is

θ → θ − □
2m2

s

θ , Aµ → Aµ − □
2m2

gh

Aµ . (227)

This strategy is straightforward to see the pseud-scalar sector. Starting with the Lagran-
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gian with the inclusion of other renormalization factors and the high derivative contribu-
tion the dynamics are

Laxion+θg2 = 1
2θ
(
Z3p

2 − Zmm
2 − Zs

m2
s

p4
)
θ . (228)

Now doing the redefinition (in momentum space) θ →
(
1 + p2

2m2
s

)
θ

L → L′ = 1
2θ
(

1 + p2

2m2
s

)(
Z3p

2 − Zmm
2 − Zs

m2
s

p4
)(

1 + p2

2m2
s

)
θ ,

= 1
2θ
((

Z3 − Zm
m2

m2
s

)
p2 − Zmm

2 + (Z3 − Zs)
p4

m2
s

)
θ + O

(
m−4
s

)
,

= 1
2θ
(
Z3p

2 − Zmm
2 + δs

p4

m2
s

)
θ + O

(
m−4
s

)
,

(229)

where it was used the fact that the Z’s are 1 + O(g2), m−2
s is O(g2) along with the

redefinition of the δ. The same process can be applied to the vector field with similar re-
definitions and more details can be found in (VILLALBA-CHÁVEZ; GOLUB; MüLLER,
2018; CHRISPIM; BRUNI; GUIMARAES, 2021). The final product is the original La-
grangian minus the problematic ghosts terms but with the inclusion of their counter-term.
These new characters are crucial to the renormalization process in subsection 5.3.2. The
resulting action is

LR = LProca + Laxion + Linteraction + δs
2m2

s

(∂µθ)□(∂µθ) + δgh
2m2

gh

(∂F )2 + L4γ + L2γ,2θ ,

(230)

with

L4γ = 1
4!Z4C4A

4 − 1
4!Z5

A2

M2
2
F 2 , (231)

L2γ,2θ = −1
4ZaθCaθθ

2A2 + 1
4Zθf

θ2

m2
θf

F 2 , (232)

along with equations (204), (205) and (206). All these interactions will furnish 1-loop
contributions to the massive vector self-energy that now can be fully renormalized thanks
to the new counterterms. As stated in (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018),
the final contribution of the inclusion of the next-to-leading order terms is the insertion
of ghosts states (Pauli-Villars) that is unabsorbable in the physics (up to the considered
precision) but with the major contribution of new counter-terms which will be necessary
to remove all infinities from the theory (again up to a regarded precision in the coupling).
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5.3 Photon self-energy

We want to compute quantum corrections to the massive vector self-energy intro-
duced by axion fluctuations. These fluctuations are the reason for the contrast between
the free and interacting theory as it includes the effect of particles metamorphosing into
another. As an example, in the usual QED, the possibility of a photon decaying into an
electron and a positron (its antiparticle) generates measurable changes (the Lamb shift
effect). In our model, the dressed massive vector propagator will include 1-loop contri-
butions that originates from the axion coupling (O(g)) and from L4γ and L2γ,2θ (O(g2)).
The exact Green function for the photon Gµν(p) is given by the geometric sum of 1PI
graphs

iGµν(p) = + + + + · · · , (233)
= iG µν

0 (p) + iG µσ
0 (p) (iΠσρ(p)) iG ρν

0 (p) + O
(
g4
)
, (234)

where Gµν
0 (p) is the free massive vector propagator, defined as Gµν

0 (p) = −iP µν(p)/(p2 −
M2) with Pµν(p) = gµν−pµpν/M2, and iΠσρ(p) is the 1-loop contributions (consult figure 6
for exact Feynman’s diagram anatomy) with the additional factors given by counterterms.
It is important to remember that here we have two kinds of counterterms, the ones that
originate from the free sector (the relevant are Z3 and ZM), and those that originate from
the next-to-leading terms (in this case the δgh). The respective graphs are described in
appendices B.1 and B.3.

iΠσρ(p) =
3∑
i=1

K(i)
σρ(p2) − i(Z3 − 1)(p2gσρ − pσpρ) + i(ZM − 1)(Z3 − 1)M2gσρ

+ i
δgh
m2
gh

p2(p2gσρ − pσpρ) .
(235)

The terms in ∑3
i K

(i)
σρ(p2) represents each graph that contribute to our correction to the

massive vector propagator. In the next section I will compute (in some details) each one.

5.3.1 Loop integrals

In this section I will compute the three factors, K(1)
σρ (p2) (axion loop fig. 6a),

K(2)
σρ (p2) (photon-axion loop fig 6b) and K(3)

σρ (p2) (photon-photon loop fig. 6c). The
Feynman rules are described in the appendix B.
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Figure 6 - Sum of Feynman’s graphs that contribute to the photon self energy in axion-Proca
electrodynamics.

µ ν

p1 l

l − p

p2

(a)

µ ν
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l

p2
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Subtitle: Diagram of photon-axion loop K
(1)
µν (a), axion loop K

(2)
µν (b) and photon loop K

(3)
µν (c)

Source: CHRISPIM; BRUNI; GUIMARAES, 2021, p. 14.

5.3.1.1 Axion-photon loop

The axion coupling introduces a momentum dependent vertex that can be written
schematically as Vµν(p1, p2) = (−igZg)ϵµναβpα1p

β
2 where the vector line carries outgoing

momentum p2 and p1 (the definition can be found in the appendix B.2). In the Feynman’s
diagrams, represented in figure 6a, is shown the chosen momentum directions along with
the correct momentum labels. The vertex construction results in

K(1)
µν =

∫ d4l

(2π)4Vµσ(−p1, l)Dσρ
0 (l)∆0(l − p)Vρν(l,−p2) , (236)

where ∆0(p) = i/(p2 − m2) is the free massive pseudo scalar propagator in momentum
space (see appendix B.1). Now we must do a series of computations and simplifications.
The expression with all its Lorentz indexes is

K(1)
µν = (i gZg)2ϵµσabϵνρcdp1

ap2
c
∫ d4l

(2π)4
lbld

l2 −M2
P σρ(l)

(l − p)2 −m2 , (237)

with Pµν(l) = gµν − lµlν/M
2. This complicated expression is due to the combination of

two Levi-Citiva tensors. The following relation is useful for this calculation

ϵµγανϵ
νσρβ = δσµ

(
δργδ

β
α − δβγ δ

ρ
α

)
− δρµ

(
δσγ δ

β
α − δβγ δ

σ
α

)
+ δβµ

(
δσγ δ

ρ
α − δργδ

σ
α

)
, (238)

to do the simplification contractions resulting in

K(1)
µν (p2) = −g2

∫ d4l

(2π)4
Yµν(p, l)
l2 −M2

1
(l − p)2 −m2 , (239)

with Y µν(p, l) = gµν (l2p2 − (l · p)2) + lµ (pν(l · p) − p2lν) + pµ (lν(l · p) − l2pν) and Zg =
1+O[g2] (so that (igZg)2 ∼ −g2). It was also used the momentum conservation condition
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to impose p1 = p2 = p. Next we introduce a Feynman’s parametrization so that

∫ d4l

(2π)4
Y µν(p, l)
l2 −M2

1
(l − p)2 −m2 =

∫ d4l

(2π)4

∫ 1

0
ds

Y µν(p, l)
(q2 − ∆(s, p2))2 , (240)

with qν = lν − s pν and ∆(s, p2) = m2s−M2(s− 1) − p2s(1 − s). Now doing a change of
variables l → q + ps gives

∫ d4q

(2π)4

∫ 1

0
ds

Y µν(p, q + ps)
(q2 − ∆(s, p2))2 . (241)

This result in

Y µν(p, q + ps) = gµν
(
p2q2 − (p · q)2

)
+ pµ

(
qν(p · q) − q2pν

)
+ qµ

(
pν(p · q) − p2qν

)
.

(242)

Using that qµqν → 1
D
q2gµν (which is valid only inside the integral (SCHWARTZ, 2013))

we get (for D = 4)

Y µν(p, q + ps) = q2(gµνp2 − pµpν)
(

1 − 2
D

)
= q2

2 (gµνp2 − pµpν) . (243)

This result in

K(1)
µν (p2) = −g2

2 (gµνp2 − pµpν)
∫ d4q

(2π)4

∫ 1

0
ds

q2

(q2 − ∆(s, p2))2 , (244)

with ∆(s, p2) = m2s−M2(s−1)−p2s(1−s). As we can see, even though gauge invariance
is explicitly broken by the mass term, the longitudinal component is effectively decoupled
and the result can still be written using the usual transverse operator

K(1)
µν (p2) = (gµνp2 − pµpν)k(1)(p2) , (245)

with

k(1)(p2) = −g2

2

∫ d4q

(2π)4

∫ 1

0
ds

q2

(q2 − ∆(s, p2))2 . (246)

This can be formally established by a Ward identity (HEES, 2003) showing that only
the transverse part will contribute to the final result. Now we must extend k(1)(p2) to
D−dimensions and redefine the dimensional coupling as g → gµ

4−D
2 (µ is an arbitrary

parameter of mass dimension 1 so that the coupling g is now dimensionless). Also, this
rescaling must be followed by a redefinition of the Wilson parameters bi → biµ

D−4
2 so that
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bi is also dimensionless. This leads to

k(1)(p2) = −g2µ4−D

2

∫ dDq

(2π)D
∫ 1

0
ds

q2

(q2 − ∆(s, p2))2 . (247)

Changing the integrating order, doing a Wick rotation, and using the usual formula
(SCHWARTZ, 2013)

∫ dDk

(2π)D
k2D

(k2 − ∆)b = i(−1)a−b 1
(4π)D

2

1
∆b−a− D

2

Γ
(
a+ D

2

)
Γ
(
b− a− D

2

)
Γ (b) Γ

(
D
2

) (248)

gives

k(1)(p2) = ig2µ4−DD

4(4π)D/2 Γ
(

1 − D

2

) ∫ 1

0
ds∆D

2 −1 . (249)

Expanding for D = 4 − ϵ with ϵ → 0 we obtain

k(1)(p2) = 1 − ig2

8π2ϵ

∫ 1

0
ds∆ + ig2

16π2

∫ 1

0
ds∆

(
−1

2 + log ∆
µ̃2

)
(250)

= 1 − ig2

16π2

(2
ϵ

+ 1
2

)(
m2

2 + M2

2 − p2

6

)
+ ig2

16π2

∫ 1

0
ds∆ log ∆

µ̃2 , (251)

with the usual definition µ̃2 = e−γ4πµ2 (γ is the Euler-Mascheroni constant). In this
computation, any part that is not divergent or that don’t have any kind of discontinuity
can be ignored since they will simply be absorbed by a finite redefinition of the original
action. This gives

k(1)(p2) = − ig2

16π2

[
2
ϵ

(
m2

2 + M2

2 − p2

6

)
−
∫ 1

0
ds∆ log ∆

µ̃2

]
. (252)

5.3.1.2 Axion loop

To construct the axion loop graph (represented in figure 6b) one must use the
interaction term which generates the two-photon-two-axion vertex (described in appendix
B.5) and “close” the pseudo-vector lines then include an appropriate axion propagator.
This results in

K(2)
µν =

[
ZaϕCaθgµν + Zϕf

m2
ϕf

(gµν(p1 · p2) − p1µp2ν)
] ∫ d4l

(2π)4
1

l2 −m2 , (253)

where the symmetry factor 1
2 was included (and cancels the 2 from the interaction term).

Imposing momentum conservation (so that p1 = p2 = p) along with the same considera-
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tions of precision, e.g. Zaθ = 1 + O(g2) leading to ZaθCaθ ∼ Caθ + O(g4), leads to

K(2)
µν (p2) = gµνk

(2)(p2) + (pµpν − terms) (254)

with

k(2)(p2) =
(
Caθ + p2

m2
ϕf

)∫ d4l

(2π)4
1

l2 −m2 , (255)

where we already extracted the longitudinal part. The next steps in the computation
of k(2)(p2) are similar to the ones done in the last part. We extend its dimension to D,
redefine the dimensional couplings (in this case only on the Wilson parameters inside the
definitions of Caϕ and mϕf ). This results in

k(2)(p2) =
(
Caθ + p2

m2
ϕf

)
µ4−D

∫ dDl

(2π)D
1

l2 −m2 . (256)

Now we can use the general formula (248) to compute the momentum integral (after a
Wick rotation) which results in

k(2)(p2) = im2

16π2

(
Caθ + p2

m2
ϕf

)(
2
ϵ

− log
(
m2

µ̃2

))
(257)

and, as usual, the definition µ̃2 = e−γ4πµ2. Again, any factor that does not contribute to
some kind of divergence or discontinuity is ignored.

5.3.1.3 Photon loop

The Feynman graph figure 6c is obtained from the 4γ interaction term (the Feyn-
man rules are described in appendix B.4). The “construction” is simply and consists on
“closing” two photon lines and the inclusion of the appropriate internal photon propaga-
tor. This results in the contribution

K(3)
µν = i

6

∫ d4l

(2π)4

(
Z4C4T

(1)
µνρσ + Z5

M2
2
T (2)
µνρσ(p1, p2,−l, l)

)
D0

µν(l) , (258)

where Dσρ
0 (l) = −iPσρ(l)/(l2 −M2) (with Pµν(l) = gµν − lµlν/M

2) is the massive photon
propagator. The explicit form of the T’s are described in the appendix B.4. Opening this
require a little of work so we will first define

K(3)
µν = 1

6

∫ d4l

(2π)4

(
Z4C4T

(1)
µν + Z5

M2
2
T (2)
µν (p1, p2,−l, l)

)
1

l2 −M2 (259)
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so we can workout each expression more easily. These new terms are

T (1)
µν = T (1)

µνρσP
σρ(l) , (260)

T (2)
µν (p1, p2,−l, l) = T (2)

µνρσ(p1, p2,−l, l)P σρ(l) . (261)

The next step is to simplify the expression using lµlν → 1
D
l2gµν and the fact that an odd

potency in the integral variable will give a null result. Another point is that can impose
momentum conservation (with p1 = −p2 = p), use the same precision considerations (as
in Z4C4 ∼ C4 + O(g4)), and D = 4 for simplicity. This results in the first term being

T (1)
µν = 6gµν

(
1 − 4 l2

M2

)
. (262)

The second term is a little more complicated and gives

T (2)
µν (p, p,−l, l) = −

(
4 − l2

M2

)
(gµνp2 − pµpν) − 3l2gµν ,

= gµν

[
p2
(

−4 + l2

M2

)
− 3l2

]
+ (pµpν − terms) .

(263)

Now we can write the transverse part as

K(3)
µν (p2) = k(3)(p2)gµν + (pµpν − terms) (264)

with

k(3)(p2) = 1
6

∫ d4l

(2π)4

{
6C4

(
1 − 4 l2

M2

)
+ 1
M2

2

[
p2
(

−4 + l2

M2

)
− 3l2

]}
1

l2 −M2 . (265)

The final part is to do the dimensional regularization by doing the appropriate dimensional
coupling redefinitions (as is done in subsection 5.3.1.1), along with the redefinition of the
Wilson parameters inside the C4 and M2

2 . The momentum integral becomes

k(3)(p2) = 1
6µ

4−D
∫ dDl

(2π)D

{
6C4

(
1 − 4 l2

M2

)

+ 1
M2

2

[
p2
(

−4 + l2

M2

)
− 3l2

]}
1

l2 −M2 ,

and can be done using eq. (248). The result is (after the elimination of the irrelevant
numerical contributions)

k(3)(p2) = − iM2

16π2

(
3C4 + p2 +M2

2M2
2

)[
2
ϵ

− log
(
M2

µ̃2

)]
. (266)
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5.3.1.4 Result

Putting together all elements, computed in the last subsections, we can rewrite
equation (235) as

iΠσρ(p) =
( 3∑
i=1

k(i)(p2) − iδ3p
2 + i(δM + δ3)M2 + i

δgh
m2
gh

p4
)
gσρ + (pµpν − terms) (267)

with

3∑
i=1

k(i)(p2) = i

16π2

[
−g2p2

[
2
ϵ

(
m2

2 + M2

2 − p2

6

)
−
∫ 1

0
ds∆ log ∆

µ̃2

]

+m2
(

2
ϵ

− log
(
m2

µ̃2

))(
Caθ + p2

m2
θf

)

−M2
(

2
ϵ

− log
(
M2

µ̃2

))(
3C4 + p2 +M2

2M2
2

)]
.

(268)

In the next section we will organize this result and use the re-normalization conditions to
cancel any infinity.

5.3.2 Renormalization

Using equations (267) and (268) results in

iΠµν(p) = iΠ(p2)gµν + (pµpν − terms) (269)

Π(p2) = 1
16π2

[
Π(0) + p2Π(2)(p2) + p4Π(4) − p2δ3 + (δM + δ3)M2 + p4 δgh

m2
gh

]
. (270)

The exact propagator can be found by the successive inclusion of 1PI graphs as in

= + + · · · , (271)

where the blob is the sum of the previous computed diagrams

iΠσρ(p) = + + = . (272)

Now, the exact Green’s function at one loop, in this context, is given by

iGµν(p2) = iG µν
0 + iG µσ

0 (iΠσρ) iG ρν
0 + iG µσ

0 (iΠσρ) iG ρα
0 (iΠαβ) iG βν

0 + · · · , (273)

= −i gµν
p2(1 + Π(2)) − (M2 − Π(0)) + p4Π(4)(p2) + (pµpν − terms) , (274)
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with

Π(0) =
(

2
ϵ

− log
(
m2

µ̃2

))
m2Caθ −M2

(
2
ϵ

− log
(
M2

µ̃2

))(
3C4 + M2

2M2
2

)
+M2δM , (275)

Π(2) =
(

2
ϵ

− log
(
m2

µ̃2

))
m2

m2
θf

−
(

2
ϵ

− log
(
M2

µ̃2

))
M2

2M2
2

+ g2
(

2
ϵ

(
m2

2 + M

2

)
+
∫ 1

0
ds∆ log ∆

µ̃2

)
+ δ3

p2

(
M2 − p2

)
, (276)

Π(4) = g2 2
ϵ

1
6 + δgh

m2
gh

, (277)

which is organized in powers of p2 as usual. This expression is correct up to O(g4) (with
the exception of δgh

m2
gh

) and any finite term23.
Before proceeding to the renormalization process it should be clear that this ex-

pression results in the one found in (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018)
once we set M2 = 0. Since gauge invariance acts as a custodial symmetry (SCHWARTZ,
2013) to the photon mass it is expected that when the Proca term is set to zero there are
no quantum corrections that would generate a mass term. That is when M2 = 0 there
should be no term ∼ Π(0) in our result. This indeed is the case because the term ∼ Ca2θ2

can not be included in Laθg2 in equation (200) if we have gauge invariance. In this case,
if we make M2 = 0 we will regain gouge invariance and can not include any term with
a2 anywhere in Lg2 . This is a case of custodial symmetry and indicated that the photon
mass is protected from large mass corrections.

In the next subsections, I will abord the choice of renormalization scheme. This
is the part where the connection with the physical quantities is done because, so far,
there is no mention of the actual measurable parameters. This connection is not trivial as
the modern understanding is due to Ken Wilson at the beginning of 1970 (SCHWARTZ,
2013). The previous calculation was done using the so-called dimensional regularization.
This process is based on the shift from four dimensions to d-dimensions to avoid problems
of convergence in the momentum integral. The relic is the one divided by epsilon (who is
formally zero). But, as is known today, the result should always be in terms of physical
quantities. The next part is about this connection and how this process is different in the
massless and massive photon cases.

23 All δ were redefined to include the 16π2 factor
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5.3.2.1 MS-bar scheme (massless case)

In the massless photon case, Axion fluctuations are responsible for a correction of
the Coulomb electrostatic potential, felt by a test charge e. The Coulomb potential (in
momentum space) can be “read” directly from G0(p2) as in

iGµνM=0(p
2) = −i gµν

p2(1 + Π(2)) + p4Π(4)(p2) + (pµpν − terms) , (278)

→ ṼM=0(p2) = e2

p2
1

1 + Π(2) + p2Π(4)(p2) . (279)

This will be made clear in the potential computation. The point is that the parameter is
not (yet) the electric charge. To make this connection, one must impose

ṼM=0(p2
0) ≡ e2

p2
0

(280)

to define e as the actual electric charge measured in the experiment24. The three-
momentum p0 is the scale at which the measurement occurs. This means that we can
rewrite the potential as

ṼM=0(p2) = e2

p2

[
1 + 1

p2

(
Π(2)(p2

0) − Π(2)(p2) + (p2
0 − p2)Π(4)

)]
+O[e2g4] (281)

in momentum space evaluated at p concerning it’s value at the scale p0. This potential
still is problematic. There are divergencies in the Π’s (the ϵ) and the presence of the
arbitrary point introduced by the dimensional regularization (the µ̃). The first problem
can be solved by imposing MS conditions which cancel only the divergent part. That
is, the counter-terms must not contain any finite term. In special, Π(4) is constant at
this order and can be set to zero by imposing the MS scheme. Now, it is physically
sensible to make contact with the measured electric charge by defining the potential to
have the Coulomb form at spatial infinity, or equivalently at p0 = 0, where the axion effect
should be negligible. That is, to fix p0 is sufficient to impose that the potential is of the
usual Coulomb type at p0 = 0 resulting in e being the observable electric charge. This
works as a renormalization condition fixing the ambiguity in Π(2) since it is possible to
compute µ̃ from the condition Π(0) = 0 (as is done in (VILLALBA-CHÁVEZ; GOLUB;
MüLLER, 2018)). Two modifications to this computation occur when the Proca mass
term is included. First, a renormalization additional condition will be necessary for the

24 Usually, the notation is e for the parameters in the Lagrangian and eR (or eph) for the electric charge
measured in experiments. I choose to not introduce a new subscript, the context will make clear the
distinction.
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Proca mass. Second, the computation that allows us to fix the MS free parameter µ̃ using
the low energy subtraction point conditions is not clear in the context of massive photons.
To illustrate this problem we can write the subtracted potential in moment space, that is
the Fourier transform of the potential in two distinct scales (here p and p0)

Ṽ (p2) = e2

p2 −M2 ×

×
(

1 + 1
p2 −M2

(
p2

0Π(2)(p2
0) + p4

0Π(4)

p2
0 −M2 − p2Π(2)(p2) + p4Π(4)

p2 −M2

))
+O[e2g4] .

(282)

Note that here the scale p0 is defined as the scale where the potential is of the Yukawa
type, as in

Ṽ (p2
0) ≡ e2

p2
0 −M2 , (283)

but now one can not use the asymptotic charge to define a physically motivated renorma-
lization condition as done above in the massless case. The potential of a massive photon is
null asymptotically as a result of the screening due to the superconductivity. Physically,
due to the massive nature of the photon, test charges will feel no force at spatial infinity.
This is a setback for the use of the MS scheme because there is no simple way to fix the
remaining ambiguity. This problem can be avoided if we impose the so-called on-shell
(OS) conditions.

5.3.2.2 OS scheme

It is clear from equation (274) that it will be necessary three conditions to fix the
singular ϵ−1 contributions that are proportional to p0, p2 and p4. They will be

Π(M2) = 0 , (284)
∂Π(p2)
∂p2

∣∣∣∣∣
p2=M2

= 0 , (285)

∂2Π(p2)
(∂p2)2

∣∣∣∣∣
p2=M2

= 0 , (286)

but before we apply these conditions we must make a O(g4) modification

p4 δgh
m2
gh

→ 1
2(p2 −M2)2 δgh

m2
gh

. (287)
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The first two conditions fix the mass pole location and the residue (so that the physical
photon mass is M2 with residue i). The third cancel any contribution from Π(2) by fixing
the ghost counter-term. Now we can impose these restrictions, resulting in a physically
consistent potential clear from any infinities and free parameters. The counter terms
obtained are

δM = −g2
∫ 1

0
ds
(
m2s+M2(s− 1)2

)
log
(
m2s+M2(s− 1)2

µ2

)
−

log
(
µ2

m2

)(
Caθ

m2

M2 + m2

m2
θf

)

+ 1
ϵ

(
−2m2Caθ

M2 + 6C4 − 1
3g

2
(
3m2 + 4M2

)
− 2m2

m2
θf

+ 2M2

M2
2

)

+ log
(
µ2

M2

)(
3C4 + M2

M2
2

)
(288)

δ3 = −g2
∫ 1

0
ds
(
m2s+M2(s− 1)(2s− 1)

)
log
(
m2s+M2(s− 1)2

µ2

)

+ 1
ϵ

(
−1

3g
2
(
3m2 + 5M2

)
− 2m2

m2
θf

+ M2

M2
2

)

− m2

m2
θf

log
(
µ2

m2

)
+ 1

6

(
g2M2 + 3M2

M2
2

log
(
µ2

M2

))
(289)

δgh = −2
3
g2m2

gh

ϵ
+ 1

3g
2m2

gh − g2m2
gh

∫ 1

0
ds
(

M2(s− 1)2s2s

M2(s− 1)2 +m2s

+2s(s− 1) log
(
M2(s− 1)2 +m2s

µ2

))
(290)

so that the result is

Π(p2) = − 1
32π2 g

2
(
M2 − p2

) ∫ 1

0
ds (s− 1)s×

× −2m2p2s+M4(s− 1)s+M2p2 (−3s2 + 5s− 2)
m2s+M2(s− 1)2

+ 1
16π2 g

2p2
∫ 1

0
ds∆(s, p2) log

(
∆(s, p2)

m2s+M2(s− 1)2

)
(291)

with the previous definition ∆(s, p2) = m2s − M2(s − 1) − p2s(1 − s). This is our result
for the quantum correction using the OS re-normalization scheme.

5.4 Imaginary part of the exact propagator

The last section finishes the renormalization process. The result is the exact pro-
pagator free of divergences. The On-Schell conditions dictate that the photon mass para-
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meter corresponds to the physical (theoretical) mass of the particle. p2 = M2 is defined
as a pole, but there are additional poles (branch cut) are present. This is expected by the
quantum correction as a consequence of unitarity (optical theorem (SCHWARTZ, 2013)).
They are encoded in the imaginary part of Π(p2). In this part, I will explain the basic
steps to extract this imaginary part.

To extract the imaginary piece it is necessary to reintroduction in Π(p2) (eq. (291)
the iϵ prescriptions25 by M2 → M2−iϵ. This will result in an expression that has a branch
related to the log which allows us to apply the formula log(−X ± iϵ) = log |X| ± iπ (with
X > 0) (all other places the iϵ appears the resulting expression is well behaved if ϵ → 0
or is momentum independent). The relevant part is

Π(p2)
∣∣∣∣
M2−iϵ

= (· · · ) + 1
16π2 g

2p2
∫ 1

0
ds∆(s, p2) log

(
∆(s, p2)

m2s+M2(s− 1)2 − iϵ

)
. (292)

The cut in the log argument happens when its argument, namely m2s+(s−1)(p2s−M2)
m2s+M2(s−1)2 , be-

comes negative in the domain of the integration. The denominator is always positive, but
the numerator can be negative for the values of s given by

s± = 1
2 + M2 −m2

2p2 ± 1
2p2

√
(p2 − (m+M)2)(p2 − (m−M)2) . (293)

The branch cut starts when this equation has a real solution for s ∈ [0, 1]. This occurs
for p2 = (m+M)2, which is the threshold for the creation of a two-particle system.
Indeed this is the momentum in the center-of-mass frame for two particles of mass M
and m and total energy

√
p2. For a fixed value of p2 > (M + m)2, there will be a

branch cut in the log within the integrands value s− to s+. Using this fact together with
Im{log(−X ± iϵ)} = ±π leads to

Im
{
Π(p2)

}
= − 1

16πg
2p2

∫ s+

s−
ds
(
m2s+ (s− 1)

(
p2s−M2

))
(294)

= 1
96π

g2

p2

[(
p2 − (m−M)2

)(
p2 − (m+M)2

)]3/2
(295)

with the condition that p2 > (m+M)2. This is the threshold for multiparticle production,
with the corresponding spectral function proportional to Im{Π(p2)}. In special, there is
no imaginary part if Π(p2) is on-shell or if the photon limit (M2 → 0) is taken. The same
applies to zero axion mass.

25 Another possibility is to use the prescription p2 → p2 + iϵ since the same sign in iϵ would appear.
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5.5 Potential correction at first order

At the beginning of this calculation (namely in section 5.3), our motivation was to
compute the modifications that the interaction terms would introduce to the propagation
of a massive vector particle (or massive photon). This information is encoded in the exact
propagator in equation (274). Up to 1-loop, we can write

Gµν(p) = −i gµν

p2 −M2

(
1 − Π(p2)

p2 −M2

)
+ O

(
g4
)

+ (pµpν − terms) , (296)

where Gµν(p) is the exact propagator, i.e., the propagator for the massive vector field
with all its quantum corrections (and finite) computed in eq. (291). These corrections
generate a dressed four potential Aµ(x)26 given by

Aµ(x) = −i
∫ d4p

(2π)4 e
−iq·xGµν(p)j̃ν(p) . (297)

Using equation (296) results in

Aµ(x) = −
∫ d4p

(2π)4 e
−ip·x j̃µ(p)

p2 −M2

(
1 − Π(p2)

p2 −M2

)
. (298)

Now to compute the Yukawa’s corrected law we need to use a stationary current jµ(x)

jµ(x) = eδ3(x⃗)δµ0 → j̃µ(p) = 2πeδ(p0)δµ0 , (299)

where e is the electric charge, so that27

A0(x⃗) = e
∫ d3p

(2π)3 e
ip⃗·x⃗ 1

|p⃗|2 +M2

(
1 + Π(−|p⃗|2)

|p⃗|2 +M2

)
. (300)

This gives the Fourier transform of the corrected Yukawa potential (SCHWARTZ, 2013)
felt by a negative charge −e

Ṽ (p⃗) = −eÃ0(p⃗) = −e2

|p⃗|2 +M2

(
1 + Π(−|p⃗|2)

|p⃗|2 +M2

)
(301)

26 This is the same relation used in (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018). The factor −i
follows from the definition of the free propagator (that influences the i’s in the exact propagator).
Another convention is presented in (GREINER; REINHARDT, 1992).

27 Remember that p · x = p0x0 − p⃗ · x⃗
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so that the potential between two identical charges of opposite signs reads

V (x⃗) = −e2
∫ d3p

(2π)3 e
ip⃗·x⃗ 1

|p⃗|2 +M2

(
1 + Π(−|p⃗|2)

|p⃗|2 +M2

)
. (302)

With this in mind, we can separate this into two contributions

VY (x⃗) = −e2
∫ d3p

(2π)3 e
ip⃗·x⃗ 1

|p⃗|2 +M2
, (303)

δVY (x⃗) = −e2
∫ d3p

(2π)3 e
ip⃗·x⃗ Π(−|p⃗|2)

(|p⃗|2 +M2)2
. (304)

5.5.1 Yukawa potential calculation

Although the computation of the Yuwaka potential is well known it is convenient
to revise it briefly. The momentum integral (303) can be solved via residue theorem, but
first one must do a coordinate transformation to spherical (with r ≡ |x⃗| and p ≡ |p⃗|)
resulting in

VY (r) = − e2

4πri

∫ ∞

−∞
dp eipr p

p2 +M2 , (305)

see (SCHWARTZ, 2013) for more details. The idea is to “compute” a similar integral but
in a complex plane. We start with integral

− e2

4π2ri

∫
C

dp p

p2 +M2 e
ipr = − e2

4π2ri

(∫
γ1

dp p

p2 +M2 e
ipr +

∫
γ2

dp p

p2 +M2 e
ipr

)
. (306)

Notice that I choose not to introduce a new variable but it is a common practice to do
so. The integral has two poles (singularities) that are located in p = ±iM (figure 7a).
The contour C is expressed in figure 7b, the path is separated into two parts, γ1 and γ2.
In the limit, γ1 is the same integral that we wish to compute from the beginning, namely

VY (r) = − e2

4π2ri
lim
γ1→∞

∫
γ1

dp p

p2 +M2 e
ipr‘ . (307)

The upper contour integral γ2 is zero since it obeys Jordan lemme. The close integral in
the complex plane can e solved via the residue theorem and results in

− e2

4π2ri

∫
C

dp p

p2 +M2 e
ipr = − e2

4π
e−Mr

r
. (308)
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Figure 7 - Complex plane with Re{q} × Im{q} - Yukawa
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Subtitle: Complex plot of the poles q = ±M on fig. (a). The contour in the complex plane is
represented in (b).

Source: The author, 2022.

Now we can write that our initial integral (306) as

VY (r) = − e2

4π
e−Mr

r
(309)

with r ≡ |x⃗|. This is the Yuwaka potential (or Proca) and results in the Coulomb potential
in the massless limit (M = 0).

5.5.2 Yukawa potential correction calculation

The computation of the correction to the Yukawa potential in eq. (304), namely

δVY (x⃗) = −e2
∫ d3p

(2π)3 e
ip⃗·x⃗ Π(−|p⃗|2)

(|p⃗|2 +M2)2
, (310)

is considerably more tricky. The reason for that is the extra discontinuity introduced by
the multiparticle cut introduced by Π (explored in section 5.4) but this problem can be
contoured with a different choice of path in the complex plane as we will see28. Consi-
der the analytic continuation |p⃗| → iq ∈ Z, which structure is displayed in fig.8a (the

28 Notice that there is another possibility to compute the potential. The approach is to do a partial
integration on Π, eliminate the log, and switch the order of integration from dq ds to ds dq. The effect
separates the discontinuity leading to the pole position depending on the s parameter and the complex
contour to be the same as the Yukawa potential.
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integrand has a pole at q = ±M and a cut that starts at q = (M + m)). This cut in
the complex plane leads to the impossibility of using a simple counter as was done in the
Yukawa potential calculation. To elucidate, the potential after the change of variables is

δVY (r) = e2

4π2ri

∫ ∞

−∞
dq e−rq qΠ(q2)

(q2 −M2)2 . (311)

One possibility consists in choosing the complex path, represented in fig.8, which is a

Figure 8 - Complex plane with Re{q} × Im{q}
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Subtitle: Complex plot of the poles q = ±M and the cut q > m + M in figure (a). The closed contour
in the complex plane is represent in (b) know as ‘half-disk” (or “Pacman”).

Source: CHRISPIM; BRUNI; GUIMARAES, 2021, p. 19.

“half-disk” (or “Pacman”) that avoids the branch cut by using six different parts as in

∫
Γ

dq (· · · ) =
5∑
i=1

∫
γi

dq (· · · ) . (312)

In the same way as the calculation of Yukawa’s potential, the contributions of γ2 and γ5

are canceled by Jordan’s lemme. The γ1 path is just the original integral in the real line
so we will replace it with δVY (r). The paths γ3, γ4, and γ5 can be understood by noticing
that the real part is the same in the two half (just remember that it is a function of p2 and
we are considering one part in the first quadrant and the second in the fourth quadrant).
The imaginary part has a jump given by the branch cut and is given by equation

Π(q2 + iϵ) − Π(q2 − iϵ) = Π(q2 + iϵ) − Π(q2 + iϵ)∗ = 2i Im
{
Π(q2 + iϵ)

}
. (313)

The sign in ±iϵ is related to the contour direction and since we are using counter-clockwise
we must use the plus sign (ZEE, 2010). The last part is to replace the contour integral
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with Cauchy’s residue theorem leading to

δVY (r) = (Res δVY )(iM) − e2

2π2r

∫ ∞

−∞
dq q Im[Π(q2 + iϵ)]

(q2 −M2)2 e−qr . (314)

The residue computed over the path Γ = ∑
γ is zero, but this calculation is lengthy.

Basically, one needs to do a partial integration on Π so that it is possible to compute
the residue. After that, the integral over dummy parameter s must be done, resulting
in a null outcome. The imaginary part is expressed in eq. (295), the expression of the
correction to the potential takes the form of

δVY (r) = − e2g2

192π3r

∫ ∞

m+M
dq e−qr

q(q2 −M2)2

[(
(m−M)2 − q2

)(
(m+M)2 − q2

)]3/2
. (315)

Notice that there was a change in the lower bound of the integral. The reason for that is
that the imaginary part of Π only exists for values of momentum above the threshold of
multiparticle creation (see section 5.4). Finally, the corrected potential is (q = t(M +m))

V (r) = − e2

4π

(
e−Mr

r
+ g2(m+M)2

3 × 24π2
1
r

∫ ∞

1
dt F (m/M, t)

(
t2 − 1

)3/2 e−(m+M)rt

t

)
(316)

with

F (m/M, t) =
(
t2 −

(
M −m

M +m

)2)3/2(
t2 −

(
M

M +m

)2)−2

. (317)

It is not clear how to compute the t integral in full analytic form, but some doable
simplifications can extract analytical information in some limiting cases.

5.6 Analysis of the results

In order to analyze how the effective theory changes as the parameters are mo-
dified is convenient to introduce a set of dimensionless combinations. The dimensional
parameters (m,M, g, r) can be arranged in in three dimensionless terms: Mr (distance
scale), m

M
(mass ratio scale), and gM (coupling scale). Notice that in this parametrization

a larger (smaller) axion mass, than Proca mass, translates to m/M > 1 (0 < m/M < 1).
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This results in equation (316) and (317) taking the form

V (r) = − e2

4π
e−Mr

r
δP (Mr, gM,m/M) (318)

δP (Mr, gM,m/M) = 1 +
(gM)2

(
1 + m

M

)2

48π2

∫ ∞

1
dt F (m/M, t)×

×
(
t2 − 1

)3/2 e−Mr[t(1+m/M)−1]

t
(319)

where δP (Mr, gM,m/M) corresponds to deviations from the Yukawa potential introdu-
ced by quantum fluctuations of the axion field. We remark that all the computations so
far do not rely on any specific relationship between these three parameters but, since this
is an emergent description of the system, these are effective parameters that are related to
each other and fixed by the microscopic physics as previously discussed in chapter 4. Yet,
for the sake of simplicity, we will continue to treat these parameters as independent for
now. In order to make appropriate approximations is necessary to respect the impositions
of the perturbation theory. To make appropriate approximations is necessary to respect
the impositions of the perturbation theory. The quantity

f(Mr, gM,m/M) :=
(gM)2

(
1 + m

M

)2

48π2

∫ ∞

1
dt F (m/M, t)

(
t2 − 1

)3/2
×

× e−Mr[t(1+m/M)−1]

t
(320)

which was extracted from the polarization (equation 319) with δP (Mr, gM,m/M) =
1 + f(Mr, gM,m/M), must be

f(Mr, gM,m/M) < 1 . (321)

Any specification of (Mr, gM,m/M) must be consistent with the perturbation theory and
physical experimental ranges. This inequality can be studied graphically using numerical
inputs of phenomenological characteristic scales.

The outline of the analysis is; It is possible to define a f(M0r0, (gM)crit,m0/M0)
with some Mgcrit. In order to keep the perturbative analysis consistent in a given range
Mr ∈ [(Mr)min, (Mr)max] and m/M ∈ [0, (m/M)max], it is sufficient to choose a value
Mg < (Mg)crit that can be determined either numerically or graphically using the values
of (Mr,m/M) = ((Mr)min, 0).

Considering a separation in the order of nanometers and take the London length
usually found in superconductors (that ranges from λL ∼ 50nm to ∼ 500nm (KITTEL,
2004)) as a representative scale for the photon’s mass. Theoretically, this setup is expe-
rimental feasible since it consists of a thin film of superconductor. Now consider length
scales running from r ∼ 1nm to r ∼ 50nm. This choice of M ∼ 1/50 nm−1 lead to
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Mr ∈ [0.02, 1]. In order to get a consistent value of Mg for any Mr greater than the
lower bound it is sufficient to solve (320) for (Mr,m/M) = (0.02, 0). Graphically it can
be read from figure 9a that this is true for Mg|crit ≈ 0.43. This sets the typical length
scale above which the perturbative analysis breaks and our model is not reliable anymore.

Figure 9 - Numerical analysis of the inequality in eq. (321)
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Subtitle: In figure (a) shows the numerical plot of left and right hand sides of (321), for Mr = 0.02.
Note that, the critical values of gM that keeps the perturbative analysis valid increases with
m
M . The other figure (b) represents the numerical plot of left and right hand sides of (321), for
m = 0. Note that the critical values of gM also increases considerably as one makes slightly
modifications on Mr. In both figures the black line represents the upper bound
(f(Mr, gM, m/M) = 1) and the vertical dashed line is the critical value Mg = 0.43.

Source: CHRISPIM; BRUNI; GUIMARAES, 2021, p. 31.

Within these restraints in the parameters, one can explore the general behavior of
the quantum deviation (namely δP − 1). The graph, pictured in figure 10, represents the
different behaviors in terms of different mass ratio values. As the mass ratio increases,
the value of the deviation decreases more abruptly. Other approximations of the potential
deviation can be done. In special, to develop a physical picture, it is useful to analyze the
result (319) imposing large mass hierarchies (large axion mass m ≫ M and large Proca
mass M ≫ m). Each approximation will provide an estimated result that, for additional
verification, will be compared against the numerical integration.

5.6.1 Small Axion mass

Applying a small axion mass approximation (M ≫ m) at zero-order in the mass
ratio m

M
, the expression equation (319) simplifies to

δP (Mr, gM) = 1 + g2M2

48π2

∫ ∞

1
dt
(
t2 − 1

)e−Mr(t−1)

t
+ O

(
m

M

)
(322)
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Figure 10 - Quantum deviation as function of the mass ratio
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Subtitle: Graph of the exact expression of δP − 1 (equation 319) for varying values of m/M . The used
values are gM = 0.4 and Mr ∈ (0.02, 1).

Source: CHRISPIM; BRUNI; GUIMARAES, 2021, p. 21.
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Evaluating the integral we obtain

δP (Mr, gM) ≈ 1 + g2M2

48π2

(( 1
M2r2 + 1

Mr

)
− eMrΓ(0,Mr)

)
(323)

where Γ(0,Mr) is the upper incomplete gamma function29. The asymptotic approxima-
tion results in

δP (Mr, gM) ≈


1 + g2M2

24π2
1

(Mr)2 ; for Mr ≫ 1

1 + g2M2

48π2

(
1

(Mr)2 + 1
Mr

+ log(eγMr)
)
; for Mr ≪ 1

(324)

Figure 11a and 11b compare the results with the numerical integration without approxi-
mations.

5.6.2 Small Proca mass

In the case of a small Proca mass, in comparison with the axion mass (M ≪ m),
eq. (319) gives

δP (Mr, gM,m/M) = 1 + g2m2

48π2

∫ ∞

1
dt
(

(t2 − 1)3

t5
+ 2M

m

(t2 − 1)2(t2 + 2)
t5

+M
2

m2
(t2 − 1){2 + 3t2 + t6}

t7

)
e−mrt−Mr(t−1) + O

(
M

m

)3
(325)

This integral, that can be computed analytically, but does not bring any valuable insight,
is

δP (r) = 1 + g2

π2

[
e−mrFun1 + eMrFun2

]
+ O

(
M

m

)
(326)

with

Fun1 = r3(m+M)3 (15m2 − 60mM + 17M2)
17280 − r2(m+M)2 (5m2 − 20mM + 7M2)

5760

− r(m+M) (85m2 − 160mM + 81M2)
2880 + 1

576
(
15m2 − 24mM + 11M2

)
+ M2r5(m+M)5

17280 − M2r4(m+M)4

17280 + m+M

48r + 1
48r2

(327)

29 Defined as Γ(a, x) ≡
∫∞

x
ta−1e−t dt. The asymptotic expression of Γ(0, Mr) for Mr ≫ 1 is ∝ e−Mr

Mr ,
this cancels the possible problem of the positive exponent eMr in equation (323).
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Figure 11 - Quantum deviation as function of the photon mass times the distance
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Subtitle: Plot of δP (r) − 1 (the deviation from the standard value) as a function of Mr with gM = 0.4.
The red line is the numerical integration plot of (319). Respectively; 11a and 11b represent
the approximated function (324) with Mr ≪ 1 and with Mr ≫ 1 (with m
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Moreover, 11c and 11d represent (329) with mr ≪ 1 and with mr ≫ 1 (with m
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Source: CHRISPIM; BRUNI; GUIMARAES, 2021, p. 23.
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Fun2 = r4(m+M)4 (m2 − 4mM +M2) Ei(−(m+M)r)
1152 − 1

32r
2
(
m2 −M2

)2
Ei(−(m+M)r)

+ 1
48
(
3m2 +M2

)
Ei(−(m+M)r) + M2r6(m+M)6Ei(−(m+M)r)

17280
(328)

Employing the asymptotic expansion in these expressions results in30

δP (Mr, gM,m/M) ≈


1 + g2m2

π2

(
1

(m+M)4r2 + M
m

1
(m+M)3r

+ M2

m2
1

4(m+M)2

)
e−mr

r2 ; for mr ≫ 1

1 + g2m2

48π2

(
1

(mr)2 + 3
4 + M

m

(
1
mr

− 3
)

+ 3 log (eγ(m+M)r)

+M2

m2

(
11
12 + log (eγ(m+M)r)

))
; for mr ≪ 1

(329)

The graphs 11c and 11d represents the comparison between the full numerical integration
and the approximations. Note that this result is consistent with the massless photon limit
that was examined in (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018).

5.6.3 Mass relations and London penetration length

Considering the results depicted in figure 12 (the variation of the quantum cor-
rection as the mass ratio changes) we see that as m becomes larger than M quantum
corrections becomes less and less important. One can also note that for large distances
the corrections are very feeble for any values of the masses. This means that we ex-
pect noticeable deviations from the usual London results, due to axion effects, at small
penetration distances and large photon mass (M/m > 1).

In fact, we can explore in more details the variation in the London screening
generated by quantum fluctuations of the axion background. To do so, it is useful to
redefine eq. (318) with an effective mass by

V (r) = − e2

4π
e−rMeff(Mr,Mg,m/M)

r
(330)

so that

M eff(Mr,Mg,m/M) = M − log δP
r

= M − δP − 1
r

+ O
(
g4
)

(331)

where δP = δP (Mr,Mg,m/M) is given by 319 and the expansion log (1 + ax) ≈ ax

30 Note that every term in this expression can be expressed in terms of (Mr, gM, m/M).
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Figure 12 - Quantum deviation as function of the mass ration
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was used. The Yukawa tree level interaction, i.e VY (r) = − e2

4π
e−Mr

r
, defines the London

length λL as the damping coefficient of the exponential via e−MλL = e−1, or equivalently,
λL = 1

M
. We can expect that this term receives quantum corrections that can be written

in the form

reffM eff (reff ) = 1 + O
(
g2
)

(332)

that is a transcendental equation, but it is possible to solve by considering that

reff = λL + δr + O
(
g4
)

(333)

where δr ∈ O(g2) and MλL = 1 resulting in31

Mδr =
(gM)2

(
1 + m

M

)2

48π2 e1
∫ ∞

1
dt F (m/M, t)

(
t2 − 1

)3/2 e−t(1+ m
M )

t
+ O

(
g4
)
. (334)

This is the term O(g2) (leading contribution) expected in eq. (332) and is independent
of the scale Mr. We can see in graph 13 the shift δr (in units of M) in the London
penetration length as a function of the mass ratio M

m
. As stated before, the axionic effects

are more relevant for large photon mass.

31 This expression was obtained by expanding e−Mreff [t(1+m/M)−1] (with the use of equation (333)) and
keeping terms of O

(
g0) since the whole integral is of O

(
g2). Note that this follows the same spirit of

the renormalization of the charge in QED.
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Figure 13 - Quantum deviation of London’s mass as function of the mass ration
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CONCLUSION

In this thesis, we examined (shortly) some aspects of the realization of axion physics
in particle and condensed matter physics. This topic attracts many researchers in both
fields so there is plenty of material available. One of the objectives here is to give a general
idea of the motivation behind this fact along with a starting point on this extensive topic.

The starting point in the first chapter is the very basics of the Dirac, Weyl, and
gauge fields (properties of the spinor fields, minimal coupling to the gauge field, equation
of motion). The Dirac field ψ describes spin 1/2 particles (electron and its antiparticle,
for example) and is reducible into two Weyl spinors in odd spatial dimensions. The

Weyl fields, ψR and ψL (each one with two degrees of freedom) so that ψ(x) =

ψL
ψR


or ψR/L = PR/Lψ (PR/L are projectors defined as PR = 1

2(1 + γ5) and PL = 1
2(1 − γ5)),

play a vital role in our narrative, although no fundamental particle is associated with it.
One extra ingredient (that plays a part in both mentioned research fields) is considered
already at the beginning. This factor is the constant four-vector bµ which appears as
ψ(x)/bγ5ψ(x) in the fermionic Lagrangian description. The initial motivation here is the
extension to the standard model of particles which includes a CPT-odd Lorentz invariance
violation term. This is shortly explained in section 1.2. The following section addresses the
transformations, symmetries, and excitation spectrum with a focus on the modifications
included by the bµ term. Distinct energy-momentum relations emerge depending on the
relation between bµ and the fermion mass m (including the possibility of closing the mass
gap). At this point, some considerations about the physical consequences of the stated
term in LSV are made. In particular this term introduces problems of stability in the
fermionic action but with the peculiar conclusion that these are (possibly) non-observable
since the energy necessary to reach it is of Planck scale. In the final section of the
first chapter, we construct an argument (based on the energy spectrum graphs of section
1.4) on how a massive fermionic theory, with the inclusion of the coupling bµ, can be
“approximated” to a massless one with a special condition between the coupling term
and the fermionic mass given by −bµbµ = −b2

0 + b2
i < m2. This approximation is only

valid for the low-energy regime, which is not a problem since this is the region of interest
in chapter 2.

The focus of Chapter 2 is the main points (since it is a lengthy calculation) of
the computation of the low energy (or effective) description of the systems studied in the
previous chapter. The low energy theory is obtainable by the integration of the fermionic
degrees of freedom of the microscopic system.

In the first section, the fermionic integration is done, with the inclusion of the
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previously mentioned coupling and the gauge sector, namely

Z =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell) (335)

S0 =
∫

d4xψ(x)
(
i/∂ −m+ /bγ5 + ie /A(x)

)
ψ(x) , (336)

SMaxwell =
∫

d4x
(

−1
4FµνF

µν
)
. (337)

The resulting theory

Z =
∫

D(A)eiS (338)

S =
∫

d4x

[
−1

4F
2 + e2

32π2β(x)FF̃ + jµA
µ + (powers of F 2)

]
(339)

which presents a connection between the gauge field and the microscopic term bµ, similar
to axionic coupling. This encodes the bµ profile in the electromagnetic description of
the system as one can see by the modifications to the Maxwell equations, constitutive
relations, and topological currents. Anticipating the discussion we can connect these
modifications to the appearance of the topological magnetic electric which is a cross-field
polarization (electric field induces magnetization and vice-versa), the anomalous Hall
effect (Hall effect in the absence of magnetic field), and the chiral magnetic effect (electric
current induced by a static magnetic field).

Next, we simplify the calculation by considering a case in which the contribution of
the coupling reduces to an angle bound to 0 (mod 2π) or θ = π (mod 2π). This transforms
the effective theory to

Z =
∫

D(A)eiS (340)

S =
∫

d4x

(
−1

4F
2 + e2θ

32π2 θF F̃ + jµA
µ

)
, (341)

which eliminates any modification to the equation of motion (since the anomaly con-
tribution can be written as a total derivative by a partial integration as in SAnomaly =
e2θ

32π2

∫
d4x ∂µ(ϵµνρσAν∂ρAσ)), but it is still relevant in the boundary between two systems

characterized by distinct angles. Again, foreseeing the discussion in the material realiza-
tion, this effect is observable in the vicinity between a normal and Topological insulator
(a consequence of the TME effect in the boundary). Other effects can be realized as well,
e.g. the mirror magnetic charge inside the material, and the possible realization of the
Witten effect (WITTEN, 1979; QI et al., 2009a).

The commitment of the last part of the second chapter is to a more complex calcu-
lation that results in the dynamical axion electrodynamics. The presence of a dynamical
component in the axion field is possible because the chiral symmetry is broken dynami-
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cally due to the formation of a chiral condensation induced by the four fermions pairing
λ2
(
ψ(x)PLψ(x)

) (
ψ(x)PRψ(x)

)
. After the integration of the fermions, the resulting the-

ory is similar to a topological magnetic insulator or (similar) an axion insulator since the
pairing generates a fermionic mass which (ultimately) results in the axion-like field mass
(in what is called chiral density wave). That is, the system is composed of

Z =
∫

D(A, θ)eiS (342)

S =
∫

d4x

[
−1

4F
2 + e2g

32π2

(
β(x)
g

− θ

)
FF̃ + 1

2m
2
θθ

2 + 1
2(∂θ)2

]
(343)

where the θ term is a dynamical field that represents the fluctuations of the condensate
phase. The β is the contribution from the Weyl point separation. Although this is a
review of (WANG; ZHANG, 2013; MACIEJKO; NANDKISHORE, 2014; YOU; CHO;
HUGHES, 2016) we also discussed the problem of computing the non-perturbative effects
(in which the condensate mass is part) and how the approximations change the “acces-
sible” information on the theory (the details about possible defects are lost). Since the
axion-like field couples to the electromagnetic sector in the same way as the bµ term, the
previously discussed effects are still relevant but now gifted with their own equation of
motion.

The core of the third chapter was the concepts that were relevant to comprehen-
sion of chapter 2 models in the context of their material realization. To this end, the
first section explores some historical background and basic concepts (Landau’s symme-
try breaking theory and Bloch’s and Wilson’s band theory). In the second section, we
follow the path to expanding those ideas consisting of examining the integer quantum
Hall effect, which is relevant as an example of the appearance of topological order in the
description of a material’s phase. This new kind of order can not be distinguished by
any observable symmetry break, it is quantized and robust against smooth changes in the
system. We showed that the topological electromagnetic response can be characterized
by the Chern-Simons action SCS = k

4π
∫

d3x ϵµνρAµ∂νAρ, which is quantized by the impo-
sition of consistency between the gauge fields and quantum mechanics. Alternatively, the
IQH is also associated with the topological invariant known as the first Chern number by
considering the topology of the Brillouin zone and the Hilbert space (a result credited to
the work of Thouless, Kohmto, Nightingale, and den Nijs (TKNN) in 1982).

In the next section, we started our exploration of some realization of axion physics
in materials. The first example is the topological insulator which is the material realization
(observed in 2005) of the system discussed in section 2.2. The IQHE and TI are similar, the
previous has a bulk insulator (gapped energy spectrum) with gapless boundary states akin
to the edge states previously in the IQHE. Another difference is the role that symmetry
play, it is possible to achieve the TI condition by considering either (or both) time-reversal
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and inversion symmetries on the material. The electromagnetic response is described by
action e2θ

32π2

∫
d4xFF̃ and is quantized to values of 0 (mod 2π) (normal insulator) or θ = π

(mod 2π) (topological insulator). The consequences are the TME effect that allows the
anomalous Hall and chiral magnetic effects (along with the Faraday and Kerr rotation,
mirror magnetic charge, and Witten effect). Those effects are bounded to the boundary
between topological distinct materials where the change between the values of the theta
term is smooth, the next subsection generalizes this to consider a material where the theta
term can be space-time dependent in the bulk.

The formation of Weyl and Dirac semimetals is discussed in some detail since
the definition of a topological invariant is nontrivial in a gapless system. The particu-
lar information will not be repeated here, the interesting part is the association of the
sink/source of Berry curvature with the Chern number which represents the chirality (or
topologic charge) of the Weyl points. The difference between the Wely and Dirac se-
mimetals can be linked to the momentum space separation in the first (which protects
the system from perturbations). This also links with the previous discussion of condition
−bµbµ = −b2

0 + b2
i < m2 which allows for approximation to a gapless dispersion even

though the action has mass term. In the Dirac semimetal case, the singular points are at
the same point in momentum space, meaning that they can be combined which destroys
the topological phase (as the discussion about the instability of chiral symmetry in secti-
ons 1.4 and 1.5). The path to creating a Dirac semimetal involves either a very fine-tuned
system (unstable) or the imposition of additional crystalline symmetry. In the simplest
case, the difference between the Dirac’s and Weyl’s is the presence of the bµ term. The
system studied in section 2.1, namely

Z =
∫

D
(
ψ†, ψ, A

)
ei(S0+SMaxwell) (344)

S0 =
∫

d4xψ(x)
(
i/∂ + /bγ5 + ie /A(x)

)
ψ(x) (345)

SMaxwell =
∫

d4x
(

−1
4FµνF

µν
)
, (346)

results in the effective description of a Weyl semimetal

Z =
∫

D(A)ei(Seff+SMaxwell) (347)

Seff =
∫

d4x

[
−1

4F
2 + e2

32π2β(x)FF̃ + (powers of F 2)
]

(348)

with β(x) = 2bµxµ. Although the theta term is similar to the TI the effect is different since
it is not restricted to the boundary of topological distinct materials. The presence of the
time-like component of the bµ is peculiar since the resulting CME allows for the presence of
a direct current along a static magnetic field (prohibited by material considerations). The
workaround is the realization that such an effect occurs outside equilibrium, the “chemical
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potential” b0 is generated by the chiral anomaly by the effect of external sources. Beyond
this, the problems that appear in the particle realization of this system appear to be
avoidable in the material realization. The instability in the microscopic action is not
a problem since the material has a natural energy cutoff. The ambiguity also vanishes
since the microscopic band theory can be used to fix it. The causality and stability
of the effective theory are also bypassable, Einstein’s causality, in terms of information
transport, is free of problems, and stability is not a problem since evanescent effects can
occur in materials.

The last system in this section is the topological magnetic insulator which mi-
croscopic and effective theories were explored in sec. 2.3. The microscopic description is
similar to the Weyl semimetal but with the inclusion of a four-fermion interaction term
that allows for the chiral symmetry to be broken dynamically (due to the chiral condensa-
tion) and results in a new pseudo-scalar particle, similar to the Peccei-Quin mechanism.
The difference between the usual topological magnetic insulator description and our ef-
fective calculation is the presence of terms like

(
θ, β, θβ, · · · , (∂θ)2, F 2

)
(which originates

from the non-perturbative contribution cos
(
θ(x)
f

− β(x)
)
). The elimination of beta gives

the usual axion insulator and restores the symmetry θ → −θ and space-time isotropy.
Most of the effects in the effective description were described in the Weyl semimetal case,
most of the distinction comes from the fact that now the theta term has its own dynamics.

In the fourth chapter, we compute the electromagnetic response of a Weyl semi-
metal with an unusual quartic pairing instability using the mathematical understanding
of the second chapter. This is a contemporary development since we reached this descrip-
tion by theoretical considerations based on the usual superconduction coupling in doped
Weyl metals (ZYUZIN; BURKOV, 2012; CHRISPIM; BRUNI; GUIMARAES, 2021).
The special pairing −λ2

R(ψcPRψ)(ψPLψc) − λ2
L(ψcPLψ)(ψPRψc) breaks both charge and

chiral symmetries and, as expected, the pairing effectively induces the dynamical forma-
tion of a charged chiral condensate whose phases fluctuations give rise to an effective
axionic excitation along with a longitudinal mode for the photon excitations through
the Higgs mechanism resulting fully gapped system describes an axionic superconductor.
The computation is complex, and the introduction of an “enlarged” spinor is necessary
to “decouple” the interaction term. The condensate is parametrized by two factors (R(x)
and L(x)) and their combination is responsible for the longitudinal mode for the gauge
field and the mass for the axion-like excitation. Explicitly, θ(x)

f
+ θ0(x) = 1

4

(
R(x)
fR

− L(x)
fL

)
is gauge-invariant, and θ′(x)

f ′ = 1
4

(
R(x)
fR

+ L(x)
fL

)
is chiral-invariant. Field θ′(x) is combined

with the gauge field to compose a gauge-invariant field. This is the basics of the Higgs
mechanism and the gauge invariance in our system is studied, in some detail, to make sure
that no problems arise. The axion-like field is given by the excitations of the θ(x), the
mass term follows the Peccei-Quin mechanism of the axionic insulator, and it is connected
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to a current density wave of the fermionic condensate. The effective description thus is

Z(j, J) =
∫

D(C, θ)ei
∫

d4x(L(C,θ)+λ2v6+jµCµ+Jθ) , (349)

with

L(C, θ) =
∫

d4x
(

−1
4FµνF

µν + 1
2M

2AµA
µ

+1
2(∂θ)2 − 1

2m
2
θθ

2 + mθ

g
θθ0 + m2

θ

g2 θ
2
0 + 1

4g
(
θ + θ0

g

)
F̃µνF

µν + · · ·
)
,

(350)

where Fµν = ∂µCν−∂νCµ and the · · · stands for the various powers of
(
θ, θ0, θθ0, · · · , (∂θ)2, C2

)
and their combinations plus field independent term. Much of the discussion in the axion
insulator case is similar here. The non-perturbative effects materialize from factor

4λ2v6
(

1 + cos
(

2 θ
′

f ′

)
cos
(

2
(
θ

f
+ θ0

)))
(351)

but with the distinction that here there are two different kinds of vortices (one associated
with the chiral and the other with the superconductor flux). Again, approximations
exclude this from the excitation spectrum (and restores symmetry θ → −θ, and space-
time isotropy), similar to the previous discussion.

The final chapter considers a simplification of the previous model, which is

Z(j, J) =
∫

D(A, θ)ei
∫

d4x(L+jµAµ+Jθ) (352)

L(A, θ) =
∫

d4x
(

−1
4FµνF

µν + 1
2M

2AµA
µ + 1

2(∂θ)2 − 1
2m

2
θθ

2 + 1
4gθF̃µνF

µν
)

(353)

where Fµν = ∂µAν − ∂νAµ, to compute the two-point function of the massive photon
excitation considering one-loop axionic corrections. This calculation is a new result in
the literature. The computation includes some not-so-usual steps, such as the inclusion of
higher-order field terms, which are necessary to the renormalization process. This is based
on the understanding of Wilson’s renormalization group, a similar form (accessible to us
since we know the microscopic theory) would be the complete calculation of the fermionic
determinant in the effective theory computation. Although possible in theory, the easy
way is to include only the next-to-leading terms. The method to include those, the
renormalization treatment is done in sec. 5.1. Those terms generate unphysical (ghosts)
states which can be eliminated (sec. 5.2) by considering the desired precision (1-loop) in
the computation. From this point forward, the computation done in section 5.3, is very
similar to the textbook approach. The only unusual part is the renormalization scheme
choice. Since the potential involves massive particles the choice of subtraction point in
the MS-bar scheme is not simple, this favors the choice of the OS scheme as was done in
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section 5.3.2. Before the computation of the Yuwaka potential, we extract the imaginary
part of the exact propagator in sec. 5.4, this will facilitate the potential computation in
the next section since allows for a simples choice of contour in the complex plane. The
correct Yuwaka potential is

V (r) = − e2

4π
e−Mr

r
δP (354)

δP = 1 +
(gM)2

(
1 + m

M

)2

48π2

∫ ∞

1
dt F (m/M, t)

(
t2 − 1

)3/2 e−Mr[t(1+m/M)−1]

t
(355)

F (m/M, t) =
(
t2 −

(
M −m

M +m

)2)3/2(
t2 −

(
M

M +m

)2)−2

. (356)

This system is written in terms of the adimensional parameters Mr (distance scale), m
M

(mass ratio scale), and gM (coupling scale). The order of magnitude of distance adopted
here applies to thin-films physics.

These corrections naturally induce a modification of typical electromagnetic inte-
raction at short distances. Alternatively, in the asymptotic distance limit, the effective
theory is Yukawa-type (Proca) representing a usual superconductor. Other asympto-
tic limits can be explored. In special, in sections 5.6.1 and 5.6.2, the small axion mass
and the small Proca mass limit were studied. The correction also influences the London
penetration length (sec. 5.6.3). These effects are computed in the range applicable to
thin-films physics meaning that the superconducting Dirac materials could be sensible to
those effects. This opens a possible (based on these early findings) form to explore the
quantum effects due to axionic coupling. The practical applicability, or even feasibility,
to real condensed matter systems is a topic for further investigation.

Some general considerations can be done. The maximum possible value for the
correction occurs when the axion-like mass is lesser or equal to the photon mass. (or
Axionic effects are more prominent whenM > m). Oppositely, as the Axion mass becomes
larger, i.e. the field becomes harder to excite, the quantum fluctuations become closer to
the non-perturbed value (M eff ∼ M). This reasoning is based, partially, on the fact that
axion emission, by a decay process of γ → γθ, is not possible.

One important point in this chapter is the fact that in our calculations we assumed
the effective parameter m, M , and g (that compose the adimensional parameters) are
independent. However, the computation in ch. 4 shows that the microscopic parameters
λ and v and the effective m, M , and g ones are related by g ∼ 1

λ2v3 , M ∼ λ2v3 and
m ∼ 1

λ
, which can be reduced to g ∼ 1

M
and m ∼

√
v3

M
. These relations are compatible

with the range of values considered in our analysis (in sec. 5.6) since the perturbative
computations are valid for gM < 1.

This concludes this thesis. I hope that goal of exploring the route of the interplay
between two distinct areas of physics, with a focus on axion physics, is achieved. Thank



117

you for the time to read my work.
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APPENDIX A – Review on Fujikawa’s method

This part reviews some calculation steps of the so-called Fujiwaka method to com-
pute the chiral anomaly from the integral measure. The initial point is transformation

ψ(x) → ψ′(x) = ei
1
2β(x)γ5

ψ(x) and ψ(x) → ψ
′(x) = ψei

1
2β(x)γ5

, (357)

with β(x) = 2bµxµ, resulting in the elimination of the action term ψ/bγ5ψ(x) from action

S0 =
∫

d4xψ(x)
(
i/∂ + /bγ5 + ie /A(x)

)
ψ(x), (358)

since it transforms to

S0 → S ′
0 =

∫
d4xψ(x)

(
i/∂ + ie /A(x)

)
ψ(x), (359)

This transformation also introduces a non-trivial Jacobian in the fermionic integral mea-
sure

D
(
ψ†, ψ, A

)
→ D

(
ψ′†, ψ′, A

)
= J −2 · D

(
ψ†, ψ, A

)
, (360)

where J is the determinant of the chiral shift. To compute J −2 we will follow the steps
of (ZYUZIN; BURKOV, 2012) (which is based on (FUJIKAWA, 1979; FUJIKAWA; SU-
ZUKI, 2004)). First, we decompose the local chiral rotation in a series of infinitesimal
transformations ds with ψ(x) → ψ′(x) = ei

1
2 dsβ(x)γ5

ψ(x) (and s ∈ [0, 1]). On the interme-
diary step s the Dirac operator is

/D = γµ
[
∂µ + ieAµ + ibµ(1 − s)γ5

]
(361)

This is a hermitian operator such that it has eigenfunctions ϕ(x) that obey /Dϕn = εnϕn

(where εn are real eigenvalues and ϕn spinor eigenfunctions with suppressed spinor inde-
xes). We can follow the usual steps in the Jacobian calculation and expand the fields ψ
and ψ in terms of complete orthonormal eigenvectors ϕn(x) resulting in

ψ(x) =
∑
n

ϕn(x)cn and ψ(x) =
∑
n

ϕ∗
n(x)cn , (362)

where the cn and cn are new Grassmann variables. The transformed field ψ′ also follows
a similar expansion but with the Grassmann variables c′

n and c′
n given by

ψ′(x) =
∑
n

ϕn(x)c′
n and ψ

′(x) =
∑
n

ϕ∗
n(x)c′

n . (363)
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The relations between (cn, cn) and (c′
n, c

′
n) are

c′
n =

∑
m

Unmcm and c′
n =

∑
m

Unmcm (364)

where U matrix represents the infinitesimal chiral transformation operator (obtainable
from transformations (357)) and can be written as

Unm = δnm − ds i2

∫
d4xϕ∗

n(x)θ(x)γ5ϕn(x) (365)

Now, the Jacobian of the chiral transformation can be written using the matrix U simply
as

J = det
(
U−2

)
= eln det (U−2) = e−2 Tr ln(U) = eids

∫
d4x
∑

n
ϕ∗

n(x)θ(x)γ5ϕn(x) (366)

Now we can concentrate 32 on the quantity

I(x) ≡
∑
n

ϕ∗
n(x)γ5ϕn(x) (367)

This quantity is ill-defined (naively because it looks like Tr(γ5)), and we must regularize
the sum in a gauge-invariant way. A natural choice is

∑
n

ϕ∗
n(x)γ5ϕn(x) = lim

M→∞

∑
n

ϕ∗
n(x)γ5ϕn(x)eε2

n/M
2 (368)

so that

I(x) = lim
M→∞

∑
n

ϕ∗
n(x)γ5e− /D

2
/M2

ϕn(x) (369)

where is was used /Dϕn = εnϕn. We can write this expression in operator form

I(x) = lim
M→∞

⟨x| Tr γ5e− /D
2
/M2 |x⟩ (370)

= lim
M→∞

∫ d4k

(2π)4 Tr γ5e−ikxe− /D
2
/M2

eikx (371)

Now, in order to compute the integral we must use the square of the Dirac operator (at
the stage s) which is

/D
2 = −DµDµ − (1 − s)2bµbµ + ie

4 [γµ, γν ]Fµν + i(1 − s)[γµ, γν ]bµDνγ
5 (372)

32 For a more general computation see (GÓMEZ; URRUTIA, 2021)
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meaning that

I(x) = lim
M→∞

∫ d4k

(2π)4 Tr γ5 exp
[

(ikµ +Dµ)2

M2 + (1 − s)2bµbµ
M2

− ie

4M2 [γµ, γν ]Fµν − i(1 − s)
M2 [γµ, γν ] bµ (ikν +Dν) γ5

]
(373)

Since the momentum k is being integrated we can rescale it by kµ → Mkµ so that

I(x) = lim
M→∞

∫ d4k

(2π)4M
4 Tr γ5 exp

[
(iMkµ +Dµ)2

M2 + (1 − s)2bµbµ
M2

− ie

4M2 [γµ, γν ]Fµν − i(1 − s)
M2 [γµ, γν ] bµ (iMkν +Dν) γ5

]
(374)

Now the only non-zero term in the Taylor series of the exponential must be ∝ M4 (a
condition from the limit) and contain four γ−matrices (a condition from the trace). The
only surviving term is

I(x) = e2

16 lim
M→∞

∫ d4k

(2π)4 e
k2 Tr γ5[γµ, γν ]

[
γα, γβ

]
FµνFαβ (375)

= − e2

32 Tr γ5[γµ, γν ]
[
γα, γβ

]
FµνFαβ (376)

= − e2

32π2 ϵ
µναβFµνFαβ (377)

Going back to the Jacobian J in equation (366)

J = exp
(

−i ds e2

32π2

∫
d4x β(x)ϵµναβFµνFαβ

)
(378)

and the full transformation is

J = exp
(

−i e2

32π2

∫
d4x β(x)ϵµναβFµνFαβ

)
(379)

The action term J −2 = eSAnomaly is

SAnomaly = e2

32π2

∫
d4x β(x)FF̃ (380)

where FF̃ = F µνF̃µν = 1
2ϵµναβF

µνFαβ. Therefore the chiral rotation introduces a new
term to the action. It is important to notice that the presence of fermionic interactions
changes this only to nonlinear order (RYLANDS et al., 2021).
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APPENDIX B – Feynman’s rules for the interactions

In this appendix, I will revise Feynman’s rules to fixate the notation and any pos-
sible misunderstanding. All terms are computed using the renormalized action described
in eq. (230) which is

LR = LProca + Laxion + Linteraction + Lcounterterms + L4γ + L2γ,2θ (381)

LProca = −1
4Z3FµνF

µν + 1
2ZMM

2AµA
µ (382)

Laxion = 1
2Zθ∂µθ∂

µθ − 1
2Zmm

2θ2 (383)

Linteraction = 1
4ZggθF̃µνF

µν (384)

Lcounterterms = δs
2m2

s

(∂µθ)□(∂µθ) + δgh
2m2

gh

(∂F )2 (385)

L4γ = 1
4!Z4C4A

4 − 1
4!Z5

A2

M2
2
F 2 (386)

L2γ,2θ = −1
4ZaθCaθθ

2A2 + 1
4Zθf

θ2

m2
θf

F 2 (387)

The order is; free pseudo-scalar and vector fields, axionic interaction, and for the Next-
to-leading interaction terms (four photon and two-photon-two-axion interations). The
counterterms will be included in the renormalization factors as usual in renormazation
perturbative process (see (SCHWARTZ, 2013) for more information).

B.1 Free field

The photon and axion propagators associated with the free action will be, respec-
tively:

Gαβ
0 (x, x′) =

∫ d4p

(2π)4
−i

p2 −M2 + iε

(
gαβ − pαpβ

M2

)
eip(x−x′) , (388)

∆0(x, x′) =
∫ d4p

(2π)4
i

p2 −m2 + iε
eip(x−x′) , (389)

From now on we will omit the iε for convenience. The massless photon is obtained from
the limit of zero Procca mass, i.e. M = 0, one recovers the usual photon propagator found
in textbooks (SCHWARTZ, 2013). It is convenient to write this in momentum space we
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get massive vector field

Dνλ
0 (p) = −i

p2 −M2P
νλ(p) (390)

with Pµν = gµν − pµpν/M
2 and for the massive pseudo-scalar field

∆0(p2) = i

p2 −m2 (391)

The Feynman’s rules associated with thee free sector are

µ ν = −i
p2 −M2P

µν(p) (392)

= i

p2 −m2 (393)

and the counter-terms are

µ ν = −iδ3(p2gµν − pµpν) + i(δM + δ3)M2gµν (394)
= −i(δθp2 + δmm

2) (395)

B.2 Axion Interactions

The Axionic interaction (defined in eq. (206) or eq. (384)) is not usually studied
in courses of QFT. It is necessary to take extra precautions with the direction of the
momentum in this interaction because it has an explicit momentum dependency that can
be easily seen if we open the derivatives as in

1
4ZggϕF̃µνF

µν = Zggϕϵµναβ∂
αAβ∂µAν (396)

One example of a similar interaction term can be found in (SCHWARTZ, 2013). In our
case, this Lagrangian term generates a vertex with two photons and a scalar field. For
each photon line, we get a momenta factor, together with a −i (i) factor for in going
(outgoing) lines times, a Levi-Civitta tensor, and i times an axion coupling constant. The
Levi-Civitta tensor is coupled with the momentum associated with the photon lines. We
can do partial integration to change the photon momenta for the pseudo-scalar but it does
not change the final result since the sum of the momenta that goes in and out the vertex
must be the same i.e. momentum conservation (SCHWARTZ, 2013). The Feynman graph
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associated a vertex with all momenta going out

µ

σ

p1

p3

p2

= (−igZg)ϵµναβpα1p
µ
2 ≡ Vµν(p1, p2) (397)

It is also common to say that one gets a factor of ip when the particle is created (emerges
from the vertex) and −ip when the particle is destroyed (enters the vertex).

B.3 Counter-terms

The next-to-leading counter-terms (reminiscent of the problematic ghost states
explored in section 5.2), described in equations (230) or (385), follow the same reasoning
as the free field counter-terms in appendix B.1. The Feynman rules for those factors
are described in (VILLALBA-CHÁVEZ; GOLUB; MüLLER, 2018; CHRISPIM; BRUNI;
GUIMARAES, 2021) and are given by

µ ν

p1 p2

= i
δgh
m2
gh

p2
1

(
p2

2g
µν − pµ2p

ν
2

)
(398)

= −i δs
m2
s

p4 (399)

B.4 Four-massive vector interaction

The 4γ contribution has two different contributions (as one can see in eq. (231) or
in eq. (386)) describe a four-massive vector (or four massive photon) vertex. Both can
be described by the graph represented in

µ σ

ω τ

p1 p2
p3 p4

= 1
6iZ4C4T

(1)
µνρσ + i

12
Z5

M2
2
T (2)
µνρσ(p1, p2, p3, p4) (400)
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with

T (1)
µνρσ = (gµσgνρ + gµρgνσ + gµνgρσ) (401)

T (2)
µνρσ(p1, p2, p3, p4) = [gρσpν1p

µ
2 − gµνgρσ(p1 · p2)] + (p2 → p3, ν ⇆ ρ)

+ (p2 → p4, ν ⇆ σ)
+ [gµσpρ2pν3 − gµσgνρ(p2 · p3)] + (p3 → p4, ρ⇆ σ)
+ (p2 → p4, σ ⇆ ν) (402)

Here the notation indicates that the rule (pi → pj, κ ⇆ α) is applied to the expression
inside the preceding [· · · ]. The difference between the two contributions is the momentum
dependency. This is the same case as in the axion interaction term, the presence of
derivatives acting on the vector fields introduces the momentum variable but with the
extra problem that here we must include all the possible combinations. This is the reason
for the T (2)

µνρσ being so convoluted.

B.5 Two photon, two pseudo-axion interaction

The final interaction term (defined in eq. (232) or in eq. (387)) is a vertex composed
of two pseudo-scalar field together with two massive vector. In a similar way to the 4γ
interaction here both terms will contribute to the same graph with distinct factors (one
with momentum dependency and one without it). The Feynman graph of this interaction
is represented in

σ

ρ

p1

p2

= −2iZaϕCaϕgρσ + (2i)Zϕf
m2
ϕf

(pσ3p
ρ
4 − gρσ(p3 · p4)) (403)
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APPENDIX C – Dirac algebra

C.1 Definitions

The Dirac matrices γµ follows Clifford algebra, they obey the anti-commutation
relations

{γµ, γν} ≡ γµγν + γνγµ = 2gµν (404)

with µ, ν = 0, 1, 2, 3 in 3 + 1 space-time. These properties also means that

γµγν = −γνγµ for µ ̸= ν (405)

and

(
γ0
)2

= −
(
γi
)2

= 1 (406)

where 1 is the identity matrix. It is usual to define an “extra” matrix by γ5 = iγ0γ1γ2γ3

that obeys

{
γ5, γν

}
= 0 . (407)

C.2 Spinors definitions in Weyl basis

In this thesis I will work basically using the Weyl basis, so it is convenient to review
it briefly. In this notation, the gamma matrix are

γµ =

 0 σµ

σµ 0

 (408)
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with σµ = (12, σ
i) and σµ = (12,−σi), here 12 is the 2 for 2 identity matrix. The Pauli

matrices are

σ0 =

1 0
0 1

 = 12 (409)

σ1 =

0 1
1 0

 (410)

σ2 =

0 −i
i 0

 (411)

σ3 =

1 0
0 −1

 (412)

These matrix obey [σi, σj] = 2iϵijkσk, {σi, σj} = 2δij12 and σjσk = δjk12+iϵjklσl. Further-
more, we have in the Weyl basis γ∗

2 = −γ2 and γT2 = γ2. With this definitions we can
write γ5 matrices as

γ5 = iγ0γ1γ2γ3 =

−12 0
0 12

 . (413)

Furthermore we have the dagger operator that is defined by

A† = (A∗)T = (AT )∗ (414)

or

(A†)ij = A∗
ji . (415)

The Pauli matrices obey

σ†
µ = σµ . (416)

It is also convenient to write

eiβγ5 = cos β14 + i sin βγ5 (417)

=

cos β 0
0 cos β

+

−i sin β 0
0 i sin β

 (418)

=

e−iβ 0
0 eiβ

 (419)
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that means that

eiβγ5(APL +BPR) = e−iβAPL + eiβBPR (420)

This identity will be important for the transformations necessary for the chiral transfor-
mations.

C.3 Weyl spinor definition

Dirac spinor is defined in terms of two Weyl spinors ψL and ψR through

ψ =

ψL
ψR

 (421)

ψ = ψ†γ0 =
(
ψ†
R ψ†

L

)
(422)

with

PR = 1 + γ5

2 =

0 0
0 12

 (423)

PL = 1 − γ5

2 =

12 0
0 0

 (424)

so that

PRψ =

 0
ψR

 (425)

PLψ =

ψL
0

 (426)

resulting in ψR/L = PR/Lψ.
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C.4 Charge conjugate Weyl spinor definition

Using the definition of the charge conjugate

C : ψL → ψLc = −iσ2ψ∗
R (427)

C : ψR → ψRc = iσ2ψ∗
L (428)

or

C :

ψL
ψR

 →

−iσ2ψ∗
R

iσ2ψ∗
L

 (429)

so that

ψc = −iγ2ψ
∗ =

−iσ2ψ∗
R

iσ2ψ∗
L

 . (430)

It follows from the definition that

ψc = ψ†
cγ

0 (431)
= (−iγ2ψ

∗)†γ0 (432)
= iψTγ†

2γ0 (433)
= ψT (−iγ2)γ0 (434)

= ψT

 0 −iσ2

iσ2 0


 0 12

12 0

 (435)

=
(
ψTL ψTR

)−iσ2 0
0 iσ2

 (436)

=
(

−ψTL iσ2 ψTRiσ
2
)
. (437)
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APPENDIX D – Four interaction pairing with mixed chirality

The pairing introduced in eq. (129) is

Lint. = −λ2
(
ψ(x)PLψ(x)

) (
ψ(x)PRψ(x)

)
. (438)

In the main text of section 2.3 the following auxiliary field were introduced

ϕ(x) = λψ(x)PLψ(x) , (439)
ϕ∗(x) = λψ(x)PRψ(x) . (440)

The van der Waerden notation is implicit used. The dotted and undotted spinor inde-
xes: ψLα and ψα̇R are the left and right spinors. Spinor index contractions are defined
as ψ†

R(x)ψL(x) = ψ†α
R (x)ψLα(x) = ψ†

Rα(x)εαβψLβ(x). And similarly for other billinears
we shall encounter, for instance, ψR(x)ψR(x) = ψRα̇ψ

α̇
R = ψα̇Rεα̇β̇ψ

β̇
R and ψL(x)ψL(x) =

ψαL(x)ψLα(x) = ψLα(x)εαβψLβ(x).

D.1 Explicit form

This interaction term is composed of

ψ(x)PLψ(x) = ψ†(x)γ0P 2
Lψ(x) (441)

= ψ†(x)PRγ0PLψ(x) (442)
= ψ†

R(x)ψL(x) (443)

and

ψ(x)PRψ(x) = ψ†(x)γ0P 2
Rψ(x) (444)

= ψ†(x)PLγ0PRψ(x) (445)
= ψ†

L(x)ψR(x) (446)

where it was used the properties P 2
R/L = PR/L and {γ5, γ

µ} = 0. The full interaction term
is

Lint. = −λ2
(
ψ†
R(x)ψL(x)

)(
ψ†
L(x)ψR(x)

)
. (447)
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D.2 Parity

Acting with Parity

P : ψ(x)PLψ(x) → ψ†
LψR(Px) = ψ(x)PRψ(x) (448)

and

P : ψ(x)PRψ(x) → ψ†
RψL(Px) = ψ(x)PLψ(x) . (449)

Even though each term changes the interaction is invariant since it is composed of both

P : Lint(x) → −λ2
(
ψ†
LψR

)(
ψ†
RψL

)
(Px) ≡ Lint(Px) (450)

in terms of the auxiliary field this acts as P : ϕ → ϕ∗. If the field is parameterized as
ϕ = λv3eiδ then the condition for it to respect P is δ = 0.

D.3 Time-reversal

Now considering time-reversal which acts as

T : ψ(x)PLψ(x) → (−1)2ψ†
Lσ

3σ1σ1σ3ψR(Tx) = ψ†
RψL(Tx) = ψ(x)PLψ(x) (451)

and

T : ψ(x)PRψ(x) → (−1)2ψ†
Rσ

3σ1σ1σ3ψL(Tx) = ψ†
LψR(Tx) = ψ(x)PRψ(x) (452)

where one must use eq. (416) along with σ12 = σ22 = σ32 = 1, leading to

T : Lint(x) → Lint(Tx) . (453)

The auxiliary field complex field is invariant under time-reversal.

D.4 Charge conjugation

With charge conjugation the transformation is

C : ψ(x)PLψ(x) → (−i)2ψ†
Lσ

2σ2ψR = ψ†
RψL(x) = ψ(x)PLψ(x) (454)
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and

C : ψ(x)PRψ(x) → (−i)2ψ†
Rσ

2σ2ψL = ψ†
LψR(x) = ψ(x)PRψ(x) (455)

where one must use eq. (416) along with σ12 = σ22 = σ32 = 1, leading to

C : Lint(x) → Lint(x) . (456)

As in the time-reversal case, the auxiliary field is invariant under charge conjugation.

D.5 U(1) gauge

Transforming with ψ → eiβψ or in terms of the left and right components ψR/L →
eiβψR/L leads to

U(1) gauge : ψ(x)PLψ(x) → ψ†
Re

−iβψLe
iβ = ψ†

RψL (457)

and

U(1) gauge : ψ(x)PRψ(x) → ψ†
Le

−iβψRe
iβ = ψ†

LψR (458)

thus

U(1) gauge : Lint(x) → Lint(x) . (459)

As expected, the ϕ field is invariant under gauge transformation.

D.6 U(1) chiral

Transforming with ψ → eiαγ5ψ or in terms of the left and right components

ψR → eiαψR (460)
ψL → e−iαψL (461)

leads to

U(1) chiral : ψ(x)PLψ(x) → ψ†
Re

−iαψLe
−iα = e−2iαψ†

RψL = e−2iαψ(x)PLψ(x) (462)
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and

U(1) chiral : ψ(x)PRψ(x) → ψ†
Le

iαψRe
iα = e2iαψ†

LψR = e2iαψ(x)PRψ(x) . (463)

Each term transforms, but the full interaction is invariant because they cancels mutually

U(1) chiral : Lint(x) → Lint(x) , (464)

with this we can see that the auxiliary field transforms as

U(1) chiral : ϕ(x) → e2iαϕ(x) . (465)
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APPENDIX E – Extended spinor algebra

E.1 Extended spinor algebra definitions

The extended spinor is defined as

Ψ =

ψ
ψc

 (466)

Ψ =
(
ψ ψc

)
(467)

with ψc defined in equation (430). To make this more clear we can open its components

Ψ =



ψL

ψR

−iσ2ψ∗
R

iσ2ψ∗
L

 =



ψL↑

ψL↓

ψR↑

ψR↓

−iσ2ψ∗
R↑

−iσ2ψ∗
R↓

iσ2ψ∗
L↑

iσ2ψ∗
L↓



. (468)

E.1.1 Transformation of the extended spinor

The system may be characterized by the following transformations:
U(1) gauge symmetry

Ψ(x) → e−iα(x)ρ3Ψ(x) (469)

Aµ → Aµ − i

e
∂µα(x) (470)

U(1) (global) chiral symmetry (anomalous)

Ψ(x) → e−iβγ5Ψ(x) (471)
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Charge conjugation (C)

Ψ(x) → ρ1Ψ(x) (472)
Aµ → −Aµ (473)

Parity (P): Px = (t,−x,−y,−z)

Ψ(x) → iτ1Ψ(Px) (474)
Aµ(x) → (A0(Px),−Ai(Px)) (475)

Time reversal (T): Tx = (−t, x, y, z)

Ψ(x) → −σ2Ψ(Tx) (476)
Aµ(x) → (A0(Tx),−Ai(Tx)) (477)

E.1.2 Dirac action in terms of the extended spinor

It is not difficult to use the definition of the extended spinor Ψ in the massless
Dirac Lagrangian. The process start with

L1 = ψ /̃Dψ, /̃D = i/∂ + /bγ5 + ie /A . (478)

Now using the definition of the Charge conjugation C (section C.4) together C2 = 1

ψ /̃Dψ = 1
2
(
ψ /̃Dψ + ψ /̃Dψ

)
(479)

= 1
2
(
ψ /̃Dψ + ψC2 /̃DC2ψ

)
(480)

= 1
2
(
ψ /̃Dψ + ψc /̃Dcψc

)
(481)

with /̃Dc = i/∂ + /bγ5 − ie /A. Now using the extended spinor definition we can write this as
a matrix so that

ψ /̃Dψ = 1
2Ψ

 /̃D 0
0 /̃Dc

Ψ (482)

= 1
2Ψ


i/∂ + /bγ5 0

0 i/∂ + /bγ5

+

ie /A 0
0 −ie /A


Ψ (483)

= 1
2Ψ

[(
i/∂ + /bγ5

)
ρ0 + ie /Aρ3

]
Ψ . (484)
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It is important to remember that the terms inside the brackets are 8 × 8 matrices because
the Kronecker product is being suppressed. To make this more clear the last term matrix
structure explicitly is

Γ = σ ⊗ τ ⊗ ρ (485)

where σ, τ and ρ are Pauli matrices acting on spin, handiness and charge, respectively.

E.1.3 Interaction of the extended spinor

With this we can construct the following bilinears

ψcψ = ψTL(−iσ2)ψL + ψTR(iσ2)ψR (486)
ψψc = ψ†

L(iσ2)ψ∗
L + ψ†

R(−iσ2)ψ∗
R (487)

and

ψcγ
5ψ = ψTL(iσ2)ψL + ψTR(iσ2)ψR (488)

ψγ5ψc = ψ†
L(iσ2)ψ∗

L + ψ†
R(iσ2)ψ∗

R (489)

Using the definition of PR/L we can construct

ψcPRψ = ψTR(iσ2)ψR (490)
ψPRψc = ψ†

L(iσ2)ψ∗
L (491)

and

ψcPLψ = ψTL(−iσ2)ψL (492)
ψPLψc = ψ†

R(−iσ2)ψ∗
R (493)

Now using the notation used in the article this can be put in the form

ψcPRψ = ψRψR (494)
ψPRψc = ψ†

Lψ
†
L (495)

and

ψcPLψ = ψLψL (496)
ψPLψc = ψ†

Rψ
†
R (497)
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and the four fermion interaction in eq. (134) is

Lint.(x) = −λ2
RψRψRψ

†
Rψ

†
R − λ2

LψLψLψ
†
Lψ

†
L (498)

= −λ2
R(ψcPRψ)(ψPLψc) − λ2

L(ψcPLψ)(ψPRψc) . (499)

Now we can concentrate on rewrite this expression using Ψ. In order to do this we can
construct an analog of the projectors PL/R by noticing that

1
2(ρ1 − iρ2)Ψ =

0 0
1 0


ψ
ψc

 =

0
ψ

 , (500)

1
2(ρ1 + iρ2)Ψ =

0 1
0 0


ψ
ψc

 =

ψc
0

 , (501)

with this we can construct

ΨPL
1
2(ρ1 + iρ2)Ψ =

(
ψ ψc

)PLψc
0

 = ψPLψc , (502)

ΨPR
1
2(ρ1 − iρ2)Ψ =

(
ψ ψc

) 0
PRψ

 = ψcPRψ . (503)

Now using this we can construct the other two terms

ΨPR
1
2(ρ1 + iρ2)Ψ = ψPRψc , (504)

ΨPL
1
2(ρ1 − iρ2)Ψ = ψcPLψ . (505)

Defining the operators P± = 1
2(ρ1 ± iρ2) the interaction term of eq. (134) is

Lint.(x) = −λ2
R(ψcPRψ)(ψPLψc) − λ2

L(ψcPLψ)(ψPRψc) , (506)
= −λ2

R

(
ΨPRP−Ψ

)(
ΨPLP+Ψ

)
− λ2

L

(
ΨPLP−Ψ

)(
ΨPRP+Ψ

)
. (507)

With this definition it is convenient to know the properties

eiκρ3(AP+ +BP−) =

eiκ 0
0 e−iκ


 0 A

B 0


=

 0 eiκA

e−iκB 0


= eiκAP+ + e−iκBP−

(508)
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E.1.4 Transformation of the four fermion spinor interaction and auxiliary field ϕR/L

In this section I will study the transformation properties of the interaction term

Lint.(x) = −λ2
R

(
ΨPRP−Ψ

)(
ΨPLP+Ψ

)
− λ2

L

(
ΨPLP−Ψ

)(
ΨPRP+Ψ

)
(509)

and the introduced auxiliary field (two sets of Hubbard-Stratanovich ϕR/L) that were
defined as

ϕR = λRψRψR = λRψcPRψ = λRΨPRP−Ψ (510)
ϕ†
R = λRψ

†
Rψ

†
R = λRψPLψc = λRΨPLP+Ψ (511)

and

ϕL = λLψLψL = λLψcPLψ = λLΨPLP−Ψ (512)
ϕ†
L = λLψ

†
Lψ

†
L = λLψPRψc = λLΨPRP+Ψ (513)

in the main text.

E.1.4.1 Parity

Defining Parity (P): Px = (t,−x,−y,−z), with

P : Ψ(x) → iτ1Ψ(Px) (514)

and the terms of the interaction transforms as

P :
(
ΨPRP−Ψ

)
(x) → −i2

(
Ψτ1PRP−τ1Ψ

)
(Px) =

(
ΨPLP−Ψ

)
(Px) (515)

P :
(
ΨPLP+Ψ

)
(x) →

(
ΨPRP+Ψ

)
(Px) (516)

and

P :
(
ΨPLP−Ψ

)
(x) →

(
ΨPRP−Ψ

)
(Px) (517)

P :
(
ΨPRP+Ψ

)
(x) →

(
ΨPLP+Ψ

)
(Px) (518)

where one must notice that {τ1, γ5} = 0. This leads to

P : Lint.(x) → −λ2
R

(
ΨPLP−Ψ

)(
ΨPRP+Ψ

)
(Px) − λ2

L

(
ΨPRP−Ψ

)(
ΨPLP+Ψ

)
(Px) (519)
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This means that if λR ̸= λL then Lint.(x) does not respect P. It is easy to see that this
transformation acts changing PR/L to PL/R, the auxiliary field thus obey

ϕR/L(x) → ϕL/R(Px) , (520)

in another words, the condensate respects P if ϕR(x) = ϕL(x).

E.1.4.2 Time-reversal

Defining Time reversal (T): Tx = (−t, x, y, z) so that

Ψ(x) → −σ2Ψ(Tx) (521)
Aµ(x) → (A0(Tx),−Ai(Tx)) (522)

which acts as

T :
(
ΨPRP−Ψ

)
(x) → (−1)2

(
Ψσ2PRP−σ2Ψ

)
(Tx) =

(
ΨPRP−Ψ

)
(Tx) (523)

T :
(
ΨPLP+Ψ

)
(x) →

(
ΨPLP+Ψ

)
(Tx) (524)

and

T :
(
ΨPLP−Ψ

)
(x) →

(
ΨPLP−Ψ

)
(Tx) (525)

T :
(
ΨPRP+Ψ

)
(x) →

(
ΨPRP+Ψ

)
(Tx) (526)

Each part respects time-reversal and the interaction so we have

T : Lint.(x) → Lint.(Tx) (527)

and the auxiliary field transforms as

ϕR/L(x) → −ϕR/L(Tx) (528)

E.1.4.3 Charge conjugation

Charge conjugation (C : Ψ(x) → ρ1Ψ(x)) the interaction changes to

C :
(
ΨPRP−Ψ

)
(x) →

(
Ψρ1PRP−ρ1Ψ

)
(x) =

(
ΨPRP+Ψ

)
(x) (529)

C :
(
ΨPLP+Ψ

)
(x) →

(
ΨPLP−Ψ

)
(x) (530)



151

and

C :
(
ΨPLP−Ψ

)
(x) →

(
ΨPLP+Ψ

)
(x) (531)

C :
(
ΨPRP+Ψ

)
(x) →

(
ΨPRP−Ψ

)
(x) (532)

This leads to

C : Lint.(x) → −λ2
R

(
ΨPRP+Ψ

)(
ΨPLP−Ψ

)
− λ2

L

(
ΨPLP+Ψ

)(
ΨPRP−Ψ

)
(533)

Again, the interaction breaks charge conjugation if λR ̸= λL. In terms of the fields ϕR/L(x)
this transformation reads

ϕR/L(x) → ϕ∗
L/R(x) (534)

That is, the condensate respects C if ϕR(x) = ϕ∗
L(x).

E.1.4.4 U(1) gauge

Under the transformation Ψ(x) → eiα(x)ρ3Ψ(x) we have

U(1) gauge:
(
ΨPRP−Ψ

)
(x) →

(
Ψe−iα(x)ρ3PRP−e

iα(x)ρ3Ψ
)
(x) (535)

= e−2iα(x)ρ3
(
ΨPRP−Ψ

)
(x) . (536)

This follows for all terms, the change in the sign is due to the anticommuting properties
of the Pauli matrices. The interaction transformation is

U(1) gauge: Lint.(x) → −λ2
Re

−2iα(x)ρ3
(
ΨPRP−Ψ

)
e−2iα(x)ρ3

(
ΨPLP+Ψ

)
− λ2

Le
−2iα(x)ρ3

(
ΨPLP−Ψ

)
e−2iα(x)ρ3

(
ΨPRP+Ψ

)
(537)

= Lint.(x) (538)

The interaction term is respects gauge symmetry as expected. Now for the auxiliary field,
one has

ϕR/L → e−2iβϕR/L . (539)
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It is interesting to see how this acts on the chosen parametrization for the condensate
fields, in terms of R(x) and L(x) (defined in eq. (146)) we have

R/L

f
→ R/L

f
− 2β, (540)

This last equations tell us that any combination proportional do the difference between
R(x) and L(x) is gauge symmetric.

E.1.4.5 U(1) chiral

Under the transformation Ψ(x) → eiβγ
5Ψ(x) we have

U(1) (global) chiral:
(
ΨPRP−Ψ

)
(x) →

(
Ψeiβγ5Ψ(x)PRP−e

iβγ5Ψ(x)Ψ
)
(x) (541)

= e−2iβγ5(ΨPRP−Ψ
)
(x) (542)

Again this follows for all terms and the interaction transformation is

U(1) (global) chiral: Lint.(x) → −λ2
Re

−2iβγ5(ΨPRP−Ψ
)
e−2iβγ5(ΨPLP+Ψ

)
− λ2

Le
−2iβγ5(ΨPLP−Ψ

)
e−2iβγ5(ΨPRP+Ψ

)
(543)

= Lint.(x) (544)

Applying the transformation to the condensate we have

ϕR → e−2iαϕR, (545)
ϕL → e+2iαϕL. (546)

or using the condensate (defined in eq. (146))

R

f
→ R

f
− 2α, (547)

L

f
→ L

f
+ 2α (548)

This last equations tell us that any combination with R(x) + L(x) chiral symmetric.
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