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RESUMO

MASQUIO, Bruno Porto. Emparelhamentos Conexos e Desconexos. 2022. 102 f. Tese
(Doutorado em Ciências Computacionais) – Instituto de Matemática e Estatística,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.

Problemas de emparelhamentos em grafos vêm sendo estudados há muito tempo,
tendo importantes resultados tanto teóricos quanto práticos. Ao longo das décadas,
variações de problemas de emparelhamentos foram estudadas. Algumas dessas podem ser
resolvidas em tempo polinomial, enquanto outras não, a menos que P = NP. Nesta tese,
apresentamos brevemente a história dos emparelhamentos e algumas de suas variações,
juntamente com seu estado da arte. Também apresentamos resultados em uma dessas
variações: P-emparelhamentos. Um emparelhamento M é um P-emparelhamento se o
subgrafo induzido pelas extremidades das arestas de M satsifaz a propriedade P. Como
exemplos, para escolhas apropriadas de P, os problemas Emparelhamento Induzido,
Emparelhamento Unicamente Restrito, Emparelhamento Acíclico,
Emparelhamento Conexo e Emparelhamento Desconexo surgem. Para muitos
desses problemas, sabe-se que encontrar um P-emparelhamento de cardinalidade máxima
é um problema NP-difícil. Duas exceções, que são foco desta tese, são emparelhamentos
conexos e emparelhamentos desconexos, em que a propriedade P é que o subgrafo
induzido pelo emparelhamento seja conexo ou desconexo, respectivamente. Enquanto
podemos obter um emparelhamento conexo máximo em tempo polinomial, a complexidade
de encontrar um emparelhamento desconexo máximo ainda era desconhecida, apesar
de perguntada em 2005 por Goddard, Hedetniemi, Hedetniemi e Laskar [Generalized
subgraph-restricted matchings in graphs, Discrete Mathematics, 293 (2005) 129 – 138].
Nesta tese, respondemos essa pergunta. De fato, consideramos o problema de forma
generalizada, em que deseja-se encontrar c-emparelhamentos desconexos; para tais
emparelhamentos, os subgrafos induzidos pelos seus conjuntos de vértices devem possuir
pelo menos c componentes conexas. Mostramos que, para todo c ≥ 2 fixo, esse problema
é NP-completo mesmo se restringirmos a entrada para grafos bipartidos de diâmetro
limitado, enquanto que pode ser resolvido em tempo polinomial para c = 1. Para o
caso em que c é parte da entrada, mostramos que o problema é NP-completo para grafos
cordais e grafos com grau limitado, podendo ser resolvido em tempo polinomial para
grafos de intervalo. Exploramos, também, a complexidade parametrizada do problema.
Apresentamos um algoritmo FPT para o parâmetro treewidth e um algoritmo XP para
grafos com um número polinomial de separadores minimais quando parametrizado por
c. Complementamos esses resultados mostrando que, a menos que NP ⊆ coNP/poly,
o problema relacionado Emparelhamento Induzido não admite kernel polinomial
quando parametrizado pela cobertura de vértices e pelo tamanho do emparelhamento, nem
quando parametrizamos pela distância para clique e tamanho do emparelhamento. Para
emparelhamentos conexos, apresentamos um algoritmo de tempo linear para encontrar
emparelhamentos conexos máximos e um emparelhamento máximo é dado na entrada.
Então, voltamos nossa atenção para uma generalização de emparelhamentos conexos que
considera grafos ponderados em arestas e cujo problema chamamos de
Emparelhamento Conexo Ponderado Máximo. Esse problema foi motivado pelo
problema clássico Emparelhamento Ponderado Máximo, estudado há décadas, e



com várias aplicações, incluindo o problema bem conhecido Atribuição. Além disso,
alguns outros P-emparelhamentos, tais como acíclicos e induzidos, também já foram
considerados para grafos ponderados. No Emparelhamento Conexo Ponderado
Máximo, queremos encontrar um emparelhamento M tal que as extremidades das suas
arestas induzem um subgrafo conexo e a soma dos pesos das arestas de M é máxima.
Ao contrário do problema não ponderado Emparelhamento Conexo, que pode ser
resolvido em tempo polinomial para grafos gerais, mostramos que Emparelhamento
Conexo Ponderado Máximo é NP-difícil mesmo para grafos bipartidos de diâmetro
limitado, grafos starlike, grafos planares bipartidos e grafos subcúbicos planares, enquanto
pode ser resolvido em tempo linear para árvores e grafos com grau máximo dois. Quando
restringimos as arestas para terem pesos somente não negativos, mostramos que o problema
pode ser resolvido em tempo polinomial para grafos cordais, enquanto que continua
NP-difícil para a maior parte dos casos. Também estudamos a complexidade parametrizada
do Emparelhamento Conexo Ponderado Máximo. Como resultados positivos,
apresentamos um algoritmo de tempo exponencial parametrizado pela treewidth. Em
relação a kernelização, mostramos que, quando restringimos os pesos a valores binários, o
seu problema de decisão, Emparelhamento Conexo Ponderado, não admite kernel
polinomial quando parametrizado pelo tamanho da cobertura de vértices sob hipóteses
teóricas de complexidade padrão.

Palavras-chave: Algoritmos. Complexidade. Emparelhamento. Grafos bipartidos. Grafos
cordais. Emparelhamento Desconexo. Emparelhamento Conexo.



ABSTRACT

MASQUIO, Bruno Porto. Connected and Disconnected Matchings. 2022. 102 f. Tese
(Doutorado em Ciências Computacionais) – Instituto de Matemática e Estatística,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.

Matching problems in graphs have been studied for a long time, achieving important
results in both theoretical and practical aspects. Over the decades, many variations
of matching problems were studied. Some of them can be solved in polynomial time,
while others can not, unless P = NP. In this thesis, we briefly present the history of
matchings and a survey of some of its variations along with its state of the art. We
also give results on one of these variations: P-matchings. A matching M is a P-
matching if the subgraph induced by the endpoints of the edges of M satisfies property
P. As examples, for appropriate choices of P, the problems Induced Matching,
Uniquely Restricted Matching, Acyclic Matching, Connected Matching
and Disconnected Matching arise. For many of these problems, finding a maximum
P-matching is a knowingly NP-hard problem. Two exceptions, that are the focus of this
thesis, are connected matchings and disconnected matchings, where P is that the graph
is connected and disconnected, respectively. While we can obtain a maximum connected
matching in polynomial time, the complexity of finding a maximum disconnected matching
was still unknown, though asked since 2005 by Goddard, Hedetniemi, Hedetniemi, and
Laskar [Generalized subgraph-restricted matchings in graphs, Discrete Mathematics, 293
(2005) 129 – 138]. In this thesis, we answer this question. In fact, we consider the
generalized problem of finding c-disconnected matchings; such matchings are ones whose
vertex sets induce subgraphs with at least c connected components. We show that, for
every fixed c ≥ 2, this problem is NP-complete even if we restrict the input to bounded
diameter bipartite graphs, while can be solved in polynomial time if c = 1. For the case
when c is part of the input, we show that the problem is NP-complete for chordal graphs
and bounded degree graphs while being solvable in polynomial time for interval graphs.
Then, we explore the parameterized complexity of the problem. We present an FPT
algorithm under the treewidth parameterization, and an XP algorithm for graphs with
a polynomial number of minimal separators when parameterized by c. We complement
these results by showing that, unless NP ⊆ coNP/poly, the related Induced Matching
problem does not admit a polynomial kernel when parameterized by vertex cover and
size of the matching nor when parameterized by vertex deletion distance to clique and
size of the matching. As for connected matchings, we give a linear-time algorithm for
finding a maximum connected matching if a maximum matching is given. So, we turn
our attention to a generalization of connected matchings that considers edge-weighted
graphs and whose problem we name Maximum Weight Connected Matching.
This problem is motivated by the usual Maximum Weight Matching, studied for
decades, and with many applications, including the well-known Assignment problem.
Besides, some other P-matchings, such as acyclic matchings and induced matchings,
were also considered under weighted graphs before. In Maximum Weight Connected
Matching, we want to find a matching M such that the endpoints of its edges induce
a connected subgraph and the sum of the edge weights of M is maximum. Unlike the
unweighted Connected Matching problem, which can be solved in polynomial time for



general graphs, we show that Maximum Weight Connected Matching is NP-hard
even for bounded diameter bipartite graphs, starlike graphs, planar bipartite graphs, and
subcubic planar graphs, while solvable in linear time for trees and graphs having a degree
at most two. When we restrict edge weights to be non-negative only, we show that the
problem turns out to be polynomially solvable for chordal graphs, while it remains NP-hard
for most of the other cases. We also consider the parameterized complexity of Maximum
Weight Connected Matching. On the positive side, we present a single exponential
time algorithm when parameterized by treewidth. As for kernelization, we show that,
even when restricted to binary weights, its decision problem, Weighted Connected
Matching, does not admit a polynomial kernel when parameterized by vertex cover
number under standard complexity-theoretical hypotheses.

Keywords: Algorithms. Complexity. Matching. Bipartite graphs. Chordal graphs.
Disconnected Matching. Connected Matching.
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9

INTRODUCTION

A graph is a mathematical tool that represents elements, by vertices, and connections
between them, by edges. Although the concept may seem too general, it helps to find
solutions to many real-world problems in different fields, like physics, biology, geography,
and on information systems. For this reason, much research has been done on this subject
of computer science.

Along with the study of graphs, some concepts around them arise, including matchings;
it consists in disjointly pairing vertices that are connected by edges. Often, we are
interested in finding the largest possible matching in a graph, which may be applied
to some practical problems.

For instance, suppose we have a group of workers and other of tasks, in such a way
that a worker is able to do only some tasks, which are known previously. To optimize
resources, an employer would assign the maximum number of workers to perform one
task each, in order to minimize the number of idle workers. For this purpose, we could
randomly make assignments until there are no more possibilities; with luck, or with lots
of tries, we would make the right choices and assign the maximum number of workers,
but it is not guaranteed or may take too long. So, one could ask if there is a fast method
that always finds an optimal assignment in this situation.

The answer is yes, and it can be done by graph modeling. As such, let each worker
and each task be a vertex, with edges connecting each worker to the tasks he is able
to perform. In this case, we would seek a matching with the highest cardinality in this
graph, whose problem is also known as Maximum Matching. Finally, every matched
edge would represent an assignment, which is optimal.

This method, which we will call from now on an algorithm, even though may be
guaranteed to find a solution to our problem, also has to end within a convenient period
of time. For instance, it is not satisfactory if we design an algorithm that takes days
to solve Maximum Matching for a small group of workers and tasks. Moreover, this
algorithm also has to perform relatively well as these groups get bigger. If it does, we say
that the algorithm is efficient.

At this point, the interest in studying computational complexity theory arises, which
will categorize problems in classes depending on some standard complexity characteristics.
If it is known that a problem can be solved by an efficient algorithm, we say that it is
solvable in polynomial time. Frequently, we can also prove that a problem is NP-hard,
that is, most likely, it does not admit an efficient algorithm. Of course, this is an
oversimplification of all the vast theory behind this fact, which can be found in different
books, including one by Michael R. Garey and David S. Johnson called Computers and
Intractability: A Guide to the Theory of NP-Completeness [78].

When dealing with some problems, sometimes it is convenient to consider only graphs
with a certain structure, which are known as graph classes. Restricting our problem
this way often helps to find efficient algorithms to solve problems. In our example with
workers and tasks, note that the graph does not have edges between two workers or two
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tasks. This is actually a very common graph class, named bipartite graphs. Although
Maximum Matching itself does not seem to get easier in bipartite graphs compared to
general ones, other problems do. One example is Vertex Cover, which is NP-hard on
general graphs, but solvable in polynomial time for bipartite graphs.

Now, let us focus on studies of matchings, which have begun a long time ago. Although
it is hard to be precise about the first time it appeared, one remarkable contribution was
made in 1891, when Petersen’s Theorem was presented. This was also one of the first
results in graph theory, and it characterized some graphs that admit matchings that could
cover all vertices. These kinds of matchings are also known as perfect matchings, which
prompted many other studies over the decades.

The lots of characterizations and applications that were given around matchings later
motivated some scientists to expand the concept of it by considering some constraints or
generalizations. This thesis is focused on a restricted type of matching, known as P-
matching; in this matching, the subgraph induced by the endpoints of the matched edges
has to satisfy property P.

Among the first to consider P-matchings were Stockmeyer and Vazirani [168] in 1982,
as they studied matchings in which edges have a certain distance between them. For a
specific distance, the corresponding matching was later known as induced matching or
strong matching. In particular, an induced matching requires that the corresponding
induced subgraph must have no edges between vertices, except the ones contained in the
matching.

Later, other kinds of matchings were later defined and studied, such as uniquely
restricted matchings [82], acyclic matchings [81], disconnected matchings [81], and
connected matchings [81]. These last two, proposed by Goddard et al. [81], consider the
properties of connectivity of the corresponding subgraph. More specifically, connected and
disconnected matchings require, respectively, that the induced subgraph is connected or
disconnected. In the same article, the authors left the question concerning the complexity
of the Disconnected Matching problem.

Motivated by this, in this thesis we answer this question and study the complexity
of Disconnected Matching and Connected Matching. We also go further about
the latter, approaching its weighted variant. We proved the complexity of the problems
studied, which was not known before. Besides, we found some interesting contrasts with
their complexity when we apply some constraints to the problems, including results on
graph classes.

Our contributions and structure of this thesis

This thesis is organized as follows:

• The remainder of this chapter includes details of the publications on the work in this
thesis and a preliminaries section, which defines most of the notation and concepts
used in this thesis.

• In Chapter 1, we briefly consider the history of matchings, presenting some of the
main results and definitions obtained on this subject. This includes Petersen’s
Theorem, König-Egerváry Theorem, Hall’s Marriage Theorem, Tutte’s Theorem,
Gallai-Edmonds Structure, Berge’s Theorem. Then, we make a survey including
some results and the state of the art of various matching variations. Among
them, we mention weighted matchings, minimummaximal matchings, rank-maximal
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matchings, and stable marriage problem. We also survey the P-matching and its
subtopics: induced matchings, uniquely restricted matchings, acyclic matchings,
connected matchings, and disconnected matchings.

• In Chapter 2, we describe the problem and discuss about disconnected matchings.
We show that, for every fixed c ≥ 2, the corresponding problem is NP-complete
for diameter three bipartite graphs. When c is part of the input, we show that
the problem is NP-complete for chordal graphs and bounded degree graphs, while
being solvable in polynomial time for interval graphs. Then, we present an FPT
algorithm under the treewidth parameterization, and an XP algorithm for graphs
with a polynomial number of minimal separators when parameterized by c. We prove
that the related Induced Matching problem, and consequently Disconnected
Matching, do not admit a polynomial kernel when parameterized by vertex cover
and size of the matching nor when parameterized by vertex deletion distance to
clique and size of the matching. Finally, in Section 2.5, we show hardness results on
the problem of deciding if, given a graph, the equality between the i-disconnected
matching number and the j-disconnected matching number holds, for 1 ≤ i < j.

• In Chapter 3, we describe the problem and discuss about connected matchings. In
Section 3.1, we present a linear algorithm that, given a graph and one of its maximum
matchings, outputs a maximum connected matching, as well as an example of its
execution. In Section 3.2, we consider weighted connected matchings, showing
that its corresponding problem is NP-complete for starlike graphs and subcubic
planar graphs. When we restrict the weights to be non-negative, we show that the
problem is in P for chordal graphs, while NP-complete for planar bipartite graphs
and diameter four bipartite graphs. Then, we give linear-time algorithms for graphs
with a maximum degree at most two and for trees. On the other hand, we present a
single exponential time algorithm when parameterized by treewidth, and show that
it does not admit a polynomial kernel when parameterized by vertex cover number.

• Finally, we present our conclusions of the approached problems, along with some
suggestions for future work.

Publications

Our Disconnected Matching results, in Chapter 2 except Section 2.5, as well
as our linear algorithm for Maximum Connected Matching, in Section 3.1 were
presented at 27th International Computing and Combinatorics Conference (COCOON
2021); it is currently under the review process for publication. Besides, our results for
Weighted Connected Matching, from Section 3.2, were presented at 15th Latin
American Theoretical Informatics Symposium (LATIN 2022). Soon, we will submit the
full paper to a journal. We also presented abstracts and partial results about these
subjects at other conferences. We summarize our publications in the following.

• Encontro de Teoria da Computação, 2020, Brasil. Anais do Encontro de Teoria da
Computação (ETC 2020) [132].

• LII Simpósio Brasileiro de Pesquisa Operacional (SBPO 2020) [134].

• 9th Latin American Workshop on Cliques in Graphs (LAWCG 2020) [135].



12

• Congresso Nacional de Matemática Aplicada e Computacional (CNMAC 2021) [136].

• Encontro de Teoria da Computação, 2021, Brasil. Anais do VI Encontro de Teoria
da Computação (ETC 2021) [84].

• 27th International Computing and Combinatorics Conference (COCOON 2021) [88].

• Encontro de Teoria da Computação, 2022, Brasil. Anais do VII Encontro de Teoria
da Computação (ETC 2022) [85].

• 10th Latin American Workshop on Cliques in Graphs (LAWCG 2022) [86].

• 15th Latin American Theoretical Informatics Symposium (LATIN 2022) [89].

• XXI Latin-Iberoamerican Conference on Operations Research (CLAIO 2022) [87].

All the results presented in this thesis include contributions from authors Guilherme
C. M. Gomes, Vinicius F. dos Santos, as well as the advisors Paulo E. D. Pinto and Jayme
L. Szwarcfiter.

The complexity result for βd,i = βd,j, in Section 2.5, has not been submitted for
publication yet. This work will also include other results, like deciding if the equality
βd = β∗ holds for a given graph. The authors of this paper are Guilherme C. M. Gomes,
Bruno P. Masquio, Paulo E. D. Pinto, Dieter Rautenbach, Vinicius F. dos Santos, Jayme
L. Szwarcfiter, and Florian Werner.

Preliminaries

Let us present some of the notations and concepts we adopt throughout this thesis.
As references, we use standard nomenclatures and basic concepts of graph theory as
in [22, 24], complexity theory as in [78], and parameterized complexity as in [38].

For a set C, we say that A,B ⊆ C partition C if A∩B = ∅ and A∪B = C; we denote
a partition of C into A and B by A∪̇B = C. For an integer k, we define [k] = {1, . . . , k}.

Graph definitions. In this thesis, we only use finite, simple, and undirected graphs.
Let G = (V,E) be a graph and W ⊆ V a subset of its vertices. Sometimes, we also use
V (G) and E(G) to denote the set of vertices and edges of G. Moreover, when there is
no ambiguity, we use n = |V (G)| and m = |E(G)| for a graph G. An edge e is a pair of
vertices {u,v}, which are called endpoints of e. We can equivalently write this edge as uv
or as vu.

We say that G[W ] is the subgraph of G induced byW ⊆ V . That is, G[W ] = (W,EW ),
such that EW contains an edge e ∈ E if and only if |e ∩W | = 2. Also, the operations
G − uv and G − v produce, respectively, the graphs G′ = (V,E \ {uv}) and G[V \ {v}].
The degree of vertex v ∈ V is the number of edges of E incident to v, and ∆(G) is the
maximum vertex degree among all vertices of G.

Two graphs G and H are isomorphic if there is a bijection f : V (G) → V (H) such
that uv ∈ E if and only if f(u)f(v) ∈ E(H). In G, a sequence of vertices v1 . . . vk is a path
if vjvj+1 ∈ E(G), for every 1 ≤ j ≤ k − 1. A cycle is a path where k ≥ 4 and vk = v1.
The length of a cycle or a path is defined as the number of edges it contains. A graph
is acyclic if there is no induced subgraph isomorphic to a cycle. The distance between
two vertices v,w is the length of the shortest path between v and w. The diameter of a
connected graph G is the longest distance between any pair of vertices u,v ∈ V .
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Furthermore, G is connected if there is a path between every pair of its vertices, and
disconnected, otherwise. A connected component of G is a subgraph G[W ], for a maximal
set W ⊆ V subject to G[W ] is connected.

The set W is a separator of G if G − W has more connected components than G.
Moreover, for v,w ∈ V , if v and w are in the same connected component of G but in
different connected components of G −W , then W is a (v − w)-separator. A (v − w)-
separator W is minimal if there is no other (v − w)-separator S ⊂ W in G. If v is the
only element of a separator W , then v is an articulation of G. Also, an edge e ∈ E is a
bridge if G− e has more connected components than G.

The open neighborhood and closed neighborhood of a vertex u ∈ V are denoted by N(u)
and N [u] respectively, where N(u) = {w | wu ∈ E} and N [u] = N(u)∪{u}. Analogously,
we define N(W ) = (

⋃
u∈W N(u)) \W and N [W ] = N(W ) ∪W .

A matching M is a subset of E where no two of its edges share an endpoint. The
set V (M) contains all endpoints of edges of M ; these vertices are also called M-saturated
vertices, or just saturated when there is no ambiguity. We say that M is maximum if
there is no other matching M ′ of G such that |M ′| > |M |, and M is perfect if V (M) = V .
In an abuse of notation, we define G[M ] = G[V (M)].

A graph G′ = (V ′,E ′) is an edge-weighted graph if there is a function w : E ′ → Z that
comes attached to G. In this case, a matching M ′ of G′ is a maximum weight matching
if there is no other matching of G′ having a greater sum of its edge weights. We denote
by w(uv) the weight of the edge uv ∈ E ′ and define w(M ′) =

∑
uv∈M ′ w(uv).

Graph classes. A graph G is complete if E contains an edge for every pair of vertices of
V . In this case, we can write this graph as Kn, n = |V |. A subset S ⊆ V (G) is a clique if
G[S] is complete. If G is acyclic, then it is called a forest ; if it is acyclic and connected,
it is a tree.

The set W is an independent set if G[W ] has no edges. A graph G is bipartite if its
vertices can be partitioned into two independent sets V1 and V2. In this case, we also use
the notation G = (V1∪̇V2,E). When E contains all possible edges between elements of
V1 and V2, we say that G is a complete bipartite graph. We denote by Ka,b the complete
bipartite graph with a vertices in one part and b vertices in the other. A star is a graph
isomorphic to K1,b, for some b.

If all vertices of G have degree k, then G is k-regular. For the case where k = 3, we
say that G is cubic. On the other hand, if ∆(G) ≤ 3, then G is subcubic.

If there is no induced subgraph of G that is isomorphic to H, then G is H-free. We
denote by Pn and Cn the path and cycle graphs, that are respectively isomorphic to a path
and a cycle with n vertices.

A graph G is chordal if it has no induced cycle with more than three vertices. Also, if
G is chordal, then every minimal separator is complete [44]. We can represent a chordal
graph with a tree, called a clique tree [172] [123]. A clique tree of G is a tree T representing
G in which vertices and edges of T correspond, respectively, to maximal cliques and
minimal separators of G. There exist linear time algorithms that generate a clique tree
from a given chordal graph [18] [25] [165] [14]. A graph is an interval graph if it is the
intersection graph of intervals on a line; equivalently, it is an interval graph if it is chordal
and admits a clique tree isomorphic to a path. A graph is a starlike graph if it is chordal
and has a clique tree that is a star graph. A graph is planar if it can be embedded on the
plane without edge crossings.

Parameterized complexity. A parameterized problem Γ is said to be XP when
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parameterized by k if it admits an algorithm running in f(k)ng(k) time for computable
functions f,g; it is said to be FPT when parameterized by k if g ∈ O(1).

A kernelization algorithm, or simply a kernel, for a parameterized problem Q is an
algorithm A that, given an instance (I,k) of Q, works in polynomial time and returns
an equivalent instance (I ′,k′) of Q. Moreover, we require that size A(k) ≤ g(k) for some
computable function g : N→ N.

We say that an NP-hard problemQ OR-cross-composes into a parameterized problem Γ
if, given t instances {P1, . . . , Pt} of Π, we can build, in time polynomial on N =

∑
i∈[t] |Pi|,

an instance (x, k) of Γ such that: (i) k ≤ poly(max{|Pi| | i ∈ [t]} log t) and (ii) (x, k)
admits a solution if and only if at least one Pi admits a solution.

In the following, we present treewidth concept, which is often considered as a
parameter on parameterized algorithms. A tree decomposition of a graph G is a pair
T = (T,B = {Bj | j ∈ V (T )}), where T is a tree and B ⊆ 2V (G) is a family where:⋃
Bj∈B Bj = V (G); for every edge uv ∈ E(G) there is some Bj such that {u,v} ⊆ Bj; for

every i,j,q ∈ V (T ), if q is in the path between i and j in T , then Bi ∩ Bj ⊆ Bq. Each
Bj ∈ B is called a bag of the tree decomposition. G has treewidth at most t if it admits a
tree decomposition such that no bag has more than t+ 1 vertices. For further properties
of treewidth, we refer to [159]. We say that T of G is nice if its tree is rooted at, say, the
empty bag r(T ) and each of its bags is from one of the following four types:

1. Leaf node: a leaf x of T with Bx = ∅.

2. Introduce vertex node: an inner bag x of T with one child y such that Bx\By = {u}.

3. Forget node: an inner bag x of T with one child y such that By \Bx = {u}.

4. Join node: an inner bag x of T with two children y,z such that Bx = By = Bz.

For other definitions about parameterized complexity and algorithms, we refer to the
book Parameterized Algorithms [38].
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1 MATCHINGS AND ITS VARIATIONS

In this chapter, we describe matching concepts and their related problems that arose
over the decades.

Let G = (V,E) be a simple graph, n = |V |, and m = |E|. A matching M is a subset
of edges of E such that no two edges of M share a common endpoint. Edges contained
in M are called matched edges. A vertex v ∈ V is called M-saturated, or just saturated if
v is an endpoint of some edge of M , and, otherwise, non-saturated. Note that an empty
set is a matching, as well as any subset M ′ ⊆M .

A matching M is said to be maximal if any edge that is not matched has an endpoint
in M . That is, there is no matching M ′ such that M ′ ⊃ M . Nevertheless, among all
matchings of a graph G, if M is a matching with the largest possible cardinality, we say
that M is maximum. Finally, we say that M is perfect if every vertex of the graph is
M -saturated. Observe that a graph may not admit a perfect matching, but if it does,
every maximum matching is a perfect matching and vice versa.

Graphically, we represent saturated vertices as black-filled circles and matched edges
as bold lines. See the maximal matching that is not maximum {bc, de} in Figure 1a. On
the other hand, the matching {ac, be, df} in Figure 1b is perfect and maximum.

Important concepts that come from matching theory are alternating paths and
augmenting paths ; many algorithms for maximum matchings are based on it. If M is
a matching, a path P is said to be M-alternating, or just alternating, if edges of P are
alternately in E \M and in M . If the first and last vertices of an M -alternating path
P are not saturated, then P is also an M-augmenting path, or just augmenting path. In
Figure 1a, note that abc and acbedf are alternating paths, but only the latter is also an
augmenting path.

One of the first mentions of a matching problem and also one of the first results in
graph theory was in 1891, by Julius Petersen, known as Petersen’s theorem.

Theorem 1 ([152]). Cubic graphs with at most two bridges have a perfect matching.

Note that two is in fact an upper bound for the number of allowed bridges in the
graph. Figure 2a illustrates a cubic graph with three bridges that does not admit a
perfect matching.

(a) (b)

Figure 1 – A maximal matching (a) and a perfect matching (b).
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(a) (b)

Figure 2 – A cubic graph with three bridges that does not admit perfect matchings (a).
In (b), a maximum matching and a minimum vertex cover of the same size.

Research in matchings became increasingly more common, due to its importance.
Another interesting result is the close relationship between a maximum matching and a
minimum vertex cover in bipartite graphs. A vertex cover S ⊆ V of a graph G = (V,E)
is a set such that every edge of E has an endpoint in at least one element of S. It was
observed that these two sets have the same size by the following theorem, which is known
as König-Egerváry Theorem or König’s Theorem.

Theorem 2 ([53, 120]). In a bipartite graph, the size of a maximum matching equals the
size of a minimum vertex cover.

This equivalence observed by König and Egerváry can be used to find a minimum
vertex cover given a maximum matching in a bipartite graph G = (V1∪̇V2,E). For this
purpose, letM be a maximum matching of G. Choose one bipartition, say V1. Now, let S
be the set of all vertices that are contained in alternating paths starting from V1 \ V (M).
A minimum vertex cover of G can be defined as (V2 ∩ S) ∪ (V1 \ S). See Figure 2b as an
example of a maximum matching and a minimum vertex cover of the illustrated graph.

Since Maximum Matching can be solved in polynomial time for bipartite graphs
(see Section 1.1), the same is also true for Vertex Cover [78]. However, for general
graphs, Maximum Matching is in P, and Vertex Cover is NP-complete, even for
planar graphs of maximum degree 3 [77].

There has also been interest in characterizing bipartite graphs that admit a matching
that saturates all vertices of one part of the bipartition, denoted by complete matching, or
both of the parts, i.e. perfect matching. In this context, Philip Hall stated that those
matchings depend on the neighborhood of every possible subset of bipartitions. His
characterization is known as Hall’s Marriage Theorem.

Theorem 3 ([94]). A bipartite graph G = (V1∪̇V2,E) admits a matching that saturates
all vertices of V1 if and only if |N(X)| ≥ |X|, for every X ⊆ V1.

This theorem can also be used to characterize a bipartite graph that admits perfect
matchings. In this case, we can apply Theorem 3 to both of its parts as V1. This idea
immediately leads to the next corollary.

Corollary 1 ([94]). A bipartite graph G = (V1∪̇V2,E) admits a perfect matching if and
only if |N(X)| ≥ |X|, for every X ⊆ V1 and X ⊆ V2.
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Figure 3 – Example of a Gallai-Edmonds decomposition.

If the graph is not bipartite, we cannot make use of Hall’s Marriage Theorem. So,
one should find another characterization for general graphs. This issue was only solved
by William Thomas Tutte in 1947. This result has been given the name of Tutte’s
Theorem [173]. It is also presented in the book Graph Theory with Applications [21],
whose proof given is based on [128].

Theorem 4 ([173]). A graph G = (V,E) has a perfect matching if and only if for every
U ⊆ V , the subgraph G−U has at most |U | connected components having an odd number
of vertices.

The next theorem gives some characterizations for graphs in terms of some matching
properties, based on a partition of its vertices. Given a graph G = (V,E), let D ⊆ V
be the set of vertices v ∈ V where there exists a maximum matching M that does not
saturate v. Also, let A = N(D) and C = V \ (A ∪ D). Given a graph, we can obtain
its decomposition in polynomial time using the blossom algorithm [51]. In Figure 3, we
present a graph with its corresponding decomposition.

It was proved independently by Tibor Gallai and Jack Edmonds and is known as
Gallai-Edmonds Structure.

Theorem 5 ([51, 74, 75]). LetG be a graph andD,A,C its corresponding Gallai-Edmonds
decomposition. The following properties hold:

• Every odd component H of G− A is hypomatchable1 and has V (H) ⊆ D.

• Every even component H of G− A has a perfect matching and has V (H) ⊆ C.

• For every X ⊆ A, the set N(X) contains vertices in more than |X| odd components
of G− A.

1A graph G is hypomatchable if G− v has a perfect matching for every v ∈ V (G).
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The next theorem, known as Berge’s Theorem, characterizes maximum matchings in
terms of the existence of augmenting paths. It is used as a basis of many maximum
matching algorithms, discussed in more details in Section 1.1.

Theorem 6 ([13]). Let G be a graph. A matching M of G is maximum if and only if G
has no augmenting path.

Note that if we find an augmenting path P , we can increase the size of the matching
M by the operation M

⊕
P = (M \ P ) ∪ (P \M). That is, we obtain a matching larger

than M by removing the matched edges of P from M and adding to M all remaining
edges of P .

For a more detailed history of matching results, we refer to the book Matching
Theory [154]. Over the years, variations and problems around matchings contexts we
studied. In the next sections of this chapter, we list some of them, giving a short brief
history and presenting some related results. Clearly, since the literature is vast, we are
not able to cover all related problems.

1.1 Maximum cardinality matchings

Possibly the most important problem involving matching in graphs is finding a
maximum matching, which is usually denoted by Maximum Matching. The first
polynomial-time algorithms for bipartite graphs were designed in [120, 121], with complexity
O(mn).

The problem for general graphs was only solved in 1965 by Jack Edmonds, who
designed a beautiful algorithm known as blossom algorithm, which runs in O(mn2) [51].
When dealing with general graphs, some techniques do not work as in bipartite graphs,
since they can have odd-length cycles. Given that, Edmond’s algorithm works by recursively
contracting some odd-length cycles, called blossoms, into a single vertices and finding
augmenting paths on the resulting graphs.

Over the years, many other algorithms for general graphs were developed, having
increasingly better complexities [58, 65, 66, 110, 122, 180]. The best-known time complexity
is O(m

√
n) [68, 71, 139].

It is worth mentioning that the problem was solved in O(m
√
n) by an algorithm that

works only for bipartite graphs [96]. Although there already exists algorithms with the
same complexity for general graphs, it is still important because it is simpler and, hence,
more convenient to implement.

The research we referenced showed that we can find a maximum matching very quickly
in general graphs. Nevertheless, we can achieve better complexities when restricting the
input graph to some classes. Mertzios et al. conducted an excellent survey of results
considering Maximum Matching in graph classes [137]. These results are presented in
Table 1, where we add the linear-time complexity for block graphs obtained in [133].
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Graph Class Complexity
General O(m

√
n) [138]

Interval O(n log n)∗ [6] [124]
Circular arcs O(n log n) [124]
Co-interval O(n log n+m) [76]

Convex bipartite O(n) [167]
Strongly chordal O(n+m)† [40]
Chordal bipartite O(n+m) [34]

Regular O(n2 log n) [186]
Cographs O(n)‡ [184]

Co-comparability O(n+m) [137]
Block O(n+m) [133]

Table 1 – Complexities of Maximum Matching in some graph classes. For entries
marked with ∗, †, ‡ it is required, respectively, an interval representation, a strong

perfect elimination order, and a co-tree to be part of the input.

1.2 Weighted Matchings

Another variant, known as Maximum Weight Matching (MWM), considers an
edge-weighted graph G = (V,E) and its weight function ω : E → R. We want to find a
matching M such that the sum of the weights of the edges of M is maximum, that is,
a maximum weight matching. When the input graph G is bipartite, the problem is also
known as Assignment.

Egerváry generalized Theorem 2, considering edge-weighted graphs [53]; this result
was later used to solve the Assignment problem in polynomial time for the first time,
with time complexity O(n4) [121]. Some algorithms with better complexities for bipartite
graphs were later developed. The best complexity obtained so far isO(n(n log n+m)) [60].

Only years later from the first algorithm for bipartite graphs, a polynomial-time
algorithm was designed for general graphs, by Jack Edmonds in 1965 [50]. This algorithm
is a generalization of Kuhn’s Hungarian algorithm, for weighted matching on bipartite
graphs [121].

Over time, several implementations of Edmond’s algorithm have been given with
increasingly faster running times [8, 64, 65, 73, 122], recently reaching the complexity
O(n(n log n+m)) [69, 70], the same obtained before for bipartite graphs.
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Figure 4 – Example of a maximum weight matching.

1.3 Vertex-Weighted Matchings

Another variant comes when we consider a vertex-weighted graph G = (V,E) and a
non-negative weight function ω : V → R≥0. We want to find a matching M such that
the sum of the weights of M -saturated vertices is maximum. This problem is known as
Maximum Vertex-Weighted Matching (MVM).

An instance of MVM can be transformed into one of Maximum Weight Matching
by assigning each edge a weight obtained by summing the weights of its endpoints. Hence,
algorithms for MWM can be used to solve MVM problems [4]. This transformation,
though, is not as efficient as running directly an algorithm for MVM.

Note an example of a vertex-weighted graph as well as its maximum weight vertex
matching in Figure 5a. On its side, Figure 5b shows the corresponding edge-weighted
graph.

(a) (b)

Figure 5 – A vertex-weighted graph with its maximum weight vertex matching (a) and
its edge-weighted corresponding instance (b).

Among applications of MVM, we have the design of network switches [170], schedules
for training of astronauts [12], computation of sparse bases for the null space or the column
space of a rectangular matrix [37, 153, 155], or internet advertising [4].

One of the first mentions of this problem was in 1984, in which the authors presented
a polynomial algorithm running in O(m

√
n log n) [164]. Even though this running time is

still the best known, this algorithm has been reported as hard to implement. Motivated
by this fact, Tabatabaee et al. designed a simpler one that runs in O(mn) [170].

Moreover, MVM has also been studied from the approximation approach. In 2009,
Mahantesh Halappanavar dedicated his Ph.D. thesis to study algorithms for maximum
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vertex-weighted matchings [92]. He designed a 2/3-approximation algorithm for bipartite
graphs and a 1/2-approximation algorithm for graphs in general. Later, A. Al-Herz
and A. Pothen proposed a 2/3-approximation algorithm for general graphs that runs
in O(m log ∆ + n log n) [4].

1.4 Minimum maximal matchings

Finding an ordinary maximal matching in any graph can easily be done by a greedy
algorithm in linear time. On the other hand, if we want one with the minimum cardinality,
it is not that easy. This problem has been studied by the name of Minimum Maximal
Matching (MMM), which consists in finding a maximal matching with the minimum
cardinality in a given graph.

Observe a minimum maximal matching, of size 3, in Figure 6a in contrast with a
maximum matching, of size 5, on the same graph on Figure 6b.

(a) (b)

Figure 6 – Two maximal matchings, one with minimum cardinality (a) and the other
with maximum (b).

This problem has a close relationship with another well-known problem,
Edge Dominating Set, in which we are given a graph G = (V,E), and we want to
find a dominating edge set having the minimum size, that is, a set F ⊆ E such that
every edge of E \ F is adjacent to an element of F . The equivalence between these two
problems comes from the fact that every maximal matching is an edge-dominating set,
and any edge dominating set can be transformed into a maximal matching of the same
size in polynomial time [183].

M. Yannakakis and F. Gavril were among the first authors to consider MMM, proving
it is NP-hard in bipartite graphs and planar graphs, both with maximum degree 3 [183].
This result was independently improved by an NP-hardness proof for k-regular bipartite
graphs for every fixed k ≥ 3 [41, 42].

Among other negative results in graph classes, we highlight the NP-hardness for planar
bipartite graphs and planar cubic graphs [97], and for what was called almost regular
bipartite graphs, a subclass of bipartite graphs [189].

On the positive side, MMM has been shown to be solvable in polynomial time for block
graphs [100], series-parallel graphs [158], bipartite permutation graphs and cotriangulated
graphs [166], and clique-width bounded graphs [57].

There are also extensive studies of approximation algorithms. In 2014, Escoffier et al.
showed that the problem is NP-hard to approximate within a factor better than 1.18 [56].
For further results, we refer to [42, 48].
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1.5 Stable Marriage

The Stable Marriage (or Stable Matching) is another important variant of the
usual matching. In this problem, we are given a bipartite graph G = (V1∪̇V2,E) such
that |V1| = |V2|, and an ordering of preferences for each element of the opposite part;
we want to find a stable matching, i.e. a matching M such that there is no pair of edges
v1w1,v2w2 ∈M such that (i) v1 prefers w2 to w1, and (ii) w2 prefers v1 to v2.

The problem was first solved by D. Gale and L. S. Shapley [72], who showed not only
that there always exists a stable matching of size |V1| = |V2|, but also that it can be
obtained in O(n2). Besides, one can also seek for optimized stable matchings in terms of
preferences of one part over another. That is, given a part V1, a stable matching such
that each vertex in V1 is matched to the best partner, and each vertex in V2 to the worst
partner, considering all possible stable matchings.

Observe an instance of this problem as a graph G = (V1∪̇V2,E), V1 = {A,B,C,D,E},
V2 = {a,b,c,d,e} and the preference lists in Table 2. Figure 7 shows two possible stable
matchings, one optimizing each bipartition.

There is a good survey of variants that arise from this problem [104]. Some of
them are based on (i) incomplete preference lists, where some preference lists may not
contain all elements of the other part, (ii) upper bound of stable matchings that a graph
admits, or even (iii) optimal stable matchings, where we want to analyze the quality
of these matchings; this can be based on some criteria, on what is called regret cost
r(M) = maxuv∈M{max {pu,v, pv,u}}, where pu,v denotes the preference of v ∈ V1 in the list
of u ∈ V2, or even sex-equalness cost d(M) =

∑
uv∈M(puv − pvu).

Figure 7 – Two stable matchings, where the
dashed is optimal on V1, while solid, on V2.

V1 V2

A : cebad a : CBEAD
B : ebadc b : ABECD
C : dceab c : DCBAE
D : abcde d : ACDBE
E : bcdae e : ABDEC

Table 2 – Preference lists of V1 and V2.

1.6 Counting all matchings in a graph

In addition to finding a single matching in a graph, the graph theory community is
also interested to know the number of matchings that a graph admits.

In 1997, T. Uno showed how to enumerate all maximal, maximum, or perfect matchings
in a graph in O

(
n1/2m+Nn

)
[174] such that N is the number of matchings found.

Later, the same author improved the time complexity of counting perfect matchings to
O
(
n1/2m+N log n

)
[175].

Although these algorithms may perform well, they depend on the number of matchings
of the input graph, which can be exponential. This contrasts with the fact that finding a
single matching can be done in polynomial time. This difference in counting problems in
general motivated L. Valiant to create classes for counting problems in terms of their time
complexities, namely #P, #P-complete, FP [177]. In the same paper, L. Valiant showed
that the problem of counting all perfect matchings of a bipartite graph is #P-complete,
which is considered hard among counting problems.
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Later, L. Valiant also proved that it is #P-complete to count matching (not only
perfect ones) in bipartite graphs [178]. This result was later strengthened by showing
that the problem remains #P-complete for 3-regular bipartite graphs [39]. Other classes
for which the problem is #P-complete include chordal and chordal bipartite graphs [144],
bipartite graphs of maximum degree 4, and planar bipartite graphs of maximum degree
6 [176].

Interestingly, we can count perfect matchings in polynomial time for planar graphs [112],
as well as for chain graphs, cochain, threshold graphs [144], cographs, graphs with bounded
treewidth, and complements of chain graphs [49].

1.7 Edge colorings and matchings

Matchings also play an important role in edge colorings. A (proper) edge coloring is
an edge coloring in which there are no two edges having the same color. A proper edge
coloring with k different colors is called a (proper) k-edge-coloring. A graph that admits
a k-edge-coloring is said to be k-edge-colorable. The smallest number of colors needed in
a (proper) edge coloring of a graph G is the chromatic index, or edge chromatic number,
χ′(G). A graph is k-edge-chromatic if its chromatic index is exactly k.

In an edge coloring, the set of edges having the same color must all be non-adjacent
two by two, so this set is a matching. Hence, a proper edge coloring is equivalent to a
partition of the graph edges into matchings.

One of the most important theorems concerning edge colorings shows that the chromatic
index of a graph is either ∆ or ∆ + 1. In the following, we enunciate this theorem, known
as Vizing’s Theorem.

Theorem 7 ([179]). For a graph G, it holds that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

The problem of determining the chromatic index of a graph is NP-hard [95]. However,
we know the chromatic index of some graph classes, like bipartite graphs, for which
χ′(G) = ∆(G) [119].

1.8 Removing matchings from a graph

Another variation of the classic matching problem consists of matchings whose removal
result in graphs satisfying certain properties. Two properties studied separately are that
the resulting graph is bipartite or acyclic, namely bipartizing and decycling matchings.

Concerning decycling matchings, its problem is NP-complete even for 2-connected
planar subcubic graphs [126]. On the other hand, it is solvable in polynomial time for
some graph classes, like chordal graphs. Also, it remains NP-complete for Hamiltonian
subcubic graphs [156]. On the other hand, for chordal and distance-hereditary graphs
the authors presented characterizations of matching-decyclability that lead to linear time
recognition algorithms [156].

About bipartizing matchings, it was observed that a graph G admits a bipartizing
matching if and only if G has a (2, 1)-coloring2 [127]. The authors showed that the
problem is NP-complete for 3-colorable planar graphs of maximum degree 4. On the
positive side, they proved that it is solvable in polynomial time in bounded domination

2A (k, d)-coloring of a graph G is a k-coloring of V (G) such that each vertex of G has at most d
neighbors with the same color as itself.
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number graphs, P5-free graphs, bounded cliquewidth graphs, and graphs in which every
odd-cycle subgraph is a triangle.

1.9 Line-complete matchings

A matching M is line-complete if every two of its edges e1,e2 ∈ M are connected in
such a way that N(e1) ∩ e2 6= ∅. This kind of matching was originally named connected
matching; we adopt the name line-complete matching in order to avoid the name conflict
with connected matching proposed in 2005 [81], described in Section 1.12.

Observe that the matching in Figure 8b is line-complete since all of its edges are
connected, that is, (i) {a,d} ∩ N({b,c}) = {a}, (ii) {a,d} ∩ N({e,f}) = {d}, and (iii)
{b,c} ∩N({e,f}) = {b,c}. However, the matching in Figure 8a is not line-complete since
{a,d} ∩N({c,f}) = ∅.

Line-complete matchings concept was motivated by a possible solution to Hadwiger’s
Conjecture [90] and considered in 2003 by Plummer et al. where authors proved the
NP-completeness of deciding if a given graph admits a line-complete matching of a given
size k [140].

This problem was also approached in the same year by K. Cameron [30], who showed
the NP-completeness for its weighted version in bipartite graphs having binary weights.
On the positive side, she gave polynomial-time algorithms for chordal graphs and C4-free
graphs. In the same paper, there are characterizations of these matchings in terms of
the line graph generated from it and its square graph3; in particular, a matching M in a
graph G is line-complete if and only if the vertices corresponding to edges of M form an
independent set in L(G) and a clique in [L(G)]2. Later, a polynomial-time algorithm for
chordal bipartite graphs was designed [108].

(a) (b)

Figure 8 – An ordinary (a) and a line-complete (b) matchings.

1.10 Rank-Maximal Matchings

Another variant consists in, given a bipartite graph, finding a matching where one
part (called applicants) has a preference list on the other (posts). Over the years, many
optimality criteria were considered, like pareto-optimality [1], popularity [2], fairness [98],
and rank-maximality [103]. We give a brief survey about the latter.

Observe in Figure 9a a graph with applicants {A,B,C} and their preferences over
posts {a,b,c}. The matching in Figure 9b contains the two 1-rank edges {Aa,Bb} and
one 3-rank edge {Cc}.

A rank-maximal matching is one in which the maximum possible number of applicants
are matched to their first choice post, and subject to that condition, the maximum possible

3A square of a graph G, denoted by G2, is G plus the edges incident to two of its vertices if their
distance in G is 2.
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(a) (b)

Figure 9 – A graph with edge ranks in (a), and a rank-maximal matching in (b).

number is matched to their second choice post, and so on. This problem was first studied
in 2003 [102], and was motivated by some applications [79], like the allocation of graduates
to training positions [101] and families to government housing [185].

In 2006, R. W. Irving et al. presented an O(min{n+ c,c
√
n} ·m) algorithm, where

c is the maximal rank of an edge used in rank-maximal matching, n is the number of
applicants and posts and m is the total size of the preference lists [103]. Later, the
problem was also solved with the same time complexity using a reduction to Maximum
Weight Matching [141].

There are other versions concerning rank-maximal matchings, considering vertex
weights [113] and capacities [147].

1.11 b-matchings

Another important problem, which is a generalization of the usual matching problem
is Maximum b-matching. In this problem, we are given a graph G = (V,E) and a
positive integer bv for each vertex v ∈ V ; we want to find a multiset M of E such that,
for each v ∈ V , there are at most bv edges of M incident to v. There is a weighted version
of this problem, which consists in finding a b-matching whose sum of its edge weights is
maximum. Note that this is a generalization of the classic matching problem if bv = 1 for
every v ∈ V .

There are b-matching applications in different domains, which include median location
problems [171], spectral data clustering [106] and semisupervised learning [107].

Finding b-matchings of maximum weight is widely studied, having one of its first
mentions by Jack Edmonds [52]; it was first solved by a pseudopolynomial algorithm in
1973 by W. R. Pulleyblank [157]. Polynomial algorithms were only designed years later,
with the first being presented in 1979 having complexity O(n2m log b) [131], where b =
maxv∈V {bv}. In 1983, H. N. Gabow designed a O(m2 log n log b) algorithm [67] and, then,
improved this result with an algorithm having complexityO(min{B,n log n}(m+ n log n)),
where B =

∑
v∈V bv [69].

There are also approaches to the b-matching problem in specific graph classes, such as
visibility graphs [171], and distance-hereditary graphs [47]. Recently, the online concept
of classical matching was also extended to online b-matching problems [109] [5] [16].

1.12 P-matchings

We finish this survey with a relevant variation that arose over the years, and also the
one that we focus on in this thesis: P-matchings. Some of their applications include
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fields of artificial intelligence [118, 169], game theory [17], computer networks [7, 162],
and VLSI design [83].

Let M be a matching of a graph G. We say that M is a P-matching if G[M ]
satisfies a property P, where P is a graph property. We denote by βP(G), or by P
matching number, the maximum cardinality of a P-matching. Sometimes, when there is
no ambiguity for which graph we are referring to, we may choose to shorten the notation
from βP(G) to βP . Moreover, we say that a P-matching M is maximal if there is no
other P-matching containing M .

Note that, though line-complete matchings of Section 1.9 may be similar to P-
matchings, it cannot be classified as one. This is due to the fact that there can be two
distinct matchings inducing the same subgraph, and such that only one is line-complete;
see an example in Figure 8. Hence, one can not distinguish whether a matching M is
line-complete only by its subgraph G[M ].

In the following, we summarize some of the properties P that were considered and
studied over the years, for which we give details in the next sections.

• If P is that of being a general graph. So a P-matching is a usual matching. We
denote by β(G) the matching number, i.e. the maximum cardinality of a matching
that G admits.

• If P is that the graph is 1-regular (see Figure 10a), we are referring to an induced
matching, considered in Section 1.12.1.

• A matching M is a uniquely restricted matching if G[M ] has one unique maximum
matching, that is, there is no other matchingM ′ in G[M ] such that |M | = |M ′| (see
Figure 11a). We approach this matching in Section 1.12.2.

• If P is that the graph is acyclic(see Figure 10b) we say that a P-matching is an
acyclic matching, which we present in Section 1.12.3.

• We say that a matching M is a connected matching if G[M ] is connected (see
Figure 11b), which we consider in Section 1.12.4.

• A matching M is a disconnected matching if G[M ] is disconnected (see Figure 12a).
Moreover, if G[M ] has at least c connected components, then M is c-disconnected.
We explore disconnected matchings in Section 1.12.5.

Next, we give details of those matchings, and then we compare them in Section 1.12.6,
giving bounds on their corresponding matching numbers and some related work. This
includes, for example, studying what property a graph G has if it admits an induced
matching with the same size as a maximum matching. Finally, in Section 1.12.7, we
present the concept of P edge coloring, which relates P-matchings to edge colorings.

1.12.1 Induced Matchings

A matchingM of a graph G is induced or strong if G[M ] is 1-regular, that is, the edges
ofM are pairwise not adjacent. We denote by β∗(G) the induced matching number, which
is the largest cardinality of an induced matching that G admits. Observe in Figure 10a
the induced matching {hf,cd,aj,ml}.

One of the first appearances of this problem was in 1982 [168], when L. J. Stockmeyer
and V. V. Vazirani considered δ-separated matching as a restriction of the usual matching.
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(a) (b)

Figure 10 – An induced matching (a) and an acyclic matching (b).

They defined a matching M as δ-separated if, for each pair of edges e1,e2 ∈ M , the
distance from any vertex of e1 to any vertex of e2 is at least δ. Note that any matching
is 1-separated. Also, a 2-separated matching is an induced matching and vice-versa.
They proved the NP-hardness of finding large δ-separated matchings for bipartite graphs
bounded by degree 4, for every fixed δ ≥ 2. This implies the NP-hardness in the same
conditions of the particular case where δ = 2.

For this specific case, the corresponding problem later received the name of Induced
Matching, or Strong Matching. K. Cameron was one of the first to use these
terms [28], giving some characterizations and independently proving NP-completeness for
bipartite graphs, as well as its pertinence in P for chordal graphs. The latter result makes
use of the interesting property that, if G is chordal, then [L(G)]2 is chordal, proved in the
same article. It was also based on the observation that every induced matching in G is
an independent set in [L(G)]2 and conversely.

This result for chordal graphs was later improved to a linear-time algorithm [23].
Other classes for which the problem can be solved in polynomial time include weakly
chordal graphs [31], permutation and trapezoid graphs [26], circular-convex bipartite
graphs and triad-convex bipartite [151], asteroidal-triple-free graphs [29, 33], interval-
filament graphs [29] and hexagonal graphs [55].

On the negative side, besides the results for bipartite graphs with degree 4 [168],
we also highlight the NP-completeness for other graph classes, namely 3-regular planar
graphs [116], 4k-regular graphs for k ≥ 1 [188], bipartite graphs of maximum degree
3 [129], planar bipartite graphs where each vertex in one partite set has degree 2 and each
vertex in the other partite set has degree 3 [114], hamiltonian graphs, claw-free graphs,
chair-free graphs, line graphs, and d-regular graphs, for d ≥ 5 [117], star-convex bipartite
graphs and perfect elimination bipartite graphs [151], and d-regular graphs, for each
d ≥ 3 [46]. In this last paper, the authors also proved that the problem is APX-complete
under the same constraints.

We know, by definition, that every induced matching is also an ordinary matching.
So, it holds that β∗(G) ≤ β(G) for the general case. But there may be graphs where the
equality is true, like in a P5, for example. In 2003, it was presented a polynomial time
algorithm which, given a graph G, either it finds a maximum induced matching in G, or
it claims that β∗(G) 6= β(G) [117]. For this reason, it is in P to decide if β∗(G) = β(G),
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for a given graph G. Also, there are cases where every maximum matching of a graph
G is also induced. M. Fürst and D. Rautenbach proved that this happens if and only if
every component of G is a star or a triangle [63].

Concerning parameterized complexity, Induced Matching was also considered using
this approach [91]. Authors showed that it is FPT for (k,c), where c is the number of
cycles of length four; and for line graphs for the treewidth parameter k.

Another variation is deciding if a given graph G admits maximal induced matching
with cardinality at most k. Orlovich et al. showed that this problem is NP-complete for
bi-size matched graphs[146]. Later, the same NP-completeness result was reached, but
this time for bipartite graphs with degree 4 [145]. In 2021, J. Chaudhary studied this
problem in her Ph.D. thesis [35], proving that it is NP-complete for perfect elimination
bipartite graphs, star-convex bipartite graphs, and dually chordal graphs, while solvable
in polynomial time for cographs.

The weighted version of induced matching was also the aim of many researchers. It
is denoted by Weighted Induced Matching and consists in deciding if an edge-
weighted graph G admits an induced matching whose sum of its edge weights is at least
k. Orlovich et al. stated that this problem can be solved in polynomial time if the
input graph respects the property of some forbidden subgraphs they provide [146]. Other
positive results include algorithms that run in linear time for convex bipartite graphs [115]
and in polynomial time for circular-convex and triad-convex bipartite graphs [150].

1.12.2 Uniquely Restricted Matchings

A matching M is uniquely restricted if there is no other matching M ′ such that
V (M) = V (M ′). In other words, G[M ] has a unique perfect matching. We denote
by βur(G) the uniquely restricted matching number, which is the largest cardinality of a
uniquely restricted matching that G admits. Observe in Figure 11a the uniquely restricted
matching {an,bc,de,ij,gh,ml}.

(a) (b)

Figure 11 – A uniquely restricted matching (a) and a connected matching (b).

The problem of deciding if a graph admits a uniquely restricted matching of a given
size was introduced [82], motivated by a matrix theory problem. In this paper, they
gave fundamental characterizations of uniquely restricted matchings. A matching M is
uniquely restricted if and only if G[M ] does not contain an alternating cycle with respect
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toM . Also, they gave an algorithm that tests whether a matchingM is uniquely restricted
in O(|M |m). If the graph is bipartite, the run time can be reduced to O(n+m). This
algorithm helps to show that some problems considering uniquely restricted matchings
are in NP.

Research on this subject considers the decision problem Uniquely Restricted
Matching, in which we are given a graph G and an integer k, and it is asked if G
admits a uniquely restricted matching of size at least k.

This problem is NP-complete for split and bipartite graphs [82]. The latter result was
improved to subcubic bipartite graphs, for which it was also proved that the problem is
APX-complete [142].

Nevertheless, we can solve it in polynomial time for threshold graphs, proper interval
graphs, cacti, block graphs [82], interval, proper interval graphs, bipartite permutation
graphs [59].

There is also interest in studying graphs for which the size of a maximum uniquely
restricted matching is also the size of a maximum induced matching or of a maximum
matching. Note that an induced matching M of a given graph G is uniquely restricted
since G[M ] is 1-regular. Hence, β∗(G) ≤ βur(G) ≤ β(G)(G). However, deciding if
β∗(G) = βur(G) is NP-hard even for bipartite graphs [62]. If G has no even length cycles,
then every matching on G is uniquely restricted, so βur(G) = β(G) [82].

Also, J. Chaudhary and B. S. Panda studied the problem where we want to know
whether G admits a maximal uniquely restricted matching of cardinality at most k [36].
They showed that this problem is NP-complete for chordal bipartite graphs, star-convex
bipartite graphs, chordal graphs, doubly chordal graphs, and even APX-complete for
graphs with maximum degree 4. On the positive side, it is solvable in polynomial time for
chain graphs [149], bipartite distance-hereditary graphs, bipartite permutation graphs,
proper interval graphs, and threshold graphs [36].

1.12.3 Acyclic Matchings

A matchingM is acyclic if G[M ] is acyclic, that is, a forest. The maximum cardinality
of an acyclic matching in a graph G is denoted by βac(G), the acyclic matching number.
Observe an acyclic matching {bc,de,ij,mn,gh} as example in Figure 10b.

Acyclic matchings were proposed by Goddard et al. in 2005 [81], inspired by induced
and uniquely restricted matchings. In the same paper, they showed that it is NP-
complete to decide if a graph admits an acyclic matching of size at least k. This result
was strengthened as it remains NP-complete for perfect elimination bipartite graphs,
combconvex bipartite graphs, dually chordal graphs [148], planar line graphs with maximum
degree 4 [91], and perfect elimination bipartite graphs with maximum degree 3 [91].

On the positive side, it is tractable for graphs with a bounded maximum degree [9],
chordal graphs [10], interval graphs, split graphs, and proper interval graphs [148].

This problem was also studied from the parameterized point of view [91]. It was proved
that it is W[1]-hard for bipartite graphs with respect to the parameter k. However, it is
FPT for treewidth parameter and for (k,c), where c is the number of cycles of length four.

Note that, for a graph G, every induced matching is also acyclic, which is also uniquely
restricted. So, it holds that β∗(G) ≤ βac(G) ≤ βur(G) ≤ β(G). Besides, it is hard to
decide if βac = βur on general graphs or βac = β∗ even on graphs with maximum degree
4 [62]. On the other hand, it is known that every maximum matching in G is acyclic if
and only if every component of G is a tree or an odd cycle [63].
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Goddard et al. also showed that it is NP-hard to compute the minimum cardinality of
a maximal acyclic matching [81]. This problem was also studied later for bipartite graphs,
perfect elimination bipartite graphs, and proper interval graphs [35].

The weighted version, Weighted Acyclic Matching, was proposed [63], where M.
Fürst et al. showed that it is solvable in polynomial time for P4-free graphs and 2P3-free
graphs.

The Acyclic Matching problem was later generalized [10], considering
r-Degenerate Matching, where we are given a non-negative integer r and a graph G.
We want to know if G admits a matching M where G[M ] is r-degenerate4. Note that a
graph is a forest if and only if it is 1-degenerate. For this reason, Acyclic Matching
corresponds to 1-Degenerate Matching. In the same article, they described a
polynomial time algorithm for determining r-Degenerate Matching in chordal graphs
for any fixed r.

1.12.4 Connected Matchings

A matching M is connected if G[M ] is connected. The maximum cardinality of a
connected matching in a graph G is denoted by βc(G). Observe a connected matching
{bc,de,fh,gm,ij,an} as example in Figure 11b.

As acyclic matchings, connected matchings were also proposed in 2005 by Goddard
et al. [81], where authors showed that βc(G) = β(G) (Theorem 2 in [81]). In the proof
of this theorem, it is described a procedure that obtains a maximum connected matching
from a given maximum matching. Although this procedure is indeed polynomial, it is not
clear how efficiently it can be done. In this paper, we clarify this issue by showing a linear
algorithm in Section 3.1.

Hence, it is not harder to find maximum connected matchings in comparison to
ordinary maximum matchings; in fact, it can be done with the same time complexity
of Maximum Matching for general graphs, as discussed in Section 1.1. Additionally, if
we restrict to some classes (see Table 1), maximum connected matchings can be obtained
even faster than from general graphs.

Although connected matchings were proposed in 2005, there is not much research on
them. One of the few papers about it presents an algorithm to compute the minimum
cardinality of a maximal connected matching in a tree [105].

In this thesis, we prove we can obtain maximum cardinality connected matchings in
linear time if a maximum matching is given. This implies that the complexity of this
problem is bounded by the complexity of Maximum Matching.

Besides, we also consider this problem in its edge-weighted version, which we name
Weighted Connected Matching; we prove that it is NP-complete for starlike graphs,
subcubic planar graphs, planar bipartite graphs, and diameter four bipartite graphs.
When we restrict the weights to be non-negative only, it is solvable in polynomial time for
chordal graphs; in contrast with this fact, when the weights are arbitrary, it is NP-complete
for starlike graphs, a subclass of chordal graphs. It can be solved in linear time for graphs
with maximum degree at most 2 and for trees, and in FPT time when parameterized by
treewidth. We summarize these results in Table 3.

One interesting approach that has not yet been studied is minimummaximal connected
matchings. Note that, unlike the equality β(G) = βc(G) holds for maximum matchings,

4A graph G is r-degenerate if every subgraph H of G of order at least 1 has a vertex of degree at most
r in H



31

Table 3 – Summary of our results for Weighted Connected Matching.

Graph class Complexity
Weights ≥ 0 Any weights

General NP-complete
(Theorem 23)Bipartite having

diameter at most 4
Chordal P

(Theorem 22)
NP-complete
(Theorem 21)Starlike

Planar
bipartite NP-complete

(Theorem 24)

subcubic ? NP-complete
(Theorem 25)

∆ ≤ 2
P

(Theorem 26)

Tree P
(Theorem 29)

it is not known to hold for minimum maximal matchings. Indeed, a minimum maximal
connected matching can be bigger than a minimum maximal matching. For example, in
C6, the size of the former is 3 while the size of the latter is 2.

1.12.5 Disconnected Matchings

A matching M is called c-disconnected if G[M ] has at least c connected components.
We denote the cardinality of a maximum i-disconnected matching in a graph G by βd,i(G).
When c = 2, we can simply say that M is disconnected and βd,2(G) = βd(G). Observe in
Figure 12a the disconnected matching {hf,cd,ij,an,mg}, and a 4-disconnected matching
{hf,cd,ja,ml} in Figure 10a.

(a)

(b)

Figure 12 – A disconnected matching (a) and a graph that has the disconnected
matching number larger than uniquely restricted and acyclic matching numbers (b).

The problem of deciding if a graph admits a disconnected matching of a given size
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was first proposed in 2005 [81], where Goddard et al. asked about its complexity. In this
thesis, we answer this question, showing it is NP-complete even for bipartite graphs.

In 2007, A. Jamieson presented a linear-time algorithm that obtains both the maximum
cardinality as well as the minimum cardinality of a maximal disconnected matching for
a given tree [105]. Later, two algorithms were given to find the maximum disconnected
matchings, one that runs in linear time for block graphs, and the other in O(mn) for
chordal graphs [133].

In this paper, we go further, generalizing the problem considering the desired number
of connected components c as a constant or as part of the input of the problem. We assert
that for every fixed c ≥ 2, Disconnected Matching remains NP-complete for bipartite
graphs, but can be solved in XP time for the parameter c in graphs with a polynomial
number of minimal separators. This includes chordal graphs and, consequently, their
subclasses, like interval graphs.

On the other hand, if we put c as part of the input, the problem turns out to be
NP-complete on chordal graphs, while it is still solvable in polynomial time for interval
graphs.

We summarize these results in Table 4.

Table 4 – Complexity results for Disconnected Matching restricted to some input
scopes. We denote by ηi the i-th Bell number.

Graph class c Complexity Proof
General c = 1 Same as Maximum Matching Theorem 2
Bipartite Fixed c ≥ 2 NP-complete Theorem 9

Chordal Input XP and NP-complete
Theorems 11

and 13
Bounded degree Input NP-complete Theorem 11

Interval Input O(n2cmax{nc,m
√
n}) Theorem 14

Treewidth t Input O
(
8tη3

t+1n
2
)

Theorem 15

We can see that, for a given graph G, it holds that β(G) = βd,1(G) ≥ βd,2(G) ≥
βd,3(G) ≥ . . . ≥ βd,β∗(G) ≥ β∗(G). Note that β∗(G) may be strictly smaller than βd,β∗(G),
as the in the graph of Figure 12b. But one may ask if we can determine if βd,i(G) = βd,j(G).
We show that this can not be done in polynomial time unless P = NP.

Concerning parameterized complexity, it was given an FPT algorithm for the treewidth
parameter [88].

Like connected matchings, the subject of minimum maximal disconnected matchings
has not been studied yet. The sizes of a minimum maximal disconnected and a minimum
maximal matching may be the same (in a P5) or not (Figure 6). We leave as an open
problem to decide if a given graph admits a maximal disconnected matching with at most
k edges.

Concerning the weighted version of this matching, it has not been considered yet. We
also would like to know if there are graph classes for which Weighted Disconnected
Matching can be solved in polynomial time.
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1.12.6 P-matching numbers

One can easily see that every induced matching is also disconnected, acyclic, and
uniquely restricted. Besides, every acyclic matching is also uniquely restricted; every
i-disconnected matching is a j-disconnected matching, for j > i.

For this reason, for a given graph G, we have the following chains of inequalities.

β∗(G) ≤ βac(G) ≤ βur(G) ≤ β(G) (1.1)

β∗(G) ≤ βd,β∗(G) ≤ . . . ≤ βd,3(G) ≤ βd,2(G) ≤ βd,1(G) (1.2)

Even though the induced matching number is a lower bound for all the other P-
matchings mentioned, there is no relation between some of them. For instance, the
disconnected matching number is not comparable to uniquely restricted or acyclic matching
numbers for general graphs. Note that in the graph of Figure 11a, 6 = βur > βd = 5,
while in Figure 12b, 3 = βur < βd = 4. Concerning acyclic matchings, note that in a P6,
3 = βac > βd = 2, while in Figure 12b, 2 = βac < βd = 4.

By equations (1.1) and (1.2), it seems natural to ask in what conditions the equality
holds between two P-matching numbers. Many of these comparisons were made over the
years. We present some in Table 5.

Table 5 – Complexity of deciding if a graph has equal P-matching numbers.

Problem Complexity Graph class Proof

βc = β P General [81]
Theorem 19

β∗ = β P General [117]
β∗ = βur NP-hard Bipartite [61]
βur = βac NP-hard General [63]
β∗ = βac NP-hard ∆ = 4 [61]
β = βac NP-complete ∆ = 4 [63]
βd,i = βd,j NP-hard Bipartite Theorem 18
βd = β NP-complete Bipartite Corollary 6

It is worth mentioning that the complexity for β∗ = βd has recently been determined
by Guilherme C. M. Gomes, Bruno P. Masquio, Paulo E. D. Pinto, Dieter Rautenbach,
Vinicius F. dos Santos, Jayme L. Szwarcfiter, and Florian Werner. A preliminary technical
report will be published soon. In Section 2.5, we present partial results of this work, which
shows that the problem βd,i = βd,j is NP-hard.

1.12.7 P-matchings and Edge Coloring

The edge coloring concept was extended and related to P-matchings. An edge coloring
is said to be a P edge coloring if every set of edges having the same color is a P-
matching. Moreover, χ′P(G), denoted by P chromatic index, is the minimum number of
colors needed for a P edge coloring in a graph G.

Some of the properties P studied are strong (induced), uniquely restricted [11] and
r-degenerate [10] edge colorings.
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The problem of strong edge coloring was proven to be NP-complete even for bipartite
graphs with a girth of at least four [130]. On the other hand, a strong edge coloring of
G is the proper vertex coloring of the square of the line graph of G [130]. Hence, it is
polynomially solvable for chordal graphs [28], co-comparability graphs [83], and partial
k-trees [160].

In the following, we present an important conjecture about an upper bound on the
strong chromatic index.

Conjecture 1 ([54, 93, 181]).

χ′s(G) ≤

{
5
4
∆(G)2 if ∆ is even

5
4
∆(G)2 − 1

2
∆(G) + 1

4
if ∆(G) is odd

Although this conjecture is not yet solved, there are some upper bound results, showing
that χ′s(G) ≤ 1.93∆(G)2 [27], which was improved to χ′s(G) ≤ 1.772∆(G)2 [99]. For
further results in terms of χ′s(G), we refer to the surveys presented [182, 187].

Degenerate chromatic index, denoted by χ′r(G), was studied in 2018 [10], where it was
showed that χ′s(G) ≥ χ′1(G) ≥ χ′ur(G) ≥ χ′(G). Also, let r > 0 and G such that its
maximum degree is at most 4. It holds that χ′r(G) ≤ 2(∆−1)2

r+1
+ 2(∆− 1) + 1. Moreover,

χ′1(G) = ∆2 if and only if G is isomorphic to K∆,∆.
Edge coloring considering uniquely restricted matchings, whose chromatic index is

denoted by χ′ur(G), was approached in [11]. In this paper, the authors provided the
following tight upper bounds in terms of the maximum degree and characterize all extremal
graphs. Let G be a connected graph of maximum degree at most ∆, then χ′ur(G) ≤ ∆2

with equality if and only if G is isomorphic to K∆,∆. Moreover, if ∆ ≥ 4, not isomorphic
to K∆,∆, then χ′ur(G) ≤ ∆2 −∆.

Since matchings are highly related to edge colorings, it would also be interesting
to study other P edge colorings besides strong, uniquely restricted and degenerate.
For instance, one could obtain interesting characterizations for acylcic, connected and
disconnected edge colorings.
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2 DISCONNECTED MATCHINGS

In this chapter, we study the P-matching for the property of being disconnected.
A c-disconnected matching M is a matching such that G[M ] has at least c connected
components. We will focus on the decision problem of finding disconnected matchings of
large cardinality, which is defined as follows.

Disconnected Matching
Instance: A graph G and two integers k and c.
Question: Is there a matching M with at least k edges such that G[M ] has at least c
connected components?

We also approach this problem for a fixed c; we denote this version by c-Disconnected
Matching.

The concept of disconnected matchings was proposed in 2005 [81], where an exponential
algorithm for finding ones with large cardinalities was presented, which we describe
next. First, observe that a disconnected matching in a connected graph contains at
least one non-saturated minimal separator. For each minimal separator S, we can run
the Maximum Matching algorithm in G − S. The largest matching found is also a
maximum disconnected matching in G.

This algorithm is indeed exponential since an arbitrary graph may have an exponential
number of minimal separators. On the other hand, we can use it to find maximum
disconnected matchings on graphs that all minimal separators can be enumerated in
polynomial time. There are some classes, like chordal graphs, for which this property
holds [163].

As a specific case of this property, Goddard et al. considered the problem for a tree
T , showing that β(T ) − 1 ≤ βd(T ) ≤ β(T ) [81]. The proof relies on the fact that every
minimal separator in T is a single vertex. So, the previous algorithm runs in polynomial
time.

Goddard et al. asked about the complexity of calculating βd(G) of a given graph G [81].
In this paper, we answer this question, showing that c-Disconnected Matching is
NP-complete for c = 2. We also go further, proving that it remains NP-complete even for
bipartite graphs having bounded diameter and for every fixed c ≥ 2.

Moreover, we found out that when c is part of the input, the problem turns out to
be NP-complete for bounded degree graphs and chordal graphs. This contrasts with the
fact that, for a fixed c, as described previously, we can find a maximum disconnected
matching in polynomial time for chordal graphs. Despite this, for interval graphs, a
subclass of chordal graphs, we show that Disconnected Matching can be solved in
polynomial time.

There is also a strong relationship between Disconnected Matching and Induced
Matching. Observe that, if we can find a k-disconnected matchingM then we can easily
obtain an induced matching M∗ ⊆ M with k edges. This immediately results in the
following theorem, concerning the complexity of Disconnected Matching.
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Theorem 8. Disconnected Matching is NP-complete for every graph class for which
Induced Matching is NP-complete.

Proof. Note that for every input instance (G,k) of Induced Matching, we can build
an equivalent instance (G,k,k) of Disconnected Matching. That is, we want to find,
in the same graph G, a disconnected matching M with at least k edges and k connected
components. To obtain the induced matching, it suffices to pick, for each connected
component of G[M ], exactly one edge. Finally, observe that an Induced Matching on
k edges is also a k-disconnected matching with k edges.

Next, we summarize a collection of immediate observations concerning induced,
disconnected and ordinary matchings.

Observation 1. Let G be a connected graph. These statements hold:

1. Every matching is a 1-disconnected matching.

2. Since β∗(G) is the maximum number of components that G[M ] can have with any
matching M , there exists no c-disconnected matching for c > β∗(G).

3. Every maximum induced matchingM∗ is a β∗(G)-disconnected matching since each
connected component of G[M∗] is an edge.

Moreover, as we mentioned in Equation 1 in Section 1.12.6 the following chain of
inequalities is valid:

β = βd,1 ≥ βd,2 ≥ βd,3 ≥ . . . ≥ βd,β∗ ≥ β∗

Note that, the two last matching numbers of this chain can be equal or not. For
instance, βd,β∗ = β∗ in a P5, while βd,β∗ > β∗ in the graph of Figure 12b.

The rest of this chapter is organized as follows. In Section 2.1, we present a construction
used to show that c-Disconnected Matching is NP-complete for every fixed c ≥ 2
on bipartite graphs of diameter three. In Section 2.2, we prove some negative results,
that Disconnected Matching is NP-complete on chordal graphs and bounded degree
graphs. We show, in Section 2.3.1, that the previous proof cannot be strengthened to
fixed c by giving an XP algorithm for Disconnected Matching parameterized by
c on graphs with a polynomial number of minimal separators. In Sections 2.3.2 and
2.3.3, we mention polynomial-time algorithms for Disconnected Matching in interval
and bounded treewidth graphs. In Section 3.2.5, we approach the problem from the
kernelization point of view, in a way that Induced Matching problem, and consequently
Disconnected Matching, does not admit a polynomial kernel when parameterized by
vertex cover and size of the matching nor when parameterized by vertex deletion distance
to clique and size of the matching. Finally, in Section 2.5, we show that it is NP-hard to
decide, for a given graph, if βd,i(G) = βd,j(G), for every 1 ≤ i < j.

2.1 Complexity of c-Disconnected Matching

2.1.1 1-disconnected matchings

We consider that the input graph has at least one edge and is connected. Otherwise,
the solution is trivial or we can solve the problem independently for each connected
component. Recall that 1-Disconnected Matching allows its solution to have any
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li7

li9
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ri7

ri8

ri9

li1

li2
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li4

li5

li6

ri1

ri2

ri3
ri4

ri5

ri6

Figure 13 – The subgraph Bi, related to clause ci

number of connected components. Consequently, any matching with at least k edges is a
valid solution to an instance (G, k, 1), which leads to our next observation.

Observation 2. 1-Disconnected Matching is equivalent to Maximum Matching.

2.1.2 2-disconnected matchings

Next, we show that 2-Disconnected Matching is NP-complete for bipartite graphs
with bounded diameter. Our reduction is from the NP-hard problem One-in-three
3SAT [78]. In this problem, we are given a set of m clauses I with exactly three literals
in each clause, and ask if there is a truth assignment of the variables such that only one
literal of each clause resolves to true. We consider that each variable must be present in at
least one clause and that a variable is not repeated in the same clause. These constraints
follow from the original NP-completeness reduction [161].

2.1.2.1 Input transformation in One-in-three 3SAT.

We use k = 12m and build a bipartite graph G = (V1∪̇V2,E) from a set of clauses I
according to the following construction rules number I to V.

(I) For each clause ci, generate a subgraph Bi as described below.

• V (Bi) = {lij, rij | j ∈ {1, . . . ,9}}
• E(Bi) is as shown in Figure 13.

(II) For each variable x present in two clauses ci and cj, being the q-th literal of ci and
the t-th literal of cj, add two edges. If x is negated in exactly one of the clauses,
add the set of edges {riqljt, li(q+3)rj(t+3)}. Otherwise, add {li(q+3)rjt, riqlj(t+3)}.

• As an example, consider c2 = (x ∨ y ∨ z) and c5 = (d ∨ x ∨ g). Variable x
is present in c2 as the first literal and, in c5, as the second literal. Besides, x
is negated only in c5. Hence, we add the set of edges {(r21l52), (l24r55)}. In
Figure 14, we present this example but omit some edges for better visualization.
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l28
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r27
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r59

l54

l55

l56
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l53

r51
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r53

r54
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Figure 14 – The simplified subgraph G[V (B2) ∪ V (B5)] for an instance with the clauses
c2 = (x ∨ y ∨ z) e c5 = (d ∨ x ∨ g)
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ri8
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u1 u4

u2 u3

Figure 15 – The subgraph G[V (Bi) ∪ {u1, u2, u3, u4}], u1 ∈ V (U1), u2 ∈ V (U2),
u3 ∈ V (U3) and u4 ∈ V (U4). The bold vertices represent a bipartition of G.

(III) Generate two complete bipartite subgraphs H1 and H2, both isomorphic to K3m,3m,
V (H1) = V (U1)∪̇V (U2) and V (H2) = V (U3)∪̇V (U4).

(IV) For each u2 ∈ V (U2) and clause ci, add the set of edges {u2lij | j ∈ {1, . . . ,6}}.

(V) For each u3 ∈ V (U3) and clause ci, add the set of edges {u3rij | j ∈ {1, . . . ,6}}.

Besides G being bipartite, as shown in Figure 15, it is possible to observe that its
diameter is 5, regardless of the set of clauses and its cardinality. This holds due to the
distance between, for example, u1 and u4, u1 ∈ V (U1), u4 ∈ V (U4), as well as li7 and rj7,
for all distinct i,j ∈ [m], such that the clauses ci and cj do not have literals related to the
same variable. Also, consider G+

i = G[V (Bi)∪V (H1)∪V (H2)]. Note that |V (G)| = O(m).
We denote A by the subgraph induced by the vertices of V (G) \V (H1) \V (H2). Note

that A is exactly the subgraph induced by the vertex set of ∪i∈[m]V (Bi).
Observe that |V (G)| = 30m, since V (G) = V (H1) ∪ V (H2) ∪ V (A). Besides, (45m2 +

26m) ≤ |E(G)| ≤ (48m2 + 23m), as the following amounts of edges are generated in the
construction. There are 26m edges introduced by rule (I), 9m2 by (III), and 36m2 by (IV)
and (V) combined. Rule (II) produces a variable number of edges, which can range from
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0 to 3m2 − 3m, since each pair of clause subgraphs can have from 0 to 6 edges between
them.

2.1.2.2 Properties of disconnected matchings in the generated graphs

We now prove some properties of the disconnected matching with cardinality at least
k in a graph G generated by the construction previously described.

Initially, we show, by Lemmas 1 and 2, that a subgraph induced by the saturated
vertices of such matching has exactly two connected components, one containing vertices
of H1 and the other, vertices of H2. Then, Lemma 3 shows the sets of edges that can
possibly be in the matching.

Lemma 1. If M is a disconnected matching with cardinality k ≥ 12m, then there exists
two saturated vertices h1 ∈ V (H1) and h2 ∈ V (H2).

Proof. In order to obtain M with cardinality k, it is necessary that 2k ≥ 2 · (12m) = 24m
vertices are saturated by M . Note that |V (A)| = 18m. Since we are looking for a k
cardinality matching, then, even if all the vertices of A were saturated, we would have,
at most, 18m vertices. Therefore, for M to saturate 2k vertices, we need to use vertices
of V (H1) ∪ V (H2). Note that, similarly, if vertices of A and only one of the subgraphs
H1 or H2, |V (H1)| = |V (H2)| = 6m, we will have a maximum of 24m vertices, however,
the matching would be perfect in the subgraphs G−V (H1) or G−V (H2) and, therefore,
connected. Thus, it is necessary that there are at least two vertices h1 ∈ V (H1) and
h2 ∈ V (H2) saturated by M .

Lemma 2. If M is a disconnected matching with cardinality k ≥ 12m, then G[M ] has
exactly two connected components.

Proof. From Lemma 1, we know that M saturates h1 ∈ V (H1) and h2 ∈ V (H2) by two
edges, (h1, v1) and (h2, v2). Note that, due to the graph structure, every edge e saturated
by M is incident to at least one vertex of V (G) \ {li7, li8, li9, ri7, ri8, ri9 | i ∈ [m]}, as every
edge of the graph has this property. Then, one end of e is adjacent to any of the vertices
in {h1, v1, h2, v2}. Therefore, G[M ] has exactly two connected components C1 and C2

such that h1 ∈ V (C1) and h2 ∈ V (C2).

Lemma 3. Let M be a disconnected matching with cardinality k ≥ 12m and Bi be a
clause subgraph. There are exactly 6 edges in M of G[V (Bi)] and, moreover, there are
exactly 3 sets of edges that satisfy this constraint.

Proof. Let M be a 2-disconnected matching in G, |M | ≥ 12m, and Bi be a clause
subgraph. From Lemma 1, we know that there are two saturated vertices u2 ∈ V (U1) and
u3 ∈ V (U3). Also, Lemma 2 shows that any other saturated vertex in the graph must be
in one of the two connected components of G[M ] containing u2 or u3. Therefore, there is
a u2 − u3 separator Si not saturated in Bi.

For the rest of the proof, we use Si separators with cardinality 6, so that all the 12
vertices of V (Bi) \ Si will be saturated by M . We prove that there are only 3 separators
of this type, due to the following properties.

1. The vertex pairs lij and ri(j+3) cannot be saturated simultaneously. Thus, Si contains
at least one of these two vertices.
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2. If there are two saturated vertices lij and liq, then the four vertices rij, riq, rit and
ri7 cannot be saturated, for distinct j,q,t ∈ {1,2,3}.

3. The vertex lij cannot be saturated simultaneously with riq or rit, for all distinct
j,q,t ∈ {1,2,3}.

4. The number of saturated vertices of {li8, li9}must be at most the number of saturated
vertices of {li4,li5,li6}.

Consider Wi the set of vertices in V (Bi) \ Si that could possibly be saturated by M .
From Property 1, we can see that |Si| ≥ 6. Thereby, |Wi| ≤ 12, that is, the largest
number of saturated vertices in a clause subgraph is 12. Next, we will show that there are
only 3 separators and Wi sets of that type. If |Si| = 6, which is its minimum cardinality,
then, given Property 2, there can only be a single saturated vertex lij, j ∈ {1,2,3}. In
addition, for ri7 to be in Wi, a vertex rit, t ∈ {1,2,3} must be in Wi as well. Given
Property 3, the only possibility is if t = j. Thus, the vertices li(j+3) and ri(j+3) cannot
belong to Wi. In addition, from Property 4, for li8 and li9 to be in Wi, then two vertices
li(q+3) are in Wi as well, for two distinct q ∈ {1,2,3}. The only possibility of this occurring
is if q 6= j. Analogously, the same is true for the vertices ri(q+3). Finally, we can define
the set described as Wi = {lij, rij, li(q+3), ri(q+3), li(t+3), ri(t+3) | j,q,t ∈ {1,2,3}, distinct} ∪
{lij, rij | j ∈ {7,8,9}}. Therefore, there are only 3 possibilities for the set Wi, which are
shown in Table 6 and in Figure 16. Moreover, there is exactly one corresponding saturated
set of edges for each of the vertex sets, shown in Figure 16.

2.1.2.3 Transforming a disconnected matching into a variable assignment.

First, we define, starting from a 2-disconnected matching M , |M | = 12m, a variable
assignment R and, in sequence, we present Lemma 4, proving that R is a One-in-three
3SAT solution.

(I) For each clause ci, where xij corresponds to the j-th literal of ci, generate the
following assignments.

• If lij is M -saturated, then assign xij = T .

• Otherwise, assign xij = F .

Note that, analyzing the generated graph, the pair of saturated vertices lij and rij,
j ∈ {1,2,3} define that the j-th literal is the true of the clause ci. Similarly, each pair of
saturated vertices liq and riq, q ∈ {4,5,6}, q 6= j + 3, defines that the (q − 3)-th literal is
false.

Lemma 4. Let M be a 2-disconnected matching with cardinality k = 12m in a graph
generated from a input I of One-in-three 3SAT. It is possible to generate in polynomial
time an assignment to variables in I that solves One-in-three 3SAT.

Proof. For this lemma hold, using the R assignments, each clause in I must have exactly
one true literal and each variable must have the same assignment in all clauses. As it
was deduced in the Lemma 3, in fact, given i ∈ [m], lij is saturated only for a single
j, j ∈ {1,2,3}. So we have a single true literal. We now show that the assignment of
the variable is consistent across all clauses. By contradiction, assume this to be false,
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h1 − h2 separator of G+
i Possibly saturated remaining vertices

{li2, li3, li4, ri2, ri3, ri4} {li1, li5, li6, li7, li8, li9, ri1, ri5, ri6, ri7, ri8, ri9}
{li1, li3, li5, ri1, ri3, ri5} {li2, li4, li6, li7, li8, li9, ri2, ri4, ri6, ri7, ri8, ri9}
{li1, li2, li6, ri1, ri2, ri6} {li3, li4, li5, li7, li8, li9, ri3, ri4, ri5, ri7, ri8, ri9}

Table 6 – Some h1 − h2 minimal separators in a subgraph G+
i and the respective

remaining sets of vertices, which can be saturated

then in R there are two literals, x and y, for the same variable, and one of the following
two possibilities occurs. Consider x the q-th literal of ci and y the t-th literal of cj.
Either there is one negation between x and y or x and y have the same sign. In the
first possibility, as we assumed that x and y have different assignments, then either riq
and ljt are saturated simultaneously or li(q+3) and rj(t+3) are. Note that ci and cj have
variables with opposite literals, which means that the constructed graph has the edges
riqljt and li(q+3)rj(t+3). Therefore, by Lemma 1, G[M ] would be connected, which is a
contradiction. In the second possibility, x and y have the same sign. So either li(q+3)

and rjt are saturated simultaneously or riq and lj(t+3) are. There are also edges between
these pairs of vertices and, also by Lemma 1, it is a contradiction. Therefore, R solves
One-in-three 3SAT.

2.1.2.4 Transforming a variable assignment into a disconnected matching.

Finally, we define a 2-disconnected matching M , obtained from a solution of One-
in-three 3SAT. Then, Lemma 5 proves that M is a 2-disconnected matching with the
desired cardinality 12m.

(I) For each clause ci, whose true literal is the j-th, add to M the set of edges defined
as {lijli7, rijri7, liqli8, riqri8, ritli9, ritri9 | q ∈ {4,5}, t ∈ {5,6}, q 6= j + 3 6= t 6= q}.

(II) For H1, add to the matching M any 3m disjoint edges. Repeat the process for H2.

Lemma 5. Let R be a variable assignment of an input I from One-in-three 3SAT.
It is possible, in polynomial time, to generate a disconnected matching with cardinality
k = 12m from I in a graph generated by the transformation described below.

Proof. In the procedure described, we are saturating 6 edges for each clause in (I), and 6m
edges in (II). Then,M has 12m edges. We need to show now thatM is disconnected. It is
necessary and sufficient to show that there are noM -saturated two adjacent vertices l and
r. Edges between vertices of the same clause subgraph are generated in (I) and we observe
that there are no two adjacent M -saturated vertices of this type, since the M -saturated
vertices are those described in Lemma 3. The vertices incident to the edges between
different clause subgraphs cannot be simultaneously M -saturated, since a variable cannot
be true and false at the same time. Therefore, M is disconnected and |M | = 12m.

Note that for any graph with diameter d ≤ 1 the answer to Disconnected Matching
is always NO. On the other hand, if the graph is disconnected, there are two possibilities.
If the graph has no more than one connected component with more than one vertex, we
again answer NO. Otherwise, the problem can be solved in polynomial time by finding a
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maximum matching M and checking if |M | ≥ k. These statements are used in the proof
of Lemma 6, which has a slight modification of the above construction, but allows us to
reduce the diameter of the graph to 3.

Lemma 6. Let G = (V1∪̇V2, E) be the bipartite graph from the transformation mentioned
and G′ = (V ′1∪̇V ′2 , E ′) so that V (G′) = V (G) ∪ {w1, w2} and E(G′) = E(G) ∪ {w1w2} ∪
{vw1 | v ∈ V (V1)}∪{vw2 | v ∈ V (V2)}. If M is a 2-disconnected matching in G′, |M | ≥ k
and M is also a 2-disconnected matching in G.

Proof. Let us show that a 2-disconnected matching M in G′, |M | ≥ 12m, saturates only
vertices of V (G) and, therefore, M is also a 2-disconnected matching in G. With this
purpose, we demonstrate that the vertices w1 and w2 are not part of M . Let us assume
that w1 is saturated and w1 ∈ C1. Note that, since G′ is bipartite, then every edge
e ∈ E(G′) has one endpoint at V ′1 and other at V ′2 . Therefore, the edge e, if saturated,
would be at C1. Thereby, M would not be 2-disconnected, which is a contradiction. This
shows that w1 is not saturated. The argument is analogous to w2. Thus, if M is a 2-
disconnected matching in G′, |M | ≥ 12m, so it is also in G. As we have already described
the structure of such matchings in G in Lemmas 1, 2 and 3, this transformation can also
be used to solve the One-in-three 3SAT problem.

Combining the previous results, we obtain Theorem 9.

Theorem 9. 2-Disconnected Matching is NP-complete even if the input is restricted
to bipartite graphs with diameter 3.

Proof. Let G = (V1 ∪ V2, E) be a graph generated from the transformation of Section
2.1.2.1. Let us show that this graph is bipartite. Note that the bipartition V1 of G can
be defined by V1 = {liq | i ∈ [m], q ∈ {1, . . . ,6}} ∪ {riq | i ∈ [m], q ∈ {7,8,9}} ∪ {u1, u3 |
u1 ∈ V (U1), u3 ∈ V (U3)}.

Next, we prove that the problem is in NP and NP-hard. Note that a 2-disconnected
matching is a certificate to show that the problem is in NP. According to the correspondence
between 2-Disconnected Matching and One-in-Three 3SAT solutions described
in Lemmas 5 and 4, the One-in-three 3SAT problem, which is NP-complete, can be
reduced to 2-Disconnected Matching using a diameter 3 bipartite graph. Therefore,
2-Disconnected Matching is NP-hard and we have proven that 2-Disconnected
Matching is NP-complete even for diameter 3 bipartite graphs.

These results imply the following dichotomies, in terms of diameter.

Corollary 2. For bipartite graphs with diameter ≤ d, Disconnected Matching is
NP-complete if d is at least 3 and belongs to P otherwise.

Corollary 3. For graphs with diameter ≤ d, Disconnected Matching is NP-complete
if d is at least 2 and belongs to P otherwise.

2.1.2.5 Example of 2-Disconnected Matching reduction

Consider the input I with the two clauses c1 = (x ∨ y ∨ z) and c2 = (w ∨ y ∨ x).
Let us build the graph G, V (G) = 30m = 60, E(G) = 47m2 +24m = 236, as described

in Section 2.1.2.1.
We describe next the edges between B1 and B2. Note that in I, the third literal of c2 is

the negation of c1. Therefore, the edges {(r11, l23), (l14, r26)} must be added. In addition,
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the second literal of c1 is the same as c2. Thus, we add the edges {(l15, r22), (r12, l25))}.
The rest of the literals refer to different variables, so there are no additional edges between
B1 and B2.

We present the only two solutions for One-in-three 3SAT and their corresponding
disconnected matchings in G. The assignment of the variables (w, x, y, z), in this order,
can be either (T, T, F, F ), represented by the matching in Figure 17a, or (F, F, F, T ), in
Figure 17b. For easier visualization, some edges of B1 and B2 are omitted, besides the
complete subgraphs H1 and H2 and their respective saturated edges. We also show the
full graph of the reduction and the corresponding disconnected matching in Figure 18.

2.1.3 NP-completeness for any fixed c

We now generalize our hardness proof to c-Disconnected Matching for every fixed
c ≥ 2.

Lemma 7. For every c ≥ 2, c-Disconnected Matching is NP-complete on bipartite
graphs of diameter 3 and general graphs of diameter 2.

Proof. We proceed by induction on c, where the base case c = 2 was handled in Theorem 9.
Now, for c > 2, let (G, k) be the input to the NP-complete problem (c−1)-Disconnected
Matching, with G being bipartite and V (G) = V1∪̇V2 a bipartition. We obtain the input
(H, k′) c-Disconnected Matching by setting V (H) = V (G)∪{v1, v2, w1, w2}, E(H) =
E(G)∪{v1v2, w1w2, v1w2, v2w1}∪{aw2 | a ∈ V1}∪{bw1 | b ∈ V2}, and k′ = k+1. Note that
H is bipartite and has diameter 3 since wi is universal with respect to V3−i ∪ {v3−i,w3−i}.
To see that these instances are equivalent, since none of {w1, w2} can be in a solution M
of (H,k′), otherwise H[M ] is connected; as such M is an c-disconnected matching if and
only if H[V (G) ∩ V (M)] = G[V (M) \ {v1,v2}] admits an (c− 1)-disconnected matching,
since any such matching in H[V (G)] can be extended by adding to it the edge v1v2.

For the claim about diameter 2 graphs, note that we can identify w1,w2 to obtain a
diameter 2 graph; the equivalence argument remains unchanged.

Together with our previous results, Lemma 7 yields a complexity dichotomy for c-
Disconnected Matching based on the value of c. We summarize this dichotomy in
the following theorem.

Theorem 10. Let c ≥ 1. The c-Disconnected Matching problem belongs to P if
c = 1. Otherwise, it is NP-complete even for bipartite graphs of diameter 3 or for general
graphs of diameter 2.
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Figure 16 – Subgraph Bi with, in bold, the three sets of vertices possibly saturated with
cardinality 12 from Table 6.
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Figure 17 – Disconnected matching examples in the simplified clause subgraphs for the
boolean expression (x ∨ y ∨ z) ∧ (w ∨ y ∨ x).
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Figure 18 – Example of a full graph generated by our reduction.
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2.2 NP-completeness for chordal graphs

In this section, we prove that Disconnected Matching is NP-complete even for
chordal graphs with diameter 2. In order to prove it, we describe a reduction from the
NP-complete problem Exact Cover By 3-Sets [78]. This problem consists in, given
two sets X, |X| = 3q, and C, |C| = m of 3-element subsets of X, decide if there exists a
subset C ′ ⊆ C such that every element of X occurs in exactly one member of C ′.

For the reduction, we define c = m− q + 1, k = m + 3q and build the chordal graph
G = (V,E) from the sets C and X as follows.

(I) For each 3-element set ci = {x,y,z}, ci ∈ C, generate a complete subgraph Hi

isomorphic to K5 and label its vertices as Wi = {wix, wiy, wiz, w+
i , w

−
i }.

(II) For each pair of 3-element sets ci = {x,y,z} and cj = {a,b,c} such that ci, cj ∈ C,
add all edges between vertices of {wix, wiy, wiz} and {wja, wjb, wjc}.

(III) For each element x ∈ X, generate a vertex vx and the edges vxwix for every i such
that ci contains the element x.

Note that G is indeed chordal since a perfect elimination order can begin with the
simplicial vertices {v1, . . . , v3q, w

+
1 , . . . , w

+
m, w

−
1 , . . . , w

−
m}, and be followed by an arbitrary

sequence of the remaining vertices, which induce a clique.
An example of the reduction and its corresponding c-disconnected matching is presented

in Figure 19. For better visualization, the edges from rule (II) are omitted.
In Lemmas 8 and 9, we define the polynomial transformation between a (m− q + 1)-

disconnected matchingM , |M | ≥ m+3q, and a subset C ′ that solves the Exact Cover
By 3-sets. Then, Theorem 11 concludes the NP-completeness for chordal graphs.

Lemma 8. Given a solution C ′ for (C,X), a (m− q + 1)-disconnected matching M of G
with m+ 3q edges can be computed in polynomial time.

Proof. Denote the sets of vertices U by {w+
i ,w

−
i | ci ∈ C} and S by the set

⋃j=m
j=1 V (Hj)\U .

Let us build a matchingM from the solution C ′. For each set ci = {x,y,z} contained in C ′,
add the edges {wixvx,wiyvy,wizvz} to M . Also, for each set cj ∈ C, add the edge w+

j w
−
j .

w12 w13 w14

w+
1 w−1

w21 w22 w25

w+
2 w−2

w32 w35 w36

w+
3 w−3

w41 w45 w46

w+
4 w−4

v1 v2 v3 v4 v5 v6

Figure 19 – An example of reduction for the input X = {1,2,3,4,5,6} and
C = {{2,3,4}, {1,2,5}, {2,5,6}, {1,5,6}}. The subgraph induced by the vertices inside the

dotted rectangle is complete and the matching in bold corresponds to the solution
C ′ = {{2,3,4}, {1,5,6}}.
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Consequently, each Hi such that ci /∈ C ′ will induce a connected component isomorphic to
K2 in G[M ], with the vertices {w+

i , w
−
i }, totalingm−q connected components and 2m−2q

saturated vertices. There will also be one more connected component containing the 3q
vertices of {vi | i ∈ [3q]} and the 5q vertices of {Wj | cj ∈ C \ C ′}. Thus, M saturates
2m − 2q + 3q + 5q = 2m + 6q vertices, corresponding to m + 3q edges. Also, G[M ] has
m − q + 1 connected components. So, M is a valid solution for the c-Disconnected
Matching.

Lemma 9. Given a (m − q + 1)-disconnected matching M of G with m + 3q edges, a
solution C ′ to Exact Cover by 3-Sets can be built in polynomial time.

Proof. Denote the sets of vertices U by the set {w+
i ,w

−
i | ci ∈ C} and S by

⋃j=m
j=1 V (Hj)\U .

Consider an arbitrary c-disconnected matching M , |M | ≥ k in G. Based on the graph
built, we show how such a matching is structured and then build a solution C ′. Note
that every edge in G is either incident to a vertex of S or to two vertices of U . Since all
vertices of S are connected, G[M ] can only have two types of connected components:

(I) A K2 with 2 vertices of U ;

(II) A connected component that can contain any vertex, except the ones from type (I)
connected components and its adjacencies.

Given that G[M ] has at least c connected components, then it must have at least c−1
connected components of type (I). For each of them, the 2 saturated vertices are {w+

i , w
−
i },

that are contained in U . To keep these vertices in an isolated connected component, the
other 3 vertices of Wi ∩ S can not be saturated. So, we will not use them for the rest
of the construction. In order to have c connected components, it is needed at least one
more. Note that, so far, we have 2c− 2 = 2m− 2q saturated vertices, and the remaining
graph has exactly 6q + 2q = 8q vertices. Since M saturates 2k = 2m− 2q vertices, then
the other connected component, of type (II), must saturate all the remaining 8q vertices.
Thus, there can be no more than c connected components in G[M ] and no more than
k edges in M . Note that, for each i ∈ [m], the subgraph G[Wi ∩ S] has either 0 or 3
saturated vertices. If it has 3, each vertex in Wi ∩ S must be matched with a vertex
of {vj | j ∈ [3q]}, by an edge. Such an edge exists because the set ci has the element
j. Therefore, a solution C ′ can contain the set ci if and only if Wi ∩ S has 3 saturated
vertices.

Theorem 11. Disconnected Matching is NP-complete for chordal graphs with
diameter 2.

Proof. Note that the c-disconnected matching is a certificate that the problem belongs to
NP. We now prove that it is also NP-hard. Lemmas 8 and 9 show that a solution C ′ for
the Exact Cover by 3-sets instance (C,X) corresponds to a c-disconnected matching
M of the chordal graph G built by rules (I)-(III), where c = m− q+ 1 and |M | = 3q+m.
Note that if we add a universal vertex to G, the same properties hold, and the diameter
of G is reduced to 2. For this reason, c-Disconnected Matching is NP-hard and,
thus, also NP-complete even for chordal graphs.

We can also make some little modifications to show that Disconnected Matching
is also NP-complete for bounded vertex degree.

We can also show that the problem is hard even for limited vertex degree graphs. In
this case, rule (II) from the previous construction can be replaced by the following.
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(II) For each pair of 3-element sets ci = {x,y,z} and cj = {a,b,c} such that ci, cj ∈ C,
add all edges having one endpoint in {wix, wiy, wiz} and other in {wja, wjb, wjc} if
and only if there is an element p ∈ ci,cj.

We know that the problem Exact Cover By 3-Sets remains NP-complete even if no
element in X appears in more than 3 sets of C [78]. Therefore, G will not be necessarily
chordal, though its maximum degree is bounded by a constant.

With the same arguments for the proof given in Theorem 11, we state the following
theorem.

Theorem 12. Disconnected Matching is NP-complete even for graphs with maximum
degree bounded by a constant and diameter 2.

2.3 Polynomial time algorithms

For our next contributions, we turn our attention to positive results, showing that the
problem is efficiently solvable in some graph classes.

2.3.1 Minimal separators and disconnected matchings

It is not surprising that minimal separators play a role when looking for c-disconnected
matchings. In fact, for c = 2, Goddard et al. [81] showed how to find 2-disconnected
matchings in graphs with a polynomial number of minimal separators. We generalize
their result by showing that Disconnected Matching parameterized by the number c
of connected components is in XP. Note that we do not need to assume that the family
of minimal separators is part of the input, as it was shown in [163] that such a family can
be constructed in polynomial time.

Theorem 13. Disconnected Matching parameterized by the number of connected
components is in XP for graphs with a polynomial number of minimal separators.

Proof. Note that if a matching M is a maximum c-disconnected matching of G = (V,E),
then there is a family S of at most c − 1 minimal separators such that V (G) − V (M)
contains

⋃
S∈S S. Therefore, if we find such S that maximizes the size of a maximum

matching M in G[V − (
⋃
S∈S S)] and M is c-disconnected, then M is a maximum c-

disconnected matching. Considering that G has nO(1) many minimal separators, the
number of possible candidates for S is bounded by nO(c). Computing a maximum matching
can be done in polynomial time and checking whether G[M ] has c components can be
done in linear time. Therefore, the whole procedure takes nO(c) time and finds a maximum
c-disconnected matching.

In particular, this result implies that c-Disconnected Matching is solvable in
polynomial time for chordal graphs [32], circular-arc graphs [43], graphs that do not
contain thetas, pyramids, prisms, or turtles as induced subgraphs [3]. We leave as an
open question to decide if Disconnected Matching parameterized by c is in FPT for
any of these classes.
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2.3.2 Interval Graphs

In this section, we show that Disconnected Matching for interval graphs can be
solved in polynomial time. To obtain a dynamic programming algorithm, we rely on the
ordering property of interval graphs [80]; that is, there is an ordering Q = 〈Q1, . . . Qp〉 of
the p maximal cliques of G such that each vertex of G occurs in consecutive elements of Q
and, moreover the intersection Si = Qi∩Qi−1 between two consecutive cliques is a minimal
separator of G. Our algorithm builds a table f(i,j,c′), where i,j ∈ [p] and c′ ∈ [c], and is
equal to q if and only if the largest c′-disconnected matching of G

[⋃
i≤`≤j Q` \ (Si ∪ Sj+1)

]
has q edges; that is, (G, k, c) is a positive instance if and only if f(1, p, c) ≥ k.

Theorem 14. Disconnected Matching can be solved in polynomial time on interval
graphs.

Proof. We define |V (G)| = n and |E(G)| = m. Let (G, k, c) be the input to Disconnected
Matching, Q = 〈Q1, . . . , Qp〉 be an ordering of the maximal cliques of G where each
vertex in V (G) occurs in consecutive elements ofQ [80], S = {S1, S2, . . . , Sp, Sp+1} be a set
of minimal separators where Si = Qi ∩Qi−1, for every 2 ≤ i ≤ p, and S1 = Sp+1 = ∅, and
Gi,j = G

[⋃
i≤`≤j Qi \ (Si ∪ Sj+1)

]
. Our dynamic programming builds a table f(i,j,c′),

where i,j ∈ {1, . . . ,p} and c′ ∈ {1, . . . ,c}, and is equal to q if and only if the largest
c′-disconnected matching of Gi,j has q edges; that is, (G, k, c) is a positive instance if and
only if f(1, p, c) ≥ k. We define the recurrence relation for f as follows:

f(i,j,c′) =


−∞, if c′ > 1 and i = j,
β(Gi,j), if c′ ∈ {0, 1},

max
c1+c2=c′

max
i≤`≤j−1

f(i, `, c1) + f(`+ 1, j, c2), otherwise.
(2.1)

In the above, β(K1) = β(∅) = −∞. If c′ ≤ 1, then, by Theorem 2, βd,c(Gi,j) =
β(Gi,j) = f(i,j,c′) and we are done. Otherwise, let c ≥ 2, M be a c′-disconnected
matching of Gi,j with maximum number of edges, C1, C2 be two connected components of
G[V (M)], and S ⊆ V (G)\V (M) be a non-empty minimal vertex separator between C1, C2

in G. Since G is an interval graph, S ∈ S, say S = S`, and w.l.o.g. C1 ⊂ V (Gi,`); let c1 be
the number of connected components in Gi,`[V (M)] and c2 the same quantity defined in
G`+1,j[V (M)]. By the hypothesis that S 6= ∅, we have that |V (Gi,`)|,|V (G`+1,j)| < |V (G)|
and, by induction on the size of the input graph, we have that f(i, `, c1) = βd,c1(Gi,`) and
f(` + 1, j, c2) = βd,c2(G`+1,j). Finally, since V (M) ∩ S = ∅ and G \ S = Gi,` ∪G`+1,J , we
have that |M | = f(i, `, c1) + f(`+ 1, j, c2) ≤ f(i,j,c′) which is covered by the third case of
Equation 2.1. For the converse, note that the first two cases of Equation 2.1 are correct:
(i) if i = j, then Gi,j is a clique, and we can have a c′-disconnected matching in Gi,j if
and only if c′ ≤ 1, and (ii) if c ≤ 1, then we are asking for a matching with an arbitrary
number of connected components, which is what is returned in the second case. For the
third case, let `, c1, c2 be the values that satisfy f(i,j,c′) = f(i, `, c1) + f(` + 1, j, c2); M1

be the corresponding c1-disconnected matching in Gi,`, M2 the c2-disconnected matching
in G`+1,j and M ′ = M1 ∪M2. By induction, |M1| = βd,c1(Gi,`) and |M2| = βd,c2(G`+1,j),
M ′ is a c′-disconnected matching of Gi,j, and f(i,j,c′) = |M ′| ≤ |M |.

As to the running time, since we have O(n2c) entries in the table and each case can be
run in O(max{nc,m

√
n}) time, it holds that the algorithm runs in polynomial time.
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2.3.3 Treewidth

The next result is a standard dynamic programming algorithm on tree decompositions.

Theorem 15. Disconnected Matching can be solved in FPT time when parameterized
by treewidth.

Proof. We define |V (G)| = n and |E(G)| = m. We suppose w.l.o.g. that we are given a
tree decomposition T = (T,B) of G of width t rooted at an empty forget node; moreover,
we solve the more general optimization problem, i.e., given (G,c) we determine the size
of the largest c-disconnected matching of G, if one exists, in time FPT on t. As usual, we
describe a dynamic programming algorithm that relies on T. For each node x ∈ V (T ),
we construct a table fx(S, U,Γ, `) which evaluates to ρ if and only if there is a (partial)
solution Mx with the following properties: (i) S ⊆ Bx∩V (Mx) and G[S] admits a perfect
matching, (ii) the vertices of U ⊆ V (Mx) ∩ Bx \ S are half-matched vertices and are
going to be matched to vertices in G \ Gx, (iii) Γ ∈ Π(Ax) is a partition of Ax, where
S ∪ U ⊆ Ax ⊆ Bx, and each part of Γ corresponds to a unique connected component of
G[Mx], in this case we say that V (Γ) = Ax, (iv)G[Mx] has exactly ` connected components
that do not intersect Bx, and (v) Mx has ρ edges. If no such solution exists, we define
fx(S, U,Γ, `) = −∞ and we say the state is invalid. Below, we show how to compute each
entry for the table for each node type.
Leaf node: Since Bx = ∅, the only valid entry is fx(∅, ∅, {}, 0), which we define to be
equal to 0.
Introduce node: Let y be the child of x in T and Bx = By ∪{v}. We compute the table
as in Equation 2.2; before proceeding, we define Γ(v) to be the block of Γ that contains
v. Recall that a partition Γ1 is a refinement of a partition Γ2 if, for every block A1 ∈ Γ1

there is a block A2 ∈ Γ2 such that A1 ⊆ A2. In an abuse of notation, a refinement of a
block A is a refinement of the partition {A}. We say that a refinement Γ2 of a block A is
v-connected if for every two blocks A1, A2 ∈ Γ2 and every pair of vertices a1 ∈ A1, a2 ∈ A2,
it holds that a1a2 /∈ E(G), and every block of Γ2 has a neighbor of v. Finally, we define
the set refv(Γ) where Γ′ ∈ refv(Γ) if and only if: (i) V (Γ′) = V (Γ) \ {v}, (ii) every block
in Γ \ Γ(v) is also in Γ′, and (iii) Γ′ contains a v-connected refinement of Γ(v) \ {v}.

fx(S, U,Γ, `) =


fy(S, U,Γ, `), if v /∈ V (Γ);

max
Γ′∈refv(Γ)

fy(S, U \ {v},Γ′, `), if v ∈ U ;

max
u∈N(v)∩S

max
Γ′∈refv(Γ)

fy(S \ {u,v}, U ∪ {u},Γ′, `), otherwise.
(2.2)

For the first case of the above equation, if v /∈ V (Γ) then any partial solution Mx of
Gx represented by (S, U,Γ, `) is also a solution to Gy under the same constraints since
Gy = Gx \{v} and v is not in V (Mx) = V (Γ). For the second case, let Mx by the solution
that corresponds to (S, U,Γ, `), Cv the connected component of G[V (Mx)] that contains
v, and π = {C1, . . . , Cq} the (possibly empty) connected components of G[Cv \ {v}]; by
definition, Cv ∩ Bx = Γ(v) is a block of Γ and π is a partition of Cv where vertices in
different blocks are non-adjacent. Consequently, we have that Γ′ = Γ\Γ(v)∪π is in refv(Γ)
and fy(S, U \ {v},Γ′, `) is accounted for in the computation of the maximum, which by
induction is correctly computed. Finally, for the third case, let uv ∈ Mx, and note that
we may proceed as in the previous case: the connected components of G[Cv \ {v}] induce
a v-connected refinement π of Γ(v) \ {v} and Γ′ = Γ \Γ(v)∪ π is in refv(Γ), which results
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in a solution of Gy that corresponds to the tuple (S \ {u,v}, U ∪ {u},Γ′, `); since the
maximum runs over all neighbors of v in S and over all partitions in refv, our table entry
is correctly computed.
Forget node: Let y be the child of x in T and Bx = By \ {v}. We show how to
compute tables for these nodes in Equation 2.4, where Γ{u,v} = Γ\{Γ(u)}∪{Γ(u)∪{v}},
VS,U(Γ) = V (Γ) \ (S ∪ U), and

g(S, U,Γ, `, u) = max{fy(S, U,Γ{u,v}, `), fy(S ∪ {u,v}, U,Γ{u,v}, `) + 1}. (2.3)

fx(S, U,Γ, `) = max



fy(S, U,Γ, `)

fy(S, U,Γ ∪ {{v}}, `− 1)

max
u∈V (Γ)

fy(S, U,Γ
{u,v}, `), if N(v) ∩ V (Γ) = ∅;

max
u∈N(v)∩γ

g(S, U,Γ, `, u), if ∃γ ∈ Γ | N(v) ∩ V (Γ) ⊆ γ.

(2.4)

Let Mx be a solution to Gx represented by (S, U,Γ, `). If v /∈ V (Mx), then Mx is a
solution toGy constrained by (S, U,Γ, `) and, by induction, the correctness of fx is given by
the first case of Equation 2.4. Recall that, assuming v ∈ V (Mx) implies that N(v)∩V (Γ)
must be contained in a single block of Γ, otherwise this table entry is deemed invalid
and we may safely set it to −∞. If there is some connected component Cv of G[V (Mx)]
that has Cv ∩ (V (Γ) ∪ {v}) = {v}, then it must be the case that Mx is a solution of Gy

represented by (S, U,Γ ∪ {{v}}, ` − 1) since Cv ∩ By = {v}, which is the second case of
the equation. Suppose wv ∈ Mx. If {u,v} ⊆ Cv ∩ (V (Γ) ∪ {v}), we branch our analysis
on two cases:

1. For the first one, we suppose N(v) ∩ V (Γ) = ∅ and note that Γ{u,v}(u) = Cv ∩
V (Γ{u,v}), so we must have that fy(S, U,Γ{u,v}, `) 6= −∞ is accounted for in the
third case of Equation 2.4.

2. Otherwise, there is some u ∈ N(v) ∩ V (Γ) and it must be the case that N(v) ∩
V (Γ) ⊆ Γ(u) = γ. If u = w, then Mx is a partial solution to Gy represented by
(S ∪ {u,v}, U,Γ{u,v}, `), so, by induction, fy(S ∪ {u,v}, U,Γ{u,v}, `) is well defined,
and we have one additional matched edge outside of Bx than outside of By, hence
the +1 term in Equation 2.3. Finally, if u 6= w and w /∈ Bx, then we proceed as
in Case 1, as shown in Equation 2.3, but since v must be in the same connected
component of its neighbors, we have fewer entries to check in fy. Either way, u is
accounted for in the range of the maximum in the fourth case of Equation 2.4.

Join node: Finally, let x be a join node with children y,z and Bx = By = Bz. We obtain
the table for these nodes according to the following recurrence relation, where C = AtB
is the join between A and B.

fx(S, U,Γ, `) = max
`y+`z=`

Uy∪̇Uz=VS,U (Γ)
ΓytΓz=Γ

fy(S, U ∪ Uy,Γy, `y) + fz(S, U ∪ Uz,Γy, `z) (2.5)

Once again, let Mx be a solution to Gx satisfying (S, U,Γ, `) and Mi = Mx ∩ Gi for
i ∈ {y,z}. Moreover, let Ci be the connected components of G[V (Mi)], `i the number of
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components in Ci with no vertex in Bi, and Γi the partition of V (Mi)∩Bi where each block
is equal to C ∩Bi for some C ∈ Ci. Note that it must be the case that ` = `y + `z — since
Mx = My ∪Mz — and that Γ = Γy t Γz since vertices in different connected components
of My may be in a same connected component of Mz, but vertices in different connected
components in both solutions are not merged in a same connected component of Mx.
Now, define Wy ⊆ VS,U(Γ) to be the set of vertices that are matched to a vertex of Gy \S,
let Wz be defined analogously, Uy = Wz and Uz = Wy; note that (Uy, Uz) is a partition
of VS,U(Γ), and that the vertices in Mi ∩ Bi that must be matched, but not in Gi, are
given by U ∪Ui. As such, Mi is represented by (S, U ∪Ui,Γi, `i) and by induction we have
fi(S, U∪Ui,Γi, `i) = |Mi\S|, so it holds that fx(S, U,Γ, `) =

∑
i∈{y,z} fi(S, U∪Ui,Γi, `i) =

|Mx \ S|, which is one of the terms of the maximum shown in Equation 2.5.
Recall that we may assume that our tree decomposition is rooted at a forget node

r with Br = ∅; by definition, our instance (G, k, c) of Disconnected Matching is a
YES instance if and only if fr(∅, ∅, {}, c) ≥ k. As to the running time, we have O(22tηtn)
entries per table of our algorithm, where ηt be the t-th Bell number, each of which can be
computed in O

(
2tη2

t+1n
)
, which is the complexity of computing a join node, so our final

running time is of the other of O
(
8tη3

t+1n
2
)
.

We observe that Theorem 15 implies tractability for several other parameterizations,
including pathwidth and feedback vertex set.

2.4 Kernelization

In the previous section, we presented an FPT algorithm for the treewidth
parameterization, which implies tractability for several other parameters, such as vertex
cover and max leaf number. In this section, we provide kernelization lower bounds for
Disconnected Matching when parameterized by vertex cover and when parameterized
by vertex deletion distance to clique. We highlight that these lower bounds hold for the
Induced Matching problem and, for the former parameterization, even when restricted
to bipartite graphs.

The proofs are through OR-cross-compositions from the Exact Cover by 3-Sets
problem, and are inspired by the proof of Section 2.2. Throughout this section, let S =
{(X1, C1), . . . , (Xt, Ct)} be the input instances to Exact Cover by 3-Sets; w.l.o.g., we
assume that Xi = X = [n] and |Ci| = m for all i ∈ [t], and define C =

⋃
i∈[t] Ci. We

further assume that, for any two instances, Ci 6= Cj, which implies that Ci\Cj and Cj \Ci
are non-empty. We denote by (G,k) the built Induced Matching instance.

2.4.1 Vertex Cover

Construction. We begin by adding to G the set A = {va | a ∈ X} and, for each
set Sj ∈ C where Sj = {a,b,c}, we add one copy Qj of K1,4, with vertices labeled as
{wj, w∗j , wja, wjb, wjc}; wj is the central vertex, while wja, wjb, wjc are the interface vertices
of Qj. Then, we add edges to G so wjavd ∈ E(G) if and only if a = d. Now, we add to G
an instance selector gadget I, which is simply a star with t leaves, with the central vertex
labeled as q and the i-th leaf labeled as pi. To complete the construction of G, for each
pi ∈ V (I) and Sj ∈ C \ Ci, we add all edges between pi and the interface vertices of Qj,
i.e. if Sj is not a set of the i-th instance, we add edges between Qj and pi. Finally, we set
k = n+ |C| − n

3
+ 1.
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Lemma 10. Graph G is bipartite and has a vertex cover of size O(n3).

Proof. We construct the bipartition (Y,W ) as follows: Y = (I \ {q}) ∪ {wj | Sj ∈ C} ∪ A
and W = V (G) \ Y . To see that Y is an independent set, note that: (i) each of its three
components induces an independent set of G, (ii) I \ {q} is not adjacent to the central
vertex of any Qj nor to any vertex of A, and (iii) vertices of A are non-adjacent to the
central vertices of the Qj’s. For W , note it is composed by the leaves of the Qj’s, which
together form an independent set, and vertex q, which is only adjacent to vertices of I,
none of which belong to W . Note D = V (G) \ (V (I) \ {q}) is a vertex cover, i.e. G \D
is an independent set, since each connected component of G \ D corresponds to a leaf
of I. Observe that |D| = 5|C| + n + 1 and that there are most

(
n
3

)
elements in C since

there are at most this many subsets of three distinct elements of the ground set X, so
|D| = O(n3).

Lemma 11. If an Exact Cover by 3-sets instance (X`, C`) ∈ S admits a solution,
then G admits an induced matching with k edges.

Proof. Let Π be the solution to (X`, C`), Sj ∈ C, and Sj = {a,b,c}. We add toM the edges
{wjava, wjbvb, wjcvc}, if Sj ∈ Π, otherwise we add edge wjw∗j to M , totalling n + |C| − n

3

edges. For the final edge, add qp` to M . In terms of connected components, each edge of
M is a distinct component, since: (i) each Qj either has 3 of its leaves in M but not its
central vertex, or it has its central vertex in M , (ii) each vertex of A is adjacent to only
one saturated vertex, i.e. its unique neighbor in V (M) is wja, and (iii) p` is adjacent only
to interface vertices that are not saturated by M , so its unique neighbor in V (M) is q.
As such, M is an induced matching with k edges.

Let us now show the converse.

Lemma 12. In every induced matching M of size k of G, q is M -saturated.

Proof. Towards a contradiction, suppose that q /∈ V (M) and, furthermore that I ∩
V (M) = ∅. In this case, note that |M | ≤ n + |C| − n

3
= k − 1, since we may have

at most n
3
stars Qj with the three interface vertices in M , contributing with n edges to

M , and all other Qj’s have at most edge wjw∗j in M , totaling n + |C| − n
3
edges in the

matching.
If, on the other hand, I ∩ V (M) 6= ∅, then suppose pi ∈ V (M). Since q /∈ V (M), pi is

matched with a vertex in Qj, say wja, which implies that Qj ∩ V (M) = {wja}, since pi
is adjacent to all three interface vertices of Qj and, if w∗j is saturated by M , then wj also
is, which is impossible since M is an induced matching. Moreover, note that, for every
Qx with vertices adjacent to pi, we have that E(Qx) ∩M ⊆ {wxw∗x}. At this point, we
have accounted for 1 + (|C| − m − 1) = |C| − m edges of M . For the m Qj’s with no
vertex adjacent to pi, they can each contribute with at most three edges to M but no
more than n + m − n

3
in total, since each Qj will either: (i) have some of its interface

vertices matched to vertices {va, vb, vc}, (ii) have w∗j saturated, or (iii) have exactly one
of its interface vertices saturated to either some other py or to wj. As such, we have at
most n edges coming from the first option, while the others amount to, at most m − n

3

additional edges. Finally, this implies that |M | ≤ |C| −m+ n+m− n
3

= n+ |C| − n
3
< k,

and we conclude that q must be M -saturated.

As a consequence of the previous lemma, there is an edge of the form qpi in every
solution to (G,k).
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Lemma 13. If (G,k) admits a large enough induced matching, then at least one instance
(X`, C`) ∈ S also admits a solution.

Proof. Let M be a solution to (G,k) with qp` ∈ M and Q be the set of Qj’s with at
least one saturated interface vertex. Note that no vertex in Qj ∈ Q is adjacent to p`,
otherwise V (M) would not induce a matching. Let us show that |Q| = n

3
. If we had any

more elements in Q, M would have at most n edges incident to an interface vertex and
at most |C| − |Q| edges incident to the non-interface vertices of Qj’s, which implies that
|M | ≤ 1 + n + |C| − |Q| < 1 + n + |C| − n

3
= k; the first property follows from the fact

that q is already in V (M) and the neighbors of interface vertices, aside outside of A and
the central vertex of Qj, are also neighbors of q. On the other hand, if |Q| < n

3
, then we

would have that |M | ≤ 1 + 3|Q|+ |C| − |Q| < 1 + |C|+ 2n
3

= k. With this in hand, note
that, to obtain |M | = k, it must be the case that |V (M) ∩

⋃
Qj∈QQj| = n and interface

vertices are matched with vertices of A. This holds since:

k ≥ |M | = |M ∩ E(I)|+
∑
Sj∈C

|M ∩ E(Qj)| ≤ 1 + 3|Q|+ |C| − |Q|

= 1 + n+ |C| − n

3
= k

Moreover, the elements of Q must not be adjacent to p`, which implies that, for each
Qj ∈ Q, we have that Sj ∈ C`. Since vertices {a,b,c} of A are matched with vertices
{wja, wjb, wjc} of Qj ∈ Q, it follows that Sj = {a,b,c} and that {Sj | Qj ∈ Q} is a
solution to (X`, C`).

Finally, combining Lemmas 10, 11, and 13, we obtain the kernelization lower bound.

Theorem 16. Induced Matching does not admit a polynomial kernel when jointly
parameterized by vertex cover and solution size unless NP ⊆ coNP/poly, even when
restricted to bipartite graphs.

Corollary 4. Disconnected matching does not admit a polynomial kernel when
jointly parameterized by vertex cover and number of edges in the matching unless NP ⊆
coNP/poly, even when restricted to bipartite graphs.

2.4.2 Distance to Clique

It is worth noting at this point that the proof we have just presented can be adapted to
the distance to clique parameterization without significant changes. To do so, we replace
I with a clique of size t + 1, label its vertices arbitrarily as {q, p1, . . . , pt} and proceed
exactly as before. The caveat is that we must show that any solution that picks an edge
pxpy can be changed into a solution that picks, say, qpx and that this new solution behaves
in the exact same way as the one we outline in Lemma 13. We prove this in the following
lemma.

Lemma 14. If (G,k) admits a solution, then it also admits a solution where q is
saturated.

Proof. Let M be a solution to (G,k) that does not saturate q. Our first claim is that
M ∩ E(I) 6= ∅. Note that no pi may be matched to a vertex outside of I; we could
immediately repeat the second paragraph of the proof of Lemma 12, so if M ∩E(I) 6= ∅,
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it holds that V (M) ∩ I = ∅. Now, observe that |M | ≤ k − 1 since the maximum induced
matching in G \ I uses as many edges between A and the Qj’s as possible and, for
each Qj without M -saturated interface vertices, we pick edge wjw∗j , totalling at most
|A|+ |C|− n

3
≤ k−1 edges in M . As such, pxpy ∈M these are the only vertices saturated

in I, otherwise M would not be induced. Replacing edge pxpy by edge qpy maintains the
property that M is an induced matching and does not change its cardinality, completing
the proof.

At this point, we can immediately repeat the proof of Lemma 13. Together with
Lemma 14, we observe that (G,k) admits a solution if and only if some instance (X,Ci)
also does. Finally, by observing that the same vertex cover described in Lemma 10 is a
clique modulator for the current construction, we obtain the following theorem.

Theorem 17. Induced Matching does not admit a polynomial kernel when jointly
parameterized by vertex deletion distance to clique and solution size unless
NP ⊆ coNP/poly.

Corollary 5. Disconnected matching does not admit a polynomial kernel when
jointly parameterized by vertex deletion distance to clique and number of edges in the
matching unless NP ⊆ coNP/poly.

2.5 Equality of disconnected matching number and matching number

In this section, we prove that, given a graph G, deciding if βd,i(G) = βd,j(G) is NP-hard
for every fixed i and j, 1 ≤ i < j ≤ β∗, even for diameter 3 bipartite graphs. For the
particular case where i = 1, the equality is equivalent to β(G) = βd,j(G), whose decision
is NP-complete, since it is also in NP.

Note that, depending on the graph, the disconnected matching and the matching
numbers, βd and β respectively, can be the same. For instance, in a P6, 3 = β(P6) >
βd(P6) = 2, while, in a P5, 2 = β(P5) = βd(P5).

In order to prove the NP-hardness result, we first describe a reduction to the decision
β(G) = βd(G) from the NP-complete problem Exact Cover By 3-Sets [78], whose
input is (C,X). Now, we build the input bipartite graph G = (V1∪̇V2,E) as follows.

(I) Generate a complete bipartite subgraph, H = (VH∪̇V ′H ,EH), isomorphic to Kq,|C|.
Let VH be the bipartition of size |C| from H, whose vertices are labeled as {hi |
Ci ∈ C}.

(II) For each Ci ∈ C, generate a copy of P3 whose endpoints are labeled u+
i and u−i .

Connect the other vertex, ui, to hi.

(III) For each xi ∈ X, generate the subgraph Yi, isomorphic to Kfi,fi−1 where fi is
the number of triples in C that contains the element xi. Moreover, label the
vertices of the bipartition of size fi as {wi,j | xi ∈ Cj ∈ C}. Add the edges
{uiwi,j | xi ∈ Cj ∈ C}. Let W+

i and W−
i be respectively the set of vertices of

bipartitions of size fi and fi − 1.

(IV) Add two copies of K2, whose vertices are labeled {t+,t−} and {b+, b−}. Connect
b− to W+

i ∪ {u−i | Ci ∈ C} and t− to VH ∪ {u+
i | Ci ∈ C}.



57

h1 h2

h3
h4

u−1

u+
1

u−2

u+
2

u−3

u+
3

u−4

u+
4

u1 u2 u3 u4

b−

b+

t−

t+

w1,1 w1,2 w1,3

Figure 20 – Example of a bipartite graph built from the input of triples {{x1,x2,x3},
{x1,x2,x4}, {x1,x2,x5}, {x4,x5,x6}} of Exact Cover By 3-Sets . The matching

corresponds to the solution {{x1,x2,x3},{x4,x5,x6}}.

Note that G is indeed bipartite, as we define its bipartitions as V1 = {v | xi ∈ X, v ∈
W−
i )} ∪ {ui | Ci ∈ C} ∪ V ′H ∪ {b−,t−}, and V2 = {N(ui) | Ci ∈ C} ∪ {t+,b+}.
Observe in Figure 20 an example of this reduction graph for the inputX = {x1, . . . ,x6}

and C = {{x1,x2,x3}, {x1,x2,x4}, {x1,x2,x5}, {x4,x5,x6}}, in addition to a maximum
matching corresponding to solution C ′ = {{x1,x2,x3}, {x4,x5,x6}}.

Lemma 15. A maximum matching of G has cardinality 4|C| − 2q + 2 and saturates all
vertices of V1.

Proof. We define a matching M of size 4|C| − 2q + 2 that saturates all vertices of the
bipartition V1, which is strictly smaller than V2. Let us define M by the union of four
edge sets, S1 = {b+b−, t+t−}, S2 = {uiu+

i | Ci ∈ C}, S3 as q disjoint edges of H, and
S4 as, for each xi ∈ X, fi − 1 disjoint edges of Yi. Observe that |S1| = 2, |S2| = |C|,
|S3| = q, and |S4| = 3C − |X| = 3C − 3q. So, M is indeed maximum and has cardinality
4|C| − 2q + 2.

Lemma 16. The answer to the input (X,C) to Exact Cover By 3-sets is YES if and
only if there is a disconnected matching M with cardinality 4|C|− 2q+ 2 in G. Moreover,
if M exists, G[M ] has exactly two connected components.

Proof. (⇒): Let C ′ ⊆ C be a solution to (X,C) of Exact Cover By 3-sets. We
saturate the set of vertices {hi | Ci ∈ C ′} with any set of edges from H. Also, we saturate
{b+b−, t+t−}, and, for each xi ∈ X, all vertices of Yi except wi,j, Cj ∈ C ′, by any set of
edges of Yi. This is possible because Yi−wi,j is a complete bipartite subgraph. Moreover,
for each Ci ∈ C, saturate uiu+

i if Ci ∈ C ′ or uiu−i otherwise. Note that G[M ] has exactly
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two connected components, one containing {t−,t+} ∪ {hi,ui,u+
i | Ci ∈ C ′} and, other,

{b−,b+} ∪ {ui,u−i | Ci ∈ (C \ C ′)} ∪ {V (Yi) \ {wi,j} | xi ∈ X,Cj ∈ C ′}. The corresponding
separator that disconnects such components is {u+

i | Ci ∈ (C\C ′)}∪{u−i | Ci ∈ C ′}∪{wi,j |
xi ∈ X,Cj ∈ C ′}.

(⇐): Let M be a maximum disconnected matching with the same size of a maximum
matching. By Lemma 2.5, we know that |M | = 4|C| − 2q + 2 and M saturates all
vertices of V1. Note that t− and b− since they are contained in V1. Initially, we replace
the saturated edges of M incident to t− and b− by t+t− and b+b−, in the case those
edges were not in M . A solution for Exact Cover By 3-sets can be defined as
C ′ = {Ci | Ci ∈ C, u+

i ∈ V (M)}. We prove the correctness in the following.
Observe that every edge of G is adjacent to either t−t+ or b−b+, which implies G[M ]

has exactly two connected components, each containing one of these edges.
Note that, for every Ci ∈ C, the vertex ui is saturated, as it is in V1. Also, for each

xi ∈ X, as Yi is a complete bipartite subgraph whose bipartitions sizes differ by 1, clearly
there is at most one vertex not saturated by M in W+

i . So, there are at most 3q vertices
not saturated in {W+

i | xi ∈ X}.
Also, if the vertex hi is saturated, then ui, which is also saturated, is in the same

connected component of t−. For this reason, the three adjacent vertices of {W+
i | xi ∈

X}∩N(ui) are not saturated; otherwiseM would not be disconnected as it would connect
the component of t− with the one of b−. In this case, uiu+

i ∈M , as u+
i is the only neighbor

of ui left that can be saturated.
There are at least q vertices saturated in VH , since H is a complete bipartite subgraph

and q = |V ′H | ≥ |VH |. For this reason, there are at least 3q vertices not saturated in
{W+

i | xi ∈ X}. As we stated previously, there are also at most 3q vertices not saturated
in this set. So, there is exactly one vertex not saturated in eachW+

i , xi ∈ X. Observe that
those vertices must be adjacent to vertices ui such that {hi,ui,u+

i } are saturated. If hi is
not saturated, then uiu−i ∈M , since all vertices of {W+

i | xi ∈ X} ∩N(ui) are saturated
and part of the connected component of b−. Therefore, uiu+

i ∈ M if hi is saturated or
uiu
−
i ∈M otherwise.
Hence, the q saturated vertices of type ui are disjointly adjacent to non saturated

vertices of distinct Yj subgraphs, which represent elements xj ∈ Ci. Therefore, C ′ is a
solution to (X,C) of Exact Cover By 3-sets.

Lemma 16 is enough to prove the NP-completeness of deciding if β(G) = βd(G). Next,
we go further, showing the NP-hardness of βd,i(G) = βd,j(G), for fixed arbitrary i and j
such that 1 ≤ i < j ≤ β∗. Besides, we also strengthen our results in terms of diameter of
the input graph. For this purpose, we add the following rules to the construction of the
reduction graph G.

(V) Generate j − 2 copies of K2.

(VI) Generate one copy of K2 and connect each of its vertices to all vertices of each
bipartition of G.

Theorem 18. Given a graph G, deciding if βd,i(G) = βd,j(G) is NP-hard even for diameter
three bipartite graphs for every fixed i and j, 1 ≤ i < j ≤ β∗.

Proof. Observe that vertices from (VI) are never part of a maximum disconnected
matching since any edge adjacent to it would connect all the matching. Also, edges from
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(V), which we denote by M ′′, are always part of a maximum c-disconnected matching, for
any c.

Let G′ be the subgraph of G defined by rules (I), (II), (III) and (IV) and M ′
i be a

maximum matching in G′. Note that a maximum i-disconnected matching in G can
be defined as Mi = M ′

i ∪ M ′′. This holds because G[Mi] has at least j − 1 ≥ i
connected components, j − 2 induced from M ′′ and at least one from M ′

i . In order
to exist a j-disconnected matching, then G′ must admit a maximum matching M ′

j, such
that |M ′

j| = |M ′
i | and G[M ′

j] has two connected components. By Lemma 16, this is true
if and only if (X,C) has answer YES to X3C. If there is such matching M ′

j, then M ′′ ∪M ′
j

is a maximum j-disconnected matching. Otherwise, there is no j-disconnected matching
having cardinality |Mi|. Therefore, deciding if βd,i(G) = βd,j(G) is NP-hard.

For the case where i = 1, deciding if β(G) = βd,j(G) is clearly in NP, as β(G) can be
calculated in polynomial time, and a certificate to it can be a j-disconnected matching of
the same size. Thereby, we enunciate the following corollary, considering the case where
i = 1 and j = 2.

Corollary 6. Given a graphG, deciding if β(G) = βd(G) is NP-complete even for diameter
three bipartite graphs.
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3 CONNECTED MATCHINGS

In this chapter, we study the P-matching for the property of being connected, presenting
a linear algorithm to obtain it when given a maximum matching. Also, we study its
weighted version, which is NP-complete for the general case, in various graph classes and
weight constraints.

A connected matching M is a matching such that G[M ] is connected. We approach
its optimization problem, Maximum Connected Matching.

Maximum Connected Matching
Instance: A graph G.
Task : Find a connected matching M of G with maximum cardinality.

We also work with the weighted versions of connected matchings, by both decision and
optimization problems, denoted respectively by Weighted Connected Matching and
Maximum Weight Connected Matching.
Weighted Connected Matching
Instance: An edge-weighted graph G and an integer k.
Question: Is there a connected matching M of weight at least k?

Maximum Weight Connected Matching
Instance: An edge-weighted graph G.
Task : Find a connected matching M of G of maximum weight.

The rest of this chapter is organized as follows. In Section 3.1, we give an alternative
proof to the fact that Maximum Connected Matching can be solved in polynomial
time, presenting an algorithm for it.

Then we turn our attention to the weighted variant of the connected matchings
problem, Weighted Connected Matching, under some different constraints. Our
investigation begins with starlike graphs, a subclass of chordal graphs, where we show
that the problem is NP-complete when arbitrary weights are allowed. On the other hand,
we present a polynomial-time algorithm for chordal graphs if all weights are non-negative.

Afterwards, we turn our attention to bipartite graphs, first showing that even for
binary weights, Weighted Connected Matching remains NP-complete, even if the
graph is planar or its diameter is bounded. If negative weights are allowed, we prove that
the problem remains hard for subcubic planar graphs.

We then show some positive cases, namely (i) graphs of maximum degree two,
establishing a complexity dichotomy based on the maximum degree, (ii) graphs of bounded
treewidth, and (iii) trees; the latter is an improvement upon the treewidth algorithm since
it runs in linear time. The treewidth algorithm implies fixed-parameter tractability for
the treewidth parameterization, which leads us to the final result, that no polynomial
kernel exists when parameterizing by vertex cover unless NP ⊆ coNP/poly. The main
results are summarized in Table 3.
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Table 3: Summary of our results for Weighted Connected Matching.

Graph class Complexity
Weights ≥ 0 Any weights

General NP-complete
(Theorem 23)Bipartite having

diameter at most 4
Chordal P

(Theorem 22)
NP-complete
(Theorem 21)Starlike

Planar
bipartite NP-complete

(Theorem 24)

subcubic ? NP-complete
(Theorem 25)

∆ ≤ 2
P

(Theorem 26)

Tree P
(Theorem 29)

3.1 Linear algorithm for connected matchings in general graphs

Our result for Maximum Connected Matching is a linear algorithm, which is
based on the proof that β(G) = βc(G), i.e. a maximum connected matching is also a
maximum matching, presented in Theorem 2 of [81]. In this Theorem, it is presented
a procedure that turns a maximum matching into a maximum connected matching.
Nevertheless, they do not give evidence or signs that it can be done in linear time, the
complexity that we reach in Theorem 19. In the following, we also describe this result in
the form of an algorithm.

Theorem 19. Given a maximummatching in an arbitrary graphG, a maximum connected
matching in G can be found in linear time.

Proof. Let M be a maximum matching of the input graph, and r ∈ V (M). We begin by
running a BFS search on G[M ], starting at r, in order to obtain the connected component
S of G[M ] that contains r.

Note that every vertex in N(S) is not saturated, since S is maximal. Also, by the
maximality of M , for each non-saturated vertex v it holds that N(v) is saturated. Hence,
we repeat the following operation: while there is a vertex v ∈ N(S) having any neighbor
w /∈ S, replace the edge saturating w by vw. Note that this operation increases the size
of S by at least two vertices, namely v and w, but does not change the number of vertices
in the matching.

This can be implemented in linear time since we never need to look at any neighborhood
of a vertex of S twice; moreover, whenever a vertex v /∈ N(S) is considered, either v is
included in S or its neighborhood is a subset of S and v will never be a candidate to be
added to S.

Note that, to use the algorithm described in Theorem 19, it is necessary to have
calculated a maximum matching before. To obtain a maximum matching, an algorithm
with complexity O(m

√
n) is known [138]. Therefore, this complexity is the same as the

Maximum Connected Matching.
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Corollary 7. Maximum Connected Matching has the same time complexity of
Maximum matching.

For some classes, such as trees, block graphs, and chordal bipartite graphs, Maximum
Matching can be solved with better time complexities. Hence, for these classes, the
algorithm we describe shows that Maximum Connected Matching also can be
solved with the same complexity.

As a complement to Theorem 19, we show an algorithm to obtain a maximum connected
matching, given a maximum matching. It uses two queues, Qs and Qn, to store saturated
vertices and non-saturated vertices by M , respectively. Besides, we use a set C, to which
vertices of Cr or new vertices are added. The main loop adds at least one vertex to C
in each iteration, and it contains two other auxiliary loops. The first auxiliary loop calls
expand(v) for each vertex v of Qs, analyze N(v), and appropriately add to the queue
each vertex in the corresponding neighborhood that has not been added to it yet. The
second auxiliary loop calls function tryToConnect(v) for each vertex v of Qn. If there
is a vertex w ∈ N(v) \C, then w is incident to a matched edge, say wu. So, we exchange
edges in M , removing wu and adding vw.

Algorithm 1 Maximum Connected Matching

1: procedure expand(Vertex: v)
2: for w ∈ N(v) \ C do
3: if w is M -saturated then
4: C ← C ∪ {w}
5: Insert w in Qs

6: else if w /∈ W then
7: W ← W ∪ {w}
8: Insert w in Qn

9: procedure tryToConnect(Vertex: v)
10: if ∃w ∈ N(v) \ C then
11: u ← vertex matched with w in M
12: M ← M \ {uw} ∪ {vw}
13: C ← C ∪ {v, w}
14: W ← W \ {v}
15: Insert v and w in Qs

16: #Input: G: Graph, M : Maximum matching of G
17: W ← ∅; Qs ← ∅; Qn ← ∅;
18: r ← any M -saturated vertex
19: C ← {r}
20: Insert r in Qs

21: while |C| < 2|M | do
22: while Qs is not empty do
23: v ← vertex removed from the front of Qs

24: Expand(v)
25: while Qn is not empty do
26: v ← vertex removed from the front of Qn

27: tryToConnect(v)
28: return M
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(a) (b)

Figure 21 – A maximum matching (a) and a maximum connected matching (b).

Table 7 – Example of variable contents from an execution of the Algorithm 1

Function executed C W Qs Qn M
Initialization {c} {} {c} {} {ch, gj, be, di}
expand(c) {c, g, h} {a} {g,h} {a} {ch, gj, be, di}
expand(g) {c, g, h, j} {a} {h,j} {a} {ch, gj, be, di}
expand(h) {c, g, h, j} {a} {j} {a} {ch, gj, be, di}
expand(j) {c, g, h, j} {a} {} {a} {ch, gj, be, di}

tryToConnect(a) {c, g, h, j, a, b} {} {a,b} {} {ch, gj, ab, di}
expand(a) {c, g, h, j, a, b, d} {} {b,d} {} {ch, gj, ab, di}
expand(b) {c, g, h, j, a, b, d} {e} {d} {e} {ch, gj, ab, di}
expand(d) {c, g, h, j, a, b, d, i} {e} {i} {e} {ch, gj, ab, di}
expand(i) {c, g, h, j, a, b, d, i} {e} {} {e} {ch, gj, ab, di}

tryToConnect(e) {c, g, h, j, a, b, d, i} {e} {} {} {ch, gj, ab, di}

Theorem 20. Algorithm 1 runs in O(|V |+ |E|).

Proof. The main loop runs until the connected component has the desired size. At the
beginning of each iteration, we know that G[M ] is not connected yet because of the
loop stopping condition. Since, at the end of the loop, at least one vertex is added
to C, the number of iterations is O(n). The sets C and W act as markers for the
queues, so each vertex v ∈ V (G) can only be processed at most once in the functions
expand(v) and tryToConnect(v). Note that the execution of these functions analyses
the neighborhood of v and, therefore, has linear complexity to the degree of v. Hence,
the complete algorithm has linear complexity with respect to vertices and edges.

Table 7 shows an example of the execution of Algorithm 1 with the input matching
M = {ch, gj, be, di}. The vertex c was chosen as the initial. Each line represents the
state of the variables after the execution of the function specified in the first column. The
lines are in ascending order according to when the functions are executed. The algorithm
outputs the maximum connected matching {ch, gj, ab, di}.
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3.2 Weighted Connected Matchings

The problem of deciding whether or not an unweighted graph admits a P-matching
of a given size has been investigated for many different properties P. One of the few
exceptions of a P-matching problem that is solvable in polynomial time is Connected
Matching, as we stated in the previous section. So, it seems reasonable to ask if the
problem remains tractable if we generalize it in some form.

Taking into account that weighted variations of matchings are widely studied (see
Section 1.2), we decided to consider connected matchings under this approach. Besides,
we see that some P-matching concepts were already extended to edge-weighted problems,
where, in addition to the matching to have a certain property P, the sum of the weights
of the matching edges must be sufficiently large. It was shown that Maximum Weight
Induced Matching can be solved in linear time for convex bipartite graphs [115] and
in polynomial time for circular-convex and triad-convex bipartite graphs [150]. Fürst et
al. showed that Maximum Weight Acyclic Matching is solvable in polynomial time
for P4-free graphs and 2P3-free graphs [63].

Sometimes, we approach Weighted Connected Matching separately when
negative weights are allowed or not. Note that, unlike some weighted matching problems,
such as Maximum Weight Matching, negative weighted edges are relevant and may
even be required to be in an optimal solution. As an example, see Figure 22 in which the
maximum connected matching in the graph has to contain the negative-weight edge cd.

(a) (b)

Figure 22 – A maximum matching (a) and a maximum connected matching (b).

Our investigation begins with starlike graphs, a subclass of chordal graphs, where
we show that the problem is NP-complete when arbitrary weights are allowed. On the
other hand, we present a polynomial-time algorithm for chordal graphs if all weights are
non-negative.

Afterwards, we turn our attention to bipartite graphs, first showing that even for non-
negative weights, Weighted Connected Matching remains NP-complete, even if the
graph is planar or its diameter is bounded. If negative weights are allowed, we prove that
the problem remains hard for subcubic planar graphs.

We then prove the existence of polynomial-time algorithms for: (i) graphs of maximum
degree two, establishing a complexity dichotomy based on the maximum degree, (ii) graphs
of bounded treewidth, and (iii) trees; the latter is an improvement upon the treewidth
algorithm, since it runs in linear time. The treewidth algorithm implies fixed-parameter
tractability for the treewidth parameterization, which leads us to our final result, where
we prove that no polynomial kernel exists when parameterizing by vertex cover unless
NP ⊆ coNP/poly.

3.2.1 Chordal graphs

In this section, we focus our study on chordal graphs and one of their subclasses,
starlike graphs. Weighted Connected Matching for these classes has different time
complexities depending on the admittance of negative weights on the input graph; more
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specifically, we show that the problem is NP-complete if negative weights are allowed and
is in P otherwise. To reach this result, we prove the NP-completeness for starlike graphs
having weights in {−1,+1} in Section 3.2.1.1 and a polynomial-time algorithm for chordal
graphs having non-negative weights in Section 3.2.1.2.

3.2.1.1 Starlike graphs

Our result is a proof that Weighted Connected Matching is NP-complete on
starlike graphs having edge weights in {−1,+1}. Our reduction is from the NP-complete
problem 3SAT [78], with input given by the pair (X,C), where X is the set of variables
and C is the set of clauses; w.l.o.g. we assume that each clause contains exactly three
literals. We set the input of Weighted Connected Matching as k = |X| + |C| and
GX,C built by the following rules:

(I) For each variable xi ∈ X, add a copy of C3 whose vertices are labeled xi, x+
i and

x−i . Set weight −1 to edge x+
i x
−
i and +1 to the other edges.

(II) For each pair of variables xi,xj ∈ X, add all possible edges between vertices of
{x−i ,x+

i } and {x−j ,x+
j } and set its weights to −1.

(III) For each clause Ci ∈ C, add a copy of K2 whose edge weight is +1 and label its
endpoints as c+

i , and c
−
i . Also, for each literal xj of Ci, connect both c−i and c+

i to
x−j if x is negated, or x+

j otherwise; in both cases, the added edges have weight −1.

This graph is indeed starlike, as its clique tree is a star, having as center the maximal
clique containing the vertices {x+

i , x
−
i | xi ∈ X}, one leaf clique {xi, x+

i , x
−
i } for each

xi ∈ X, and one leaf clique for each clause. A connected matching of weight at least k in
GX,C corresponds to an assignment of X such that xi ∈ X is set to true if and only if x+

i

is M -saturated.

Lemma 17. Given a solution for the 3SAT instance (X,C), we can obtain a connected
matching M in GX,C having weight |X|+ |C|.

Proof. We show how to obtain the matching M . (i) For each clause Ci ∈ C, add the edge
c−i c

+
i to M . Also, (ii) for each variable xi ∈ X, if xi is set to true, we saturate the edge

x+
i xi; otherwise, x

−
i xi.

Next, we show that M is connected. Edges from (ii) are connected as each one is
incident to a vertex xi, which is part of the center clique. Each edge from (i), obtained
by clause Ci ∈ C, having xj as the variable related to the literal that resolves to true in
Cj, is connected. This holds because, if xj is negated, then c+

i x
−
j ∈ E(GX,C) and x−j is

saturated. Otherwise, c+
i x

+
j ∈ E(GX,C) and x+

j is saturated.

Lemma 18. Given an input (X,C) for 3SAT and a connected matchingM in GX,C having
weight |X|+ |C|, we can obtain an assignment R of X that solves 3SAT.

Proof. Denote byW−1 andW1 the edge sets from GX,C whose weights are, respectively, −1
and 1. First, we show that a matching having weight |X|+ |C| contains exactly |X|+ |C|
edges from W1 and no edges from W−1.

Note that there can be at most |X| + |C| edges from W1. This holds because, for
each variable xi ∈ X, a matching contains at most one edge of {x+

i xi, x
−
i xi}, since both
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Figure 23 – Example of a starlike graph built by the reduction and a connected
matching. Dashed edges have weight −1 and solid edges have weight 1. Vertices in the

dashed rectangle induce a clique in which the omitted edges have weight −1.

have an endpoint in vertex xi. Also, for each clause Ci ∈ C, the edge c−i c
+
i can also be

contained in the matching.
Since all edges contained in W−1 have negative weights, if there is a matching with

|X| + |C| vertices from W1 and no vertices from W−1, then it is maximum. Since M is a
matching whose weight is |X|+|C|, then |M∩W1| = |X|+|C| and |M∩W−1| = 0. Also, as
M is connected, then, for each edge c+

i c
−
i ∈M , there is a saturated vertex adjacent to c+

i ,
either x+

j or x−j , for xj ∈ Ci and Ci ∈ C. Those vertices are exactly the ones representing
a literal in clause Ci. So, to obtain R, for each variable xi ∈ X, we set xi to true if and
only if x+

i is saturated.

Theorem 21. Weighted Connected Matching is NP-complete even for starlike
graphs whose edge weights are in {−1,+ 1}.

Proof. Note that the problem is in NP. According to the correspondence between
Weighted Connected Matching and 3SAT solutions described in Lemmas 17 and
18, the 3SAT problem, which is NP-complete, can be reduced to Weighted Connected
Matching using a starlike graph whose edge weights are either −1 or +1. Therefore,
Weighted Connected Matching is NP-complete even for starlike graphs whose
weights are in {−1,+1}.

As an example, let an input of 3SAT be (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨
x4) ∧ (x2 ∨ x3 ∨ x5). The related graph is illustrated in Figure 23, as well as a connected
matching having weight |X| + |C| = 9, corresponding to the assignment (F,T,F,F,T ) of
the variables (x1, x2, x3, x4, x5), in this order.

3.2.1.2 Chordal graphs for non-negative weights

Theorem 21 directly implies that Weighted Connected Matching is also NP-
complete for chordal graphs. Interestingly, if the weights are restricted to be non-negative,
we can solve Weighted Connected Matching in polynomial time in this class. To
this end, we present a polynomial-time reduction to the Maximum Weight Perfect
Matching problem, which can be solved in polynomial time [45, 50]. In this problem,
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we are given a graph G and we want to find a perfect matching M whose sum of the edge
weights is maximum.

For the reduction, we consider G = (V,E) as the input graph to Maximum Weight
Connected Matching. We build the input graph Gp = (Vp,Ep) to Maximum Weight
Perfect Matching as follows:

(I) Set Vp = V . If |V | is odd, add a vertex h to Vp.

(II) Set Ep = E. Now, for each pair of non articulation vertices v1,v2 ∈ V ∪ {h}, if
v1v2 /∈ E, add the 0-weight edge v1v2 to Ep.

In the next lemma, we show that there is always a maximum weight connected
matching that saturates all articulations of a graph.

Lemma 19. Let G be a connected graph having no negative weight edge. There is a
maximum weight connected matching M that saturates all articulations.

Proof. Let M be a maximum weight connected matching such that an articulation v is
not saturated. We show that we can saturate v only by adding edges to M , in a way that
M is still connected. Let C = {C1, . . . , C|C|} be the connected components of G− v. Note
that |C| ≥ 2 and the edges of M are contained in exactly one component Ci ∈ C, because,
otherwise, G[M ] would not be connected. Let U = ((

⋃
u∈V (M) N(u)) \V (M)) \ {v}. Note

that U ⊆ V (Ci). If U 6= ∅ and there is a path P = (p1, . . . ,pq) between p1 ∈ U and pq = v
in G− V (M), saturate pipi+1 for every possible i even. If q is odd, then v is saturated. If
P does not exist, or q is even or U = ∅, saturate v with any vertex of Cj 6= Ci of C.

Without loss of generality, there is also a maximum weight matching in a chordal graph
that saturates all articulations. Therefore, ifMp is a maximum weight perfect matching in
Gp, we can obtain in linear time a maximum weight connected matching which saturates
all articulations in G by the union ofM∗ = Mp∩E with a maximal set S of 0-weight edges
having endpoints in vertices not saturated by M∗. This results in a connected matching,
as otherwise we would find a minimal separator of G that has at least two non-saturated
vertices; since G is chordal, these vertices are adjacent, which contradicts the maximality
of S.

For this purpose, we prove in Lemma 20 that Gp has a perfect matching. Then,
Lemma 21 shows that we can find a maximum weight connected matching in G given a
maximum weight perfect matching in Gp. Theorem 22 finishes the proof, proving that
Weighted Connected Matching can be solved in polynomial time for chordal graphs.

Lemma 20. The graph Gp has a perfect matching.

Proof. Let T be a block-cutpoint tree of G rooted in a vertex denoted by r. Also, denote
A by the set of articulations of G. Next, we iteratively build a perfect matching M in
Gp. First, we saturate all vertices of A. Starting from r, we traverse T r in preorder and,
when visiting a non saturated vertex v ∈ A, we saturate v by the following way. If v has
a non leaf child Bi, we saturate v with any child of Bi, that is contained in A. Otherwise,
let Bi be one child of v. Then, we saturate v with any vertex u contained in the block of
G represented by Bi.

As an example, in Figure 24, consider the graph and its block-cutpoint tree rooted in
B4. The matched edges by this procedure that are incident to articulations, in order, can
be c3c2, c1v, c5c7 and c4c6.
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(a) (b)

Figure 24 – A chordal graph in (a) and its block-cutpoint tree in (b).

Note that, when visiting a non saturated vertex v ∈ A, none of its descendant vertices
are saturated. Moreover, v is not a leaf, because, as it is an articulation, it is contained
in at least two blocks of G. At least one of these blocks is a child of v in T r. Thus, there
will always be at least one vertex to saturate with v.

Finally, we saturate all the remaining vertices, of Vp \A, which induce a clique. After
that, we saturated every vertex of Vp. Then, Gp has a perfect matching.

Lemma 21. Given a maximum weight perfect matching Mp in Gp, we can obtain, in
linear time, a maximum weight connected matching M of G.

Proof. We build a maximum weight connected matching M in G. First, (i) we set M =
Mp ∩ E(G). At this point, there may be vertices in V not M -saturated and connected
by 0-weight edges. Finally, (ii) we saturate a maximal set of those vertices. Note that
w(M) = w(Mp) and this can be done in linear time.

Now, we prove thatM is connected because, in each separator S of G, there is at least
one saturated vertex. Suppose this is not true. Note that |S| ≥ 2, since all articulations
of G are Mp-saturated by edges that are also contained in M . Then, let v1,v2 ∈ S be two
vertices not saturated. Since S is a clique, these two vertices had to be saturated in (ii).
Then, for each separator S of G, there is at least one saturated vertex, which makes M
connected.

Now, we show that M is maximum. Suppose there is a connected matching M ′ with
greater weight than M . Moreover, based on Lemma 19, we assume that M ′ saturates
all articulations. So, we build a perfect matching M ′

p from M ′. First, set M ′
p = M ′.

Since all articulations of G are saturated by M ′, then, all the remaining vertices induce
a clique. Finally, we saturate all those vertices by any disjoint set of edges. Observe that
w(M ′

p) ≥ w(M ′) > w(Mp) = w(M), which is a contradiction because Mp is a maximum
weight perfect matching inGp. Therefore the matchingM is a maximum weight connected
matching in G, and it can also be obtained in linear time.
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Theorem 22. Maximum Weight Connected Matching for chordal graphs whose
edge weights are all non-negative can be solved in polynomial time.

Proof. To solve Maximum Weight Connected Matching for an input graph G,
we can build, in linear time, the graph Gp and use it as an input of a Maximum
Weight Perfect Matching algorithm. Given this answer, we obtain a maximum
weight connected matching of G in linear time, as stated in Lemma 21. Therefore,
Maximum Weight Connected Matching can be solved in polynomial time, with
the same time complexity as Maximum Weight Perfect Matching.

3.2.1.3 Example of a chordal graph reduction

Let the input graph G of Maximum Weight Connected Matching be the one
illustrated in Figure 25a, where we show a maximum weight matching, whose weight is
44. Observe that this matching is not connected as f is not saturated. Conversely, in
Figure 25b, we show a maximum weight perfect matching Mp of Gp, whose weight is 42.
To simplify the figure, some 0-weight edges are omitted. This matching is used to obtain
the maximum weight connected matching in G of Figure 25c by removing the edge lm.

3.2.2 Bipartite graphs

The hardness result stated in Theorem 21 is highly dependent on the existence of
several non-trivial cliques, which are forbidden in some graph classes, including bipartite
graphs. This raises the question of whether or not the absence of these structures
makes the problem easier. In this section, we answer this in the negative by showing
that Weighted Connected Matching remains hard on bipartite graphs having only
binary weights.

Our proof is also based on a reduction from 3SAT, whose input is (X,C). Let the
input of Weighted Connected Matching be k = |X| + |C| + 1 and the graph GX,C
obtained by the following rules.

(I) Add two vertices, h+ and h−, connected by a 1-weight edge.

(II) For each variable xi ∈ X, add a copy of P3 whose edge weights are 1, and label its
endpoints as x+

i and x−i . Moreover, connect the other vertex, labeled xi, to h+ and
set this edge weight to 0.

(III) For each clause Ci ∈ C, add a copy of K2 whose edge weight is 1 and label its
vertices as c+

i and c−i . Also, for each literal xj of Ci, add a 0-weight edge c+
i x
−
j if xj

is negated, or c+
i x

+
j otherwise.

A connected matching M of weight at least k of GX,C corresponds to an assignment of X
such that variable xi is set to true if and only if x+

i is M -saturated.
Figure 26 presents an example where the input formula of 3SAT is (x1∨x2∨x4)∧(x1∨

x3 ∨ x5)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x5). The illustrated connected matching corresponds
to the assignment (F,T,F,F,T ), in this order, of the variables (x1, x2, x3, x4, x5).

It is also possible to strengthen our NP-completeness proof in terms of the graph
diameter, adding a vertex u and the 0-weight edges defined by {c+

i u | Ci ∈ C} ∪
{x+

i h
−, x−i h

− | xi ∈ X} ∪ {xix+
j , xix

−
j , xjx

+
i , xjx

−
i | xi,xj ∈ X}. Connected matchings

of weight k have the same properties and patterns as previously stated. In Figure 27, we
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(a)

(b) (c)

Figure 25 – A chordal graph G and its maximum weight matching in (a), a maximum
weight perfect matching of Gp in (b) and its corresponding maximum weight connected

matching of G in (c).

illustrate an example with a full diameter four bipartite graph, generated in our reduction
from the 3SAT input B = (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4).
Dashed and solid edges represent, respectively, edges having weights 0 and 1.

In next lemmas, we show that, given an input (X,C) for 3SAT, it is possible to obtain
in linear time a connected matching M in GX,C, w(M) = k, if we have a solution for
(X,C), and vice versa. Denote W0 and W1 by the edge sets from GX,C whose weights are,
respectively, 0 and 1.

Lemma 22. Given a solution for the 3SAT instance (X,C), we can obtain a connected
matching M having weight |X|+ |C|+ 1 in GX,C.

Proof. We show how to obtain the matching M . (i) For each clause Ci ∈ C, add the edge
c−i c

+
i to M . Also, (ii) for each variable xi ∈ X, if xi is set to true, we saturate the edge

x+
i xi; otherwise, x

−
i xi. Moreover, (iii) saturate the edge h+h−.

Now, we prove that this matching is connected. Edges from (ii) are connected as they
are connected to the edge h+h− of (iii). Each edge from (i), obtained by clause Ci ∈ C,
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Figure 26 – Example of a bipartite graph built by the reduction and a connected
matching of size |X|+ |C|+ 1 = 10. Dashed and solid edges represent weights 0 and 1,

respectively.

having xj as the variable related to a literal that resolves to true in Ci, is connected. This
holds because, if xj is negated, then c+

i x
−
j ∈ E(GX,C) and x−j is saturated. Otherwise,

c+
i x

+
j ∈ E(GX,C) and x+

j is saturated.

Lemma 23. Given an input (X,C) for 3SAT and a connected matchingM in GX,C having
weight |X|+ |C|+ 1, we can obtain an assignment of X that solves 3SAT in polynomial
time.

Proof. First, we show that a matching M having weight |X| + |C| + 1 contains exactly
|X|+ |C|+ 1 edges from W1 and no edges from W0. Note that |M ∩W1| ≤ |X|+ |C|+ 1
because, for each variable xi ∈ X, there is at most one matched edge of {x+

i xi, x
−
i xi},

since both have an endpoint in vertex xi. Also,M can contain the edges {h+h−}∪{c−i c+
i |

Ci ∈ C}.
Observe that each edge fromW0 has an endpoint in either {h+} or S1 = {c+

i | Ci ∈ C}.
Saturating any of these vertices by aW0 edge will decrease the number of possibly matched
edges of W1 and the weight of M , resulting in w(M) < k. Namely, if we saturate h+ or
c+
i ∈ S1, we are not able to saturate, respectively, h+h− or c+

i c
−
i . Thus, |M ∩ W1| =

|X|+ |C|+ 1 and |M ∩W0| = 0.
If the matchingM is connected, then, for each edge c+

i c
−
i ∈M , there is aM -saturated

vertex adjacent to c+
i , either x

+
j or x−j , for a variable xj contained in clause Ci. Also, for

each variable xi ∈ X, the vertex xi is saturated, which is connected to the edge h+h−.
Hence, to obtain an assignment to X, for each variable xi ∈ X, we set xi to true if and
only if x+

i is saturated.

Theorem 23. Weighted Connected Matching is NP-complete on bipartite graphs
of diameter 4 even if all edge weights are in {0,1}.

Proof. Note that the problem is in NP. According to the correspondence between
Weighted Connected Matching and 3SAT solutions described in Lemmas 22 and
23, 3SAT, which is NP-complete, can be reduced to Weighted Connected Matching
using a bipartite graph whose diameter is 4 and the edge weights are either 0 or 1. Hence,
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Figure 27 – Example of a diameter 4 bipartite graph built by the reduction.

Weighted Connected Matching is NP-complete even for bipartite graphs whose
weights are in {0, 1} and diameter is 4.

A follow-up question is if there are subclasses of bipartite graphs that admit polynomial-
time algorithms. As we show in Section 3.2.4, there exist such algorithms for trees and
graphs of maximum degree two. Nevertheless, we would like to study non-trivial classes,
such as chordal bipartite graphs and planar bipartite graphs. We leave the former as an
open problem, but proceed to study the latter, and other subclasses of planar graphs, in
our next section.

3.2.3 Planar graphs

Aside from planar bipartite graphs, which is shown to be NP-complete in Section 3.2.3.1,
we investigate the complexity of Weighted Connected Matching in planar graphs
under degree constraints in Section 3.2.3.3, proving that the problem remains hard in the
subcubic case.

3.2.3.1 Planar bipartite graphs

In this section, we prove the NP-completeness of Weighted Connected Matching
on planar bipartite graphs having weights of either 0 or 1. We use a polynomial-time
reduction from an SAT variant that we explain in the following.

Let B be a conjunctive formula where C = {C1, . . . ,Cq} and X = {x1, . . . ,xm} are the
sets of clauses and variables of B, respectively. Let Xc = (x1, . . . ,xm) be an ordering of
X. Let G(B) = (V,E) be the graph in which there is a vertex for each clause and each
variable of B, namely V = {xi | xi ∈ X} ∪ {cj | Cj ∈ C}. The edge set E is partitioned
in A1, A2 where A1 = {xicj | {xi, xi} ∩ Cj 6= ∅} and A2 = {xixi+1 | 1 ≤ i < m} ∪ {xmx1}.
Note that A2 induces a cycle containing all variable vertices and follows the ordering Xc.

In [125], Lichtenstein defined a conjunctive formula B as planar if G(B) is planar; he
showed that, for every instance of SAT, we can build in polynomial time an equivalent
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planar formula as well as its planar embedding. The problem of finding a true assignment
to a planar formula was named as Planar SAT, and was proven to be NP-complete. Later
in the paper, the author also proved the NP-completeness of a Planar SAT variant of
our interest. In this problem, the input planar boolean formula B is monotone, that
is, each of its clauses consists only of positive literals or only of negative literals. Also,
there is a planar embedding of G(B) such that each edge referencing a positive(negative)
literal is connected to the top(bottom) of the variable vertices. We refer to it as Planar
Monotone SAT. We assume that Xc is also part of its input, since it was shown in [125]
how to obtain such embedding of G(B) in polynomial time.

We use a reduction from Planar Monotone SAT to Weighted Connected
Matching, for which the input is defined as k = 2|X| + |C| and the planar bipartite
graph, which we call H(B), obtained from G(B), with the addition of the following rules.

(I) For each variable xi ∈ X, generate four vertices, x+
i , x

−
i , vi, ui. Also, add the

1-weight edges {viui, xix+
i , xix

−
i }.

(II) For each edge having an endpoint in xi, 1 ≤ i ≤ |X|, representing a positive(negative)
literal, we connect this edge to x+

i (x
−
i ) instead of xi and set its weight to 1.

(III) Remove all the edges from the variable vertices cycle, that is, from A2, and add the
0-weight edges {vixi, vixi+1 | 1 ≤ i < |X|} ∪ {vmxm, vmx1}.

(IV) For each clause Ci ∈ C, we label the corresponding vertex as c+
i and connect it to a

new vertex, c−i , by a 1-weight edge.

Similarly to the reduction described in Section 3.2.2, a connected matching M having
weight at least k in H(B) corresponds to an assignment of B in such a way that variable
xi ∈ X is set to true if and only if x+

i is M -saturated. This is proved in Lemmas 25 and
26, preceded by Lemma 24, which demonstrates properties of H(B). Then, Theorem 24
concludes the NP-completeness proof.

Lemma 24. The graph H(B) is planar and bipartite.

Proof. Observe that H(B) is bipartite since one of its bipartitions can be defined as
{xi,ui | 1 ≤ i ≤ |X|} ∪ {c+

i | Ci ∈ C}. Next, we show that H(B) is planar. Note that the
former graph G(B) has all edges connecting positive(negative) literals are connected to
the top(bottom) of the variable vertices.

For each variable xi ∈ X we created vertices x+
i and x−i representing the literals xi

and xi. Then, in the graph embedding, we can position x+
i and x−i , respectively, on the

top and on the bottom of xi. Those literal variables do not cross the former variable cycle
embedding, as we can see in Figure 28a.

Also, the vertices vi and ui can be positioned along the edges of the variable vertices
cycle, as in Figure 28b. Therefore, this graph is bipartite and planar.

Lemma 25. Given a planar formula B and an assignment R that resolves B to true,
we can obtain in linear time a connected matching M in H(B) such that w(M) = k =
2|X|+ |C|.

Proof. Let’s build a connected matching M having weight k. First, for each variable
xi ∈ X, we add to M the edge xix+

i if xi is true in R and, otherwise, xix−i . At this
point, we have |X| saturated 1-weight edges. We also saturate the 1-weight edges of



74

(a) (b)

Figure 28 – Planar representations of some subgraphs of H(B).

{viui | xi ∈ X} ∪ {c+
i c
−
i | Ci ∈ C}. At this point, we have 2|X| + |C| saturated 1-weight

edges in M and, thus, w(M) = 2|X|+ |C|.
Note that the matching is connected since, the vertices of {xi, vi | 1 ≤ i ≤ |X|} induce

a cycle in H(B) and are all saturated. The remaining edges that are not connected to
those vertices are exactly the ones in {c+

i c
−
i | 1 ≤ i ≤ |C|}. For 1 ≤ i ≤ |C|, the vertex c+

i is
connected to at least one saturated vertex x+

i or x−i , corresponding to literals, respectively
xi or xi, which resolves to true. This is due to the fact that we saturated the literal vertices
according to the assignment R, that resolves B to true. Thus, M is connected.

Lemma 26. Given the graphH(B) obtained by the formula B, and a connected matching
M , w(M) = 2|X|+ |C| in H(B), we can obtain in linear time a variable assignment of X
that resolves B to true.

Proof. Denote by W0 and W1 the edge sets of H(B) whose weights are, respectively, 0
and 1. First, we show that a matching having weight 2|X|+ |C| contains exactly 2|X|+ |C|
edges from W1 and no edges from W0.

First, we show that M ∩W1 ≤ 2|X| + |C| because, for each variable xi ∈ X, there
is at most one matched edge of {x+

i xi, x
−
i xi} since both have an endpoint in vertex xi.

The other edges from W1, {c+
i c
−
i | 1 ≤ i ≤ |C|} ∪ {viui | 1 ≤ i ≤ |X|} can all be

saturated. Conversely, each edge from W0 has an endpoint in S1 = {c+
i | 1 ≤ i ≤ |C|} or

in S2 = {vi | 1 ≤ i ≤ |X|}. Saturating any of these vertices by a W0 edge will decrease
the maximum number of matched edges of W1 and, thus, decrease the weight of M such
that w(M) < k. Namely, if we saturate c+

i ∈ S1 or vi ∈ S2 by 0-weight edges, M can not
contain, respectively, c+

i c
−
i or viui. Therefore, |M ∩W1| = 2|X|+ |C| and |M ∩W0| = 0.

Moreover, M is connected, then, for each matched edge c+
i c
−
i , there is a saturated

adjacent vertex, either x+
j or x−j , xj ∈ X, for a variable xj contained in clause Ci. Those

vertices are exactly the ones representing literals in the clause ci that resolves ci to true.
Also, the vertices {xivi ∈ 1 ≤ i ≤ |X|} are all saturated and connected.

Hence, to obtain an assignment of X, for each variable xi ∈ X, we set xi to true if
and only if x+

i is saturated, which can be done in linear time.

Theorem 24. Weighted Connected Matching is NP-complete on planar bipartite
graphs whose edge weights are in {0, 1}.
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Figure 29 – Example of a graph G(B) generated from formula
B = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) and Xc = (x1, . . . ,x5).

Proof. Note that the problem is in NP. In Lemmas 25 and 26, we show the correspondence
between solutions of Weighted Connected Matching and Planar Monotone
SAT, which is NP-complete. Thus, there is a polynomial-time reduction from Planar
Monotone SAT to Weighted Connected Matching using a planar and bipartite
input graph whose edge weights are either 0 or 1. Therefore, Weighted Connected
Matching is NP-complete even for planar bipartite graphs with binary weights.

3.2.3.2 Example

Let B be an input for Planar Monotone SAT defined as (x1 ∨ x2 ∨ x5) ∧ (x2 ∨
x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) and Xc = (x1, . . . ,x5). Observe an example of a graph G(B) in
Figure 29. This formula is monotone as, in each clause, literals are all either positive or
negative. Moreover, G(B) is planar, and all edges representing positive(negative) literals
are connected at the top(bottom) of variable vertices.

Thus, B and Xc is a legit input example of Planar Monotone SAT, which
corresponds to the input k = 2|X| + |C| = 13 and H(B) as in Figure 30 for Weighted
Connected Matching. The connected matching of weight k = 13 corresponds to the
assignment (T,F,T,T,T ) of the variables (x1, x2, x3, x4, x5), in this order.

3.2.3.3 Subcubic planar graphs

Now, we approach subcubic planar graphs, showing the NP-completeness of Weighted
Connected Matching for this class having edge weights in {−1, + 1}. Our proof is
very similar to another reduction, made by Marzio De Biasi [15].

Let us define a polynomial-time reduction from Steiner Tree, one of Karp’s original
21 NP-complete problems [111]. In this problem, we are given a graph H = (VH ,EH), a
subset R ⊆ VH and an integer k′ > 0. We want to know if there is a subgraph T = (VT , ET )
of H such that T is a tree, R ⊆ VT and |ET | ≤ k′. Our reduction is from Steiner Tree
in which the input graph is planar. Garey and Johnson showed in [77] that this problem
is NP-complete.

Let (H = (VH ,EH), R, k′) be the input of Steiner Tree such that H is planar. Also,
let q = ∆(H), p = q(|VH | − |R|) + 1 and r = p|EH | + 1. For Weighted Connected
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Figure 30 – Example of a graph H(B) and a connected matching of size k generated
from the formula B = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) and

Xc = (x1, . . . ,x5). Dashed and solid edges represent weights 0 and 1, respectively.

Matching input (G,k), we define k = r|R| − pk′ and the graph G built by the following
procedures:

(I) For each vertex w ∈ VH , add a copy of a cycle with 2r vertices if w ∈ R, or 2q
otherwise. If this number is less than 3, instead, add a copy of a path with the
same number of vertices. Set the weights of all these edges to 1. Now, for each
u ∈ N(w), arbitrarily label one of the vertices of this subgraph as vwu. We denote
this subgraph by Cw.

(II) For each edge wu in EH , generate a copy of P2p whose edge weights are −1 and
make one of its endpoints vertices adjacent to vwu and the other to vuw. We denote
this subgraph by Pwu or Puw.

A connected matching of weight at least k in G corresponds to a tree T = (VT ,ET )
where VT = {w | w ∈ VH , V (Cw) ∩ V (M) 6= ∅} ⊆ R and ET = {wu | wu ∈ EH , V (Pwu) ⊆
V (M)}.

To prove this equivalency, we begin by analyzing the planarity of G, showing that a
planar embedding of H can be used to build a planar embedding of G. Note that the
cycles in G generated in (I) can be positioned in the same place as vertices in H. Also,
all paths in G generated in (II) can be positioned along the edges as in H. Now, we turn
our attention to the maximum vertex degree of G. Note that every vertex in the cycles
of (I) has degree 2, except the ones connected to one vertex of a path from (II), having
degree 3. All vertices from (II) have degree 2. We then conclude that G is both planar
and subcubic.

In Lemmas 28 and 27, we show the correspondence between the solutions of Steiner
Tree and Weighted Connected Matching. Finally, Theorem 25 concludes our
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NP-completeness proof.

Lemma 27. Let (H,R,k′) be an input of Steiner Tree , whose solution is T = (VT ,ET ),
and G be the reduction graph obtained from it. We can obtain, in polynomial time, a
connected matching M in G such that w(M) ≥ k = r|R| − pk′.

Proof. Let us build a connected matching M having a size at least k.
For each vertex w ∈ VT , we saturate |V (Cw)|

2
= r edges from Cw. Note that the sum of

the weights of these edges is r|R|, since all vertices of R are contained in VT and, for each
cycle Cu, u ∈ R, we can saturate r 1-weight edges.

Moreover, for each edge uw ∈ ET , we saturate |V (Puw)|
2

= p edges from Puw. The sum
of these edge weights is at most −pk′, since, for each Puw, we saturate p edges having
weight −1, and k′ ≥ |ET |.

Next, we show thatM is connected. Note that V (M) = {V (Cw) | w ∈ VT}∪{V (Puw) |
uw ∈ ET}. So, for each uw ∈ ET , the vertices V (Cu) ∪ V (Cw) ∪ {vuw,vwu} are saturated.
Hence, M is connected, w(M) ≥ r|R| − pk′, and can be obtained in polynomial time.

Lemma 28. Let (H = (VH ,EH),R,k′) be an input of Steiner Tree, G be the reduction
graph obtained from it, and M a connected matching in G such that w(M) ≥ k =
r|R| − pk′. We can obtain in polynomial time a tree T = (VT , ET ) that is a solution of
Steiner Tree instance.

Proof. We show that, in order to w(M) ≤ k, we have to saturate vertices of every V (Cw),
w ∈ R. Suppose that this is not true, so there is a vertex u ∈ R such that |V (M) ∩
V (Cu)| = 0. Then, the weight of M is at most the maximum number of 1-weight edges
of C = {Cw | u 6= w ∈ VH}. For each cycle Cw ∈ C M contains at most |V (Cw)|

2
edges. So,

w(M) ≤
∑

w∈VH

|Cw|
2
, and we have the following equation.∑

w∈VH\{u}

|Cw|
2

=
∑

w∈R\{u}

|Cw|
2

+
∑

w∈VH\R

|Cw|
2

= r(|R| − 1) + q(|VH | − |R|)

If w(M) is at least k, then r(|R| − 1) + q(|VH | − |R|) ≥ k = r|R| − pk′.

r(|R| − 1) + (p− 1) ≥ r|R| ≥ r|R| − pk′

p− 1 ≥ r

p ≥ p|EH |+ 2

This is a contradiction, which means that, for every w ∈ R, at least one vertex of V (Cw) is
saturated. Moreover, M can contain r 1-weight edges from it. As for M to be connected,
some V (Puw) are all saturated, for uw ∈ EH . The number of those paths that have all
their vertices saturated is at most k′, since w(M) ≥ r|R| − pk′.

Note that saturating vertices of V (Cw), w ∈ VH \R, is irrelevant because p = q(|V | −
|R|)+1, and even if we saturate all those cycles, the maximum weight obtained is q(|V |−
|R|).

Thereby, T can be defined as VT = {w | w ∈ VH , V (Cw) ∩ V (M) 6= ∅} ⊆ R and
ET = {wu | wu ∈ EH , V (Pwu) ⊆ V (M)}. Note that |ET | ≤ k′.

Theorem 25. Weighted Connected Matching is NP-complete even for subcubic
planar graphs having edge weights in {−1,+1}.
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Figure 31 – Example of a subcubic planar graph G generated from a cycle of length
three. The connected matching represents the tree subgraph G[{a,b}] of G.

Figure 32 – Example of an input graph for Steiner Tree.

Proof. Note that the problem is in NP. According to the correspondence between
Weighted Connected Matching and Steiner Tree solutions that are described
in Lemmas 28 and 27, Steiner Tree problem restricted to planar graphs, which is
NP-complete, can be reduced to Weighted Connected Matching using a planar
graph whose edge weights are either −1 or +1 and vertex degree is at most 3. Therefore,
Weighted Connected Matching is NP-complete even for subcubic planar graphs
whose weights are in {−1,+1}.

3.2.3.4 Example 1

As an example, consider the input for Steiner Tree as k′ = 1, R = {a,b} and
H = (VH , EH), isomorphic to C3, with VH = {a,b,c}. So, q = ∆(H) = 2, p = q(|VH | −
|R|) + 1 = 3, r = p|EH | + 1 = 10. For the Weighted Connected Matching input,
we set k = 17, and the graph as illustrated in Figure 31.

3.2.3.5 Example 2

Let the input for Steiner Tree be k′ = 3, R = {a,c,d} and the graph H = (VH ,EH)
as in Figure 32. In this case, we have that q = ∆(H) = 4, p = q(|VH | − |R|) + 1 = 13,
and r = p|EH |+ 1 = 105.

A representation of the reduction graph G is shown in Figure 33. For a better
visualization, we replace path subgraphs P2p with a square. Each of its edges is incident
to terminal vertices of P2p. Also, a triangle represents a cycle subgraph, in which O is a
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Figure 33 – Representation of a graph G built by the reduction from Steiner Tree.

C2q and 4, a C2r. Triangle edges represent edges that are incident to distinct vertices
in its relative subgraph. Inside each of these symbols, we show the weight of a perfect
matching in the corresponding subgraph.

Note that the solution contains edges from C210 cycles, as well as at most three
path subgraphs P26. Hence, there are three Steiner Tree solutions, G[{a,c,d,e}],
(G[{a,b,c,d}]− ab) and (G[{a,b,c,d}]− bc).

3.2.4 Polynomial-time algorithms

So far, we have proven that Weighted Connected Matching is NP-complete
even when some constraints are imposed, such as limits on the weights, planarity and
degree bounds. In this section, we turn our attention to other tractable cases, presenting
algorithms for graphs of maximum degree two, trees and, more generally, graphs of
bounded treewidth.

3.2.4.1 Graphs having degree at most 2

Due to Theorem 25, we know that Maximum Weight Connected Matching is
NP-hard for graphs of maximum degree three. As such, we turn our attention to graphs
of maximum degree two, i.e. the disjoint unions of paths and cycles, and prove that they
allow for a linear time algorithm; in fact, for the case of paths, we reuse the algorithm for
trees previously described.

As for cycles, we use the following method. Given graph G = (V,E), take two arbitrary
edges E ′ = {uw,wv} ⊆ E. A maximum connected matching in G contains one or no
elements of E ′. So, we compare three maximum connected matchings, defined in G−uw,
G−wv, andG−w; they can be obtained in linear time, by using a dynamic programming if
|E ′ ∩M | = 1, or by our linear algorithm for trees (see Section 3.2.4.3) otherwise. Among
these three, the matching having the largest weight is a maximum weight connected
matching.

Theorem 26. Maximum Weight Connected Matching can be solved in linear time
for cycles. Furthermore, the problem can be solved in linear time for graphs of maximum
degree at most 2.
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Proof. Let e1, . . . , en be the edges of the cycle C. First, we will compute the maximum
weight connected matching containing en. Let si =

∑i
j=1w(en−2j) for i < b(n − 1)/2c

and let s′i = max1≤j≤i sj. Similarly, let pi =
∑i

j=1 w(e2j) for i < b(n− 1)/2c. Finally, let
s0 = p0 = 0. Note that a matching containing edge en can be written as {e2, . . . , e2i} ∪
{en, . . . , en−2j}, for some i + j ≤ n/2 − 1, and its weight is given by pi + w(en) + sj.
Also, note that, for fixed i, the maximum matching among every possible j is given by
Si = pi + w(en) + s′j, for j = bn/2c − i − 1. Since all si, s′i and pi can be precomputed
in linear time, we can compute each Si in constant time, which allows us to compute the
maximum weight connected matching containing en in linear time.

Since en was chosen arbitrarily, we can do the same procedure for a different edge,
en−1. If neither en−1 nor en belongs to a maximum weight connected matching, we know
that {v} = en−1 ∩ en is not saturated by it. Hence, we can delete v from C and compute
the maximum weight connected matching of the resulting graph using the algorithm for
trees from Section 3.2.4.3.

Since any maximum weight connected matching contains either en−1, en or none of
them, if we take the maximum over these three cases, we have the maximum weight
connected matching.

3.2.4.2 Bounded treewidth graphs

This next algorithm, relies on the rank based approach of Bodlaender et al. [19] for
optimizing dynamic programming algorithms for connectivity problems.

For each node x of a tree decomposition, our algorithm constructs a table fx(S,U) ⊆
Π(Bx) × R, with S,U ⊆ Bx and Π(Bx) being the set of all partitions of Bx. Intuitively,
each entry (p,w) ∈ fx(S,U) corresponds to a matching M of the subgraph induced by the
bags of the subtree rooted at x with weight w, where each block p ∈ Π(S ∪ U) is part of
a distinct connected component of G[M ].

Let U be a finite set, Π(U) denote the set of all partitions of U , and v be the coarsening
relation defined on Π(U), i.e. given two partitions p,q ∈ Π(U), p v q if and only if each
block of q is contained in some block of p. It is known that Π(U) together with v form
a lattice, upon which we can define the usual join operator t and meet operator u [19].
The join operation p t q works as follows: let H be the graph where V (H) = U and
E(H) = {uv | {{u,v}} v p∨{{u,v}} v q}; S ⊆ U is block of ptq if and only if S induces
a maximal connected component of H. The result of the meet operation puq is the unique
partition such that each block is formed by the non-empty intersection between a block
of p and a block of q. Given a subset X ⊆ U and p ∈ Π(U), p↓X ∈ Π(X) is the partition
obtained by removing all elements of U \X from p, while, for Y ⊇ U , p↑Y ∈ Π(Y ) is the
partition obtained by adding to p a singleton block for each element in Y \U . For X ⊆ U ,
we shorthand by U [X] the partition where one block is precisely {X} and all other are
the singletons of U \X; if X = {a,b}, we use U [ab].

A set of weighted partitions of a ground set U is defined as A ⊆ Π(U)× N. To speed
up dynamic programming algorithms for connectivity problems, the idea is to only store
a subset A′ ⊆ A that preserves the existence of at least one optimal solution. Formally,
for each possible extension q ∈ Π(U) of the current partitions of A to a valid solution, the
optimum of A relative to q is denoted by opt(q,A) = min{w | (p, w) ∈ A, p t q = {U}}.
A′ represents A if opt(q,A′) = opt(q,A) for all q ∈ Π(U). The key result of [19] is given
by Theorem 27.
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Theorem 27 (3.7 of [19]). There exists an algorithm that, given A and U , computes
A′ in time |A|2(ω−1)|U ||U |O(1) and |A′| ≤ 2|U |−1, where ω is the matrix multiplication
constant.

A function f : 2Π(U)×N × Z 7→ 2Π(U)×N is said to preserve representation if f(A′, z) =
f(A, z) for every A,A′ ∈ Π(U) × N and z ∈ Z; thus, if one can describe a dynamic
programming algorithm that uses only transition functions that preserve representation,
it is possible to obtain A′. In the following lemma, let rmc (A) = {(p,w) ∈ A | @(p, w′) ∈
A, w′ < w}.

Lemma 29 (Proposition 3.3 and Lemma 3.6 of [19]). Let U be a finite set and A ⊆
Π(U) × N. The following functions preserve representation and can be computed in
|A| · |B| · |U |O(1) time.

• Union. For B ∈ Π(U)× N, A ] B = rmc (A ∪ B).

• Insert. For X ∩ U = ∅, ins(X,A) = {(p↑X∪U , w) | (p,w) ∈ A}.

• Shift. For any integer w′, shift(w′,A) = {(p,w + w′) | (p,w) ∈ A}.

• Glue. Let Û = U ∪X, then glue(X,A) = rmc
({

(Û [X] t p↑Û , w) | (p,w) ∈ A
})

.

• Project. proj(X,A) = rmc
(
{(p↓X , w) | (p,w) ∈ A,∀u ∈ X : ∃v ∈ X : p v U [uv]}

)
,

if X ⊆ U .

• Join. If Û = U ∪ U ′, A ⊆ Π(U) × N and B ∈ Π(U ′) × N, then join(A,B) =

rmc
(
{(p↑Û t q↑Û , w + w′) | (p,w) ∈ A, (q, w′) ∈ B}

)
.

Theorem 28. Given a tree decomposition of width t of the n-vertex input graph,
Maximum Weight Connected Matching can be solved in 2O(t)nO(1) time.

Proof. Let G be the input graph to Maximum Weight Connected Matching, ρ :
E(G) 7→ R be the weighting of the edges, and T∗ = (T ∗,B∗) be a tree decomposition of
width t of G; in a slight abuse of notation, for L ⊆ E(G), we define ρ(L) =

∑
e∈L ρ(e).

Without loss of generality, we suppose T∗ is a nice tree decomposition, otherwise it can
be found in polynomial time. We also assume that G is connected since, if it is not
connected, we can run an algorithm in parallel for each component, which have treewidth
bounded by that of G, and output the maximum of all these distinct components. In the
first step of our algorithm, we pick a vertex π ∈ V (G) and create a tree decomposition
T = (T,B) rooted at a node r that corresponds to an empty bag that is also a forget
bag for vertex π; for each such choice of π we run the dynamic programming algorithm
we describe in the remainder of this proof. For each node x ∈ V (T ), we compute the
table fx(S, U) ⊆ Π(Bx) × R, with S ⊆ Bx and U ⊆ Bx \ S. If we have a weighted
partition (p, w) ∈ fx(S,U), then we want to ensure that there is a (partial) solution Mx

with the following properties: (i) every vertex of S is already matched in Gx, (ii) vertices
of U are half-matched, i.e. they have yet to be matched to other vertices but are used to
determine connectivity of G[Mx], and (iii) ρ(Mx) =

∑
e∈Mx

ρ(e) = w. Note that vertices
in U must already be accounted for when determining the connected components induced
by Mx. After every operation involving families of partitions, we apply the algorithm of
Theorem 27. We divide our analysis into the four cases of the definition of a nice tree
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decomposition, where x is the bag for which we currently want to compute the dynamic
programming table.
Leaf node. Since Bx = ∅, the only possible matching of Gx is the empty matching, so
we define:

fx(∅, ∅) = {(∅, 0)}

Introduce node. Let y be the child of of x and {v} = Bx \By. We define our transition
as follows, where Ax(S, U, u) = ins({v}, fy(S \ {u,v}, U ∪ {u})):

fx(S, U) =


fy(S, U), if v /∈ S ∪ U ;
glue(NS(u), ins({v}, fy(S, U \ {v})), if v ∈ U ;⊎
u∈NS(v) shift(ρ(uv), glue (NS(v),Ax(S,U,u))), otherwise.

If v is not in Mx, then Mx is also a partial solution to Gy which, by induction, is
represented by an element of fy(S, U) and is covered by the first case of the equation.
On the other hand, if v ∈ Mx, then v is either matched to a vertex in S, or it is a half-
matched vertex. If it is half matched, then My = Mx \ {v} must be a partial solution
to Gy and, furthermore, must be represented in fy(S, U \ {v}), since its matched edges
are the same as in Mx and all other half-matched vertices of Mx also exist in My; this
situation is covered in the second case of the equation, where we must further coarsen
the partition that represents My by joining the blocks that have neighbors of v in them.
Finally, if v ∈ S and uv ∈Mx, then it must be the case that u ∈ S, since v /∈ V (Gy). As
such, My = {u}∪Mx \{uv} must be a partial solution to Gy with u being a half-matched
vertex, i.e. My must be represented in fy(S \ {u,v}, U ∪ {u}), which holds by induction.
This final case is represented in the third case of the previous equation; note that we must
add the weight of uv to the weight of My and join its connected components that contain
vertices of NS(v).
Forget node. Let y be the child of x and {v} = By \ Bx. We compute our table as
follows:

fx(S, U) = fy(S, U) ] proj({v}, fy(S ∪ {v}, U))

First, consider the case where v /∈ Mx, and note that Mx is also a partial solution to
Gy and, consequently, must be represented by fy(S, U). On the other hand, if v ∈ Mx,
then v must be matched to some vertex of Mx, otherwise Mx would not be extensible to
a matching (i.e. without half-matched vertices) of G, since v /∈ G \Gx. These two cases
are represented by the two right-hand-side terms of our previous equation.
Join node. Finally, if y,z are the children of x, then we compose our table according to
the following equation:

fx(S, U) =
⊎
Y⊆S

join(fy(Y, U ∪ (S \ Y )), fz(S \ Y, U ∪ Y ))

Where the union operator runs over all subsets of S. Let Mx be a partial solution
of Gx, Y ⊆ S be the vertices in S matched to vertices of Gy, and My be the subset of
Mx restricted to Gy. Observe that My ∩ S = Y since the vertices of Y are precisely
those of By matched in My. Moreover, My ∩ By \ Y = U ∪ (S \ Y ) are the vertices
of Mx not matched in My; they must, however, be half-matched vertices of My since
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they are (half-)matched vertices of Mx. Consequently, My is represented by a partition
(p, wy) ∈ fy(Y, U ∪ (S \Y )). Now, let Mz ⊆Mx be the partial solution to Gz where S \Y
are the vertices of S not matched by My. Note that U ∪Y are precisely the half-matched
vertices of Mz since they must be either half-matched in Mx (U) or matched in My. As
such, Mz is represented by a partition (q, wz) ∈ fz(S \ Y, U ∪ Y ). Finally, we have that
p t q yields the same partition of S ∪ U as Mx since My ∪Mz = Mx, and, furthermore,
ρ(Mx) = ρ(My) + ρ(Mz) = wy + wz since no edge matched by My is present in Mz and
vice-versa and E(My) ∪ E(Mz) = E(Mx). These are the exact properties given by the
join operation; since the above equation runs over all subsets of S, Mx will be represented
by fx(S, U).

In order to obtain the solution to G, first observe that, since G is connected and the
root r of T is a forget bag for π, G has a connected matching of weight w if and only if
{({π}, w)} is the unique element of fr′({π}, ∅), where r′ is the child bag of r. In the final
step of the algorithm, we return the maximum weight obtained between all choices of π.

As to the running time of the dynamic programming algorithm, note that, for each
choice of π we can compute all entries of fx in time bounded by 2|Bx| ·

∑|Bx|
i=0

(|Bx

i

)
2ωitO(1) ≤

(1 + 2ω)2ttO(1); the term 2ωi corresponds to the time needed to execute the algorithm of
Theorem 27 for an entry where |S| = i and the term 2|Bx| comes from all possible choices
of U . Forget nodes can be computed in the same time since we make the same number
O(t) fewer calls to Theorem 27 for each entry. Finally, leaves can be solved in constant
time and table fx for a join node x can be computed in 2|Bx| ·

∑|Bx|
i=0

(|Bx

i

)
2ωi+itO(1) ≤

(1 + 22ω)2ttO(1) time; in this case, the 2ωi+i terms comes from the 2i choices for Y , each
of which requires one invocation of Theorem 27. Given that we have O(nt) nodes in a
nice tree decomposition, our dynamic programming algorithm can be computed in O(nt)
times the cost of the most expensive nodes, which are the join nodes, totaling the required
2O(t)nO(1) time. Since we have to apply it for each π ∈ V (G), the entire algorithm runs
in 2O(1)nO(1) time.

3.2.4.3 Trees

The algorithm described in Section 3.2.4.2 implies that Weighted Connected
Matchings can be solved in nO(1) time on trees. We strengthen this result with a linear
time algorithm for this class.

Given a tree T , we begin by rooting it in some vertex r ∈ V (T ). Then, we traverse this
rooted tree in post-order such a way that, when visiting vertex v, we find the weight of a
maximum weight connected matching in the subtree defined by v and its descendants and
such that v is saturated. The matching having the largest weight is a maximum weight
connected matching in T .

In Theorem 29, we give details about this algorithm, proving its correctness and
analyzing the running time.

Theorem 29. Maximum Weight Connected Matching on trees can be solved in
linear time.

Proof. We describe a linear algorithm that solves Weighted Connected Matching
for trees. Let T = (V,E) be a tree. We denote by T r the tree T rooted in r. Moreover,
for v ∈ V , T rv is the subtree of T r that contains v and all its descendants, and S(r,v) is
the set of children of v in T r. Also, consider Br,v as the weight of a maximum weight
connected matching in T rv such that, if v is not a leaf, then v is saturated. Moreover, Br,v
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is the weight of a matching M defined as the union of the maximum connected matchings
in T ru , for each u ∈ S(r,v), such that G[V (M) ∪ {v}] is connected.

Next, we describe a dynamic programming algorithm that, for given a root r ∈ V , can
be used to obtain Br,v and Br,v for every v ∈ V . For the base case, the vertex v is a leaf
in T rv , and then Br,v = Br,v = 0. Otherwise, v is not a leaf, and we can obtain Br,v, Br,v

as follows.

f(r,vu) = Br,u + w(vu) +
∑

s∈S(r,v)\{u}

max{Br,s,0}

Br,v =
∑

u∈S(r,v)

max {Br,u,0}

Br,v = max
u∈S(r,v)

f(r,vu)

Next, we show that we can run this dynamic programming algorithm in linear time.
Clearly, summations Br,v =

∑
u∈S(r,v) max{Br,u,0} for all vertices v ∈ V can be calculated

in linear time. For Br,v, note that it can also be written as follows.

Br,v = Br,v + max
u∈S(r,v)

(w(uv) +Br,u −Br,u)

This leads to a linear time procedure to obtain Br,v and Br,v, for every v ∈ V . Now,
we can find a maximum weight connected matching in T by reconstructing the matching
that generated weight Br,h, for the vertex h that maximizes Br,h.

3.2.4.4 Example of the tree algorithm

As an example, consider as input the tree illustrated in Figure 34. We define br,v and
M(T rv ), which can be used to reconstruct our dynamic programming algorithm, as follows.

br,v = arg max
u∈S(r,v)

f(r,vu)

M(T rv ) =


{}, if Br,v ≤ 0

{vbr,v} ∪

( ⋃
u∈S(r,v)\{br,v}

M(T ru)

)
∪

( ⋃
u∈S(r,br,v)

M(T ru)

)
, otherwise

The vertex a is chosen to be the root. In Table 8, we show the related variables
obtained. Also, the rows are ascending in the same order as those variables can be
calculated using our dynamic programming algorithm. In this example, the vertex h that
maximizes Ba,h is a. So, we build the matching M(T aa ), which is defined in T aa . First, we
saturate a with ba,a = b. Then we add the following partial matchings.

M(T ae ) = {eba,e} = {ej}
M(T ac ) = {cba,c} = {cf}
M(T ad ) = {}

Note that, though the subtree T ad is not empty, there is no possible matching that can
be added to increase the weight of a connected matching containing a. Then, the subtree
T ad is discarded, and we set M(T ad ) = {}.
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Finally, we obtain the maximum weight connected matching {ab,ej,cf}, illustrated in
Figure 34, whose weight is Ba,a = 12.

Figure 34 – A tree and a
maximum weight connected

matching.

v Br,v Br,v br,v
j 0 0 −
e 5 0 j
b −3 5 e
f 0 0 −
g 0 0 −
c 8 0 f
h 0 0 −
m 0 0 −
l 0 0 m
i 4 0 l
d −5 4 h
a 12 8 b

Table 8 – Values of Br,v, Br,v, and br,v
for each vertex v.

3.2.5 Kernelization

Theorem 28 implies that Maximum Weight Connected Matching parameterized
by treewidth is in FPT, which immediately prompts an investigation into whether its
decision version admits a polynomial kernel under the same parameterization. We answer
this negatively by showing that Weighted Connected Matching parameterized by
vertex cover number does not admit a polynomial kernel, unless NP ⊆ coNP/poly, even if
the input is restricted to bipartite graphs of bounded diameter and the allowed weights are
in {0, 1}, which implies the same result when parameterizing by treewidth, since treewidth
is upper bounded by the vertex cover number.

We prove this result through an OR-cross-composition [20] from the 3SAT problem.
The construction is heavily inspired by the proof described in Section 3.2.2. Formally let,
H = {(X1, C1), . . . , (Xt, Ct)} be a set of t 3SAT instances such thatXi = X = {x1, . . . , xn}
for every i ∈ [t]. Also, let C =

⋃
i∈[t] Ci. Finally, let (G, k) be the Weighted Connected

Matching instance we are going to build.
We begin the construction by adding to G a pair of vertices cj,c′j for each Cj ∈ C and

a unit weight edge between them. Then, for each xi ∈ X, we add vertices x−i , x∗i , x
+
i and

edges x−i x∗i , x∗ix
+
i , each of weight 1. Now, for each Cj ∈ C and i ∈ [n], if xi ∈ Cj, we

add the 0-weight edge x+
i cj to G, otherwise, if xi ∈ Cj, we add the weight 0 edge x−i cj.

We conclude this first part of the construction by adding a pair of vertices h,h′ to G,
making them adjacent with an edge of weight 1, and adding an edge of weight 0 between
h and x∗i for every xi ∈ X. At this point, we have an extremely similar graph to the one
constructed in Section 3.2.2.

For the next part of the construction, we add a copy of K1,t, where the vertex on the
smaller side is labeled q and, the vertices on the other side are each assigned a unique label
from the set Y = {y1, . . . , yt}, with each edge having weight 1. Now, for each y` ∈ Y and
Cj ∈ C \ C`, we add the 0-weight edges c′jy` and hy`. Finally, we set k = |C|+ |X|+ 2, i.e.
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we must pick one edge in each clause gadget and vertex gadget plus the edge hh′ and one
edge between q and Y . Note that |V (G)| = 3|X|+ 2|C|+ |Y |+ 3 ≤ 3|X|+ 2|X|3 + |Y |+ 3,
which implies that V (G) \ Y is a vertex cover of G of size O(|X|3), as required by the
cross-composition framework. Moreover, note that G is bipartite, as we can partition it
as follows: L = {q, h} ∪ {x+

i , x
−
i | i ∈ [n]} ∪ {c′j | Cj ∈ C} and R = V (G) \ L, where both

L and R are independent sets.

Lemma 30. If (X, C`) admits a solution, then (G, k) also admits a solution.

Proof. Let ϕ be a satisfying assignment for (X, C`). We build the solution M for (G, k)
as follows. First, for each xi ∈ X, if ϕ(xi) = 0, add edge x−i x∗i to M , otherwise add
edge x+

i x
∗
i to M , with a total weight of |X| after this step. Now, for each Cj ∈ C, and

cjc
′
j to M , reaching |C| + |C| weight. Finally, add hh′ and qy` to M , so now M has

|X|+ |C|+ 2 = k weight. Note that M is a matching. To see that it induces a connected
graph, first observe that {q, y`, h, h′, x∗1, . . . , x∗n} ∪

⋃
i∈[n]{x

−
i , x

+
i } ∩M are all part of the

same connected component Q. Moreover, for every Cj /∈ C`, we have both c′j and cj also
belong to Q since c′jy` ∈ E(G). For each Cj ∈ C`, suppose that xi ∈ Cj and ϕ(xi) = 1;
note that x+

i ∈ Q, so it holds that cj and c′j are also in Q, completing the proof.

Lemma 31. If (G,k) admits a connected matching M of weight at least k, then there is
some (X, C`) ∈ H that admits a solution.

Proof. First, note that k is also the weight of a maximum weighted matching of G, which
is achieved by picking all edges cjc′j, edge hh′, one edge incident to q, and one edge of
weight one incident to each x∗i . As such, we observe that there is one edge qy` ∈ M
and, furthermore, no other yp ∈ M , otherwise they would either be matched to h or to
some c′j; in either case we would have w(M) < k, since we would be replacing an edge
of weight one with one of weight zero, and neither h′ nor cj can be matched with other
edges of larger weight. Moreover, this implies that each x∗i is matched to either x+

i or x−i ,
otherwise we would also not be able to achieve the necessary weight. As such, for each xi,
we set ϕ(xi) = 1 if and only if x+

i is matched to x∗i . Finally, note that, for each Cj ∈ C`,
there must be a path between c′j and q passing through some x∗i and, furthermore, this
path must pass through either x+

i if xi ∈ Cj or x−i if xi ∈ Cj. This, in turn, implies that
there is a literal of Cj that evaluates to true and satisfies Cj. Consequently, every Cj is
satisfied and ϕ is a solution to (X, C`).

Combining the two previous lemmas, we immediately obtain the next theorem.

Theorem 30. Unless NP ⊆ coNP/poly, Weighted Connected Matching does not
admit a polynomial kernel when parameterized by vertex cover number and required
weight even if the input graph is bipartite and edge weights are in {0, 1}.
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CONCLUSIONS AND FUTURE WORK

In this thesis, we have studied the complexity of problems regarding two P-matchings:
connected matchings and disconnected matchings.

We have presented c-disconnected matchings and the corresponding decision problem,
which we named Disconnected Matching. This problem is related to the well-studied
induced matchings and the problem of recognizing graphs that admit a sufficiently large
induced matching. Our results show that, when the number of connected components
c is fixed, c-Disconnected Matching is solvable in polynomial time if c = 1 but
NP-complete even on bipartite graphs if c ≥ 2. We also proved that unlike Induced
Matching, Disconnected Matching remains NP-complete on chordal graphs and
bounded degree graphs. Besides, we proved that it is NP-hard to decide if the equality
βd,i(G) = βd,j(G) holds for a given graph G and 1 ≤ i < j.

On the positive side, we show that the problem can be solved in polynomial time for
interval graphs, in XP time for graphs with a polynomial number of minimal separators
when parameterized by the number of connected components c, and in FPT time when
parameterized by treewidth. Finally, we showed that Disconnected Matching does
not admit polynomial kernels for very powerful parameters, namely vertex cover and
vertex deletion distance to clique, by showing that this holds for the Induced Matching
particular case.

Concerning connected matchings, we presented an algorithm that finds a maximum
connected matching in any graph in linear time, given a maximum matching, whose
problem we named Maximum Connected Matching. Besides, motivated by previous
works on weighted P-matchings, such as Weighted Induced Matching [115, 150]
and Weighted Acyclic Matching [63], in this thesis we introduced and studied
Weighted Connected Matching problem.

We began our investigation on the complexity of Weighted Connected Matching
by imposing restrictions on the input graphs and weights. In particular, we showed that
the problem is NP-complete on planar bipartite graphs and bipartite graphs of diameter 4
for binary weights, and on subcubic planar graphs and starlike graphs when weights are
restricted to {−1,+1}. On the positive side, we presented polynomial-time algorithms
for Maximum Weight Connected Matching on chordal graphs with non-negative
weights, graphs having maximum degree at most two with arbitrary weights, on trees
and, more generally, on graphs of bounded treewidth. The latter algorithm implies that
Weighted Connected Matching is fixed-parameter tractable under the treewidth
parameterization. This prompted our study of the problem from the kernelization point
of view; our inquiry showed that no polynomial kernel exists when parameterized by
vertex cover and the minimum required weight unless NP ⊆ coNP/poly.
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Future work

Possible directions for future work include studies related to P-matchings. In
particular, there are many open problems related to connected matchings and disconnected
matchings.

Although we presented the complexity of Disconnected Matching for bipartite
graphs, interval graphs, and chordal graphs, we could approach these problems on other
graph classes. In particular, we would like to know the complexity of Disconnected
Matching for strongly chordal graphs; we note that the reduction presented in Section 2.2
has many induced subgraphs isomorphic to a sun graph.

Another interesting goal would be to find graph classes with an exponential number of
minimal separators for which Disconnected Matching could be solved in polynomial
time. One example is k-thetas1, where we could easily obtain an induced matching of
size k, which is also a k-disconnected matching. However, the solution is simple and the
graph class is too strict. So, we are interested in non-trivial graph classes and solutions
for this problem.

Also, we would like to know the complexity of obtaining a minimum maximal
disconnected matching in a given graph. Besides, we are interested in the characterizations
of graphs with the size of a minimum maximal disconnected matching (β−d ) equals the
matching number or the disconnected matching number. Three simple examples that
contrast these numbers are: (i) a k-theta, where β−d = 2, and β = βd = k, (ii) a C6, where
β−d = βd = 2 < 3 = β, and (iii) a P5, where β−d = βd = β = 2.

On its weighted version, we would like to know if there are graph classes or weight
constraints for which Weighted Disconnected Matching could be solved in
polynomial time. In this problem, we are given the input (G,k) and we want to know if
the edge-weighted graph G admits a disconnected matching whose sum of its edge weights
is at least k.

We are also interested in the parameterized complexity of the problem. Our results
show that, when parameterized by c, the problem is paraNP-hard; on the other hand, when
parameterized by the number of edges in the matching, it is W[1]-hard since Induced
Matching is W[1]-hard under this parameterization [143]. A first question of interest
is whether chordal graphs admit an FPT algorithm when parameterized by c; while the
algorithm presented in Section 2.3.1 works for all classes with a polynomial number of
minimal separators, chordal graphs offer additional properties that may aid in the proof
of an FPT algorithm.

Another research direction would be the investigation of other structural
parameterizations, such as vertex cover and cliquewidth; while the former yields a fixed-
parameter tractable algorithm due to Theorem 15, we would like to know if we can
find a single exponential-time algorithm under this weaker parameterization. On the
other hand, cliquewidth is a natural next step, as graphs of bounded treewidth have
bounded cliquewidth, but the converse does not hold. Finally, while we have settled several
kernelization questions for Disconnected Matching and Induced Matching, other
parameterizations are still of interest, such as max leaf number, feedback edge set, and
neighborhood diversity.

Concerning connected matchings, we have strong results on its unweighted version,
since we can obtain maximum connected matchings as fast as maximum matchings.

1A k-theta is a graph G with vertex set V (G) = {a, a1, . . . , ak, b, b1, . . . , bk}, and its set of edges is
{aai, bbi, aibi | 1 ≤ i ≤ k}
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However, minimum maximal connected matchings have not been studied yet. So, we
want to know the complexity of obtaining a maximal connected matching of size at most
k in a given graph. Note that, unlike the equality β = βc holds, we would like to know if
these parameters, or the size of a minimum maximal matching (β−), are comparable to the
size of a minimum maximal connected matching (β−c ). Note that β−c can be larger than
β− or not; for example, in a C6, β− = 2 > 3 = β−c = β, while, in a C5, β− = β−c = β = 2.
So we would like to study the cases and characterizations where the equalities β−c = β−

and β−c = β hold.
Concerning its weighted version, Weighted Connected Matchings, we could

approach it by different combinations of graph classes and allowed edge weights.
Specifically, we would like to know the complexity of Weighted Connected Matching
for diameter 3 bipartite graphs when weights are non-negative, chordal bipartite graphs,
and subcubic planar graphs under the same constraint. Other graph classes of interest
include cactus graphs and block graphs.

We are also interested in the parameterized complexity of the problem. In terms of
natural parameterizations, we see two possible directions: parameterizing by the number
of edges in the matching or by the weight of the matching; while we have some negative
kernelization results for these parameters, tractability is still unknown. Other possibilities
include the study of other structural parameterizations, with the main open question being
tractability for the cliquewidth parameterization.
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