

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Leonar Pires Ribeiro Vieira

Comportamento de vigas protendidas confeccionadas com vergalhão BFRP e concreto com troca parcial por areia do mar

Rio de Janeiro 2023 Leonar Pires Ribeiro Vieira

Comportamento de vigas protendidas confeccionadas com vergalhão BFRP e concreto com troca parcial por areia do mar

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Estruturas.

Orientadora: Profa. Dra Maria Elizabeth da Nóbrega Tavares

CATALOGAÇÃO NA FONTE

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

V658	Vieira, Leonar Pires Ribeiro. Comportamento de vigas protendidas confeccionadas com vergalhão BFRP e concreto com troca parcial por areia do mar / Georgia Felício Marinho da Silva. – 2023. 125 f.					
	Orientadora: Maria Elizabeth da Nóbrega Tavares. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia.					
	 Engenharia civil - Teses. 2. Vigas de concreto protendido - Teses. Areia - Teses. 4. Análise estrutural (Engenharia) - Teses. I. Tavares, Maria Elizabeth da Nóbrega. II. Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. III. Título. 					
	CDU 624.072.2					

Bibliotecária: Júlia Vieira – CRB7/6022

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Data

Leonar Pires Ribeiro Vieira

Comportamento de vigas protendidas confeccionadas com vergalhão BFRP e concreto com troca parcial por areia do mar

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Civil, da Universidade do Estado do Rio de Janeiro. Área de concentração: Estruturas.

Aprovado em:

Banca Examinadora:

Profa. Dra. Maria Elizabeth da Nóbrega Tavares (Orientadora) Faculdade de Engenharia – UERJ

Prof. Dr. Luiz Antônio Vieira Carneiro Departamento de Engenharia Civil – UFF

Profa. Dra. Kíssila Botelho Goliath Faculdade de Engenharia – UERJ

Profa. Dra. Monique Cordeiro Rodrigues Faculdade de Engenharia – UERJ

> Rio de Janeiro 2023

DEDICATÓRIA

Dedico este trabalho a minha esposa, Nathália López Trocado.

AGRADECIMENTOS

A Nathália López Trocado, amor da minha vida, pelo apoio incondicional e encorajamento que recebi ao longo de todos esses anos de mestrado, por ter paciência e suportar todas as crises de estresse e por sempre me mostrar e jamais duvidar de que eu era capaz.

Aos meus pais, Luiz Eduardo Alves Vieira e Sirley D'Angela Pires Ribeiro Vieira, pelo amor incondicional, por serem meus exemplos de profissionais e por tudo que fizeram por mim. Vocês são os meus pilares e sempre estiveram ao meu lado, apoiando-me em todas as minhas decisões.

Ao meu irmão Lucas Pires Ribeiro Vieira, meu ídolo, amigo e maior inspiração, mesmo diante da distância que nos separa. Agradeço por sua presença constante em minha vida.

A minha orientadora Maria Elizabeth. Sua orientação e apoio constantes foram fundamentais para o sucesso da minha pesquisa. Sua experiência, conhecimento e dedicação contribuíram significativamente para o desenvolvimento do meu trabalho.

Aos professores e funcionários do laboratório pelo ambiente acolhedor e pelos recursos valiosos fornecidos ao longo do meu projeto de pesquisa. Agradeço por compartilharem seu conhecimento e experiência, por responderem às minhas dúvidas e por criarem um ambiente inspirador para o aprendizado. Sou grato por toda a assistência e colaboração que recebi de cada um de vocês.

A Haizer pela generosidade em fornecer o material de estudo necessário para minha pesquisa. A qualidade e a disponibilidade do material foram essenciais para o sucesso do meu trabalho. Agradeço à Empresa Haizer por seu compromisso com a educação e por apoiar projetos acadêmicos. A todos os meus colegas do mestrado por sua colaboração, amizade e apoio mútuo ao longo dessa jornada acadêmica. Nossas discussões, trocas de ideias e trabalhos em equipe foram enriquecedores e inspiradores.

A Universidade do Estado do Rio de Janeiro (UERJ) pela oportunidade de realizar meu mestrado em um ambiente acadêmico tão rico e estimulante. Agradeço à instituição por fornecer recursos, infraestrutura e um corpo docente altamente qualificado.

A todos aqueles, que embora não citados nominalmente, contribuíram direta e indiretamente para a execução deste trabalho.

O maior inimigo do conhecimento não é a ignorância, é a ilusão do conhecimento. Stephen Hawking

RESUMO

VIEIRA, Leonar Pires Ribeiro. Comportamento de vigas protendidas confeccionadas com vergalhão BFRP e concreto com troca parcial por areia do mar. 2023. 125 f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2023.

Os materiais naturais encontrados na natureza, como areia e água de rio são mundialmente utilizados nas construções. Encontrar um substituto para estes materiais tem sido o desafio de toda a comunidade da construção, de modo que se possa tornar a construção civil mais sustentável. Ultimamente a utilização de concretos confeccionados com areia e água do mar vem gradualmente se tornando uma opção, principalmente devido ao fato de que as propriedades mecânicas destes concretos, já se mostraram semelhante às dos concretos comuns. O uso sustentável do sea-sand concrete (SSC) serve também para reduzir o uso das areias de rios, principalmente para projetos nas áreas costeiras, o que pode resultar no uso de materiais locais, economia de custo de transporte, acelerando a eficiência da obra. Entretanto, a corrosão das armaduras de aço, nessas estruturas, provocadas pelos íons cloretos é ainda uma manifestação patológica preocupante. Nos últimos anos, a utilização de diferentes formas de armaduras de fibra reforcada com polímero (FRP) com o SSC tem sido bastante investigado, para a confecção de estruturas marinhas de grande durabilidade. Entre estes estudos destacam-se os que utilizam as barras de (FRP) protendidas internamente no concreto. O que se pretende neste estudo é verificar a capacidade resistente a flexão de vigas de concreto com areia lavada e com substituição de 30% da areia lavada por areia do mar, da praia de Copacabana, protendidas com barras de fibra de basalto (BFRP). Em relação as barras de BFRP, os resultados do ensaio de tração mostraram uma resistência 20% inferior guando comparadas com as informações obtidas pelos fornecedores. Os resultados dos ensaios realizados nos corpos de prova mostram que ambos os concretos apresentaram resistência a compressão semelhantes aos 28 dias. Quanto a comparação da carga de ruptura seguindo as recomendações da ACI 440, com os resultados experimentais, notou-se que as formulações da ACI subestimaram os resultados para a viga 1 (experimentalmente encontrou-se um resultado 13,2% superior) e superestimaram a viga 2 (o resultado obtido experimentalmente foi 9.2% superior). Ao comparar os resultados obtidos pelas formulações da NBR 6118, os resultados foram superestimados nas duas vigas. Experimentalmente o resultado obtido para a viga 1 foi 3,6% inferior e para a viga 2, 25,1% inferior.

Palavras-chave: Concreto protendido; Protensão; Fibra de basalto; Areia do mar.

ABSTRACT

VIEIRA, Leonar Pires Ribeiro. *Behavior of prestressed beams made with BFRP rebar and concrete with partial exchange for sea sand.* 2023. 125 f. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2023.

Natural materials found in nature, such as sand and river water, are used worldwide in construction. Finding a replacement for these materials has been a challenge for the entire construction community, so that civil construction can become more sustainable. Lately, the use of concrete made with sand and sea water has gradually become an option, mainly due to the fact that the mechanical properties of these concretes have already been shown to be similar to those of common concrete. The sustainable use of sea-sand concrete (SSC) also serves to reduce the use of river sand, mainly for projects in coastal areas, which can result in the use of local materials, savings in transport costs, accelerating the efficiency of the work. However, the corrosion of steel reinforcement in these structures, caused by chloride ions, is still a worrying pathological manifestation. In recent years, the use of different forms of fiber reinforced polymer (FRP) reinforcement with SSC has been extensively investigated for the manufacture of highly durable marine structures. Among these studies, those that use (FRP) bars internally prestressed in concrete stand out. The aim of this study is to verify the flexural resistance capacity of concrete beams with washed sand and replacing 30% of the washed sand with sea sand, from Copacabana beach, prestressed with basalt fiber bars (BFRP). In relation to BFRP bars, the results of the tensile test showed a 20% lower resistance when compared to the information obtained from suppliers. The results of the tests carried out on the specimens show that both concretes presented similar compressive strength at 28 days. Regarding the comparison of the breaking load following the recommendations of ACI 440, with the experimental results, it was noted that the ACI formulations underestimated the results for beam 1 (experimentally a 13.2% higher result was found) and overestimated the beam 2 (the experimental result was 9.2% higher). When comparing the results obtained by the NBR 6118 formulations, the results were overestimated in both beams. Experimentally, the result obtained for beam 1 was 3.6% lower and for beam 2, 25.1% lower.

Keywords: Prestressed concrete; Prestressing; Basalt fiber; Sea sand.

LISTA DE FIGURAS

Figura 1 – Vergalhão de fibra de basalto (BFRP)	20
Figura 2 - Saturação em liquido do polímero de basalto [4]	24
Figura 3 - Entrada da barra de basalto no forno [4]	24
Figura 4 - Corte das barras de basalto [4]	24
Figura 5 - Ancoragem em parafuso – adaptado [5]	25
Figura 6 - Ancoragem em Tampão e cone – adaptado [5]	25
Figura 7 - Ancoragem em tubo reto – adaptado [5]	26
Figura 8 - Ancoragem em tubo cônico – adaptado [5]	26
Figura 9 - Ancoragem em revestimento metálico – adaptado [5]	26
Figura 10 - Ancoragem em cunha dividida – adaptado [5]	26
Figura 11 - Momento x flecha em elementos de concreto protendido – ada	ptado [5]
	27
Figura 12 - Momento x deformação em elementos de concreto protendido	- adaptado
[5]	27
Figura 13 - Tensão e deformação em uma viga no estado limitem último [6	۶]29
Figura 14 - Esquema da viga utilizada no programa experimental Jónsson	_
adaptado [9]	34
Figura 15 - Configuração do teste de tração [10]	35
Figura 16 – Ensaio de cisalhamento nas barras de BFRP [10]	35
Figura 17 - Ensaio de arrancamento – adaptado [10]	36
Figura 18 - Geometria das lajes testadas [10]	36
Figura 19 - Dimensões e detalhes das armaduras ensaiadas – adaptada [10]37
Figura 20 - Etapas do programa experimental com a quantidade de cada e	ensaio
previsto no estudo [11]	38
Figura 21 - Resumo do programa experimental realizado por AlHafiz – ada	aptado [12]
	39
Figura 22 - Características das doze vigas ensaiadas Warmling [13]	39
Figura 23 - Resumo do ensaio experimental realizado com valores de caro	ya última,
deslocamento e tipo de ruptura [13]	40
Figura 24 - Fluxo do programa experimental realizado por [14]	41

Figura 25 - Comparação entre momentos resistentes experimentais e analíticos para
vigas subarmadas [14]41
Figura 26 - Informações sobre as 14 vigas ensaiadas no programa experimental –
adaptado [15]42
Figura 27 - Representação de como foram aplicadas as cargas nos ensaios de
flexão46
Figura 28 - Detalhamento das vigas 1 e 2 (cotas em cm)49
Figura 29 - Cimento CP-V ARI50
Figura 30 - Peneira utilizada para retirada dos resíduos da areia do mar50
Figura 31 – Teste prévio com o traço definido para pesquisa
Figura 32 - Areia da praia de Copacabana (posto 4)52
Figura 33 – Armaduras passivas e estribos montados53
Figura 34 - Detalhe do protótipo com as dimensões adotadas para o ensaio de
tração56
Figura 35 - Corpos de prova e tubos de aço utilizados no ensaio de tração56
Figura 36 - Amostras preparadas para o ensaio de tração
Figura 37 - Relógio comparador utilizado para medir a deformação das barras57
Figura 38 - Máquina universal da marca Losenhausen58
Figura 39 - Terceira amostra logo após a ruptura58
Figura 40 - Modo de ruptura da terceira amostra59
Figura 41 - Local aproximado da ruptura da terceira amostra
Figura 42 - Esquema do pórtico com as duas vigas que foram protendidas60
Figura 43 - Estrutura de pórtico de reação montada61
Figura 44 - Detalhe da estrutura finalizada que foi utilizada na protensão de ambas
as vigas62
Figura 45 - Localização dos extensômetros na barras de basalto nas viga 1 e na viga
2
Figura 46 - Estrutura em aço montada para a protensão das barras em conjunto63
Figura 47 - Preparo da ancoragem com tubos redondos vazados e Sikadur 3263
Figura 48 - Ancoragem fixada no pórtico de reação64
Figura 49 - Execução da protensão na viga 165
Figura 50 - Execução da protensão na 1ª viga e visualização da porca em aço na
barra roscada a esquerda da imagem65
Figura 51 – Abatimento do tronco de cone da primeira concretagem da viga 171

Figura 52 – Abatimento do tronco de cone da segunda concretagem da viga 171
Figura 53 - Abatimento do tronco de cone da primeira concretagem da viga 272
Figura 54 - Abatimento do tronco de cone da segunda concretagem da viga 272
Figura 55 - Corpos de prova cilíndricos na câmara úmida
Figura 56 – Corpos de prova confeccionados com areia lavada rompidos após 7 dias
77
Figura 57 – Corpos de prova confeccionados com areia lavada rompidos após 14
dias77
Figura 58 – Corpos de prova confeccionados com areia lavada rompidos após 28
dias78
Figura 59 - Corpos de prova confeccionados com areia lavada rompidos após 80
dias78
Figura 60 - Corpos de prova confeccionados com troca parcial por areia do mar
rompidos após 7 dias79
Figura 61 – Corpos de prova confeccionados com troca parcial por areia do mar
rompidos após 14 dias79
Figura 62 – Corpos de prova confeccionados com troca parcial por areia do mar
rompidos após 28 dias80
Figura 63 - Corpos confeccionados com troca parcial por areia do mar rompidos
após 91 dias80
Figura 64 – Corpo de prova prismático nº 2 com areia do mar83
Figura 65 - Corpo de prova prismático nº 1 com areia do mar
Figura 66 - Corpo de prova prismático nº 2 com areia lavada84
Figura 67 - Corpo de prova prismático nº 2 com areia lavada84
Figura 68 – Extensômetro adicionado ao concreto na altura das barras protendidas
Figura 69 – Viga 2 após a ruptura das barras de BFRP87
Figura 70 - Modelo do extensômetro utilizado no concreto
Figura 71 - Instrumentação do concreto da viga 1 (medidas em cm)
Figura 72 - Instrumentação do concreto da viga 2 (medidas em cm)
Figura 73 – Transdutores de deslocamento instalados para o ensaio de flexão89
Figura 74 - Viga 1 (convencional) antes do ensaio de flexão90
Figura 75 - Viga 2 (viga com areia do mar) antes do ensaio de flexão90

Figura 76 - Viga 1 (viga convencional) momento em que aparece a primeira fissura
91
Figura 77 - Viga 2 (viga com areia do mar) momento em que aparece a primeira
fissura91
Figura 78 - Viga 1 (viga convencional) momento em que a viga chega a ruptura92
Figura 79 - Viga 1 (viga convencional) após a ruptura
Figura 80 - Viga 2 (viga com areia do mar) momento em que a viga chega a ruptura
Figura 81 - Viga 2 (viga com areia do mar) após a ruptura93
Figura 82 - Padrão da fissuração na viga 1101
Figura 83 - Padrão da fissuração na viga 2101
Figura 84 - Espaçamento entre fissuras na viga 1 (espaçamento em centímetros) 102
Figura 85 - Espaçamento entre fissuras na viga 2 (espaçamento em centímetros) 102
Figura 86 - Comparativo das fissuras entre as vigas após a ruptura103
Figura 87 - Imagem aproximada da viga 1, a esquerda e viga 2, a direita, após a
ruptura por flexão104

LISTA DE TABELAS

Tabela 1 - Resultados experimentais e teóricos da carga última e flecha nas 4 vigas	3
Jónsson [9]	34
Tabela 2 - Traço utilizado para a concretagem das vigas 1	51
Tabela 3 - Traço utilizado para a concretagem das vigas 2	52
Tabela 4 - Propriedades dos vergalhões BFRP fornecidas pela Haizer [4]	53
Tabela 5 - Características físicas da areia lavada	54
Tabela 6 - Características físicas da areia do mar (Copacabana)	54
Tabela 7 - Características físicas da brita 1	55
Tabela 8 – Resumo dos resultados do ensaio de tração nas barras de basalto6	30
Tabela 9 – Número de corpos de prova moldados na concretagem da viga 17	70
Tabela 10 - Número de corpos de prova moldados na concretagem da viga 27	70
Tabela 11 - Resumo dos corpos de prova cilíndricos	73
Tabela 12 – Resultados do ensaio de compressão axial	75
Tabela 13 – Resultados dos ensaio do módulo de elasticidade	31
Tabela 14 – Resultados do ensaio de compressão diametral de corpos de prova	
cilíndricos	32
Tabela 15 – Resultados do ensaio de tração na flexão de corpos de prova	
prismáticos	33
Tabela 16 – Comparação do momento de fissuração analítico e experimental	92
Tabela 17 - Previsão analítica à flexão (momento resistido e carga última)	94
Tabela 18 – Resultados experimentais (momento resistido e carga última)	94
Tabela 19 – Deformações máximas no concreto (‰), extensômetro 4	99
Tabela 20 - Carga e instante da observação da abertura da fissura na viga 110	00
Tabela 21 - Carga e instante da observação da abertura da fissura na viga 210	00

LISTA DE GRÁFICOS

Gráfico 1 - Tensão x deformação do extensômetro 1 e 2 na viga 166
Gráfico 2 - Tensão x deformação do extensômetro 3 e 4 na viga 166
Gráfico 3 - Tensão x deformação do extensômetro 5 e 6 na viga 167
Gráfico 4 - Tensão x deformação do extensômetro 7 e 8 na viga 167
Gráfico 5 - Tensão x deformação do extensômetro 1 e 2 na viga 268
Gráfico 6 - Tensão x deformação do extensômetro 3 e 4 na viga 269
Gráfico 7 - Tensão x deformação do extensômetro 5 e 6 na viga 269
Gráfico 8 - Tensão x deformação do extensômetro 7 e 8 na viga 269
Gráfico 9 – Resistência à compressão x tempo (com areia lavada)76
Gráfico 10 – Resistencia à compressão x tempo (com 30% de areia do mar)76
Gráfico 11 - Tensão x deformação do extensômetro 5 após o corte dos cabos85
Gráfico 12 - Tensão x deformação do extensômetro 6 após o corte dos cabos85
Gráfico 13 – Deformação do concreto ao longo do tempo da transferência da carga
Gráfico 14 - Comparação entre a carga de ruptura pelos métodos analticos e
experimentais
Gráfico 15 - Força x deslocamento no meio do vão (LVDT 1), viga 195
Gráfico 16 - Força x deslocamento (LVDT 2), viga 196
Gráfico 17 - Força x deslocamento (LVDT 3), viga 196
Gráfico 18 - Força x deslocamento no meio do vão (LVDT 1), viga 296
Gráfico 19 - Força x deslocamento (LVDT 2), viga 297
Gráfico 20 - Força x deslocamento (LVDT 3), viga 297
Gráfico 21 - Força x deformação no meio do vão na região mais comprimida da viga
1 (extensômetro 4)98
Gráfico 22 - Força x deformação no meio do vão na região mais comprimida da viga

LISTA DE ABREVIATURAS E SIGLAS

ABNT	Associação Brasileira de Normas Técnicas
ACI	American Concrete Institute
LEC	Laboratório de Engenharia Civil
NBR	Norma Brasileira
UERJ	Universidade do Estado do Rio de Janeiro

LISTA DE SÍMBOLOS

- A_p Área da seção transversal da barra BFRP (mm²)
- b Largura da viga
- β_1 Fator considerado como 0,85 para f_{ck} até 27,5 MPa
- c Profundidade do eixo neutro (mm)
- d Distância da parte extrema de compressão para centro do reforço de basalto
- ε_d Deformação adicional na barra que causa a descompressão até que atinja deformação zero
- ε_f Deformação na barra para flexão após descompressão
- ε_p Deformação na barra de basalto
- ε_{pr} Deformação elástica inicial na barra de basalto
- ε_{pu} Deformação final na barra de basalto
- *f*′_c Resistência à compressão do concreto (MPa)
- f_{pu} Resistência à tração do projeto de protensão (MPa)

SUMÁRIO

INTRODUÇÃO	19
1 POLÍMEROS REFORÇADO COM FIBRAS	23
1.1 Fibras de basalto	23
1.2 Processo de fabricação	23
1.3 Normas atuais de estruturas de concreto protendido com barras de FR	P25
1.4 Dimensionamento ao cisalhamento (NBR 6118,2023)	30
1.5 Momento de fissuração (NBR 6118,2023)	31
1.6 Modos de ruptura por flexão	32
2 REVISÃO BIBLIOGRAFICA	33
2.1 Utilização dos vergalhões FRP em vigas de concreto	33
2.2 Utilização da areia do mar para produção de concreto	43
3 PROGRAMA EXPERIMENTAL	46
3.1 Elaboração dos modelos experimentais	46
3.2 Dimensionamento prévio das vigas	47
3.2.1 Dimensionamento à flexão	47
3.3 Detalhamento das vigas	48
3.3 Detalhamento das vigas3.4 Especificação dos materiais utilizados na concretagem	48 49
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem 3.4.1 Concreto 	48 49 49
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem 3.4.1 Concreto 3.4.2 Aço 	48 49 49 52
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem 3.4.1 Concreto 3.4.2 Aço 3.4.3 Barras de BFRP 	48 49 52 53
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem 3.4.1 Concreto 3.4.2 Aço 3.4.3 Barras de BFRP 3.5 Caracterização dos materiais 	48 49 52 53 53
 3.3 Detalhamento das vigas	48 49 52 53 53 54
 3.3 Detalhamento das vigas	48 49 52 53 53 54 55
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem	48 49 52 53 53 54 55 55
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem 3.4.1 Concreto 3.4.2 Aço 3.4.3 Barras de BFRP 3.5 Caracterização dos materiais 3.5.1 Agregado miúdo 3.5.2 Agregado graúdo 3.6 Ensaio de tração 3.7 Confecção do pórtico de reação 	48 49 52 53 53 54 55 55 60
 3.3 Detalhamento das vigas	48 49 52 53 53 54 55 55 60 61
 3.3 Detalhamento das vigas 3.4 Especificação dos materiais utilizados na concretagem 3.4.1 Concreto 3.4.2 Aço 3.4.3 Barras de BFRP 3.5 Caracterização dos materiais 3.5.1 Agregado miúdo 3.5.2 Agregado graúdo 3.6 Ensaio de tração 3.7 Confecção do pórtico de reação 3.8 Confecção da estrutura que foi tracionada pelo macaco hidráulico 3.9 Instrumentação dos BFRP e barra de aço 	48 49 52 53 53 54 55 60 61 62
 3.3 Detalhamento das vigas	48 49 52 53 53 54 55 60 61 62 63
 3.3 Detalhamento das vigas	48 49 52 53 53 54 55 60 61 61 62 63 64
 3.3 Detalhamento das vigas	48 49 52 53 53 54 55 60 61 61 62 63 64

3.13 Concretagem	70
3.14 Informações dos corpos de prova	73
3.15 Ensaio de compressão axial	74
3.16 Ensaio de módulo de elasticidade	81
3.17 Ensaio de compressão diametral de corpos de prova cilíndricos	82
3.18 Ensaio de tração na flexão de corpos de prova prismáticos	82
3.19 Transferência de carga para a viga 1	85
3.20 Transferência de carga para a viga 2	87
3.21 Instrumentação do concreto	87
3.22 Transdutores de deslocamento	89
4 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS	90
4.1 Apresentação dos resultados experimentais das vigas 1 e 2	90
4.2 Comparação das cargas analíticas e experimentais	93
4.3 Apresentação dos transdutores de deslocamento	95
4.4 Deformação máxima do concreto no ensaio experimental	99
4.5 Análise das fissuras	99
4.6 Modo de ruptura	103
5 CONCLUSÕES	105
SUGESTÕES PARA TRABALHOS FUTUROS	106
REFERÊNCIAS	107
APÊNDICES	111
ANEXOS	123

INTRODUÇÃO

O concreto é o material compósito mais utilizado na construção civil, sendo basicamente formado por água, agregado miúdo e agregado graúdo. Define-se como agregado miúdo a areia de origem natural ou o produto da britagem de rochas estáveis ou ainda a mistura das duas. Os grãos devem passar pela peneira de malha de 4,75 mm e ficarem retidos na peneira de 150 μ m [1]. O agregado graúdo caracteriza-se pela brita, pedregulho oriunda de rochas estáveis ou a mistura de ambas. Os grãos devem passar pela peneira de 75mm e ficarem retidos na peneira de 150 μ m [1].

A extração inconsequente da areia dos rios tem causado muitos danos aos ambientes ecológicos, por esse motivo a utilização de areias marinhas como agregado na construção civil apresenta-se como uma possibilidade promissora. Essa alternativa surge como uma resposta à escassez de areias naturais disponíveis em terra, uma vez que a demanda por agregados na indústria da construção é crescente. As areias são abundantes nos oceanos e mares, oferecendo uma fonte renovável e sustentável de material para a construção civil.

Uma vantagem da utilização de areias marinhas como agregado é a redução do impacto ambiental nos rios. Ao utilizar este recurso natural e abundante, principalmente no Brasil, que possui uma costeira bem extensa, evita-se a extração excessiva de areia dos leitos de rios, que muitas vezes é feita de forma descontrolada e prejudicial ao meio ambiente. No entanto, a presença de íons cloreto é uma barreira quanto à utilização desse tipo de areia. Por este motivo, se faz necessário buscar alternativas que não sejam afetadas pela corrosão, como os vergalhões de aço utilizados atualmente.

Uma opção para contornar a corrosão dos vergalhões de aço é a adoção de barras de Polímero Reforçado com Fibra de Basalto (BFRP) (v. figura 1). Esses vergalhões são confeccionados a partir de fibras de basalto, uma rocha vulcânica naturalmente resistente à corrosão e ao impacto de agentes químicos agressivos. Outro benefício dos vergalhões de fibra de basalto é o seu reduzido peso específico, aproximadamente 25% da massa se comparado à do vergalhão em aço, facilitando o transporte e a montagem das estruturas. Além disso, a fibra de basalto é um material não condutor de eletricidade, o que elimina o risco de problemas relacionados à corrosão galvânica em instalações elétricas.

A utilização de vergalhões feitos de fibra de basalto também desempenha um papel importante na preservação ambiental. A fabricação destes vergalhões requer menor consumo energético se comparada à produção de vergalhões de aço, além de não gerar resíduos tóxicos durante o processo. Além disso, a utilização da fibra de basalto, que é uma rocha encontrada em regiões vulcânicas, evita a necessidade de extrair recursos naturais escassos, como minérios de ferro, contribuindo assim para a conservação do meio ambiente.

Figura 1 – Vergalhão de fibra de basalto (BFRP)

Motivação

O presente trabalho sobre vergalhões BFRP e concreto com substituição parcial por areia do mar tem como motivações:

- Sustentabilidade: Sabe-se que possui um aumento de interesse em encontrar materiais de construção mais ecologicamente corretos. A fibra de basalto e a utilização da areia do mar para a confecção do concreto são consideradas opções mais sustentáveis quando comparadas às convencionais, tais como aço e areia vinda dos rios.
- Aplicações costeiras: O concreto com vergalhões BFRP pode ser muito útil em regiões costeiras, onde a exposição a salinidade pode acelerar a corrosão dos materiais convencionais (aço).
- Propriedades dos materiais: A fibra de basalto possui características pertinentes, como alta resistência mecânica, resistência ao fogo.
- Estudo de viabilidade: A realização de pesquisas nessa área vai auxiliar na avaliação da viabilidade econômica e técnica desses materiais. Entender as propriedades, como funciona e o desempenho do concreto com esses vergalhões de fibra de basalto é fundamental para sua adoção em maior escala pelas indústrias de construção.

Objetivos

Este trabalho busca avaliar o comportamento de vigas protendidas com vergalhões de fibra de basalto e concreto com substituições parciais da areia lavada por areia do mar.

Os objetivos específicos são

- Comparar a resistência do concreto confeccionado com areia comum e com troca parcial por areia retirada do mar.
- Avaliar a resistência à tração das barras de fibra de basalto.
- Avaliar a protensão feita em vergalhões de fibra de basalto.
- Avaliar a carga última e os modos de ruptura das vigas ensaiadas.

Estrutura da dissertação

A presente dissertação está estruturada em cinco capítulos.

O primeiro capítulo aborda uma breve introdução com considerações pertinentes sobre o tema que é a fonte da pesquisa: vergalhões de fibra de basalto e areia confeccionada com areia do mar.

O segundo capítulo é destinado à revisão bibliográfica. Neste são apresentados breves resumos sobre as principais pesquisas existentes sobre o tema. Além de alguns conceitos pertinentes sobre protensão.

O terceiro capítulo contém a apresentação de todas as etapas do estudo experimental realizado nessa dissertação.

O quarto capítulo engloba a apresentação dos resultados e análises dos ensaios conduzidos, comparando valores teóricos e experimentais.

Por fim, no capítulo cinco são expostas as considerações finais da pesquisa e recomendações para aperfeiçoar os resultados em projetos futuros a serem desenvolvidos.

1 POLÍMEROS REFORÇADO COM FIBRAS

Diversas fibras são comumente empregadas para a confecção de barras, tais como vidro, carbono, aramida e basalto. No concreto armado, as fibras de vidro se destacam ao oferecer um equilíbrio econômico entre custo e propriedades de resistência específicas, sendo, assim, preferidas em muitas aplicações em relação às fibras de carbono e aramida. Recentemente, as fibras de basalto surgiram como uma opção alternativa às fibras de vidro [2].

1.1 Fibras de basalto

A fibra de basalto é um material que possui maior resistência e rigidez quando comparada à fibra de vidro. Além de ser menos prejudicial para o meio ambiente, não é toxica e não sofre corrosão. Essas fibras apresentam alta estabilidade térmica e possui propriedades isolantes. Diferente da fibra de vidro, a fabricação de basalto requer menos energia e a principal matéria prima utilizada, que é a rocha de basalto, está disponível em abundância. Uma das vantagens da fibra de basalto é a possibilidade de modificar suas propriedades mecânicas através da alteração da sua composição química. Isso permite que a fibra tenha um módulo de elasticidade superior ao da fibra de vidro, mantendo uma alta capacidade de dissolução em líquidos biológicos (alta biossolubilidade) [2]. A biossolubilidade tem sido enfatizado pelas recentes diretrizes internacionais na indústria de fibras de vidro, sendo considerado um fator importante para direcionar as futuras demandas do mercado [3].

1.2 Processo de fabricação

Inicialmente, o fio ou filamento de fibra de vidro ou basalto é saturado com um polímero líquido (v. figura 2). Após a impregnação, os filamentos são submetidos a um rolo para remover o excesso de polímero das fibras. Os filamentos de fibra são responsáveis por formar o núcleo principal da barra, conferindo-lhe o diâmetro adequado para ser enrolada e adquirir as características de uma barra corrugada. Em seguida, a barra formada é levada a um forno, onde ocorre a polimerização do compósito, com temperaturas entre 180°C e 330°C (v. figura 3). Para acelerar o processo de resfriamento, a barra é submersa em uma banheira de água e,

posteriormente, passa por uma estação de corte para atingir o tamanho desejado (v. figura 4) [4].

Figura 2 - Saturação em liquido do polímero de basalto [4]

Figura 3 - Entrada da barra de basalto no forno [4]

Figura 4 - Corte das barras de basalto [4]

Todo esse processo de fabricação dos polímeros reforçados com fibras é denominado pultrusão. A pultrusão apresenta diversas vantagens na fabricação de vergalhões FRP, tais como a obtenção de produtos com alta resistência, baixo peso, longa durabilidade e excelente resistência à corrosão. Adicionalmente, este processo

viabiliza a produção de perfis com seções transversais complexas, garantindo uma precisão dimensional elevada [4].

1.3 Normas atuais de estruturas de concreto protendido com barras de FRP

No Brasil ainda não existe uma norma com regulamentação específica para esses tipos de materiais, no entanto para realização de projetos estruturais, projetistas tem utilizados normas internacionais que abordam esse assunto. É importante ressaltar que até as normas internacionais que consideram o projeto com reforço de barras poliméricas, não englobam as barras de fibra de basalto por ser um material ainda com pouco estudo e relativamente novo em comparação aos outros, como fibra de carbono, vidro e aramida. No entanto, o comportamento da fibra de basalto é relativamente semelhante ao das outras fibras, com isso para essa pesquisa são utilizadas algumas normas internacionais, como a ACI 440 [5] além de adaptações da Norma Brasileira, a NBR 6118 [1].

1.3.1 Tipos de ancoragem para barras FRP

São 6 tipos de ancoragem descritas pela ACI 440 [5] para projetos que utilizam barras FRP protendidas, como constam nas Figuras 5 a 10. A ancoragem adotada na pesquisa foi em tubo reto.

Figura 5 - Ancoragem em parafuso – adaptado [5]

Figura 6 - Ancoragem em Tampão e cone – adaptado [5]

Figura 7 - Ancoragem em tubo reto - adaptado [5]

Figura 8 - Ancoragem em tubo cônico - adaptado [5]

Figura 9 - Ancoragem em revestimento metálico – adaptado [5]

Figura 10 - Ancoragem em cunha dividida – adaptado [5]

1.3.2 Estado limite último para a American Concrete Institute (ACI)

No dimensionamento de estruturas protendidas com FRP, a ACI 440 [5] sugere que a resistência desses elementos seja baseada no conceito de relação de equilíbrio que é definida como a taxa de armadura que resulta na ruptura das barras poliméricas e esmagamento do concreto. A ruptura do concreto é considerada quando a deformação de compressão atinge 0,003 mm/mm. A ruptura das barras FRP ocorre quando atinge a tensão última de tração.

Segundo a ACI 440 [5] para a protensão de vergalhões em aço, costuma-se aplicar uma tensão de 85% da tensão de escoamento, que seria aproximadamente 0,005 de deformação; enquanto para a protensão de vergalhões de fibra polimérica essas tensões devem ficar limitadas entre 40% a 65% de sua resistência máxima.

Uma viga de concreto protendido com cordoalhas de aço irá se deformar elasticamente até a fissuração, posteriormente a flecha aumenta progressivamente à medida que a cordoalha rompe e ocorre a ruptura por esmagamento do concreto ou ruptura do cabo. O comportamento de uma viga protendida com cabos reforçado com fibra a deformação elástica ocorre até a fissuração, em seguida se deforma quase linearmente até a ruptura do cabo ou do concreto, como ilustrado nas figuras 11 e 12 [5].

Figura 11 - Momento x flecha em elementos de concreto protendido – adaptado [5]

Figura 12 - Momento x deformação em elementos de concreto protendido - adaptado [5]

Quanto à capacidade de deformação, a ACI 440 [5] afirma que se a deformação total do cabo é ε_{pu} , logo a deformação à flexão, ε_f (v. equação 1), seria o total menos a deformação da protensão, ε_p , a deformação da descompressão do concreto, ε_d e qualquer perda de capacidade de deformação devido ao carregamento, ε_{pr} .

$$\varepsilon_f = \varepsilon_{pu} - \varepsilon_p - \varepsilon_d - \varepsilon_{pr} \tag{1}$$

Por compatibilidade chega-se à determinação de c/d (v. equação 2)

$$\frac{c}{d} = \frac{\varepsilon_c}{\varepsilon_c + \varepsilon_f} \tag{2}$$

Equilibrando a força de protensão com a compressão no concreto tem-se a equação 3

$$0,85 * f'_{c} * \beta_{1} * c * b = \rho * b * d * f_{pu}$$
(3)

Para concretos com f_{ck} até 27,5 MPa $\beta_1 = 0,85$, sendo reduzido em 0,05 para cada aumento no f_{ck} de 6,9 Mpa até um valor mínimo de 0,65.

Sabendo que
$$\rho = \rho_b$$
, onde $\rho = \frac{A_p}{b*d}$, chega-se a
 $\rho_b = 0.85*\beta_1*\frac{f'_c}{f_{pu}}*\frac{c}{d}$
(4)

Para previsão de capacidade de carga à flexão onde a taxa de armadura protendida $\rho \leq \rho_b$, a resistência da viga é controlada pela resistência à tração do vergalhão FRP. Nessas situações o concreto não chega a deformação de 0,003 na ruptura estrutural [5].

Desse modo, o momento nominal da seção controlada pela tração da armadura em uma única camada (v. equação 5) é realizado dimensionando com base em bloco de tensão retangular [5].

$$M_n = \rho * b * d * f_{pu} * \left(d - \frac{a}{2}\right) \tag{5}$$

Por equilíbrio de forças encontra-se "a" (v. equação 6)

$$a = \frac{\rho * d}{0.85} * \frac{f_{pu}}{f'_{c}}$$
(6)

Com isso chega-se à equação 7

$$M_n = \rho * b * d^2 * f_{pu} \left(1 - \frac{\rho}{1.7} \frac{f_{pu}}{f'_c} \right)$$
(7)

1.3.3 Estado limite último pela NBR 6118

Para uma seção retangular com armaduras passivas e de protensão, a deformação ε_{po} representa o pré alongamento do cabo ou vergalhão e $\Delta \varepsilon_p$ é a variação dessa deformação que será protendida. Ao fazer o equilíbrio entre forças da figura 13, chega-se às Equações 8 e 9 [6]

$$R_c + R'_s = R_s + R_p \tag{8}$$

$$0,68 * f_{cd} * b * x + \sigma'_s * A'_s = \sigma_s * A_s + \sigma_p * A_p \tag{9}$$

Figura 13 - Tensão e deformação em uma viga no estado limitem último [6]

Sabendo que $\sigma_p = \sigma_{po} + \Delta \sigma_p$ é a tensão na armadura protendida e estabelecendo o equilíbrio entre os momentos em relação a A_p [6], tem-se a Equação 10:

$$M_{d} = 0.68 * f_{cd} * b * x * (d_{p} - 0.4x) + \sigma_{s} * A_{s} * (d_{s} - d_{p}) + \sigma'_{s} * A'_{s} * (d_{p} - d')$$
(10)

Com isso é possível obter as equações de compatibilidade entre deformações, mostradas na equação 11

$$\frac{\varepsilon_c}{x} = \frac{\varepsilon_s}{d_s - x} \; ; \; \frac{\varepsilon_c}{x} = \frac{\varepsilon'_s}{x - d'} \; ; \; \frac{\varepsilon_c}{x} = \frac{\Delta \varepsilon_p}{d_p - x} \tag{11}$$

1.4 Dimensionamento ao cisalhamento (NBR 6118,2023)

Como o previsto para a pesquisa era que a ruptura das vigas ocorresse por flexão, optou-se por reforçar a viga com estribos em aço CA-50. Não foi utilizado o vergalhão de fibra de basalto devido à dificuldade de realizar a dobra desse material, além disso, o material doado pela Haizer foi suficiente apenas para utilizar como armadura ativa na protensão.

Segundo a NBR 6118 [1], a resistência do elemento estrutural é suficiente quando são verificadas as condições:

$$V_{Sd} \le V_{Rd2} \tag{12}$$

$$V_{Sd} \le V_{Rd3} = V_c + V_{sw} \tag{13}$$

Onde

 V_{Sd} = força solicitante na seção

 V_{Rd2} = força resistente de cálculo referente à ruína das diagonais comprimidas de concreto

 $V_{R3} = V_c + V_{sw}$ = força resistente de cálculo, referente à ruína por tração diagonal

Para o dimensionamento das armaduras de cisalhamento dessa pesquisa, foi utilizado o modelo de cálculo I. Segundo a NBR 6118 [1], a treliça clássica de Ritter-Morshch é a base para o dimensionamento, onde é fixado em 45º a inclinação das bielas de compressão. Esse modelo é o mais conservador e o mais utilizado atualmente.

Em um primeiro momento, são verificadas as bielas comprimidas, logo têm-se que:

$$V_{Rd2} = 0,27 * \alpha_{v2} * f_{cd} * b_w * d \tag{14}$$

е

$$\alpha_{\nu 2} = \left(1 - \frac{f_{ck}}{250}\right) \tag{15}$$

Em seguida, é feito o cálculo da armadura transversal, dado que

$$V_{Rd3} = V_c + V_{sw} \tag{16}$$

Onde

$$V_{sw} = \left(\frac{A_{sw}}{s}\right) * 0.9 * d * f_{ywd}(\sin\alpha + \cos\alpha)$$
(17)

$$V_c = 0.6 * f_{ctd} * b_w * d$$
 (18)

Segundo a NBR 6118 [1], para todo elemento estrutural submetido a força cortante, com algumas exceções, deve-se dimensionar uma taxa de armadura mínima para combater o cisalhamento.

$$\rho_{sw} = \frac{A_{sw}}{b_w * s * \sin \alpha} \ge 0.2 * \frac{f_{ct,m}}{f_{ywk}}$$
(19)

Comparando a taxa de armadura necessária para a pesquisa de acordo com o esforço cortante estimado devido ao carregamento, com a armadura mínima proposta pela NBR 6118 [1], chegou-se ao resultado de armadura necessária inferior à armadura mínima. Logo, foi utilizado a taxa mínima de 1,54cm²/m para $f_{ck} = 25$ MPa. Para a pesquisa, adotou-se para armadura transversal estribos com diâmetro de 6,3mm com espaçamento de 15cm.

1.5 Momento de fissuração (NBR 6118,2023)

"Nos estados limites de serviço as estruturas trabalham parcialmente no estádio I e parcialmente no estádio II. A separação entre essas duas partes é definida pelo momento de fissuração. Esse momento pode ser calculado pela seguinte expressão aproximada" [1]

$$M_r = \frac{\alpha * f_{ct} * I_c}{y_t}$$
(20)

Sendo,

 α = 1,5 para seções retangulares $f_{ct} = 0.21^* f_{ck}^{2/3}$ $I_c = \frac{b*h^3}{12}$

 $y_t = h/2$ (para seção retangular)

Segundo a NBR 6118 [1], caso a viga receba esforço de protensão, essa protensão deve ser considerada no momento de fissuração.

1.6 Modos de ruptura por flexão

De acordo com GangaRao e Vijay [7], em uma estrutura reforçada com barras FRP, são cinco os principais modos de ruptura por flexão:

- Esmagamento do concreto em compressão antes de ocorrer o rompimento da armadura
- Deformação excessiva da armadura tracionada
- Deformação excessiva da armadura tracionada seguida do esmagamento do concreto
- Ruptura por cisalhamento
- Descolamento das barras FRP do concreto

2 REVISÃO BIBLIOGRAFICA

Neste capítulo, é realizada uma revisão bibliográfica acerca do tema estudado, abordando pesquisas e seus respectivos autores que investigaram temas pertinentes ao estudo apresentado nessa dissertação. A seguir são apresentadas algumas pesquisas desenvolvidas por alguns autores no campo da utilização de polímeros reforçado com fibra (FRP) e a utilização da areia ou água do mar para a confecção de concreto estrutural.

2.1 Utilização dos vergalhões FRP em vigas de concreto.

Wu *et al.* [8] em seu estudo analisaram as propriedades mecânicas e térmicas dos vergalhões de polímero reforçado com fibra de basalto (BFRP) em temperaturas elevadas e após tratamento térmico. Em comparação com os vergalhões de polímero reforçado com polímero de vidro (GRFP), os BFRPs apresentam maior resistência à corrosão, tornando-os vantajosos como reforço interno em estrutura de concreto. Os testes de tração revelaram que os BFRPs mantêm valores elevados de resistência e rigidez, mesmo em temperaturas muito superiores à temperatura de transição vítrea do sistema. Porém, quando submetidos a tratamentos térmicos em temperaturas elevadas, ocorre uma degradação das propriedades mecânicas e térmicas devido à oxidação da resina e deterioração da interface entre a fibra e resina.

Jónsson [9] desenvolveu uma pesquisa em que seu principal foco do experimento consistiu na aplicação de cabos protendidos de fibra de basalto como reforço em vigas de concreto, simulando lajes pré-moldadas e estimando a perda gradual da protensão nesses cabos. Quatro vigas foram moldadas, cujo esquema estrutural e dimensões estão representados na Figura 14, sendo três protendidas com cabos de fibra de basalto e uma sem protensão. Com intuito de analisar o comportamento dos cabos protendidos, durante aproximadamente três semanas as deformações foram registradas. Por fim, foram realizados ensaios de flexão em quatro pontos até a ruptura.

Figura 14 - Esquema da viga utilizada no programa experimental Jónsson – adaptado [9]

Os resultados das 4 vigas ensaiadas por Jónsson [9] podem ser observados na Tabela 1 que compara os valores experimentais com os valores teóricos.

Tabela 1 - Resultados experimentais e teóricos da carga última e flecha nas 4 vigas Jónsson [9]

	Teste,		Teórico, F		este, F Te			Teste, desl	ocamento	L/400 limite
	SLS, KN	ULS, KN	SLS, KN	ULS, KN	ULS, KN	SLS, mm	ULS, mm	mm		
Viga 1	33	59*				2.1	22			
Viga 2	35	67*	30,2	71,1	84,6***	1,8	24	4.0		
Viga 3	33	54*]			1.7	15	4,6		
Viga 4	8 - 12	58**	8,2	11.4		0.2-0.8	36			

Nota: * Ruptura por cisalhamento

** Viga foi empurrada para a fundação, ruptura por cisalhamento e flexão
*** F devido à resistencia ao cisalhamento esperada do concreto

A carga de ruptura em vigas com barras de BFRP protendidas não foram muito superiores as vigas com barras não protendidas. Observou-se a que a flecha nas vigas protendidas foram menores. A relaxação a longo prazo é estimada em cerca de 20%. Deve-se atentar ao projetar vigas sem armadura para combater o cisalhamento [9].

Elgabbas [10] em sua pesquisa do doutorado avaliou características de curto e longo prazo dos vergalhões de fibra de basalto, além de avaliar o desempenho estrutural dessas barras como reforço interno para vigas e lajes de pontes. O estudo foi dividido em três partes. A primeira tinha como objetivo avaliar propriedades físicas e mecânicas das barras. Foram realizados ensaios de tração nas barras, ensaio de cisalhamento e ensaio de arrancamento, conforme mostram as Figuras 16 a 18

Figura 15 - Configuração do teste de tração [10]

Figura 16 – Ensaio de cisalhamento nas barras de BFRP [10]

Figura 17 - Ensaio de arrancamento - adaptado [10]

A segunda parte foi realizada em sete lajes de tabuleiro de ponte em escala real para avaliar o desempenho destas com o reforço dos vergalhões BFRP. O esquema da geometria das lajes pode ser visto na Figura 19

Figura 18 - Geometria das lajes testadas [10]

Por fim, a terceira parte foram testadas quatorze vigas de concreto de 3100mm de comprimento x 200mm de largura x 300mm de profundidade, avaliando o seu

comportamento à flexão. As dimensões e detalhes das armaduras podem ser vistas na Figura 20.

Figura 19 - Dimensões e detalhes das armaduras ensaiadas - adaptada [10]

As vigas com barras de BFRP ensaiadas romperam devido ao esmagamento do concreto. A capacidade de carga das vigas com as barras de BFRP foram superiores as vigas com aço com as mesmas taxas de armadura, devido a maior resistência a tração e maior capacidade de deformação.

Sá [11], em sua pesquisa de mestrado, avaliou a adição de 10kg/m³ de fibra de polipropileno em elementos de concreto armado com vergalhões de fibra de vidro (GFRP) submetidos à tração direta e flexão. As etapas do programa experimental resumido podem ser vistas na Figura 21, em que consta a quantidade de cada ensaio realizado durante a pesquisa. Foi utilizada correlação de imagem digital com intuito de avaliar as deformações e aberturas de fissuras que ocorreram na viga. Por último, os ensaios de flexão foram comparados com um modelo analítico. Pode-se notar que em todos os casos, a adição de fibras resultou em uma redução da rigidez do concreto antes da fissuração. Quanto ao ensaio de flexão em quatro pontos, notou-se um aumento na rigidez na ordem de 13% e a abertura de fissuras reduziu com o uso da fibras. Ao avaliar a fissuração, observou-se que as fissuras foram menores quando adicionadas as fibras.

Figura 20 - Etapas do programa experimental com a quantidade de cada ensaio previsto no estudo [11]

AlHafiz [12] realizou um estudo experimental e analítico sobre o comportamento à flexão de vigas reforçadas com barras de fibra de basalto, fibras vidro e aço. Foram preparadas 12 vigas, com concreto de 40 MPa. O pesquisador realizou um ensaio à flexão em quatro pontos em cada viga. Os resultados mostraram uma melhora na capacidade resistente das vigas, nas quais o concreto apresentou deformação máxima maior que 0,003 na zona comprimida. Isso ajudou as barras de basalto a alcançarem uma resistência final mais elevada. Pode-se notar que a capacidade à flexão das vigas reforçadas com BFRP aumentaram 12%, enquanto as vigas com barras de fibras sintéticas aumentaram 19%. Os resultados experimentais foram semelhantes aos resultados analíticos usando as equações da ACI quanto à capacidade de flexão, abertura de fissuras e flecha.

O resumo do tipo de fibra utilizada, além de outras informações sobre o ensaio podem ser observados na Figura 22.

1								
	n° #	Viga	Tipo	A (mm ²)	ρr	Rigidez a flexão (MN)	ρ _ſ / ρ _Љ	Tipo de fibra
	1	2T12BB1 (Control)	BFRP	2#12=243	0.0073	11.32	2.8	Basaltoª
	2	2T16BB1	BFRP	2#16=424	0.0129	19.5	5.2	Basalto
	3	2T10BB1	BFRP	2#10=171	0.0051	7.3	1.8	Basalto
	4	3T10BB1	BFRP	3#10=256	0.0077	10.96	2.75	Basalto
	5	3T8BB1	BFRP	3#8=172	0.0051	7.37	1.96	Basalto
	6	2T12BS	BFRP	2#12=243	0.0073	11.32	2.8	Sintética
	7	2T12BP	BFRP	2#12=243	0.0073	11.32	2.8	-
	8	2T12GB1	GFRP	2#12=243	0.0073	12.2	2.15	Basalt
	9	2T12GB2	GFRP	2#12=243	0.0073	12.2	2.15	Basalto 2 ^b
	10	2T12SB1	Aço	2#12=226	0.0068	45.2	0.17	Basalto
	11	2T12BB2	BFRP	2#12=243	0.0073	11.32	2.8	Basalto 2
	12	2T16BB2	BFRP	2#16=424	0.0129	19.5	5.2	Basalto 2
	i fibra de basalto com 24 mm de comprimento b fibra de basalto com 12 mm de compriment							

Figura 21 - Resumo do programa experimental realizado por AlHafiz – adaptado [12]

Warmling [13] em seu estudo analisou e ensaiou vinte vigas biapoiadas com e sem estribos, sendo doze somente com vergalhão de fibra de basalto. As vigas tinham seção transversal de 100mm x 200mm e vão de 980mm. O tipo de reforço das armaduras longitudinais das vigas, taxa de armadura e detalhes dos estribos podem ser vistos na Figura 23.

ldentificação da vigo	Tipo de reforço	Diâmetro (mm)	ρ (%)	ρ _b (%)	Estribos
B 8 CE	BFRP	8	0,55	0,25	ϕ 4 mm @ 50 mm
B 10 CE	BFRP	10	0,87	0,25	ϕ 4 mm @ 40 mm
B 12 CE	BFRP	12	1,26	0,24	ϕ 4 mm @ 37 mm
B 8 SE	BFRP	8	0,55	0,25	-
B 10 SE	BFRP	10	0,87	0,25	-
B 12 SE	BFRP	12	1,26	0,24	-
A 8 CE	Aço	8	0,55	1,47	ϕ 5 mm @ 90 mm
A 10 CE	Aço	10	0,87	1,51	ϕ 5 mm @ 90 mm
A 8 SE	Aço	8	0,55	1,47	-
A 10 SE	Aço	10	0,87	1,51	-

Figura 22 - Características das doze vigas ensaiadas Warmling [13]

A análise consistiu na comparação com modelos numéricos desenvolvidos no software DIANA 10.3, além de modelos analíticos baseadas nas normas (ACI 318-19, ACI 440.1R-15 e ISIS). Foram observados que todas as vigas sem estribos romperam por cisalhamento e as vigas reforçadas longitudinalmente com aço e com estribos romperam por flexão e escoamento do aço. As vigas com barras de fibra de basalto

tiveram a sua ruptura por esmagamento do concreto em conjunto com ocorrência de uma grande fissura por cisalhamento. Comparando com modelos analíticos, concluiuse que em se tratando do comportamento à resistência a flexão, os resultados experimentais com aço e com estribo comparados os da norma ACI 318-19 e ACI 440, os resultados obtidos foram subestimados na ordem de 50% para vigas com barras de 8mm e 25% para vigas com barras de 10mm. Para as vigas reforçadas com BFRP e com estribos, o ACI superestimou a resistência à flexão em 10% para barras de 8mm e 42% para as vigas com barras de 10mm e 12mm.

O resumo do ensaio experimental realizado por Warmling [13], com o tipo de ruptura em cada viga, pode ser analisado na figura 24.

Viga	$P_u(kN)$	Deslocamento (mm)	Tipo de ruptura
A8CE_1	54,31	24,56	Flex. / escoam. aço
A8CE_2	53,90	25,30	Flex. / escoam. aço
A8SE_1	35,63	5,05	Cisalhamento
A8SE_2	34,35	5,07	Cisalhamento
A10CE_1	65,07	14,77	Flex. / escoam. aço
A10CE_2	65,85	14,82	Flex. / escoam. aço
A10SE_1	37,50	4,76	Cisalhamento
A10SE_2	43,90	6,04	Cisalhamento
B8CE_1	47,98	19,48	Esmag.concreto / cisalhamento
B8CE_2	49,90	20,87	Esmag.concreto / cisalhamento
B8SE_1	19,28	5,89	Cisalhamento
B8SE_2	25,16	10,10	Cisalhamento
B10CE_1	69,84	23,30	Esmag.concreto / cisalhamento
B10CE_2	78,63	26,79	Esmag.concreto / cisalhamento
B10SE_1	26,82	5,18	Cisalhamento
B10SE_2	25,54	4,88	Cisalhamento
B12CE_1	89,33	26,78	Esmag.concreto / cisalhamento
B12CE_2	78,65	25,19	Esmag.concreto / cisalhamento
B12SE_1	31,22	6,88	Cisalhamento
B12SE_2	33,50	7,20	Cisalhamento

Figura 23 - Resumo do ensaio experimental realizado com valores de carga última, deslocamento e tipo de ruptura [13]

Carvalho [14] estudou o incremento de ductilidade em vigas de concreto armado confeccionada com vergalhão de fibra de vidro (GFRP) por meio da incorporação de fibras dispersas de vidro à matriz cimentícia e/ou pelo confinamento do concreto nas regiões críticas utilizando estribo de GRFP. Foram feitos ensaios de flexão em oito vigas isostáticas, quatro delas superarmadas e quatro subarmadas. O fluxo do programa experimental realizado pode ser visto na Figura 25

Figura 24 - Fluxo do programa experimental realizado por [14]

No ensaio de flexão as vigas subarmadas apresentaram uma variação do momento resistente entre 6,20% e 25,70% em relação ao calculado pela ACI, conforme mostra a Figura 26.

Viga	Momento ACI 440-1R (kN.m)	Momento Experimental (kN.m)	Variação
BSS	11,77	14,8	25,70%
BCS	11,77	15,17	28,90%
BSF	11,77	13,99	18,90%
BCF	11,77	12,5	6,20%

Figura 25 - Comparação entre momentos resistentes experimentais e analíticos para vigas subarmadas [14]

Abed *et al.* [15] investigaram o comportamento à flexão de vigas armadas com vergalhões de fibra de basalto, fibra de carbono e aço CA-50 utilizando concreto normal e de alto desempenho. Foram realizados ensaio de flexão em 4 pontos em 14 vigas, como pode ser observado na Figura 27, com dimensões de 180mm x 230mm x 2200mm.

Viga	Tipo de barra	diâmetro (mm)	$A(mm^2)$	EA (MN)	ρr	Pt/ Pro
3T8B-N	BFRP	8	3T8=172	7.5	0.00448	1.90
2T10B-N	BFRP	10	2T10=171	7.85	0.00471	1.85
2T12B-N	BFRP	12	2T12=243	11.3	0.00682	2.90
3T16B-N	BFRP	16	3T16=636	30.15	0.0184	7.97
2T12C-N	CFRP	12	2T12=243	29.6	0.00682	3.73
2T10S-N	Aço	10	2T10=157	31.4	0.00471	0.16
2T12S-N	Aço	12	2T12=226	45.2	0.00682	0.23
3T8B-H	BFRP	8	3T8=172	7.5	0.00448	1.45
2T10B-H	BFRP	10	2T10=171	7.85	0.00471	1.4
2T12B-H	BFRP	12	2T12=243	11.3	0.00682	2.2
3T16B-H	BFRP	16	3T16=636	30.15	0.0184	6.03
2T12C-H	CFRP	12	2T12=243	29.6	0.00682	2.84
2T10S-H	Aço	10	2T10=157	31.4	0.00471	0.12
2T12S-H	Aço	12	2T12=226	45.2	0.00682	0.18

Figura 26 - Informações sobre as 14 vigas ensaiadas no programa experimental – adaptado [15]

A pesquisa tinha como objetivo avaliar a melhoria de desempenho das vigas com barras de fibra de basalto em comparação com as de fibra de carbono e em aço CA-50. Como resultado do estudo, pode-se notar que a flecha das vigas foi diferente dependendo do tipo de vergalhão utilizado. As vigas armadas com barras de fibra de carbono apresentaram um melhor desempenho, seguida das vigas com barras de fibra de basalto. As vigas armadas com vergalhões de aço apresentaram o pior desempenho entre as demais vigas.

O aumento da taxa de armadura de fibra de basalto resultou uma melhora na capacidade resistente à flexão, independente da resistência do concreto utilizado. Além disto, o aumento da taxa de armadura contribuiu de forma significativa para a ductilidade da viga.

A viga com vergalhões em aço apresentou uma rigidez maior em relação à das vigas com fibra de basalto e fibra de carbono, devido ao seu maior módulo de elasticidade. 2.2 Utilização da areia do mar para produção de concreto.

Cavalcanti e Freire [16], em um estudo realizado na região Nordeste do Brasil, na plataforma continental de Fortaleza, analisaram as características das areias marinhas para uso como agregado. As amostras apresentaram resultados satisfatórios em relação à granulometria, reatividade potencial e presença de impurezas, superando até mesmo algumas areias continentais em exploração. No entanto, os principais desafios para sua utilização estão nos teores de sais e de carbonato de cálcio ($CaCO_3$). Menos de 20% das amostras apresentaram teores de $CaCO_3$ inferiores a 30%, sendo necessário realizar peneiramento e ensaios em corpos de prova para verificar se são adequadas para a construção civil. No que diz respeito à presença de sais, mais de 90% das amostras foram classificadas como não salinas, o que as tornam adequadas para a fabricação de argamassas e qualquer tipo de concreto, armado ou não.

Wang *et al.* [17] realizaram um estudo com foco na avaliação a longo prazo de vergalhões de fibra de basalto e fibra de vidro quando submetidas a ambientes de água do mar e concreto de areia do mar (SWSSC). Foram utilizados dois tipos de soluções SWSSC para o teste de corrosão acelerada, com temperatura e pH diferentes e variando o período de exposição. As análises das barras submetidas a testes de tração sugeriram que as barras de GFRP demonstraram uma resistência superior em comparação com a das barras de BFRP. Na pesquisa foram utilizadas microscopia eletrônica de varredura, tomografia computadorizada de raio-x e espectroscopia de energia dispersiva de raios-x para compreender os danos observados. Os pesquisadores notaram que as barras de fibra de vidro tiveram uma durabilidade maior em relação à da barra BFRP. Os valores do módulo de elasticidade nas barras de fibra de basalto e nas barras de fibra de vidro não foram afetados devido à exposição em soluções SWSSC.

Cardoso *et al* [18] estudaram uma amostra de agregado fino proveniente da região costeira de Serra, Espírito Santo, Brasil. Foram conduzidos ensaios de distribuição granulométrica, densidade, conteúdo de argilas agregadas, materiais frágeis e pulverulentos, tamanho máximo característico, presença de impurezas orgânicas solúveis, teor de cloretos solúveis, teor de sais solúveis, teor de sulfatos solúveis, presença de componentes carbonosos, pH e resistência à compressão

uniaxial. Os testes colorimétricos de avaliação da penetração de cloretos no concreto, após imersão em água do mar por 7 dias, não evidenciaram a presença de cloretos livres em nenhuma das amostras. Os ensaios de carbonatação não revelaram processos de carbonatação nos três corpos de prova analisados. Os ensaios de resistência à compressão demonstraram que o concreto produzido com areia marinha apresenta resultados similares ao concreto produzido com areia fluvial.

2.3 Conclusões da Revisão Bibliográfica

Houveram poucas pesquisas sobre o uso de areia do mar na produção de concreto destinado a aplicações estruturais. Muitos estudos se concentram apenas na análise da água do mar para simular a composição química da areia, desconsiderando o uso efetivo deste tipo de agregado, que apresenta notáveis diferenças em termos de granulometria e formato de partículas em comparação com a areia lavada. A maioria das pesquisas existentes abordando esse tópico tende a se concentrar na durabilidade do concreto produzido com essa areia, sem considerar a possibilidade de alterações em sua resistência.

No que diz respeito aos estudos envolvendo barras reforçadas com fibras poliméricas, a maioria concentra-se em barras de fibra de vidro ou de carbono, havendo uma escassez de estudos abordando exclusivamente barras de fibra de basalto. Até o momento, no cenário brasileiro, os estudos relevantes sobre esse tema foram conduzidos exclusivamente pelo pesquisador Warmling [13].

A importância desse material no contexto da construção civil do futuro, bem como a carência e a necessidade de novas avaliações, constituiu a motivação fundamental para a realização deste estudo, que visa investigar o desempenho de vigas produzidas com vergalhões de fibra de basalto e concreto com substituição parcial por areia do mar.

2.4) Estruturas protendidas

O principal objetivo de aplicar protensão em projetos de estruturas é melhorar o desempenho das estruturas, especialmente quando são submetidos a flexão. Esta melhoria de desempenho é consequência de dois importantes fatores nesse tipo de solução [9]:

Limitação da tensão de tração na seção

Controle do desenvolvimento de fissuras

Sabe-se que o concreto é bem eficiente a cargas de compressão, no entanto o mesmo não ocorre com esforços de tração. Por isso elementos estruturais em concreto que são submetidos a flexão podem desenvolver fissuras [19]. Para evitar que o concreto seja exigido às tensões de tração, em geral, utilizam-se cabos ou cordoalhas de aço tensionadas antes do concreto ser moldado, criando uma compressão inicial nesses cabos que posteriormente é transferido para o elemento estrutural, aumentando sua capacidade de sustentar a carga aplicada. Consequentemente, os esforços de tração em elementos de concreto armado são limitados a valores bem próximos de zero, restringindo o surgimento de fissuras e melhorando a durabilidade da estrutura.

Em uma estrutura protendida é importante fazer a verificação da tensão de tração na parte superior da viga, que não pode ser maior que a resistência do concreto à tração [9]. A força feita durante a protensão não é transferida completamente para o concreto, pois ocorrem perdas por vários fatores como:

- Encurtamento elástico do concreto logo após aplicar a carga
- Fluência do concreto
- Relaxação das barras FRP
- Retração do concreto

3 PROGRAMA EXPERIMENTAL

No LEC – Laboratório de Engenharia Civil - UERJ foram iniciados os ensaios de caracterização dos materiais e ensaio de flexão em 4 pontos de vigas protendidas com vergalhões de fibra de basalto, além de armaduras mínimas longitudinais porta estribos e estribos em aço (v. figura 27).

Os ensaios de flexão e caracterização foram realizados no LEC-UERJ. Utilizouse uma prensa hidráulica acionada eletricamente para aplicar cargas e registrar as forças durante os ensaios.

Os resultados dos testes foram reunidos por meio da leitura dos extensômetros fixados nas amostras e dos transdutores de deslocamento colocados na base inferior das vigas, mais precisamente no eixo e na direção dos pontos de carga.

Vale ressaltar que a aplicação de carga nas vigas foi feita com controle de força, com uma taxa de variação de cerca de 5 kN/min, até que ocorresse a ruptura da viga.

Figura 27 - Representação de como foram aplicadas as cargas nos ensaios de flexão

3.1 Elaboração dos modelos experimentais

Cada viga foi armada com duas barras de fibra de basalto com 8mm de diâmetro. Para executar a protensão, essas barras foram tracionadas simultaneamente. Primeiramente, foi necessário construir um pórtico de reação, que está descrito com mais informações no item 3.7, para posicionar o macaco hidráulico, puxar as barras e realizar a ancoragem. Após essa etapa, as vigas foram concretadas. Vale ressaltar que a viga 1 foi concretada 4 dias após a protensão, enquanto a viga 2 foi concretada um dia após executar a protensão. Essa diferença ocorreu, pois a concretagem não pode ser realizada aos finais de semana.

A viga 1, feita com 100% de areia lavada, foi feita a protensão no dia 23/06/2023 e foi concretada em 27/06/2023, enquanto a viga 2, composta por 70% de areia lavada e 30% de areia do mar, foi protendida em 06/07/2023 e concretada em 07/07/2023.

A decisão de utilizar a protensão nos vergalhões de fibra de basalto foi motivada principalmente pelo baixo módulo de elasticidade desse material, que é de 50 GPa. Se a armadura fosse passiva, resultaria em deformações excessivas nas vigas, incluindo elevadas flechas, aberturas significativas de fissuras e uma redução da linha neutra.

Devido à dificuldade de realizarem-se dobras nesse tipo de vergalhão polimérico, optou-se por utilizar estribos fabricados em aço CA-50. Além disso, foram empregados quatro vergalhões longitudinais de 6,3 mm para posicionar e montar esses estribos.

No experimento, foram moldadas duas vigas, cada uma contendo quatro vergalhões longitudinais de aço CA-50, estribos de aço CA-50 e dois vergalhões BFRPs. As dimensões adotadas para as vigas foram de 220 cm de comprimento, 15 cm de largura e 30 cm de altura. O vão entre os apoios foi definido como 200 cm, que é o limite suportado pela máquina de ensaios de LEC.

Os resultados obtidos experimentalmente foram comparados com os resultados fornecidos pelos métodos de cálculo descritos nos capítulos anteriores

3.2 Dimensionamento prévio das vigas

No dimensionamento, as características adotadas seguiram as especificações obtidas através dos ensaios realizados previamente nos materiais, além das informações obtidas através dos fornecedores que doaram os materiais necessários. O dimensionamento seguiu as normas ACI 440 [5] e a NBR 6118 [1]

3.2.1 Dimensionamento à flexão

A resistência à flexão da viga foi calculada utilizando-se distribuição de tensões e deformações. Para se chegar à resistência final à flexão, foram considerados a força de protensão, a excentricidade, as perdas previstas por relaxação dos cabos, além da contribuição das armaduras passivas que foram utilizadas para facilitar a locação das armaduras de cisalhamento. A partir dos cálculos já apresentado no capítulo 1 deste trabalho, chegou-se aos seguintes resultados: Viga 1

- Momento resistido pela protensão, baseado 440.4R: 1154,08 kN.cm
- Momento resistido pela armadura passiva, baseado na NBR 6118: 858 kN.cm
- Carga de ruptura: 47,34 kN
- Momento resistido pela armadura de protensão somado a armadura passiva, com adaptações as formulações da NBR 6118: 2363 kN.cm
- Carga de ruptura: 55,60 kN

Viga 2

- Momento resistido pela protensão, baseado 440.4R: 1245,13 kN.cm
- Momento resistido pela armadura passiva, baseado na NBR 6118: 857 kN.cm
- Carga de ruptura: 49,46 kN
- Momento resistido pela armadura de protensão somado a armadura passiva, com adaptações as formulações da NBR 6118: 2547 kN.cm
- Carga de ruptura: 59,93 kN

A memória de cálculo com mais detalhes pode ser vista nos apêndices A à D

3.3 Detalhamento das vigas

A seguir é apresentado o detalhamento das vigas 1 e 2 conforme o dimensionamento prévio realizado (v. figura 28).

Viga 1 e Viga 2 Dimensões (cm): 220x15x30 Armadura longitudinal superior 2 Ø 6,3mm aço CA-50 Armadura longitudinal inferior 2 Ø 6,3mm aço CA-50 + 2 Ø 8,0mm BFRP Estribos: 14 Ø 6,3mm aço CA-50, com espaçamento de 15cm

Figura 28 - Detalhamento das vigas 1 e 2 (cotas em cm)

3.4 Especificação dos materiais utilizados na concretagem

3.4.1 Concreto

O concreto utilizado neste estudo foi preparado nas instalações do laboratório de Engenharia Civil da UERJ. A mistura do concreto foi realizada utilizando uma betoneira com capacidade de 150 litros. Com o objetivo de atingir o cobrimento especificado no projeto, espaçadores plásticos de 3,5 cm foram empregados. Para facilitar a remoção das peças, todas as formas e corpos de prova foram adequadamente selados com um agente desmoldante. A fim de assegurar a adequada compactação do concreto, utilizou-se um vibrador elétrico.

O cimento utilizado na preparação do concreto foi do tipo CP-V Ari, conforme mostra a Figura 29.

Figura 29 - Cimento CP-V ARI

Para o agregado miúdo, a viga 1 foi confeccionada utilizando-se areia média lavada, adquirida em sacos comerciais, obtidos em um estabelecimento de materiais de construção. Na viga 2, 30% em massa dessa areia foram substituídas por areia proveniente do mar, mais especificamente da região de Copacabana. Todas as análises de caracterização dos materiais foram conduzidas, de acordo com as normas NBR NM 248 [20], NBR NM52 [21], NBR NM30 [22] e NBR 45 [23]. É relevante destacar que, devido à presença de materiais indesejáveis na areia marinha, foi realizada uma etapa preliminar de peneiramento, conforme indicado na Figura 30, utilizando-se uma peneira com abertura de 1,18 micrômetros para a remoção desses resíduos.

Figura 30 - Peneira utilizada para retirada dos resíduos da areia do mar

Antes de definir o traço utilizado na pesquisa, foi feito um traço teste para verificar a resistência do concreto após 28 dias, conforme mostra a figura 31. Três

corpos de prova foram moldados e testado por compressão axial. A resistência média dos corpos de prova foi de 25 MPa.

Figura 31 – Teste prévio com o traço definido para pesquisa

A composição do concreto utilizado nas vigas 1 e 2 com a quantidade de material discriminada por metro cúbico são apresentados na tabela 2 e 3. É importante ressaltar que na viga 2, 30% em massa da quantidade total da areia foram substituídas por areia da praia de Copacabana, que pode ser visualizada na Figura 32.

Para 1m	1 ³
Traço 25 Mpa	Kg
Cimento	371
Água	200
Areia lavada	857
Brita 1	924
Fator a/c	0,54

Tabela 2 - Traço utilizado para a concretagem das vigas 1

Para 1m ³			
Traço 25 Mpa	Kg		
Cimento	371		
Água	200		
Areia lavada	600		
Areia do mar	257		
Brita 1	924		
Fator a/c	0,54		

Tabela 3 - Traço utilizado para a concretagem das vigas 2

Figura 32 - Areia da praia de Copacabana (posto 4)

Quanto ao agregado graúdo, foi utilizada brita 1, adquirida também em estabelecimentos de materiais de construção da região. Todas as análises granulométricas foram conduzidas de acordo com as normas NBR NM248 [20], a NBR 45 [23] e NBR NM 53 [24].

A água utilizada no experimento foi proveniente do próprio Laboratório de Engenharia Civil (LEC), o qual é abastecido pela rede pública de fornecimento de água da cidade do Rio de Janeiro.

3.4.2 <u>Aço</u>

Nesta pesquisa foram utilizadas barras de aço CA-50 de 6,3mm de diâmetro, tanto para as armaduras longitudinais quanto para os estribos, conforme mostra a

Figura 33. A montagem da armadura foi realizada pela própria fábrica que forneceu o material.

Figura 33 – Armaduras passivas e estribos montados

3.4.3 Barras de BFRP

As armaduras não metálicas empregadas neste estudo foram fornecidas pela empresa Haizer, especializada no fornecimento de materiais para construção civil, localizada na cidade de Curitiba. Foram utilizadas barras com um diâmetro de 8mm.

Este material compósito é produzido por meio do processo de pultrusão, conforme detalhado no Capítulo 1. As propriedades do material foram disponibilizadas pelo fornecedor e estão apresentadas na Tabela 4.

Tabela 4 - Propriedades	dos vergalhões BFRP	fornecidas pela	Haizer [4]
-------------------------	---------------------	-----------------	------------

Diâmetro	Diâmetro	Área	Carga de	Resistência	Módulo de	Deslocamento
comercial	nominal	nominal	ruptura	à tração	elasticidade	máximo (mm)
(mm)	(mm)	(mm ²)	(kN)	(MPa)	(GPa)	
8	7,8	47,78	48,197	1013,60	52,27	1,27

3.5 Caracterização dos materiais

A caracterização dos agregados miúdos e graúdos foram feitas com base na NBR NM 248 [20], NBR NM 52 [21], NBR NM 30 [22], NBR 45 [23] e NBR NM 53 [24]. Os resultados estão descritos nos itens 3.5.1 e 3.5.2.

3.5.1 Agregado miúdo

A seguir, nas tabelas 5 e 6, são apresentados os resultados da caracterização da areia lavada e da areia do mar realizada no LEC.

Peneiras (mm)	Média (%)	Acumulada (%)
4,76	1,70	1,7
2,36	6,20	7,9
1,8	19,10	27
0,6	35,40	62,4
0,3	26,30	88,7
0,150	9,10	97,8
FUNDO	2,20	100
Módulo de	2,86	
Dimensão má	4,76	
Massa específ	2,54	
Teor de umi	2,08	
Massa unitár	1,47	

Tabela 5 - Características físicas da areia lavada

Tabela 6 - Características físicas da areia do mar (Copacabana)

Peneiras (mm)	Média (%)	Acumulada (%)
4,76	0	0
2,36	0,12	0,12
1,8	0,33	0,45
0,6	7,70	8,15
0,3	81,30	89,45
0,150	9,60	99,45
FUNDO	0,95	100
Módulo de	1,97	
Dimensão má	2,36	
Massa específ	2,62	
Teor de umi	3,05	
Massa unitár	1,51	

3.5.2 <u>Agregado graúdo</u>

Os resultados da caracterização da brita 1 estão descritos na Tabela 5

Peneira (mm)	Média (%)	Acumulada (%)
19	6,40	6,40
12,5	68,90	75,30
9,5	21,10	96,40
6,3	3,00	99,40
4,76	0,30	99,70
2,36	0	99,70
1,8	0	99,70
0,6	0	99,70
0,3	0	99,70
0,150	0	99,70
FUNDO	0,3	100
Módulo de	8,76	
Dimensão má	19	
Massa específ	2,80	
Teor de umi	0,72	
Massa unitár	1,52	

Tabela 7 - Características físicas da brita 1

3.6 Ensaio de tração

Com o propósito de validar as propriedades do material apresentadas pelo fornecedor, conforme especificada no ANEXO A, foram propostos ensaio de tração fundamentada na norma ASTM D 7205 [25] e nas recomendações da Prática recomendada IBRACON/ABECE [26]. Para a realização do ensaio foram preparadas 3 amostras, cujo detalhe pode ser observado na Figura 34, de 880mm de comprimento e 7,8 mm de diâmetro. Para a ancoragem das extremidades, foram utilizados tubos em aço com diâmetro externo de 19mm e diâmetro interno de 16mm, mostrados nas

Figuras 35 e 36, para garantir a recomendação mínima de adesivo estrutural de 4mm entre a superfície externa da barra e a parede interna do tubo utilizado. O adesivo estrutural utilizado foi o Sikadur 32, cujas propriedades fornecidas pelo fabricante estão especificadas no ANEXO B.

Antes de iniciar o ensaio de tração, foi realizado um ensaio teste para avaliar a carga de ruptura a tração da barra de fibra de basalto. A carga de ruptura foi de 39,2kN. Valor inferior ao apresentado pela empresa que forneceu o material.

Seguindo as recomendações da ASTM D7205 [25], as barras devem ter comprimento livre entre as âncoras de 380mm ou 40 vezes o diâmetro efetivo da barra, o comprimento de ancoragem para barras de 4 a 10mm deve ser de 250mm.

Para medir e verificar o deslocamento da barra durante o ensaio, foi utilizado um relógio comparador analógico da marca Mitutoyo, com precisão de 0,01 mm, como mostra a Figura 37.

Adesivo estrutural (Sikadur 32)

Figura 34 - Detalhe do protótipo com as dimensões adotadas para o ensaio de tração

Figura 35 - Corpos de prova e tubos de aço utilizados no ensaio de tração

Figura 36 - Amostras preparadas para o ensaio de tração

Figura 37 - Relógio comparador utilizado para medir a deformação das barras

O ensaio foi realizado no LEC, com uso da máquina universal da marca Losenhausen, modelo z.UHP60, tipo eletro-hidráulica, com capacidade de 60000kgf (588kN), como mostra na Figura 38. A ruptura da amostra deve ocorrer dentro de 1 a 10 min com uma taxa de deformação quase constante. As 3 amostras romperam dentro do tempo recomendado.

Figura 38 - Máquina universal da marca Losenhausen

Figura 39 - Terceira amostra logo após a ruptura

Na Figura 40 pode-se observar a localização da ruptura na barra, enquanto na Figura 41 com uma imagem mais aproximada dessa barra rompida é possível analisar mais detalhes desse material após a ruptura por tração.

Figura 40 - Modo de ruptura da terceira amostra

Figura 41 - Local aproximado da ruptura da terceira amostra

A resistência à tração das barras foi calculada dividindo a força máxima aplicada pela área da seção transversal, conforme a Equação (21) [26]

$$\sigma = \frac{F_{max}}{A} \tag{21}$$

Onde:

 σ = Tensão em MPa (N/mm²)

Fmax= Força máxima em N

A = Área da seção transversal (mm²)

O módulo de elasticidade foi calculado de acordo com as recomendações da IBRACON [26], conforme a Equação (22)

$$E = \frac{F_{50} - F_{20}}{(\varepsilon_{50} - \varepsilon_{20}) * A}$$
(22)

Onde:

E = Módulo de elasticidade em MPa

 F_{50} = Força correspondente a 50% da força de ruptura

 F_{20} = Força correspondente a 20% da força de ruptura

 ε_{50} = Deformação correspondente a F_{50}

 ε_{20} = Deformação correspondente a F_{20}

A = Área da seção transversal (mm²)

Os resultados do ensaio estão apresentados na Tabela 8.

Corpo	Diâmetro	Área	20% da	50% da	Força	Resistencia	Módulo de
de	nominal	(mm²)	Força	Força	máxima	à tração	Elasticidade
prova	(mm)		máxima	máxima	(N)	(N/mm²)	(GPa)
			(N)	(N)			
1	7,8	47,8	7433	18584	37167	777,55	51,2
2	7,8	47,8	7943	19859	39717	830,90	60,8
3	7,8	47,8	7855	19638	39276	821,67	58,4
Média	7,8	47,8	7744	19360	38720	810,04	56,8

Tabela 8 – Resumo dos resultados do ensaio de tração nas barras de basalto

3.7 Confecção do pórtico de reação

Antes de realizar a protensão das duas vigas, foi necessário elaborar um projeto, exibido na Figura 42, e montar um pórtico de reação que fosse possível alocar as duas vigas na parte interna dessa estrutura e que fosse capaz de suportar a carga de protensão das duas vigas. Foram utilizados perfis H em aço e tubos em aço com seção quadrada e dimensões de 80x80x300cm. Os perfis foram soldados nas extremidades dos tubos, conforme mostra a Figura 43.

Figura 42 - Esquema do pórtico com as duas vigas que foram protendidas

Figura 43 - Estrutura de pórtico de reação montada

3.8 Confecção da estrutura que foi tracionada pelo macaco hidráulico

Como cada viga foi armada com duas barras de fibra de basalto e a concepção inicial foi feita pensando que a protensão dessas barras ocorreriam em conjunto, foi necessário produzir uma estrutura em que fossem alocadas as duas barras de BFRP, que posteriormente foram tracionadas pelo macaco hidráulico.

A solução foi utilizar os tubos com as mesmas dimensões que seriam usados na ancoragem do lado oposto da viga. Esses tubos foram soldados em 6 porcas em aço para que fosse possível introduzir uma barra roscada de 3/4pol (19,05mm), conforme mostra a Figura 44.

Figura 44 - Detalhe da estrutura finalizada que foi utilizada na protensão de ambas as vigas

A escolha da barra roscada teve como finalidade a possibilidade de colocar uma porca no perfil para segurar a protensão até o dia da concretagem, além de facilitar a retirada após a protensão da viga.

3.9 Instrumentação dos BFRP e barra de aço

Antes da montagem da viga, as barras de BFRP foram instrumentados. Com proposito de avaliar o comportamento e a deformação dessas barras, cada uma destas foi instrumentada em 4 pontos distintos. A localização destas pode ser vista no esquema da Figura 45.

Como as duas barras de basalto foram protendidas ao mesmo tempo, foi necessário instrumentar a barra de aço que foi soldada a estrutura criada para fazer a tração das barras em conjunto, conforme mostra a figura 46, com intuito de avaliar a real força e tensão que essas barras foram puxadas.

Figura 46 - Estrutura em aço montada para a protensão das barras em conjunto

3.10 Ancoragem das barras no pórtico de reação

Antes de iniciar a protensão das barras de fibra de basalto, foi realizada a ancoragem das barras no pórtico utilizando tubos vazados em aço e adesivo estrutural (Sikadur 32). A ancoragem adotada foi a ancoragem em luva reta, recomendação da ACI 440 [5]. A ancoragem sendo executada e finalizada pode ser observada nas Figuras 47 e 48.

Figura 47 - Preparo da ancoragem com tubos redondos vazados e Sikadur 32

Figura 48 - Ancoragem fixada no pórtico de reação

3.11 Protensão da viga 1 (sem areia do mar)

No dia 23/06/2023 no LEC, foi realizada a protensão na viga 1, conforme mostra a Figura 49. Foi utilizado um macaco hidráulico para a aplicação dessa força de tração nas barras de BFRP. Todo esse processo foi feito e monitorado pelas deformações registradas nos extensômetros, para garantir que as duas barras tivessem deformações semelhantes. Seguindo as recomendações da ACI 440 [5], a protensão foi feita até que a tensão alcançasse o intervalo entre 40% e 65% da resistência máxima informada pelo fornecedor, como consta no APÊNDICE A. A média das tensões registradas nos extensômetros foi de aproximadamente 600 MPa, o que corresponde a 59% da resistência máxima do vergalhão de basalto, segundo o fornecedor. No entanto, este valor correspondeu a 74% da resistência máxima considerando a média dos valores encontrados no ensaio de tração.

Figura 49 - Execução da protensão na viga 1

Ao final do processo de protensão, foi feita a cravação por meio de uma porca em aço (v. figura 50) e foi monitorado por mais 1 hora para avaliar a perda inicial dessa protensão. Pode-se notar uma perda imediata de aproximadamente 10%, do momento em que foi feita a cravação até o momento em que se terminou de fazer a leitura.

Figura 50 - Execução da protensão na 1ª viga e visualização da porca em aço na barra roscada a esquerda da imagem

Pode-se observar nos Gráficos 1 a 4 a relação tensão x deformação de cada um dos extensômetros monitorados durante todo o processo. Os valores completos que foram utilizados para gerar os respectivos gráficos podem ser encontrados no APÊNDICES E a H. Nota-se também que as deformações entre as barras apresentaram resultados bem semelhantes o que era esperado de modo que ambas foram puxadas em conjunto.

Devido à disparidade de valores no extensômetro 8, é possível notar uma provável falha na leitura.

Gráfico 1 - Tensão x deformação do extensômetro 1 e 2 na viga 1

Gráfico 2 - Tensão x deformação do extensômetro 3 e 4 na viga 1

Gráfico 3 - Tensão x deformação do extensômetro 5 e 6 na viga 1

Gráfico 4 - Tensão x deformação do extensômetro 7 e 8 na viga 1

3.12 Protensão da viga 2 (com substituição de 30% da areia por areia do mar)

No dia 06/07/2023, foi realizada a protensão na viga 2. Foi utilizado um macaco hidráulico para a aplicação dessa força de tração nas barras de fibra de basalto. Todo esse processo foi feito e monitorado pelas deformações registradas nos extensômetros. Seguindo as recomendações da ACI 440 [5]. A média das tensões registradas nos extensômetros foi de aproximadamente 650 MPa, o que corresponde a 64% da resistência máxima do vergalhão de basalto, segundo o fornecedor. No entanto, este valor correspondeu a 80% da resistência máxima considerando a média dos valores encontrados no ensaio de tração.

Ao final do processo de protensão, foi feita a cravação por meio de uma porca em aço e foi monitorado por mais 1 hora para avaliar a perda inicial dessa protensão. Pode-se notar uma perda imediata inferior a 2%.

Pode-se observar nos Gráficos 5 a 8 a relação tensão x deformação de cada um dos extensômetros monitorados durante todo o processo. Os valores completos que foram utilizados para gerar os respectivos gráficos podem ser encontrados nos APÊNDICES.

Devido à disparidade de valores no extensômetro 3, é possível notar uma provável falha na leitura.

Gráfico 5 - Tensão x deformação do extensômetro 1 e 2 na viga 2

Gráfico 6 - Tensão x deformação do extensômetro 3 e 4 na viga 2

Gráfico 7 - Tensão x deformação do extensômetro 5 e 6 na viga 2

Gráfico 8 - Tensão x deformação do extensômetro 7 e 8 na viga 2

3.13 Concretagem

Devido a capacidade operacional da betoneira utilizada no Laboratório de Engenharia Civil (LEC), foi necessário realizar a concretagem de cada viga em duas etapas, com um intervalo de tempo reduzido entre elas. A quantidade de corpos de prova moldados durante a concretagem das duas vigas podem ser vista nas Tabelas 9 e 10.

VIGA 1	1 ^a concretagem	2 ^a concretagem
Corpos de prova	6	7
cilíndricos (100 x 200)		
mm		
Corpo de prova	1	1
prismático (450 x 150 x		
150) mm		

Tabela 9 – Número de corpos de prova moldados na concretagem da viga 1

Tabela 10 - Número de corpos de prova moldados na concretagem da viga 2

VIGA 2	1 ^a concretagem	2 ^a concretagem	
Corpos de prova	7	7	
cilíndricos (100 x 200)			
mm			
Corpo de prova	1	1	
prismático (450 x 150 x			
150) mm			
Para determinação das propriedades do concreto em estado fresco foi realizado o ensaio de abatimento do tronco de cone (*Slump test*). A determinação do abatimento do tronco de cone de concreto foi realizada com base na norma NBR NM 67 [27]. O concreto foi disposto em 3 camadas, em cada camada foram executados 25 golpes para a compactação, e por fim o molde em aço foi retirado e foi feita a leitura do abatimento, conforme mostram as Figuras 51 a 54

Figura 51 - Abatimento do tronco de cone da primeira concretagem da viga 1

Figura 52 - Abatimento do tronco de cone da segunda concretagem da viga 1

Figura 53 - Abatimento do tronco de cone da primeira concretagem da viga 2

Figura 54 - Abatimento do tronco de cone da segunda concretagem da viga 2

Todos os corpos de prova cilíndricos e prismas foram mantidos em uma câmara úmida, conforme ilustrado na Figura 55, para garantir um adequado processo de cura do concreto até a realização dos ensaios. Além disto, todos os corpos de prova foram cuidadosamente medidos e retificados para manter um padrão uniforme para os ensaios realizados.

Para a caracterização do concreto, foram conduzidos diversos ensaios, abrangendo não apenas os testes de compressão axial, mas também ensaios de

módulo de elasticidade, compressão diametral e tração na flexão em prismas de concreto.

Figura 55 - Corpos de prova cilíndricos na câmara úmida

3.14 Informações dos corpos de prova

Após a desforma, os corpos de prova foram identificados para facilitar o reconhecimento de cada um para o ensaio que foi previsto utilizá-los. A Tabela 11, a seguir, apresenta o resumo com o tipo de areia, diâmetro, altura, peso e o ensaio que foi realizado.

N° CP	Areia	Diâmetro (mm)	Altura (mm)	Peso (g)	Ensaio
1	Lavada	99,5	199,8	3545	Compressão axial
2	Lavada	99,28	197,4	3644	Compressão axial
3	Lavada	100,64	198,1	3601	Compressão axial
4	Lavada	100,8	200,1	3644	Compressão axial
5	Lavada	100,1	199	3574	Compressão diametral
6	Lavada	100,1	200,1	3593	Módulo de elasticidade
7	Lavada	100,1	200,1	3694	Módulo de elasticidade
8	Lavada	100,1	200,2	3697	Módulo de elasticidade
9	Lavada	100,8	199,5	3734	Compressão diametral
10	Lavada	100,71	200,1	3739	Compressão axial
11	Lavada	101,26	201	3781	Compressão axial
12	Lavada	100,98	197,9	3718	Compressão axial
13	Lavada	101,07	201,7	3796	Compressão axial

Tabela 11 - Resumo dos corpos de prova cilíndricos

14	Lavada	100,4	200,8	3729	Compressão diametral
1	Mar	100,2	199,5	3682	Compressão axial
	(30%)				
2	Mar	100,6	197,6	3669	Compressão axial
	(30%)				
4	Mar	100,48	199,3	3752	Compressão axial
	(30%)				
5	Mar	100,42	199,8	3757	Compressão axial
	(30%)				
6	Mar	100,1	200,1	3739	Módulo de elasticidade
	(30%)				
7	Mar	100,2	200,3	3750	Compressão diametral
	(30%)				
8	Mar	99,5	199,6	3650	Compressão diametral
	(30%)				
9	Mar	100,1	200,1	3704	Módulo de elasticidade
	(30%)				
10	Mar	99,86	198,6	3658	Compressão axial
	(30%)				
12	Mar	100,27	197,6	3670	Compressão axial
	(30%)				
13	Mar	100,19	199,3	3684	Compressão axial
	(30%)				
14	Mar	100,22	197	3605	Compressão axial
	(30%)				

3.15 Ensaio de compressão axial

Foram realizados ensaios de compressão axial, seguindo as recomendações da NBR 5739 [28], aos 7, 14, 28 dias e no dia do ensaio à flexão de cada viga, conforme mostram as Figuras 56 a 63. A Tabela 12 apresenta um resumo com informações pertinentes dos resultados desse ensaio, que também podem ser analisados nos Gráficos 9 e 10. Foram ensaiados dois corpos de prova para cada tipo de areia em cada dia.

СР	Tipo de areia	Data concretagem	Idade (dias)	F.Máx (kN)	$f_c(MPa)$
1	Lavada	27/06/2023	7	155,0	19,94
2	Lavada	27/06/2023	14	152,0	19,64
3	Lavada	27/06/2023	28	174,8	21,97
4	Lavada	27/06/2023	80	187,3	23,47
10	Lavada	27/06/2023	80	240,6	30,20
11	Lavada	27/06/2023	28	213,2	26,47
12	Lavada	27/06/2023	14	182,9	22,84
13	Lavada	27/06/2023	7	172,1	21,45
1	Mar (30%)	07/07/2023	7	159,8	20,31
2	Mar (30%)	07/07/2023	14	198,2	24,93
4	Mar (30%)	07/07/2023	28	224,1	28,26
5	Mar (30%)	07/07/2023	91	211,3	26,68
10	Mar (30%)	07/07/2023	91	204,8	26,14
12	Mar (30%)	07/07/2023	28	186,1	23,57
13	Mar (30%)	07/07/2023	14	158,6	20,11
14	Mar (30%)	07/07/2023	7	141,6	17,95

Tabela 12 - Resultados do ensaio de compressão axial

Legenda: F.max: Força máxima

 f_c : resistência a compressão, dada pela fórmula $f_c = \frac{4*F.max}{\pi*diametro^2}$ (23)

Idade	Tipo de areia	<i>f</i> _c 1	<i>f</i> _c 2	f_{cm} médio
7	Lavada	19,94	21,45	20,70
14	Lavada	19,64	22,84	21,24
28	Lavada	21,97	26,47	24,22
80	Lavada	23,47	30,20	26,83
7	Mar (30%)	20,31	17,95	19,13
14	Mar (30%)	24,93	20,11	22,52
28	Mar (30%)	28,26	23,57	25,92
91	Mar (30%)	26,68	26,14	26,41

 f_{cm} médio: média das resistências dos cps de mesma idade

Gráfico 9 - Resistência à compressão x tempo (com areia lavada)

Gráfico 10 - Resistencia à compressão x tempo (com 30% de areia do mar)

Figura 56 – Corpos de prova confeccionados com areia lavada rompidos após 7 dias

Figura 57 – Corpos de prova confeccionados com areia lavada rompidos após 14 dias

Figura 58 – Corpos de prova confeccionados com areia lavada rompidos após 28 dias

Figura 59 - Corpos de prova confeccionados com areia lavada rompidos após 80 dias

Figura 60 - Corpos de prova confeccionados com troca parcial por areia do mar rompidos após 7 dias

Figura 61 – Corpos de prova confeccionados com troca parcial por areia do mar rompidos após 14 dias

Figura 62 – Corpos de prova confeccionados com troca parcial por areia do mar rompidos após 28 dias

Figura 63 - Corpos confeccionados com troca parcial por areia do mar rompidos após 91

3.16 Ensaio de módulo de elasticidade

Para o ensaio de modulo de elasticidade, foi utilizada a metodologia "A" descrita na NBR 8522 [29], onde a tensão do limite superior σ_b é fixada.

$$E_{ci,i} = \frac{\Delta\sigma}{\Delta\varepsilon} 10^{-3} = \frac{\sigma_b - 0.5}{\varepsilon_b - \varepsilon_a} 10^{-3}$$
(24)

Onde:

$$\begin{split} E_{ci,i} &= \text{módulo de elasticidade do corpo de prova (GPa)} \\ \sigma_b &= \text{\acute{e} a tensão maior, considerada como 30% da resistência a compressão (MPa)} \\ 0,5 &= \text{\acute{e} o valor da tensão básica (MPa)} \\ \varepsilon_b &= \text{\acute{e} a deformação específica do concreto sob a tensão maior} \\ \varepsilon_a &= \text{\acute{e} a deformação específica do concreto sob a tensão básica} \end{split}$$

Os resultados desse ensaio podem ser verificados na Tabela 13

Nº CP	6	9	6	7	8
Areia	Mar	Mar	Lavada	Lavada	Lavada
	(30%)	(30%)			
Deformação em	0,023	0,064	0,049	0,090	0,069
σ_a – 1 (‰)					
Deformação em	0,056	0,062	0,043	0,097	0,093
σ_a – 2 (‰)					
Deformação em	0,32	0,40	0,34	0,44	0,36
σ_b – 1 (‰)					
Deformação em	0,37	0,39	0,41	0,34	0,41
σ_b – 2 (‰)					
σ_a (Mpa)	0,5	0,5	0,5	0,5	0,5
σ_b (Mpa)	7,923	7,923	8,049	8,049	8,049
E _{ci} (GPa)	24,79	22,41	23,19	25,98	24,99
Carga de ruptura	220,16	210,35	189,27	250,07	243,20
(kN)					

3.17 Ensaio de compressão diametral de corpos de prova cilíndricos

Segundo a NBR 7222 [30], a resistência à tração por compressão diametral deve ser calculada pela expressão (25):

$$f_{ct} = \frac{2F}{\pi * D * L} \tag{25}$$

Onde

 f_{ct} é a resistência à tração por compressão diametral (MPa)

F = a força máxima obtida no ensaio (N)

D = o diâmetro do corpo de prova (mm)

L = o comprimento do corpo de prova (mm)

As especificações do corpo de prova e os resultados desse ensaio podem ser vistos na tabela 14

Nº CP	Areia	F (N)	D (mm)	L (mm)	$f_{ct,sp}$ (MPa)
5	Lavada	83356,52	100,1	199	2,664
9	Lavada	85317,85	100,8	199,5	2,701
14	Lavada	90221,18	100,4	200,8	2,849
7	Mar (30%)	98065,5	100,2	200,3	3,111
8	Mar (30%)	88750,18	99,5	199,6	2,845

Tabela 14 - Resultados do ensaio de compressão diametral de corpos de prova cilíndricos

Tensão média (Areia lavada) = 2,738 MPa Tensão média (Areia mar 30%) = 2,978 MPa

3.18 Ensaio de tração na flexão de corpos de prova prismáticos

Segundo a NBR 12142 [31], a resistência à tração na flexão é calculada conforme a seguinte equação (31), caso a ruptura ocorra no terço médio:

$$f_{ct,f} = F * \frac{l}{b * d^2} \tag{26}$$

Onde

 $f_{ct,f}$ é a resistência à tração na flexão (MPa) F = a força máxima registrada na máquina de ensaio (N) l = a dimensão do vão entre apoios (mm) b = a largura média do corpo de prova (mm) d = a altura média do corpo de prova (mm)

Na Tabela 15 é possível verificar um resumo do ensaio de tração na flexão feitos em 4 prismas.

N° Prisma	Areia	F (N)	l (mm)	b (mm)	d (mm)	$f_{ct,f}$ (Mpa)
1	Lavada	23045,63	450	150	150	3,07
2	Lavada	25006,96	450	150	150	3,33
1	Mar (30%)	21574,63	450	150	150	2,88
2	Mar (30%)	22064,96	450	150	150	2,94

Tabela 15 - Resultados do ensaio de tração na flexão de corpos de prova prismáticos

Nas Figuras 64 a 67 é possível observar que todos os corpos de prova prismáticos romperam dentro do terço médio.

Figura 64 - Corpo de prova prismático nº 2 com areia do mar

Figura 65 - Corpo de prova prismático nº 1 com areia do mar

Figura 66 - Corpo de prova prismático nº 2 com areia lavada

Figura 67 - Corpo de prova prismático nº 2 com areia lavada

3.19 Transferência de carga para a viga 1

A transferência de carga para a viga de concreto foi realizada 45 dias depois da concretagem, quando o concreto já possuía resistência a compressão f_c de 25 MPa. O momento da liberação dos cabos dos macacos foi feito de maneira gradual e controlada pela análise dos dados obtidos pelos extensômetros conectados ao sistema de compilação de dados NATIONAL INSTRUMENTS. Alguns extensômetros após a concretagem pararam de funcionar, no entanto pode-se notar a tensão transferida ao concreto após o corte dos cabos na viga 1 através dos extensômetros 5 e 6, como consta nos Gráficos 11 e 12. Ocorreu uma perda de 10% aproximadamente.

Gráfico 11 - Tensão x deformação do extensômetro 5 após o corte dos cabos

Gráfico 12 - Tensão x deformação do extensômetro 6 após o corte dos cabos

Na Figura 68 pode-se observar um dos extensômetros adicionados ao concreto nessa etapa de transferência de carga. Escolheu-se a altura das barras de basalto como localização da colagem para avaliar a compressão do concreto após o descarregamento do macaco hidráulico de protensão. O processo de liberação da carga levou aproximadamente 30 min. No gráfico 13 é possível analisar a deformação do concreto ao longo do tempo da transferência da carga.

Figura 68 – Extensômetro adicionado ao concreto na altura das barras protendidas

Gráfico 13 – Deformação do concreto ao longo do tempo da transferência da carga

3.20 Transferência de carga para a viga 2

A transferência de carga na viga 2 não pôde ser monitorada por conta de uma ruptura que ocorreu no vergalhão de basalto próximo ao macaco hidráulico. Por isso, a transferência da protensão ocorreu de forma repentina. Supõe-se que essa ruptura ocorreu por volta dos 14 dias após a concretagem da viga 2 (com troca parcial por areia do mar). Por esse motivo, nessa viga foram adicionados mais extensômetros ao concreto com intuito de fazer uma melhor avaliação do estado físico dela. Foi possível notar fissuras e um pequeno buraco próximo ao apoio na região onde ocorreu a ruptura dos cabos, conforme mostra a figura 69, causadas pela força instantânea. A viga não foi danificada de maneira significativa. Alguns reparos próximos ao apoio foram feitos, utilizando o Sikadur 32, com intuito de garantir que a ruptura não ocorresse próximo ao apoio da viga e sim na região esperada para o ensaio de flexão.

Figura 69 – Viga 2 após a ruptura das barras de BFRP

3.21 Instrumentação do concreto

Previamente à execução do ensaio de flexão, foi efetuada a adição de 11 extensômetros (v. figura 70) na viga 1 e 18 extensômetros na viga 2. A localização dos extensômetros pode ser visto no esquema da Figura 71 e Figura 72.

Para aquisição dos dados, esses extensômetros foram conectados ao sistema de aquisição de dados NATIONAL INSTRUMENTS, modelo PXI 1050.

Figura 71 - Instrumentação do concreto da viga 1 (medidas em cm)

Figura 72 - Instrumentação do concreto da viga 2 (medidas em cm)

3.22 Transdutores de deslocamento

Foram utilizados transdutores de deslocamento para verificar a flecha da viga no ensaio de flexão sob dois apoios. Todos os 3 transdutores de deslocamento foram posicionados na parte inferior da viga, conforme ilustrado na Figura 73, sobre o berço em que estava apoiada. No meio do vão foi posicionado um, e mais 2 na mesma direção da aplicação da carga.

Figura 73 - Transdutores de deslocamento instalados para o ensaio de flexão

4 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

Nesse capítulo são apresentados os resultados do ensaio de flexão realizado nas duas vigas, comparando-os com os resultados que foram encontrados previamente com o uso das recomendações normativas, tais como carga de fissuração, carga última e flechas no meio do vão e sob cargas aplicadas em cada viga.

As figuras 74 e 75 mostram as vigas prontas e posicionadas para o ensaio de flexão com todos os extensômetros necessários adicionados e os transdutores de deslocamento posicionados sobre o berço.

Figura 74 - Viga 1 (convencional) antes do ensaio de flexão

Figura 75 - Viga 2 (viga com areia do mar) antes do ensaio de flexão

4.1 Apresentação dos resultados experimentais das vigas 1 e 2

O ensaio de flexão realizado foi feito com acréscimo de carga de 4,9 kN até o momento em que ocorreu a ruptura da viga. A cada 4,9 kN foi feita uma pausa para

observar o aparecimento de fissuras, como mostrado nas Figuras 76 e 77, e o desenvolvimento delas. Em alguns momentos foram feitas pausas entre intervalos menores aos 4,9kN. O acompanhamento foi feito pela carga indicada pelo sistema de aquisição de dados, através da leitura dos extensômetros colados em toda a viga.

Figura 76 - Viga 1 (viga convencional) momento em que aparece a primeira fissura

Figura 77 - Viga 2 (viga com areia do mar) momento em que aparece a primeira fissura

A partir da Tabela 16, pode-se notar que as fissuras iniciaram antes do previsto segundo os cálculos recomendados pela NBR 6118 [1]. A memória de cálculo com mais detalhes pode ser vista no apêndice I.

Tipo	$f_{ck}(MPa)$	M_r – NBR	M_r – exp
		(kN.cm)	(kN.cm)
Viga 1	26,83	1345	1261
Viga 2	26,41	1396	875

Tabela 16 – Comparação do momento de fissuração analítico e experimental

A flecha foi medida até o momento em que a carga estava próxima aos 70% da carga de ruptura. Na viga 1 isso correspondeu a uma carga de aproximadamente 37,5 kN, quando foi feita uma pausa para a retirada dos transdutores de deslocamento para preservá-los de um possível golpe após a ruptura da viga, pois a abertura das fissuras estava aumentando e estavam cada vez mais próximas ao topo da viga.

A viga convencional (sem a presença de areia do mar) chegou à ruptura a uma carga de 53,61kN (5466,928 kgf) indicado pelo National, conforme mostra a Figura 78. A viga 2 (com troca parcial por areia do mar) chegou à ruptura a uma carga de 44,91kN (4579,824 kgf), conforme mostra a Figura 80.

Figura 78 - Viga 1 (viga convencional) momento em que a viga chega a ruptura

Figura 79 - Viga 1 (viga convencional) após a ruptura

Figura 80 - Viga 2 (viga com areia do mar) momento em que a viga chega a ruptura

Figura 81 - Viga 2 (viga com areia do mar) após a ruptura

4.2 Comparação das cargas analíticas e experimentais

Com fundamento nas propriedades das vigas, foi prevista a carga última de ambas as vigas conforme as recomendações de dimensionamento da ACI 440.4R [5]. Foi prevista a carga utilizando as mesmas recomendações feitas em cordoalhas de aço segundo a NBR 6118 [1]. A Tabela 17 apresenta os resultados destes cálculos, comparando-os com os valores encontrados experimentalmente, apresentados na Tabela 18.

Tipo	f_c (MPa)	ACI		NB	R
		M_u (kN.cm)	P_u (kN)	<i>M_u</i> - (kN.cm)	P_u – (kN)
Viga 1	26,83	2012	47,34	2363	55,60
Viga 2	26,41	2102	49,46	2547	59,93

Tabela 17 - Previsão analítica à flexão (momento resistido e carga última)

Tabela 18 - Resultados experimentais (momento resistido e carga última)

Тіро	<i>f_c</i> (MPa)	Experimental	
		M_u – (kN.cm)	$P_u - (kN)$
Viga 1	26,83	2278,43	53,61
Viga 2	26,41	1908,68	44,91

No Gráfico 14 é possível perceber que os valores previstos pelo dimensionamento conforme a ACI 440.4R [5] são subestimados comparados com os valores experimentais da viga 1 e superestimados comparados com os valores da viga 2. No entanto os valores do dimensionamento conforme a NBR 6118 [1] superestimou a capacidade de carga em ambas as vigas.

Gráfico 14 - Comparação entre a carga de ruptura pelos métodos analticos e experimentais

4.3 Apresentação dos transdutores de deslocamento

Os Gráficos 15 a 17 apresentam as curvas carga x flecha experimentais, encontradas a partir da leitura dos transdutores de deslocamento no meio e sob a cargas aplicadas sobre a viga 1. Observa-se que as maiores leituras de flecha ocorreram no meio do vão da viga 1, como era de se esperar

Gráfico 15 - Força x deslocamento no meio do vão (LVDT 1), viga 1

Gráfico 16 - Força x deslocamento (LVDT 2), viga 1

Gráfico 17 - Força x deslocamento (LVDT 3), viga 1

Nos Gráficos 18, 19 e 20 é possível observar uma maior evolução da flecha na viga 2, mesmo com a aplicação de uma carga inferior ao da viga 1. O que não seria esperado, pois a carga de protensão na viga 2 foi um pouco mais elevada que na viga 1 conforme foi apresentado no item 3.12. Esse resultado é explicado pela transferência de carga que não foi realizada como na viga 1.

Gráfico 18 - Força x deslocamento no meio do vão (LVDT 1), viga 2

Gráfico 19 - Força x deslocamento (LVDT 2), viga 2

Gráfico 20 - Força x deslocamento (LVDT 3), viga 2

Nos Gráficos 21 e 22, verifica-se a evolução da deformação da parte mais comprimida do concreto em ambas as vigas (extensômetro 4). Nota-se que a viga 2 apresentou uma compressão maior no meio do vão com a aplicação de uma carga inferior ao da viga 1. Pode-se notar que o padrão do desenvolvimento dessa deformação possui certa semelhança em ambas as vigas.

Gráfico 21 - Força x deformação no meio do vão na região mais comprimida da viga 1 (extensômetro 4)

Nota-se no Gráfico 22 que ocorreu uma pequena queda da carga no instante em que esta chegou próximo a 27,5kN (2800kgf). Não foi possível perceber o que aconteceu. Acredita-se que ocorreu alguma falha no equipamento da prensa hidráulica, mas em pouco tempo foi retomada a elevação da carga até a ruptura. Durante a queda da carga até a retomada do valor em que esta estava, novas fissuras apareceram, fissuras n°6, n°7 e n°8, conforme será mostrado na Tabela 21.

4.4 Deformação máxima do concreto no ensaio experimental

Na Tabela 19 podem ser observados os valores máximos de deformação no concreto. Não foi possível obter as deformações máximas das armaduras de basalto no ensaio à flexão, pois os extensômetros foram perdidos após a concretagem das vigas.

Tipo	Deformações máximas no concreto (‰)
Viga 1 (convencional)	2,28
Viga 2 (Mar 30%)	2,22

Tabela 19 – Deformações máximas no concreto (‰), extensômetro 4.

4.5 Análise das fissuras

Pôde-se observar que o padrão na formação das fissuras foi semelhante tanto na viga confeccionada somente com areia lavada quanto na viga confeccionada parcialmente com areia do mar, com início próximo ao centro do vão. No entanto, a fissura com maior abertura se desenvolveu em locais diferentes em cada situação (v. Figura 82 e 83). Na viga 1, a fissura 1 foi a fissura que apresentou a maior abertura e consequentemente foi o local em que ocorreu a ruptura estrutural. No entanto, na viga 2, a fissura que apresentou a maior abertura e, por consequência onde ocorreu a ruptura, foi a de número 6, que surgiu próximo ao centro do vão um pouco deslocada para a esquerda.

A carga em que foi percebida a presença da primeira fissura na viga 1 foi de 29,66 kN, o que representa 55% da carga de ruptura, no entanto na viga 2 a carga foi de 20,58 kN, 46% da carga de ruptura. Estes valores estão apresentados nas Tabelas 20 e 21.

Carga (kgf)	Carga (kN)	N° da fissura
3024	29,66	1
3237	31,74	2
3700	36,28	3
3800	37,27	4
4000	39,23	5
4080	40,01	6
4300	42,17	7
4600	45,11	8
4800	47,07	9
5200	50,99	10

Tabela 20 - Carga e instante da observação da abertura da fissura na viga 1

Tabela 21 - Carga e instante da observação da abertura da fissura na viga 2

Carga (kgf)	Carga (kN)	N° da fissura
2099	20,58	1
2150	21,08	2
2350	23,05	3
2700	26,48	4
2800	27,46	5
2500	24,52	6
2700	26,48	7
2800	27,46	8
3250	31,87	9
3650	35,79	10
4000	39,23	11
4290	42,07	12

Figura 82 - Padrão da fissuração na viga 1

Figura 83 - Padrão da fissuração na viga 2

Analisando as figuras 84 e 85 é possível perceber que o espaçamento entre as fissuras mais próximas do vão central na viga 1 foi consideravelmente maior que na viga 2.

Figura 84 - Espaçamento entre fissuras na viga 1 (espaçamento em centímetros)

Na Figura 86 é possivel observar de forma mais aproximada o padrão das fissuras em cada viga e o local onde ocorreu a ruptura. A viga 1 está representada na parte de cima da imagem e a viga 2 na parte de baixo.

Figura 86 - Comparativo das fissuras entre as vigas após a ruptura.

4.6 Modo de ruptura

Ambas as vigas romperam por flexão, confirmando que a armadura mínima de cisalhamento prevista para esse projeto foi suficiente para que não ocorresse ruptura por cisalhamento. As fissuras em ambas foram predominantemente verticais. Na viga 1, a ruptura ocorreu praticamente no meio do vão, conforme mostra a Figura 85, enquanto na viga 2 a ruptura ocorreu um pouco deslocada para a esquerda mais próxima do lado que foi feita a protensão. Pode-se notar, por meio da leitura dos extensômetros que o concreto teve uma deformação de compressão máxima inferior a 0,003 como previsto no dimensionamento prévio realizado com base na norma ACI 440 [5]. A ruptura da viga protendida foi confirmada após a visualização da ruptura da barra BFRP.

A figura 87 mostra a viga 1, à esquerda, e a viga 2, à direita, de forma mais aproximada o local da ruptura das vigas.

Figura 87 - Imagem aproximada da viga 1, a esquerda e viga 2, a direita, após a ruptura por flexão

Nota-se que a ruptura na viga 1 ocorreu em decorrência do desenvolvimento da primeira fissura observada, próximo ao meio do vão, que era o padrão esperado para o ensaio realizado. No entanto, na viga 2, a fissura que se desenvolveu até a ruptura foi a de número 6, fissura mais próxima a região que ocorreu o dano após a ruptura das barras de BFRP. É provável que tenha ocorrido uma perda da aderência das barras no concreto nessa região que ocorreu o dano.

5 CONCLUSÕES

Nesse item são apresentadas as conclusões dessa pesquisa e sugestões para trabalhos futuros.

Quanto às barras de Polímero Reforçado com Fibra de Basalto fibra de basalto, foram feitos ensaios de tração para confirmação das informações obtidas pelo fornecedor. No entanto constatou-se uma resistência média, após o ensaio com as 3 amostras produzidas, de cerca de 810,04 MPa, enquanto o fornecedor informou uma resistência de 1013 MPa. A carga de ruptura média encontrada foi de 38,72 kN, em contrapartida o fornecedor informou uma carga de ruptura de 48 kN. Por conta disto, o módulo de elasticidade encontrado foi de 56,8 GPa, superior aos 52,27 GPa informados.

Quanto aos ensaios para a caracterização do concreto, pode-se verificar que ambos os concretos atingiram resistências semelhantes até o dia em que foi realizado o ensaio. O corpo de prova de concreto confeccionado com areia lavada alcançou uma resistência à compressão de 26,83 MPa, enquanto com a troca parcial por areia do mar atingiu uma resistência de 26,41 MPa. Os outros ensaios realizados, módulo de elasticidade, compressão diametral e tração na flexão em corpos de provas prismáticos também forneceram valores bem próximos para ambos os traços.

A estrutura criada para a protensão das barras, em conjunto com tubos redondos vazados soldados com as porcas em aço, foi um ponto de grande preocupação na pesquisa, no entanto exerceu de forma satisfatória a função para que foi exigida.

Notou-se que a porca em aço utilizada como ancoragem no lado em que foi feita a protensão não "segurou" de forma satisfatória a protensão, o que acarretou uma perda maior do que foi esperado e o que indicava nas literaturas e estudos feitos com esse material, que era uma perda próxima aos 20%.

Ao avaliar as deformações das barras de fibra de basalto em cada viga, concluise que a ancoragem em tubo reto atendeu de forma satisfatória para o que foi proposto.

Quanto à armadura de cisalhamento que foi adotada para esse ensaio experimental, a mesma atendeu de forma suficiente para que a viga não tivesse a sua ruptura por cisalhamento. Em relação as previsões teóricas quanto à resistência à flexão, na viga 1, os resultados da carga última e momento resistente do ensaio experimental foi 13,2% superior ao calculado pela norma ACI (2004) e 3,6% inferior calculando com base na norma ABNR NBR 6118 (2023). No entanto, para a viga 2, os resultados da carga última e momento resistente do ensaio experimental foi 9,2% inferior ao calculado pela ACI (2004) e 25,1% em relação a norma ABNR NBR 6118 (2023). Esta maior diferença na segunda viga pode ser explicada pela barra rompida como descrita no item 3.20.

A relaxação superior ao previsto para esse tipo de barra explica o aparecimento precoce das fissuras tanto na viga 1, quanto na viga 2.

Sobre o padrão das fissuras, na viga 1 a evolução e o padrão delas ocorreram dentro do que se esperava para esse ensaio à flexão. A ruptura ocorreu bem próximo ao meio do vão, o que também era o esperado. Na viga 2, pode-se notar um padrão de fissuras de certa forma semelhante ao da viga 1, com um espaçamento um pouco menor que o da viga 1. A diferença maior foi no local da ruptura, que ocorreu um pouco mais próxima da região em que foi feita a protensão. Esta ruptura um pouco deslocada do centro do vão provavelmente foi motivada pelo problema ocorrido com a transferência da protensão que ocorreu de forma instantânea nessa viga.

Sugestões para trabalhos futuros

Para trabalhos futuros sugere-se:

- Realização de ensaios com vigas confeccionadas com maior porcentagem de areia do mar, para melhor avaliação da sua resistência e do seu comportamento dela.
- Realização de ensaio com outras bitolas disponíveis para barras de fibra de basalto, além de outros ensaios que não foram feitas nessa pesquisa, como o ensaio de arrancamento.
- Avaliar a resistência ao cisalhamento em barras de fibra de basalto.
- Avaliar a perda da força de pré-tração em barras de fibra de basalto a longo prazo.
- Avaliar a Durabilidade e degradação dessas barras a longo prazo.
REFERÊNCIAS

[1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro, 2023.

- [2] Nanni, A.; De Luca, A.; Zadeh, H. J. Reinforced Concrete with FRP Bars -Mechanics and Design. 1. ed. Boca Raton, Florida: CRC Press, 2014. ISBN 9780415778824.
- [3] T. Deak and T. Czigany. Investigation of basalt fiber reinforced polyamide composites. Materials Science, Testing and Informatics IV (589): 7–12 (2008).
- [4] Haizergroup-Quemsomos:disponívelem:<https://www.haizergroup.com.br/quemsomos > acesso em 10 de julho de 2023
- [5] ACI 440R-04: Prestressing concrete structures with FRP tendons. (2004). Farmington Hills: American concrete institute.
- [6] Tavares, M. E. N. **Concreto Protendido**. Rio de Janeiro: Universidade do Estado do Rio de Janeiro. 2022. Notas de aula.
- [7] GangaRao, H. V., & Vijay, P. V. Bending Behavior of Concrete BeamsWrapped with Carbon Fabric. Journal of Structural Engineering, v.124, 1998.
- [8] Wu, J.; LI, H.; XIAN, G. Influence of Elevated Temperature on the Mechanical and Thermal Performance of BFRP Rebar. In: Advances in FRP Composites in Civil Engineering. Beijing: Springer, 2010.
- [9] Jónsson, B.S. Prestressed BFRP tendons in concrete beams. Dissertação de mestrado. Universidade de Reiquiavique. Reykjavik, Islândia. 2011.

- [10] Elgabbas, F.M. Development and structural testing of new basalt fiberreinforced-polymer (BFRP) bars in RC beams and bridge-deck slabs. Tese de doutorado. Universite de Sherbrooke. Québec, Canada. 2016.
- [11] Sá, F.R.G. Influência da adição de fibras de polipropileno no comportamento de elementos estruturais de concreto armado com barras de GFRP. Dissertação de mestrado. Pontifícia Universidade Católica do Rio de Janeiro. Rio de Janeiro, Rio de Janeiro. 2018.
- [12] AlHafiz, A.R.M.M. Effect of basalt fibers on the flexural behavior of beams reinforced with BFRP bars. Dissertação de mestrado. American University of Sharjah. Sharjah, Emirados Árabes. 2018
- [13] Warmling, G.M.B. Estudo do comportamento de vigas reforçadas com barras de compósito em fibra de basalto. Dissertação de mestrado. Universidade Federal do Paraná. Curitiba, Paraná. 2021
- [14] Carvalho, V.M. Ductilidade e redistribuição de momentos em vigas de concreto armado com barras de GFRP. Dissertação de mestrado. Pontifícia Universidade Católica do Rio de Janeiro. Rio de Janeiro, Rio de Janeiro. 2021.
- [15] F. Abed, M. Al-Mimar, S. Ahmed; Performance of BFRP RC beams using high strength concrete. Composites Part C: Open Access, Article 100107, Sharjah, p.1-11, 2021.
- [16] Cavalcanti, V.M.M; Freire, G.S.S. A possibilidade de utilização de areias marinhas como agregado na construção civil na região metropolitana de fortaleza, estado do ceará. Revista Pesquisas, vol. 5: 11-24, Porto Alegre, Brasil, 2007.
- [17] Wang, Z.; Zhao, X.-L.; Wu, G.; Raman, R.K.; Al-Saadi, S.; Haque, A. Long-Term Durability of Basalt- and Glass-Fibre Reinforced Polymer (BFRP/GFRP) Bars in Seawater and Sea Sand Concrete Environment. Constr. Build. Mater. 2017, 139, 467–489.

- [18] Cardoso,W.S. et al. Utilização da areia marinha para produção de concreto: estudo de viabilidade. Revista lfes Ciência,v. 7,n. 1,p 01-17,2021.
- [19] Bastos, P.S. Fundamentos do concreto armado. Bauru, São Paulo: Universidade Estadual Paulista,2023. Notas de aula.
- [20] ABNT248. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 248:2003 - Agregados: Determinação da composição granulométrica. Rio de Janeiro. 2003.
- [21] ABNT52. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 52:2009 - Agregado miúdo: Determinação da massa específica e massa específica aparente. Rio de Janeiro. 2009.
- [22] ABNT30. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM30:2001 - Agregado miúdo: Determinação da absorção de água. Rio de Janeiro. 2001.
- [23] ABNT45. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 45:2006 - Agregados: Determinação da massa unitária e do volume de vazios. Rio de Janeiro. 2006.
- [24] ABNT53. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 53:
 2009 Agregado graúdo: Determinação da massa específica, massa específica aparente e absorção de água. Rio de Janeiro. 2009.
- [25] ASTMD7205. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D7205/D7205M-06 - Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. [S.I.]. 2016.

- [26] PRÁTICA RECOMENDADA IBRACON/ABECE. Estruturas de concreto armado com barras de polímero reforçado com fibras (FRP). São Paulo, Ed. IBRACON/ABECE, 1ª Edição, 2021.
- [27] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT. NBR NM 67: Concreto – Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 1998.
- [28] ABNT5739. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739:2007 - Concreto: Ensaios de compressão de corpos-de-prova cilíndricos. Rio de Janeiro. 2018.
- [29] ABNT8522. ASSOCIAÇÃO BRASIELIRA DE NORMAS TÉCNICAS. NBR 8522:2017 - Concreto: Determinação dos módulos estáticos de elasticidade e de deformação à compressão. Rio de Janeiro. 2017.
- [30] ABNT7222. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7222:2017 - Concreto e argamassa: Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Rio de Janeiro. 2017.
- [31] ABNT12142. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12142:2010 – Concreto: Determinação da resistência à tração na flexão de corpos de prova prismáticos. Rio de janeiro. 2010

APÊNDICES

APÊNDICE A – Dimensionamento conforme as prescrições da ACI 440,4R [5] para a viga 1

APÊNDICE B – Dimensionamento conforme as prescrições da NBR 6118 [1] para a viga 1

APÊNDICE C – Dimensionamento conforme as prescrições da ACI 440,4R [5] para a viga 2

APÊNDICE D – Dimensionamento conforme as prescrições da NBR 6118 [1] para a viga 2

APÊNDICE E – Tensão x deformação durante a protensão na viga 1 (areia comum)

APÊNDICE F - Força x deformação durante a protensão na viga 1 (areia comum) - 23/06/2023

APÊNDICE G – Tensão x deformação durante a protensão na viga 2 (areia com 30% de substituição da areia por areia do mar) – 06/07/2023

APÊNDICE H – Força x deformação durante a protensão na viga 2 (areia com 30% de substituição da areia por areia do mar) – 06/07/2023

APÊNDICE I – Cálculo do momento de fissuração conforme a NBR 6118 (2023)

APÊNDICE A – Dimensionamento conforme as prescrições da ACI 440,4R [5] para a viga 1

Dados iniciais

Tensão puxada pelo macaco hidráulico: 600 MPa

Tensão na barra BFRP no dia da transferência da carga para a viga: 500 MPa

Diâmetro da barra de aço: 6,3 mm

Diâmetro dos estribos: 6,3 mm

Diâmetro da barra BFRP: 7,8 mm

Dimensões da seção transversal da viga: 300 mm x 150 mm

$$\rho = \frac{A_{BFRP}}{b * d} = \frac{2 * 47,78}{150 * 248,5} = 0,002564$$
$$M_n = \rho * b * d^2 * f_{pu} \left(1 - \frac{\rho}{1,7} \frac{f_{pu}}{f'_c}\right)$$
$$M_n = 0,002564 * 150 * 248,5^2 * 500 * \left(1 - \frac{0,002564}{1,7} \frac{500}{26,83}\right)$$
$$M_n = 11540821,69 Nmm = 1154,082 kNcm$$

Contribuição da Área de aço pela NBR 6118 [1]

Mu = Rcd (d - 0,4x) + R'sd (d - d') = 858 kNcm

$$\begin{split} M_{te\acute{o}rico} &= 1154,082 + 858 = 2012,08 \ kNcm \cong 2012 \ kNcm \\ &\frac{P_{te\acute{o}rico}}{2} * 85 = 2012 \\ &P_{te\acute{o}rico} = 47,34 \ kN \end{split}$$

APÊNDICE B – Dimensionamento conforme as prescrições da NBR 6118 [1] para a viga 1

Dados iniciais

Tensão puxada pelo macaco hidráulico: 600 MPa

Tensão na barra BFRP no dia da transferência da carga para a viga: 500 MPa

Diâmetro da barra de aço: 6,3 mm

Diâmetro dos estribos: 6,3 mm

Diâmetro da barra BFRP: 7,8 mm

Dimensões da seção transversal da viga: 300 mm x 150 mm

Por equilíbrio de forças e desconsiderando a área de aço da parte comprimida utilizada para a montagem dos estribos

$$R_c = R_s + R_p$$

0,85 * 26,83 * 0,8x * 150 = 500 * 2 * 47,48 + 500 * 2 * 31,17
$$x = 28,85 mm$$

 $M_{ruptura} = (500 * 2 * 31,17) * (255,55 - 0,4x) + (500 * 2 * 47,78) * (248,5 - 0,4x)$

Para

$$x = 28,85 mm$$

$$M_{ruptura} = 18927740,5 Nmm = 18,92 kNm$$

$$\frac{P_{ruptura}}{2} * 0,85 = 18,92$$

$$P_{ruptura} = 44,52 kN$$

Antes do ensaio à flexão a viga estava submetida a um momento fletor devido a protensão

$$M_{protensão} = N_p * e_p$$

$$M_{protensão} = (500 * 2 * 47,78) * (248,5 - 150) = 4706330 Nmm = 4,71 kNm$$

$P_{protensão-ruptura} = 11,08 \, kN$

Somando as cargas, chega-se à carga de ruptura teórica para a viga 1

$$P_{te\acute{o}rica} = P_{ruptura} + P_{protensão-ruptura}$$
$$P_{te\acute{o}rica} = 44,52 + 11,06 = 55,60 \ kN$$

APÊNDICE C – Dimensionamento conforme as prescrições da ACI 440,4R [5] para a viga 2

Dados iniciais

Tensão puxada pelo macaco hidráulico: 650 MPa

Tensão na barra BFRP estimada: 541 MPa (como a transferência de carga não foi monitorada devido o rompimento das barras, foi considerado a mesma porcentagem de perda da viga 1)

Diâmetro da barra de aço: 6,3 mm

Diâmetro dos estribos: 6,3 mm

Diâmetro da barra BFRP: 7,8 mm

Dimensões da seção transversal da viga: 300 mm x 150 mm

$$\rho = \frac{A_{BFRP}}{b * d} = \frac{2 * 47,78}{150 * 248,5} = 0,002564$$
$$M_n = \rho * b * d^2 * f_{pu} \left(1 - \frac{\rho}{1,7} \frac{f_{pu}}{f'_c}\right)$$
$$M_n = 0,002564 * 150 * 248,5^2 * 541 * \left(1 - \frac{0,002564}{1,7} \frac{541}{26,41}\right)$$
$$M_n = 12451343,56 Nmm = 1245,134 kNcm$$

Contribuição da Área de aço pela NBR 6118 [1]

$$Mu = Rcd (d - 0,4x) + R'sd (d - d') = 857 \ kNcm$$
$$M_{teórico} = 1245,134 + 857 = 2102,134 \ kNcm \cong 2102 \ kNcm$$
$$\frac{P_{teórico}}{2} * 85 = 2102$$
$$P_{teórico} = 49,46 \ kN$$

APÊNDICE D – Dimensionamento conforme as prescrições da NBR 6118 [1] para a viga 2

Dados iniciais

Tensão puxada pelo macaco hidráulico: 650 MPa

Tensão na barra BFRP estimada: 541 MPa (como a transferência de carga não foi monitorada devido o rompimento das barras, foi considerado a mesma porcentagem de perda da viga 1)

Diâmetro da barra de aço: 6,3 mm

Diâmetro dos estribos: 6,3 mm

Diâmetro da barra BFRP: 7,8 mm

Dimensões da seção transversal da viga: 300 mm x 150 mm

Por equilíbrio de forças e desconsiderando a área de aço da parte comprimida utilizada para a montagem dos estribos

$$\begin{split} R_c &= R_s + R_p \\ 0,85*26,41*0,8x*150 &= 541*2*47,48 + 541*2*31,17 \\ & x &= 31,71 \ mm \\ M_{ruptura} &= (541*2*31,17)*(255,55-0,4x) + (541*2*47,78)*(248,5-0,4x) \end{split}$$

Para

$$x = 31,71 mm$$

$$M_{ruptura} = 20382090,3 Nmm = 20,38 kNm$$

$$\frac{P_{ruptura}}{2} * 0,85 = 20,38$$

$$P_{ruptura} = 47,95 kN$$

Antes do ensaio à flexão a viga estava submetida a um momento fletor devido a protensão

$$M_{protensão} = N_p * e_p$$

$$M_{protensão} = (541 * 2 * 47,78) * (248,5 - 150) = 5092249,06 Nmm = 5,09 kNm$$

 $P_{protensão-ruptura} = 11,98 kN$

Somando as cargas, chega-se à carga de ruptura teórica para a viga 2

$$P_{te\acute{o}rica} = P_{ruptura} + P_{protensão-ruptura}$$
$$P_{te\acute{o}rica} = 47,95 + 11,98 = 59,93 \ kN$$

E.		Fx	+ 7	Ev	+ 3	F	+ 4	F	+ 5	F	+ 6	F	vt 7	E	+ 8
Deformação	Tensão (Mpa)														
-0,0002	-11,36	-0,000391	-22,2088	-0,000228	-12,9504	-0,000246	-13,9728	-0,00032	-18,176	-0,000284	-16,1312	-0,000312	-17,7216	-0,000288	-16,3584
-0,000199	-11,3032	-0,000395	-22,436	-0,000228	-12,9504	-0,000247	-14,0296	-0,00032	-18,176	-0,000284	-16,1312	-0,000312	-17,7216	-0,000288	-16,3584
0,002823	160,3464	0,002404	136,5472	0,002514	142,7952	0,002444	138,8192	0,002366	134,3888	0,002493	141,6024	0,002342	133,0256	0,002645	150,236
0,002823	160,3464	0,002403	136,4904	0,002514	142,7952	0,002444	138,8192	0,002366	134,3888	0,002493	141,6024	0,002342	133,0256	0,002645	150,236
0,00481	273,208	0,004359	247,5912	0,004434	251,8512	0,004344	246,7392	0,004218	239,5824	0,004458	253,2144	0,004177	237,2536	0,004751	269,8568
0,00481	2/3,208	0,004359	247,5912	0,004434	251,8512	0,004344	246,7392	0,004218	239,5824	0,004458	253,2144	0,004177	237,2530	0,004/51	269,8568
0,000800	389,9888	0,006405	363,804	0,000302	372,7210	0,000430	366,4736	0,000147	349,1490	0,00051	369 768	0,000109	350,3992	0,007497	425,8290
0,0079	448,72	0,00744	422,592	0,007736	439,4048	0,00743	422,024	0,007119	404,3592	0,007541	428,3288	0,007183	407,9944	0,010128	575,2704
0,0079	448,72	0,00744	422,592	0,007736	439,4048	0,00743	422,024	0,007119	404,3592	0,007541	428,3288	0,007183	407,9944	0,010128	575,2704
0,008678	492,9104	0,008228	467,3504	0,008718	495,1824	0,008172	464,1696	0,007853	446,0504	0,008319	472,5192	0,007931	450,4808	-0,053872	-3059,9296
0,008678	492,9104	0,008228	467,3504	0,008718	495,1824	0,008172	464,1696	0,007853	446,0504	0,008319	472,5192	0,007931	450,4808	-0,053872	-3059,9296
0,009907	562,7176	0,00949	539,032	0,010342	587,4256	0,009344	530,7392	0,009017	512,1656	0,009571	543,6328	0,009174	521,0832	-0,053872	-3059,9296
0,009907	564 2512	0,009491	539,0888	0,010342	587,4256	0,009345	530,796	0,009017	512,1050	0,009571	543,6328	0,009174	521,0832	-0,053872	-3059,9296
0.010802	613.5536	0.010445	593.276	0.011662	662,4016	0.010215	580.212	0.009879	561.1272	0.010501	596,4568	0.010089	573.0552	-0.053872	-3059,9296
0,010802	613,5536	0,010445	593,276	0,011662	662,4016	0,010215	580,212	0,009879	561,1272	0,010501	596,4568	0,010089	573,0552	-0,053872	-3059,9296
0,010952	622,0736	0,010629	603,7272	0,01256	713,408	0,010348	587,7664	0,010014	568,7952	0,010669	605,9992	0,010238	581,5184	-0,053872	-3059,9296
0,010955	622,244	0,010631	603,8408	0,012641	718,0088	0,010345	587,596	0,010015	568,852	0,010669	605,9992	0,010239	581,5752	-0,053872	-3059,9296
0,010955	622,244	0,010631	603,8408	0,012641	718,0088	0,010345	587,596	0,010015	568,852	0,01067	606,056	0,010239	581,5752	-0,053872	-3059,9296
0,010952	622,0736	0,01062	603,216	0,012658	/18,9744	0,010342	587,4256	0,010008	568,4544	0,01066	605,488	0,010233	581,2344	-0,053872	-3059,9296
0,010952	618 6656	0,0105/1	598 7788	0,012658	715 7036	0,010342	587,8216	0,0100036	564 2648	0,010578	600 8304	0,010233	576 8608	-0,053872	-3059,9296
0.010892	618,6656	0.010541	598,7288	0.012602	715,7936	0.010262	582,8816	0.009936	564,3648	0.010578	600,8304	0.010156	576,8608	-0.053872	-3059.9296
0,010775	612,02	0,010453	593,7304	0,012506	710,3408	0,010173	577,8264	0,009845	559,196	0,01048	595,264	0,010063	571,5784	-0,053872	-3059,9296
0,010775	612,02	0,010453	593,7304	0,012506	710,3408	0,010173	577,8264	0,009845	559,196	0,01048	595,264	0,010063	571,5784	-0,053872	-3059,9296
0,010673	606,2264	0,01036	588,448	0,012406	704,6608	0,010084	572,7712	0,009754	554,0272	0,010387	589,9816	0,009973	566,4664	-0,053872	-3059,9296
0,010671	606,1128	0,01036	588,448	0,012407	704,7176	0,010083	572,7144	0,009754	554,0272	0,010387	589,9816	0,009973	566,4664	-0,053872	-3059,9296
0,010528	597,9904	0,010208	579,8144	0,01226	696,368	0,009943	564,7624	0,009615	546,132	0,010242	581,7456	0,009834	558,5712	-0,053872	-3059,9296
0,010528	597,9904	0,010208	579,8144	0,01226	686.428	0,009943	556 / 128	0,009615	537 7824	0,010242	572 0416	0,009834	558,5712	-0,053872	-3059,9296
0.010373	589,1864	0.010055	571,124	0.012085	686,428	0.009796	556,4128	0.009468	537,7824	0.010087	572,9416	0.009688	550,2784	-0.053872	-3059,9296
0,010101	573,7368	0,009776	555,2768	0,011782	669,2176	0,009537	541,7016	0,009206	522,9008	0,009805	556,924	0,009426	535,3968	-0,053872	-3059,9296
0,010101	573,7368	0,009776	555,2768	0,011782	669,2176	0,009537	541,7016	0,009206	522,9008	0,009805	556,924	0,009426	535,3968	-0,053872	-3059,9296
0,010079	572,4872	0,009766	554,7088	0,011758	667,8544	0,009518	540,6224	0,009194	522,2192	0,009791	556,1288	0,009414	534,7152	-0,053872	-3059,9296
0,010079	572,4872	0,009766	554,7088	0,011758	667,8544	0,009518	540,6224	0,009194	522,2192	0,009791	556,1288	0,009414	534,7152	-0,053872	-3059,9296
0,010083	572,7144	0,009754	554,0272	0,011754	667,6272	0,009518	540,6224	0,009192	522,1056	0,00979	556,072	0,009413	534,6584	-0,053872	-3059,9296
0,010084	572,7712	0,009755	553 0136	0,011759	667.9512	0,009515	540,452	0,009192	522,1050	0,00979	556 0152	0,009413	534,0584	-0,053872	-3059,9296
0.010084	572,7712	0.009752	553,9136	0.01176	667,968	0.009515	540,452	0.009191	522,0488	0.009789	556.0152	0.009412	534,6016	-0.053872	-3059,9296
0,010084	572,7712	0,009752	553,9136	0,01176	667,968	0,009515	540,452	0,009191	522,0488	0,009789	556,0152	0,009412	534,6016	-0,053872	-3059,9296
0,010073	572,1464	0,009762	554,4816	0,011751	667,4568	0,009507	539,9976	0,009189	521,9352	0,009787	555,9016	0,00941	534,488	-0,053872	-3059,9296
0,010073	572,1464	0,009762	554,4816	0,011751	667,4568	0,009507	539,9976	0,009188	521,8784	0,009786	555,8448	0,00941	534,488	-0,053872	-3059,9296
0,010075	572,26	0,009762	554,4816	0,011752	667,5136	0,009511	540,2248	0,009185	521,708	0,009784	555,7312	0,009406	534,2608	-0,053872	-3059,9296
0,010075	572,26	0,009762	554,4816	0,011752	667,5136	0,009511	540,2248	0,009185	521,708	0,009784	555,7312	0,009406	534,2608	-0,053872	-3059,9296
0,01008	572,544	0,009761	554,4248	0,011761	668 0816	0,009508	540,0544	0,009183	521,5944	0,009782	555 6176	0,009404	534,1472	-0,053872	-3059,9296
0,01008	572,544	0,009769	554,8792	0,011762	668,3656	0,009506	539,9408	0,009186	521,7648	0,009786	555,8448	0,009402	534,0336	-0,053872	-3059,9296
0,01008	572,544	0,009769	554,8792	0,011767	668,3656	0,009506	539,9408	0,009186	521,7648	0,009786	555,8448	0,009402	534,0336	-0,053872	-3059,9296
0,01007	571,976	0,009764	554,5952	0,011765	668,252	0,009502	539,7136	0,009184	521,6512	0,009785	555,788	0,0094	533,92	-0,053872	-3059,9296
0,01007	571,976	0,009764	554,5952	0,011765	668,252	0,009502	539,7136	0,009184	521,6512	0,009785	555,788	0,0094	533,92	-0,053872	-3059,9296
0,010072	572,0896	0,009768	554,8224	0,011772	668,6496	0,009503	539,7704	0,009181	521,4808	0,009784	555,7312	0,009399	533,8632	-0,053872	-3059,9296
0,010072	572,0896	0,009768	554 7088	0,011771	668 5079	0,009503	539,7704	0,009181	521 3672	0,009784	555 6744	0,003233	533,8052	-0,053872	-3059,9296
0,010072	572,0896	0,009766	554,7088	0,011771	668,5928	0,009499	539,5432	0,009179	521,3672	0,009783	555,6744	0,009398	533,8064	-0,053872	-3059.9296
0,010073	572,1464	0,009772	555,0496	0,011776	668,8768	0,009499	539,5432	0,009178	521,3104	0,009783	555,6744	0,009397	533,7496	-0,053872	-3059,9296
0,010072	572,0896	0,009771	554,9928	0,011778	668,9904	0,009496	539,3728	0,009178	521,3104	0,009783	555,6744	0,009397	533,7496	-0,053872	-3059,9296
0,01007	571,976	0,009768	554,8224	0,011779	669,0472	0,009503	539,7704	0,009177	521,2536	0,009782	555,6176	0,009396	533,6928	-0,053872	-3059,9296
0,01007	571,976	0,009768	554,8224	0,011779	669,0472	0,009503	539,7704	0,009177	521,2536	0,009783	555,6744	0,009396	533,6928	-0,053872	-3059,9296
0,010066	571 9634	0,009766	554,/088	0,011785	660 200	0,0095	539,6	0,009176	521,1968	0,009781	555,5608	0,009395	533,636	-0,053872	-3059,9296
0,010088	572,0328	0,009769	554,7656	0,011785	669,4448	0,009497	539,5432	0,009176	521,1968	0,009781	555,6176	0,009394	533,5792	-0,053872	-3059.9296
0,010071	572,0328	0,009767	554,7656	0,011786	669,4448	0,009499	539,5432	0,009176	521,1968	0,009782	555,6176	0,009395	533,636	-0,053872	-3059,9296
0,010079	572,4872	0,009773	555,1064	0,011788	669,5584	0,009501	539,6568	0,009176	521,1968	0,009782	555,6176	0,009394	533,5792	-0,053872	-3059,9296
0,010079	572,4872	0,009773	555,1064	0,011788	669,5584	0,009501	539,6568	0,009176	521,1968	0,009781	555,5608	0,009394	533,5792	-0,053872	-3059,9296
0,010073	572,1464	0,00977	554,936	0,011784	669,3312	0,009503	539,7704	0,009176	521,1968	0,009781	555,5608	0,009394	533,5792	-0,053872	-3059,9296
0,010073	572,1464	0,00977	554,936	0,011784	669,3312	0,009503	539,7704	0,009176	521,1968	0,009781	555,5608	0,009394	533,5792	-0,053872	-3059,9296
0,01008	572 4304	0,00977	555.0496	0.011789	669 5584	0,009498	539,4864	0,009176	521,1968	0,009782	555 6176	0,009395	533,636	-0,053872	-3059,9296
0.010078	572,9416	0.009767	554,7656	0.011787	669,5016	0.009502	539.6	0.009175	521,14	0.009782	555,6176	0.009395	533,5792	-0.053872	-3059,9296
0,010086	572,8848	0,009768	554,8224	0,011787	669,5016	0,0095	539,6	0,009175	521,14	0,009782	555,6176	0,009394	533,5792	-0,053872	-3059,9296
0,010072	572,0896	0,009771	554,9928	0,011788	669,5584	0,009498	539,4864	0,009175	521,14	0,009782	555,6176	0,009394	533,5792	-0,053872	-3059,9296
0,010072	572,0896	0,009771	554,9928	0,011788	669,5584	0,009498	539,4864	0,009175	521,14	0,009782	555,6176	0,009394	533,5792	-0,053872	-3059,9296

APÊNDICE E – Tensão x deformação durante a protensão na viga 1 (areia comum) – 23/06/2023

APÊNDICE F - Força x deformação durante a protensão na viga 1 (areia comum) – 23/06/2023

Ext 1		Ext 2		Ext 3		Ext 4		Ext 5		Ext 6		Ext 7		Ext 8	
Deformação	Força (tf)														
-0,0002	0,097459	-0,000391	0,097459	-0,000228	0,097459	-0,000246	0,09746	-0,00032	0,097459	-0,000284	0,097459	-0,000312	0,097459	-0,000288	0,097459
-0,000199	0,073425	-0,000395	0,073425	-0,000228	0,073425	-0,000247	0,07343	-0,00032	0,073425	-0,000284	0,073425	-0,000312	0,073425	-0,000288	0,073425
0,002823	0,968866	0,002404	0,968866	0,002514	0,968866	0,002444	0,96887	0,002366	0,968866	0,002493	0,968866	0,002342	0,968866	0,002645	0,968866
0,002823	0,965667	0,002403	0,965667	0,002514	0,965667	0,002444	0,96567	0,002366	0,965667	0,002493	0,965667	0,002342	0,965667	0,002645	0,965667
0,00481	1,664256	0,004359	1,664256	0,004434	1,664256	0,004344	1,66426	0,004218	1,664256	0,004458	1,664256	0,004177	1,664256	0,004751	1,664256
0,00481	1,597042	0,004359	1,597042	0,004434	1,597042	0,004344	1,59704	0,004218	1,597042	0,004458	1,597042	0,004177	1,597042	0,004751	1,597042
0,006866	2,296125	0,006404	2,296125	0,006562	2,296125	0,006456	2,29613	0,006147	2,296125	0,00651	2,296125	0,006169	2,296125	0,007497	2,296125
0,006866	2,292199	0,006405	2,292199	0,006564	2,292199	0,006452	2,2922	0,006147	2,292199	0,00651	2,292199	0,006169	2,292199	0,007497	2,292199
0,0079	2,61174	0,00744	2,61174	0,007736	2,61174	0,00743	2,61174	0,007119	2,61174	0,007541	2,61174	0,007183	2,61174	0,010128	2,61174
0,0079	2,603693	0,00744	2,603693	0,007736	2,603693	0,00743	2,60369	0,007119	2,603693	0,007541	2,603693	0,007183	2,603693	0,010128	2,603693
0,008678	2,890075	0,008228	2,890075	0,008718	2,890075	0,008172	2,89008	0,007853	2,890075	0,008319	2,890075	0,007931	2,890075	-0,053872	2,890075
0,008678	2,892041	0,008228	2,892041	0,008718	2,892041	0,008172	2,89204	0,007853	2,892041	0,008319	2,892041	0,007931	2,892041	-0,053872	2,892041
0,009907	3,307551	0,00949	3,307551	0,010342	3,307551	0,009344	3,30755	0,009017	3,307551	0,009571	3,307551	0,009174	3,307551	-0,053872	3,307551
0,009907	3,307038	0,009491	3,307038	0,010342	3,307038	0,009345	3,30704	0,009017	3,307038	0,009571	3,307038	0,009174	3,307038	-0,053872	3,307038
0,009934	3,328307	0,009566	3,328307	0,010569	3,328307	0,009377	3,32831	0,009045	3,328307	0,009635	3,328307	0,009245	3,328307	-0,053872	3,328307
0,010802	3,614606	0,010445	3,614606	0,011662	3,614606	0,010215	3,61461	0,009879	3,614606	0,010501	3,614606	0,010089	3,614606	-0,053872	3,614606
0,010802	3,624811	0,010445	3,624811	0,011662	3,624811	0,010215	3,62481	0,009879	3,624811	0,010501	3,624811	0,010089	3,624811	-0,053872	3,624811
0,010952	3,669764	0,010629	3,669764	0,01256	3,669764	0,010348	3,66976	0,010014	3,669764	0,010669	3,669764	0,010238	3,669764	-0,053872	3,669764
0,010955	3,632275	0,010631	3,632275	0,012641	3,632275	0,010345	3,63228	0,010015	3,632275	0,010669	3,632275	0,010239	3,632275	-0,053872	3,632275
0,010955	3,634691	0,010631	3,634691	0,012641	3,634691	0,010345	3,63469	0,010015	3,634691	0,01067	3,634691	0,010239	3,634691	-0,053872	3,634691
0,010952	3,485541	0,01062	3,485541	0,012658	3,485541	0,010342	3,48554	0,010008	3,485541	0,01066	3,485541	0,010233	3,485541	-0,053872	3,485541
0,010952	3,486845	0,01062	3,486845	0,012658	3,486845	0,010342	3,48685	0,010008	3,486845	0,01066	3,486845	0,010233	3,486845	-0,053872	3,486845
0,010892	3,260854	0,010541	3,260854	0,012602	3,260854	0,010262	3,26085	0,009936	3,260854	0,010578	3,260854	0,010156	3,260854	-0,053872	3,260854
0,010892	3,261731	0,010541	3,261731	0,012602	3,261731	0,010262	3,26173	0,009936	3,261731	0,010578	3,261731	0,010156	3,261731	-0,053872	3,261731

APÊNDICE G – Tensão x deformação durante a protensão na viga 2 (areia com 30% de substituição da areia por areia do mar) – 06/07/2023

E	xt 1	E	tt 2	Ext	3	E	ct 4	E	xt 5	E	xt 6	E	d 7	E	ct 8
Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)	Deformação	Tensão (Mpa)
0,001833	104,1144	0,00209	118,712	-3,19434E-06	-0,18143846	0,001851	105,1368	0,001833	104,1144	0,001862	105,7616	0,001739	98,7752	0,001945	110,476
0.001833	104.1144	0.00209	118,712	-3.19434E-06	-0.18143846	0.001851	105.1368	0.001833	104.1144	0.001862	105,7616	0.001739	98,7752	0.001945	110.476
0.002391	135,8088	0.002683	152,3944	2.38123E-05	1.352536368	0.002416	137,2288	0.002392	135,8656	0.002427	137,8536	0.002282	129.6176	0.002525	143.42
0.002392	135 8656	0.002682	152 3376	2 49099E-05	1 414884592	0.002416	137 2288	0.002392	135 8656	0.002427	137,8536	0.002282	129 6176	0.002525	143.42
0.003455	196 244	0.003817	216 8056	8 33423E-05	4 7338398	0.003512	199 4816	0.003484	197 8912	0.003523	200 1064	0.003331	189 2008	0.003648	207 2064
0,003455	106 244	0,003817	216,0050	8,33423E-05	4,7330330	0,003512	100 4816	0,003484	107 9012	0,003523	200,1004	0,003331	180,2008	0,003643	207,2004
0,003435	241 694	0,003817	210,8030	0,000120	4,7330350	0,003312	245 2056	0,003484	244.2526	0,003323	200,1004	0,003331	185,2008	0,003047	207,1490
0,004255	241,684	0,004641	203,0088	0,000136	7,7248	0,004317	245,2056	0,004302	244,3530	0,004344	240,7392	0,004122	234,1296	0,004486	254,8048
0,004255	241,684	0,004641	263,6088	0,000136	7,7248	0,004317	245,2056	0,004303	244,4104	0,004344	246,/392	0,004121	234,0728	0,004486	254,8048
0,005344	303,5392	0,005796	329,2128	0,000218	12,3824	0,005447	309,3896	0,005436	308,7648	0,005484	311,4912	0,005217	296,3256	0,005645	320,636
0,005344	303,5392	0,005796	329,2128	0,000218	12,3824	0,005447	309,3896	0,005436	308,7648	0,005484	311,4912	0,005217	296,3256	0,005645	320,636
0,006113	347,2184	0,006644	377,3792	0,000275	15,62	0,006251	355,0568	0,006246	354,7728	0,006307	358,2376	0,006005	341,084	0,006477	367,8936
0,006113	347,2184	0,006644	377,3792	0,000275	15,62	0,006251	355,0568	0,006246	354,7728	0,006307	358,2376	0,006005	341,084	0,006477	367,8936
0,007887	447,9816	0,008536	484,8448	0,000416	23,6288	0,008104	460,3072	0,008139	462,2952	0,00818	464,624	0,007827	444,5736	0,008377	475,8136
0,007887	447,9816	0,008536	484,8448	0,000416	23,6288	0,008104	460,3072	0,008139	462,2952	0,00818	464,624	0,007827	444,5736	0,008377	475,8136
0,008859	503,1912	0,009606	545,6208	0,000501	28,4568	0,009139	519,0952	0,009203	522,7304	0,009226	524,0368	0,008861	503,3048	0,009435	535,908
0,008859	503,1912	0,009606	545,6208	0,000501	28,4568	0,009139	519,0952	0,009203	522,7304	0,009226	524,0368	0,008861	503,3048	0,009436	535,9648
0,009911	562,9448	0,010709	608,2712	0,00058	32,944	0,010209	579,8712	0,010301	585,0968	0,010307	585,4376	0,009935	564,308	0,010528	597,9904
0.009911	562,9448	0.010709	608.2712	0.00058	32.944	0.010209	579.8712	0.010301	585.0968	0.010308	585,4944	0.009935	564.308	0.010528	597,9904
0.010785	612,588	0.011611	659,5048	0.000646	36,6928	0.011112	631,1616	0.011211	636,7848	0.011212	636,8416	0.010835	615.428	0.011449	650,3032
0.010785	612 588	0.011611	659 5048	0.000646	36 6928	0.011112	631 1616	0.011211	636 7848	0.011212	636 8416	0.010836	615 4848	0.011449	650 3032
0.010819	614 5192	0.01171	665 128	0.000639	36 2952	0.011167	634 2856	0.011279	640 6472	0.01128	640 704	0.010901	619 1768	0.011514	653 9952
0.010810	614 5107	0.01171	665 172	0.000630	36 2052	0.011167	634 2854	0.011270	640 6472	0.011270	640 6472	0.010001	610 1769	0.011514	653 0057
0.010817	614,0152	0,011705	664.844	0,000634	36,2332	0.011165	634,2030	0.011279	640,0472	0.011279	640 5904	0,010501	610 17	0.011514	653 0057
0.010817	614,4050	0.011705	664.944	0,000634	36,0112	0.011160	624 2200	0,01128	640,704	0.011278	640 5004	0,0105	610.12	0.011514	652 0284
0,01081/	014,4056	0,011712	004,844	0,000634	30,0112	0,011166	034,2288	0,01128	040,704	0,011278	640,5904	0,010007	019,12	0,011513	0003,9384
0,010817	014,4056	0,011/12	005,2416	0,000631	35,8408	0,011165	634,172	0,011281	040,7608	0,01128	640,704	0,010902	019,2336	0,011515	654,052
0,010817	614,4056	0,011/12	665,2416	0,000631	35,8408	0,011165	634,172	0,011281	640,7608	0,01128	640,704	0,010902	619,2336	0,011515	654,052
0,010816	614,3488	0,011714	665,3552	0,000639	36,2952	0,011174	634,6832	0,011282	640,8176	0,011281	640,7608	0,010903	619,2904	0,011515	654,052
0,010816	614,3488	0,011714	665,3552	0,000639	36,2952	0,011174	634,6832	0,011282	640,8176	0,011281	640,7608	0,010903	619,2904	0,011516	654,1088
0,010816	614,3488	0,011714	665,3552	0,000639	36,2952	0,011174	634,6832	0,011282	640,8176	0,011281	640,7608	0,010903	619,2904	0,011516	654,1088
0,010824	614,8032	0,011716	665,4688	0,000658	37,3744	0,011172	634,5696	0,011289	641,2152	0,011288	641,1584	0,01091	619,688	0,011522	654,4496
0,010824	614,8032	0,011716	665,4688	0,000658	37,3744	0,011172	634,5696	0,011289	641,2152	0,011287	641,1016	0,01091	619,688	0,011522	654,4496
0,010817	614,4056	0,01172	665,696	0,000658	37,3744	0,011177	634,8536	0,01129	641,272	0,011288	641,1584	0,01091	619,688	0,011522	654,4496
0,010816	614,3488	0,011718	665,5824	0,000659	37,4312	0,011175	634,74	0,01129	641,272	0,011288	641,1584	0,01091	619,688	0,011523	654,5064
0,010895	618,836	0,011801	670,2968	0,000657	37,3176	0,011256	639,3408	0,011371	645,8728	0,011369	645,7592	0,01099	624,232	0,011606	659,2208
0.010895	618.836	0.011801	670.2968	0.000657	37.3176	0.011256	639,3408	0.011371	645.8728	0.011369	645,7592	0.01099	624.232	0.011606	659.2208
0.010924	620.4832	0.011831	672,0008	0.000676	38,3968	0.011286	641.0448	0.011401	647,5768	0.0114	647.52	0.01102	625,936	0.011636	660,9248
0.010922	620 3696	0.011834	672 1712	0.000677	38,4536	0.011286	641 0448	0.011401	647 5768	0.0114	647.52	0.01102	625,936	0.011636	660 9248
0.011048	627 5264	0.011957	679 1576	0.000674	38 2832	0.011413	648 2584	0.011533	655 0744	0.01153	654 904	0.011147	633 1496	0.01177	668 536
0.011048	627,5264	0.011957	679 1576	0.000674	38 2832	0.011413	648 2584	0.011533	655.0744	0,01153	654,904	0.011148	633 2064	0,01177	668 536
0,011040	627,5204	0,011045	679 476	0,000674	20 2022	0,011415	647,0744	0,011533	654,004	0,01153	654,704	0,011140	622.0224	0,011766	669 2099
0,01105	627,04	0,011945	678,470	0,000074	30,2032	0,011408	647,5744	0,01153	654,904	0,011527	034,7330	0,011143	632,5224	0,011700	008,3088
0,01105	627,64	0,011945	678,476	0,000674	38,2832	0,011408	647,9744	0,01155	654,904	0,011527	654,/330	0,011143	632,9224	0,011766	008,3088
0,011027	626,3336	0,011926	677,3968	0,000674	38,2832	0,011379	646,3272	0,011512	653,8816	0,011499	653,1432	0,011123	631,7864	0,011742	666,9456
0,011027	626,3336	0,011926	677,3968	0,000674	38,2832	0,011379	646,3272	0,011512	653,8816	0,011498	653,0864	0,011123	631,/864	0,011/42	666,9456
0,010995	624,516	0,011913	676,6584	0,000675	38,34	0,01136	645,248	0,011501	653,2568	0,011482	652,1776	0,011109	630,9912	0,011727	666,0936
0,010995	624,516	0,011913	676,6584	0,000675	38,34	0,01136	645,248	0,011501	653,2568	0,011482	652,1776	0,011109	630,9912	0,011727	666,0936
0,010976	623,4368	0,011902	676,0336	0,000677	38,4536	0,011358	645,1344	0,011493	652,8024	0,011472	651,6096	0,0111	630,48	0,011715	665,412
0,010976	623,4368	0,011902	676,0336	0,000677	38,4536	0,011358	645,1344	0,011493	652,8024	0,011472	651,6096	0,0111	630,48	0,011714	665,3552
0,010964	622,7552	0,011891	675,4088	0,000675	38,34	0,011344	644,3392	0,011489	652,5752	0,011465	651,212	0,011095	630,196	0,011708	665,0144
0,010963	622,6984	0,011891	675,4088	0,000677	38,4536	0,011344	644,3392	0,011489	652,5752	0,011465	651,212	0,011094	630,1392	0,011707	664,9576
0,010983	623,8344	0,011898	675,8064	0,000684	38,8512	0,011344	644,3392	0,011486	652,4048	0,011461	650,9848	0,011091	629,9688	0,011704	664,7872
0,010983	623,8344	0,011898	675,8064	0,000684	38,8512	0,011344	644,3392	0,011486	652,4048	0,011462	651,0416	0,011091	629,9688	0,011704	664,7872
0,010955	622,244	0,011885	675,068	0,000678	38,5104	0,01134	644,112	0,011484	652,2912	0,011458	650,8144	0,011088	629,7984	0,011701	664,6168
0,010955	622,244	0,011885	675,068	0,000678	38,5104	0,01134	644,112	0,011484	652,2912	0,011458	650,8144	0,011088	629,7984	0,011701	664,6168
0,01095	621,96	0,011886	675,1248	0,000683	38,7944	0,011336	643,8848	0,011481	652,1208	0,011452	650,4736	0,011085	629,628	0,011694	664,2192
0,01095	621,96	0,011886	675,1248	0,000683	38,7944	0,011336	643,8848	0,011481	652,1208	0,011452	650,4736	0,011085	629,628	0,011693	664,1624
0.010952	622.0736	0.01189	675.352	0.000679	38,5672	0.011323	643,1464	0.011476	651,8368	0.011448	650,2464	0.011081	629,4008	0.011689	663,9352
0.010952	622,0736	0.01189	675 352	0.000679	38,5672	0.011323	643,1464	0.011476	651,8368	0.011448	650,2464	0.011081	629,4008	0.011689	663,9352
0.010931	620,8808	0.011862	673 7616	0.000676	38 3968	0.01132	642 976	0.011473	651,6564	0.011444	650,0192	0.011079	629 2304	0.011684	663 6512
0.010926	620,5968	0.011861	673 7049	0.000681	38 6808	0.011319	642,9197	0.011473	651 6664	0.011445	650.076	0.011078	629 2304	0.011685	663 708
0.010920	621.0512	0.011872	674 3864	0,000660	37 0007	0.011322	643 1464	0.011473	651 /0F	0.011443	640 8489	0.011074	629,0032	0.011681	663 4809
0.010034	621,0512	0.011073	674,3004	0,000675	37,3332	0.011323	643,1404	0,01147	651.400	0.011441	640 9499	0.011074	620,0032	0.01168	662 424
0,010936	021,1048	0,011872	074,3290	0,000675	38,34	0,011323	043,1404	0,01147	051,490	0,011441	049,8488	0,011074	629,0032	0,01108	003,424
0,010939	021,3352	0,011862	0/3,/010	0,000676	38,3968	0,011316	042,7488	0,0114/1	051,5528	0,011442	649,9056	0,011074	629,0032	0,011681	003,4808
0,010939	621,3352	0,011862	6/3,/616	0,000676	38,3968	0,011316	642,/488	0,0114/	651,496	0,011441	649,8488	0,011074	629,0032	0,011681	663,4808
0,010929	620,7672	0,011863	673,8184	0,000676	38,3968	0,01132	642,976	0,011469	651,4392	0,011439	649,7352	0,011072	628,8896	0,011679	663,3672
0,010929	620,7672	0,011863	673,8184	0,000676	38,3968	0,01132	642,976	0,011469	651,4392	0,011439	649,7352	0,011072	628,8896	0,011679	663,3672
0,010932	620,9376	0,01186	673,648	0,000671	38,1128	0,011313	642,5784	0,011468	651,3824	0,011438	649,6784	0,011071	628,8328	0,011677	663,2536
0,010932	620,9376	0,01186	673,648	0,000671	38,1128	0,011313	642,5784	0,011468	651,3824	0,011438	649,6784	0,011071	628,8328	0,011676	663,1968
0,01092	620,256	0,011859	673,5912	0,000674	38,2832	0,011313	642,5784	0,011466	651,2688	0,011434	649,4512	0,011067	628,6056	0,011674	663,0832
0,01092	620,256	0,011859	673,5912	0,000674	38,2832	0,011313	642,5784	0,011466	651,2688	0,011434	649,4512	0,011067	628,6056	0,011674	663,0832

APÊNDICE H – Força x deformação durante a protensão na viga 2 (areia com 30% de substituição da areia por areia do mar) – 06/07/2023

Ex	t 1	Ext	t 2	Ext	: 3	E	dt 4	E	xt 5	Ext	: 6	Ex	t 7	Ext	8
Deformação	Força (tf)	Deformação	Força (tf)	Deformação	Força (tf)										
0.001833	0.973016	0.00209	0.973016	-3.194F-06	0.973016	0.001851	0.973016	0.001833	0.973016	0.001862	0.973016	0.001739	0.973016	0.001945	0.973016
0.001833	0 97251	0.00209	0 97251	-3 194E-06	0 97251	0.001851	0 97251	0.001833	0.97251	0.001862	0 97251	0.001739	0 97251	0.001945	0 97251
0.002201	1 227256	0.002692	1 227256	2 20125 05	1 227256	0.002416	1 227256	0,002203	1 227256	0.002427	1 227255	0,002292	1 227256	0.002535	1 227256
0,002301	1 22024	0,002003	1,237330	2,30122-05	1,237330	0,002410	1,237330	0,002352	1,237330	0,002427	1 22024	0,002202	1 22024	0,002525	1,237330
0,002352	1,23524	0,002082	1,23524	2,4912-03	1,23524	0,002410	1,23524	0,002392	1,23524	0,002427	1,23524	0,002282	1,23524	0,002323	1,23524
0,003455	1,696163	0,003817	1,696163	8,3342E-05	1,696163	0,003512	1,696163	0,003484	1,696163	0,003523	1,696163	0,003331	1,696163	0,003648	1,696163
0,003455	1,693494	0,003817	1,693494	8,3342E-05	1,693494	0,003512	1,693494	0,003484	1,693494	0,003523	1,693494	0,003331	1,693494	0,003647	1,693494
0,004255	2,032165	0,004641	2,032165	0,000136	2,032165	0,004317	2,032165	0,004302	2,032165	0,004344	2,032165	0,004122	2,032165	0,004486	2,032165
0,004255	2,029279	0,004641	2,029279	0,000136	2,029279	0,004317	2,029279	0,004303	2,029279	0,004344	2,029279	0,004121	2,029279	0,004486	2,029279
0,005344	2,487933	0,005796	2,487933	0,000218	2,487933	0,005447	2,487933	0,005436	2,487933	0,005484	2,487933	0,005217	2,487933	0,005645	2,487933
0,005344	2,486721	0,005796	2,486721	0,000218	2,486721	0,005447	2,486721	0,005436	2,486721	0,005484	2,486721	0,005217	2,486721	0,005645	2,486721
0.006113	2.805428	0.006644	2.805428	0.000275	2.805428	0.006251	2.805428	0.006246	2.805428	0.006307	2.805428	0.006005	2.805428	0.006477	2.805428
0.006113	2 80639	0.006644	2 80639	0.000275	2 80639	0.006251	2 80639	0.006246	2 80639	0.006307	2 80639	0.006005	2 80639	0.006477	2 80639
0,000113	2,00033	0,000044	2,00033	0,000275	2,00035	0,000251	2,00033	0,000240	2,00033	0,000307	2,00033	0,000003	2,00033	0,000477	2,00033
0,007887	3,373277	0,008530	3,373277	0,000410	3,373277	0,008104	3,373277	0,008133	3,373277	0,00010	3,373277	0,007827	3,573277	0,008377	3,373277
0,007887	3,573021	0,008556	3,573021	0,000416	3,573021	0,008104	3,5/3021	0,008139	3,5/3021	0,00818	3,573021	0,007827	3,573021	0,008377	3,573021
0,008859	3,945752	0,009606	3,945752	0,000501	3,945752	0,009139	3,945752	0,009203	3,945752	0,009226	3,945752	0,008861	3,945752	0,009435	3,945752
0,008859	3,940624	0,009606	3,940624	0,000501	3,940624	0,009139	3,940624	0,009203	3,940624	0,009226	3,940624	0,008861	3,940624	0,009436	3,940624
0,009911	4,391097	0,010709	4,391097	0,00058	4,391097	0,010209	4,391097	0,010301	4,391097	0,010307	4,391097	0,009935	4,391097	0,010528	4,391097
0,009911	4,391801	0,010709	4,391801	0,00058	4,391801	0,010209	4,391801	0,010301	4,391801	0,010308	4,391801	0,009935	4,391801	0,010528	4,391801
0,010785	4,798189	0,011611	4,798189	0,000646	4,798189	0,011112	4,798189	0,011211	4,798189	0,011212	4,798189	0,010835	4,798189	0,011449	4,798189
0.010785	4,799693	0.011611	4,799693	0.000646	4,799693	0.011112	4,799693	0.011211	4,799693	0.011212	4,799693	0.010836	4,799693	0.011449	4,799693
0.010819	4 73038	0.01171	4 73038	0.000639	4 73038	0.011167	4 73038	0.011279	4 73038	0.01128	4 73038	0.010901	4 73038	0.011514	4 73038
0.010810	4 720106	0,01171	4 720106	0,000630	4 720106	0.011167	4 720106	0.011270	4 720106	0.011270	4 720106	0.010001	4 720106	0.011514	4 720106
0,010815	4,730100	0,01171	4,730100	0,000039	4,730100	0,011107	4,730100	0,011279	4,730100	0,011279	4,730100	0,010501	4,730100	0,011314	4,730100
0,010817	4,701839	0,011705	4,701839	0,000634	4,701839	0,011166	4,701839	0,01128	4,701839	0,011278	4,701839	0,0109	4,701839	0,011514	4,701839
0,010817	4,/012/8	0,011705	4,/012/8	0,000634	4,/012/8	0,011166	4,/012/8	0,01128	4,/012/8	0,011278	4,/012/8	0,0109	4,/012/8	0,011513	4,/012/8
0,010817	4,669717	0,011712	4,669717	0,000631	4,669717	0,011165	4,669717	0,011281	4,669717	0,01128	4,669717	0,010902	4,669717	0,011515	4,669717
0,010817	4,666967	0,011712	4,666967	0,000631	4,666967	0,011165	4,666967	0,011281	4,666967	0,01128	4,666967	0,010902	4,666967	0,011515	4,666967
0,010816	4,63129	0,011714	4,63129	0,000639	4,63129	0,011174	4,63129	0,011282	4,63129	0,011281	4,63129	0,010903	4,63129	0,011515	4,63129
0,010816	4,632087	0,011714	4,632087	0,000639	4,632087	0,011174	4,632087	0,011282	4,632087	0,011281	4,632087	0,010903	4,632087	0,011516	4,632087
0.010816	4.630272	0.011714	4.630272	0.000639	4.630272	0.011174	4.630272	0.011282	4.630272	0.011281	4.630272	0.010903	4.630272	0.011516	4.630272
0.010824	4 544485	0.011716	4 544485	0.000658	4 544485	0.011172	4 544485	0.011289	4 544485	0.011288	4 544485	0.01091	4 544485	0.011522	4 544485
0.010824	4 54526	0.011716	4 54536	0.000658	4 54526	0.011172	4 54526	0.011200	4 54526	0.011200	4 5 4 5 2 5	0.01001	4 54526	0.011522	4 54526
0,010824	4,34320	0,011710	4,34320	0,000038	4,34320	0,011172	4,34320	0,011285	4,34320	0,011287	4,34320	0,01091	4,34320	0,011522	4,34320
0,010817	4,530497	0,01172	4,530497	0,000658	4,530497	0,011177	4,530497	0,01129	4,530497	0,011288	4,530497	0,01091	4,530497	0,011522	4,530497
0,010816	4,528468	0,011718	4,528468	0,000659	4,528468	0,011175	4,528468	0,01129	4,528468	0,011288	4,528468	0,01091	4,528468	0,011523	4,528468
0,010895	4,778265	0,011801	4,778265	0,000657	4,778265	0,011256	4,778265	0,011371	4,778265	0,011369	4,778265	0,01099	4,778265	0,011606	4,778265
0,010895	4,774389	0,011801	4,774389	0,000657	4,774389	0,011256	4,774389	0,011371	4,774389	0,011369	4,774389	0,01099	4,774389	0,011606	4,774389
0,010924	4,471911	0,011831	4,471911	0,000676	4,471911	0,011286	4,471911	0,011401	4,471911	0,0114	4,471911	0,01102	4,471911	0,011636	4,471911
0,010922	4,470845	0,011834	4,470845	0,000677	4,470845	0,011286	4,470845	0,011401	4,470845	0,0114	4,470845	0,01102	4,470845	0,011636	4,470845
0,011048	4,826622	0,011957	4,826622	0,000674	4,826622	0,011413	4,826622	0,011533	4,826622	0,01153	4,826622	0,011147	4,826622	0,01177	4,826622
0.011048	4.824784	0.011957	4.824784	0.000674	4.824784	0.011413	4.824784	0.011533	4.824784	0.01153	4.824784	0.011148	4.824784	0.01177	4.824784
0.01105	4,819637	0.011945	4,819637	0.000674	4.819637	0.011408	4.819637	0.01153	4.819637	0.011527	4,819637	0.011143	4,819637	0.011766	4,819637
0.01105	4 820255	0.011945	4 820255	0.000674	4 820255	0.011408	4,820255	0,01153	4,820255	0.011527	4,820255	0.011143	4 820255	0.011766	4,820255
0,01103	4,020233	0,011045	4,020233	0,000074	4,020233	0,011270	4,020233	0,011513	4,020205	0,011327	4,020233	0,011143	4,020233	0,011700	4,020233
0,011027	4,708520	0,011926	4,708520	0,000674	4,706520	0,011379	4,708520	0,011512	4,708520	0,011499	4,708520	0,011123	4,708520	0,011742	4,708520
0,011027	4,769472	0,011926	4,769472	0,000674	4,769472	0,011379	4,769472	0,011512	4,769472	0,011498	4,769472	0,011123	4,769472	0,011742	4,769472
0,010995	4,732643	0,011913	4,732643	0,000675	4,732643	0,01136	4,732643	0,011501	4,732643	0,011482	4,732643	0,011109	4,732643	0,011727	4,732643
0,010995	4,734329	0,011913	4,734329	0,000675	4,734329	0,01136	4,734329	0,011501	4,734329	0,011482	4,734329	0,011109	4,734329	0,011727	4,734329
0,010976	4,711002	0,011902	4,711002	0,000677	4,711002	0,011358	4,711002	0,011493	4,711002	0,011472	4,711002	0,0111	4,711002	0,011715	4,711002
0,010976	4,71267	0,011902	4,71267	0,000677	4,71267	0,011358	4,71267	0,011493	4,71267	0,011472	4,71267	0,0111	4,71267	0,011714	4,71267
0,010964	4,704176	0,011891	4,704176	0,000675	4,704176	0,011344	4,704176	0,011489	4,704176	0,011465	4,704176	0,011095	4,704176	0,011708	4,704176
0.010963	4,704551	0.011891	4,704551	0.000677	4,704551	0.011344	4,704551	0.011489	4,704551	0.011465	4,704551	0.011094	4,704551	0.011707	4,704551
0.010983	4,696683	0.011898	4,696683	0.000684	4,696683	0.011344	4,696683	0.011486	4,696683	0.011461	4,696683	0.011091	4,696683	0.011704	4,696683
0.010983	4 69845	0.011898	4 69845	0.000684	4 69845	0.011344	4 69845	0.011486	4 69845	0.011462	4 69845	0.011091	4 69845	0.011704	4 69845
0,010985	4,03040	0,011090	4,03043	0,00064	4,03043	0.01124	4,05045	0.011400	4,03043	0.011402	4,05045	0.011091	4 6033/14	0.011704	4,03043
0,010955	4,093261	0,011085	4,095261	0,000678	4,093261	0,01154	4,095261	0,011464	4,095261	0,011458	4,093261	0,011088	4,095201	0,011701	4,093261
0,010955	4,694562	0,011885	4,694562	0,000678	4,694562	0,01134	4,694562	0,011484	4,694562	0,011458	4,694562	0,011088	4,694562	0,011/01	4,694562
0,01095	4,688534	0,011886	4,688534	0,000683	4,688534	0,011336	4,688534	0,011481	4,688534	0,011452	4,688534	0,011085	4,688534	0,011694	4,688534
0,01095	4,694627	0,011886	4,694627	0,000683	4,694627	0,011336	4,694627	0,011481	4,694627	0,011452	4,694627	0,011085	4,694627	0,011693	4,694627
0,010952	4,679507	0,01189	4,679507	0,000679	4,679507	0,011323	4,679507	0,011476	4,679507	0,011448	4,679507	0,011081	4,679507	0,011689	4,679507
0,010952	4,682248	0,01189	4,682248	0,000679	4,682248	0,011323	4,682248	0,011476	4,682248	0,011448	4,682248	0,011081	4,682248	0,011689	4,682248
0,010931	4,677444	0,011862	4,677444	0,000676	4,677444	0,01132	4,677444	0,011473	4,677444	0,011444	4,677444	0,011078	4,677444	0,011684	4,677444
0,010926	4,677642	0.011861	4,677642	0.000681	4,677642	0.011319	4,677642	0.011473	4,677642	0.011445	4,677642	0.011078	4,677642	0.011685	4,677642
0.010024	4 673174	0.011872	4 673174	0.000660	4 673174	0.011322	4 673174	0.011/7	4 673174	0.011441	4 673174	0.011074	4 673174	0.011691	4 673174
0,010934	4,073174	0,011073	4,075174	0,000009	4,075174	0.011222	4,075174	0.01147	4,073174	0,011441	4,073174	0,011074	4,075174	0,011081	4,075174
0,010936	4,0/0/52	0,0118/2	4,0/0/52	0,000675	4,0/0/52	0,011323	4,6/0/52	0,01147	4,6/0/52	0,011441	4,0/0/52	0,011074	4,070/52	0,01168	4,0/0/52
0,010939	4,6/0163	0,011862	4,670163	0,000676	4,670163	0,011316	4,670163	0,0114/1	4,670163	0,011442	4,6/0163	0,011074	4,6/0163	0,011681	4,670163
0,010939	4,671328	0,011862	4,671328	0,000676	4,671328	0,011316	4,671328	0,01147	4,671328	0,011441	4,671328	0,011074	4,671328	0,011681	4,671328
0,010929	4,665995	0,011863	4,665995	0,000676	4,665995	0,01132	4,665995	0,011469	4,665995	0,011439	4,665995	0,011072	4,665995	0,011679	4,665995
0,010929	4,667131	0,011863	4,667131	0,000676	4,667131	0,01132	4,667131	0,011469	4,667131	0,011439	4,667131	0,011072	4,667131	0,011679	4,667131
0,010932	4,660312	0,01186	4,660312	0,000671	4,660312	0,011313	4,660312	0,011468	4,660312	0,011438	4,660312	0,011071	4,660312	0,011677	4,660312
0,010937	4,664367	0,01186	4,664367	0,000671	4,664367	0,011313	4,664367	0,011468	4,664367	0,011438	4,664367	0,011071	4,664367	0,011676	4,664367
0.01092	4,657108	0.011859	4,657108	0.000674	4,657108	0.011313	4,657108	0.011466	4,657108	0.011434	4,657108	0.011067	4,657108	0.011674	4,657108
0.01092	4,658853	0.011859	4,658853	0,000674	4,658853	0.011313	4,658853	0.011466	4,658853	0.011434	4,658853	0,011067	4,658853	0.011674	4,658853

APÊNDICE I – Cálculo do momento de fissuração conforme a NBR 6118 (2023)

Viga 1

Pela formulação da NBR 6118

$$M_r = \frac{\alpha * f_{ct} * I_c}{y_t} = \frac{1,5 * 0,21 * (26,83)^{\frac{2}{3}} * \frac{(150 * 300^3)}{12}}{150} = 6351946,8 Nmm$$
$$M_{fis} = 6,35kNm$$

Devido à força de compressão

$$\frac{N_p}{A_c} * \frac{I_c}{y_t} = \frac{500 * 2 * 47,78}{150 * 300} * \frac{\frac{150 * 300^3}{12}}{150} = 2389000,0 Nmm = 2,39kNm$$

Devido ao momento fletor de protensão

$$M_p = (500 * 2 * 47,78) * (248,5 - 150) = 4706330 Nmm = 4,71 kNm$$

Logo,

$$M_{r_{total}} = 6,35 + 2,39 + 4,71 = 13,45 \, kNm$$

Viga 2

Pela formulação da NBR 6118

$$M_r = \frac{\alpha * f_{ct} * I_c}{y_t} = \frac{1,5 * 0,21 * (26,41)^{\frac{2}{3}} * \frac{(150 * 300^3)}{12}}{150} = 6285483,24 Nmm$$
$$M_{fis} = 6,29 \ kNm$$

Devido à força de compressão

$$\frac{N_p}{A_c} * \frac{I_c}{y_t} = \frac{541 * 2 * 47,78}{150 * 300} * \frac{\frac{150 * 300^3}{12}}{150} = 2584898 Nmm = 2,58 kNm$$

Devido ao momento fletor de protensão

$$M_p = (541 * 2 * 47,78) * (248,5 - 150) = 5092249,06 Nmm = 5,09 kNm$$

Logo,

$$M_{r_{total}} = 6,29 + 2,58 + 5,09 = 13,96 \, kNm$$

ANEXOS

ANEXO A – Informações sobre o vergalhão de basalto ANEXO B – Ficha técnica do Sikadur 32

ANEXO A – Informações sobre o vergalhão de basalto

Diâmetro comercial (mm)	Diâmetro nominal (mm)	Área nominal (mm²)	Carga de ruptura (kN)	Resistência à tração (MPa)	Módulo de elasticidade (GPa)	Deslocamento máximo (mm)
6	6,5	33,1 <mark>8</mark>	34,417	1039,37	52,19	1,11
8	7,8	47,78	48,197	1013,60	52,27	1,27
10	10,10	80,12	82,261	1012,92	55,43	1,02
12	11,90	113,1	112,83	1014,47	51,54	1,18

ANEXO B – Ficha técnica do Sikadur 32

DADOS DO PRODUTO

Base química	Resina epóxi							
Embalagem	Caixa com 6 latas de 1 k	g cada (A+B)						
Cor	Cinza claro							
Prazo de validade	24 meses depois da data de produção, quando estocado corretamente.							
Condições de estocagem	Armazenar na embalagem original intacta, em temperaturas entre +5°C and +35°C. Mantenha protegido de luz direta do sol e gelo.							
Densidade	~1,5 kg/l (A+B) (23°C)							
Resistência à Compressão	1 dia 7 dias	.r.) (ASTM D 695) .r.)						
Resistência à flexão	7 dias: ~ 50 MPa	(ASTM C 580)						
Resistência adesiva à tração	Concreto: Concreto:	18,4 MPa (14 dias) 3,80 MPa (7 dias) - falha no concreto	(ASTM C 882) Teste Pull Off					
	Aço:	~ 12 MPa (3 dias)	Teste Pull Off					
Temperatura de serviço	Min +10°C / Máx +60°C							
Proporção da mistura	A : B = 2 : 1 (em peso)							
Consumo	Sikadur®-32 (A + B): 1,50 kg/m ² por mm de espessura.							
Temperatura ambiente	Min. +10°C / Máx. +60°C							
Pot life	1 kg: 45 minutos (23°C)							
Tempo de cura	Cura inicial: 24 horas Cura final: 7 dias							

