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Rio de Janeiro

2021



ACKNOWLEDGMENTS

I would like to express my deepest appreciation to all those who provided me

the possibility to complete this work. A master’s project is always a challenge, but the

pandemic scenario during the last part of the research caused me great physical and

mental wounds. Several people were important during my commute and, of course, there

is no way to talk about all of them here in details. Although, have the moral duty to give

some special thanks.

To all my colleagues from the Americo’s team with who I learned so much during

the last few years. With you I improved my critical sense and my presentation skills.In

particular, I highlight my friends Marcos Issa and Diego Matos with who I shared several

experiences and know that I can ever count on.

I am strongly grateful to the Rio de Janeiro State Research Support Founda-
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ABSTRACT 
 
 

CALDAS, Michel  Antonio Tosin. Modeling and uncertainty quantification in the 
nonlinear dynamics of epidemiological phenomena: application to Zika virus and COVID-
19 outbreaks. 2021. 118 f. Dissertação (Mestrado em Ciências Computacionais)  -  Instituto 
de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021. 
 
 
 Outbreaks due infectious diseases has been drawing attention of the scientific 
community in the last few years. The recognition of the aggressive effects created for the 
health and economy of the population worldwide made researchers from the most diverse 
areas of knowledge turn their resources into projects inside the theme. The present work 
presents and apply a framework for uncertainty quantification in epidemiological models. 
This is based on use global sensitivity analysis by Polynomial Chaos Expansion-based Sobol 
indices, combined with the Maximum Entropy Principle. The first allows to identify the most 
relevant input parameters, while the second one orients the construction of least biased 
distributions for those inputs. Then, a Monte Carlo simulation is executed to analyze the 
outcome stochastic process obtained through the model. The framework was applied in the 
epidemiological scenarios of Zika virus in Brazil and COVID-19 in Rio de Janeiro city, 
allowing to extract some important statistics about each outbreak. A compartmental model is 
employed in the first scenario, while the multi-waves dynamics of the second scenario is 
described by a Beta logistic growth model. Before riding the robustness study, calibration 
results are performed to put the quantities of interest obtained from theses models in a shape 
closer to the real data. Additional discussions are made about how to use sensitivity analysis 
results to update the knowledge about the parameters, and guide model selection.  
 
 
Keywords: Epidemiological modeling. Nonlinear dynamics. Model calibration. Global 
sensitivity analysis. Uncertainty quantification. 



RESUMO 
 
 

 
CALDAS, Michel  Antonio Tosin. Modelagem e quantificação das incertezas na dinâmica 
não-linear de fenômenos epidemiológicos: aplicação em surtos de Zika vírus e  COVID-19. 
2021. 118 f. Dissertação (Mestrado em Ciências Computacionais)  -  Instituto de Matemática 
e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021. 
 
 
 
 Surtos por doenças infecciosas têm tomado atenção da comunidade científica  geral 
nos últimos anos. O reconhecimento dos agressivos efeitos gerados para a saúde e economia 
das populações ao redor do mundo, fez com que pesquisadores das mais diversas áreas do 
conhecimento voltassem seus recursos para projetos nesse tema. O presente trabalho 
apresenta e aplica um framework para quantificação de incertezas em modelos 
epidemiológicos. Este é  baseado em usar análise de sensibilidade global por índicas de Sobol 
baseados em Expansão em Polinômios Caos, combinado com o Princípio do Máximo de 
Entropia. O primeiro permite identificar os parâmetros de entrada mais relevantes, enquanto 
que o segundo orienta a construção de distribuições menos enviesadas para essas entradas. 
Assim, uma simulação de Monte Carlo é executada para analisar o processo estocástico de 
saída obtido através do modelo. O framework foi aplicado nos cenários epidemiológicos de 
Zika vírus no Brasil e de COVID-19 no município do Rio de Janeiro, permitindo extrair 
algumas estatísticas importantes sobre cada surto. Um modelo comportamental é  empregado 
no primeiro cenário, enquanto a dinâmica multi ondas do segundo cenário é descrita por um 
modelo de crescimento Beta logístico. Antes de conduzir os estudos de robustez, resultados 
de calibração são incluídos para por as quantidades de interesse obtidas por esses modelos 
numa forma mais próxima dos dados reais. Discussões  adicionais são feitas sobre como 
utilizar resultados de análise de sensibilidade para atualizar o conhecimento sobre os 
parâmetros, e guiar seleção de modelos. 
 
 
Palavras-chave: Modelagem epidemiológica. Dinâmica não o linear. Calibração de modelos. 
Análise de sensibilidade global. Quantificação de incertezas. 
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INTRODUCTION

This chapter is a preliminary presentation text about the covered problem, the

particular aspects of study inside the theme and the justification for those choices. Also,

the main goals are identified and the strategies used to achieve these objectives.

COVID-19 and the recent infectious diseases

Identified in 2019, a novel coronavirus is responsible for the recent pandemic of

severe acute respiratory syndrome (SARS). Mutated from the orginal SARS coronavirus

(SARS-CoV) the SARS-CoV-2 (novel SARS coronavirus) stole the spotlights when a set

of outbreaks migrates to a public health emergency of international concern in January

2020 (WORLD HEALTH ORGANIZATION, 2020b). Despite all the efforts to contain

the virus, the illness was responsible for 3.4M lost lives worldwide (until now, July 2021)

(WORLD HEALTH ORGANIZATION, 2021b). Sequels from contagion has been docu-

mented as well (WORLD HEALTH ORGANIZATION, 2020c). The World Health Orga-

nization’s COVID-19 response since 31 December 2019 has been exposed online for better

understanding and transparency (WORLD HEALTH ORGANIZATION, 2020e).

However, while the World works together to confront this thread, several other

diseases are emerging or returning. Even minor lethal when compare with COVID-19,

these other diseases have been effecting people resistance, cities economy and allowing

subsequent illness to arrive and disseminate. In particular, most countries pass through

outbreaks of arboviruses (HUANG; HIGGS; VANLANDINGHAM, 2019). This kind of

comorbidity is particularly problematic to be “forgotten” on the COVID-19 pandemic

because it is able to increase even during lockdowns. How testing measures has been

done focusing exclusively in COVID-19, a lot of cases of arboviruses may not have been

identified. Also, it is important to track the consequences that come from those. For

example, the newborn microcephaly and Guillain-Barré syndrome are already associated

with Zika virus infection (VALENTINE; MARQUEZ; PAMMI, 2016; DOS SANTOS et

al., 2016). More details about the past and present states of the main epidemic diseases

can be found in: 〈https://www.who.int/csr/don/en/〉.

Outbreak science: Detection and response

If infectious diseases do not show signals of retreat, it is up to science to study them

and understand how to combat or to prevent the infections. More precisely, Houlihan and

https://www.who.int/csr/don/en/
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Whitworth (HOULIHAN; WHITWORTH, 2019), organized these goals in a set of seven

epidemiology principals reunites in the Figure 1. Naturally, each one of these are covered

by a different field of knowledge and therefore, the problem of infectious diseases becomes

an interdisciplinary topic.

Figure 1 - Condensed summary of the epidemiology principles for outbreak response

summarizing scientific progress made in the recent past and future possibilities.

© Royal College of Physicians 2019. All rights reserved. 141
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surveillance officers to send encrypted images of patients with 

suspected acute flaccid paralysis, aiding the identification of 

polio cases.  3   Importantly, surveillance now includes animals, an 

approach consistent with ‘One Health’,  4   for example, surveillance 

by Public Health England allowed the detection in the Thames 

estuary of  Culex modestus , a mosquito capable of transmitting the 

West Nile virus.  

  Verify the diagnosis 

 Pathogen identification commonly relies on the transport of 

samples to reference laboratories with a typical reporting delay 

of 2–3 days. Suspicion must be maintained that an outbreak may 

be due to non-infectious causes such as poisoning or nutritional 

deficiencies. Metagenomic techniques, involving amplifying and 

sequencing all ribonucleic acid and deoxyribonucleic acid in a 

sample, is increasingly used to identify new pathogens when 

standard diagnostic tests are unforthcoming. Metagenomics 

led to the identification of previously unknown viruses causing 

haemorrhagic fever including Bas Congo and Lujo.  5,6    

  Make a case definition 

 Defining cases is notoriously challenging during outbreaks when 

symptoms are non-specific and mimic other diseases. Broad case 

definitions are used to ensure cases are not missed, but as the 

2017 plague epidemic in Madagascar demonstrated, the sheer 

number of suspect cases can overwhelm control efforts. Progress 

has been made through real-time analysis of case definitions. In 

WA in 2015, the sensitivity of the case definition for Ebola was 

increased from 69% to over 90%.  7    

  Finding cases 

 Currently, most national and international outbreak response 

groups use paper forms for reporting. During recent outbreaks, 

the use of mobile technology has facilitated the listing, location 

(using Global Positioning System) and subsequent follow up 

of cases and contacts using intuitive electronic data-entry 

platforms. These allow information to be collected in areas 

without mobile reception, and automatic upload when back 

online. This mobile technology has assisted in recent outbreaks in 

the rapid isolation of symptomatic contacts, potentially reducing 

onward transmission, and allowing improved real-time resource 

planning.  8–11   

 The International Severe Acute Respiratory and Emerging 

Infection Consortium has generated an open-access portfolio of 

case record forms for several outbreak diseases and syndromes 

( https://isaric.tghn.org/protocols ) with the aim of standardising 

clinical and epidemiological information collected during 

outbreaks.  

  Rapid diagnostic tests 

 The size of an outbreak can be substantially reduced by quick 

identification of cases using rapid diagnostic tests (RDTs). Three 

RDTs were validated during the WA Ebola outbreak; some do not 

require electricity or a high degree of training.  12–14   GeneXpert, 

although requiring a power supply, has >95% sensitivity and 

specificity, and is currently used in the DRC for diagnosis and 

patient discharge.  12   On the other hand, during the 2017 plague 

outbreak in Madagascar, an antigen-based RDT had limited 

specificity and its utility in the response has been questioned.  15    
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 Fig 1.      Condensed summary of the epidemiology principles for outbreak response summarising scientifi c progress made in the recent past (below 
in teal) and future possibilities (above in blue). PCR = polymerase chain reaction; PPE = personal protective equipment; RDT = rapid diagnostic test (should 

be sensitive, specifi c, heat-stable, cheap, simple to use, electricity-free and disposable). Note: the nine outbreak steps have been condensed to seven for space.  
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Legend: PCR = polymerase chain reaction; PPE = personal protective equipment; RDT =

rapid diagnostic test (should be sensitive, specific, heat-stable, cheap, simple to use,

electricity-free and disposable).

Source: (HOULIHAN; WHITWORTH, 2019).

Into the elements of Figure 1, the traditional media is responsible for communica-

tion while the governments are trying to implement the control measures. These measures

can be divided in preventive or combative. In the coronavirus scenario the common com-

bative strategy is the hospitalization of the severe cases while the preventive include use

of mask, social distancing and vaccination. This last one have been developed in record

time and some of them were approved to be used (WORLD HEALTH ORGANIZATION,

2021a). Each country is trying to make its own agreements to obtain the largest num-

ber of vaccine options and doses as fast as possible. Even so, the immunization process

is just starting. Due to the initial reduced quantity of doses available, the vaccination

campaigns had be executed by steps giving preference to the vulnerable groups (WORLD

HEALTH ORGANIZATION, 2020a). Again, the media participation here is crucial to

explain to people why each group must be immunized first and to convince them to

vaccinate (DUBÉ; VIVION; MACDONALD, 2015).
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Motivation and justification

Inside outbreak situations, mathematics contributions can be brought in the sense

of dynamical systems by finding good models to describe the past behavior of the studied

disease and predict the future evolution from the number of new cases and deaths, beyond

other relevant quantities for the spread or about the disease itself, and, by this, help to

guide decision making. Nowadays several models following very distinct approaches, from

differential equations to neural networks, were explored in the literature of mathematical

epidemiology (WIRATSUDAKUL; SUPARIT; MODCHANG, 2018). These models, with

more or less interpretability in relation with the disease dynamics in the host population,

are naturally subject to several sources of errors and uncertainties due to the phenomenon

being difficult by itself to be measured precisely. Thereby, by modeling also the uncertain-

ties through a probabilistic model helps to make more robust studies about the outbreak

(SOIZE, 2017; SMITH, 2014; CUNHA JR, 2017). In this discussion sensitivity analysis

is also desirable to help to identify which model inputs whose the variability more affect

the model response variance, and which ones are not relevant in this sense (SALTELLI

et al., 2004; SALTELLI et al., 2008; TOSIN; CÔRTES; CUNHA JR, 2020). This kind of

result is useful to simplify the probabilistic model and also reveal some nontrivial relations

between the epidemic factors.

Research goals

In addition to the problem described, the general goal of this dissertation is

to apply an uncertainty quantification framework, based in the use of the Polynomial

Chaos Expansion-based Sobol indices together with Monte Carlo Uncertainty Propaga-

tion guided by the Maximum Entropy Principle. In particular, the framework is explored

to study the distinct epidemiological scenarios of the 2016 Zika virus outbreak in Brazil

and the 2020-2021 COVID-19 outbreak in Rio de Janeiro city. The idea is to approach

these two scenarios using different mathematical models and strategies to cover the un-

certainties. In this way, the specific research goals for each disease are as follows:

1. In the case of Zika virus:

(I) Describe the SEIR-SEI compartmental model used to modeling the outbreak;

(II) Execute a global sensitivity analysis to identify the most important model

inputs during the first half of the outbreak;

(III) Use the previous result to update the model calibration;

(IV) Shows how that model performs for the most important parameters in 5 dif-

ferent scenarios of uncertainties;
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(V) Describe the main statistics associated with each uncertainty scenario;

2. In the case of COVID-19:

(I) Describe a 4-waves beta logistic model for the COVID-19 deaths;

(II) Design a sequential calibration scheme to fit each wave of the outbreak;

(III) Calibrate the model response using the cross-entropy method;

(IV) Apply the sensitivity analysis to detect the important inputs in each wave;

(V) Show a scenario of small uncertainties to covers the data fluctuation;

(VI) Observe some statistics from the response and parameters time evolution.

Text organization

To cover the project’s goals, the present dissertation is divided into 3 parts, or-

ganized in 7 chapters and 3 appendices: The first part (“Part 0”) and chapter is this

introduction which carries the function of describing the general points of the project.

The second part is responsible for the literature review under the perspective of epidemi-

ology, modeling approaches and statistic tools. For this, the Chapter 1 will gather an

introduction on the topic of epidemiology passing by the common quantities of interest

and control measures seek on this field. The mathematical base starts for the princi-

pal modeling strategies for infectious diseases, presented in the Chapter 2, combining

schematic illustrations, equation representation and graphical representations to make

clear how normally the quantities of interest behave depending of the set of model hy-

potheses. In the sequel, the Chapter 3 presents the statistical background necessary to

analyze the problem in the stochastic point of view. With the main tools in hands, the

Part 3.6 bring the dissertation results and conclusions. In the Chapter 4 is covered the

study on the Zika scenario while the COVID-19 is analyzed in the the Chapter 5. Fi-

nally, the Chapter 6 returns the main discussion of the text and illuminates the principal

results, what they represent for the problem described and some future directions that

can be open from it. Additionally, the participation in events occurred in the period

of this master’s project and how they contributed for the whole research are described.

Finally, a strategy to use Sensitivity Analysis to guide model selection is described in the

Appendix A. Supplementary figures not showed in the chapters of Part 3.6 are reunited in

the Appendix B, and, the visual representations from the scientific production addressed

in the Chapter 6 are put together in Appendix C.
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Concepts and mathematical tools
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1 BASICS ON EPIDEMIOLOGY

In the last decades of the 20th century, all sorts of pathogens, including viruses

like SARS-CoV-2, were favored to become dangerous and even lethal to animals and

humans (PLATTO et al., 2020). The conditions for that are not in debate here, but

some authors have been able to predict that a major pandemic were on its way and the

destructive effect of it. Of course, these predictions are possible by analyzing the history

of pandemics, which allow to apply previous successful strategies on the present issues

of emergency health and avoid committing the same mistakes again. Inside this theme,

this chapter has the intention of speaking about epidemiology theory by introducing the

main past pandemics, the important concepts to work on the field and some ways to deal

with an ongoing real situation. To finish the discussion, the final section elaborates some

discussions about how the COVID-19 pandemic affects the traditional way of living.

1.1 Epidemics and pandemics in the human history

From the Plague of Athens (430–427 B.C.E) to the Novel Coronavirus pandemic

(2019–), the human race suffered at the hands of contagious diseases throughout its

recorded history (SCHWARTZ; KAPILA, 2021). Different in causes or transmission ways,

these diseases have in common the power to destroy cities population and economy in a

small time.

The first epidemic disease declared pandemic was the Plague of Justinian. Al-

though the great wave of 541–544 remains the best documented, modern authors seem to

agree on nine other episodes between the years of 557 and 700 (HAYS, 2005). Caused by

the Yersinia pestis, Plague is a title used to name other two pandemics. The most famous

is the Bubonic plague, responsible for killing more than 25 million people or at least one-

third of Europe’s population during the 14th century (GLATTER; FINKELMAN, 2020),

what is naturally compared with the number of deaths for COVID-19 since 2019 until

now (July, 2021) (WORLD HEALTH ORGANIZATION, 2021b).

It began in 1918 one of the three pandemic influenza outbreaks occurred in the

20th century: The Spanish flu. Transmitted by the H1N1 influenza virus, the disease

killed an estimated 50 million people worldwide (KAIN; FOWLER, 2019). Certainly, the

spread of the disease was facilitated by the conditions generated during World War I.

After that, the 1957 Asian flu (H2N2 influenza virus) and the 1968 Hong Kong flu (H3N2

influenza virus) added up 2.5 million fatalities to that account and, fifty-one years later, a

novel H1N1 virus lineage (A/H1N1/2009), previously undetected in humans, started the

first influenza pandemic of the 21st century (GUAN et al., 2010).
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The recent history of pandemics remits also to 2003, when severe acute respiratory

syndrome (SARS) was detected in China. The failure to recognize the degree of contagion

among humans at the time led the cases to grow rapidly and spread to many countries

in Southeast Asia, North America, Europe, and South Africa, totaling 774 lost lives and

a death rate of 9.5% when the last case was reported in that year (GUARNER, 2020).

Less than a year later, the SARS-CoV (SARS coronavirus), responsible for the

SARS, mutates to a new one, consensually called MERS-CoV (Middle East respiratory

syndrome coronavirus) (DE GROOT et al., 2013), putting the World on alert again.

The disease caused 886 associated deaths under the 2519 laboratory-confirmed cases until

January 2020 (WORLD HEALTH ORGANIZATION, 2020d). Advancing to December

2019, a new mutation of the coronavirus was found in Wuhan, China (TANG et al., 2020).

The titled SARS-CoV-2 was recognized as a public health emergency of international

concern in January 2020 (WORLD HEALTH ORGANIZATION, 2020b), leading many

governments decreed lockdown and closing its borders (ATALAN, 2020; LAU et al., 2020).

At this moment, the novel coronavirus has been reported in the whole world. Because

its explosive spread, before authorities track the movement between continents, the virus

reached the World and taking 3.4M lives worldwide (until now, July 2021) (WORLD

HEALTH ORGANIZATION, 2021b).

Even pandemics being more notorious considering the number of people affected

in different countries in the same period, many emerging epidemic diseases have created

severe damage in the recent years (BLOOM; BLACK; RAPPUOLI, 2002; WATKINS,

2018). A list of each outbreak occurred in each country is described in the official vehicles

of the World Health Organization (WHO) (〈https://www.who.int/csr/don/en/〉). Nat-

urally, a highlight is given over the present COVID-19 pandemic. Beyond lethal illness,

WHO also has especial concern with arboviruses, endemic in several regions of the World

and capable of creating abrupt outbreaks. Every year, more than one billion people are

infected by diseases transmitted from vectors, including malaria, Dengue, chikungunya,

Chagas disease, Zika, and many more (PADMANABHAN; SESHAIYER, 2017). So its

effects for the host countries cannot be neglected, even more when it is linked to the

appearance of another illness (WORLD HEALTH ORGANIZATION, 2016). Considering

the Brazilian scenario, the tropical weather benefits diverse arboviruses to endemic spread

in the same time (DONALISIO; FREITAS; von Zuben, 2016). Unfortunately, the difficult

to differentiate one from another (since the vector are the same in several situations, as

well as some symptoms), delays the control.

The history of epidemics and pandemics can be sad in an anthropological sense

but shows the capacity of the World of passing through crises. Probably the COVID-19

will not be the last pandemic in human history, but it shows how trust in science and

union allow to create new tools to combat infectious diseases in a time never seen before.

https://www.who.int/csr/don/en/
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1.2 Introduction to the key notions on the field

The theme of epidemiology is sensible since it often deals with the preservation of

human lives. Therefore, do not confuse the basic ideas is crucial. This section lays out of

demystify some known concepts of the field and present a few more.

Epidemiology is traditionally defined as the study of the distribution and deter-

minants of health-related states or events in human populations and the application of

this study to the prevention and control of health problems (SZKLO; NIETO, 2019).

Nevertheless, this is a technical definition. In the practical sense, all epidemiological dis-

cussions start with the notion of a disease in the spotlight, which is caused by a pathogen

(a.k.a. infectious agent), that is, any microorganism (bacterium, virus, parasite, prion)

(GIESECKE, 2017). The transmission occurs when the infectious agent enters into con-

tact with an individual capable of being infected, who is called a susceptible (or host).

After that, it becomes an infected. The infected period can be analyzed on the symp-

toms or infectiousness perspective. From when the host was exposed to the pathogen

until the onset of symptoms, it is said to be in the presymptomatic stage, or incubation

(KRICKEBERG; TRONG; HANH, 2019). Thereon, the symptomatic, or clinical, stage.

On this point, it is capable of being identified as infected. When the symptoms disappear,

the infected period ends. On the other hand, the infected period can be also divided into

preinfectious, or latent, and infectious stage depending on whether the person can already

transmit the disease or not. It is completely normal to confuse these two views on the

infection period (VYNNYCKY; WHITE, 2010). To clarify a little more about this issue,

the Figure 2 shows an illustration of what was described above. As soon as the individual

pass that, it can become recovery, disability, or death.

Infectious diseases can be transmitted by different ways. Vertical transmission is

when an individual transmit to its offspring through sperm, placenta, milk, or vaginal

fluids. Horizontal transmission refers to the intuitive process of an infected individual

transmitting the pathogen to a susceptible contemporary (MERRILL, 2017). Addition-

ally, transmissions can also be classified into direct, when occurs from one person to

another, or indirect when the process is intermediate by an item, organism, environment

or process. In epidemiology, this intermediary is named as vector (MARTCHEVA, 2015).

Several diseases, as Malaria, yellow fever and Zika, are spread that way by using arthro-

pods. Those are called arboviruses (DONALISIO; FREITAS; von Zuben, 2016).

In a broader view, when occurs cases of an illness clearly in excess of normal ex-

pectancy in a community or region, the morbidity is defined as epidemic. When restricted

to a small geographical area or population, it is called outbreaks (BARRETO; TEIXEIRA;

CARMO, 2006). However, if affecting or attacking the population of an extensive region,

country or continent, a pandemic is characterized. Furthermore, endemic is the term used

refers to the ongoing, usual, or constant presence of a disease in a community or among a



22

Figure 2 - Schematic representation of the infected period on the symptoms (top) and

infectiousness (bottom) perspectives.
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group of people. Finally, the sense of emerging infectious disease is saved to a new or an

increased (as called re-emerging, to differentiate) occurrence within the last few decades

(DOHERTY, 2013).

To help to understand the disease occurrence, some frequency quantities can be

calculated. The idea of incidence is associated with new cases inside the host population

during a given time period (SZKLO; NIETO, 2019). So, incidence times, are the times

when new cases occurs, incidence proportion is the proportion of people who develop

the disease during the time period, and incidence rate measures the occurrence of new

cases per unit of person-time (AHRENS; PIGEOT, 2014). In a complementary way,

prevalence is a quantity to the proportion of people who have the disease in that period

(the cumulative portion). Finally, the idea of attack rate is a risk measure given by the

final prevalence, that is, the prevalence value in the final of the time period observed.

Finally, an important concept in epidemiology is the basic reproduction number

(R0). This simple number defines the average number of secondary cases that an average

primary case produces in a totally susceptible population (LI, 2018). With that, it is

possible to determine whether a disease will creates a epidemic or not. If R0 < 1, each

infected host passes on the infection to fewer than one other host, and the number of

new cases will decrease in time. However, when R0 > 1 the disease will be epidemic

(BRAUER; CASTILLO-CHAVEZ; FENG, 2019).
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1.3 Protection from and during pandemics

When dealing with an epidemic situation, the most important thing is to find a way

to stop or, at least, slow down the contagious. For that, two types of measures are used:

prevention and control. The first one is related to measures that are applied to prevent

the occurrence of a disease, while the second refers to those that are applied to prevent

transmission after the disease has occurred. The best example to clarify their different is

the parallel between social distancing and quarantine. The first one, as the wear of masks

and the personal hygiene maintaining, is about avoid to contract the disease. Differently,

quarantine is about to separate sick people with a contagious disease from people who are

not sick, in order to contain the spread from the disease (MERRILL, 2017).

Inside the debate of prevention, vaccination is always a “game changer”. Being

able to immunize the population against the pathogen is the more effective long term

way of protection. Although, development of vaccines is complex and the approval for its

use must follows rigorous protocols to guarantee its efficacy and safety. Since a vaccine

is authorized for studies in humans, the institution or company responsible for it should

conduct those clinical trials (GIESECKE, 2017; KRÄMER; KRETZSCHMAR; KRICKE-

BERG, 2010; NELSON; WILLIANS, 2014). After the efficacy’s verification, the results

can be submitted to analysis from the regulatory authorities. The most important, of

course, is the WHO, but the national approval is in jurisdiction of each country’ agencies.

In Brazil, this is up to the Agência Nacional de Vigilância Sanitária (ANVISA) – or Na-

tional Agency of Sanitary Vigilance, in english – , analogous to the U.S.’ Food and Drug

Administration (FDA). Depending on the results (which can depend from one agency

to another), the vaccine is approved to be administrated in large scale. Henceforth, the

general efficacy can be observed and new side effects can be tracked.

1.4 COVID-19 pandemic and its effect

As indicated in the Section 1.1, the COVID-19 pandemic, started in 2019, has

been responsible for the worst crisis in human history since the World War II. Inside this

problematic, there are a lot of questions to cover and scientific advances to recognize.

First of all, the first COVID-19 case in South America was sequenced in 48 hours at the

Adolf Lutz Institute (DE JESUS et al., 2020), representing a historic record if compared

with the mean time of 15 days needed for other international groups.

Second, the velocity of vaccine development. Although vaccination is the effective

way to protect the countries population, usually it takes 15-20 years between the initial

scientific discovery, vaccine licensing and policy recommendation (BLACK et al., 2020).

For example, it was necessary 5 years to get a licensed vaccine for Ebola even in the public



24

health emergency of international concern. Nevertheless, some vaccines for COVID-19

were developed and released in about one year (WORLD HEALTH ORGANIZATION,

2021a). Of course, besides having a vaccine approved, it is important that this comes to

the people. In this sense, two problems are in check: to produce the main supplies for the

vaccines, fast enough to immunize the World quickly, and the logistic of transport and

distribution of the product. If it is clear the impossibility of vaccination of the population,

structured plans to prioritize the most vulnerable were developed. Its execution must be

followed by each local health authority. At the same time, it is important to combat the

anti-vaccine movement that has been gaining strength in recent years (DUBÉ; VIVION;

MACDONALD, 2015).

COVID-19 pandemics also shows some weaknesses of humans. Mental issues are

already one of the main concerns of the decade, and with the isolation stimulated by the

pandemic, comes the sadness and fear of having clinical complications or never see some

people your care about again, while there are not short-term prospects for improvement

in the economic perspective. The “proliferation” of mental diseases due the pandemic

quarantine are already been documented (PFEFFERBAUM; NORTH, 2020; XIONG et

al., 2020) and will be an important inheritance left by the COVID-19 in the human society.

On the economic perspective, the present situation reduces with movement restric-

tion, several business closing your doors and the unemployment rates increases all over the

World (ALSAFI et al., 2020). Of course, tourist activities are stopped and international

events (as Olympic Games Tokyo 2020) were postponed. A secondary effect is also the

deepening of previous economic crises. In this sense, government discussions about fiscal

recovery and market collaboration will be very important in the next few years.

Education is also a field affected by the isolation against the coronavirus. To avoid

contact, teaching was converted to an online form (DANIEL, 2020). However, in several

countries (mainly the poorest), the common families do not have financial structure to

provide the necessary equipment for these home office classes, and neither the schools.

Also, teachers in general were not trained to work in this condition. All these difficult the

students’ learning process. The long-term effects of all those must to be observed carefully,

but it is expected that the rates of learning will reduce and strategies to reinforce learning

will be requested soon enough.
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2 MATHEMATICAL MODELS IN EPIDEMIOLOGY

The art of creating abstractions from reality dates back to the stone age, with

the painting on cave walls. Much time later, the scientific community was developing

more effective representations for real objects, called mathematical models, which allow to

obtain new knowledge about those phenomena by using mathematical tools. Those models

are crucial on the scenario of epidemiological phenomena due the difficult of reproducing

these in the laboratory. This chapter brings a brief on the state-of-the-art of mathematical

modeling for epidemiology. As the topic is extensive, the idea is to cover the most common

approaches used nowadays, from simplicity to complexity, focusing on differentiate them

based in their hypotheses and limitations. Additionally, a discussion of model discrepancy

and selection is introduced in the final section.

2.1 Graphical representations

The first step of any modeling process is to collect and observe data from the object

of interest (BASSANEZI, 2012). Through data it is possible to see how the process is

evolving during some time and extract some knowledge about it. For this proposal, graph-

ical representations can help to more easily visualize specific aspects of the phenomenon.

For epidemic scenarios, the main study object of this dissertation, the quantities of inter-

est (QoI) can be the number of infected, recovered, dead, and others. Plot its time series

helps to see the spread of the disease and how some control measures are being, or not,

effective. Graphical representations are a great tool of comparison. The observation of

how the disease behaves in different regions can reveal some information useful to stop

its proliferation.

To illustrate how some conclusions can be obtained from graphical representation

of data, the Figure 3 shows a comparison between some countries regarding contagion

by COVID-19 (CUNHA JR et al., 2020). Even this graph do not consider the country

population size, it can be see that some of them as South Korea, for example, seems

to reach the stage where few new cases are happening. So, the disease are possible

under control on this plateau. However, for others countries like Brazil, the contagion are

clearly speeding up, indicating an impossibility of being contained soon. In Brazil, more

restrictive control measures would be recommended. Of course, to understand better the

Brazilian scenario, complementary graphical representations must be requested to explain

why the national epidemic are still in a growth regime, probably not having gone through

the peak of new cases yet.

In this moment, assuming a new control measure applied in Brazil, the sanitary



26

Figure 3 - Contagion of COVID-19: Comparison between countries for the cumulative number

of cases since exceeding 1000 cases until 05/16/20.

Source: Edited from (CUNHA JR et al., 2020).

agencies desire to know how it will performs and the consequences, to be prepare to deal

with those. However, graphical representation of data are not capable to predict what

will happens next. Obviously, the analysis of data allows to create some intuition, but it

is not sufficient, objectively, to make a prediction itself. For this, mathematical models

emerge to give a relation between the characteristics of the disease and how its spreads in

the studied region. Some different modeling strategies for epidemiology will be presented

in the next few sections.

2.2 The logistic growth

Classically, epidemic curves are characterized by an initial exponential growth, an

intermediary linear growth and a final saturated growth that converges to the final size

of the epidemic, as can be see in Figure 3. It can be explained by the facility of contact

new susceptible to infect in the beginning of the outbreak, reduced after long time due

control measures or induced immunity. In this way, the qualitative behavior of a disease

spread inside a host population is compatible to the logistic type models.
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2.2.1 The Verhulst model

The logistic model was develop for Verhulst in the field of population growth (VER-

HULST, 1938; VERHULST, 1945; VERHULST, 1947). Influenced by the previous ideas

of Malthus and Gompertz, the mathematician proposed that a population can not grow

freely due to environment and resource limitations. With this assumption, its model can

be written in modern notation as

dN

dt
= r N

(
1− N

K

)
, (1)

where the parameters r e K represent the growth rate and carrying capacity, respectively,

and the cumulative population in time is expressed by N(t) (BACAER, 2011). A typical

qualitative form of N can be observed in the Figure 4. The inflection point indicated in red

represent the change in the growth when the velocity reaches its maximum value and starts

to decrease. That quantity is given by the derivative of the population equation, what

in the infectious diseases scenario is the number of new cases or, locally, the measure of

incidence. For practical purposes, in the epidemiological context, the cumulative number

of infected will be denoted by C(t) and the number of new cases by N (t). Similarly, D(t)

and D(t) can be used to denote the cumulative number of deaths by the studied disease,

and the number of new deaths in time.

Figure 4 - Schematic of a logistic growth cumulative curve. The growth occurs in three main

regimes: (i) initial exponential growth; (ii) intermediary linear growth passing

through the inflection point; (iii) saturated growth towards to the carrying capacity.
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2.2.2 Some generalizations

The Verhulst model is very effective in reproducing the characteristic of the three

stages of an epidemic curve, but it considers some symmetries that can not occur during

an outbreak due to several reasons. In particular, the model described in the Eq. (1)

implies that the inflection point (point of maximum growth or velocity, using the mechanic

jargon) is half of the carrying capacity (K/2) and the first and third stages are symmetric,

in other words, the velocity has bilateral symmetry. To contemplate the other possible

scenarios, other growth models was proposed during the years. Firstly, to control the

sigmoid shape of the response, Richards proposed to include an asymmetry coefficient α

in the negative part of the saturation term (RICHARDS, 1959). After that addition, is

formed the famous Richards growth model, given by the equation

dN

dt
= r N

[
1−

(
N

K

)α]
. (2)

The effect of the α parameter is illustrated in the Figure 5.

Figure 5 - Illustration of the effect of the parameter α for the symmetry in the model response.
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About the symmetry around the inflection point, Blumberg discussed that it is not

reasonable in general, and presented a model where the initial and final growths velocities

are controlled by different potency laws (BLUMBERG, 1968). By this, his model has the

form

dN

dt
= r N q

(
1− N

K

)p
, (3)

with q being the parameters which controls the initial growth regime and p commanding
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how the model response approaches the carrying capacity. Note that the Blumberg model

does not include the asymmetry parameter α. The reunion of the general ideas for growth

models, each model and its impacts, were well documented by Tsoularis and Wallace in

a review article (A.TSOULARIS; J.WALLACE, 2002), where the previous models are

referred to as particular cases of the generalized logistic model described by

dN

dt
= r N q

[
1−

(
N

K

)α]p
. (4)

However, a real analytic treatment for this model was only found in a recent Brazilian

group work, where an implicit closed solution for the model response and critical time

(time where growth regime changes) is deduced, as well as expressions for the asymptotic

behaviors of the model response and velocity (VASCONCELOS et al., 2021c). In this

paper, the model was named as Beta Logistic Model (BLM) for its similarities with the

Beta distribution.

2.2.3 Multi-waves growths

The BLM is already sufficient for the analysis of phenomenon that evolves under

a logistic type shape. Although, the model covers only one wave scenarios, that is, one

set of the three states of growth. Due to interventions in the population social behavior,

or environment influences, the phenomena may possibly evolves in several waves. In that

case, the BLM (or its particular cases) can be extended by assigning a time dependence

inside the parameters (VASCONCELOS et al., 2021a). The evolution of the parameters

must be investigated in order to understand the better way to model it. For periodical

scenarios, each parameter can be formulated as a sine function or a Fourier type function.

To conclude, logistic type models are relatively simple to understand and use,

being well explored in several recent works on infectious diseases (VASCONCELOS et

al., 2021b; CHEN; CHEN; CHEN, 2020; ZOU et al., 2020; SHEN, 2020; LIU; ZHENG;

BALACHANDRAN, 2020). Nevertheless, it is important to recognize that its application

for epidemiological goals is empirical (MOTULSKY; CHRISTOPOULOS, 2003). Even

supposing that the growth rate r gathers the infection moment and cycle, it is unclear how

the biological factors, as the latency and recovery periods, influence the growth. Some

parallels can be created, but the full biological interpretability is not possible, principally

in more general growth models. Another point to add is the decoupling. When the

phenomenon demand the modeling of several explanatory variables, logistic growths are

not able to describe how each one affect the others. A possible approach for this situation

is presented on the next section.
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2.3 Compartmental models

The idea of classifying people by healthy states is pretty intuitive to organize a

host population and track the infection. However, it is important to remember that

each individual can change its status in time. A susceptible can be become an infected

and an infected could migrate to recovery. By modeling the communication between the

groups, also know as compartments, it is possible to understand the disease’s dynamics.

Such methodology is quite popular to model several recent outbreaks (DANTAS; TOSIN;

CUNHA JR, 2018; ARONNA; GUGLIELMI; MOSCHEN, 2018).

2.3.1 Classical SIR model

The classic work on compartmentalization strategy was present by Kermack and

McKendrick in a set of three papers (KERMACK; MCKENDRICK, 1927; KERMACK;

MCKENDRICK, 1932; KERMACK; MCKENDRICK, 1933). In those, the host pop-

ulation was separate into three groups: The “virgins”, those have no previous contact

with the disease’s pathogen; “Sick”, characterized by carrying the disease and be able to

transmit it; Recovered, partially immune individuals who have recovered form at least

one infection cycle. To be precise, the probability of death by the disease was also con-

sidered, but for now this hypotheses will be neglected as well as immigration, births and

natural deaths. The recent texts are more familiar to call those three previous groups

as Susceptible (S), Infected (I) and Recovered (R) (BRAUER; CASTILLO-CHAVEZ;

FENG, 2019; BRAUER, 2017). To avoid some miss-understanding, if the recovery does

not accompany immunity gain, it is better consider the individual as a new susceptible

instead a recovered one (located in the R group). This title will be saved for those are not

more capable of developing the disease and can then be called as removed as well since

there is no mortality for the pathogen in this scenario. By including the hypotheses of

a homogeneously distributed population and all hosts acquiring immunity after the first

infection cycle, it is obtained the most classic compartmental model found in the main

mathematical epidemiology books: the SIR model (LI, 2018). Denoting the transmission

rate as β, the recovery period as 1/γ and considering a constant total population size of
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N , the differential formulation for the model can be written as

dS

dt
= −β S I

N
,

dI

dt
= β S

I

N
− γ I ,

dR

dt
= γ I .

(5)

Here the transmission term βSI/N is designed through frequency-dependence logic (BE-

GON et al., 2002), the recovery term γI contains all the processes that form the disease

cycle inside the host, and the time dependence in the compartments is omitted to main-

tain a cleaner notation. To clarify the communication between the groups during the

evolution of the disease, the Figure 6 shows a schematic diagram of the SIR model, with

the transmission (by infection) highlighted in the black arrow while the transition among

health states is indicated by the red ones. In addition, population dynamics can be added

to the SIR model by including an input term bN in the susceptible equation to repre-

sent births and immigration, and an output term for each compartment, proportional

to a “mortality rate”, to indicate natural deaths and emigration (BRAUER; VAN DEN

DRIESSCHE; WU, 2008). In that situation it is prudent to observe also the evolution of

the population in time, through its own differential equation characterized by the balance

of these inputs and outputs.

Figure 6 - Schematic diagram for the SIR compartmental model with demographic dynamics.
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As discussed before, epidemiological data are commonly collected in the form of

cumulative number of cases or number of new cases. So, it is important to extract these

quantities of interest from the model. How these quantities are reported when the people
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manifest symptoms, the cumulative number of cases increases when new infections occur,

it can be modeled by

dC

dt
= β S

I

N
. (6)

The number of new cases can be obtained by taking the derivative of the cumulative

number or by applying a recurrence equation as follows

Nt = Ct − Ct−1 ,
Nt0 = Ct0 .

(7)

The time notation in the above equation is indicated by index because N will be not

necessarily in the same time unit of C. Moreover, t0 represents the initial time of analysis.

2.3.2 Complementary compartments

The SIR framework is quite simple for didactic goals, but do not include the

minor changes inside the individual during the infection cycle. For example, after the

infection the individual enters in the latency period until become infectious while also

enters in the incubation period until become symptomatic (See Figure 2 for more details)

(KRICKEBERG; TRONG; HANH, 2019). So, it is interesting to include an intermediary

compartment between the groups S and I. Right now it is important to decide if this new

compartment E (for Exposed) will be left after the latency or incubation periods. Strictly

speaking, it would be more correctly to use the latency period since the I compartment will

now represent the infectious (capable of infect). Although, as the infectious are normally

detected when the symptoms appear, they are found after the incubation period. By that,

in this new SEIR compartmentalization, the transition E → I in time will be modeled

under a linear rate proportional to α (given by the inverse of the incubation period). Still

neglecting the demographic flow, the SEIR model, as described here, can be pictured as

in the Figure 7. In addition, the system of equations to capture the dynamic behavior of
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this model is given by

dS

dt
= −β S I

N
,

dE

dt
= β S

I

N
− αE ,

dI

dt
= αE − γ I ,

dR

dt
= γ I .

(8)

Again, if the cumulative number of cases changes when new infectious individuals emerge,

the mathematical expression for this QoI in the SEIR model is

dC

dt
= αE . (9)

Figure 7 - Schematic diagram for the SEIR compartmental model.
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Other health states can be included in order to obtain a more faithful model in the

biological sense. If the disease presents a considerable portion of asymptomatic cases, split

the infectious group into two compartments based in the presence or not of symptoms

can be done (ARONNA; GUGLIELMI; MOSCHEN, 2018). If the individuals infected

are putted into a quarantine regime, a representation for this group can be included in

the model. When the number of hospitalizations affects the dynamics, this fraction of the

infectious can be modeled separately, creating a new compartment. And so on. Further-

more, when dealing with two or more population susceptible to the disease, capable of

cross-infection, a n-population compartmentalization can be applied (DANTAS; TOSIN;

CUNHA JR, 2018; DANTAS et al., 135). The use for mosquito-borne pathogen transmis-
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sion is credited to Ross and Macdonald (SMITH et al., 2012). To illustrate in a simple

way, the Figure 8 shows a double population SIR model for a human-mosquito infection

dynamics. The index is used to differ the human compartments from the mosquitoes

(vectors) groups. The equations are analogs with the SIR model, adapting the transmis-

sion terms to the cross-form. Summarizing, compartmental models are effective to model

disease states and its relations, but assumes that the population size is large enough to

the mixing of members be assumed homogeneous. Also, which states are important to be

considered depends on the particular characteristics of the studied disease and outbreak.

To close, some text books and recent review work on the topic of compartmental models

are gathered in: (LI, 2018; BRAUER; CASTILLO-CHAVEZ; FENG, 2019; BRAUER;

VAN DEN DRIESSCHE; WU, 2008; SMITH et al., 2012).

Figure 8 - Schematic diagram for the double population SIR-SIR model compartmental model.
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2.4 Another approaches

So far, we have considered models with homogeneous behavior and distribution.

The idea in this section is to approach some ideas that come from the break of that

hypotheses. To starts, the simplest way is just to consider that the disease can affect

differently a host based on their age (LYRA et al., 2020). In that case, the mathematical

adaptation is quite similar with an n-population compartmental model. However, instead

having several populations, the total population will be divided into n indexed age sub-

groups (or patches), with their respectively compartments and parameters. By assuming

a model with m compartments, this metapopulation model will have a total of m × n

equations (WIRATSUDAKUL; SUPARIT; MODCHANG, 2018). In a SIR compartmen-
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talization example, the transmission terms will have the form λiSi, where

λi =
n∑

j=1

βij
Ij
Nj

, (10)

λi will be called the force of infection associated with the patch j and βij is the trans-

mission rate from Ij to Si. Similarly, it is possible to use this kind of construction in

a situation where the population have different response for the pathogen based in the

location (COSTA; COTA; FERREIRA, 2020). The temperature, for example, can be a

factor that makes the infection more (or less) effective in an urban center than in the

interior regions. So the patches will be created based on the district, or sub-region, of

the territory where the host population lives. Of course, it is also possible to apply both

region and age ideas to obtain a metapopulation model with double indexing, where the

force of infection λij is referred to the susceptible of the i-th age group who lives in the

j-th sub-region (ROCK et al., 2014).

Still going into the heterogeneous behavior, the next step will be to consider the

position as a free coordinate of the model as it is the time. So, naturally, partial differential

equations become adequate to use. The common examples found in the literature explore

Reaction-Diffusion or transmission Kernel (LI, 2018; KEELING; ROHANI, 2008).

Lastly, another popular approach is the neural networks. This methodology in-

crease with the growth of social networks in the last few years. The idea is to take into

account that an individual have particular behaviors with different other individuals or

groups. By modeling those distinct forms of interaction in an epidemic scenario, a more

realistic spread can be elaborated. Of course, discussions about computational processing

power and access to information become more important in the using of neural networks.

A review work on this topic applied to epidemiology is (KEELING; EAMES, 2005).

2.5 Model calibration and selection

Before starts this section discussion, it is important to unify the notation for every-

thing that was presented in this chapter. So, from now on, the model used in the context

will be ever denoted byM. The parameters vector (model inputs) will be represented as

x, while y will indicate the quantity of interest (QoI) of the context. With that, the Fig-

ure 9 shows how the QoI is obtained in each time instant t by the relation yt =M(x, t).

The representation can be easily extended for m-dimensional QoI.

Assuming that the method of solution used to obtain the model observable from

the inputs is verified, the quality of the model can be checked. It is extremely important to

determine how faithful the model is to the represented object. For this goal, observation



36

Figure 9 - Schematic representation of model operator.
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data is compared with the model response under the perspective of some measure of misfit

J . Following the previous notation, an inverse problem can be constructed to find the

input x∗ that satisfies

x∗ = argmin
x∈[lb,ub]

J(x) , (11)

where lb and ub are, respectively, the vectors of minimum and maximum values allowed

for the model inputs, and J is characterized by

J(x) = |yobs − y(x)| (12)

where, yobs = {yobsi , i ∈ [1, Nt]} is the dataset of Nt observations, y(x) = {M(ti,x), i ∈
[1, Nt]} is the model response and | · | denotes the norm adopted. More details can be

found in (TARANTOLA, 2005).

Of course, when dealing with several candidate models, with similar prediction

capabilities after calibration, not necessarily the closest to the data will be the best. This

is even more important when the model parameters values are subjected to uncertainties.

Model selection processes can be done under different criteria depending on the research

objectives to choose the most suitable model (GENTLE; HÄRDLE; MORI, 2012).
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3 PROBABILISTIC AND STATISTICAL TOOLS

Deterministic approaches are powerful to simulate scenarios and make predictions,

among other applications. Nevertheless, the use of statistic techniques has been increased

for several research fields due to its characteristic of allowing to handle with the lack of

knowledge in the modeling process, parameters estimation, etc. In this chapter, some

main probabilistic tools will be presented as well as some situations where they can be

interesting for epidemiology objectives.

3.1 Probabilistic elements and notation

First of all, it is necessary to bring some fundamental definitions used from prob-

ability theory and the common notations found in the literature. Be a probability space

characterized by the triple (Ω,F , P ), where the non-empty set Ω is the sample space of all

possible outcomes (or realizations, ω) for an experiment, F represents the σ-algebra of the

relevant events, and the probability P : F → R measures the likelihood of the occurrence

of an event during the experiment (WASSERMAN, 2004). A random variable on it is a

mapping X : Ω → R such that the image set Im(X) = {ω ∈ Ω : X(ω) = x ∈ R} ∈ F ,

and the function that assign the probability associated to each possible value for X is

called a distribution function of X (GRIMMETT; WELSH, 2017). In the sequel, X is

called continuous if there exists a non-negative function f , well defined in R, having the

property of

∫

A

f(x)dx = P{X ∈ A} ,∀A ⊂ R . (13)

This function is named the probability density function (PDF) of X and will be written

X ∼ f . On the other hand, the cumulative distribution function (CDF) of X, F , is given

as follows

F (x) = P{X ≤ x} ,∀x ∈ R . (14)

So, if the PDF exists, the mathematical relation between it and the associated CDF is
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expressed by

dF (a)

dt
= f(a) , a ∈ R . (15)

Still diving into it, the CDF and PDF functions are capable of describing the random

variable associated to it. To better understand the properties of X, some other measures,

called moments, can also be calculated. Formally, if X ∼ f , the n-th moment of X is

constructed through the formula

E [Xn] =

∫ ∞

−∞
xnf(x)dx . (16)

Particularly, the first moment, or expectation, E[X], is very important. Also known

as mean (and denoted by µ in several contexts), this quantity is useful to measure the

centrality of X. The variance around the mean is given by

var[X] = E
[(
X − E[X]

)2]
= E

[
X2
]
− E[X]2 . (17)

Additionally, if X = {X1, X2, . . . , Xn} is a set of random variables, all the previous

concepts given in this section can be generalized. With that, the relation between the n

coordinates of X is described by the joint CDF

FX(x1, x2, . . . , xn) = P{X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn} ,∀x ∈ Rn , (18)

and, over this, the concept of marginal CDFs emerge as

FXi
(xi) = P{Xi ≤ xi} ,∀xi ∈ R , (19)

which will be associated with the respective marginal density functions fXi
.

Besides that, if Y is a measurable function of the random variable X, the properties

of Y can be deduced from those of X. In particular, the expectation is given by,

E
[
Y (X)

]
=

∫
Y (x)f(x)dx . (20)

In the literature, it is very common to massively simulates the observable Y , sorting

a set of realizations {X1,X2, . . . ,XNs} from X based on its statistical properties, to
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numerically construct the Y statistics. This process is known as Monte Carlo method

(KROESE; TAIMRE; BOTEV, 2017; CUNHA JR et al., 2014). In some situations, an

auxiliary distribution g for X can be used to easily obtain an estimator for the Eq. (20).

By assuming that g(x) satisfies g(x) = 0⇒ Y (x)f(x) = 0, the Eq. (20) is rewritten as

Ef
[
Y (X)

]
=

∫
Y (x)f(x)dx =

∫
Y (x)

f(x)g(x)

g(x)
dx = Eg

[
Y (X)

f(X)

g(X)

]
. (21)

Here the index notation represents the distribution whose the expectation is related to.

The distribution g will be named as an Importance Sampling density (RUBINSTEIN;

KROESE, 2004). Therefore, an unbiased estimator for the expectation of Y is given by

the equation

µ̂ =
1

Ns

Ns∑

i=1

Y (Xi)W (Xi) , (22)

where Xi is each ith sample of X ∼ g, Ns is the number of samples and W (x) = f(x)/g(x).

Naturally, this estimation depends strongly on the choice of g. When g ≡ f , W ≡ 1,

simplifying the estimator expression to the form

µ̂ =
1

Ns

Ns∑

i=1

Y
(
X(i)

)
. (23)

The choice of g could be also made to reduce the variance of µ̂ with respect to g.

Finally, regardless of the discussion about distributions, the initial section of prob-

abilistic elements ends with a representation of the Monte Carlo method brought by the

Figure 10. The notation on it is closer to the used epidemiology applications covered by

the present dissertation. Thus, Y will be the stochastic process which realizations are

given by the model operator M, dependent of the distribution of X, constructed when

considering the input parameters values under the effect of uncertainties.

3.2 Cross-entropy method

Be the optimization problem

x∗ = argmax
x∈[lb,ub]

J (x), (24)

for the objective function J , with the assumption of unique solution to be found in the
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Figure 10 - Schematic representation of a Monte Carlo process to estimate the statistics of a

stochastic process Y =M(X), from the knowledge about X’s distribution.
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interval bounded for [lb,ub] (TARANTOLA, 2005). Intuitively, by defining a sufficiently

small region around x∗ and a reference level J̄ , close to the maximum J ∗, it will be

rare to found an input value inside the region that satisfies J (x) ≥ J̄ . More formally,

assuming x as a random variable distributed in the support [lb,ub] by the PDF f , the

probability

P
{
J (Xi) ≥ J̄

}
, (25)

will be low for all the values Xi sorted through f , if J̄ ≈ J ∗. This characterizes a

rare-event. The key idea of the Cross-Entropy (CE) method is to transform an maximum

optimization problem into a rare-event estimation problem, where the goal is to find

the distribution of importance sampling near the sampling density of theoretical greatest

importance, which concentrates all its mass on the point J ∗ (RUBINSTEIN; KROESE,

2004). For simplicity, there will be assumed that this searched distribution belongs to the

family f(·; v), with its members distinguished by the hyperparameters v. In this case, the

problem is discover the optimum hyperparameters set v∗. The common procedure is to

perform a multilevel strategy. Starting from some v0, a set of Ns samples of X ∼ f(x; v0)

will be generated. Then, the evaluation from the sample in the objective function can be

done, and the results are ordered. Now, the initial level J1 is obtained by the elite set ε1

of the %% higher values. With that, the updated hyperparameter set v1 is calculated by

solving the problem
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max
v

1

Nε

Nε∑

Xk∈ε1

ln f(Xk; v) , (26)

where Nε is the size of the elite set ε1 (CUNHA JR, 2021). With v1 in hands, a new set

of Ns sample is sorted from which a second level characterized for the new elite set ε2 can

be found. Therefore, a new hyperparameter set v2 will be calculated after solving a new

problem analogous to the represented in the Eq. (26). And so on. Iteratively repeating

these steps, it will be generated an optimal sequence of levels and hyperparameters sets

that will converge, reducing variance, to the ideal level J ∗ and hyperparameter set v∗

(BOTEV et al., 2007). The process is represented for an example of Gaussian distribution

f in the Figure 11. From the theoretical point of view, solving a cross-entropy-based

calibration problem using PDFs from the family f is equivalent to minimize the Kullback-

Leibler divergence between f(·; v) and the Dirac delta distribution δ(x− x∗) (KROESE;

TAIMRE; BOTEV, 2017). Additionally, some adaptations can be made in the method to

helps the convergence to the optimum (COSTA; JONES; KROESE, 2007). A first idea

is not to fully update the t-th hyperparameter set vt in each step, but instead, to apply

a linear smoothing rule

vt = diag(ς) + (1− ς)vt−1 . (27)

Traditionally, the value of the smoothing parameter ς is chosen between 0.7 and 1. Al-

though values closes to 1 have great effect in the convergence, it will reach a degenerate

distribution. In that case, the method will crash in a local maximum. To avoid this, the

smoothing parameter can be iteratively re-smoothed through a second rule

ςt = θ + θ

(
1− 1

t

)ϑ
. (28)

Here ϑ is a small integer (typically between 5 and 10) and θ is a large smoothing constant

(typically between 0.8 and 0.99). More details on convergence of CE methods can be

found in (COSTA; JONES; KROESE, 2007). A final point to be included is that the

cross-entropy method can be explored for minimum optimization problems by just using

the symmetric of the original objective function (-J ) inside the method.



42

Figure 11 - Schematic representation of the CE method for a Gaussian distribution family.
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3.3 Polynomial chaos expansion

As described before, the common way to estimate the unknown distribution fY ,

that characterizes the stochastic process Y = M(X, t), is executing Y for a sufficient

large sample of X ∼ fX. Naturally, the computational cost of their simulation depends of

the number of samples necessary to make this estimation converges (KROESE; TAIMRE;

BOTEV, 2017). Nevertheless, that also depends strongly on the complexity of performing

the operator M. When this last compromises the simulation time (unfeasible for high-

dimensional systems), approximated models becomes very appealing to keep the running

time in a region of practical use. A surrogate model for M is a new operator for which

the response obtained from realizations of the input X is sufficiently closer to the true

one, but takes much less time to be executed. In this section, it will be presented the

Polynomial Chaos Expansion (PCE) metamodel for random variables.

Again, let Y = Y (X) ∈ R be a random variable described as a function of a set of

basic random variables, X ∈ Rn, with joint distribution fX. If Y also has finite variance,

the functional dependence between Y and X takes the form

Y =M(X) =
∑

α

yαψα(X) , (29)

where ψα are basis of (multivariate) polynomials that are orthogonal with respect to fX,
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α ∈ Nn is the multi-index used to identified the components of ψα, and yα ∈ R are the co-

ordinates for Y in the space characterized by the orthogonal polynomial bases (MARELLI;

SUDRET, 2018; GHANEN; SPANOS, 2012). The formulation can be adapted for stochas-

tic processes by just including a time dependence in yα. The construction of these bases

is made by tensorization

ψα(X) =
n∏

i=1

ψαi
(Xi) , (30)

of the univariate basis functions ψαi
, which are orthogonal with respect to fXi

(PETTERS-

SON; IACCARINO; NORDSTRÖM, 2015; XIU; KARNIADAKIS, 2002). The Table 1

summarizes a list of the most classical polynomial families and its underlying random

variables.

Table 1 - Correspondence between random variable distributions and the optimal family of

orthonormal polynomials.

Distribution Support Orthogonal polynomials

Uniform [a, b] Legendre

Gaussian (−∞,∞) Hermite

Gamma [0,∞) Laguerre

Beta [a, b] Jacobi

Poisson [0, 1, 2, . . .] Charlier

Source: (XIU, 2010).

The equality presented in Eq. (29) only occurs when all the coefficients yα ap-

pears in the expansion. However, the practical use of PCE metamodels comes from the

truncated form
Y ≈MPC =

∑

A

yαψα(X) , (31)

with the truncated set of multi-indices A ⊂ Rn the preserved terms are assign. A com-

mon way to truncates a PCE is creating a sieve on the maximum polynomial degree P .

Therefore, the resulted truncated set is denoted as An,P = {α ∈ Nn : |α| ≤ P}, with size

of

∣∣∣∣An,P
∣∣∣∣ =

(
n+ P

P

)
. (32)

After setting the maximum polynomial degree P , a truncated PCE for Y is ob-

tained by calculating the expansion coefficients. To that, a experimental design sample

χ = {Xi}, i ∈ [1, Ns], should be taken by sorting X ∼ fX. The evaluations from that
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sample, Y =M(χ), will be placed to feed the least-square minimization problem (TOSIN;

CÔRTES; CUNHA JR, 2020; GHANEM; Red-Horse, 2017).

y∗α = argmin E
[(
MPC(X)−M(X)

)2]
. (33)

Finally, after building the PCE surrogate, its accuracy must be estimated. A good error

estimator is the leave-one-out (LOO) cross-validation error (εLOO), which is based in

creating Ns surrogates MPC\i where each one is made with the exclusion of the sample

point Xi (BLATMAN; SUDRET, 2010). Through that, the εLOO value can be calculated

as follows

εLOO =

Ns∑

i=1

(
M(Xi)−MPC\i(Xi)

)2

Ns∑

i=1

(
M(Xi)− µ̂Y

)2
, (34)

where µ̂Y is the sample mean.

3.4 Variance based sensitivity analysis

Inside the discussion of reducing the computational cost of a Monte Carlo simula-

tion, the dimension of the input random vector is an important factor. Possibly, a small

set X̂ from the original input X mainly commands the variability of the outcome Y , while

the complementary set of random variables is not relevant in this sense. Even knowing

the marginal input distributions and its dispersion, it is not trivial how each one really

contributes for the variability of Y . To help identify those most important inputs, sensi-

tivity analysis come into context. This section will explore the Sobol indices sensitivity

analysis to select the most relevant input parameters of Y .

Given a deterministic operator y = y(x), sensitivity analysis is basically to find a

coefficient that measure the change produced into the model response due to a change

applied into one of its inputs. The intuitive way to do that is by simply calculating the

rate of change

dy

dxi
(x0) ≈

∣∣∣∣
y(xε)− y(x0)

ε

∣∣∣∣ , (35)

for each input coordinate xi, in the point x0 by adding a step ε into xi. Naturally,

these measures are extremely local, do not considering the different behaviors that y
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assumes in the domain regions that are distant from x0. Furthermore, this strategy ignores

interaction effects among input factors, i.e., effects that come from the simultaneous

variation of two or more inputs in the same time. In resume, this kind of strategy will,

in general, conduct to false or incomplete conclusions (SALTELLI et al., 2019). To deal

with these problems, global methods has been used in recent works. The Sobol indices

are a derivative-free measure for global sensitivity analysis based on the decomposition

the model variance (SALTELLI et al., 2004). Thus, it is very indicated in the context of

uncertainty quantification.

Returning to the random outcome Y = M(X), with Xi independent and identi-

cally distributed (iid). The Hoeffding-Sobol decomposition (SOBOL, 2001) for Y is given

by

Y =M0 +

n∑

i=1

Mi(Xi) +
∑

1≤i<j≤n

Mij(Xi, Xj) + . . .+ M1...n(Xi, . . . , Xn) , (36)

whereM0 is the mean value, and the terms of increasing order are conditional expectations

that characterize an unique orthogonal decomposition of the model response (SALTELLI

et al., 2004). They are recursively calculated as follows

M0 = E [Y ] ,

Mi(Xi) = E [Y | Xi]−M0 ,

Mij(Xi, Xj) = E [Y | Xi, Xj]−M0 −Mi −Mj ,

...

(37)

Through the Eq. (36), the model response total variance can also be decomposed as

var[Y ] =
∑

u

var
[
Mu(Xu)

]
, ∅ 6= u ⊂ {1, . . . , n} . (38)

By dividing each component of this expression for the total variance, it is obtained the

set of Sobol indices, Su, which measures the contribution of Xu for the model variance.

In particular, the first order indices

Si =
var[Mu(Xi)]

var[Y ]
(39)

express the individual effect created due Xi (SALTELLI et al., 2008). The interaction
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effect from varying the pair {Xi, Xj} is calculated by the second order indices,

Sij =
var[Mij(Xi, Xj)]

var[Y ]
. (40)

Similarly, the other order indices can be evaluated. In addition, the full contribution given

by each input coordinate Xi is obtained when summing the individual and joint variance

terms that include Xi, to define the total order Sobol indices (Le Gratiet; MARELLI;

SUDRET, 2017)

STi =
∑

i∈u

Su . (41)

Again, those sensitivity indices can be generalized for stochastic processes by starting

with a time dependence in each component of the Eq. (36).

The calculation of Sobol indices can be executed through Monte Carlo methods.

In addition to the large number of simulations necessary to obtain convergence in the

estimations of model total variance, it introduces cancellation errors into the calculations

(KROESE; TAIMRE; BOTEV, 2017). This is even worst in dynamic systems scenarios.

To avoid this problem, while also reduces the sensitivity analysis simulation cost, the

PCE metamodels are called again. Due to the orthogonality properties described in

the Section 3.3, the variance for a truncated PCE MPC for Y is given by (MARELLI;

SUDRET, 2018; Le Gratiet; MARELLI; SUDRET, 2017)

var[MPC] =
∑

α∈A\0

y2α . (42)

So, the Sobol indices can be analytically calculated as follows

Su =

∑

α∈Au

y2α

∑

α∈A\0

y2α
, (43)

with Au = {α ∈ A : i ∈ u⇔ αi 6= 0} (MARELLI et al., 2018).

3.5 Maximum Entropy Principle

Until here, all the statistical ideas and methods were developed from the premise

that the input PDF is well known. Some distributions are classically used based in the
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support. When the model parameters are restrictively positive, for example, a Gamma

distribution is preferable over a Gaussian one. However, this is an oversimplification

which creates a degree of bias. Not necessarily the input distribution is compatible with

the Gamma distribution. The choice of the adequate distribution in each case is not

always a simple question. It is important to explore the information available about the

random variables while avoiding to include sources of bias as possible. To better guide this

process, this section covers the construction of maximum entropy distributions (SOIZE,

2017).

Let X = {X1, . . . , Xn} be a set of random variables, with values inside the support

IX, and distributed by an unknown distribution fX. The uncertainties of X can be

estimated through the Shannon Entropy

E(fX) = −
∫ ∞

−∞
fX log(fX)dX . (44)

From it, the Maximum Entropy Principle (MaxEnt) is based on constructing the PDF

of largest uncertainty from those distributions which satisfies the constrains defined by

the available information (JAYNES, 1957). In mathematical terms, let a set of m + 1

constraints

E[g(X)] = b , (45)

where the real function g(x) =
(
1, g1(x), g2(x), . . . , gm(x)

)
, defined in IX, enforces the

statistical properties b ∈ Rm+1, including the PDF normalization condition (SOIZE,

2017). The MaxEnt PDF is extracted by maximizing the Eq. (44) over the constraints.

The general solution of this optimization problem has the form

fX(x) = 1IX exp(−〈 λ,g(x) 〉 ) . (46)

Here, λ ∈ Rm+1 indicates the vector of Lagrange multipliers, 〈 ·, · 〉 is the dot product,

and 1IX represents the indicator function for the support of X (SOIZE, 2017).

About particular scenarios on MaxEnt, if there is no known cross-moments, the

previous construction returns independent distributions. Furthermore, when the sup-

plied statistical information is composed by moments, the computation of the Lagrange

multipliers is simplified due to the formation of a Hankel matrix (SMITH; ERICKSON;

NEUDORFER, 1991). On it, when only the first moment is provided, the resulting Max-

Ent PDF is a truncated exponential. If the second moment is also available, the two

possible solutions are truncated Gaussians, when 0 < λ3 ∈ λ = {λ1, λ2, λ3}, or, if λ3 < 0,

a truncated distribution of the exponential family but with a quadratic exponent is found

(UDWADIA, 1989).
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3.6 Uncertainty quantification framework

In this chapter, some statistical tools were presented and detailed. To bring a clo-

sure in the theoretical part of the dissertation, this section put together the statistical tools

in a well organized uncertainty quantification framework to be used in the Results part

of this project. The idea is to use the Polynomial Chaos Expansion-based Sobol indices

together with Monte Carlo Uncertainty Propagation guided by the Maximum Entropy

Principle. Thus, the framework is composed by five steps, represented in the Figure 12:

First off all, assuming the previous choice of a mathematical model to work with, real

data from the quantity of interest will be explored to adjust some model characteristics,

as initial conditions or some shape parameters, via calibration process. After that, this

fitted model will be assigned as the computational model; Its input parameters will be

considered as random and a experimental design will be sampled to guide the construction

of a polynomial chaos expansion surrogate model; This sample will be used to perform

a Sobol indices global sensitivity analysis in order to identify the most relevant input

parameters; The MaxEnt principle is then applied to construct informative distributions

for the relevant inputs; With this, a Monte Carlo uncertainty propagation is executed to

observe the main statistics for the QoI. It is important to make it clear that the surrogate

model is used only in the sensitivity analysis step. In the UQ step, the original compu-

tational model is applied. The Figure 12 also reveals that the framework can easily be

adapted to others surrogate, sensitivity analysis and calibration strategies.

Figure 12 - Schematic representation of the Uncertainty Quantification framework.
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Results and discussion
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4 ZIKA VIRUS OUTBREAK IN BRAZIL

In 2016, the WHO declared the Zika virus epidemic as a global medical emergency

problem due to several outbreaks spread around the globe and the increase of cases of Mi-

crocephaly and Guillain-Barré syndrome (WORLD HEALTH ORGANIZATION, 2016).

Recognizing the massive reduction on the number of new cases and the apparent induced

immunity to the disease, the status was removed in 2017 maintaining the preventive mea-

sures. During that period, the outbreak of Zika fever in Brazil drew a particular attention

due to the sportive events that occurred in the country and the relation with the spread of

the disease. This chapter approaches an uncertainty quantification study on the Brazilian

outbreak of Zika virus.

4.1 Data set

The data explored here will be the number of new cases of Zika virus occurred in

Brazil during the 52 epidemiological weeks (EW) of 2016 (Figure 13). For reference of

the long term growth, the cumulative number of cases in each week are also represented.

The information was obtained through a request send to SINAN (Sistema de Informação

de Agravos de Notificação, or Notification Diseases Information System in english), and

is currently available in the ZikaVD data sets (TOSIN; DANTAS; CUNHA JR., 2021) for

public use.

Figure 13 - Time series for the weekly number of new (left) and cumulative (right) cases from

Zika in Brazil in 2016.
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4.2 Mathematical modeling

For modeling this epidemiological scenario, it will be used a double population com-

partmental model, which was already explored in a previous calibration study (DANTAS;

TOSIN; CUNHA JR, 2018). The model is structured as follows: The two populations

(humans and Aedes aegypti mosquitoes) are divided into a SEIR framework, removing

the recovered vectors group by the consideration of a small lifetime. Including also the

cumulative number of infections as a variable of interest of the system, the evolution of

the Zika dynamics can be described by the set of equations

dSh
dt

= −βh Sh
Iv
Nv

,

dEh
dt

= βh Sh
Iv
Nv

− αhEh ,

dIh
dt

= αhEh − γ Ih ,

dRh

dt
= γ Ih ,

dSv
dt

= δ Nv − βv Sv
Ih
Nh

− δ Sv ,

dEv
dt

= βv Sv
Ih
Nh

− (αv + δv)Ev ,

dIv
dt

= αv Ev − δ Iv ,

dC

dt
= αhEh ,

(47)

Here, the h and v indices are employed to indicate the humans and vectors (mosquitoes),

respectively. The mosquitoes compartments are treated by proportions (Nv = 1) due to

the difficulty to determine its population size. Even so, as those insects rapidly reproduce,

a same birth/mortality rate δ is included to manifest this characteristic without changing

the population size. The same approach was not applied to humans, measured in number

of individuals and assumed to have a constant total population of Nh = 206 × 106.

The parameters βi represent the cross-transmission rate to the infectious group Ii. The

quantities 1/α and 1/γ are the incubation and recovery period, respectively. The model

equations and characteristics can be better understood on the associated diagram from

the Figure 14. The two quantities of interest for the model are cumulative number of
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cases and the weekly number of new cases, given by

C(t) =

∫ t

t0

αhEh ,

N = Cw − Cw−1 , N1 = C1 , w = 2, . . . , 52 ,

(48)

where Cw is the value of C in the w-th EW. Here the weeks are accounted in its final

day, so t = 7 is equivalent to w = 1 and so on. The computational model is setting

by taking a set of input parameters (βh, αh, γ, βv, αv, δ). The integration of the ordinary

differential system in Eq. (47) is performed with a Runge-Kutta (4,5) method through

the time interval t = [7, 364], using a set of initial conditions that conserve the total of Nh

and Nv in the two respective populations. Then, the QoIs are extracted for the 52 EW

of the year of 2016 through the Eq. (48).

Figure 14 - Schematic diagram for the SEIR-SEI compartmental model.
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4.3 Sensitivity analysis

Starting from the previous calibration study described in (DANTAS; TOSIN;

CUNHA JR, 2018), the initial conditions (IC) are considered already adjusted and the

parameters supports are well documented. Both are detailed in the Table 2. With that,

the application of the UQ framework begins by characterizing the random inputs for the

sensitivity analysis. In according with what was described in the previous section, and

by the assumption of independent parameters defined in the supports presented in the

Table 2 (DANTAS; TOSIN; CUNHA JR, 2018) as the unique information available to

be used until here, the random variables will be represented through the random vector

X ∼ U(x; lb,ub).
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Table 2 - Lower and upper bounds of the parameters, and initial conditions.

parameter βh αh γ βv αv δ

lb 1/16.3 1/12 1/8.8 1/11.6 1/10 1/21
ub 1/8 1/3 1/3 1/6.2 1/5 1/11

group Sh Eh Ih Rh Sv Ev Iv C

IC 205,953,959 6,827 10,000 29,639 0.999586 4.14× 10−4 0 8,201

Legend: The unit is days−1 for the parameters. Human IC are counted in individuals, vector

IC are in proportion.

Source: References for the bounds can be found in (DANTAS; TOSIN; CUNHA JR, 2018).

Since the outbreak peak occurred in the 7th EW and until the 20th EW the most

part of cases already happened, the global sensitivity analysis will be executed in the

first 20 EWs only. The first week will be neglected because it is relative to the initial

condition, so there is no variance in that initial point (in this study). Therefore, the

final time window of EWs to be explored in the sensitivity analysis is {2, 3, . . . , 20}. The

QoI used to guide the study is the number of new cases (Nw). All the simulations were

conducted with the fixed initial conditions listed in the Table 2. To obtain the Sobol

indices, a 10 maximum degree PCE was constructed using a 20,000 sample experimental

design set to obtain the 8,008 coefficients of the expansion. The relatively large sample

set is applied to guarantee a precise surrogate. The leave-one-out cross-validation errors

estimated in the PCE construction were of the order of 10−5 or less. The smaller was

found in the EW 2, with value of 2.44× 10−10, and the higher was 1.18× 10−5, related to

the final week of this analysis (EW 20).

To observe the approximation accuracy, a validation set of 10,000 sample was

generated. Validation plots were created by comparing the true model response with the

PCE surrogate response, using the identity line as a reference of dispersion between those

two responses. The Figure 15 put together the validation results in the epidemiological

weeks 2, 7 and 20. By doing that, it can be better noted how the PCE surrogate response

is closer to the true response for the original model. The other validation curves can be

found in the Appendix B.

With a trustworthy surrogate in hands, the Sobol indices could be calculated for

all the possible orders. The total order sensitivity analysis result is presented in the

Figure 16, together with the first, second orders indices. The other orders are omitted

here because its contribution is not so relevant inside the analysis (See Appendix B). For

the cases with many indices, only the 10 most higher sets are displayed. Also, the peak

week was highlighted for being the most important time instant of the outbreak.
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Figure 15 - Validation plots for the 2th,7th and 20th EWs, using the PCE surrugate for the

weekly number of new cases.
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Legend: The red dots represent the sample and the blue line is the identity line.

With focus on the first order indices only, the most relevant parameters are βh, δ

and γ, with this last much less effective than the other two. The effect of the transmission

rate increases in the first few weeks, because the outbreak is getting started and too much

susceptible humans are available to be infected. Even so, this effect rapidly reduces,

similar to what happens to αv. The contribution given by δ increases until close to the

peak week, decreasing after that. This results is not so intuitive, but occurs because δ is

responsible for renew the vectors population and the new born mosquitoes will infect new

susceptible humans. On the other hand, the parameters also removes vectors, reducing

the transmission capacity of the vectors group. So, δ will “helps” the spread in the initial

weeks and helps to contain the outbreak in the final weeks. Finally, the variability of

γ and βv have an Gaussian shape around the 11th and 12th weeks. Similar with what

happens with δ, those two parameters affect the equation of new cases indirectly.

The qualitative behavior of the Total Sobol indices changes notably when including

the other orders. By observing the Figure 16, most of the results of second order grows

during the passing of weeks. With that, the total orders indices gain a great contribution

after the peak week. The first order indices are more relevant before that. Through

the total indices, the parameter γ become more competitive with βh and δ. However,

if using the 7th week as a point of reference, γ is disadvantaged. In the 7 first weeks,

βh and δ clearly are more effective that γ. This last assume the lead only when the

outbreak is ending. Summarizing, the global sensitivity analysis reveals the importance

of consider the cross effect between parameters, and returns the transmission rate βh and

the demographic factor δ as the most important parameters during the 20 first weeks of

the outbreak.
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Figure 16 - Total, First and Second orders Sobol indices for the model number of new cases.

4.4 Calibration improvement

The previous sensitivity analysis was obtained to guide the uncertainty propaga-

tion study to be executed in the next section. Although, another idea is to also use that

knowledge to improve a calibration result, by focusing in the parameters that are more

important in the more desirable regions. For the Brazilian Zika scenario, the most im-

portant moment of the outbreak is the peak. The blue curves of the Figure 17 shows
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the model response for a calibration results obtained with the same model described in

the Section 4.2, on the same conditions presented in the Table 2 (DANTAS; TOSIN;

CUNHA JR, 2018). The result clearly underestimate the peak value. To improve this,

a new tuning is made by only updating the pair {βh, δ} (most important parameters).

The calibration method used was the same Trust-Region-Reflective detailed in (DANTAS;

TOSIN; CUNHA JR, 2018), to ensure that the gain does not come from the change of

methods. The fitted parameters are detailed in the Table 3. As desired, the new result

(green curves of the Figure 17) creates an increase in the values around the peak week

while do not compromise the fitting in the other EWs. In the cumulative curve, the way

the improved response follows the data around the peak is more clear, but, as before,

disperses after that. To finish, it is important to noted how the improved tuning do not

correct the response peak position, which still remains happening before the 7th EW.

Figure 17 - Comparison between first calibration (blue) and new calibration (green) obtained

due to sensitivity analysis. Parameter values and IC can be found in Table 3.
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Table 3 - Result parameters from the first calibration (blue) (DANTAS; TOSIN; CUNHA JR,

2018) and the new one (green).

parameter βh αh γ βv αv δ

first 1/10.4 1/12 1/3 1/7.77 1/10 1/21
new 1/8.33 1/12 1/3 1/7.77 1/10 1/18
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4.5 Uncertainty propagation

The new calibration guided for sensitivity analysis results was successful to correct

the peak value but not its position. This maybe reveals a deficit on the used model. Also,

the calibration result is an additional information available about the model parameters.

According with the uncertainty quantification framework followed by this dissertation,

this section covers a set of scenarios of uncertainties for the parameters selected by the

sensitivity analysis executed in the Section 4.3. The idea is to investigate the model ro-

bustness to reproduce the data when uncertainties are included. The maximum entropy

principle will be used to guide the construction of the inputs distributions based in the

information available in each case. Based in the conclusions from the Section 4.3, the ran-

dom input will be composed only by the pair {βh, δ}. Finally, the five different scenarios

to be covered in this section will be the follows:





random variables: βh , δ ,

information: support, mean ,
(Scenario A)





random variables: βh , δ ,

information: support, mean, CVβh = 5% , CVδ = 5% ,
(Scenario B)





random variables: βh , δ ,

information: support, mean, CVβh = 10% , CVδ = 5% ,
(Scenario C)





random variables: βh , δ ,

information: support, mean, CVβh = 10% , CVδ = 10% ,
(Scenario D)





random variables: βh , δ , CVβh , CVδ ,

information: support, mean, CVβh , CVδ ∼ U(5%, 10%) .
(Scenario E)

In these, the supports are again those from the Table 2, while the mean referred value

is the result obtained in the new calibration from the Section 4.4. The variable CV

represent the coefficient of variation (ratio between standard deviation and mean) around

the mean, in order to introduce dispersion. Since no previous information is known about

the dispersion, the assumed values are used to investigate the behavior and sensibility

under this hyperparametric study for the most unbiased possible PDFs. The other model

parameters remain constants with the first calibrated values (Table 3) and the initial

conditions are the same used until here (Table 2). In Scenarios A to D, MaxEnt PDFs
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are constructed for the random variables βh and δ, one for each, and parameter values

are sampled from these two distributions. In Scenario E, however, one sample means the

following steps: a pair (CVβh , CVδ) is generated and, through that, two maximum entropy

PDFs are constructed for the stochastic βh and δ (one for each), obtaining a pair (βh,

δ) from these PDFs. The samples are generated from the MaxEnt PDFs by use of the

Inverse-Transform Method (KROESE; TAIMRE; BOTEV, 2017).

The 95%-confidence bands for Scenarios A to E, respectively, are presented in the

Figures 18 and 19. These were constructed by using 1,024 sample to feed a Monte Carlo

Method. The convergence metric used was the sum of the second statistical moment

from each compartment present in the SEIR-SEI model equations. The figures shows the

convergence results can be found in the Appendix B.

The analysis of the confidence bands reveal qualitatively the influence of the input

PDFs on the QoI distributions, specially the response behavior around the maximum

value of new cases. In particular, the scenario A, more conservative due do not consider

the mean, generated larger bands which are probably unrealistic. The other scenarios

contains less data inside them, but are more informative. In general, the same percent

of dispersion values was more significant when applied on the parameter δ. Also, the

two random parameters seem to have little, or non, effect over the first few EW when

distributed accordingly to MaxEnt PDFs. Thus, the stochastic system response fails to

encompass the epidemic curve in this early stage, overpredicting. Nevertheless, the model

appears to maintain its general pattern, demonstrating a robustness in the presence of

uncertainties for their most sensible parameters, and following the data from the main

interest region until the outbreak’s end.

Several statistics can be obtained from the uncertainty quantification procedure

employed in the proposed framework. The histograms and estimated PDFs of the time

average for the cumulative number of cases, in all the five scenarios, are displayed in

Figure 20. These results help to observe the average interval of values outbreak assumed

during the outbreak, and its corresponding distribution. Even though the mean and

deviation interval seem to be approximately stable in all cases analyzed, the skewness of

the distribution inverts and the tail concavity changes significantly. Matching with it,

each respective histogram of time average for the number of new cases is showed in the

Figure 21, as well as the estimated PDFs.

The marginal distributions for the random input variables are represented in the

Figure 22, where the Monte Carlo sample used in each uncertainty scenario is also plotted.

The parameter βh presented exponential behavior in the first four scenarios and Gaussian

distribution on the last. The mass of probability is concentrated in values lower or equal

than the mean given as information. On the other hand, δ only showed exponential distri-

bution in the first scenario. Thus for the other four, the parameter has high possibilities

to assume values bigger than the mean (inside the support).
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Figure 18 - The 95%-confidence bands for the model cumulative number of cases, in Scenarios

A to E.
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Figure 19 - The 95%-confidence bands for the model number of new cases, in Scenarios A to E.
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Figure 20 - Histogram and estimated PDF (kernel density) of the time average for the

cumulative number of cases, in Scenarios A to E.
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Figure 21 - Histogram and estimated PDF (kernel density) of the time average for the number

of new cases, in Scenarios A to E.
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Figure 22 - Marginal distributions for the random inputs, in Scenarios A to E.
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Additionally, another interest measure to be taken is the confidence interval for the

attack rate (AR), important epidemiological quantity of reference. As the peak is where

occurs the biggest contribution for the final size of the outbreak, the week (wmax) and

value of peak (Nmax) will be putted on that analysis. All of these confidence intervals, for

all the scenarios, are organized in the Table 4. Indeed, the analysis of the intervals support

the argument that the effect of dispersion in δ was stronger. During the scenarios when

CVδ was smaller, the peak week was constant in 5, while it would be of greater interest for

the interval to extend to EW 7. The AR intervals reveals that the outbreak occurred in

Brazil was responsible to infect something between 0.1% and 0.2%, approximately. The

proportion is very low, but the total population was very huge as well. Besides that, with

a very small percentage of cases, the country are very susceptible to new outbreaks on

the future. As the Brazilian authorities are now worry about the COVID-19 pandemic,

probably a new Zika virus outbreak will occur very soon.

4.6 Some conclusions

In this chapter, the uncertainty quantification framework was applied to the 2016

Brazilian Zika virus outbreak using a double population compartmental model as tool to

obtain the quantities of interest. The model response were calibrated to the Brazilian

data in a previous work (DANTAS; TOSIN; CUNHA JR, 2018). So, the application of

the framework started in the sensitivity analysis step. The Sobol indices reveal the pair of

parameters βh and δ as the most important on the first 20 EWs of the outbreak. The week

of peak, instant of great interest, was discriminant on the analysis and main responsible

for the pair selected of parameters. Through this information, a new model calibration

could be conducted only adjusting the two most relevant inputs. The results obtained

from this allowed to improve the response peak value, but not its position.

With the new calibration used as additional information about the parameters,

multiple stochastic scenarios were tested, estimating the most unbiased parameter dis-

tributions with aid of the Maximum Entropy Principle for different values of dispersion.

By that, the uncertainties were propagated to the system response in a Monte Carlo

simulation. Confidence bands were calculated for the model QoIs and the histograms

of time average were showed. To complement, confidence intervals for the attack rate,

time of peak, and location of the peak were made too. The analysis reveal that increase

on the input dispersion are more effective when applied to δ. Also, the proposed model

performed robustness after the peak value, but reveal serious difficulties into capture the

initial dynamics. An improvement can be search by including measures of model errors

(MORRISON; CUNHA JR, 2020). So, this is the first immediate direction to follow in

future works.
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The estimated marginal distributions for βh and δ in each scenario showed exponen-

tial distribution for δ only in the first scenario, where there is no informed dispersion. The

parameter βh manifested exponential distributions for four of the five studied scenarios,

showing Gaussian shape in the last scenario alone.

Table 4 - 95% confidence intervals for the attack rate, peak value and peak location, in

Scenarios A to E.

scenario AR 95% CI wmax 95% CI Nmax 95% CI
A [0.067, 0.23]×10−2 [4, 6] [15395, 24632]
B [0.11, 0.19]×10−2 [5, 5] [18894, 23343]
C [0.11, 0.19]×10−2 [5, 5] [19663, 23425]
D [0.093, 0.23]×10−2 [5, 6] [18180, 24600]
E [0.099, 0.22]×10−2 [5, 6] [18407, 24168]
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5 COVID-19 PANDEMIC IN RIO DE JANEIRO

The COVID-19 pandemic was as a public health emergency of international concern

in January 2020 (WORLD HEALTH ORGANIZATION, 2020b). Even so, the first death

detected in Rio de Janeiro (RJ) city was detected a couple months later, in March 17.

Since then, the RJ outbreak had high and low moments, composing several waves. In

this chapter, the RJ COVID-19 outbreak will be put under the microscope to analyze its

comparative behavior depending on the wave observed. Again, the UQ framework will

be applied to analyze how the proposed model performs when the inputs are subjected

to uncertainties.

5.1 Data set

The data to be used in this chapter is the number of new deaths from COVID-19

in Rio de Janeiro city, since the first death detected (March 17, 2020) until May 20. The

information was obtained by the Painel Rio COVID-19 (〈https://experience.arcgis.com/

experience/38efc69787a346959c931568bd9e2cc4〉). The choice for using the deaths instead

the cases is based on the asymptomatic behavior of the disease. Without a consolidated

testing policy, that quantity itself is under several uncertainty. The deaths, on the other

hand, are always detected. Of course, it will be always some errors, but probably much

less than with the infections. The Figure 23 shows the referred data (and the cumulative

form), with the moving average included to help observe the main evolution of the deaths.

Figure 23 - Time series for the daily number of new (left) and cumulative (right) deaths from

COVID-19 in Rio de Janeiro since March 17, 2020.
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5.2 Mathematical modeling

In this epidemiological scenario, different from the one presented in the Chapter 4,

will be proposed a model uncoupled from the infection dynamics. It will be applied an

multi waves Beta logistic growth model (BLM) to describe the cumulative number of

deaths, D, following the equation

dD

dt
= r Dq

[
1−

(
D

K

)α]p
, (49)

where r is the growth rate, α is the asymmetry parameter, K is the carrying capacity,

and q and p, respectively, controls the initial and final growths. The model QoI are the

daily number of cumulative deaths, obtained by the integration the Eq. (49), and the

daily number of new deaths

D = Dd −Dd−1 , (50)

with d denoting the days, and D1 = D1 for consistency. The multi-waves characteristic is

inserted in the model by the consideration of time dependent parameters in the form

ζ(t) = ζ1 +

n−1∑

i=1

ζi+1 − ζi
2

[
1 + tanh

(
ρi
2

(t− τi)
)]

. (51)

The index n measure the number of waves defined, and the sub-parameters ρ and τ ,

respectively, represent the transition velocity and inflection point from each transition

between waves. The model response will present as many waves as the parameters but

the its waves is not necessarily synchronized. By the Figure 23, the time window is

located in the interval {1, . . . , 428}, where the first and final days are March 17, 2020,

and May 20, 2021, respectively. In that interval, the data shows a set of four waves.

Because of this, a 4-waves model will be used. The computational model is assigned when

are chosen the four individual values (one per wave) for {ri, qi, αi, pi, Ki}, as well as the

three values for the pair {τj, ρj}, j ∈ {1, 2, 3}. Thus, the 4-waves BLM depends of 26

input sub-parameters. With these determined, the time evolution of set {r, q, α, p,K}
can be calculated by the Eq. (51), allowing to obtain the daily number of cumulative

and new deaths in the interval [1, 428] through the Eqs. (49) and (50). As before, the

integration step of this process is executed by the use of a Runge-Kutta (4,5) method.

The initial condition used in all the simulations of this chapter is C(1) = 2, number of

deaths reported in March 17.
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5.3 Model calibration

Since there is no previous result of the proposed model for the COVID-19 out-

break in Rio de Janeiro, this section discusses a calibration process to obtain a more

accurate model to be used in the next sections. The supports for the parameters were

experimentally adapted from those discussed in (VASCONCELOS et al., 2021a). The car-

rying capacities are the only parameters that have the constraint of being monotonically

increasing through the passing of waves.

Even with 428 data points to guide a tuning process, fit 26 parameters can be

difficult. To simplify this, a sequential calibration is proposed to convert the original

problem into a sequence of 4 calibration processes. The idea is to fit, in each case, the

parameters associated with the wave of same number, while preserves the parameters

obtained in previous solutions. With that, all the parameters are fitted recursively. In

more details, the sequential calibration can be described by the following steps:

(1) Calibrate the 5 parameters of an 1-wave BLM using the data from the first wave;

(2) Use the parameters obtained in the (n−1) previous calibrations to fit the remaining

7 parameters of a n-waves BLM, using the data from the nth first waves.

This recursive strategy is also useful for better defining the carrying capacities bounds.

Since one of these are estimated, its value is used as lower bound for the next one.

The upper bound is given for the cumulative value in the final of the wave from the data,

increased in 2500 by the assumption of the wave have not reached its natural plateau before

the transition for the next wave. This construction helps to maintain the consistency

between each calibration step. Finally, the calibration process is performed using the

cross-entropy method considering a Gaussian family distribution. The 1-norm is applied

to measure the distance between the model daily number of new deaths response and the

data, avoiding the effect of the outliers data points. The number of sample in each iteration

was Ns = 75, and the elite percentile % = 0.1. A simple smooth is used in the update

of the mean hyperparameter with ς = 0.75, and an iterative smoothing, characterized

by θ = 0.9 and ϑ = 7, is applied during the iteration of the standard deviation. The

stop criteria from each calibration process is tolσ = 0.01 for the maximum standard

deviation obtained in the actual iteration. As the parameters are from different orders of

magnitude, it is included an additional stop criteria tolJ = 0.1 for the improvement in the

objective function (|Ji−Ji−1|) given by the actual iteration. Otherwise, the method stops

when reaching 100 iterations. The data from the four waves is divided in: ω1 = [1, 138],

ω2 = [139, 230], ω3 = [231, 344] and ω4 = [345, 428]. The supports for the 26 parameters

are listed in Table 5, together with the estimated values, means and standard deviation.

All the calibrations ends by the objective function tolerance, after executing an average
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of 60 iterations. The sequential results are showed in the Figures 24 – 27, where the 95%

confidence bands are presented as well. The full calibration is displayed in the Figure 28.

The calibration figures demonstrate the efficiency of the sequential strategy. With

less parameters to be fitted at the time, the convergence of the CE method occurs with

no major complications. In the first 10 iterations, the method guide the response to a

small dispersion (CV ≤ 5%) region already. The following iterations just update the

values to the best fit under the tolerances described. Furthermore, it can be noted that

the confidence bands for the cumulative numbers of deaths are larger for the last waves.

This effect occurs because the error is propagated during more time, so the cumulative

numbers get out of sync from the data points. The new deaths curves reveal that this

does not compromise the quality of the waves fitting.

Figure 24 - First wave time series for the daily number of new (left) and cumulative (right)

deaths in each wave from the first sequential calibration step.
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5.4 Sensitivity analysis

As the model have the special quality of multi-waves behavior, this must be taken

into account for sensitivity analysis proposes. In the previous chapter, the peak were con-

sidered as the most important instant of the outbreak. With several peaks, the reference

will the waves itself. By the Eq. 51, each wave sub-parameters have an “on and off” effect

during the evolution in time. However, its effect can be carried to the response even after

being “turned off”. So, the cross-effect between parameters must be observed in each

wave. In this section, the Sobol indices will be used to identified the most important

parameters in each wave. For that, the number of new deaths will be calculated in 16
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Table 5 - Lower and upper bounds for the 26 model parameters, and its respective estimation

for the value, mean and standard deviation.

parameter r1 q1 α1 p1 K1

lb 0 0 0 0 2
ub 1 1 2 10 12771
µ∗ 0.5 0.78 1.46 2.49 12183
σ∗ 8×10−4 3×10−4 4.8×10−3 4.9×10−3 18
x∗ 0.5 0.78 1.46 2.49 12183

parameter τ1 ρ1 r2 q2 α2 p2 K2

lb 135 0 0 0 0 0 12183
ub 155 1 1 1 1 10 15786
µ∗ 153 6.1×10−2 0.5 0.65 0.68 0.78 15069
σ∗ 1 1.2×10−3 2.2×10−2 4.8×10−3 0.04 1.7×10−2 102
x∗ 153 6.1×10−2 0.46 0.65 0.69 0.76 15041

parameter τ2 ρ2 r3 q3 α3 p3 K3

lb 225 0 0 0 0 0 15041
ub 255 1 1 1 2 10 22643
µ∗ 254 0.13 0.51 0.7 1.02 1.09 21973
σ∗ 1 2.8×10−3 0.02 4.1×−3 4.2×10−2 1.8×10−2 43
x∗ 255 0.13 0.51 0.7 0.97 1.08 21967

parameter τ3 ρ3 r4 q4 α4 p4 K4

lb 340 0 0 0 0 0 21967
ub 380 1 1 1 10 10 28205
µ∗ 372 0.12 0.5 0.62 6.8 1.71 27236
σ∗ 1 2.6×10−3 3.4×10−2 5.7×10−3 0.2 0.07 58
x∗ 373 0.12 0.5 0.62 6.77 1.64 27231
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Figure 25 - Second wave time series for the daily number of new (left) and cumulative (right)

deaths in each wave from the second sequential calibration step.
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Figure 26 - Third wave time series for the daily number of new (left) and cumulative (right)

deaths in each wave from the third sequential calibration step.
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time instants equally spaced in each wave. The full 4-waves model will be used during all

the analysis to not remove any possible cross-effect between the 26 parameters. Again,

only the 10 most relevant set of indices will be displayed in each result.

First of all, the parameters distribution must be characterized. Since the tuned

model proved to be very closer to the real data, the knowledge acquired during the cal-

ibration process can be used here. As described before, the first 10 iterations already

guaranteed a coefficient of variation less or equal than 5%. So, using the final fitted pa-

rameters values as mean and a common CV = 0.05 to all of them, an uniform distribution

can be created for each model parameters. That idea is to use the calibration process to
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Figure 27 - Fourth wave time series for the daily number of new (left) and cumulative (right)

deaths in each wave from the fourth sequential calibration step.
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Figure 28 - Full time series for the daily number of new (left) and cumulative (right) deaths in

each wave obtained through the sequential calibration process.
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update the knowledge about the sub-parameters supports and reconstruct them. There-

fore, all the model sub-parameters will be uniformly distributed on those new support.

With the random inputs characterized, the PCE will be constructed with a max-

imum polynomial degree of 5, in a total of 169911 coefficients to be obtained, and 2000

samples. Less samples are used here, compared to the Zika case, to maintain a good com-

promise between the accurate of the surrogate and computational cost, since the model

QoI calculation depends of the integration of 5 hyperbolic tangents. To validate, a new

set of 1000 samples was generated. The validation curves can be found in the Figures 29,

where the most and the least accurate results in each wave are used to reference the gen-

eral quality of the PCE created. The cross-validation error varied between the order of
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10−8 for the better adjustments (first wave) and 10−2 for the worst cases (fourth wave).

The other validation curves are reunited in the Appendix B.

With the PCE model surrogate already created and validated, the Sobol indices can

be calculated. Not all the possible orders will be necessary since the contributions strongly

decrease in high orders. So, to focus only in the relevant orders while do not neglect

possibly cross-effects in the total variance, the sensitivity indices will be calculated until

the third order. Here, only the total indices figures will be exposed, with the others being

reserved for the complementary results appendix. The intention is to compare parameters

importance between waves. The omission of the individual orders does not generate loss

for the present analysis, considering that the greatest contribution to the total indices

comes from the first-order indices. The other orders slightly affect the quantitative point

of view, but not the qualitative character of the analysis. The four total Sobol indices

curves (one per wave) are put together in the Figure 30.

In the first wave, the initial growth control q1 is protagonist. As the most of its

indices is closer to 1, the parameter is obviously the most important in the wave. In

second place, the parameters r1, K1 and τ1 are competitive with each other. Due to the

initial effect, the growth rate r1 will be selected as the second most relevant parameter.

Then, from the analysis of the first wave, the par {r1, q1} are chosen as the most relevant.

Even so, when including the second wave into the context, the parameters K1 and τ1

arise again. Although more discreet compared to q1, q2 and K2, its effects can not be

neglected. Pass to the triple {τ2, q3, K3} mainly controls the variance. Finally, the fourth

wave finish the analysis by indicating the parameters τ3 and K4 as the most relevant. In

resume, the initial growth parameters (qi), inflection times (τi) and carrying capacities

(Ki) are the parameters that controls the variance in general. Depending of which ith

wave is observed, ith (or the (i − 1)th one) associated value for those three parameters

will assume prominence. The exception is r1 for the first wave. This occurs because in

the first wave, the combined effect of the time variation in the model original parameters

was not transferred to the response yet. So, as the growth rate, r1 is very important at

the moment. Also, by filtering only the 10 higher sets of indices to be analyzed, becomes

clear how the contributions from the asymmetry parameters (αi), final growth parameters

(pj) and the transition rates (ρi) for the model variance can easily be neglected with no

great loss. In conclusion, by the analysis of the total Sobol indices in the four waves,

from the 26 parameters, the most relevant are {r1, q1, K1, τ1, q2, K2, τ2, q3, K3, τ3, K4}. So,

these 11 parameters must be taken into consideration for the uncertainty propagation

studies. Seems a lot to keep so much parameters, when compared with the Zika study

where only two parameters were selected from the original set of six (one-third reduction).

However, here the multi-wave characteristic of the present scenario must be considered.

If reducing the set of 11 parameters, relevant effects will be loss of some of the waves.

Now is preferable to keep more parameters so as not to benefit one wave over another.
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Figure 29 - Validation plots for the PCE surrugate constructed for the QoI D.
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Legend: The red dots represent the sample and the blue line is the identity line.
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Figure 30 - Total Sobol indices for the daily number of new deaths per wave.
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5.5 Uncertainty propagation

After the sensitivity analysis step, now the uncertainties from the 11 parameters

selected can be executed. As before, will assume that the calibration allows to update

the parameters bounds by considering a coefficient of variantion of 5%. Thus, the same

uniform distribution construction will me made. But here, the parameters which were

not selected in the Sobol indices analysis will be considered as constant, with value equal

to the found in the calibration (Table 5). The idea is to analyze the model robustness by

studying its capacity of describe not only the average trend of the data, but also the data

points itself. Of course, the real data presents a great dispersion. If the model is able to

capture this dispersion, with small variability in the inputs, it is added a new degree of

validation for its use in complementary studies on the phenomena.

The Figure 31 shows the 95%, 75% and 50% confidence bands for the model QoIs.

The 95% band can encapsulate almost all the data points, with exception of some points

that clearly look like outliers. When considering the 75% bands, the most part of the

data is cover, showing how the model is effective into it. The number of points marked

by the 50% is obviously smaller than for other envelopes, but, still, the points that seems

to guide the trend are covered. In conclusion, when considering the uncertainties, the

model well describe all the waves of the studied scenario. To complement the uncertainty

quantification study, the time average histograms for the model cumulative number of

deaths and number of new deaths are showed in the Figure 32.

Figure 31 - The 95%-confidence bands for the model cumulative number of cases (left) and

number of new deaths (right).
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As the 4-wave BLM used in this chapter part of the premise of considering the

original 5 parameters as time variants, its evolution with the addition of the uncertainties
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Figure 32 - Histogram and estimated PDF (kernel density) of the time average for the model

cumulative number of cases (left) and number of new deaths (right).
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can be observed. Of course, for the parameters there is no data to be compare. So, it is

not necessary to create three different confident bands for each one, as was done for the

QoIs. The 95% confident bands generated for the model parameters are reunited in the

Figure 33. This result is interesting because the connection from which parameters were

considered random is easy to be made. The random variables q1 and K1, for example,

will not affect the evolution of r(t). Moreover, as all the carrying capacity parameters

(K1,K2,K3,K4) are random, the confidence band from K(t) is, clearly, the only one that

does not have the taper regions. There occurs in the moments where a constant parameters

is controlling the time evolution. For example, the taper regions in r(t) starts after r1

take place to r2. The envelope does not fully agglutinate because of the presence of the

τ1 and τ2 which are both random. An analogous situation can be found for p(t) and α(t).

To finish the discussion, other useful information to be extracted from the Monte

Carlo uncertainty propagation simulation are estimates from the number of deaths due

each wave, that is, that gain in the cumulative number of deaths from a wave to the next

one. Using the 95% envelope in the final time instants of each wave, the Table 6 reunites

the estimated confident intervals for the increase of deaths.

Table 6 - Estimated 95% confident intervals for the final cumulative number of deaths and

total increase of deaths, for each wave.

wave 1 2 3 4

95% CI total of deaths [8332,11813] [11871,15141] [18200,22814] [23520,28300]
95% CI gain of deaths [8332,11813] [58,6809] [3059,10943] [706,10100]
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Figure 33 - The 95%-confidence bands for the model parameters.
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5.6 Some conclusions

In this chapter was presented a 4-waves Beta logistic model to describe the 2020-

2021 (until May 20) COVID-19 pandemic in Rio de Janeiro city, Brazil. The multi waves

behavior is injected in the model response by considering the 5 original parameters as time

dependents, following a smooth formulation based in hyperbolic tangents. With that, the

model have a total of 26 input sub-parameters.

The uncertainty quantification framework were applied to the proposed model.

First of all, to fit the model inputs, a sequential calibration design exploring cross-entropy

method is proposed. It splits the original tuning problem in a set of 4 smaller problems

focused into fit specific sets of parameters, using the parameters already calibrated as

constant. The results show that the sequential strategy is very effective to fit this relatively

high number of model inputs.

The iteration of the cross-entropy method on the proposed model helps to construct

region of 5% dispersion around the fitted model sub-parameters. Following the framework

steps, the global sensitivity analysis was performed on that region to inform which inputs

are more relevant. The importance of each one changes depending on the wave observed.

By comparing the four waves, 11 inputs were selected from the original 26. In general the

parameters of final growth and carrying capacity, domains the model variance, together

with the transition time parameters. An uncertainty propagation simulation was made to

see how the selected sub-parameters affects the model outputs. Through the 95%, 75%

and 50%, confidence bands it was possible to visualize how the model capture the data

dispersion. With lower dispersion on the inputs, the 50% band cover the main density of

data. The two other bands capture the most part of the outlier data points. The effect of

the random inputs could be observed more isolated on the confidence bands constructed

for the 5 time variating model parameters.

The 95% confidence bands for the model QoI and time evolution of the parameters

were show. Also, time average histogram for the model outputs were displayed. The

uncertainty propagation study reveals the robustness of the proposed model into describe

the real data. By the analysis of the parameters bands, the effect given for each random

input could be observed more isolated. In addition, intervals for the increase of deaths

due to each wave were estimated. By that, the first wave is naturally the one whose more

deaths occurs. The third wave is the second higher on that referenced measure.
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6 FINAL REMARKS

6.1 Research contributions

The project covers the study of epidemiological phenomena, its mathematical mod-

eling and analysis on the presence of uncertainties. To that, an UQ framework was pre-

sented. It combines PCE-based Sobol indices global sensitivity analysis to identify the

most important input parameters, with Maximum Entropy Principle to construct unbi-

ased distributions. So, Monte Carlo simulations allows to analyze the statistics of the

outcome stochastic process.

The framework was applied in two different recent outbreak scenarios: The 2016

Zika virus outbreak in Brazil and the the 2020-2021 COVID-19 outbreak in Rio de Janeiro

city. For the first, the model used was a double population compartmental model. In the

second one, a 4-waves Bela logistic model (BLM) was explored.

In the Zika scenario, sensitivity analysis results allowed to select the two most

important inputs, reducing the amount of random variables to be explored in the uncer-

tainty propagation to one third. The Sobol indices were also used to improve the previous

calibration result to a new one that betters capture the peak value. Five scenarios of un-

certainties were develop to study how the model performs on different values of known

input dispersion. Complementary statistics for the model QoIs, time of peak, value of

peak and attack rate, were demonstrated.

For COVID-19 in Rio de Janeiro, a sequential cross-entropy calibration process

was design to tuning the BLM to the real data, by dividing the original problem in a

set of 4 minor problems focuses in specific sub sets of the parameters, that recursively

uses the previous solutions. The calibration result was explored to update the parameters

supports. A sensitivity analysis study on these new supports was conducted to identify

the most relevant model inputs in different wave. After, an uncertainty propagation

simulation on the 11 important parameters was made. Three different confident bands

(95%,75%,50%) were constructed to help observe the model capacity into cover the data.

Other statistics were exposed and intervals for the gain of deaths due each COVID-19

wave could be estimated.

6.2 Main conclusions

The analysis from the Zika scenario reveal the βh and δ parameters as the most

important in the first 20 EW of the outbreak. The improved calibration corrected the

peak value but was not capable of adjust its position, still occurring before the real
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one. The uncertainty propagation scenarios studied reveal that higher dispersion is more

effective to the response variability when applied to the parameter δ than to βh. Also,

the study allowed conclude that the compartmental model is robustness to reproduce the

Brazilian outbreak on presence of uncertainties only after the peak (EW 7), but have

serious difficulties into capture the initial dynamics.

About the COVID-19 scenario, the 4w-BLM calibrated by the sequential strategy

was very closer to the original the real data from the Rio de Janeiro deaths waves. Through

the Sobol indices analysis, the final growth sub-parameters (q) showed up consistently high

important during all the waves. The carrying capacities and transition times are also

relevant and its effect increase during the passing of waves. By simulating uncertainty

propagation scenario on the main 11 sub-parameters it was possible to infer that the

model is robust to describe the real deaths. With small dispersion on the inputs the

model response capture the most part of the data points inside the 50% confidence band.

The 75% and 95% bands cover almost all the outliers. The confidence intervals for the

death gains reveal the first and third waves as the two which more contributed to the

cumulative amount of lost lifes.

6.3 Future directions

A first direction will be to adapt the uncertainty quantification framework to guide

a study of model errors, where the sensitivity analysis will be used to guide which kind

of error are more effective to make up for the deficits found here. The idea is intended to

be applied to continues the studies on the Zika scenario.

For the scenario of COVID-19, the next step is to explore the calibrated model to

test some case studies during the waves and how some control measures could be used to

contain it. Also, an idea to be explored is to apply the model for the full Brazilian deaths.

Then, its robustness can be put on prove on the light of the national scale scenario, way

less isolated.

To finish, it is desired to develop the ideas of how to use sensitivity analysis to

improve previous resolves. The Sobol indices model selection criterion presented in the

Appendix A should be applied on other studies where the results could be compared the

those obtained for other established methods to verify the advances on use the sensitivity

analysis-based methodology.
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6.4 Scientific production and events

During Master’s degree period, some scientific works were developed and presented

in events of wide interest. In 2019, some of the results on the Zika scenario were presented

in the Conference of Computational Interdisciplinary Sciences (CCIS 2019). The work

was later published in the Journal of Computational Interdisciplinary Sciences (DANTAS;

TOSIN; Cunha Jr, 2019). The results not covered in this paper are reunited in a more

complete work, currently under review for submission in a research journal. Poster con-

tributions around it were took to the Conference on Perspectives in Nonlinear Dynamics

(PNLD 2019). At the end of the year, the master student made a presentation about

construction of models and model errors in the XIV Conferência Brasileira de Dinâmica,

Controle e Aplicações (XIV Brazilian Conference of Dynamics, Control and Applications,

in english) (DINCON 2019).

In 2020, the quarantine from COVID-19 starts and affects the academic events.

Some of then were canceled, postponed or moved to online mode. So, contributions

were presented only in the Congresso Brasileiro de Automática (Brazilian Congress of

Automatics, in english) (CBA 2020). There, was presented the preliminary results on

Sobol indices-based model selection. Also, before the quarantine starts, a book chapter

describing the calculation of the PCE-based Sobol indices for biological phenomena was

accepted for publication (TOSIN; CÔRTES; CUNHA JR, 2020).

With the pandemics, the search for packages easy-to-run to simulate the dynamics

of infectious diseases increases. To help in this sense, there was developed the EPIDEMIC

- Epidemiology Educational Code - , an educational Matlab toolkit for epidemiological

analysis (PAVLACK et al., 2021). Also, the routines used to analyze the Zika scenario were

organized in the ZIKAVD – Zika Virus Dynamics – package, to facilitate the reproduction

and adaptation for other similar outbreak (TOSIN; DANTAS; CUNHA JR., 2021).

On the COVID-19 results, a paper about it has been develop and a work was

already accepted to presentation in the 3rd Pan American Congress on Computational

Mechanics (III PANACM), in the end of 2021.

To complement his theoretical background on dynamic systems and modeling of

biological process, the dissertation’s author also participate in several events as listener.

In particular, he recently was remotely present in the Encontro nacional de modelagem

matemática da Covid-19 (National encounter on mathematical modeling of the Covid-

19) (ENMM-Covid19). Before the quarantine starts, the student also were selected to

participates in two courses occurred in the city of São Paulo: The São Paulo School of

Advanced Sciences on Nonlinear Dynamics (SPNL 2019) and the IX Summer School on

Mathematical Biology (SSSMB 2020).
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APPENDIX A – Sensitivity analysis for model selection

In the two previous results chapters, the main goal was to applied the UQ frame-

work. Even so, the use of sensitivity analysis as source of information deserves a special

attention. In this appendix is presented a model selection method using Sobol indices

results.

A.1 Joint Sobol indices

Let the random variable Y =M(X), with X ∼ fX, and its total Sobol indices STi ,

constructed as presented in the Section 3.4. Normally, the intention with these is just

detect the parameters that satisfy the higher indices. However, this neglect the contrast

between the parameters contributions. For example, in a situation of two selected inputs

X1 and X2, the total index for both be closer one to another (as the both ≈ 0.4), or

maybe X1 concentrates the density of the total indices. Then, a novel joint Sobol index

is constructed as follows

SJ =
n∏

i=1

STi . (52)

While the total indices measures the full contribution given for each parameter, the idea

is to use the joint index as reference of how that contribution as distributed between the

inputs. If one parameter have a total index too close to 1, the other will have very small

indices, and the joint index will be more closer to zero. This measure increases only if the

density of total contribution is balanced between the inputs. Of course, the joint index

naturally tends to be a small number because of the parameters for which the contribution

for the total variance is tiny. To avoid work with to small values, the log-joint index is

given by

LSJ =
n∑

i=1

logSTi . (53)

Now, the distribution of the total variance is as equal as the log-index is closer to zero.
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A.2 Sobol indices-based model selection

When start studying a phenomenon, the choice of the reference model is extremely

important. Normally, real data are used to calibrate some candidate models and help

decide between them. If those models have similar results, the simplest is probably be

recommended. But if there is no trustful data to be used, the decision of which model

to use becomes way more complicated. In that sense, a decision criterion could be to

favor the one who the parameters contributions is balances, or the opposite. This last

makes more sense because implies that a minor set of most important parameters can be

selected. Have less parameters to work with in future uncertainty quantification scenarios

is desirable. Therefore, assuming a set of model candidates M = {M1,M2, . . . ,MNc},
will be selected the one who satisfies

M∗ = argmax
Mj∈M

LSJ(Mj) . (54)

Although, this measure do not cover the scenarios of time dependence Sobol indices. Also,

it is necessary to include a penalty based in the number of inputs of the model candidate.

Thus, the Akaike information criterion (AKAIKE, 1974) is applied using the log-indices

as likelihood. Therefore, each model will be classified through an index calculated as

follows

AIC = 2n− 2LSJ , (55)

where n is the number of inputs and LSJi is the log-joint Sobol index. When working

with time dependence model QoIs, the criterion is adapted to the form

AIC =
2 n d

d− n− 1
− 2L̂ , (56)

with

L̂ = argmax
tj∈T

LSJ(tj) . (57)

Here tj ∈ T are the time instants to which the QoI is defined. The selected model will be

the one who satisfies lower classifier value.
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A.3 Study case

To illustrate the practical use of the methodology, the Sobol-Akaike criterion will

be applied into a compartmental model used to model COVID-19 in Nigeria (OKUONG-

HAE; OMAME, 2020), but adapting for the Rio de Janeiro (city) population. It consider

a set of 7 compartments: Susceptible (S); Exposed (E); Asymptomatic infectious (A);

Symptomatic infectious (I); Tested (T); Recovered (R); Deceased (D). The model is gov-

erned by the following set of equations

dS

dt
= −S (βAA+ βI I)

N − T −D ,

dE

dt
= S

(βAA+ βI I)

N − T −D − αE ,

dA

dt
= ν αE − (γA + θA)A ,

dI

dt
= (1− ν)αE − (γI + θI + µI) I ,

dT

dt
= θAA+ θI I − (γT + µT )T ,

dR

dt
= γAA+ γI I + γT T , ,

dD

dt
= µII + µTT ,

(58)

N = 6.7× 106 is the original total population, β represents the transmission rates, 1/α is

the incubation period, 1/γ indicates the recovery periods, ν is the asymptomatic fraction,

θ is referred to the testing rates, and µ are the mortality rates. If assuming The model

quantity of interest is the daily number of cumulative deaths, D(t). From that original

model, a set of candidates models is construct as follows





SEAITRD base model .

inputs: βA, βI , α, ν, γA, γI , γT , θA, θI , µI , µT ;
(Model 1)





SEAITRD model adapted with γA = γI .

inputs: βA, βI , α, ν, γA, γT , θA, θI , µI , µT ;
(Model 2)





SEAITRD model adapted with θA = θI .

inputs: βA, βI , α, ν, γA, γIγT , θA, µI , µT ;
(Model 3)
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SEAITRD model adapted with θA = 0 .

inputs: βA, βI , α, ν, γA, γIγT , θI , µI , µT ;
(Model 4)





SEAITRD model adapted with ν = 0.25 .

inputs: βA, βI , α, γA, γIγT , θA, θI , µI , µT ;
(Model 5)





SEAITRD model adapted with ν = 0.5 .

inputs: βA, βI , α, γA, γIγT , θA, θI , µI , µT .
(Model 6)

To decide between the candidates, without using real data, the a global sensitivity analysis

is performed using the parameters supports and initial conditions listed in the Table 7.

For each model, 500 samples were used to construct the Sobol indices for the number

of deaths in the first 30 days after the initial condition. By obtaining the joint Sobol

indices, the AIC classifiers can be calculated for the six model candidates. These values

are reunited in the Table 8.

Table 7 - Based SEAITRD model initial conditions and parameters supports.

Parameter βA βI α ν γA γI

Support [0.25,0.5] [0.25,0.5] [0,1] [0,1] [1/30,1/3] [1/30,1/3]

Parameter γT θA θI µI µT

Support [1/30,1/3] [10−4,10−3] [10−4,10−3] [0.001,0.1] [0.001,0.1]

Group S E A I T R D

Initial condition 6699925 25 25 25 0 0 0

Table 8 - Classification values for each candidate model.

Candidate Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

AIC 82.99 72.12 68.09 68.26 78.50 74.37
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APPENDIX B – Supplementary material

B.1 Chapter 5

B.1.1 PCE validation curves
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B.1.3 Monte Carlo convergence
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B.2 Chapter 6

B.2.1 PCE validation curves
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APPENDIX C – Scientific production

C.1 Published book chapter

Chapter 6
A Tutorial on Sobol’ Global Sensitivity
Analysis Applied to Biological Models

Michel Tosin, Adriano M. A. Côrtes, and Americo Cunha

Abstract Nowadays, in addition to traditional qualitative methods, quantitative
techniques are also a standard tool to describe biological systems behavior. An exam-
ple is the broad class of mathematical models, based on differential equations, used
in ecology, biochemical kinetics, epidemiology, gene regulatory networks, etc. Inde-
pendent of their simplicity or complexity, all these models have in common (generally
unknown a priori) parameters that need to be identified from observations (data) of
the real system, usually available on the literature, obtained by specific assays or
surveyed by public health offices. Before using this data to calibrate the models,
a good practice is to judge the most influential parameters. That can be done with
aid of the Sobol’ indices, a variance-based statistical technique for global sensitivity
analysis, which measures the individual importance of each parameter, as well as
their joint-effect, on the model output (a.k.a. quantity of interest). These variance-
based indexes may be computed using Monte Carlo simulation but, depending on the
model, this task can be very costly. An alternative approach for this scenario is the use
of surrogate models to speed-up the calculations. Using simple biological models,
from different areas, we develop a tutorial that illustrates how practitioners can use
Sobol’ indices to quantify, in a probabilistic manner, the relevance of the parameters
of their models. This tutorial describes a very robust framework to compute Sobol’
indices employing a polynomial chaos surrogate model constructed with the UQLab
package.

Keywords Mathematical biology · Global sensitivity analysis · Sobol’ indices ·
Surrogate model · Polynomial chaos expansion · UQLab
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Uncertainty quantification in a nonlinear
transmission model for Zika virus
Eber Dantas Michel Tosin Americo Cunha Jr
eber.paiva@uerj.br michel.tosin@uerj.br americo@ime.uerj.br

NUMERICO – Nucleus of Modeling and Experimentation with Computers

Introduction
• Zika virus: global widespread and con-

nection with congenital diseases

• 2016: Zika becomes a public health
emergency of international concern

•Main vector: Aedes mosquitoes Aedes aegypti

• 30 countries in the last 20 years

• 140,000 confirmed cases in Brazil

• 3,000 confirmed cases of related birth de-
fects and growth disorders in Brazil

Zika virusObjectives
• Incorporate a general uncertainty quantification framework

• Perform sensitivity analysis and construct confidence bands

•Generate more robust predictions and diverse statistics

Computational Model
Compartmental Model

v

h h h h

vv

γ

(βvIh)/Nh αv

(βhIv)/Nv αh

Human population

Vector population

δNv

δ

δ

δ

Dynamical system
dSh
dt

= −βh Sh
Iv
Nv

,
dSv
dt

= δ Nv − βv Sv
Ih
Nh
− δ Sv ,

dEh
dt

= βh Sh
Iv
Nv
− αhEh ,

dEv
dt

= βv Sv
Ih
Nh
− (αv + δ)Ev ,

dIh
dt

= αhEh − γ Ih ,
dIv
dt

= αvEv − δ Iv ,

dRh
dt

= γ Ih ,
dC

dt
= αhEh .

+ Initial Conditions

Quantities of interest (QoI)

• Cumulative cases of infectious: C(t) =
∫ t
τ=0αhEh(τ ) dτ

•New cases per week: Nw = Cw − Cw−1 , w = 1 . . . 52 , N1 = C1

UQ Framework
Stochastic modeling

Computational

Model

Yt =M(X, t)

Input

Parameters

X ∼ FX

Output

QoI

Y ∼ FYt

Sensitivity analysis (SA)

The Hoeffding-Sobol’ decomposition for n iid inputs Xi ∼ U(0, 1) gives

Yt =M0 +
∑

1≤i≤n
Mi(Xi) +

∑

1≤i<j≤n
Mij(Xi, Xj) + · · ·+M1···n(X1 · · ·Xn) ,

M0 = E[Yt] , Mi(Xi) = E
[
Yt|Xi

]
−M0 , Mij(Xi, Xj) = E

[
Yt|Xi, Xj

]
−M0−Mi−Mj.

Sobol’ Indices: interaction effect of inputs in u

Su = Var
[
Mu(Xu)

] /
Var

[
M(X)

]

Metamodelling: Polynomial Chaos

The Polynomial Chaos Expansion of model Y =M(X), for a multivari-
ate orthonormal polynomial family Φα with coefficients yα,

Yt =
∑

α∈Nk

yα(t) Φα(X) ,

enables analytic computation of Sobol Indices:

Su=
∑

α∈Au

y2
α

/∑

α∈A\0
y2
α , Au={α ∈ A : i ∈ u⇐⇒ αi 6= 0}

Maximum entropy principle
The most unbiased distribution of X maximizes the entropy

ε
(
pX(X)

)
= −

∫

Sn
pX(x) lnpX(x) dx ,

while abiding to µ + 1 restrictions∫

Sn
px(x) dx = 1 ,

∫

Sn
g(x)px(x) dx = b ,

where g(x) : Rn→ Rµ and b ∈ Rµ compiles the available information

MaxEnt distribution with µ + 1 restrictions

pX(x) = 1Sn(x) exp(−λ0) exp


 −

µ∑

i=1

λi gi(x)




Results
Sobol’ Indices

Calibration tuning
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First probabilistic model

R.V.: βh , βv ∼ MaxEnt. b: support, mean.

10 20 30 40 50

time (weeks)

 0.0

 1.5

 3.0

 4.5

 6.0

nu
m

be
r 

of
 p

eo
pl

e

105

C(t) – CV : 0%
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Second probabilistic model

R.V.: βh , βv ∼ MaxEnt. b: support, mean, dispersion
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Nw – CV : 5%
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Third probabilistic model

R.V.: βh , βv ,CV ∼ MaxEnt. b: support and mean for β, support for CV.
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C(t) – CV ∼ U(5%, 10%)
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Statistics and predictions

Histograms for the time average of cumulative infectious
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Evolution of QoI histograms per epidemiological week
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Cumulative distribution function for the time average until EW 20
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Final Remarks
• Implementation of a UQ framework with robust determination of pa-

rameter distributions in the epidemiological context via MaxEnt

•Observation of general parametric behavior exposed via SA

• Investigation of dispersion influence, changes in skewness, evolution
of stochastic QoIs and statistical simulations
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Data driven inference of model discrepancies
in Zika virus dynamics
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Introduction
• Zika virus: global widespread and con-

nection with congenital diseases

• 2016: Zika becomes a public health
emergency of international concern

•Main vector: Aedes mosquitoes Aedes aegypti

•A validated model can reveal new charac-
teristics of the disease

• Prediction results are affected by model
errors and lack of data

• Relations of model parameters are also of
interest Zika virus

Objectives
• Perform sensitivity analysis to compare the parameters’ global effect

for a set of hierarchical models

• Improve a calibration result using a bigger data set obtained from a
hierarchical superior model

•Develop a statistical framework using Bayesian Inference and Polyno-
mial Chaos Expansion to quantify epidemic model discrepancies

Computational Model
SEIR-SEI Compartmental Model

v

h h h h

vv

γ

(βvIh)/Nh αv

(βhIv)/Nv αh

Human population

Vector population

δNv

δ

δ

δ

Dynamical System
dSh
dt

= −βh Sh
Iv
Nv

,
dSv
dt

= δ Nv − βv Sv
Ih
Nh
− δ Sv ,

dEh
dt

= βh Sh
Iv
Nv
− αhEh ,

dEv
dt

= βv Sv
Ih
Nh
− (αv + δ)Ev ,

dIh
dt

= αhEh − γ Ih ,
dIv
dt

= αvEv − δ Iv ,

dRh
dt

= γ Ih ,
dC

dt
= αhEh .

+ Initial Conditions

Quantities of Interest (QoI)

mathematical

model

yt = M(x, t)

parameters

x ∈ Rm

quantitie
of interest

yt ∈ R

• Cumulative cases of infectious: C(t) =
∫ t
τ=0αhEh(τ ) dτ

•New cases per week: Nw = Cw − Cw−1 , w = 1 . . . 52 , N1 = C1

Sensitivity Analysis
The Hoeffding-Sobol’ decomposition for n iid inputs Xi ∼ U(0, 1) gives

Yt =M0 +
∑

1≤i≤n
Mi(Xi) +

∑

1≤i<j≤n
Mij(Xi, Xj) + · · ·+M1···n(X1 · · ·Xn) ,

M0 = E[Yt] , Mi(Xi) = E
[
Yt|Xi

]
−M0 , Mij(Xi, Xj) = E

[
Yt|Xi, Xj

]
−M0−Mi−Mj.

Sobol’ Indices: interaction effect of inputs in u

Su = Var
[
Mu(Xu)

] /
Var

[
M(X)

]

Metamodelling: Polynomial Chaos

The Polynomial Chaos Expansion of model Y =M(X), for a multivari-
ate orthonormal polynomial family Φα with coefficients yα,

Yt =
∑

α∈Nk

yα(t) Φα(X) ,

enables analytic computation of Sobol Indices:

Su =
∑

α∈Au

y2
α

/∑

α∈A\0
y2
α , Au ={α ∈ A : i ∈ u⇐⇒ αi 6= 0}

Hierarchical Calibration
⇒ Real data set: 52 values of New Cases of infectious humans for Zika

by epidemiological week of 2016 from Brazil’s Health Organizations
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New cases of Zika in Brazil, 2016 SEIR-SEI calibration result

⇒ New data set: 358 values of Cumulative Cases from SEIR-SEI model

Use bigger data set from a calibrated model to improve the calibration
results for other models and test some hypotheses of modeling

Models of Interest
• SIR-SEI model

• SEIR-SI model

• SIR-SI model

• SEIR model

Results
Sobol’ Indices

SEIR-SEI model

SEIR-SI model

SIR-SEI model

SIR-SI model

SEIR model

SEIR-SEI model with αv constant

Calibration Results
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Statistical Inference
(ongoing research)
Discrepancy Calculation

Suppose a data set D = (t1, y
dat
1 ), (t2, y

dat
2 ), . . . , (tNd

, ydatNd
) of measures

of the yt. The i-th observation is given by

ydati︸︷︷︸
reality

=M(x, ti)︸ ︷︷ ︸
model

+ εi︸︷︷︸
error

.

Sargsyan, Najm and Ghanem’s [4] novel approach to deal with the
model discrepancies is to adopt a metamodel structure which lumps the
error into the parameters

Y dat ≈M(Xε, t) , Xε =
∑

α∈I
Xα(t)Ψα(ξ),

where Xα coefficients are defined as random to be able to be identified
by using Bayesian Inference

Bayesian Inference
• Inference problem become use data information to update the prior

probability density function(PDF), defined for Xα. The solution corre-
sponds posterior PDF

• From Bayes’ rule,

π(Xα|D) =
π(D|Xα)π(Xα)

π(D)
.

→ π(Xα|D): posterior distribution

→ π(D|Xα): likelihood function

→ π(Xα): prior distribution

→ π(D): evidence

To define a good point of start, the Maximum Entropy Principle
is applied to construct the most informative prior distribution

Final Remarks
• Comparative results of global Sobol’ Indices show how the lack of

some parameters can change the sensibility effect of the others

•With a bigger data set, the limitations in the prediction capacity of the
hierarchically inferior models become more evident

•A framework for statistical inference exploring Polynomial Chaos to
measure the model discrepancies was presented

• In future works, the authors intend explore this new framework to
quantify model discrepancy and then improve its predictions
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OBJECTIVE

SENSITIVITY ANALYSIS
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Zika virus: global widespread and
connection with congenital diseases;

 2016: Zika becomes a public health
emergency of international concern;

 Main vector: Aedes mosquitoes;

A validated model can reveal new
characteristics of the disease;

 Relations of model parameters are
also of interest;

Perform sensitivity analysis to compare the parameters’ global effect
under different scenarios;

 Develop a statistical framework using Bayesian Inference and
Polynomial Chaos Expansion to quantify epidemic model discrepancies;

FIGURE 1 – Zika transmission representation.

COMPUTATIONAL MODEL

FIGURE 2 – SEIR-SEI model schematic [1]. DYNAMICAL SYSTEM:

QUANTITIES OF INTEREST: FIGURE 3 – Observation operator schematic [2].

The Hoeffding-Sobol’ decomposition [3] for n iid inputs X i ∼ U(0,1  gives

The Polynomial Chaos Expansion [2] of model Y =            , for a multiva-
riate orthonormal polynomial family with coefficients , y α

enables analytic computation of Sobol Indices:

FIGURE 4 – Sobol’ indices of the model. FIGURE 5 – Sobol’ indices with constant.

FIGURE 6 – Sobol’ indices without
.

FIGURE 7 – Sobol’ indices without .

STATISTICAL INFERENCE

(ONGOING RESEARCH)
DISCREPANCY CALCULATION:

Sargsyan, Najm and Ghanem’s [4] novel approach to deal with the model discrepan-
cies is to adopt a metamodel structure which lumps the error into the parameters

where coefficients are defined as random to be able to be identified by using
Bayesian Inference.

BAYESIAN INFERENCE:

ρ

ρ
ρ
ρ

ρ
ρ ρ

ρ
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Seleção de modelos epidemiológicos via análise de

sensibilidade global
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Abstract: This paper propose a methodology for epidemiological model selection by using Akaike
information criteria bringing as novelty the construction of a likelihood function based in the
results of a global sensitivity analysis through the Sobol’s indices obtained by using polynomial
chaos expansion. The main ideia is to incorporate of the information about the influence of the
parameters on the response to select a more interesting model inside of a set of candidates. The
strategy is applied to a set of compartmental models compatible with those used to analyze the
recent COVID-19 pandemic, allowing to compare them without the presence of experimental
data.

Resumo: Este paper propõe uma metodologia de seleção de modelos epidemiológicos via critério
da informação de Akaike trazendo como novidade a construção de uma função de verossimilhança
baseada nos resultados de uma análise de sensibilidade global através dos ı́ndices de Sobol
obtidos usando expansão em polinômios caos. A ideia geral é incorporar a informação sobre
a influência dos parâmetros na resposta para selecionar um modelo mais interessante dentro
do conjunto de candidatos. A estratégia é aplicada a um conjunto de modelos compartimentais
compat́ıveis aos usados para analisar a pandemia de COVID-19 recente, permitindo compará-los
sem a presença de dados experimentais.

Keywords: compartmental models; COVID-19; Sobol’s indices; polynomial chaos expansion;
Akaike information criteria.

Palavras-chaves: modelos compartimentais; COVID-19; ı́ndices de Sobol; expansão em
polinômio caos; critério da informação de Akaike.

1. INTRODUÇÃO

A análise de epidemias pelo uso de ferramental matemático
remonta aos trabalhos de W. H. Hamer (Brauer, 2017),
mas ganhou grande destaque devido aos surtos recentes
dados por diversas doenças ao redor do mundo e que já de-
monstram sequelas na população mundial (Toscano et al.,
2020). A enfermidade mais recente e agressiva tem sido a
COVID-19, cuja pandemia foi responsável (até outubro
de 2020) pela morte de aproximadamente 1 milhão de
pessoas em 216 páıses (World Health Organization, 2020).
Desde então, diversas metodologias foram desenvolvidas
para trabalhar com esse tipo de fenômeno, usando de
equações diferencias a até redes neurais e aprendizado
de máquina (Wiratsudakul et al., 2018; Kuhl, 2020). Em
geral, a estratégia recente baseia-se em aprender sobre o
comportamento de um surto por meio de dados, seja para
validar seu modelo ou aprimorá-lo. Claro que dados, apesar

? Os autores agradecem o suporte financeiro trazido pelas agências
de fomento FAPERJ (Fundação Carlos Chagas Filho de Amparo à
Pesquisa), CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico) e CAPES (Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior).

de extremamente úteis, estão sujeitos a erros de coleta e
muitas vezes não estão dispońıveis facilmente. Por isto,
muitas vezes não é simples analisar o comportamento do
seu modelo para investigar a sua fidelidade ao fenômeno.

Como o comportamento de doenças infecciosas é descrito
por leis dinâmicas que não são tão bem estabelecidas como
as leis da f́ısica, muitas vezes a construção de um modelo
adequado não é uma tarefa tão simples. Uma alternativa
é desenvolver estratégias que permitam aprender sobre
determinados modelos candidatos baseados em sua estru-
tura, interpretabilidade, dentre outros fatores. Ou seja,
obter informações através do próprio modelo. Dentro desse
objetivo, análise de sensibilidade pode ser uma grande
fonte de informação sobre o comportamento dinâmico do
modelo à luz da região paramétrica analisada e de como
esta o influencia (Wu et al., 2013).

Apesar de análises de sensibilidade permitirem identificar
os parâmetros que afetam a sua quantidade de interesse de
forma mais direta e efetiva, isto não costuma ser levado em
consideração na tomada de decisão por um determinado
modelo em detrimento de outro. Normalmente busca-
se orientar essa escolha se escolhe baseado em dados
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