
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências

Instituto de Matemática e Estatística

Diana Almeida Barros

Evaluating Shared Memory Parallel Computing Mechanisms of
the Julia Language

Rio de Janeiro
2023

Diana Almeida Barros

Evaluating Shared Memory Parallel Computing Mechanisms of the Julia
Language

Dissertação apresentada como requisito par-
cial para obtenção do título de Mestre, ao
Programa de Pós-Graduação em Ciências
Computacionais, da Universidade do Estado
do Rio de Janeiro.

Orientador: Prof.ª Dra. Cristiana Barbosa Bentes

Rio de Janeiro
2023

CATALOGAÇÃO NA FONTE

UERJ/REDE SIRIUS/BIBLIOTECA CTC/A

Márcia França Ribeiro CRB7/3669 -Bibliotecária responsável pela elaboração da ficha catalográfica

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta
dissertação, desde que citada a fonte.

_________________________________ ______________________

Assinatura Data

Barros, Diana Almeida

Evaluating Shared Memory Parallel Computing Mechanisms of the Julia
Language/Diana Almeida Barros. – 2023.

 93 f.: il.

Orientadora: Cristina Barbosa Bentes
Dissertação (Mestrado em Ciências Computacionais) - Universidade do

Estado do Rio de Janeiro, Instituto de Matemática e Estatística.

1. Julia (Linguagem de programação de computador) - Teses. I. Bentes,

Cristina Barbosa. II. Universidade do Estado do Rio de Janeiro. Instituto de
Matemática e Estatística. III Título.

 CDU 004.43

B277

Diana Almeida Barros

Evaluating Shared Memory Parallel Computing Mechanisms of the Julia
Language

Dissertação apresentada como requisito par-
cial para obtenção do título de Mestre, ao
Programa de Pós-Graduação em Ciências
Computacionais, da Universidade do Estado
do Rio de Janeiro.

Aprovada em 26 de Abril de 2023
Banca Examinadora:

Prof.ª Dra. Cristiana Barbosa Bentes (Orientador)
Departamento de Engenharia de Sistemas e Computação - UERJ

Prof. Dr. Alexandre Sena
Instituto de Matemática e Estatística - UERJ

Prof. Dr. Júlio Hoffimann
Arpeggeo

Prof. Dr. Tiago Carneiro Pessoa
Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium

Rio de Janeiro
2023

RESUMO

BARROS, Diana Almeida. Avaliando os mecanismos de computação paralela com memória
compartilhada da linguagem Julia. 2023. 93 f. Dissertação (Mestrado em Ciências Com-
putacionais) – Instituto de Matemática e Estatística, Universidade do Estado do Rio de
Janeiro, Rio de Janeiro, 2023.

Áreas de estudo como ciência de dados, aprendizado de máquina ou computação cien-
tífica são áreas promissoras que estão recebendo muitos investimentos atualmente. Essas
áreas geralmente são muito complexas e exigem um bom uso dos recursos de computação
para um melhor desempenho. Nesse contexto, nasceu a linguagem Julia. Uma linguagem
dinâmica que oferece um ambiente de alto desempenho com uma sintaxe amigável. Em-
bora seu design seja voltado para a performance, a computação paralela com memória
compartilhada ainda possui alguns recursos em desenvolvimento e os estudos nesta área
até o momento são escassos. Neste trabalho, apresentamos um estudo do desempenho dos
mecanismos de computação paralela de memória compartilhada da linguagem de progra-
mação Julia. Foram analisados o desempenho dos mecanismos Multithreading e SIMD.
Na análise do Multithreading, comparamos as estratégias de paralelismo de dados e de
tarefas disponíveis através das macros built-in @threads e @spawn, focando na forma
como distribuem as iterações do loop. Além do mais, foram analisados os mecanismos
de escalonamento de loops disponíveis na versão de Julia utilizada neste trabalho, que
são o próprio escalonamento estático da macro @threads e os escalonamentos do pa-
cote FLoops.jl, e foi observado o comportamento da performance de tais mecanismos
num ambiente escalável. Na análise dos mecanismos SIMD, comparamos a autovetor-
ização do compilador com a construção built-in @simd e dois pacotes para vetorização.
Executamos nossos experimentos com kernels sintéticos, aplicações de benchmarks e em
um framework de otimização do mundo real. Nossos resultados mostram que a macro
@spawn apresentou melhor desempenho em cargas desbalanceadas e os diferentes tipos
de escalonamento de loops oferecidos pelo FLoops.jl ajudam a melhorar a performance
das aplicações com desbalanceamento de carga. Contudo, aplicações comuns em cenários
reais se mostraram mais suscetíveis a overhead e perda de desempenho justamente pela
natureza do problema influenciar na forma em que o código é implementado, sendo mais
notáveis quando @spawn é utilizado ou quando o ambiente escala em número de threads.
Para os mecanismos SIMD, mostramos que o pacote LoopVectorization.jl proporcionou
os melhores resultados de desempenho com baixo esforço de programação.

Palavras-chave: Linguagem Julia. Memória Compartilhada. Multithreading. SIMD.
Escalonamento de Loops

ABSTRACT

BARROS, Diana Almeida. Evaluating shared memory parallel computing mechanisms of
the Julia language. 2023. 93 f. Dissertation (Masters in Computer Sciences) – Instituto
de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro,
2023.

Areas of study like data science, machine learning or scientific computing are promis-
ing areas that are currently receiving a lot of investment. These areas are usually very
complex and demand optimal usage of computing resources for better performance. In
this context, Julia language was born. A dynamic language that offers a high performance
environment with a user friendly syntax. Although its design is focused on performance,
shared memory parallel computing still has some features under development and the
studies in this area are so far scarce. In this work, we propose a detailed performance
study of the shared memory parallel computing mechanisms of Julia. It was analyzed
the performance of the Multithreading and SIMD mechanisms. In the analysis of Mul-
tithreading, we compare the data and task parallelism strategies available through the
language built-in macros @threads and @spawn, focusing on the way they distribute the
loop iterations. Furthermore, the loop scheduling mechanisms available for the Julia ver-
sion used in this work were analyzed, which are the one static scheduling provided by
@threads and the ones provided by the package FLoops.jl, and it was observed their
performance behavior when the environment scales. In the analysis of the SIMD mecha-
nisms, the compiler auto-vectorization was compared to the built-in construction @simd
and two packages for vectorization. Our experiments were run with synthetic kernels,
benchmark applications and a real-world optimization framework. Our results show that
the macro @spawn presented a better performance on unbalanced loads and the differ-
ent loop schedulers offered by FLoops.jl help improving the performance of applications
with load imbalance. However, we found that applications that are commonly found in
real world scenarios are susceptible to overhead and loss of performance as the nature
of the problem influences on code implementation, being more noticeable when @spawn
was used or if the environment could scale with threads. For the SIMD mechanisms, we
showed that the package LoopVectorization.jl provided the best performance results with
low programming effort.

Keywords: Julia Language. Shared Memory. Multithreading. SIMD. Loop Scheduling

ACKNOWLEDGEMENTS

It is with much gratitude that we here express our thankfulness to everyone that helped
and made this work possible.

Always a special thanks to my supervisor, Dr. Cristiana Bentes, who always encour-
aged me and believed that I was able accomplish this research, being always reachable
and prompt to help.

Thanks to AtOptima company, which made our research possible, trusting on our
work and contribution to their softwares.

Thanks to Dr. Tiago Carneiro, who gave us the opportunity to run part of the
experiments on computers hosted by the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS, RENATER, and several Universities
as well as other organizations.

Thanks to our parents, who have been supporting us throughout this Master title
process. I am thankful to my friends and beloved one, that understood my dedication to
this work, listened to my complaints when I was tired and even helped and gave advices
on some problems.

LIST OF FIGURES

Figure 1 – Julia REPL help mode showing part of the documentation of the sort
function. 19

Figure 2 – Julia REPL shell mode showing the ls command. 19
Figure 3 – Julia REPL Package mode activating the Coluna.jl project. 19
Figure 4 – Hierarchy of the type Number [41]. 20
Figure 5 – Defining abstract types. 20
Figure 6 – Defining a composite type. 20
Figure 7 – Defining a parametric type. 21
Figure 8 – Using one dimension arrays. 23
Figure 9 – Using multi-dimensional arrays. 24
Figure 10 – Broadcasting examples. 25
Figure 11 – Conditionals examples. 25
Figure 12 – Function examples. 26
Figure 13 – sumofsins1 is an example of a type unstable function and sumofsins2

is an example of a type stable function, followed by the execution time
of each of them with 1000 iterations. 27

Figure 14 – LLVM representation of sumofsins2. 31
Figure 15 – Example of multiple dispatch of the operator * [5] 32

Figure 16 – The producer-consumer problem using Julia’s remote channels. 36
Figure 17 – Output of the producer-consumer problem script from Figure 16 37
Figure 18 – Functions to compute π value with Monte-Carlo method sequentially

and using Distributed. The execution time is measured with the Bench-
markTools package. 38

Figure 19 – Matrix multiplication using CUDA.jl. 39
Figure 20 – Kernel to add two matrices using CUDA.jl. 40
Figure 21 – A task being created, scheduled and having its result fetched. 40
Figure 22 – Julia code for printing with threads . 41
Figure 23 – Atomic operations . 42
Figure 24 – Fibonacci computation with @spawn [14] 42
Figure 25 – Parallelizing a loop using @threads . 43
Figure 26 – Parallelizing a loop using @spawn . 44
Figure 27 – Parallelizing a loop using @threads . 44
Figure 28 – Sequential usage of the macro @floop on a reduction for loop [12] 44
Figure 29 – Parallel usage of the macro @floop on a reduction for loop [12] 44
Figure 30 – Example of the representation of the summation of two arrays in LLVM

bitcode and assembly instructions showing usage of SIMD operations.
Additional outputs hidden. 47

Figure 31 – Functions to sum two arrays using LoopVectorization.jl and SIMD.jl . . 49
Figure 32 – Declaration of special type for vectorization fp128 and call for LLVM

intrinsic instruction sin. 50

Figure 33 – Balanced Synthetic Application to evaluate loop scheduling performance 52
Figure 34 – Unbalanced Synthetic Application to evaluate loop scheduling performance 53
Figure 35 – Linked list implementation to evaluate loop scheduling performance . . . 53
Figure 36 – Load imbalance (λ) of balanced and unbalanced kernels with macros

@threads and @spawn. 53
Figure 37 – Speedup of balanced and unbalanced kernels with with macros @threads

and @spawn. 54
Figure 38 – Load imbalance (λ) of Linked List kernel of Julia implementations of

data parallelism (@threads) and task parallelism (@spawn). 55
Figure 39 – Speedups of Linked List kernel of Julia implementations of data paral-

lelism (@threads) and task parallelism (@spawn). 55
Figure 40 – Load imbalance (λ) of SRAD_v2 with macros @threads and @spawn. . 56
Figure 41 – Speedups of SRAD_v2 with macros @threads and @spawn. 56
Figure 42 – Load imbalance (λ) of LUD with macros @threads and @spawn. 57
Figure 43 – Speedups of LUD with macros @threads and @spawn. 57
Figure 44 – Load imbalance (λ) of BFS with macros @threads and @spawn. 58
Figure 45 – Speedups of BFS with macros @threads and @spawn. 58

Figure 46 – Mutually Friendly Numbers speedup with FLoops.jl executors. 62
Figure 47 – Mutually Friendly Numbers speedup. 62
Figure 48 – Mutually Friendly Numbers sequential execution time in seconds. 63
Figure 49 – Password Cracking with Brute Force speedup with FLoops.jl executors. 64
Figure 50 – Password Cracking with Brute Force speedup. 64
Figure 51 – Password Cracking with Brute Force sequential execution time in seconds. 65
Figure 52 – Transitive Closure speedup with FLoops.jl executors. 65
Figure 53 – Transitive Closure speedup. 65
Figure 54 – Transitive Closure sequential execution time in seconds. 66
Figure 55 – Mutually Friendly Numbers speedup of FLoops.jl executors on an envi-

ronment ranging from 2 to 64 threads. 67
Figure 56 – Mutually Friendly Numbers speedup of @threads and FLoops.jl with

ThreadedEx executor on an environment ranging from 2 to 64 threads. . 68
Figure 57 – Password Cracking with Brute Force speedup with small input size of

FLoops.jl executors on an environment ranging from 2 to 64 threads. . . 68
Figure 58 – Password Cracking with Brute Force speedup with medium input size

of FLoops.jl executors on an environment ranging from 2 to 64 threads. 69
Figure 59 – Password Cracking with Brute Force speedup with large input size of

FLoops.jl executors on an environment ranging from 2 to 64 threads. . . 69
Figure 60 – Password Cracking with Brute Force speedup with small input size of

@threads and FLoops.jl with WorkStealingEx executor on an environ-
ment ranging from 2 to 64 threads. 70

Figure 61 – Password Cracking with Brute Force speedup with medium input size
of @threads and FLoops.jl with WorkStealingEx executor on an envi-
ronment ranging from 2 to 64 threads. 70

Figure 62 – Password Cracking with Brute Force speedup with large input size of
@threads and FLoops.jl with WorkStealingEx executor on an environ-
ment ranging from 2 to 64 threads. 71

Figure 63 – Transitive Closure speedup of FLoops.jl executors on an environment
ranging from 2 to 64 threads. 71

Figure 64 – Transitive Closure speedup of @threads and FLoops.jl with DepthFirs-
tEx executor on an environment ranging from 2 to 64 threads. 72

Figure 65 – Sequential and auto-vectorized versions of the matrix multiplication ap-
plication used to evaluate the SIMD mechanisms. 75

Figure 66 – Assembly code obtained by @code_native on thde first SIMD.jl matrix
multiplication implementation. Corresponds to a part of the most inner
loop. 77

Figure 67 – Execution time in seconds of each SIMD mechanism shown in logarith-
mic scale. Input size represents N for matrixes N ×N 78

Figure 68 – Usage of @turbo_debug on matrix multiplication and the output from
choose_order showing what strategy LoopVectorization used. 78

Figure 69 – Sequential version of C matrix multiplication. 79

Figure 70 – Subproblem computation speedups. 85

LIST OF TABLES

Table 1 – Input sizes used in the data and task parallelism benchmarks 52

Table 2 – Input sizes used in the loop scheduling benchmarks 61

Table 3 – GFLOPS for matrix multiplication with different SIMD mechanisms
and different matrices sizes. 76

Table 4 – Execution times (in seconds). 85

CONTENTS

INTRODUCTION . 12

1 RELATED WORKS . 16

2 JULIA LANGUAGE . 18
2.1 The Language . 18
2.1.1 Julia REPL . 18
2.1.2 Types and Variables . 19
2.1.3 Arrays and Dictionaries . 21
2.1.4 Control Flow . 21
2.1.5 Functions and Methods . 22
2.2 Performance . 27
2.3 Multiple Dispatch . 32
2.4 Metaprogramming . 32

3 PARALLEL COMPUTING IN JULIA 34
3.1 Distributed Computing . 34
3.1.1 Channels . 35
3.1.2 Reduction Operation . 36
3.2 GPU Programming . 39
3.3 Multithreading . 40
3.4 Loop Scheduling . 43
3.5 SIMD Parallelization . 46
3.5.1 Auto-Vectorization . 46
3.5.2 @SIMD Macro . 47
3.5.3 Vectorization Packages . 48
3.5.4 Intrinsics . 49

4 EVALUATING DATA AND TASK PARALLELISM IN JULIA
MULTITHREADING . 51

4.1 Experimental settings . 51
4.2 Benchmarks . 51
4.3 Results . 53
4.3.1 Synthetic Kernels . 53
4.3.2 Benchmark Applications . 55
4.4 Discussion . 58

5 EVALUATING MULTITHREADING LOOP SCHEDULERS . . . 60

5.1 Experimental settings . 60
5.2 Benchmarks . 60
5.3 Evaluating the Loop Scheduling Strategies 61
5.3.1 Mutually Friendly Numbers . 61
5.3.2 Password Cracking with Brute Force . 62
5.3.3 Transitive Closure . 63
5.4 Evaluating the Scalability of the Loop Scheduling 67
5.4.1 Mutually Friendly Numbers . 67
5.4.2 Password Cracking with Brute Force . 67
5.4.3 Transitive Closure Problem . 69
5.5 Discussion . 73

6 EVALUATING SIMD MECHANISMS 74
6.1 Experimental settings . 74
6.2 Benchmarks . 74
6.3 Results . 75
6.4 Discussion . 79

7 EXPLOITING JULIA PARALLELISM IN A REAL-WORLD SCE-
NARIO . 81

7.1 The Coluna.jl Framework . 81
7.1.1 Mixed-Integer Programming . 81
7.1.2 Column generation . 82
7.1.3 Opportunities for parallelism . 82
7.2 JuMP . 83
7.3 Parallel Implementation . 83
7.4 Case Study: the Generalized Assignment 84
7.5 Experimental setting . 84
7.6 Performance Evaluation . 85
7.7 Discussion . 86

CONCLUSIONS . 87

REFERENCES . 89

12

INTRODUCTION

The past two decades have witnessed the growth of scientific software developed by
scientists without a specialized coding background. These scientists rely on higher level
interfaces and programming languages, such as Python, R, Matlab, SciLab to build their
application. The rise of these higher level languages comes from the fact that writing a
scientific application in lower level languages like C, C++ or Fortran can be very time-
consuming and requires expertise in programming. Higher level languages, on the other
hand, offer significant advantages in terms of programmer productivity. They simplify
the programming task by increasing abstraction, and are easy to learn and use for be-
ginning programmers. This enlarges the community of scientific programmers and makes
programming languages more accessible. There are a number of applications in different
areas that adopted this higher level solution [1, 2, 3, 4].

All these advantages, however, typically come at a cost – performance. The higher level
languages are interpreted and the features that make them appealing for the programmers,
like dynamic typing and error checking, incur considerable runtime overheads. A program
written in Python, R, Matlab or Scilab can be orders of magnitude slower than their
counterparts written in compiled languages such as C, C++ or Fortran. This prevents
their use for high performance computing.

Julia is a relatively new programming language that was designed to address this per-
formance/productivity tradeoff, which is also referred as the “two-language problem” [5].
Julia focuses on providing the abstraction and syntax of dynamic languages with the
performance of compiled languages. The idea is to “come for the syntax, stay for the
speed” [6]. Features like a dataflow type inference algorithm allowing types of most ex-
pressions to be inferred, an aggressive code specialization against runtime types, and a
fast Just-In-Time (JIT) compilation using the LLVM compiler framework provide the
efficiency of Julia [5].

The continuously growing Julia community is another important feature of Julia. They
provide a number of packages for problems already solved, optimizing the time spent
during the development of the code. Not only does Julia allow those packages to be
written in Julia itself (most of Julia standard libraries are actually written in Julia), but
also as built-in libraries. This means that a piece of code will have the same performance
as a built-in structure and it will also avoid any incompatibility that could arise from
multiple libraries being used together.

Moreover, since several known scientific and mathematical algorithms are already im-
plemented in languages like C and R, whenever a user wishes to reuse a known algorithm
formerly written in one of those, Julia offers an easy way to import them.

In terms of parallel programming, Julia provides different models. It currently sup-
ports parallel models like shared memory, distributed memory and GPU computing.
Although over the last 20 years, the high performance community has widely adopted
well-stablished libraries such as OpenMP and MPI to exploit parallelism, Julia provides
built-in support for parallel programming with an intuitive and simple syntax. For ex-

13

ample, we can exploit parallelism in Julia by placing a macro in front of a for loop,
with @threads for multithreading, @simd for SIMD vectorization and @distributed for
distributed parallelism.

Additionally, there is the option of using packages to offer more control over the par-
allel operations, to increase the abstraction and to improve performance. On distributed
computing, there are the alternatives of MPI.jl [7] and Elemental.jl [8] for using the al-
ready existing MPI ecosystem of libraries. On GPU computing, there are CUDA.jl [9]
for NVIDIA GPUs, AMDGPU.jl [10] for ROCm based AMD GPUs, Metal.jl [11] for
the Mac devices with M-series chip and others. On shared memory models there are
Floops.jl [12] for loop optimizations which includes multithreading with loop scheduling,
and LoopVectorization.jl [13] also for loop optimizations, including SIMD operations and
multithreading. Since shared memory is the topic of this research, these last two packages
will be visited later in this work.

Overall, Julia shows an opportunity of growth for high performance computing not
only for its own and designed way focused in performance but also for the simplicity in
which it can be achieved.

MOTIVATION

Although parallel programming support has been present in Julia from the very be-
ginning, the primitives for multithreading programming using the shared memory parallel
programming paradigm were released as experimental for many years. Only in 2019 [14],
multithreading was included as stable with the release of Julia version 1.3. Multithreading
in Julia provides a powerful mechanism to create threads dynamically and also a mecha-
nism for loop parallelism. Besides multithreading, Julia also provides SIMD mechanisms
to exploit vectorization in the code.

Since these parallel programming mechanisms are quite new for Julia programmers,
there are a number of research questions to be investigated in this concern:

• What are the different ways to achieve shared memory parallelism in Julia?

• How do these shared memory features work, what parallelism problems can they
solve and how they perform under different scenarios?

OBJECTIVES

Taking into account the research questions proposed, the objective of this work is to
perform a detailed study of the shared memory parallelism in Julia. More specifically, we
intend to analyze the multithreading and SIMD vectorization mechanisms present in Julia
packages and built-in constructions. Our idea is to study their performance, scalability
and programming effort.

In terms of the multithreading mechanisms, we focus on Julia’s built-in macros for
multithreading in different scenarios. Our idea is to compare the data and task parallelism
offered by the macros and analyze the different loop scheduling strategies and how they
have impact in the load balancing. We also intend to understand the behavior of Julia
multithreading when the number of available threads increases.

In terms of SIMD vectorization, we focus on understanding the different existing im-
plementation alternatives along with the trade-off between performance gain and devel-
opment investment.

14

METHODOLOGY

In order to achieve the proposed objectives, we performed the following steps. First,
we study the multithreading mechanims by carrying out a detailed analysis of Julia’s
parallel approaches in order to evaluate the performance impacts of the internal schedul-
ing strategy. We evaluate the two main loop parallelization primitives present in Julia:
@spawn and @threads. The parallelization with @spawn employs a task based parallel
mechanism where the scheduling of the loop iterations is dynamic performed by the run-
time. The parallelization with @threads employs data based parallel mechanism with
static scheduling. These two mechanisms were evaluated using scenarios of balanced and
unbalanced computation, on synthetic and real-world applications. We also study other
loop scheduling mechanism available and how they would scale regarding the number of
threads. The last multithreading analysis studies the effect of it on a real-world practical
scenario in an large-scale optimization framework. Along with our multithreading exper-
iments we present some C + OpenMP results even though the comparison between the
two languages is not our goal.

After the multithreading study, we perform a detailed study of the SIMD mechanisms
proposed in Julia. We explore auto-vectorization, built-in features, packages and SIMD-
intrinsics.

Our results show that the user can take benefit from multithreading in Julia with data
parallelism or task parallelism, according to the problem studied. For problems where the
load distribution is unbalanced, the task parallelism with dynamically loop scheduling usu-
ally provides the best performance results. Different loop scheduling techniques showed
to help performance improvement as long as the right scheduler is chosen for the given
problem algorithm. The nature of the problem algorithm showed to have an impact on
the multithreading scalability. For a real-world practical optimization scenario, the use
of multithreading in Julia provided performance gains. The problem studied, however,
exhibits limited parallelism. In terms of SIMD parallelization, the package LoopVector-
ization.jl provided the best performance results with little programming effort.

CONTRIBUTIONS

This work makes the following scientific contributions:

• A throughout analysis of the data and task parallelism mechanisms proposed in the
Julia language for multithreading programming;

• An analysis of the loop scheduling mechanisms available by FLoops.jl and the per-
formance improvement they provide;

• A scalability study of the multithreading mechanisms;

• A study of the SIMD mechanisms provided by Julia: auto-vectorization, built-in
macro, SIMD.jl and LoopVectorization.jl packages and intrinsics.

• A study of the impact of the loop scheduling in a real-world practical optimization
application;

15

TEXT ORGANIZATION

This work is organized in the following way: Chapter 1 presents the related works in
terms of exploiting multithreading and SIMD in Julia. Chapter 2 gives a brief introduc-
tion to Julia Language. Chapter 3 explains more details about the parallel computing
mechanisms present in Julia. Chapter 4 evaluates the performance of data and task paral-
lelism in multithreading. Chapter 5 evaluates the performance of different loop scheduling
mechanisms. Chapter 6 provides a performance analysis on the different SIMD mecha-
nisms available. Chapter 7 shows a case study where we exploit Julia parallelism in a
real-world practical scenario. Finally, in Chapter 7.7, we present our conclusions.

16

1 RELATED WORKS

Parallel computing features in Julia are still under development and improvement, the
built-in package Threads was considered experimental until version 1.3 and the built-in
@simd macro is still labeled experimental by the official documentation. Therefore, studies
related to these topics are scarce. For this reason, Julia community was very proactive in
helping scientists improve the performance of their Julia code by providing packages that
can exploit parallelism. One of these packages is LoopVectorization.jl [13, 15], a loop opti-
mizer package that exploits SIMD vectorization. This package has been used in BLAS-like
libraries, such as Gaius.jl [16] and Octavian.jl [17]. It was also used by SnpArrays.jl [18]
for reading and manipulating genome data. The work by Ko et al. [19] uses LoopVec-
torization.jl to show the applicability of DistStat.jl on high-performance statistical ap-
plications. DistStat.jl is a package that implements an array structure compatible with
distributed environments, offering abstraction for computations either on CPU or GPU.
Nagy et al. [20] uses LoopVectorization.jl on the implementation of techniques to solve
ordinary differential equation systems. Even though the above studies make use of the
optimization package, there were no considerations about how it affects the performance
of the applications. We can, however, find some interesting performance observations on
Elrod C. et al. [21] regarding a small network machine learning on CPU. As a way to
illustrate the performance gains, the comparison between the execution time of matrix
multiplication using Julia’s primitive optimization, broadcasting, BLAS and LoopVector-
ization.jl optimization showed advantages when using LoopVectorizationjl. This leads to
the development of a specialized package for such problems, SimpleChains.jl [22], that
makes heavy use of LoopVectorization.jl.

In terms of using multithreading in Julia, there are some works that studied its impact
in the performance. The work by Summers et al. [23] takes advantage of Julia easy par-
allelization interface with threads to improve the performance of a robot control package.
The results show that the package using Julia multithreading is often faster than other
options and performs close to C implementations with OpenMP. The work by Novosel and
Slivnik [24] provides a preliminary comparison between Julia distributed and shared mem-
ory implementations with the parallel language Chapel. They show the implementation
differences and some performance results. The recent work by Stanitzki and Strube [25]
uses Julia multithreading and Julia channels to accelerate data analysis workflows in high
energy physics. They compare Julia, C++ and Python in terms of throughput.

There are some Julia packages that exploit multithreading in order to improve perfor-
mance. PopGen.jl [26] is a package for population genetics analysis that aims to offer an
ecosystem that is fast and user friendly. They provide results on the comparison of Pop-
Gen.jl with equivalent R packages. Taking a look over the source code available [27], we
can see that they parallelize the loops with the @spawn macro, which uses task parallelism
with dynamic loop scheduling. LombScargle.jl [28] is a package for spectral analysis of
signals using the Lomb–Scargle periodogram. The documentation provides a comparison
between the single threaded and multithreaded execution, as well as the Python equiva-

17

lent. They show gains in execution time when using Julia multithreading. This package
uses the @threads macro, according to its source code [29], that uses data parallelism
with static loop scheduling.

On Gmys et al. [30] work, a comparison between high-performance languages is pre-
sented on problem solution quality, productivity cost and parallel performance on a mul-
tithreading environment that scales up to 64 threads. Since the study was done with
a Julia version where multithreading was still considered experimental, it leaves an op-
portunity for an updated study using a newer Julia version with stable multithreading
implementation.

Even though we can find applications that provide analysis of the multithreading
performance with Julia and compare it to single threaded versions and other languages
versions, no studies were found on how these multithreading mechanisms, data and task
parallelism, behave and how to take advantage of them depending on the use case.

The problem of the scheduling of loop iterations in multithreading has also been stud-
ied with other parallel APIs like OpenMP. Ayguadé et al. [31] show that the best schedule
for a parallel loop depends on different elements such as architectural characteristics or
data input. They propose a runtime scheduler that uses past executions in the same
run to decide the best schedule strategy for the loop. Ciorba et al. [32] show that a
single loop scheduling technique is not sufficient to balance the load of different types of
application, and propose the incorporation of other schedules techniques, like trapezoid
self-scheduling, factoring, weighted factoring, and random. Thoman et al. [33] present a
loop scheduling technique that takes into account the program structure, the problem size
and external system load by integrating compiler and runtime analysis. Zhang et al. [34]
propose an adaptive loop scheduler for hyperthreaded SMPs, studying its performance
by inter-thread data locality, instruction mix and SMT-related load imbalance. The pro-
posed scheduler is a self tuning two-level scheduler, it decides what is the best scheduler
at runtime and evaluates the best number of threads to be assigned to the loop. Durand
et al. [35] also propose an adaptive loop scheduler implemented on runtime that provides
ways of balancing the load irregular loops while respecting memory locality and presents
a way to extend it to be used on NUMA machines. Kale et al. [36] go beyond and propose
that the loop scheduling should be user-defined, and present an interface to support this
scheme.

18

2 JULIA LANGUAGE

Julia is a high level dynamic programming language that has been gaining popularity
in recent years. Julia not only provides a simple programming interface, but also provides
high performance. Hence, scientific computation has been taking great advantage from it.
The language was proposed to solve the problem that has been described in the literature
as the two language problem [5]. This problem arises when a dynamic language, like
Python for example, is used for productivity, but the code is very slow to execute. So,
the implementation ends up with parts of the code written in another language like C or
C++.

The way the language was designed makes its writing similar to usual mathematical
expressions, an operator can behave differently depending on the operands of the expres-
sion. Functions can be declared just as they are written as in f(x) = x2 − 4. Methods
are not linked to their first parameter unlike Object Oriented Programming, as it would
not make sense for mathematical expressions.

Moreover, Julia was designed for parallel programming, making complex parallel al-
gorithms easy to write. It has built-in primitives for instruction level parallelism, multi-
threading and distributed computing and packages for GPU programming.

Julia is an open source project available under MIT license. Anyone can collaborate
with it and it has an enlarging community. The number of packages provided has been
increasing over time and some of the most popular are: Flux [37] for machine learning,
DifferentialEquations [38] for solving differencial equations and JuMP [39] for mathemat-
ical optimization.

2.1 The Language

In this section we present the main features of Julia language.

2.1.1 Julia REPL

When Julia code is executed, it starts the Julia REPL. As the name says, it Reads
what you type, Evaluates it, Prints the results and loop back to do it again. It has helpful
features and is a great environment for experimenting the language and for doing quick
tests.

The REPL has a quick access to Julia’s documentation, if there is any term the user
would like to check the documentation, he/she can type “?” to activate the help mode
(see Figure 1) and then write the term desired.

The REPL also has quick access to the shell commands, the shell mode (see Figure 2)
can be activated by typing “;”. It can be helpful to navigate through the directories and
list the files in a path.

The other mode presented by Julia REPL is the Package mode, or Pkg module (see
Figure 3). It can be activated either by pressing “]” or importing the package module
with the command import Pkg. The package mode is the Julia package manager, where

19

Figure 1 – Julia REPL help mode showing part of the documentation of the sort
function.

Figure 2 – Julia REPL shell mode showing the ls command.

the user can add or remove packages, manage package versions and environments. This
is one advantage over the traditional package managers.

Figure 3 – Julia REPL Package mode activating the Coluna.jl project.

Besides the modes presented above, the REPL has other useful features like the tab
key autocompletion, history of commands accessed by the up and low key arrows and
the possibility to use special characters like some that are popular for mathematical
expressions.

2.1.2 Types and Variables

As a dynamic language, variable types do not need to be defined in Julia, but it is left
optional to the user if they want more performance.

Julia’s type system is dynamic, nominal and parametric [40] and can be described as
a hierarchy tree, where the type Any is the supertype, having all the other types as its
children, directly or indirectly. Figure 4 shows the hierarchy of the type Number. It is a
direct child of the type Any and all the types under it are its children. The advantage
of having such hierarchy is to be able to generalize operations. A function defined as
f(x :: Number) = print(x) will work for any x of the type that can be found under the
Number hierarchy. The “::” is used as an annotation, meaning that any expression on the
left side of it is of the type on the right side of it.

Types can be abstracts, primitives or composites. Types that can be instantiated are
final, so when looking at the hierarchy tree, only the types on the leafs can be instan-
tiated, they are called concrete types. The parents of concrete types are abstract types

20

Figure 4 – Hierarchy of the type Number [41].

and are explicitly declared since inheriting behaviour is more important than inheriting
structure [40].

In Figure 5, we show an example of the abstract types Bird and Parrot defined, being
Parrot the child type of Bird. To be able to instantiate a type, it is necessary to create a
constructor for it, as can be seen in line 5. The last line is the instantiation of the variable
myparrot with its name.

Figure 5 – Defining abstract types.

1 abstract type Bird end
2 abstract type Parrot <: Bird end
3

4 # Constructor for Parrot type
5 Parrot(name:: String) = name
6

7 myparrot = Parrot("Jules")

Composite types are known as structs, a type that can have multiple attributes. They
are immutable unless the word “mutable” is written before the definition. Figure 6 shows
the definition of the struct Duck and the instantiation of the variable myduck of a duck
called Ben Affquack, who is 7 years old and has 4 ducklings. A constructor was not needed
here but it could have been written.

Figure 6 – Defining a composite type.

1 struct Duck
2 name:: String
3 years:: Int64
4 ducklings ::Int64
5 end
6

7 myduck = Duck("Ben Affquack", 7, 4)

21

Both abstract and composite types can be parametric to make them more generic.
Parametric types can take parameters so that types with different parameters create
different type that are part of the same family.

In Figure 7, we created a type to represent pets. As pets are animals that can be of
different species, the field animal takes a parameter so that when we instantiate it passing
a Duck type, the pet will be of type Pet{Duck}, and it would be possible to create other
pets like Pet{Dog} for an example. These types can become handy when we use multiple
dispatch methods, discussed in Section 2.3.

Figure 7 – Defining a parametric type.

1 struct Pet{T}
2 animal ::T
3 end
4

5 mypet = Pet(myduck)
6 # mypet is of type Pet{Duck}(Duck("Ben Affquack", 7, 4))

Primitive types consist of bit types. They exist to allow Julia to bootstrap the standard
primitive types that LLVM supports [40] and Julia recommends using primitive types that
already exist, like Int64.

2.1.3 Arrays and Dictionaries

One remarkable feature of Julia arrays is that they are 1-based indexed. There have
been many discussions around this topic, but the starting index as 1 has remained as a
standard mostly because since Julia target is mathematical and scientific computation it
can get similar syntax and better looking code.

Arrays work just as in any other language with array like types. In Figure 8, we
show the basic ways to work with arrays, such as creating and accessing them, and
the usage of the alias Vector that represents an one dimension array. We can notice
that they are parametric types because they depend on the types of the elements, like
Vector{Float64}, Array{Int64, 1} and Vector{Any}.

Multi-dimensional arrays work similarly as one dimension arrays and there is also an
alias called Matrix for 2-D arrays, as can be seen in Figure 9.

Julia offers built-in operations for multi-dimensional arrays like multiplication by a
scalar, or matrix multiplication. It also offers what is called broadcasting. With broad-
casting the user can compute an operation over each element of an array. It is addressed
by using the dot syntax before the operator or function to be broadcasted, as shown in
Figure 10.

2.1.4 Control Flow

For conditionals, the if...else syntax is available, along with boolean switching
expressions, ternary expressions and a function ifelse.

With boolean switching expressions, one can control what expressions to run with
the help of the &&(and) and ||(or) operators. It is called “short-circuit evaluation”. In
Figure 11, there are a few examples of the usage of the boolean switch expressions. When
the operator && is used, if the first operations returns true, the second operation must be
executed to know the result of the boolean operation. Therefore, on line 11, the println

22

was executed and the entire expression returned "Hello world". On the other hand, if
the first operation returned false, the and expression would be false, independently of
the second operation. Hence, only false was returned. When the operator || is used,
if the first operation returns true the entire expression will be true independently of
the second operation. So, on line 17, will return true. When the opposite happens, the
second operation must be executed and the expression then prints "Hello world".

Ternary expressions are there to help readability when the conditional is simple enough.
The function ifelse(op1,op2,op3) does the work with the difference of evaluating both
op2 and op3 no matter what is the result of op1. This can help improve performance as
it will be discussed further in this chapter.

2.1.5 Functions and Methods

Functions in Julia can be just as simple as writing the keyword function in front of a
function name and closing its body with the end keyword, but there are also other ways
to declare them. One of them is the one expression function which can bring familiarity
to the math writing as in line 5 of Figure 12.

Sometimes it is necessary to pass a function as an argument to another one, and this
could be simplified by the usage of Anonymous functions, which are functions with no
names. An example is the usage on the map function, where it is required to apply the
function to each element of an array, as in 7 of Figure 12.

On Julia, a function is called a generic function and it can have several methods.
This is due to the multiple dispatch mechanism, where a function can behave differently
according to its arguments types.

23

Figure 8 – Using one dimension arrays.

1 # Creates an 1-D array of Int64 with five elements
2 julia > a1 = [1, 2, 3, 4, 5];
3

4 julia > a1[1] # Accessing first element
5 1
6

7 julia > a1[end] # Accessing last element
8 5
9

10 julia > a1[3:end] # Accessing a range from third element to the end
11 3-element Vector{Int64}:
12 3
13 4
14 5
15

16 # Creates an 1-D array of Int64 with five undefined elements
17 julia > a2 = Array{Int64 ,1}(undef ,5);
18

19 # Another way to create an 1-D array of Int64 with five undefined
elements

20 julia > a3 = Vector{Int64 }(undef ,5);
21

22 # Creates an empty Float64 array
23 julia > a4 = Float64 [];
24

25 # Creates an 1-D array of type Any
26 julia > a5 = ["Hello", 5, "world"]
27 3-element Vector{Any}:
28 "Hello"
29 5
30 "world"
31

32 # Creates 1-D array using list comprehension
33 julia > a6 = [i for i in 1:5]
34 5-element Vector{Int64}:
35 1
36 2
37 3
38 4
39 5

24

Figure 9 – Using multi-dimensional arrays.

1 # Creates an 2-D array of Int64 with five elements
2 julia > m1 = [1 2 3 4 5 6 7 8 9]
3 1x9 Matrix{Int64 }:
4 1 2 3 4 5 6 7 8 9
5

6 # Creates an 2x2 array of Int64
7 julia > m2 = [1 2;3 4]
8 2x2 Matrix{Int64 }:
9 1 2

10 3 4
11

12 # Accessing 2-D array
13 julia > m2[1,2]
14 2
15

16 # Changing m1 from 1x9 Matrix to 3x3 Matrix
17 julia > reshape(m1 ,(3 ,3))
18 3x3 Matrix{Int64 }:
19 1 4 7
20 2 5 8
21 3 6 9
22

23 # Creating 2x2 undefined array
24 julia > m3 = Matrix(undef , 2, 2);
25

26 # Creating 3-D undefined array
27 julia > m4 = Array{Int64 ,3}(undef ,3,3,3)
28 3x3x3 Array{Int64 , 3}:
29 [:, :, 1] =
30 0 0 0
31 0 0 0
32 0 0 0
33

34 [:, :, 2] =
35 0 0 0
36 0 0 0
37 0 0 0
38

39 [:, :, 3] =
40 0 0 0
41 0 0 0
42 0 0 0

25

Figure 10 – Broadcasting examples.

1 # Multiply array a1 by 2 and add 1 to each element
2 julia > a1 * 2 .+ 1
3 5-element Vector{Int64}:
4 3
5 5
6 7
7 9
8 11
9

10 # Multiply matrix m2 by itself
11 julia > m2 * m2
12 2x2 Matrix{Int64 }:
13 7 10
14 15 22

Figure 11 – Conditionals examples.

1 # If else conditional example
2 if <operation >
3 # ...
4 elseif <operation >
5 # ...
6 else
7 # ...
8 end
9

10 # Using boolean switch expressions
11 julia > true && println("Hello world")
12 Hello world
13

14 julia > false && println("Hello world")
15 false
16

17 julia > true println("Hello world")
18 true
19

20 julia > false println("Hello world")
21 Hello world
22

23 # Ternary expressions
24 julia > iseven (2) ? "even" : "odd"
25 "even"
26

27 julia > iseven (3) ? "even" : "odd"
28 "odd"
29

30 # Ifelse function
31 julia > ifelse(iseven (2), "even", "odd")
32 "even"

26

Figure 12 – Function examples.

1 function foo()
2 println("Hello world!")
3 end
4

5 f(x,y) = sqrt(x^2 + y^2)
6

7 map(x -> x % 2, [1,2,3,4,5,6])

27

2.2 Performance

The performance of Julia depends on some key aspects that basically rely on rich type
information, code specialization and the JIT compilation with LLVM compiler frame-
work [42].

When the source code is lowered to a Julia intermediate representation, most of the
optimization happens. For every function, its body is specialized according to the tuples of
argument types. These functions, called methods, when they are called for the first time,
they are compiled and their results are cached. This way, even though the compilation is
slow due to LLVM, next time the method is called it will run faster because its already
cached and the argument types are hash-consed, a technique to share values that are
structurally equivalent and that has shown to improve performance considerably [43].

For the specialization to happen, type inference must take part in it and it highly
depends on type stability to improve performance. Following the example of Figure 13,
we can see that sumsofsins2 has lower execution time. This is because the variable r
defined in this function does not change its type during execution, so the type inference
can establish at first the right type for it. While sumsofsins1 receives an integer value
at first and later in the code it receives a float value. The compiler has to check every
time for its current type and, indeed, makes it more complex and slower. By running the
code_llvm built-in function we can see that the LLVM IR for sumsofsins2, Figure 14,
is much simpler than for sumsofsins1 (Listing 2.1). This example shows what should be
fundamental to performance improvement when working with Julia, type stability.

Figure 13 – sumofsins1 is an example of a type unstable function and sumofsins2 is
an example of a type stable function, followed by the execution time of each of them
with 1000 iterations.

1 function sumofsins1(n::Int64)
2 r = 0
3 for i in 1:n
4 r += sin (3.4)
5 end
6 return r
7 end
8

9 function sumofsins2(n::Int64)
10 r = 0.0
11 for i in 1:n
12 r += sin (3.4)
13 end
14 return r
15 end
16

17 julia > @time [sumofsins1 (100 _000) for i in 1:1000];
18 0.334276 seconds (112.10 k allocations: 6.189 MiB)
19

20 julia > @time [sumofsins2 (100 _000) for i in 1:1000];
21 0.159626 seconds (107.16 k allocations: 5.970 MiB)

Listing 2.1 – LLVM representation of sumofsins1.
1 julia > code_llvm(sumofsins1 , (Int ,))

28

2

3 ; @ <path >:1 within ‘sumofsins1 ’
4 ; Function Attrs: uwtable
5 define { %jl_value_t*, i8 } @julia_sumofsins1_1357 ([8 x i8]* noalias

nocapture align 8 dereferenceable (8), i64) #0 {
6 top:
7 ; @ <path >:3 within ‘sumofsins1 ’
8 ; @ range.jl:5 within ‘Colon ’
9 ; @ range.jl:280 within ‘UnitRange ’

10 ; @ range.jl:285 within ‘unitrange_last ’
11 ; @ operators.jl:350 within ‘>=’
12 ; @ int.jl:441 within ‘<=’
13 %2 = icmp sgt i64 %1, 0
14 ;
15 %3 = select i1 %2, i64 %1, i64 0
16 ;
17 br i1 %2, label %L11 , label %union_move8
18

19 L11: ; preds = %L49 , %top
20 ; @ range.jl:620 within ‘iterate ’
21 %4 = phi double [%value_phi3 , %L49], [0.000000e+00, %top]
22 %.sroa .014.0 = phi i64 [%8, %L49], [0, %top]
23 %tindex_phi = phi i8 [1, %L49], [2, %top]
24 %value_phi2 = phi i64 [%7, %L49], [1, %top]
25 ;
26 ; @ <path >:4 within ‘sumofsins1 ’
27 switch i8 %tindex_phi , label %L37 [
28 i8 1, label %L39
29 i8 2, label %L33
30]
31

32 L33: ; preds = %L11
33 ; @ promotion.jl:311 within ‘+’
34 ; @ promotion.jl:282 within ‘promote ’
35 ; @ promotion.jl:259 within ‘_promote ’
36 ; @ number.jl:7 within ‘convert ’
37 ; @ float.jl:60 within ‘Float64 ’
38 %5 = sitofp i64 %.sroa .014.0 to double
39 ;
40 ; @ <path >:3 within ‘sumofsins1 ’
41 ; @ range.jl:620 within ‘iterate ’
42 br label %L39
43

44 L37: ; preds = %L11
45 ;
46 ; @ <path >:4 within ‘sumofsins1 ’
47 call void @jl_throw (% jl_value_t* inttoptr (i64 176793136 to %

jl_value_t *))
48 unreachable
49

50 L39: ; preds = %L33 , %L11
51 %value_phi3.in = phi double [%5, %L33], [%4, %L11]
52 %value_phi3 = fadd double %value_phi3.in , 0xBFD05AC910FF4C6C
53 ; @ <path >:4 within ‘sumofsins1 ’
54 ; @ range.jl:624 within ‘iterate ’
55 ; @ promotion.jl:398 within ‘==’
56 %6 = icmp eq i64 %value_phi2 , %3
57 ;

29

58 br i1 %6, label %union_move , label %L49
59

30

60

61 L49: ; preds = %L39
62 ; @ range.jl:624 within ‘iterate ’
63 %7 = add nuw i64 %value_phi2 , 1
64 ;
65 ; @ <path >:3 within ‘sumofsins1 ’
66 ; @ range.jl:620 within ‘iterate ’
67 %8 = bitcast double %value_phi3 to i64
68 br label %L11
69

70 post_union_move: ; preds = %union_move8
, %union_move

71 %9 = phi { %jl_value_t*, i8 } [{ %jl_value_t* null , i8 2 }, %
union_move8], [{ %jl_value_t* null , i8 1 }, %union_move]

72 ;
73 ; @ <path >:6 within ‘sumofsins1 ’
74 ret { %jl_value_t*, i8 } %9
75

76 union_move: ; preds = %L39
77 %value_phi3.lcssa = phi double [%value_phi3 , %L39]
78 ; @ <path >:6 within ‘sumofsins1 ’
79 %10 = bitcast [8 x i8]* %0 to double*
80 store double %value_phi3.lcssa , double* %10, align 8
81 br label %post_union_move
82

83 union_move8: ; preds = %top
84 %11 = bitcast [8 x i8]* %0 to i64*
85 store i64 0, i64* %11, align 8
86 br label %post_union_move
87 }

After having code specialized with its proper types inferred, devirtualization can be
performed reducing dispatch overhead and enabling inlining. Inlining is an optimization
where the function call is replaced by its body in the code. Sometimes it can have high
memory cost and compilation time. In order to avoid it, heuristics are used to determine
when this optimization [44] should be done. The next optimization step is unboxing, the
process of retrieving a value of a previous allocated value with its type tag.

At last, the Julia Intermediate Representation (IR) is translated to LLVM IR and
passes through its level O2 optimizations so it can finally generate an executable.

As a dynamic language, Julia lets the programmer write their code without worrying
about type declaration of variables and memory management. However, to generate code
with high performance, the user must adapt to the Julia way of programming, focusing
on providing type stable code that can naturally comes from the usage of Julia features
like Multiple Dispatch and Metaprogramming.

31

Figure 14 – LLVM representation of sumofsins2.

1 julia > code_llvm(sumofsins2 , (Int ,))
2

3 ; @ <path >.jl:9 within ‘sumofsins2 ’
4 ; Function Attrs: uwtable
5 define double @julia_sumofsins2_1358(i64) #0 {
6 top:
7 ; @ <path >:11 within ‘sumofsins2 ’
8 ; @ range.jl:5 within ‘Colon ’
9 ; @ range.jl:280 within ‘UnitRange ’

10 ; @ range.jl:285 within ‘unitrange_last ’
11 ; @ operators.jl:350 within ‘>=’
12 ; @ int.jl:441 within ‘<=’
13 %1 = icmp sgt i64 %0, 0
14 ;
15 %2 = select i1 %1, i64 %0, i64 0
16 ;
17 br i1 %1, label %L11 , label %L37
18

19 L11: ; preds = %L11 , %top
20 %value_phi2 = phi double [%3, %L11], [0.000000e+00, %top]
21 %value_phi3 = phi i64 [%5, %L11], [1, %top]
22 ; @ <path >:12 within ‘sumofsins2 ’
23 ; @ float.jl:401 within ‘+’
24 %3 = fadd double %value_phi2 , 0xBFD05AC910FF4C6C
25 ;
26 ; @ range.jl:624 within ‘iterate ’
27 ; @ promotion.jl:398 within ‘==’
28 %4 = icmp eq i64 %value_phi3 , %2
29 ;
30 %5 = add nuw i64 %value_phi3 , 1
31 ;
32 br i1 %4, label %L37 , label %L11
33

34 L37: ; preds = %L11 , %top
35 %value_phi6 = phi double [0.000000e+00, %top], [%3, %L11]
36 ; @ <path >:14 within ‘sumofsins2 ’
37 ret double %value_phi6
38 }

32

2.3 Multiple Dispatch

Polymorphism is a concept where one same thing is able to assume different forms.
In mathematics, this can be expressed as abstractions, for example, the multiplication
being able to operate between different types of operands, such as real numbers, real
and complex numbers, matrices, vectors and matrices and many others. In terms of
mathematical implementations, it can lead the same operation to be executed with the
best fitting algorithm regarding the operands, resulting in performance gains [45].

Julia makes this abstraction possible with its Dynamic Multiple Dispatch, where you
have a function, called generic function, that can have multiple behaviors in its methods.
These methods are defined by the different tuples of arguments that a generic function
can have. It differs from overloading because it is resolved at runtime instead of compile
time. It also differs from class based methods of object oriented programming because it
takes into consideration every argument passed instead of only one.

Multiple Dispatch can be useful for scientific programming because it makes it eas-
ier to right mathematics expressions similar to as they really are. Figure 15 shows a
multiple dispatch example of the operator * where it can be useful to represent different
transformations and we can clearly see its similarities in the code:

1. y = a× g(x) - Scale operation of vertical stretch or compression

2. y = f(t× x) - Scale operation of horizontal stretch or compression

3. y = f(g(x)) - Function composition

Figure 15 – Example of multiple dispatch of the operator * [5]

1 *(a::Number , g:: Function) = x->a*g(x) # Scale output
2 *(f::Function , t:: Number) = x->f(t*x) # Scale argument
3 *(f::Function , g:: Function) = x->f(g(x)) # Function composition

On the other hand, the Julia programmer is inherently writing code with better per-
formance because of the synergy between multiple dispatch with code specialization and
type inference.

2.4 Metaprogramming

Julia has strong LISP influences and it can be mostly seen at its metaprogramming
strategy. The code can be accessed after it is parsed, but before it is executed, at the level
of abstract syntax trees. This way, taking advantage of any compile time optimization.

The most common metaprogramming feature found in Julia is a macro. A macro is an
expression that contains a piece of code and accepts arguments. It is evaluated at parse
time, and returns an non-evaluated expression [46].

A simple example of this is the timev macro from Julia’s source code. It prints the
time an expression took to be executed and memory allocations as shown in Listing 2.2.
The quote block delimits a piece of non-evaluated code that stores the time right before
the expression ex is executed (line 4) and it is subtracted from the time right after it (line
6). The piece of code in this listing will then be expanded at runtime.

33

Listing 2.2 – Julia’s timev macro
1 macro timev(ex)
2 quote
3 local stats = gc_num ()
4 local elapsedtime = time_ns ()
5 local val = $(esc(ex))
6 elapsedtime = time_ns () - elapsedtime
7 timev_print(elapsedtime , GC_Diff(gc_num (), stats))
8 val
9 end

10 end

34

3 PARALLEL COMPUTING IN JULIA

As Kristian Carlsson expresses very well in [47], the good old days of processors getting
a higher clock-speed every year have been over for quite some time now. Therefore,
nowadays, it is important to exploit parallel computing in the code in order to achieve
higher performance. Julia language was developed with the power of parallelism as its
goal. It provides built-in primitives for parallel computing at different levels, offering:
distributed computing, multithreading, data vectorization and GPU programming.

3.1 Distributed Computing

Julia provides a parallel environment based on message passing to allow programs
to run multiple processes in separate memory address spaces. An implementation of
distributed memory parallel computing is provided by the module Distributed as part of
the standard library shipped with Julia.

Although MPI is the popular standard for messaging passing, the message passing
behaves differently in Julia. The communication in Julia is generally “one-sided”, mean-
ing that the programmer needs to explicitly manage only one process in a two-process
communication. Furthermore, these operations typically do not look like “message send”
and “message receive” but rather resemble higher-level operations like calls to user func-
tions. To control these processes, the standard library module Distributed is used. It
provides several methods and features related with distributed programming. For exam-
ple, the addprocs method that allows the creation a process dynamically, while the procs
method gives the list of processes running in Julia environment as shown in Listing 3.1.
The array returned by the addprocs method is different than the one returned by the
procs method. This is because the first one references only the added processes that will
be in charge of doing computations, those are called workers. The second one includes
the process 1, which is called the master, it is the only one that can manage processes
and it is where the Julia REPL runs.

Listing 3.1 – Methods to create processes
1 julia > using Distributed
2 julia > addprocs (3)
3 3-element Array{Int64 ,1}:
4 2
5 3
6 4
7 julia > procs()
8 3-element Array{Int64 ,1}:
9 1

10 2
11 3
12 4

35

For the communication between processes, the Distributed package provides function-
alities for data exchange, these are the remote references and remote calls. A remote
reference is an object in one processor that references an object in another processor. Re-
mote references can be either of type Future or Remote Channel. A remote call is a call
to a function on the same or another process. When a remote call is made, it instantly
returns the Future object and proceeds to execute the next instructions while the process
that was designated by the remote call runs the called function. If the process that made
the call needs to either wait for the remote call to be done or obtain the value returned,
it can do it with the wait and the fetch method, respectively.

Listing 3.2 – Remote call example.
1 julia > @everywhere f(x) = x+3
2 #f (generic function with 1 method)
3 julia > r = remotecall(f, 2, 5)
4 Future(2, 1, 62, nothing)
5 julia > wait(r)
6 Future(2, 1, 62, nothing)
7 julia > fetch(r)
8 8

In Listing 3.2, we have a function f that receives a parameter and returns the value
of this parameter plus 3. It is worth noting that the usage of the macro @everywhere
is a way to load the function at every process. A remote call is then performed passing
as parameters: the function f, the id of the process that will execute the function (in
this case 2), and the parameters of that function (the value 5). The returned Future
object contains the attributes to identify the worker id, the master process, the id of the
remote call and a reserved attribute to keep the value returned (that at first has the type
nothing). At last, we wait for the computation to be done with wait and get its result
with fetch.

There are other ways, besides the remotecall() function, to send work to different
processes, such as using the @spawnat macro, which as the name implies, spawns the
function in a given process. The example in Listing 3.3 shows the use of @spawnat for
the same computation done with remotecall.

Listing 3.3 – @Spawnat example
1 julia > @everywhere f(x) = x+3
2 #f (generic function with 1 method)
3 julia > s = @spawnat 2 f(5)
4 Future(2, 1, 67, nothing)
5 julia > fetch(r)
6 8

3.1.1 Channels

A channel in Julia works as a pipe, but it can only be accessed by a local process,
another process does not have access to it. A remote channel is a channel that all the
workers can access it. It can be useful to solve problems like the Producer-Consumer [48].
In this problem, the producer process produces something and puts in a buffer and another
process, called consumer, consumes from this buffer.

Figure 16 shows an example of the producer-consumer problem. The package Dis-
tributed is loaded and one more process is added. We then make the buffer with the

36

remote channel, it has a channel that can keep 32 integers. Next, we define the produce
method with the @everywhere macro so it can be run on another worker, we define it
will produce n products, the sleep is used to simulate a computation and then it puts
on the remote channel products the results. The consume method will try to consume n
products, we used it as a parameter to indicate when to exit the program. The remote_do
method is used to start the produce method on worker 2 and following we start the con-
sume method. The output is on Figure 17 and we can note that right when an item is
produced by the produce method it is consumed by the consume method.

Figure 16 – The producer-consumer problem using Julia’s remote channels.

1 using Distributed
2

3 addprocs (1)
4

5 const products = RemoteChannel (() -> Channel{Int }(32))
6

7 @everywhere function produce(products , n)
8 for _ in 1:n
9 product = rand (1:10)

10 sleep(product)
11 println("produced ", product)
12 put!(products , product)
13 end
14 end
15

16 function consume(products , n)
17 produced = 0
18 while produced < n
19 product = take!(products)
20 println("Consumed product number ", product)
21 produced += 1
22 end
23 end
24

25 println("start producer")
26 remote_do(produce , 2, products , 10)
27

28 println("now consume")
29 consume(products , 10)

3.1.2 Reduction Operation

A very common operation found in parallel computing is the reduction operation. It
reduces elements generated by different processes into a single result. The Distributed
package offers a macro to deal with this operation. The syntax is simple: @distributed
followed by the operator that represents the reduction operation, e.g., @distributed (+)
to sum all the elements. To illustrate the use of reduction we show the Monte-Carlo
method to compute the value of π in Figure 18.

The Monte-Carlo method uses the ratio between the area of a circumference, Ac = πr2

and the area of a square As = l2. If we take a square with a side of length 2 and a
circumference of radius 1, the ratio between them would be π

4
. So, to calculate the value

37

Figure 17 – Output of the producer-consumer problem script from Figure 16

1 start producer
2 now consume
3 From worker 2: produced 3
4 Consumed product number 3
5 From worker 2: produced 6
6 Consumed product number 6
7 From worker 2: produced 5
8 Consumed product number 5
9 From worker 2: produced 10

10 Consumed product number 10
11 From worker 2: produced 1
12 Consumed product number 1
13 From worker 2: produced 4
14 Consumed product number 4
15 From worker 2: produced 2
16 Consumed product number 2
17 From worker 2: produced 1
18 Consumed product number 1
19 From worker 2: produced 1
20 Consumed product number 1
21 From worker 2: produced 4
22 Consumed product number 4

of π based on this ratio, we suppose to have a 1 radius circumference inside a square of
side 2. N random points are then generated and checked to see if they are inside the
circumference or not. The approximated value of π is obtained by dividing the number
of points inside the circumference by the total of points generated, as being the ratio
between the areas, times 4.

In Figure 18, we show the sequential implementation of the Monte-Carlo method
and a parallel implementation using the package Distributed . The reduction is used in
this case to count the number of points that were generated inside the circumference.
This is made by using @distributed (+). At the end of each iteration of the for loop,
the n_landed_in_circle will be either of value one or zero in each process, and the
reduction provides the global count. To obtain the execution time we used the package
BenchmarkTools [49] to run each Monte-Carlo method 1000 times with one evaluation
each on a Intel Core i5-8250U CPU. The sequential method returned a value for π of
3.1404 within the mean time of 778.895µs and the parallel method returned a value of
3.13604 within the mean time of 639.761µs using 3 workers.

38

Figure 18 – Functions to compute π value with Monte-Carlo method sequentially and
using Distributed. The execution time is measured with the BenchmarkTools package.

1 using Distributed , BenchmarkTools
2

3 addprocs (3)
4

5 evals=evals
6 samples = 1000
7 evals = 1
8 N = 100000
9

10 function compute_pi(N::Int)
11 n_landed_in_circle = 0 # counts number of points that have radial

coordinate < 1, i.e. in circle
12 for i = 1:N
13 x = rand() * 2 - 1 # uniformly distributed number on x-axis
14 y = rand() * 2 - 1 # uniformly distributed number on y-axis
15

16 r2 = x*x + y*y # radius squared , in radial coordinates
17 if r2 < 1.0
18 n_landed_in_circle += 1
19 end
20 end
21

22 return n_landed_in_circle / N * 4.0
23 end
24

25 function compute_pi_distributed(N::Int)
26 n_landed_in_circle = @distributed (+) for i = 1:N
27 x = rand() * 2 - 1
28 y = rand() * 2 - 1
29

30 r2 = x*x + y*y
31

32 n_landed_in_circle = r2 < 1.0 ? 1 : 0
33 end
34

35 return n_landed_in_circle / N * 4.0
36 end
37

38 compute_pi(N)
39 compute_pi_distributed(N)
40

41 @benchmark compute_pi($N) samples=samples evals=evals
42 @benchmark compute_pi_distributed($N) samples=samples evals=evals

39

3.2 GPU Programming

GPU programming is one of the categories of parallel computing in Julia that has
been showing increasing growth recently. It is a hot topic in lately JuliaCon (annual Julia
Conference) editions. Julia supports GPU programming for several architectures: NVidia
with CUDA.jl [9], Intel GPU with oneAPI.jl [50], AMD GPU with AMDGPU.jl [10] based
on ROCm platform, and Apple GPU with Metal.jl [11]. Julia also offers other libraries,
like OpenCL.jl [51].

Among these packages, the most mature one is NVidia CUDA.jl. That allows the
development of kernels with the execution of operations directly on the GPU.

Figure 19 – Matrix multiplication using CUDA.jl.

1 using CUDA
2

3 M = rand (2^11, 2^11)
4

5 # Copying the matrix to the GPU
6 M_on_gpu = cu(M)
7

8 # Executes the matrix multiplication on GPU
9 CUDA.@sync M * M

In Figure 19, we can see how simple it is to execute a matrix multiplication using
CUDA in Julia. To ensure that the GPU will be used and it has the data needed to
perform the operation, it is necessary to copy the matrix structure to the GPU using the
cu(M) function, which returns a CuArray. When the * operator is used on CuArrays, the
execution is performed on the GPU. The macro CUDA.@sync is there to prevent the code
execution to continue while the operation is executing on the GPU.

It is also possible to create your own kernels. CUDA.jl provides the functions blockDim,
gridDim, blockIdx and threadIdx that provides the necessary information for the dis-
tribution of work among the GPU threads. Figure 20 shows a kernel implementation of
the addition of two matrices on GPU using CUDA.jl. On CUDA, the threads are grouped
in blocks, representing its dimention (or size) by blockDim, and the group of blocks are
part of a grid, representing its dimention (or size) by gridDim. The worker_gpu_add!
function will calculate the indexes of the matrix elements to be added using the dimension
of the block and the current ID’s of both block and thread, along the x dimension. In
line 3, if the expression index <= length(u) is false, the result of the boolean expres-
sion with && is false, and @inbounds u[index] += v[index] will not execute. If index
<= length(u) is true, @inbounds u[index] += v[index] needs to execute to determine
the result of the boolean expression. With this, @inbounds u[index] += v[index] can
only execute if the current index is less than length of u. The gpu_add! function will
calculate the necessary parameters for initializing the worker_gpu_add! and triggering
its execution. The number of blocks is determined by the size of the matrix. Having the
number of threads and blocks set, the worker_gpu_add! can be called by passing these
parameters following the macro @cuda to execute it on the GPU. The gpu_add! is then
called passing matrices that were previously copied to the GPU.

40

Figure 20 – Kernel to add two matrices using CUDA.jl.

1 function worker_gpu_add !(u, v)
2 index = (blockIdx ().x - 1) * blockDim ().x + threadIdx ().x
3 index <= length(u) && (@inbounds u[index] += v[index])
4 return
5 end
6

7 function gpu_add !(u, v)
8 numblocks = ceil(Int , length(u) / 256)
9 @cuda threads =256 blocks=numblocks worker_gpu_add !(u, v)

10 return u
11 end
12

13 u = rand (2^20)
14 v = rand (2^20)
15

16 u_on_gpu = cu(u)
17 v_on_gpu = cu(v)
18

19 gpu_add !(u_on_gpu , v_on_gpu)

3.3 Multithreading

Before elaborating on Julia multithreading, we shall introduce the concept of tasks.
Tasks in Julia are a concept adopted in asynchronous programming and can also be
known as coroutines or green threads. Basically, a task can be created with a given
computational work and it needs to be scheduled to start running so that the computation
can be switched between the main program and the task. To block the main program
until the task finishes, the function wait can be called. If the return value of the task is
needed, it can be obtained with the fetch function. An example is shown in Figure 21,
where we can see that when a task is created it is marked as runnable. The task only
waits for 10 seconds and then returns an array. When we check the task before it is
done, it is still marked as runnable until it is finally marked as done. We then just call
fetch(t) to obtain the array returned by the task.

Figure 21 – A task being created, scheduled and having its result fetched.

1 julia > t = @task begin; sleep (10); return rand(Int64 ,1000); end
2 Task (runnable) @0x00000000174d2850
3

4 julia > schedule(t)
5 Task (runnable) @0x00000000174d2850
6

7 julia > t
8 Task (runnable) @0x00000000175fab30
9

10 julia > t
11 Task (done) @0x00000000175fab30
12

13 julia > fetch(t)
14 1000- element Array{Int64 ,1}
15 ...

41

Multithreading appeared for the first time in Julia in early 2017, at version 0.5 with
the macro @threads. This macro, however, was experimental at that time. It handled
simple parallel loops running on all cores and had two important contributions: Julia
programmers could start taking advantage of multiple cores, and the use of the macro
provided test cases to report thread-related bugs in runtime.

However, this version of the macro had some important limitations, the loops with
@threads could not be nested. If the functions they called used @threads recursively,
these internal loops would not be parallelized. Another limitation of the macro was that
it was not able to perform I/O operations and it was incompatible with the task system.

In July 2019, in the version 1.3.0, Julia presented multithreading parallelism available
with the macro @spawn, in the package Threads, allowing tasks to run simultaneously
in a pool of threads and these tasks have a shared stack pool to allow nested calls.

In the first versions of Julia, the execution with multiple threads needed an environ-
ment variable, JULIA_NUM_THREADS, to be set with the number of threads to be
created. From the version 1.5 on, there is an option to start Julia with a command line
parameter indicating the number of threads to be created. This make it easier to change
the number of threads according to the execution, with the option -t.

It is possible to check which thread is running by searching for its id using the method
threadid(). In the latest version of Julia, I/O is fully supported. We can see it all in
the example of Figure 22, where we parallelize the for loop with threads and for each
iteration we print to which thread that iteration was assigned.

Figure 22 – Julia code for printing with threads

1 julia > import Base.Threads
2

3 # Shows total of threads available
4 julia > Threads.nthreads ()
5 8
6

7 julia > Threads.@threads for i in 1:10
8 println("i = $i on thread $(Threads.threadid ())")
9 end

10 i = 1 on thread 1
11 i = 7 on thread 3
12 i = 2 on thread 1
13 i = 8 on thread 3
14 i = 3 on thread 1
15 i = 9 on thread 4
16 i = 10 on thread 4
17 i = 4 on thread 2
18 i = 5 on thread 2
19 i = 6 on thread 2

To avoid race conditions, the user can either use locks to isolate the code block or
use atomic operations depending on what computation is needed. The atomic operations
available are addition, subtraction, exchange of values and boolean operations.

Julia multithreading employs data parallelism and task parallelism. Data parallelism
in Julia was first proposed using the @threads macro. This macro provides an easy
parallelization of a for-loop and is the most common usage with multithreading. It is
simply placed before a for loop and it distributes the loop iterations between threads as
shown in Figure 22.

42

Figure 23 – Atomic operations

1 julia > x = Threads.Atomic{Int }(7)
2 Atomic{Int64 }(7)
3

4 # Adds 3 ints to x and returns the previous value
5 julia > Threads.atomic_add !(x, 3)
6 7
7

8 # Accesses the value of x
9 julia > x[]

10 10

Task parallelism in Julia was inspired by parallel programming systems like Cilk [52]
and Intel Threading Building [53]. The programmer creates tasks freely and the runtime
scheduler is responsible to decide when and where the tasks will be executed.

The core built-in primitive for task parallelism in Julia is the macro @spawn. The
@spawn macro specifies that a function (or an expression) will execute in parallel with the
caller. To wait for the task to finish, a wait or fetch command has to be used. What
is interesting about @spawn is that it allows the use of dynamic parallelism in a very
simple way. Figure 24 shows a parallel code in Julia to compute the classic Fibonacci
sequence [14]. In this code, the command t = @spawn fib(n - 2) creates a task to com-
pute fib(n - 2), which will execute in parallel with fib(n - 1). The command fetch(t)
waits for task t to complete and gets its return value. That is a great example of its
usage, a recursive function. Multithreading on Julia is composable and can make nested
calls to multithreaded code without oversubscribing threads.

Figure 24 – Fibonacci computation with @spawn [14]

1 function fib(n::Int)
2 if n < 2
3 return n
4 end
5 t = @spawn fib(n - 2)
6 return fib(n - 1) + fetch(t)
7 end

43

3.4 Loop Scheduling

Parallelizing independent iterations of a loop is one of the most common forms of data
parallelism. In a parallel loop implementation, loop scheduling refers to how the iterations
are distributed among the threads. The loop scheduling can be static or dynamic. In a
static loop scheduling, the iterations of a loop are divided before the loop starts in a
fixed manner. Each thread gets a predefined set of iterations to compute. In a dynamic
loop scheduling, the iterations are assigned to the threads as the loop is being executed.
Static scheduling may result in load imbalance when the computation of the iterations is
uneven. Dynamic scheduling tries to overcome this problem by performing the assignment
according to the execution time of the iterations. However, it can incur in overhead during
the loop computation.

In Julia, there are two ways of parallelizing a loop: using the @threads macro or using
tasks with Threads.@spawn. Figures 25 and 26 show a for loop that computes the sum of
two vectors of size N parallelized using @threads and Threads.@spawn, respectively. The
loop scheduling strategies for the two loop parallelization implementations are different.
The parallelization with @threads splits the N iterations of the loop statically among the
threads. It divides N by the number of threads and distribute each chunk of iterations
to the threads in a round-robin fashion. This scheduling strategy resembles the OpenMP
static loop scheduling.

The parallelization with Threads.@spawn creates N tasks that are dynamically as-
signed to threads by the runtime. To run spawned tasks simultaneously, Julia runtime in-
corporated the parallel task scheduler, called PARTR (https://github.com/kpamnany/partr).
In PARTR, the tasks are scheduled according to the algorithm depth-first scheduling [54].
In the depth-first scheduling algorithm, when a core completes a task, the next task that
will be assigned to this core is the task that is ready to execute and that would be the
natural next task to be executed if the execution was sequential. For example, consider
a nested parallel computation represented in Figure 27. In this Figure 27(a), we show a
nested parallel computation where the arrows from the right to left represent forks (the
parent thread is creating a child thread), the arrows from the left to the right repre-
sent synchronization of a child thread with its parent, and the vertical arrows represent
sequential dependencies. The depth-first order of this computation is presented in Fig-
ure 27(b), where a forked child is executed before its parent, so that the depth-first order
is the same as the unique serial execution order. The depth-first scheduling algorithm
prioritizes ready tasks according to the depth-first order. In this way, the algorithm tends
to make more effective use of cache resources [55].

Figure 25 – Parallelizing a loop using @threads

1 Threads.@threads for i = 1:N
2 a[i] = b[i] + c[i]
3 end

Besides Julia’s built-in multithreading, there are community packages that aims in im-
proving performance combining algorithms and parallelism. One of them is FLoops.jl [12],
that is built on the idea of composable transformations, which often involve reducing op-
erations, that are brought by the usage of Transducers [56]. FLoops.jl implements these
transformations by converting for loops to foldl from Transducers.jl [57] and promises

44

Figure 26 – Parallelizing a loop using @spawn

1 @sync for i = 1:N
2 Threads.@spawn begin
3 a[i] = b[i] + c[i]
4 end
5 end

Figure 27 – Parallelizing a loop using @threads

1

2

3 4

5

6
7

8

9

10

11

(a) (b)

to improve them with the usage of the macro @floop, allowing their execution sequentially
or in parallel.

@floop usage is similar to the macro @threads, as in its simplest form the user only
needs to place it before the for loop, but broader because it is possible to iterate on
different collection types, like dictionaries for an example. The way the loop preceded by
this macro is written determines if it will run sequentially or parallel, Figure 28 shows an
example of a sequential loop that performs a reduction operation and Figure 29 shows a
parallel version of it where it is needed to combine it with the macro @reduce

Figure 28 – Sequential usage of the macro @floop on a reduction for loop [12]

1 @floop begin
2 s = 0
3 for x in 1:3
4 s += x
5 end
6 end

Figure 29 – Parallel usage of the macro @floop on a reduction for loop [12]

1 s = 0
2 @floop for x in 1:3
3 @reduce s += x
4 end

45

Loops that do not involve reductions will also be parallelized and the parallel mech-
anism is defined by an executor. The executor is passed as a parameter to the @floop
macro and will tell if it will be used distributed, GPU or mulithreading parallelism. If
multithreading is used, the executor defines the loop scheduling it will execute and they
are listed below, there are not many details about their implementation but more of
considerations about best fitting scenarios for each of them [58]:

• ThreadedEx: The default executor used if none is defined. As the documentation
says, it is implemented in a divide-and-conquer strategy, where the input is recur-
sively halved until the parts, or base cases, are equal or less to a defined basesize.
Each base case is assigned to a task and their results are combined pair-wise in
distinct tasks [12];

• WorkStealingEx: Uses the continuation stealing [59], where if a task performs a
function x() followed by the spawning of a task to execute a function y(), any other
operation after the spawn is available for being stolen;

• DepthFirstEx: Distributes the chunks defined by the basezise among tasks in
the order they are set in the collection but they do not wait the other chunks to be
distributed to start running. The documentation declares that the best scenarios
are the "findfirst" ones, where the result can be find early in executions and prevent
further executions;

• TaskPoolEx: This strategy uses a pool of tasks to limit the resource usage, thus
avoiding any latency generated by I/O operations or computer-intensive reductions;

• NondeterministicEx: The task distribution and combination for reduce opera-
tions in this executor is determined by the timing of the computations at runtime.
It is recommended to execute reductions on non-deterministics operations, where
the order of the operations in the reduction influences in the results.

46

3.5 SIMD Parallelization

Modern processors provide not only the opportunity to exploit thread parallelism
with the growing number of cores, but also the opportunity to exploit fine-grained data
parallelism with the vector units. Vector operations can process the same instruction on
distinct vector elements at the same time (Single Instruction Multiple Data or SIMD).
Recent Intel processors, for example, have a 512-bit vector unit that allows to process,
simultaneously, 16 single-precision floating point operations or 8 double-precision floating
point operations. This can be 8 or 16 times faster than a scalar (non-vector) operation.
Combined with thread parallelism, vectorization can provide massive performance gains.

There are different alternatives to exploit vectorization in Julia code that vary in terms
of complexity. The first alternative is to let the compiler exploit vectorization, called
auto-vectorization. This alternative is simple and requires no additional programming
effort, but it is also restrictive in terms of the parallelism opportunities to be exploited.
The second alternative is to use the macro @simd. This alternative is also very simple
but requires the programmer to indicate the opportunities for vectorization. The third
alternative is to use a package for vectorizing the loops. This alternative requires more
program effort than the other two, but it also provides optimizations on the memory
usage and accesses. The fourth alternative is the more complex one, the use of low-level
instructions provided by the vector processing unit, called intrinsic instructions.

3.5.1 Auto-Vectorization

Julia compiler has the auto-vectorization ability. The compiler can identify blocks of
code that can be vectorized, exploiting vector registers and the vector arithmetic unit in
a completely transparent way. The automatic vectorization, however, will only be applied
if the compiler can tell whether a specific block of code would have the same behavior of
a vectorized one and that it would be profitable. That way, the compiler will transform
the program according to its hardware restrictions.

To check if the code was vectorized, the user can use either the @code_llvm or
@code_native macros to look in the bitcode or the assembly instructions for expressions
used for SIMD operations.

In Figure 30, we show an example with a simple summation of the elements of two
arrays. When @code_llvm was used we got some hints that SIMD is being used. For ex-
ample, the usage of the type <4 x double> represents a vector. The output of @code_llvm
also shows that the compiler decided to unroll the loop in chunks of size four. When we
look at the @code_native we can see that there are four vector instructions using the
register ymm that fits 256 bits, having four double-precision floats [60].

The use of the @inbounds macro in Figure 30 needs further explanation. Julia uses
bounds checking for array accesses. When the code has a loop over each element of
an array, if the loop iterations gets outside of the array bounds, an error is thrown.
Therefore, every time we try to access an element from an array with an index, there is
an implicit if to check if the index actually exists in the array. This means that, at a lower
level, there is a control flow in the piece of code we would like to vectorize, which would
make it nonviable for vectorization. The macro @inbounds is used to avoid the bound
checking, and vectorization can be done without problem. If another function would be
created but without @inbounds we would not have the same output from @code_llvm or
@code_native, no SIMD representations would be found.

The usage of the macro @inbounds illustrates that, although Julia has auto-vectorization,

47

Figure 30 – Example of the representation of the summation of two arrays in LLVM
bitcode and assembly instructions showing usage of SIMD operations. Additional
outputs hidden.

it is necessary to guarantee to the compiler that the code is safe to be vectorized. Other
recommendations are the following [61]:

• No cross-iteration dependencies.

• Conditionals are not allowed unless they can be done using the ifelse method.
With ifelse, both expressions that depend on the result of the condition would be
evaluated.

• Make sure that all calls are inlined.

• Write type-stable code.

• Use unit-stride array subscripts inside loops. Accessing elements as array[2i]
might not be possible.

• Reduction variables should be local variables.

In addition, reduction operations are not supported for Float32 or Float64 types. This
is due to the fact that vectorization reorders the operations and that reordering can change
the final results on floats.

3.5.2 @SIMD Macro

Sometimes, when the operations are too complex for the compiler to infer the legality
of the vectorization, the user can explicitly tell the compiler that a piece of code is
independent and there is no overlap between the structures being accessed. This can
be done with the macro @simd.

48

The macro @simd can only be used prior to for loops and it is able to vectorize
reductions. When it is used, it assumes that the code following the macro is safe to
be vectorized. That means the user has to check for dependencies. If the loop has
dependencies, they will be vectorized and it may behave unexpectedly.

By the time this Dissertation is written, the @simd macro is marked under Julia’s
documentation as an experimental feature and it is not encouraged to be used. There is
also a list of considerations to be taken when using @simd in the documentation [62]:

• The loop must be an innermost loop;

• The loop body must be straight-line code. Therefore, @inbounds is currently needed
for all array accesses. The compiler can sometimes turn short &&, ||, and ?: ex-
pressions into straight-line code if it is safe to evaluate all operands unconditionally.
Consider using the ifelse function instead of ?: in the loop if it is safe to do so;

• Accesses must have a stride pattern and cannot be "gathers" (random-index reads)
or "scatters" (random-index writes);

• The stride should be unit stride.

3.5.3 Vectorization Packages

As an alternative to the built-in macro @simd, there are a few packages available that
can take advantage of the SIMD operations. The first one is the LoopVectorization.jl
package [13].

The LoopVectorization package can optimize for loops and nested for loops as well as
broadcasting operations [63], a way to perform element-by-element operations on arrays
reducing memory usage and with a simple syntax. The package analyzes the cost of the
instructions in the loops and the number of times those instructions should be executed.
Based on latency and throughput of the instructions and register consumption measure-
ments, it decides which strategy to apply to the loops, these involve vectorization of the
loops, loop reordering and unrolling.

It provides for the user vectorized map, filter and reduce functions and the macros
@turbo and tturbo to be used to optimize loops or broadcasting operations. The @turbo
macro also takes a few arguments where the user can customize its usage, one of those
arguments sets the usage of threads to true or false, enabling the optimization with
multithreading. The @tturbo macro is just a simpler way to call @turbo with threads
usage set to true.

When using LoopVectorization some limitations must be taken into consideration:

• it considers that the loop iterations are independent,

• it does not perform bound checks in arrays,

• it assumes that each loop iterates at least once and that there is only one loop per
nest level.

Another package that can take advantage of the SIMD operations is the SIMD.jl [64].
The SIMD.jl package provides a vector type. With that type any usual arithmetic, logical
and reduction operations will be executed using SIMD parallelism. The access to the

49

Figure 31 – Functions to sum two arrays using LoopVectorization.jl and SIMD.jl

1 using LoopVectorization
2

3 function turbo_sum_arrays(a:: Array{T,N}, b::Array{T,N}, c::Array{T:N})
where {T,N}

4 @turbo for i in 1: length(a)
5 c[i] = a[i] + b[i]
6 end
7 return c
8 end
9

10 using SIMD
11

12 function simd_sum_arrays(a:: Array{T,N}, b::Array{T,N}) where {T,N}
13 a_v = Vec(Tuple(a))
14 b_v = Vec(Tuple(b))
15 c = a_v + b_v
16 end

elements of an array is done by using the functions load and store. They allow the
creation of arrays of scalars instead of array of vectors.

Figure 31 shows an example of the sum of two vectors using the packages LoopVec-
torization.jl and SIMD.jl. The function turbo_sum_arrays uses the LoopVectorization.jl
package, for that it is necessary to perform the summation either including @turbo in
front of the loop, as in the figure, or using broadcasting. The function simd_sum_arrays
can perform the SIMD operation when using the type Vec, so for that we pass the arrays
for the type Vec. We pass it first to a tuple because Vec is immutable and only accepts
immutable types, like the Tuple is.

3.5.4 Intrinsics

The LLVM instructions can be called straight inside the code. This option may help
if a specific instruction is needed or if none of the above options were helpful. However,
it can make the code harder to read with and less portable since it depends directly on
the LLVM instruction [60].

Figure 32 shows an example of a call to the LLVM sin intrinsic that returns the
sin of a float or a vector of floats in radians. In order to Julia pass a data structure to
the LLVM as a vector type, it needs to be declared in a special way using VecElement.
Having the special vector type declared, the call to the intrinsic can be done by the ccall
function that has as arguments the instruction, the library of the instruction, the return
type, the argument types, and the argument of the function llvm_sin to be created. At
last the function llvm_sin is called on a vector with π/2 and 0 values, to return 1 and 0
respectively.

50

Figure 32 – Declaration of special type for vectorization fp128 and call for LLVM
intrinsic instruction sin.

1 julia > const fp128 = NTuple{2, VecElement{Float64 }};
2

3 julia > llvm_sin(vec) = ccall("llvm.sin.f128",llvmcall , fp128 , (fp128 ,),
vec)

4 llvm_sin (generic function with 1 method)
5

6 julia > llvm_sin(fp128((pi/2 ,0.0)))
7 (VecElement{Float64 }(1.0) , VecElement{Float64 }(0.0))

51

4 EVALUATING DATA AND TASK PARALLELISM IN JULIA MULTI-
THREADING

In this chapter, we perform a detailed analysis of Julia’s data and task parallelism
mechanisms. We evaluate the two main built-in loop parallelization macros present in
Julia, @spawn and @threads.

4.1 Experimental settings

The experiments were conducted on a AMD Ryzen 7 2700 Eight-Core Processor with
16 threads (2 threads per core with Simultaneous Multi-Threading), 128 GB of RAM
and Julia version 1.7. We used the speedup in our analysis, being calculated as the
execution time of the sequential code block divided by the execution time of the parallel
code block. To ensure statistical significance and amortize any possible random effect over
task scheduling or distribution, each experiment was executed 10 times and the execution
time used was the mean execution time of these 10 runs. For these measurements we used
the macro @timed as it was easier to analyze different blocks of code.

We measured the execution time and the percentage of load imbalance as proposed
in [65], that represents how unevenly the work is distributed. The percentage of load
imbalance, λ is given by:

λ = (
Lmax

L
)− 1× 100%, (4.1)

where Lmax is the maximum execution time of any thread and L is the mean execution
time of all threads.

When the benchmarks have parallel loops inside another loop, the measurements were
made for each iteration of the external loop and the load imbalance was calculated as the
mean in regards to the number of the external loop iterations.

4.2 Benchmarks

We evaluate the performance of the Julia’s data and task parallelism using synthetic
kernels and applications from a well-known benchmark suite. The synthetic kernels fabri-
cate situations of balanced and unbalanced scenarios, while the applications were selected
from the suite Rodinia [66].

Three synthetic kernels were implemented: Balanced, Unbalanced and Linked List.
The Balanced and Unbalanced kernels consist of a nested loop with its outer loop defining
the parallel Julia task and an inner loop defining the iteration work. The work of one
iteration of the Balanced kernel is constant (see Figure 33). While the work of iterations
of the Unbalanced kernel varies depending on the task id (see Figure 34).

In the Linked List kernel, each node of a linked list has a value on which the Fibonacci
number is computed. We expect an unbalanced computation given by the different cost

52

in computing the Fibonacci number of these different values. The implementation with
dynamic scheduling is shown in Figure 35. The idea is to distribute the node computation
among Julia tasks. In the main while loop of the algorithm, for each Fibonacci call,
we spawn a new task. The implementation with the static scheduling required some
modifications in the code. Each node of the list was assigned to an element of a vector
and we iterated over it with a for loop. In this way, we used the macro @threads for the
parallelization.

The benchmark applications from Rodinia that we used were: SRAD_v2, LUD, and
BFS. SRAD_v2, Speckle Reducing Anisotropic Diffusion, is a method for removing noise
in ultrasonic/radar imaging. LUD performs the LU decomposition by using upper and
lower triangular products of a matrix. BFS is a breadth-first search graph traversal
algorithm that, from the root, searches neighbor nodes before moving to the next level
of tree. The sequential version of these three Rodinia applications written in Julia were
obtained from [67]. We parallelized these three applications based on their OpenMP
counterparts and make them available at GitHub for the Julia Community. 1

For all the benchmarks, we used three different sizes of input data, named small,
medium and large, which are specified in Table 1. The balanced and unbalanced applica-
tion inputs correspond to the number of iterations of the outer loop N and the inner loop
k. The linked list application size is determined by the number of nodes of the list. LUD
inputs are matrix sizes, BFS inputs are graph files provided by Rodinia benchmark set
and SRAD_v2 inputs are matrix sizes, position of the speckle, lambda value and number
of iterations.

Table 1 – Input sizes used in the data and task parallelism benchmarks

Benchmarks Input Size
small medium large

Balanced N=10, k=500 N=100, k=500 N=500, k=500
Unbalanced N=10, k=500 N=100, k=500 N=500, k=500
Linked List 1000 10000 100000
LUD 512x512 1024x1024 2048x2048
BFS graph4096 graph65536 graph1M
SRAD_v2 128 128 0 31 0 31 0.5 2 512 512 0 67 0 67 0.5 2 2048 2048 0 127 0 127 0.5 2

Figure 33 – Balanced Synthetic Application to evaluate loop scheduling performance

1 for i = 1:N
2 for j = 1:k
3 ... (performs some computation)
4 end
5 end

1at https://github.com/dianabarros/rodinia

53

Figure 34 – Unbalanced Synthetic Application to evaluate loop scheduling performance

1 for i = 1:N
2 for j = 1:k/i
3 ... (performs some computation)
4 end
5 end

Figure 35 – Linked list implementation to evaluate loop scheduling performance

1 node = linked_list.head
2 for i in 1: length(linked_list)
3 node.value = c + 10*i
4 node = node.next
5 end
6 node = linked_list.head
7 while node.next != nothing
8 fibonacci(node.value)
9 node = node.next

10 end

4.3 Results

The following subsections contain the results obtained for each experiment and the
observations made.

4.3.1 Synthetic Kernels

The synthetic kernels test extreme scenarios of load balancing for @spawn and @threads
macros. Figures 36 and 37 show respectively the percentage of load imbalance and speedup
obtained for the balanced and unbalanced kernels for different input sizes and number of
threads.

Figure 36 – Load imbalance (λ) of balanced and unbalanced kernels with macros
@threads and @spawn.

We can observe in Figure 36 that @threads and @spawn produced similar load bal-

54

ancing results for the balanced kernel. Since this kernel is regular and the iterations are
identical, both macros are able to perform a good distribution, statically or dynamically.
When the input size is small the load imbalance is high since the time to create the
threads and tasks has great influence in the execution time of each thread. For the larger
input sizes, the load imbalance is negligible, since the amount of work to be distributed
is huge, and it is unlikely that a small difference in the computation of some iterations
would affect the result.

With the unbalanced kernel, we observe a more pronounced load imbalance percentage
and a considerable difference in the imbalance produced by @spawn and @threads. For
this kernel, the dynamic nature of the @spawn loop scheduling with depth first scheduling
is able to keep the load balance among the threads. The static scheduling of @threads, on
the other hand, produced significant load imbalance in the application execution. Using
@threads, the first thread will receive the first iterations that hold the majority of the
computation. This thread execution will take a longer time to compute and produce
the imbalance. We can also notice that, for larger inputs, the use of @spawn can help
amortize the increase of load imbalance as the number of threads increases, while when
using @threads the load imbalance increases much faster with the increase in the number
of threads.

Figure 37 – Speedup of balanced and unbalanced kernels with with macros @threads
and @spawn.

In the speedups result of Figure 37, we can observe that, for the balanced kernel, both
macros obtain similar speedup. For the unbalanced kernel, the speedups are smaller,
but the use of the macro @spawn provides a significant impact in the performance of the
kernel.

Figures 38 and 39 show the load imbalance and speedup results, respectively, for the
Linked List kernel with @threads and @spawn. In the Linked List kernel, for each node
of the list there is an offset increase of 10 on the values of the nodes. Therefore, as
the list is traversed, the amount of computation is considerably increased. For the small
input size, the usage of @spawn showed more imbalance than the macro @threads. For
the medium and large input sizes, however, the results are different, the use of @spawn
provided great reductions in the load unbalancing. The load unbalancing reflected on the
speedup as seen in Figure 39. Even though the usage of @threads had no impact in the
load imbalance, we could notice speedup gains with increase of input size and number

55

of threads. However, the decrease in load imbalance with @spawn allowed an increase in
performance that surpassed the ones obtained with @threads.

Figure 38 – Load imbalance (λ) of Linked List kernel of Julia implementations of data
parallelism (@threads) and task parallelism (@spawn).

Figure 39 – Speedups of Linked List kernel of Julia implementations of data parallelism
(@threads) and task parallelism (@spawn).

4.3.2 Benchmark Applications

SRAD_v2: This application has two different parallel loops and we analyse the
one that produced more load imbalance. Figures 40 and 41 show the percentage of load
imbalance and the speedup for the SRAD_v2 application, when the input sizes and
the number of threads vary. In Figure 40, we observe that when @threads is used the
imbalance is lower and shows a tendency to remain constant with the increase in the
number of threads. For the large input, the load imbalance of @spawn reaches a peak at
8 threads and then decreases. What happens is that when the matrices are small, the
number of spawned tasks is small. We observed that some threads finish rapidly without

56

any task assigned to them, by the time the the task is allocated and scheduled, most or all
of the work has been done by the others. Figure 41 shows that the speedup of SRAD_v2
using the two macros are similar, with @threads obtaining more speedup as the difference
in amount of speedup between them increases. This is due to the depth first scheduling
overhead which is high for the larger inputs.

Figure 40 – Load imbalance (λ) of SRAD_v2 with macros @threads and @spawn.

Figure 41 – Speedups of SRAD_v2 with macros @threads and @spawn.

LUD: This application has two independent parallel loops with dependency to an
outer loop. As the outer loop advances, the number of iterations of the inner loops
reduces. We analyse the loop that impacted more on the execution time of the application.
In Figures 40 and 43, we show the percentage of load imbalance and speedups for the LUD
application, when the input sizes vary. The load imbalance results show that the @spawn
macro yields a worse load balancing for this application. This occurs because as the outer
loop advances and the amount of work on the inner loops reduces, the depth first order
can produce situations where a thread remains without work, even though when the input
size and the number of thread increase, it does a better load balancing than with smaller
inputs. Figure 43 shows that the speedup obtained by the two macros follows the load
imbalance results, with @threads being the macro with best speedup with larger inputs.

57

Figure 42 – Load imbalance (λ) of LUD with macros @threads and @spawn.

Figure 43 – Speedups of LUD with macros @threads and @spawn.

BFS: There is one parallel loop in this application with dependency to an outer loop.
The parallel loop traverses all the nodes in the graph, it only performs computation in
the node if the node is marked. Although the loop iterates over all the nodes in the
graph, the amount of work that each iteration handles might be completely different. In
addition, since the graph nodes are not contiguous in memory, the iteration might have
high cache miss rates. Figures 44 and 45 show the load imbalance and the speedup of
BFS using @threads and @spawn for different input sizes and number of threads. We
can observe that @spawn generates worse load imbalance results and it oscillates as the
number of threads increases. The irregular nature of BFS can lead to situations where the
task assignment occurs, but no work is performed in the task. We observe in Figure 45
that the speedups of @spawn are very small, in fact, their performance was worse than
the sequential version. This is mainly due to the overhead of the creating a number of
tasks that do not perform any work.

58

Figure 44 – Load imbalance (λ) of BFS with macros @threads and @spawn.

Figure 45 – Speedups of BFS with macros @threads and @spawn.

4.4 Discussion

Load imbalance is one of the main sources of performance degradation in parallel
applications. Our comparison of a static and dynamic loop level scheduling mechanisms
in Julia shows that there is no best solution for all the cases and that the load balancing
is dependent on the input size. The static scheduling speedup can increase linearly along
the number of threads for applications where the iterations have a similar amount of work,
whereas when the iterations have different amount of work the maximum increase along
the number of threads was of around 20% and it was observed on the small input, while
also being the worse performance obtained compared to all the other implementations on
any input size. The dynamic scheduling, on the other hand, was able to balance a very
unbalanced loop on our synthetic applications, reducing about 4 times the load imbalance
from the small input size to the large input size and allowing an increase of speedup about
2 times of the small input size on the large input size.

However, the nature of the own code implementation can lead to a significant runtime
overhead generation from the depth first scheduling, as the Rodinia Benchmarks we ana-
lyzed. When the iterations have a small amount of work, the overhead of scheduling and

59

allocating a task can create scenarios where some threads do not receive tasks to compute.
Not only can this overhead impact the speedup, but also produce a parallel version worse
than its sequential one, as seen on the BFS benchmark.

Even though the macro @threads has a scheduling parameter in the latest version of
Julia, only the static option is available. This is equivalent of when no parameter is set.
We expect that the inclusion of this parameter in @threads represents an evidence that
other scheduling strategies will be implemented in this macro in the future.

In addition, it is not possible to change the granularity of the static distribution and
also it is not possible to configure the initial task queue for each thread in the dynamic
scheduling. Creating a initial task queue composed by a predefined number of threads
would prevent the situations of threads without any task assigned to them.

60

5 EVALUATING MULTITHREADING LOOP SCHEDULERS

In this chapter, we further evaluate the multithreading mechanisms presented in Julia.
We provide a detailed performance analysis of the internal loop scheduling strategies on
small and large scale environments.

5.1 Experimental settings

The experiments were executed in two different environments due to the access avail-
ability of small and large scale environments. The first set of experiments was performed
on an AMD Ryzen 7 2700 Eight-Core Processor with 16 threads (2 threads per core with
Simultaneous Multi-Threading) and 128 GB of RAM. The second set of experiments was
performed on one node of a cluster from the Grid5000 [68]. The node is equipped with
two Intel Xeon Gold 6130 @ 2.10 GHz with a total of 32 cores/64 threads per node and
192 GB RAM. We ran our experiments using Julia version 1.7 and GCC compiler version
9.4. For both of them we did not set any compilation flags, leaving them with their default
values. For the comparisons we used the speedup calculated as the sequential execution
time over the parallel execution time of the version in question, it being either Julia or C.

We used the macro @timed to measure the execution time in Julia because of the
practicality it offers when isolating the measurement on specific blocks of codes. With
the C implementations we measured the execution time with the function gettimeofday
on sequential versions and omp_get_wtime on OpenMP versions.

The evaluation of Julia’s internal loop scheduling strategies was done by comparing
the default loop scheduling strategy of the macro @threads against different loop sched-
ulers provided by the package FLoops.jl [12] executors: ThreadedEx, DepthFirstEx,
WorkStealingEx, TaskPoolEx and NondeterministicEx as seen in Section 3.4, where
the basesizes were the input_size/number_of_threads. We also compared Julia loop
scheduling against C + OpenMP loop scheduling, where we fixed the scheduling strategy
as the default scheduler: static round-robin with the chunks being the number of the loop
iterations divided by the number of threads.

5.2 Benchmarks

In order to test the different loop scheduling strategies of Julia, we used a different
set applications. We tested with real-world applications, but we chose applications where
the load imbalance is more pronounced than the load imbalance shown in Rodinia appli-
cations. The applications were: Mutually Friendly Numbers, Password Cracking using
Brute Force, and Transitive Closure of a Graph.

In the Mutually Friendly Numbers application, two numbers a and b are said to be
mutually friendly if the ratio between the sum of every divisor of a and a is equal to
the ratio between the sum of every divisor of b and b. Our Mutually Friendly Numbers
application calculates all the mutually friendly numbers between a range of numbers

61

specified in the input. The Password Cracking application using Brute Force takes in
a string and, with a previously defined set of possible characters, guess character per
character of the string until it finds the entire string. The longer the string the more work
it will perform. Finally, the Transitive Closure problem relies on determining if for every
pair of nodes in a graph there is a directed path. Our implementation of the problem
follows the Warshall algorithm [69].

The input sizes of these benchmarks are shown in Table 2. The input size of the
Mutually Friendly Numbers application corresponds to the range of numbers that will
have their mutual friendly number calculated. The input size of the Password Cracking
application indicates the length of the password string input. The input size of the
Transitive Closure problem is the amount of nodes in the graph.

Table 2 – Input sizes used in the loop scheduling benchmarks

Benchmarks Input Size
small medium large

Mutually Friendly Numbers 0 - 50000 0 - 200000 0 - 350000
Password Cracking/Brute Force 4 5 6

Transitive Closure 1280 2560 5120

5.3 Evaluating the Loop Scheduling Strategies

The first set of experiments evaluates the different strategies for scheduling the loop it-
erations among the threads in the AMD Ryzen single processor environment. We compare
the loop scheduling strategies provided by default in Julia with the different executors of
the package FLoops.jl, and the default loop scheduling strategies of C + OpenMP.

5.3.1 Mutually Friendly Numbers

The parallel loop in this application iterates between the range of numbers that was
passed as input. For every iteration, it calculates the sum of the factors of the i-th number
divided by i. It means that the work load depends on the size of the number of the current
iteration and its characteristics that determine the amount of factors that it has. Given
this unbalanced nature, we would expect either the DepthFirstEx or WorkStealingEx
executors to have better performance.

Figure 46 shows the speedup of the FLoops.jl executors and we can notice that they
behave similarly. For every input size observed, the speedup increased faster until 8
threads. DepthFirstEx and ThreadedEx executors had similar speedups, but we chose
ThreadedEx for the next experiments because it had higher speedup than DepthFirstEx
on small input sizes. The results of ThreadedEx are due to the divide-and-conquer strat-
egy adopted by the scheduler where combining tasks with different workload could help
balancing the loop.

The comparison with the C implementation is shown in Figure 47. This figure shows
the speedups of Mutually Friendly Numbers for C + OpenMP, Julia with the macro
@threads, and Julia with FLoops.jl using ThreadedEx. The speedup varies consistently
with the increase in the input size, growing as the number of threads increases. The
different implementations show similar speedup results, but in most of the cases, the
implementation with FLoops managed to get slightly better speedup, specially when 4

62

and 8 threads are used. Figure 48 compares the execution time of the sequential version
of this application in C and Julia. This plot shows that there was no significant difference
between the sequential execution time in C and in Julia. This means that the speedups
were not heightened by a slow sequential code.

Figure 46 – Mutually Friendly Numbers speedup with FLoops.jl executors.

Figure 47 – Mutually Friendly Numbers speedup.

5.3.2 Password Cracking with Brute Force

This application goes through every possible combination of characters and compares
it to the password to check if it matches. It starts with a loop in which the number of
iterations is the length of the smallest possible password and continues to another loop
in which the number of iterations is increased by one to test another length of password.
The longer the password string is, the greater is the amount of work. We need a flag to
exit the loop when the password is found. In the parallel versions, this flag needs to be
protected by a lock to avoid race conditions. Since the characters are tested in a specific
order, the password chosen has influence in the amount of computation performed. Since

63

Figure 48 – Mutually Friendly Numbers sequential execution time in seconds.

the loop is exited when the password is found, we expect the DepthFirstEx executor to
obtain better speedups.

Figure 49 shows the speedup of the FLoops.jl executors. We can observe that the
speedups are more pronounced with a tendency of grow for the small input size. For the
large input size, we can observe that the results for the different executors oscillates. We
chose the DepthFirstEx executor for the next experiments since it showed the highest
speedups in average. Although we expected that DepthFirstEx would return better
results, ThreadedEx and TaskPoolEx obtained close speedup results.

Figure 50 shows the comparison between C + OpenMP and Julia parallel implemen-
tations. For small and medium input sizes, we could not see an increase in speedup along
with the increase of number of threads or imput size, even though we Julia implementa-
tions had higher speedup than C + OpenMP. For the large input size, a similar scenario
occurs for up to 8 threads. For more than 8 threads the speedup of the C implementation
escalates very quickly, reaching a speedup of over 20. During the execution of our ex-
periments we could observed that, for larger inputs, the Julia implementation made large
amounts of memory usage, resulting in a slower execution time. Figure 51 shows the exe-
cution time of the sequential versions. We can observe that the Julia version was around
4x slower than the C version on large input size. This behavior seen on Julia’s version
prevented the performance gains in its parallel implementation, while on C’s version the
amount of work load that starts taking advantage of multithreading parallelism is seen
on large input size.

5.3.3 Transitive Closure

The Warshall algorithm that is used in this implementation traverses the adjacency
matrix of the graph and accesses it both by row and column. It is done by three nested
loops, where the second loop was parallelized. For this loop, the amount of work inside
each iteration is determined by an if condition. Since these iterations might not obtain the
same amount of work, we expect that either DepthFirstEx or WorkStealingEx present
better speedups.

We can see in Figure 52 how the executors scale with the input size. We observe that
the speedups are small with little increase. Among these executors, NondeterministicEx

64

Figure 49 – Password Cracking with Brute Force speedup with FLoops.jl executors.

Figure 50 – Password Cracking with Brute Force speedup.

is the one that scales the least, WorkStealingEx shows more oscillation, TaskPoolEx scales
until 8 threads but decreases after that, and ThreadedEx and DepthFirstEx obtained the
best results. We chose DepthFirstEx for the next experiment because it provides better
results on large input size.

The comparison of C and Julia implementations, depicted in Figure 53, shows that
Julia versions do not seem to benefit enough from parallelism when compared to the C
+ OpenMP version, even though Julia’s sequential version optimization could reduce its
execution time as seen in Figure 54.

65

Figure 51 – Password Cracking with Brute Force sequential execution time in seconds.

Figure 52 – Transitive Closure speedup with FLoops.jl executors.

Figure 53 – Transitive Closure speedup.

66

Figure 54 – Transitive Closure sequential execution time in seconds.

67

5.4 Evaluating the Scalability of the Loop Scheduling

In our second set of experiments, we evaluate the scalability of the Julia loop scheduling
strategies. The experiments were performed on the 64-threads node of the University of
Luxembourg cluster.

5.4.1 Mutually Friendly Numbers

Figure 55 shows the speedups of the Mutually Friendly Numbers application using the
different executors of the FLoops.jl when the number threads ranges from 2 to 64. We can
observe in this figure that the speedups show a growing trend, except for the TaskPoolEx
executor with the small input size. Since the curves of the ThreadedEx executor show
higher speedups, we will use it for the further comparisons.

Figure 55 – Mutually Friendly Numbers speedup of FLoops.jl executors on an
environment ranging from 2 to 64 threads.

Figure 56 shows the speedups for the @threads and the the FLoops.jl with ThreadedEx
executor. We can observe that the @threads only scales better on the small input size,
even though the curves are very close.

5.4.2 Password Cracking with Brute Force

Figures 57, 58 and 59 show the speedups of the FLoops.jl executors on the Brute
Force application. Since the results oscillated a lot with the different input sizes, we split
them in separate plots. We can see in Figure 57 that WorkStealingEx, DepthFirstEx
and NondeterministicEx increase their speedup with the increase on number of threads.
WorkStealingEx is the one that scales better. The behavior of ThreadedEx and TaskPoolEx
oscillates as the number of threads increases. However, when we look at Figures 58 and 59,
we can notice a drop in the speedups, which range around 2 and 4 for medium and large
input sizes. For these input sizes, the speedups oscillates a lot with the increase in the
number of threads.

Based on these plots observations, we chose the executor WorkStealingEx to compare
with the implementation with @threads, since it showed good speedups for higher number
of threads, more precisely with 32 threads. Figure 60 shows for the small input size, the

68

Figure 56 – Mutually Friendly Numbers speedup of @threads and FLoops.jl with
ThreadedEx executor on an environment ranging from 2 to 64 threads.

Figure 57 – Password Cracking with Brute Force speedup with small input size of
FLoops.jl executors on an environment ranging from 2 to 64 threads.

speedups of WorkStealingEx and @threads. We can observe in this figure that the
speedup of @threads grows close to FLoops.jl speedups until 32 threads, where @threads
shows a decrease in the speedup. Figures 61 and 62 show the speedups for the medium
and large input sizes respectively. We can observe in these figures that the speedups are
small with an oscillation behavior. For the medium input size, the difference between
them is that the peak for @threads is at 8 threads and is higher than the peak for
WorkStealingEx at 32 threads. For the large input size, the peak of WorkStealingEx is
at 8 threads and is higher than the peak of @threads at 4 threads. Both implementations
show similar speedups from 32 to 64 threads.

As mentioned in Subsection 5.3.2, this application includes multiple parallel loops that
are executed one after the other for guessing passwords of different string lengths. The
application exits when the right password is found. As the first loops present smaller
number of iterations, they provide less work to be distributed among the threads. When
we test this application with a greater number of threads, some threads may become idle
in these first loops computation, which have direct impact on the speedup achieved.

69

Figure 58 – Password Cracking with Brute Force speedup with medium input size of
FLoops.jl executors on an environment ranging from 2 to 64 threads.

Figure 59 – Password Cracking with Brute Force speedup with large input size of
FLoops.jl executors on an environment ranging from 2 to 64 threads.

5.4.3 Transitive Closure Problem

Figure 63 shows the speedups of Transitive Closure for the FLoops.jl executors. We can
observe a decrease trend in the speedup values as the number of threads increase, though
there is some oscillation in these values. From these results, we chose DepthFirstEx to
compare with @threads, since it maintained the higher speedup results.

Figure 63 shows the speedups for DepthFirstEx and @threads. We can observe in
this figure that they showed small speedups but with a similar behaviour. This drop
tendency in the speedup could be a result from how the algorithm and the parallelism are
implemented. This algorithm has an outer loop that iterates sequentially on the input
size, each iteration has a parallel loop also iterating on the input size, this means the
tasks are being created for each iteration of the outer loop, producing an overhead that
could impact the overall performance.

70

Figure 60 – Password Cracking with Brute Force speedup with small input size of
@threads and FLoops.jl with WorkStealingEx executor on an environment ranging
from 2 to 64 threads.

Figure 61 – Password Cracking with Brute Force speedup with medium input size of
@threads and FLoops.jl with WorkStealingEx executor on an environment ranging
from 2 to 64 threads.

71

Figure 62 – Password Cracking with Brute Force speedup with large input size of
@threads and FLoops.jl with WorkStealingEx executor on an environment ranging
from 2 to 64 threads.

Figure 63 – Transitive Closure speedup of FLoops.jl executors on an environment
ranging from 2 to 64 threads.

72

Figure 64 – Transitive Closure speedup of @threads and FLoops.jl with DepthFirstEx
executor on an environment ranging from 2 to 64 threads.

73

5.5 Discussion

We observed different behaviors in speedup among the applications from the experi-
ments as a result of the nature of each problem and how Julia was able to handle them.
There were gains in performance and scalability with the Mutually Friendly Numbers
application. With the Password Cracking with Brute Force and the Transitive Closure
Problem applications, the C implementation outperformed Julia and was able to scale
when larger work loads were in use. Therefore Julia’s multithreading gains varies accord-
ing with the code implementation.

The Julia package FLoops.jl shows to be an interesting option because the loop sched-
ulers offered as executors can help improving performance. The Mutually Friendly Num-
bers showed to be an application that can gain from parallelism since the schedulers
speedups showed a very consistent increasing behavior. The ThreadedEx executor out-
performed C + OpenMP static scheduling and presented a similar behavior to the Julia
macro @threads. For Password Cracking with Brute Force, we expect that the applica-
tion would take more benefit with the DepthFirstEx executor, but ThreadedEx obtained
similar results. However, the sequential version already showed a slower performance
when comparing to C and when using multithreading we could not notice speedup in-
crease with either a increase on number of threads or input size. Its implementation used
parallelism when checking the characters of a password for each possible string length,
but each different length of the password was tested sequentially. If we were able to
also parallelize the testing for each string length and, for each of them, test the possible
characters and traverse the possibility tree with the DepthFirstEx, we could prevent the
additional work arisen from the sequential checking of the original implementation. On
the Transitive Closure Problem, there is gain in performance with the increase of the
input, but there is no scaling along with the increase of threads. This problem can deal
with large matrices and the overhead from scheduling and task distribution might not
compensate the time spent accessing the matrices elements on memory.

In our applications, the executors ThreadedEx and DepthFirstEx were the ones that
presented better performance compared to the others available. The DepthFirstEx execu-
tor uses the Depth First algorithm for balancing the load. This algorithm is well-known to
work well with unbalanced load [54]. The ThreadedEx executor uses a divide and conquer
algorithm that recursively divides the load into halves until it reaches the basesize. Al-
though this algorithm was designed to deal with a reduction style computation, it showed
good performance on our unbalanced applications. Nevertheless, we did not experiment
with different basesizes for the executors, the adjustment of this parameter could help
tuning the scheduling.

Regarding the scalability of the parallel implementations of the loop scheduling mech-
anisms in Julia, we observed that Julia multithreading can scale with the environment.
However, it is more noticeable in the application where there is only one loop as in the
Mutually Friendly Numbers application. For Password Cracking with Brute Force and
Transitive Closure, where there exists different parallel loops, and the amount of work that
each loop generates is irregular. So, sometimes there is not enough work to be distributed
when the number of threads increases.

74

6 EVALUATING SIMD MECHANISMS

In this chapter, we evaluate the performance of the SIMD mechanims offered by Julia.
We compare the auto-vectorization ability of Julia with the auto-vectorization ability of
the C compiler. We also compare the vectorized code generated by the macro @simd, the
package SIMD.jl, and the package LoopVectorization.jl.

6.1 Experimental settings

The executions were performed on a AMD Ryzen 7 2700 Eight-Core Processor with 16
threads (2 threads per core with Simultaneous Multi-Threading), support to AVX/AVX2
instructions with 256 bits registers and 128 GB of RAM. According to Rosetta@Home’s
Whetstone benchmarks [70] this CPU peak speed is 4.36 GFLOPS/core and 69.78 GFLOP-
S/computer.

The experiments were run with the package BenchmarkTools.jl [49] to measure the
execution time, with its parameters of number of samples equal to 10 and 1 evaluation.
The execution times of each sample were logged in case a deeper investigation on each
execution was needed and the mean execution time was calculated using Julia’s built-in
package Stastistics.jl. To measure the quantity of FLOPS reached by each experiment we
used the number of instructions of a matrix multiplication. Multiplying two matrices i×k
and j × k, for each element of the resulting matrix i× j we would have k multiplications
and k − 1 additions, so 2k − 1 instructions. For every element of the resulting matrix we
would then have i×j× (2k−1) instructions. As the matrices we used on our experiments
are n×n, the number of operations on the matrix multiplication is 2n3. The FLOPS was
then calculate as 2n3/(execution_time_in_seconds).

6.2 Benchmarks

Our first experiment was to test the auto-vectorization ability of Julia compiler on
the Rodinia benchmarks applications: SRAD_V2, LUD and BFS. We checked whether
the code was vectorized using @code_llvm. We observed though that the loops in these
applications are complex, since they have conditionals and function calls inside them. So,
the compiler was not able to vectorize any of these applications.

Our second experiment was to test the auto-vectorization ability of the gcc compiler
for the same set of applications. We used the compiler flags -ftree-vectorize and -fopt-
info-vec-all and the gcc compiler was also not able to vectorize the loops of SRAD_V2,
LUD and BFS.

Therefore, we decided to perform the evaluation of the SIMD mechanisms present in
Julia using a simple application: matrix multiplication. The sequential code is shown in
Figure 65. The input matrices with elements of type Int64 are square matrices of size
N × N , where N varies from 512 to 4096. A test with the use of @threads macro was
also performed for comparison purposes. The SIMD mechanisms tested are:

75

• The macro @simd;

• The package SIMD.jl. This package provides a vector type for vectorization. Since
the AVX vectors hold 4 double precision floating points numbers, the inner loop of
the matrix multiplication was divided into chunks of 4 so that the SIMD.jl could
handle the operations correctly. This package was tested both with and without the
multithreading macro @threads ;

• The package LoopVectorization.jl with the macros @turbo and @tturbo.

Figure 65 – Sequential and auto-vectorized versions of the matrix multiplication
application used to evaluate the SIMD mechanisms.

1 function mm_sequential(A, B, C)
2 for i in 1:size(A,1)
3 for j in 1:size(B,2)
4 for k in 1:size(A,2)
5 C[i,j] += A[i,k] * B[k,j]
6 end
7 end
8 end
9 return C

10 end
11

12 function mm_auto_vectorized(A:: Array{T,N}, B:: Array{T,N}, C::Array{T,N})
where {T,N}

13 for i in 1:size(A,1)
14 for j in 1:size(B,2)
15 @inbounds for k in 1:size(A,2)
16 C[i,j] += A[i,k] * B[k,j]
17 end
18 end
19 end
20 return C
21 end

To trigger auto-vectorization on the sequential code it was necessary to specify the
data types on the function parameters and add @inbounds to prevent index checking
inside the innermost loop. We need to ensure that the function is type stable so that the
compiler is able to vectorize the code.

In the implementations that used @simd and the package LoopVectorization.jl, the
only modification needed compared to the autovectorized version was the inclusion of the
macros before the loops.

The package SIMD.jl, on the other hand, required more modifications in the code. This
package was designed to give the programmer the ability to write explicit SIMD code.
Still, the implementation using SIMD.jl required further modifications since it showed
poor performance as explained in the next section.

6.3 Results

In our first SIMD.jl implementation, we had the rows of A and the columns of B
divided into SIMD.jl vectors of size 4. This was done to fit into the SIMD registers, even

76

if the size of the matrices were not a power of two. The innermost loop iterates in steps
of 4, so that the rows and columns could be loaded into the SIMD.jl vectors. In this
way, they could be multiplied and stored in a temporary SIMD.jl vector and a reduction
is made on the temporary vector after the innermost loop is finished. The issue with
this implementation is similar to one pointed out at Julia’s forum [71], and according
to Elrod, C. [72], while the vectors of chunk 4 are computing the multiplication with
SIMD parallelism, the innermost loop was not unrolled and the need to load and store
the indexes turn the execution very slow.

We checked the assembly code of this implementation and we observed a similar
structure as pointed by Elrod, C. Figure 66 shows the assembly code (obtained using
@code_native). It corresponds to part of the innermost loop and we can see the instruc-
tion vmovupd performing the load and store operations for the index. This means that
it needs to access the memory for these index operations. The last three instructions
correspond to the increment of the loop counter, a comparison test, and a jump to the
beginning of the loop.

After these findings, we decided to try another strategy for the matrix multiplication
with SIMD.jl. We transferred the rows from A and the columns from B entirely to a
SIMD.jl vector, so that the innermost loop of the previous implementations is no longer
necessary. In this case, the loop was unrolled. In this implementation, if the size of the
matrices is a power of two, it is possible to execute the entire matrix multiplication with
SIMD instructions. If the size is not a power of two, the rest of the matrix is computed
sequentially.

Table 3 – GFLOPS for matrix multiplication with different SIMD mechanisms and
different matrices sizes.

Size Sequential Auto-Vectorized Multithread @simd SIMD.jl LoopVectorization.jl
(N ×N) without Multithreading with Multithreading Turbo TTurbo
512 0.38 0.37 3.12 0.37 0.28 8.3 4.51 22.51
1024 0.30 0.37 2.6 0.37 0.33 10.91 4.34 31.11
2048 0.23 0.23 0.54 0.23 0.39 8.91 4.17 24.11
4096 0.10 0.10 0.47 0.10 0.42 8.17 4.16 20.46

Table 3 shows the GFLOPS obtained on the sequential, auto-vectorized, multithreaded,
@simd, SIMD.jl (without and with multithreading), and LoopVectorization’s Turbo and
TTurbo mechanisms. The matrices are N × N and the column Size contains the value
of N , we analyze input sizes of 512, 1024, 2048 and 4096. Looking at the single threaded
implementations we can clearly see that the only mechanism that was able to exploit
better the CPU was the @turbo, as its GFLOPS were close to the peak GFLOPS/core
obtained by the CPU Whetstone benchmark. The sequential, auto-vectorized and @simd
implementations obtained very similar results on GFLOPS, with 8% of the peak CPU
speed on the smaller input size, lowering to 2% on the larger input size. The SIMD.jl
implementation obtained a lower number of GFLOPS than the sequential version on the
smaller input size but it increased with the input size, reachin 10% of the peak CPU
speed. The @tturbo implementation could take more advantage of multithreading than
SIMD.jl with multithreading, reaching around 35% of the peak GFLOPS/computer while
SIMD.jl with multithreading reached around 15%.

For a better understanding of the behavior of each mechanism, we provide in Fig-
ure 67 a plot that shows the matrix multiplication execution times in seconds for all the
SIMD mechanisms. The sequential, auto-vectorized, @simd and SIMD.jl implementations
showed similar behavior. It is worth remembering that the use of the @simd macro is

77

Figure 66 – Assembly code obtained by @code_native on thde first SIMD.jl matrix
multiplication implementation. Corresponds to a part of the most inner loop.

discouraged by Julia language, because it relies totally on the programmer skills to make
the vectorization safe. There was not much difference between them until after matrix
size 1024 × 1024 where SIMD.jl started to show better performance. However, as a spe-
cialized package for SIMD operations, one would expect an execution time closer to the
other specialized package, what was not observed. Even though the innermost loop was
unrolled in the SIMD.jl implementation, there is a high overhead of having to transfer
the rows of A and the columns of B to the SIMD Vec type.

The implementations with faster execution time were @tturbo, SIMD.jl with multi-
threading and @turbo, in this order. Right after them there was the multithreading only
implementation we displayed to serve as a reference for the SIMD.jl with multithreading
and the @tturbo implementations.

In order to check what kind of optimization LoopVectorization.jl was performing,
we used the macro @turbo_debug. This macro returns the LoopSet structure used by
the package instead of evaluating the loop. With LoopSet, we are able to pass it as

78

Figure 67 – Execution time in seconds of each SIMD mechanism shown in logarithmic
scale. Input size represents N for matrixes N ×N .

argument to the function choose_order and understand what LoopVectorization.jl was
doing. Figure 68 shows the usage of @turbo_debug and the output from choose_order.
Looking at the output, we can see six parameters. The first one is an array that represents
the order that LoopVectorization evaluated each loop. The second and third arguments
are the indexes that represent which loops were marked to be unrolled. The fourth
argument is the loop chosen to be vectorized. The last two arguments correspond to the
number of times the loop is replicated in the loop body for each unrolled loops.

Figure 68 – Usage of @turbo_debug on matrix multiplication and the output from
choose_order showing what strategy LoopVectorization used.

The last experiment was to compare our results with the C version of matrix mul-
tiplication that relies on the auto-vectorization of the gcc compiler. In this experiment,
however, we faced some difficulties in trying to make the compiler vectorize the code.

First we had to modify the matrix multiplication code to a version where we could
obtain contiguous memory accesses. This was done by swapping the inner loops, as shown
in Figure 69. When we compile this code using cmd and the flags -O2, -ftree-vectorize
and -fopt-info-vec, the compiler indicated that the matrix multiplication loop was
versioned. Loop versioning happens when there is an unaligned access and the compiler
creates two versions of the loop, one that is vectorized and the other that is not. Which
version will be used is decided at runtime. So, even though there is a vectorized version,
we cannot tell if this is the one that executed.

79

Figure 69 – Sequential version of C matrix multiplication.

1 void mm_sequential_C(int m, int n, int p, int **A, int **B, int **C){
2 for(int i = 0; i < m; i++){
3 for(int k = 0; k < p; k++){
4 int a_row_i = A[i][k];
5 for(int j = 0; j < n; j++){
6 C[i][j] += a_row_i * B[k][j];
7 }
8 }
9 }

10 }

6.4 Discussion

Since SIMD units are available in most of the current processors, exploiting this type
of parallelism can be advantageous. Julia offers the user many alternatives to exploit
SIMD parallelism. The simplest alternative, auto-vectorization, requires the programmer
to follow the recommendations mentioned in section 3.5.1. When the programmer has to
explicitly request the compiler to vectorize the code, they could add the built-in feature
@simd in front of the loop , but it did not show any significant gains over the sequential
and the auto-vectorized versions and it is still marked as experimental and discouraged
by the developers since it can lead to unexpected results. We were not able to measure
the reliability of this macro in our experiments.

Julia also provide some packages for SIMD parallelism. The SIMD.jl package started
showing gains in execution time compared to the sequential, auto-vectorization and the
@simd versions after the 1024 × 1024 matrix, but compared to the LoopVectorization.jl
package it was 10 times slower. This occurred due to the need to transform the data
type to the SIMD.jl Vec type. SIMD.jl seems to be a package in which the user interface
is more similar to a lower level “vectorization language”. The way it is programmed is
similar to lower level vector instructions. In this case, the user should be more familiar
with programming vectorized code and should be responsible for the correctness of the
results. However, the user has the option to optimize it combining with multithreading,
which led to an execution time 10 times faster than both SIMD.jl and multithreading
only implementations on the larger matrix size.

The best results were obtained with the package LoopVectorization.jl, being the only
implementation that could exploit the best the CPU speed. This package not only vector-
izes the loop, but also implements loop reordering and unrolling, which provides further
performance improvements. The @turbo results shows how the application can benefit
from vectorization, and also shows how loop optimizations have influence in the execution
time. The @tturbo version seems to be the best option. It combines vectorization, loop
optimizations, and it also includes the benefits of using multithreading.

Our experience with the vectorization in C shows that for the users to benefit from
it, they need to have enough knowledge of the code to make vectorization possible and
reliable. GCC provides documentation about its auto-vectorization [73] with several ex-
amples of loops that can and cannot be vectorized. The documentation confirms that the
possibilities are restricted. Even though it was not possible to compare the use of SIMD
operations of C and Julia in the matrix multiplication, we verified that Julia can make
the vectorization more user friendly and more accessible for the user that does not have

80

enough knowledge on SIMD programming.

81

7 EXPLOITING JULIA PARALLELISM IN A REAL-WORLD SCENARIO

Another contribution of this Dissertation is the study of the use of Julia multithreading
in a real-world scenario, where we exploit parallelism to improve the performance of
Coluna.jl. Coluna.jl is an open-source branch-cut-and-price framework code written in
Julia that implements optimization methodologies based on decomposition and extended
reformulation for mixed integer linear optimization programs (MIPs).

7.1 The Coluna.jl Framework

Coluna.jl is an open-source branch-cut-and-price framework code in Julia that imple-
ments optimization methodologies based on decomposition and extended reformulation
for mixed integer linear optimization programs (MIPs). Combinatorial optimization prob-
lems with semi block-diagonal constraint coefficient matrix are well suited for Coluna.jl
that reformulates their original MIP representation and optimizes the reformulation us-
ing specialized divide-and-conquer algorithms customized by the user. The underlying
solution method is a branch-cut-and-price approach that combines a tree search in the
solution space with online generation of the variables of the extended reformulation. The
latter is at the core of the solver and often a bottleneck using significant computing time
for complex applications.

The framework is developed on an open-source basis and hence can engage innovations
and constant updates; it is made to serve as a solid socle to researchers building further
algorithmic progress. Another important feature of Coluna.jl is that it is completely
implemented in Julia, a recent dynamic language that provides high productivity and
high performance. Choosing Julia to develop Coluna.jl was motivated by striking the
best trade-off between efficiency and ease to share co-developments under a simple syntax
to facilitate updates and extension of the framework.

7.1.1 Mixed-Integer Programming

Mixed-integer programming (MIP) is an optimization paradigm with a wide range of
real world applications. In a MIP, the decision variables take either continuous or inte-
ger values, while the objective function and the constraints are linear expressions of the
variables. MIP allows a fair description of reality and is also well-suited for global opti-
mization. The solution of such models is essentially based on enumeration techniques and
is notoriously difficult given the huge size of the solution space. Although, commercial
solvers for MIP have made significant progress in the last decade, one can go further using
decomposition techniques. In this context, Coluna.jl was designed to offer functionalities
to implement a branch-and-price-and-cut approach to a decomposable MIP at the core
of which is a modular implementation of the so-called column generation method. Col-
una.jl has been launched by the startup AtOptima in a collaboration with the University
of Bordeaux and Inria and with a kick-off grant from the Math Optimization Society.

82

It is openly available at https://github.com/atoptima/Coluna.jl under a Mozilla Public
Licence.

7.1.2 Column generation

Coluna.jl is designed to facilitate the use of complex decomposition paradigms such
as Benders and Dantzig-Wolfe, while supporting the JuMP modeling language interface.
This “basic-user-mode” is completed by a researcher usage mode as one can take over any
routine and develop advanced algorithmic strategies by combining the solver modules.
To get started, the user writes the original MIP that models his problem using JuMP
together with a package called BlockDecomposition.jl that extends JuMP to specify the
problem decomposition. Coluna automatically reformulates the original MIP following
the decomposition instructions. Coluna then calls the algorithm chosen by the user to
optimize the reformulation.

In this work, we focus on column generation. Usually, column generation arises when
the original MIP has a set of “tractable constraints” that define a collection of indepen-
dent subproblems (these subproblems can be solved with efficient specific algorithms),
and a set of “linking constraints”, that make the subproblems dependent on each other.
This original MIP gives rise to an extended reformulation where the variables represent
decision to choose a specific feasible solution to a subproblem. As this reformulation in-
volves an exponential number of variables, one uses a column generation algorithm that
incrementally adds these variables and associated columns of constraint coefficients into
the formulation.

Thus, the column generation algorithm consists in a successive exchange of information
between the resolution of the linear relaxation of the formulation restricted to a subset
of variables, also known as the master problem, and the pricing oracle used to identify
a subproblem solution that could induce an improvement to the current master solution.
For each generated subproblem solution, a new variable associated with it is introduced
in the master program. The master is then re-optimized and the algorithm iterates in
that way until the pricing oracle can no longer identify an improving subproblem solution.
The branch-and-price algorithm is a branch-and-bound algorithm applied to the extended
reformulation. As this integer program has an exponential number of variables, they are
generated dynamically, using the above column generation procedure at each node of the
branch-and-bound tree.

7.1.3 Opportunities for parallelism

Coluna.jl is one of very few contributions attempting to offer a framework to implement
a branch-cut-and-price methodology, along GCG [74] and DIP [75] that are the best
known alternatives. Coluna.jl is the most recent initiative that differentiates itself by an
attempt to offer a more modular design with innovations for flexibility such as algorithmic
strategies; it is also designed to be high level based on a modeling interface and the
high-level Julia language, while being focus on performance; parallelism is a key asset
in this regard. GCG offers a generic branch-and-price solver over the SCIP [76] mixed
integer programming platform (which is an open-source project but it is restricted to
academic use). CGC and SCIP are written in C/C++. CGC can perform an automated
Dantzig-Wolfe decomposition, while Coluna.jl takes instructions from the user to define
the decomposition. SCIP offers facilities to parallelize the branch-and-bound tree search.
DIP is distributed via the COIN-OR initiative[77]. DIP does the decomposition on the

83

user instructions (like Coluna) and it embeds a column generation algorithm. Under DIP,
the solution of individual subproblems can be parallelized as in the present work, multiple
subproblems can be solved simultaneously. In addition, with DIP, one can rely on running
several decomposition-based algorithms in parallel.

The continuous effort to develop features for parallelization in Julia seems to have not
yet been exploited in the Julia-Optimization community. A number of packages have been
created for optimization modeling, optimization infrastructure and for solving different
types of optimization problems [78]. But none exploits the Julia multithreading which is
admittedly a very recent feature. There are only a few studies outside the optimization
area that exploit it to our best knowledge. Summers et al. [23] used Julia threads to
improve the performance of a robot control package. Novosel and Slivnik [24] performed
a preliminary comparison between Julia and Chapel on distributed and shared memory
implementations. Stanitzki and Strube [25] used Julia threads and channels to accelerate
data analysis workflows in high energy physics.

7.2 JuMP

For optimization problems, Julia offers JuMP [79], an embedded modeling language.
JuMP translates mathematical expressions into internal representations. The idea is to
maintain a simple syntax to the programmer that is near to the natural representation
of an optimization problem. The variables of the problem are described by the macro
@variable, the objective function by the macro @objective and the constraints by the
macro @constraint.

Suppose we have an optimization problem described as:

minimize
∑
ij∈A

cijxij

subject to ∑
ij∈A

xij −
∑
ji∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ 1 ∀(i,j) ∈ A

This mathematical expression can be described with JuMP in the following way:
1 @variable(m, 0<= x[links] <=1)
2 @objective(m, Min , sum(c[(i,j)] * x[(i,j)] for (i,j) in links))
3 for i=1: no_node
4 @constraint(m, sum(x[(ii,j)] for (ii,j) in links if ii==i) - sum(x[(

j,ii)] for (j,ii) in links if ii==i) == b[i])
5 end
6 solve(m)

7.3 Parallel Implementation

Among the parallelization opportunities in the branch-cut-and-price method of Col-
una.jl, our first step was to exploit multithreading on the pricing oracle which is usually
the bottleneck of the column generation algorithm. In principle, the resolution of each
subproblem does not require any communication. Therefore, a straightforward and ef-
ficient way to parallelize the pricing oracle is to distribute the subproblem resolutions

84

among the number of available threads. In the end of all subproblem resolutions, a new
variable associated with each subproblem solution is added to the master problem.

An important point to consider is the load balancing among the threads. Each sub-
problem has a different computational cost, that is not known in advance. Thus, we
implemented two different multithreading strategies taking advantage of Julia support
for task and data parallelism, with the macros @spawn and @threads respectively. In the
task parallelism approach, our implementation spawns one task for each subproblem com-
putation, and relies on the runtime system for dynamically distributing the tasks to the
threads. In the data parallelism approach, the for-loop that iterates over all subproblems
is parallelized and the subproblem computations are equally divided among the threads.

7.4 Case Study: the Generalized Assignment

In the generalized assignment problem (GAP), we are given n tasks to be assigned to
m machines (or agents), where each machine i has capacity ui, and each task j, when
assigned to machine i, uses dij units of resource and costs cij, for j = 1, . . . ,n, and
i = 1, . . . ,m. The problem consists in assigning each task to exactly one machine, such
that the total resource usage on each machine does not exceed its capacity, and the total
assignment cost is minimized.

Let xij be a variable equals to 1 if the job j is assigned to machine i, 0 otherwise. The
mathematical program that models this problem is :

minimize
∑
i∈I

∑
j∈J

cijxij (7.1)

subject to (7.2)∑
i∈I

xij = 1 ∀j ∈ J (7.3)∑
j∈J

dijxij ≤ ui ∀i ∈ I (7.4)

xij ∈ {0,1} ∀i ∈ I, j ∈ J (7.5)

Set-partitioning constraints (7.3) ensure that each task is assigned to one machine. Knap-
sack constraints (7.4) ensure that the total weight of the jobs assigned to a machine does
not exceed the capacity of the machine. This application involves multiple distinct sub-
problems. A solution of the pricing subproblem consists of a set of tasks to be assigned
to one of the machines, that satisfies the knapsack constraint (7.4).

This mathematical program can be described with JuMP in the following way :
1 @variable(m, x[i in I, j in J], Bin)
2 @objective(m, Min , sum(c[i,)] * x[i,j] for i in I, j in J))
3 @constraint(m, setpart[j in J], sum(x[i,j] for i in I) == 1)
4 @constraint(m, knp[i in I], sum(d[i,j] * x[i,j] for j in J) <= u[i])
5 optimize !(m)

7.5 Experimental setting

The experiments were performed on a AMD Ryzen 3950X processor with 16 cores and
64GB of memory. Each experiment was executed 10 times. We tackle GAP instances
from [80] : gapC10-100 (100 tasks and 10 machines) and gapC20-200 (200 tasks and 20

85

machines). Both the master program and the binary knapsack subproblems are solved
using Gurobi 9.0 (as efficient as specialized knapsack solvers for the instance size consid-
ered here). To eliminate variability related to primal bounds, all variants were executed
with the optimum solution value reported in the literature as the initial primal.

7.6 Performance Evaluation

Figure 70 shows the speedups of the parallel subproblem computation with an in-
creasing number of threads compared to the sequential execution for both instances us-
ing @threads and @spawn. We can observe that the parallelization was able to provide
speedups for the subproblem computation from 2.3 to 3.3 for gapC10-100 and 3.3 to 4.0
for gapC20-200. Comparing the different parallelization strategies, the dynamic thread
distribution of @spawn was able to balance the load dynamically producing a slightly bet-
ter performance than the static distribution of @threads. The increase in the number of
threads does not impact significantly the speedups since the number of subproblems to
compute at each node is not very large (with 10 or 20 subproblems in our tests). Table 4
shows the execution times of Coluna.jl with the time spent in subproblem computation
considering the parallelization with @spawn. We can observe that, for GAP, the time spent
in subproblem computation is not that much pronounced (the knapsack subproblem is
relatively easy even for a general MIP solver); thus we expect more significant reductions
of Coluna.jl execution time on more complex problems.

Figure 70 – Subproblem computation speedups.

Table 4 – Execution times (in seconds).

gapC10-100 gapC20-200
threads subproblem Coluna subproblem Coluna

1 4.511 21.484 8.677 94.353
2 1.484 19.846 2.288 88.825
4 1.524 19.582 2.229 87.963
8 1.372 19.644 2.183 88.862
16 1.408 19.674 2.284 89.290

86

7.7 Discussion

In exploiting parallelism to improve the performance of an open-source branch-cut-
and-price framework implemented in Julia language, we propose to exploit Julia mul-
tithreading in the generation of subproblem solutions at each branch-and-bound node.
We implemented two thread distribution strategies and analyzed the performance on the
Generalized Assignment Problem (GAP). The parallel strategies provided performance
improvements in the subproblem computation, but, for GAP, the subproblem resolution
does not represent a significant portion of the execution time. We intend in the future to
evaluate Coluna.jl on other optimization problems like vehicle routing and also to explore
other parallelization opportunities inside Coluna.jl, starting with the tree search.

87

CONCLUSIONS

Julia is a high level dynamic language that was developed with main focus on high
performance computing. It is becoming widely used in scientific programming and, with
the increase in its community, more packages are being developed to help the integration
with various applications.

In this work, we studied the performance of shared memory parallel computing mecha-
nisms present in Julia. We studied the multithreading strategies that apply data and task
parallelism with static and dynamic scheduling of loop iterations, which are implicitly de-
fined in the macros @threads and @spawn, respectively. We also studied the different loop
scheduling approaches available for multithreading with the built-in macro @threads and
the package FLoops.jl along with its schedulers available as executors from the package
FoldsThreads.jl. We also investigated the performance of different mechanisms to exploit
SIMD parallelization. The performance studies were carried out using synthetic kernels,
benchmark applications, and a real-world framework for branch-and-cut-and-price, called
Coluna.jl.

Our results showed that, for the synthetic kernels with high degrees of load imbalance,
Julia’s task parallelism with dynamic scheduling with the macro @spawn was able to better
distribute the tasks spawned among threads and decrease the imbalance. However, when
dealing with applications that are more likely to be found in real world scenarios, as
the ones from Rodinia benchmark from our experiments, the depth first scheduling of
@spawn included overhead in the loop computation and was not able to improve the load
balancing. When applied to the Coluna.jl framework, multithreading did show gains in
performance. The nature of the problem studied, though, presented limited parallelization
opportunities.

Regarding the different loop scheduling strategies, Julia showed to be able to improve
performance with multithreading with an increasing number of threads on the Mutually
Friendly Numbers application. However, it could not scale with the others real-world
applications Password Cracking with Brute Force and Transitive Closure Problem. Un-
derstanding the behavior of the program is of importance to determine the best scheduling
approach. The FLoops.jl executors that presented best performance on unbalanced appli-
cations were mainly the ThreadedEx and the DepthFirstEx, even though their basesize
parameter was not included in our experiments.

On the evaluation of the SIMD mechanisms, we concluded that the package LoopVec-
torization.jl provided the best performance results, being able to reach peak CPU perfor-
mance and requiring only the addition of the macro @turbo in front of the loops. The
package SIMD.jl has a “low level” type interface, since it gives the user the possibility to
explicitly write SIMD code. In addition, it needs the data to be stored in a SIMD Vec
type beforehand, which creates an overhead that can impair the performance. These two
packages are recommended by developers over the built-in macro @simd, which can lead
to unexpected results. At last, there is the auto-vectorization that, even though it does
not perform as well as LoopVectorization.jl, it could help improve performance of codes

88

with smaller inputs without any programming intervention.
Overall, it is important to highlight that Julia provides shared memory mechanisms

with a user-friendly interface. Moreover, the users can develop solutions to any kind of
problems taking advantage of the abstraction provided by the usage of available packages.
Julia’s simplicity in developing parallel code could help promoting parallel processing for
scientists without a specialized coding background, without falling on the “two-language
problem”, but it does show limitations on large scale environments.

The study of the performance of Julia loop scheduling mechanisms was published as:

• Diana A. Barros and Cristiana Bentes, "Analyzing the Loop Scheduling Mechanisms
on Julia Multithreading," 2020 IEEE 32nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), 2020, pp. 257-264,
doi: 10.1109/SBAC-PAD49847.2020.00043.

The study of the use of multithreading mechanisms in the framework Coluna.jl was
published as:

• Diana A. Barros, Guillaume Marques, Vitor Nesello, Cristiana Bentes, François
Vanderbeck. "Exploiting Parallelism in the Open-Source Coluna.jl Framework".
The 2nd International Workshop on Parallel Optimization using/for Multi- and
Many-core High Performance Computing (POMCO 2020). International Conference
on High Performance Computing & Simulation, 2021.

Future Directions

This work is a first step in the analysis of the shared memory parallel programming
features available in Julia. We intend to provide further outcomes in this subject by
comparing the performance of the Julia applications presented in this work with equivalent
C/C++ data and task parallelism implementations; by providing studies with the new
@threads scheduler :dynamic available in Julia’s current version; and by analyzing the
impact of tunning the basesize parameter from the FLoops.jl loop scheduling executors
on the performance.

Some of the features that make Julia an efficient language, such as dynamic typing or
Just-in-time (JIT) compilation, also make Julia allocate more memory when compared to
C implementation. Therefore, an interesting future direction of this work is the study of
the memory footprint provided by Julia multithreading mechanisms.

Finally, another important future direction of this work is to Evaluate Coluna.jl with
other optimization problems like vehicle routing.

89

REFERENCES

[1] Jose Juan Mijares Chan et al. “Parallel ant brood graph partitioning in julia”. In:
Parallel Processing and Applied Mathematics. Springer, 2016, pp. 176–185.

[2] Tim Besard, Christophe Foket, and Bjorn De Sutter. “Effective extensible program-
ming: unleashing Julia on GPUs”. In: IEEE Transactions on Parallel and Distributed
Systems 30.4 (2018), pp. 827–841.

[3] J. Regier et al. “Cataloging the Visible Universe Through Bayesian Inference at
Petascale”. In: 2018 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). 2018, pp. 44–53.

[4] Raffaele Ferrari. MIT News: New climate model to be built from the ground up.
<http://ferrari.mit.edu/news/new-climate-model-to-be-built-from-the-ground-
up/>.

[5] Jeff Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”. In: SIAM
Rev. 59.1 (Jan. 2017), pp. 65–98. issn: 0036-1445. doi: <10 .1137/141000671>.
url: <https://doi.org/10.1137/141000671>.

[6] Jeffrey M. Perkel. “Julia: come for the syntax, stay for the speed”. In: Nature
572.7767 (2019), pp. 141–142.

[7] MPI.jl. <https://github.com/JuliaParallel/MPI.jl>. (Visited on 04/02/2023).

[8] Elemental.jl. <https : / / github . com / JuliaParallel / Elemental . jl>. (Visited on
04/02/2023).

[9] CUDA.jl. <https://github.com/JuliaGPU/CUDA.jl>. (Visited on 04/02/2023).

[10] AMDGPU.jl. <https://github.com/JuliaGPU/AMDGPU.jl>. (Visited on 04/02/2023).

[11] Metal.jl. <https://github.com/JuliaGPU/Metal.jl>. (Visited on 04/02/2023).

[12] FLoops.jl. <https://github.com/JuliaFolds/FLoops.jl>. (Visited on 01/25/2023).

[13] LoopVectorization.jl. <https://github.com/JuliaSIMD/LoopVectorization.jl>.

[14] Kiran Pamnany Jeff Bezanson Jameson Nash. Announcing composable multi-threaded
parallelism in Julia. Retrieved from <https : / / julialang . org / blog / 2019 / 07 /
multithreading/>.

[15] Chris Elrod. ANN: LoopVectorization 0.12: multithreading and better handling of
discontiguous memory accesses. <https ://gcg.or . rwth- aachen.de>. (Visited on
03/16/2021).

[16] Gaius.jl. <https://github.com/MasonProtter/Gaius.jl>. (Visited on 10/13/2021).

[17] Octavian.jl. <https://github.com/JuliaLinearAlgebra/Octavian.jl>. (Visited on
10/13/2021).

[18] SnpArrays.jl. <https : / / github . com / OpenMendel / SnpArrays . jl>. (Visited on
10/13/2021).

[19] Seyoon Ko et al. DistStat.jl: Towards Unified Programming for High-Performance
Statistical Computing Environments in Julia. 2020. arXiv: <2010.16114> [stat.CO].

90

[20] Dániel Nagy, Lambert Plavecz, and Ferenc Hegedűs. Solving large number of non-
stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs:
performance comparisons of MPGOS, ODEINT and DifferentialEquations.jl. 2020.
arXiv: <2011.01740> [cs.DC].

[21] Chris Rackauckas Chris Elrod Niklas Korsbo. Doing small network scientific ma-
chine learning in Julia 5x faster than PyTorch. <https://julialang.org/blog/2022/
04/simple-chains/>. 2022. (Visited on 12/18/2022).

[22] SimpleChains.jl. <https://github.com/PumasAI/SimpleChains.jl>. (Visited on
12/18/2022).

[23] Colin Summers et al. “Lyceum: An efficient and scalable ecosystem for robot learn-
ing”. In: arXiv preprint arXiv:2001.07343 (2020).

[24] Rok Novosel and Bostjan Slivnik. “Beyond Classical Parallel Programming Frame-
works: Chapel vs Julia”. In: 8th Symposium on Languages, Applications and Tech-
nologies (SLATE 2019). Vol. 74. OpenAccess Series in Informatics (OASIcs). 2019,
12:1–12:8. isbn: 978-3-95977-114-6.

[25] Marcel Stanitzki and Jan Strube. “Performance of Julia for High Energy Physics
Analyses”. In: arXiv preprint arXiv:2003.11952 (2020).

[26] Jason Selwyn Pavel V. Dimens. BioJulia/PopGen.jl: v0.8.0 (v0.8.0). <https : / /
zenodo.org/record/6450254>. 2022.

[27] PopGen.jl @spawn implementation. <https://github.com/BioJulia/PopGenCore.
jl/blob/d3e954801430f4b4f68199e7e72567ca7fb14605/src/Permutations . jl#L8>.
(Visited on 12/18/2022).

[28] LombScargle.jl. <http : / / juliaastro . org / LombScargle . jl / stable />. (Visited on
12/18/2022).

[29] LombScargle.jl @threads implementation. <https://github.com/JuliaAstro/LombScargle.
jl/blob/5d93ed93233972bd9bcfb3558abb916cf2a7f2ad/src/gls.jl#L53>. (Visited on
12/18/2022).

[30] Jan Gmys et al. “A comparative study of high-productivity high-performance pro-
gramming languages for parallel metaheuristics”. In: Swarm Evol. Comput. 57 (2020),
p. 100720.

[31] Eduard Ayguadé et al. “Is the schedule clause really necessary in OpenMP?” In:
International workshop on OpenMP applications and tools. Springer. 2003, pp. 147–
159.

[32] Florina M Ciorba, Christian Iwainsky, and Patrick Buder. “OpenMP loop schedul-
ing revisited: making a case for more schedules”. In: International Workshop on
OpenMP. Springer. 2018, pp. 21–36.

[33] Peter Thoman et al. “Automatic OpenMP loop scheduling: a combined compiler
and runtime approach”. In: International Workshop on OpenMP. Springer. 2012,
pp. 88–101.

[34] Yun Zhang et al. “An Adaptive OpenMP Loop Scheduler for Hyperthreaded SMPs.”
In: ISCA PDCS. Citeseer. 2004, pp. 256–263.

[35] Marie Durand et al. “An efficient openmp loop scheduler for irregular applications
on large-scale numa machines”. In: International Workshop on OpenMP. Springer.
2013, pp. 141–155.

91

[36] Vivek Kale et al. “Toward a Standard Interface for User-Defined Scheduling in
OpenMP”. In: International Workshop on OpenMP. Springer. 2019, pp. 186–200.

[37] Flux.jl. url: <https://github.com/FluxML/Flux.jl> (visited on 03/16/2021).

[38] DifferentialEquations.jl. url: <https://github.com/SciML/DifferentialEquations.
jl> (visited on 03/16/2021).

[39] JuMP.jl. url: <https://github.com/JuliaOpt/JuMP.jl> (visited on 03/16/2021).

[40] The Julia Language. url: <https://docs.julialang.org/> (visited on 03/23/2021).

[41] Introducing Julia/Types. <https : //en .wikibooks . org/wiki / Introducing_Julia/
Types>. (Visited on 04/02/2023).

[42] Jeff Bezanson et al. Julia: A Fast Dynamic Language for Technical Computing. 2012.
arXiv: <1209.5145> [cs.PL].

[43] Jean Goubault. Implementing Functional Languages with Fast Equality, Sets and
Maps: an Exercise in Hash Consing. Tech. rep. Bull S.A. Research Center, rue
Jean-Jaur‘es, 78340 Les Clayes sous Bois, 1994.

[44] Jeff Bezanson et al. “Julia: Dynamism and Performance Reconciled by Design”. In:
Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018). url: <https://doi.org/10.
1145/3276490>.

[45] Jeff Bezanson, Jake Bolewski, and Jiahao Chen. Fast Flexible Function Dispatch in
Julia. 2018. arXiv: <1808.03370> [cs.PL].

[46] Introducing Julia Metaprogramming. url: <https : / / en . wikibooks . org / wiki /
Introducing%5C_Julia/Metaprogramming> (visited on 03/09/2021).

[47] SIMD and SIMD-intrinsics in Julia. url: <http : //kristofferc . github . io/post/
intrinsics/> (visited on 11/20/2019).

[48] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three
Easy Pieces. North Charleston, SC, USA: CreateSpace Independent Publishing Plat-
form, 2018. isbn: 198508659X.

[49] BenchmarkTools. <https://juliaci.github.io/BenchmarkTools.jl/dev/>. (Visited
on 09/27/2021).

[50] oneAPI.jl. <https://github.com/JuliaGPU/oneAPI.jl>. (Visited on 04/02/2023).

[51] OpenCL.jl. <https://github.com/JuliaGPU/OpenCL.jl>. (Visited on 04/02/2023).

[52] Robert D Blumofe et al. “Cilk: An efficient multithreaded runtime system”. In:
Journal of parallel and distributed computing 37.1 (1996), pp. 55–69.

[53] Alexey Kukanov and Michael J Voss. “The Foundations for Scalable Multi-core
Software in Intel Threading Building Blocks.” In: Intel Technology Journal 11.4
(2007).

[54] Guy E Blelloch, Phillip B Gibbons, and Yossi Matias. “Provably efficient scheduling
for languages with fine-grained parallelism”. In: Journal of the ACM (JACM) 46.2
(1999), pp. 281–321.

[55] Shimin Chen et al. “Scheduling threads for constructive cache sharing on CMPs”.
In: Proceedings of the nineteenth annual ACM symposium on Parallel algorithms
and architectures. 2007, pp. 105–115.

[56] Transducers. <https://clojure.org/reference/transducers>. (Visited on 02/08/2023).

92

[57] Transducers.jl. <https : / / github . com/JuliaFolds /Transducers . jl>. (Visited on
02/08/2023).

[58] FoldsThreads.jl. <https://github.com/JuliaFolds/FoldsThreads.jl>. (Visited on
02/08/2023).

[59] Arch Robinson. A Primer on Scheduling Fork-Join Parallelism with Work Stealing.
Tech. rep. N3872. Intel, Corp., Jan. 2014. url: <http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2014/n3872.pdf>.

[60] Kristoffer Carlsson. SIMD and SIMD-intrinsics in Julia. <http://kristofferc.github.
io/post/intrinsics/>.

[61] Intel Articles. Vectorization in Julia. <https://software.intel.com/content/www/
us/en/develop/articles/vectorization-in-julia.html>.

[62] Julia Documentation: Essentials - @simd. <https://docs.julialang.org/en/v1/base/
base/\#Base.SimdLoop.@simd>.

[63] Julia Documentation: Multi-dimensional Arrays - Broadcasting. <https : / /docs .
julialang.org/en/v1/manual/arrays/\#Broadcasting>.

[64] SIMD.jl. <https://github.com/eschnett/SIMD.jl>.

[65] Olga Pearce. “Load Balancing Scientific Applications”. PhD thesis. Texas A&M
University, 2014.

[66] Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In:
2009 IEEE international symposium on workload characterization (IISWC). Ieee.
2009, pp. 44–54.

[67] GPU-Rodinia Repository. <https://github.com/yuhc/gpu-rodinia/tree/master/
openmp>. (Visited on 03/22/2023).

[68] Raphaël Bolze et al. “Grid’5000: a large scale and highly reconfigurable experimen-
tal grid testbed”. In: The International Journal of High Performance Computing
Applications 20.4 (2006), pp. 481–494.

[69] Stephen Warshall. “A theorem on Boolean matrices”. In: Journal of the ACM 9
(1962), pp. 11–12.

[70] Rosetta@home - CPU performance. <https://boinc.bakerlab.org/rosetta/cpu_list.
php>. Baker Lab Institute for Protein Design, University of Washington. (Visited
on 05/13/2023).

[71] A simple SIMD.jl loop that is slower than a vanilla ‘@inbounds @simd‘. <https:
//discourse.julialang.org/t/a-simple-simd-jl- loop-that-is-slower-than-a-vanilla-
inbounds-simd/63655>. (Visited on 11/18/2021).

[72] A simple SIMD.jl loop that is slower than a vanilla ‘@inbounds @simd‘. <https:
//discourse.julialang.org/t/a-simple-simd-jl- loop-that-is-slower-than-a-vanilla-
inbounds-simd/63655/6>. (Visited on 11/18/2021).

[73] Auto-vectorization in GCC. <https://gcc.gnu.org/projects/tree-ssa/vectorization.
html>. (Visited on 01/24/2023).

[74] GCG. <https://gcg.or.rwth-aachen.de>.

[75] DIP. <https://projects.coin-or.org/Dip>.

[76] SCIP. <https://scipopt.org>.

93

[77] COIN-OR. <https://github.com/coin-or/COIN-OR-OptimizationSuite>.

[78] JuliaOpt. <https://www.juliaopt.org/packages/>. (Visited on 08/28/2020).

[79] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A modeling language for
mathematical optimization”. In: SIAM Review 59.2 (2017), pp. 295–320.

[80] J. E. Beasley. OR Lib. <http://people.brunel.ac.uk/~mastjjb/jeb/info.html>.
(Visited on 08/28/2020).

