

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Geologia

Henrique Bruno

Evolução paleoproterozica dos complexos da borda Sul do Cráton de São Francisco

> Rio de Janeiro 2019

Henrique Bruno

Evolução paleoproterozica dos complexos da borda Sul do Cráton de São

Francisco

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Geociências, da Universidade do Estado do Rio de Janeiro. Área de concentração: Tectônica, Petrologia e Recursos Minerais.

Orientadora: Prof.^a Dr.^a Monica da Costa Pereira Lavalle Heilbron Coorientador: Prof. Dr. Julio Cesar Horta de Almeida

> Rio de Janeiro 2019

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/C

Bruno, Henrique. Evolução paleoproterozica dos complexos da borda Sul do Cráton de São Francisco. / Henrique Bruno. – 2019. 124 f. : il.
Orientadora: Monica da Costa Pereira Lavalle Heilbron Coorientador: Julio Cesar Horta de Almeida.
Tese (Doutorado) – Universidade do Estado do Rio de Janeiro, Faculdade de Geologia.
1. Geodinâmica- Teses. 2. Petrologia – Teses. 3. Rochas granitoides -Teses. 4. Geocronologia – Teses. 5. Geologia regional – Teses. I. Heilbron, Monica da Costa Pereira Lavalle. II. Almeida, Julio Cesar Horta de . III. Universidade do Estado do Rio de Janeiro. Faculdade de Geologia. IV. Título.

Bibliotecária Responsável: Priscila Freitas Araujo/ CRB-7: 7322

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Data

Henrique Bruno

Evolução paleoproterozica dos complexos da borda Sul do Cráton de São Francisco

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Geociências, da Universidade do Estado do Rio de Janeiro. Área de concentração: Tectônica, Petrologia e Recursos Minerais.

Aprovada em 18 de fevereiro de 2019.

Banca Examinadora:

Prof.^a Dr^a. Monica da Costa Pereira Lavalle Heilbron (Orientadora) Faculdade de Geologia - UERJ

Prof. Dr. Julio Cesar Horta de Almeida (Coorientador) Faculdade de Geologia - UERJ

Prof.^a Dr^a. Caroline Peixoto Faculdade de Geologia - UERJ

Prof. Dr. Wilson Teixeira Universidade de São Paulo - USP

Prof. Dr. Ciro Ávila Universidade Federal do Rio de Janeiro - UFRJ

Prof. Dr. Fernando Alkmim Universidade Federal de Ouro Preto - UFOP

> Rio de Janeiro 2019

DEDICATÓRIA

Dedico esta tese de doutorado à minha amada avó, Neusa de Freitas Bezerra

AGRADECIMENTOS

À minha orientadora, professora e amiga, Prof^a. Monica Heilbron, pela orientação, ensinamentos e confiança no decorrer desses sete anos em que trabalhamos juntos.

Ao meu co-orientador, Prof. Julio Almeida, pelas discussões, ensinamentos e amizade ao longo desses anos.

Aos pesquisadores do Grupo de Pesquisa Tektos, em especial aos Prof. Claudio Valeriano e a Professora Caroline Peixoto, pelas discussões geológicas e sugestões durante o desenvolvimento dessa tese.

Ao meu co-orientador Prof. Rob Strachan, pela oportunidade, orientação, discussões e dicasimportantes para o desenvolvimento desse trabalho. Extendo esse agradecimento aos demais professores da University of Portsmouth, Prof. Carig Storey, Prof. Mike Fowler, Prof. Randall Parrish, Prof. Catherine Mottran e todos os colegas do Crustal Evolution Research Group, pela amizade, parceira, ensinamentos e discussões.

Aos amigos parceiros de trabalho no Grupo do Embasamento, Mariana Carvalho, Rasec Almeida, Lucas Barbosa, Vitalino Elizeu pela parceria.

Aos amigos Samuel Bersan, Camila Magalhães, Sheila Schuindt e Hugo Moreira, pela amizade, boas e longas discussões geológicas e por terem dividido comigo a experiência na Inglaterra.

Aos técnicos do LGPA e LAGIR, Gabi, Núbia, Carla e Gilberto.

Ao Programa de Pós-Graduação em Geociências da Faculdade de Geologia da UERJ e à FAPERJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro pela concessão da bolsa de doutorado.

À minha família, em especial aos meus queridos pais, Sonia Bruno e Hélio Bruno, meus irmãos, Thiago, Fernanda e Natasha pelo apoio incondicional durante toda a minha trajetória acadêmica.

À todos aqueles que, de alguma forma, contribuíram para a execução desse trabalho. Muito obrigado.

We find no vestige of a beginning, - no prospect of an end

James Huton

RESUMO

BRUNO, Henrique. **Evolução paleoproterozica dos complexos da borda Sul do Cráton de São Francisco**. 2019. 124 f. Tese (doutorado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2019.

A porção sul do Paleocontinente São Francisco no Brasil é caracterizada por núcleos arqueanos e arcos magmáticos Paleoproterozoicos que foram amalgamados durante processos orogênicos siderianos e orogênicos (aproximadamente 2.4 a 2.1 Ga). Novas análises de isótopo U-Pb em zircão e Sm-Nd de rocha total, combinadas com análises de composição de elementos principais e traços, restringem a história de cristalização do bloco Neoarqueano Piedade (em aproximadamente 2.6 Ga) e do Complexo Paleoproterozoico Mantiqueira (aproximadamente 2.1 - 1.9 Ga). Estes, portanto, exibem histórias magmáticas bastante distintas antes de sua amalgamação em, aproximadamente, 2.05 Ga. Isótopos de Sm-Nd e Rb-Sr implicam em uma origem mista mantélica-crustal para as amostras em ambas as unidades. Um ciclo orogênico Paleoproterozoico completo, desde a subducção até a colisão e colapso, é registrado no Bloco Piedade e no Complexo Mantiqueira. Os processos de subdução do Riaciano e Orosiriano (aprox. 2.2 - 2.1 Ga) levaram à geração de suítes coevas Tonalito-Throndhjemito-Granodiorito e sanukitoides (aprox. 2.16 Ga), seguidos por granitoides de alto K tardiamente (2.10 a 2.02 Ga) que marcam o estágio colisional. A colisão acrescionária do Complexo Mantiqueira contra o Bloco Piedade em 2.08 - 2.04 Ga também é registrada pelo metamorfismo de fácies granulíticas neste último terreno, ao longo da zona de sutura Ponte Nova. O estágio colisional foi seguido pela colocação de toleítos intraplaca em cerca de 2.04 Ga e por rochas alcalinas (sienitos e rochas básicas enriquecidas) em cerca de 1.98 Ga, marcando a transição para um regime tectônico extensional. A descoberta de dois episódios magmatismo de Tonalito-Throndhjemito-Granodiorito e sanukitoide, um durante o Neoarqueano no Complexo Piedade e outro durante o Riaciano no Complexo Mantiqueira, indica que o início do derretimento relacionado à subducção do manto metassomatizado não foi restrito aos tempos Neoarqueanos, como geralmente se acredita, mas persistiu muito mais tarde no Paleoproterozoico.

Palavras-Chave: geodinâmica; granitoide de alto Ba-Sr; transição ttg-sanukitoide diacrônica; paleoproterozoico; complexo Mantiqueira.

ABSTRACT

BRUNO, Henrique. **Paleoproterozoic evolution of the complexes on the southern edge of the São Francisco Craton**. 2019. 124 f. Tese. (Doutorado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2019.

The southern portion of the São Francisco Palaeocontinent in Brazil is denoted by Archean nuclei and Paleoproterozoic magmatic arcs that were amalgamated during Siderian to Orosirian orogenic processes (ca. 2.4 to 2.1 Ga). New isotopic U-Pb in zircon and Sm-Nd whole rock combined with major and trace element composition analyses constrain the crystallization history of the Neoarchean Piedade block (at ca. 2.6 Ga) and the Paleoproterozoic Mantiqueira Complex (ca. 2.1 – 1.9 Ga). These therefore display quite different magmatic histories prior to their amalgamation at ca. 2.05 Ga. Sm-Nd and Rb-Sr isotopes imply a mixed mantle-crustal origin for the samples in both units. A complete Palaeoproterozoic orogenic cycle, from subduction to collision and collapse, is recorded in the Piedade Block and the Mantiqueira Complex. Rhyacian to Orosirian subduction processes (ca. 2.2 - 2.1 Ga) led to the generation of coeval (ca. 2.16 Ga) TTG suites and sanukitoids, followed by late (2.10 to 2.02 Ga) high-K granitoids that mark the collisional stage. The collisional accretion of the Mantiqueira Complex against the Piedade Block at 2.08 -2.04 Ga is also recorded by granulite facies metamorphism in the latter terrane, along the Ponte Nova suture zone. The collisional stage was closely followed by the emplacement of within-plate tholeiites at ca 2.04 Ga and by alkaline rocks (syenites and enriched basic rocks) at ca. 1.98 Ga, marking the transition to an extensional tectonic regime The discovery of two episodes of TTG and sanukitoid magmatism, one during the Neoarchean in the Piedade Complex and another during the Rhyacian in the Mantiqueira Complex, indicates that the onset of subduction-related melting of metasomatized mantle was not restricted to Neoarchean times, as generally believed, but persisted much later into the Paleoproterozoic.

Keywords: geodynamics; high Ba-Sr granitoids; diachronous ttg-sanukitoid transition; paleoproterozoic; Mantiqueira complex.

LISTA DE FIGURAS

Figura 1 –	Mapa geológico da Província Mantiqueira Meridional	19
Figura 2 –	Mapa geológico da área de estudo	27
Figura 3 –	Fotos de Afloramento do Complexo Mantiqueira	29
Figura 4 –	Fotomicrografias do Complexo Mantiqueira	30
Figura 5 –	Fotomicrografias do Complexo Mantiqueira	31
Figura 6 –	Fotografias de campo de litologias representativas do Bloco Piedade	32
Figura 7 –	Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicas	
	estudados rochas	32
Figura 8 –	Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicas	
	estudados rochas	33
Figura 9 –	Diagrama Concordia e grãos de Zircão da Amostra 66A	35
Figura 10 –	Diagrama Concordia e grãos de Zircão da Amostra 66B	36
Figura 11 –	Diagrama Concordia e grãos de Zircão da Amostra 21A	37
Figura 12 –	Diagrama Concordia e grãos de Zircão da Amostra 21B	38
Figura 13 –	Diagrama Concordia e grãos de Zircão da Amostra 148	38
Figura 14 –	Diagrama Concordia e grãos de Zircão da Amostra 19A	39
Figura 15 –	Diagrama Concordia e grãos de Zircão da Amostra 08	40
Figura 16 –	Diagrama Concordia e grãos de Zircão da Amostra 67	41
Figura 17 –	Diagrama Concordia e grãos de Zircão da Amostra 163A	41
Figura 18 –	Diagrama Concordia e grãos de Zircão da Amostra 137G	42
Figura 19 –	Diagrama Concordia e grãos de Zircão da Amostra 64A	43
Figura 20 –	Diagrama Concordia e grãos de Zircão da Amostra 64B	43
Figura 21 –	Diagrama Concordia e grãos de Zircão da Amostra 103C	44
Figura 22 –	Diagrama Concordia e grãos de Zircão da Amostra 355	45
Figura 23 –	Diagrama Concordia e grãos de Zircão da Amostra 19B	46
Figura 24 –	Diagrama Concordia e grãos de Zircão da Amostra 70D	46
Figura 25 –	Diagramas de litogeoquímica	48
Figura 26 –	Classificação Geoquimica dos granitoides estudados	49
Figura 27 –	Classificação Geoquimica dos granitoides estudados	49
Figura 28 –	Diagramas de elementos terras raras normalizados	50

Figura 29 –	Diagramas de elementos terras raras normalizados	51
Figura 30 –	Diagramas de elementos terras raras normalizados	52
Figura 31 –	Diagramas de elementos terras raras normalizados	53
Figura 32 –	Diagramas discriminatórios de Rochas básicas	53
Figura 33–	Diagramas de elementos terras raras normalizados	54
Figura 34 –	Diagramas de eNd(t) vs. Cristalização	55
Figura 35 –	Diagramas petrogenéticos para TTGs e Sanukitoides	58
Figura 36 –	Diagramas Isotópicos	60
Figura 37 –	Diagrama de variação de espessura crustal	61
Figura 38 –	Diagrama de distribuição de idade de TTG e Sanukitoide	62
Figura 39 –	Diagrama de evolução tectônica	64
Figura 40 –	Diagrama de correlação regional	65

LISTA DE TABELAS

Tabela 1 –	Resultados U-Pb do Bloco Piedade	39
Tabela 2 –	Resultados U-Pb do Complexo Mantiqueira	44
Tabela 3 –	Resultados U-Pb do Magmatismo Intraplaca	47

LISTA DE ABREVIATURAS E SIGLAS

CSF	Cráton de São Francisco
Et al	E colaboradores
Ga	Bilhões de anos
IBGE	Instituto Brasileiro de Geografia e Estatística
IGRF	Campo Geomagnético Internacional de Referência
Ma	Milhões de anos
Ν	Norte
NE	Nordeste
NW	Noroeste
PSF	Paleocontinente São Francisco
S	Sul
SE	Sudeste
SW	Sudoeste
TTG	Tonalito-Trondhjemito-Granodiorito
U	Urânio
UTM	Universe Transversor Mercator
WGS	World Geodetic System

SUMÁRIO

	INTRODUÇÃO
1	LEVANTAMENTO DO PROBLEMA, OBJETIVOS E MOTIVAÇÃO
2	ATIVIDADES, FERRAMENTAS E MÉTODOS
2.1	U-Pb (UFOP – Universidade Federal de Ouro Preto)
2.2	U-Pb (UoP – Universidade de Portsmouth)
2.3	Litogeoquímica
2.4	Isótopos de Sm-Nd e Sr
3	TECTÔNICA DO PALEOCONTINENTE SÃO FRANCISCO
4	CONTEXTO DA GEOLOGIA REGIONAL
4.1	Complexo Mantiqueira
4.2	Bloco Piedade
4.3	Rochas Metabásicas e Alcalinas – Magmatismo Intraplaca
5	RESULTADOS ANALÍTICOS
5.1	Geocronologia U-Pb
5.1.1	Bloco Piedade Neoarqueano
5.1.2	Complexo Mantiqueira
5.1.3	Magmatismo Intraplaca
5.2	Litogeoquímica e Isótopos de Sm-Nd/Rb-Sr
5.2.1	Granitoides de alto Ba-Sr
5.2.2	Rochas Metabásicas
5.2.3	Isótopos de Sm-Nd e Rb-Sr
6	DISCUSSÕES
6.1	Evolução Petrogenética
6.2	Evolução Tectônica
6.3	Correlações Regionais
	CONSIDERAÇÕES FINAIS
	REFERÊNCIAS
	ANEXO A – Dados de U-Pb
	ANEXO B – Dados de Litogeoquímica
	ANEXO C – Dados isotópicos

INTRODUÇÃO

O Complexo Mantiqueira, objeto de estudo da presente tese, é caracterizado como um conjunto de ortognaisses e rochas metabásicas associadas, sendo considerado a borda retrabalhada do Cráton São Francisco durante a orogenia Brasiliano/Pan-africana e o embasamento dos Cinturões Ribeira e Araçuaí (por exemplo, Heilbron et al., 2017). Inicialmente descrito por Barbosa (1954) como um conjunto de ortognaisses associados a rochas metabásicas, foi posteriormente subdividido por Ebert (1955, 1957), que considerou o segmento norte como tendo origem metassedimentar (metagrauvacas), sendo assim denominado Complexo Piedade.

Na década de 80, o termo Complexo Mantiqueira foi adotado para todos os ortognaisses com lentes metabásicas metamorfisadas sob fácies de anfibolito (Machado Filho et al., 1983; Hasuy & Oliveira, 1984; Trouw et al., 1986) durante o orógeno Brasialiano/Pan-Africano. Isso contrasta com as fácies granulíticas dos ortogranulitos do Complexo Juiz de Fora, que afloram na parte superior da lasca de empurrão do Terreno Ocidental da Faixa Ribeira. Vários autores contribuíram para revelar o caráter policíclico que caracteriza o Complexo Mantiqueira como um arco cordilheiro desenvolvido no Riaciano (Teixeira e Figueiredo, 1991; Brueckner et al., 2000; Silva et al., 2002; Duarte et al., 2004; Noce et al., 2007; Heilbron et al., 2010; Degler et al., 2018; Cutts et al., 2018; Kuribara et al., 2019).

Com o objetivo de contribuir para o conhecimento dessa unidade de embasamento no sudeste do Brasil, a tese inicialmente buscou investigar o Complexo Mantiqueira em escala regional, devido à escassa quantidade de dados disponíveis na literatura na região. À medida que a tese se desenvolveu e os primeiros resultados analíticos (U-Pb em zircão, litogeoquímica e isótopos de Sm-Nd e Sr) foram obtidos, detectaram-se diferenças entre as partes norte e sul do Complexo Mantiqueira, resultando em uma redefinição em dois terrenos tectonostratigráficos distintos, com uma zona de sutura Paleoproterozoica entre as duas unidades tectônicas construtivas.

A tese está estruturada em dez capítulos: 1 – Introdução; 2 – Metodologia; 3 – Estrutura Tectônica do Paleocontinente São Francisco; 4 – Contexto da Geologia Regional; 5 – U-Pb Geocronologia; 6 – Litogeoquímica e Isótopos de Sm-Nd/Rb-Sr; 7 – Evolução Petrogenética; 8 – Evolução Tectônica; 9 - Correlações Regionais dentro do Orógeno Riaciano Preservado no Norte do Paleocontinente São Francisco; 10 - Conclusão. No primeiro capítulo, são apresentadas as principais questões a serem abordadas na pesquisa e é feita uma primeira descrição do arcabouço tectônico da área de estudo. O capítulo de metodologia resume os procedimentos analíticos desenvolvidos na pesquisa. No terceiro capítulo, é apresentada a estrutura tectônica do Paleocontinente São Francisco, assim como as principais entidades tectônicas dos orógenos Minas e Bahia, que resultaram no amálgama do Paleocontinente São Francisco.

A partir do quarto capítulo, Contexto da Geologia Regional, são descritos os principais resultados obtidos com a tese, destacando os principais litotipos observados no Complexo Mantiqueira e no Bloco Piedade. No Capítulo 5, Geocronologia U-Pb, são apresentados os resultados analíticos da datação U-Pb dos zircões, com suas respectivas interpretações de cristalização, herança e metamorfismo.

No Capítulo 6, Litogeoquímica e Isótopos de Sm-Nd / Rb-Sr, os litotipos são separados em grupos composicionais, e é feita uma interpretação sobre a petrogênese dessas rochas a partir dos isótopos de Sm-Nd e Rb-Sr. No sétimo capítulo, Evolução Petrogenética, algumas questões relacionadas à petrogênese das diferentes suítes são abordadas, bem como as semelhanças entre os processos tectônicos do Arqueano e do Paleoproterozoico.

No Capítulo 8, Evolução Tectônica, é descrito o ciclo orogênico completo do Complexo Mantiqueira. No Capítulo 9, Correlações regionais dentro do orógeno Riaciano preservado no Paleocontinente Norte do São Francisco, são destacadas as possíveis correlações entre os orógenos Minas e Bahia. Por fim, o Capítulo 10 resume as principais conclusões.

1 LEVANTAMENTO DO PROBLEMA, OBJETIVOS E MOTIVAÇÃO

A origem das rochas granitoides e suas assinaturas geoquímicas têm sido objeto de diversos estudos, desempenhando um papel fundamental na compreensão da transição entre uma possível subducção rasa no Arqueano e placas tectônicas de subducção mais íngreme no Paleoproterozoico (Condie e Kröner, 2008; Dhuime et al., 2012; Moyen & Martin, 2012; Korenaga, 2013; Hastie et al., 2016; Tang et al., 2016; Hawkesworth et al., 2016). É amplamente aceito que a fronteira Proterozoico-Arqueano marca mudanças significativas na geodinâmica do planeta (Martin et al., 2005; Windley e Garde, 2009; Martin et al., 2010; Laurent et al., 2014), com a transição da predominância de rochas granitoides Tonalito-Trondhjemito-Granodiorito (TTG) no Arqueano para as rochas cálcio-alcalinas modernas, acreditadas como marcadas pela geração de sanukitoides (alto Ba-Sr) no Neoarquiano e Paleoproterozoico. As rochas granitoides de alto Ba-Sr são consideradas um grupo distinto formado em configurações de subducção com significativa participação do manto (Tarney e Jones, 1994; Fowler et al., 2001, 2008), fornecendo informações cruciais sobre a evolução tectônica da Terra.

Diferentes modelos têm sido propostos para a gênese das rochas granitoides TTG Arqueanas, como a fusão parcial de uma crosta eclogítica espessada sob altas pressões (Martin, 1987; Rapp e Watson, 1995; Foley et al., 2002; Rapp et al., 2003; Condie, 2005) e a fusão das porções basálticas de placas subduzidas (Martin, 1999; Foley et al., 2002). Alguns autores (por exemplo, Halla et al., 2009) apontaram a ampla variação na composição da série TTG, sugerindo diferentes origens petrogenéticas. Já as rochas sanukitoides foram formadas principalmente durante um período em que o mecanismo dominante para a gênese da crosta continental juvenil mudou da fusão de basaltos hídricos Arqueanos para a fusão do manto peridotítico enriquecido do pós-Arqueano, sujeito a metassomatismo (Halla 2005; Kovalenko et al., 2005; Halla et al., 2009; Moyen & Laurent, 2018). De acordo com Martin & Moyen (2002) e Martin et al. (2010), o desenvolvimento de cunhas mantélicas levou à interação entre o manto metassomatizado e magmas derivados da crosta (TTG), resultando em fundidos sanukitoides. Acredita-se que as mudanças na composição das associações de rochas refletem a diminuição progressiva da temperatura do manto, resultando em graus mais baixos de fusão parcial do manto e menos impregnação do fundido na litosfera, levando a mudanças fundamentais nos processos geodinâmicos (Kemp et al., 2010; Dhuime et al., 2015; Hawkesworth et al., 2016; Tang et al., 2016; e.g. Cawood et al., 2018).

O Cráton São Francisco (CSF) no Brasil é um componente chave do supercontinente Gondwana, definido, juntamente com outros crátons no Brasil, como um segmento crustal estável não significativamente afetado pela deformação colisional e metamorfismo Neoproterozoico (Almeida et al. 1981; Cordani and Sato 1999; Campos Neto, 2000; Alkmim et al. 2001; Brito-Neves 2002). O CSF é cercado por cinturões orogênicos Neoproterozoicos que retrabalharam seus domínios periféricos (e.g. Heilbron et al., 2017). O termo Paleocontinente São Francisco (PSF) denota o amálgama de núcleos Arqueanos e arcos magmáticos Paleoproterozoicos durante os processos orogênicos Siderianos aos Orosirianos (cerca de 2.4 a 2.1 Ga) (Trompette, 1994; Noce et al., 2007; Heilbron et al., 2017; Teixeira et al., 2017; Degler et al., 2018; Pinheiro et al., 2019). Portanto, o PSF compreende unidades de rocha com mais de 1.8 Ga, independentemente da impressão sobreposta Neoproterozoica. Como contém uma ampla variedade de rochas granitoides Arqueanas a Paleoproterozoicas e sucessões supracrustais (Brito-Neves et al. 1999; Almeida et al. 2000; Teixeira et al. 2000; Schobbenhaus and Brito Neves 2003; Barbosa and Sabaté 2004; Fuck et al. 2008; Alkmim and Martins-Neto, 2012), o PSF é uma área potencialmente importante para testar modelos de evolução crustal e magmática transicional do Argueano ao Paleoproterozoico.

Nas porções nordeste e sudeste do PSF, vários terrenos Arqueanos são bordeados por dois cinturões orogênicos Paleoproterozoicos, o orógeno oriental da Bahia no norte e o orógeno Minas no sul (Alkmim & Teixeira, 2017; Barbosa & Barbosa, 2017; Teixeira et al., 2017). O orógeno Minas, foco deste trabalho, inclui três domínios tectônicos que evoluíram como sistemas de arco magmático Paleoproterozoico: o Cinturão Mineiro e os Complexos Mantiqueira e Juiz de Fora (Figura 1). Os Complexos Mantiqueira e Juiz de Fora foram retrabalhados em altos graus metamórficos durante a orogenia do Brasiliano (Heilbron et al., 1998; Silva et al., 2002; Heilbron et al., 2010; Heilbron et al., 2017; Degler et al., 2018; Kuribara et al., 2019). O Complexo Mantiqueira compreende ortognaisses bandados, relacionados à configuração de arco magmático (cerca de 2.2 Ga), e granitoides colisionais mais jovens (cerca de 2.15 Ga). Grãos de zircão herdados e dados isotópicos de Nd indicam um componente da crosta Arqueana na origem desses magmas, que provavelmente evoluíram como um arco do tipo cordilheira (Duarte et al. 2004). O Complexo Mantiqueira tem sido agrupado com o Complexo Piedade a oeste, sendo ambos interpretados como a mesma unidade tectônica, com o termo Complexo Mantiqueira adotado para todos os ortognaisses contendo lentes máficas metamorfisadas em fácies de anfibolitos durante a orogenia

Nota: Brasiliano/Pan-africano no Neoproterozoico (Machado Filho et al., 1983; Hasuy & Oliveira, 1984; Trouw et al., 1986).

Legenda: Cenário geológico do Paleocontinente São Francisco. a) Gondwana configuração adaptada de D'Agrella-Filho & Cordani (2017). b) Blocos arqueanos e Arcos magmáticos paleoproterozóicos do Paleocontinente São Francisco-Congo. Modificado de Alkmin & Teixeira, 2017; Barbosa & Barbosa, 2017; Degler et al., 2018.

Fonte: O autor, 2019. Baseado nas referências supracitadas.

Este trabalho apresenta novos dados de litogeoquímica em rocha total, geocronologia U-Pb e dados isotópicos (Rb-Sr, Sm-Nd) por ionização térmica de rocha total no espectrômetro de massa (TIMS) de diferentes terrenos tectono-estratigráficos, Complexo Mantiqueira e Bloco Piedade. Os novos dados sugerem fortemente que os dois complexos se originaram como terrenos geoquimicamente e isotopicamente contrastantes, amalgamados durante a orogênese Riaciana (cerca de 2.05 Ga) mais recente. O Complexo Piedade originouse como um bloco Paleocontinental Arqueano, enquanto o Complexo Mantiqueira formou-se como um arco magmático juvenil no Paleoproterozoico. Dois episódios de geração de magma, TTG-sanukitoide, são identificados: um evento mais antigo, de aproximadamente 2.7 Ga, no Bloco Piedade, e um mais recente, de aproximadamente 2.1 Ga, no Complexo Mantiqueira. Ambos têm implicações significativas para o momento da mudança em relação à tectônica moderna.

2 ATIVIDADES, FERRAMENTAS E MÉTODOS

LA-ICPMS U-Pb geocronologia, litogeoquímica e dados de isótopos radiogênicos foram obtidos a partir de uma série de amostras do Complexo Mantiqueira e Bloco Piedade. Análises de U-Pb foram realizadas nos laboratórios da Universidade de Porstmouth (UK) e na Universidade Federal de Ouro Preto (Brasil). Análises das composições foram realizadas pelo Activation Laboratories Ltd (Actlabs, Ancaster, Canada) e os dados de isótopos de Sm-Nd e Sr foram adquiridos pelo laboratório de Geocronologia e de Isótopos Radiogênicos (LAGIR) da Universidade Estadual do Rio de Janeiro (UERJ), Brasil.

Os procedimentos analíticos de todas as técnicas e os laboratórios envolvidos neste trabalho estão descritos a seguir.

2.1 U-Pb (UFOP – Universidade Federal de Ouro Preto)

Dez amostras (19A, 19B, 21A, 21B, 148, 103C, 70D, 355, 163A, 148) foram processadas no LGPA (Laboratório Geológico de Processamento de Amostras) na UERJ. Primeiramente realizou-se as etapas de britagem e moagem. Em seguida, utilizando as mesas Wilfley e o separador magnético Frantz, foram realizados os concentrados de metais pesados das amostras. Vários minerais foram identificados por meio do microscópio binocular. Grãos de zircões foram catados, embutidos em resina epoxy e polidos para revelar seu interior. As imagens por catodoluminescência (CL) e por Backscattered electron (BES) foram obtidas no Laboratório Multi Usuário de Meio Ambiente e Materiais (MuiltiLab) da UERJ.

As datações dos zircões por U-Pb (LA-ICP-MS) foram realizadas no Labotório de Geocronologia Isotópica da Universidade Federal de Ouro Preto (EM-UFOP) utilizando o Thermo Scientific Element 2 sector field ICP-MS acoplados com o sistema de laser de Nd: YAG CETAC LSX-213 G2+ ($\lambda = 213$ nm). Laser ablations foram realizados com um diâmetro de feixe de 20 µm, frequência de 10 Hz e fluência de ~3 J/cm2. Com o objetivo de testar a validade dos métodos aplicados, a precisão e reprodutibilidade externa dos dados de idade U – Pb obtidos, o zircão BB (562 ± 1 Ma; Santos et al., 2017) foi utilizado como material de referência primário. Zircão Plešovice (337.3 ± 0.4 Ma; Sláma et al., 2008) e GJ-1 (608 ± 1 Ma; Jackson et al., 2004) foram usados como padrões secundários para controle de qualidade. Os dados foram corrigidos utilizando o pacote de software offline GLITTER® (Van Achterbergh et al., 2001). A concórdia e os diagramas da distribuição de idades foram construídos usando o programa Excel Isoplot (Ludwig, 2003). Para mais informações detalhadas a respeito dos procedimentos analíticos, vide Moreira et al., (2018). Conjunto dos dados completos podem ser encontrados no Anexo A.

2.2 U-Pb (UoP – Universidade de Portsmouth)

Seis amostras (66A, 66B, 64A, 64B, 08, 67) foram processadas por técncas de britagem no LGPA (Laboratório Geológico de Processamento de Amostras). Primeiramente realizou-se as etapas de britagem e moagem. Em seguida, utilizando as mesas Wilfley e o separador magnéticoFrantz, foram realizados os concentrados de metais pesados das amostras. Vários minerais foram identificados por meio do microscópio binocular, grãos de zircões foram catados, embutidos em resina epoxy e polidos para reveler seu interior. As imagens por catodoluminescência (CL) e por Backscattered electron (BES) em um microscópio eletrônico de varredura, MEV (Zeiss EVO MA 10 LaB6) na School of Earth and Environmental Sciences (SEES), Universidade de Portsmouth, UK. As datações de U-Pb (LA-ICP-MS) foram realizadas na Universidade de Portsmouth usando um Jena PlasmaQuant Elite ICP-MS acoplado a um sistema de laser ASI RESOlution 193 nm ArF excimer. Utilizou-se um diâmetro de feixe de 15 µm, frequência de 2 Hz e fluência de ~3.0 J/cm2. O material de referência, zircão BB9 (Santos et al., 2017), foi utilizado como padrão primário e secundário para avaliar a exatidão e precisão da corrida analítica: Temora (ID-TIMS idade de 416.75 \pm 0.24 Ma; Black et al., 2003), zircão Plešovice (337.3 \pm 0.4 Ma; Sláma et al., 2008), tonalita Kaap Valley (SHRIMP idade de 3226 ± 14 Ma; e.g. Armstrong et al., 1990), também foram datados para referência secundária.

Os dados de zircão foram processados, corrigidos para fracionamento e deriva instrumental usando o software Iolite 3.4 (Paton et al., 2011). A concórdia e os diagramas da distribuição de idades foram construídos usando o programa Excel Isoplot (Ludwig, 2003). Para mais informações detalhadas a respeito dos procedimentos analíticos, vide Moreira et al., (2018). Conjunto dos dados completes podem ser encontrados no material suplementar A.

2.3 Litogeoquímica

Vinte e nove amostras foram selecionadas para análises de elementos maiores e elementos traços, incluindo Elementos Terras Raras – ETR: sete amostas do Bloco Piedade e vinte e duas do Complexo Mantiqueira. As amostras foram processadas por técnicas de britagem no LGPA (Laboratório Geológico de Processamento de Amostras). Uma alíquota de cada rocha, após a melhor cominuição, foi usada para produzir grânulos fundidos e foram analisadas para elementos maiores e traços.

Análises da composição foram realizadas pelo Activation Laboratories Ltd (Actlabs, Ancaster, Canada) seguindo o protocolo 4Litho, a combinação de pacotes: Código 4B (metaboreto e lítio/tetraboreto fusão ICP rocha total), Código 4B2 (ICP/MS elementos traços) e Código 4B (elementos maiores e Ba, Sc, Sr, V, Y e Zr). As amostras são preparadas e analisadas em um sistema de lote. Cada lote contem um método reagente, material de referência certificado e 17% de réplicas. As amostras são misturadas com um fluxo de metaboreto e tetraboreto de lítio e fundida em um forno de indução. O fundido é imediatamente despejado em uma solução de ácido nítrico 5% contendo um padrão interno e misturado continuamente até completa diluição (~30 minutes).

As amostras foram executadas para os principais óxidos e elementos traços selecionados (Código 4B) em uma combinação simultânea/sequencial Thermo Jarrell-Ash ENVIRO II ICP ou a Varian Vista 735 ICP. A calibração foi realizada utilizando sete USGS e CANMET preparados e certificados como materiais de referências. Um dos sete padrões é usado durante a análise de cada grupo de dez amostras. As amostras do Código 4B2 (outro elemento traço reportado) foram diluídas e analizadas por Perkin Elmer Sciex ELAN 6000, 6100 ou 9000 ICP/MS. Três blanks e cinco controles (três antes do grupo de amostra e dois depois) foram analisados por grupo de amostras. As duplicatas foram fundidas e analisadas a cada 15 amostras. O instrumento é recalibrado a cada 40 amostras. Informações mais detalhadas são apresentadas em www.actlabs.com.

Os tratamentos dos dados foram realizados utilizando planilhas do Microsoft Excel e Geochemical Data Toolkit (GCDkit) software of Janoušek et al. (2006). O conjunto de dados completo pode ser encontrado nas Tabelas 2,3,4,5 deste trabalho.

2.4 Isótopos de Sm-Nd e Sr

Vinte amostras foram selecionadas para análises isotópicas baseadas em suas afinidades geoquímicas: quarto do Bloco Piedade Neoarqueano e oito do Complexo Mantiqueira Riaciano. Os dados isotópicos de Sm–Nd e Sr foram obtidos no Laboratório de Geocronologia e Isótopos Radiogênicos (LAGIR) da UERJ. As amostras foram processadas utilizando técnicas de britagem no Laboratório Geológico de Processamento de Amostras. Uma alíquota (entre 25 e 50 mg) de amostras pulverizadas foi submetida à digestão ácida. A separação de Sr e dos ETR foi feita usando a troca catiônica seguindo técnicas convencionais com colunas de Teflon preenchidas com resina Biorad® AG50W-X8 (100–200 mesh) em HCl. Para a separação de Sm e Nd de outros ETR, uma coluna secundária foi utilizada com a resina Eichrom LN-B-25 S (50–100 μm).

As razões isotópicas foram medidas em montagens de filamento duplo, usando um espectrômetro TRITON. As idades de Sm-Nd do modelo de manto empobrecido (TDM) foram calculadas utilizando modelo de manto empobrecido de De Paolo (1981). Os procedimentos analíticos detalhados podem ser encontrados em Valeriano et al., (2019). O conjunto de dados completo pode ser encontrado na Tabela 6.

3 TECTÔNICA DO PALEOCONTINENTE SÃO FRANCISCO

Os orógenos Minas e Leste da Bahia (Figura 1) desenvolveram-se de maneira semelhante, com a acreção de arcos juvenis e continentais, bem como bacias sedimentares relacionadas ocorrendo entre aproximadamente 2.4 e 2.1 Ga. Os processos de acreção final foram marcados por rochas granitoides colisionais tardias entre aproximadamente 2.1 e 2.05 Ga, metamorfismo regional de cerca de 2.05 a 2.04 Ga, e o desenvolvimento de bacias de antepaís (Teixeira & Figueiredo, 1991; Trompette, 1994; Silva et al., 2002; Barbosa & Sabaté, 2004, Noce et al., 2010, Heilbron et al., 2010, Barbosa et al., 2015, Cruz et al., 2015; Teixeira et al., 2015, Barbosa & Barbosa, 2017; Alkmim & Teixeira, 2017).

A porção nordeste do PSF, o orógeno oriental da Bahia, não passou por retrabalhamento orogênico durante o Neoproterozoico, portanto, os terrenos Paleoproterozoicos e blocos Arqueanos (ex. Gavião, Guanhães, Serrinha e Jequié) estão mais bem preservados do que as rochas do Orógeno Minas. Os blocos Arqueanos incluem migmatitos, granulitos, cinturões de greenstone e granitoides que foram retrabalhados de forma variável durante o Paleoproterozoico (e.g. Barbosa et al., 2012).

O Orógeno Oriental da Bahia compreende uma série de unidades tectônicas, incluindo os blocos Arqueanos menores e as unidades Paleoproterozoicas: o Arco Magmático Ocidental da Bahia, o Cinturão Itabuna-Salvador-Curaçá (CISA) e o Complexo Buerarema (Brito Neves et al., 1999; e.g. Barbosa & Barbosa, 2017; Bersan et al., 2018). O Arco Magmático Ocidental da Bahia é interpretado como um arco do tipo cordilheira resultante da fusão ou retrabalho da crosta continental, com alguma contribuição do manto metassomatizado durante a colisão dos blocos Arqueanos de Gavião e Jequié (Cruz et al., 2016; Silva et al., 2016; Aguilar et al., 2017). O CISA é caracterizado pelo retrabalho Paleoproterozoico da crosta Arqueana, com colocação de rochas relacionadas ao arco de 2.1 a 2.06 Ga (Oliveira et al., 2009; Barbosa & Barbosa, 2017; Teixeira et al, 2017), enquanto o Complexo de Buerarema é interpretado como um arco magmático moderadamente juvenil (valores de εNd de 2.1 Ga +3.1 a -1.7), que foi adicionado aos núcleos Arqueanos em cerca de 2.06 Ga (Silva et al., 2002; Pinho et al., 2011).

Na porção sul do PSF, os blocos Arqueanos foram amplamente sobreimpressos durante a orogênese Paleoproterozoica e são referidos como os complexos metamórficos Campo Belo, Belo Horizonte e Bonfim. Eles constituem um terreno metamórfico de médio a alto grau composto principalmente de suítes TTG, migmatitos e plútons graníticos ricos em K, com remanescentes de associações supracrustais, incluindo cinturões de greenstone típicos e corpos máfico-ultramáficos em camadas (Machado et al., 1992; Teixeira et al. 2000; Pinese et al. 1995; Alkmim and Noce 2006; Romano et al. 2013; Lana et al. 2013; Goulart et al. 2013, Farina et al., 2015).

O Orógeno Minas compreende o Cinturão Mineiro e os Complexos Piedade, Mantiqueira e Juiz de Fora (Figura 1). A história evolutiva do Cinturão Mineiro é caracterizada pela intrusão de granitoides entre 2.47 e 2.12 Ga e sucessivas colisões de arcos magmáticos oceânicos e continentais durante o Paleoproterozoico (Ávila et al., 2014; Alkmim and Teixeira, 2017; Moreira et al., 2018; Barbosa et al., 2019), com eventual colisão com a margem continental arqueana em 2.1 Ga (Teixeira et al., 2015). O Cinturão Mineiro é composto principalmente de ortognaisses, plútons indeformados e rochas vulcânicas e subvulcânicas com assinaturas juvenis de ϵ Nd (2.2 Ga), sugerindo uma origem Paleoproterozoica com menor contaminação crustal (Ávila et al., 2014; Cardoso et al., 2018).

O Complexo Juiz de Fora consiste principalmente em uma suíte cálcio-alcalina de 2.42 a 2.08 Ga (Heilbron, et al., 2010), que foi metamorfisada em fácies de granulito durante o período Ediacarano (Heilbron et al., 1998; Trouw et al., 2000). A maioria dos autores interpreta o Complexo Juiz de Fora como o produto do magmatismo relacionado à subducção em um ambiente intraoceânico (Noce et al., 2007; Heilbron et al., 2010).

Os complexos Mantiqueira e Piedade, foco deste trabalho, foram caracterizados coletivamente como um arco cordilheiro Paleoproterozoico (Teixeira and Figueiredo, 1991, Brueckner et al., 2000, Silva et al., 2002, Duarte et al., 2004, Noce et al., 2007, Heilbron et al., 2010, Degler et a, 2018, Cutts et al., 2018, Kuibara et al., 2019). O Complexo Mantiqueira é caracterizado por adições magmáticas substanciais no intervalo de tempo de 2.2 a 2.05 Ga e, apesar da forte impressão Neoproterozoica, um episódio metamórfico datado de cerca de 2.04 Ga, também foi (Heilbron et al., 2010).

4 CONTEXTO DA GEOLOGIA REGIONAL

Neste trabalho, o Complexo Mantiqueira e o Bloco Piedade são interpretados como terrenos tecnoestratigráficos distintos. Dados adicionais de apoio sobre as diferenças petrogenéticas entre esses dois terrenos são apresentados e discutidos posteriormente neste trabalho.

O mapa geológico da Figura 2 apresenta as principais unidades geológicas que são o foco deste trabalho. As zonas de cisalhamento Ponte Nova e Abre Campo separam o Complexo Mantiqueira do Bloco Piedade e do Complexo Juiz de Fora, respectivamente, (Haralyi and Hasui, 1982; Alkmim et al., 2006; Noce et al., 2007; Degler et al., 2018). A zona de cisalhamento Abre Campo é um empurrão oblíquo que atualmente é interpretado como uma zona de sutura Paleoproterozoica que foi retrabalhada durante a orogenia Brasiliana Neoproterozoica (Figura 2; Alkmim et al., 2006, Heilbron et al., 2000; 2004; 2008). A zona de cisalhamento Ponte Nova justapôs rochas de diferentes graus metamórficos, fácies de xisto verde e de anfibolito, durante a orogenia Neoproterozoica. (Peres et al., 2004). Caracterizamos essa zona de cisalhamento como uma zona de sutura que separa as rochas mapeadas como relacionadas ao Bloco Piedade do Complexo Mantiqueira.

Figura 2: Mapa geológico da Área de Estudo

Legenda: Mapa tectônico da área de estudo na parte retrabalhada do sul de São Francisco Paleocontinente no Neoproterozóico (Modificado de Peres et al., 2004; Alkmin & Teixeira 2017). Dados U-Pb compilados de a) Heilbron et al., 2010; b) Silva et al., 2002; c) Pinheiro et al., 2019. Fonte: O autor, 2019.

4.1 Complexo Mantiqueira

A foliação dos ortognaisses do Complexo Mantiqueira se inclina moderadamente para sudeste, relacionada a várias gerações de dobras abertas reclinadas (Figura 2). Uma lineação de deformação profunda bem desenvolvida está associada a indicadores cinemáticos consistentes que mostram o transporte tectônico de topo para NW durante a orogenia Neoproterozoica (Heilbron et al., 2017 e referências contidas) (Figura 2). Observa-se a ocorrência de rochas metassedimentares Neoproterozoicas dobradas e empurradas intercaladas com os ortognaisses, especialmente nas proximidades da zona de cisalhamento Abre Campo. Essas rochas metassedimentares são caracterizadas por gnaisses de granadabiotita com camadas de quartzito de grãos grosseiros e lentes de cálcio-silicato. Próximo ao contato com o Complexo Juiz de Fora, a foliação dos ortognaisses é íngreme a subvertical e de caráter milonítico, indicando uma maior intensidade de deformação Neoproterozoica adjacente à zona de cisalhamento Abre Campo.

O Complexo Mantiqueira é dominado por um ortognaise bandado com texturas migmatíticas, caracterizado por leucossomos portadores de hornblenda circundados por melanossomas ricos em hornblenda, biotita e plagioclásio (Figura 3a, b). Uma faixa composicional em escala centimétrica está sempre presente no paleossomo e é definida por faixas alternadas, ricas tanto em fases máficas quanto em fases félsicas. O assembléia mineral consiste em hornblenda, biotita, plagioclásio, quartzo com menor teor de feldspato K, e minerais acessórios como titanita, apatita, zircão e minerais opacos (Figura 4a, b). As texturas observadas em seções delgadas são principalmente grano-nematoblásticas, com a foliação definida pela orientação preferencial dos minerais máficos paralela às bandas composicionais.

Figura 3: Fotos de Afloramento do Complexo Mantiqueira

Legenda: Fotografias de campo de litologias representativas do Complexo da Mantiqueira. A) Bandas composicionais em escala centimétrica em ortognaisses com texturas migmatíticas. B) Leucossomas contendo hornblenda rodeados por melanossomas ricos em hornblenda, biotita e plagioclásio. C) Granodioritos megacrísticos exibindo megacristais de feldspato K rosa pálido. Fonte: O autor, 2019

Legenda: Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicas estudados rochas. A) Amostra 08: Hornblenda-biotita Ortognaisse. B) Amostra 08 sob nicol cruzados. Fonte: O autor, 2019

Megacristais de ortognaisses foliados ocorrem intercalados com os ortognaisses portadores de hornblenda, exibindo megacristais de K-feldspato rosa claro e plagioclásio cinza claro atingindo cinco centímetros de comprimento em uma matriz composta por plagioclásio, feldspato K, quartzo e biotita (Figura 3c). Também há a presença de um ortognaisse de biotita hornblenda diorítica de granulação média a fina, com mineralogia essencial definida por hornblenda, biotita e plagioclásio. Minerais acessórios incluem apatita, alanita, minerais opacos e zircão. Ortognaisses cinza claro foliados também estão presentes na mineralogia, com textura homogênea e sem bandas composicionais conspícuas (Figura 5a, b).

A assembléia mineral dessa rocha é composta por hornblenda com exsolução de minerais opacos ao longo da clivagem, biotita, plagioclásio, quartzo e K-feldspato, e minerais acessórios, como apatita, titanita, zircão e minerais opacos. Ortognaisses foliados leucocráticos, de composição granítica a granodiorítica, ocorrem em camadas métricas a centimétricas, com contatos abruptos com os ortognaisses mencionados, contendo além de quartzo, K-feldspato e plagioclásio, traços de biotita, zircão e apatita.

Figura 5: Fotomicrografias do Complexo Mantiqueira

Legenda: Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicos estudados rochas. A) Amostra 64B: Plagioclásio e K-feldspato hornblenda-biotita megacrística ortognaisse. B) Amostra 64B sob nicois cruzados. Fonte: O autor, 2019.

4.2 Bloco Piedade

Biotita leucognaisses homogêneos com granulação fina, e hornblenda biotita gnaisse, de caráter mesocrático e homogêneo, são os principais litotipos constituintes do Bloco Piedade, conforme destacado por Hiraga et al. (2017). Ortognaisses contendo ortopiroxênio (Figuras 6 a, b e c), exibindo texturas que variam de protomiloníticas a miloníticas, delineiam uma faixa NE-SW no segmento sul do Bloco Piedade, adjacente à zona de cisalhamento de Ponte Nova (Figura 2). Acompanhando essas rochas, notam-se intrusões métricas de rochas básicas (Figura 6a). Os principais minerais que caracterizam a mineralogia incluem clinopiroxênio, hornblenda, plagioclásio, K-feldspato, quartzo (Figura 7) e granada nos granulitos máficos. Zircão, fases opacas e apatita são minerais acessórios comuns. Dentro dessa ocorrência, há registros de ocorrências isoladas de rochas "frescas", apresentando-se como blocos, sendo que uma delas evidencia a presença de feldspatos verdes e ortopiroxênios, indicando metamorfismo na fácies granulítica, seguindo a mesma tendência.

Figura 6: Fotografias de campo de litologias representativas do Bloco Piedade

A

Legenda: Fotografias de campo de litologias representativas do Bloco Piedade A) Métrica camada de anfibolito mostrando contato acentuado com a rocha encaixante (ortopiroxênio-hornblenda-biotita ortognaisse). B) Ortopiroxênio-Hornblenda-Biotita ortognaisse. E). ortognaisse diorítico ortopiroxênio-hornblenda-biotita com textura migmatítica.

Fonte: O autor, 2019

Figura 7: Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicas estudados rochas

Legenda: Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicas estudados rochas. A) Amostra 66A: Ortopiroxênio Hornblenda Biotita gnaisse sob fácies granulito. B) Amostra 66A sob nicol cruzados. Fonte: O autor, 2019

4.3 Rochas Metabásicas e Alcalinas – Magmatismo Intraplaca

Na área de estudo há a ocorrência de dois tipos diferentes de rochas metabásicas. Um tipo ocorre como lentes centimétricas a métricas dentro dos gnaisses félsicos com contatos localmente difusos a transicionais, sugerindo alguma assimilação magmática pela rocha hospedeira. O segundo tipo são camadas métricas a decamétricas de anfibolito maciço a finamente bandado que exibem contatos nítidos com os ortognaisses (Figura 6a). A mineralogia essencial consiste em hornblendas, diopsita e biotita em menores proporções, plagioclásio e quartzo, além das fases opacas, titanita, apatita e zircão como minerais acessórios (Figure 8a, b, c, d). Titanita e as fases opacas são localmente abundantes a mais de 5%, e a granada ocorre somente em corpos metabásicos maiores.

Figura 8: Fotomicrografías de lâminas delgadas dos ortognaisses e metabásicas estudados rochas

Legenda: Fotomicrografias de lâminas delgadas dos ortognaisses e metabásicos estudados rochas. A) Amostra 103C: Anfibolito contendo hornblenda, plagioclásio, k-feldspato, biotita e titanita. B) Amostra 103C sob nicois cruzados. C) Amostra 21A: anfibolito com clinopiroxênio, hornblenda, plagioclásio, quartzo, biotita e granada. D) Amostra de anfibolito 19B clinopiroxênio, hornblenda, plagioclásio, quartzo, biotita e granada. Fonte: O autor, 2019

5 RESULTADOS ANALÍTICOS

As análises de U-Pb em zircão são apresentadas primeiro no capítulo de resultados analíticos devido ao fato de ser um dado determinante, junto aos aspectos de campo, para a separação entre o Complexo Mantiqueira e o Bloco Piedade. A seguir, é apresentada a litogeoquímica dos dois terrenos tectonostratigráficos, que, como será discutido durante a tese, é semelhante, reiterando o processo de formação tanto no Arqueano quanto no Paleoproterozoico. Posteriormente neste capítulo, são apresentadas as características isotópicas (Sm-Nd e Rb-Sr) das suítes magmáticas, a fim de discutir as possíveis semelhanças e diferenças petrogenéticas do Complexo Mantiqueira e do Bloco Piedade.

5.1 Geocronologia U-Pb

Os dados de geocronologia de U-Pb em zircão realizados pelo LA-ICPMS foram obtidos a partir de dezesseis amostras nas quais cobriram uma gama de diferentes assinaturas geoquímicas em uma ampla área geográfica. Para selecionar os pontos de análise, foram utilizadas imagens de catodoluminescência e microscopia eletrônica de varredura (MEV) por meio da análise por elétrons secundários. As tabelas com resultados analíticos são fornecidas no Anexo A. Os resultados da geocronologia se dividem em três grupos principais: a) seis amostras do Bloco Piedade produziram idades de cristalização Neoarqueana (~2.7 Ga) com evidência de metamorfismo Riaciano subsequente (~2.05 Ga), e em uma amostra (19A) com metamorfismo de Ediacarano (~550 Ma); b) sete amostras do Complexo Mantiqueira produziram idades de cristalização Riaciana (~2.1 Ga) sobreimpressas pelo metamorfismo Ediacarano (~550 Ma), sendo caracterizadas como magmatismo intraplaca.

5.1.1 Bloco Piedade Neoarqueano

A amostra 66A foi coletada a partir de uma das lentes de ortogranulito félsico dentro da zona de cisalhamento de Ponte Nova (Figura 2). Ela contém grãos de zircão que variam do translúcido ao opaco, com cores marrons claras e profundas. A morfologia mais comum é prismática (euédrica a subédrica) com poucos grãos arredondados. Eles exibem um fino zoneamento ígneo oscilatório nos núcleos circundados por bordas brilhantes homogêneas. Alguns grãos mostram recuo entre os núcleos e as bordas (Figura 9). Os resultados são complexos com cinquenta e nove pontos divididos em núcleos e bordas, definindo duas linhas de discórdia. A análise dos núcleos rendeu um intercepto superior em 2693 \pm 23 Ma, interpretado como a idade de cristalização dos protólitos ígneos, enquanto que a discórdia fornecida pela análise das bordas indica um intercepto superior em 2043 \pm 30 Ma, interpretado como a idade de metamorfismo de fácies granulíticas (Figura 9).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 66A, um granulito félsico do Bloco Piedade. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

Os resultados da amostra 66B, um granulito básico coletado no mesmo afloramento da amostra 66A, são complexos com quarenta e quatro análises de testemunhos e bordas que definem duas linhas de discórdia. (Figura 10). Também estão presentes núcleos recristalizados, re-homogeneizados e parcialmente reabsorvidos. Os grãos são, na sua maioria, subédricos, com alguns sub-arredondados, translúcidos a opacos, variando de cores castanhas claras a escuras. A discórdia proporcionada pelas manchas localizadas nos núcleos rendeu um

intercepto superior de 2710 ± 32 Ma, interpretado como a idade de cristalização dos protólitos ígneos, enquanto que a discórdia resultante da análise das bordas mostra um intercepto superior de 2067 ± 82 Ma, que é interpretada como a idade do metamorfismo (Figura 10).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 66B, um granulito básico do Bloco Piedade. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A amostra 21A foi coletada de uma lente básica de granulito na zona de cisalhamento norte de Ponte Nova (Figura 2). Zircões exibem zoneamento oscilatório magmático e porções homogêneas nas bordas, com alguns mostrando claramente núcleos herdados e bordas ígneas (Figura 11). Os dados renderam duas discórdias. Noventa e quatro análises definem uma discórdia com um intercepto superior em 2690 \pm 8 Ma, que é interpretada como herança. Como os trinta e cinco grãos analisados que definem a segunda discórdia apresentam zoneamento ígneo oscilatório fino, o intercepto superior de 2523 \pm 28 Ma é interpretado como a idade de cristalização ígnea (Figura 11). A interceptação inferior das duas discórdias pode estar relacionada ao aquecimento térmico do embasamento durante eventos tafrogênicos posteriores (Mesoproterozoico e Toniano).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 21A, um granulito básico do Bloco Piedade. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A amostra 21B, um granulito intermediário, coletado no mesmo afloramento da amostra 21A, exibe, principalmente, grãos de zircão subédrico a redondo, translúcido a opaco e rosa claro a marrom (Figura 12). Quatro análises de grãos diferentes forneceram uma idade de concordia de 3045 ± 26 Ma, que é interpretada como a idade de um componente herdado. Cinquenta e quatro análises se espalham ao longo da concordia, uma característica interpretada como resultante da perda contínua de chumbo durante o metamorfismo da fácies granulíticas. A idade mínima de cristalização do protólito ígneo é restringida em 2731 ± 24 Ma, pela idade de 207Pb/206Pb do ponto #10 em um núcleo ígneo. O zircão concordante mais jovem, com 207Pb/206Pb de idade de 2039 ± 16 Ma (ponto #49), é interpretado como a melhor aproximação da idade metamórfica (Figura 12).

Figura 12: Diagrama Concordia e grãos de Zircão da Amostra 21B

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 21B, um granulito intermediário do Bloco Piedade. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A população de zircão da amostra 148, um granulito félsico coletado mais ao norte ao longo da zona de cisalhamento de Ponte Nova, compreende grãos euédricos a subédricos (Figura 13), translúcidos a opacos, com cores variando de marrom claro a marrom escuro. Uma série de análises estão espalhadas ao longo da concórdia (Figura 9). Quarenta e uma análises concordantes se espalham entre uma idade mínima de cristalização ígnea, interpretada a partir de um grão zoneado com zoneamento oscilatório magmático com uma idade de 207Pb/206Pb de 2659 \pm 23 Ma (ponto #14) e uma idade metamórfica interpretada de 2085 \pm 38 Ma (207Pb/206Pb) (no ponto # 49) (Figura 13).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 148, um granulito félsico do Bloco Piedade. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

38

A amostra 19A é um granulito intermediário coletado dentro do Bloco Piedade. Ela apresenta grãos subédricos, em sua maioria translúcidos, variando entre as cores marrom claro a marrom escuro (Figura 14). Dezenove análises rendem um intercepto superior de 2715 ± 11 Ma, interpretado como a idade de cristalização ígnea e um intercepto inferior de 592 ± 12 Ma, interpretado como indicativo da idade da impressão metamórfica Neoproterozoica (Figura 14). A ausência de impressão sobreposta metamórfica Paleoproterozoica é atribuída ao fato de que esta amostra não foi coletada nas proximidades da zona de cisalhamento de Ponte Nova (Figura 2).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 19A, um granulito intermediário do Bloco Piedade. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

O resumo das idades obtidas no Bloco Piedade é apresentado na Tabela 1.

Amostra	Tipo de Rocha	Idade de Cristalização Ma	Herança Ma	Metamorfismo Ma
66A	Granulito Félsico	2693 ± 23		2043 ± 30
66B	Granulito Básico	2710 ± 32		2067 ± 82
21A	Granulito Básico	2523 ± 28	2690 ± 7	
21B	Granulito Félsico	2731 ± 24	3045 ± 26	2039 ± 16
148	Granulito Félsico	2659 ± 23		2085 ± 38
19A	Granulito Félsico	2715 ± 11		592 ± 26

Tabela 1: Resultados U-Pb do Bloco Piedade

Fonte: O autor, 2019.

A amostra 08, um hornblenda biotita gnaisse coletado no leste do Complexo Mantiqueira (Figura 2), apresenta grãos de zircão prismáticos, euédricos a subédricos, com zoneamento ígneo oscilatório fino nos núcleos, circundados por bordas brilhantes homogêneas (Figura 15). Os dados de trinta e três análises definem um intercepto superior de 2168 ± 21 Ma, interpretado como a idade de cristalização ígnea e um intercepto inferior de 584 ± 14 Ma, interpretado como a impressão sobreposta metamórfica. Cinco análises de bordas de zircão geraram uma idade de concórdia de $579,2 \pm 5,1$ Ma com 89% de concordância (Figura 15).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 08, um hornblenda biotita gnaisse do Complexo Mantiqueira. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A amostra 67 é um Biotita gnaisse que exibe grãos de zircão prismáticos com zoneamento ígneo oscilatório fino nos núcleos circundados por bordas brilhantes e homogêneas (Figura 16). Trinta e duas análises produziram uma discórdia com um intercepto superior de 2117 ± 28 Ma, interpretado como a idade de cristalização ígnea e um intercepto inferior de 553 ± 75 Ma, que data a impressão metamórfica de Ediacarano (Figura 16).

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 67, um biotita gnaisse do Complexo Mantiqueira. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A amostra 163A é um gnaisse de ortopiroxênio-hornblenda-biotita e exibe grãos de zircão subédrico a redondo, translúcido a opaco e rosa claro a marrom (Figura 17). Oitenta análises produziram uma discórdia com um intercepto superior de 2116 \pm 15 Ma e um intercepto inferior de 569 \pm 12 Ma interpretados como, idades de cristalização ígnea e supercrescimento metamórfico, respectivamente (Figura 17).

A amostra 137G é um hornblenda-biotita gnaisse coletado na parte norte do Complexo Mantiqueira, próximo à zona de cisalhamento de Abre Campo. A amostra apresenta as cores entre incolores a amarelo brilhante, grãos de zircão subédricos a arredondados com zoneamento oscilatório magmático nos núcleos e bordas metamórficas brilhantes (Figura 18). A amostra rendeu uma discórdia com cinquenta e oito análises mostrando uma idade de interceptação superior de 2023 ± 13 Ma, interpretada como a idade de cristalização ígnea e uma interceptação inferior de 584 ± 14 Ma interpretada como a idade metamórfica (Figura 18).

Figura 18: Diagrama Concordia e grãos de Zircão da Amostra 137G

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 137G, um hornblenda biotita gnaisse do Complexo Mantiqueira. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A amostra 64A é um hornblenda-biotita gnaisse coletada ao sul da zona de cisalhamento de Ponte Nova. Ela rendeu trinta e quatro análises de grãos de zircão prismáticos a subédricos, com zoneamento oscilatório magmático nos núcleos e bordas metamórficas brilhantes (Figura 19) que regridem em uma discórdia com uma interceptação superior em 2016 ± 27 Ma e uma interceptação inferior em 563 ± 24 Ma, interpretadas como as idades de cristalização ígnea e metamorfismo, respectivamente. Três análises de bordas de zircão produziram uma idade de concordia de 577 ± 18 Ma (Figura 19), que é coincidente com a idade de metamorfismo acima.

Figura 19: Diagrama Concordia e grãos de Zircão da Amostra 64A

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 64A, um hornblenda biotita gnaisse do Complexo Mantiqueira. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

Os zircões da amostra 64B, um gnaisse de biotita e hornblenda, coletada no mesmo afloramento da amostra 64A, compartilham as mesmas características deste último (Figura 20). A amostra apresenta uma discórdia de vinte e nove análises com uma idade de interceptação superior de 2107 ± 17 Ma, que representa a idade de cristalização ígnea, e uma idade de interceptação inferior de 567 \pm 41 Ma, interpretada como metamorfismo de Ediacaram (Figura 20).

Figura 20: Diagrama Concordia e grãos de Zircão da Amostra 64B

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 64B, um hornblenda biotita gnaisse do Complexo Mantiqueira. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

Os grãos de zircão da amostra de anfibolito 103C são grãos translúcidos a opacos prismáticos, euédricos a subédricos, e com cores marrom claro (Figura 21). Cem análises regredem em discórdia para produzir uma interceptação superior de 2044 \pm 6 Ma e uma

interceptação inferior de 661 ± 64 Ma, interpretadas como cristalização ígnea e idades metamórficas, respectivamente (Figura 21).

Figura 21: Diagrama Concordia e grãos de Zircão da Amostra 103C

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 103C, um anfibolito do Complexo Mantiqueira. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

O resumo das idades obtidas no Complexo Mantiqueira está apresentado na Tabela 2.

Amostra	Tipo de Rocha	Idade de Cristalização Ma	Metamorfismo Ma
8	Hornblenda Biotita Gnaisse	2168 ± 22	579 ± 5
67	Biotita Gnaisse	2117 ± 28	553 ± 75
163A	Ortopiroxênio Hornblenda Biotita Gnaisse	2116 ± 15	561 ± 12
137G	Hornblenda Biotita Gnaisse	2023 ± 13	535 ± 28
64A	Hornblenda Biotita Gnaisse	2106 ± 27	563 ± 24
64B	Hornblenda Biotita Gnaisse	2107 ± 17	567 ± 41
103C	Anfibolito	2044 ± 6	661 ± 64

Tabela 2: Resultados U-Pb do Complexo Mantiqueira

Fonte: O autor, 2019.

5.1.3 Magmatismo Intraplaca

Os grãos de zircão da amostra 355, um hornblenda-biotita gnaisse, são prismáticos, euédricos a subédricos, translúcidos incolores a castanhos brilhantes (Figura 22). Quarenta análises definem uma discórdia com um intercepto superior de 1983 \pm 13 Ma e um intercepto

inferior de 557 \pm 14 Ma, interpretados como indicando cristalização ígnea e metamorfismo, respectivamente (Figura 22).

Figura 22: Diagrama Concordia e grãos de Zircão da Amostra 355

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 355, um hornblenda biotita gnaisse. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

Cento e trinta e nove análises foram feitas a partir de zircões da amostra 19B, uma lente de granulito básico do mesmo afloramento da amostra 19A, que rendeu grãos euédricos a subédricos, translúcidos a opacos, variando de marrom claro a escuro (Figura 23). As análises resultaram em quatro discórdias diferentes com interceptos superiores em 3083 ± 20 Ma, 2617 ± 20 Ma, 2096 ± 33 e 1966 ± 7 Ma. Uma vez que os núcleos e as zonas homogêneas dão às idades mais velhas, e os mais jovens, exibem um zoneamento ígneo oscilatório fino, interpretamos a idade de $1966 \pm 7,1$ Ma, produzida pelo intercepto superior mais jovem, como a idade de cristalização (Figura 23).

Figura 23: Diagrama Concordia e grãos de Zircão da Amostra 19B

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 19B, um granulito básico. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

A amostra 70D, um anfibolito coletado próximo à zona de cisalhamento Abre Campo, exibe grãos de zircão subédrico a arredondado com zoneamento oscilatório magmático nos núcleos, e bordas metamórficas brilhantes, com cores entre incolores a marrom brilhante (Figura 24). Trinta e nove análises regressam na discórdia para produzir um intercepto superior de 1989 \pm 13 Ma interpretado como a idade de cristalização ígnea e um intercepto inferior de 610 \pm 33 Ma, interpretado como a impressão metamórfica Neoproterozoica (Figura 24).

Figura 24: Diagrama Concordia e grãos de Zircão da Amostra 70D

Legenda: Diagrama de Concordia apresentando resultados de U-Pb para a amostra 70D, um anfibbolito. Imagens de catodoluminescência (CL) e elétrons retroespalhados (BSE) de grãos representativos da amostra. Os círculos indicam localizações pontuais para resultados de U-Pb. Os códigos de zircão referem-se para ID analítico na tabela de dados U-Pb no Anexo A. Fonte: O autor, 2019

Amostra	Tipo de Rocha	Idade de Cristalização Ma	Metamorfismo Ma
19B	Granulito Básico	1966 ± 8	
355	Hornblenda Biotita Gnaisse	1983 ± 13	557 ± 14
70D	Anfibolito	1989 ± 13	610 ± 33

Tabela 3 : Resultados U-Pb do Magmatismo Intraplaca

Fonte: O autor, 2019.

3.

5.2 Litogeoquímica e Isótopos de Sm-Nd/Rb-Sr

Foram selecionadas vinte e nove amostras para análises de composição de elementos maiores e traços: sete do Bloco Piedade e vinte e duas do Complexo Mantiqueira. Como as amostras do Bloco Piedade e do Complexo Mantiqueira apresentam a mesma afinidade geoquímica (Anexo B), elas são apresentadas no mesmo grupo composicional, mas as amostras do Bloco Piedade são apresentadas em símbolos abertos e as amostras do Complexo Mantiqueira são apresentadas em símbolos abertos e as amostras do Complexo Mantiqueira são apresentadas em símbolos preenchidos. Doze amostras foram selecionadas para análises de isótopos radiogênicos com base em suas afinidades geoquímicas (Anexo C): quatro do Bloco Neoarquiano Piedade e oito do Complexo Mantiqueira, Riaciano. Quatro grupos composicionais de rochas ácidas e intermediárias e dois grupos composicionais de rochas básicas foram selecionados com base em suas afinidades geoquímicas.

5.2.1 Granitoides de alto Ba-Sr

Todas as rochas intermediárias e ácidas traçam na série cálcio-alcalina no diagrama AFM (Figura 25a), e são classificadas como granitoides de alto Ba-Sr (Figura 25b), seguindo as características descritas por Tarney e Jones, 1994, Fowler et al., 2001, Fowler et al., 2008 e suas referências. Eles são caracterizados por: a) alto Ba, Sr, ETR leves, razão K/Rb e baixos Rb, Th, U, Nb, Ta e Y e ETR pesados (Anexo B); b) ausência de uma anomalia de Eu

negativa pronunciada; c) geralmente uma anomalia negativa de Nb; d) anomalias de Ba e Sr positivas.

Legenda: A) Diagrama AFM de Irvine e Baragar (1971) mostrando as amostras intermediárias e ácidas plotadas na série cálcio-alcalina e as rochas básicas na série toleíta. B) Diagrama triangular Rb-Ba-Sr com o campo para granitos High Ba-Sr de Tarney e Jones (1994).
Fonte: O autor, 2019

O primeiro grupo composicional está presente tanto no Bloco Piedade quanto no Complexo Mantiqueira. O mesmo é caracterizado como rico em sílica (SiO2> 62 wt.%), com alta concentração de Na2O (3.3–4.5 wt.% Na2O), portanto, baixa razão K2O/Na2O (<0.5). Além disso, é pobre em elementos ferromagnésios (Fe2O3, MgO, MnO, TiO2) (Tabela 4). No diagrama TAS (Figura 26a), essas rochas plotam nos campos de granodiorito e granito, devido à alta quantidade de SiO2. No diagrama SiO2 vs. K2O (Figura 26b), as amostras caem no campo cálcio-alcalino e médio K e também são classificadas como cálcicas, magnesianas e levemente peraluminosas a metaluminosas (Figura 27). Nos diagramas de ETR normalizados para o condrito, o grupo mostra elementos terras raras leves alto (ETRL), elemento terras raras pesados baixas (ETRP), anomalias de Eu positivas e alta razão LaN/YbN (Figure 28a). Na parte do diagram correspondente ao manto primitive (Figure 28b), as amostras mostram picos em Ba, Pb e Zr e vales em P, Nb e Th. Seguindo as características descritas por Moyen & Martin (2012) este grupo composicional é classificado como TTG.

Figura 26: Classificação Geoquimica dos granitoides estudados

Legenda: Classificação geoquímica dos granitóides estudados. A) Diagrama TAS (SiO2 vs. Na2O+K2O) de Cox (1979) mostrando os grupos Toleitos Intraplaca e Basaltos alcalinos intraplaca plotados nos campos das séries básica, gabro e subalcalina/toleítica do diagrama, plotagem de TTG na banda ácida do diagrama e em os campos de granodiorito e granito, Sanukitóides plotando na faixa intermediária no campo de diorito, High Ba Sr (High K) abrangendo o limite entre as séries alcalina e subalcalina e plotando nas bandas intermediárias e ácidas do diagrama, Amostra 355 plotando em o campo sienito da série alcalina. B) No diagrama SiO2 vs. K2O (Peccerillo & Taylor, 1976)., as amostras dos Grupos 1 e 2 são plotadas na série cálcio-alcalina de K médio, enquanto o Grupo 3 plota na série cálcio-alcalina de alto K.

Fonte: O autor, 2019

Figura 27: Classificação Geoquimica dos granitoides estudados

Legenda: A) Diagrama FeOt / (FeOt + MgO) vs. SiO2 (Frost et al., 2001) mostrando os Grupos 1 e 2 no campo magnesiano e o Grupo 3 abrangendo o limite entre rochas granitóides magnesianas e ferroanas. B) No diagrama Na2O + K2O – CaO vs. SiO2 (Frost et al., 2001) amostras do gráfico do Grupo 1 no campo cálcico, o Grupo 2 fica no limite entre o campo cálcico e cálcio-alcalino e o Grupo 3 plota principalmente em o campo álcali-cálcico. C) No diagrama A/NK vs. A/CNK (após Shand, 1943) as amostras do Grupo 1 são ligeiramente peraluminosas a metaluminosas e as amostras dos Grupos 2 e 3 são classificadas como metaluminosas.

Fonte: O autor, 2019

Figura 28: Diagramas de elementos terras raras normalizados

Legenda: A) Padrões médios de REE normalizados por condritos após valores de Boynton (1984) para TTG. B) Gráficos multielementares normalizados pelo manto (McDonough e Sun, 1995) para TTG. Fonte: O autor, 2019

O segundo grupo composicional também está presente tanto no Bloco Piedade quanto no Complexo Mantiqueira. Este plota no campo intermediário (diorito) do diagrama TAS (Figura 26a) com teores de SiO2 variando de 57.9 – 61.8% em peso (Tabela 5). No diagramae SiO2 vs. K2O, as amostras caem no campo de médio K cálcio-alcalino (Figura 26b) e são caracterizadas como cálcicas a alcalino-cálcicas, magnesianas e metaluminosas ($0.7 \le A/CNK \le 1.0$) (Figura 23). Elas são ricas em elementos ferromagnesianos ($5 \le FeOt + MgO + MnO +$ TiO2 ≤ 25 wt.%) e CaO (Anexo B). Todas as amostras são enriquecidas nos oligoelementos compatíveis Ni e Cr e em elementos incompatíveis (K2O = 1.1 -1.90 wt.%, Ba = 544 – 892 ppm e Sr = 288 - 379 ppm). As amostras mostram alto Mg# (27-48) em relação à sua concentração de sílica. Os diagramas de ETR normalizados para o condrito mostram enriquecimento em ETRL em relação a ETRP e pequenas anomalias de Eu negativas (Figura 29a). No diagrama do manto primitivo, todas as amostras mostram enriquecimento em elementos litófilos de fluidos móveis e íons grandes (Ba, Rb e K) e Pb (Figura 29b). O segundo grupo composicional é classificado como relacionado à série sanukitoide (Martin et al., 2005, Heilimo et al., 2010, Martin et al., 2010, Laurent et al., 2014).

Figura 29: Diagramas de elementos terras raras normalizados

altos teores de Zr, Ce, Nb e Y (Anexo B).

Legenda: A) Padrões médios de REE normalizados por condritos após valores de Boynton (1984) para Sanukitoides. B) Gráficos multielementares normalizados pelo manto (McDonough e Sun, 1995) para Sanukitoides.Fonte: O autor, 2019

O terceiro grupo composicional, os granitoides de Alto Ba e Sr, presentes apenas no Complexo Mantiqueira, embora compartilhe muitas semelhanças com os sanukitoides descritos acima, é ligeiramente diferente, especialmente em relação ao Mg# inferior e elementos compatíveis (como Ni e Cr) e sendo mais enriquecido em ETRL com menores teores de SiO2 (wt.%) (Tabela 6). No diagrama TAS, as amostras caem no limite entre as séries subalcalina/toleítica e alcalina (Figura 26a). No diagrama SiO2 vs. K2O (Figure 26b) elas plotam na série alto-K cálcio-alcalina e são classificadas como como granitoides ferroanos, alcalino-cálcicos e metaluminosos (Figura 27). No diagrama de condrito normalizado e ETR (Figura 30a), as amostras são ricas em ETRL e têm ETRP relativamente baixo. Além disso, possuem anomalias de Eu negativas. No diagrama de manto primitivo (Figura 30b), o grupo apresenta características de granitoides tardios a pós-colisionais com

Figura 30: Diagramas de elementos terras raras normalizados

Legenda: A) Padrões médios de REE normalizados por condritos após valores de Boynton (1984) para granitoides de alto Ba-Sr. B) Gráficos multielementares normalizados pelo manto (McDonough e Sun, 1995) para granitoides de alto Ba-Sr.

Fonte: O autor, 2019

A amostra 355 do Complexo Mantiqueira é significativamente diferente e, portanto, representa um único membro de um quarto grupo composicional (Anexo B). Ela apresenta alta qantidade de K2O (7.4 wt.%) e outros elemento incompatíveis (Ba 3891 ppm, Sr 1350 ppm) juntamente com alta razão K2O/Na2O (2.93), SiO2 = 56.2 wt.%, alto Mg# (53), Ni e Cr. (Anexo B). No diagrama TAS, os dados da amostra caem no campo de sienito da série alcalina (Figura 26a). Os diagramas de ETR normalizados para o condrito mostram mais enriquecimento em ETRL do que os outros grupos, e ETRP é relativamente baixo (Figura 31a). No diagrama do manto primitivo, há um claro enriquecimento em elementos litófilos de íons grandes e fluidos-móveis (Ba, Rb e K) e uma anomalia de Ti negativa (Figura 31b).

Legenda: A) Padrões médios de REE normalizados por condritos após valores de Boynton (1984) para amostra 355. B) Gráficos multielementares normalizados pelo manto (McDonough e Sun, 1995) para amostra 355 Fonte: O autor, 2019

As rochas metabásicas foram subdivididas em dois grupos composicionais levando em consideração seus padrões de TiO₂ e ETR, e as diferenças nas concentrações de Al₂O₃, K₂O e Na₂O além das idades de cristalização (Tabelas 1,2 e 3). Todas as amostras são classificadas como toleíticas em um diagrama AFM (Figura 32a). O grupo de basaltos alcalinos intraplaca (WPAB), no diagrama TAS, está plotado no campo do gabro, no limite entre os campos subalcalino/toleítico e alcalino. Os toleítos intraplaca (WPT) também caem no campo do gabro, mas nas séries subalcalina/toleítica (Figura 32a). No diagrama discriminante tectônico de Pearce (1982) (Figura 32b), o grupo 1 cai no campo de basaltos intra-placas e o grupo 2 nos campos de basaltos da dorsal meso-oceânica e de intra-placas (Figura 32b). No diagram ternário de Meschede (1986), o primeiro grupo composicional é caracterizado por apresentar assinatura de basalto alcalino intraplaca e o segundo grupo composicional é caracterizado por ser um basalto de dorsal meso-oceânica enriquecida (Figure 32c).

Legenda: Diagramas classificatórios geotectônicos das rochas básicas. A) O diagrama Zr/4 – 2*Nb – Y de Meschede (1986) mostra a plotagem do grupo Basaltos alcalinos intraplaca no campo de basaltos alcalinos intraplaca, enquanto o grupo WPT plota no campo de basalto da dorsal meso-oceânica. B) No diagrama Zr vs. Ti de Pearce (1982) o WPA amostras plotadas nas lavas dentro da placa e o grupo WPT no campo MORB. C) O gráfico do grupo WPA nas configurações divergentes e dentro da placa com o aumento do OIB- os componentes do tipo e o gráfico do grupo WPT nas configurações divergentes e dentro da placa, principalmente na configuração Back-arc, representando basaltos da dorsal meso-oceânica. Fonte: O autor, 2019

No diagrama discriminante tectônico (Figura 32c), as amostras WPA têm um caráter transicional para a série alcalina e plotam, principalmente, no campo de toleito continental, enquanto que as amostras do gráfico WPT (toleítos intraplaca) na série de toleíta, caem no

campo EMORB, sugerindo configurações extensionais. Nos diagramas ETR normalizados para o condrito, as amostras de WPA tem um padrão de fracionamento com alto elementos terras raras leves e uma anomalia de Eu discretamente negativa (Figura 33a). Já as amostras de TIP tem padrões planos com um peqeno enriquecimento em ETRL, o que também sugere uma afinidade ao EMORB (Figura 33b).

No diagrama normalizado para NMORB (basaltos da dorsal meso-oceânica), as amostras de WPA (Figura 33c) tem anomalias positivas em Ba, Pb e Nd, enquanto que padrões de WPT (Figura 33d) mostram enriquecimento em Ba, K, Pb e Nd. Os WPA exibe um caráter transicional principalmente devido à alta concentração de metal alcalino e LILE (Rb, Zr e Ba) com componentes OIB crescentes (Zr/Nb<20 e razões Y/Nb<5). WPT possui uma assinatura de EMORB com enriquecimento em elementos incompatíveis como K, B, La e Rb (Anexo B).

Figura 33: Diagramas de elementos terras raras normalizados

Fonte: O autor, 2019

Os resultados isotópicos de Sm-Nd e Sr são mostrados no Anexo C. As amostras Neoarqueanas do Bloco Piedade têm valores de ɛNd(t) entre -2.5 e -5.4 nas suas respectivas idades de recristalização. Suas razões iniciais de ⁸⁷Sr/⁸⁶Sr variam de 0.7031 a 0.7069 e as razões iniciais de ¹⁴³Nd/¹⁴⁴Nd variam de 0.5090 e 0.5091. Nas amostras Paleoproterozoicas do Complexo Mantiqueira, os valores de ɛNd(t) variam entre +1.6 e -9.7 nas suas respectivas idades de recristalização. Razões iniciais de ⁸⁷Sr/⁸⁶Sr variam entre 0.7019 e 0.7070 e as razões iniciais de and initial ¹⁴³Nd/¹⁴⁴Nd variam de 0.5093 a 0.5102 (Anexo C). No diagrama ɛNd(t) vs idade de cristalização mostrado na Figura 34, as diferenças marcantes entre a origem das rochas do Paleoproterozoico e do Arqueano são evidentes, sem sobreposição com o campo que representa a evolução isotópica do Paleocontinente Arqueano do São Francisco (Teixeira et al., 1996).

Legenda: Diagrama Nd evolução vs tempo (idades de cristalização). As amostras do Bloco da Piedade são apresentadas em símbolos abertos e do Complexo da Mantiqueira em símbolos preenchidos. O campo isotópico do Paleocontinente Arqueano de São Francisco (cinza) é compilado de Teixeira et al. (1996).

Fonte: O autor, 2019.

6 DISCUSSÕES

6.1 Evolução Petrogenética

Alguns autores propõem que a transição entre a fusão do basalto hidratado, gerando TTGs, para a produção moderna de rocha granitoides cálcico-alcalinas via geração de sanukitoides (Shirey and Hanson, 1984, Martin et al., 2009, Heilimo et al., 2010), ocorreu na fronteira Arqueano-Paleoproterozoico (Laurent et al., 2014, Moyen & Laurent, 2018 e suas referências). Devido à grande diversidade geoquímica de TTGs, diferentes modelos geodinâmicos foram propostos para sua geração: a) subducção de meta-basaltos que sofrem derretimento devido a gradientes geotérmicos Arqueanos presumivelmente mais elevados; b) configurações de não subducção através da maturação progressiva de um planalto oceânico acima de uma pluma e c) delaminação na base de uma crosta máfica hiperespessada magmaticamente ou tectonicamente (Moyen & Laurent, 2018 e suas referências).

O mecanismo proposto para a origem dos sanukitoides é a abertura da cunha mantélica após um período de subducção rasa promovendo interação entre o manto metassomatizado e magmas derivados da crosta. Subdução (com ângulo de subdução viável) é um ambiente tectônico adequado para o enriquecimento de elementos crustais no manto astenosférico, que é considerado a fonte dos magmas sanukitoides (Heilimo et al., 2010, Laurent et al., 2014, Rajesh et al., 2018 e suas referências). A geração de magma sanukitoide é impulsionada pela interação entre manto peridotítico e material rico em LILE e ETRL, uma vez que os basaltos delaminados sozinhos não seriam ricos o suficiente em elementos incompatíveis e água para atingir o enriquecimento observado (Kovalenko et al., 2005; Lauren et al., 2014). Muitos autores propõem que a fonte do manto dos sanukitoides incluiu sedimentos ou fluidos derivados de sedimentos (Heilimo et al., 2010), que foram provavelmente introduzidos nas profundidades do manto por processos de subducção (Laurent et al., 2014 e suas referências).

Esta mudança crítica na geodinâmica global foi sugerida como tendo ocorrido no Arqueano tardio (Laurent et al., 2014), com base em parâmetros como a idade de cristalização das rochas relevantes, a espessura, temperatura e reologia da crosta oceânica e continental e o aumento do volume global dos continentes. Seguindo este modelo, todos os granitoides arqueanos tardios teriam sido formados como resultado de diferentes graus de interação entre dois membros finais: a) a crosta continental local e b) manto peridotítico enriquecido metassomaticamente em elementos incompatíveis.

As amostras classificas como TTG plotam no gráfico no campo designado TTG no diagrama La/Yb vs. Yb (Figura 35a) e no diagrama normativo de classificação de feldspato para granitoides (Figura 35b). No diagrama do indicador petrogenético de Laurent et al. (2014) (Figura 35c) em que cada membro final representa um processo geoquímico possivelmente relacionado à geração dos granitoides, o Na2O/K2O e membros representam a fusão de rochas máficas meta-ígneas com baixo a moderado conteúdo de K₂O e o membro final FMSB representa a interação entre o peridotito e componentes ricos em elementos incompatíveis. No diagrama ternário da Figura 35d, de Laurent et al. (2014), a composição dos fundidos derivados de uma fonte potencial é discriminada. As amostras do grupo TTG came no campo caracterizado como o produto do fundido de rochas máficas de baixo K, enquanto que as amostras do grupo dos sanukitoides plotam no campo do fundido das rochas máficas de alto K. Os TTGs são ricos em Sr e pobres em Y-HREE, eles são classificados no grupo "baixo HREE" de Halla et al. (2009), bem como nos grupos de "média a alta pressão" de Moyen et al. (2011) sugerindo que a geração desses magmas requer a introdução de rochas máficas hidratadas no manto, implicando que elas se formaram em um ambiente semelhante a uma subducção (Laurent et al., 2014).

Figura 35: Diagramas petrogenéticos para TTGs e Sanukitoides

Legenda: A) Diagrama para discriminação adakito/TTG (Martin, 1986). B) Diagrama de classificação para rochas ígneas siliciosas, baseado na composição de feldspato (O'Connor, 1965).C) Diagrama de classificação ternária de Laurent et al. (2014). Os vértices são: 2 × A/CNK (razão molar Al2O3/(CaO + K2O + Na2O)); Na2O/K2O e 2 × (FeOt + MgO) × (Sr + Ba)% em peso (=FMSB). D) Diagrama ternário Al2O3/ (FeOt + MgO); 3*CaO; 5 * (K2O/Na2O) proposto por Laurent et al. (2014) mostrando a composição de fundidos derivados de uma fonte potencial.

Fonte: O autor, 2019

A transição entre a formação de TTGs e sanukitoides em outros crátons ao redor do mundo ocorreu no Arqueano (Laurent et al., 2014). No entanto, no cinturão mineiro, uma transição Paleoproterozoica "atrasada" foi relatada por Moreira et al. (2018). Nossos novos dados mostram que, em vez de um simples atraso, houve duas transições TTG-sanukitoide sucessivas no Paleocontinente de São Francisco: a primeira no Bloco Piedade durante o Neoarquiano em 2.7-2.6 Ga e a segunda no Riaciano (em aproximadamente 2.1 Ga) no Complexo Mantiqueira. É destacado que esses dois complexos foram amalgamados em aproximadamente 2.05 Ga, como sugerido pelas idades metamórficas generalizadas

registradas no Bloco Piedade, implicando em evoluções tectonomagmáticas anteriores independentes.

Com base nas restrições dos isótopos de Sm-Nd e Rb-Sr, as amostras do Paleoproterozoico podem representar uma fase de adição juvenil com contaminação crustal mínima durante a formação do Paleocontinente São Francisco. Em comparação com as amostras Neoarquianas do Bloco Piedade, as amostras Paleoproterozoicas do Complexo Mantiqueira apresentam maiores razões ¹⁴³Nd/¹⁴⁴Nd, assim, possuem menos valores de ɛNd negativos (Tabela 8).

No diagram de evolução de Sr de Ben Othman et al. (1984) (Figura 36a), o polígono rosa representa o campo das amostras Arqueanas, com origem mista crosta-manto, visto que sua evolução se inicia acima da crosta continental. Portanto, eles podem representar um retrabalho da crosta continental pré-existente, como também indicado pela presença de zircões herdados. Em contraste, as amostras do Paleoproterozico estão plotados abaixo da linha de evolução da crosta continental e acima da curva do manto. Assim, eles implicam em uma fonte de manto Arqueano/Paleoproterozoico seguida de contaminação com a crosta continental. Isso indica que as rochas Neoarquianas são principalmente derivadas de uma fonte evoluída, sugerindo contaminação de crosta mais velha, e o magmatismo Riaciano é caracterizado como tendo uma composição derivada do manto com contaminação crustal parcial. Especificamente, o diagrama ¹⁴³Nd/¹⁴⁴Nd (inicial) vs ⁸⁷Sr/⁸⁶Sr (inicial) da Figura 36b mostra a assinatura isotópica de ambos os grupos em suas idades de cristalização. Visto que os dois grupos caem em campos diferentes, interpreta-se que eles tiveram origens diferentes. No diagrama ɛNd (idades de cristalização) vs. ⁸⁷Sr/⁸⁶Sr (inicial) (Figura 36c) destacam-se as origens mistas manto-crustal para as amostras tanto do Bloco Piedade quanto do Complexo Mantiqueira.

Legenda: Diagrama isotópico para as amostras do Complexo Mantiqueira e do Bloco Piedade. A) Diagrama de evolução Sr (87Sr/86Sr inicial vs. Tempo (Ma)) de Ben Othman et al., (1984). B) Diagrama 143Nd/144Nd vs 87Sr/86Sr na idade de cristalização das amostras. Composição dos componentes do manto (MORB) por Gale et al. (2013). C) Diagrama ɛNd vs 87Sr/86Sr inicial (sistemática isotópica de Sr e Nd da crosta e manto, faixa cinza horizontal é o ɛNd estimado do silicato a granel de Caro e Bourdon (2010); faixa cinza vertical entre linhas tracejadas em seu volume estimado terra de silicato 87Sr/86Sr).

Fonte: O autor, 2019

No diagrama, mostrando a variação da espessura da crosta terrestre e da temperatura do manto ao longo do tempo geológico (Hawkesworth et al., 2016), cinco estágios da evolução da Terra são reconhecidos (Figura 37). A transição de TTG para magmatismo sanukitoide é considerada como pertencente ao terceiro estágio, começando em cerca de 3.0 Ga e durando até cerca de 1.7 Ga. Isso é interpretado como resultante do resfriamento da Terra, com estabilização de crátons e aumento da espessura da crosta, permitindo que a

tectônica conduzida por subdução ocorra (Sizova et al., 2010). A tectônica de placas resulta em uma orogenia colisional e ciclos de supercontinentes que implicando na destruição de grandes volumes da crosta continental. Estes fatos sãos atribuídos à um aumento nas taxas de destruição da crosta continental ao longo das margens das placas destrutivas (Hawkesworth et al., 2013). No entanto, o crescimento líquido da crosta requer que a taxa de geração da crosta exceda a de reciclagem (Hawkesworth et al., 2016, Dhuime et al., 2015 e suas referências).

Legenda: Diagrama de variação na espessura da nova crosta continental ao longo do tempo (curva vermelha) (Korenaga et al., 2013; Dhuime et al., 2015; Hawksworth et al., 2016) mostrando duas bandas de geração de suíte TTG-sanukitoide (ou seja, Neoarqueano (Bloco Piedade) e Riaciano (Complexo Mantiqueira).

Fonte: O autor, 2019.

Combinando as informações petrológicas com as idades de cristalização das amostras de Piedade e Mantiqueira, definimos dois episódios de transição entre TTG e magmatismo sanukitoide no PSF. O episódio de transição mais antigo ocorreu no Bloco Piedade durante o Neoarquiano (cerca de 2.7 Ga), conforme esperado e observado em várias regiões cratônicas do mundo (Figura 38). No entanto, um episódio de transição mais jovem foi caracterizado no Complexo Mantiqueira durante o Riaciano (cerca de 2.10 Ga), mostrando que esse processo pode ser diacrônico, conforme relatado por Moreira et al., 2018.

A informação isotópica de rocha total apresentada acima, também evidente a partir de dados elementares, confirma que dois reservatórios diferentes, ou seja, crosta e manto, são necessários para gerar cada arranjo magmático. Portanto, os dados excluem a possibilidade de que os mesmos reservatórios tenham gerado as rochas do Piedade e do Mantiqueira durante os períodos Neoarqueano e Riaciano, mas sim que os dois arranjos de fontes diferentes geraram TTG e sanukitoides ao longo do tempo.

Conforme descrito por Laurent et al. (2014 e suas referências) em outros blocos cratônicos ao redor do mundo, no sul do PSF, ambos os episódios de geração TTG-sanukitoide também foram impulsionados pela mesma sequência de eventos: um período inicial de magmatismo exclusivamente TTG é seguido por um estágio mais curto durante o qual as rochas TTG e sanukitoide são geradas juntas (Figura 38).

Figura 38: Diagrama de distribuição de idade de TTG e Sanukitoide

Legenda: Distribuição de idade simplificada para rochas granitóides TTG, Sanukitóides, Híbridas e Biotita-Duas-micas em crátons ao redor do mundo, incluindo o Paleocontinente Neoarqueano e Riaciano de São Francisco. (Modificado após Heilimo et al., 2011, Laurent et al., 2014, Cawood et al., 2018). Dados do Paleocontinente São Francisco deste estudo, Barbosa & Barbosa, 2017 e referências neles, Alkmim & Teixeira. 2017 e suas referências, Teixeira et al., 2017 e suas referências.

Fonte: O autor, 2019.

6.2 Evolução Tectônica

Os novos dados geocronológicos e litogeoquímicos permitem a proposição de um modelo tectônico integrado que explique a evolução magmática do Bloco Piedade e do Complexo Mantiqueira.

No Bloco Piedade, o magmatismo do TTG coevo (2.71 Ga) e do sanukitoide (cerca de 2.7 Ga) representa a parte preservada do orógeno que formou este bloco Neoarquiano. Ambos

são o produto provável da subdução da crosta máfica abaixo de um microcontinente mais antigo, como sugerido por zircões herdados e assinaturas de isótopos Nd-Sr típicas de magmas contaminados. A geração de rochas básicas alcalinas intraplaca em cerca de 2.5 Ga sugere um regime tectônico extensional durante este período, apoiando a presença de uma massa de terra estável.

Seguindo o modelo proposto por Heilbron et al. (2010), o Complexo Mantiqueira hospeda ortognaisses relacionados ao arco cálcico-alcalino (cerca de 2.2 Ga) e associações granitoides colisionais (cerca de 2.15 Ga). O TTG contemporâneo e as rochas sanukitoides (cerca de 2.1 Ga) são interpretados como o estágio colisional de um sistema de subducção direcionado para o leste (Figura 39a). A subducção direcionada para oeste sob o Complexo Mantiqueira é sugerida por Heilbron et al. (2010) para explicar a distribuição geográfica da assinatura geoquímica em parte do sistema orogênico. O estágio colisional é seguido por rochas granitoides de alto K tardias (2.10 a 2.02 Ga) (Figura 39b). O evento metamórfico das fácies de granulito em cerca de 2.05 Ga presume-se que este represente o acréscimo do Complexo Piedade ao Complexo Mantiqueira contemporâneo com a colisão deste último com o Complexo Juiz de Fora (Heilbron et al., 2010).

O magmatismo toleítico intraplaca (cerca de 2.04 a 2.0 Ga) representa a transição para um ambiente extensional no Complexo Mantiqueira, enquanto que as rochas básicas alcalinas intraplaca de cerca de 1.9 Ga com assinatura semelhante a OIB e a amostra sienítica alcalina (cerca de 1.9 Ga), indicam o início do colapso do orógeno (Figura 39c).

Figura 39: Diagrama de evolução tectônica

Legenda: Modelo integrado de evolução tectônica para o Complexo da Mantiqueira, sudeste do Brasil, previsto para o período entre ca. 2,2 e 1,9 Ga (modificado após Heilbron et al., 2010). Fonte: O autor, 2019.

6.3 Correlações Regionais

As correlações apresentadas aqui refletem uma possível conexão entre o Orógeno de Minas do sul do PSF e o Orógeno Leste da Bahia localizado no nordeste do PSF (Figura 1). Com base nos dados geocronológicos e isótopos disponíveis, as assinaturas juvenis a levemente contaminadas das rochas Paleoproterozoicas de Alto Ba-Sr do Complexo Mantiqueira são correlativas das suítes granitoides da Faixa Itabuna-Salvador-Curaçá (ISAC) de Barbosa e Barbosa (2017 e suas referências), Peucat et al. (2011 e referências), Oliveira (2004) e Conceição et al. (2003) (Figura 40).

Figura 40: Diagrama de correlação regional

Legenda: Diagrama eNd vs. eSr com campos distintos caracterizados por dados da Faixa Itabuna-Salvador-Curaçá, bloco Gavião, Serrinha e Jequié (Modificado após Barbosa & Barbosa, 2017) e dados do Complexo Mantiqueira e Bloco Piedade (deste estudo).

Fonte: O autor, 2019

As rochas do Bloco Piedade, metamorfisadas em fácies granulíticas no Riaciano, são semelhantes às rochas granulíticas descritas no Bloco Jequié (Figura 40) (Barbosa & Barbosa, 2017). Ambas as unidades exibem a mesma sequência de eventos tectônicos (Silva et at, 2002; Barbosa et al., 2012; Barbosa and Sabaté 2004): a) uma concentração de idades de cristalização das rochas granitoides entre cerca de 2.8 e 2.7 Ga; b) intrusões gabroicas em torno de 2.52 Ga; e c) uma superimposição de fácies de granulito difundido entre 2.06 a 2.04 Ga, relacionado com o amálgama final das massas de terra arqueanas. O modelo de idades de Sm–Nd T_{DM} para as rochas do Jequié apresenta uma queda no intervalo de tempo 3.3–2.9 Ga

e os valores negativos ENd (t) sugerem retrabalho da crosta mesoarquiana (Marinho et al. 1994a, b; Barbosa e Sabaté 2004).

O longo intervalo de idade de cerca de 2.2 a 2.04 Ga de geração de rochas granitoides relacionadas ao arco no Complexo Mantiqueira e no ISAC, sugere o desenvolvimento de um grande sistema de arco magmático com pequenos blocos continentais arqueanos intercalados. Apesar das idades Arqueanas de Nd T_{DM} e de zircões herdados registrados por Heilbron et al. (2010), Oliveira et al. (2010) e Barbosa et al. (2008), a adição significativa de juvenis ocorreu no Complexo Mantiqueira, conforme indicado por nossos novos dados de isótopos U-Pb, Sm-Nd e Rb-Sr. A geração de rochas granitoides colisionais tardias a pós-tectônicas sieníticas e de alto K em cerca de 2.08 a 2.04 Ga (Oliveira, 2004 e Rosa et al., 2001) foram registrados nas duas regiões.

CONSIDERAÇÕES FINAIS

- As rochas Neoarqueanas do Bloco Piedade (~ 2.7 Ga) representam retrabalho da crosta continental pré-existente, conforme demonstrado pelas idades TDM de 2.98 a 2.96 Ga e pela presença de zircões herdados. Rochas basálticas alcalinas intraplaca com assinatura OIB intrudindo essas rochas a 2.5 Ga também sugerem a presença de uma massa de terra estável no final do Arqueano.
- 2) No sul do Paleocontinente São Francisco, um ciclo orogênico completo, da subducção à colisão e colapso, foi registrado no Bloco Piedade e no Complexo Mantiqueira. Os processos de subducção Riaciano a Orosiriano (cerca de 2.2 2.1 Ga) levaram à geração de suítes TTG coeva (aproximadamente 2.16 Ga) e rochas sanukitoides, seguidas por granitoides de alto K tardios (2.10 a 2.02 Ga) que marcam o estágio colisional. Este estágio colisional de acreção do Complexo Mantiqueira contra o Bloco Piedade em 2.08 2.04 Ga também é registrado pelo metamorfismo de fácies granulíticas neste último terreno, ao longo da zona de cisalhamento de Ponte Nova. O estágio colisional foi seguido de perto pela colocação de toleítos intraplaca em cerca de 2.04 Ga e por rochas alcalinas (sienitos e rochas básicas enriquecidas) em aproximadamente 1.98 Ga, marcando a transição para um regime tectônico extensional.
- 3) A descoberta de dois episódios de geração de rochas TTG e sanukitoide, um durante o Neoarquiano no Bloco Piedade e outro durante o Riaciano no Complexo Mantiqueira, indica que o início do derretimento do manto metassomatizado por subducção não se restringiu à época Neoarqueana, como pensado anteriormente, mas persistiu muito mais tarde no Paleoproterozoico. Esta descoberta abre uma nova potencial linha de investigação de mudanças diacrônicas em regimes geodinâmicos em outros cinturões Paleoproterozoicos em todo o mundo.

REFERÊNCIAS

Aguilar, C., Alkmim, F.F., Lana, C.C., Farina, F. 2017. Paleoproterozoic assembly of the São Francisco craton, SE Brazil: new insights from U–Pb titanite and monazite dating. Precambrian Research. 289, 95-115.

Alkmim F.F., Marshak S., Pedrosa-Soares A.C., Peres G.G., Cruz S.C.P., Whittington A. 2006. Kinematic evolution of the Araçuaí-West Congo orogeny in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Research. 149, 43–64.

Alkmim F.F., Noce C.M. 2006. Outline of the geology of Quadrilátero Ferrífero. In: Alkmim F.F., Noce C.M. (eds) The Paleoproterozoic Record of São Francisco Craton. IGCP 509 Field Workshop, Bahia and Minas Gerais. Field Guide and Abstracts, 37–73.

Alkmim, F.F. & Teixeira, W., 2017. The Paleoproterozoic Mineiro belt and the Quadrilátero Ferrífero. In: Heilbron M., Alkmim F., Cordani U.G. (Guest Ed.), The São Francisco Craton and its margins, Eastern Brazil. Regional Geology Review Series. Springer-Verlag, Chapter 5, 71–94.

Alkmim, F.F. and Martins-Neto, M.A., 2012. Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Marine and Petroleum Geology. 33, 127–139.

Alkmim, F.F., Marshak, S. Fonseca, M.A., 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco craton region, Brazil. Geology. 29, 319–322. Almeida, F.F.M., Brito Neves, B.B., Carneiro, C.D.R., 2000. Origin and evolution of the South American Platform. Earth-Science Reviews. 50, 77–111.

Almeida, F.F.M.1981. O Cráton do Paramirim e suas relações com o do São Francisco. In: Simpósio Sobre o Cráton do São Francisco e Suas Faixas Marginais. Salvador. 1–10.

Armstrong, R.A., Compston, W., De Wit, M.J. and Williams, I.S., 1990. The stratigraphy of the 3.5-3.2 Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study. Earth and Planetary Science Letters, 101, 90-106.

Ávila, C.A., Teixeira, W., Bongiolo, E.M., Dussin, I.A., 2014. The Tiradentes suite and its role in the Rhyacian evolution of the Mineiro belt, São Francisco Craton: Geochemical and U-Pb geochronological evidences. Precambrian Research. 243, 221–251.

Barbosa, J.F.S., Cruz S.P., Souza J.S. 2012. Terrenos metamórficos do embasamento. In: Barbosa JFS (ed) Geologia da Bahia: pesquisa e atualização, CBPM 1: 101–201.

Barbosa, J.S.F. & Barbosa, R.G., 2017. The Paleoproterozoic Eastern Bahia Orogenic Domain. In: Heilbron M., Alkmim F., Cordani U.G. (Guest Ed.), The São Francisco Craton and its margins, Eastern Brazil. Regional Geology Review Series. Springer-Verlag, Chapter 4, 57-70.

Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Research, 133, 1–27.

Barbosa, N.S., Teixeira W., Ávila C.A., Montecinos P.M., Bongiolo E.M. 2015. 2.17–2.10 Ga plutonic episodes in the Mineiro belt, São Francisco Craton, Brazil: U-Pb ages, geochemical constraints and tectonics Precambrian Research. 270, 204-225

Barbosa, N.S., Teixeira W., Ávila C.A., Montecinos P.M., Bongiolo E.M. Vasconcelos, F.F. 2019. U-Pb geochronology and coupled Hf-Nd-Sr isotopic-chemical constraints of the Cassiterita Orthogneiss (2.47–2.41-Ga) in the Mineiro belt, São Francisco craton: Geodynamic fingerprints beyond the Archean-Paleoproterozoic Transition. Precambrian Research;326, 399-416.

Barbosa, O. 1954. Evolution du geossinclinal Espinhaço. In: International Geological Congress. Comptes. Rendus, section XIII, 19e session: 1-37.

Bersan, S.M., Danderfer Filho A., Abreu F. R., Lana, C. 2018. Petrography, geochemistry and geochronology of the potassic granitoids of the Rio Itacambiruçu Supersuite: implications for the Meso- to Neoarchean evolution of the Itacambira-Monte Azul block. Brazilian Journal of Geology. 48(1), 1-24.

Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1 a new zircon standard for phanerozoic U–Pb geochronology. Chemical Geology. 200, 155–170.

Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: meteorite studies In: P. Henderson (Ed.), Rare Earth Element Geochemistry (Developments in Geochemistry 2), Elsevier. 63-114

Brito-Neves, B.B., 2002. Main stages of development of sedimentary basins of South America and their relationships of tectonics of supercontinents. Gondwana Reserarch. 5, 175–196.

Brito-Neves, B.B., Campos Neto M.C., Fuck R., 1999. From Rodinia to Western Gondwana: An approach to the Brasiliano/Pan-African cycle and orogenic collage. Episodes. 22, 155–199

Brito-Neves, B.B., Sá J.M., Nilson, A.A., Botelho, N.F. 1996. A tafrogênese estateriana nos blocos paleoproterozóicos da América do Sul e processos subseqüentes. Geonomos. 3, 1–21.

Brueckner, H.K., Cunningham, D., Alkmin, F.F., Marshak, S., 2000. Tectonic implications of Precambrian Sm–Nd dates from the southern São Francisco craton and adjacent Araçuai and Ribeira belts, Brazil. Precambrian Research. 99 (3), 255–269.

Campos Neto, M.C. 2000. Orogenic Systems from Southwestern Gondwana: An approach to Brasiliano-Pan African Cycle and Orogenic Collage in Southeastern Brazil. In: Cordani, U.G.; Milani, E.J.; Thomaz Filho, A.; Campos, D.A. (eds.) Tectonic Evolution of South América. Rio de Janeiro, 31st International Geological Congress, Rio de Janeiro, p. 335–365.

Caro, G. & Bourdon, B. 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle–crust system. Geochimica et Cosmochimica Acta. 74(11), 3333-3349.

Cawood, P. A., Hawkesworth, C. J., Pisarevski, S. A., Dhuime, B., Capitanio, F.A., Nebel, O. 2018. Geological archive of the onset of plate tectonics. Philosophical Transactions Royal Society A 376, 1-30.

Condie, K. C. 2005. TTGs and adakites: are they both slab melts? Lithos 80, 33-44.

Condie, K.C & Kröner, A. 2008. Special Paper of the Geological Society of America, 440, 281-294.

Cordani, U.G. and Sato, K. 1999. Crustal evolution of the South American Platform based on Sm-Nd isotopic systematic on granitoid rocks. Episodes. 22, 167–173 Cox, K.G, Bell, J.D., Pankhurst. 1979. The Interpretation of Igneous Rocks. Allen & Unwin, London.

Cruz, S.C.P., Barbosa, J.S.F., Pinto, M.S., Peucat, J.-J., Paquette, J.L., Santos de Souza, J., de Souza Martins, V., Chemale Jr, F., Carneiro, M.A. 2016. The Siderian-Orosirian magmatism in the Archean Gavião Paleoplate, Brazil: U–Pb geochronology, geochemistry and tectonic implications. Journal of South American Earth Sciences. 69, 43-79.

Cruz, S.C.P., Barbosa, J.S.F., Teixeira, L., Alkmim, F.F., Paquette, J. L., Peucat, J.J., 2015. O arco magmático sideriano-Riaciano (2,324–2,050 Ma) desenvolvido na margem continental Gavião, Bahia, Brasil. In: 15th Simpósio Naciaonal de Estudos Tectônicos, SNET. 205–208.

Cutts, K.A., Lana, C., Alkmim, F., Peres, G. 2018. Metamorphic imprints on units of the southern Araçuaí Belt, SE Brazil: the history of superimposed Transamazonian and Brasiliano orogenesis. Gondwana Research. 58, 211-234.

D'Agrella-Filho, M.S. & Cordani, U.G. 2017. The Paleomagnetic Record of the São Francisco-Congo Craton. In: Heilbron M., Alkmim F., Cordani U.G. (Guest Ed.), The São Francisco Craton and its margins, Eastern Brazil. Regional Geology Review Series. Springer-Verlag, Chapter 17, 321–331.

De Paolo, D.J. 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53, 189-202.

Degler, R., Pedrosa-Soares, A. C., Novo, T., Tedeschi, M. Silva, I.C., Dussin, I., Lana, C. 2018. Rhyacian-Orosirian isotopic records from the basement of the Araçuaí-Ribeira orogenic system (SE Brazil): Links in the Congo-São Francisco palaeocontinent. Precambrian research. 317, 179-195.

Dhuime, B., Hawkesworth C.J., Cawood P.A., Storey C.D. 2012 A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336.

Dhuime, B., Wuestefeld A., Hawkesworth C.J. 2015 Emergence of modern continental crust about 3 billion years ago. Nature Geoscience. 8, 552–555

Duarte, B.P., Valente, S.C., Heilbron, M., Campos Neto, M.C. 2004. Petrogenesis of the orthogneisses of Mantiqueira Complex, central Ribeira belt, SE Brazil: An Archaean to Palaeoproterozoic basement unit reworked during the Pan-African Orogeny. Gondwana Research. 7 (2), 437–450.

Farina, F., Albert, C., Martínez-Dopico, C. Aguilar Gil, C., Moreira, H., Hippertt, J.P. Cutts, K., Alkmim, F.F., Lana, C. 2015. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil)- Current models and open questions. Journal of South American Earth Sciences. 68, 4–21.

Foley, S. F., Tiepolo, M. & Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 637–40.

Fowler, M., Kocks, H., Darbyshire, D., Greenwood, P., 2008. Petrogenesis of high Ba-Sr granitoids from the Northern Highland Terrane of the British Caledonian Province. Lithos. 105 (1-2), 129-148.

Fowler, M.B., Henney P.J., Darbyshire D.P.F., Greenwood P.B. 2001. Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. Journal of Geological Society of London. 158, 521-534.

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J, Frost, C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology. 42, 2033-2048.

Fuck, R., Brito-Neves, B.B., Schobbenhaus, C. 2008. Rodinia descendants in South America. Precambrian research. 160 (1), 108-126.

Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems. 14(3), 489-518.

Goulart, L.E.A., Carneiro M.A., Endo I., Suita M.T.F. 2013. New evidence of Neoarchean crustal growth in southern São Francisco Craton: the Carmópolis de Minas Layered Suite, Minas Gerais, Brazil. Brazilian Journal of Geology. 43(3). 445–459

Halla, J. 2005. Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constraints on crust-mantle interactions. Lithos 79 (1–2), 161–78.

Halla, J., van Hunen, J., Heilimo, E., Hölttä, P., 2009. Geochemical and numerical constraints on Neoarchaean plate tectonics. Precambrian Research 174, 155–162.

Haralyi, N.L.E. & Hasui, Y., 1982. The gravimetric information and Archean-Proterozoic structural framework of eastern Brazil. Revista Brasileira de Geociências. 112(1–3), 160–166.

Hastie, A., Fitton, J.G., Bromiley, G.D., Butler, I.B. & Odling, N.W.A. 2016. The origin of Earth's first continents and the onset of plate tectonics. Geology. 44(10), 855-858.

Hasui, Y., & Oliveira M.A.F. A Província Mantiqueira: Setor Central. 1984. In: Almeida & Hasui 1984, Edgard Blucher, O Precambriano do Brasil, 344.

Hawkesworth, C. J., Cawood, P. A., & Dhuime, B. 2016. Tectonics and crustal evolution. GSA Today 26(9), 4-11.

Hawkesworth, C., Cawood, P., and Dhuime, B. 2013. Continental growth and the crustal record: Tectonophysics. 609, 651–660.

Hawkesworth, C.J., Dhuime, B., Pietranik, A., Cawood, P.A., Kemp, A. I. S., Storey, C.D. 2010. The generation and evolution of the continental crust. Journal of the Geological Society 167(2), 229-248

Heilbron, M, Duarte B.P., Valeriano C.M., Simonetti A, Machado N, Nogueira, J.R. .2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research. 178, 136– 148

Heilbron, M, Valeriano, C.M., Tassinari, C.C.G., Almeida, J.C.H., Tupinamba M, Siga, O., Trouw, R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geological Society of London, Special Publication 294.

Heilbron, M. Ribeiro, A., Valeriano, C.M., Pacciullo, F.V., Almeida, J.C.H., Trouw, R. J., Tupinambá, M., Eirado Silva, L. G. 2017. The Ribeira Belt. In: Heilbron M., Alkmim F., Cordani U.G. (Guest Ed.), The São Francisco Craton and its margins, Eastern Brazil. Regional Geology Review Series. Springer-Verlag, Chapter 15, 277-302.

Heilbron, M., Duarte, B.P., Nogueira, J.R. 1998. The Juiz de Fora complex of the Central Ribeira belt, SE Brazil: a segment of Paleoproterozoic granulitic crust thrust during the Pan-African Orogen. Gondwana Research. 1(3):373-381.

Heilbron, M., Pedrosa-Soares, A. C., Campos Neto, M. C., Silva, L. C., Trouw, R. & Janasi, V. A. 2004. Brasiliano orogens in Southeast and South Brazil. Journal of the Virtual Explorer, 17

Heilimo, E., Halla, J. & Huhma, H. 2011. Single-grain zircon U-Pb age constraints for the eastern and western sanukitoid zones in the Finnish Part of the Karelian Province. Lithos. 121, 87–99.

Hiraga, R., Nogueira, J.R., Duarte, B.P., Valladares, C.S., Guimarães, V.O.M., Peterner, R. 2017. Geology and Lithogeochemistry of the Supracrustal Sequence and Interlayered metabasites of NE Santos Dumont Region (MG). Anuário do Instituto de Geociências. 40(3), 359-376.

Irvine, T.M. & Baragar, W.R. 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences. 8, 523-548.

Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology. 211, 47–69.

Janousek, V., Farrow, C.M., Erban, V. 2006. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Pterology. 47, 1255-159.

Kemp, A.I.S., Wilde, S.A., Hawkesworth, C.J., Coath, C.D., Nemchin, A., Pidgeon, R.T., Vervoort, J.D., and DuFrane, S.A. 2010. Hadean crustal evolution revisited: New constraints
from Pb-Hf isotope systematics of the Jack Hills zircons: Earth and Planetary Science Letters. 296(1-2), 245–56.

Korenaga, J. 2013 Initiation and evolution of plate tectonics on earth: theories and observations. Ann. Rev. Earth Planet. Sci. 41, 117–151.

Kovalenko, A., Clemens, J. D. & Savatenkov, V. 2005. Petrogenetic constraints for the genesis of Archaean sanukitoid suites: geochemistry and isotopic evidence from Karelia, Baltic Shield. Lithos 79 (1–2), 147–60.

Kuribara, Y., Tsunogae, T., Santosh, M., Takamura, Y., Costa, A.G., Rosière, C.A. 2019. Eoarchean to Neoproterozoic crustal evolution of the Mantiqueira and the Juiz de Fora Complexes, SE Brazil: Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes. Precambrian Research. 323, 82-101.

Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini Jr., H.A. 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Research. 231, 157–173.

Laurent, O., Martin H., Moyen J.F., Doucelance R. 2014 The diversity and evolution of late Archean granitoids: evidence for the onset of 'modern-style' plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208–235.

Ludwig, K.R., 2003. User's Manual for Isoplot/Ex, Version 3.0, A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. 4, 73. Machado, N. & Carneiro, M.A. 1992. U – Pb evidence of late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Canadian Journal of Earth Sciences. 29, 2341–2346.

Martin, H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology. 14,753–756.

Martin, H. 1987. Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology 28 (5), 921–53.

Martin, H. 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46(3), 411–29.

Martin, H., Moyen, J.F., 2002. Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology 30 (4), 319–322.

Martin, H., Moyen, J.F., Rapp, R., 2010. Sanukitoids and the Archaean-Proterozoic boundary. Transactions of the Royal Society of Edinburgh: Earth Sciences 100, 15–33.

Martin, H., Smithies, R. H., Rapp, R., Moyen, J.F. & Champion, D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79 (1–2), 1–24.

McDonough, W.F. & Sun, W. The composition of the Earth. 1995. Chemical Geology. 120 (3-4), 223-253.

Moreira, H., Seixas, L., Storey, C., Fowler, M., Lasalle, S., Stevenson, R., Lana, C. 2018. Evolution of Siderian juvenile crust to rhyacian high Ba-Sr magmatism in the Mineiro belt, southern São Francisco craton. Geoscience Frontiers. 9, 977-995.

Moyen, J.F. & Laurent, O. 2018. Archean tectonic systems? A view from igneous rocks. Lithos (302-303), 99-125.

Moyen, J.F., Martin, H., 2012. Forty years of TTG research. Lithos 148, 312–336.

Noce, C.M., Pedrosa-Soares, A.C., Silva, L.C., Armstrong, R., Piuzana, D. 2007. Evolution of polycyclic basement in the Araçuaí Orogen based on U-Pb SHRIMP data: implications for the Brazil-Africa links in the Paleoproterozoic time. Precambrian Research. 159, 60–78.

O'Connor, J. T. 1965. A classification for Quartz-rich igneous rocks based on feldspar ratios. U.S. Geol. Survey Prof Paper 525-B: B79-B84.

Oliveira, A.H., 2004. Evolução Tectônica de um fragmento do Cráton São Francisco Meridional com base em aspectos estruturais, geoquímicos (rocha total) e geocronológicos (Rb–Sr, Sm-Nd, Ar-Ar, U-Pb). PhD Thesis. Escola de Minas, Universidade Federal de Ouro Preto. 134 p.

Oliveira, E.P., McNaughton, N.J., Armstrong, R., 2010. Mesoarchaean to Palaeoproterozoic growth of the northern segment of the Itabuna Salvador Curaçá orogen, São Francisco craton, Brazil. Geological Society, London, Special Publications. 338, 263–286.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508.

Pearce, J.A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R S Thorpe (ed) Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester, pp 525-548, ISBN 0 471 28034 8.

Peccerillo, A. & Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contribution to Mineralogy and Petrology. 58, 63-81.

Peres, G.G., Alkmim, F.F., Jordt-Evangelista, H. 2004. The southern Araçuaí belt and the Dom Silvério Group: Geologic architecture and tectonic significance. Anais da Academia Brasileira de Ciências. 76, 771–790.

Pinese, J.P.P., Teixeira., Piccirillo, E.M, Quéméneur, J.J.G, Bellieni G. 1995. The Precambrian Lavras mafic dykes, southern São Francisco Craton, Brazil: preliminary geochemical and geochronological results. In: Baer G, Heimann A (eds.) Physics and Chemistry of Dykes, Rotterdam – Netherlands; 3rd Int Dyke Conf, pp. 205–219.

Pinheiro, M.A.P., Suita, M.T.F., Lesnov, F.P., Tedeschi, M., Silva, L.C., Medvedev, N.S., Korolyuk, V.N., Pinto, C.P., Sergeev, S.A. 2019. Timing and petrogenesis of metamaficultramafic rocks in the Southern Brasília orogen: Insights for a Rhyacian multi-system suprasubduction zone in the São Francisco paleocontinent (SE-Brazil). Precambrian research. 321, 328-348. Rajesh, H.M., Belyanin, G.A., Van Reenen, D.D. 2018. Three tier transition of Neoarchean TTG-sanukitoid magmatism in the Beit Bridge Complex, Southern Africa. Lithos. 296-299, 431-451.

Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36 (4), 891–931.

Rapp, R. P., Shimizu, N. & Norman, M. D. 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605–9.

Romano, R., Lana, C., Alkmim, F.F., Stevens, G., Armstrong, R.013.Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism. Precambrian Research. 224: 143–159.

Sacanni, E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers. 6(4), 481-501.

Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P. and Storey, C.D., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA \square ICP \square MS U \square Pb Geochronology and Lu \square Hf Isotope Tracing. Geostandards and Geoanalytical Research.

Schobbenhaus, C. and Brito Neves, B.B., 2003.Geology of Brazil in the context of the South American Platform. In: Bizzi, L.A.; Schobbenhaus, C.; Vidotti, R.M. and Gonçalves, J.H. (eds). Geology, Tectonics and Mineral Resources of Brazil. Serviço Geológico – CPRM. 5–54.

Shand, S. J. 1943. Eruptive rocks, 2nd ed. John Wiley, New York, pp 1-444.

Silva L.C., Armstrong R., Noce C.M., Carneiro M.A., Pimentel M. M., Pedrosa-Soares A.C., Leite C.A., Vieira V.S., Silva M.A., Paes V.J.C., Cardoso-Filho J.M. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte II: Orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Revista Brasileira de Geociências. 32, 513–528.

Silva, L.C., Pedrosa-Soares, A.C., Armstrong. R., Pinto, C.P., Magalhães, J.T.R., Pinheiro, M.A.P., Santos, G.G. 2016. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil). Journal of South American Earth Sciences. 68, 50-67.

Sizova E., Gerya T., Brown M., Perchuk L.L. 2010 Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229.

Sláma, J., Ko^{*}sler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Ple^{*}sovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology. 249, 1–35.

Sun, W. & McDonough, W.F. Chemichal and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. 1989. Geological Society of London Special Publications. 42 (1).

Tang M., Chen K., Rudnick R.L. 2016 Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375.

Tarney J. & Jones C.E. C.E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Geological Society of London Journal, 151, 855-868.

Teixeira, W. & Figueiredo, M.C.H. 1991. An outline of Early Proterozoic crustal evolution in the Sao Francisco craton, Brazil: a review. Precambrian Research. 53, 1-22.

Teixeira, W., Ávila, C.A., Dussin, I.A., Neto, A.C., Bongiolo, E.M., Santos, J.O., Barbosa, N.S., 2015. A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny: Zircon U–Pb–Hf and geochemical evidences. Precambrian Research. 256, 148–169.

Teixeira, W., Carneiro, M.A, Noce C.M, Machado, N., Sato, K., Taylor, P.N. 1996. Pb, Sr and Nd isotopic constraints on the Archean evolution of gneissic-granitoid complexes in the southern São Francisco Craton, Brazil. Precambrian Research. 78, 151–164.

Teixeira, W., Oliveira, E.P., Marques, L.S. 2017. Nature and Evolution of the Archean Crust of the São Francisco Craton. In: Heilbron M., Alkmim F., Cordani U.G. (Guest Ed.), The São Francisco Craton and its margins, Eastern Brazil. Regional Geology Review Series. Springer-Verlag, Chapter 3, 29–55.

Teixeira, W., Sabaté, P., Barbosa J., Noce, C.M., Carneiro, M.A. 2000.Archean and Paleoproterozoic tectonic evolution of the São Francisco Craton. In: Cordani, U.G.;Milani, E.J.; Thomaz Fo, A.;Campos, D.A. (eds.) Tectonic Evolution of South América. Rio de Janeiro, 31st International Geological Congress, Rio de Janeiro. 101–137.

Trompette, R. 1994. Geology of Western Gondwana (2000 - 500 Ma): Pan-African-Brasiliano Aggregation of South America and Africa. 350 pp.; Rotterdam (Balkema).

Trouw, R.A.J., Heilbron, M., Ribeiro, A., Paciullo, F.V.P., Valeriano, C.M., Almeida, J.C.H., Tupinambá, M., Andreis, R.R. 2000. The central segment of the Ribeira belt. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. (Eds.), Tectonic Evolution of South America, 31th International Geological Congress, Rio de Janeiro, Brazil, pp. 287–310.

Valeriano, C.M., Neumann, R. Alkmim, A.R., Evangelista, H., Heilbron, M. Neto, C.C.A., Souza, G.P. 2019. Sm–Nd and Sr isotope fingerprinting of iron mining tailing deposits spilled from the failed SAMARCO Fundão dam 2015 accident at Mariana, SE-Brazil. Applied geochemistry. 106, 34-44.

Van Achterbergh, E., Ryan, C.G., Jackson, S.E. and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS: appendix; In Sylvester, P.J. (ed.), Laser Ablation –ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Mineralogical Association of Canada Short Course Series, Ottawa, Ontario, Canada. 29, 239-243.

Whalen, J. B., Currie, K. L., Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology. 95, 407-419.

Windley, B.F & Garde, A.A. 2009. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues. Earth-Science Reviews 93, 1-30.

UoP

66A													a
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	Rho c	Conc
	²³⁸ U	sigma	²³⁵ U	sigma	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
66A_1	0,418	0,025	9,07	0,53	0,09	2415	20	2251	110	2340	55	0,89	96,05
66A_10	0,542	0,032	13,9	0,76	0,46	2710	12	2789	130	2741	52	0,66	101,71
66A_11	0,373	0,022	7,81	0,44	0,33	2364	14	2043	100	2205	51	0,84	92,07
66A_12	0,483	0,028	12,15	0,66	0,12	2683	14	2539	120	2615	51	0,67	97,02
66A_13	0,377	0,022	6,492	0,36	0,30	2021	13	2060	100	2043	49	0,82	100,83
66A_14	0,435	0,026	7,628	0,42	0,11	2050	18	2329	110	2187	49	0,61	106,10
66A_15	0,484	0,028	11,85	0,65	0,58	2626	11	2545	120	2593	52	0,73	98,13
66A_16	0,318	0,02	5,52	0,35	0,06	2204	30	1780	97	1893	55	0,91	93,65
66A_17	0,512	0,03	12,6	0,69	0,13	2627	16	2666	130	2649	51	0,57	100,64
66A_18	0,53	0,031	13,8	0,75	0,23	2724	15	2741	130	2735	51	0,65	100,23
66A_19	0,371	0,022	6,42	0,36	0,47	2026	25	2032	100	2031	50	0,5	100,05
66A_2	0,461	0,027	11,15	0,61	0,26	2606	16	2443	120	2534	51	0,62	96,28
66A_20	0,536	0,031	13,57	0,74	0,28	2680	11	2766	130	2720	53	0,73	101,60
66A_21	0,361	0,022	6,39	0,37	0,18	2074	21	1988	100	2028	48	0,86	97,9
66A_22	0,569	0,034	14,51	0,8	0,13	2697	14	2902	140	2782	52	0,72	104,14
66A_23	0,376	0,022	6,63	0,37	0,70	2070	26	2055	100	2060	50	0,45	99,70
66A_24	0,551	0,032	13,85	0,76	0,13	2671	14	2827	130	2738	52	0,66	103,1
66A_25	0,362	0,022	6,203	0,35	1,01	2031	21	1990	100	2003	49	0,71	99,3
66A_26	0,491	0,029	12,42	0,68	0,07	2683	11	2575	120	2636	51	0,78	97,64
66A_27	0,338	0,02	5,852	0,32	0,94	2034	25	1875	96	1951	48	0,35	95,95
66A_28	0,502	0,029	12,72	0,69	0,40	2690	9,5	2620	130	2658	52	0,77	98,54
66A_29	0,393	0,023	9,147	0,5	0,59	2716	9,7	2136	110	2352	50	0,83	89,9
66A_3	0,443	0,026	10,5	0,58	0,32	2574	16	2361	120	2478	51	0,64	95,04
66A_30	0,352	0,02	6,064	0,33	0,52	2029	13	1942	98	1984	48	0,59	97,8
66A_31	0,34	0,02	5,91	0,34	1,25	2031	31	1884	98	1955	51	0,58	96,2
66A_32	0,527	0,031	13,25	0,73	0,07	2668	17	2726	130	2696	52	0,62	101,10
66A_33	0,518	0,031	12,81	0,71	0,42	2644	16	2688	130	2666	54	0,77	100,82
66A_34	0,504	0,029	13,16	0,72	0,58	2729	11	2631	130	2690	51	0,76	97,70
66A_35	0,348	0,021	7,99	0,45	0,05	2687	18	1922	99	2228	50	0,73	84,0
66A_36	0,491	0,029	12,47	0,68	0,50	2688	13	2573	120	2639	51	0,65	97,44
66A_37	0,391	0,023	8,19	0,49	0,15	2356	22	2125	110	2244	52	0,88	94,40
66A_38	0,402	0,024	7,93	0,47	0,10	2257	21	2178	110	2216	51	0,88	98,2
66A_39	0,363	0,021	6,31	0,35	0,62	2050	23	1998	100	2019	50	0,56	98,9
66A_4	0,48	0,028	12,17	0,66	0,51	2689	11	2527	120	2617	52	0,68	96,44
66A_40	0,491	0,03	10,02	0,59	0,03	2322	38	2571	130	2432	56	0,51	105,4
66A 41	0.499	0.029	12.25	0.67	0.08	2635	9.6	2609	130	2623	53	0.85	99.40

66A_42	0,534	0,031	13,72	0,75	0,21	2707	10	2759	130	2730	52	0,78	101,07
66A_43	0,349	0,021	5,98	0,35	1,33	2005	36	1929	99	1968	49	0,39	97,98
66A_44	0,407	0,025	8,22	0,52	0,19	2291	30	2197	110	2245	56	0,89	97,82
66A_45	0,376	0,022	6,523	0,36	0,96	2037	18	2056	100	2046	48	0,53	100,49
66A_46	0,481	0,028	12	0,66	0,27	2654	13	2532	120	2603	51	0,65	97,20
66A_47	0,336	0,02	5,8	0,32	0,88	2016	22	1868	95	1942	48	0,62	96,04
66A_48	0,476	0,029	11,42	0,64	0,41	2589	16	2510	120	2556	52	0,8	98,17
66A_49	0,413	0,024	9,19	0,5	0,31	2461	12	2226	110	2355	51	0,78	94,20
66A_5	0,353	0,021	6,061	0,33	0,18	2017	18	1948	99	1982	48	0,62	98,25
66A_50	0,339	0,02	5,902	0,33	1,09	2030	24	1882	96	1958	48	0,48	95,96
66A_51	0,472	0,028	11,92	0,66	0,46	2671	11	2490	120	2597	51	0,82	95,70
66A_52	0,32	0,019	5,71	0,33	1,27	2079	30	1789	92	1934	51	0,53	91,89
66A_53	0,5	0,029	12,96	0,7	0,11	2710	11	2614	130	2676	51	0,66	97,64
66A_54	0,433	0,026	10,44	0,61	0,27	2587	22	2319	120	2469	55	0,84	93,53
66A_55	0,315	0,019	5,365	0,3	0,82	1992	29	1762	91	1874	48	0,4	93,64
66A_56	0,414	0,024	9,975	0,54	0,06	2599	11	2230	110	2431	50	0,76	90,97
66A_57	0,517	0,03	13,31	0,73	0,35	2702	15	2686	130	2700	51	0,69	99,48
66A_58	0,484	0,028	12,32	0,67	0,06	2686	11	2544	120	2628	51	0,79	96,71
66A_59	0,352	0,022	7,66	0,49	0,73	2603	34	1943	110	2186	59	0,84	87,49
66A_6	0,501	0,03	12,56	0,69	0,29	2672	20	2618	130	2645	52	0,58	98,97
66A_60	0,478	0,028	11,71	0,64	0,27	2631	13	2517	120	2580	51	0,61	97,50
66A_7	0,529	0,031	13,78	0,76	0,06	2724	12	2737	130	2732	51	0,79	100,18
66A_8	0,513	0,03	12,8	0,71	0,03	2662	16	2669	130	2666	48	0,74	100,11
66A_9	0,348	0,02	5,843	0,32	0,46	1977	18	1925	97	1951	48	0,53	98,65

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

U	oP
---	----

66B												DL	G
Sample	206Pb ^a	±2s	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	c Kno	Conc.
	²³⁸ U	sigma	²³⁵ U	sigma	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
66B_1	0,542	0,026	13,93	0,7	0,15	2698	11	2788	110	2743	48	0,74	101,61
66B_2	0,489	0,024	11,74	0,6	0,42	2584	21	2564	100	2582	48	0,54	99,30
66B_11	0,515	0,025	12,54	0,64	0,19	2620	14	2678	110	2644	48	0,7	101,27
66B_12	0,491	0,024	10,8	0,56	0,21	2444	18	2573	100	2505	50	0,68	102,64
66B_13	0,375	0,018	7,701	0,39	0,26	2317	16	2052	85	2195	47	0,63	93,03
66B_14	0,432	0,021	9	0,47	0,51	2343	18	2313	9 4	2335	4 8	0,68	99,05
66B_15	0,448	0,022	11,23	0,59	0,74	2652	11	2385	98	2537	49	0,91	93,63
66B_16	0,51	0,025	13,08	0,67	0,5	2689	15	2660	110	2684	49	0,77	99,10
66B_17	0,393	0,02	8,46	0,51	0,48	2376	32	2132	94	2264	56	0,89	93,81

66B_18	0,426	0,021	9,53	0,52	0,06	2446	26	2287	95	2379	53	0,89	95,98
66B_19	0,363	0,018	6,357	0,33	1,27	2040	24	1995	83	2024	46	0,44	98,55
66B_20	0,464	0,022	11,46	0,58	0,08	2639	10	2455	98	2560	47	0,67	95,71
66B_3	0,503	0,024	12,98	0,66	0,61	2717	13	2625	100	2677	48	0,66	98,03
66B_21	0,53	0,026	13,21	0,68	0,58	2653	17	2740	110	2694	49	0,67	101,68
66B_22	0,438	0,021	10,13	0,52	0,1	2530	13	2342	95	2445	47	0,74	95,60
66B_23	0,347	0,017	6,24	0,32	0,57	2098	25	1918	81	2008	45	0,41	95,31
66B_24	0,406	0,02	8,88	0,46	0,39	2445	20	2196	90	2324	47	0,53	94,17
66B_25	0,42	0,02	9,292	0,47	0,49	2471	13	2258	92	2367	47	0,63	95,19
66B_26	0,542	0,026	13,73	0,7	0,69	2695	13	2795	110	2730	48	0,71	102,33
66B_27	0,494	0,025	11,94	0,65	0,22	2611	22	2586	110	2596	51	0,8	99,61
66B_28	0,344	0,017	5,914	0,3	0,07	2043	13	1904	79	1962	44	0,34	96,97
66B_29	0,358	0,018	6,06	0,32	1,64	2006	31	1980	67	1984	42	0,04	99,80
66B_30	0,385	0,019	7,536	0,38	0,18	2272	16	2098	87	2176	46	0,57	96,30
66B_4	0,364	0,018	6,73	0,37	0,96	2133	33	2001	84	2070	48	0,55	96,55
66B_31	0,369	0,018	6,459	0,33	0,51	2073	19	2023	86	2039	45	0,69	99,21
66B_32	0,458	0,022	11,07	0,56	0,37	2622	12	2433	95	2528	47	0,62	96,10
66B_33	0,367	0,018	6,356	0,32	0,4	2041	16	2017	83	2024	45	0,49	99,64
66B_34	0,477	0,023	11,48	0,58	0,3	2611	12	2513	100	2563	48	0,65	98,03
66B_35	0,506	0,025	12,77	0,65	0,22	2686	13	2638	110	2661	48	0,79	99,13
66B_36	0,459	0,022	10,96	0,57	0,37	2571	20	2436	99	2518	48	0,59	96,63
66B_37	0,373	0,018	6,45	0,34	1,04	2008	28	2043	85	2035	46	0,31	100,39
66B_38	0,367	0,018	6,463	0,33	0,02	2054	12	2012	83	2040	44	0,62	98,60
66B_39	0,472	0,023	11,37	0,58	0,36	2582	14	2491	100	2555	50	0,71	97,43
66B_40	0,357	0,018	6,21	0,34	0,39	2013	35	1967	86	2005	48	0,51	98,07
66B_5	0,453	0,022	10,74	0,54	0,67	2572	14	2406	97	2500	47	0,58	96,10
	0,525	0,025	12,96	0,65	0,25	2611	13	2721	110	2676	47	0,56	101,66
	0,496	0,024	12,44	0,63	0,84	2641	13	2596	100	2637	48	0,74	98,42
66B 43	0,398	0,02	8,86	0,46	0,64	2436	20	2159	92	2322	48	0,66	92,45
	0,501	0,025	12,95	0,67	0,5	2682	17	2616	110	2674	49	0,74	97,78
- 66B 45	0,518	0,025	13,42	0,68	0,58	2689	10	2691	110	2708	48	0,8	99,36
66B 46	0,396	0,019	6,84	0,36	1,35	1990	28	2148	89	2089	47	0,43	102,75
	0,49	0,024	12,33	0,64	0,36	2639	21	2568	100	2627	50	0,57	97,70
- 66B 48	0,525	0,025	13,45	0,68	0,76	2683	14	2718	110	2711	48	0,67	100,26
- 66B 49	0,338	0,016	5,936	0,31	0,21	2033	22	1876	79	1964	4 5	0,51	95,31
66B 50	0.442	0.022	10.56	0.54	0.02	2573	13	2356	97	2484	47	0.8	94.57
66B 6	0.356	0.017	6.229	0.32	0.18	2062	21	1962	82	2006	45	0.5	97.76
66B 51	0.46	0.022	11.3	0.58	0.15	2622	20	2439	99	2547	48	0.56	95.57
66B 52	0 341	0.016	5 831	03	0.31	2013	13	1891	79	1951	43	0.65	96.85
66B 53	0.486	0.024	11.92	0,5	0.27	2631	12	2553	100	2595	48	0.79	98 35
66B 7	0.421	0.027	7 35	0.4	0,27	2051	16	2260	100	2153	40	0.92	104.73
66B 8	0.277	0.015	4 49	0.27	0.52	1889	32	1574	75	1709	52	0.89	91 42
66B 9	0.529	0.026	13.75	0.7	0.55	2721	18	2736	110	2732	49	0.66	100.15
66B 10	0.435	0.022	10.29	0.53	0.14	2561	19	2329	96	2460	48	0.65	94.38
· · · _ · · · · · · · · · · · · · · · ·		· ,	~,_/	-,	~, - ·		- /	2.27				.,	,00

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

²⁰⁶Pb^a

²³⁸U

0,092

0,094

0,094

0,094

0,098

0,099

0,151

0,154

0,163

0,181

0,196

0,201

0,203

0,206

0,218

0,218

0,244

0,244

0,258

0,265

0,268

0,275

0,278

0,28

0,292

0,298

0,308

0,314

0,316

0,327

0,33

0,333

0,345

UoP 8

Sample

08_5

08_7

08_10

08_12

08_19

08_33

08_20

08_3

08_29

08_18

08_28

08_21

08_24

08_14

08_2

08_35

08_15

08_13

08_11

08_30

08_25

08_17

08_4

08_16

08_6

08_9

08_32

08_22

08_26

08_8

08_34

08_27

8_1

 $\pm 2s$

sigma

0,002

0,002

0,002

0,002

0,003

0,002

0,004

0,005

0,004

0,007

0,007

0,007

0,004

0,007

0,008

0,006

0,01

0,009

0,008

0,006

0,008

0,007

0,007

0,008

0,007

0,012

0,007

0,007

0,009

0,012

0,008

0,009

0,01

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))^{206}Pb/^{238}U)) \times 100$

²⁰⁷Pb^a

²³⁵U

0,753

0,757

0,773

0,788

0,779

0,814

2.278

1,98

2,428

2,62

3,01

3,07

3,207

3,31

3,5

3,37

4.26

4,2

4,54

4,493

4,58

4,67

4,75

4,71

5,35

5,27

5,43

5,59

5,58

5,68

5,92

5,81

6,39

Conc.

0,34 100,47

101,32

99,79

99,21

103,83

100,81

68.69

80,86

71,66

79,35

78,42

80,14

77,85

77.69

80,31

82,86

81.22

81,82

83,04

85,92

86,26

87,78

88,03

89,04

86.92

89,33

91,10

91,18

92,18

94,51

93,30

95,09

93,56

0,2

0,77

0,5

Rho

+2s

(Ma

)

15

16

17 0,32

17 0,27

23 0,29

17 0,24

30

33 0,47

23

37 0,85

45 0,79

34 0,87

23 0,51

34 0,45

37

34 0,62

43

47 0,51

37

28 0,42

36 0,73

31

29 0,68

30 0,53

32

47 0,51

27 0,39

28 0,58

32 0,77

37 0,61

27 0,55

31 0,52

35 0,53

0,76

0,88

0,26

0,62

0.5

²⁰⁷<u>Pb</u>

²³⁵U

567

569

578

586

577

601

1191

1102

1250

1291

1397

1412

1456

1475

1520

1490

1670

1664

1731

1726

1738

1754

1768

1762

1867

1856

1885

1912

1902

1922

1959

1946

2033

 $\pm 2s$

(Ma)

12

13

12

12

15

14

 $\frac{21}{21}$

27

19

39

40

35

24

36

42

34

51

47

41

31

43

35

36

38

36

61

33

36

43

56

37

42

46

²⁰⁷<u>Pb</u>

²⁰⁶Pb

548

514

536

547

422

537

1706

1522

1745

1656

1794

1771

1841

1859

1898

1806

1999

1979

2046

1974

2013

1986

1964

1997

2087

2075

2037

2062

2043

2032

2083

2032

2137

Th

U

0,09

0,03

0,03

0,02

0,04

0,03

0,98

0,38

0,22

0,21

0,3

0,94

0,15

0,31

0,97

0,41

1,15

0,4

0,28

0,5

1,22

0.46

0,23

0,31

0,34

0,54

0,2

0,42

0,38

0,34

0,47

0,3

0,24

 $\pm 2s$

sigma

0,026

0,028

0,029

0,03

0,04

0,031

0,095

0,075

0,14

0,18

0,13

0,097

0,15

0,17

0,15

0,22

0,24

0,2

0,15

0,2

0.17

0,17

0,17

0,2

0,29

0.17

0,18

0,2

0.25

0,18

0,22

0,25

0.1

²⁰⁶Pb

²³⁸U

569,7

576.6

576,8

581.4

600

605,9

907

925

974

1070

1149

1178

1192

1206

1270

1272

1406

1408

1480

1513

1528

1563

1579

1588

1651

1677

1731

1757

1764

1822

1836

1855

1910

 $\pm 2s$

(Ma

57

68

66

66

97

70

50

66

37

48

66

40

35

66

53

56

45

86

68

44

48

45

37

46

47

81

38

36

36

58

36

48

55

08_23	0,351	0,008	6,41	0,2	0,42	2104	39	1936	37	2029	28	0,41	95,20
08_31	0,376	0,009	6,79	0,22	0,87	2094	41	2055	43	2079	29	0,46	98,83

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))/^{206}Pb/^{238}U)) \ge 100$

UoP
UoP

67

Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	Rho c	Conc.
	²³⁸ U	sigma	²³⁵ U	sigma	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
67_16	0,098	0,009	2,214	0,18	0,23	2541	35	601	52	1178	58	0,92	3,99
67_33	0,188	0,016	2,89	0,25	0,04	1788	22	1107	86	1359	65	0,97	77,24
67_20	0,167	0,014	2,297	0,19	0,02	1630	19	997	76	1207	60	0,92	78,94
67_18	0,221	0,018	3,631	0,3	0,09	1963	18	1283	96	1551	66	0,93	79,11
67_26	0,168	0,013	2,275	0,18	0,02	1586	16	999,9	74	1205	55	0,72	79,53
67_1	0,224	0,018	3,672	0,29	0,03	1933	13	1300	95	1562	65	0,89	79,85
67_34	0,194	0,016	2,847	0,23	0,02	1721	14	1144	81	1367	59	0,81	80,52
67_13	0,082	0,007	0,814	0,077	0,01	976	67	506	41	600	42	0,86	81,42
67_7	0,235	0,019	3,851	0,31	0	1935	14	1359	99	1600	65	0,84	82,27
67_30	0,227	0,019	3,591	0,29	0,04	1868	17	1317	97	1543	65	0,93	82,84
67_23	0,231	0,019	3,663	0,29	0,04	1881	14	1341	97	1562	63	0,68	83,54
67_25	0,228	0,018	3,527	0,28	0,02	1835	15	1321	96	1532	63	0,73	84,00
67_6	0,246	0,02	4,01	0,32	0,02	1922	15	1416	100	1635	65	0,76	84,53
67_27	0,242	0,019	3,881	0,31	0,02	1913	16	1394	100	1609	64	0,63	84,58
67_11	0,232	0,019	3,596	0,28	0,01	1842	14	1342	97	1548	63	0,71	84,66
67_9	0,252	0,02	4,176	0,33	0	1960	12	1450	100	1668	65	0,75	84,94
67_12	0,252	0,02	4,136	0,33	0,04	1948	14	1446	100	1657	67	0,93	85,41
67_29	0,256	0,021	4,251	0,35	0,04	1951	16	1466	110	1679	67	0,94	85,47
67_4	0,28	0,022	4,701	0,37	0,03	1982	11	1588	110	1766	66	0,74	88,77
67_3	0,296	0,024	5,152	0,41	0,04	2040	14	1669	120	1840	69	0,88	89,75
67_35	0,302	0,024	5,259	0,42	0,01	2037	14	1701	120	1861	68	0,69	90,61
67_2	0,316	0,025	5,617	0,45	0,02	2073	14	1768	120	1917	68	0,67	91,58
67_5	0,302	0,024	5,124	0,41	0,01	2001	12	1698	120	1839	68	0,75	91,72
67_14	0,323	0,026	5,558	0,44	0,04	2046	18	1802	130	1908	69	0,65	94,12
67_28	0,324	0,027	5,63	0,48	0,04	2022	19	1807	130	1910	74	0,97	94,30
67_22	0,321	0,026	5,465	0,43	0,02	2021	13	1795	130	1894	68	0,8	94,50
67_21	0,335	0,027	5,852	0,46	0,09	2067	14	1860	130	1953	69	0,59	95,01
67_15	0,346	0,028	6,232	0,49	0,26	2115	17	1915	130	2007	70	0,6	95,21
67_19	0,359	0,029	6,623	0,53	0,07	2161	18	1975	140	2059	70	0,59	95,75
67_32	0,351	0,028	6,189	0,49	0	2059	13	1937	130	2002	69	0,62	96,65
67_8	0,385	0,032	7,43	0,62	0,15	2224	17	2094	150	2152	76	0,93	97,23

67_17	0,363	0,029	6,408	0,51	0,25	2089	18	1997	130	2031	70	0,61	98,30
67_10	0,345	0,029	5,76	0,49	0,06	1969	18	1902	140	1925	72	0,95	98,79
67_24	0,376	0,03	6,77	0,54	0,13	2109	15	2056	140	2078	73	0,82	98,93
67_31	0,369	0,03	6,498	0,52	0,03	2060	12	2023	140	2043	70	0,85	99,01

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

UoP

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x 100$

64A													~
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	Rho c	Conc.
	²³⁸ U	sigma	²³⁵ U	sigma	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
					-		/	-		-			
64_1	0,261	0,022	4,4	0,38	0,21	1959	29	1489	110	1702	75	0,92	85,70
64_2	0,094	0,008	0,765	0,062	0,03	546	41	576,2	44	575,9	36	0,38	100,05
64_11	0,339	0,027	5,971	0,48	0,53	2041	23	1881	130	1970	70	0,53	95,27
64_12	0,344	0,028	5,982	0,48	0,2	2036	21	1905	130	1971	70	0,7	96,54
64_13	0,342	0,027	6	0,48	0,23	2047	15	1895	130	1974	69	0,61	95,84
64_14	0,318	0,025	5,468	0,43	0,26	2010	14	1781	120	1894	68	0,65	93,66
64_15	0,093	0,008	0,745	0,062	0,02	499	60	572,4	44	564	37	0,32	101,47
64_16	0,318	0,026	5,578	0,44	0,18	2047	12	1777	120	1911	69	0,8	92,46
64_17	0,096	0,008	0,878	0,089	0,05	706	75	588	47	635	46	0,91	92,01
64_18	0,202	0,016	3,094	0,25	0,5	1799	17	1185	87	1430	62	0,56	79,29
64_19	0,307	0,025	5,364	0,43	0,21	2028	17	1725	120	1876	69	0,85	91,25
64_20	0,271	0,022	4,609	0,37	0,39	1994	31	1544	110	1748	69	0,45	86,79
64_3	0,299	0,025	5,07	0,43	0,16	1975	24	1690	120	1824	81	0,96	92,07
64_21	0,346	0,028	6,049	0,48	0,25	2035	14	1913	130	1981	70	0,83	96,45
64_22	0,109	0,01	1,08	0,14	0,03	880	110	662	59	736	64	0,91	88,82
64_23	0,325	0,026	5,653	0,45	0,23	2014	21	1813	130	1923	69	0,51	93,93
64_24	0,1	0,01	0,94	0,13	0,04	740	120	614	55	661	63	0,95	92,35
64_25	0,296	0,024	5,07	0,41	0,34	1995	18	1668	120	1825	71	0,85	90,59
64_26	0,135	0,013	2,56	0,23	0,1	2224	46	812	74	1279	65	0,86	42,49
64_27	0,349	0,028	6,081	0,48	0,35	2035	16	1927	130	1986	69	0,56	96,94
64_28	0,311	0,025	5,287	0,42	0,5	1984	20	1746	120	1863	69	0,66	93,30
64_29	0,347	0,028	6,191	0,49	0,3	2069	22	1919	130	2002	69	0,52	95,67
64_30	0,325	0,026	5,571	0,44	0,24	2007	18	1811	130	1910	68	0,67	94,53
64_31	0,096	0,008	0,778	0,063	0,05	526	45	591,8	45	582,4	36	0,27	101,59
64_32	0,17	0,014	2,4	0,2	0,34	1667	33	1013	77	1239	61	0,78	77,69
64_33	0,326	0,026	5,677	0,45	0,15	2049	16	1817	130	1924	70	0,83	94,11
64_34	0,336	0,027	5,911	0,47	0,23	2067	15	1868	130	1961	69	0,64	95,03
64_35	0,216	0,018	3,3	0,29	0,42	1795	28	1258	96	1471	67	0,93	83,07
64_4	0,317	0,025	5,475	0,44	0,46	2027	18	1772	120	1895	67	0,62	93,06

0,275	0,022	4,592	0,37	0,47	1970	17	1564	110	1745	66	0,78	88,43
0,322	0,026	5,583	0,45	0,47	2031	18	1797	130	1908	70	0,79	93,82
0,263	0,021	4,358	0,35	0,22	1958	19	1502	110	1703	65	0,55	86,61
0,33	0,027	5,797	0,46	0,21	2044	19	1838	130	1944	70	0,74	94,23
0,117	0,014	1,34	0,23	0,02	950	140	710	77	788	83	0,82	89,01
0,273	0,022	4,694	0,38	0,23	2023	32	1555	110	1764	68	0,55	86,56
	0,275 0,322 0,263 0,33 0,117 0,273	0,275 0,022 0,322 0,026 0,263 0,021 0,33 0,027 0,117 0,014 0,273 0,022	0,275 0,022 4,592 0,322 0,026 5,583 0,263 0,021 4,358 0,33 0,027 5,797 0,117 0,014 1,34 0,273 0,022 4,694	0,275 0,022 4,592 0,37 0,322 0,026 5,583 0,45 0,263 0,021 4,358 0,35 0,33 0,027 5,797 0,46 0,117 0,014 1,34 0,23 0,273 0,022 4,694 0,38	0,2750,0224,5920,370,470,3220,0265,5830,450,470,2630,0214,3580,350,220,330,0275,7970,460,210,1170,0141,340,230,020,2730,0224,6940,380,23	0,2750,0224,5920,370,4719700,3220,0265,5830,450,4720310,2630,0214,3580,350,2219580,330,0275,7970,460,2120440,1170,0141,340,230,029500,2730,0224,6940,380,232023	0,275 0,022 4,592 0,37 0,47 1970 17 0,322 0,026 5,583 0,45 0,47 2031 18 0,263 0,021 4,358 0,35 0,22 1958 19 0,33 0,027 5,797 0,46 0,21 2044 19 0,117 0,014 1,34 0,23 0,02 950 140 0,273 0,022 4,694 0,38 0,23 2023 32	0,275 0,022 4,592 0,37 0,47 1970 17 1564 0,322 0,026 5,583 0,45 0,47 2031 18 1797 0,263 0,021 4,358 0,35 0,22 1958 19 1502 0,33 0,027 5,797 0,46 0,21 2044 19 1838 0,117 0,014 1,34 0,23 0,02 950 140 710 0,273 0,022 4,694 0,38 0,23 2023 32 1555	0,2750,0224,5920,370,4719701715641100,3220,0265,5830,450,4720311817971300,2630,0214,3580,350,2219581915021100,330,0275,7970,460,2120441918381300,1170,0141,340,230,02950140710770,2730,0224,6940,380,232023321555110	0,275 0,022 4,592 0,37 0,47 1970 17 1564 110 1745 0,322 0,026 5,583 0,45 0,47 2031 18 1797 130 1908 0,263 0,021 4,358 0,35 0,22 1958 19 1502 110 1703 0,33 0,027 5,797 0,46 0,21 2044 19 1838 130 1944 0,117 0,014 1,34 0,23 0,02 950 140 710 77 788 0,273 0,022 4,694 0,38 0,23 2023 32 1555 110 1764	0,275 0,022 4,592 0,37 0,47 1970 17 1564 110 1745 66 0,322 0,026 5,583 0,45 0,47 2031 18 1797 130 1908 70 0,263 0,021 4,358 0,35 0,22 1958 19 1502 110 1703 65 0,33 0,027 5,797 0,46 0,21 2044 19 1838 130 1944 70 0,117 0,014 1,34 0,23 0,02 950 140 710 77 788 83 0,273 0,022 4,694 0,38 0,23 2023 32 1555 110 1764 68	0,275 0,022 4,592 0,37 0,47 1970 17 1564 110 1745 66 0,78 0,322 0,026 5,583 0,45 0,47 2031 18 1797 130 1908 70 0,79 0,263 0,021 4,358 0,35 0,22 1958 19 1502 110 1703 65 0,55 0,33 0,027 5,797 0,46 0,21 2044 19 1838 130 1944 70 0,74 0,117 0,014 1,34 0,23 0,02 950 140 710 77 788 83 0,82 0,273 0,022 4,694 0,38 0,23 2023 32 1555 110 1764 68 0,55

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+((^{206}Pb/^{238}U - $^{207}Pb/^{235}U)/^{206}Pb/^{238}U)) x 100$

UoP

64B													
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	Rho c	Conc.
-	²³⁸ U	sigma	²³⁵ U	sigma	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
64B_1	0,345	0,009	6,08	0,19	0,82	2051	59	1910	43	1983	28	0,4	96,18
64B_2	0,233	0,008	3,88	0,16	0,79	1932	61	1350	40	1601	35	0,57	81,41
64B_11	0,228	0,005	3,602	0,093	0,25	1875	34	1324	28	1545	21	0,76	83,31
64B_12	0,109	0,004	0,985	0,06	0,05	718	70	663	23	688	29	0,81	96,23
64B_13	0,293	0,011	5,07	0,19	0,32	2030	62	1654	53	1826	33	0,52	89,60
64B_14	0,096	0,002	0,782	0,033	0,04	525	95	589	13	581	19	0,01	101,36
64B_15	0,274	0,005	4,633	0,1	0,26	1994	37	1559	27	1751	19	0,59	87,68
64B_16	0,307	0,008	5,64	0,17	0,72	2109	45	1722	39	1918	27	0,66	88,62
64B_17	0,375	0,012	6,59	0,27	0,48	2032	69	2052	57	2048	38	0,52	100,19
64B_18	0,344	0,007	6,02	0,16	0,88	2055	45	1904	35	1975	24	0,49	96,27
64B_19	0,197	0,006	2,885	0,1	0,25	1727	48	1156	30	1370	26	0,75	81,49
64B_20	0,098	0,004	0,92	0,061	0,1	752	83	601	21	645	29	0,85	92,68
64B_3	0,099	0,002	0,808	0,022	0,02	555	59	606	11	598	12	0,33	101,32
64B_21	0,343	0,009	6,18	0,18	0,63	2089	39	1897	43	1996	25	0,73	94,78
64B_22	0,262	0,005	4,28	0,083	0,29	1950	33	1497	25	1688	17	0,6	87,24
64B_23	0,061	0,002	0,515	0,024	0,03	623	98	381	15	419	16	0,35	90,03
64B_24	0,293	0,005	4,915	0,1	0,2	1979	36	1656	27	1801	18	0,39	91,24
64B_25	0,248	0,008	3,98	0,15	0,34	1886	41	1423	41	1614	31	0,86	86,58
64B_26	0,276	0,006	4,574	0,1	0,32	1962	38	1568	28	1743	19	0,6	88,84
64B_27	0,309	0,007	5,33	0,12	0,64	2025	37	1735	34	1870	19	0,63	92,22
64B_28	0,301	0,006	5,105	0,098	0,47	2013	32	1694	28	1834	16	0,66	91,74
64B_29	0,111	0,003	1,151	0,041	0,02	1053	71	676	14	774	20	0,41	85,50
64B_30	0,207	0,01	3,25	0,18	0,65	1819	46	1211	50	1457	43	0,91	79,69
64B_4	0,291	0,012	5,21	0,27	0,91	2060	85	1644	62	1847	44	0,55	87,65
64B_31	0,298	0,011	5,71	0,22	0,66	2192	53	1680	55	1927	32	0,67	85,30
64B_32	0,317	0,008	5,49	0,15	0,3	2036	50	1774	40	1902	25	0,48	92,78
64B_33	0,268	0,006	4,35	0,14	0,53	1914	50	1533	32	1699	26	0,64	89,17
64B_34	0,269	0,006	4,52	0,13	0,33	1980	34	1535	32	1728	23	0,81	87,43

64B_35	0,345	0,007	6,06	0,14	0,85	2064	38	1909	33	1979	20	0,55	96,33
64B_5	0,304	0,007	5,3	0,12	0,29	2027	38	1711	32	1865	20	0,63	91,00
64B_6	0,236	0,008	3,86	0,16	0,29	1901	42	1362	42	1593	33	0,87	83,04
64B_7	0,357	0,007	6,3	0,14	0,85	2061	39	1967	33	2016	20	0,47	97,51
64B_8	0,312	0,006	5,46	0,11	0,27	2042	34	1749	29	1890	17	0,62	91,94
64B_9	0,21	0,004	3,368	0,064	0,46	1905	35	1227	22	1495	15	0,56	78,16
64B_10	0,255	0,006	4,174	0,11	0,27	1930	37	1461	31	1668	22	0,74	85,83

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U}))$ x 100

^acorrected for background, instrumental drift and mass bias fractionation based on primary standard.

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

UoP - Sample 66B

Standard	²⁰⁷ Pb ^a	±2s	²⁰⁶ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	Rho ^c	Conc. ^d
BB9	²³⁵ U		²³⁸ U		U	²⁰⁶ Pb	(Ma)	²³⁵ U	(Ma)	²³⁸ U	(Ma)		
as Primary													
BB9	0,742	0,041	0,091	0,004	0,24	541	54	562	24	564 568.	26	0,189	100,4
BB9	0,753	0,046	0,092	0,005	0,24	552	77	569	26	6 554	27	0,238	99,9
BB9	0,724	0,038	0,09	0,004	0,23	538	44	551,7	22	554, 4	26	0,093	100,5
BB9	0,725	0,038	0,091	0,004	0,23	526	37	553,6	23	561,	26	0,29	101,4
BB9	0,733	0,039	0,09	0,004	0,23	560	40	556,7	23	553, 1	26	0,316	99,3
BB9	0,724	0,039	0,09	0,004	0,23	532	41	551,9	23	553, 2	26	0,304	100,2
BB9	0,78	0,041	0,094	0,005	0,24	569	38	583,8	24	581, 2	27	0,308	99,6
BB9	0,74	0,039	0,091	0,004	0,23	528	41	561,2	23	563, 9	26	0,235	100,5
BB9	0.732	0.039	0.09	0.004	0.23	541	40	556.9	23	555, 7	26	0.192	99.8
BBO	0.714	0.038	0.088	0.004	0.23	542	30	547	22	545,	25	0.186	99.7
DD9	0,714	0,058	0,000	0,004	0,25	542		547	22	567,	25	0,100	<i>99,1</i>
BB9	0,756	0,041	0,092	0,005	0,24	565	44	570	24	8 565,	26	0,323	99,6
BB9	0,75	0,04	0,092	0,004	0,23	547	42	566,9	23	1	26	0,201	99,7
BB9	0,74	0,039	0,09	0,004	0,23	562	38	560,9	23	555, 1	26	0,341	99,0
BB9	0,751	0,04	0,091	0,004	0,23	554	41	567,5	23	561, 3	26	0,145	98,9
BB9	0,754	0,04	0,092	0,004	0,24	547	39	569,1	23	565, 5	26	0,281	99,4
BB9	0,734	0,038	0,09	0,004	0,23	544	39	558,4	23	555, 3	26	0,134	99,4
BBO	0.762	0.041	0.094	0.005	0.24	530	11	5717	24	578,	27	0 101	100.7
	0,702	0,041	0,094	0,005	0,24	500	++ 27	514,1	24	9	27	0,191	100,7
ввя	0,709	0,037	0,088	0,004	0,23	523	5/	545,1	22	546	25	0,363	100,5

										547			
BB9	0,711	0,038	0,089	0,004	0,23	534	40	544,1	22	547, 7	25	0,242	100,7
BB9	0,741	0,039	0,092	0,004	0,24	536	40	561,3	23	564, 4	26	0,311	100,5
BB9	0,764	0,041	0,093	0,005	0,24	559	41	575,9	23	572, 2	26	0,212	99,4
BB9	0,735	0,039	0,091	0,004	0,23	522	42	558	23	560, 5	26	0,19	100,4
BB9	0,734	0,039	0,091	0,004	0,23	533	38	557,7	23	558, 6	26	0,225	100,2
BB9	0,737	0,039	0,091	0,004	0,24	546	42	559,2	23	563, 4	26	0,238	100,7
BB9	0.725	0.039	0.091	0.004	0.23	515	41	552.4	23	562, 6	26	0.279	101.8
BB9	0.72	0.038	0.089	0.004	0.23	551	40	550	23	551, 7	25	0.326	100.3
	0.712	0.039	0,000	0,004	0.23	522	41	545 2	23	550, 7	25	0,320	101.0
DD7	0,715	0,038	0,089	0,004	0,23	540	41	545,5	22	562,	20	0,219	101,0
вва	0,74	0,039	0,091	0,004	0,23	549	37	561,6	23	564,	26	0,353	100,2
BB9	0,748	0,039	0,092	0,004	0,24	540	38	567,2	23	4 570,	26	0,194	99,5
BB9	0,763	0,041	0,093	0,005	0,24	532	43	574,1	24	5 543,	26	0,214	99,4
BB9	0,731	0,039	0,088	0,004	0,23	555	38	555,9	23	5 584.	25	0,328	97,7
BB9	0,786	0,042	0,095	0,005	0,24	552	38	587,1	24	5 555	27	0,407	99,6
BB9	0,737	0,039	0,09	0,004	0,23	551	40	559,1	23	555, 4 567	26	0,157	99,3
BB9	0,743	0,039	0,092	0,004	0,24	551	39	563,5	22	8	26	0,225	100,8
BB9	0,73	0,039	0,091	0,004	0,23	543	41	555,4	23	561 547	26	0,154	101,0
BB9	0,713	0,038	0,089	0,004	0,23	559	41	544,9	22	4	25	0,265	100,5
Kaap Valley	21,94	1,1	0,615	0,03	0,42	3233	14	3179	49	3090	120	0,656	97,1
Kaap Valley	22,61	1,1	0,641	0,031	0,42	3226	11	3209	49	3195	120	0,692	99,6
Kaap Valley	23,64	1,2	0,654	0,032	0,37	3219	13	3252	48	3243	120	0,631	99,7
Kaap Valley	23,19	1,2	0,648	0,031	0,47	3229	12	3232	49	3220	120	0,761	99,6
Kaap Valley	22,64	1,1	0,636	0,031	0,66	3235	13	3210	49	3172	120	0,635	98,8
Kaap Valley	24,19	1,2	0,684	0,033	0,40	3213	12	3275	50	3357	130	0,682	102,4
Kaap Valley	23,08	1,2	0,646	0,031	0,28	3229	17	3228	50	3209	120	0,523	99,4
Kaap Valley	21,06	1,1	0,588	0,029	0,61	3245	15	3140	50	2981	120	0,576	94,7
Kaap Valley	22,79	1,2	0,636	0,031	0,59	3233	12	3216	49	3170	120	0,641	98,6
Kaap Valley	22,84	1,2	0,652	0,032	0,70	3219	17	3218	50	3234	120	0,626	100,5
Kaap Valley	23,43	1,2	0,662	0,032	0,42	3216	12	3243	50	3275	120	0,669	101,0
										340,			
Plesovice	0,398	0,022	0,054	0,003	0,07	325	47	339,3	16	1 335.	16	0,192	100,2
Plesovice	0,391	0,021	0,053	0,003	0,08	311	44	334,8	15	4 331	16	0,137	100,2
Plesovice	0,389	0,02	0,053	0,003	0,07	330	36	332,9	15	3	16	0,17	99,5
Plesovice	0,383	0,02	0,053	0,003	0,07	326	38	329,6	15	332, 4	16	0,233	100,8
Plesovice	0,39	0,021	0,053	0,003	0,07	340	40	333,8	15	331, 4	16	0,104	99,3
Plesovice	0,409	0,022	0,056	0,003	0,08	299	43	347,7	16	348, 2	16	0,283	100,1
Plesovice	0,411	0,022	0,056	0,003	0,08	294	42	349,2	16	350	16	0,181	100,2
Plesovice	0,387	0,021	0,053	0,003	0,08	303	43	331,6	15	335, 5	16	0,202	101,2
Plesovice	0,391	0,021	0,053	0,003	0,06	299	54	334,2	16	335, 5	16	0,022	100,4

Plesovice $0,386$ $0,02$ $0,053$ $0,003$ $0,08$ 309 40 $330,8$ 15 7 16 $0,278$ Plesovice $0,393$ $0,021$ $0,053$ $0,003$ $0,06$ 326 43 $336,1$ 15 7 16 $0,243$ Plesovice $0,382$ $0,021$ $0,052$ $0,003$ $0,07$ 315 44 $328,1$ 15 2 15 $0,226$ Plesovice $0,394$ $0,021$ $0,053$ $0,003$ $0,06$ 322 48 $336,6$ 16 4 16 $0,269$ Plesovice $0,298$ $0,021$ $0,054$ $0,002$ $0,07$ 241 44 230.7 15 2 16 $0,255$	
Plesovice $0,393$ $0,021$ $0,053$ $0,003$ $0,06$ 326 43 $336,1$ 15 7 16 $0,243$ Plesovice $0,382$ $0,021$ $0,052$ $0,003$ $0,07$ 315 44 $328,1$ 15 2 15 $0,226$ Plesovice $0,394$ $0,021$ $0,053$ $0,003$ $0,06$ 322 48 $336,6$ 16 4 16 $0,259$ Plesovice $0,394$ $0,021$ $0,054$ $0,002$ $0,07$ 241 44 $230,7$ 15 2 16 $0,255$	100.3
Plesovice $0,393$ $0,021$ $0,053$ $0,003$ $0,06$ 326 43 $336,1$ 15 7 16 $0,243$ Plesovice $0,382$ $0,021$ $0,052$ $0,003$ $0,07$ 315 44 $328,1$ 15 2 15 $0,226$ Plesovice $0,394$ $0,021$ $0,053$ $0,003$ $0,06$ 322 48 $336,6$ 16 4 16 $0,269$ Plesovice $0,298$ $0,021$ $0,054$ $0,002$ $0,07$ 241 44 $230,7$ 15 6 $0,225$,-
Plesovice $0,382$ $0,021$ $0,052$ $0,003$ $0,07$ 315 44 $328,1$ 15 2 15 $0,226$ Plesovice $0,394$ $0,021$ $0,053$ $0,003$ $0,06$ 322 48 $336,6$ 16 4 16 $0,226$ Blesovice 0.208 0.021 0.054 0.002 0.07 241 44 220.7 15 0.225	99,6
Plesovice 0,394 0,021 0,053 0,003 0,06 322 48 336,6 16 4 16 0,269 338, 338, 16 0 0.235 16 0 0.235 16 0 0.235 16 0 0.235 16 0 0.235 16 0 0.235 15 15 15 16 0 0.235 16 0 0.235 16 0 0 0.235 16 0 0 0.235 16 0 0 0.235 16 0 0 0.235 16 0 0 0.235 16 0 0 0.235 16 0 </td <td>98,8</td>	98,8
Discretize 0.200 0.021 0.054 0.002 0.07 241 44 220.7 15 0 16 0.225	99,0
Presovice 0,398 0,021 0,054 0,005 0,07 341 44 539,7 15 2 16 0,235	99,6
Plesovice 0,399 0,021 0,054 0,003 0,07 342 42 340,7 15 8 16 0,148	99,1
Plesovice 0,396 0,021 0,054 0,003 0,07 320 42 338,4 15 1 16 0,183	99,6

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

UoP - Sample 66A

	Standard	²⁰⁷ Pb ^a	$\pm 2s$	²⁰⁶ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	$\pm 2s$	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	Rho ^c	Conc. ^d
	BB9	²³⁵ U		²³⁸ U		U	²⁰⁶ Pb	(Ma)	²³⁵ U	(Ma)	²³⁸ U	(Ma)		
as .	Primary													
BB9		0,754	0,044	0,092	0,005	0,23	549	47	569,5	25	569, 4	32	0,28	100,0
BB9		0,725	0,042	0,089	0,005	0,24	551	43	552,5	24	548, 5	31	0,368	99,3
BB9		0 733	0.042	0.09	0.005	0.24	570	46	557 5	24	552, 4	31	0.087	99 1
DDO		0,727	0.042	0.001	0,005	0.22	515	44	5525	25	559,	21	0.284	101.0
ввя		0,727	0,042	0,091	0,005	0,25	515	44	555,5	25	573,	51	0,284	101,0
BB9		0,747	0,042	0,093	0,005	0,24	528	36	565,7	24	5	32	0,286	101,4
BB9		0,74	0,042	0,09	0,005	0,23	586	37	561,1	24	554 560	31	0,406	98,7
BB9		0,734	0,042	0,091	0,005	0,23	529	42	557,5	24	3	31	0,264	100,5
BB9		0,736	0,042	0,09	0,005	0,23	551	42	560	25	557, 1	31	0,363	99,5
BB9		0,719	0,041	0,089	0,005	0,23	509	43	548,8	24	552, 4	31	0,234	100,7
BB9		0,759	0,044	0,094	0,006	0,24	543	51	572,3	25	578	33	0,219	101,0
BB9		0.743	0.042	0.092	0.005	0.24	534	40	562.9	25	568, 9	32	0.231	101.1
BBO		0.73	0.042	0.080	0.005	0.22	566	45	555 3	25	550,	31	0.202	00.2
		0,751	0,042	0,002	0,005	0,22	541	40	567.5	25	570	22	0,202	100.4
609		0,751	0,042	0,092	0,005	0,24	541	40	507,5	23	547,	32	0,235	100,4
BB9		0,715	0,041	0,089	0,005	0,23	530	44	547	25	3 555.	31	0,223	100,1
BB9		0,729	0,042	0,09	0,005	0,23	542	47	555,4	25	3	31	0,394	100,0
BB9		0,746	0,043	0,091	0,005	0,23	556	44	564,3	25	304, 1	32	0,286	100,0
BB9		0,748	0,042	0,092	0,005	0,24	551	35	565,7	24	569	32	0,332	100,6
BB9		0,742	0,042	0,092	0,005	0,24	540	43	562,3	25	564, 7	32	0,202	100,4
BB9		0,715	0,041	0,088	0,005	0,23	524	45	546,4	24	546, 5	31	0,267	100,0
BB9		0.742	0.042	0.091	0.005	0.23	530	41	562.8	25	562, 8	32	0.261	100.0
DDO		0,742	0.042	0.001	0,005	0,20	550	41	5 (2,5	25	558,	21	0,210	00.1
вва		0,743	0,042	0,091	0,005	0,23	558	41	563,5	25	/ 546,	31	0,219	99,1
BB9		0,721	0,041	0,088	0,005	0,23	548	41	550,1	24	3 561	31	0,268	99,3
BB9		0,737	0,043	0,091	0,005	0,24	543	46	558,7	25	8	32	0,3	100,6

										568			
BB9	0,742	0,042	0,092	0,005	0,23	536	43	562,2	24	500, 4	32	0,235	101,1
BB9	0,764	0,043	0,095	0,006	0,24	556	39	575	25	582, 4	33	0,26	101,3
BB9	0,715	0,041	0,089	0,005	0,22	535	47	546,6	24	548, 2	31	0,259	100,3
BB9	0,733	0,042	0,091	0,005	0,23	531	41	557,2	24	560, 5	32	0,324	100,6
BB9	0,749	0,043	0,092	0,005	0,24	546	46	567,5	26	569, 6	32	0,146	100,4
BB9	0,731	0,042	0,09	0,005	0,23	545	40	556,6	25	552, 9	31	0,294	99,3
BB9	0,739	0,042	0,09	0,005	0,23	548	44	560,7	25	556, 3	31	0,282	99,2
BB9	0,71	0,041	0,087	0,005	0,23	526	46	543,3	24	539, 4	30	0,378	99,3
BB9	0,737	0,043	0,092	0,005	0.23	516	51	561,9	25	566, 5	32	0,263	100,8
BB9	0.757	0.043	0.094	0.006	0.24	551	41	571.8	24	577, 7	32	0.087	101.0
RRQ	0.719	0.041	0.088	0.005	0.22	570	45	5/18/1	25	542,	31	0.332	98.9
	0.79	0,041	0,000	0,005	0,22	527		594	25	605, 7	24	0,332	102.6
DD7	0,78	0,040	0,099	0,000	0,23	540	16	5616	27	565,	22	0,245	100.7
BB9	0,741	0,042	0,092	0,005	0,24	542	40	501,0	25	4 556,	32	0,105	100,7
BB9	0,737	0,042	0,09	0,005	0,23	555	38	559,9	24	3 537,	31	0,307	99,4
BB9	0,703	0,04	0,087	0,005	0,23	527	42	539,9	24	8 572,	30	0,329	99,6
BB9	0,755	0,045	0,093	0,006	0,23	531	55	569	26	6 561,	32	0,227	100,6
BB9	0,745	0,043	0,091	0,005	0,23	560	44	564,1	25	6 562,	32	0,226	99,6
BB9	0,737	0,042	0,091	0,005	0,24	530	46	559,5	25	3	32	0,195	100,5
** ** 11	15.04	0.00	0.540	0.000	0.42	2105					120	0.674	
Kaap Valley	17,84	0,98	0,543	0,032	0,42	3105	14	2980	54	2793	130	0,674	93,3
Kaap valley	20,51	1,1	0,585	0,034	0,50	3312	15	3203	54	2909	140	0,709	95,1
Kaap Valley	25.02	1,5	0,005	0.042	0,36	3215	14	3306	54	3460	160	0,649	104.5
Kaap Valley	28.06	1.5	0.798	0.047	0.38	3209	16	3418	54	3778	170	0.638	109.5
Kaap Valley	23,2	1,3	0,629	0,037	0,73	3288	13	3233	53	3143	150	0,577	97,1
Kaap Valley	20,15	1,1	0,573	0,034	0,21	3214	14	3096	54	2917	140	0,735	93,9
Kaap Valley	22,64	1,2	0,639	0,037	0,45	3231	11	3210	53	3185	150	0,682	99,2
Kaap Valley	24,67	1,4	0,685	0,04	0,42	3243	13	3294	52	3360	150	0,707	102,0
Kaap Valley	21,84	1,2	0,614	0,036	0,44	3230	13	3175	53	3085	140	0,534	97,1
Kaap Valley	22,13	1,2	0,63	0,037	0,46	3226	12	3188	54	3147	150	0,734	98,7
Kaap Valley	23,74	1,3	0,67	0,039	0,48	3214	17	3256	55	3302	150	0,663	101,4
										352,			
Plesovice	0,41	0,023	0,056	0,003	0,08	310	38	347,9	17	3 334.	20	0,301	101,2
Plesovice	0,389	0,023	0,053	0,003	0,06	303	49	332,8	16	6 351	19	0,175	100,5
Plesovice	0,409	0,023	0,056	0,003	0,08	325	43	347,8	17	551, 6 332	20	0,204	101,1
Plesovice	0,386	0,022	0,053	0,003	0,08	315	39	330,9	16	332, 8	19	0,293	100,6
Plesovice	0,404	0,023	0,055	0,003	0,07	312	40	343,8	17	545, 1	20	0,26	100,4
Plesovice	0,374	0,022	0,05	0,003	0,07	330	45	321,9	16	316, 2	18	0,334	98,2
Plesovice	0,394	0,022	0,054	0,003	0,07	325	40	337	17	337, 3	19	0,27	100,1
Plesovice	0,402	0,023	0,055	0,003	0,08	315	38	342,6	16	347	20	0,3	101,3

										341			
Plesovice	0,401	0,023	0,054	0,003	0,07	323	38	342	16	8	19	0,284	99,9
Plesovice	0,396	0,022	0,055	0,003	0,08	295	36	338,4	16	542, 4	20	0,256	101,2
Plesovice	0,395	0,023	0,055	0,003	0,08	278	45	337	16	342, 6	20	0,224	101,6
Plesovice	0,386	0,022	0,053	0,003	0,07	319	39	331,4	16	331, 8	19	0,308	100,1
Plesovice	0.388	0.022	0.053	0.003	0.08	299	43	332.3	16	335, 3	19	0.112	100.9
Discovice	0.286	0,022	0.052	0,002	0.08	214	20	220.7	16	330,	10	0.219	00.0
Plesovice	0,380	0,022	0,033	0,005	0,08	514	30	550,7	10	333,	19	0,518	99,9
Plesovice	0,394	0,022	0,053	0,003	0,08	347	40	337,1	16	7 331,	19	0,18	99,0
Plesovice	0,385	0,022	0,053	0,003	0,07	291	38	329,9	16	6 335	19	0,297	100,5
Plesovice	0,396	0,022	0,053	0,003	0,07	336	39	338,5	17	1	19	0,252	99,0
Plesovice	0,408	0,023	0,055	0,003	0,07	355	38	347,2	16	344, 1	20	0,273	99,1

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

UoP - Sample 67

	Standard	²⁰⁷ Pb ^a	±2s	²⁰⁶ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁷ Pb	±2s	²⁰⁶ Pb	$\pm 2s$	Rho ^c	Conc. ^d
	BB9	²³⁵ U		²³⁸ U		U	²⁰⁶ Pb	(Ma)	²³⁵ U	(Ma)	²³⁸ U	(Ma)		
as	Primary													
BB9		0,793	0,065	0,096	0,008	0,25	540	48	591,2	37	593, 5	45	0,259	100,4
BB9		0,749	0,06	0,092	0,007	0,24	545	39	566,4	35	565 553	43	0,371	99,8
BB9		0,731	0,059	0,09	0,007	0,23	531	43	555,3	35	5	43	0,325	99,7
BB9		0,724	0,059	0,087	0,007	0,23	581	42	551,9	35	540	42	0,253	97,8
BB9		0,703	0,057	0,087	0,007	0,22	526	45	540,1	33	540	42	0,311	100,0
BB9		0,734	0,06	0,09	0,007	0,24	568	45	558,2	36	554, 4	43	0,387	99,3
BB9		0,709	0,058	0,089	0,007	0,23	501	46	542,4	34	552, 3	42	0,375	101,8
BB9		0,771	0,063	0,096	0,008	0,24	540	43	579,9	37	592	46	0,288	102,0
BB9		0,725	0,059	0,09	0,007	0,24	539	43	551,7	35	555, 9 571	43	0,333	100,4
BB9		0,746	0,06	0,093	0,007	0,24	541	42	564,4	35	571, 7	44	0,264	101,3
BB9		0,732	0,059	0,09	0,007	0,23	552	41	556,2	35	557, 9	43	0,319	100,3
BB9		0,689	0,056	0,085	0,007	0,22	540	48	531	34	528, 5	41	0,194	99,5
BB9		0,804	0,066	0,099	0,008	0,25	550	47	597	37	609, 4	47	0,348	102,0
BB9		0,745	0,06	0,092	0,007	0,24	535	40	564,4	35	566	43	0,327	100,3
BB9		0,736	0,06	0,089	0,007	0,23	558	46	558,7	35	551, 7	42	0,26	98,7
BB9		0,726	0,059	0,089	0,007	0,23	539	40	552,7	35	551, 7	42	0,467	99,8
BB9		0,758	0,062	0,094	0,008	0,23	539	48	572,6	37	576, 2	44	0,195	100,6
BB9		0,727	0,059	0,088	0,007	0,23	550	46	553,1	35	544, 9	42	0,251	98,5
BB9		0,814	0,066	0,099	0,008	0,25	561	47	603	37	607, 3	47	0,304	100,7
BB9		0,697	0,057	0,086	0,007	0,22	515	47	535	34	532, 9	41	0,263	99,6

										563,			
BB9	0,749	0,06	0,091	0,007	0,23	548	43	566,2	35	8 556	43	0,17	99,6
BB9	0,731	0,059	0,09	0,007	0,23	527	43	556,1	34	556, 7	43	0,31	100,1
BB9	0,736	0,06	0,09	0,007	0,24	551	42	558,6	35	550, 6	43	0,262	99,6
BB9	0,759	0,062	0,093	0,008	0,24	543	40	571,9	35	574, 7	44	0,358	100,5
BB9	0,717	0,058	0,09	0,007	0,23	510	46	547,4	34	553	43	0,194	101,0
BB9	0,745	0,061	0,093	0,008	0,24	511	47	563,6	35	574, 6	44	0,156	101,9
BB9	0,715	0,058	0,089	0,007	0,23	551	43	546,3	34	547, 7	42	0,303	100,3
BB9	0,732	0,059	0,089	0,007	0,23	580	40	556	35	550, 9	42	0,421	99,1
BB9	0,731	0,059	0,091	0,007	0,24	544	43	557,5	36	562, 3	43	0,339	100,9
BB9	0,719	0,058	0,089	0,007	0,23	537	41	549,4	35	549, 9	42	0,216	100,1
BB9	0,746	0,06	0,093	0,008	0,25	514	42	565,1	36	574, 7	44	0,189	101,7
BB9	0,751	0,061	0,092	0,007	0,24	541	42	568,1	36	570	44	0,296	100,3
BB9	0,742	0,06	0,09	0,007	0,23	557	42	562	35	558, 3	43	0,287	99,3
BB9	0,735	0.059	0,089	0,007	0.23	584	41	558,1	35	546, 9	42	0,196	98,0
BB9	0.746	0.06	0.091	0.007	0.24	554	40	564.6	35	561, 1	43	0.335	99.4
BB9	0.73	0.059	0.09	0.007	0.23	529	42	554.9	35	553,	43	0.267	99.8
BB9	0.771	0.063	0.094	0.008	0.24	529	12	578.3	36	580, 1	44	0.25	100.3
BB0	0,725	0,005	0,004	0,000	0.24	507	47	552.2	24	555,	12	0,23	100,5
BB9	0,725	0,039	0,09	0,007	0,25	530	44 51	598	34 37	5 609	45 47	0,225	100,4
PPO	0,005	0.058	0,099	0,000	0.23	540	27	550.0	25	549,	42	0,354	00.7
BB9	0,719	0,058	0,089	0,007	0,23	540	37	550,9	35	549,	42	0,410	99,7
889	0,723	0,059	0,089	0,007	0,23	572	41	553	34	3 548,	42	0,233	99,3
BB9	0,723	0,059	0,089	0,007	0,23	562	44	551	35	8	42	0,164	99,6
889	0,748	0,061	0,092	0,007	0,24	548	42	565,4	35	570 573,	44	0,329	100,8
BB9	0,74	0,06	0,093	0,008	0,24	516	45	561,6	36	6	45	0,17	102,1
Kaap Valley	10,72	0,96	0,321	0,029	0,45	3138	18	2469	88	1783	140	0,965	61,5
Kaap Valley	22,82	1,8	0,642	0,052	0,44	3240	16	3217	77	3195	200	0,575	99,3
Kaap Valley	22,23	1,8	0,632	0,051	0,40	3205	18	3190	78	3154	200	0,628	98,9
Kaap Valley	23,23	1,8	0,651	0,052	0,38	3220	14	3236	80	3229	200	0,672	99,8
Kaap Valley	22,21	1,8	0,623	0,05	0,69	3234	14	3191	77	3124	200	0,553	97,8
Kaap Valley	22,81	1,8	0,635	0,051	0,40	3231	13	3217	76	3166	200	0,739	98,4
Kaap Valley	18,75	1,5	0,533	0,043	0,21	3233	18	3026	77	2750	180	0,67	90,0
Kaap Valley	18,08	1,4	0,521	0,042	0,48	3194	12	2989	78	2699	180	0,829	89,3
Kaap Valley	21,34	1,7	0,598	0,048	0,91	3233	11	3153	78	3019	190	0,734	95,6
Kaap Valley	24,26	1,9	0,686	0,055	0,36	3215	16	3278	81	3362	210	0,717	102,5
Kaap Valley	12,6	1	0,302	0,025	0,52	3484	16	2641	78	1696	130	0,93	44,3
Kaap Valley	22,36	1,8	0,632	0,051	0,53	3230	12	3198	77	3157	200	0,658	98,7
Kaap Valley	22,65	1,8	0,642	0,052	0,41	3215	13	3211	79	3195	200	0,747	99,5
Kaap Valley	20,88	1,7	0,589	0,048	0,46	3221	12	3128	79	2983	190	0,868	95,1
Plesovice	0,38	0,031	0,052	0,004	0,08	319	42	327,4	23	326,	26	0,4	99,7

										4			
Plesovice	0,385	0,031	0,053	0,004	0,07	318	42	329,7	23	331, 6	26	0,304	100,6
Plesovice	0,397	0,032	0,053	0,004	0,08	353	39	339,2	23	335, 8	26	0,296	99,0
Plesovice	0,385	0,031	0,052	0,004	0,07	336	37	329,9	23	329, 8	26	0,263	100,0
Plesovice	0,391	0,031	0,054	0,004	0,07	303	39	335,9	24	341, 4	27	0,304	101,6
Plesovice	0,385	0,031	0,053	0,004	0,07	303	42	330,1	23	330, 1	26	0,311	100,0
Plesovice	0,404	0,033	0,054	0,004	0,07	366	43	344,1	24	337, 7	26	0,331	98,1
Plesovice	0,389	0,031	0,053	0,004	0,07	316	41	333,2	23	332, 2	26	0,287	99,7
Plesovice	0,391	0,031	0,053	0,004	0,07	314	38	334,8	23	332, 7	26	0,308	99,4
Plesovice	0,41	0,033	0,057	0,005	0,08	273	37	349	24	356, 2	28	0,363	102,0
Plesovice	0,438	0,035	0,059	0,005	0,08	342	43	368,6	25	367,	29	0,28	99,6
Plesovice	0,399	0,032	0,054	0,004	0,07	340	48	339,9	24	339, 9	27	0,197	100,0
Plesovice	0,388	0,031	0,053	0,004	0,07	335	40	332	23	332, 1	26	0,29	100,0
Plesovice	0,404	0,033	0,056	0,005	0,07	266	40	344,4	23	353, 9	28	0,429	102,7
Plesovice	0,375	0,03	0,051	0,004	0,08	329	43	322,7	22	317, 7	25	0,267	98,4
Plesovice	0,4	0,033	0,054	0,004	0,07	291	47	341,1	24	341, 6	27	0,227	100,1
Plesovice	0,407	0,033	0,056	0,005	0,07	301	44	346	24	349, 1	27	0,312	100,9
Plesovice	0,393	0,032	0,053	0,004	0,07	346	43	335,9	23	331, 5	26	0,296	98,7
Plesovice	0,41	0,033	0,056	0,005	0,07	311	43	347,8	24	350, 8	27	0,384	100,9
										440			
Temora	0,532	0,044	0,071	0,006	0,24	380	57	432,4	30	7 421	34	0,355	101,9
Temora	0,516	0,043	0,068	0,005	0,22	411	61	421,1	29	121, 5 404	33	0,298	100,1
Temora	0,48	0,04	0,065	0,005	0,38	320	66	397	29	404, 1 410	32	0,198	101,8
Temora	0,498	0,046	0,066	0,005	0,26	330	100	406	31	410,	32	0,042	101,2
Temora	0,485	0,04	0,064	0,005	0,21	398	62	399,9	28	400, 2 412	31	0,15	100,1
Temora	0,494	0,041	0,066	0,005	0,38	344	63	405,6	28	412, 2	32	0,217	101,6
Temora	0,518	0,043	0,068	0,006	0,44	359	62	421	29	3	33	0,219	101,0
Temora	0,678	0,071	0,074	0,006	0,24	640	130	516	43	462 398.	37	0,34	88,3
Temora	0,476	0,043	0,064	0,005	0,29	318	91	391	29	5	31	0,186	101,9
Temora	0,506	0,042	0,066	0,005	0,26	389	65	413,4	29	410	32	0,107	99,2

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

UoP - Sample 64A

Standard	²⁰⁷ Pb ^a	±2s	²⁰⁶ Pb ^a	±2s	<u>Th</u>	207Pb	$\pm 2s$	²⁰⁷ Pb	±2s	²⁰⁶ Pb	$\pm 2s$	Rho ^c	Conc. ^d
BB9	²³⁵ U		²³⁸ U		U	²⁰⁶ Pb	(Ma)	²³⁵ U	(Ma)	²³⁸ U	(Ma)		

as Primary

-

										593,			
BB9	0,793	0,065	0,096	0,008	0,25	540	48	591,2	37	5	45	0,259	100,4
BB9	0,749	0,06	0,092	0,007	0,24	545	39	566,4	35	565 553,	43	0,371	99,8
BB9	0,731	0,059	0,09	0,007	0,23	531	43	555,3	35	5	43	0,325	99,7
BB9	0,724	0,059	0,087	0,007	0,23	581	42	551,9	35	540	42	0,253	97,8
BB9	0,703	0,057	0,087	0,007	0,22	526	45	540,1	33	540 554	42	0,311	100,0
BB9	0,734	0,06	0,09	0,007	0,24	568	45	558,2	36	4 552,	43	0,387	99,3
BB9	0,709	0,058	0,089	0,007	0,23	501	46	542,4	34	3	42	0,375	101,8
BB9	0,771	0,063	0,096	0,008	0,24	540	43	579,9	37	592 553	46	0,288	102,0
BB9	0,725	0,059	0,09	0,007	0,24	539	43	551,7	35	9 571	43	0,333	100,4
BB9	0,746	0,06	0,093	0,007	0,24	541	42	564,4	35	571, 7 557	44	0,264	101,3
BB9	0,732	0,059	0,09	0,007	0,23	552	41	556,2	35	537, 9 528	43	0,319	100,3
BB9	0,689	0,056	0,085	0,007	0,22	540	48	531	34	520, 5	41	0,194	99,5
BB9	0,804	0,066	0,099	0,008	0,25	550	47	597	37	4	47	0,348	102,0
BB9	0,745	0,06	0,092	0,007	0,24	535	40	564,4	35	566	43	0,327	100,3
BB9	0,736	0,06	0,089	0,007	0,23	558	46	558,7	35	551, 7 551	42	0,26	98,7
BB9	0,726	0,059	0,089	0,007	0,23	539	40	552,7	35	576	42	0,467	99,8
BB9	0,758	0,062	0,094	0,008	0,23	539	48	572,6	37	2 544	44	0,195	100,6
BB9	0,727	0,059	0,088	0,007	0,23	550	46	553,1	35	9 607	42	0,251	98,5
BB9	0,814	0,066	0,099	0,008	0,25	561	47	603	37	3 532	47	0,304	100,7
BB9	0,697	0,057	0,086	0,007	0,22	515	47	535	34	552, 9 563	41	0,263	99,6
BB9	0,749	0,06	0,091	0,007	0,23	548	43	566,2	35	505, 8 556	43	0,17	99,6
BB9	0,731	0,059	0,09	0,007	0,23	527	43	556,1	34	556, 7	43	0,31	100,1
BB9	0,736	0,06	0,09	0,007	0,24	551	42	558,6	35	550, 6 574	43	0,262	99,6
BB9	0,759	0,062	0,093	0,008	0,24	543	40	571,9	35	574, 7	44	0,358	100,5
BB9	0,717	0,058	0,09	0,007	0,23	510	46	547,4	34	553	43	0,194	101,0
BB9	0,745	0,061	0,093	0,008	0,24	511	47	563,6	35	574,	44	0,156	101,9
BB9	0,715	0,058	0,089	0,007	0,23	551	43	546,3	34	547, 7	42	0,303	100,3
BB9	0,732	0,059	0,089	0,007	0,23	580	40	556	35	550, 9	42	0,421	99,1
BB9	0,731	0,059	0,091	0,007	0,24	544	43	557,5	36	562, 3	43	0,339	100,9
BB9	0,719	0,058	0,089	0,007	0,23	537	41	549,4	35	549, 9	42	0,216	100,1
BB9	0,746	0,06	0,093	0,008	0,25	514	42	565,1	36	574, 7	44	0,189	101,7
BB9	0,751	0,061	0,092	0,007	0,24	541	42	568,1	36	570 558	44	0,296	100,3
BB9	0,742	0,06	0,09	0,007	0,23	557	42	562	35	536, 3 546	43	0,287	99,3
BB9	0,735	0,059	0,089	0,007	0,23	584	41	558,1	35	9 561	42	0,196	98,0
BB9	0,746	0,06	0,091	0,007	0,24	554	40	564,6	35	501, 1	43	0,335	99,4
BB9	0,73	0,059	0,09	0,007	0,23	529	42	554,9	35	555, 6 580	43	0,267	99,8
BB9	0,771	0,063	0,094	0,008	0,24	528	47	578,3	36	1 555	44	0,25	100,3
BB9	0,725	0,059	0,09	0,007	0,23	507	44	553,3	34	335,	43	0,223	100,4
BB9	0,805	0,066	0,099	0,008	0,25	530	51	598	37	609	47	0,334	101,8

										549			
BB9	0,719	0,058	0,089	0,007	0,23	540	37	550,9	35	4 549	42	0,416	99,7
BB9	0,723	0,059	0,089	0,007	0,23	572	41	553	34	3 5 4 9	42	0,233	99,3
BB9	0,723	0,059	0,089	0,007	0,23	562	44	551	35	548, 8	42	0,164	99,6
BB9	0,748	0,061	0,092	0,007	0,24	548	42	565,4	35	570	44	0,329	100,8
BB9	0,74	0,06	0,093	0,008	0,24	516	45	561,6	36	573, 6	45	0,17	102,1
Kaap Valley	10,72	0,96	0,321	0,029	0,45	3138	18	2469	88	1783	140	0,965	61,5
Kaap Valley	22,82	1,8	0,642	0,052	0,44	3240	16	3217	77	3195	200	0,575	99,3
Kaap Valley	22,23	1,8	0,632	0,051	0,40	3205	18	3190	78	3154	200	0,628	98,9
Kaap Valley	23,23	1,8	0,651	0,052	0,38	3220	14	3236	80	3229	200	0,672	99,8
Kaap Valley	22,21	1,8	0,623	0,05	0,69	3234	14	3191	77	3124	200	0,553	97,8
Kaap Valley	22,81	1,8	0,635	0,051	0,40	3231	13	3217	76	3166	200	0,739	98,4
Kaap Valley	18,75	1,5	0,533	0,043	0,21	3233	18	3026	77	2750	180	0,67	90,0
Kaap Valley	18,08	1,4	0,521	0,042	0,48	3194	12	2989	78	2699	180	0,829	89,3
Kaap Valley	21,34	1,7	0,598	0,048	0,91	3233	11	3153	78	3019	190	0,734	95,6
Kaap Valley	24,26	1,9	0,686	0,055	0,36	3215	16	3278	81	3362	210	0,717	102,5
Kaap Valley	12,6	1	0,302	0,025	0,52	3484	16	2641	78	1696	130	0,93	44,3
Kaap Valley	22,36	1,8	0,632	0,051	0,53	3230	12	3198	77	3157	200	0,658	98,7
Kaap Valley	22,65	1,8	0,642	0,052	0,41	3215	13	3211	79	3195	200	0,747	99,5
Kaap Valley	20,88	1,7	0,589	0,048	0,46	3221	12	3128	79	2983	190	0,868	95,1
										326,			
Plesovice	0,38	0,031	0,052	0,004	0,08	319	42	327,4	23	4 331	26	0,4	99,7
Plesovice	0,385	0,031	0,053	0,004	0,07	318	42	329,7	23	6 335	26	0,304	100,6
Plesovice	0,397	0,032	0,053	0,004	0,08	353	39	339,2	23	335, 8	26	0,296	99,0
Plesovice	0,385	0,031	0,052	0,004	0,07	336	37	329,9	23	529, 8	26	0,263	100,0
Plesovice	0,391	0,031	0,054	0,004	0,07	303	39	335,9	24	341, 4	27	0,304	101,6
Plesovice	0,385	0,031	0,053	0,004	0,07	303	42	330,1	23	330, 1	26	0,311	100,0
Plesovice	0,404	0,033	0,054	0,004	0,07	366	43	344,1	24	337, 7	26	0,331	98,1
Plesovice	0,389	0,031	0,053	0,004	0,07	316	41	333,2	23	332, 2	26	0,287	99,7
Plesovice	0.391	0.031	0.053	0.004	0.07	314	38	334.8	23	332, 7	26	0.308	99.4
Plesovice	0.41	0.033	0.057	0.005	0.08	273	37	349	24	356, 2	28	0 363	102.0
Diesovice	0.438	0.035	0.059	0.005	0.08	342	13	368.6	25	367,	20	0.28	00.6
Dissovice	0,450	0,035	0,054	0,005	0,08	240	40	220.0	23	339,	29	0,28	100.0
Plesovice	0,399	0,032	0,054	0,004	0,07	340	48	339,9	24	332,	21	0,197	100,0
Plesovice	0,388	0,031	0,053	0,004	0,07	335	40	332	23	1 353,	26	0,29	100,0
Plesovice	0,404	0,033	0,056	0,005	0,07	266	40	344,4	23	9 317	28	0,429	102,7
Plesovice	0,375	0,03	0,051	0,004	0,08	329	43	322,7	22	7	25	0,267	98,4
Plesovice	0,4	0,033	0,054	0,004	0,07	291	47	341,1	24	541, 6	27	0,227	100,1
Plesovice	0,407	0,033	0,056	0,005	0,07	301	44	346	24	549, 1	27	0,312	100,9
Plesovice	0,393	0,032	0,053	0,004	0,07	346	43	335,9	23	331, 5	26	0,296	98,7
Plesovice	0,41	0,033	0,056	0,005	0,07	311	43	347,8	24	350, 8	27	0,384	100,9

										440			
Temora	0,532	0,044	0,071	0,006	0,24	380	57	432,4	30	7	34	0,355	101,9
Temora	0,516	0,043	0,068	0,005	0,22	411	61	421,1	29	421, 5	33	0,298	100,1
Temora	0,48	0,04	0,065	0,005	0,38	320	66	397	29	404, 1	32	0,198	101,8
Temora	0,498	0,046	0,066	0,005	0,26	330	100	406	31	410, 8	32	0,042	101,2
Temora	0,485	0,04	0,064	0,005	0,21	398	62	399,9	28	400, 2	31	0,15	100,1
Temora	0,494	0,041	0,066	0,005	0,38	344	63	405,6	28	412, 2	32	0,217	101,6
Temora	0,518	0,043	0,068	0,006	0,44	359	62	421	29	425, 3	33	0,219	101,0
Temora	0,678	0,071	0,074	0,006	0,24	640	130	516	43	462	37	0,3 4	88,3
Temora	0,476	0,043	0,064	0,005	0,29	318	91	391	29	398, 5	31	0,186	101,9
Temora	0,506	0,042	0,066	0,005	0,26	389	65	413,4	29	410	32	0,107	99,2

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U}))$ x 100

UoP - Sample 8

Standard	²⁰⁷ Pb ^a	$\pm 2s$	²⁰⁶ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	$\pm 2s$	²⁰⁷ Pb	$\pm 2s$	²⁰⁶ Pb	$\pm 2s$	Rho ^c	Conc. ^d
BB9	²³⁵ U		²³⁸ U		U	²⁰⁶ Pb	(Ma)	²³⁵ U	(Ma)	²³⁸ U	(Ma)		
as Primary													
BB9	0,762	0,033	0,092	0,002	0,24	542	78	574	18	564, 6 554	13	0,257	98,3
BB9	0,728	0,033	0,09	0,002	0,23	483	83	552	19	2	13	0,265	100,4
BB9	0,739	0,033	0,091	0,002	0,23	503	79	558	19	558	13	0,379	100,5
BB9	0,749	0,032	0,091	0,002	0,23	541	76	564	18	2	13	0,324	99,0
BB9	0,738	0,027	0,091	0,002	0,24	502	68	560	16	563, 9	12	0,156	100,7
BB9	0,716	0,029	0,09	0,002	0,23	480	74	545	17	555	12	0,189	101,8
BB9	0,733	0,029	0,091	0,002	0,23	523	67	557	17	500, 6	12	0,339	100,6
BB9	0,756	0,032	0,091	0,002	0,23	583	79	568	18	565, 1	13	0,237	99,1
BB9	0,723	0,029	0,091	0,002	0,23	525	72	551	17	559, 8	13	0,198	101,6
BB9	0,728	0,029	0,091	0,002	0,23	555	72	553	17	559, 5	12	0,25	101,2
BB9	0,724	0,03	0,091	0,002	0,23	524	75	550	18	558, 9	13	0,286	101,6
BB9	0,742	0,031	0,091	0,002	0,23	580	79	563	17	559, 2	13	0,121	99,3
BB9	0,738	0,033	0,091	0,002	0,23	512	90	558	19	559, 6	13	0,088	100,3
BB9	0,727	0,029	0,091	0,002	0,23	449	74	552	17	563, 6	12	0,2	102,1
BB9	0,764	0,031	0,09	0,002	0,24	570	74	573	18	556, 9	12	0,262	97,1
BB9	0,764	0,028	0,092	0,002	0,24	572	61	574	16	564, 9	12	0,279	98,4
BB9	0,714	0,028	0,09	0,002	0,23	481	68	544	16	556 559	12	0,297	102,2
BB9	0,736	0,028	0,091	0,002	0,23	548	68	557	16	5 5 5 5 5 5	12	0,287	100,3
BB9	0,727	0,029	0,091	0,002	0,23	516	68	553	16	2	12	0,314	101,8

										560			
BB9	0,742	0,028	0,091	0,002	0,23	544	67	560	16	1 561	12	0,205	100,0
BB9	0,735	0,028	0,091	0,002	0,24	524	68	558	16	301,	12	0,191	100,6
BB9	0,733	0,027	0,09	0,002	0,23	539	70	555	16	555, 7	12	0,117	100,1
BB9	0,74	0,028	0,091	0,002	0,23	523	66	559	16	561, 7	12	0,21	100,5
BB9	0,728	0,028	0,091	0,002	0,23	466	69	552	17	561, 4	12	0,245	101,7
BB9	0,748	0,028	0,091	0,002	0,23	538	65	566	17	560, 3	13	0,361	99,0
BB9	0,75	0,029	0,091	0,002	0,23	530	72	565	17	561, 5	12	0,274	99,4
BB9	0.747	0.03	0.091	0.002	0.23	532	74	565	18	559, 9	12	0.218	99.1
BB9	0,727	0.028	0.09	0.002	0.23	505	72	553	16	554,	11	0.109	100.3
	0.749	0,020	0,002	0,002	0,23	520	68	564	16	567,	12	0,105	100,5
DD9	0,748	0,028	0,092	0,002	0,24	520	00	504	10	561,	12	0,135	100,5
BB9	0,721	0,033	0,091	0,002	0,23	465	92	548	19	562	13	0,149	102,4
DD9	0,737	0,035	0,091	0,002	0,25	502	00	509	21	562 557,	14	0,208	90,0
889	0,734	0,031	0,09	0,002	0,23	527	72	222	18	5 557,	13	0,444	100,4
BB9	0,72	0,028	0,09	0,002	0,24	501	73	548	17	6	12	0,205	101,7
Kaap Valley	22,51	0,67	0,656	0,015	0,45	3222	31	3204	30	3248	59	0,579	101,4
Kaap Valley	24,74	0,74	0,694	0,016	0,41	3223	27	3295	30	3397	62	0,669	103,0
Kaap Valley	21,13	0,62	0,613	0,014	0,83	3194	27	3141	29	3078	55	0,682	98,0
Kaap Valley	22,37	0,64	0,634	0,014	0,47	3230	28	3198	27	3162	54	0,602	98,9
Kaap Valley	23,71	0,69	0,653	0,015	0,53	3246	28	3253	28	3234	58	0,659	99,4
Kaap Valley	15,81	0,92	0,437	0,025	0,37	3249	31	2792	64	2290	120	0,965	78,1
Kaap Valley	22,99	0,68	0,637	0,015	0,65	3232	28	3223	29	3178	61	0,699	98,6
Kaap Valley	23,26	0,72	0,653	0,015	0,40	3238	33	3233	31	3236	59	0,515	100,1
										335,			
Plesovice	0,396	0,015	0,053	0,001	0,07	303	67	337,4	11	5 334	7,1	0,156	99,4
Plesovice	0,398	0,015	0,053	0,001	0,07	327	67	338,5	11	4	7	0,275	98,8
Plesovice	0,395	0,015	0,054	0,001	0,07	276	65	337	11	337, 1	7,3	0,229	100,0
Plesovice	0,416	0,016	0,055	0,001	0,07	343	67	351,7	11	343, 3	7,3	0,244	97,6
Plesovice	0,394	0,015	0,054	0,001	0,07	275	66	335,9	11	340, 7	7,2	0,227	101,4
Plesovice	0,387	0,015	0,054	0,001	0,07	262	70	330,9	11	336, 6	7,1	0,198	101,7
Plesovice	0,396	0,015	0,054	0,001	0,07	311	68	337,9	11	341, 2	7,4	0,198	101,0
Plesovice	0,398	0,015	0,053	0,001	0,07	385	67	338,9	11	335, 3	7,3	0,28	98,9
Plesovice	0,39	0,016	0,053	0,001	0,07	326	74	332,5	12	333, 5	7,3	0,274	100,3
Plesovice	0,398	0,014	0,053	0,001	0,07	324	64	339,3	11	332, 3	7	0,223	97,9
Plesovice	0,4	0,015	0,054	0,001	0,07	330	68	339,9	11	336	7	0,254	98,8
Plesovice	0,402	0,016	0,053	0,001	0,07	402	67	341,5	11	334, 3	7,2	0,251	97,8
Plesovice	0,391	0,015	0,053	0,001	0,07	321	66	333,7	11	334, 2	7	0,303	100,1
Plesovice	0.382	0.015	0.053	0.001	0.07	266	70	327.2	11	335, 8	73	0.25	102.6
	0,002	5,015	0,000	0,001	0,07	200		, 2		Ū	.,5	0,20	102,0
Temora	0,506	0,03	0,067	0,002	0,31	320	120	412	20	414,	9,8	0,037	100,7

										7			
Temora	0,491	0,03	0,066	0,002	0,19	300	120	399	20	411, 2 413	9,8	0,036	103,0
Temora	0,488	0,029	0,066	0,002	0,20	290	120	397	20	413, 2 413	10	0,165	103,9
Temora	0,5	0,029	0,066	0,002	0,36	390	110	408	19	1	10	0,19	101,2
Temora	0,46	0,034	0,065	0,002	0,36	220	140	385	24	407 411.	13	0,201	105,4
Temora	0,517	0,029	0,066	0,002	0,37	370	110	419	19	3	9,9	0,036	98,1
Temora	0,487	0,024	0,066	0,002	0,39	329	94	400	17	414 407.	9,1	0,123	103,4
Temora	0,498	0,024	0,065	0,002	0,19	372	90	407	16	2	9,2	0,171	100,0
Temora	0,528	0,024	0,065	0,002	0,18	451	85	427	16	407 406.	9,2	0,17	95,1
Temora	0,491	0,034	0,065	0,002	0,37	280	140	397	23	9	11	0,036	102,4

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x 100$

UoP - Sample 64B

	Standard	²⁰⁷ Pb ^a	±2s	²⁰⁶ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	²⁰⁷ Pb	±2s	²⁰⁶ Pb	±2s	Rho ^c	Conc. ^d
	BB9	²³⁵ U		²³⁸ U		U	²⁰⁶ Pb	(Ma)	²³⁵ U	(Ma)	²³⁸ U	(Ma)		
as	Primary													
BB9		0,777	0,022	0,094	0,002	0,23	521	65	581	13	580, 8	10	0,157	100,0
BB9		0,713	0,021	0,089	0,002	0,22	472	71	546	13	550	11	0,127	100,7
BB9		0,743	0,023	0,089	0,002	0,22	556	68	561	14	551, 4	11	0,141	98,3
BB9		0,731	0,023	0,09	0,002	0,23	488	72	554	13	556, 6	11	0,197	100,5
BB9		0,743	0,022	0,091	0,002	0,24	524	68	562	13	561, 3	11	0,058	99,9
BB9		0,738	0,023	0,09	0,002	0,24	527	64	559	13	557, 7	10	0,389	99,8
BB9		0,732	0,023	0,091	0,002	0,22	507	66	555	13	561, 8	9,9	0,319	101,2
BB9		0,751	0,022	0,09	0,002	0,24	587	65	566	13	554, 4	10	0,327	97,9
BB9		0,741	0,021	0,09	0,002	0,24	561	64	560	12	555, 3	10	0,227	99,2
BB9		0,732	0,02	0,091	0,002	0,23	511	61	556	12	562, 8	10	0,322	101,2
BB9		0,731	0,02	0,091	0,002	0,22	518	66	554	12	558, 9	9,9	0,067	100,9
BB9		0.746	0.023	0.091	0.002	0.24	530	68	563	14	562, 7	11	0.318	99.9
BB9		0.75	0.023	0.092	0.002	0.24	540	68	565	13	564	10	0.311	99.8
BBO		0.738	0.023	0.002	0.002	0.22	402	65	558	14	568,	11	0.423	101.8
559		0,738	0,025	0,092	0,002	0,22	492	05	558	14	556,	11	0,423	101,8
BB9		0,722	0,021	0,09	0,002	0,23	489	67	549	13	1 563,	9,8	0,21	101,3
BB9		0,72	0,02	0,091	0,002	0,24	490	62	548	12	1	10	0,252	102,7
BB9		0,74	0,023	0,091	0,002	0,24	538	70	559	14	2	10	0,315	100,2
BB9		0,729	0,019	0,091	0,002	0,24	529	63	555	12	561	11	0,239	101,1
BB9		0,743	0,022	0,09	0,002	0,24	571	63	561	13	555, 555	11	0,077	99,0
BB9		0,736	0,02	0,09	0,002	0,24	553	60	558	12	336, 7	9,9	0,383	99,8
BB9		0,719	0,02	0,09	0,002	0,24	504	65	549	12	557	10	0,216	101,4

										560			
BB9	0,733	0,019	0,091	0,002	0,24	530	57	555,8	11	300,	10	0,283	100,8
BB9	0,714	0,021	0,09	0,002	0,24	494	61	547	12	556 572	9,8	0,425	101,6
BB9	0,75	0,022	0,093	0,002	0,23	518	64	567	13	572,	9,9	0,347	101,0
BB9	0,739	0,022	0,091	0,002	0,23	546	66	561	13	559, 1	10	0,309	99,7
BB9	0,737	0,022	0,091	0,002	0,25	532	65	558	13	558, 7	10	0,297	100,1
BB9	0,742	0,023	0,091	0,002	0,23	547	66	562	13	559, 3	10	0,308	99,5
BB9	0,746	0,021	0,091	0,002	0,23	545	63	564	12	562, 7	10	0,247	99,8
BB9	0,742	0,023	0,091	0,002	0,22	548	72	563	14	559	10	0,247	99,3
BB9	0,734	0,021	0,09	0,002	0,25	543	62	557	13	554, 4	10	0,358	99,5
BB9	0,747	0,02	0,091	0,002	0,24	560	58	564	12	560, 7	10	0,322	99,4
BB9	0.75	0.023	0.091	0.002	0.23	557	72	565	14	559, 5	10	0.228	99.0
BB9	0,73	0,022	0,09	0,002	0,23	501	64	554	13	558	10	0,116	100,7
BB9	0,725	0,02	0,091	0,002	0,23	478	56	551	12	561, 9	10	0,525	101,9
BB9	0.761	0.024	0.093	0.002	0.24	535	69	571	14	570, 5	11	0.254	99.9
BB9	0 744	0.023	0.091	0.002	0.23	530	69	562	13	559, 3	11	0.221	99.5
	0,744	0,025	0,001	0,002	0,23	536	69	555	13	553,	11	0,221	00.7
009	0,755	0,021	0,09	0,002	0,23	520	08	555	12	4	11	0,212	99,1
Kaap Valley	22,3	0,4	0,634	0,012	0,48	3216	27	3196	18	3162	46	0,664	98,9
Kaap Valley	23,12	0,45	0,649	0,012	0,39	3234	30	3229	19	3219	49	0,62	99,7
Kaap Valley	23,1	0,44	0,653	0,012	0,45	3221	29	3227	19	3237	49	0,623	100,3
Kaap Valley	24,92	0,49	0,705	0,014	0,47	3231	29	3300	19	3435	52	0,652	103,9
Kaap Valley	22,23	0,4	0,623	0,012	0,55	3238	27	3190	17	3120	46	0,719	97,8
Kaap Valley	24,89	0,54	0,701	0,015	0,34	3235	32	3302	22	3420	57	0,639	103,5
Kaap Valley	22,53	0,42	0,638	0,012	0,43	3217	28	3205	18	3178	47	0,679	99,2
Kaap Valley	20,55	0,42	0,583	0,012	0,53	3215	30	3113	20	2955	49	0,623	94,7
Kaap Valley	22,62	0,46	0,64	0,012	0,35	3209	31	3206	20	3184	49	0,623	99,3
										333,			
Plesovice	0,396	0,013	0,053	1E-03	0,07	315	64	337,1	9,1	8 339,	6	0,371	99,0
Plesovice	0,392	0,011	0,054	0,001	0,07	281	67	335,8	8,3	4 337,	6,2	0,044	101,1
Plesovice	0,389	0,01	0,054	0,001	0,07	285	60	332,8	7	1 334.	6,3	0,219	101,3
Plesovice	0,39	0,01	0,053	0,001	0,07	311	66	334,3	7,8	1	6,2	0,068	99,9
Plesovice	0,4	0,012	0,054	0,001	0,07	334	72	340,1	9	1 226	7	0,208	99,4
Plesovice	0,398	0,011	0,054	9E-04	0,07	324	60	339,3	8	550, 6	5,6	0,009	99,2
Plesovice	0,398	0,011	0,054	0,001	0,07	341	63	339,4	8,1	336 337	6,4	0,33	99,0
Plesovice	0,392	0,011	0,054	0,001	0,07	315	68	335,9	8,4	2	6,4	0,213	100,4
Plesovice	0,385	0,011	0,053	0,001	0,07	291	64	329,2	8,4	331, 3	6,3	0,236	100,6
Plesovice	0,401	0,012	0,054	0,001	0,07	357	67	342,1	8,2	336	6,4	0,224	98,2
Plesovice	0,401	0,012	0,054	0,001	0,07	343	65	341,1	8,5	2 2 225	6,3	0,302	99,1
Plesovice	0,385	0,011	0,053	0,001	0,07	280	62	329,7	7,9	335, 7	6,1	0,02	101,8
Plesovice	0,39	0,012	0,053	0,001	0,07	320	65	333,1	8,4	334, 1	6,2	0,281	100,3

Plesovice	0,394	0,011	0,053	0,001	0,07	335	64	337,4	8,1	335, 2	6,3	0,212	99,3
Plesovice	0,387	0,012	0,053	0,001	0,07	298	66	331	8,7	334, 6	6,8	0,311	101,1
										418			
Temora	0,54	0,023	0,067	0,002	0,39	477	91	437	14	4	8,9	0,077	95,6
Temora	0,519	0,023	0,069	0,002	0,18	339	96	420	15	426, 9	9	0,102	101,6
Temora	0,52	0,025	0,065	0,002	0,20	420	110	419	17	408, 4	9,1	0,114	97,4
Temora	0,512	0,02	0,067	0,001	0,33	392	83	417	13	415, 7	8,2	0,236	99,7
Temora	0,47	0,027	0,067	0,002	0,36	180	120	384	19	416	9,1	0,174	107,7
Temora	0,489	0,024	0,064	0,001	0,21	366	100	399	16	397, 5	8,7	0,197	99,6
Temora	0,51	0,025	0,066	0,001	0,40	403	100	415	16	410, 5	8,5	0,174	98,9
Temora	0,507	0,016	0,066	0,001	0,19	409	72	415	11	409, 8	7,7	0,219	98,7
Temora	0.5	0.018	0.066	0.001	0.39	360	79	409	12	413, 1	8.2	0.229	101.0
Tomoro	0.52	0.024	0.067	0,002	0.27	402	08	421	16	414,	0,2	0.226	08.5
remora	0,32	0,024	0,007	0,002	0,57	423	90	421	10	7	9	0,230	90,J

UFOP

								²⁰⁶ P				Rho	Cone
Sample	206Pb ^a	±2s	²⁰⁷ Pb ^a	±2s	<u>Th</u>	207 Pb	±2s (Ma	<u><u> </u></u>	±2s (Ma	207Pb	±2s (Ma	c	d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb)	²³⁸ U)	²³⁵ U)		
HenSMPABC049	0,380769	5,02	6,773501	6,88	0,51	2085	38	2080	45	2082	30	0,43	99,89
HenSMPABC033	0,380799	4,69	6,786741	5,33	0,49	2088	25	2080	43	2084	25	0,58	99,81
HenSMPABC052	0,395148	5,11	7,315977	5,74	0,54	2155	25	2147	47	2151	26	0,59	99,81
HenSMPABC020	0,398518	4,70	7,437171	5,35	0,63	2169	25	2162	44	2165	25	0,58	99,85
HenSMPABC036	0,393122	5,04	7,490851	5,61	0,02	2205	24	2137	46	2172	26	0,60	98,38
HenSMPABC060	0,419877	4,99	8,272262	5,61	0,55	2263	25	2260	48	2261	26	0,59	99,94
HenSMPABC009	0,413718	4,83	7,972036	5,53	0,03	2313	25	2232	46	2274	26	0,57	98,10
HenSMPABC031	0,439132	4,75	9,111228	5,37	0,67	2351	24	2347	48	2349	26	0,58	99,89
HenSMPABC058	0,399810	4,73	7,999345	5,33	0,72	2355	24	2350	48	2353	26	0,59	99,88
HenSMPABC032	0,407965	5,13	7,987767	5,73	0,44	2355	24	2342	50	2349	27	0,60	99,69
HenSMPABC050	0,397765	4,88	7,988430	5,47	0,02	2356	24	2341	48	2349	26	0,59	99,64
HenSMPABC007	0,411136	4,69	8,067731	5,31	0,69	2373	24	2356	48	2365	26	0,58	99,61
HenSMPABC034	0,430598	5,27	8,074364	5,97	0,69	2378	26	2353	51	2366	28	0,58	99,44
HenSMPABC029	0,448854	4,93	9,558482	5,53	0,49	2396	24	2390	50	2393	27	0,59	99,87
HenSMPABC011	0,448116	5,06	9,555245	5,63	0,69	2398	24	2387	51	2393	27	0,60	99,75
HenSMPABC019	0,450340	4,96	9,636190	5,55	0,41	2404	24	2397	50	2401	27	0,59	99,84
HenSMPABC054	0,413514	5,11	8,190642	5,74	0,01	2439	25	2366	50	2406	27	0,59	98,33
HenSMPABC017	0,461099	4,66	10,156318	5,28	0,69	2453	24	2444	49	2449	26	0,58	99,81
HenSMPABC016	0,461717	4,54	10,191581	5,20	0,52	2457	24	2447	48	2452	26	0,57	99,79
HenSMPABC055	0,460999	4,80	10,188448	5,43	0,47	2459	24	2444	50	2452	26	0,58	99,67
HenSMPABC057	0,463133	4,75	10,241354	5,38	0,60	2460	24	2453	50	2457	26	0,58	99,86
HenSMPABC053	0,465945	4,80	10,449979	5,42	0,61	2483	24	2466	50	2475	27	0,59	99,61

HenSMPABC018	0,468179	4,83	10,515903	6,24	0,61	2486	32	2476	51	2481	29	0,47	99,77
HenSMPABC012	0,467102	4,97	10,499576	5,57	0,58	2487	24	2471	51	2480	27	0,59	99,63
HenSMPABC039	0,469615	4,81	10,559742	6,22	0,54	2488	32	2482	51	2485	29	0,47	99,87
HenSMPABC047	0,476176	4,85	10,886032	5,44	0,69	2516	24	2511	51	2513	27	0,59	99,89
HenSMPABC051	0,478529	4,47	11,000776	5,14	0,41	2525	24	2521	49	2523	26	0,87	99,91
HenSMPABC056	0,479297	5,13	11,056757	5,88	0,59	2531	26	2524	53	2528	28	0,57	99,85
HenSMPABC040	0,480354	4,76	11,100166	5,39	0,43	2534	24	2529	51	2532	27	0,58	99,89
HenSMPABC037	0,479476	5,25	11,099902	5,86	0,93	2537	24	2525	54	2532	28	0,60	99,74
HenSMPABC008	0,482069	4,94	11,219459	6,33	0,38	2546	31	2536	52	2542	29	0,48	99,79
HenSMPABC030	0,484542	4,72	11,330743	5,31	0,72	2554	23	2547	51	2551	26	0,59	99,85
HenSMPABC027	0,484033	4,67	11,340333	5,28	0,94	2557	24	2545	51	2552	26	0,58	99,74
HenSMPABC059	0,487842	4,51	11,519544	5,18	0,77	2570	24	2561	50	2566	26	0,57	99,81
HenSMPABC038	0,488431	4,77	11,537650	5,37	0,73	2571	24	2564	52	2568	27	0,59	99,85
HenSMPABC028	0,491632	4,81	11,699890	5,39	0,41	2583	23	2578	52	2581	27	0,59	99,89
HenSMPABC048	0,492359	4,62	11,758624	5,26	0,44	2589	24	2581	51	2585	26	0,58	99,83
HenSMPABC035	0,496328	4,52	11,978637	5,21	0,36	2606	24	2598	51	2603	26	0,87	99,82
HenSMPABC010	0,499180	4,62	12,135563	5,25	0,99	2619	23	2610	51	2615	26	0,58	99,82
HenSMPABC015	0,499619	4,57	12,177229	5,21	0,39	2623	24	2612	51	2618	26	0,58	99,77
HenSMPABC014	0,507277	4,63	12,635910	5,25	0,60	2659	23	2645	52	2653	26	0,58	99,70

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))/^{206}Pb/^{238}U)) \ge 100$

UFOP

19A

								206 D				Dho	Cone
Sample	²⁰⁶ Pb ^a	$\pm 2s$	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	±2s	<u> </u>	±2s	²⁰⁷ Pb	±2s	c	d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
HenSMPABC211	0,628117	12,73	64,373203	13,52	2,39	4817	65	3142	79	4 2 44	57	0,94	64,92
HenSMPABC197	0,416021	1,99	10,751739	2,27	0,83	2720	20	2242	20	2502	15	0,88	88,43
HenSMPABC196	0,416362	2,01	10,758744	2,53	0,06	2720	27	22 44	48	2503	28	0,79	88,48
HenSMPABC172	0,521528	1,95	13,366304	2,21	0,58	2706	24	2706	55	2706	27	0,88	99,99
HenSMPABC170	0,418417	1,98	10,687585	2,29	0,90	2700	25	2253	47	2496	27	0,87	89,21
HenSMPABC198	0,479714	1,97	12,011886	2,25	0,54	2699	20	2526	37	2681	20	0,87	93,88
HenSMPABC219	0,399807	1,95	9,976038	2,23	0,56	2662	20	2168	12	2433	13	0,87	87,80
HenSMPABC178	0,421646	1,99	10,480123	2,31	3,29	2655	25	2268	48	2478	28	0,86	90,73
HenSMPABC175	0,396367	1,95	9,839939	2,22	0,63	2653	24	2152	45	2420	27	0,88	87,57
HenSMPABC191	0,380926	1,94	9,356945	2,20	0,56	2636	20	2081	44	2374	25	0,88	85,92
HenSMPABC180	0,412963	1,99	10,130068	2,28	0,78	2633	25	2228	47	2447	27	0,87	90,21
HenSMPABC213	0,376584	2,04	9,104761	2,41	7,92	2609	23	2060	16	2349	15	0,85	86,01
HenSMPABC174	0,355496	2,05	8,566681	2,61	0,24	2604	32	1961	43	2293	29	0,79	83,06
HenSMPABC216	0,349761	1,93	8,401225	2,21	0,84	2598	20	1933	46	2275	28	0,88	82,32
HenSMPABC215	0,355677	1,96	8,514405	2,24	0,43	2593	21	1962	41	2287	25	0,87	83,39

HenSMPABC156	0,351706	1,96	8,419007	2,24	0,63	2593	25	1943	41	2277	26	0,88	82,78
HenSMPABC218	0,379752	2,00	9,077712	2,36	0,53	2590	23	2075	30	2346	20	0,85	86,95
HenSMPABC199	0,343895	1,98	8,193724	2,29	0,42	2585	22	1905	13	2253	14	0,86	81,77
HenSMPABC173	0,335021	1,93	7,951094	2,19	0,61	2578	24	1863	40	2225	26	0,88	80,52
HenSMPABC190	0,378850	1,9 4	8,919789	2,21	0,61	2565	20	2071	43	2330	25	0,88	87,50
HenSMPABC214	0,345429	1,93	8,119905	2,21	0,39	2562	20	1913	40	2244	25	0,87	82,66
HenSMPABC217	0,304768	1,97	7,031786	2,27	0,91	2531	21	1715	35	2115	24	0,87	76,64
HenSMPABC220	0,319328	1,97	7,330821	2,28	1,42	2523	22	1786	13	2153	14	0,87	79,51
HenSMPABC200	0,303776	2,02	6,935714	2,38	1,15	2514	24	1710	14	2103	15	0,85	77,00
HenSMPABC210	0,312650	1,97	7,067703	2,27	0,61	2497	22	1754	30	2120	21	0,87	79,12
HenSMPABC169	0,291502	1,96	6,565739	2,25	0,47	2491	25	1649	36	2055	26	0,87	75,40
HenSMPABC171	0,320381	1,94	7,208349	2,21	1,27	2489	25	1792	38	2138	26	0,88	80,69
HenSMPABC192	0,290650	1,96	6,537408	2,24	1,12	2488	21	1645	36	2051	25	0,87	75,31
HenSMPABC208	0,312048	2,01	7,011805	2,40	2,26	2487	24	1751	38	2113	26	0,84	79,31
HenSMPABC209	0,300868	1,95	6,725962	2,24	0,51	2478	21	1696	38	2076	25	0,87	77,56
HenSMPABC207	0,272300	1,97	6,055969	2,27	1,00	2469	22	1552	20	1984	17	0,87	72,21
HenSMPABC177	0,256347	2,08	5,486031	2,67	0,20	2404	33	1471	34	1898	28	0,78	70,96
HenSMPABC187	0,233244	1,93	4,946803	2,21	0,70	2389	21	1351	30	1810	24	0,87	66,05
HenSMPABC157	0,235821	2,11	4,994914	2,59	1,25	2387	31	1365	32	1818	27	0,81	66,77
HenSMPABC176	0,251253	1,93	5,177708	2,20	0,61	2340	25	1445	32	1849	25	0,88	72,04
HenSMPABC167	0,224089	2,14	4,617021	2,74	0,51	2339	34	1303	31	1752	28	0,78	65,56
HenSMPABC194	0,222054	1,95	4,560366	2,23	0,70	2334	22	1293	29	1742	23	0,87	65,24
HenSMPABC179	0,199733	1,95	4,079929	2,22	0,93	2325	25	1174	26	1650	24	0,88	59,42
HenSMPABC212	0,194599	1,94	3,735906	2,22	0,46	2218	22	1146	26	1579	22	0,88	62,24
HenSMPABC188	0,178064	1,96	3,282503	2,25	0,59	2147	23	1056	24	1477	22	0,87	60,19
HenSMPABC189	0,178265	1,94	3,173916	2,22	0,64	2086	23	1057	24	1451	22	0,87	62,80
HenSMPABC193	0,144242	1,96	2,411830	2,26	0,15	1975	25	869	20	1246	21	0,87	56,54
HenSMPABC195	0,137464	1,93	1,932677	2,21	0,22	1660	27	830	19	1092	19	0,87	68,43

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))/^{206}Pb/^{238}U)) \ge 100$

UFOP

_		
1.	ЯB	

Sample	²⁰⁶ Pb ^a ²³⁸ U	±2s	²⁰⁷ Pb ^a ²³⁵ U	±2s	<u>Th</u> U	²⁰⁷ Pb ²⁰⁶ Pb	±2s (Ma	$\frac{\frac{206}{P}}{\underline{b}}$	±2s (Ma	²⁰⁷ Pb ²³⁵ U	±2s (Ma	Rho c	Conc.
	0.407460	0.57	0.046105	1.51	0.07	2.120	,	2202	,	2222	20	0.02	04.60
SMPABC008	0,407460	3,57	8,846195	4,51	0,37	2429	21	2203	33	2322	20	0,82	94,60
SMPABC009	0,441770	2,39	10,590636	3,36	0,43	2595	17	2359	23	2488	15	0,75	94,52
SMPABC010	0,440330	2,49	10,317764	3,43	0,19	2557	17	2352	24	2464	15	0,77	95,26
SMPABC011	0,496230	2,46	12,027586	3,42	0,20	2614	17	2598	26	2607	15	0,76	99,65
SMPABC012	0,561430	2,37	16,938075	3,26	0,68	2972	16	2873	27	2931	15	0,75	97,95
SMPABC013	0,358020	2,68	6,020902	3,78	1,11	1985	19	1973	22	1979	15	0,78	99,69

SMPABC014	0,536180	2,38	15,744901	3,27	0,68	2928	16	2767	26	2861	15	0,76	96,60
SMPABC015	0,321570	2,51	5,909980	3,55	0,26	2142	18	1797	19	1963	14	0,77	90,80
SMPABC016	0,360860	2,43	5,998126	3,61	0,50	1964	19	1986	20	1976	14	0,75	#####
SMPABC017	0,458960	2,53	11,632422	3,41	0,40	2688	17	2435	25	2575	15	0,78	94,24
SMPABC022	0,350080	2,50	6,875569	3,53	0,32	2257	18	1935	20	2096	14	0,77	91,70
SMPABC023	0,191610	2,64	10,273302	3,36	0,12	3867	15	1130	13	2460	15	0,77	-17,66
SMPABC024	0,415350	2,53	9,052782	3,57	0,68	2435	18	2239	24	2343	15	0,75	95,36
SMPABC025	0,372820	2,79	6,305266	3,84	0,99	1995	18	2043	24	2019	15	0,80	#####
SMPABC026	0,367250	2,81	6,099298	5,10	0,65	1963	35	2016	24	1990	21	0,57	#####
SMPABC027	0,475260	2,82	11,077652	3,71	1,55	2548	18	2507	29	2530	16	0,80	99,08
SMPABC028	0,455680	2,48	10,126180	3,43	0,39	2468	17	2420	25	2446	15	0,77	98,93
SMPABC029	0,560750	2,49	16,844110	3,39	1,15	2965	17	2870	29	2926	16	0,76	98,04
SMPABC030	0,361120	2,48	5,920220	3,63	1,18	1940	18	1987	21	1964	14	0,76	#####
SMPABC031	0,370840	2,53	6,799029	3,57	0,52	2138	18	2033	22	2086	14	0,77	97,43
SMPABC037	0,473270	2,61	11,020563	4,22	0,76	2547	26	2498	27	2525	19	0,64	98,92
SMPABC038	0,372470	2,61	6,223853	3,74	1,18	1974	19	2041	22	2008	15	0,77	#####
SMPABC039	0,368420	2,62	6,119605	3,72	1,16	1963	18	2022	22	1993	14	0,78	#####
SMPABC040	0,431890	2,54	9,852769	4,26	0,42	2512	27	2314	24	2421	19	0,62	95,38
SMPABC041	0,290270	2,57	5,848647	3,57	0,26	2301	18	1643	18	1954	14	0,77	81,08
SMPABC042	0,461580	2,58	11,819379	3,49	0,82	2705	17	2447	26	2590	16	0,77	94,13
SMPABC043	0,381670	2,48	7,453231	3,50	0,43	2247	18	2084	22	2167	14	0,77	96,00
SMPABC044	0,362990	2,55	6,020402	3,69	1,51	1961	19	1996	21	1979	14	0,77	#####
SMPABC045	0,502200	2,47	13,633273	3,36	0,21	2801	17	2623	26	2725	15	0,77	96,14
SMPABC046	0,343000	2,54	6,067118	3,61	0,55	2075	18	1901	20	1986	14	0,77	95,56
SMPABC051	0,407490	2,68	8,954998	4,37	0,09	2449	27	2203	25	2333	19	0,63	94,10
SMPABC052	0,379250	2,47	7,388640	3,54	0,45	2243	18	2073	21	2160	14	0,75	95,81
SMPABC053	0,462030	2,84	13,971597	4,07	1,09	2976	22	2449	29	2748	19	0,71	87,78
SMPABC054	0,600100	2,38	19,108449	3,26	0,66	3059	16	3030	29	3047	15	0,75	99,44
SMPABC055	0,517810	2,67	14,573659	3,51	0,64	2859	17	2690	29	2788	16	0,79	96,36
SMPABC056	0,369790	2,74	6,135223	3,82	0,89	1961	19	2028	23	1995	15	0,79	#####
SMPABC057	0,412140	2,53	8,956938	3,54	0,21	2430	18	2225	23	2334	15	0,76	95,10
SMPABC058	0,476360	2,53	13,137906	3,39	0,37	2826	16	2511	26	2690	15	0,78	92,90
SMPABC059	0,613890	2,67	20,208584	3,47	1,32	3112	16	3086	33	3101	16	0,79	99,49
SMPABC060	0,395900	2,42	8,286456	3,46	0,17	2366	18	2150	22	2263	14	0,75	94,76
SMPABC065	0,618290	2,53	20,220225	3,39	1,17	3101	17	3103	31	3102	16	0,77	#####
SMPABC066	0,305680	2,93	4,848188	4,06	0,78	1880	20	1719	22	1793	15	0,79	95,70
SMPABC067	0,260320	2,56	4,789551	3,59	0,08	2144	18	1491	16	1783	13	0,77	80,45
SMPABC068	0,521400	2,58	15,009326	3,43	0,99	2896	17	2705	28	2816	16	0,78	95,91
SMPABC069	0,473410	2,82	11,123303	3,71	0,51	2562	18	2498	29	2534	16	0,80	98,60
SMPABC070	0,357770	2,45	5,921492	3,63	0,69	1957	19	1972	20	1964	14	0,75	#####
SMPABC071	0,365370	2,46	5,962143	3,66	1,09	1931	19	2008	21	1970	14	0,75	#####
SMPABC072	0,474090	2,47	9,056249	3,51	0,30	2209	18	2501	25	2344	15	0,77	#####
SMPABC073	0,603720	2,55	17,404010	3,40	1,10	2898	17	3045	31	2957	16	0,78	#####
SMPABC074	0,431370	3,01	10,171212	3,92	0,67	2568	18	2312	29	2450	17	0,80	94,01

SMPABC079	0,514570	2,46	15,741700	3,32	0,81	2994	16	2676	27	2861	15	0,77	93,08
SMPABC080	0,505130	2,78	12,173656	3,67	0,40	2604	18	2636	30	2618	16	0,79	#####
SMPABC081	0,611370	2,78	19,642583	3,61	1,26	3073	17	3075	34	3074	17	0,79	#####
SMPABC082	0,537830	2,50	15,477099	3,43	0,81	2896	17	2774	28	2845	16	0,76	97,45
SMPABC083	0,539670	2,49	15,848187	3,35	0,76	2928	16	2782	28	2868	15	0,77	96,92
SMPABC084	0,492710	2,42	12,190910	3,38	0,15	2648	17	2582	25	2619	15	0,75	98,57
SMPABC085	0,494630	2,68	12,072690	3,61	0,31	2625	18	2591	28	2610	16	0,78	99,25
SMPABC086	0,502640	2,56	12,168397	3,56	1,38	2612	18	2625	27	2617	16	0,76	#####
SMPABC087	0,651770	2,41	22,292172	3,27	1,19	3172	16	3235	31	3197	15	0,76	#####
SMPABC088	0,591520	2,42	18,670435	3,30	0,73	3045	17	2996	29	3025	15	0,76	99,02
SMPABC089	0,356640	2,57	5,984910	3,69	1,40	1981	18	1966	21	1974	14	0,77	99,62
SMPABC090	0,365740	2,57	6,178237	3,70	0,69	1993	19	2009	22	2001	14	0,77	#####
SMPABC091	0,398070	2,43	8,216648	3,46	0,16	2343	18	2160	22	2255	14	0,76	95,60
SMPABC092	0,368430	2,61	6,112151	3,83	2,22	1961	20	2022	22	1992	15	0,75	#####
SMPABC093	0,458590	2,49	11,552192	3,42	0,43	2678	17	2433	25	2569	15	0,76	94,43
SMPABC094	0,366960	2,53	6,115999	3,75	0,83	1969	20	2015	21	1993	15	0,74	#####
SMPABC095	0,547260	2,61	16,176863	3,46	1,35	2939	17	2814	29	2887	16	0,78	97,39
SMPABC096	0,356940	2,67	6,029316	3,78	1,94	1993	19	1968	22	1980	15	0,78	99,37
SMPABC097	0,389480	3,56	7,932786	4,36	1,13	2320	18	2120	24	2223	15	0,78	95,14
SMPABC098	0,361340	3,44	6,024538	4,38	1,07	1970	19	1989	21	1979	14	0,74	#####
SMPABC099	0,365050	3,75	6,076393	4,60	1,17	1967	19	2006	21	1987	14	0,76	#####
SMPABC104	0,499520	2,67	12,187911	3,58	0,35	2625	17	2612	29	2619	16	0,79	99,72
SMPABC109	0,559030	0,78	10,369346	2,65	0,48	2158	18	2863	28	2468	15	0,77	#####
SMPABC109 SMPABC110	0,559030 0,388870	0,78 1,09	10,369346 7,074915	2,65 2,80	0,48 0,55	2158 2124	18 18	2863 2118	28 22	2468 2121	15 14	0,77 0,76	##### 99,84
SMPABC109 SMPABC110 SMPABC111	0 ,559030 0,388870 0,521800	0,78 1,09 1,88	10,369346 7,074915 16,618206	2,65 2,80 2,92	0,48 0,55 0,74	2158 2124 3059	18 18 16	2863 2118 2707	28 22 27	2468 2121 2913	15 14 15	0,77 0,76 0,77	##### 99,84 92,38
SMPABC109 SMPABC110 SMPABC111 SMPABC112	0,559030 0,388870 0,521800 0,359740	0,78 1,09 1,88 2,78	10,369346 7,074915 16,618206 6,084383	2,65 2,80 2,92 3,82	0,48 0,55 0,74 0,10	2158 2124 3059 1995	18 18 16 18	2863 2118 2707 1981	28 22 27 21	2468 2121 2913 1988	15 14 15 14	0,77 0,76 0,77 0,77	##### 99,84 92,38 99,64
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113	0,559030 0,388870 0,521800 0,359740 0,361500	0,78 1,09 1,88 2,78 2,85	10,369346 7,074915 16,618206 6,084383 6,088398	2,65 2,80 2,92 3,82 3,92	0,48 0,55 0,74 0,10 0,44	2158 2124 3059 1995 1988	18 18 16 18 19	2863 2118 2707 1981 1989	28 22 27 21 20	2468 2121 2913 1988 1989	15 14 15 14 14	0,77 0,76 0,77 0,77 0,74	##### 99,84 92,38 99,64 #####
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190	0,78 1,09 1,88 2,78 2,85 2,80	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000	2,65 2,80 2,92 3,82 3,92 3,90	0,48 0,55 0,74 0,10 0,44 0,56	2158 2124 3059 1995 1988 1986	18 18 16 18 19 19	2863 2118 2707 1981 1989 2007	 28 22 27 21 20 21 	2468 2121 2913 1988 1989 1997	15 14 15 14 14 14	0,77 0,76 0,77 0,77 0,74 0,75	##### 99,84 92,38 99,64 ##### #####
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190 0,500530	0,78 1,09 1,88 2,78 2,85 2,80 2,38	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528	2,65 2,80 2,92 3,82 3,92 3,90 3,36	0,48 0,55 0,74 0,10 0,44 0,56 0,70	2158 2124 3059 1995 1988 1986 2606	18 16 18 19 19 17	2863 2118 2707 1981 1989 2007 2616	 28 22 27 21 20 21 26 	2468 2121 2913 1988 1989 1997 2610	15 14 15 14 14 14 15 14 15 14 15 14 15 15 14 15 14 15	0,77 0,76 0,77 0,77 0,74 0,75 0,76	###### 99,84 92,38 99,64 ###### ######
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190 0,500530 0,438010	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100	2,65 2,80 2,92 3,82 3,92 3,90 3,36 3,30	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08	2158 2124 3059 1995 1988 1986 2606 2572	18 16 18 19 19 17 18	2863 2118 2707 1981 1989 2007 2616 2342	 28 22 27 21 20 21 26 23 	2468 2121 2913 1988 1989 1997 2610 2467	15 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15	0,77 0,76 0,77 0,77 0,74 0,75 0,76 0,75	###### 99,84 92,38 99,64 ##### ###### 94,64
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190 0,500530 0,438010 0,477140	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658	2,65 2,80 2,92 3,82 3,92 3,90 3,36 3,30 3,18	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22	2158 2124 3059 1995 1988 1986 2606 2572 2539	18 16 18 19 19 17 18 18	2863 2118 2707 1981 1989 2007 2616 2342 2515	 28 22 27 21 20 21 26 23 25 	2468 2121 2913 1988 1989 1997 2610 2467 2528	15 14 15 14 14 14 15 14 15 15 15 15 15 15 15	0,77 0,76 0,77 0,77 0,74 0,75 0,76 0,75	###### 99,84 92,38 99,64 ##### ##### 94,64 99,47
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190 0,500530 0,438010 0,477140 0,366420	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927	2,65 2,80 2,92 3,82 3,92 3,90 3,36 3,30 3,18 4,63	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104	18 16 18 19 17 18 19 17 18 19	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013	 28 22 27 21 20 21 26 23 25 22 	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058	15 14 15 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	0,77 0,76 0,77 0,77 0,74 0,75 0,75 0,75 0,77	<pre>###### 99,84 92,38 99,64 ##### ##### 94,64 99,47 97,75</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190 0,500530 0,438010 0,477140 0,366420 0,475110	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081	2,65 2,80 2,92 3,82 3,92 3,90 3,36 3,30 3,18 4,63 2,80	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555	18 18 16 18 19 17 18 18 19 20	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506	 28 22 27 21 20 21 26 23 25 22 28 	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2058 2533	15 14 15 14 14 15	0,77 0,76 0,77 0,77 0,74 0,75 0,75 0,75 0,77 0,75	<pre>###### 99,84 92,38 99,64 ##### ##### 94,64 99,47 97,75 98,92</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC124	0,559030 0,388870 0,521800 0,359740 0,361500 0,365190 0,500530 0,438010 0,477140 0,366420 0,475110 0,496960	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626	18 18 16 18 19 17 18 19 17 18 19 17 18 19 17 18 19 19 19 17	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601	28 22 27 21 20 21 26 23 25 22 28 26	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615	15 14 15 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0,77 0,77 0,77 0,77 0,74 0,75 0,75 0,75 0,75 0,75	<pre>###### 99,84 92,38 99,64 ##### ###### 94,64 99,47 97,75 98,92 99,46</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC124 SMPABC125	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,364720	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166	2,65 2,80 2,92 3,82 3,92 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938	18 16 18 19 19 17 18 19 17 18 19 17 18 19 17 18 19 20 17 19	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005	28 22 27 21 20 21 26 23 25 22 28 26 22 28 26 22 28 26 22 28 26 22	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2058 2533 2615 1972	15 14 15 14 14 14 15 15 15 15 15 15 15 15 14	0,77 0,76 0,77 0,77 0,74 0,75 0,75 0,75 0,77 0,75 0,76 0,76	<pre>###### 99,84 92,38 99,64 ##### ##### 94,64 99,47 97,75 98,92 99,46 #####</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC125 SMPABC126	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,411890	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938 2467	18 18 16 18 19 17 18 19 20 17 19 20 17 19 18 19 20 17 19 18	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224	28 22 27 21 20 21 26 23 25 22 28 26 22 28 26 22 28 26 22 28 26 22 28 26 22 26	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353	15 14 15 14 14 14 15 15 15 15 15 15 16	0,77 0,76 0,77 0,77 0,77 0,75 0,75 0,75 0,75 0,77 0,75 0,77 0,75 0,77 0,75 0,77 0,75 0,76 0,77 0,75 0,76 0,77	<pre>###### 99,84 92,38 99,64 ##### ###### 94,64 99,47 97,75 98,92 99,46 ##### 94,19</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC124 SMPABC125 SMPABC126 SMPABC127	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,433900	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03 3,28	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065	2,65 2,80 2,92 3,82 3,92 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,22	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938 2467 2475	18 16 18 19 17 18 19 17 18 19 17 18 19 20 17 18 19 20 17 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323	28 22 27 21 20 21 26 23 25 22 28 26 22 28 26 22 26 22 26 22 26 22 26 22 26 22 24	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2405	15 14 15 14 14 14 15 15 15 15 15 16 15	0,77 0,77 0,77 0,74 0,75 0,75 0,75 0,75 0,77 0,75 0,76 0,77 0,78 0,74	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 96,49</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC123 SMPABC125 SMPABC125 SMPABC126 SMPABC127 SMPABC128	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,4339000,378040	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,94 1,18 1,03 3,28 2,74	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065 9,716464	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15 3,59	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,25 0,69	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938 2467 2475 2475	18 18 19 19 17 18 19 20 17 19 10 110 120 17 19 10 117 118 117 118 119 110 111 111 112 113 114 115	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323 2067	28 22 27 21 20 21 26 23 25 22 28 26 22 28 26 22 28 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 24 22	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2405 2408	15 14 15 14 14 14 15 15 15 15 15 15 15 16 15 15	0,77 0,76 0,77 0,77 0,74 0,75 0,76 0,75 0,76 0,75 0,76 0,75 0,76 0,77 0,78 0,74	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 96,49 83,50</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC123 SMPABC125 SMPABC126 SMPABC127 SMPABC128 SMPABC129	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,4339000,3780400,450000	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03 3,28 2,74 2,97	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065 9,716464 10,902103	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15 3,59 3,98	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,25 0,69 0,84	2158 2124 3059 1995 1988 2606 2572 2539 2104 2555 2626 1938 2467 2475 2711 2613	18 18 16 18 19 17 18 19 17 18 19 20 17 18 19 17 18 19 17 18 19 17 18 19 17 20 17 20 17 20 17 20 17 20 17 20 20 17 20 20 20 20 20 20 20 20 20 20 20	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323 2067 2395	28 22 27 21 20 21 26 23 25 22 28 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 23 24 22 23	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2405 2408 2515	15 14 15 14 14 14 15 15 15 17 15 14 15 15 17 15 14 16 15 17	0,77 0,76 0,77 0,77 0,74 0,75 0,76 0,75 0,75 0,75 0,77 0,75 0,77 0,75 0,77 0,76 0,77 0,76 0,77 0,76 0,77 0,78 0,77 0,77 0,77	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 94,19 94,19 94,19 94,19 94,19 94,19 94,19</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC123 SMPABC125 SMPABC125 SMPABC126 SMPABC127 SMPABC128 SMPABC129 SMPABC130	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,4339000,3780400,4500000,480990	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03 3,28 2,74 2,97 2,02	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065 9,716464 10,902103 13,938243	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15 3,59 3,98 3,05	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,25 0,69 0,84 0,56	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938 2467 2475 2475 2475 2711 2613 2907	18 18 19 19 17 18 19 20 17 18 19 20 17 18 19 20 17 18 19 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323 2067 2395 2532	28 22 27 21 20 21 26 23 25 22 28 26 22 26 22 28 26 22 26 22 26 24 22 27 25	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2405 2408 2515 2408	15 14 15 14 14 14 15 15 15 17 15 14 15 17 15 14 15 17 15 17 15 17 15 17 15	0,77 0,76 0,77 0,77 0,74 0,75 0,76 0,75 0,76 0,75 0,76 0,75 0,76 0,77 0,78 0,74 0,77 0,78 0,75 0,75 0,76	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 96,49 83,50 95,01 91,55</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC123 SMPABC124 SMPABC125 SMPABC126 SMPABC127 SMPABC128 SMPABC129 SMPABC130 SMPABC135	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,4339000,3780400,4500000,4809900,383540	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03 3,28 2,74 2,97 2,02 1,21	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065 9,716464 10,902103 13,938243 7,697977	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15 3,59 3,98 3,05 2,95	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,25 0,69 0,84 0,56 0,33	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938 2467 2475 2711 2613 2907 2294	18 18 19 19 17 18 19 20 17 18 19 20 17 18 19 17 18 19 17 18 19 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 17 20 17 20 17 17 19 12 13	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323 2067 2325 2532 2093	28 22 27 21 20 21 26 23 25 22 28 26 22 28 26 22 26 22 26 22 26 27 25 25	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2615 1972 2353 2405 2408 2515 2746 2196	15 14 15 14 14 14 15 15 15 17 15 16 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17	0,77 0,76 0,77 0,77 0,74 0,75 0,76 0,75 0,75 0,75 0,76 0,77 0,75 0,77 0,75 0,76 0,77 0,78 0,77 0,75 0,76 0,77 0,77 0,78 0,76 0,77	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 94,19 94,19 94,19 94,19 94,19 94,19 94,19 95,01 91,55 95,05</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC123 SMPABC124 SMPABC125 SMPABC126 SMPABC127 SMPABC128 SMPABC129 SMPABC130 SMPABC135 SMPABC136	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,4339000,3780400,4500000,4809900,3835400,449760	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03 3,28 2,74 2,97 2,02 1,21 1,03	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065 9,716464 10,902103 13,938243 7,697977 11,244181	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15 3,59 3,98 3,05 2,95 2,65	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,25 0,69 0,84 0,56 0,33 0,20	2158 2124 3059 1995 1988 1986 2606 2572 2539 2104 2555 2626 1938 2467 2475 2711 2613 2907 2294 2665	18 18 16 18 19 17 18 19 20 17 18 19 20 17 18 19 17 20 17 20 17 20 17 20 17 20 17 20 17 20 17 20 18	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323 2067 2395 2532 2093 2394	28 22 27 21 20 21 26 23 25 22 28 26 22 26 22 26 22 26 22 26 22 26 22 26 22 25 25 25 28	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2405 2408 2515 2408 2515 2746 2196 2544	15 14 15 14 14 14 15 15 15 15 15 15 16 15 17 15 17 15 17 15 17 15 17 16	0,77 0,76 0,77 0,77 0,75 0,75 0,75 0,76 0,75 0,77 0,75 0,76 0,77 0,75 0,76 0,77 0,76 0,77 0,78 0,78 0,78 0,78 0,78 0,78 0,78	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 96,49 83,50 95,01 91,55 95,05 93,76</pre>
SMPABC109 SMPABC110 SMPABC111 SMPABC112 SMPABC113 SMPABC114 SMPABC115 SMPABC116 SMPABC121 SMPABC122 SMPABC123 SMPABC123 SMPABC124 SMPABC125 SMPABC126 SMPABC127 SMPABC128 SMPABC129 SMPABC130 SMPABC135 SMPABC136 SMPABC137	0,5590300,3888700,5218000,3597400,3615000,3651900,5005300,4380100,4771400,3664200,4751100,4969600,3647200,4118900,4339000,3780400,4500000,4809900,3835400,4497600,435680	0,78 1,09 1,88 2,78 2,85 2,80 2,38 2,27 2,03 3,82 0,98 0,94 1,18 1,03 3,28 2,74 2,97 2,02 1,21 1,03 0,98	10,369346 7,074915 16,618206 6,084383 6,088398 6,144000 12,074528 10,357100 11,057658 6,588927 11,116081 12,132986 5,974166 9,146254 9,681065 9,716464 10,902103 13,938243 7,697977 11,244181 10,103435	2,65 2,80 2,92 3,82 3,90 3,36 3,30 3,18 4,63 2,80 2,54 2,93 2,71 4,15 3,59 3,98 3,05 2,95 2,65 2,61	0,48 0,55 0,74 0,10 0,44 0,56 0,70 0,08 0,22 0,15 0,77 0,46 0,89 0,22 0,69 0,84 0,56 0,33 0,20 0,42	2158 2124 3059 1995 1988 2606 2572 2539 2104 2555 2626 1938 2467 2475 2711 2613 2907 2294 2665 2540	18 18 19 19 17 18 19 17 18 19 20 17 18 19 17 18 19 17 20 17 20 17 20 17 20 17 20 18 18 18 18	2863 2118 2707 1981 1989 2007 2616 2342 2515 2013 2506 2601 2005 2224 2323 2067 2325 2532 2093 2394 2331	28 22 27 21 20 21 26 23 25 28 26 22 28 26 22 28 26 22 23 25 26 27 25 28 24	2468 2121 2913 1988 1989 1997 2610 2467 2528 2058 2533 2615 1972 2353 2615 1972 2353 2405 2408 2515 2746 2196 2544 2544	15 14 15 14 14 14 15 15 15 17 15 17 15 17 15 17 15 17 16 15 17 15 17 15 17 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 15 16 15	0,77 0,76 0,77 0,74 0,75 0,76 0,75 0,75 0,77 0,75 0,77 0,75 0,77 0,75 0,76 0,77 0,76 0,77 0,78	<pre>###### 99,84 92,38 99,64 ##### 94,64 99,47 97,75 98,92 99,46 ##### 94,19 96,49 83,50 95,01 91,55 95,05 93,76 95,15</pre>

SMPABC139	0,352670	3,66	5,795343	5,71	0,28	1944	36	1947	26	1946	22	0,60	#####
SMPABC140	0,495400	2,08	12,027277	3,16	0,19	2616	17	2594	27	2607	16	0,77	99,52
SMPABC141	0,362820	3,69	6,085117	4,62	0,32	1980	20	1996	24	1988	16	0,78	#####
SMPABC142	0,571650	2,25	17,663361	3,22	0,69	3010	17	2915	31	2972	17	0,78	98,04
SMPABC143	0,360390	2,78	6,253229	3,92	0,73	2041	20	1984	24	2012	16	0,77	98,59
SMPABC144	0,412160	2,88	9,180729	3,91	0,10	2472	20	2225	28	2356	18	0,79	94,09
SMPABC149	0,456120	1,01	11,206676	2,62	0,44	2636	18	2422	24	2540	15	0,74	95,13
SMPABC150	0,308310	1,52	6,922692	3,03	0,13	2485	19	1732	22	2102	16	0,78	78,69
SMPABC151	0,471230	0,91	11,101022	2,73	0,21	2566	19	2489	30	2532	17	0,79	98,28
SMPABC152	0,478130	0,89	11,023246	2,79	0,35	2530	20	2519	31	2525	18	0,78	99,76
SMPABC153	0,514750	2,24	14,535420	3,24	0,22	2865	17	2677	28	2785	16	0,77	95,95
SMPABC154	0,502470	2,59	12,098672	3,73	0,11	2603	20	2624	32	2612	18	0,77	#####
SMPABC155	0,499640	2,26	12,125393	3,31	0,13	2616	18	2612	27	2614	16	0,76	99,93
SMPABC156	0,391470	2,47	8,190321	3,80	0,51	2366	22	2130	29	2252	19	0,78	94,24
SMPABC157	0,308710	3,49	4,992171	4,42	0,22	1915	19	1734	19	1818	14	0,76	95,18
SMPABC158	0,434680	3,18	10,286526	4,71	0,24	2574	27	2327	30	2461	21	0,68	94,24
SMPABC163	0,501130	0,92	14,165331	2,84	0,90	2867	20	2619	35	2761	19	0,79	94,57
SMPABC164	0,409080	1,13	8,778015	2,73	0,42	2409	18	2211	23	2315	15	0,76	95,27
SMPABC165	0,307560	1,40	5,147710	3,11	0,77	1977	20	1729	20	1844	15	0,75	93,33
SMPABC166	0,360870	1,19	6,455939	3,13	0,53	2095	22	1986	27	2040	18	0,79	97,30
SMPABC167	0,352970	3,47	6,266125	5,51	0,32	2081	35	1949	28	2014	23	0,64	96,67
SMPABC168	0,356640	2,91	5,910820	5,18	0,50	1959	35	1966	23	1963	21	0,56	#####
SMPABC169	0,412610	3,46	9,039927	4,29	0,10	2444	19	2227	25	2342	16	0,77	94,83
SMPABC170	0,327300	4,53	6,545148	5,22	0,27	2288	19	1825	20	2052	15	0,75	87,58
SMPABC171	0,417710	3,31	9,038467	4,13	0,60	2423	18	2250	24	2342	15	0,77	95,92
SMPABC172	0,411420	3,71	9,010190	4,48	0,17	2443	18	2221	25	2339	16	0,78	94,70
SMPABC177	0,506990	0,91	14,131049	2,53	0,53	2844	17	2644	28	2759	16	0,77	95,66
SMPABC178	0,262190	1,82	5,326353	3,20	0,11	2315	19	1501	-17	1873	15	0,75	75,21
SMPABC179	0,375330	1,16	7,591281	3,23	0,35	2308	23	2054	29	2184	19	0,78	93,70
SMPABC180	0,499200	0,85	12,090240	2,62	1,01	2612	18	2610	29	2611	16	0,78	99,96
SMPABC181	0,516410	3,20	14,473850	3,96	0,37	2853	17	2684	27	2781	16	0,76	96,37
SMPABC182	0,582690	1,85	18,115356	2,95	0,70	3020	17	2960	30	2996	16	0,77	98,78
SMPABC183	0,362850	2,45	6,469348	3,62	0,86	2089	19	1996	21	2042	15	0,75	97,69
SMPABC184	0,310330	3,87	5,113630	4,74	0,53	1949	19	1742	19	1838	14	0,75	94,49
SMPABC185	0,308380	3,82	5,020695	4,72	0,67	1927	20	1733	20	1823	15	0,77	94,80
SMPABC186	0,354840	2,71	5,870280	4,18	0,13	1956	24	1958	23	1957	17	0,71	#####

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 d degree of concordance: (1+(($^{206}\text{Pb}/^{238}\text{U}$ - $^{207}\text{Pb}/^{235}\text{U})/^{206}\text{Pb}/^{238}\text{U})) x 100$

UFOP													
163A								206 D				Dha	Cono
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	207Pb	$\pm 2s$	<u><u> </u></u>	$\pm 2s$	²⁰⁷ Pb	$\pm 2s$	кпо c	conc.

	²³⁸ L	9/0	²³⁵ U	%	IJ	²⁰⁶ Ph	(Ma	²³⁸ U	(Ma	²³⁵ U	(Ma		
HenSMPABC038	0.096480	6.27	0 730229	9.12	0.82	408	64	59/	17	557	17	0.59	######
HenSMPABC008	0.098210	8 35	0,730229	14 32	0.74	600	103	604	21	603	28	0.48	######
HenSMPABC047	0.094469	5 4 5	0.784342	7 45	0.75	611	49	582	15	588	16	0,40	98.96
HenSMPABC027	0,095610	5.07	0,704342	5 90	0.89	613	3/	589	14	594	13	0,05	99.14
HenSMPABC069	0.098010	4 90	0.817427	5,50	0,63	621	32	603	14	607	13	0,70	99.36
HenSMPABC001	0.096100	5.05	0.889284	6.14	0.98	8/1	36	592	14	646	15	0,77	90.79
HenSMPABC054	0 100481	7.07	0.941321	10.70	1 24	867	70	617	19	674	23	0,72	90.87
HenSMPABC095	0.116536	5 42	1 329919	6.91	0.69	1264	39	711	18	859	19	0,50	79.14
HenSMPABC039	0.111685	5,12	1,279396	5.94	0.86	1271	31	683	16	837	17	0,00	77.43
HenSMPABC033	0.122858	5.09	1.433912	5.88	0.78	1307	30	747	18	903	18	0,76	79.09
HenSMPABC029	0.124028	5 39	1 474483	6 64	0.80	1343	36	754	19	920	20	0,70	77 94
HenSMPABC016	0.133611	5.05	1 597746	5 75	0.63	1354	29	808	19	969	18	0.78	80.10
HenSMPABC030	0.150537	5,00	1,907958	5,75	0.87	1466	29	904	21	1084	19	0,78	80.10
HenSMPABC049	0.139313	5,00	1,792191	5,92	0.63	1494	30	841	20	1043	20	0,76	75.99
HenSMPABC052	0.149827	4.94	1,937284	5,56	0.85	1504	27	900	20	1094	19	0,79	78.44
HenSMPABC040	0.148196	5.13	1,939728	5,99	0.56	1527	30	891	21	1095	20	0.76	77.09
HenSMPABC070	0.146185	4.89	1,921350	5.55	0.59	1534	27	880	20	1089	19	0,78	76.24
HenSMPABC007	0.154458	5.05	2.055245	5.69	0.67	1558	27	926	22	1134	20	0.79	77.52
HenSMPABC075	0.164781	4.86	2,252958	5.47	0.71	1608	27	983	22	1198	20	0,79	78.19
HenSMPABC073	0 165341	4 87	2 276044	5 48	0.86	1621	 26	986	23	1205	20	0,79	77.85
HenSMPABC028	0.166872	5.04	2 301528	5,10	0.65	1625	20	995	23	1213	21	0,79	78.10
HenSMPABC077	0.156459	4.89	2,179259	5.54	0.62	1643	27	937	22	1174	20	0.78	74.67
HenSMPABC019	0.169213	5.14	2.377641	5.89	0.81	1659	28	1008	24	1236	21	0.77	77.36
HenSMPABC117	0.172524	4.77	2,429105	5.42	0.88	1663	27	1026	23	1251	20	0.78	78.05
HenSMPABC071	0.179176	4.87	2,534198	5.53	0.45	1671	27	1062	24	1282	21	0.78	79.35
HenSMPABC074	0.171653	4.90	2,436080	5,53	0.84	1678	27	1021	23	1253	21	0.78	77.27
HenSMPABC112	0.168502	4.84	2.418112	5.49	0.79	1698	27	1004	23	1248	21	0.78	75.68
HenSMPABC107	0.181736	4.82	2.645486	5.47	0.83	1724	27	1076	24	1313	21	0.78	77.99
HenSMPABC068	0.185268	4.97	2.702018	5.75	0.88	1728	28	1096	25	1329	22	0.76	78.71
HenSMPABC115	0.183337	4.81	2.676753	5.45	0.70	1730	26	1085	24	1322	21	0.78	78.17
HenSMPABC110	0.177165	4.92	2.592868	5.78	0.72	1734	29	1051	24	1299	22	0.75	76.49
HenSMPABC108	0.192300	4.79	2.820108	5.43	0.68	1738	26	1134	25	1361	21	0.78	79.97
HenSMPABC094	0.188849	5.57	2.784646	7.78	0.52	1748	44	1115	28	1351	27	0.62	78.81
HenSMPABC096	0.194700	4.80	2.881378	5.41	0.88	1755	26	1147	26	1377	21	0.79	79.92
HenSMPABC092	0.203283	4.80	3.022831	5.39	0.47	1763	26	1193	27	1413	22	0.79	81.52
HenSMPABC072	0.190099	4.89	2.833182	5.54	0.73	1768	26	1122	25	1364	22	0.78	78.39
HenSMPABC098	0.199412	4.87	2,980002	5.54	0.73	1772	27	1172	26	1403	22	0.78	80.35
HenSMPABC078	0,197971	5,47	2,974269	7,59	0,92	1782	43	1164	28	1401	27	0,62	79,68
HenSMPABC009	0.199392	5.15	3.017106	6.02	0.62	1795	29	1172	27	1412	23	0.76	79.53
HenSMPABC087	0,212676	4,82	3,251876	5.41	0.79	1814	26	1243	28	1470	22	0,79	81,77
HenSMPABC093	0,214767	4,87	3,295579	5,51	0,53	1821	26	1254	28	1480	22	0,78	81,99
HenSMPABC109	0,203693	4,84	3,182390	5,48	0.85	1853	26	1195	27	1453	22	0.78	78,43
HenSMPABC034	0,206584	5,57	3,238047	7.59	0.59	1859	42	1211	30	1466	- 28	0.63	78.88
	.,	- /	-,,	/								.,	,

HenSMPABC018	0,307155	5,15	4,835610	5,82	0,85	1867	27	1727	39	1791	25	0,78	96,27
HenSMPABC067	0,207314	5,03	3,273460	5,94	0,47	1872	29	1214	28	1475	23	0,75	78,57
HenSMPABC079	0,231142	4,85	3,684829	5,44	0,66	1890	25	1340	30	1568	23	0,79	83,02
HenSMPABC055	0,232552	4,90	3,731716	5,50	0,70	1901	25	1348	30	1578	23	0,79	82,91
HenSMPABC014	0,234073	5,04	3,766220	5,67	0,60	1906	26	1356	31	1586	23	0,79	83,05
HenSMPABC089	0,231902	4,87	3,733877	5,51	0,71	1907	26	1344	30	1579	23	0,78	82,58
HenSMPABC120	0,237604	4,82	3,845124	5,53	0,56	1917	27	1374	30	1602	23	0,77	83,41
HenSMPABC031	0,244776	5,05	3,967069	5,70	0,71	1919	26	1411	32	1627	24	0,79	84,70
HenSMPABC119	0,246507	4,81	4,021886	5,51	0,57	1931	26	1420	31	1639	23	0,77	84,64
HenSMPABC076	0,234853	4,88	3,835354	5,49	0,76	1933	26	1360	30	1600	23	0,79	82,33
HenSMPABC020	0,268233	5,02	4,381979	5,63	0,41	1933	26	1532	34	1709	24	0,79	88,44
HenSMPABC100	0,244696	4,81	3,998312	5,43	0,79	1934	26	1411	31	1634	23	0,79	84,21
HenSMPABC111	0,237464	4,84	3,882621	5,51	0,82	1935	26	1373	30	1610	23	0,78	82,78
HenSMPABC035	0,274005	4,97	4,484893	5,59	0,67	1937	26	1561	35	1728	24	0,79	89,30
HenSMPABC012	0,265322	5,37	4,392776	7,28	0,69	1957	39	1517	36	1711	29	0,64	87,21
HenSMPABC015	0,269424	4,98	4,477518	5,56	0,73	1964	25	1538	34	1727	24	0,80	87,71
HenSMPABC032	0,259170	5,02	4,309159	5,70	0,88	1965	26	1486	33	1695	24	0,78	85,90
HenSMPABC058	0,253339	4,93	4,219896	5,59	0,67	1968	26	1456	32	1678	24	0,78	84,73
HenSMPABC051	0,283008	4,91	4,740395	5,50	0,66	1978	25	1606	35	1774	24	0,79	89,55
HenSMPABC090	0,270434	4,81	4,541940	5,41	0,85	1983	25	1543	34	1739	24	0,79	87,32
HenSMPABC017	0,265692	5,06	4,467382	5,71	0,73	1985	26	1519	34	1725	24	0,79	86,44
HenSMPABC053	0,259310	4,92	4,367170	5,53	0,70	1988	25	1486	33	1706	24	0,79	85,21
HenSMPABC050	0,255069	4,94	4,322505	5,55	0,69	1999	25	1465	33	1698	24	0,79	84,08
HenSMPABC080	0,288530	4,87	4,895967	5,48	0,70	2001	25	1634	36	1802	24	0,79	89,76
HenSMPABC097	0,279867	4,84	4,777813	5,46	0,64	2012	25	1591	35	1781	24	0,79	88,04
HenSMPABC118	0,301604	4,76	5,149317	5,38	0,76	2012	25	1699	36	1844	24	0,78	91,47
HenSMPABC036	0,280927	5,02	4,801331	5,74	0,70	2014	27	1596	36	1785	25	0,77	88,15
HenSMPABC056	0,319039	4,94	5,481649	5,55	0,75	2023	25	1785	39	1898	25	0,79	93,69
HenSMPABC013	0,294081	5,03	5,063479	5,64	0,70	2027	25	1662	37	1830	25	0,79	89,88
HenSMPABC116	0,306495	4,80	5,298667	5,44	0,71	2034	25	1723	37	1869	24	0,78	91,57
HenSMPABC010	0,316778	5,05	5,495302	5,67	0,58	2040	25	1774	39	1900	25	0,79	92,90
HenSMPABC011	0,346658	4,98	6,043874	5,54	0,71	2049	25	1919	42	1982	25	0,80	96,69
HenSMPABC099	0,330963	4,79	5,800868	5,39	0,84	2059	25	1843	39	1947	25	0,79	94,38
HenSMPABC059	0,324891	4,91	5,749596	5,51	0,71	2076	25	1814	39	1939	25	0,79	93,09
HenSMPABC114	0,346588	4,88	6,211953	5,55	0,82	2098	26	1918	41	2006	25	0,78	95,42
HenSMPABC113	0,378958	4,80	6,799297	5,45	0,69	2100	25	2071	43	2086	25	0,78	99,31
HenSMPABC037	0,347798	4,98	6,241680	5,59	0,73	2100	25	1924	42	2010	25	0,79	95,52
HenSMPABC088	0,383449	4,85	6,911921	5,46	0,59	2108	25	2092	44	2100	25	0,79	99,63
HenSMPABC048	1,430884	11,66	#########	13,30	0,27	4621	40	5726	189	4 935	58	0,78	######

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))/^{206}Pb/^{238}U)) \ge 100$

106

UFOP

137G

10/0								²⁰⁶ P				Rho	Conc.
Sample	206Pb ^a	$\pm 2s$	207Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	±2s	b	±2s	²⁰⁷ Pb	±2s	c	d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
HenSMPABC200	0,091662	5,09	0,745788	6,28	0,15	567	34	565	14	566	13	0,66	99,93
HenSMPABC190	0,089456	4,88	0,774953	5,72	0,15	702	26	552	38	583	24	0,70	94,52
HenSMPABC193	0,103566	5,37	0,993293	7,26	0,30	915	27	635	37	700	25	0,59	89,75
HenSMPABC134	0,123915	5,36	1,405768	6,97	0,20	1252	40	753	19	891	20	0,62	81,63
HenSMPABC160	0,211793	4,84	3,258816	5,54	0,62	1826	27	1238	28	1471	22	0,72	81,19
HenSMPABC189	0,238311	4,90	3,782988	5,70	0,52	1882	26	1378	38	1589	25	0,71	84,67
HenSMPABC180	0,256565	4,82	4,109745	5,46	0,70	1898	26	1472	32	1656	23	0,73	87,50
HenSMPABC195	0,270663	4,91	4,344310	5,66	1,36	1902	36	1544	14	1702	13	0,72	89,79
HenSMPABC194	0,258900	4,86	4,175130	5,55	0,70	1910	27	1484	28	1669	22	0,73	87,54
HenSMPABC140	0,280796	4,83	4,535574	5,48	0,89	1913	26	1595	35	1738	24	0,73	91,09
HenSMPABC148	0,288015	4,81	4,674836	5,48	0,54	1922	26	1632	35	1763	24	0,73	91,96
HenSMPABC175	0,306961	4,81	4,995414	5,47	0,82	1927	26	1726	37	1819	24	0,73	94,62
HenSMPABC133	0,291625	4,82	4,776450	5,47	1,03	1938	26	1650	36	1781	24	0,73	92,05
HenSMPABC171	0,299881	4,82	4,915400	5,46	0,90	1939	26	1691	37	1805	24	0,73	93,25
HenSMPABC199	0,312733	4,81	5,141611	5,48	1,04	1945	34	1754	14	1843	13	0,73	94,93
HenSMPABC136	0,286918	5,12	4,719169	7,12	0,76	1946	40	1626	37	1771	29	0,57	91,11
HenSMPABC136	0,286918	5,12	4,719169	7,12	0,76	1946	40	1626	37	1771	29	0,57	91,11
HenSMPABC158	0,313233	4,76	5,164858	5,40	0,22	1950	26	1757	37	1847	24	0,73	94,86
HenSMPABC172	0,299013	4,84	4,932364	5,50	1,06	1951	26	1686	37	1808	24	0,73	92,80
HenSMPABC167	0,290348	4,83	4,792304	5,53	0,47	1952	26	1643	36	1784	24	0,72	91,46
HenSMPABC156	0,310780	4,83	5,130895	5,49	0,82	1952	26	1745	38	1841	24	0,73	94,46
HenSMPABC151	0,303421	4,82	5,013430	5,46	0,82	1954	26	1708	37	1822	24	0,73	93,36
HenSMPABC159	0,305495	4,88	5,054594	5,60	0,65	1956	27	1718	37	1829	25	0,72	93,60
HenSMPABC129	0,305435	4,85	5,068610	5,65	0,78	1962	27	1718	37	1831	25	0,71	93,44
HenSMPABC178	0,315147	4,81	5,230810	5,47	0,84	1962	26	1766	38	1858	24	0,73	94,81
HenSMPABC176	0,285193	4,86	4,739453	5,58	0,72	1964	27	1617	35	1774	24	0,72	90,31
HenSMPABC173	0,297946	4,84	4,955994	5,50	0,97	1966	26	1681	36	1812	24	0,73	92,22
HenSMPABC155	0,313243	4,89	5,213019	5,54	0,76	1967	26	1757	38	1855	25	0,73	94,42
HenSMPABC174	0,312614	4,80	5,213772	5,47	0,97	1970	26	1754	38	1855	24	0,73	94,22
HenSMPABC139	0,324500	4,82	5,414242	5,46	0,75	1971	26	1812	39	1887	25	0,73	95,84
HenSMPABC192	0,312082	5,07	5,207710	7,01	0,94	1971	26	1751	37	1854	24	0,57	94,12
HenSMPABC147	0,318328	4,84	5,321353	5,50	0,68	1975	26	1782	38	1872	25	0,73	94,91
HenSMPABC149	0,324201	4,83	5,427131	5,47	1,10	1977	26	1810	39	1889	25	0,73	95,64
HenSMPABC157	0,329067	4,80	5,509043	5,43	0,93	1977	25	1834	39	1902	25	0,73	96,28
HenSMPABC188	0,330715	4,81	5,536625	5,49	1,08	1977	27	1842	41	1906	26	0,73	96,50
HenSMPABC179	0,327831	4,70	5,494671	5,43	0,99	1979	26	1828	38	1900	25	0,72	96,07
HenSMPABC187	0,310076	4,89	5,198952	5,68	0,69	1980	26	1741	42	1852	25	0,71	93,60
HenSMPABC130	0,317760	4,87	5,340915	5,59	0,68	1984	27	1779	38	1875	25	0,72	94,57
HenSMPABC127	0,321050	4,89	5,397845	5,64	0,67	1985	27	1795	39	1885	25	0,72	95,00
HenSMPABC169	0,333515	4,81	5,612467	5,45	0,84	1986	26	1855	40	1918	25	0,73	96,62

HenSMPABC150	0,324311	4,85	5,459235	5,55	0,74	1987	26	1811	39	1894	25	0,72	95,39
HenSMPABC152	0,320582	4,85	5,396596	5,52	0,75	1987	26	1793	39	1884	25	0,73	94,88
HenSMPABC128	0,328848	4,81	5,538923	5,45	1,06	1988	26	1833	39	1907	25	0,73	95,97
HenSMPABC196	0,333493	4,83	5,620836	5,47	1,20	1989	36	1855	13	1919	13	0,73	96,55
HenSMPABC168	0,311557	4,83	5,256714	5,54	0,69	1991	26	1748	38	1862	25	0,72	93,51
HenSMPABC137	0,329476	4,86	5,564496	5,53	0,75	1993	26	1836	39	1911	25	0,73	95,93
HenSMPABC137	0,329476	4,86	5,564496	5,53	0,75	1993	26	1836	39	1911	25	0,73	95,93
HenSMPABC197	0,319763	4,83	5,412364	5,48	0,92	1997	35	1789	8	1887	8	0,73	94,51
HenSMPABC138	0,332318	4,83	5,628024	5,48	0,85	1998	26	1850	40	1920	25	0,73	96,17
HenSMPABC135	0,332168	4,89	5,628243	6,08	0,59	1999	31	1849	40	1920	26	0,65	96,13
HenSMPABC177	0,333026	4,86	5,647399	5,59	0,76	2000	27	1853	40	1923	25	0,72	96,20
HenSMPABC153	0,355442	4,90	6,047134	5,61	0,68	2006	26	1961	42	1983	25	0,72	98,87
HenSMPABC131	0,347604	4,85	5,922559	5,54	0,84	2008	26	1923	41	1965	25	0,73	97,85
HenSMPABC170	0,341601	4,83	5,826590	5,48	0,69	2010	26	1894	40	1950	25	0,73	97,04
HenSMPABC198	0,362867	4,89	6,190966	5,59	0,86	2011	37	1996	8	2003	9	0,72	99,63
HenSMPABC154	0,340654	4,93	5,813870	5,71	0,91	2011	27	1890	41	1948	26	0,71	96,90
HenSMPABC191	0,359858	5,07	6,154500	7,02	1,00	2015	25	1982	39	1998	25	0,57	99,17
HenSMPABC132	0,359390	4,77	6,177245	5,54	0,72	2024	27	1979	42	2001	25	0,71	98,89

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

UFOP

103C

1050								206m				Dh.	Come
Sample	²⁰⁶ Pb ^a	$\pm 2s$	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	±2s	<u> </u>	±2s	²⁰⁷ Pb	±2s	c	
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
5.sSMPABC011	0,1379	7,63	7,393473	8,44	0,12	3867	27	833	30	2160	38	0,90	-59,43
5.sSMPABC012	0,2156	26,39	15,4298	28,66	0,08	4296	82	1258	153	2842	147	0,92	-25,84
5.sSMPABC013	0,3646	2,50	6,429164	3,23	1,18	2069	18	2004	22	2036	14	0,77	98,39
5.sSMPABC014	0,3766	2,91	6,593508	3,67	3,70	2057	20	2060	26	2058	16	0,79	#####
5.sSMPABC015	0,2670	26,01	20,44063	28,87	0,07	4 395	91	1526	179	3112	150	0,90	-4,03
5.sSMPABC016	0,3710	2,49	6,480272	3,22	0,81	2053	18	2034	22	2043	14	0,77	99,54
5.sSMPABC017	0,3261	2,42	5,353255	3,15	0,97	1942	18	1819	19	1877	14	0,77	96,81
5.sSMPABC018	0,3439	2,81	5,950178	3,66	1,67	2036	21	1905	23	1969	16	0,77	96,68
5.sSMPABC019	0,3390	2,68	5,856515	3,51	1,08	2033	20	1882	22	1955	15	0,76	96,12
5.sSMPABC020	0,3439	2,42	5,751227	3,16	0,77	1975	18	1906	20	1939	14	0,77	98,24
5.sSMPABC026	0,8977	26,82	103,3768	27,04	0,46	4983	25	4130	422	4720	146	0,99	85,72
5.sSMPABC027	0,2659	2,26	4,305901	3,06	1,54	1917	18	1520	15	1694	13	0,74	88,53
5.sSMPABC028	0,5694	16,58	56,4887	17,22	0,36	4 770	33	2905	197	4114	90	0,96	58,40
5.sSMPABC029	0,3730	2,47	6,434478	3,22	1,13	2031	18	2043	22	2037	14	0,77	#####
5.sSMPABC030	0,3655	2,46	6,351612	3,20	0,81	2044	18	2008	21	2026	14	0,77	99,12
5.sSMPABC031	0,3555	2,49	6,158759	3,22	0,65	2038	18	1961	21	1999	14	0,77	98,08

5.sSMPABC032	0,1254	4,88	5,9406 4	5,82	0,00	3679	24	761	18	1967	26	0,84	-58,35
5.sSMPABC033	0,2869	10,97	25,37787	11,51	0,12	4 605	25	1626	79	3323	58	0,95	-4,33
5.sSMPABC034	0,3289	2,42	5,406187	3,15	1,09	1944	18	1833	19	1886	14	0,77	97,12
5.sSMPABC035	0,3451	2,55	5,930933	3,29	0,60	2024	18	1911	21	1966	14	0,77	97,13
5.sSMPABC041	0,3750	2,36	6,433134	3,13	1,44	2020	18	2053	21	2037	14	0,75	#####
5.sSMPABC042	0,3735	2,48	6,458214	3,23	0,71	2035	18	2046	22	2040	14	0,77	#####
5.sSMPABC043	0,3488	2,45	6,012974	3,22	1,11	2029	18	1929	20	1978	14	0,76	97,46
5.sSMPABC044	0,3281	2,68	5,716354	3,63	1,19	2048	22	1829	21	1934	16	0,74	94,27
5.sSMPABC045	0,2873	2,40	4,63507	3,17	0,82	1911	19	1628	17	1756	13	0,76	92,16
5.sSMPABC046	0,1055	18,27	3,683683	19,94	0,04	3205	63	647	56	1568	83	0,92	-42,42
5.sSMPABC047	0,3736	2,64	6,51746	3,41	2,85	2050	19	2046	23	2048	15	0,78	99,90
5.sSMPABC048	0,3310	2,31	5,558985	3,11	0,55	1983	18	1843	19	1910	13	0,74	96,38
5.sSMPABC050	0,1886	2,42	2,611535	3,16	0,80	1632	19	1114	12	1304	12	0,77	82,92
5.sSMPABC056	0,3495	2,44	5,860835	3,19	0,44	1980	18	1932	20	1955	14	0,76	98,79
5.sSMPABC057	0,3266	2,43	5,430763	3,18	0,69	1965	18	1822	19	1890	14	0,76	96,27
5.sSMPABC058	0,3420	2,56	5,879968	3,32	0,59	2024	19	1896	21	1958	15	0,77	96,74
5.sSMPABC059	0,3230	2,58	5,635411	3,35	2,22	2051	19	1804	20	1922	15	0,77	93,50
5.sSMPABC060	0,2803	2,55	4,637345	3,39	0,34	1956	20	1593	18	1756	14	0,75	89,76
5.sSMPABC061	0,3459	3,23	6,187888	4,13	1,03	2094	23	1915	27	2003	18	0,78	95,43
5.sSMPABC062	0,2604	2,40	4,21744	3,18	0,77	1918	19	1492	16	1677	13	0,75	87,57
5.sSMPABC063	0,3245	2,56	5,518977	3,34	0,81	2006	19	1811	20	1904	14	0,77	94,91
5.sSMPABC064	0,3473	2,52	6,171389	3,30	0,87	2083	19	1922	21	2000	15	0,76	95,91
5.sSMPABC065	0,3447	2,40	5,787531	3,18	1,03	1982	19	1909	20	1945	14	0,76	98,15
5.sSMPABC071	0,3356	2,83	5,730424	4,86	1,11	2012	35	1866	23	1936	21	0,58	96,22
5.sSMPABC072	0,3174	2,51	5,393	3,28	0,71	2003	19	1777	20	1884	14	0,77	94,00
5.sSMPABC073	0,2844	3,88	4,696261	4,94	4,71	1952	27	1614	28	1767	21	0,79	90,52
5.sSMPABC074	0,3730	2,65	6,502024	3,52	0,73	2049	21	2043	23	2046	16	0,75	99,87
5.sSMPABC075	0,3403	3,96	5,839516	4,99	3,20	2021	27	1888	32	1952	22	0,79	96,59
5.sSMPABC076	0,3654	2,58	6,382001	3,37	1,11	2052	19	2008	22	2030	15	0,77	98,91
5.sSMPABC077	0,3408	2,42	5,83216	3,22	1.01	2016	19	1890	20	1951	14	0,75	96,78
5.sSMPABC078	0,3221	2,37	5,465001	3,19	0,69	2001	19	1800	19	1895	14	0,74	94,73
5.sSMPABC079	0.3242	2.78	5.526006	3.57	1.26	2009	20	1810	22	1905	15	0.78	94.78
5.sSMPABC080	0.3634	2.91	6.329644	3.76	1.76	2048	21	1998	25	2023	17	0.77	98.77
5.sSMPABC005	0.2699	2.67	4.208847	3.34	1.35	1850	18	1540	18	1676	14	0.80	91.19
5.sSMPABC006	0.3816	2.76	6.693857	3.54	0.79	2060	20	2084	25	2072	16	0.78	######
5 sSMPABC007	0.3547	2.59	6.09056	3.41	0.89	2022	20	1957	22	1989	15	0.76	98.36
5 sSMPABC008	0 3881	2,87	6 777034	3 58	2 4 5	2052	19	2114	26	2083	16	0.80	######
5 sSMPABC009	0 3894	2,07	6 87633	3.46	0.72	2032	19	2120	25	2005	15	0.79	######
5 sSMPABC010	0,3860	2,74	6 805453	3.48	1 14	2072	19	2120	25	2090	16	0,79	######
5 sSMPARC011	0,3000	2,11	6 858083	3 40	1,17	2007	10	2104	23	2000	15	0.77	######
5 sSMPARC012	0.3831	2,05	6 680357	3,40	0.07	2002	19	2001	24 24	2095	15	0.78	
5 sSMDADC012	0,2420	2,70	5 826800	J,47	0,97	2032	19	1904	24 24	20/1	13 16	0,78	07 1 /
5 SMDADC014	0,5420	2,92	J,020899	3,/I	1.05	2009	20	2114	24 24	1950	10	0,79	97,14 #####
J.SSMPABC014	0,3881	2,07	0,848355	5,57	1,05	20/1	18	2114	24	2092	15	0,79	######
J.SSMPABC019	0,3356	2,33	0,098858	5,52	2,49	2020	19	1901	21	1990	15	0,76	98,53
5.sSMPABC020	0,3504	3,05	5,991455	3,78	2,63	2015	20	1936	26	1975	17	0,81	98,03
--------------	--------	-------	---------------------	-------	-----------------	-----------------	---------------	-----------------	-----------------	------------------	----------------	------	-------
5.sSMPABC021	0,3826	2,69	6,699133	3,62	1,27	2057	21	2089	24	2073	16	0,74	#####
5.sSMPABC022	0,3920	2,95	6,895378	3,68	2,03	2065	19	2132	27	2098	16	0,80	#####
5.sSMPABC023	0,3036	2,57	4,923428	3,27	0,85	1920	18	1709	19	1806	14	0,79	94,33
5.sSMPABC024	0,3752	2,86	6,556076	3,59	3,23	2053	19	2054	25	2053	16	0,80	#####
5.sSMPABC025	0,4150	2,55	7,094998	3,26	1,30	2014	18	2238	24	2123	15	0,78	#####
5.sSMPABC026	0,3959	2,84	6,985812	3,57	0,56	2070	19	2150	26	2110	16	0,80	#####
5.sSMPABC027	0,2981	2,83	4,786671	3,53	0,62	1903	19	1682	21	1783	15	0,80	94,00
5.sSMPABC028	0,4013	2,96	7,109732	3,68	0,85	2078	19	2175	27	2125	16	0,81	#####
5.sSMPABC033	0,3786	2,57	6,53788	3,31	0,76	2032	19	2070	23	2051	15	0,78	#####
5.sSMPABC034	0,3854	2,75	6,734307	3,46	0,71	2053	19	2101	25	2077	15	0,80	#####
5.sSMPABC035	0,2148	2,51	2,962806	3,24	0,28	1624	19	1255	14	1398	12	0,78	88,56
5.sSMPABC036	0,3510	2,82	5,956194	4,76	0,77	2001	34	1940	24	1969	21	0,59	98,46
5.sSMPABC037	0,3634	2,91	6,299949	3,62	1,06	2039	19	1998	25	2018	16	0,80	98,99
5.sSMPABC038	0,4039	2,69	7,146309	3,44	0,95	2075	19	2187	25	2130	15	0,78	#####
5.sSMPABC039	0,3709	2,65	6,410514	3,54	0,70	2034	21	2033	23	2034	16	0,75	99,99
5.sSMPABC040	0,3699	2,79	6,437773	3,53	1,49	2046	19	2029	24	2037	16	0,79	99,57
5.sSMPABC041	0,3930	2,56	6,664237	3,26	0,93	2000	18	2137	23	2068	15	0,79	#####
5.sSMPABC042	0,3562	2,87	6,135325	3,60	0,46	2028	19	1964	24	1995	16	0,80	98,41
5.sSMPABC047	0,3368	2,99	5,733017	3,77	0,69	2007	20	1871	24	1936	16	0,79	96,51
5.sSMPABC048	0,3705	2,97	6,35954	3,79	1,09	2021	21	2032	26	2027	17	0,78	#####
5.sSMPABC049	0,3341	2,90	5,657472	3,59	0,56	1998	19	1858	23	1925	16	0,81	96,40
5.sSMPABC050	0,3747	2,97	6,489636	3,77	0,60	2038	21	2051	26	2044	17	0,79	#####
5.sSMPABC051	0,3980	2,71	7,030037	3,43	1,25	2072	18	2160	25	2115	15	0,79	#####
5.sSMPABC052	0,3364	2,87	5,711333	3,66	0,53	2002	20	1870	23	1933	16	0,78	96,60
5.sSMPABC053	0,3202	2,61	5,376971	3,33	0,75	1983	18	1790	20	1881	14	0,78	94,93
5.sSMPABC054	0,3673	2,67	6,37734	3,44	1,42	2042	19	2017	23	2029	15	0,77	99,38
5.sSMPABC055	0,3980	2,74	7,03386	3,50	0,86	2073	19	2160	25	2116	16	0,78	#####
5.sSMPABC056	0,3866	2,69	6,836998	3,41	0,66	2074	18	2107	24	2091	15	0,79	#####
5.sSMPABC057	0,3774	2,63	6,544904	3,34	0,63	2040	18	2064	23	2052	15	0,79	#####
5.sSMPABC062	0,3030	3,62	4,970106	4,45	0,67	1941	23	1706	27	1814	19	0,81	93,68
5.sSMPABC063	0,3707	2,60	6,433656	3,32	0,87	2041	18	2033	23	2037	15	0,78	99,80
5.sSMPABC064	0,3542	3,09	6,113814	4,94	0,72	2031	34	1955	26	1992	22	0,63	98,09
5.sSMPABC065	0,3605	2,59	6,182554	3,30	0,77	2020	18	1984	22	2002	15	0,78	99,12
5.sSMPABC066	0,3824	3,00	6,645151	3,82	0,78	2043	21	2087	27	2065	17	0,79	#####
5.sSMPABC067	0,3517	2,55	5,973293	3,28	0,72	2003	18	1943	21	1972	14	0,78	98,49
5.sSMPABC068	0,3505	2,58	5,949046	3,28	0,70	2002	18	1937	22	1968	14	0,79	98,38
5.sSMPABC069	0,3282	2,72	5,510723	3,43	0,81	1983	19	1830	22	1902	15	0,79	96,03
5.sSMPABC070	0,3814	2,78	6,711208	3,53	2,69	2065	19	2083	25	2074	16	0,79	#####
5.sSMPABC071	0,3473	2,86	5,883918	3,61	1,01	1998	20	1922	24	1959	16	0,79	98,08
5.sSMPABC076	0,7101	30,72	86,23867	31,23	0,62	5058	40	3459	4 25	4 537	170	0,98	68,81
5.sSMPABC077	0,3380	2,89	5,754467	3,61	0,96	2007	19	1877	24	1940	16	0,80	96,67
5.sSMPABC078	0,3107	2,52	5,075827	3,27	0,84	1933	19	1744	19	1832	14	0,77	94,97
5.sSMPABC079	0,3592	2,96	6,193934	3,74	0,63	2030	20	1978	25	2004	16	0,79	98,72

5.sSMPAB	2080	0,2846	2,64	4,53064	3,36	1,34	1887	19	1614	19	1737	14	0,79	92,43
5.sSMPAB	2081	0,3849	3,17	6,770499	3,94	1,10	2065	21	2099	28	2082	18	0,81	#####
5.sSMPAB	2082	0,3485	2,53	5,904302	3,33	0,82	1998	19	1927	21	1962	15	0,76	98,21
5.sSMPAB	2083	0,3551	2,60	6,045366	3,35	0,70	2007	19	1959	22	1982	15	0,78	98,79
5.sSMPAB	2084	0,3967	2,63	6,999945	3,37	0,80	2070	19	2154	24	2111	15	0,78	#####
5.sSMPAB	2085	0,3371	2,93	5,758839	3,70	0,98	2013	20	1873	24	1940	16	0,79	96,40

^acorrected for background, instrumental drift and mass bias fractionation based on primary standard.

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U})) x$ 100

UFOP

355

²⁰⁶ P P						Rho	Cone						
Sample	²⁰⁶ Pb ^a	$\pm 2s$	$\frac{207}{Pb^a}$	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	±2s	<u><u>b</u></u>	±2s	²⁰⁷ Pb	±2s	c	d d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
HenSMPABC099	0,092994	4,63	0,514673	7,25	0,31	-342	76	573	15	422	1 4	0,54	######
HenSMPABC069	0,088776	3,95	0,716430	5,23	0,11	550	43	548	13	549	14	0,66	99,95
HenSMPABC074	0,090979	4,12	0,739357	5,27	0,13	565	42	561	14	562	14	0,68	99,87
HenSMPABC120	0,094838	4,25	0,777517	5,52	0,13	584	44	584	15	584	15	0,67	#####
HenSMPABC097	0,092734	5,90	0,788668	9,58	0,14	663	84	572	18	590	23	0,52	96,72
HenSMPABC098	0,095985	3,95	0,863148	4,75	0,11	781	35	591	14	632	14	0,73	93,06
HenSMPABC079	0,139730	4,20	1,749539	5,40	0,82	1443	38	843	20	1027	21	0,68	78,19
HenSMPABC072	0,152633	4,05	1,830073	4 ,8 4	0,89	1360	32	916	22	1056	20	0,74	84,65
HenSMPABC070	0,155335	3,83	2,018393	4,34	0,67	1513	27	931	21	1122	19	0,78	79,49
HenSMPABC076	0,169923	3,66	2,239110	4,43	0,73	1539	30	1012	22	1193	20	0,73	82,04
HenSMPABC091	0,190554	3,96	2,731929	4,72	0,59	1696	30	1124	26	1337	22	0,74	81,07
HenSMPABC067	0,195191	3,82	2,766916	4,32	0,60	1675	26	1149	26	1347	21	0,78	82,84
HenSMPABC088	0,196477	3,94	2,926832	4,56	0,88	1767	28	1156	26	1389	22	0,76	79,89
HenSMPABC092	0,197325	4,70	3,029730	6,06	0,69	1822	39	1161	30	1415	27	0,68	78,10
HenSMPABC115	0,207835	5,26	3,036128	7,27	0,72	1731	50	1217	34	1417	32	0,62	83,61
HenSMPABC114	0,216729	3,87	3,212980	4,41	0,67	1758	27	1265	28	1460	22	0,78	84,52
HenSMPABC077	0,220319	3,73	3,257724	4,44	0,54	1753	29	1284	28	1471	22	0,74	85,40
HenSMPABC119	0,233282	3,92	3,425238	4,99	1,16	1740	34	1352	30	1510	25	0,68	88,27
HenSMPABC094	0,238377	3,85	3,607200	4,38	0,61	1795	26	1378	30	1551	23	0,78	87,46
HenSMPABC118	0,248698	4,76	3,847384	6,04	0,75	1835	38	1432	36	1603	29	0,69	88,06
HenSMPABC117	0,257642	3,82	4,033569	4,32	0,85	1857	26	1478	32	1641	23	0,79	88,95
HenSMPABC089	0,276877	3,99	4,425717	4,50	0,95	1894	26	1576	35	1717	24	0,79	91,02
HenSMPABC112	0,279729	3,95	4,435498	4,80	0,51	1880	30	1590	35	1719	25	0,72	91,89
HenSMPABC108	0,288194	3,98	4,600266	4,62	0,87	1892	28	1632	36	1749	25	0,76	92,84
HenSMPABC090	0,289162	4,08	4,623279	4,65	0,73	1895	27	1637	37	1753	25	0,78	92,91
HenSMPABC110	0,289840	3,80	4,671685	4,38	0,59	1909	27	1641	35	1762	24	0,77	92,60
HenSMPABC073	0,295882	3,94	4,762778	4,59	0,67	1907	28	1671	37	1778	25	0,76	93,57
HenSMPABC096	0,298565	4,07	4,794615	4,62	0,60	1903	27	1684	38	1784	25	0,78	94,08

HenSMPABC068	0,304308	3,87	4,929170	4,44	0,58	1918	27	1713	37	1807	24	0,77	94,47
HenSMPABC111	0,316284	3,87	5,140687	4,37	0,76	1924	26	1772	38	1843	24	0,79	95,98
HenSMPABC087	0,320661	3,81	5,254762	4,31	0,51	1939	25	1793	38	1862	24	0,78	96,17
HenSMPABC100	0,327442	3,96	5,327879	4,62	0,71	1926	28	1826	40	1873	25	0,76	97,41
HenSMPABC080	0,325856	3,82	5,348808	4,30	0,75	1942	25	1818	39	1877	24	0,79	96,79
HenSMPABC116	0,330294	3,80	5,492688	4,33	0,61	1965	26	1840	39	1899	25	0,78	96,76
HenSMPABC078	0,338799	3,83	5,611830	4,48	0,71	1958	27	1881	40	1918	25	0,75	98,03
HenSMPABC113	0,349618	3,94	5,805512	4,62	0,88	1963	28	1933	42	1947	26	0,75	99,25
HenSMPABC095	0,353577	3,81	5,947647	4,29	0,92	1986	25	1952	41	1968	25	0,79	99,15
HenSMPABC107	0,357396	3,87	6,002436	4,38	0,81	1983	25	1970	42	1976	25	0,79	99,68
HenSMPABC093	0,362222	4,11	6,145012	4,59	0,87	2001	25	1993	44	1997	26	0,79	99,80
HenSMPABC071	0,362801	4,14	6,168330	4,68	0,93	2005	26	1995	44	2000	26	0,79	99,77
HenSMPABC109	0,363429	3,80	6,175002	4,32	0,86	2004	26	1998	42	2001	25	0,78	99,87
HenSMPABC075	0,369691	3,96	6,347591	4,44	0,80	2022	25	2028	43	2025	25	0,79	#####

^acorrected for background, instrumental drift and mass bias fractionation based on primary standard.

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))/^{206}Pb/^{238}U)) \ge 100$

UFOP

70D

								²⁰⁶ P				Rho	Conc
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	±2s	<u>Th</u>	²⁰⁷ Pb	$\pm 2s$	b	$\pm 2s$	²⁰⁷ Pb	$\pm 2s$	c	d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
5.sSMPABC007	0,098062	4,3300	0,796352	#####	0,36	636	34	594	13	603	13	0,81	98,54
5.sSMPABC008	0,320195	4,2395	5,322992	#####	0,98	1978	27	1783	35	1875	24	0,83	94,86
5.sSMPABC009	0,303531	4,2073	4,948763	#####	0,63	1944	27	1701	34	1813	23	0,82	93,43
5.sSMPABC010	0,324163	4,2340	5,367229	#####	0,56	1971	27	1803	36	1882	24	0,83	95,60
5.sSMPABC011	0,316268	4,2125	5,209697	#####	0,73	1962	27	1764	35	1857	23	0,82	94,76
5.sSMPABC012	0,358225	4,2661	5,995908	#####	1,02	1989	27	1967	39	1977	24	0,83	99,45
5.sSMPABC013	0,382303	4,6030	6,567044	#####	0,43	2034	33	2080	42	2057	27	0,76	#####
5.sSMPABC014	0,423839	4,3168	7,166763	#####	1,19	2005	30	2271	44	2134	26	0,79	#####
5.sSMPABC015	0,344444	4,5546	5,841259	#####	0,59	2012	30	1901	39	1955	26	0,80	97,16
5.sSMPABC016	0,327367	4,7933	5,569425	#####	0,60	2019	33	1818	39	1914	27	0,77	94,75
5.sSMPABC017	0,360988	4,2199	6,112735	#####	0,53	2009	29	1980	39	1994	25	0,80	99,27
5.sSMPABC018	0,401308	4,2210	6,930013	#####	1,57	2043	27	2168	42	2104	24	0,83	#####
5.sSMPABC019	0,308151	4,3403	5,006939	#####	0,36	1938	30	1724	35	1823	24	0,78	94,27
5.sSMPABC020	0,320647	4,2333	5,286167	#####	0,57	1963	27	1786	35	1869	24	0,82	95,32
5.sSMPABC027	0,293446	4,2498	4,719348	#####	3,76	1920	27	1651	33	1773	23	0,83	92,61
5.sSMPABC028	0,321813	4,7980	5,355869	#####	0,57	1980	33	1791	38	1880	26	0,78	95,03
5.sSMPABC029	0,357472	4,8112	6,020543	#####	0,42	2000	37	1963	41	1981	28	0,73	99,09
5.sSMPABC030	0,362264	4,2601	6,120274	#####	2,98	2005	27	1986	39	1995	24	0,83	99,52
5.sSMPABC031	0,358517	4,4887	5,920877	#####	1,12	1965	40	1968	40	1966	29	0,67	#####
5.sSMPABC032	0,365036	4,2552	6,066368	#####	0,57	1976	27	1999	39	1988	24	0,83	#####

5.sSMPABC033	0,351224	4,2509	5,890981	#####	0,54	1993	27	1933	38	1962	24	0,83	98,51
5.sSMPABC034	0,356829	4,6927	6,021402	#####	0,77	2003	35	1960	41	1981	28	0,74	98,92
5.sSMPABC035	0,320276	4,2549	5,269061	#####	0,52	1960	28	1784	35	1866	24	0,82	95,37
5.sSMPABC036	0,318849	4,2890	5,180535	#####	0,55	1937	28	1777	35	1852	24	0,82	95,77
5.sSMPABC037	0,351264	4,2510	5,881461	#####	0,88	1990	27	1933	38	1961	24	0,82	98,59
5.sSMPABC038	0,364142	4,5011	6,108631	#####	0,55	1993	29	1995	40	1994	25	0,81	#####
5.sSMPABC039	0,325328	4,9635	5,362828	#####	0,38	1963	43	1808	39	1881	30	0,68	95,97
5.sSMPABC040	0,350169	4,2495	5,893229	#####	1,21	1999	27	1928	38	1962	24	0,82	98,23
5.sSMPABC047	0,317704	4,2886	5,219472	#####	0,79	1957	27	1771	35	1858	24	0,83	95,08
5.sSMPABC048	0,362776	4,7128	6,261118	#####	1,24	2043	31	1988	41	2015	26	0,80	98,65
5.sSMPABC049	0,336900	4,2978	5,472960	#####	0,65	1936	28	1865	37	1899	24	0,83	98,17
5.sSMPABC050	0,358647	5,0063	5,895202	#####	0,91	1957	39	1969	42	1963	29	0,72	#####
5.sSMPABC051	0,346212	4,5896	5,745294	#####	0,69	1974	34	1909	39	1940	27	0,75	98,37
5.sSMPABC052	0,260850	4,2999	4,020912	#####	0,45	1846	28	1487	30	1641	23	0,82	89,58
5.sSMPABC053	0,381289	4,4715	5,492600	#####	0,45	1717	45	2075	41	1902	30	0,62	#####
5.sSMPABC054	0,323550	4,3043	5,364581	#####	0,57	1973	28	1800	36	1882	24	0,82	95,45
5.sSMPABC055	0,350511	4,2885	5,874905	#####	0,62	1991	28	1930	38	1960	24	0,82	98,45
5.sSMPABC056	0,334529	4,5408	5,568728	#####	0,54	1980	40	1853	38	1914	29	0,67	96,73
5.sSMPABC057	0,312923	4,6125	5,001561	#####	0,52	1908	34	1748	36	1822	26	0,75	95,74
5.sSMPABC058	0,350591	4,3162	5,846266	#####	4,50	1982	28	1930	38	1956	24	0,83	98,69

^acorrected for background, instrumental drift and mass bias fractionation based on primary standard.

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

 $^{\rm d}$ degree of concordance: (1+(($^{206}{\rm Pb}/^{238}{\rm U}$ - $^{207}{\rm Pb}/^{235}{\rm U})/^{206}{\rm Pb}/^{238}{\rm U}))$ x 100

UFOP

21	
4	

								²⁰⁶ P				Rho	Conc
Sample	²⁰⁶ Pb ^a	$\pm 2s$	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	$\pm 2s$	<u>b</u>	±2s	²⁰⁷ Pb	±2s	c	d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
72	0,272160	2,63	4,410363	3,44	0,79	1919	20	1552	18	1714	14	0,77	89,53
33	0,300930	2,87	5,022634	3,63	1,58	1972	20	1696	21	1823	15	0,79	92,50
83	0,294610	2,50	5,065417	3,25	1,67	2025	18	1665	18	1830	14	0,77	90,04
172	0,301890	3,62	5,228465	4,52	0,96	2037	24	1701	27	1857	19	0,80	90,79
176	0,365170	2,52	6,913832	3,35	1,68	2194	19	2007	22	2100	15	0,75	95,33
130	0,366810	2,64	6,953662	3,46	1,35	2196	19	2014	23	2106	15	0,76	95,47
98	0,338670	2,53	6,433750	3,27	1,38	2199	18	1880	21	2037	14	0,77	91,67
153	0,286380	2,95	5,548583	3,86	1,31	2234	22	1623	21	1908	17	0,76	82,46
29	0,373100	2,52	7,415832	3,32	1,72	2278	19	2044	22	2163	15	0,76	94,18
123	0,372520	2,54	7,477948	3,29	0,80	2295	18	2041	22	2170	15	0,77	93,68
155	0,349750	2,77	7,026651	3,57	1,26	2296	19	1933	23	2115	16	0,78	90,62
69	0,349830	2,73	7,030670	3,57	1,36	2297	20	1934	23	2115	16	0,77	90,61
170	0,290030	2,87	5,842042	3,71	0,59	2301	20	1642	21	1953	16	0,77	81,06
199	0,397620	2,69	8,026211	3,49	1,63	2304	19	2158	25	2234	16	0,77	96,48

 32 81 156 188 117 139 187 185 145 171 	0,381010 0,377660 0,389370 0,400640 0,296650 0,392100 0,303360	2,72 2,50 2,48 3,15 3,03	7,707213 7,659409 7,989186 8,242397	3,46 3,26 3,34	1,01 1,65 1,87	2308 2312 2332	18 18 19	2081 2065	24 22	2197 2192	16 15	0,79 0,77	94,40 93,87
81 156 188 117 139 187 185 145 171	0,377660 0,389370 0,400640 0,296650 0,392100 0,303360	2,50 2,48 3,15 3,03	7,659409 7,989186 8,242397	3,26 3,34	1,65 1,87	2312 2332	18 19	2065	22	2192	15	0,77	93,87
156 188 117 139 187 185 145 171	0,389370 0,400640 0,296650 0,392100 0,303360	2,48 3,15 3,03	7,989186 8,242397	3,34	1,87	2332	19	2120	22				
188 117 139 187 185 145 171	0,400640 0,296650 0,392100 0,303360	3,15 3,03	8,242397				1)	2120	22	2230	15	0,74	94,82
117 139 187 185 145 171	0,296650 0,392100 0,303360	3,03		3,94	1,02	2337	20	2172	29	2258	18	0,80	96,04
139 187 185 145 171	0,392100 0,303360		6,134088	3,88	1,16	2346	21	1675	22	1995	17	0,78	80,87
187 185 145 171	0,303360	3,05	8,231053	3,77	0,94	2371	19	2133	28	2257	17	0,81	94,18
185 145 171		2,62	6,374059	3,39	1,40	2373	18	1708	20	2029	15	0,77	81,22
145 171	0,406700	2,61	8,570064	3,42	1,22	2378	19	2200	24	2293	16	0,76	95,75
171	0,412920	2,60	8,729600	3,43	1,98	2383	19	2228	25	2310	16	0,76	96,32
	0,315540	2,55	6,700895	3,37	1,25	2391	19	1768	20	2073	15	0,76	82,76
110	0,323120	2,75	6,894389	3,57	0,95	2399	19	1805	22	2098	16	0,77	83,77
146	0,429560	2,47	9,259071	3,23	1,80	2416	18	2304	24	2364	15	0,76	97,38
128	0,326370	2,75	7,056434	3,55	1,25	2422	19	1821	22	2119	16	0,77	83,64
118	0,418370	2,47	9,056352	3,26	1,30	2424	18	2253	24	2344	15	0,76	95,98
173	0,429110	2,67	9,290788	3,42	0,90	2424	18	2302	26	2367	16	0,78	97,16
34	0,402580	2,84	8,750370	3,71	1,25	2431	20	2181	26	2312	17	0,77	93,97
40	0,396800	2,69	8,645945	3,49	0,68	2435	19	2154	25	2301	16	0,77	93,17
169	0,323470	3,74	7,070543	5,55	1,04	2440	35	1807	30	2120	25	0,67	82,64
042_	0,406520	2,56	8,889693	3,32	2,41	2441	18	2199	24	2327	15	0,77	94,19
148	0,397630	2,87	8,708439	3,65	1,11	2443	19	2158	26	2308	17	0,78	93,06
189	0,412380	2,83	9,042280	3,61	1,16	2445	19	2226	27	2342	17	0,78	94,77
43	0,353600	3,24	7,753895	3,96	1,03	2445	19	1952	27	2203	18	0,82	87,13
131	0,439190	3,07	9,696534	4,21	1,25	2457	24	2347	30	2406	20	0,73	97,47
109	0,458380	2,64	10,137510	3,41	1,11	2460	18	2432	27	2447	16	0,77	99,38
115	0,456000	2,41	10,094934	3,17	2,35	2462	17	2422	24	2444	15	0,76	99,11
184	0,350840	3,44	7,819749	5,13	0,88	2473	32	1939	29	2210	23	0,67	85,98
181	0,447950	2,52	9,985898	3,25	0,28	2473	17	2386	25	2433	15	0,77	98,02
132	0,447850	2,84	10,050976	3,58	0,99	2485	18	2386	28	2439	17	0,79	97,75
161	0,472530	2,51	10,649417	3,25	1,21	2492	17	2495	26	2493	15	0,77	#####
75	0,439390	2,59	9,950773	3,31	1,55	2500	17	2348	25	2430	15	0,78	96,49
103	0,438740	2,54	9,941497	3,29	1,88	2501	18	2345	25	2429	15	0,77	96,40
46	0,338800	2,57	7,695155	3,32	0,69	2505	18	1881	21	2196	15	0,77	83,25
99	0,359490	2,58	8,188192	3,44	1,02	2510	19	1980	22	2252	16	0,75	86,25
112	0,460070	2,65	10,532022	3,37	1,80	2518	17	2440	27	2483	16	0,79	98,24
74	0,400810	2,51	9,275457	3,26	1,39	2536	17	2173	23	2366	15	0,77	91,13
82	0,410200	2,42	9,496996	3,27	1,89	2537	18	2216	23	2387	15	0,74	92,26
97	0,365730	2,61	8,484822	3,34	1,47	2540	17	2009	23	2284	15	0,78	86,31
129	0,392700	2,49	9,174409	3,22	1, 44	2552	17	2135	23	2356	15	0,77	89,69
162	0,404240	2,55	9,476339	3,29	1,09	2558	17	2189	24	2385	15	0,77	91,01
73	0,382420	2,56	8,980645	3,33	1,24	2561	18	2088	23	2336	15	0,77	88,10
48	0,383350	2,60	9,015699	3,35	1,3 4	2563	18	2092	23	2340	15	0,78	88,16
30	0,439860	2,48	10,345318	3,21	1,87	2563	17	2350	24	2466	15	0,77	95,06
96	0,417910	2,51	9,831369	3.29	0.83	2564	18	2251	24	2419	15	0.76	92,53
87	0,423720	2,53	9,969878	3,32	0.98	2564	18	2277	24	2432	15	0.76	93 21

28	0,401550	2,76	9,475383	3,81	1,43	2569	22	2176	26	2385	18	0,73	90,40
27	0,399590	2,61	9,435650	3,37	1,27	2570	18	2167	24	2381	16	0,78	90,12
196	0,404790	2,80	9,585787	3,60	0,79	2575	19	2191	26	2396	17	0,78	90,66
143	0,417780	3,23	9,904347	4,03	1,33	2577	20	2250	31	2426	19	0,80	92,20
60	0,437830	2,34	10,424346	3,11	0,84	2584	17	2341	23	2473	15	0,75	94,35
95	0,405520	2,52	9,673525	3,29	1,38	2587	18	2194	23	2404	15	0,77	90,44
47	0,419420	2,68	10,015770	3,83	1,26	2589	23	2258	26	2436	18	0,70	92,10
157	0,434280	2,59	10,393715	3,32	1,51	2592	17	2325	25	2470	16	0,78	93,74
201	0,439580	2,47	10,582328	3,31	2,17	2602	18	2349	24	2487	15	0,75	94,11
84	0,429220	2,48	10,332977	3,23	1,66	2602	17	2302	24	2465	15	0,77	92,93
88	0,436880	2,45	10,528537	3,23	1,39	2604	18	2337	24	2482	15	0,76	93,76
186	0,440220	2,62	10,617931	3,50	1,16	2605	19	2352	26	2490	16	0,75	94,10
114	0,443030	2,53	10,690482	3,32	1,47	2606	18	2364	25	2497	16	0,76	94,40
90	0,443610	2,78	10,726741	3,89	1,07	2610	23	2367	28	2500	18	0,71	94,38
174	0,471240	2,61	11,397839	3,37	2,02	2610	18	2489	27	2556	16	0,77	97,30
159	0,503650	2,45	12,183820	3,24	1,77	2610	18	2629	27	2619	15	0,76	#####
203	0,466460	2,87	11,322585	4,13	1,41	2616	25	2468	30	2550	19	0,70	96,68
44	0,415200	2,60	10,089348	3,36	1,19	2618	18	2239	25	2443	16	0,77	90,87
101	0,434180	2,80	10,558344	3,59	0,87	2619	19	2325	27	2485	17	0,78	93,09
168	0,417330	2,69	10,164699	3,50	1,20	2622	19	2248	26	2450	16	0,77	91,04
58	0,436240	2,42	10,634196	3,20	2,18	2623	17	2334	24	2492	15	0,76	93,23
141	0,463480	2,43	11,321820	3,22	1,95	2627	18	2455	25	2550	15	0,76	96,13
61	0,468830	2,60	11,492751	3,39	1,63	2632	18	2478	27	2564	16	0,77	96,55
204	0,438090	2,66	10,739995	3,59	1,62	2632	20	2342	26	2501	17	0,74	93,22
158	0,467720	2,49	11,475416	3,31	2,84	2634	18	2474	26	2563	16	0,75	96,40
67	0,452510	2,67	11,112346	3,55	1,50	2635	19	2406	27	2533	17	0,75	94,76
144	0,465910	2,58	11,447333	3,33	1,30	2636	18	2466	26	2560	16	0,77	96,16
100	0,440320	2,45	10,827257	3,21	1,87	2637	17	2352	24	2508	15	0,77	93,35
26	0,435390	2,55	10,720609	3,31	0,99	2640	17	2330	25	2499	15	0,77	92,74
202	0,470890	2,92	11,601034	3,67	1,07	2641	18	2487	30	2573	17	0,80	96,57
127	0,464100	2,64	11,445271	3,45	1,47	2642	18	2458	27	2560	16	0,76	95,83
111	0,488390	2,71	12,063540	3,59	1,33	2645	20	2564	29	2609	17	0,75	98,22
116	0,498380	2,49	12,316770	3,24	1,81	2646	17	2607	27	2629	15	0,77	99,16
113	0,461390	3,64	11,432322	4,97	1,38	2650	28	2446	37	2559	23	0,73	95,36
54	0,442040	2,75	10,953052	4,13	1,12	2650	26	2360	27	2519	19	0,67	93,25
124	0,439130	2,62	10,891238	3,38	1,59	2652	18	2347	26	2514	16	0,78	92,88
53	0,456350	2,62	11,351045	3,37	1,31	2657	18	2423	27	2552	16	0,78	94,68
057_	0,468020	2,49	11,642610	3,24	1,70	2657	17	2475	26	2576	15	0,77	95,91
142	0,497110	2,81	12,393679	3,57	1,24	2660	18	2601	30	2635	17	0,79	98,72
85	0,467040	2,52	11,645258	3,27	1,64	2661	17	2471	26	2576	15	0,77	95,72
160	0,521170	2,43	13,005746	3,24	2,28	2662	18	2704	27	2680	15	0,75	#####
182	0,483040	2,58	12,055548	3,39	0,98	2662	18	2540	27	2609	16	0,76	97,31
86	0,470300	2,49	11,740181	3,24	0,77	2663	17	2485	26	2584	15	0,77	96,01
71	0,454080	2,72	11,341071	3,70	1,29	2663	21	2413	27	2552	17	0,74	94,27

183	0,484260	2,62	12,102612	3,43	1,62	2664	18	2546	28	2612	16	0,76	97,38
200	0,480040	2,65	11,999207	3,45	1,34	2665	18	2527	28	2604	16	0,77	96,96
195	0,519860	3,06	12,998859	3,85	1,48	2665	19	2699	34	2680	18	0,80	#####
89	0,442480	2,70	11,064618	3,42	1,54	2665	17	2362	27	2529	16	0,79	92,94
25	0,464260	2,46	11,611807	3,25	1,65	2666	18	2458	25	2574	15	0,76	95,31
104	0,520070	2,50	13,030642	3,30	1,76	2669	18	2699	28	2682	16	0,76	#####
147	0,519990	2,74	13,060184	3,51	1,32	2673	18	2699	30	2684	17	0,78	#####
59	0,458590	2,63	11,519749	3,39	1,65	2673	18	2433	27	2566	16	0,77	94,54
31	0,477540	2,86	12,005193	3,61	1,20	2674	18	2517	30	2605	17	0,79	96,49
175	0,515940	2,57	12,979093	3,33	1,46	2675	18	2682	28	2678	16	0,77	#####
45	0,512930	2,50	12,924846	3,24	2,30	2678	17	2669	27	2674	15	0,77	99,81
76	0,493770	2,45	12,444527	3,20	0,67	2678	17	2587	26	2639	15	0,77	98,01
125	0,519220	2,98	13,094537	3,69	1,67	2679	18	2696	33	2686	18	0,81	#####
39	0,478950	3,07	12,090829	3,84	1,29	2681	19	2523	32	2611	18	0,80	96,48
62	0,484050	2,55	12,232136	3,31	0,92	2683	17	2545	27	2622	16	0,77	96,95
56	0,471500	2,55	11,918360	3,29	1,30	2683	17	2490	26	2598	16	0,77	95,67
126	0,517260	2,45	13,084374	3,22	2,52	2684	17	2688	27	2686	15	0,76	#####
167	0,510210	2,68	12,916023	3,45	1,12	2686	18	2658	29	2674	16	0,78	99,40
41	0,509520	2,53	12,920159	3,26	1,64	2688	17	2655	28	2674	16	0,77	99,27
140	0,513490	3,19	13,022244	3,94	1,04	2689	19	2672	35	2681	19	0,81	99,63
198	0,512120	2,60	12,997386	3,35	1,65	2690	17	2666	28	2679	16	0,78	99,48
154	0,515690	3,67	13,096524	4,49	0,97	2691	21	2681	40	2687	21	0,82	99,79
55	0,496550	2,54	12,612454	3,30	0,85	2691	17	2599	27	2651	16	0,77	97,99
70	0,482170	2,65	12,261866	3,43	0,92	2693	18	2537	28	2625	16	0,77	96,53
190	0,496680	3,00	12,638397	3,85	1,06	2694	20	2600	32	2653	18	0,78	97,94
197	0,511270	2,71	13,030799	3,46	1,15	2697	18	2662	30	2682	16	0,78	99,25
68	0,410590	2,47	10,602780	3,21	0,51	2718	17	2218	23	2489	15	0,77	87,76
102	0,484060	2,45	14,141211	3,19	0,94	2920	17	2545	26	2759	15	0,77	91,58

^acorrected for background, instrumental drift and mass bias fractionation based on primary standard.

 $^{\rm c}$ rho is the $^{207}\text{Pb}/^{235}\text{U}/^{206}\text{Pb}/^{238}\text{U}$ error correlation coefficient.

^d degree of concordance: $(1+((^{206}Pb/^{238}U - ^{207}Pb/^{235}U))/^{206}Pb/^{238}U)) \ge 100$

UFOP

21B			
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ²
	²³⁸ U	%	²³⁵ U
HenSMPABC049	0,383666	4,88	7,075679

210								²⁰⁶ P				Rho	Cone
Sample	²⁰⁶ Pb ^a	±2s	²⁰⁷ Pb ^a	$\pm 2s$	<u>Th</u>	²⁰⁷ Pb	±2s	<u>b</u>	±2s	²⁰⁷ Pb	±2s	c	d d
	²³⁸ U	%	²³⁵ U	%	U	²⁰⁶ Pb	(Ma)	²³⁸ U	(Ma)	²³⁵ U	(Ma)		
HenSMPABC049	0,383666	4,88	7,075679	5,54	1,18	2039	26	2047	43	2043	25	0,58	#####
HenSMPABC050	0,376854	5,04	6,601590	6,03	1,08	2058	29	2062	44	2060	27	0,53	#####
HenSMPABC047	0,391254	4,55	7,152168	5,25	1,01	2132	25	2129	43	2131	25	0,57	99,91
HenSMPABC038	0,400398	4,82	7,784216	5,44	1,27	2240	25	2171	45	2206	26	0,59	98,36
HenSMPABC019	0,409182	4,78	7,984848	5,37	0,82	2246	24	2211	46	2229	26	0,59	99,18
HenSMPABC056	0,420603	4,79	8,250635	5,39	0,13	2255	24	2263	47	2259	26	0,59	#####

HenSMPABC017	0,579375	4 ,69	11,875195	5,30	1,02	2331	24	2946	57	2595	26	0,59	#####
HenSMPABC094	0,392488	4,79	7,279485	5,41	0,80	2343	24	1946	41	2146	25	0,59	89,73
HenSMPABC089	0,453513	5,26	9,689531	6,74	0,49	2401	33	2411	52	2406	30	0,48	#####
HenSMPABC013	0,596842	4,70	12,777739	5,31	0,97	2405	24	3017	58	2663	27	0,59	#####
HenSMPABC051	0,437600	4,80	9,422272	5,41	0,97	2415	24	2340	48	2380	26	0,59	98,29
HenSMPABC060	0,455288	4,81	9,900883	5,42	0,62	2431	24	2419	49	2426	26	0,59	99,72
HenSMPABC087	0,466739	5,03	10,246435	5,69	1,00	2447	25	2469	52	2457	27	0,58	#####
HenSMPABC071	0,467070	4,86	10,285255	5,49	0,66	2453	24	2471	51	2461	27	0,59	#####
HenSMPABC057	0,466117	4,80	10,285792	5,41	0,83	2456	24	2467	50	2461	26	0,59	#####
HenSMPABC090	0,478551	4,95	10,885010	6,35	0,39	2507	32	2521	52	2513	29	0,48	#####
HenSMPABC077	0,459479	4,96	10,464644	5,60	0,31	2509	24	2437	51	2477	27	0,59	98,38
HenSMPABC088	0,479965	4,58	10,951394	5,24	0,89	2512	24	2527	50	2519	26	0,57	#####
HenSMPABC073	0,482903	4,79	11,099492	5,41	0,98	2525	24	2540	51	2532	27	0,59	#####
HenSMPABC055	0,481960	4,61	11,086977	5,26	1,61	2526	24	2536	50	2530	26	0,58	#####
HenSMPABC007	0,481659	4,54	11,083851	6,05	0,80	2527	32	2534	50	2530	29	0,45	#####
HenSMPABC075	0,485861	4,87	11,216220	5,52	0,72	2532	24	2553	52	2541	27	0,58	#####
HenSMPABC095	0,486673	4,85	11,239664	5,49	1,36	2533	24	2556	52	2543	27	0,58	#####
HenSMPABC093	0,481760	4,72	11,154890	5,36	0,60	2537	24	2535	51	2536	26	0,58	99,95
HenSMPABC058	0,482381	4,83	11,227100	6,20	1,64	2546	31	2538	51	2542	29	0,48	99,82
HenSMPABC040	0,486563	4,81	11,364582	5,41	0,55	2552	24	2556	52	2554	27	0,59	#####
HenSMPABC070	0,492980	4,82	11,625268	5,43	1,95	2568	24	2584	52	2575	27	0,59	#####
HenSMPABC092	0,494223	4,80	11,659701	5,41	0,27	2568	24	2589	52	2577	27	0,59	#####
HenSMPABC009	0,490844	4,74	11,604375	5,35	1,11	2572	24	2574	51	2573	27	0,59	#####
HenSMPABC076	0,494976	4,88	11,707812	5,52	1,62	2573	24	2592	53	2581	27	0,58	#####
HenSMPABC078	0,496079	4,84	11,768785	5,45	1,26	2578	24	2597	53	2586	27	0,59	#####
HenSMPABC036	0,493652	4,78	11,722873	5,41	1,30	2579	24	2586	52	2583	27	0,58	#####
HenSMPABC059	0,494203	4,91	11,748379	6,23	0,83	2581	31	2589	53	2585	29	0,49	#####
HenSMPABC037	0,494735	4,44	11,766299	5,32	0,76	2582	26	2591	50	2586	26	0,53	#####
HenSMPABC016	0,492228	4,72	11,720421	5,32	0,69	2584	23	2580	51	2582	26	0,59	99,92
HenSMPABC035	0,494213	4,79	11,781946	5,51	1,48	2586	25	2589	52	2587	27	0,57	#####
HenSMPABC032	0,493973	4,78	11,791706	5,40	0,71	2588	24	2588	52	2588	27	0,59	99,99
HenSMPABC030	0,495096	4,85	11,871761	5,46	1,18	2596	24	2593	53	2594	27	0,59	99,94
HenSMPABC068	0,493251	4,82	11,837740	5,45	0,97	2597	24	2585	52	2592	27	0,58	99,73
HenSMPABC008	0,500170	4,91	12,073267	5,53	1,88	2607	24	2615	53	2610	27	0,59	#####
HenSMPABC028	0,498034	4,78	12,026744	5,40	1,62	2607	24	2605	52	2606	27	0,59	99,96
HenSMPABC041	0,499949	4,75	12,088651	5,38	1,41	2610	24	2614	52	2611	27	0,58	#####
HenSMPABC012	0,500400	4,80	12,176271	5,40	1,48	2620	23	2616	53	2618	27	0,59	99,90
HenSMPABC014	0,502055	4,78	12,266371	5,38	1,25	2627	23	2623	53	2625	27	0,59	99,91
HenSMPABC018	0,512473	4,72	12,555475	5,33	0,50	2631	24	2667	53	2647	27	0,58	#####
HenSMPABC052	0,506176	4,72	12,413980	5,34	0,63	2633	23	2640	52	2636	27	0,58	#####
HenSMPABC033	0,506276	4,76	12,454628	5,38	1,21	2638	24	2641	53	2639	27	0,59	#####
HenSMPABC096	0,511150	4,81	12,585664	5,47	1,27	2640	24	2662	53	2649	27	0,58	#####
HenSMPABC011	0,504722	4,89	12,451803	6,18	1,27	2643	30	2634	53	2639	29	0,49	99,81
HenSMPABC069	0,510708	4,79	12,605955	5,40	2,01	2644	23	2660	53	2651	27	0,59	#####

HenSMPABC054	0,511230	4,80	12,690019	5,44	1,77	2653	24	2662	53	2657	27	0,58	#####
HenSMPABC091	0,515672	4,80	12,848631	5,44	1,35	2659	24	2681	54	2669	27	0,58	#####
HenSMPABC020	0,553795	4,73	13,967280	5,37	0,82	2680	24	2841	56	2747	27	0,58	#####
HenSMPABC074	0,518550	4,75	13,080490	5,37	1,82	2680	23	2693	53	2685	27	0,58	#####
HenSMPABC029	0,515912	4,74	13,047708	5,35	2,13	2684	23	2682	53	2683	27	0,59	99,95
HenSMPABC031	0,519412	4,74	13,236882	5,36	0,95	2697	23	2697	53	2697	27	0,58	#####
HenSMPABC039	0,519422	4,86	13,244299	5,51	1,26	2698	24	2697	54	2697	27	0,58	99,98
HenSMPABC010	0,525519	4,78	13,674839	5,45	3,35	2731	24	2723	54	2727	27	0,58	99,82
HenSMPABC048	0,439575	4,82	11,850638	5,45	0,64	2789	23	2349	48	2593	27	0,58	89,61
HenSMPABC053	0,595790	4,76	18,422502	5,38	0,12	3012	23	3013	59	3012	27	0,59	#####
HenSMPABC072	0,597564	5,01	18,480566	5,63	0,93	3012	23	3020	61	3015	28	0,59	#####
HenSMPABC080	0,380093	4,79	12,031134	5,39	0,54	3049	23	2077	43	2607	27	0,59	74,47
HenSMPABC067	0,608384	4,83	19,450174	5,45	0,77	3065	23	3064	60	3064	28	0,59	99,97
HenSMPABC034	0,619200	4,80	20,124986	5,40	0,70	3143	22	3146	61	3144	28	0,59	#####
HenSMPABC079	0,068105	4,80	3,582719	5,42	0,43	3838	21	425	10	1546	23	0,59	#####
HenSMPABC015	0,024156	6,13	3,526508	6,61	0,39	5318	20	154	4	1533	26	0,63	#####

Sample	163F	163A	12A	109A	50	67	19A
SiO2	62.9	63.6	66.2	71.3	71.8	72.3	62.2
AI2O3	16.8	17.2	15.6	14.9	14.7	15.5	16.7
FeOt	5.1	4.3	4.8	2.6	2.3	1.5	6.2
Fe2O3(t)	5.7	4.7	5.3	2.9	2.5	1.7	6.9
MnO	0.1	0.1	0.1	0.0	0.0	0.0	0.1
MgO	1.7	1.4	1.8	0.9	0.8	0.5	3.0
CaO	4.8	5.1	3.6	3.4	2.3	3.2	5.8
Na2O	4.3	4.5	3.8	4.4	4.4	4.6	3.3
K2O	1.4	1.2	2.5	1.9	2.5	2.0	1.3
TiO2	0.5	0.5	0.4	0.4	0.4	0.3	0.7
P2O5	0.2	0.2	0.1	0.1	0.1	0.1	0.3
LOI	0.4	0.3	0.8	0.4	0.4	0.4	0.4
Total	98.7	98.7	100.2	100.7	99.8	100.5	100.8
Na2O/K2O	3.1	3.8	1.6	2.3	1.7	2.3	2.527
#Mg*100	44.0	34.0	39.9	43.0	37.2	37.0	46.470
Sc	9.0	4.0	8.0	2.0	3.0	2.0	15.0
Ве	2.0	3.0	2.0	3.0	1.0	2.0	2.0
V	58.0	47.0	77.0	36.0	19.0	13.0	139.0
Ва	459.0	416.0	563.0	725.0	1365.0	1477.0	519.0
Sr	596.0	636.0	326.0	557.0	459.0	837.0	362.0
Y	9.0	7.0	10.0	17.0	6.0	4.0	11.0
Zr	151.0	204.0	125.0	128.0	199.0	118.0	274.0
Cr	< 20	< 20	40.0	60.0	< 20	< 20	30.0
Со	9.0	7.0	11.0	12.0	13.0	19.0	29.0
Ni	< 20	< 20	< 20	< 20	< 20	< 20	30.0
Cu	< 10	< 10	30.0	< 10	< 10	30.0	60.0
Zn	60.0	50.0	50.0	40.0	50.0	< 30	90.0
Ga	19.0	21.0	19.0	19.0	19.0	18.0	21.0
Ge	< 1	< 1	1.0	< 1	< 1	< 1	1.0
As	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Rb	33.0	25.0	115.0	52.0	39.0	40.0	40.0
Nb	3.0	5.0	4.0	4.0	3.0	2.0	8.0
Мо	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ag	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5
In	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Sn	1.0	< 1	< 1	1.0	< 1	< 1	< 1
Sb	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cs	< 0.5	< 0.5	1.4	< 0.5	< 0.5	0.8	< 0.5
La	17.4	34.2	21.4	24.1	78.7	15.7	29.1
Се	32.9	59.8	37.4	35.6	130.0	29.0	54.2
Pr	3.7	5.9	3.9	3.7	12.9	3.2	6.1
Nd	14.2	19.6	13.0	12.2	42.2	12.3	22.3

ANEXO B – Dados Litogeoquímicos

2.7	3.0	2.3	1.7	5.6	2.1	3.8
1.2	1.3	0.9	0.9	1.8	1.0	1.5
2.3	2.0	2.0	1.7	3.4	1.4	3.1
0.3	0.2	0.3	0.2	0.4	0.2	0.4
1.7	1.2	1.6	1.2	1.5	0.9	2.2
0.3	0.2	0.3	0.3	0.3	0.1	0.4
0.9	0.6	0.9	0.6	0.7	0.4	1.1
0.1	0.1	0.1	0.1	0.1	< 0.05	0.2
0.8	0.6	0.8	0.3	0.5	0.3	1.0
0.1	0.1	0.1	0.0	0.1	0.1	0.2
3.3	4.7	2.6	3.2	4.7	2.5	5.9
0.2	0.3	0.4	0.3	0.2	0.3	0.4
< 1	< 1	< 1	79.0	111.0	214.0	125.0
0.2	0.1	0.7	< 0.1	0.3	0.2	< 0.1
14.0	16.0	11.0	16.0	14.0	14.0	8.0
< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
0.6	0.8	2.6	0.4	13.3	2.5	0.4
0.3	0.7	0.6	0.4	0.3	0.8	0.4
	2.7 1.2 2.3 0.3 1.7 0.3 0.9 0.1 0.8 0.1 3.3 0.2 < 1 0.2 14.0 < 0.4 0.6 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.7 3.0 2.3 1.7 5.6 1.2 1.3 0.9 0.9 1.8 2.3 2.0 2.0 1.7 3.4 0.3 0.2 0.3 0.2 0.4 1.7 1.2 1.6 1.2 1.5 0.3 0.2 0.3 0.3 0.3 0.9 0.6 0.9 0.6 0.7 0.1 0.1 0.1 0.1 0.1 0.8 0.6 0.8 0.3 0.5 0.1 0.1 0.1 0.0 0.1 3.3 4.7 2.6 3.2 4.7 0.2 0.3 0.4 0.3 0.2 < 1 < 1 < 1 79.0 111.0 0.2 0.1 0.7 < 0.1 0.3 14.0 16.0 11.0 16.0 14.0 < 0.4 < 0.4 < 0.4 < 0.4 0.6 0.8 2.6 0.4 13.3 0.3 0.7 0.6 0.4 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Sample	148	21B	66A	134A	103A	103B	8	91B
SiO2	58.1	57.9	59.3	56.4	58.2	59.5	57.1	61.8
AI2O3	15.8	15.3	15.3	17.4	18.3	17.1	18.0	16.2
FeOt	8.5	8.1	6.9	7.0	7.0	6.8	6.1	5.9
Fe2O3(t)	9.5	9.0	7.7	7.8	7.7	7.6	6.8	6.5
MnO	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MgO	2.8	3.1	3.7	2.9	3.1	3.1	3.1	3.3
CaO	6.5	6.5	6.4	8.2	5.5	5.3	6.0	5.0
Na2O	3.6	4.3	3.7	3.6	4.4	4.3	5.6	4.0
K2O	1.1	1.6	1.8	1.5	1.9	1.8	1.4	1.9
TiO2	1.5	1.4	1.0	1.1	1.0	0.9	0.9	0.7
P2O5	0.5	0.5	0.6	0.2	0.4	0.3	0.3	0.2
LOI	-0.2	0.4	1.1	0.8	0.4	0.6	0.5	0.6
Total	99.4	100.0	100.6	100.1	101.0	100.5	99.7	100.4
Na2O/K2O	3.2	2.6	2.0	2.4	2.3	2.4	4.1	2.1
#mg*100	37.0	40.4	48.4	41.9	44.1	44.8	47.4	50.1
Sc	19.0	18.0	16.0	16.0	13.0	12.0	21.0	19.0
Be	2.0	2.0	2.0	3.0	2.0	2.0	3.0	2.0
v	175.0	158.0	130.0	159.0	121.0	122.0	125.0	103.0
Ba	572.0	892.0	544.0	607.0	1039.0	958.0	484.0	656.0
Sr	288.0	327.0	379.0	704.0	567.0	548.0	946.0	613.0
Y	41.0	51.0	29.0	28.0	16.0	15.0	43.0	15.0
Zr	524.0	481.0	263.0	249.0	195.0	249.0	224.0	176.0
Cr	30.0	40.0	80.0	60.0	60.0	60.0	30.0	90.0
Со	27.0	30.0	30.0	22.0	23.0	24.0	18.0	19.0
Ni	30.0	40.0	40.0	30.0	30.0	40.0	40.0	20.0
Cu	40.0	40.0	40.0	20.0	20.0	40.0	20.0	10.0

Zn	100.0	110.0	90.0	70.0	100.0	110.0	80.0	90.0
Ga	22.0	22.0	20.0	27.0	25.0	25.0	20.0	21.0
Ge	1.0	1.0	1.0	2.0	< 1	1.0	1.0	1.0
As	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Rb	8.0	18.0	38.0	41.0	45.0	37.0	26.0	80.0
Nb	26.0	26.0	10.0	11.0	8.0	7.0	8.0	8.0
Мо	2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ag	1.4	< 0.5	0.6	0.5	< 0.5	< 0.5	0.7	< 0.5
In	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Sn	1.0	1.0	3.0	2.0	3.0	2.0	3.0	1.0
Sb	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cs	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3
La	54.1	101.0	65.3	60.3	63.8	51.5	51.1	59.5
Ce	117.0	204.0	128.0	108.0	127.0	99.6	97.8	114.0
Pr	13.9	23.7	14.6	12.4	14.2	11.7	12.2	12.9
Nd	54.1	82.2	55.2	44.5	49.9	42.2	49.9	48.2
Sm	11.1	14.9	10.2	8.1	8.4	7.2	11.2	8.5
Eu	2.4	3.1	2.4	2.0	1.6	1.6	3.0	1.4
Gd	9.7	12.8	7.6	6.5	5.8	5.4	9.9	5.3
Tb	1.5	1.9	1.1	1.0	0.7	0.7	1.4	0.7
Dy	8.8	10.8	5.9	5.5	3.7	3.4	8.1	3.6
Но	1.6	2.1	1.1	1.0	0.6	0.6	1.6	0.6
Er	4.4	5.7	3.2	2.8	1.6	1.5	4.2	1.6
Tm	0.6	0.8	0.4	0.4	0.2	0.2	0.6	0.2
Yb	3.8	5.0	2.7	2.8	1.2	1.2	3.6	1.2
Lu	0.6	0.8	0.4	0.4	0.2	0.2	0.5	0.2
Hf	10.6	10.2	5.5	5.7	4.4	5.3	5.0	3.8
Та	1.7	1.1	0.8	0.8	0.3	0.2	0.4	0.3
W	47.0	56.0	85.0	37.0	56.0	36.0	55.0	48.0
TI	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.2	0.5
Pb	12.0	9.0	9.0	17.0	13.0	12.0	16.0	9.0
Bi	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Th	0.6	4.1	13.9	10.4	7.5	3.2	3.8	5.9
<u> </u>	0.7	0.7	0.6	2.9	0.3	0.2	0.3	0.5
Sample	13/F	13/G	64A	64B	355*	_		
SiO2	58.0	53.5	65.2	53.8	56.2			
AI2O3	15.9	15.8	14.3	17.2	12.8			
FeOt	8.2	10.5	5.1	8.5	0.8 7 F			
Fe2O3(t)	9.2	11./	5.7	9.4	7.5			
MnO	0.1	0.2	0.1	0.2	0.1			
MgO	2.4	2.9	1.8	3.2	4.4			
CaO	5./	5./	4.2	6.2	5.4 2 r			
Na2O	4.1	3.9	3.6	4.0	2.5			
K20	2.6	2.8	2.7	2.4	1.4			
TiO2	1./	2.0	1.0	1.6	1.3			
P2O5	0.7	0.8	0.7	1.2	0.9			

LOI	0.2	0.3	0.7	1.0	0.5
Total	100.4	99.4	99.8	100.2	98.9
Na2O/K2O	1.6	1.4	1.3	1.6	0.3
#Mg*100	34.2	32.7	38.1	40.3	53.6
Sc	18.0	23.0	12.0	22.0	17.0
Be	2.0	2.0	2.0	3.0	3.0
V	129.0	165.0	82.0	150.0	125.0
Ва	1758.0	1927.0	973.0	673.0	3981.0
Sr	607.0	530.0	526.0	525.0	1350.0
Y	42.0	50.0	44.0	59.0	32.0
Zr	526.0	622.0	306.0	429.0	317.0
Cr	< 20	40.0	< 20	40.0	160.0
Со	28.0	32.0	13.0	23.0	21.0
Ni	< 20	< 20	< 20	< 20	60.0
Cu	< 10	20.0	20.0	30.0	30.0
Zn	130.0	170.0	70.0	120.0	60.0
Ga	24.0	25.0	21.0	28.0	19.0
Ge	1.0	2.0	1.0	2.0	2.0
As	< 5	< 5	< 5	< 5	< 5
Rb	42.0	49.0	76.0	104.0	247.0
Nb	18.0	23.0	10.0	26.0	23.0
Мо	< 2	2.0	< 2	< 2	< 2
Ag	1.0	1.3	0.8	1.1	0.7
In	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Sn	1.0	2.0	4.0	7.0	1.0
Sb	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cs	< 0.5	< 0.5	< 0.5	0.7	1.8
La	96.5	97.1	94.8	111.0	134.0
Ce	212.0	222.0	200.0	231.0	285.0
Pr	25.4	27.3	23.7	27.5	33.9
Nd	99.7	109.0	90.4	106.0	128.0
Sm	17.9	20.7	17.0	20.3	22.6
Eu	4.0	4.7	2.9	4.1	5.3
Gd	12.9	15.3	12.3	15.2	14.3
Tb	1.7	2.0	1.7	2.2	1.6
Dy	8.9	10.8	9.4	11.8	7.3
Но	1.6	2.0	1.7	2.2	1.2
Er	4.2	5.1	4.4	5.8	2.9
Tm	0.5	0.7	0.6	0.8	0.3
Yb	3.4	4.3	3.6	5.1	2.0
Lu	0.5	0.7	0.5	0.8	0.3
Hf	10.9	13.5	6.0	9.1	6.1
Та	0.9	1.1	0.7	1.9	1.4
W	122.0	90.0	54.0	53.0	< 1
TI	< 0.1	< 0.1	0.3	0.5	0.9
Pb	13.0	14.0	15.0	16.0	15.0

Bi	< 0.4	< 0.4	< 0.4	< 0.4	. <	0.4			
Th	1.7	2.9	9.3	18.3	З	8.5			
U	0.4	0.4	0.8	6.6	C).7			
Sample	103C	339C	149	21A	141	378B	66B	19B	70D
SiO2	46.1	47.3	49.7	48.8	49.4	52.2	47.5	52.1	48.3
Al2O3	13.9	13.8	12.5	16.1	13.4	12.2	14.2	14.5	12.9
FeOt	13.0	12.7	14.9	12.7	14.6	10.8	14.4	11.0	14.6
Fe2O3(t)	14.4	14.1	16.5	14.2	16.2	12.0	16.0	12.2	16.2
MnO	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3
MgO	6.4	6.0	4.9	4.9	5.8	8.2	6.6	6.5	5.7
CaO	10.2	8.8	9.3	8.8	9.6	9.9	9.7	10.5	10.7
Na2O	2.6	3.2	2.4	3.2	3.2	2.6	1.3	2.3	2.4
K2O	1.0	0.8	0.8	0.6	1.0	1.2	0.7	0.8	1.2
TiO2	3.2	3.3	3.4	2.2	1.3	0.9	1.5	0.9	2.4
P2O5	0.4	0.5	0.4	1.0	0.1	0.2	0.1	0.1	0.2
LOI	0.7	0.9	0.4	0.7	0.3	0.1	3.1	0.5	0.2
Total	99.2	98.9	100.5	100.6	100.6	99.6	100.8	100.6	100.5
Na2O/K2O	2.8	3.8	3.0	5.1	3.1	2.2	1.8	2.756	2.1
#mg*100	46.9	45.8	37.2	40.5	41.6	57.5	44.8	51.130	41.1
Sc	37.0	31.0	41.0	26.0	45.0	37.0	49.0	41.0	50.0
Be	2.0	2.0	2.0	2.0	1.0	1.0	< 1	2.0	1.0
V	362.0	356.0	425.0	257.0	356.0	259.0	354.0	293.0	499.0
Ba	160.0	290.0	2736.0	401.0	271.0	1001.0	80.0	155.0	376.0
Sr	283.0	480.0	247.0	647.0	172.0	265.0	37.0	159.0	220.0
Y	33.0	26.0	50.0	35.0	26.0	18.0	22.0	24.0	28.0
Zr	273.0	224.0	242.0	353.0	78.0	75.0	106.0	60.0	124.0
Cr	50.0	70.0	60.0	100.0	60.0	350.0	90.0	210.0	90.0
Со	46.0	43.0	57.0	41.0	61.0	43.0	58.0	51.0	40.0
Ni	50.0	20.0	50.0	80.0	70.0	100.0	50.0	110.0	30.0
Cu	40.0	40.0	270.0	60.0	50.0	100.0	60.0	30.0	20.0
Zn	150.0	90.0	200.0	130.0	130.0	90.0	110.0	100.0	160.0
Ga	26.0	21.0	22.0	21.0	18.0	15.0	18.0	16.0	21.0
Ge	2.0	1.0	2.0	1.0	2.0	1.0	2.0	2.0	2.0
As	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Rb	2.0	10.0	22.0	3.0	5.0	36.0	4.0	13.0	8.0
Nb	30.0	29.0	27.0	19.0	6.0	2.0	6.0	4.0	8.0
Мо	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ag	< 0.5	0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2
Sn	3.0	1.0	2.0	1.0	1.0	< 1	1.0	2.0	2.0
Sb	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cs	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
La	34.5	34.1	33.6	77.1	16.3	13.7	10.6	10.3	10.1
Ce	75.8	75.9	59.7	162.0	29.3	33.4	20.7	22.8	23.2
Pr	9.4	9.5	8.0	19.2	3.9	4.5	3.2	3.0	3.3
Nd	35.8	38.5	34.2	70.2	16.5	19.8	14.8	11.7	14.7

Sm	7.9	8.2	9.1	11.6	4.2	4.7	4.0	3.1	4.4
Eu	2.6	2.9	2.6	3.0	1.3	1.4	1.3	0.9	1.5
Gd	7.6	7.7	9.9	9.6	4.9	4.6	4.2	3.9	5.7
Tb	1.2	1.2	1.6	1.4	0.8	0.7	0.7	0.7	0.9
Dy	6.9	6.3	9.9	7.6	5.3	4.2	4.9	4.5	5.9
Но	1.4	1.2	2.1	1.5	1.1	0.8	1.0	0.9	1.2
Er	3.9	3.1	5.8	4.0	3.2	2.3	2.8	2.7	3.5
Tm	0.5	0.4	0.8	0.5	0.5	0.3	0.4	0.4	0.5
Yb	3.5	2.5	5.2	3.3	3.0	2.1	2.9	2.5	3.3
Lu	0.5	0.4	0.8	0.5	0.5	0.3	0.4	0.4	0.5
Hf	6.1	4.5	6.2	6.2	2.3	1.8	2.4	1.4	3.2
Та	2.0	2.1	1.9	1.1	0.4	0.2	0.4	0.4	0.5
W	24.0	< 1	90.0	20.0	30.0	< 1	11.0	59.0	25.0
Tl	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1
Pb	9.0	15.0	< 5	7.0	8.0	< 5	5.0	6.0	10.0
Bi	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Th	3.3	1.8	3.7	1.7	0.2	0.5	0.9	0.5	0.7
U	1.2	0.5	0.9	0.4	< 0.1	0.1	0.2	0.5	0.4

Sample	70D	355	163	137	8	64A	64B	67	21A	148	21B	66A
			Α	G								
Sm	4.8	22.6	3	21.2	11.4	15.8	21	1.9	12.6	10.8	14.9	10.1
ppm												
Nd	16.1	132.	20.8	117.	52.2	86.8	113.	11.7	76.2	57.1	83.7	56.7
ррт		1		5			6					
Crystal	198	198	211	202	216	210	210	210	252	265	273	269
lization	9	3	6	3	8	6	7	0	3	9	1	3
Ga.												
¹⁴³ Nd/ ¹⁴	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51
⁴ Nd	250	119	087	117	122	132	128	127	075	100	090	088
	8	5	4	1	1		2	1	4	5	9	3
abs. St.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Error.	000	000	000	000	000	000	000	000	000	000	000	000
	5	4	6	8	5	5	4	9	6	4	5	5
¹⁴⁷ Sm/ ¹	0.18	0.10	0.08	0.10	0.13	0.10	0.11	0.09	0.10	0.11	0.10	0.10
⁴⁴ Nd	000	34	62	905	17	97	18	83	007	49	75	79
	3			5					9			
⁸⁷ Sr/ ⁸⁶ S	0.70	0.72	0.70	0.71	0.70	0.71	0.71	0.70	0.70	0.70	0.70	0.71
r (m)	618	134	825	160	943	913	937	897	362	848	973	821
	2	6	6	6	7				6			1
abs. St.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Error.	000	000	000	000	000	000	000	001	000	000	000	000
	8	6	7	7	8	5	4		7	9	4	5
ε Nd (t)	1.7	-4.4	-4.7	-5.9	-9.7	-2.3	-3.5	-0.1	-5.4	-3.7	-2.5	-3.4
¹⁴³ Nd/ ¹⁴	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
⁴ Nd (i)	02	98	97	97	93	98	97	99	91	90	90	90
TDM	2.24	2.46	2.53	2.62	3.18	2.44	2.53	2.27	2.93	2.97	2.92	2.96
Ga												
⁸⁷ Sr/ ⁸⁶ S	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
r (i)	32	62	48	38	69	64	19	48	31	54	34	69