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ABSTRACT

EGMOND, D.M. Working towards a guage-invariant description of the Higgs model : from

local composite operators to spectral density functions. 2020. 206 f. Tese (Doutorado em

F́ısica) - Instituto de F́ısica Armando Dias Tavares, Universidade do Estado do Rio de

Janeiro, Rio de Janeiro, 2020.

We analyze different BRST invariant solutions for the introduction of a mass term

in Yang-Mills (YM) theories. First, we analyze the non-local composite gauge-invariant

field Ahµ(x), which can be localized by the Stueckelberg-like field ξa(x). This enables us

to introduce a mass term in the SU(N) YM model, a feature that has been indicated at

a non-perturbative level by both analytical and numerical studies. The configuration of

Ah(x) , obtained through the minimization of
∫
d4xA2 along the gauge orbit, gives rise

to an all orders renormalizable action, a feature which will be illustrated by means of a

class of covariant gauge fixings which, as much as ’t Hooft’s Rξ-gauge of spontaneously

broken gauge theories, provide a mass for the Stueckelberg-like field. Then, we consider

the unitary Abelian Higgs model and investigate its spectral functions at one-loop order.

This analysis allows to disentangle what is physical and what is not at the level of the

elementary particle propagators, in conjunction with the Nielsen identities. We highlight

the role of the tadpole graphs and the gauge choices to get sensible results. We also

introduce an Abelian Curci-Ferrari action coupled to a scalar field to model a massive

photon which, like the non-Abelian Curci-Ferarri model, is left invariant by a modified

non-nilpotent BRST symmetry. We clearly illustrate its non-unitary nature directly from

the spectral function viewpoint. This provides a functional analogue of the Ojima ob-

servation in the canonical formalism: there are ghost states with nonzero norm in the

BRST-invariant states of the Curci-Ferrari model. Finally, the spectral properties of a

set of local gauge-invariant composite operators are investigated in the U(1) and SU(2)

Higgs model quantized in the ’t Hooft Rξ gauge. These operators enable us to give a

gauge-invariant description of the spectrum of the theory, thereby surpassing certain in-

commodities when using the standard elementary fields. The corresponding two-point

correlation functions are evaluated at one-loop order and their spectral functions are ob-

tained explicitly. It is shown that the spectral functions of the elementary fields suffer

from a strong unphysical dependence from the gauge parameter ξ, and can even exhibit

positivity violating behaviour. In contrast, the BRST invariant local operators exhibit a

well defined positive spectral density.

Keywords: Quantum Field Theory. Gauge-Higgs systems. Mass generation.



RESUMO

EGMOND, D.M. Investigando em direção de uma descrição invariante de gauge: de

operadores compostos locais a funções de densidade espectral. 2020. 206 f.

Tese (Doutorado em F́ısica) - Instituto de F́ısica Armando Dias Tavares, Universidade do

Estado do Rio de Janeiro, Rio de Janeiro, 2020.

Analisamos diferentes soluções invariantes do BRST para a introdução de um termo

de massa nas teorias de Yang-Mills (YM). Primeiro, analisamos o campo invariante de

calibre composto não local Ahµ(x), que pode ser localizado pelo campo tipo Stueckelberg

ξa(x). Isto nos permite introduzir um termo de massa no modelo SU(N) YM, uma carac-

teŕıstica que foi indicada em um ńıvel não perturbativo por estudos anaĺıticos e numéricos.

A configuração de Ah(x) , obtida através da minimização de
∫
d4xA2 ao longo da órbita

de calibre, dá origem a uma ação renormalizável de todas as ordens, uma caracteŕıstica

que será ilustrada por meio de uma classe de fixações de calibre covariantes que, como

tanto quanto o Rξ-gauge de ’t Hooft de teorias de calibre quebradas espontaneamente,

fornecem uma massa para o campo do tipo Stueckelberg. Em seguida, consideramos o

modelo unitário de Abelian Higgs e investigamos suas funções espectrais na ordem de um

loop. Esta análise permite desembaraçar o que é f́ısico e o que não é ao ńıvel dos propa-

gadores de part́ıculas elementares, em conjunto com as identidades Nielsen. Destacamos

o papel dos gráficos de girinos e das escolhas de medidores para obter resultados sensatos.

Também introduzimos uma ação Abeliana de Curci-Ferrari acoplada a um campo escalar

para modelar um fóton massivo que, como o modelo não-Abeliano de Curci-Ferrari, é

deixado invariante por uma simetria BRST não-nilpotente modificada. Ilustramos clara-

mente sua natureza não unitária diretamente do ponto de vista da função espectral. Isso

fornece um análogo funcional da observação de Ojima no formalismo canônico: existem

estados fantasmas com norma diferente de zero nos estados invariantes do BRST do mod-

elo Curci-Ferrari. Finalmente, as propriedades espectrais de um conjunto de operadores

compostos invariantes de calibre locais são investigadas no modelo U(1) e SU(2) de Higgs

quantizado no medidor ’t Hooft Rξ. Esses operadores nos permitem fornecer uma de-

scrição invariante de calibre do espectro da teoria, superando assim certas comodidades

ao usar os campos elementares padrão. É mostrado que as funções espectrais dos cam-

pos elementares sofrem de uma forte dependência não f́ısica do parâmetro de calibre ξ,

e podem até exibir comportamento de violação de positividade. Em contraste, os oper-

adores locais invariantes do BRST exibem uma densidade espectral positiva bem definida.

Palavras-chave: Teoria quântica de campos. Sistemas de Gauge-Higgs. Geração de

massa.
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INTRODUCTION

Fundamental forces and field theory: a historical overview

Four fundamental forces seem to constitute nature: Electromagnetic force, Gravi-

tational force and the Strong and Weak nuclear forces.

The electromagnetic force was at the heart of the development of modern physics.

Classically, it is described by Maxwell’s equations from 1862 (MAXWELL, 1865) in terms

of electric charges that generate an electromagnetic field, which in turn exerts a force on

other electric charges within that field. At the end of the nineteenth century, this picture

was challenged by several experimental observations such as blackbody radiation and the

photoelectric effect, which did not have an explanation within the Maxwell equations.

In 1900, Max Planck introduced the idea that energy is quantized in order to derive,

heuristically, a formula for the energy emitted by a black body. Planck’s law (PLANCK;

MASIUS, 1914) marked the beginning of quantum physics. Subsequently, Einstein ex-

plained the photoelectric effect by stating that the energy of an electromagnetic field is

quantized in discrete units that were called photons. The photon is a force carrier or

messenger particle, neutrally charged and massless, that mediates the electromagnetic

force between electrically charged matter particles. The phenomenological theories of

Planck and Einstein were followed by more rigorous descriptions of quantum-mechanical

sytems, with the Schrödinger wave equation as the main postulate of modern quantum

physics (SCHRÖDINGER, 1926).

Simultaneously to the emergence of quantum physics, Einstein’s theory of special

relativity (EINSTEIN et al., 1905), built on Maxwell’s equations, meant a revolution in

the perception of space and time. However, the concepts of relativity seemed incompatible

with quantum physics: relativity theory treats time and space on an equal footing, while

in quantum physics spatial coordinates are promoted to operators, with time a label. In

1928, Dirac succeeded in writing a relativistic wave equation for the electron (DIRAC,

1928), which however hypothesized negative energy solutions, pointing to the existence

of anti-particles (we now know the antiparticle of the electron to be the positron). This

eventually led to the development of the first quantum field theory, dubbed Quantum

Electrodynamics (QED) by Dirac. In QED, electrons and other matter particles are

pictured as excited states of an underlying field, just as photons are excited states of

the electromagnetic field. In the associated field operator ϕ(x, t), position and time are

both labels, in line with relativity theory. Moreover, QED naturally incorporates negative

energy states.

In order to understand the classical electromagnetic field in the light of quantum

field theory, we take the classical magnetic vector potential A, whose curl is equal to the
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magnetic field. This quantity had been known from Maxwell’s equations but within the

Schrödinger picture it overtook the electromagnetic field as the fundamental quantity.

By construction, the vector potential can be changed by terms that have a vanishing

curl without changing the magnetic field. This “gauge symmetry” became central to

QED, where the potential was promoted to a relativistic four-vector Aµ(x, t), the photon

field, and interactions of fields were summarized in a Lagrangian that is invariant under

transformations of the local U(1) group, called gauge transformations.

QED gives the most accurate predictions quantum physics currently has to offer.

For example, the calculation of the electron’s magnetic moment in QED agrees with ex-

perimental data up to ten digits. The success of QED can be attributed to the fact that

many of the phenomena in our visible (low-energy) world can be approximated by per-

turbing the electromagnetic quantum vacuum, known as perturbation theory. Feynman

diagrams are the visual representation of the perturbative contributions. However, QED

is not well-defined as a quantum field theory to arbitrarily high energies, because the cou-

pling constant (interaction strength) runs to infinity at finite energy. This divergence at

high energy scale is known as the Landau pole (LANDAU et al., 1955). Other questions

concerning the electromagnetic force, such as the existence of a magnetic monopole, still

remain open problems today.

QED has served as the model and template for quantum field theories that try

to describe the other three fundamental forces. Attempts to fit Einstein’s gravity the-

ory of curved spacetime (EINSTEIN, 2019) into the concepts of quantum field theory

have not been an unqualified success. For example, the hypothetical force carrier of the

gravitational force, the graviton, has never been detected. Moreover, the description of

gravity as a field theory has been shown to fail at Planck length. Most modern research

in quantum gravity is conducted in the framework of String Theory, which takes a differ-

ent approach to unite quantum phyics and relativity: instead of making time and space

both labels, they are both operators. Today, it is even disputed if gravitational force is

truly a fundamental force, or an emergent effect of deeper quantum mechanical processes

(VERLINDE, 2017).

In 1954, Yang and Mills extended the abelian U(1) gauge group of QED to non-

abelian gauge groups (YANG; MILLS, 1954). Their goal was to find an explanation for the

strong interaction which holds subatomic particles together. Today, we know the Yang-

Mills (YM) SU(3) theories as the quantum field theory describing the strong interactions.

The matter particles for this force are quarks, while the strong interaction is mediated

by force carriers called gluons. Particles that interact under the strong force carry a

color charge, and the YM theory of strong interactions is therefore also called Quantum

Chromodynamics (QCD). Different from QED, the gauge fields themselves carry color and

can thus interact with eachother. Therefore the gauge boson Aµ is displayed as AaµT
a,

with a the color charge and T a the SU(3) generators. There are as many Aaµ’s as there
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are generators, and because the number of generators for an SU(N) group is N2 − 1, we

have eight differently colored gluons.

The fact that gluons carry color has dramatic consequences for the relation between

QCD interactions and energy scale. In QED, the fact that charged particles interact

less when they get further away is explained by charge screening. A charged particle

like the electron is surrounded by the vacuum, a cloud of virtual photons and electron-

positron pairs continuously popping in and out of existence. Because of the attraction

between opposite charges, the virtual positrons tend to be closer to the electron and screen

the electron charge. Thus, the effective charge becomes smaller at large distances (low

energies, also called the infrared (IR) region), and grow stronger at small distances (high

energies, also called the ultraviolet (UV) region). This is completely intuitive to us: the

further away, the less interaction. It is also how Feynman diagrams are designed: a free

particle comes in from the distance, interacts, and vanishes into the distance again.

In QCD, quark-antiquark pairs screen the color charged particles in the same way

as the electron-positron pairs screen the electrically charged particles. However, the QCD

vacuum also contains pairs of the charged gluons, which do not only carry color but also

an anti-color magnetic moment. The net effect is not the screening of the color charged

particle, but the augmentation of its charge. This means that the particles will interact

more at larger distances, or lower energies, and vice versa. This was also observed in

experiments: when high energies were applied to quarks, they hardly interacted with

eachother. This means a theoretical model should have a coupling constant descreasing

to zero in the UV limit. In 1973, Gross, Wilczek and Politzer proved that this is indeed

the case for YM theories (GROSS; WILCZEK, 1973; POLITZER, 1973). This behaviour,

called asymptotic freedom, is seemingly counterintuitive and can be best explained by

imagining particles inside an elastic rod: in rest, there is no force between them, but the

further you try to pull it apart, the more they will try to get back together. It also reminds

of a superconductor: if a magnetic field is forced to run through the superconductor, the

energy associated with the created flux tube grows with distance. This has led to some

QCD models based on superconductivity, known as dual superconductor models (RIPKA,

2004).

Asymptotic freedom means that for QCD, the relation between energy scale and

interaction strength is inverted with reference to QED. This means that it should be

possible to use perturbation theory in the UV limit. Indeed, for high energy phe-

nomena the perturbative QCD models are in excellent agreement with the experiments

(JEGERLEHNER; KALMYKOV; VERETIN, 2002; JEGERLEHNER; KALMYKOV;

VERETIN, 2003; MARTIN, 2015a; MARTIN, 2015b). In order to be quantized, these per-

turbative models demand a gauge-fixing, or choosing a gauge, in the Faddeev-Popov (FP)

procedure. This introduces in YM theories so-called ghost fields, which are Grassmann

fields that violate spin-statistics and can therefore not be physical. After gauge-fixing
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there is no longer a local gauge-invariance, but there is still a residual symmetry, known as

Becchi-Rouet-Stora-Tyutin (BRST) symmetry. BRST symmetry guarantees the unitar-

ity of the quantized YM theories and can be used to derive the Slavnov-Taylor identities,

which are fundamental to renormalization methods such as Algebraic Renormalization

(PIGUET; SORELLA, 1995). Important is that the BRST symmetry is nilpotent, which

means the BRST variation s applied on another BRST variation is zero, s2 = 0. Kugo

and Ojima (KUGO; OJIMA, 1978, 1978) used this to distinguish between two types of

states that are annihilated by a BRST transformation: those that trivially do so because

they themselves are a BRST transformations of another state, and those that are not

BRST transformations of another states. Physical states are of the second type and are

said to be in the BRST cohomology. Non-physical states, such as the ghost fields, are of

the first type and are outside the BRST cohomology. BRST symmetry therefore is an

important tool for the definition of physical space.

The UV regime of QCD is well described by perturbative YM theories with a

FP gauge fixing. However, the standard perturbation theory is unable to access the

IR regime because it presents a Landau pole. This may be related to the fact that for

large coupling constants the FP procedure is not valid because the gauge-fixing is no

longer unique, leading to an infinite number of copies of the gauge field in the model.

This was first observed by Gribov in 1978, and is called the Gribov ambiguity. Over

the years, various attempts have been made to deal with this problem, see for example

(ZWANZIGER, 1989; ZWANZIGER, 1993; DUDAL et al., 2008a; SERREAU; TISSIER,

2012; CAPRI et al., 2016c; ZWANZIGER, 2002). Until today, no coherent analytical

model for the IR region in non-abelian gauge theories is available. Nonetheless, we have

learned several things about the IR physics of QCD from lattice simulations. It was

found (BOWMAN et al., 2007; CUCCHIERI; MENDES; TAURINES, 2005; STRAUSS;

FISCHER; KELLERMANN, 2012; DUDAL; OLIVEIRA; SILVA, 2014; DUDAL et al.,

2020b), in lattice simulations for the minimal Landau gauge, that the spectral function of

the gluon propagator is not non-negative everywhere, which means that in the IR there

is no physical interpretation for this propagator like there is for the photon propagator

in QED. This behaviour of the gluon spectral function is commonly associated with the

concept of confinement (CORNWALL, 2013; KREIN; ROBERTS; WILLIAMS, 1992;

ROBERTS; WILLIAMS, 1994; LOWDON, 2018), which means that quarks and gluons

clump together under the strong force to form composite particles called hadrons. Because

they are confined, we do not see isolated quarks and gluons in nature. The non-positivity

of the spectral function then becomes a reflection of the inability of the gluon to exist as

a free physical particle. A further important observation in lattice QCD is that the gluon

propagator shows massive behaviour in the non-perturbative region. This has prompted

research into massive analytical models for the QCD confinement region, which we will

discuss in further detail in section 1.3.1, as well as in chapter 2, where we will discuss a
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BRST invariant solution for the massive QCD model.

Through experiments in the 1950s the weak interaction, responsible for radioactive

decay of the atoms, was predicted to be carried by three gauge bosons: two W bosons and

one Z boson. This fits with the three generators of the SU(2) YM model. Because the W

bosons carry electric charge, the weak and electromagnetic force are described together in

an SU(2)×U(1) theory, called electroweak theory. However, the W,Z bosons are massive,

unlike the photon. In the Lagrangian, a mass term for the gauge boson would take the

form

L ⊃ 1

2
m2AµAµ, (1)

which is not gauge-invariant and can not be implemented into the Lagrangian by hand.

We now know that the solution for this problem is given by the spontaneous symmetry

breaking (SSB) due to the non-zero vacuum value of the scalar SU(2) Higgs field Φ(x), and

the Higgs mechanism1 that gives mass to the gauge bosons. The SU(2) gauge theory with

a scalar field is referred to as Yang-Mills-Higgs (YMH) theory. The Glashow-Weinberg-

Salam (GWS) model of electroweak symmetry breaking (GLASHOW, 1961; WEINBERG,

1967; SALAM, 1968), based on the Higgs mechanism, gives mass to the W,Z bosons, while

keeping the photon massless. Together with QCD, the electroweak theory constitutes the

Standard Model (SM) of particle physics.

The electroweak sector can be shown to be both unitary and renormalizable by

employing a class of gauge-fixing called ’t Hooft or Rξ gauge, which introduces the gauge

parameter ξ. Different choices of ξ highlight different properties of the model. In the

formal limit ξ → ∞, we end up in the unitary gauge, which is considered the physical

gauge as it decouples the non-physical particles. However, this gauge is known to be non-

renormalizable (PESKIN; SCHROEDER, 1995). For any finite choice of ξ, the model is

renormalizable because the Rξ gauge cancels an unrenormalizable mixing term between

the gauge boson and an unphysical Goldstone boson. For ξ → 0, we end up in the Landau

gauge, a very useful gauge choice that picks out the transverse part of the gauge boson.

Of course, any physical process or quantity should be independent of the ξ parameter.

Therefore, the Rξ gauge provides a powerful check on practical calculations.

1 A more accurate name is the Higgs-Brout-Englert-Guralnik-Hagen-Kibble mechanism (HIGGS, 1964;
ENGLERT; BROUT, 1964; GURALNIK; HAGEN; KIBBLE, 1964)
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Higgs mechanism without spontaneous symmetry breaking

In most textbook accounts, the mass generation of gauge bosons through the Higgs

mechanism is displayed in terms of the notion of spontaneous symmetry breaking (SSB) of

the local gauge symmetry. However, the meaning of SSB in connection to the Higgs mech-

anism is ambiguous, since it was established already in 1975 by Elitzur (ELITZUR, 1975)

that local gauge symmetries can never be spontaneously broken. In this section, I will try

to make sense of these contradictory accounts and discuss the solution provided by the

gauge-invariant composite local operators of ’t Hooft (HOOFT et al., 1980) and Fröhlich,

Morchio and Strocchi (FROHLICH; MORCHIO; STROCCHI, 1980; FROHLICH; MOR-

CHIO; STROCCHI, 1981), which are the central subject of this thesis.

The term “spontaneous symmetry breaking” originated in the statistical physics

of phase transitions. One of the best known examples is that of SSB in a ferromagnet.

Above the Curie temperature TC , the ground state of the ferromagnet is rotationally

symmetric because of the random spin orientation of the atoms. Below TC however, the

ground state consists of spins which are aligned within a certain domain, thus breaking

the rotational symmetry. The orientation of this alignment is random in the sense that

each direction is equally likely to occur, but nevertheless one direction is chosen. So, even

though the system still has a rotational symmetry, the ground state is not invariant under

this symmetry and we say the symmetry is spontaneously broken.

Any situation in physics in which the ground state of a system has less symmetry

than the system itself, exhibits SSB. Two different configurations of the ground state are

seperated by an energy barrier, and the phenomenon of SSB therefore goes accompanied

by a discontinuous change of a physical quantity related to the free energy, called the

order parameter, as a function of another quantity, the control parameter. In the case

of a ferromagnet, the magnetic susceptibility (order parameter) goes to infinity at the

critical temperature (control parameter). Symmetry breaking of the ground state is always

connected with mass generation: movement of the ground state in direction of the energy

barrier has an energy cost and as is therefore “massive”, while a movement in the direction

perpendicular to the energy barrier costs zero energy, i.e. it is a “massless” mode. These

concepts become more explicit in field theory, where the massive and massless modes

correspond to genuine massive and massless bosons. This was first described by Nambu

(NAMBU, 1960) for the spontaneous breaking of the chiral symmetry of massless fermions

and was subsequently elucidated by Goldstone (GOLDSTONE, 1961). We can illustrate

the occurrence of massless and massive SSB bosons in the simple model of a complex

scalar field ϕ(x) with U(1) symmetry. The Lagrangian

L = ∂µϕ
†∂µϕ− V (ϕ†ϕ) with V (ϕϕ†) =

λ

2

(
ϕ†ϕ− v2

2

)2

, λ > 0 (2)
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Figure 1 - Higgs potential

Legend: Representation of the potential for the global U(1) symmetry.

Source: The author, 2020.

is invariant under the global U(1) transformation ϕ → eiαϕ. The minimum of the po-

tential is degenerate, because any configuration of the vacuum expectation value (vev)

〈ϕ〉 = v√
2
eiθ, with θ an arbitrary phase, minimizes the potential. This is the famous

“Mexican hat” potential depicted in Figure 1. Any choice for θ will lead to the same U(1)

invariant Langrangian. However, after choosing a particular θ, the vev 〈ϕ〉 is not U(1)

invariant since under a global U(1) transformation θ → θ+ α. Thus, the U(1) symmetry

is spontaneously broken by the vev of the scalar field. Let us now choose one vacuum

orientation, e.g. θ = 0 so that 〈ϕ〉 = v√
2
. We can define two new real scalar field ρ(x)

and χ(x) with zero vev, 〈ρ〉 = 〈χ〉 = 0, and set ϕ = 1√
2

(v + ρ) e−iχ/v. Then, in the

Lagrangian (2) the ρ field acquires a mass mρ = λv, while the field χ remains massless.

The massless boson is called the Nambu-Goldstone (NG) boson, and the U(1) case is the

simplest example of the Goldstone theorem, which states that for every broken generator

there is one massless Goldstone boson. For the U(1) model, the SSB breaks the complete

symmetry, but for more complex systems, SSB can break the symmetry group down to a

subgroup under which the ground state is invariant. For example, the SSB of the chiral

symmetry in QCD breaks a global SU(3) × SU(3) chiral flavor symmetry down to the

diagonal SU(3) group, generating eight NG bosons.

As is well-known, the global U(1) symmetry can be promoted to a local U(1)

gauge symmetry by changing the derivative ∂µϕ in (2) to the covariant derivative Dµϕ =

∂µϕ− ieAµϕ, with Aµ the gauge boson. The Lagrangian
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L = FµνFµν + (Dµϕ)†Dµϕ− V (ϕ†ϕ) with V (ϕϕ†) =
λ

2

(
ϕ†ϕ− v2

2

)2

, λ > 0, (3)

with Fµν = ∂µAν − ∂νAµ, is invariant under the local U(1) transformations ϕ→ eieα(x)ϕ

and Aµ → Aµ+∂µα(x). Naturally, the global U(1) transformations form a subgroup of the

local U(1) transformations, namely when α(x) is constant for every point in spacetime,

α(x) = α. At first glance, it looks like we can repeat the SSB mechanism described for the

global U(1) symmetry by taking 〈ϕ〉 = v√
2
. The field configuration ϕ = 1√

2
(v + h) e−iχ/v

then will give a mass to the gauge boson, mA = ev. While the Lagrangian is still invariant

under a U(1) gauge transformation, the vev of the scalar field is not; we seem to have a

SSB of the local gauge symmetry. The χ(x) field would be the NG boson for the broken

U(1) gauge theory, but for gauge theories this is not a physical degree of freedom since

we can use the gauge freedom to set χ(x) = 0; this gauge choice is called unitary gauge.

The process described above is how the Higgs mechanism is displayed in most in-

troductory text on the subject. It can easily be generalized to non-abelian gauge theories,

and it is used to describe the SU(2)L×U(1)Y → U(1)EM local symmetry breaking which

explains mass generation for the W and Z bosons, as well as for several fermion fields. In

section 1.1 we will go further into the details of the Higgs mechanism in the electroweak

sector.

Despite the phenomological success, however, there are some important objections

to be made against the concept of SSB of a local gauge symmetry. The most important

result in this context is Elitzur’s theorem, which states that local gauge symmetries can

never be broken spontaneously. The theorem is rigorously proven on the lattice (ELITZUR,

1975), but can be understood by the 2-D Ising model, a simple lattice configuration with

two symmetry-breaking ground states: all ↑ and all ↓. In this system, to go from one

ground state to the other there is an extensive energy cost, i.e. there is an energy bar-

rier to overcome, because a change in the ground state configuration encompasses the

whole system. Therefore, at low temperature the system gets stuck in a particular spin

alignment and the symmetry is broken. In constrast, for local symmetries this argu-

ment does not apply. Imagine a local transformation, only acting on a very small subset

of the system: this will change a ground state configuration into another ground state

configuration at zero energy cost. As a consequence, there is no energy barrier between

any two ground states, because they are always related by a sequence of local trans-

formations. The system will be able to explore the entire space of ground states and

there is no symmetry breaking. In the case of the local gauge symmetry, this means

that φ(x), rather than being stuck in a certain gauge configuration, can move around

freely around the “gauge orbit”. This means that when you compute the average value

of the operator over the group it must be zero; Elitzur’s theorem is also stated as that
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all gauge non-invariant operators must have a vanishing vev. For a more formal treat-

ment of Elitzur’s theorem in lattice theory, see for example (ITZYKSON; DROUFFE,

1991).

Of course, local gauge symmetries can be broken explicitly by adding a symmetry

breaking term to the Lagrangian. In fact, for the quantization of a field theory we have to

break the local gauge symmetry by choosing a specific gauge configuration, i.e. by gauge

fixing. It seems that gauge fixing offers a way out of Elitzur’s theorem. Say, for example,

that in the U(1) model (3) we fix the gauge in the Landau gauge, ∂µAµ = 0. Since the very

purpose of a gauge fixing constraint is to restrict the domain of field configurations, the

constraint itself is of course not invariant under a local gauge transformation. Exceptions

are the so-called Gribov copies, which appear when the gauge fixing constraint is pre-

served under local gauge transformations. Gribov copies jeopardize the field description

of non-abelian theories in the low-energy (non-perturbative) regime. For small coupling

constants, however, the Gribov copies can be ignored and it can be shown that e.g. the

Landau gauge does not allow for local gauge transformations in the perturbative region.

Even so, it is easy to see that ∂µAµ = 0 is still invariant under the global subgroup of

the U(1) gauge transformation, α(x) = α. The residual global symmetry which remains

after gauge fixing is called the remnant global gauge symmetry (CAUDY; GREENSITE,

2008). There is no theorem that forbids the SSB of this symmetry. We can then state that

the Higgs mechanism is in fact the breaking of the remnant global symmetry by setting

〈φ〉 = v√
2

after gauge fixing. This is in fact what is done in some modern takes on the

Higgs mechanism (ENGLERT, 2011).

However, there are some important distinction to be made between the SSB of

the global gauge symmetry and the original formulation of SSB. In the ferromagnet, the

SSB of the spin alignment means that out of all physically distinct configurations, one is

actually realised. In contrast, the choice of a particular configuration within the global

gauge symmetry does not reflect any physical outcome, and we therefore do not expect an

accompanying abrupt change in any physical properties, in particular those related to the

free energy. This is in agreement with findings on the lattice (FRADKIN; SHENKER,

1979) that there is no order parameter which varies discontinuously along the path going

from the “confinement phase” (strong coupling) to the “Higgs phase” (weak coupling),

at least in the fundamental representation of the Higgs field. This absence of a phase

boundary is known as “Higgs complementarity”.

A further observation about remnant global gauge symmetry is that it is ambiguous

because different gauge choices will lead to different global subgroups after fixing the

gauge. For example, the aforementioned unitary gauge leaves no global symmetry, while

the Coulomb gauge ∂iAi = 0 leaves a large invariance, α(x) = α(t). The question is

then to decide which, if any, of these gauge-symmetry breakings is associated with a

transition between physically different phases. In (CAUDY; GREENSITE, 2008), it was
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found on the lattice that for SSB of the global remnant symmetry, the Landau gauge and

the Coulomb gauge show distinct transition lines. Moreover, they both show a SSB at

points where there is no actual phase change, making their role in the confinement-Higgs

transition highly doubtful.

Another, often forgotten problem with the approach of gauge-fixing to surpass

Elitzur’s theorem is that choosing a gauge leaves a residual local symmetry: the BRST

symmetry. The vacuum should, even after gauge-fixing, always be BRST invariant be-

cause it is a physical quantity. It thus seems there is no way around using gauge-invariant

fields to represent physical particles. In non-abelian theories, these fields are necessarily

composite. In (HOOFT et al., 1980), ’t Hooft defined composite operators for the SU(2)

Higgs model. These operators are gauge-invariant combinations of the elementary YM

fields, the gauge boson and the fermion fields, with the Higgs field. They are constructed

in such a way that for a constant value of the Higgs field, we regain the elementary field.

The gauge-invariant composite extension of the neutral Z-boson is defined as Φ†DµΦ,

while that of the charged W± bosons is given by εijΦiDµΦj and its complex conjugate.2

The Higgs field itself can be obtained from Φ†Φ. ’t Hooft’s definitions incorporate the

Higgs complementarity, because there is no fundamental difference between the particle

in the Higgs phase and the confining phase. In the confinement phase, the composite op-

erators are bound states of the fundamental field with extremely strong confining forces.

In the Higgs phase, the perturbative expansion of these composite operators will lead to

gauge-invariant descriptions of the expected weakly-interacting degrees of freedom.

In (FROHLICH; MORCHIO; STROCCHI, 1980; FROHLICH; MORCHIO; STROC-

CHI, 1981), Fröhlich, Morchio and Strocchi (FMS) further formalized the role of gauge-

invariant local composite operators in the Higgs mechanism. Because of their gauge

invariance, the composite operators cover the whole gauge orbit, and a non-zero vev for

these operators cannot break the local or global gauge invariance. Thus, taking for exam-

ple the gauge-invariant extension of the Higgs field, O = Φ†Φ, we can assign this field a

vev 〈O〉 = v2

2
. Now, we can achieve the usual dynamics of the Higgs mechanism by taking

Φ = 1√
2

(v + ρ) e−iχ/v, with 〈ρ〉 = 〈χ〉 = 0, without having to impose 〈Φ〉 = v. This is

the Higgs mechanism without a symmetry breaking order parameter. The FMS mecha-

nism gives a simple relation between the correlation functions of the gauge-invariant fields

Õ(x) and the corresponding gauge dependent ones ϕ = (Aaµ, h) calculated in the standard

perturbation expansion. Expanding the two-point function of the composite operator we

2 While they do not play a role in this work, fermions can also be given a gauge-invariant extension, e.g.
Φ†Ψ for the neutrino and εijΦiΨj for the electron.
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find

〈Õ(x)Õ(y)〉 ∼ 〈ϕ(x)ϕ(y)〉1-loop + ... , (4)

where ... denote higher-order loop corrections, combinations of the elementary fields which

make the sum of correlation functions gauge-invariant.

In QCD, the use of composite operators is common in the description of hypo-

thetical composite bound states in the confinement (IR) region. For example, glueballs,

bound states solely composed of gluons, have a field theoretical description as the gauge-

invariant operator F 2
µν (VANDERSICKEL, Thesis (Ph.D. in Physics) - Faculty of Sciences,

Universiteit Gent, Gent, 2011). There are however some important differences between

configurations like glueballs and the local composite gauge-invariant operators. The lo-

cal composite gauge-invariant operators have a clear connection to elementary fields: the

first transforms into the latter when the Higgs field acquires a constant value. As a

consequence, these operators can be analyzed in the Higgs phase by perturbative loop

calculations.

The gauge-invariant FMS construction has gained little attention throughout the

years. In most texts where it appears, it serves mainly as a justification of the Higgs

mechanism, while for practical matters the SSB of the gauge symmetry is used. The

question is whether the FMS mechanism serves a purpose outside this formal role. To try

and answer that question, let us look at the gauge boson propagator

〈Aµ(x)Aµ(y)〉 , (5)

which plays a fundamental role in QED, describing the quantum dynamical path that a

photon takes when it travels from x to y, calculated by means of Feynman-diagrams. In

U(1) theory, the transversal part of the propagator is gauge-invariant and can there-

fore be associated with physically observable quantities. However, in SU(N) theory

the (transverse) propagator is not gauge-invariant (or BRST invariant after gauge fix-

ing) and it is therefore impossible that this object would describe a physical quantity.

Nevertheless, the propagator (5) is a much used quantity in electroweak theory, and

succesfully so: the higher order calculations of the pole masses and cross sections de-

rived from the propagator (5) are in very accurate agreement with the experimental data

(JEGERLEHNER; KALMYKOV; VERETIN, 2002; JEGERLEHNER; KALMYKOV;

VERETIN, 2003; MARTIN, 2015a; MARTIN, 2015b). This apparent paradox can be ex-

plained by the FMS construction. Looking at eq. (4), we can see that the pole mass of the

elementary field ϕ(x) should coincide with the pole mass of the gauge-invariant composite

operator Õ(x). This was confirmed in preliminary lattice result (MAAS; MUFTI, 2014;

MAAS, 2015). This means the pole mass of the gauge-dependent propagator (5) is gauge-

invariant and can be interpreted as a physical quantity. The gauge-invariance of the pole
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mass of (5) can also be proven by the so-called Nielsen identities (NIELSEN, 1975; GAM-

BINO; GRASSI; MADRICARDO, 1999; GAMBINO; GRASSI, 2000; GRASSI; KNIEHL;

SIRLIN, 2001) which follow from the Slavnov-Taylor identities. The Nielsen identities en-

sure that the pole masses of the propagators of the transverse gauge bosons and Higgs

field do not depend on the gauge parameter ξ entering the Rξ gauge fixing condition.

Nevertheless, as one can easily figure out, the use of the non-gauge-invariant fields

has its own limitations which show up in several ways. For example, the spectral den-

sity function of the elementary two-point correlation function 〈ϕ(x)ϕ(y)〉 in terms of the

Källén-Lehmann (KL) representation is not protected from gauge-dependence, because

the higher-order loop correction in (4) will contribute to the gauge-invariance of the Õ(x)

spectral density function. These higher-order loop corrections are the main subject of

the present work. We will show how the local gauge invariant composite operators can

be introduced in the Higgs model and analyzed by perturbative loop calculations. The

main goal is to gain insight in the spectral properties of the gauge bosons and Higgs

fields. Calculations of spectral properties of elementary fields are plagued by an unphys-

ical gauge-dependency, but through the use of the gauge-invariant composite operators,

these feautures can be made visible.

Outline of this thesis

This thesis is organized as follows. In chapter 1, we will discuss existing massive

solutions for YM theories. First, we will discuss in detail the GWS model of electroweak

symmetry breaking of the Standard Model (SM) in section 1.1.1. We will also discuss other

examples of the Higgs mechanism, that are not part of the SM, in 1.2. Massive solutions

for the QCD sector are discussed in section 1.3.1. Chapter 2 is based on (CAPRI et

al., 2018b) and was also treated in (HOLANDA, 2019). In this chapter, we will look at

renormalizable gauge class for the non-local gauge invariant configuration Ahµ(x), which

can be localized by the dimensionless auxiliary Stueckelberg field ξ. In chapter 3, which

is based on (DUDAL et al., 2019), we will discuss the spectral properties of the U(1)

Higgs model. The main purpose of this chapter is to establish the dependence of the

spectral properties for the elementary fields on the gauge parameter. This analysis allows

to disentangle what is physical and what is not at the level of the elementary particle

propagators. In chapter 4, the gauge-invariant spectral description of the U(1) Higgs

model from local gauge-invariant composite operators will be discussed, as was done in

(DUDAL et al., 2020a). In 5, we will extend this analysis to the SU(2) Higgs model, as

done in (DUDAL et al., ). The Conlusion summarizes our conclusions and discusses some

ideas for future projects, based on the results of this work.

Throughout this thesis, we shall work in Euclidean four-dimensional space-time,
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unless otherwise indicated.
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1 MASS GENERATION WITHIN AND BEYOND THE STANDARD

MODEL

1.1 The Higgs mechanism in the Standard Model

The SM describes the strong interactions, weak interactions and hypercharge in an

SU(3)c × SU(2)L × U(1)Y gauge theory, where c stands for color, L for the left-handed

fermions it couples to and Y for the hypercharge. Here, we will discuss the Georgi-

Weinberg-Salam (GWS) model, where SU(2)L × U(1)Y → U(1)EM. Before engaging in

the Higgs mechanism for this model, we will first discuss the gauge sector and the Higgs

sector for the SM. We will not discuss the fermion sector here, but it is important to

realize that quark and lepton masses are also generated through coupling with the Higgs

field, known as Yukawa coupling. For a nice complete overview, see (LOGAN, 2014).

1.1.1 The SM gauge sector

The four-dimensional action of the SM is described in terms of field strength tensors

by:

Sgauge =

∫
d4x

1

4
Ga
µνG

a
µν +

1

4
W a
µνW

a
µν +

1

4
BµνBµν , (6)

with repeated indices taken as summed.

For SU(3)c we have the following field strength tensor

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gs f
abcGb

µG
c
ν , (7)

with gs the strong interaction coupling strength and fabc the antisymmetric structure

constant. There are eight different color charges, corresponding to the eight generators

T a of SU(3), given in matrix representation by λa/2, with λa the Gell-Mann matrices.

For the SU(2)L interaction, the field strength tensor is given by

W a
µν = ∂µW

a
ν − ∂νW a

µ + g εabcW b
µW

c
ν , (8)

with g the weak interaction coupling strength. There are three different charges, so the

structure constant is equal to the Levi-Civita tensor fabc = εabc. The generators ta are

given in matrix representation by τa/2, with τa the Pauli matrices.
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For both SU(3)c and SU(2)L, and any non-abelian group, the relation between the

group generators is given by

[ta, tb] = ifabctc. (9)

Finally, we have the abelian field strength tensor for the U(1)Y interaction

Bµν = ∂µBν − ∂νBµ. (10)

The gauge transformations which leave the Lagrangian (6) invariant are

SU(3)c : Gµ → Uc(x)GµU
−1
c (x) +

i

gc
Uc(x)∂µU

−1
c (x),

Uc = exp(−igcθac (x)T a)

SU(2)L : Wµ → UL(x)WµU
−1
L (x) +

i

g
UL(x)∂µU

−1
L (x),

Uc = exp(−igθaL(x)ta)

U(1)Y : Bµ → UY (x)BµU
−1
Y (x) +

i

g′Y
UY (x)∂µU

−1
Y (x),

UY (x) = exp (−ig′θY (x)Y ) (11)

with Gµ = Ga
µT

a, Wµ = W a
µ t
a and g′ the coupling strength of the hypercharge interaction.

In infinitesimal form, this gives

Ga
µ → Ga

µ − ∂µωac (x)− gfabcGb
µθ

c
c(x)

W a
µ → W a

µ − ∂µθaL(x)− gεabcW b
µθ

c
L(x)

Bµ → Bµ − ∂µωY (x) (12)

1.1.2 The SM Higgs sector

Clearly, the gauge sector does not allow for a massive term of the gauge bosons

to be inserted in by hand, since this would violate gauge-invariance. To explain the

experimentally-observed nonzero mass of the SU(2)L gauge bosons, the SM requires a

new ingredient. We therefore introduce a single SU(2)L-doublet scalar field, which will
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lead to a mass generation of the gauge bosons by means of the Higgs mechanism.

The Higgs field Φ is given by an SU(2)L-doublet of complex scalar fields that can

be written as

Φ =
1√
2

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (13)

with φi properly normalized real scalar fields. The Lagrangian for the Higgs sector is

given by

LΦ = (DµΦ)† (DµΦ)− V (Φ), (14)

with the covariant derivative

Dµ = ∂µ − ig′BµY − igWµ. (15)

The Lagrangian (14) is invariant under the gauge transformations (11) in combination

with

Φ → UY (x)Φ

Φ → UL(x)Φ, (16)

with UL(x) and UY (x) as defined in (11). We assign a hypercharge Y = 1/2 to the Higgs

field, and make it a color singlet.

The most general gauge invariant potential energy function is given by

V (Φ) =
λ

2

(
Φ†Φ− v2

2

)2

, (17)

where we will choose λ and v to be real and positive numbers.

1.1.3 The SM Higgs mechanism

In the introductory chapter, we have seen that the Higgs mechanism cannot be

caused by a non-zero vev of the Higgs field Φ(x), because this field is not gauge-invariant.
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However, this is not contradictory with the statement that the potential (17) is minimized

by the configuration

Φ0 =
1√
2

(
0

v

)
, (18)

as long as we do not attribute it any physical meaning, such as vacuum expectation values.

In fact, eq. (18) is effectively expressing the attribution of a non-zero vev to the composite

local gauge-invariant operator, namely 〈Φ†Φ〉 = Φ†0Φ0 = v2

2
.

We can establish the configuration (18) by choosing

φ3,0 = v, φ1,0 = φ2,0 = φ4,0 = 0. (19)

We can also define a new scalar field h defined by

φ3 = h+ v (20)

so that h0 = 0, while renaming

φ1 = ρ2, φ2 = ρ1, φ4 = −ρ3. (21)

The Higgs field then becomes

Φ =
1√
2

(
iρ1 + ρ2

v + h− iρ3

)
=

1√
2

((v + h) 1 + iρaτa) ·

(
0

1

)
. (22)

Putting this configuration into the potential function (17), we find that h gains a mass

mh =
√
λv, while the ρa fields are massless. We can rewrite (22) up to first order in the

fields as

Φ =
1√
2

exp

(
iρaτa

v

)(
0

v + h

)
, (23)

and “gauge away” the fields ρa by making the appropriate SU(2) gauge transformation.

This means the ρa fields are no physical fields; they are “would-be” Goldstone bosons.
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This gauge choice is the unitary gauge, and the Higgs field after gauge fixing becomes

Φ =
1√
2

(
0

v + h

)
. (24)

The minimizing configuration (18) is not invariant under the gauge transformations

(16), because τaΦ0 6= 0 and 1Φ0 6= 0. Thus, all the generators of SU(2)L × U(1)Y are

broken by the configuration (18). However, one linear combination of these generators

remains unbroken

(t3 + Y )Φ0 =
1

2
√

2

(
t3 + 1

)(0

v

)
= 0. (25)

This is the electric charge operator

Q = t3 + Y =

(
1/2 0

0 −1/2

)
+

(
1/2 0

0 1/2

)
=

(
1 0

0 0

)
(26)

and we see from (13) that φ+ is charged, while φ0 is uncharged. Thus, the electromagnetic

U(1) symmetry group is unbroken, and the Higgs mechanism for the GWS model gives

SU(2)L × U(1)Y → U(1)EM .

1.1.4 Mass generation for gauge bosons

Let us look at the gauge-kinetic term of the Lagrangian (14). The terms quadratic

in the gauge fields are

(DµΦ)† (DµΦ) ⊃ g2v2

8
W a
µW

a
µ +

g′2v2

8
BµBµ −

gg′v2

4
BµW

3µ, (27)

and we can write this in matrix form in the basis (W 1,W 2,W 3, B):

M2 =
v2

4


g2 0 0 0

0 g2 0 0

0 0 g2 −gg′

0 0 −gg′ g′2

 , (28)
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so that for the pure SU(2) theory, g′ = 0, there is a symmetry under the rotation W 1 ↔
W 2 ↔ W 3, i.e. it is invariant under W a

µ → W a
µ + εabcωbW c

µ. This symmetry is called the

custodial symmetry, and we will discuss its origin in section 1.1.5.

We can diagonalize the mass matrix by defining

(
Zµ

Aµ

)
=

(
cos θθ − sin θθ

sin θθ cos θθ

)(
W 3
µ

Bµ

)
, (29)

with cos θθ = g√
g2+g′2

and sin θθ = g′√
g2+g′2

. θω is called weak mixing angle. In the basis

(W 1,W 2, Z, A), we have the mass matrix

M2 =
v2

4


g2 0 0 0

0 g2 0 0

0 0 g2 + g′2 0

0 0 0 0

 . (30)

We identify Aµ as the photon and Z as the neutral weak boson, while the charged weak

bosons are given by the combinations

W± = W1 ∓ iW2. (31)

The masses of the W and Z bosons are related by

MW

MZ

= cos θθ, (32)

and for g′ → 0, we have cos θθ = 1 and the custodial symmetry is restored.

The mass matrix (30) allows for the masses of W boson and Z boson to be de-

termined in terms of three experimentally well known quantities. First, we have the

Fermi coupling constant G = 1.16 × 10−5GeV −2, which gives the minimizing constant

v =
(
G
√

2
)−1/2

. Then, the parameters g and g′ can be expressed in terms of electric charge

and weak mixing angle as g sin θθ = g cos θθ = e, where e is related to the fine-structure

constant as α = e2

4π
= 1

137.04
. The weak mixing angle, finally, has been determined from

neutrino scattering experiments to be sin2 θθ = 0.235± 0.005. We have

MW =

(
απ

G
√

2

)1/2
1

sin θθ
, MZ =

(
απ

G
√

2

)1/2
2

sin 2θθ
(33)
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which gives

MW ≈ 77 GeV, MZ ≈ 88 GeV (34)

which is a reasonable, but not perfect, approximation of the experimentally determined

values

MW = 80.22± 0.26 GeV, MZ = 91.17± 0.02 GeV. (35)

The approximation can be further improved by taking into account renormalization cor-

rections.

1.1.5 Custodial symmetry

We can see the origin of the custodial symmetry by writing out the potential energy

function

V (φ) = λ

(
φ2

1 + φ2
2 + φ2

3 + φ2
4 −

v2

2

)2

. (36)

This potential is cleary invariant under a larger symmetry than SU(2)L × U(1)Y : it

preserves a global O(4) symmetry under which the vector (φ1, φ2, φ3, φ4) transforms. The

global O(4) corresponds to a global SU(2)L×SU(2)R symmetry, as can be seen by writing

Φ in the form of a bidoublet

Φ =
1√
2

(
φ0∗ φ+

−φ+∗ φ0

)
(37)

so that

V (φ) =
λ

2

(
1

2
Tr Φ†Φ− v2

2

)2

, (38)

is invariant under the global SU(2)L × SU(2)R symmetry
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Φ → MLΦM−1
R

Wµ → MLWµM
−1
R (39)

with MR,L = exp
(
iaaR,L

σa

2

)
two independent global SU(2) matrices. The minimizing

configuration for Φ is the bidoublet

Φ0 =
1√
2

(
v 0

0 v

)
, (40)

which breaks the global SU(2)L×SU(2)R symmetry down to subgroup where ML = MR.

This is the diagonal subgroup SU(2)diag, and it is preserved thanks to the fact that we

were able to write Φ0 proportional to the unit matrix.

In order to have the dynamical term in the Lagrangian invariant under SU(2)L ×
SU(2)R, we need a covariant derivative such that

DµΦ→MLDµΦM−L
R , (41)

while preserving the form of the dynamical part of the Lagrangian around the vev eq.

(27). Let us start by switching off the hypercharge gauge interaction U(1)Y , i.e. g′ = 0.

In this case, we can easily meet the requirements (27) and (41) by promoting SU(2)L to

a local gauge symmetry, αaL → ωaL(x). Thus, the Lagrangian

LΦ = Tr (DµΦ)† (DµΦ)− λ
(

Tr Φ†Φ− v2

2

)2

, (42)

with

Dµ = ∂µ − i
g

2
W a
µσ

a, (43)

has an SU(2)L,local × SU(2)R,global symmetry. The minimizing configuration (40) breaks

this symmetry down to the global symmetry of the diagonal subgroup SU(2)diag, defined

by ML = MR in eq. (39). Under this symmetry, the gauge field transforms in infinites-

imal form as W a
µ → W a

µ + εabcωbW c
µ. The diagonal subgroup SU(2)diag is the custodial

symmetry.

Switching on g′, we see from (27) that the custodial symmetry is broken. We can

see this in the Lagrangian when we try to add the U(1)Y gauge symmetry, while preserving
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the SU(2)L,local×SU(2)R,global symmetry. If we change the covariant derivative to the full

SU(2)L ×U(1)Y covariant derivative in eq. (15) while using the bioublet Higgs field (37)

, we would get an erroneous, ‘custodial’ result

Tr (DµΦ)† (DµΦ) ⊃ g2v2

8
W a
µW

a
µ +

g′2v2

8
BµBµ. (44)

We could also define a new covariant derivative

Dµ = ∂µ − i
g

2

(
W a
µσ

a
)
L

+ i
g′

2

(
Bµσ

3
)
R
, (45)

which gives the right result (27) at Φ = Φ0. We then have to gauge the third generator

of MR and identify it with the hypercharge generator, α3
R → θY (x). The generator of the

custodial symmetry would be the electric charge Q = t3 + Y , which remains unbroken

because Φ0 is not charged and therefore Q = 0 at this point. However, gauging only

one component of a global symmetry violates the global symmetry. Thus, the custodial

symmetry is only an approximate global symmetry of the SM, violated by hypercharge

gauge interactions.

The custodial symmetry is important because it rules out some possible scalar field

configurations. The ρ parameter

ρ ≡ M2
W

cos2 θθM2
Z

(46)

was experimentally measured to be very close to its ‘custodial’ value ρ = 1. Now imagine

a complex triplet X with Y = 1 and a minimizing configuration

X0 =

 0

0

vX

 (47)

so that

(DµX)† (DµX) ⊃ g2v2
XW

+
µ W

−
µ + g2v2

XW
3
µW

3
µ + g′2v2

XBµBµ − 2gg′v2
XBµW

3µ. (48)

The mass matrix is therefore, in the basis (W 1,W 2,W 3, B)
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M2
X = v2

X


g2 0 0 0

0 g2 0 0

0 0 2g2 −2gg′

0 0 −2gg′ 2g′2

 , (49)

which we can diagonalize this in the same way as the Φ mass matrix by using the weak

mixing angle matrix (29), so that in the basis (W 1,W 2, Z, A)

M2
X = v2

X


g2 0 0 0

0 g2 0 0

0 0 2(g2 + g′2) 0

0 0 0 0

 . (50)

The photon is still massless, but the custodial symmetry for g′ → 0 is no longer present.

In the presence of both the Φ doublet and the X triplet we have

M2
W =

g2

4
(v2 + 4v2

X), M2
Z =

g2 + g′2

4
(v2 + 8v2

X) (51)

so that

ρ =
v2 + 4v2

X

v2 + 8v2
X

, (52)

so that vX has to be very small compared to v to meet the experimental value of ρ. Thus,

the existence of a scalar boson X with a significant minimizing value X0 is ruled out

by the custodial symmetry. However, combinations of X with other triplets can restore

the custodial symmetry, and make for some interesting beyond-the-SM phenomenology

(LOGAN, 2014).

1.1.6 Rξ gauge class

In the previous sections, we have restricted ourselves to a specific gauge choice, the

unitary gauge. Even though the gauge choice should never affect any physical outcome,

different gauge choices help us to understand different aspects of our model. For example,

in the unitary gauge all fields are physical, which proves the unitarity of the S-matrix.
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On the other hand, using e.g. the Landau gauge, we can prove the renormalizability of

the Higgs model.

Instead of using different gauge fixing models, we can combine several gauge choices

into a gauge class. Gauge classes can go through different gauge choices by means of an

unphysical gauge parameter. For example, the Linear Covariant Gauges (LCG) is a gauge

class given by ∂µAµ = α b, with b an auxiliary field and α the gauge parameter. For α = 0,

we end up in the Landau gauge, while for finite α the gauge field acquires a longitudinal

component. Of course, physical quantities should never depend on α; the gauge parameter

is therefore also an important check of the physicality of our outcome.

In this section, we will discuss the Rξ gauge class, introduced by ’t Hooft to prove

the renormalizability of the Higgs model. It is therefore an important gauge class for the

GWS model, but can be understood in the U(1) Higgs model. In the action

S =

∫
d4x

{
1

4
FµνFµν + (Dµϕ)†Dµϕ+

λ

2

(
ϕ†ϕ− v2

2

)2
}
, (53)

we can parametrize ϕ(x) = 1√
2
(v+h(x))e−iχ(x)/v, and then make the unitary gauge choice

χ(x) = 0. This decouples the non-physical “would-be” NG boson. However, expanding

the Lagrangian we have for the squared gauge boson terms

L ⊃ −1

2
Aµ∂

2Aµ +
1

2
Aµ∂µ∂νAν +

1

2
m2AµAµ, (54)

with m = ev. The two-point function for the gauge boson is then given by

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
Pµν(p2) +

1

m2
Lµν(p2), (55)

with Pµν(p2) = δµν − pµpν
p2

and L(p2) = pµpν
p2

the transversal and longitudinal projectors.

The longitudinal part does not vanish for large values of the momentum p, and we cannot

prove renormalizability.

The problem with renormalizability can be made more explicit by adapting another

parametrization of the scalar field in eq. (53), namely ϕ(x) = 1√
2
(v + h(x) + iρ(x)). This

will lead to a term in the Lagrangian

L ⊃ mAµ∂µρ, (56)

and this mixing term between the gauge boson and the would-be NG boson will lead to
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unrenormalizable results. We therefore employ the gauge-fixing action

Sgf =

∫
d4x

{
1

2ξ
(∂µAµ + ξmρ)2

}
, (57)

known as the Rξ gauge class with the gauge parameter ξ. The mixing term in (57) will

cancel exactly the unwanted mixing term (56). The two-point function for the gauge

boson is now given by

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
Pµν(p2) +

ξ

p2 + ξm2
Lµν(p2), (58)

and we can show that this gauge is renormalizable for all finite values of ξ. Notice that

for ξ = 0 we end up in the Landau gauge, while in the limit ξ → ∞ we find back eq.

(55), the unitary gauge. This means the Rξ-gauge is both unitary and renormalizable.

The would-be Goldstone remains in the Lagrangian and has a two-point function

〈ρ(p)ρ(−p)〉 =
1

p2 + ξm2
, (59)

but the very fact that its mass depends on the ξ-parameter brands it as unphysical. The

same thing happens for the ghost field.

Another important feature of the Rξ-gauge is that we can show, in non-abelian and

abelian gauge theories, that the pole masses of the two-point function of both the gauge

boson Aµ(x) and the Higgs field h(x) do not depend on the gauge parameter ξ (GAM-

BINO; GRASSI, 2000). This property, contained in the Nielsen Identities (NIELSEN,

1975), is important because it allows to give a physical meaning to the polemass of the

otherwise gauge-dependent (and therefore unphysical) correlation functions.

Even though the Rξ-gauge is unique to the Higgs model because it requires the

Goldstone boson ρa, the concepts of this gauge class can be used to define a renormalizable

class of gauge-fixing also outside of the Higgs environment, as we will see in chapter 2.

1.2 Higgs beyond the Standard Model

The Higgs mechanism for the electroweak sector has been firmly established as the

mechanism that gives mass to the W,Z bosons, as well as some fermions, while leaving the

photons massless. In 2012, the Higgs boson was discovered at the CERN Large Hadron

Collidor (LHC) (AAD et al., 2012; CHATRCHYAN et al., 2012), in full agreement with
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the SM predictions.

It is nonetheless important to realize that there is no a priori reason that the Higgs

mechanism only occurs in the version SU(2)× U(1)→ U(1). The Higgs mechanism can

be described for any gauge theory, such as the simple example U(1) → nothing that we

discussed in the introduction. However, the photon is massless, so we know that nature

did not provide for a U(1) Higgs boson. Still, the U(1) Higgs model is a useful toy

model to study several properties of the Higgs model, as we will see in chapter 3 and 4

. Another useful model is SU(2) → nothing, the Higgs-Yang-Mills (HYM) model which

can be achieved by setting g′ = 0 in the electroweak model. This model will be central to

chapter 5. As we have seen in the previous section, the pure SU(2) model will exhibit a

full custodial symmetry.

Since the discovery of the Higgs mechanism, several symmetry breaking models

have been proposed besides the GWS model. We will discuss two of them, both proposed

by Georgi and Glashow. Then, we will also disuss how the Higgs mechanism would occur

in QCD in the presence of an SU(3) Higgs boson.

It is important to mention that while all the examples of the Higgs mechanism in

this section are variations of the Higgs mechanism in the electroweak sector, the same

mechanism of a non-zero minimizing value is also widely used in other areas such as

condensed matter physics, where it was first established by Anderson (ANDERSON,

1962) as an analogy to the Landau-Ginzburg effective model of superconductivity.

1.2.1 SU(2)→ U(1)

This model, proposed in (GEORGI; GLASHOW, 1972), provides an alternative

Higgs model in the electroweak sector. Since SU(2) is homeomorphic to SO(3), we will

use the Hermitian traceless generators

τ 1 =

0 0 0

0 0 −i
0 i 0

 τ 2 =

 0 0 i

0 0 0

−i 0 0

 τ 3 =

0 −i 0

i 0 0

0 0 0

 , (60)

so that (τa)bc = −iεabc. This is a real representation, so the Lagrangian is given by

L = −1

4
F a
µνF

a
µν +

1

2
(Dµφ)2 − λ

8

(
φφ† − v2

)2
, (61)

and the minimizing value of φ(x) is
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φ =

0

0

v

 (62)

so that the mass matrix is given by

M2 =

m
2 0 0

0 m2 0

0 0 0

 , (63)

which means two gauge bosons, A1
µ and A2

µ, are massive, while A3
µ is massless.

The above model does not account for the neutral Z-boson and is therefore not the

correct theory for the electroweak mass generation. However, as was shown in (HOOFT,

1974), identifying the photon with the massless A3
µ does provide for a radial magnetic

field which indicates the existence of a magnetic monopole. The magnetic monopole,

often hypothesized but never found, is not present in the GWS model.

1.2.2 SU(5)→ SU(3)× SU(2)× U(1)

It would be aesthetically nice if the standard model was the low-energy phe-

nomenology of a larger gauge theory. This is the idea of a Grand Unified Theory (GUT).

Georgi and Glashow proposed a model to this effect in (GEORGI; GLASHOW, 1974).

The required Higgs field transforms under the adjoint representation of SU(5) and can

be represented by 5× 5 hermitian traceless matrix. The Higgs field transforms under the

adjoint representation as

Φa → Φa + fabcωbΦc (64)

or, adding a generator ta on both sides

Φ→ Φ− iωa[ta,Φ], (65)

so that configurations of Φ that commute with a (sub)group with generators ta are in-

variant under the gauge transformation related to this (sub)group.

As for any non-abelian gauge theory, the covariant derivative in the adjoint repre-
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sentation is given by

Dab
µ = δab∂µ − gfabcAcµ (66)

with N2− 1 = 24 different color charges, corresponding to the 24 generators ta of SU(5).

We can use eq. (9) and the normalization [ta, tb] = δab

2
to write the mass term of the

Lagrangian as

Lm =
g2

2
(fabcAbµΦc

0)2 = −g2Tr[[ta,Φ0][tb,Φ0]]AaµA
b
µ, (67)

which means, from eq. (65), that gauge bosons corresponding to unbroken symmetries

remain massless.

If we choose

Φ0 = v


2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3

 , (68)

this commutes with the SU(3) subgroup

(
T a 0

0 0

)
, the SU(2) subgroup

(
0 0

0 ta

)
and the

U(1) subgroup corresponding to the generator proportional to Φ0. We then have twelve

massless gauge bosons, corresponding to the unbroken generators of SU(3)×SU(2)×U(1),

and twelve massive gauge bosons. This adjoint Higgs particle would only accomplish

the seperation of the different interactions. Another Higgs field, in the fundamental

representation, would provide electroweak symmetry breaking.

The attractiveness of the SU(5) model, besides its simplicity, lies in the fact that

matter particles fit neatly into representations of SU(5). A single generation of the

standard model fits perfectly into two irreducible representations of SU(5), the 5 and

10. However, the model predicts many unobserved phenomena such as proton decay, and

quark-to-lepton mass ratios that don’t agree with experiment. It also predicts particles

so heavy (MGUT ≈ 1015 GeV) that they cannot be detected.
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1.2.3 SU(3)→ SU(2)× U(1)

The SU(3) Higgs mechanism works in a similar way as that of SU(5). In the

adjoint representation, the minimizing configuration

Φ0 = v

1 0 0

0 1 0

0 0 −2

 , (69)

commutes with the SU(2) subgroup

(
ta 0

0 0

)
, the Gell-Mann matrices λ1,2,3, and the U(1)

subgroup corresponding to the generator proportional to Φ0, i.e. λ8. This amounts to

four massless gauge bosons, corresponding to the unbroken generators of SU(2) × U(1),

and four massive gauge bosons, corresponding to λ4,5,6,7. From (67) one can then find the

mass of the gauge bosons, m = 3gv.

It is well-known that gluons in the high-energy (perturbative) regime are massless.

Therefore, we do not expect a Higgs boson for the strong interaction. However, in non-

perturbative regimes there are indications of massive behaviour, as we will discuss in the

next section.

1.3 Massive solutions for the QCD sector

In the high-energy regime, the FP procedure gives the gauge-fixed YM action for

the massless QCD sector:

S =

∫
d4x

{
1

4
F a
µνF

a
µν + ba∂µA

a
µ + ca∂µD

ab
µ c

b

}
, (70)

with the covariant derivative Dab
µ in the adjoint representation of the gauge group as

in eq. (66), the fields (ca, ca) denoting the FP ghosts and ba the Lagrange multiplier

implementing the Landau gauge condition ∂µG
a
µ = 0. The gauge-fixed Lagrangian is

invariant under the nilpotent BRST symmetry

sAaµ = −Dab
µ c

b

sca =
1

2
gfabccbcc

sca = ba

sba = 0, (71)



44

with s2 = 0. Notice that the Lagrangian in eq. (70) describes any SU(N) theory. As we

will see in what follows, in some cases an SU(2) theory is used as a simplification of the

SU(3) theory to describe the gluon dynamics of the strong interaction. Notice also that

we use the denotation for the gluon field strength tensor F a
µν and for the vector field Aaµ,

instead of Ga
µν and Ga

µ from section 1.1.1 3.

The predictions in the QCD sector derived from the Lagrangian in eq. (223)

through perturbation theory agree with what has been observed in high-energy experi-

ments. However, when extending this analysis to finite energies, the coupling constant

gc diverges and hits a Landau pole. In early studies of QCD, this behaviour was seen as

responsible for the IR counterpart of asymptotic freedom, the “IR slavery” that keeps the

gluons and quarks confined (ALKOFER; SMEKAL, 2001). In other words, confinement

was seen as a direct consequence of the Landau pole. However, the modern view based

on lattice simulations is that the Landau pole is not an expression of confinement, but

rather a sign that some non-perturbative effect, such as the Gribov ambiguity, invalidates

the extension of the perturbative results to the IR regime.

The Gribov ambiguity or Gribov problem, first described by Gribov in (GRIBOV,

1978), demonstrates the non-uniqueness of the FP gauge-fixing beyond the perturbative

level. To explain this, let us consider the Landau gauge, although an analogous argu-

ment can be cast in other gauges. If two gluon fields Aaµ and A
′a
µ connected by a gauge

transformation

A
′a
µ = Aaµ −Dab

µ α
b, (72)

they are said to be on the same gauge orbit. Now if both fields are satisfying the same

gauge fixing condition, i.e. ∂µAµ = ∂µA
′
µ = 0, so that

−∂µDab
µ α

b = 0, (73)

this means that the FP procedure failed to fully eliminate the multiple counting of physi-

cal states in the path integral due to gauge invariance. So, when eq. (73) has solutions for

certain values of the gauge field, so-called zero modes, this means the model still contains

different gauge configurations, known as Gribov copies. Notice that for small values of the

coupling constant gc, the LHS of eq. (73) reduces to ∂2α, which has only positive eigenval-

3 This is in line with most articles written on the subject of YM theories, since for pure YM theories
there is no danger of confusion with the photon field Aµ.
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ues. Therefore, the Gribov problem does not exist in the UV regime, and the FP procedure

is valid there. Over the years, various attempts have been made to deal with this problem

in the continuum functional approach, mainly by trying to evaluate the path integral in

such a way that it contained no zero modes. The most notable attempts in this direc-

tion are the Gribov-Zwanziger (GZ) approach (ZWANZIGER, 1989; ZWANZIGER, 1993;

ZWANZIGER, 2002) and the Refined Gribov-Zwanziger (RGZ) approach (DUDAL et al.,

2008b; DUDAL et al., 2008a; DUDAL; SORELLA; VANDERSICKEL, 2011; CAPRI et

al., 2016c), recently formulated in a BRST invariant fashion (CAPRI et al., 2015; CAPRI

et al., 2016c; CAPRI et al., 2016a; CAPRI et al., 2017a; CAPRI et al., 2017b). For a

nice overview of the Gribov problem and the (R)GZ approach, see (VANDERSICKEL;

ZWANZIGER, 2012).

The breakdown of the FP procedure and the existence of a Landau pole demon-

strate the necessity of non-perturbative components that break with the standard FP

gauge-fixed YM picture. This has lead to analytical QCD models that fundamentally

differ from the model in eq. (70) in the IR, but preserves the standard FP predictions in

the UV. Interestingly, the problem of the Landau pole in asymptotically free theories is

in some cases circumvented by the introduction of an infrared gluon mass. Still, however,

we want to recover the massless character of the FP gauge fixing theory in the pertur-

bative UV region. A model which implements an effective mass only in the IR region

was first proposed in (CORNWALL, 1982) based on the idea of a momentum-dependent

or dynamical gluon mass (PARISI; PETRONZIO, 1980; BERNARD, 1982). For this,

the Schwinger-Dyson (SD) equations are employed in order to get a suitable gap equation

that governs the evolution of the dynamical gluon mass m(p), which vanishes for p2 →∞.

This setup preserves both renormalizability and gauge invariance.

The SD equations give relations between Green’s functions that go beyond per-

turbation theory. In principle this would make them the most important analytical tool

to get insight in the gluon propagator in the IR regime, and they are often employed

as such (BINOSI; IBANEZ; PAPAVASSILIOU, 2012; AGUILAR; BINOSI; PAPAVAS-

SILIOU, 2014; CYROL et al., 2016; HUBER, 2018; BOUCAUD et al., 2012). However,

in practice the SD equations are hard to work with because they entail an infinite set

of coupled equations for the vertex functions, which somehow needs to be truncated.

This requires involved techniques and calculations, with in some cases an important nu-

merical part. Numerically, the IR regime of the gluon propagator is more rigorously

described by lattice simulations. One important observation on the lattice is that the

gluon propagator reaches a finite positive value in the deep IR for space-time Euclidean

dimensions d > 2, see e.g. (CUCCHIERI; MENDES, 2007; CUCCHIERI; MENDES,

2008; BOGOLUBSKY et al., 2009; MAAS, 2009; CUCCHIERI; MENDES; SANTOS,

2009; CUCCHIERI; MENDES, 2010; CUCCHIERI; MENDES, 2009; CUCCHIERI et

al., 2012; BORNYAKOV; MITRJUSHKIN; MULLER-PREUSSKER, 2010; OLIVEIRA;
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Figure 2 - Lattice gluon propagator.

Legend: The gluon propagator D(p2) as a function of the lattice momenta p, with p given in GeV.

Source: CUCCHIERI, MENDES; 2009, p.09.

SILVA, 2012; BICUDO et al., 2015; CUCCHIERI et al., 2016; DUARTE; OLIVEIRA;

SILVA, 2016; DUDAL; OLIVEIRA; SILVA, 2018; BOUCAUD et al., 2018). This sat-

uration of the gluon propagator for small momenta p, see Figure 2, indicates massive

behavior of the gluon in the IR regime. Massive-like behavior for the gluon propaga-

tor, known as the decoupling solution, has also emerged within other approaches, as the

study of the Schwinger-Dyson equations, the Renornalization Group and other techniques,

see for instance (AGUILAR; BINOSI; PAPAVASSILIOU, 2008; AGUILAR; BINOSI; PA-

PAVASSILIOU, 2016; FISCHER; MAAS; PAWLOWSKI, 2009; AGUILAR; BINOSI; PA-

PAVASSILIOU, 2015; HUBER, 2015; FISCHER; PAWLOWSKI, 2009; WEBER, 2012;

FRASCA, 2008; SIRINGO, 2016) and references therein.

1.3.1 Massive Yang-Mills model

The lattice results, as well as the fact that the Landau pole can be circumvented

by an effective gluon mass, has stimulated research into effective massive models for the

IR region of QCD. The aforementioned RGZ theory is an example of such a model. In

this section we will discuss another example: the massive YM model from (TISSIER;

WSCHEBOR, 2010), which is a particular case of the Curci-Ferrari (CF) model (CURCI;

FERRARI, 1976a). The action for this theory is

S =

∫
d4x

{
1

4
Ga
µνG

a
µν + ba∂µA

a
µ + ca∂µD

ab
µ c

b +
1

2
m2AaµA

a
µ

}
, (74)
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which is a Landau gauge FP Euclidean Lagrangian for pure gluodynamics, supplemented

with a gluon mass term. This term modifies the theory in the IR but preserves the FP

perturbation theory for momenta p � m. It was argued that this model could be part

of a complete gauge-fixing in the Landau gauge, since a CF gluon mass term may arise

after the Gribov copies have been accounted for via an averaging procedure (SERREAU;

TISSIER, 2012), see also (TISSIER, 2018) for a related discussion in a different gauge.

The mass term breaks the BRST symmetry of the model, which means the unitarity of

the model can be no longer proven (BOER et al., 1996), although it is debatable whether

some non-perturbative effect could restore unitarity. However, since the BRST breaking

is soft, it does not spoil renormalizability. The Lagrangian (74) turns out to be still

invariant under a modified BRST symmetry

smA
a
µ = −Dab

µ c
b

smc
a =

1

2
gfabccbcc

smc
a = ba

smb
a = im2ca, (75)

which is however not nilpotent since s2
mc

a 6= 0.

The massive YM model is not justified a priori from first principles. Instead,

its legitimacy is measured by how well it accounts for lattice results. In (TISSIER;

WSCHEBOR, 2010; TISSIER; WSCHEBOR, 2011; GRACEY et al., 2019), it has been

shown that, both at one and two-loop order, the model reproduces very well the lattice

predictions for the gluon and ghost propagator, see Figure 3. It was also shown that with

an adequate renormalization scheme, dubbed the Infrared Safe (IS) scheme, there is no

Landau pole.

The analysis of the gluon propagator in (TISSIER; WSCHEBOR, 2010; TISSIER;

WSCHEBOR, 2011; GRACEY et al., 2019) was done by perturbative loop calcula-

tions. How can the non-perturbative region be accessed with perturbative methods?

In (TISSIER; WSCHEBOR, 2011; GRACEY et al., 2019), it is claimed that higher loop

corrections for this model seem to be rather small, even for a significantly high coupling

constant (g = 7.5 in (TISSIER; WSCHEBOR, 2011)). The reason for this, as explaind

in (TISSIER; WSCHEBOR, 2011), lies in the massive gluons. When momenta are much

smaller than the gluon mass, all diagrams that include internal gluon lines are suppressed

by inverse powers of the gluon mass. This means that higher order loop terms, which

naturally possess more internal gluon lines, will be surpressed. Thus, using an effective

mass term makes perturbative loop calculations possible in an otherwise non-perturbative

region.
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Figure 3 - Gluon propagator

Legend: The gluon propagator in the IS scheme compared with the lattice result from (CUCCHIERI;

MENDES, 2009) for one- and two-loop corrections.

Source: GRACEY et al.,2019, p. 09.

1.3.2 Positivity violation and complex poles

The CF model is capable of reproducing, to high accuracy, the lattice results of the

gluon propagator. This is despite the fact that the gluon propagator as derived from eq.

(74) is not gauge-invariant and the model has no nilpotent BRST invariance. It should be

emphasized here, however, that the goal of (TISSIER; WSCHEBOR, 2010) and follow-up

works was not to introduce a theory for massive gauge bosons, but to discuss a relatively

simple and useful effective description of some non-perturbative aspects of QCD. Also,

in this respect the CF model is not in a worse position than other models that try to go

beyond standard perturbation theory, such as the GZ model, which also breaks BRST

symmetry. One could even argue that unitarity of the gauge bosons sector, secured by a

nilpotent BRST symmetry, is not so much an issue here as one expects the gauge bosons

to be undetectable anyhow, due to confinement.

An interesting question is whether the massive YM model is also capable of re-

producing other aspects of QCD observed on the lattice. One of the most intriguing

observations of lattice QCD in recent years is positivity violation. Positivity violation

means that in the KL spectral representation of the propagator

G(p2) =

∫ ∞
0

ρ(t)

t+ p2
dt, (76)

the spectral density function ρ(t) is not positive everywhere. The spectral density function

displays, for a certain two-point function such as the gluon propagator, the different states

(1-particle states, bound states and multiparticle states) associated with different energy
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Figure 4 - Lattice real space propagator

Legend: Lattice results for the real space propagator related to the gluon propagator, for the quenched

case (no quarks) and light sea quark masses. The quenched approximation corresponds to the

pure gauge theory for QCD.

Source: BOWMAN et al. , 2007, p. 05.

values. If the spectral density function violates positivity, the states it describes cannot be

part of the physical state space. Positivity violation is therefore attributed to confinement

(CORNWALL, 2013; KREIN; ROBERTS; WILLIAMS, 1992; ROBERTS; WILLIAMS,

1994; LOWDON, 2018): the non-positivity of the spectral function is seen as a reflection

of the inability of the gluon to exist as a free physical particle.

Positivity violation for the gluon propagator has been confirmed in both analytical

studies of the SD equations (SMEKAL; HAUCK; ALKOFER, 1997; SMEKAL; HAUCK;

ALKOFER, 1998; ALKOFER et al., 2004) and in lattice simulations (CUCCHIERI;

MENDES; TAURINES, 2005; BOWMAN et al., 2007). In (ALKOFER; SMEKAL, 2001),

a complete overview of evidence for positivity violation is given. On the lattice, positivity

violation is detected through the real space propagator C(t) related to the gluon propa-

gator, see Figure 4. The real space propagator is defined by

C(t) =

∫ ∞
−∞

dp

2π
eiptG(p), (77)

that is, C(t) is the Fourier transform of the gluon propagator G(p). It can be shown,

see for example (CUCCHIERI; MENDES; TAURINES, 2005), that positivity of the real

space propagator implies positivity of the spectral density function.

In (TISSIER; WSCHEBOR, 2010), the real space propagator for the gluon prop-
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Figure 5 - Real space propagator

Legend: Real space propagator related to the one-loop

corrected gluon propagator for the massive YM model.

Source: TISSIER; WSCHEBOR, 2010, p. 03.

agator in the CF model was obtained by inserting the one-loop gluon propagator derived

from the action (74) into eq. (77), and it was found that the curve of C(t) as observed on

the lattice was reproduced, including the positivity violation, see Figure 5. On the one

hand, it is remarkable that the CF model seems capable of reproducing the lattice results

of the real space propagator. On the other hand, we should distinguish between the sig-

nificance of positivity violation on the lattice and in the CF model. In lattice simulations,

one starts out with a unitary (physical) YM model and subsequently observes positivity

violation, i.e. non-physical behavior. In the CF model however, one starts out with a

model without a nilpotent BRST symmetry. From the Kugo-Ojima criterion (KUGO;

OJIMA, 1979), it is known that nilpotency of the BRST symmetry is indispensable to

formulate suitable conditions for the construction of the states of the BRST invariant

physical (Fock) sub-space, providing unitarity of the S-matrix. Indeed, in (OJIMA, 1982;

BOER et al., 1996) the existence of negative norm states in the sm-invariant subspace

(“the would-be physical subspace”) was confirmed, see also section 3.5 for a detailed ex-

ample. Therefore, to find non-physical behavior for a model without BRST symmetry is

somewhat of a self fulfilling prophecy.

In fact, the non-physical behaviour of the CF model can be detected in a step prior

to the spectral density function. As was established in (KONDO et al., 2020), and recently

in (FISCHER; HUBER, 2020) in the context of SD equations, the use of the Landau gauge

in the massive YM model (74) leads to complex pole masses, which will obstruct the

calculation of the KL spectral function. Indeed, if at some order in perturbation theory
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(one-loop as in (KONDO et al., 2020) for example) a pair of Euclidean complex pole

masses appear, at higher order these poles will generate branch points in the complex p2-

plane at unwanted locations, i.e. away from the negative real axis, deep into the complex

plane, thereby invalidating a KL spectral representation. This can be appreciated by

rewriting the Feynman integrals in terms of Schwinger or Feynman parameters, whose

analytic properties can be studied through the Landau equations (EDEN et al., 1966).

Let us also refer to (BAULIEU et al., 2010; WINDISCH; HUBER; ALKOFER, 2013) for

concrete examples. In chapter 2 we will develop some methods to avoid complex poles in

the unitary Higgs model.

Finally, it must be pointed out that also lattice simulations of the gluon prop-

agator are not free of “built-in” non-physical features that could attribute to positiv-

ity violation. In all studies that show a violation of positivity, both in the context of

SD equations and on the lattice, a gauge-dependent and therefore a priori non-physical

Landau-gauge gluon propagator is used. Indeed, even while on the lattice it is in prin-

ciple possible to work only with gauge-invariant quantities, in (CUCCHIERI; MENDES;

TAURINES, 2005; BOWMAN et al., 2007) a gauge-dependent environment was cre-

ated, including a lattice gauge-fixing. This gauge-dependent environment also provided

the opportunity to test the naturally gauge-dependent GZ proposal on the lattice, see

for example (CUCCHIERI; MENDES, 2009; CUCCHIERI; MENDES, 2013; DUDAL;

OLIVEIRA; VANDERSICKEL, 2010; CUCCHIERI et al., 2012; CUCCHIERI; DUDAL;

VANDERSICKEL, 2012). The use of the gauge-dependent propagator is justified in lit-

erature because for an unconfined field, the propagator presumably has a normal KL

representation (CORNWALL, 2009), in line with the fact that predictions made from

the perturbative gluon propagator of the gauge-fixed YM model agree with experimen-

tal observations (JEGERLEHNER; KALMYKOV; VERETIN, 2002; JEGERLEHNER;

KALMYKOV; VERETIN, 2003; MARTIN, 2015a; MARTIN, 2015b). This motivated the

hypothesis that gauge dependent propagators could give some piece of information about

confinement. Nonetheless, the question can be asked whether the gauge field in its ele-

mentary, gauge-dependent form gives a complete representation of the gauge boson in all

ranges of the energy scale. It can be hypothesized that these elementary fields are in fact

part of a greater gauge-invariant configuration, which shares with the gauge-dependent

field some essential, but not all, properties. In the next chapters, we will discuss two

proposals to this effect: the non-local composite configuration Ah in chapter 2 and the

local gauge-invariant composite operators proposed by ’t Hooft (HOOFT et al., 1980)

in chapters 3 and 4. The latter are unique to the Higgs model, but they are not less

relevant to the above question since the W,Z bosons are also expected to be confined in

the low-energy regime.
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2 ON A RENORMALIZABLE CLASS OF GAUGE FIXINGS FOR THE

GAUGE INVARIANT OPERATOR A2
MIN

In this chapter we pursue the investigation (CAPRI et al., 2016b) of the dimension

two gauge invariant operator A2
min, obtained by minimizing the functional Tr

∫
d4xAuµA

u
µ

along the gauge orbit of Aµ (ZWANZIGER, 1990; DELL’ANTONIO; ZWANZIGER, 1989;

DELL’ANTONIO; ZWANZIGER, 1991; BAAL, 1992), namely

A2
min ≡ min

{u}
Tr

∫
d4xAuµA

u
µ ,

Auµ = u†Aµu+
i

g
u†∂µu . (78)

As highlighted in (CAPRI et al., 2016b), the functional A2
min enables us to introduce a

non-local gauge invariant field configuration Ahµ (LAVELLE; MCMULLAN, 1997) which

turns out to be helpful to construct renormalizable BRST invariant YM theories which

can be employed as effective massive theories to study non-perturbative infrared aspects of

confining YM theories in Euclidean space. As we will see, the massive YM model discussed

in 1.3.1 is deeply related to A2
min, because Ahµ and Aµ are equal in the Landau gauge, see

eq. (82) below. See also (CAPRI et al., 2018c) for a supersymmetric extension of the

composition Ahµ(x). In the present chapter we extend the analysis of the operator A2
min to

a general class of covariant gauges which share great similarity with ’t Hooft’s Rζ-gauge

discussed in section 1.1.6. In fact, as shown in (CAPRI et al., 2016b), the localization

procedure for both A2
min and Ahµ requires the introduction of a dimensionless auxiliary

Stueckelberg field ξ which, as much as the Higgs field of ’t Hooft’s Rζ-gauge, will now enter

explicitly the gauge condition through the appearance of a gauge massive paramater µ2.

This property will enable us to provide a fully BRST invariant mass for the auxiliary field

ξ, a feature which might have helpful consequences in explicit loop calculations involving

ξ in order to keep control of potential infrared divergences associated to its dimensionless

nature. Moreover, as in the case of Rζ-gauge, also the Faddeev-Popov ghosts will acquire

a mass through the gauge-fixing. Of course, setting µ2 = 0, the linear covariant gauges

discussed in (CAPRI et al., 2016b) will be recovered. The chapter is organized as follows.

In section 2.1 we give a short presentation of the main properties of A2
min and of the

gauge invariant configuration Ahµ, reminding to Appendix (A) for more specific details.

Sections 2.2,2.3,2.4,2.5 are devoted to the presentation of the local BRST invariant action

for A2
min and Ahµ as well as of the main properties of the aforementioned gauge-fixing. In

section 2.6 we establish the set of Ward identities fulfilled by the resulting action. These

identities will be employed to characterize the most general allowed invariant counterterm

through the procedure of the algebraic renormalization (PIGUET; SORELLA, 1995). In
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section 2.7 a detailed analysis of the counterterm will be presented together with the

renormalization factors needed to establish the all order renormalizability of the model.

Section 2.8 contains our conclusion. Finally, in Appendix B, a second, equivalent, proof of

the renormalizability of the model will be outlined by making use of a generalised gauge

fixing and ensuing Ward identities.

2.1 Brief review of the operator A2
min and construction of a non-local gauge

invariant and transverse gauge field Ahµ

Here we will give a short overview of the operator A2
min, eq.(78), reminding to the

more complete Appendix A for details.

In particular, looking at the the stationary condition for the functional (78), one

gets a non-local transverse field configuration Ahµ, ∂µA
h
µ = 0, which can be expressed as

an infinite series in the gauge field Aµ, see Appendix A, i.e.

Ahµ =

(
δµν −

∂µ∂ν
∂2

)
φν , ∂µA

h
µ = 0 ,

φν = Aν − ig
[

1

∂2
∂A,Aν

]
+
ig

2

[
1

∂2
∂A, ∂ν

1

∂2
∂A

]
+O(A3) . (79)

Remarkably, as shown in Appendix A, the configuration Ahµ turns out to be left invariant

by infinitesimal gauge transformations order by order in the gauge coupling g (LAVELLE;

MCMULLAN, 1997):

δAhµ = 0 ,

δAµ = −∂µω + ig [Aµ, ω] . (80)

Making use of (79), the gauge invariant nature of expression (78) can be made manifest

by rewriting it in terms of the field strength Fµν . In fact, as proven in (ZWANZIGER,

1990), it turns out that

A2
min =

∫
d4xAhµA

h
µ = −1

2
Tr

∫
d4x

(
Fµν

1

D2
Fµν + 2i

1

D2
Fλµ

[
1

D2
DκFκλ,

1

D2
DνFνµ

]
−2i

1

D2
Fλµ

[
1

D2
DκFκν ,

1

D2
DνFλµ

])
+O(F 4) , (81)

from which the gauge invariance becomes apparent. The operator (D2)−1 in expression

(81) denotes the inverse of the Laplacian D2 = DµDµ with Dµ being the covariant deriva-

tive (ZWANZIGER, 1990). Let us also underline that, in the Landau gauge ∂µAµ = 0,
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the operator (AhµA
h
µ) reduces to the operator A2

(Ah,aµ Ah,aµ )
∣∣∣
Landau

= AaµA
a
µ . (82)

This feature, combined with the gauge invariant nature of (Ah,aµ Ah,aµ ), implies that the

anomalous dimension of (Ah,aµ Ah,aµ ) equals (CAPRI et al., 2016b), to all orders, that of

the operator AaµA
a
µ of the Landau gauge, i.e.

γ(Ah)2 = γA2

∣∣∣
Landau

. (83)

Moreover, as proven in (DUDAL; VERSCHELDE; SORELLA, 2003), γA2

∣∣∣
Landau

is not an

independent parameter, being given by

γA2

∣∣∣
Landau

=

(
β(a)

a
+ γLandau

A (a)

)
, a =

g2

16π2
, (84)

where (β(a), γLandau
A (a)) denote, respectively, the β-function and the anomalous dimension

of the gauge field Aµ in the Landau gauge. This relation was conjectured and explicitly

verified up to three-loop order in (GRACEY, 2003).

2.2 A local action for Ahµ

Following (CAPRI et al., 2016b), a fully local framework for the gauge invariant

operator Ahµ can be achieved. To that end, we consider the local, BRST invariant, action

Sinv =

∫
d4x

1

4
F a
µνF

a
µν +

∫
d4x

(
τa ∂µA

h,a
µ +

m2

2
Ah,aµ Ah,aµ + η̄a∂µD

ab
µ (Ah)ηb

)
, (85)

where

Ahµ ≡ Ah,aµ T a = h†Aµh+
i

g
h†∂µh. (86)

with

h = eigξ = eigξ
aTa . (87)

The matrices {T a} are the generators of the gauge group SU(N) and ξa is an auxiliary

localizing Stueckelberg field. By expanding (86), one finds an infinite series whose first

terms are

(Ah)aµ = Aaµ − ∂µξa − gfabcAbµξc −
g

2
fabcξb∂µξ

c + higher orders . (88)
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That the action Sinv gives a local setup for the nonlocal operator Ahµ of eq.(79) follows by

noticing that the Lagrange multiplier τ implements precisely the transversality condition

∂µA
h
µ = 0 , (89)

which, when solved iteratively for the Stueckelberg field ξa, gives back the expression

(79), see Appendix A. In addition, the extra ghosts (η̄, η) account for the Jacobian arising

from the functional integration over τ which gives a delta-function of the type δ(∂Ah).

Finally, the term m2

2
Ah,aµ Ah,aµ accounts for the inclusion of the gauge invariant operator

Ah,aµ Ah,aµ through the mass parameter m2 which, as mentioned before, can be used as

an effective infrared parameter whose value can be estimated through comparison with

the available lattice simulations on the two-point gluon correlation function, see (DU-

DAL et al., 2008b; DUDAL et al., 2008a; DUDAL; SORELLA; VANDERSICKEL, 2011;

TISSIER; WSCHEBOR, 2010; TISSIER; WSCHEBOR, 2011; AGUILAR; BINOSI; PA-

PAVASSILIOU, 2008; AGUILAR; BINOSI; PAPAVASSILIOU, 2016; FISCHER; MAAS;

PAWLOWSKI, 2009; AGUILAR; BINOSI; PAPAVASSILIOU, 2015; HUBER, 2015; FIS-

CHER; PAWLOWSKI, 2009; WEBER, 2012; FRASCA, 2008; SIRINGO, 2016; CUC-

CHIERI; MENDES, 2007; CUCCHIERI; MENDES, 2008; CUCCHIERI et al., 2012;

OLIVEIRA; SILVA, 2012; CUCCHIERI; MENDES; SANTOS, 2009; CUCCHIERI et

al., 2011; BICUDO et al., 2015; CUCCHIERI et al., 2016)

The local action Sinv, eq.(85), enjoys an exact BRST symmetry:

sSinv = 0 , (90)

where the nilpotent BRST transformations are given by

sAaµ = −Dab
µ c

b ,

sca =
g

2
fabccbcc ,

sc̄a = iba ,

sba = 0 ,

sτa = 0 ,

sη̄a = sηa = 0 ,

s2 = 0 . (91)

For the Stueckelberg field one has (DRAGON; HURTH; NIEUWENHUIZEN, 1997), with

i, j indices associated with a generic representation,

shij = −igca(T a)ikhkj , s(Ah)aµ = 0 , (92)
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from which the BRST transformation of the field ξa can be evaluated iteratively, yielding

sξa = gab(ξ)cb = −ca +
g

2
fabccbξc − g2

12
famrfmpqcpξqξr +O(ξ3) . (93)

2.3 Introducing the gauge fixing term Sgf

As it stands, the action (85) needs to be equipped with the gauge fixing term, Sgf ,

which we choose as

Sgf =

∫
d4x s

(
c̄a(∂µA

a
µ − µ2ξa)− iα

2
c̄aba

)
=

∫
d4x

(
iba∂µA

a
µ +

α

2
baba − iµ2baξa + c̄a∂µD

ab
µ (A)cb + µ2c̄agab(ξ)cb

)
. (94)

Besides the traditional gauge parameter α, we have now introduced a second gauge mas-

sive parameter µ2. As it will be clear in the next section, this massive parameter will

provide a fully BRST invariant regularizing mass for the Stueckelberg field ξa, a feature

which has helpful consequences when performing explicit loop calculations involving ξa.

Setting µ2 = 0, the gauge fixing (94) reduces to that of the usual linear covariant gauge

(CAPRI et al., 2016b). Moreover, when µ2 = α = 0, the Landau gauge, ∂µA
a
µ = 0,

is recovered. Nevertheless, it is worth underlining that both µ2 and α appear only in

the gauge fixing term, which is an exact BRST variation. As such, µ2 and α are pure

gauge parameters which will not affect the correlation functions of local BRST invariant

operators.

Though, before going any further, let us provide a few remarks related to the

explicit presence of the Stueckelberg field ξa in eq. (94). As it is easily realized, the field

ξa is a dimensionless field, a feature encoded in the fact that the invariant action Sinv

itself is an infinite series in powers of ξa. As in any local quantum field theory involving

dimensionless fields, one has the freedom of performing arbitrary reparametrization of

these fields as, for instance, in the case of the two-dimensional non-linear sigma model

(BLASI; DELDUC; SORELLA, 1989; BECCHI; PIGUET, 1989) and of N = 1 super YM

in superspace (PIGUET; SIBOLD, 1982, 1982). In the present case, this means that we

have the freedom of replacing ξa by an arbitrary dimensionless function of ξa, namely

ξa → ωa(ξ) = ξa + aabc1 ξbξc + aabcd2 ξbξcξd + aabcde3 ξbξcξdξe + ........ (95)

This freedom, inherent to the dimensionless nature of ξa, is clearly evidentiated at the

quantum level by the fact that the Stueckelberg field renormalizes in a non-linear way

(CAPRI et al., 2016b), i.e. like eq. (95), expressing precisely the freedom one has in the
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choice of a reparametrization for ξa.

In our context, in eq.(94), we could have been equally started with a term like

s (c̄aξa)→ s (c̄aωa(ξ)) = s
(
c̄a(ξa + aabc1 ξbξc + aabcd2 ξbξcξd + ...)

)
. (96)

Of course, as much as µ2 and α, all coefficients (aabc1 , aabcd2 , aabcde3 , ...) are gauge parameters,

not affecting the correlation functions of the gauge invariant quantities. Equation (96)

expresses the freedom which one always has when dealing with a gauge fixing term which

depends explicitly from a dimensionless field, as the term (94). In particular, this freedom

will persist through the renormalization analysis, meaning that the renormalization of

the gauge fixing itself has to be determined modulo an exact BRST terms of the kind

s (c̄aωa(ξ)). Alternatively, one could start directly with the generalized gauge-fixing

Sgengf =

∫
d4x s

(
c̄a(∂µA

a
µ)− µ2ωa(ξ))− iα

2
c̄aba

)
=

∫
d4x

(
iba∂µA

a
µ +

α

2
baba − iµ2baωa(ξ) + c̄a∂µD

ab
µ (A)cb + µ2c̄a

∂ωa(ξ)

∂ξc
gcd(ξ)cd

)
,

(97)

and take into account the renormalization of the quantity ωa(ξ), encoded in the infinte

set of gauge parameters (aabc1 , aabcd2 , aabcde3 , ...). In the following, we shall make use of the

gauge-fixing (94) and identify in the final counterterm the term which corresponds to the

reparametrization (96). Moreover, in the Appendix B, we shall provide a second proof of

the renormalizability of the model by deriving the generalized Slavnov-Taylor identities

corresponding to the gauge fixing term (97).

In summary, as starting point, we shall take the local, BRST invariant action

S = Sinv + Sgf , (98)

with

sS = 0 , (99)

where the BRST transformations are given by eqs.(91),(92),(93).

Let us proceed now by giving a look at the propagators of the elementary fields.

2.4 A look at the propagators of the elementary fields

The propagators of the elementary fields are easily evaluated from the quadratic

part of the action, eq.(98), i.e.
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Squad. =

∫
d4x

(
1

4
(∂µA

a
ν − ∂νAaµ)2 + iba∂µA

a
µ +

α

2
baba + c̄a∂2ca − µ2c̄aca

+
m2

2
AaµA

a
µ −m2Aaµ∂µξ

a +
m2

2
(∂µξ

a) (∂µξ
a)

+τa∂µA
a
µ − τa∂2ξa + η̄a∂2ηa − iµ2baξa

)
=

∫
d4x

1

2

[
Aaµ ba ξa τa

]
×

×


(−δµν∂2 + ∂µ∂ν +m2) −i∂µ −m2∂µ −∂µ

i∂ν α −iµ2 0

m2∂ν −iµ2 −m2∂2 −∂2

∂ν 0 −∂2 0



Aaµ

ba

ξa

τa


+

∫
d4x

(
c̄a∂2ca + η̄a∂2ηa − µ2c̄aca

)
. (100)

Thus, for the propagators we get

〈
Aaµ (p)Abν (−p)

〉
= δab

(
Pµν

p2 +m2
+

αp2Lµν

(p2 + µ2)2

)
〈
Aaµ (p) bb (−p)

〉
= δab

(
pµ

p2 + µ2

)
〈
Aaµ (p) ξb (−p)

〉
= δab

(
−iαpµ

(p2 + µ2)2

)
〈
Aaµ (p) τ b (−p)

〉
= δab

(
iµ2pµ

p2 (p2 + µ2)

)
〈
ba (p) bb (−p)

〉
= 0〈

ba (p) ξb (−p)
〉

=
δabi

p2 + µ2〈
ba (p) τ b (−p)

〉
= 0〈

ξa (p) ξb (−p)
〉

=
δabα

(p2 + µ2)2〈
ξa (p) τ b (−p)

〉
=

δab

p2 + µ2〈
τa (p) τ b (−p)

〉
= −δ

abm2

p2〈
c̄a (p) cb (−p)

〉
=

δab

p2 + µ2〈
η̄a (p) ηb (−p)

〉
=

δab

p2
(101)

where, Pµν =
(
δµν − pµpν

p2

)
and Lµν = pµpν

p2
are the transverse and longitudinal projec-

tors. We see that all propagators have a nice ultraviolet behavior, fully compatible with
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the power-counting. Moreover, the role of the massive gauge parameter µ2 becomes now

apparent: it gives a BRST invariant regularizing mass for the Stueckelberg field ξa. Ob-

serve in fact that, when µ2 = 0, the propagator of the Stueckelberg field is given by

〈ξ(p)ξ(−p)〉µ2=0 = α
p4

which might give rise to potential infrared divergences in some class

of Feynman diagrams. Notice also that, as expected, the mass parameter m2 appears in

the transverse part of the gluon propagator, a feature which exhibits its physical mean-

ing. In fact, being coupled to the gauge invariant operator (Ah,aµ Ah,aµ ), the parameter m2

will enter the correlation functions of physical operators, i.e. gauge invariant operators,

allowing thus to parametrize in an effective way their infrared behavior.

2.5 A2
min versus the conventional Stueckelberg mass term

As done in (CAPRI et al., 2016b), before facing the analysis of the renormalizability

of the action S, eq. (98), let us make a short comparison with the standard Stueckelberg

mass term (RUEGG; RUIZ-ALTABA, ), corresponding to the action

SStueck =

∫
d4x

(
1

4
F a
µνF

a
µν +

m2

2
Ah,aµ Ah,aµ

)
+ Sgf , (102)

where Sgf is given by eq. (94). One sees that the conventional Stueckelberg action

corresponds to the addition of the gauge invariant operator (Ah,aµ Ah,aµ ) without taking

into account the transversality constraint ∂µA
h,a
µ = 0, implemented in the action (98)

through the Lagrange multiplier τa and the corresponding ghosts (η̄a, ηa). The removal of

the constraint ∂µA
h,a
µ = 0 gives rise to the conventional Stueckelberg propagator, namely

〈ξa (p) ξb (−p)〉Stueck =
δabp2

m2(p2 + µ2)2
+

δabα

(p2 + µ2)2 . (103)

From this expression one easily understand the cause of the bad ultraviolet behavior of

the Stueckelberg mass term, giving rise to its nonrenormalizability (FERRARI; QUADRI,

2004). We see in fact that the mass parameter m2 enters the denominator of expression

(103). As one easily figures out, this property jepardizes the renormalizability of the stan-

dard Stueckelberg formulation (FERRARI; QUADRI, 2004). Due to the presence of the

parameter m2 in the denominator of expressions (103), non-renormalizable divergences in

the inverse of the mass m2 will show up, invalidating thus the perturbative loop expansion

based on expression (102).

The role of the term
∫
d4x τa ∂µA

h,a
µ , implementing the constraint ∂µA

h,a
µ = 0,

becomes now clear. It gives rise to a deep modification of the Stueckelberg propagator,

removing precisely the first problematic term, δabp2

m2(p2+µ2)2
, from expression (103). We are

left therefore only with the second piece, i.e. δabα
(p2+µ2)2

, which does not pause any problem
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with the ultraviolet power-counting. It is this nice feature which will ensure the all order

renormalizability of the action S, eq.(98), as we shall discuss in details in the next sections.

2.6 Algebraic characterization of the counterterm

We are now ready to start the analysis of the renormalizability of the action S,

eq. (98). Following the setup of the algebraic renormalization (PIGUET; SORELLA,

1995), we proceed by establishing the set of Ward identities which will be employed for

the study of the quantum corrections. To that end, we need to introduce a set of external

BRST invariant sources (Ωa
µ, L

a, Ka) coupled to the non-linear BRST variations of the

fields (Aaµ, c
a, ξa) as well as sources (J a

µ ,Ξ
a
µ) coupled to the BRST invariant composite

operators (Ahaµ , D
ab
µ (Ah)),

sΩa
µ = sLa = sKa = sJ a

µ = sΞa
µ = 0 . (104)

We shall thus start with the BRST invariant complete action Σ defined by

Σ =

∫
d4x

(
1

4

(
F a
µν

)2
+ iba∂µA

a
µ + c̄a∂µD

ab
µ c

b +
α

2
(ba)2 − iMabbaξb

−Nabc̄aξb +Mabc̄agbc (ξ) cc + η̄a∂µD
ab
µ

(
Ah
)
ηb +

m2

2
Ahaµ A

ha
µ

+τa∂µA
ha
µ − Ωa

µD
ab
µ c

b +
g

2
fabcLacbcc +Kag (ξ)ab cb + J a

µA
ha
µ

+ Ξa
µD

ab
µ

(
Ah
)
ηb
)
, (105)

where, for later convenience, we have also introduced the BRST doublet of external sources

(Mab, Nab)

sMab = Nab , sNab = 0 , (106)

so that

sΣ = 0 . (107)

Notice that the invariant action S of eq. (98) is immediately recovered from the complete

action Σ upon setting the external sources (Ωa
µ = La = Ka = J a

µ = Ξa
µ = 0) and

(Mab = δabµ2, Nab = 0).

It turns out that the complete action Σ obeys the following Ward identities:
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• the Slavnov-Taylor identity

S (Σ) =

∫
d4x

(
δΣ

δΩa
µ

δΣ

δAaµ
+
δΣ

δLa
δΣ

δca
+ iba

δΣ

δc̄a
+

δΣ

δKa

δΣ

δξa
+Nab δΣ

δMab

)
= 0 ,

(108)

• the equation of motion of the Lagrange multiplier ba and of the antighost c̄a

δΣ

δba
= i∂µA

a
µ + αba − iMabξb , (109)

δΣ

δc̄a
+ ∂µ

δΣ

δΩa
µ

−Mab δΣ

δKb
= Nabξb , (110)

• the ghost-number Ward identity

∫
d4x

(
ca
δΣ

δca
− c̄a δΣ

δc̄a
− Ωa

µ

δΣ

δΩa
µ

− 2La
δΣ

δLa
−Ka δΣ

δKa
+Nab δΣ

δNab

)
= 0 (111)

• the equation of the Lagrange multiplier τa

δΣ

δτa
− ∂µ

δΣ

δJ a
µ

= 0 , (112)

• the ηa Ward identity

∫
d4x

(
δΣ

δηa
+ gfabcη̄b

δΣ

δτ c
+ gfabcΞb δΣ

δJ c
µ

)
= 0 , (113)

• the η̄a antighost equation

δΣ

δη̄a
− ∂µ

δΣ

δΞa
µ

= 0 , (114)

• the (ηa, η̄a) ghost number

∫
d4x

(
ηa
δΣ

δηa
− η̄a δΣ

δη̄a
− Ξa δΣ

δΞa

)
= 0 . (115)

All quantum numbers and dimensions of all fields and sources are displayed in Tables

(1) and (2).
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Table 1 - Quantum number of the fields.

Aaµ ba ca c̄a τa ηa η̄a ξa

dim. 1 2 0 2 2 0 2 0
c gh. number 0 0 1 -1 0 0 0 0
η gh. number 0 0 0 0 0 1 -1 0

Source: The author, 2020.

Table 2 - The quantum numbers of the sources.

Ωa
µ La Ka J a

µ Ξa
µ Mab Nab

dim. 3 4 4 3 2 2 2
c gh. number -1 -2 -1 0 0 0 1
η gh. number 0 0 0 0 -1 0 0

Source: The author, 2020.

In order to characterize the most general invariant counterterm which can be freely

added to all order in perturbation theory, we follow the setup of the algebraic

renormalization (PIGUET; SORELLA, 1995) and perturb the classical action Σ,

eq.(105), by adding an integrated local quantity in the fields and sources, Σct, with

dimension bounded by four and vanishing ghost number. We demand thus that the

perturbed action, (Σ + εΣct), where ε is an expansion parameter, fulfills, to the first

order in ε, the same Ward identities obeyed by the classical action Σ, i.e. equations

(108), (109), (111), (112), (113) and (114). This amounts to impose the following

constraints on Σ:

BΣΣct = 0 , (116)

δΣct

δba
= 0 , (117)

δΣct

δc̄a
+ ∂µ

δΣct

δΩa
µ

−Mab δΣ
ct

δKb
= 0 , (118)

δΣct

δτa
− ∂µ

δΣct

δJ a
µ

= 0 , (119)



63

∫
d4x

(
δΣct

δηa
+ gfabcη̄b

δΣct

δτ c
+ gfabcΞb δΣ

ct

δJ c
µ

)
= 0 , (120)

δΣct

δη̄a
− ∂µ

δΣct

δΞa
µ

= 0 , (121)

where BΣ is the so-called nilpotent linearized Slavnov-Taylor operator (PIGUET;

SORELLA, 1995), defined as

BΣ =

∫
d4x

(
δΣ

δΩa
µ

δ

δAaµ
+

δΣ

δAaµ

δ

δΩa
µ

+
δΣ

δLa
δ

δca
+
δΣ

δca
δ

δLa
+

δΣ

δKa

δ

δξa

)
+

∫
d4x

(
δΣ

δξa
δ

δKa
+ iba

δ

δc̄a
+Nab δ

δMab

)
, (122)

with

BΣBΣ = 0 . (123)

The first condition, eq. (116), tells us that the counterterm Σct belongs to the

cohomology of the operator BΣ in the space of the integrated local polynomials

in the fields, sources and parameters, of dimension four and ghost number zero.

Owing to the general results on the BRST cohomology of YM theories (PIGUET;

SORELLA, 1995) and taking advantage of the analysis already done in (CAPRI et

al., 2016b), the most general form for Σct can be written as

Σct = ∆cohom + BΣ∆(−1) , (124)

where ∆cohom identifies the cohomolgy of BΣ, i.e. the non-trivial solution of eq.(116),

and ∆(−1) stands for the exact part, i.e. for the trivial solution of (116). Notice that,

according to the quantum numbers of the fields, ∆(−1) is an integrated polynomial

of dimension four, c-ghost number -1 and η-number equal to zero.

For ∆cohom, we have

∆cohom =

∫
d4x

(a0

4

(
F a
µν

)2
+ a1

(
∂µA

ha
µ

) (
∂νA

ha
ν

)
+ a2

(
∂µA

ha
ν

) (
∂µA

ha
ν

)
+aabcd3 Ahaµ A

hb
µ A

hc
ν A

hd
ν +

(
∂µτ

a + J a
µ

)
F a
µ (A, ξ) + a5

(
∂µη̄

a + Ξa
µ

)
(∂µη

a)

+fabc
(
∂µη̄

a + Ξa
µ

)
ηbGc

µ (A, ξ) +m2I (A, ξ)
)
, (125)
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where F a
µ (A, ξ), Gc

µ (A, ξ) and I (A, ξ) are local functional of Aaµ and ξa, with dimen-

sion 1, 1 and 2, respectively. To write expression (125) we have taken into account

the constraints (118)–(121). Moreover, from condition (116) one immediately gets

BΣF
a
µ (A, ξ) = BΣG

c
µ (A, ξ) = BΣI (A, ξ) = 0 . (126)

Proceeding as in (CAPRI et al., 2016b), equations (126) are solved by

F a
µ (A, ξ) = a4A

ha
µ , Gc

µ (A, ξ) = a6A
ha
µ , I (A, ξ) = a7A

ha
µ A

ha
µ , (127)

where (a4, a6, a7) are free coefficients. Therefore,

∆cohom =

∫
d4x

(a0

4

(
F a
µν

)2
+ a1

(
∂µA

ha
µ

) (
∂νA

ha
ν

)
+ a2

(
∂µA

ha
ν

) (
∂µA

ha
ν

)
+aabcd3 Ahaµ A

hb
µ A

hc
ν A

hd
ν + a4

(
∂µτ

a + J a
µ

)
Ahaµ + a5

(
∂µη̄

a + Ξa
µ

)
(∂µη

a)

+a6f
abc
(
∂µη̄

a + Ξa
µ

)
ηbAhcµ + a7m

2Ahaµ A
ha
µ

)
.

Let us discuss now the exact part of the cohomology of BΣ which, taking into account

the quantum numbers of the fields and sources, can be parametrized as

∆(−1)∫
d4x

(
fab1 (ξ, α) ξaKb + fab2 (ξ, α)Lacb + fab3 (ξ, α) ξa

(
∂µΩb

µ

)
+ fab4 (ξ, α) (∂µξ

a) Ωb
µ.

+fab5 (ξ, α)AaµΩb
µ + fab6 (ξ, α)Aaµ

(
∂µc̄

b
)

+ fab7 (ξ, α)
(
∂µA

a
µ

)
c̄b

+fab8 (ξ, α) (∂µξ
a)
(
∂µc̄

b
)

+ fab9 (ξ, α) ξa
(
∂2c̄b

)
+ fab10 (ξ, α) c̄abb

+fab11 (ξ, α) c̄aτ b + fabc12 (ξ, α) η̄aηbc̄c + fabc13 (ξ, α) c̄ac̄bcc

+fabcd14 (ξ, α)Mabξcc̄d
)
,

where (f1, ..., f14) are arbitrary coefficients. Imposing the constraint (117), i.e.

δ

δbk
BΣ∆(−1) = 0 , (128)

and making use of the commutation relation

δ

δbk
BΣ = BΣ

δ

δbk
+ i

(
δ

δc̄k
+ ∂µ

δ

δΩk
µ

−Mkl δ

δK l

)
, (129)

one finds

δ∆(−1)

δbk
= fak10 (ξ, α) c̄a ⇒ BΣ

δ∆(−1)

δbk
=

δΣ

δKm

∂fak10 (ξ, α)

∂ξm
c̄a + ifak10 (ξ, α) ba .
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Moreover, from

i

(
δ∆(−1)

δc̄k
+ ∂µ

δ∆(−1)

δΩk
µ

−Mkl δ∆
(−1)

δK l

)
= −i∂µ

(
fak6 (ξ, α)Aaµ

)
+ ifak7 (ξ, α)

(
∂µA

a
µ

)
−i∂µ

(
fak8 (ξ, α) (∂µξ

a)
)

+ i∂2
(
fak9 (ξ, α) ξa

)
+ifkb10 (ξ, α) bb + ifkb11 (ξ, α) τ b

+ifabk12 (ξ, α) η̄aηb + 2ifkbc13 (ξ, α) c̄bcc

+ifabck14 (ξ, α)Mabξc

−i∂2
(
fak3 (ξ, α) ξa

)
+ i∂µ

(
fak4 (ξ, α) (∂µξ

a)
)

+i∂µ
(
fak5 (ξ, α)Aaµ

)
− iMklfal1 (ξ, α) ξa ,

it follows that

δ

δbk
BΣ∆(−1) = 0

=

[
∂f bk10 (ξ, α)

∂ξm
gmc (ξ)− 2ifkbc13 (ξ, α)

]
ccc̄b

+i
[
fak10 (ξ, α) + fka10 (ξ, α)

]
ba

+i
[
−fak6 (ξ, α) + fak5 (ξ, α) + fak7 (ξ, α)

] (
∂µA

a
µ

)
−i
[(
∂µf

ak
6 (ξ, α)

)
−
(
∂µf

ak
5 (ξ, α)

)]
Aaµ

+i
[
−
(
∂µf

ak
8 (ξ, α)

)
−
(
∂µf

ak
3 (ξ, α)

)
+
(
∂µf

ak
4 (ξ, α)

)
+
(
∂µf

ak
9 (ξ, α)

)]
(∂µξ

a)

+i
[
−fak8 (ξ, α)− fak3 (ξ, α) + fak4 (ξ, α) + fak9 (ξ, α)

] (
∂2ξa

)
+i
[
−
(
∂2fak3 (ξ, α)

)
+
(
∂2fak9 (ξ, α)

)]
ξa

+ifkb11 (ξ, α) τ b + ifabk12 (ξ, α) η̄aηb + i
[
fabck14 (ξ, α)− δkaf cb1 (ξ, α)

]
Mabξc ,

form which we can derive relations among the coefficients (f1, ..., f14). Let us start

with

(
∂µf

ak
6 (ξ, α)

)
−
(
∂µf

ak
5 (ξ, α)

)
= 0 ⇒ fab6 = fab5 + δaba , (130)

where a is a constant. Further

−fak6 (ξ, α) + fak5 (ξ, α) + fak7 (ξ, α) = 0 ⇒ fak7 (ξ, α) = δaba . (131)

Analogously

−
(
∂2fak3 (ξ, α)

)
+
(
∂2fak9 (ξ, α)

)
= 0 ⇒ fak9 (ξ, α) = fak3 (ξ, α)+bδak , (132)
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with b a free constant. Next, from

[
−
(
∂µf

ak
8 (ξ, α)

)
−
(
∂µf

ak
3 (ξ, α)

)
+
(
∂µf

ak
4 (ξ, α)

)
+
(
∂µf

ak
9 (ξ, α)

)]
, (133)

we get

fak8 (ξ, α) = fak4 (ξ, α) + cδak , (134)

with c constant. Finally

−fak8 (ξ, α)− fak3 (ξ, α) + fak4 (ξ, α) + fak9 (ξ, α) = 0 ⇒ b = c . (135)

Therefore, ∆(−1) becomes

∆(−1) =

∫
d4x

(
fab1 (ξ, α)

(
ξaKb +M cbξac̄c

)
+fab2 (ξ, α)Lacb + fab3 (ξ, α) ξa

((
∂µΩb

µ

)
+
(
∂2c̄b

))
+fab4 (ξ, α) (∂µξ

a)
(
Ωb
µ +

(
∂µc̄

b
))

+fab5 (ξ, α)Aaµ
(
Ωb
µ +

(
∂µc̄

b
))

+fab10 (ξ, α) c̄abb +
1

2i

∂f ba10 (ξ, α)

∂ξm
gmc (ξ) c̄ac̄bcc

)
.

We can now impose the constraint (120)

∫
d4x

(
δΣct

δηm
+ gfmnpη̄n

δΣct

δτ p
+ gfmnpΞn δΣ

ct

δJ p
µ

)
= 0 ,

⇒
∫
d4x (a6 + a4g) fmnp (∂µη̄

n + fmnpΞn)Ahpµ = 0 ,

from which we obtain a6 = −a4g.

As done in (CAPRI et al., 2016b), we can further reduce the number of parameters

entering Σct by observing that, setting Ka = Mab = Nab = J a
µ = Ξa

µ = m = 0, the

complete action Σ, eq.(105), reduces to that or ordinary YM theory in the linear

covarinat gauges, as integration over τa, ηa and ηa gives a unity. As a consequence,

making use of the well known renormalization of standard YM theory in the linear

covariant gauges (PIGUET; SORELLA, 1995), we get a1 = a2 = aabcd3 = 0, a5 = a4,
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as well as

fab2 (ξ, α) = δabd1 (α) , fab5 (ξ, α) = δabd2 (α) , (136)

with (d1, d2) free parameters. In addition, we also have

fab3 (ξ, α) = fab4 (ξ, α) = fab10 (ξ, α) = 0 .

Hence

∆cohom =

∫
d4x

(a0

4

(
F a
µν

)2
+ a4

((
∂µτ

a + J a
µ

)
Ahaµ +

(
∂µη̄

a + Ξa
µ

)
Dab

(
Ah
)
ηb
)

+a7m
2Ahaµ A

ha
µ

)
,

and

∆(−1) =

∫
d4x
(
fab1 (ξ, α)

(
ξaKb +M cbξac̄c

)
+ d1 (α)Laca + d2 (α)Aaµ

(
Ωa
µ + (∂µc̄

a)
))

.

Let us end this section by rewriting the final expression of the most general invariant

counterterm Σct in its parametric form (PIGUET; SORELLA, 1995), a task that

will simplify the analysis of the renormalziation factors, namely

Σct = −a0g
∂Σ

∂g
+ d2 (α) 2α

∂Σ

∂α
+ a7m

2 ∂Σ

∂m2

+

∫
d4x

(
a4

(
−τa δΣ

δτa
+ J a

µ

δΣ

δJ a
µ

− η̄a δΣ
δη̄a

+ Ξa
µ

δΣ

δΞa
µ

)
−
(
fab1 (ξ, α) +

∂fkb1 (ξ, α)

∂ξa
ξk
)
Kb δΣ

δKa
+ fab1 (ξ, α) ξa

δΣ

δξb

+d2 (α)Aaµ
δΣ

δAaµ
− d2 (α) ba

δΣ

δba
− d2 (α) Ωa

µ

δΣ

δΩa
µ

− d2 (α) c̄a
δΣ

δca

−d1 (α) ca
δΣ

δca
+ d1 (α)La

δΣ

δLa
+
(
−f cb1 (ξ, α) + d2 (α) δcb

)
Nab δΣ

δNac

+
(
d2 (α) δab − fab1 (ξ, α)

)
M cb δΣ

δM ca
+
∂fab1 (ξ, α)

∂ξk
M cbξag (ξ)kd cdc̄c

)
. (137)

2.7 Analysis of the counterterm and renormalization factors
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Having determined the most general form of the local invariant counterterm, eq.(137),

let us turn to its physical meaning. As already mentioned before, in order to de-

termine the renormalization of the fields, sources and parameters, we have to pay

attention to the fact that, due to the explicit dependence of the gauge fixing from

the Stueckelberg field ξa, the renormalization of the gauge fixing itself is determined

up to an ambiguity of the type of eq.(96), which would correspond to the renor-

malization of the quantity ωa(ξ), i.e. of the gauge parameters (aabc1 , aabcd2 , aabcde3 , ...).

To that end, it will be sufficient to analyse the last two terms of the expression for

Σct, eq.(137), which, upon setting the sources (Mab, Nab) to their physical values,

namely (Mab = δabµ2, Nab = 0), becomes

(d2(α)− f1(0, α))µ2 ∂Σ

∂µ2

+ µ2

∫
d4x

(
f̃ab1 (ξ, α)(ibbξa − c̄bgak(ξ)ck) +

∂f̃ab1 (ξ, α)

∂ξk
c̄bξagkd(ξ)cd

)
(138)

where we have set

fab1 (ξ, α) = fab1 (0, α) + f̃ab1 (ξ, α) , (139)

with fab1 (0, α) = δabf1(0, α) being the first, ξa-independent, term of the Taylor ex-

pansion of fab1 (ξ, α) in powers of ξa and f̃ab1 (ξ, α) denoting the ξ-dependent remaining

terms. Of course, fab1 (0, α) = δabf1(0, α) is just a constant.

Furthermore, we observe that expression (138) can be rewritten as

(d2(α)− f1(0, α))µ2 ∂Σ

∂µ2
+ µ2

∫
d4x s

(
f̃ab1 (ξ, α)c̄bξa

)
, (140)

or, equivalently

(d2(α)− f1(0, α))µ2 ∂Σ

∂µ2
+ µ2

∫
d4x s

(
c̄bω̃b(ξ, α)

)
, (141)

with ω̃b(ξ, α) = f̃ab1 (ξ, α)ξa.

We are now able to unravel the meaning of this term. First, the term (d2(α)− faa1 (0, α))

corresponds to a multiplicative renormalization of the gauge massive parameter µ2.

This follows by observing that, being µ2 a space-time independent parameter, its

renormalization must be given by a field independent space-time constant factor, i.e.

precisely by (d2(α)− faa1 (0, α)). On the other hand, the term
∫
d4x s

(
c̄bω̃b(ξ, α)

)
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is of the type of eq.(96), thus corresponding to the ambiguity inherent to the gauge

fixing discussed before. As already mentioned, this term can be handled by start-

ing with the generalised gauge fixing (97), whose algebraic renormalization can be

faced by employing the Ward identities displayed in Appendix B. Doing so, the term∫
d4x s

(
c̄bω̃b(ξ, α)

)
will correspond to a renormalization of the gauge fixing function

ωa(ξ), i.e. of the gauge parameters (aabc1 , aabcd2 , aabcde3 , ...).

We can now read off the renormalization factors, i.e.

Σ(Φ) + εΣct(Φ) = Σ(Φ0) +O(ε2) , (142)

with

Φ0 = ZΦΦ +O(ε2) , (143)

where Φ stands for a short-hand notation for all fields, sources and parameters.

Specifically, for the renormalization factors one finds:

A0 = Z
1/2
A Aµ , b0 = Z

1/2
b b , c0 = Z1/2

c c , c̄0 = Z
1/2
c̄ c̄ , (144)

ξa0 = Zab
ξ (ξ)ξb τ0 = Z1/2

τ τ ,Ω0 = ZΩΩ , L0 = ZLL (145)

Ka
0 = Zab

K (ξ)Kb , m2
0 = Zm2m2 , J0 = ZJJ , (146)

g0 = Zgg , α0 = Zαα , η̄0 = Z
1/2
η̄ η̄ , η0 = Z1/2

η η , (147)

Ξ0 = ZΞΞ , µ2
0 = Zµ2µ

2 , (148)

where

Zg = 1− εa0

2

Z
1/2
A = Z−1

Ω = Z
−1/2
c̄ = Z

−1/2
b = Z1/2

α = 1 + εd2(α)

Zab
ξ = δab + εfab1 (ξ, α)

ZL = Z−1/2
c = 1 + εd1(α)

Zη̄ = Zη = Z2
Ξ = Z1/2

τ = ZJ = 1 + εa4

Zm2 = 1 + εa7

Zµ2 = 1 + ε(d2 − f2(0, α))

Zab
K = δab − ε

(
fab1 (ξ, α) +

∂fkb1 (ξ, α)

∂ξa
ξk
)
. (149)

Notice that, as expected, the dimensionless field ξa renormalizes in a non-linear
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way through the quantity fab1 (ξ, α) which is a power series in ξa. Equations (142)

and (149) establish the renormalizability of the complete action Σ, eq.(105), and

thus of the invariant action S of expression (98), up to a BRST exact unphysical

ambiguity of the type of eq.(96). As already mentioned, the explicit inclusion of

such an ambiguity will be provided in Appendix B.

2.8 Conclusion

In this chapter the gauge invariant operator A2
min, eq.(78), and corresponding gauge

invariant transverse field configuration Aahµ , eq.(79), have been investigated in a

general class of gauge fixings, eq.(94) and eq.(97), which share similarities with ’t

Hooft’s Rζ-gauge used in the analysis of YM theory with spontaneous symmetry

breaking. As shown in (CAPRI et al., 2016b), a local setup can be constructed for

both A2
min and Aahµ , being summarised by the local and BRST invariant action (85).

The localization procedure makes use of an auxiliary dimensionless Stueckelberg

field ξa. However, despite the presence of the field ξa and unlike the conventional

non-renormalizable Stueckelberg mass term, the present construction gives rise to a

perfectly well behaved model in the ultraviolet which turns out to be renormalizable

to all orders, as discussed in details in sections (2.6) and (2.7) as well as in Appendix

(B). In particular, the pivotal role of the transversality constraint ∂µA
ah
µ = 0 has

been underlined throughout the paper. It is precisely the direct implementation of

this constraint in the local action (85) which makes a substantial difference with

respect to the conventional Stueckelberg theory. In fact, as pointed out in section

(2.5), it removes exactly the component of the Stueckelberg propagator which gives

rise to non-renormalizable ultraviolet divergences, see eq.(103) versus eqs.(101). In

particular, form eqs.(101), one sees that, similar to what happens in the case of ’t

Hooft’s Rζ-gauge, the use of the general class of gauge fixings (94) and (97) provide

a mass µ2 for the dimensionless Stueckelberg field ξa. This a welcome feature which

can be effectively employed as a fully BRST invariant infrared regularization for ξa

in explicit higher loop calculations.



71

3 SOME REMARKS ON THE SPECTRAL FUNCTIONS OF THE

ABELIAN HIGGS MODEL

In section 1.3.2, we have discussed the two main observations in lattice QCD in

recent years: massive behavior of the gluon propagator, and positivity violation of its

spectral density function. In this context, it is worthwhile to investigate the spectral

properties of massive gauge models to try and shed some light on the infrared behavior of

their fundamental fields in an analytical way. The direct comparison between a massive

model that violates BRST, such as the massive YM model from section 1.3.1, and a

model that preserves the original nilpotent BRST symmetry, such as the Higgs model,

can be particularly enlightening. In any case, the explicit determination of the spectral

properties of Higgs theories and the study of the role played by gauge symmetry there is

an interesting pursue on its own.

Most articles on massive YM models employ the renormalizable Landau gauge, al-

though it was noticed that this gauge might not be the preferred gauge in non-perturbative

calculations (OEHME; ZIMMERMANN, 1980). For the Higgs model, one can fix the

gauge by means of ’t Hooft Rξ-gauge, see section 1.1.6. Understanding the different

gauges and their influence on the spectral properties is a delicate subject. This gave us

further reason to undertake a systematic study of the spectral properties of Higgs models.

In this chapter, we present the results for the simplest case: that of the U(1) Abelian

Higgs model. In fact, it turned out that this model is already very illuminating on as-

pects like positivity of the spectral function, gauge-parameter independence of physical

quantities and unitarity. Of course, these properties are not unknown in the Abelian

case. This chapter should therefore not be seen as giving any new information on the

physical properties of the Abelian model. Rather, exactly because these properties are

so well-known, we are in a better position to understand the problems that we face when

calculating the analytic structure behind some of them within a gauge-fixed setup. This

chapter is therefore a first attempt to understand analytically the spectral properties of

a Higgs-gauge model in contrast to those of a non-unitary massive model. As such, it is

laying the groundwork for the next chapters.

The U(1) Higgs model is known to be unitary (GIERES, 1997; HOOFT et al.,

1980) and renormalizable (BECCHI; ROUET; STORA, 1975). In this work, we con-

sider two propagators: that of the photon, and that of the Higgs scalar field. They

are obtained through the calculation of the one-loop corrections to the corresponding

1PI two-point functions. After adopting the Rξ-gauge, we are left with an exact BRST

nilpotent symmetry. Of course, the correlation function of BRST invariant quantities

should be independent of the gauge parameter. Since the transverse component of the

photon propagator is gauge invariant, we should find that the one-loop corrected trans-
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verse propagator does not depend on the gauge parameter. As a consequence, the photon

pole mass will neither. This property has been proven before by the use of the Nielsen

identities, (HAUSSLING; KRAUS, 1997), see also (NIELSEN, 1975; PIGUET; SIBOLD,

1985; GAMBINO; GRASSI, 2000), but never in a direct calculation. The same goes for

the Higgs particle propagator: the gauge independence of its pole mass was proven in

(HAUSSLING; KRAUS, 1997), but never in a direct loop calculation to our knowledge.

We underline here the importance of properly taking into account the tadpole contribu-

tions (MARTIN, 2015a; MARTIN, 2015b) or, equivalently, the effect on the propagators

of quantum corrections of the Higgs vacuum expectation value. Armed with the one-loop

results, we are able to calculate the spectral properties of the respective propagators for

different values of the gauge parameter. Finally, we compare our results with those of a

non-unitary massive Abelian model, to clearly pinpoint at the level of spectral functions

the differences (and issues) of both unitary and non-unitary massive vector boson models.

This chapter is organized as follows. In section 3.1, we review the U(1) Higgs model

and its gauge fixing, as well as the tree-level field propagators and vertices. In section 3.2,

we calculate the one-loop propagator of both the photon field and the Higgs field, showing

the gauge-parameter independence of the transverse photon propagator and of the Higgs

pole mass up to one-loop order. In section 3.3, we calculate the spectral function of both

propagators. In section 3.4 we discuss some subtleties of the Higgs spectral function and

in section 3.5 we compare our results with those of a non-unitary massive Abelian model.

We also address the residue computation. Section 3.6 collects our conclusions and outlook.

3.1 Abelian Higgs model: some essentials

We start from the Abelian Higgs classical action with a manifest global U(1) sym-

metry

S =

∫
d4x

{
1

4
FµνFµν + (Dµϕ)†Dµϕ+

λ

2

(
ϕ†ϕ− v2

2

)2
}
, (150)

where

Fµν = ∂µAν − ∂νAµ,

Dµϕ = ∂µϕ+ ieAµϕ (151)

and the parameter v gives the minimizing value of the scalar field to first order in h̄,

ϕ0 = v. The spontaneous symmetry breaking is implemented by expressing the scalar
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field as an expansion around its minimizing value, namely

ϕ =
1√
2

((v + h) + iρ), (152)

where the real part h is identified as the Higgs field and ρ is the (unphysical) Goldstone

boson, with 〈ρ〉 = 0. Here we choose to expand around the classical value of the mini-

mizing value, so that 〈h〉 is zero at the classical level, but receives loop corrections4 . The

action (150) now becomes

S =

∫
d4x

{
1

4
FµνFµν +

1

2
∂µh∂µh+

1

2
∂µρ∂µρ− e ρ ∂µhAµ + e (h+ v)Aµ∂µρ

+
1

2
e2Aµ[(h+ v)2 + ρ2]Aµ +

1

8
λ(h2 + 2hv + ρ2)2

}
(153)

and we notice that both the gauge field and the Higgs field have acquired the following

masses

m2 = e2v2, m2
h = λv2. (154)

With this parametrization, the Higgs coupling λ and the parameter v can be fixed in

terms of m, mh and e, whose values will be suitably chosen later on in the text.

Even in the broken phase, the action (153) is left invariant by the following gauge

transformations

δAµ = −∂µω, δϕ = ieωϕ, δϕ† = −ieωϕ†,

δh = −eωρ, δρ = eω(v + h). (155)

where ω is the gauge parameter.

3.1.1 Gauge fixing

Quantization of the theory (153) requires a proper gauge fixing. We shall employ

the gauge fixing term

Sgf =

∫
d4x

{
1

2ξ
(∂µAµ + ξmρ)2

}
, (156)

4 There is of course an equivalent procedure of fixing 〈h〉 to zero at all orders, by expanding ϕ around
the full minimizing value: ϕ = 1√

2
((〈ϕ〉 + h) + iρ). In the Appendix E we explicitly show that—as

expected—both procedures give the same final results up to a given order.
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known as the ’t Hooft or Rξ-gauge, which has the pleasant property of cancelling the

mixed term
∫
d4x(ev Aµ∂µρ) in the expression (153). Of course, (156) breaks the gauge

invariance of the action. As is well known, the latter is replaced by the BRST invariance.

In fact, introducing the FP ghost fields c̄, c as well as the auxiliary field b, for the BRST

transformations we have

sAµ = −∂µc,

sc = 0,

sϕ = iecϕ,

sϕ† = −iecϕ†,

sh = −ecρ,

sρ = ec(v + h),

sc̄ = ib,

sb = 0. (157)

Importantly, the operator s is nilpotent, i.e. s2 = 0, allowing to work with the so-

called BRST cohomology, a useful concept to prove unitarity and renormalizability of the

Abelian Higgs model (BECCHI; ROUET; STORA, 1975; BECCHI; ROUET; STORA,

1974; KUGO; OJIMA, 1979).

We can now introduce the gauge fixing in a BRST invariant way via

Sgf = s

∫
ddx

{
−iξ

2
c̄b+ c̄(∂µAµ + ξmρ)

}
, (158)

=

∫
ddx

{
ξ

2
b2 + ib∂µAµ + ibξmρ+ c̄∂2c− ξm2c̄c− ξmec̄hc

}
. (159)

Notice that the ghosts (c̄, c) get a gauge parameter dependent mass, while interacting

directly with the Higgs field.

The total gauge fixed BRST invariant action then becomes

S =

∫
d4x

{
1

4
FµνFµν +

1

2
∂µh∂µh+

1

2
∂µρ∂µρ− e ρ ∂µhAµ + e hAµ∂µρ+

1

2
m2AµAµ

+
1

2
e2Aµ[h2 + 2vh+ ρ2]Aµ +

1

8
λ(h2 + ρ2)(h2 + ρ2 + 4hv) +

1

2
m2
hh

22b2

+ mAµ∂µρ+
ξ

+
ib∂µAµ + ibξmρ+ c̄(∂2)c−m2ξcc̄−mξec̄ch

}
, (160)

with

sS = 0 . (161)

In Appendix C and D we collect the propagators and vertices corresponding to the action



75

(160) of the Abelian Higgs model in the Rξ gauge.

3.2 Photon and Higgs propagators at one-loop

In this section we obtain the one-loop corrections to the photon propagator, as

well as to the propagator of the Higgs boson. This requires the calculation5, in section

3.2.1 and 3.2.2, of the Feynman diagrams as shown in Figure 6 and Figure 7. Notice

that the last four diagrams in Figure 6 and Figure 7 vanish for 〈h〉 = 0. Since we have

chosen to expand the ϕ field around its classical minimizing value v (cf. (152)), 〈h〉
has loop contributions which are nonzero and the resulting tadpole diagrams have to be

included in the quantum corrections for the propagators6. Of course the final result for

the propagators would be the same had we chosen to expand the ϕ field around its full

minimizing value and required 〈h〉 = 0. In fact, including the tadpole diagrams in our

formulation has the same effect as shifting the masses of the fields to include the one-

loop corrections to the Higgs minimizing value 〈ϕ〉, calculated by imposing 〈h〉 = 0 (see

Appendix E for the technical details). These diagrams can actually be seen as a correction

to the tree-level mass term: in the spontaneously broken phase the gauge boson mass is

given by m = e〈ϕ〉, depending thus on 〈ϕ〉 that receives quantum corrections order by

order. Therefore, the full inverse photon propagator can be written as

G−1
AA(p2) = p2 + e2v2 + (1PI diagrams) + (diagrams with tadpoles)

= p2 + e2〈ϕ〉2 + (1PI diagrams) , (162)

where the equalities are to be understood up to a given order in perturbation theory

and a similar reasoning can be drawn for the Higgs propagator. In what follows, we

shall proceed with the expansion adopted in eq. (152) and include the tadpole diagrams

explicitly in our self-energy results. The calculations are done for arbitrary dimension d.

In section 3.2.3 we will analyze the results for d = 4− ε, making use of the techniques of

dimensional regularization in the MS scheme.

5 We have used the techniques of modifying integrals into “master integrals” with momentum-
independent numerators from (PASSARINO; VELTMAN, 1979).

6 The diagrams with tadpole balloons are not part of the standard definition of one-particle irreducible
diagrams that contribute to the self-energies. However, since the momentum flowing in the vertical
h-field (dashed) line is zero, they can be effectively included as a momentum-independent term in the
self-energies.
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Figure 6 - One-loop photon self-energy

Legend: Contributions to one-loop photon self-energy in the Abelian Higgs Model, including tadpole

contributions in the second line. Wavy lines represent the photon field, dashed lines the Higgs

field, solid lines the Goldstone boson and double lines the ghost field.

Source: The author, 2020.

3.2.1 Corrections to the photon self-energy

The first diagram contributing to the photon self-energy is the Higgs boson snail

(first diagram in the first line of Figure 6) and gives a contribution

ΓAµAν ,1(p2) =
−4e2

(4π)d/2
Γ(2− d/2)

2− d
md−2
h

2
δµν . (163)

The second diagram is the Goldstone boson snail (second diagram in the first line of

Figure 6)

ΓAµAν ,2(p2) =
−4e2

(4π)d/2
Γ(2− d/2)

2− d
(ξm2)d/2−1

2
δµν . (164)

Being momentum-independent, the only effect of these first two diagrams is to renormalize

the mass parameters (m2
h,m

2).

The third term contributing to the photon propagator is the Higgs-Goldstone sun-
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set (third diagram in first line of Figure 6)

ΓAµAν ,3(p2) =
4e2

(4π)d/2
Γ(2− d/2)

2− d

∫ 1

0

dx

[
Kd/2−1(m2

h, ξm
2)Pµν +

(
Kd/2−1(m2

h, ξm
2)

+
(2− d)

4
(1− 4x(1− x))p2Kd/2−2(m2

h, ξm
2)

)
Lµν

]
, (165)

where we used the definitions

Kα(m2
1,m

2
2) ≡

(
p2x(1− x) + xm2

1 + (1− x)m2
2

)α
, (166)

and

Pµν = δµν −
pµpν
p2

, (167)

Lµν =
pµpν
p2

, (168)

which are the transversal and longitudinal projectors, respectively. The fourth term con-

tributing to the photon propagator is the Higgs-photon sunset (fourth diagram in first

line of Figure 6)

ΓAµAν ,4(p2) =
4e2

(4π)d/2
Γ(2− d/2)

2− d

∫ 1

0

dx

[(
(2− d)m2Kd/2−2(m2

h,m
2) +Kd/2−1(m2

h,m
2)

− Kd/2−1(m2
h, ξm

2)
)
Pµν +

(
(2− d)m2Kd/2−2(m2

h,m
2)

+ Kd/2−1(m2
h,m

2)−Kd/2−1(m2
h, ξm

2)

+(2− d)p2x2(Kd/2−2(m2
h,m

2)−Kd/2−1(m2
h, ξm

2))
)
Lµν

]
. (169)

Finally, we have four tadpole (balloon) diagrams. The Higgs boson balloon (first diagram

of the last line in Figure 6)

ΓAµAν ,5(p2) =
4e2

(4π)d/2
Γ(2− d/2)

(2− d)

3

2
m
d/2−1
h δµν , (170)

the Goldstone boson balloon (second diagram of the last line in Figure 6)

ΓAµAν ,6(p2) =
4e2

(4π)d/2
Γ(2− d/2)

(2− d)

1

2
(ξm)d/2−1δµν , (171)

the photon balloon (third diagram of the last line in Figure 6)

ΓAµAν ,7(p2) = 2e2m
2

m2
h

∫
ddk

(2π)d

(
1

k2 +m2
(d− 1) +

ξ

k2 + ξm2

)
δµν , (172)
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and finally, the ghost balloon (fourth diagram of the last line in Figure 6)

ΓAµAν ,8(p2) = −2e2m
2

m2
h

∫
ddk

(2π)d
ξ

k2 + ξm2
δµν . (173)

Combining all these contributions (163)-(173), we find

ΓAµAν(p
2) =

4e2

(4π)d/2
Γ(2− d/2)

2− d

∫ 1

0

dx
(

(2− d)m2Kd/2−2(m2,m2
h) +Kd/2−1(m2,m2

h)

+ md−2
h +

md

m2
h

(d− 1)
)
Pµν

+
4e2

(4π)d/2
Γ(2− d/2)

2− d

∫ 1

0

dx

(
2− d

4
(1− 4x)p2Kd/2−2(m2

h, ξm
2)

+ (2− d)(m2 + p2x2)Kd/2−2(m2
h,m

2)

+ Kd/2−1(m2
h,m

2) +md−2
h +

md

m2
h

(d− 1)

)
Lµν . (174)

Defining

ΓAµAν = Π⊥AA(p2)Pµν + Π
‖
AA(p2)Lµν , (175)

it follows that

∂ξΠ
⊥
AA = 0. (176)

As expected, eq.(176) expresses the gauge parameter independence of the gauge invariant

transverse component of the photon propagator (HAUSSLING; KRAUS, 1997).

3.2.2 Corrections to the Higgs self-energy

The first diagrams contributing to the Higgs self-energy are of the snail type,

renormalizing the masses of the internal fields.

The Higgs boson snail (first diagram in the first line of Figure 7)

Γhh,1(p2) = −3
λ

(4π)d/2
Γ(2− d/2)

(2− d)
md−2
h , (177)

the Goldstone boson snail (second diagram in the first line of Figure 7)

Γhh,2(p2) = − λ

(4π)d/2
Γ(2− d/2)

(2− d)
(ξm2)d/2−1 (178)
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Figure 7 - One-loop Higgs self-energy

Legend: Contributions to the one-loop Higgs self-energy. Line representations are as in Figure 6.

Source: The author, 2020.

and the photon snail (third diagram in the first line of Figure 7)

Γhh,3(p2) = −2
e2

(4π)d/2
Γ(2− d/2)

(2− d)

(
(d− 1)md−2 + ξ(ξm2)d/2−1

)
. (179)

Next, we meet a couple of sunset diagrams. The Higgs boson sunset (fourth diagram in

the first line of Figure 7):

Γhh,4(p2) =
9

2

λ

(4π)d/2
Γ(2− d/2)

(2− d)
(2− d)m2

h

∫ 1

0

dxKd/2−2(m2
h,m

2
h), (180)

the photon sunset (first diagram in the second line of Figure 7):

Γhh,5(p2) (181)

= e2 Γ(2− d/2)

2− d
1

(4π)d/2

∫ 1

0

dx

[
(2− d)

(
2m2(d− 1) + 2p2 +

p4

2m2

)
Kd/2−2(m2,m2)

− (2− d)
(

2p2 +
p4

m2
+ ξ2m2 + 2p2ξ − 2ξm2 +m2

)
Kd/2−2(m2, ξm2)

+ (2− d)
(

2ξp2 + 2ξ2m2 +
p4

2m2

)
Kd/2−2(ξm2, ξm2)

+ 2(ξ − 1)(m2)d/2−1 + 2(1− ξ)(ξm2)d/2−1
]
, (182)
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the ghost sunset (second diagram in the second line of Figure 7):

Γhh,6(p2) = − e2

(4π)d/2
Γ(2− d/2)

(2− d)
(2− d)m2ξ2

∫ 1

0

dxKd/2−2(ξm2, ξm2), (183)

the Goldstone boson sunset (third diagram in the second line of Figure 7):

Γhh,7(p2) =
1

2

λ

(4π)d/2
Γ(2− d/2)

(2− d)
(2− d)m2

h

∫ 1

0

dxKd/2−2(ξm2, ξm2)d/2−2 (184)

and a mixed Goldstone-photon sunset (fourth diagram in the second line of Figure 7):

Γhh,8(p2) = e2 Γ(2− d/2)

2− d
1

(4π)d/2

∫ 1

0

dx

[
(2− d)

(
2p2 +

p4

m2
+ ξ2m2 (185)

+ 2p2ξ − 2ξm2 +m2
)
Kd/2−2(m2, ξm2)

− (2− d)
(
ξ2m2 +

p4

m2
+ 2p2ξ

)
Kd/2−2(ξm2, ξm2)

+ 2
(

1− ξ − p2

m2

)
(m2)d/2−1

+ 2
(

2ξ − 1 +
p2

m2

)
(ξm2)d/2−1

]
. (186)

Finally, we have the tadpole diagrams. The Higgs balloon (first diagram on the third line

of Figure 7):

Γhh,9(p2) = 9
λ

(4π)d/2
Γ(2− d/2)

(2− d)
md−2
h , (187)

the photon balloon (second diagram on the third line of Figure 7):

Γhh,10(p2) = 6
e2

(4π)d/2
Γ(2− d/2)

(2− d)

(
(d− 1)md−2 + ξ(ξm2)d/2−1

)
, (188)

the Goldstone boson balloon (third diagram on the third line of Figure 7):

Γhh,11(p2) = 3
λ

(4π)d/2
Γ(2− d/2)

(2− d)
(ξm2)d/2−1 (189)

the ghost balloon (fourth diagram on the third line of Figure 7):

Γhh,12(p2) = −6
e2ξ

(4π)d/2
Γ(2− d/2)

(2− d)
(ξm2)d/2−1. (190)

Putting together eqs. (177) to (190) we find the total one-loop correction to the Higgs
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boson self-energy,

Πhh(p
2) ≡

Γhh(p
2) =

Γ(2− d/2)

2− d
1

(4π)d/2

∫ 1

0

dx

[
(2− d)e2

(
2m2(d− 1) + 2p2 +

p4

2m2

)
Kd/2−2(m2,m2)

+
9

2
λ(2− d)m2

hKd/2−2(m2
h,m

2
h)

+ e2

(
−2

p2

m2
+ 4(d− 1)

)
(m2)d/2−1

+ 6λ(m2
h)
d/2−1

+ (2− d)
(
− p4

2m2
e2 +

λ

2
m2
h

)
Kd/2−2(ξm2, ξm2)

+ 2(
p2

m2
e2 + λ)(ξm2)d/2−1

]
. (191)

3.2.3 Results for d = 4− ε

For d = 4, the 2-point functions are divergent. We therefore follow the standard

procedure of dimensional regularization, as we have no chiral fermions present. Thus, we

choose d = 4− ε with ε an infinitesimal parameter, and analyze the solution in the limit

ε→ 0.

Let us start with the photon 2-point function, given for arbitrary dimension d

by (174). The mass dimension of the coupling constant e is [e] = 2 − d/2 = ε/2, and

redefining e→ eµ̃ε/2 = eµ̃2−d/2 we put the dimension on µ̃, while e is dimensionless. Using

4e2

(4π)d/2
Γ(2− d/2)

2− d
d→4−ε

= −2
e2

(4π)2

(
2

ε
+ 1 + ln(µ2)

)
, (192)

where we defined

µ2 =
4πµ̃2

eγE
, (193)

we find for the divergent part of the transverse photon 2-point function:

Π⊥AA,div(p
2) =

2

ε

e2

(4π)2

(
p2

3
+ 6(

g2

λ
− 1

2
)m2 + 3m2

h

)
(194)

and these infinities are, following the MS-scheme, cancelled by the corresponding coun-

terterms. The renormalized correlation function is then finite in the limit d → 4 and we
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find the one-loop correction

ΠAA(p2) = 2
e2

(4π)2

∫ 1

0

dx

{
p2x(1− x) +m2x

+ m2
h(1− x)(1− ln

p2x(1− x) +m2x+m2
h(1− x)

µ2
) +m2

h(1− ln
m2
h

µ2
)

+
m4

m2
h

(1− 3 ln
m2

µ2
) + 2m2 ln

p2x(1− x) +m2x+m2
h(1− x)

µ2

}
. (195)

In the same way, we find the divergent part of the Higgs boson 2-point function:

Πhh,div(p
2) = − 1

2ε

1

(4π)2

(
e2(12p2 − 4ξp2) + λ(8m2

h − 4ξm2)
)
, (196)

which is canceled by the corresponding counterterm. Therefore, the one-loop correction

to the Higgs boson propagator reads

Πhh(p
2) =

1

(4π)2

∫ 1

0

dx

{
e2

[
p2(1− ln

m2

µ2
− 2 ln

p2x(1− x) +m2

µ2
)

− p4

2m2
ln
p2x(1− x) +m2

µ2
− 6m2(1− ln

m2

µ2
+ ln

p2x(1− x) +m2

µ2
)

]

+ λ
[1

2
m2
h(−6 + 6 ln

m2
h

µ2
− 9 ln

p2x(1− x) +m2
h

µ2
)
]

−

[
ξ(e2p2 + λm2)(1− ln

ξm2

µ2
)− (e2 p4

2m2
− λm

2
h

2
) ln

p2x(1− x) + ξm2

µ2

]}
.(197)

3.2.4 One-loop propagators for the elementary fields

For the photon field, the transverse part of the propagator GAA
µν (p2) up to order h̄

is given in momentum space by

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
+

1

(p2 +m2)2
ΠAA(p2) +O(h̄2) (198)

and we can approach the all-order form factor with the resummed approximation

GT
AA(p2) =

1

p2 +m2 − Π(p2)
, (199)

shown in Figure 8.
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Figure 8 - Resummed photon form factor
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Legend: Resummed form factor for the photon operator, with p given in units of the energy scale µ, for

the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

For the Higgs field, we find

〈h(p)h(−p)〉 =
1

p2 +m2
h

+
1

(p2 +m2
h)

2
Πhh(p

2) +O(h̄2). (200)

Before making the resummed approximation, we notice that the resummation is based on

the assumption that the second term in (200) is much smaller than the first term. Then,

we see that (200) contains terms of the order of p4

(p2+m2
h)2

ln
p2x(1−x)+m2

h

µ2
, which cannot be

resummed for big values of p. We therefore use the identity

p4 = (p2 +m2
h)

2 −m4
h − 2p2m2

h, (201)

to rewrite

p4

(p2 +m2
h)

2
ln
p2x(1− x) +m2

h

µ2
= ln

p2x(1− x) +m2
h

µ2
− (m4 + 2p2m2)

(p2 +m2)2
ln
p2x(1− x) +m2

h

µ2
.(202)
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The last two terms in (202) can be safely resummed. We rewrite

Πhh(p
2)

(p2 +m2
h)

2
=

Π̂hh(p
2)

(p2 +m2
h)

2
+ Chh(p

2), (203)

with

Π̂hh(p
2) =

1

(4π)2

∫ 1

0

dx

{
e2

[
p2(1− ln

m2

µ2
− 2 ln

p2x(1− x) +m2

µ2
)

+
(m4

h + 2p2m2
h)

2m2
ln
p2x(1− x) +m2

h

µ2
− 6m2(1− ln

m2

µ2
+ ln

p2x(1− x) +m2

µ2
)

]

+ λ
[1

2
m2
h(−6 + 6 ln

m2
h

µ2
− 9 ln

p2x(1− x) +m2
h

µ2
)
]
−

[
ξ(e2p2 + λm2)(1− ln

ξm2

µ2
)

+ (e2 (m4
h + 2p2m2

h)

2m2
+ λ

m2
h

2
) ln

p2x(1− x) + ξm2

µ2

]}
. (204)

and

Chh(p
2) = − e2

2m2(4π)2

∫ 1

0

dx
{

ln

(
p2x(1− x) +m2

h

µ2

)
− ln

(
p2x(1− x) + ξm2

µ2

)}
(205)

and the resummed approximation becomes

Ghh(p
2) =

1

p2 +m2 − Π̂(p2)
+ Chh(p

2), (206)

which is shown in Figure 9. Notice that the dependence on the Feynman parameter x

for all integrals is restricted to functions of the type
∫ 1

0
dx ln

p2x(1−x)+xm2
1+(1−x)m2

2

µ2
. These

functions have an analytical solution, depicted in Appendix F. Since the transverse com-

ponent ATµ of the Abelian gauge field is gauge invariant, it turns out that the transverse

photon propagator is independent from the gauge parameter ξ, while the Higgs propaga-

tor does depend on ξ, in agreement with the Nielsen identities analyzed in (HAUSSLING;

KRAUS, 1997).

3.3 Spectral properties of the propagators

In this section we will investigate the spectral properties corresponding to the con-

nected propagators of the last section. Strictly speaking, the calculation of the spectral
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Figure 9 - Higgs operator resummed form factor
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Legend: Resummed form factor for the Higgs operator, with p given in units of the energy scale µ, for

the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

properties should only be done to first order7 in h̄, since the one-loop corrections to the

propagators have been evaluated up to this order. In practice, however, for small values

of the coupling constants the higher-order contributions become negligible, and one could

treat the one-loop solution as the all-order solution without a significant numerical differ-

ence. Even so, when looking for analytical rather than numerical results—for example a

gauge parameter dependence—we should restrict ourselves to the first-order results. We

shall see the crucial difference between both approaches.

To plot the spectral properties of our model we choose some specific values of

the parameters {m,mh, µ, e}. We want to restrict ourselves to the case where the Higgs

particle is a stable particle, so we need m2
h < 4m2. Furthermore, given the Abelian nature

of the model, and thus a weak coupling regime in the infrared, we can choose an energy

scale µ that is sufficiently small w.r.t. the elusive Landau pole (that is exponentially large)

and a corresponding small value for the coupling constant e. The particular values chosen

per graph are denoted in the figure captions. Notice that by choosing µ and e, we are

implicitly fixing the Landau pole Λ, with µ� Λ, see (IRGES; KOUTROULIS, 2017) for

7 This would correspond to first order in the gauge coupling e2 and in the Higgs coupling λ neglecting
the implicit coupling dependence in the masses.
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more details. We have checked that results are as good as independent from the choice of

µ over a very wide range of µ-values.

We start by calculating the pole mass in section 3.3.1. The pole mass is the actual

physical mass of a particle that enters the energy-momentum dispersion relation. It is an

observable for both the photon and the Higgs boson and should therefore not depend on

the gauge parameter ξ. We will also discuss the residue to first order and compare these

with the output from the Nielsen identities (HAUSSLING; KRAUS, 1997). In section

3.3.2 we show how to obtain the spectral function to first order from the propagator. In

section 3.4 we will discuss some more details about the Higgs spectral function.

3.3.1 Pole mass, residue and Nielsen identities

The pole mass for any massless or massive field excitation is obtained by calculating

the pole of the resummed connected propagator

G(p2) =
1

p2 +m2 − Π(p2)
, (207)

where Π(p2) is the self-energy correction. The pole of the propagator is thus equivalently

defined by the equation

p2 +m2 − Π(p2) = 0 (208)

and its solution defines the pole mass p2 = −m2
pole. As consistency requires us to work

up to a fixed order in perturbation theory, we should solve eq.(208) for the pole mass in

an iterative fashion. To first order in h̄ , we find

m2
pole = m2 − Π1−loop(−m2) +O(h̄2), (209)

where Π1−loop is the first order, or one-loop, correction to the propagator.

Next, we also want to compute the residue Z, again up to order h̄. In principle,

the residue is given by

Z = lim
p2→−m2

pole

(p2 +m2
pole)G(p2). (210)
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We write (207) in a slightly different way

G(p2) =
1

p2 +m2 − Π(p2)

=
1

p2 +m2 − Π1−loop(−m2)− (Π(p2)− Π1−loop(−m2))

=
1

p2 +m2
pole − Π̃(p2)

, (211)

where we defined Π̃(p2) = Π(p2) − Π1−loop(−m2). At one-loop, expanding Π̃(p2) around

p2 = −m2
pole = −m2 +O(h̄) gives the residue

Z =
1

1− ∂p2Π(p2)|p2=−m2

= 1 + ∂p2Π(p2)|p2=−m2 +O(h̄2). (212)

In (HAUSSLING; KRAUS, 1997), for the Abelian Higgs model, the Nielsen identities

were obtained for both the photon and the Higgs boson. It was found that for the photon

propagator, the transverse part is explicitly independent of ξ to all orders of perturbation

theory, giving the Nielsen identity:

∂ξ(G
⊥
AA)−1(p2) = 0 (213)

and consequently

∂ξ∂p2(G
⊥
AA)−1(p2)|p2=−m2

pole
= 0,

∂ξ(G
⊥
AA)−1(−m2

pole) = 0, (214)

confirming the gauge independence of the residue and the pole mass. Of course, this is not

unexpected since the transverse part of an Abelian gauge field propagator can be written

as

Pµν 〈AµAν〉conn ∝ 〈A
T
µA

T
µ 〉 , ATµ = PµνAν (215)

and the transverse component ATµ is gauge invariant under Abelian gauge transformations.

We can now compare the outcome of the Nielsen identities with our one-loop

calculation (199). Indeed, to the first order, eq.(199) is an explicit demonstration of the

identity (213). For the Higgs boson, the Nielsen identity is a bit more complicated, and

is given by

∂ξG
−1
hh (p2) = −∂χG−1

Y1h
(p2)G−1

hh (p2), (216)

where G−1
Y1h

(p2) stands for a non-vanishing 1PI Green function which can be obtained

from the extended BRST symmetry which also acts on the gauge parameter (PIGUET;

SIBOLD, 1985). To be more precise, Y1 is a local source coupled to the BRST variation
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Figure 10 - Pole residue gauge dependence
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Legend: Gauge dependence of the residue of the pole for the Higgs field, for the parameter values

m = 2 GeV, mh = 1
2 GeV, µ = 10 GeV, e = 1

10 .

Source: The author, 2020.

of the Higgs field (see (157)), while χ is coupled to the integrated composite operator∫
d4x

(
− i

2
c̄b+mcρ

)
. Acting with ∂χ inserts the latter composite operator with zero mo-

mentum flow into the 1PI Green function 〈(sh)h〉, see (HAUSSLING; KRAUS, 1997) for

the explicit expression of G−1
Y1h

(p2) in terms of Feynman diagrams. As a consequence, the

Higgs propagator Ghh(p
2) is not gauge independent, in agreement with our results (197).

From (216) we further find

∂ξ∂p2G
−1
hh (p2)|p2=−m2

pole
= −∂χG−1

Y1h
(−m2

pole)∂p2G
−1
hh (p2)|p2=−m2

pole
, (217)

which means that the residue is not gauge independent, as G−1
Y1h

(p2) does not necessarily

vanish at the pole. We can confirm this for the one-loop calculation, see Figure 34.

Furthermore, we do have

∂ξG
−1
hh (−m2

pole) = 0, (218)

so that the Higgs pole mass is indeed gauge independent, the expected result for the

physical (observable) Higgs mass. This can be confirmed to one-loop order by using eq.

(209), see also Figure 13. Explicitly, in eq. (206) for G−1
hh (−m2

h) all the gauge parameter

dependence drops out, which means that the Higgs pole mass is gauge independent to

first order in h̄.
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3.3.2 Obtaining the spectral function

We can try to determine the spectral function itself to first order. To do so, we

compare the Källén-Lehmann spectral representation for the propagator

G(p2) =

∫ ∞
0

dt
ρ(t)

t+ p2
, (219)

where ρ(t) is the spectral density function, with the propagator (211) to first order, written

as

G(p2) =
Z

(p2 +m2
pole − Π̃(p2))Z

=
Z

p2 +m2
pole − Π̃(p2) + (p2 +m2

pole)
∂Π̃(p2)
∂p2
|p2=−m2

=
Z

p2 +m2
pole

+ Z

Π̃(p2)− (p2 +m2
pole)

∂Π̃(p2)
∂p2
|p2=−m2

(p2 +m2
pole)

2

 , (220)

where in the last line we used a first-order Taylor expansion so that the propagator has

an isolated pole at p2 = −m2
pole. In (219) we can isolate this pole in the same way, by

defining the spectral density function as ρ(t) = Zδ(t−m2
pole) + ρ̃(t), giving

G(p2) =
Z

p2 +m2
pole

+

∫ ∞
0

dt
ρ̃(t)

t+ p2
(221)

and we identify the second term in each of the representations (220) and (221) as the

reduced propagator

G̃(p2) ≡ G(p2)− Z

p2 +m2
pole

, (222)

so that

G̃(p2) =

∫ ∞
0

dt
ρ̃(t)

t+ p2
= Z

Π̃(p2)− (p2 +m2
pole)

∂Π̃(p2)
∂p2
|p2=−m2

(p2 +m2
pole)

2

 . (223)

Finally, using Cauchy’s integral theorem in complex analysis, we can find ρ̃(t) as a function

of G̃(p2), giving

ρ̃(t) =
1

2πi
lim
ε→0+

(
G̃(−t− iε)− G̃(−t+ iε)

)
. (224)
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3.3.3 Spectral density functions

We are now ready to plot the spectral density function for the photon propagator

and the Higgs boson propagator. For this section we shall write all quantities as a function

of the renormalization scale µ and choose the parameters e = 1, v = 1µ, λ = 1
5
, so that

m = 1µ and mh = 1√
5
µ. For this choice of parameters, all one-loop corrections computed

are within 20% of the tree-level results, indicating that our perturbative approximation

is under control.

Since in the Abelian case the transverse component of the gauge field ATµ (x) is

gauge invariant, it turns out that the corresponding propagator (199) is independent

from the gauge parameter ξ, and so are its pole mass, residue and spectral function.

Following the steps from section 3.3.1, we find the first-order pole mass of the transverse

photon to be

m2
pole = 1.05417µ2 (225)

and the first-order residue

Z = 0.984983. (226)

These values are small corrections of the tree-level ones, m2 = µ2 and Ztree = 1, so that

the one-loop approximation appears to be consistent.

The spectral function is given in Figure 11. We can distinguish a two-particle

state threshold at t = (m+mh)
2 = 2.09µ2, and the spectral density function is positive,

adequately describing the physical photon excitation. For the Higgs fields, following the

steps from section 3.3.1, we find the pole mass to first order in h̄ to be

m2
h,pole = 0.237987µ2 = 1.1899m2

h, (227)

for all values of the parameter ξ. This means that while the Higgs propagator (197) is

gauge-dependent, the pole mass is gauge-independent. This is in full agreement with the

Nielsen identities of the Abelian U(1) Higgs model studied in (HAUSSLING; KRAUS,

1997). For the residue, we distinguish three regions:

• ξ < 1
20

= λ
4e2

: for these values mh > 2
√
ξm, which means the Higgs particle is

unstable and can decay into two Goldstone fields ρ(x). Of course, this process is

physically impossible because the Goldstone boson itself is not physical. It therefore

clearly demonstrates the unphysical nature of the propagator 〈h(x)h(y)〉. For these

values of ξ, the pole mass is a real value inside the branch cut created by the two-

particle state of Goldstone excitations. This means that we cannot properly define
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Figure 11 - Photon spectral function
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Legend: Spectral function for the transverse part of the reduced photon propagator 〈A(p)A(−p)〉T ,

with t given in units of µ2, for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

the derivative of the one-loop correction to obtain the corresponding residue through

eq. (212).

• ξ ≤ 3: for these values we find Z > 1.

• ξ > 3: for these values we find Z < 1.

In Figure 12, we find the spectral density functions for three values of ξ : 2, 3, 5. For

small t, their behaviour is the same, with a two-particle state for the Higgs field at

t = (mh + mh)
2 = 0.8µ2, and a two-particle state for the photon field, starting at

t = (m + m)2 = 4µ2. Then, we see that there is a negative contribution, different

for each diagram, at t = (
√
ξm +

√
ξm)2. This corresponds to the threshold for creation

of two (unphysical) Goldstone bosons. This negative contribution eventually overcomes

the other ones, leading to a negative regime in the spectral function, independently of

the value of ξ. This feature is consistent with the large-momentum behaviour of the

Higgs propagator (197), for a detailed discussion see Appendix G. As one lowers the value

of the gauge parameter ξ, this unphysical threshold is shifted towards lower t’s and may

occur for momentum values lower than the physical two-particle states of two Higgs or two

photons. As discussed above, for ξ < λ
4e2

even the one-particle delta peak becomes located

within the unphysical Goldstone production region and the standard interpretation of the

spectral properties is completely lost. It is therefore clear that this correlation function
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Figure 12 - Higgs spectral function
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Legend: Spectral function for the reduced Higgs propagator 〈h(p)h(−p)〉, for gauge parameters ξ = 2

(Green, dotted), ξ = 3 (Yellow, dashed), ξ = 5 (Red, Solid), with t given in units of µ2, for the

parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

does not display the desired spectral properties to describe the Higgs mode in this theory,

indicating the necessity of resorting to another operator as we shall do in what follows.

3.4 Some subtleties of the Higgs spectral function

In this section we discuss some subtleties that arose during the analysis of the

spectral function of the Higgs boson.

3.4.1 A slightly less correct approximation for the pole mass

In the previous two sections we have obtained strictly first-order expressions. In

practice, for small values of the coupling parameter e2, we could think about making the

approximation

G(p2) =
1

p2 +m2 − Π(p2)
≈ 1

p2 +m2 − Π1−loop(p2)
, (228)
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Figure 13 - Gauge dependence Higgs pole mass
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Legend: Gauge dependence of the Higgs pole mass obtained iteratively to first order (Green) and the

approximated pole mass (Red), for the parameter values m = 2 GeV, mh = 1
2 GeV, µ = 10

GeV, e = 1
10 . Up: real part, down: imaginary part.

Source: The author, 2020.

in which case one can fix the pole mass by locating the root of

p2 +m2 − Π1−loop(p2) = 0. (229)

The difference between the pole masses obtained by the iterative method (209) and the

approximation (229) is very small, of the order 10−6 GeV for our set of parameters.

However, it is rather interesting to notice that the pole mass of the Higgs boson becomes

gauge dependent in the approximation (229). This is no surprise, as the validity of the

Nielsen identities is understood either in an exact way, or in a consistent order per order

approximation. The previous approximation is neither.

In Figure 13 one can see the gauge dependence of the approximated pole mass of

the Higgs, in contrast with the first order pole mass. Even worse, for very small values of

ξ, the approximated pole mass gets complex (conjugate) values. This is due to the fact

that the threshold of the branch cut, the branch point, for (191) is ξ-dependent, as we

will see in the next section.

3.4.2 Something more on the branch points

The existence of a diagram with two internal Goldstone lines (see Figure 41) leads

to a term proportional to
∫ 1

0
dx ln(p2x(1− x) + ξm2) in the Higgs propagator (191). This

means that for small values of ξ, the threshold for the branch cut of the propagator will be

ξ-dependent too. Let us look at the Landau gauge ξ = 0. In this gauge, the above ln-term
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Figure 14 - Higgs propagator around pole mass

-1.0 -0.5 0.5 1.0
y*10-8

-2

-1

1

2
Im[Πhh

1-loop (mh
2+a+iy)]*1011

Legend: Behaviour of the one-loop correction of the Higgs propagator Πhh(p2) around the pole mass,

for the values a = −10−6 (Yellow, dashed), a = 0 (Red, dotted), a = 10−6 (Green, solid). The

value x is a small imaginary variation of the argument in Πhh(p2). Only for a = 0 we find a

continuous function at x = 0, meaning that for any other value, we are on the branch cut.

Source: The author, 2020.

is proportional to ln(p2), due to the now massless Goldstone bosons. This logarithm has a

branch point at p2 = 0, meaning that the pole mass will be lying on the branch cut. Since

the first order pole mass is real and gauge independent, this means that Π1−loop
hh (−m2

h) is

a singular real point on the branch cut. In the slightly less correct approximation of the

last section, we will find complex conjugate poles as in Figure 13. This is explained by

the fact that for every real value different from p2 = −m2
h, we are on the branch cut, see

Figure 14 .

Another consequence of the fact that, for small ξ, the pole mass is a real point

inside the branch cut is that Πhh(p
2) is non-differentiable at p2 = −m2

h and we cannot

extract a residue for this pole. In order to avoid such a problem, we should move away

from the Landau gauge and take a larger value for ξ, so that the threshold for the branch

cut will be smaller than −m2
h. For this we need that 4ξm2 > m2

h, which in the case of our

parameters set means to require that ξ > 1
64

, in accordance with Figure 13.

3.4.3 Asymptotics of the spectral function

Away from the Landau gauge, we see on Figure 12 that for e.g. ξ = 2 the Higgs

spectral function is not non-positive everywhere, while for e.g. ξ = 4 it is positive definite,

with a turning point at ξ = 3. How can we explain this difference? The answer can be

related to the UV behaviour of the propagator. For p2 →∞, the Higgs boson propagator
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at one-loop behaves as

Ghh(p
2) =

Z
p2 ln p2

µ2

, (230)

with Z depending on the gauge parameter ξ. Now, one can show (see Appendix G) that

for Z > 0, ρ(t) becomes negative for a large value of t. For our parameter set, we find

that for large momenta

G−1
hh (p2)→ (3− ξ)p

2 ln(p2)

1600π2
, for p2 →∞, (231)

so that for ξ < 3, we indeed find Z > 0. This indicates that the large momentum be-

haviour of the propagator makes a difference around ξ = 3, and determines the positivity

of the spectral function, a known fact (OEHME; ZIMMERMANN, 1980; OEHME, 1990;

ALKOFER; SMEKAL, 2001). This being said, at the same time we cannot trust the

propagator values for p2 → ∞ without taking into account the renormalization group

(RG) effects and in particular the running of the coupling, which is problematic for non-

asymptotically free gauge theories as the Abelian Higgs model.

3.5 A non-unitary U(1) model

In this section, we will discuss an Abelian model of the Curci-Ferrari (CF) type

(CURCI; FERRARI, 1976b), in order to compare it with the Higgs model (153). Both

models are massive U(1) models with a BRST symmetry. However, while the BRST

operator s of the Higgs model is nilpotent, this is not true for the CF-like model. We

know the that the Higgs model is unitary but, by the criterion of (KUGO; OJIMA, 1979),

the CF model is most probably not.

In section 3.5.1 we discuss some essentials for the CF-like model: the action with

the modified BRST symmetry, tree-level propagators and vertices. In section 3.5.2 we

discuss the one-loop propagators for the photon and scalar field and extract the spectral

function. In section 3.5.3 we introduce a local composite field operator that is left in-

variant by the modified BRST symmetry ot the CF model. The spectral properties of

this composite state’s propagator will tell us something about the (non-)unitarity of the

model, since for unitary models, we expect the propagator of a BRST invariant compos-

ite operator to be gauge parameter independent, and the spectral function to be positive

definite.
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3.5.1 CF-like U(1) model: some essentials

We start with the action of the CF-like U(1) model

SCF =

∫
ddx

{
1

4
FµνFµν +

m2

2
AµAµ + (Dµϕ)†Dµϕ+m2

ϕϕ
†ϕ+ λ(ϕϕ†)2

− α
b2

2
+ b∂µAµ + c̄∂2c− αm2c̄c

}
, (232)

where the mass term m2

2
AµAµ is put in by hand rather than coming from a spontaneous

symmetry breaking, and we have fixed the gauge in the linear covariant gauge with gauge

parameter α. The mass term breaks the BRST symmetry (157) in a soft way. This

Abelian CF action is however invariant under the modified BRST symmetry, smSCF = 0,

with8

smAµ = −∂µc,

smc = 0,

smϕ = iecϕ,

smϕ
† = −iecϕ†,

smc̄ = b,

smb = −m2c. (233)

As noticed before in our Introduction, this modified BRST symmetry is not nilpotent

since s2
mc̄ 6= 0.

From the quadratic part of (232) we find the following propagators at tree-level

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
Pµν +

α

p2 + αm2
Lµν ,

〈Aµ(p)b(−p)〉 = i
pµ

p2 + αm2
,

〈b(p)b(−p)〉 = − m2

p2 + αm2
,

〈ϕ†(p)ϕ(−p)〉 =
1

p2 +m2
ϕ

,

〈c̄(p)c(−p)〉 = − 1

p2 + αm2
, (234)

8 This is the Abelian version of the variation (157). For computational purposes, we have also made a
rescaling ib → b. Notice that higher order α-dependent terms present in the CF model are absent in
the Abelian limit (CURCI; FERRARI, 1976a; DELDUC; SORELLA, 1989).
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Figure 15 - Photon self-energy

Legend: Contributions to one-loop CF photon self-energy. Wavy lines represent the photon field and

dashed lines represent the scalar field.

Source: The author, 2020.

Figure 16 - Scalar self-energy

Legend: Contributions to the one-loop CF scalar self-energy. Line representation as in Figure 15.

Source: The author, 2020.

while from the interaction terms we find the vertices

ΓAµϕ†ϕ(−p1,−p2,−p3) = e(p3,µ − p2,µ)δ(p1 + p2 + p3),

ΓAµAνϕ†ϕ(−p1,−p2,−p3,−p4) = −2e2δµνδ(p1 + p2 + p3 + p4),

Γϕ†ϕϕ†ϕ(−p1,−p2,−p3,−p4) = −4λδ(p1 + p2 + p3 + p4). (235)

3.5.2 Propagators and spectral functions

The one-loop corrections to the photon and scalar self-energies are given in Figure

15 and 16. Without going through the calculational details, we will directly give here

the propagators in d = 4 and discuss some curiosities. The inverse connected photon

propagator,

(G⊥AA)−1(p2) = p2 +m2 +
e2

(4π)2

∫ 1

0

dxK(m2
ϕ,m

2
ϕ)(1− ln

K(m2
ϕ,m

2
ϕ)

µ2
)−m2

ϕ(1− ln
m2
ϕ

µ2
),(236)

is independent of the gauge parameter. The threshold of the branch cut is given by

t∗ = −4m2
ϕ, and to avoid a pole mass lying on the branch cut, we need to choose here

m2 < 4m2
ϕ. Choosing m = 1

2
GeV, mϕ = 2 GeV, µ = 10 GeV, e = 1

10
, we find a positive
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Figure 17 - Photon spectral function
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Legend: The reduced spectral function of the photon field in the Abelian CF model, with t given in

GeV2, for the parameter values m = 2 GeV, mh = 1
2 GeV, µ = 10 GeV, e = 1

10 . The

first-order pole mass lies at t = 0.25151 GeV2. The photon two-particle state starts at

t∗ = 4m2
ϕ = 16 GeV2.

Source: The author, 2020.

spectral function, see Figure 17.

More interestingly, the scalar propagator

G−1
ϕϕ(p) = p2 +m2

ϕ −
e2

(4π)2

∫ 1

0

dxm2 − α2m2 − αK(m2
ϕ,m

2)(1− 2 ln
K(m2

ϕ, αm
2)

µ2
)

+ 4K(m2
ϕ, 0)

p2

m2
(1− ln

K(m2
ϕ, 0)

µ2
)− 2K(m2

ϕ,m
2)
p2

m2
(1− ln

K(m2
ϕ,m

2)

µ2
)

− 2K(m2
ϕ, αm

2)
p2

m2
(1− ln

K(m2
ϕ, αm

2)

µ2
) + 8

p4

m2
x2 ln

K(m2
ϕ, 0)

µ2

− 4
p4

m2
x2 ln

K(m2
ϕ,m

2)

µ2
− 4p2 ln

K(m2
ϕ,m

2)

µ2

− (4αp2x− αp2x2 + 4
p2

m2
x2) ln

K(m2
ϕ, αm

2)

µ2

− 3m2 ln
m2

µ2
+ αm2 ln

αm2

µ2
+

λ

(4π)2
m2
ϕ(1− ln

m2
ϕ

µ2
), (237)

is α-dependent, and so is the iterative first-order pole mass m2
ϕ,pole = m2

ϕ−Π1−loop(−m2
ϕ).

This field can thus not represent a physical particle. For any value other than the Landau

gauge α = 0 we furthermore get complex poles, see Figure 18.

From the fact that we find gauge dependent (complex) pole masses for the scalar

field, we can already draw the conclusion that the CF model does not describe a physical

scalar field. In the next section we will explicitly verify the non-unitary of this model
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Figure 18 - Scalar pole mass gauge dependence
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Legend: Gauge dependence of the first order pole mass for the scalar field. Left: Real part, Right:

Imaginary part. The chosen parameter values are m = 2 GeV, mϕ = 1
2 GeV, µ = 10 GeV,

e = 1
10 .

Source: The author, 2020.

in yet another way. Essentially, our findings so far mean that in the CF setting, the

unphysical gauge parameter α plays here a quite important role, just like the coupling:

different values of the gauge parameter label dfferent theories. This can also be seen from

another example: the one-loop vacuum energy of the model will now not only depend on

m, but also on α.

3.5.3 Gauge invariant operator

The Abelian CF model allows us to construct a BRST invariant composite operator(
b2

2
+m2c̄c

)
, with

sm

(
b2

2
+m2c̄c

)
= 0. (238)

Although s2
m 6= 0 and we can therefore no longer introduce the BRST cohomology classes,

we can still use the fact that sm is a symmetry generator, thereby defining a would-be

physical subspace as the one being annihilated by sm. A Fock space analogue of this

operator was introduced in (OJIMA, 1982), where it was established that it has negative

norm. As a consequence, it was shown that the physical subspace relating to the symmetry

generator sm was not well-defined, as it contains ghost states. Several more such states

were identified later on in (BOER et al., 1996). Up to leading order, the connected
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propagator of the composite operator in eq.(238) reads

G b2

2
+m2c̄c

(p2) =

〈(
b2

2
+m2c̄c

)
,

(
b2

2
+m2c̄c

)〉
=

1

4
〈b2, b2〉+m4〈c̄c, c̄c〉, (239)

We thus find the propagator (239) to be

G b2

2
+m2c̄c

(p2) = −3

4
m2

∫
ddk

(2π)d
1

k2 + αm2

1

(k − p)2 + αm2

= −3

4
m2 1

(4π)d/2
Γ(2− d/2)

∫ 1

0

dxKd/2−2(αm2, αm2) (240)

and this gives for d = 4, using the MS-scheme

G b2

2
+m2c̄c

(p2) =
3

4

m2

(4π)2

∫ 1

0

dx ln

(
K(αm2, αm2)

µ2

)
. (241)

Clearly, the propagator is depending on the gauge parameter α, a not so welcome feature

for a presumably physical object.

We can also find the spectral function immediately from the propagator by again

relying on (224). In Figure 19, one sees that the spectral function is negative for different

values of α. Both the α-dependence and the negative-definiteness of the spectral functions

demonstrate the non-unitarity of the Abelian CF model. To our knowledge, this is the

first time that ghost-dependent invariant operators in the physical subspace of a CF model

have been constructed from the functional viewpoint9, complementing the (asymptotic)

Fock space analyses of (OJIMA, 1982; BOER et al., 1996).

3.6 Conclusion

In this chapter we have studied the Källén-Lehmann spectral properties of the

U(1) Abelian Higgs model in the Rξ gauge, and that of a U(1) Curci-Ferrari (CF) like

model. Our main aim was to disentangle in this analytical, gauge-fixed setup what is

physical and what is not at the level of the elementary particle propagators, in conjunc-

tion with the Nielsen identities. Special attention was given to the role played by gauge

(in)dependence of different quantities and by the correct implementation of the results

up to a given order in perturbation theory. In particular, calculating the spectral func-

tion for the Higgs propagator in the U(1) model, it became apparent that an unphysical

9 A similar result can be checked to hold for the original non-Abelian CF model, by adding a few higher
order terms to the here introduced Abelian operator. This means that a non-Abelian version of the
operator (238), invariant under the BRST transformation (157), can be written down.
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Figure 19 - Composite operator b2

2 +m2c̄c spectral function

1 2 3 4 5 6 7
t

-1.0

-0.8

-0.6

-0.4

-0.2

10 3.ρ(t)

Legend: The spectral function of the composite operator b2

2 +m2c̄c, for α = 2 (Green, dotted), α = 3

(Red, solid), α = 5 (Yellow, dashed). The chosen parameter values are m = 1
2 GeV, µ = 10

GeV. The treshold for the branch cut of the propagator is given by t∗ = (
√
αm+

√
αm)2,

being t∗ = (2 GeV2, 3 GeV2, 5 GeV2) for ξ = (2, 3, 5).

Source: The author, 2020.

occurrence of complex poles, as well as a gauge-dependent pole mass, are caused by the

use of the resummed (approximate) propagator as being exact. Indeed, for small coupling

constants, the one-loop correction gives a good approximation of the all-order loop correc-

tion, and this is a much used method to find numerical results (TISSIER; WSCHEBOR,

2010; TISSIER; WSCHEBOR, 2011; HAYASHI; KONDO, 2019). However, for analytical

purposes, one should stick to the order at which one has calculated the propagator. As

we have illustrated, at least in the U(1) Abelian Higgs model case, one will then find a

real and gauge independent pole mass for the Higgs boson, in accordance with what the

Nielsen identities dictate (HAUSSLING; KRAUS, 1997).

Another issue faced here was the fact that the branch point for the Higgs propagator

is ξ-dependent, being located at p2 = 0 for the Landau gauge ξ = 0. For small values of ξ,

the pole mass has a real value. However, its value is located on the branch cut, making it

impossible to define a residue at this point, and therefore a spectral function. This means

that in order to formulate a spectral function, we should move away from the Landau

gauge. These issues with unphysical (gauge-variant) thresholds are nothing new, see for

example (BINOSI; PAPAVASSILIOU, 2009). They reinforce in a natural way the need to

work with gauge-invariant field operators to correctly describe the observable excitations

of a gauge theory.

For the photon, the (transverse) propagator is gauge independent (even BRST

invariant), and consequently so are the pole mass, residue and spectral function. For the
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Higgs boson, the propagator, residue and spectral function are gauge dependent, while

the pole mass is gauge independent, in line with the latter being an observable quantity.

Notice that the residue of the two-point function does not need to be gauge independent,

since this does not follow from the Nielsen identities, as we discussed in our main text.

Rather, the Nielsen identities can be used to show that the residues of the pole masses

in S-matrix elements are gauge independent, that is the residues of the singularities

in observable scattering amplitudes, see (GRASSI; KNIEHL; SIRLIN, 2001; GRASSI;

KNIEHL; SIRLIN, 2002). These residues can evidently be different per scattering process

(and per different mass pole). The fact that the Higgs propagator is gauge dependent

is not surprising, given that the Higgs field is not invariant under the Abelian gauge

transformation.

Concluding, in this chapter several tools have been worked out to determine spec-

tral properties in perturbation theory. We worked up to first order in h̄ , but everything

can be consistently extended to higher orders. We paid attention how to avoid problems

with complex poles and to the pivotal important role of the Nielsen identities, which are

intimately related to the exact nilpotent BRST invariance of the model. These tools will

turn out to be quite useful for forthcoming work on the spectral properties of HYM theo-

ries. For these theories, the Nielsen identities are well established (GAMBINO; GRASSI,

2000), with supporting lattice data (MAAS; MUFTI, 2014), providing thus a solid foun-

dation to compare any results with.

In the next chapters we will consider gauge-invariant operators and study their

spectral properties using the same techniques of this paper. If the elementary fields

are not gauge invariant (like the Higgs field, but also the gluon field in QCD), these

aforementioned gauge-invariant operators will turn out to be composite in nature. Such

an approach has recently been addressed in (MAAS; SONDENHEIMER; TOREK, 2019;

MAAS, 2019), based on the seminal observations of Fröhlich-Morchio-Strocchi (FROHLICH;

MORCHIO; STROCCHI, 1980; FROHLICH; MORCHIO; STROCCHI, 1981), in which

composite operators with the same global quantum numbers (parity, spin, . . . ) as the

elementary particles are constructed.10 These composite states will enable us to access

directly the physical spectrum of the theory. Moreover, we notice that the spectral prop-

erties and the behaviour in the complex momentum plane of a (gauge-invariant) com-

posite operator will nontrivially depend on the spectral properties of its gauge-variant

constituents. This gives another motivation why it is meaningful to study spectral prop-

erties of gauge-variant propagators. Another nice illustrative example of this interplay

is the Bethe-Salpeter study of glueballs in pure gauge theories (SANCHIS-ALEPUZ et

10 For a recent discussion of the renormalization properties of higher dimensional gauge invariant operators
in HYM models see the recent results by (BINOSI; TRIPOLT, 2020).
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al., 2015), based on spectral properties of constituent gluons and ghosts (STRAUSS;

FISCHER; KELLERMANN, 2012).
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4 GAUGE-INVARIANT SPECTRAL DESCRIPTION OF THE U(1)

HIGGS MODEL FROM LOCAL COMPOSITE OPERATORS

4.1 Introduction

An essential aspect of gauge theories is that all physical observable quantities have

to be gauge invariant (PESKIN; SCHROEDER, 1995; HOOFT et al., 1980). Therefore,

a formulation of the properties of the elementary excitations in terms of gauge-invariant

variables is very welcome. Such an endeavour has been addressed by several authors11

(HOOFT et al., 1980; HOOFT et al., 2012; FROHLICH; MORCHIO; STROCCHI, 1980;

FROHLICH; MORCHIO; STROCCHI, 1981), who have been able to construct, out of the

elementary fields, a set of local gauge invariant composite operators which can effectively

implement a gauge invariant framework by using the tools of quantum gauge field theories:

renormalizability, locality, Lorentz covariance and BRST exact symmetry. The aim of this

chapter is that of discussing the features of two local gauge invariant operators within the

framework of the U(1) Abelian Higgs model discussed in chapter 3. Following (HOOFT

et al., 1980; HOOFT et al., 2012), we shall consider the two local composite operators

O(x) and Vµ(x) invariant under (155), given by

O(x) = 1/2(h2(x) + 2vh(x) + ρ2(x)) = ϕ†(x)ϕ(x)− v2

2
,

Vµ(x) = −iϕ†(x)(Dµϕ)(x) . (242)

The relevance of these operators can be understood by using the expansion (152) and

retaining the first order terms. For the two-point correlator of the scalar operator one

finds (cf. eq. (248) for the full expression):

〈O(x)O(y)〉 ∼ v2〈h(x)h(y)〉(tree-level) +O(h̄) + 〈O
(
h3;hρ2; ρ4

)
〉 , (243)

while the contributions to the vector operator at lowest order in the fields read

Vµ(x) ∼ ev2

2
Aµ(x) + total derivative + higher orders . (244)

We see therefore that the gauge-invariant operator O(x) is related to the Higgs excitation,

while Vµ(x) is associated with the photon.

In this chapter, we shall compute the BRST-invariant two-point correlation func-

11 See (MAAS, 2019; MAAS; SONDENHEIMER; TÖREK, 2019) for a general review on this matter.
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tions

〈O(x)O(y)〉 , 〈Vµ(x)Vν(y)〉 , (245)

at one-loop order in the ’t Hooft Rξ-gauge and discuss the differences with respect to

the corresponding one-loop elementary propagators 〈h(x)h(y)〉 and 〈Aµ(x)Aν(y)〉 already

evaluated in the last chapter. Let us point out that the two local operators (Vµ(x), O(x))

belong to the cohomology of the BRST operator (PIGUET; SORELLA, 1995), i.e.

sVµ(x) = 0 , Vµ(x) 6= s∆µ(x)

sO(x) = 0 , O(x) 6= s∆(x) , (246)

for any local quantities (∆µ(x),∆(x)). As expected, both correlation functions of eq.

(245) turn out to be independent from the gauge parameter ξ. Moreover, we shall show

that the one-loop pole masses of 〈Vµ(x)Vν(y)〉T and 〈O(x)O(y)〉 are exactly the same as

those of the elementary propagators 〈Aµ(x)Aν(y)〉T and 〈h(x)h(y)〉, where 〈Aµ(x)Aν(y)〉T
stands for the transverse component of 〈Aµ(x)Aν(y)〉, i.e.

〈Aµ(x)Aν(y)〉T =

(
δµρ −

∂µ∂ρ
∂2

)
〈Aρ(x)Aν(y)〉 . (247)

This important feature makes apparent the fact that the operators Vµ(x) and O(x) give

a gauge invariant picture for the photon and Higgs modes. In addition, the correlation

functions 〈Vµ(x)Vν(y)〉T and 〈O(x)O(y)〉 exhibit a spectral KL representation with pos-

itive spectral densities, allowing for a physical interpretation in terms of particles. This

property is in sharp contrast with the one-loop spectral density of the elementary non

gauge invariant Higgs propagator 〈h(x)h(y)〉, which displays an explicit dependence on

the gauge parameter ξ, as established in the last chapter. Moreover, the longitudinal

part of the correlator 〈Vµ(x)Vν(y)〉 – which is independently gauge invariant – is shown to

exhibit the pole mass of the Higgs excitation. This last feature reinforces the consistency

of the present description of the physical degrees of freedom of the theory, since the only

physically expected elementary excitations are indeed the Higgs and the photon ones. Let

us also underline that, to our knowledge, this is the first explicit one-loop calculation of

the gauge-invariant correlators (245) and of their analytical properties.

This chapter is organized as follows. In section 4.2 we compute at one-loop order

the two-point functions for the composite operators in. In section J, we provide the

detailed analysis of the spectral properties of the composite operators, and compare them

with the spectral properties of the elementary fields. The unitary limit, in which the

gauge parameter ξ tends to infinity, is investigated in section 4.4. Section 5.5 collects

our conclusion and outlook. The final Appendices contain the derivation of the Feynman

rules and of the diagrams contributing to (245).
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4.2 The correlation functions 〈O(x)O(y)〉 and 〈Vµ(x)Vν(y)〉 at one loop order

We study the two-point correlation functions of the local gauge invariant operators

(Vµ(x), O(x)). For the correlator of the scalar composite operator we get:

〈O(x)O(y)〉 = v2 〈h(x)h(y)〉+ v 〈h(x)ρ(y)2〉+ v 〈h(x), h(y)2〉+

+
1

4

(
〈h(x)2ρ(y)2〉+ 〈h(x)2h(y)2〉+ 〈ρ(x)2ρ(y)2〉

)
. (248)

Individually, the terms in the expansion (248) are not gauge invariant, but their sum is.

We can now analyze the connected diagrams for each term, up to one-loop order, through

the action (153). We calculated the one-loop diagrams in Appendix G.1. Looking at the

diagrams in Figure 39, we can see that the correlation function 〈O(p)O(−p)〉 will have

the following structure

〈O(p)O(−p)〉1−loop =
Afin(p2) + δAdiv(p

2)

(p2 +m2
h)

2
+
Bfin(p2) + δBdiv(p

2)

(p2 +m2
h)

+ Cfin(p2) + δCdiv(p
2), (249)

where (Afin, Bfin, Cfin) stand for the finite parts and (δAdiv, δBdiv, δCdiv) for the purely

divergent terms, i.e. the pole terms in 1
ε

obtained by means of the dimensional regular-

ization, namely

δAdiv(p
2)

ε→0
=

v2

8π2ε

(
2v2λ2 − e2(p2(−3 + ξ) + v2λξ)

)
δBdiv(p

2)
ε→0
=

v2(6e4 − λ2 + e2λξ)

8π2ελ

δCdiv(p
2)

ε→0
=

1

8π2ε
(250)



107

while

Afin(p2) =
v2

(4π)2

∫ 1

0

dx

{
e2

[
p2(1− ln

m2

µ2
− 2 ln

p2x(1− x) +m2

µ2
)

− p4

2m2
ln
p2x(1− x) +m2

µ2
− 6m2(1− ln

m2

µ2
+ ln

p2x(1− x) +m2

µ2
)

]

+ λ
[1

2
m2
h(−6 + 6 ln

m2
h

µ2
− 9 ln

p2x(1− x) +m2
h

µ2
)
]

−

[
ξ(e2p2 + λm2)(1− ln

ξm2

µ2
)− (e2 p4

2m2
− λm

2
h

2
) ln

p2x(1− x) + ξm2

µ2

]}

Bfin(p2) =
1

(4π)2m2
h

∫ 1

0

dx

{
−m2ξm2

h ln

(
m2ξ

µ2

)
+ m2ξm2

h +m4
h

(
3 ln

(
m2
h + p2(1− x)x

µ2

)
+ ln

(
m2ξ + p2(1− x)x

µ2

))
− 3m4

h ln

(
m2
h

µ2

)
+ 3m4

h + 2m4 − 6m4 ln

(
m2

µ2

)}

Cfin(p2) = − 1

2(4π)2

∫ 1

0

dx

{
ln

(
m2
h + p2(1− x)x

µ2

)
+ ln

(
m2ξ + p2(1− x)x

µ2

)}
. (251)

The divergent terms (δAdiv, δBdiv, δCdiv) can be eliminated by means of the Lagrangian

counterterms as well as by suitable counterterms in the external part of the action SJ

accounting for the introduction of the composite operator O(x), i.e.

SJ = S +

∫
d4x

[
(1 + δZ0

div)J(x)O(x) + (1 + δZdiv)
(J(x))2

2

]
, (252)

where J(x) is a BRST invariant dimension two source needed to define the generator

Zc(J) of the connected Green function 〈O(x)O(y)〉:

〈O(x)O(y)〉 =
δ2Zc(J)

δJ(x)δJ(y)
|J=0. (253)

It is worth emphasizing here that we have the freedom of introducing a pure contact

BRST invariant term in the external source J(x):

∫
d4x

α

2
J2(x), (254)
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which can be arbitrarily added to the action (252). Including such a term in (252) will

have the effect of adding a dimensionless constant to GOO = 〈O(p)O(−p)〉, i.e.

GOO(p2)→ GOO(p2) + α. (255)

In particular, α can be chosen to be equal to −GOO(0), implying then that the modified

Green’s function

GOO(p2)−GOO(0) (256)

will obey a one substracted KL representaion .

Inserting the unity

1 = (p2 +m2
h)/(p

2 +m2
h) = ((p2 +m2

h)/(p
2 +m2

h))
2, (257)

for the finite part of 〈O(p)O(−p)〉, we write

〈O(p)O(−p)〉fin =
v2

p2 +m2
h

+
h̄v2

(p2 +m2
h)

2
Π(p2) +O(h̄2) (258)

where

ΠOO(p2) =
1

v2

(
(Afin(p2)) + (p2 +m2

h)(Bfin(p2)) + (Cfin(p2))(p2 +m2
h)

2
)
,

=
1

32π2v2m2
h

∫ 1

0

dx

{
− 8m2

hm
4 − 2m2p2(m2

h + 6m2) ln

(
m2

µ2

)
+

+m2
h

[
− (p2 − 2m2

h)
2 ln

(
m2
h + p2(1− x)x

µ2

)
−(12m4 + 4m2p2 + p4) ln

(
m2 + p2(1− x)x

µ2

)]
+

+2p2(3m4
h +m2

hm
2 + 2m4)− 6m4

hp
2 ln

(
m2
h

µ2

)}
, (259)

and since (259) contains terms of the order of p4

p2+m2 ln(p2), we follow the steps (201)-(203)

to find the resummed form factor in the one-loop approximation

GOO(p2) =
v2

p2 +m2
h − Π̂OO(p2)

+ COO(p2) (260)

with
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Π̂OO(p2) =
1

32π2v2m2
h

∫ 1

0

dx

{
− 8m2

hm
4 − 2m2p2(m2

h + 6m2) ln

(
m2

µ2

)
+

+m2
h

[
3(m4

h + 2m2
hp

2) ln

(
m2
h + p2(1− x)x

µ2

)
−(12m4 + 4m2p2 −m4

h − 2p2m2
h) ln

(
m2 + p2(1− x)x

µ2

)]
+

+2p2(3m4
h +m2

hm
2 + 2m4)− 6m4

hp
2 ln

(
m2
h

µ2

)}
, (261)

and

COO(p2) = − 1

32π2

∫ 1

0

dx

{
ln

(
m2
h + p2x(1− x)

µ2

)
+ ln

(
m2 + p2x(1− x)

µ2

)}
. (262)

The form factor is depicted in Figure 20. Notice that the Green function GOO(p2) becomes

negative for large enough values of the momentum p. As one realizes from expression

(261), this feature is due to the growing in the UV region of the logarithms contained in

the term COO(p2), see eq. (262). It is worth mentioning that this behaviour is also present

when the parameter v is completely removed from the theory. In fact, setting v = 0, the

action S0 in eq. (150), reduces to that of massless scalar QED, namely

S0|v=0 =

∫
d4x

(
F 2
µν

4
+ (Dµϕ)†(Dµϕ) +

λ

2
(ϕ†ϕ)2

)
, (263)

with

ϕ|v=0 =
1√
2

(h+ iρ). (264)

Of course, when v = 0, the operators O = ϕ†ϕ and Vµ = −iϕ†Dµϕ are still gauge

invariant. Though, from eqs. (261)-(262), computing 〈O(p)O(−p)〉v=0, one immediately

gets

〈O(p)O(−p)〉v=0 = COO|v=0 = − 1

16π2

∫ 1

0

dx ln
p2x(1− x)

µ2
. (265)

This equation precisely shows that the term COO0, and thus the negative behaviour
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Figure 20 - Scalar composite operator form factor
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Legend: Resummed form factor for the scalar composite operator. The momentum p is given in units

of the energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

for large enough values of p, is what one usually obtains in a theory for which v = 0,

making evident that the presence of COO is not peculiarity of the U(1) Higgs model in

the U(1) Higgs model, on the contrary. However, in addition to the term COO and unlike

massless scalar QED, the correlation function 〈O(p)O(−p)〉 of the U(1) Higgs model

exhibits the term v2

p2+m2
h−Π̃OO

, which will play a pivotal role. Indeed, as we shall see later

on, this term, originating from the expansion of ϕ around the minimum of the Higgs

potential, φ = 1√
2
(v+h+ iρ), will enable us to devise a gauge invariant description of the

elementary excitations of the model.

Let us end the analysis of the correlation function GOO(p2) by displaying the

behaviour of its first derivative, ∂GOO(p2)
∂p2

, as well as of the one subtracted correlator

GOO(p2) − GOO(0), see Figure 21. The first derivative, as expected, is negative while,

unlike GOO(p2), decays to zero for p2 → ∞. The quantity ∂GOO(p2)
∂p2

will be helpful when

discussing the spectral representation corresponding to 〈O(p)O(−p)〉. Then, for the

vectorial composite operator Vµ(x), we first observe that

Vµ(x) = −iϕ†(x)(Dµϕ)(x)

= eϕ†(x)Aµ(x)ϕ(x)− 1

2
iϕ†(x)∂µϕ(x) +

1

2
iϕ(x)∂µϕ

†(x)− i∂µO(x), (266)

and since we know that the last term is gauge-invariant, the first three terms together are

also gauge-invariant. We thus define a new gauge-invariant operator
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Figure 21 - Form factor - one subtraction
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Legend: The resummed form factor with one subtraction. The momentum p is given in units of the

energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

Figure 22 - Form factor first derivative

20 40 60 80 100
p

-0.04

-0.02

0.00

0.02

0.04

∂ GOO p2

∂ p2

Legend: The first derivative of the form factor (left). The momentum p is given in units of the energy

scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.
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V ′µ(x) = eϕ†(x)Aµ(x)ϕ(x)− 1

2
iϕ†(x)∂µϕ(x) +

1

2
iϕ(x)∂µϕ

†(x), (267)

expanding the scalar field ϕ(x) we find

V ′µ(x) =
1

2
e(v + h(x))2Aµ(x) +

1

2
eρ2(x)Aµ(x) + (v + h(x))∂µρ(x)− ρ(x)∂µh(x) (268)

so that

〈V ′µ(x)V ′ν(y)〉
ϕ→ 1√

2
(v+h+iρ)

= −1

4

{
− e2v4〈Aµ(x)Aν(y)〉 − 4e2v3〈h(x)Aµ(x)Aν(y)〉

−2e2v2〈h(x)2Aµ(x)Aν(y)〉 − 4e2v2〈h(x)Aµ(x)h(y)Aν(y)〉

−2e2v2〈ρ(x)2Aµ(x)Aν(y)〉 − 2ev2∂xµ〈h(x)ρ(x)Av(y)〉

+4ev2〈∂xµh(x)ρ(x)Aν(y)〉 − 2ev3∂xµ〈ρ(x)Aν(y)〉

−4ev2∂xµ〈ρ(x)h(y)Av(y)〉 − 2v∂xµ∂
y
ν〈h(x)ρ(x)ρ(y)〉

+4v∂yν〈∂xµh(x)ρ(x)ρ(y)〉 − ∂xµ∂yν〈h(x)ρ(x)h(y)ρ(y)〉

+4〈∂xµh(x)ρ(x)h(y)∂yνρ(y)〉 − v2∂xµ∂
y
ν〈ρ(x)ρ(y)〉

}
+O(h̄2), (269)

where we have discarded the terms that do not have one-loop contributions. In momentum

space, we can split the two-point function into transverse and longitudinal parts in the

usual way:

〈V ′µ(p)V ′ν(−p)〉 = 〈V ′(p)V ′(−p)〉TPµν + 〈V ′(p)V ′(−p)〉LLµν , (270)

where we have introduced the transverse and longitudinal projectors, given respectively

by

Pµν(p) = δµν −
pµpν
p2

,

Lµν(p) =
pµpν
p2

. (271)
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At tree-level, we find in momentum space

〈V ′µ(p)V ′ν(−p)〉tree = −1

4

(
−e2v4〈Aµ(p)Aν(−p)〉 − v2pµpν〈ρ(p)ρ(−p)〉

)
=

1

4

(
e2v4 1

p2 +m2
Pµν + e2v4 ξ

p2 + ξm2
Lµν + v2 p2

p2 + ξm2
Lµν
)

=
e2v4

4

1

p2 +m2
Pµν + v2Lµν . (272)

We can now analyze the connected diagrams for each term, up to one-loop order, through

the action (153). We calculated the one-loop diagrams in Appendix G.2. Let us start with

the transverse part. Looking at the diagrams in Figure 40, we can see that the one-loop

correlation function will have the following structure

〈V ′(p)V ′(−p)〉T,1−loop =
AVfin(p2) + δAVdiv(p

2)

(p2 +m2)2
+
BV
fin(p2) + δBV

div(p
2)

(p2 +m2)

+ CV
fin(p2) + δCV

div(p
2) (273)

where (AVfin, B
V
fin, C

V
fin) stand for the finite parts and (δAVdiv, δB

V
div, δC

V
div) for the purely

divergent terms, i.e. the pole terms in 1
ε

obtained by means of the dimensional regular-

ization, namely

δAVdiv
ε→0
=

e4v4

2(4π)2ε

(1

3
p2 − 6(

e2

λ
− 1

2
)e2v2 + 3λv2

)
δBV

div
ε→0
=

v2

(4π)2ε
(6
e6v2

λ
− 3e4v2 − e2p2

3
+ 3e2λv2)

δCV
div

ε→0
=

1

6(4π)2ε
(9e2v2 − p2 − 3λv2) (274)
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and

AVfin =
e4v4

2(4π)2

∫ 1

0

dx

{
p2x(1− x) +m2x

+ m2
h(1− x)(1− ln

p2x(1− x) +m2x+m2
h(1− x)

µ2
) +m2

h(1− ln
m2
h

µ2
)

+
m4

m2
h

(1− 3 ln
m2

µ2
) + 2m2 ln

p2x(1− x) +m2x+m2
h(1− x)

µ2

}

BV
fin =

m2

18m2
hp

2(4π)2

∫ 1

0

dx

{
3m4

h

(
m2
h −m2 − 7p2

)
ln

(
m2
h

µ2

)
− 3m2

h

(
2p2
(
m2
h − 5m2

)
+
(
m2
h −m2

)
2 + p4

)
ln

(
xm2

h +m2(1− x) + p2(1− x)x

µ2

)
− 3

(
m3
h −m2mh

)
2 + 9p2

(
m2m2

h + 3m4
h + 2m4

)
+ 2p4m2

h

− 3m2
(
m2
h

(
p2 −m2

)
+m4

h + 18m2p2
)

ln

(
m2

µ2

)}

CV
fin =

1

36(4π)2p2

∫ 1

0

dx

{
3m2

(
m2
h −m2 + p2

)
ln

(
m2

µ2

)
+ 3m2

h

(
−m2

h +m2 + p2
)

ln

(
m2
h

µ2

)
+ 6m2

h

(
p2 −m2

)
− 5p2

(
3m2

h − 9m2 + p2
)

+ 3
(
2m2

h

(
p2 −m2

)
+m4

h +m4 − 10m2p2 + p4
)

ln

(
p2x(1− x) + xm2 + (1− x)m2

h

µ2

)
+ 3m4

h + 3m4 − 54m2p2 + 3p4

}
. (275)

The divergent terms (δAVdiv, δB
V
div, δC

V
div) can be eliminated by means of the Lagrangian

counterterms as well as by suitable counterterms in the external part of the action SVJ
accounting for the introduction of the composite operator V ′µ(x), i.e.

SVJ = S +

∫
d4x

[
(1 + δZV,0

div )Jµ(x)Vµ(x) + (1 + δZV
div)

Jµ(x)Jµ(x)

2

]
, (276)

where Jµ(x) is a BRST invariant dimension one source needed to define the generator

Zc(J) of the connected Green function 〈V ′µ(x)V ′ν(y)〉:

〈V ′µ(x)V ′ν(y)〉 =
δ2Zc(J)

δJµ(x)δJν(y)
|J=0, (277)

and like in the scalar case, we have the freedom of introducing a pure contact BRST

invariant term in the external source Jµ(x):
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∫
d4x

1

2
(βv2 Jµ(x)Jµ(x) + γJµ(x)∂2Jµ(x) + σ(∂µJµ(x))2), (278)

which can be arbitrarily added to the action (276). Including such a term in (276) will

have the effect of adding a dimensionless constant to GT
V V (p2) = 〈V ′(p)V ′(−p)T 〉, i.e.

GT
V V (p2)→ GT

V V (p2) + βv2 + γp2, (279)

where we notice that the last term in (278) does not contribute to the transversal part of

the propagator. In particular, β and γ can be choosen so that (279) becomes

GT
V V (p2)−GT

V V (0)− p2∂G
T
V V (p2)

∂p2
|p=0, (280)

see Figure 24. It is a Green’s function that obeys a two substracted KL representation,

see section J. Following the steps in the same way as for the scalar composite field, (252)-

(351), we find

〈V ′(p)V ′(−p)〉T =
e2v4

4

1

p2 +m2
+
h̄e2v4

4

ΠT
V V (p2)

(p2 +m2)2
+O(h̄2), (281)

with

ΠT
V V (p2) =

− 1

9(4π)2e2v4m2
h

∫ 1

0

dx

{
− 18m4(m4

h +m4) + 9m2
hp

4(m2
h +m2)

− 3m2
hp

2
[
2p2(m2

h − 5m2) + (m2
h −m2)2 + p4

]
ln

(
m2
h(1− x) +m2x+ p2(1− x)x

µ2

)
+ 2m2

hp
6 + 3m4

h ln

(
m2
h

µ2

)[
p2(m2

h + 11m2) + 6m4 − p4
]

+ 3m2
[
−m2

hp
4 + p2(−m4

h +m2
hm

2 + 36m4) + 18m6
]

ln

(
m2

µ2

)
− 3p2(m6

h + 10m4
hm

2 +m2
hm

4 + 12m6)

}
, (282)

and following the steps (201)-(203), we find

GT
V V =

e2v4

4

( 1

p2 +m2 − ΠT
V V (p2)

)
+ CV V (p2) (283)
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with

Π̂T
V V (p2) = − 1

9(4π)2e2v4m2
h

∫ 1

0

dx

{
− 18m4(m4

h +m4) + 9m2
hp

4(m2
h +m2)

− 3m2
h

[
2(−2m2p2 −m4)(m2

h − 5m2)

+ p2(m2
h −m2)2 − 2m2p2 −m4

]
ln

(
m2
h(1− x) +m2x+ p2(1− x)x

µ2

)
+ 2m2

hp
6 + 3m4

h ln

(
m2
h

µ2

)[
p2(m2

h + 11m2) + 6m4 − p4
]

+ 3m2
[
−m2

hp
4 + p2(−m4

h +m2
hm

2 + 36m4) + 18m6
]

ln

(
m2

µ2

)
− 3p2(m6

h + 10m4
hm

2 +m2
hm

4 + 12m6)

}
, (284)

and

CV V (p2) =
1

12(4π)2

∫ 1

0

dx

{
(2m2

h + p2) ln

(
m2
h(1− x) +m2x+ p2(1− x)x

µ2

)}
. (285)

The resummed form factor (283) is depicted in Figure 23, as well as the modified version

(280) and their second derivative, which is imported for the spectral analysis in section J.

For the longitudinal part of the propagator (see appendix G.2 for details) , we find

the divergent part

〈V ′(p)V ′(−p)〉Ldiv
ε→0
= −v

2 (3e4 + λ2)

(4π)2λε
(286)

and the total finite correction up to first order in h̄ is given by

〈V ′(p)V ′(−p)〉Lfin = v2 −

(
m4
h −m4

h ln
(
m2
h

µ2

)
+m4 − 3m4 ln

(
m2

µ2

)
32π2m2

h

)
(287)

which means the longitudinal part of the propagator 〈V ′µ(x), V ′ν(y)〉 is not propagating.
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Figure 23 - Vector composite operator form factor I
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Legend: Resummed form factor for the vector composite operator (left), the resummed form factor

with one subtraction (middle), and the first derivative of the form factor (left). The

momentum p is given in units of the energy scale µ, for the parameter values e = 1, v = 1µ,

λ = 1
5 .

Source: The author, 2020.

Figure 24 - Vector composite operator form factor II
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Legend: Resummed form factor for the vector composite operator. The momentum p is given in units

of the energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.
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Figure 25 - Form factor second derivative
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Legend: Second derivative of the form factor. The momentum p is given in units of the energy scale µ,

for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

4.3 Spectral properties of the gauge-invariant local operators (Vµ(x), O(x))

In this section, we will calculate the spectral properties associated with the corre-

lation function obtained in the last section. In 4.3.1, we will shortly review the techniques

employed in the last chapter to obtain the pole mass, residue and spectral density up to

first order in h̄. In 4.3.2, the spectral properties of the composite operators (Vµ(x), O(x))

are discussed.

4.3.1 Obtaining the spectral function

For elementary fields we obtained the spectral density function by comparing the

Källén-Lehmann spectral representation for the propagator of a generic field Õ(p)

〈Õ(p)Õ(−p)〉 = G(p2) =

∫ ∞
0

dt
ρ(t)

t+ p2
, (288)

where ρ(t) is the spectral density function and G(p2) stands for the resummed propagator

G(p2) =
1

p2 +m2 − Π(p2)
. (289)
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For higher-dimensional operators, the resummed propagator acquires an overall (dimen-

sionful) factor identical to the one appearing in its tree level result, as we have seen in

section 4.2. We also note that in the case of higher dimensional operators, the spectral

representation, eq.(288), might require appropriate subtraction terms in order to ensure

convergence. A standard way to cure this problem is to subtract from G(p2) the first few

terms of its Taylor expansion at p = 0 (COLANGELO; KHODJAMIRIAN, 2001), mak-

ing the integral more and more convergent. These subtraction terms are directly related

to the renormalization of the composite operators, and one can see that the modified

Green’s functions for the composite scalar field (256) and for the composite vector field

(280) are in fact subtractions of the Taylor series to first and second order, respectively.

In our theory we can make use of the subtracted equations at p = 0 because all fields are

massive in the Rξ-gauge, so there are no divergences at zero momentum. Also, we stress

that the spectral function ρ(t) is not affected by the subtraction procedure. Moreover, we

can see that these subtractions do not have an influence on the (second) derivative of the

propagator. For the scalar composite operator

∂(GOO(p2)−GOO(0))

∂p2
=
∂GOO(p2)

∂p2
= −

∫ ∞
0

dt
ρ(t)

(t+ p2)2
, (290)

which means that for a positive spectral function the first derivative of GOO is strictly

negative, as is confirmed in Figure 22. For the vector composite operator

∂2(GV V (p2)−GV V (0)− p2G′V V (0))

(∂p2)2
=
∂2GV V (p2)

(∂p2)2
= 2

∫ ∞
0

dt
ρ(t)

(t+ p2)3
, (291)

which should be strictly positive for a positive spectral function, as is shown in Figure

25. Remember, however, that we can also obtain the spectral function directly, by the

methods developed in section (3.3.2).

4.3.2 Spectral properties of the gauge-invariant composite operators Vµ(x) and O(x)

For the scalar composite operator O(x) with two-point function given by expression

(261), we find the first-order pole mass for our set of parameter values to be

m2
h,pole = 0.213472µ2, (292)

which is exactly equal to the pole mass of the elementary Higgs field correlator. Following

the steps from 3.3.1, we find the first-order residue to correct the tree-level result Ztree = v2
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Figure 26 - Spectral function of the scalar composite operator
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Legend: Spectral function for the reduced propagator of the scalar composite operator, 〈O(p)O(−p)〉,
with t given in units of µ2, for the parameter values e = 1, v = 1µ, λ = 1

5 .

Source: The author, 2020.

by ∼ 7%:

Z = v2(1 + ∂p2ΠOO(p2)p2=−m2
h
) = 1.06577v2 , (293)

while the first-order spectral function is shown in Figure 26. Similarly as for the spectral

function of the Higgs field in Figure 12, one finds a two-particle threshold for Higgs

pair production at t = (mh + mh)
2 = 0.8µ2, and a two-photon state starting at t =

(m + m)2 = 4µ2. The difference is that for this gauge-invariant correlation function we

no longer have the unphysical Goldstone two-particle state. Due to the absence of this

negative contribution, the spectral function is always positive. Therefore, this quantity is

suitable for describing a physical Higgs excitation spectrum as opposed to the elementary

propagator 〈hh〉.
Finally, it is interesting to note that below the unphysical threshold the elemen-

tary correlator displays the same qualitative spectral properties as this gauge-invariant

approach. This means that spectral description of the physical Higgs mode could in

principle be successfully encoded in the elementary propagator in the unitary gauge, in

which ξ → ∞ and the Goldstone bosons are infinitely heavy. We shall make an explicit

comparison in section 4.4.

For the transverse vector composite operator V T
µ (x), with our set of parameters
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Figure 27 - Spectral function of the vector composite ooperator
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Legend: Spectral function for reduced transverse propagator of the vector composite operator

〈V (p)V (−p)〉T , with t given in units of µ2, for the parameter values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

we find the first-order pole mass

m2
pole = 1.05417µ2, (294)

which is – as expected from the Nielsen identities – exactly the same as the pole mass of

the transverse photon field correlator (225). Furthermore, we find the first-order residue

Z =
e2v4

4
(1 + ∂p2Π

T
V V (p2)p2=−m2) = 1.09332

e2v4

4
, (295)

and the first order spectral density for the reduced propagator is displayed in Figure 27.

Like the photon spectral density in Figure 11, we find a photon-Higgs two-particle state

at t = (mh +m)2 = 2.09µ2, and the spectral density is positive for all values of t.

4.3.3 Pole masses

We can explain the fact that the pole mass of the elementary propagator equals

that of its gauge-invariant extension in a qualitative way by looking at the definition of a

first-order pole mass, eq. (209). When calculating one-loop corrections to the two-point

function of the composite operators O(p) and Ra
µ(p), we find that

Πcomposite(p
2) = Πelementary(p2) + Π1−leg(p2)(p2 +m2) + Π0−leg(p2)(p2 +m2)2, (296)
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where Π1−leg(p2) and Π0−leg(p2) are the composite one-loop contributions to the correction

of the composite field’s two-point functions, with one external leg and zero external legs,

respectively. From this, we see immediately that

Πcomposite(−m2) = Πelementary(−m2) (297)

and therefore, up to first order in h̄, we find

m2
pole,composite = m2

pole,elementary (298)

which means that the elementary operators and their composite extensions share the same

mass. This is an important feature, providing an alternative way to the Nielsen identities,

to understand why the pole masses of the elementary particles are gauge invariant and

not just gauge parameter independent.

4.4 Unitary limit

It is well-known (PESKIN; SCHROEDER, 1995) that for the Higgs model, the

unitary gauge represents the physical gauge, as it decouples the unphysical fields, i.e. the

ghost field and the Goldstone field. The unitary gauge can be formally obtained in the

Rξ-gauges by taking ξ → ∞. However, this gauge is non-renormalizable, as one can see

by looking at this limit for the tree-level propagator of the photon field

〈Aµ(p)Aν(−p)〉tree
ξ→∞
=

1

p2 +m2
Pµν +

1

m2
Lµν . (299)

Nonetheless, we can approximate the unitary gauge by taking large values of ξ. This is

especially interesting when looking at the spectral function of the elementary Higgs field,

which is ξ-dependent. In Figure 28 one finds the spectral function for ξ = 1000 for small

and large ranges of t. In Figure 29 we show the spectral function of the scalar composite

field O(x) for the same ranges of t. As one can see, the pictures are qualitatively very

similar. This means that when approximating the unitary gauge, the spectral function

of the gauge-dependent, elementary field h(x) approximates that of its composite, gauge-

invariant counterpart.
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Figure 28 - Spectral function of the elementary propagator
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Legend: Spectral function for the reduced elementary propagator 〈h(p)h(−p)〉 for small values of t

(left) and large values of t (right), with t given in units of µ2, for ξ = 1000 the parameter

values e = 1, v = 1µ, λ = 1
5 .

Source: The author, 2020.

Figure 29 - Spectral function of the composite propagator
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Legend: Spectral function for the reduced composite propagator 〈O(p), O(−p)〉 for small values of t

(left) and large values of t (right), with t given in units of µ2, for the parameter values e = 1,

v = 1µ, λ = 1
5 .

Source: The author, 2020.
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4.5 Conclusion

In the present chapter, following the local gauge-invariant setup of (HOOFT et al.,

1980; HOOFT et al., 2012; FROHLICH; MORCHIO; STROCCHI, 1980; FROHLICH;

MORCHIO; STROCCHI, 1981), we have evaluated at one-loop order the two-point cor-

relation functions 〈V ′µ(x)V ′ν(y)〉, 〈O(x)O(y)〉 of the two local gauge-invariant operators

V ′µ(x) = −iϕ†(x)Dµϕ(x) + i∂µO(x) and O(x) = ϕ†(x)ϕ(x)− v
2

in the U(1) Abelian Higgs

model quantized in the Rξ gauge. Our results can be summarized as follows:

• both 〈V ′µ(x)V ′ν(y)〉 and 〈O(x)O(y)〉 do not depend on the gauge parameter ξ, as

expected;

• the pole masses of 〈V ′µ(x)V ′ν(y)〉T and 〈O(x)O(y)〉 are exactly the same as those

of the correlation functions of the elementary fields 〈Aµ(x)Aν(y)〉T and 〈h(x)h(y)〉,
respectively, where 〈· · · 〉T stands for the transverse component of the corresponding

propagator;

• the spectral densities of the Källén-Lehmann representation of the correlation func-

tions 〈V ′µ(x)V ′ν(y)〉 and 〈O(x)O(y)〉 turn out to be always positive, in contrast to

the one associated with the (gauge-dependent) elementary Higgs field.

These important features give us a fully gauge-invariant picture in order to describe the

spectrum of elementary excitations of the model, i.e. the massive photon and the Higgs

mode.
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5 SPECTRAL PROPERTIES OF LOCAL BRST INVARIANT

COMPOSITE OPERATORS IN THE SU(2) YANG-MILLS-HIGGS MODEL

In this chapter we will extend the techniques of chapter 3 and 4 to the more complex

case of SU(2) Higgs model with a single Higgs field in the fundamental representation.

This model is equal to the electroweak model from chapter 1.1 with the coupling constant

of the hypercharge interaction taken to zero, g′ → 0. As we have seen for the Abelian

gauge theory, the direct use of non-gauge invariant fields displays several limitations in

the spectral representation, and this will become more severe in the case of a non-Abelian

gauge theory. For instance, in the case of the U(1) Higgs model, the transverse component

of the Abelian gauge field Aµ is gauge invariant, so that the two-point correlation function

Pµν(p)〈Aµ(p)Aν(−p)〉, where Pµν(p) = (δµν − pµpν
p2

) is the transverse projector, turns out

to be independent from the gauge parameter ξ. However, this is no more true in the non-

Abelian case, where both Higgs and gauge boson two-point functions, i.e. 〈h(p)h(−p)〉
and Pµν(p)〈Aaµ(p)Abν(−p)〉, where h stands for the Higgs field and Aaµ for the gauge boson

field, exhibit a strong gauge dependence from ξ. As a consequence, the understanding of

the two-point correlation functions of both Higgs field h and gauge vector boson Aaµ in

terms of the Källén-Lehmann (KL) spectral representation is completely jeopardized by

an unphysical dependence from the gauge parameter ξ, obscuring a direct interpretation

of the above mentioned correlation functions in terms of the elementary excitations of the

physical spectrum, namely the Higgs and the vector gauge boson particles.

We also note here that from a lattice perspective, it is expected that the spectrum

of a gauge (Higgs) theory should be describable in terms of local gauge invariant operator

correlation functions, with concrete physical information hiding in the various (positive

and gauge invariant) spectral functions, not only pole masses, decay widths, but also

transport coefficients at finite temperature etc. Clearly, such information will not correctly

be encoded in gauge variant, non-positive spectral functions.

As we discussed in section 1.1.5, besides the exact BRST invariance, the quantized

theory exhibits a global SU(2) symmetry known as custodial symmetry. In this chapter

we will show how the local composite BRST invariant operators corresponding to the

gauge bosons transform as a triplet under the custodial symmetry, a property which will

imply useful relations for their two-point correlation functions.

This chapter is organized as follows. In section 5.1, we give a review of the SU(2)

HYM model with a single Higgs field in the fundamental representation, of the gauge

fixing procedure and its ensuing BRST invariance. In section 5.2 we calculate the two-

point correlation functions of the elementary fields up to one-loop order. In section 5.3, we

define the BRST invariant local composite operators (O(x), Ra
µ(x)) corresponding to the

BRST invariant extension of (h,Aaµ) and calculate their one-loop correlation functions. In
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section 5.4, we discuss the spectral properties of both elementary and composite operators.

In order to give a more general idea of the behavior of the spectral functions, we shall be

using two sets of parameters which we shall refer as to Region I and Region II. To some

extent, Region I can be associated to the perturbative weak coupling regime, while in

Region II we keep the gauge coupling a little bit larger, while decreasing the minimizing

value v of the Higgs field. Section 5.5 is devoted to our conclusion. The technical details

are all collected in the appendices.

5.1 The action and its symmetries

The YM action with a single Higgs field in the fundamental representation is given

by

S0 =

∫
d4x

{
1

4
F a
µνF

a
µν + (Dij

µ Φ†j)(Dik
µ Φk) +

λ

2
(Φ†iΦi − 1

2
v2)2

}
= SYM + SHiggs (300)

with

Fµν = ∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν (301)

and

Dij
µ Φj = ∂µΦi − i

2
g(τa)ijAaµΦj, (Dij

µ Φj)† = ∂µΦi† +
i

2
gΦj†(τa)jiAaµ, (302)

with the Pauli matrices τa(a = 1, 2, 3) and the Levi-Civita tensor εabc referring to the

gauge symmetry group SU(2). The scalar complex field Φi(x) is in the fundamental

representation of SU(2), i.e. i, j = 1, 2. Thus, Φ is an SU(2)-doublet of complex scalar

fields that can be written as

Φ =
1√
2

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (303)

The configuration which minimizes the Higgs potential in the expression (300) is

〈Φ〉 = 1√
2

(
v

0

)
(304)

and we write down Φ(x) as an expansion around the configuration (304), so that

Φ =
1√
2

(
v + h+ iρ3

iρ1 − ρ2

)
, (305)
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where h is the Higgs field and ρa, a = 1, 2, 3, the would-be Goldstone bosons. We can use

the matrix notation12:

Φ =
1√
2

((v + h)1 + iρaτa) ·

(
1

0

)
, (306)

so that the second term in eq. (300) becomes

(Dij
µ Φj)†Dik

µ Φk =
1

2
(1, 0) ·

[
∂µh · 1− i∂µρaτa +

ig

2
τaAaµ

(
(v + h)1

−iρbτ b
)]
×

[
∂µh · 1 + i∂µρ

cτ c − ig

2
((v + h)1

−iρdτ d
)
τ cAcµ

]
·

(
1

0

)
= L̃0 + L̃1 + L̃2, (307)

with L̃i the ith term in powers of Aµ:

L̃0 =
1

2

(
(∂µh)2 + ∂µρ

a∂µρ
a
)
,

L̃1 = −1

2

{
gvAaµ∂µρ

a − gAaµρa∂µh+ gAaµ(∂µρ
a)h+ gεabc∂µρ

aρbAcµ
}
,

L̃2 =
g2

8
AaµA

a
µ

[
(v + h)2 + ρbρb

]
, (308)

and we have the full action

S0 =

∫
d4x

1

2

{
1

2
F a
µνF

a
µν +

1

4
v2g2AaµA

a
µ + (∂µh)2 + ∂µρ

a∂µρ
a − gvAaµ∂µρa + gAaµρ

a∂µh

− gAaµ(∂µρ
a)h− gεabc∂µρaρbAcµ +

g2

4
AaµA

a
µ

[
2vh+ h2 + ρbρb

]
+ λv2h2 + λvh(h2 + ρaρa)

+
λ

4
(h2 + ρaρa)2

}
. (309)

One sees that both gauge field Aaµ and Higgs field h have acquired a mass given, respec-

tively, by

m2 =
1

4
g2v2, m2

h = λv2 . (310)

12 This is of course possible thanks to the fact that Φ counts 3 Goldstone modes and that SU(2) has
three generators. This “numerology” is essentially what leads to a large custodial symmetry in the
SU(2) case.
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5.1.1 Gauge fixing and BRST symmetry

The action (300) is invariant under the local ω-parametrized gauge transformations

δAaµ = −Dab
µ ω

b, δΦ = −ig
2
ωaτaΦ, δΦ† =

ig

2
ωaΦ†τa, (311)

which, when written in terms of the fields (h, ρa), become

δh =
g

2
ωaρa, δρa = −g

2
(ωa(v + h)1− εabcωbρc). (312)

As done in the U(1) case, we shall be using the Rξ-gauge. We add thus need the gauge

fixing term

Sgf = s

∫
d4x
{
−iξ

2
c̄aba + c̄a(∂µA

a
µ − ξmρa)

}
=

1

2

∫
d4x
{
ξbaba + 2iba∂µA

a
µ + 2c̄a∂µD

ab
µ c

b − 2iξmbaρa

− 2ξc̄amca − gξc̄amhca − ξgεabcc̄acbρc
}
, (313)

so that the gauge fixed action Sfull = S0 + Sgf , namely

Sfull =

∫
d4x

1

2

{
1

2
F a
µνF

a
µν +

1

4
v2g2AaµA

a
µ

+ (∂µh)2 + ∂µρ
a∂µρ

a − gvAaµ∂µρa + gAaµρ
a∂µh− gAaµ(∂µρ

a)h

− gεabc∂µρ
aρbAcµ +

g2

4
AaµA

a
µ

[
2vh+ h2 + ρbρb

]
+ λv2h2

+ λvh(h2 + ρaρa) +
λ

4
(h2 + ρaρa)2 + ξbaba + 2iba∂µA

a
µ + 2c̄a∂µD

ab
µ c

b − 2iξmbaρa

− 2ξc̄amca − gξc̄amhca − ξgεabcc̄acbρc
}

(314)

turns out to be left invariant by the BRST transformations

sAaµ = −Dab
µ c

b, sh =
g

2
caρa, sρa = −g

2
(ca(v + h)1− εabccbρc)

sca =
1

2
gεabccbcc, sc̄a = iba, sba = 0 , (315)

sSfull = 0 . (316)
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5.1.2 Custodial symmetry

As already mentioned, apart from the BRST symmetry, there is an extra global

symmetry, which we shall refer to as the custodial symmetry:

δAaµ = εabcβbAcµ,

δρa = εabcβbρc,

δca = εabcβbcc,

δca = εabcβbcc,

δba = εabcβbbc,

δh = 0 , (317)

where βa is a constant parameter, ∂µβ
a = 0,

δSfull = 0 . (318)

One notices that all fields carrying the index a = 1, 2, 3, i.e. (Aaµ, b
a, ca, c̄a, ρa), undergo a

global transformation in the adjoint representation of SU(2). The origin of this symmetry

is an SU(2)gauge × SU(2)global symmetry of the action in the unbroken phase, see section

1.1.5. The exception is the Higgs field h, which is left invariant, i.e. it is a singlet. As we

shall see in the following, this additional global symmetry will provide useful relationships

for the two-point correlation functions of the BRST invariant composite operators.

5.2 One-loop evaluation of the correlation function of the elementary fields

For the elementary fields h(x) and Aaµ, the correlation functions are calculated in

Appendices I.0.1 and I.0.2. For the Higgs field, for the one-loop propagator we get

〈h(p)h(−p)〉 =
1

p2 +m2
h

+
1

(p2 +m2
h)

2
Πhh(p

2) +O(h̄2) (319)
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where

Πhh(p
2) =

3g2

8(4π)2

∫ 1

0

dx

{
2ξ
(
m2
h + p2

)
ln

(
m2ξ

µ2

)
− 2ξm2

h + 2
(
6m2 − p2

)
ln

(
m2

µ2

)
− (12m2 +

p4

m2
+ 4p2) ln

(
m2 + p2(1− x)x

µ2

)
+

(
p4

m2
− m4

h

m2

)
ln

(
m2ξ + p2(1− x)x

µ2

)
− 12m2 − 2ξp2 + 2p2

− m4
h

m2

(
−2 ln

(
m2
h

µ2

)
+ 3 ln

(
m2
h + p2(1− x)x

µ2

)
+ 2

)}
. (320)

Before trying to resum the self-energy Πhh(p
2), we notice that this resummation is tacitly

assuming that the second term in (319) is much smaller than the first term. However, we

see that eq. (319) contains terms of the order of p4

(p2+m2
h)2

ln
(
m2+p2(1−x)x

µ2

)
which cannot

be resummed for big values of p2. We therefore proceed as in eq. (201)-(203) and use the

identity

p4 = (p2 +m2
h)

2 −m4
h − 2p2m2

h (321)

to rewrite

p4

(p2 +m2
h)

2
ln
p2x(1− x) +m2

µ2
= ln

p2x(1− x) +m2

µ2

− (m4
h + 2p2m2

h)

(p2 +m2
h)

2
ln
p2x(1− x) +m2

µ2
. (322)

The term which has been underlined in eq. (322) can be safely resummed, as it decays

fast enough for large values of p2. We thence rewrite

Πhh(p
2)

(p2 +m2
h)

2
=

Π̂hh(p
2)

(p2 +m2
h)

2
+ Chh(p

2) , (323)
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with

Π̂hh(p
2) =

3g2

8(4π)2

∫ 1

0

dx

{
2ξ
(
m2
h + p2

)
ln

(
m2ξ

µ2

)
− 2ξm2

h + 2
(
6m2 − p2

)
ln

(
m2

µ2

)
− (12m2 − (m4

h + 2p2m2
h)

m2
+ 4p2) ln

(
m2 + p2(1− x)x

µ2

)
− (2m4

h + 2p2m2
h)

m2
ln

(
m2ξ + p2(1− x)x

µ2

)
− 12m2 − 2ξp2 + 2p2 − m4

h

m2

(
− 2 ln

(
m2
h

µ2

)
+ 3 ln

(
m2
h + p2(1− x)x

µ2

)
+ 2
)}

(324)

and

Chh(p
2) = − 3g2

8m2(4π)2

∫ 1

0

dx

(
ln
p2x(1− x) +m2

µ2
− ln

p2x(1− x) + ξm2

µ2

)
. (325)

Thus, for the one-loop Higgs propagator, we get

〈h(p)h(−p)〉 =
1

p2 +m2
h − Π̂hh(p2)

+ Chh(p
2) +O(h̄2) . (326)

For the gauge field, we split the two-point function into transverse and longitudinal parts

in the usual way

〈Aaµ(p)Abν(−p)〉 = 〈Aaµ(p)Abν(−p)〉
T Pµν(p) + 〈Aaµ(p)Abν(−p)〉

L Lµν(p), (327)

where we have introduced the transverse and longitudinal projectors, given respectively

by

Pµν(p) = δµν −
pµpν
p2

, Lµν(p) =
pµpν
p2

. (328)

We find

〈Aaµ(p)Abν(−p)〉
T

=
δab

p2 +m2
+

δab

(p2 +m2)2
ΠAAT (p2) +O(h̄2), (329)
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ΠAAT (p2) = − δabg2

36(4π)2m4p2m2
h

∫ 1

0

dx

{
− 27m4p2m4

h ln

(
m2
h

µ2

)
− 27m6ξp2m2

h ln

(
m2ξ

µ2

)
+ 3m4m4

h

(
m2
h −m2 + 2p2

)
ln

(
m2
h

µ2

)
+ 27m4p2m2

h

(
m2
h +m2ξ

)
− 3m4ξm2

h

(
2m4(ξ − 1) +m2(4ξ + 7)p2 + 2(ξ + 9)p4

)
ln

(
m2ξ

µ2

)
+ 3m4 ln

(
m2

µ2

)
(−m2m4

h +m2
h(m

4(2ξ − 1) +m2(4ξ + 45)p2

+ 2(ξ + 9)p4)− 54m4p2)

+ m4
(

6m2m4
h

+ m2
h

(
3m4(2(ξ − 2)ξ + 1) + 3m2(ξ − 1)(4ξ − 1)p2 + 2(3ξ(ξ + 4)− 17)p4

)
− 3m6

h + 54m4p2
)

− 3m2
h

[
m4(2p2

(
m2
h − 5m2

)
+

(
m2
h −m2

)
2 + p4) ln

(
p2(1− x)x+m2

h(1− x) +m2x

µ2

)
− 2

(
m2 + p2

)2
(m4(ξ − 1)2

+ 2m2(ξ − 5)p2 + p4) ln

(
p2(1− x)x+ ξm2(1− x) +m2x

µ2

)
+ p2

(
p4 −m4

) (
4m2ξ + p2

)
ln

(
p2(1− x)x+ ξm2

µ2

)
+ p2

(
4m2 + p2

) (
12m4 − 20m2p2 + p4

)
ln

(
p2(1− x)x+m2

µ2

)]}
. (330)

We see that (329) contains again terms of the order
p4

(p2+m2)2
ln
(
m2+p2(1−x)x

µ2

)
and p6

(p2+m2)2
ln
(
m2+p2(1−x)x

µ2

)
, which cannot be resummed for big

values of p2. We use

p4

(p2 +m2)2
ln
p2x(1− x) +m2

µ2
= ln

p2x(1− x) +m2

µ2

− (m4 + 2p2m2)

(p2 +m2)2
ln
p2x(1− x) +m2

µ2
(331)

and

p6

(p2 +m2)2
ln
p2x(1− x) +m2

µ2
= (p2 − 2m2) ln

p2x(1− x) +m2

µ2

+
2m6 + 3p2m4

(p2 +m2)2
ln
p2x(1− x) +m2

µ2
. (332)
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The underlined terms in (331) and (332) can be safely resummed. We rewrite

ΠAAT (p2)

(p2 +m2)2
=

Π̂AAT (p2)

(p2 +m2
h)

2
+ CAAT (p2), (333)

with

Π̂AAT (p2) =

− δabg2

36(4π)2m4p2m2
h

∫ 1

0

dx

{
− 27m4p2m4

h ln

(
m2
h

µ2

)
− 27m6ξp2m2

h ln

(
m2ξ

µ2

)
+ 3m4m4

h

(
m2
h −m2 + 2p2

)
ln

(
m2
h

µ2

)
+ 27m4p2m2

h

(
m2
h +m2ξ

)
− 3m4ξm2

h

(
2m4(ξ − 1) +m2(4ξ + 7)p2 + 2(ξ + 9)p4

)
ln

(
m2ξ

µ2

)
+ 3m4

(
−m2m4

h +m2
h

(
m4(2ξ − 1) +m2(4ξ + 45)p2 + 2(ξ + 9)p4

)
− 54m4p2

)
ln

(
m2

µ2

)
+ m4(6m2m4

h +m2
h(3m

4(2(ξ − 2)ξ + 1) + 3m2(ξ − 1)(4ξ − 1)p2

+ 2(3ξ(ξ + 4)− 17)p4)− 3m6
h + 54m4p2)

− 3m2
h

[
m4
(
2p2
(
m2
h − 5m2

)
+
(
m2
h −m2

)
2 + p4

)
ln

(
p2(1− x)x+ (1− x)m2

h +m2x

µ2

)
− 2m4(ξ − 1)2

(
m2 + p2

)2
ln

(
p2(1− x)x+ ξm2(1− x) +m2x

µ2

)
+

(
−2m4(4ξ − 1)p2

(
m2 + p2

))
ln

(
p2(1− x)x+ ξm2

µ2

)
+ (66m6p2 − 33m4p4) ln

(
p2(1− x)x+m2

µ2

)]}
. (334)

and

CAAT (p2) =
δabg2

12(4π)2m4

∫ 1

0

dx

{
(−4m2(ξ − 5)− 2p2)

× ln

(
p2(1− x)x+ ξm2(1− x) +m2x

µ2

)
+

(
4 ξm2 + p2 − 2m2

)
ln

(
p2(1− x)x+ ξm2

µ2

)
+ (−18m2 + p2) ln

(
p2(1− x)x+m2

µ2

)}
. (335)

Finally

〈Aaµ(p)Abν(−p)〉
T

= δab

(
1

p2 +m2 − Π̂AAT (p2)
+ CAAT (p2)

)
+O(h̄2) . (336)
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5.3 One-loop evaluation of the correlation function of the local BRST

invariant composite operators

5.3.1 Correlation function of the scalar BRST invariant composite operator O(x)

The BRST invariant local scalar composite operator O(x) is given by

O(x) = Φ†Φ− v2

2
, s O(x) = 0 , (337)

which, after using the expansion (306), becomes

O(x) =
1

2

[ (
1 0

)
((v + h)1− iρaτa))((v + h)1 + iρbτ b))

(
1

0

)]
− v2

2

=
1

2

(
h2(x) + 2vh(x) + ρa(x)ρa(x)

)
, (338)

so that

〈O(x)O(y)〉 = v2 〈h(x)h(y)〉+ v 〈h(x)ρb(y)ρb(y)〉+ v 〈h(x)h(y)2〉+
1

4
〈h(x)2ρb(y)ρb(y)〉

+
1

4
〈h(x)2h(y)2〉+

1

4
〈ρa(x)ρa(x)ρb(y)ρb(y)〉 . (339)

Looking at the tree level expression of eq. (339), one easily obtains

〈O(p)O(−p)〉tree = v2 〈h(p)h(−p)〉tree = v2 1

p2 +m2
h

, (340)

showing that the BRST invariant scalar operator O(x) is directly linked to the Higgs

propagator.

Concerning now the one-loop calculation of expression (339), after evaluating each

term, see Appendix J for details, we find that the two-point correlation function of the

scalar composite operator O(x) develops a geometric series in the same way as the elemen-

tary field h(x). This allows us the make a resummed approximation. Using dimensional

regularization in the MSbar-scheme, we find

〈O(p)O(−p)〉 (p2) =
v2

p2 +m2
h

+
v2

(p2 +m2
h)

2
ΠOO(p2) +O(h̄2), (341)

ΠOO(p2) =
1

32v2π2m2
h

∫ 1

0

dx

{
− 24m2

hm
4 − 6m2p2

(
m2
h + 6m2

)
ln

(
m2

µ2

)
− m2

h

(
p2 − 2m2

h

)2
ln

(
m2
h + p2x(1− x)

µ2

)
− 3m2

h

(
12m4 + 4m2p2 + p4

)
ln

(
m2 + p2x(1− x)

µ2

)
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+ 6p2
(
m4
h +m2

hm
2 + 2m4

)
− 6m4

hp
2 ln

(
m2
h

µ2

)}
. (342)

Since (341) contains terms of the order of p4

(p2+m2)2
ln(p2), we follow the steps (201)-(203)

to find the resummed correlation function in the one-loop approximation

GOO(p2) =
v2

p2 +m2
h − Π̂OO(p2)

+ COO(p2) (343)

with

Π̂OO(p2) =
1

32v2π2m2
h

∫ 1

0

dx

{
− 24m2

hm
4 − 6m2p2

(
m2
h + 6m2

)
ln

(
m2

µ2

)
− m2

h(3m
4
h − 6m2

hp
2) ln

(
m2
h + p2x(1− x)

µ2

)
− 3m2

h

(
12m4 + 4m2p2 −m4

h − 2p2m2
h

)
ln

(
m2 + p2x(1− x)

µ2

)
+ 6p2

(
m4
h +m2

hm
2 + 2m4

)
− 6m4

hp
2 ln

(
m2
h

µ2

)}
(344)

and

COO(p2) = − 1

32π2

∫ 1

0

dx

{
ln

(
m2
h + p2x(1− x)

µ2

)
+ 3 ln

(
m2 + p2x(1− x)

µ2

)}
. (345)

Expressions (343) and (345) show that, as expected, and unlike the Higgs propagator,

eq. (326), the correlator 〈O(p)O(−p)〉 is independent from the gauge parameter ξ.

5.3.2 A little digression on the unitary gauge

Of course, since the composite operator O(x) is BRST invariant, any choice for the

gauge parameter ξ should give the same expression for the correlation function GOO(p2).

One convenient choice is the so-called unitary gauge, which is formally attained by taking

ξ →∞ at the end of the calculation. Though, we take here a different route and perform

the same calculation done before for GOO(p2) by employing the tree level propagators and

other Feynman rules which follow by taking the limit ξ →∞ at the beginning. In doing

this, for the tree level propagators one finds

〈Aaµ(p)Abν(−p)〉 =
δab

p2 +m2
Pµν(p) + δab

1

m2
Lµν(p) =

δab

p2 +m2

(
δµν +

pµpν
m2

)
,

〈h(p)h(−p)〉 =
1

p2 +m2
h

(346)
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with all other propagators, i.e. the Goldstone and Faddeev-Popov ghost propagators,

vanishing. Then, eq. (339) simplifies to

〈O(x)O(y)〉unitary = v2 〈h(x)h(y)〉unitary + v 〈h(x)h(y)2〉unitary

+
1

4
〈h(x)2h(y)2〉unitary , (347)

with the contributing diagrams shown in Figure 30. Making use of the dimensional

regularization in the MSbar-scheme and switching to momentum space, we get

v2 〈h(p)h(−p)〉unitary =
3

32π2

∫ 1

0

dx

{
1

ε

(
2m4

h + 12m2p2 + 2p4
)

+ 2m4
h ln

(
m2
h

µ2

)
+ 2

(
6m4 −m2p2

)
ln

(
m2

µ2

)
− 3m4

h ln

(
p2(1− x)x+m2

h

µ2

)
−

(
12m4 + 4m2p2 + p4

)
ln

(
p2(1− x)x+m2

µ2

)
− 2m4

h + 2m2
(
p2 − 6m2

)} 1

(m2
h + p2) 2

, (348)

v 〈h(p)h(−p)2〉unitary =
3

16π2m2
h

∫ 1

0

dx

{
12

ε
m4 − 6m4 ln

(
m2

µ2

)
−m4

h ln

(
m2
h

µ2

)

+ m4
h ln

(
m2
h + p2(1− x)x

µ2

)
+m4

h + 2m4

}
1

(m2
h + p2)

, (349)

1

4
〈h(p)2h(p)2〉unitary =

1

16π2

∫ 1

0

dx

{
1

ε
− 1

2
ln

(
m2
h + p2(1− x)x

µ2

)}
. (350)

Inserting now the unity

1 = (p2 +m2
h)/(p

2 +m2
h) = ((p2 +m2

h)/(p
2 +m2

h))
2, (351)

we find indeed that 〈O(x)O(y)〉unitary = 〈O(x)O(y)〉, showing that the same expression has

been re-obtained by starting directly from the tree level propagators of the unitary gauge,

ξ → ∞, despite the fact that this gauge is known to be non-renormalizable. Though, at

one-loop order, a simple explanation can be found for the previous result, which is due

in part to the BRST invariant nature of the correlation function 〈O(x)O(y)〉 and to the

fact that, at one-loop order, the handling of the overlapping divergences is not required.

From two-loop onward these divergences will show up, requiring a fully renormalizable

setup. More specifically, in this case, one would need to keep ξ finite and use all Feynman

rules of the Rξ-gauge, while taking ξ →∞ only at the end. Nevertheless, having checked

that the one-loop result for GOO(p2) is the same by using both procedures, in the next

section, we will use the same simplifying second trick to evaluate the two-point function

of the vectorial composite operator at one-loop order.
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Figure 30 - Propagator in unitary gauge

Legend: One-loop contributions for the propagator 〈O(x)O(y)〉 in the unitary gauge: 〈h(x)h(y)〉 (first

line),〈h(x)h(y)2〉 (second line) and 〈h(x)2h(y)2〉 (third line) . Wavy lines represent the gauge

field, dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost

field. The • indicates the insertion of a composite operator.

Source: The author, 2020.

5.3.3 Vectorial composite operators

We identify three gauge invariant vector composite operators, following the defini-

tions of ’t Hooft in (HOOFT et al., 1980), namely

O3
µ = iφ†Dµφ,

O+
µ = φT

(
0 1

−1 0

)
Dµφ,

O−µ = (O+
µ )†. (352)

The gauge invariance of O3
µ is apparent. For O+

µ , we can show the gauge invariance by

using the following 2× 2 matrix representation of a generic SU(2) transformation,

U =

(
a −b?

b a?

)
(353)

with determinant |a|2 + |b|2 = 1. Thus, we find that under a SU(2) transformation

O+
µ → (Uφ)T

(
0 1

−1 0

)
Dµ(Uφ)

= φTUT

(
0 1

−1 0

)
UDµφ
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= φT

(
0 1

−1 0

)
Dµφ = O+

µ , (354)

which shows the gauge invariance of O+
µ and, subsequently, of O−µ . After using the ex-

pansion (306), the first composite operator reads

O3
µ

= iφ†Dµφ

= iφ†∂µφ+
1

2
gφ†τaAaµφ

=
i

2

[
(v + h)∂µh+ i(v + h)∂µρ

3 − iρ3∂µh+ ρa∂µρ
a + iρ1∂µρ

2 − iρ2∂µρ
1

− i

2
g(v + h)2A3

µ + ig(v + h)(A1
µρ

2 − A2
µρ

1) +
i

2
gρaA3

µρ
a − igρ3Abµρ

b

]

=
1

2

[
− (v + h)∂µρ

3 + ρ3∂µh− ρ1∂µρ
2 + ρ2∂µρ

1 +
1

2
g(v + h)2A3

µ

− g(v + h)(A1
µρ

2 − A2
µρ

1)

− 1

2
gρaA3

µρ
a + gρ3Abµρ

b

]
+
i

2
∂µO, (355)

and since the last term, i.e. i
2
∂µO, is BRST invariant, the sum of the others terms has to

be BRST invariant too. Therefore, we can introduce the following three “reduced” vector

composite operators Ra
µ with a = 1, 2, 3 :

R1
µ =

i

2

(
O+
µ −O−µ

)
,

R2
µ =

1

2

(
O+
µ +O−µ

)
,

R3
µ = O3

µ −
i

2
∂µOµ, (356)

so that

Ra
µ =

1

2

[
− (v + h)∂µρ

a + ρa∂µh− εabcρb∂µρc +
1

2
g(v + h)2Aaµ − g(v + h)εabc(ρbAcµ)

− 1

2
gAaµρ

mρm + gρaAmµ ρ
m

]
, (357)

with

sRa
µ(x) = 0 . (358)
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Remarkably, the BRST invariant operators Ra
µ transform like a triplet under the custodial

symmetry (317), namely

δRa
µ = εabcβbRc

µ , (359)

and since the only rank two invariant tensor is δab, we can write, moving to momentum

space,

〈Ra
µ(p)Rb

ν(−p)〉 = δabRµν(p
2) → Rµν(p

2) =
1

3
〈Ra

µ(p)Ra
ν(−p)〉 , (360)

as well as

Rµν(p
2) = R(p2)Pµν(p) + L(p2)Lµν(p), (361)

so that in d dimensions,

R(p2) =
1

3

Pµν(p)
(d− 1)

〈Ra
µ(p)Ra

ν(−p)〉 , (362)

and

L(p2) =
1

3
Lµν(p) 〈Ra

µ(p)Ra
ν(−p)〉 . (363)

One recognizes that eqs.(360)-(363) display exactly the same structure of the gauge vector

boson correlation function 〈Aaµ(p)Aν(−p)〉.
In the Rξ-gauge, the non-vanishing contributions, up to first order in h̄, to the

correlation function 〈Ra
µ(p)Rb

ν(−p)〉 are

〈Ra
µ(p)Ra

ν(−p)〉 =
1

16
g2v4〈Aaµ(p)Aaν(−p)〉 − 〈(ρa∂µh)(p) (∂νρ

ah)(−p)〉

+
1

4
pµpν〈(ρah)(p) (ρah)(−p)〉

+
1

8
∂µ∂ν〈(ρaρb)(p) (ρaρb)(−p)〉 − 1

2
〈(ρa∂µρb)(p) (∂νρ

aρb)(−p)〉

+
1

4
g2v3〈Aaµ(p) (Aaνh)(−p)〉 − i

4
gv3pν〈Aaµ(p) ρa(−p)〉

+
1

4
v2pµpν〈ρa(x)ρa(y)〉+

1

6
g2v2〈(ρaAbµ)(p) (ρaAbν)(−p)〉

− 1

24
g2v2〈(ρaρaAbµ)(p)Ab(−p)〉+

1

8
g2v2〈(h2Aaµ)(p)Aaν(−p)〉

+
1

4
g2v2〈(hAaµ)(p) (hAaν)(−p)〉+

i

4
v2gpµ〈(hρa)(p)Aaν(−p)〉

+
1

2
gv2〈(∂µhρa)(p)Aaν(−p)〉+

i

2
gv2pµ〈ρa(p) (hAaν)(−p)〉

− 1

4
gv2εabc〈Aa(p) (ρb∂µρ

c)(−p)〉 − igv2

2
εabcpµ〈ρa(p) (ρbAcν)(−p)〉
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+
1

2
vpµpν〈(hρa)(p) ρa(−p)〉 − ivpν〈(∂µhρa)(p) ρa(−p)〉 (364)

where we have used the notation ∂µ = ∂
∂xµ

and ∂ν = ∂
∂yν

13. The first term in expression

(364) is the gauge field propagator 〈Aaµ(p)Aaµ(−p)〉, which means that Ra
µ can be thought

as a kind of BRST invariant extension of the elementary gauge field Aaµ. At tree-level, we

find in fact

〈Ra
µ(x)Ra

ν(y)〉
tree

=
1

16
g2v4〈Aaµ(p), Aaν(−p)〉+

1

4
v2∂µ∂ν〈ρa(p), ρa(−p)〉

=
3

16
g2v4 1

p2 +m2
Pµν(p) +

3

4
v2Lµν(p), (365)

where we can see that, apart from the constant factor 3
4
v2 appearing in the longitudi-

nal sector, the transverse component reproduces exactly the transverse gauge tree-level

propagator.

Since the correlation function 〈Ra
µ(p), Ra

ν(−p)〉 is independent from the gauge pa-

rameter ξ, due to the BRST invariant nature of the operator Ra
µ(x), we shall proceed as

in the previous example by making use of 〈Ra
µ(p)Ra

ν(−p)〉unitary
= 〈Ra

µ(p), Ra
ν(−p)〉 and

evaluating the correlator at the one-loop order with the propagators given in (346), so

that

〈Ra
µ(p)Ra

ν(−p)〉 =
1

16
g2v4〈Aaµ(p)Aaν(−p)〉unitary +

1

4
g2v3〈Aaµ(p) (Aaνh)(−p)〉unitary

+
1

8
g2v2〈(h2Aaµ)(p)Aaν(−p)〉unitary

+
1

4
g2v2〈(hAaµ)(p) (hAaν)(−p)〉unitary (366)

with the contributing diagrams shown in Figure 31. Using dimensional regularization in

the MSbar-scheme with (d = 4− ε) and switching to momentum space, we find

1

16
g2v4〈Aaµ(p)Aaν(−p)〉unitary =

g4v4

32(4π)2

∫ 1

0

dx

{
− 1

ε6m4m2
h

(9m4m4
h +m2

h(−9m6 − 83m4p2

− 14m2p4 + p6) + 54m8)

+
m2
h

2p2

(
−m2

h +m2 + 7p2
)

ln

(
m2
h

µ2

)
+

1

2m2p2m2
h

(
m4m4

h −m2
h

(
m6 + 47m4p2 + 16m2p4 − 2p6

)
+ 54m6p2

)
ln

(
m2

µ2

)

13 The derivative here is not expressed in momentum space because for composite operators, the derivative
will bring down different momenta depending on the configuration of the Feynman diagram.
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+
1

2p2

(
−2m2

h

(
m2 − p2

)
+m4

h +m4 − 10m2p2 + p4
)

× ln

(
p2(1− x)x+ (1− x)m2

h +m2x

µ2

)
+

1

2m4

(
4m2 + p2

) (
12m4 − 20m2p2 + p4

)
× ln

(
m2 + p2(1− x)x

µ2

)
+

1

6m4p2m2
h

(
3m4m6

h − 3m4
h

(
2m6 + 9m4p2

)
+m2

h

(
3m8 − 9m6p2 − 2m4p4 − 26m2p6 − 2p8

)
− 54m8p2

)} Pµν(p)
(p2 +m2)2

+
g4v4

32(4π)2m4

∫ 1

0

dx

{
1

ε

3

m2
h

(
m2
h

(
3m2 + p2

)
− 3m4

h − 18m4
)

− 3m2

2p2m2
h

(
m2
h

(
p2 −m2

)
+m4

h − 18m2p2
)

ln

(
m2

µ2

)
+

3m2
h

2p2

(
m2
h −m2 + 5p2

)
ln

(
m2
h

µ2

)
− 3

2p2

(
(mh −m) 2 + p2

) (
(mh +m) 2 + p2

)
× ln

(
p2(1− x)x+ (1− x)m2

h +m2x

µ2

)
− 3

2p2m2
h

(
m4
h

(
5p2 − 2m2

)
+m2

h

(
m4 −m2p2

)
+m6

h + 6m4p2
)}
Lµν(p), (367)

1

4
g2v3 〈Aaµ(p) (Aah)(−p)〉

unitary

=
1

16π2

∫ 1

0

dx

{
1

ε

m2

m2
h

(
m2
h

(
p2 − 9m2

)
+ 12m4

h + 54m4
)

− m2m2
h

2p2

(
−m2

h +m2 + 10p2
)

ln

(
m2
h

µ2

)
− m4

2p2m2
h

(
m2
h

(
p2 −m2

)
+m4

h + 54m2p2
)

ln

(
m2

µ2

)
− m2

2p2

(
2p2
(
m2
h − 5m2

)
+
(
m2 −m2

h

)
2 + p4

)
ln

(
p2(1− x)x+ (1− x)m2

h + xm2

µ2

)
+

m2

6p2m2
h

(
6m4

h

(
m2 + 6p2

)
+m2

h

(
−3m4 + 9m2p2 + 2p4

)
− 3m6

h + 54m4p2
)}

× Pµν(p)
(m2 + p2)

+
1

16π2

∫ 1

0

dx

{
1

ε

3

m2
h

(
−m2

h

(
3m2 + p2

)
+m4

h + 18m4
)
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+
3m2

2p2m2
h

(
m2
h

(
p2 −m2

)
+m4

h − 18m2p2
)

ln

(
m2

µ2

)
− 3m2

h

2p2

(
m2
h −m2 + 3p2

)
ln

(
m2
h

µ2

)
+

3

2p2m2
h

(
m2
h

(
(m−mh)

2 + p2
) (

(mh +m) 2 + p2
))

× ln

(
p2(1− x)x+ (1− x)m2

h + xm2

µ2

)
+

3

2p2m2
h

((
m3
h −m2mh

)
2 + p2

(
−m2m2

h + 3m4
h + 6m4

))}
Lµν(p), (368)

1

8
g2v2〈(h2Aaµ)(p)Aaν(−p)〉unitary

= −3m2
hm

2

32π2

∫ 1

0

dx

{
2

ε
− ln

(
m2
h

µ2

)
+ 1

}( 1

p2 +m2
Pµν(p) +

1

m2
Lµν(p)

)
, (369)

1

4
g2v2〈(hAaµ)(p) (hAaν)(−p)〉unitary =

1

32π2

∫ 1

0

dx

{
1

ε
(−3m2

h + 9m2 − p2)

+
m2
h

2p2

(
m2 + p2 −m2

h

)
ln

(
m2
h

µ2

)
+
m2

2p2

(
m2
h −m2 + p2

)
ln

(
m2

µ2

)
+

1

2p2

(
2p2
(
m2
h − 5m2

)
+
(
m2 −m2

h

)
2 + p4

)
× ln

(
p2(1− x)x+ (1− x)m2

h + xm2

µ2

)
+

1

6p2

(
3
(
m2 −m2

h

)
2 − 9p2

(
m2
h +m2

)
− 2p4

)}
Pµν(p)

+
3

32π2

∫ 1

0

dx

{
1

ε

(
−m2

h + 3m2 + p2
)

+
m2

2p2

(
−m2

h +m2 − p2
)

ln

(
m2

µ2

)
+
m2
h

2p2

(
m2
h −m2 + 3p2

)
ln

(
m2
h

µ2

)
− 1

2p2

(
(m−mh)

2 + p2
) (

(mh +m) 2 + p2
)

× ln

(
p2x(1− x) + (1− x)m2

h + xm2

µ2

)
− 1

2p2

((
m2 −m2

h

)
2 + 3p2m2

h − p2m2
)}
Lµν(p) . (370)
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Using the unity (351), we find that the transverse part of the propagator is given by

R(p2) =
1

16
g2v4

(
1

p2 +m2
+

1

(p2 +m2)2

(
ΠR(p2) + Πdiv(p2)

))
+O(h̄2) (371)

where the divergent part is, see also the comments in the Appendix K,

Πdiv(p2) =
g2

επ2

(
− h2p4

32m4
+

9m4

16h2
+

9m2p2

8h2
+
h2p2

8m2
+
h2

16
− p6

48m4
+

23p4

96m2
+

7p2

8

)
,(372)

while for the finite part we get

ΠR(p2) =
3

36π2g2v4m2
h

∫ 1

0

dx

{
6m4

(
m4
h + 3m4

)
− p4m2

h

3

(
9m2

h + 35m2 + 4p2
)

+ p2
(
m4m2

h + 10m2m4
h +m6

h + 36m6
)

+ m4
h

(
−p2

(
m2
h + 11m2

)
− 6m4 + p4

)
ln

(
m2
h

µ2

)
+ m2

h

(
2p4
(
m2
h − 5m2

)
+
(
m2 −m2

h

)2
p2 + p6

)
× ln

(
p2(1− x)x+ (1− x)m2

h + xm2

µ2

)
+ m2

h

(
48m6 − 68m4p2 − 16m2p4 + p6

)
ln

(
p2(1− x)x+m2

µ2

)
+ m2(m2

h

(
−48m4 − 17m2p2 + 3p4

)
+ p2m4

h − 54
(
m6 + 2m4p2

)
) ln

(
m2

µ2

)}
. (373)

Since (373) contains terms of the order of p4

(p2+m2)2
ln(p2) and p6

(p2+m2)2
ln(p2), we follow

the steps (201)-(203) to find the resummed propagator in the one-loop approximation,

namely

GR(p2) =
1

16
g2v4

( 1

p2 +m2
h − Π̂R(p2)

)
+ CR(p2) (374)

with

Π̂R(p2) =
3

36π2g2v4m2
h

∫ 1

0

dx

{
6m4

(
m4
h + 3m4

)
− p4m2

h

3

(
9m2

h + 35m2 + 4p2
)

+ p2
(
m4m2

h + 10m2m4
h +m6

h + 36m6
)

+ m4
h

(
−p2

(
m2
h + 11m2

)
− 6m4 + p4

)
ln

(
m2
h

µ2

)
+ m2

h(m
4
hp

2 − 2m2
hm

4 − 6m2
hm

2p2

+ 12m6 + 24m4p2) ln

(
x (m2 − p2(x− 1))− (x− 1)m2

h

µ2

)
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+ 33m2
h

(
2m6 −m4p2

)
ln

(
m2 − p2(x− 1)x

µ2

)
+ m2m2

h

(
−48m4 − 17m2p2 + 3p4

)
+ p2m4

h − 54
(
m6 + 2m4p2

)
) ln

(
m2

µ2

)}
(375)

and

CR(p2) =
1

12(4π)2

∫ 1

0

dx

{(
−18m2 + p2

)
ln

(
p2(1− x)x+m2

µ2

)

+
(

(2
(
m2
h − 6m2

)
+ p2) ln

(
p2x(1− x) + (1− x)m2

h + xm2

µ2

)}
. (376)

Looking now at the longitudinal part L(p2), it turns out to be

L(p2) =
1

4
v2

− 1

(4π)2

(
m4
h − 3m4

h ln
(
m2
h

µ2

)
+ 9m4 − 27m4 ln

(
m2

µ2

)
2m2

h

− 1

ε

(
m2
h − 9

m4

m2
h

))
. (377)

As it happens in the tree-level case, expression (377) is independent from the momentum

p2, meaning that it does not correspond to the propagation of some physical mode, a

feature which is expected to persist at higher orders.

5.4 Spectral properties

In this section, we will calculate the spectral properties associated with the cor-

relation function obtained in the last section. For the employed techniques in obtaining

the pole mass, residue and spectral density up to first order we refer to section 4.3.1. In

subsection 5.4.1, we analyze the spectral properties of the elementary fields. In 5.4.3, the

spectral properties of the composite operators O(x) and Ra
µ(x) are discussed.

5.4.1 Spectral properties of the elementary fields

We first discuss the spectral properties of the elementary fields: the scalar Higgs

field h(x) and the transverse part of the gauge field Aaµ(x). We will work with two sets of

parameters, set out in Table 3. All values are given in units of the energy scale µ. Also,

we have that m2 = 1
4
g2v2 and m2

h = λv2, so that m2 = 0.23µ2 and m2
h = 0.192µ2 in

Region I and m2 = 0.625µ2 and m2
h = 0.205µ2 in Region II.
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Figure 31 - Correlation function of composite operator

Legend: One-loop contributions for the correlation function 〈OO〉 in the unitary gauge: 〈Aaµ(x)Aaν(y)〉
(first two lines), 〈A(x)(Ah)(y)〉 (third line), 〈h(x)2Aaµ〉 (fourth line) and 〈(Aaµh)(x)(Aaνh)(y)〉 .

Wavy lines represent the gauge field, dashed lines the Higgs field, solid lines the Goldstone

boson and double lines the ghost field. The • indicates the insertion of a composite operator.

Source: The author, 2020.

Table 3 - Spectral density functions parameter values

Region I Region II
v 0.8 µ 1 µ
g 1.2 0.5
λ 0.3 0.205

Legend: Parameter values used in the spectral density functions.

Source: The author, 2020.
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Figure 32 - Gauge dependence of Higgs residue
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Legend: Dependence of the residue Z for the Higgs field propagator on the gauge parameter ξ, for

Region I (Blue), and Region II (Orange).

Source: The author, 2020.

For the Higgs fields, following the steps from section 4.3.1, we find the pole mass

to first order in h̄ to be: for Region I

m2
h,pole = 0.207µ2, (378)

and for Region II

m2
h,pole = 0.206µ2, (379)

for all values of the parameter ξ. This means that while the Higgs propagator (320) is

gauge dependent, the pole mass is gauge independent. This is in full agreement with the

Nielsen identities of the SU(2) Higgs model studied in (GAMBINO; GRASSI; MADRI-

CARDO, 1999). The residue, however, is gauge dependent, as is depicted in Figure 32.

For small values of ξ, including the Landau gauge ξ = 0, the residue is not well-defined,

and we cannot determine the spectral density function, as we will explain further in the

next section.

In Figure 33, we find the spectral density functions both regions, for three values of

ξ : 1, 2, 5. Looking at Region I, we see the first two-particle state appearing at t = (mh +

mh)
2 = 0.768µ2, followed by another two-particle state at t = (m+m)2 = 0.922µ2. Then,

we see that there is a negative contribution, different for each diagram, at t = (
√
ξm +

√
ξm)2. This corresponds to the (unphysical) two-particle state of two Goldstone bosons.

For ξ < 3, this leads to a negative contribution for the spectral function, probably due to

the large-momentum behaviour of the Higgs propagator (320), for a detailed discussion
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Figure 33 - Higgs spectral function
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Legend: Spectral functions for the propagator 〈h(p)h(−p)〉, for ξ = 1 (Green, Dotted), ξ = 3 (Red,

Solid), ξ = 5 (Yellow, Dashed), with t given in units of µ2, for Region I (left) and Region II

(right) with the parameter values given in Table 3.

Source: The author, 2020.

see Appendix G . For Region II, we find essentially the same behaviour: a Higgs two-

particle state at t = (mh + mh)
2 = 0.81µ2, and a gauge field two-particle state at t =

(m + m)2 = 0.25µ2. We also see a negative contribution different for each diagram at

t = (
√
ξm+

√
ξm)2, corresponding to the (unphysical) two-particle state of two Goldstone

bosons.

For the gauge field propagator, following the steps from section 4.3.1, we find the

first-order pole mass of the transverse gauge field to be: for Region I

m2
pole = 0.274µ2 (380)

and for Region II

m2
pole = 0.065µ2 (381)

for all values of the parameter ξ, so that the pole mass is gauge independent. The residue

is, however, gauge dependent as is depicted in Figure 34. For small values of ξ the residue

is not well-defined, as we will explain further in the next section.

In Figure 35, we find the spectral density functions for both regions, for three

values of ξ: 1, 2, 5. Looking at Region I, we see the first two-particle state appearing at t =

(mh +m)2 = 0.843µ2, followed by a two-particle state at t = (m+m)2 = 0.922µ2. Then,

we see that there is a negative contribution, different for each diagram, at t = (m+
√
ξm)2.

This corresponds to the (unphysical) two-particle state of a gauge and Goldstone boson.

For Region II, we find a gauge field two-particle state at t = (m+m)2 = 0.25µ2. We also

see a negative contribution different for each diagram at t = (m+
√
ξm)2, corresponding

to the (unphysical) two-particle state of two Goldstone bosons.
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Figure 34 - Residue gauge dependence
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Legend: Dependence of the residue Z for the gauge field propagator from the gauge parameter ξ, for

Region I (Blue), and Region II (Orange).

Source: The author, 2020.

Figure 35 - Spectral functions for transverse gluon propagator
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Legend: Spectral functions for the propagator 〈Aaµ(p)Abν(−p)〉T , for ξ = 1 (Green, Dotted), ξ = 3 (Red,

Solid), ξ = 5 (Yellow, Dashed), with t given in units of µ2, for Region I (left) and Region II

(right) with the parameter values given in Table 3.

Source: The author, 2020.
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Figure 36 - Boson decays

Legend: Possible decays of the gauge boson (above) and the Higgs boson (below).

Source: The author, 2020.

5.4.2 Unphysical threshold effects

From the Feynman vertex rules given in Appendix H, for certain values of the

masses, unphysical threshold effects can occur. These effects imply that for certain values

of the (physical and unphysical) parameters, a “decay” occurs of a gauge and Higgs boson

into two other particles, see Figure 36. We distinguish three cases:

(1.) Decay of a gauge vector boson in two Goldstone bosons: this happens when m >

2
√
ξm.

(2.) Decay of a Higgs boson in two gauge vector bosons: this happens when mh > 2m.

(3.) Decay of a Higgs boson in two Goldstone bosons: this happens when mh > 2
√
ξm.

In order to guarantee the stability of the gauge boson, we therefore need from (1.) that

ξ > 1
4
. This means that for the Landau gauge ξ = 0, the elementary gauge boson is not

stable. For the Higgs particle, to guarantee stability we need from (2.) that mh < 2m.

Then, from (3.) we find that ξ >
m2
h

4m2 . This is the window in which we can work with a

stable model. We can have a look at what happens when we go outside of this window.

For the Higgs particle, we see that for mh > 2m, or λ < g2, we will find a complex value

for the first order pole mass, calculated through (208). For λ ≥ g2, we will always find
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a real pole mass. Since the pole mass is gauge invariant, we find that this is true for all

values of ξ. However, we do find that for ξ >
m2
h

4m2 and λ > g2, the real value of the pole

mass is a real point inside the branch cut. This means that we cannot achieve the usual

differentiation around this point. As a consequence, we cannot consistently construct the

residue, so that we are unable to obtain a first-order spectral function. For the gauge

field, we find the same problem when ξ < 1
4
.

The foregoing mathematically correct observations clearly show that there is some-

thing physically wrong with using the elementary fields’ spectral functions. Luckily, all

of these shortcomings are surpassed by using the gauge invariant composite operators.

5.4.3 Spectral properties for the composite fields

For the scalar composite operator O(x) we find the first-order pole mass for Region

I

m2
OO,pole = 0.207µ2, (382)

and for Region II

m2
OO,pole = 0.206µ2, (383)

which is equal to the pole mass of the elementary Higgs field in (378), as we expect from

eq. (298). Following the steps from section 4.3.1, we find the first-order residue

Z = 1.11 v2 (384)

for Region I and

Z = 1.01 v2 (385)

for Region II. The first order spectral function for 〈O(x)O(y)〉 is shown in Figure 37.

Comparing this result with that of the spectral function of the Higgs field in Figure 35,

we see a two-particle state for the Higgs field at t = (mh +mh)
2, and a two-particle state

for the gauge vector field, starting at t = (m + m)2. The difference is that for the gauge

invariant correlation function 〈O(x)O(y)〉 we no longer have the unphysical Goldstone

two-particle state. Due to the absence of this negative contribution, the spectral function

is positive throughout the spectrum. In fact, we see that for bigger values of ξ, we find

that the spectral function of the elementary Higgs field resembles more and more the

spectral function of the composite operator O(x). This makes sense, since for ξ → ∞,

we are approaching the unitary gauge which has a more direct link with the physical
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Figure 37 - Spectral function for 〈O(p)O(−p)〉
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Legend: Spectral function for the two-point correlation function 〈O(p)O(−p)〉, with t given in units of

µ2, for the Region I (left) and Region II (right) with parameter values given in Table 3.

Source: The author, 2020.

spectrum of the elementary excitations. In Appendix K, one finds a detailed discussion

about the unitary gauge limit ξ → ∞ as well as the calculation of the spectral function.

The asymptotic (constant) behaviour is directly related to the (classical) dimension of the

used composite operator.

For the transverse part of the two-point correlation function GR(p2), eq. (375), for

our set of parameters we find the first-order pole mass: in Region I

m2
R,pole = 0.274µ2 (386)

and Region II

m2
R,pole = 0.065µ2 (387)

which is the same as the pole mass of the transverse gauge field, eq. (380), in agreement

with eq. (298). Following the steps from 4.3.1, we find the first-order residue

Z =
1

16
g2v4 (1.27) (388)

for Region I and

Z =
1

16
g2v4 (1.05) (389)

for Region II. The first order spectral function for GR(p2) is shown in Figure 38. Compar-

ing this to the spectral function of the gauge vector field in Figure 35, we see a two-particle

state at t = (mh+m)2, and a two-particle state for the gauge field, starting at t = (m+m)2.
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Figure 38 - Spectral function for GR(p2)
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Legend: Spectral function for the transverse two-point correlation function GR(p2), with t given in

units of µ2, for the Region I (left) and Region II (right) with parameter values given in Table

3.

Source: The author, 2020.

Again, as in the case of the two-point correlation function of the scalar operator O(x),

the difference is that for this gauge invariant correlation function we no longer have the

unphysical Goldstone/gauge boson two-particle state. Due to the absence of this negative

contribution, the spectral function is positive throughout the spectrum. In fact, we see

that for bigger values of ξ, we find that the spectral function of the elementary gauge

field resembles more and more the spectral function of the composite operator Ra
µ(x).

As already mentioned previously, this relies on the fact that in the limit ξ → ∞ we are

approaching the unitary gauge, see Appendix K. Also here, the linear increase at large t

follows from the operator dimension.

5.5 Conclusion

This chapter is the natural extension of chapter 3 and 4, where the Abelian U(1)

Higgs model has been scrutinized by employing two local composite BRST invariant

operators whose two-point correlation functions provide a fully gauge independent de-

scription of the elementary excitations of the model, namely the Higgs and the mas-

sive gauge boson. This formulation generalizes to the non-Abelian Higgs model as,

for example, the SU(2) YM theory with a single Higgs in the fundamental represen-

tation (HOOFT et al., 1980; FROHLICH; MORCHIO; STROCCHI, 1980; FROHLICH;

MORCHIO; STROCCHI, 1981). This is the model which has been considered in the

present analysis. The local BRST invariant composite operators (O(x), Ra
µ(x)) which
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generalize their U(1) counterparts are given in eq. (338) and in eqs. (356),(357). The

two-point correlation functions 〈O(x)O(y)〉 and 〈Ra
µ(x)Rb

ν(y)〉T , where the superscript

T stands for the transverse component, have been evaluated at one-loop order in the

Rξ-gauge and compared with the corresponding correlation functions of the elementary

fields 〈h(x)h(y)〉 and 〈Aaµ(x)Abν(y)〉T . It turns out that both 〈O(x)O(y)〉 and 〈h(x)h(y)〉
share the same gauge independent pole mass, eqs.(378),(379),(382),(383), in agreement

with both Nielsen identities (NIELSEN, 1975; PIGUET; SIBOLD, 1985; GAMBINO;

GRASSI; MADRICARDO, 1999; GAMBINO; GRASSI, 2000; GRASSI; KNIEHL; SIR-

LIN, 2001; AITCHISON; FRASER, 1984; ANDREASSEN; FROST; SCHWARTZ, 2015)

and the BRST invariant nature of O(x). Nevertheless, unlike the residue and spectral

function of the elementary correlator 〈h(x)h(y)〉, which exhibit a strong unphysical de-

pendence from the gauge parameter ξ, Figure (33), the spectral density of 〈O(x)O(y)〉
turns out to be ξ-independent and positive over the whole p2 axis, Figure (37). The

same features hold for 〈Aaµ(x)Abν(y)〉T and 〈Ra
µ(x)Rb

ν(y)〉T . Again, both correlation func-

tion share have the same ξ-independent pole mass, eqs. (381),(381),(386),(387). Though,

unlike the ξ-dependent spectral function associated to 〈Aaµ(x)Abν(y)〉T , Figure (35), that

corresponding to 〈Ra
µ(x)Rb

ν(y)〉T , Figure (38), turns out to be independent from the gauge

parameter ξ and positive. As such, the local composite operators (O(x), Ra
µ(x)) provide

a fully BRST consistent description of the observable scalar (Higgs) and vector boson

particles.

It is worth mentioning here that, besides the BRST invariance of the gauge fixed

action, the model exhibits an additional global custodial symmetry, eqs.(317),(318), ac-

cording to which all fields carrying the index a = 1, 2, 3, i.e. (Aaµ, b
a, ca, c̄a, ρa), undergo

a global transformation in the adjoint representation of SU(2). The same feature holds

for the composite operators (O(x), Ra
µ(x)) which transform exactly as h and Aaµ. More

precisely, the operator O(x) is a singlet under the custodial symmetry, while the opera-

tors Ra
µ transform like a triplet, eq. (359), so that the correlation function 〈Ra

µ(p)Rb
ν(−p)〉

displays the same SU(2) structure of the elementary two-point function 〈Aaµ(p)Aν(−p)〉,
eqs.(360)-(363). Although not being the aim of the present analysis, we expect that the

existence of a global custodial symmetry will imply far-reaching consequences for the

renormalization properties of the composite operators (O(x), Ra
µ(x)) encoded in the cor-

responding Ward identities. The renormalization properties of the local gauge-invariant

composite operators for the U(1) Higgs model have been reported recently in (CAPRI et

al., 2020).
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CONCLUSION

In this work, we have evaluated different BRST-invariant solutions for the introduc-

tion of a mass term in YM theories. More specifically, we have looked at gauge-invariant

extensions of the elementary gauge field and Higgs boson, and we evaluated the two-point

functions and spectral properties for these gauge-invariant local composite fields. While

the proposed solutions differ in methods and levels at which the BRST invariance is in-

troduced, they serve a common goal: to access the physical spectrum for the nuclear

forces.

For the composite field Ah(x), we have shown that a renormalizable gauge class

can be developed for this field, which introduces a mass µ for the Stueckelberg-like field

ξa, which is used in the localization procedure for the composite gauge field. This mass

ensures the infrared safety of the propagator for this field. The gauge class, with µ as the

gauge parameter, gives the opportunity to investigate physical objects related to the gauge

field propagator outside of the Landau gauge. For example, in (MINTZ et al., 2019) it

was shown, by analyzing dimension two condensates, that the instability of the GZ action

observed in the Landau gauge persists in this larger gauge class, suggesting a physical

meaning for the refinement of the GZ action in the infrared regime. This indicates an

important role for the RGZ action in the IR description of the YM theories.

For the gauge-invariant local composite operators in the Higgs model, we have

investigated spectral properties of the field propagators. The most important conclusion

here is that for truly gauge-invariant objects, we have not observed any non-physical

behavior. In particular, we have not observed any non-physical behaviour of the kind

that is commonly associated with confinement, such as positivity violation of the spectral

density function. We immediately add that this does not mean that positivity violation,

as has been observed for the spectral density function of the elementary gauge field op-

erator, should be solely ascribed to a lack of gauge-invariance. Even though we were

able to make a direct comparison between gauge-invariant composite operators and the

gauge-dependent elementary operators, and we concluded that the first always shows a

positive spectral density function, while the second for some values of the gauge param-

eter shows a negative spectral density function, our methods are not suited to reach the

non-perturbative region in which positivity violation has been observed in other studies.

Since our study consisted of perturbative loop calculations in the Higgs model, we are

far from the IR region where we expect this confinement-like behavior. It is therefore

our hope that this work will encourage others to investigate the spectral properties of the

gauge-invariant composite local operators developed in this work with non-perturbative

methods, such as lattice simulations. The composite gauge-invariant local operators have

already led to some preliminary lattice results (MAAS; SONDENHEIMER; TÖREK,
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2019; MAAS, 2015).

A direct comparison between the two methods of developing gauge-invariant com-

posite fields discussed in this thesis can be made in the Landau gauge. In this gauge,

the composite gauge field Ahµ(x) is equal to the elementary field Aµ(x), and the action

will be equal to the action of the massive YM model discussed in section 1.3.1. The

appearance of complex poles for the propagator of the gauge field, even at a perturbative

level, means that there is no physical interpretation for these propagators. Thus, while

BRST invariance is established by the configuration of Ahµ(x), this does not seem to en-

sure the usual features of the definition of physical space that are associated with BRST

invariance. Possibly, this is because the BRST invariance is introduced at a non-local

level. In contrast, the local composite BRST invariant operators developed for the Higgs

model always have a real pole mass. However, for the Landau gauge the residue is not

well-defined, and we are unable to subtract a spectral density function of the gauge field

for this gauge choice. Therefore, the Landau gauge might not be the most suitable gauge

to work with for massive non-Abelian models.

If we want to access the non-perturbative region to investigate further the lo-

cal composite gauge-invariant operators in the Higgs model, the continuum offers some

ways to access this region besides numerical methods. The BRST invariant nature of

(O(x), Ra
µ(x)) makes them natural candidates to an attempt at facing the challenge of in-

vestigating the infrared non-perturbative behaviour of the model, trying to make contact

with the analytical lattice predictions of Fradkin and Shenker (FRADKIN; SHENKER,

1979). For the SU(2) HYM theory one may for example introduce a horizon term, in

its BRST-invariant formulation encoded in the RGZ action (cf. (VANDERSICKEL;

ZWANZIGER, 2012; DUDAL et al., 2008a; CAPRI et al., 2015; CAPRI et al., 2018a)

and refs. therein) implementing the restriction to the Gribov region Ω (GRIBOV, 1978)

in order to take into account the existence of the Gribov copies plaguing the FP quanti-

zation procedure. As a consequence, the gauge-invariant pole masses of the non-Abelian

generalization of the correlation functions 〈Ra
µ(x)Ra

ν(y)〉 and 〈O(x)O(y)〉 will now show

an explicit dependence on the Gribov mass parameter as well as on the dimension-two

condensates present in the RGZ action (VANDERSICKEL; ZWANZIGER, 2012; DUDAL

et al., 2008a; CAPRI et al., 2015; CAPRI et al., 2018a). Thus, extending the framework

already outlined in (CAPRI et al., 2013), the aforementioned pole masses and further

spectral properties could be employed as gauge-invariant probing quantities in order to

extract non-perturbative information about the behaviour of the elementary excitations

of HYM theories in the light of the Fradkin-Shenker results.

The employment of an order parameter to distinguish between the

confinement/deconfinement region can also be done in a YM model with finite tempera-

ture. In recent years, much valuable progress has been made towards the understanding

of non-abelian gauge theories at finite temperature using background field gauge (BFG)
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methods (ABBOTT, 1981; ABBOTT, 1982) in the Landau-DeWitt gauge. BFG meth-

ods provide an efficient way to describe the confinement/deconfinement order parameter

(the Polyakov loop or any of its proxies (BRAUN; GIES; PAWLOWSKI, 2010)) because

the related center symmetry is explicit at the quantum level and is easily maintained in

approximation schemes (HERBST; LUECKER; PAWLOWSKI, 2015; REINOSA et al.,

2016; REINOSA, 2019). Several models have been put forward in order to implement

the BFG formalism in the Landau-deWitt gauge while restricting the number of Gribov

copies. In (REINOSA et al., 2015b; REINOSA et al., 2015a; REINOSA et al., 2016;

REINOSA; SERREAU; TISSIER, 2015; MAELGER; REINOSA; SERREAU, 2018), the

formalism was used within the massive YM model to compute the background potential

and Polyakov loop up to two-loop order, both in pure YM theories and in heavy-quark

QCD. Recently, results on the BFG method in the Landau-DeWitt gauge for the GZ

model have been reported (CANFORA et al., 2015; DUDAL; VERCAUTEREN, 2018;

KROFF; REINOSA, 2018; EGMOND; REINOSA, 2020). It would be interesting to see if

this method could be combined with the gauge-invariant composite operators developed

in this work.

But even without accessing the non-perturbative region, the gauge-invariant com-

posite operators offer several interesting lines of investigation. For example, we could

compare different gauge classes that leave different remnant global gauges, such as the Rξ

gauge and the Linear Covariant Gauges (LCG). The Rξ gauges break the global gauge

symmetry of the model, in contrast to the LCG. We could compare the pole masses of

the elementary fields for these two gauge classes. Then, they can be compared with the

pole mass of their gauge-invariant composite extensions, which should of course be the

same in every gauge class. This is a very interesting exercise as in a sense it will reveal

which class of gauges is physical. Another line of investigation is given by the gauge-

invariant quadratic Higgs condensate ϕϕ†, similar to the Coleman-Weinberg condensate

(COLEMAN; WEINBERG, 1973; KNECHT; VERSCHELDE, 2001). In particular, we

are curious to see what is the influence of this condensate on the propagators of the

gauge-invariant operators, including their pole structure.

Finally, a most promising avenue to further explore is the SU(2) × U(1) setting

of the electroweak theory. This sector is of course of special interest because of the

experimental data that are available for the masses of the W and Z bosons. We would be

the first to ever calculate these masses analytically in a gauge-invariant way.
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MAAS, A.; SONDENHEIMER, R.; TÖREK, P. On the observable spectrum of theories
with a brout–englert–higgs effect. Annals of Physics, [s.l], Elsevier, v. 402, p. 18–44,
2019.

MAAS, A.; SONDENHEIMER, R.; TOREK, P. On the observable spectrum of theories
with a Brout–Englert–Higgs effect. Annals Phys. , [s.l], v. 402, p. 18–44, 2019.

MAELGER, J.; REINOSA, U.; SERREAU, J. Perturbative study of the QCD phase
diagram for heavy quarks at nonzero chemical potential: Two-loop corrections. Phys.
Rev. D, [s.l], v. 97, n. 7, p. 074027, 2018.

MARTIN, S. P. Pole Mass of the W Boson at Two-Loop Order in the Pure MS Scheme.
Phys. Rev., [s.l], D91, n. 11, p. 114003, 2015.

MARTIN, S. P. Z-Boson Pole Mass at Two-Loop Order in the Pure MS Scheme. Phys.
Rev., [s.l], D92, n. 1, p. 014026, 2015.

MAXWELL, J. C. Viii. a dynamical theory of the electromagnetic field. Philosophical
transactions of the Royal Society of London, [s.l], The Royal Society London, n. 155, p.
459–512, 1865.

MINTZ, B. W. et al. Infrared massive gluon propagator from a brst-invariant gribov
horizon in a family of covariant gauges. Physical Review D, [s.l], American Physical
Society (APS), v. 99, n. 3, Feb 2019. ISSN 2470-0029.

NAMBU, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity.
Phys. Rev., [s.l], v. 117, p. 648–663, 1960.

NIELSEN, N. K. On the Gauge Dependence of Spontaneous Symmetry Breaking in
Gauge Theories. Nucl. Phys., [s.l], B101, p. 173–188, 1975.

OEHME, R. On superconvergence relations in quantum chromodynamics. Phys. Lett.,
[s.l], B252, p. 641–646, 1990.

OEHME, R.; ZIMMERMANN, W. Quark and Gluon Propagators in Quantum
Chromodynamics. Phys. Rev., [s.l], D21, p. 471, 1980.

OJIMA, I. Comments on Massive and Massless Yang-Mills Lagrangians With a Quartic
Coupling of Faddeev-popov Ghosts. Z. Phys., [s.l], C13, p. 173, 1982.

OLIVEIRA, O.; SILVA, P. J. The lattice Landau gauge gluon propagator: lattice spacing
and volume dependence. Phys. Rev., [s.l], D86, p. 114513, 2012.



166

PARISI, G.; PETRONZIO, R. On Low-Energy Tests of QCD. Phys. Lett., [s.l], v. 94B,
p. 51–53, 1980.

PASSARINO, G.; VELTMAN, M. J. G. One Loop Corrections for e+ e- Annihilation
Into mu+ mu- in the Weinberg Model. Nucl. Phys., [s.l], B160, p. 151–207, 1979.

PESKIN, M. E.; SCHROEDER, D. V. An Introduction to quantum field theory. Reading,
USA: Addison-Wesley, 1995. ISBN 9780201503975, 0201503972.

PIGUET, O.; SIBOLD, K. Renormalization of N = 1 Supersymmetrical Yang-Mills
Theories. 2. The Radiative Corrections. Nucl. Phys. B, [s.l], v. 197, p. 272–289, 1982.

PIGUET, O.; SIBOLD, K. Gauge Independence in Ordinary Yang-Mills Theories. Nucl.
Phys., [s.l], B253, p. 517–540, 1985.

PIGUET, O.; SORELLA, S. P. Algebraic renormalization: Perturbative renormalization,
symmetries and anomalies. Lect. Notes Phys. Monogr., [s.l], v. 28, p. 1–134, 1995.

PLANCK, M.; MASIUS, M. The theory of heat radiation. [S.l.]: Blakiston, 1914.

POLITZER, H. D. Reliable perturbative results for strong interactions? Physical Review
Letters, [s.l], APS, v. 30, n. 26, p. 1346, 1973.

REINOSA, U. Perturbative aspects of the deconfinement transition - Physics beyond
the Faddeev-Popov model. 2019. Habilitation thesis- École Polytechnique, Institut
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APPENDIX A – Properties of the functional fA[u].

In this Appendix we recall some useful properties of the functional fA[u]

fA[u] ≡ Tr

∫
d4xAuµA

u
µ = Tr

∫
d4x

(
u†Aµu+

i

g
u†∂µu

)(
u†Aµu+

i

g
u†∂µu

)
. (390)

For a given gauge field configuration Aµ, fA[u] is a functional defined on the gauge orbit

of Aµ. Let A be the space of connections Aaµ with finite Hilbert norm ||A||, i.e.

||A||2 = Tr

∫
d4xAµAµ =

1

2

∫
d4xAaµA

a
µ < +∞ , (391)

and let U be the space of local gauge transformations u such that the Hilbert norm ||u†∂u||
is finite too, namely

||u†∂u||2 = Tr

∫
d4x

(
u†∂µu

) (
u†∂µu

)
< +∞ . (392)

The following proposition holds (ZWANZIGER, 1990; DELL’ANTONIO; ZWANZIGER,

1989; DELL’ANTONIO; ZWANZIGER, 1991; BAAL, 1992)

• Proposition

The functional fA[u] achieves its absolute minimum on the gauge orbit of Aµ.

This proposition means that there exists a h ∈ U such that

δfA = 0 , (393)

δ2fA ≥ 0 , (394)

fA ≤ fA[u] , ∀u ∈ U . (395)

The operator A2
min is thus given by

A2
min = min

{u}
Tr

∫
d4xAuµA

u
µ = fA . (396)

Let us give a look at the two conditions (393) and (394). To evaluate δfA and δ2fA we

set14

v = heigω = heigω
aTa , (397)

14 The case of the gauge group SU(N) is considered here.
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[
T a, T b

]
= ifabc T c , Tr

(
T aT b

)
=

1

2
δab , (398)

where ω is an infinitesimal hermitian matrix and we compute the linear and quadratic

terms of the expansion of the functional fA[v] in power series of ω. Let us first obtain an

expression for Avµ

Avµ = v†Aµv +
i

g
v†∂µv

= e−igωh†Aµhe
igω +

i

g
e−igω

(
h†∂µh

)
eigω +

i

g
e−igω∂µe

igω

= e−igωAhµe
igω +

i

g
e−igω∂µe

igω . (399)

Expanding up to the order ω2, we get

Avµ =

(
1− igω − g2ω

2

2

)
Ahµ

(
1 + igω − g2ω

2

2

)
+

i

g

(
1− igω − g2ω

2

2

)
∂µ

(
1 + igω − g2ω

2

2

)
=

(
1− igω − g2ω

2

2

)(
Ahµ + igAhµω − g2Ahµ

ω2

2

)
+

+
i

g

(
1− igω − g2ω

2

2

)(
ig∂µω −

g2

2
(∂µω)ω − g2

2
ω (∂µω)

)
= Ahµ + igAhµω −

g2

2
Ahµω

2 − igωAhµ + g2ωAhµω −
g2

2
ω2Ahµ

+
i

g

(
ig∂µω −

g2

2
(∂µω)ω − g2

2
ω∂µω + g2ω∂µω

)
+O(ω3) , (400)

from which it follows

Avµ = Ahµ + ig[Ahµ, ω] +
g2

2
[[ω,Ahµ], ω]− ∂µω + i

g

2
[ω, ∂µω] +O(ω3) , (401)

We now evaluate

fA[v] = Tr

∫
d4xAuµA

u
µ

= Tr

∫
d4x

[(
Ahµ + ig[Ahµ, ω] +

g2

2
[[ω,Ahµ], ω]− ∂µω + i

g

2
[ω, ∂µω] +O(ω3)

)
×(

Ahµ + ig[Ahµ, ω] +
g2

2
[[ω,Ahµ], ω]− ∂µω + i

g

2
[ω, ∂µω] +O(ω3)

)]
= Tr

∫
d4x

{
AhµA

h
µ + igAhµ[Ahµ, ω] + g2AhµωA

h
µω

− g2

2
AhµA

h
µω

2 − g2

2
Ahµω

2Ahµ − Ahµ∂µω
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+ i
g

2
Ahµ[ω, ∂µω] + ig[Ahµ, ω]Ahµ − g2[Ahµ, ω][Ahµ, ω]− ig[Ahµ, ω]∂µω + g2ωAhµωA

h
µ

− g2

2
Ahµω

2Ahµ −
g2

2
ω2AhµA

h
µ − ∂µωAhµ − ig∂µω[Ahµ, ω] + ∂µω∂µω + i

g

2
[ω, ∂µω]Ahµ

}
+ O(ω3)

= fA − Tr

∫
d4x

{
Ahµ, ∂µω

}
+ Tr

∫
d4x

(
g2AhµωA

h
µω −

g2

2
AhµA

h
µω

2 − g2

2
Ahµω

2Ahµ

− g2[Ahµ, ω][Ahµ, ω] + g2ωAhµωA
h
µ −

g2

2
Ahµω

2Ahµ −
g2

2
ω2AhµA

h
µ

)
+ Tr

∫
d4x (∂µω∂µω

+ i
g

2
[ω, ∂µω]Ahµ − ig∂µω[Ahµ, ω]− ig[Ahµ, ω]∂µω + i

g

2
Ahµ[ω, ∂µω]

)
+ O(ω3)

= fA + 2

∫
d4x tr

(
ω∂µA

h
µ

)
+

∫
d4x tr

{
2g2ωAhµωA

h
µ − 2g2AhµA

h
µω

2

− g2
(
Ahµω − ωAhµ

) (
Ahµω − ωAhµ

)}
+

∫
d4x tr

(
∂µω∂µω + i

g

2
ω∂µωA

h
µ − i

g

2
∂µωωA

h
µ

− ig∂µωA
h
µω + ig∂µωωA

h
µ − igAhµω∂µω + igωAhµ∂µω + i

g

2
Ahµω∂µω − i

g

2
Ahµ∂µωω

)
+ O(ω3)

= fA + 2Tr

∫
d4x

(
ω∂µA

h
µ

)
+ Tr

∫
d4x

(
∂µω∂µω + igω∂µωA

h
µ − ig∂µωωAhµ

− 2ig∂µωA
h
µω + 2ig∂µωωA

h
µ

)
+O(ω3) . (402)

Thus

fA[v] = fA + 2Tr

∫
d4x

(
ω∂µA

h
µ

)
+ Tr

∫
d4x

(
∂µω∂µω + igω∂µωA

h
µ − ig∂µωωAhµ

− ig (∂µω)Ahµω + ig (∂µω)ωAhµ
)

+O(ω3)

= fA + 2Tr

∫
d4x

(
ω∂µA

h
µ

)
+ Tr

∫
d4x

{
∂µω

(
∂µω − ig

[
Ahµ, ω

])}
+O(ω3) .

(403)

Finally

fA[v] = fA + 2Tr

∫
d4x

(
ω∂µA

h
µ

)
− Tr

∫
d4xω∂µDµ(Ah)ω +O(ω3) , (404)

so that

δfA = 0 ⇒ ∂µA
h
µ = 0 ,

δ2fA > 0 ⇒ −∂µDµ(Ah) > 0 . (405)
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We see therefore that the set of field configurations fulfilling conditions (405), i.e. defining

relative minima of the functional fA[u], belong to the so called Gribov region Ω, which is

defined as

Ω = {Aµ| ∂µAµ = 0 and − ∂µDµ(A) > 0} . (406)

Let us proceed now by showing that the transversality condition, ∂µA
h
µ = 0, can be solved

for h = h(A) as a power series in Aµ. We start from

Ahµ = h†Aµh+
i

g
h†∂µh , (407)

with

h = eigφ = eigφ
aTa . (408)

Let us expand h in powers of φ

h = 1 + igφ− g2

2
φ2 +O(φ3) . (409)

From equation (407) we have

Ahµ = Aµ + ig[Aµ, φ] + g2φAµφ−
g2

2
Aµφ

2 − g2

2
φ2Aµ − ∂µφ+ i

g

2
[φ, ∂µ] +O(φ3) . (410)

Thus, condition ∂µA
h
µ = 0, gives

∂2φ = ∂µA+ ig[∂µAµ, φ] + ig[Aµ, ∂µφ] + g2∂µφAµφ+ g2φ∂µAµφ+ g2φAµ∂µφ

− g2

2
∂µAµφ

2 − g2

2
Aµ∂µφφ−

g2

2
Aµφ∂µφ−

g2

2
∂µφφAµ −

g2

2
φ∂µφAµ −

g2

2
φ2∂µAµ

+ i
g

2
[φ, ∂2φ] +O(φ3) . (411)

This equation can be solved iteratively for φ as a power series in Aµ, namely

φ =
1

∂2
∂µAµ + i

g

∂2

[
∂A,

∂A

∂2

]
+ i

g

∂2

[
Aµ, ∂µ

∂A

∂2

]
+
i

2

g

∂2

[
∂A

∂2
, ∂A

]
+O(A3) , (412)

so that

Ahµ = Aµ −
1

∂2
∂µ∂A− ig

∂µ
∂2

[
Aν , ∂ν

∂A

∂2

]
− ig

2

∂µ
∂2

[
∂A,

1

∂2
∂A

]
+ ig

[
Aµ,

1

∂2
∂A

]
+ i

g

2

[
1

∂2
∂A,

∂µ
∂2
∂A

]
+O(A3) . (413)
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Expression (413) can be written in a more useful way, given in eq.(79). In fact

Ahµ =

(
δµν −

∂µ∂ν
∂2

)(
Aν − ig

[
1

∂2
∂A,Aν

]
+
ig

2

[
1

∂2
∂A, ∂ν

1

∂2
∂A

])
+O(A3)

= Aµ − ig
[

1

∂2
∂A,Aµ

]
+
ig

2

[
1

∂2
∂A, ∂µ

1

∂2
∂A

]
− ∂µ
∂2
∂A+ ig

∂µ
∂2
∂ν

[
1

∂2
∂A,Aν

]
− i

g

2

∂µ
∂2
∂ν

[
∂A

∂2
,
∂ν
∂2
∂A

]
+O(A3)

= Aµ −
∂µ
∂2
∂A+ ig

[
Aµ,

1

∂2
∂A

]
+
ig

2

[
1

∂2
∂A, ∂µ

1

∂2
∂A

]
+ ig

∂µ
∂2

[
∂ν
∂2
∂A,Aν

]
+ i

g

2

∂µ
∂2

[
∂A

∂2
, ∂A

]
+O(A3) (414)

which is precisely expression (413). The transverse field given in eq.(79) enjoys the prop-

erty of being gauge invariant order by order in the coupling constant g. Let us work out

the transformation properties of φν under a gauge transformation

δAµ = −∂µω + ig[Aµ, ω] . (415)

We have, up to the order O(g2),

δφν = −∂νω + ig

[
1

∂2
∂A, ∂νω

]
− ig

2

[
ω, ∂ν

1

∂2
∂A

]
− ig

2

[
∂A

∂2
, ∂νω

]
+O(g2)

= −∂νω + i
g

2

[
1

∂2
∂A, ∂νω

]
+ i

g

2

[
∂ν

1

∂2
∂A, ω

]
+O(g2) . (416)

Therefore

δφν = −∂ν
(
ω − ig

2

[
∂A

∂2
, ω

])
+O(g2) , (417)

from which the gauge invariance of Ahµ is established.

Finally, let us work out the expression of A2
min as a power series in Aµ.

A2
min =

Tr

∫
d4xAhµA

h
µ

= Tr

∫
d4x

[
φµ

(
δµν −

∂µ∂ν
∂2

)
φν

]
= Tr

∫
d4x

[(
Aµ − ig

[
1

∂2
∂A,Aµ

]
+
ig

2

[
1

∂2
∂A, ∂µ

1

∂2
∂A

])
×(

δµν −
∂µ∂ν
∂2

)(
Aν − ig

[
1

∂2
∂A,Aν

]
+
ig

2

[
1

∂2
∂A, ∂ν

1

∂2
∂A

])]
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=
1

2

∫
d4x

[
Aaµ

(
δµν −

∂µ∂ν
∂2

)
Aaν − 2gfabc

∂ν∂A
a

∂2

∂Ab

∂2
Acν − gfabcAaν

∂Ab

∂2

∂ν∂A
c

∂2

]
+ O(A4). (418)

We conclude this Appendix by noting that, due to gauge invariance, A2
min can be rewritten

in a manifestly invariant way in terms of Fµν and the covariant derivativeDµ (ZWANZIGER,

1990).
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APPENDIX B – A generalised Slavnov-Taylor identity

In this Appendix we derive the Ward identities for the generalised gauge fixing of

eq.(97). Since the quantity ωa(ξ) is now a composite operator, i.e. a product of fields

at the same space-time point, we need to define ωa(ξ) by introducing it into the starting

action though a suitable external source. In order to maintain BRST invariance, we make

use of a BRST doublet of external sources (Qa, Ra), of dimension four and ghost number

(−1, 0),

sQa = Ra , sRa = 0 , (419)

and introduce the term∫
d4x s (Qaωa(ξ)) =

∫
d4x

(
Raωa(ξ)−Qa∂ω

a

∂ξc
gcd(ξ)cd

)
. (420)

We start thus with the complete classical action Σ given now by

Σ = Sinv +

∫
d4x

(
J a
µA

ah
µ + Ξa

µD
ab
µ (Ah)ηb

)
+

∫
d4x
(
iba∂µA

a
µ +

α

2
baba − iMabbaωb(ξ)−Nabc̄aωb(ξ)

+ c̄a∂µD
ab
µ c

b +Mabc̄a
∂ωb(ξ)

∂ξc
gcd(ξ)cd

)
+

∫
d4x

(
−Ωa

µD
ab
µ c

b + La
gfabc

2
cbcc +Kagab(ξ)cd +Raωa(ξ)−Qa∂ω

a

∂ξc
gcd(ξ)cd

)
,(421)

with Sinv given by expression (85).

The action Σ, eq.(421), obeys the following Ward identities:

• the Slavnov-Taylor identity∫
d4x

(
δΣ

δAaµ

δΣ

δΩa
µ

+
δΣ

δca
δΣ

δLa
+
δΣ

δξa
δΣ

δKa
+ iba

δΣ

δc̄a
+Nab δΣ

δMab
+Ra δΣ

δQa

)
= 0 ,

(422)

• the equation of motion of the Lagrange multiplier ba

δΣ

δba
= i∂µA

a
µ + αba − iMab δΣ

δRb
, (423)
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• the anti-ghost equation

δΣ

δc̄a
+ ∂µ

δΣ

δΩa
µ

+Mab δΣ

δQb
−Nab δΣ

δRb
= 0 , (424)

• the equation of τa

δΣ

δτa
− ∂µ

δΣ

δJ a
µ

= 0 , (425)

• the equation of the ghost ηa

∫
d4x

(
δΣ

δηa
+ gfabcη̄b

δΣ

δτ c
+ gfabcΞb δΣ

δJ c
µ

)
= 0 , (426)

• the equation of the antighost η̄a

δΣ

δη̄a
− ∂µ

δΣ

δΞa
µ

= 0 . (427)

These Ward identities can be employed for the analysis of the algebraic renormalization

when the generalised function ωa(ξ) is explicitly present in the gauge-fixing. In this

case, the general counterterm will be reabsorbed through a renormalization of ωa(ξ),

corresponding to a renormalization of the infinite set of unphysical gauge parameters

(aabc1 , aabcd2 , aabcde3 , ..) of expression (95).

Repeating the lengthy discussion of the previous sections, for the most general

local invariant counterterm we find now

Σct =

∫
d4x

{
− a0g

2 ∂Σ

∂g2
+ d2 (α) 2α

∂Σ

∂α
+ a7m

2 ∂Σ

∂m2

+a4

(
τa
δΣ

δτa
+ J a

µ

δΣ

δJ a
µ

+
1

2
η̄a
δΣ

δη̄a
+

1

2
ηa
δΣ

δηa
+

1

2
Ξa
µ

δΣ

δΞa
µ

)
+d2 (α)Aaµ

δΣ

δAaµ
− d2 (α) Ωa

µ

δΣ

δΩa
µ

− d1 (α) ca
δΣ

δca
+ d1 (α)La

δΣ

δLa

+fab1 (ξ, α)ξa
δΣ

δξb
−
(
fab1 (ξ, α) +

∂fkb1 (ξ, α)

∂ξa
ξk
)
Kb δΣ

δKa

−d2(α)c̄
δΣ

δc̄
+ (d2(α)− f2(0, α))Mab δΣ

δMab
+ (d2(α)− f2(0, α))Nab δΣ

δNab

−d2(α)ba
δΣ

δba
− f2(0, α)Qa δΣ

δQa
− f2(0, α)Ra δΣ

δRa
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+
[ (
f2(0, α)aabc1 + ãabc1

) δΣ

δaabc1

+
(
f2(0, α)aabcd2 + ãabcd2

) δΣ

δaabcd2

+
(
f2(0, α)aabcde3 + ãabcde3

) δΣ

δaabcde3

+ ...
]}

, (428)

where the dots ... denote the reamaining, infinite set, of terms of the kind

∑
j

(
f2(0, α)aabcde...j + ãabcde...j

) δΣ

δaabcde...j

, j = 4, ...,∞ , (429)

The counterterm Σct in eq.(428) can be rewritten as

Σct = RΣ , (430)

with

R = −a0g
2 ∂

∂g2
+ d2 (α) 2α

∂

∂α
+ a7m

2 ∂

∂m2

+

∫
d4x

{
a4

(
τa

δ

δτa
+ J a

µ

δ

δJ a
µ

+
1

2
η̄a

δ

δη̄a
+

1

2
ηa

δ

δηa
+

1

2
Ξa
µ

δ

δΞa
µ

)
+d2 (α)Aaµ

δ

δAaµ
− d2 (α) Ωa

µ

δ

δΩa
µ

− d1 (α) ca
δ

δca
+ d1 (α)La

δ

δLa

+fab1 (ξ, α)ξa
δ

δξb
−
(
fab1 (ξ, α) +

∂fkb1 (ξ, α)

∂ξa
ξk
)
Kb δ

δKa

−d2(α)c̄
δ

δc̄
+ (d2(α)− f2(0, α))Mab δ

δMab
+ (d2(α)− f2(0, α))Nab δ

δNab

−d2(α)ba
δ

δba
− f2(0, α)Qa δ

δQa
− f2(0, α)Ra δ

δRa

+
[ (
f2(0, α)aabc1 + ãabc1

) δ

δaabc1

+
(
f2(0, α)aabcd2 + ãabcd2

) δ

δaabcd2

+
(
f2(0, α)aabcde3 + ãabcde3

) δ

δaabcde3

+ ...
]}

. (431)

For the renormalization factors, we have now

Σ(Φ) + εΣct(Φ) = Σ(Φ) + εRΣ(Φ) = Σ(Φ0) +O(ε2) , (432)

with

Φ0 = ZΦΦ = (1 + εR)Φ +O(ε2) . (433)

where

A0 = Z
1/2
A Aµ , b0 = Z

1/2
b , c0 = Z1/2

c c , c̄0 = Z
1/2
c̄ c̄ ,
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ξa0 = Zab
ξ (ξ)ξb, τ0 = Z1/2

τ τ ,Ω0 = ZΩΩ , L0 = ZLL ,

Ka
0 = Zab

K (ξ)Kb , m2
0 = Zm2m2 , J0 = ZJJ ,

g0 = Zg , α0 = Zαα , η̄0 = Z
1/2
η̄ η̄ , η0 = Z1/2

η η ,

Ξ0 = ZΞΞ , M0 = ZMM ,

N0 = ZNN, Q0 = ZQQ, R0 = ZRR , (434)

and

Zg = 1− εa0

2

Z
1/2
A = Z−1

Ω = Z
−1/2
c̄ = Z

−1/2
b = Z1/2

α = 1 + εd2(α)

Zab
ξ = δab + εfab1 (ξ, α)

ZL = Z−1/2
c = 1 + εd1(α)

Zη̄ = Zη = Z2
Ξ = Z1/2

τ = ZJ = 1 + εa4

Zm2 = 1 + εa7

ZM = ZN = 1 + ε(d2 − f2(0, α))

ZQ = ZR = 1− ε(f2(0, α))

Zab
K = δab − ε

(
fab1 (ξ, α) +

∂fkb1 (ξ, α)

∂ξa
ξk
)
, (435)

with the addition of a multiplicative renormalization of the infinite set of gauge parameters

(aabc1 , aabcd2 , aabcde3 , ..) of expression (95), namely

(aabc1 )0 = (1 + εf2(0, α))aabc1 + εãabc1

(aabcd2 )0 = (1 + εf2(0, α))aabcd2 + εãabcd2

(aabcde3 )0 = (1 + εf2(0, α))aabcde3 + εãabcde3

... . (436)

Equations (435) and (436) show that the inclusion of the ambiguity ωa(ξ) in the gener-

alised gauge fixing of eq.(97) gives rise to a standard renormalization of the fields, param-

eters and sources. Clearly, from eq.(436) one sees that the renormalization of ωa(ξ) itself

is now encoded into a multiplicative renormalization of the infinite set of the unphysical

gauge parameters (aabc1 , aabcd2 , aabcde3 , ..).
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APPENDIX C – Field propagators of the Abelian Higgs model in the Rξ gauge

The quadratic part of the action (160) in the bosonic sector is given by

Squadbos =
1

2

∫
d4x
{
Aµ(−δµν(∂2 −m2) + ∂µ∂ν)Aν − ρ∂2ρ− h(∂2 −m2

h)h

+ c̄(∂2 −m2ξ)c+ 2ib∂µAµ + ξb2 + 2imξbρ+ 2mAµ∂µρ
}
. (437)

Putting this in a matrix form yields

Squadbos =
1

2

∫
d4xΨT

µOµνΨν , (438)

where

ΨT
µ =

(
Aµ b ρ h

)
, Ψν =


Aν

b

ρ

h

 , (439)

and

O =


(−δµν(∂2 −m2) + ∂µ∂ν) −i∂µ m∂µ 0

i∂ν ξ imξ 0

−m∂ν imξ −∂2 0

0 0 0 −(∂2 −m2
h)

 , (440)

the tree-level field propagators can be read off from the inverse of O, leading to the

following expressions

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
Pµν +

ξ

p2 + ξm2
Lµν ,

〈ρ(p)ρ(−p)〉 =
1

p2 + ξm2
,

〈h(p)h(−p)〉 =
1

p2 +m2
h

,

〈Aµ(p)b(−p)〉 =
pµ

p2 + ξm2
,

〈b(p)ρ(−k)〉 =
−im

p2 + ξm2
, (441)

where Pµν = δµν − pµpν
p2

and Lµν = pµpν
p2

are the transversal and longitudinal projectors,

respectively. The ghost propagator is

〈c̄(p)c(−p)〉 =
1

p2 + ξm2
. (442)
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APPENDIX D – Field propagators of the Abelian Higgs model in the Rξ gauge

Vertices of the Abelian Higgs model in the Rξ gauge From the action (160), we

find the following vertices

ΓAµρh(−p1,−p2,−p3) = ie(pµ,3 − pµ,2)δ(p1 + p2 + p3),

ΓAµAνh(−p1,−p2,−p3) = −2e2vδµνδ(p1 + p2 + p3),

ΓAµAνhh(−p1,−p2,−p3,−p4) = −2e2δµνδ(p1 + p2 + p3 + p4),

ΓAµAνρρ(−p1,−p2,−p3,−p4) = −2e2δµνδ(p1 + p2 + p3 + p4),

Γhhhh(−p1,−p2,−p3,−p4) = −3λ δ(p1 + p2 + p3 + p4),

Γhhρρ(−p1,−p2,−p3,−p4) = −λ δ(p1 + p2 + p3 + p4),

Γρρρρ(−p1,−p2,−p3,−p4) = −3λ δ(p1 + p2 + p3 + p4),

Γhhh(−p1,−p2,−p3) = −3λv δ(p1 + p2 + p3),

Γhρρ(−p1,−p2,−p3) = −λv δ(p1 + p2 + p3),

Γc̄hc(−p1,−p2,−p3) = −mξe δ(p1 + p2 + p3). (443)
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APPENDIX E – Equivalence between including tadpole diagrams in the self-energies

and shifting 〈ϕ〉

There is yet another way to come to (191). For this, we do not need to include

the balloon type tadpoles in the self-energies, but rather fix the expectation value of the

Higgs field 〈h〉 = 0 by shifting the vacuum expectation value of the Higgs field to its

proper one-loop value. The h field one-point function has the following contributions at

one-loop order :

• the gluon contribution

− 1

m2
h

2e2v

(4π)d/2
Γ(2− d/2)

(2− d)
(md−2(d− 1) + ξ(ξm2)d/2−1), (444)

• the Goldstone boson one

− 1

m2
h

λv
1

(4π)d/2
Γ(2− d/2)

(2− d)
(ξm2)d/2−1, (445)

• the ghost loop

2
1

m2
h

e2vξ

(4π)d/2
Γ(2− d/2)

(2− d)
(ξm2)d/2−1 (446)

• the Higgs boson one

−3
1

m2
h

λv

(4π)d/2
Γ(2− d/2)

(2− d)
md−2
h , (447)

Together those four contributions yield

Γ〈h〉 =
1

(4π)d/2
Γ(2− d/2)

(2− d)

1

m2
h

(−2e2vmd−2(d− 1)

− λv(ξm2)d/2−1 − 3λvmd−2
h ), (448)

that becomes, for d = 4− ε,

= −1

2

1

m2
h

1

(4π)2
(
2

ε
+ 1 + ln(µ2))(−2e2vm2−ε(3− ε)− λv(ξm2)1−ε/2 − 3λvm2−ε

h )

= −1

2

1

m2
h

1

(4π)2
(
2

ε
+ 1 + ln(µ2))(−2e2vm2(1− ε

2
lnm2)(3− ε)

− λvξm2(1− ε

2
lnm2)− 3λvm2

h(1−
ε

2
lnm2

h)). (449)
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We can split this in a divergent part

Γdiv〈h〉 =
1

ε

1

m2
h

(6e2m2v + 3m2
hvλ+ ξm2v), (450)

which we can cancel with the counterterms, and a finite part that reads

Γfin〈h〉 =
1

m2
h

e2

(4π)2
v
(
m2(1− 3 ln

m2

µ2
)
)

+
1

m2
h

λ

(4π)2

v

2

(
3m2

h(1− ln
h2

µ2
) + ξm2(1− ln

ξm2

µ2
)
)
. (451)

Now, to see how this reflects on the propagator, we can rewrite our scalar field as

ϕ =
1√
2

((〈ϕ〉+ h) + iρ), (452)

where the vacuum expectation value of the Higgs field has tree-level and one-loop terms:

〈ϕ〉 = v + h̄v1. (453)

Thus the “classical” potential part of the action becomes

λ

2

(
ϕ†ϕ− v2

2

)2

=
λ

8

(
〈ϕ〉2 − v2 + 2h〈ϕ〉+ h2 + ρ2

)2
(454)

and expanding this, we find for the shifted tree level Higgs mass

m2
h =

1

2
λ(3〈ϕ〉2 − v2) = λv2 + 3h̄λvv1, (455)

while the photon mass is

m2 = e2〈ϕ〉2 = e2v2 + 2h̄e2vv1. (456)

As now per construction 〈h〉 = 0, we can fix the one-loop correction15 to the Higgs

minimizing value by requiring it to absorb the tadpole contributions:

v1 + Γfin〈h〉 = 0, (457)

thus

v1 = − 1

m2
h

e2

(4π)2
v
(
m2(1− 3 ln

m2

µ2
)
)

15 This procedure is also equivalent to computing 〈ϕ〉 via an effective potential minimization up to the
same order.
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− 1

m2
h

λ

(4π)2

v

2

(
3m2

h(1− ln
h2

µ2
) + ξm2(1− ln

ξm2

µ2
)
)
. (458)

Implementing this in the transverse 〈AA〉-propagator, one gets

G⊥AA(p2) =
1

p2 + e2(v2 + 2h̄v1v)− Π⊥AA(p2)
, (459)

where in the correction Π⊥AA, which is already of O(h̄), we only include the O(h̄0) part of

〈ϕ〉, i.e. v.

We can now verify the ξ-independence of the transverse propagator 〈AA〉. The

ξ-dependent part of Π⊥AA(p2) is

Π⊥AA,ξ(p
2) =

−2e2

(4π)d/2
Γ(2− d/2)

2− d
(ξm2)d/2−1, (460)

while we find the ξ-dependent part of v1 to be (using (448))

v1ξ =
1

(4π)d/2
Γ(2− d/2)

(2− d)

1

m2
h

(λv(ξm2)d/2−1). (461)

In the denominator of (459) we now easily see that

2e2v1ξv0 − Π⊥AA,ξ(p
2) = 0, (462)

thereby establishing the gauge independence of the transverse photon propagator.

For the Higgs propagator, we similarly find

Ghh(p
2) =

1

p2 + λ(v2 + 3h̄v1v)− Πhh(p2)
. (463)

Here we observe that the ξ-dependent part of v1 has the same effect as the balloon tadpole

of the Goldstone boson, consequently establishing the gauge parameter independence of

the Higgs mass pole.
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APPENDIX F – Feynman integrals

∫ 1

0

dx ln
K(m2

1,m
2
2)

µ2
=

1

2p2

{
m2

1 ln(
m2

2

m2
1

) +m2
2 ln(

m2
1

m2
2

) + p2 ln(
m2

1m
2
2

µ4
)

− 2
√
−m4

1 + 2m2
1m

2
2 − 2m2

1p
2 −m4

2 − 2m2
2p

2 − p4

× tan−1
[ −m2

1 +m2
2 − p2√

−m4
1 + 2m2

1(m2
2 − p2)− (m2

2 + p2)2

]
+ 2

√
−m4

1 + 2m2
1m

2
2 − 2m2

1p
2 −m4

2 − 2m2
2p

2 − p4

× tan−1
[ −m2

1 +m2
2 + p2√

−m4
1 + 2m2

1(m2
2 − p2)− (m2

2 + p2)2

]
− 4p2

}
(464)
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APPENDIX G – Asymptotics of the Higgs propagator

At one-loop, the Higgs propagator behaves like

Ghh(p
2) =

Z
p2 ln p2

µ2

for p2 →∞. (465)

For Z > 0, this can only be compatible with

Ghh(p
2) =

∫ ∞
0

ρ(t)dt

t+ p2
(466)

if the superconvergence relation (OEHME, 1990; CORNWALL, 2013)
∫
dtρ(t) = 0 holds,

which forbids a positive spectral function. Let us support this non-positivity of ρ(t) by

using (465) to show that ρ(t) is certainly negative for very large t. This argument can

also be found in the Appendix of (DUDAL et al., 2020b).

Since for a KL representation we have:

ρ(t) =
1

2πi
lim
ε→0+

(G(−t− iε)−G(−t+ iε)) , (467)

we find for t→ +∞ and ε→ 0+,

ρ(t) =
Z

2πi


(

ln −t−iε
µ2

)−1

−t− iε
−

(
ln −t+iε

µ2

)−1

−t+ iε


=

Z
2πit

[
−
(

ln
t

µ2
− iπ

)−1

+

(
ln

t

µ2
+ iπ

)−1
]

=
Z
πt

Im

[(
ln

t

µ2
+ iπ

)−1
]

=
Z
πt

((
ln

t

µ2

)2

+ π2

)−1/2

sin

(
− arctan

π

ln t
µ2

)
. (468)

From the latter expression, we can indeed infer that ρ(t) becomes negative for t large. We

find

ρ(t)
t→∞
= −Z

t

(
ln

t

µ2

)−2

< 0 (469)

for Z > 0, and vice versa for Z < 0.
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Figure 39 - One-loop contributions to 〈O(p)O(−p)〉

Legend: One-loop contributions to the propagator 〈O(p)O(−p)〉. Wavy lines represent the photon field,

dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost field.

Source: The author, 2020.

G.1 Contributions to 〈O(p)O(−p)〉

We consider each term in the two-point function 〈O(p)O(−p)〉, given by eq. (248).

The first term is the one-loop correction to the Higgs propagator 〈h(p)h(−p)〉 known from

the last chapter, shown in frame (1) in Figure 39, which gives

v2〈h(p)h(−p)〉 =
v2

m2
h + p2

+ v2
(
e2η
(
m2,m2

)(
2(d− 1)m2 +

p4

2m2
+ 2p2

)
+ η

(
m2ξ,m2ξ

)(m2
hλ

2
− e2p4

2m2

)
+

9

2
m2
hλη

(
m2
h,m

2
h

)
+

1

2
e2χ

(
m2
)(

4(d− 1)− 2p2

m2

)



187

+ χ
(
m2ξ

)(e2p2

m2
+ λ

)
+ 3λχ

(
m2
h

) ) 1

(m2
h + p2)

2 . (470)

The second term, the one-loop correction shown in frame (2) of Figure 39, gives

v〈h(p)ρ(−p)2〉 = −m
2
hη (m2ξ,m2ξ)

m2
h + p2

. (471)

The third term, the one-loop correction shown in frame (3) of Figure 39, gives

v〈h(p)h(−p)2〉 = −3m2
hη (m2

h,m
2
h)

m2
h + p2

− 3χ (m2
h)

m2
h + p2

− χ (m2ξ)

m2
h + p2

− 2(d− 1)m2χ (m2)

m2
h (m2

h + p2)

− 2m2ξχ (m2ξ)

m2
h (m2

h + p2)
+

2m2ξχ (m2ξ)

m2
h (m2

h + p2)
. (472)

The fourth term has no 1-loop contributions. The fifth term, the one-loop correction

shown in frame (4) of Figure 39, gives

1

4
〈h(p)h(p)h(−p)h(−p)〉 =

1

2
η
(
m2
h,m

2
h

)
. (473)

The sixth term, the one-loop correction shown in frame (5) of Figure 39, gives

1

4
〈ρ(p)ρ(p)ρ(−p)ρ(−p)〉 =

1

2
η
(
ξm2, ξm2

)
. (474)

Using the identity (351) we are able to write the whole one-loop correlation function

〈O(−p), O(p)〉, up to the order h̄, as

〈O(p)O(−p)〉 =
v2

p2 +m2
h

+
1

(p2 +m2
h)

2

∫ 1

0

dx

(
1

2
η
[
m2,m2

]
(4(d− 1)m4 + 4m2p2 + p4)

+
1

2
(p2 − 2m2

h)
2η
[
m2
h,m

2
h

]
− p2χ[m2](2(d− 1)m2 +m2

h)

m2
h

− 3p2χ[m2
h]

)
(475)
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Figure 40 - One-loop contributions for 〈Vµ(p)Vν(−p)〉

Legend: One-loop contributions for the propagator 〈Vµ(p)Vν(−p)〉. Wavy lines represent the photon

field,

dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost field.

Source: The author, 2020.
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G.2 Contributions to 〈Vµ(x)Vν(y)〉

We consider each term in the two-point function 〈Vµ(p)Vν(−p)〉, given by eq. (269).

The first term is the one-loop correction to the photon propagator 〈Aµ(p)Aν(−p)〉 known

from the last chapter, shown in frame (1) in Figure 40, which gives

1

4
e2v4〈Aµ(p)Av(−p)〉 =

1

4
e2v4 Pµν(p)

p2 +m2
+

1

4
e2v4

[
− m2η (m2,m2

h) ((m2
h −m2 + p2) 2 − 4(d− 2)m2p2)

(d− 1)p2v2

+
m2χ (m2) (2(d− 1)2m2p2 +m2

h (p2 −m2) +m4
h)

(d− 1)p2v2m2
h

+
m2χ (m2

h) ((2d− 1)p2 −m2
h +m2)

(d− 1)p2v2

]
Pµν(p)

(p2 +m2)2

+
1

4
e2v4 ξ

p2 + ξm2
Lµν(p)

+
1

4
e2v4

[
m2ξ2

(
−2m2

h (m2 − p2) +m4
h + (m2 + p2)

2
)
η (m2,m2

h)

p2v2

− m2ξ2 (2m2
h − 2m2ξ + p2) η (m2

h,m
2ξ)

v2

+
m2ξ2χ (m2) (2(d− 1)m2p2 +m2

h (m2 − p2)−m4
h)

p2v2m2
h

− m2ξ2 (−m2
h +m2 − 3p2)χ (m2

h)

p2v2
+

2m2ξ2χ (m2ξ)

v2

]
Lµν(p)

(p2 + ξm2)2
. (476)

The second term, the one-loop correction shown in frame (2) of Figure 40, gives

e2v3〈hAµ(p)Av(−p)〉 =

e2v3
[
−
eη (m2

h,m
2ξ)
(

2evm4
h (p2 −m2ξ) + evm2

h (m2ξ + p2)
2

+ evm6
h

)
2(d− 1)m2p2m2

h

− eη (m2,m2
h) (evm2

h (−2(3− 2d)m2p2 −m4 − p4) + 2evm4
h (m2 − p2)− evm6

h)

2(d− 1)m2p2m2
h

− eχ (m2ξ) (dep2vm2
h + em2ξvm2

h − 2ep2vm2
h − evm4

h)

2(d− 1)m2p2m2
h)

− eχ (m2
h) (3dep2vm2

h − em2ξvm2
h + em2vm2

h − 3ep2vm2
h

2(d− 1)m2p2m2
h

− eχ (m2) (2(d− 1)2em2p2v − em2vm2
h + ep2vm2

h + evm4
h)

2(d− 1)m2p2m2
h

] Pµν(p)
(p2 +m2)

+ e2v3
[ 1

2p2v
ξ
( (
m2
h +m2(−ξ) + p2

)
2η
(
m2
h,m

2ξ
)
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−
(
−2m2

h

(
m2 − p2

)
+m4

h +
(
m2 + p2

)2
)
η
(
m2,m2

h

)
+

χ (m2) (−2(d− 1)m2p2 +m2
h (p2 −m2) +m4

h)

m2
h

− χ
(
m2ξ

) (
m2
h +m2(−ξ) + 2p2

)
− χ

(
m2
h

) (
m2(ξ − 1) + 3p2

) )] Lµν
p2 + ξm2

. (477)

The third term, the one-loop correction shown in frame (3) of Figure 40, gives

1

2
e2v2〈h2Aµ(p)Av(−p)〉 =

1

2
e2v2

[ χ (m2
h)

m2 + p2

]
Pµν +

1

2
e2v2

[ ξχ (m2
h)

m2ξ + p2

]
Lµν . (478)

The fourth term, the one-loop correction shown in frame (4) of Figure 40, gives

e2v2〈hAµ(p)hAv(−p)〉

= e2v2
[((m2

h+m2(−ξ)+p2)2

m2p2
+ 4ξ

)
η (m2

h,m
2ξ)

4(d− 1)

+

η (m2,m2
h)

(
4(d− 2)− (m2

h−m
2+p2)2

m2p2

)
4(d− 1)

− χ (m2ξ) (m2
h +m2(−ξ) + p2)

4(d− 1)m2p2

+
χ (m2) (m2

h −m2 + p2)

4(d− 1)m2p2
− (ξ − 1)χ (m2

h)

4(d− 1)p2

]
Pµν

+ e2v2
[ 1

4m2p2

(
−
(
m2
h +m2(−ξ) + p2

)
2η
(
m2
h,m

2ξ
)

+
((
m2
h −m2 + p2

)
2 + 4m2p2

)
η
(
m2,m2

h

)
+m2(ξ − 1)χ

(
m2
h

)
+ χ

(
m2ξ

) (
m2
h +m2(−ξ) + p2

)
+ χ

(
m2
) (
−m2

h +m2 − p2
) )]
Lµν . (479)

The fifth term, the one-loop correction shown in frame (5) of Figure 40, gives

1

2
e2v2〈ρ2Aµ(p), Av(−p)〉 =

1

2
e2v2χ (m2ξ)

m2 + p2
Pµν +

1

2
e2v2 ξχ (m2ξ)

m2ξ + p2
Lµν . (480)

The sixth term, the one-loop correction shown in frame (6) of Figure 40, gives

− i
2
ev2pµ〈hρ(p)Av(−p)〉

= − i
2
ev2
[ieξ (m2ξ −m2

h) η (m2
h,m

2ξ)

m2ξ + p2
− ieξχ (m2

h)

m2ξ + p2
+
ieξχ (m2ξ)

m2ξ + p2

]
Lµν . (481)

The seventh term, the one-loop correction shown in frame (7) of Figure 40, gives
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ev2〈∂xµhρ(p)Av(−p)〉

= ev2
[
− e ((−m2

h +m2ξ + p2) 2 + 4p2m2
h) η (m2

h,m
2ξ)

2(d− 1)p2 (m2 + p2)

+
eχ (m2ξ) (m2

h +m2(−ξ) + p2)

2(d− 1)p2 (m2 + p2)
+
eχ (m2

h) (−m2
h +m2ξ + p2)

2(d− 1)p2 (m2 + p2)

]
Pµν

+ ev2
[eξ (−3p2 (m2

h −m2ξ + p2) + (m2
h −m2ξ + p2)

2
+ 2p4

)
η (m2ξ,m2

h)

2p2 (m2ξ + p2)

+
eξχ (m2

h) (m2
h −m2ξ)

2p2 (m2ξ + p2)
+
eξχ (m2ξ) (−m2

h +m2ξ + 2p2)

2p2 (m2ξ + p2)

]
Lµν . (482)

The eighth term, the one-loop correction shown in frame (11) of Figure 40, gives

−1

2
iev3pµ〈ρ(p)Av(−p)〉 =

− 1

2
iev3

[
ie3ξv ((m2

h −m2 + p2) 2 + 4m2p2) η (m2,m2
h)

m2 (m2ξ + p2)2

+ η
(
m2
h,m

2ξ
)(ie3ξvm2

h (m2
h −m2ξ)

m2 (m2ξ + p2)2 − ie3ξv (m2
h + p2) (m2

h +m2(−ξ) + p2)

m2 (m2ξ + p2)2

)
+ χ

(
m2
)( i(d− 1)e3ξp2v

m2
h (m2ξ + p2)2 −

ie3ξv (m2
h −m2 + p2)

m2 (m2ξ + p2)2

)

+ χ
(
m2
h

)( ie3ξvm2
h

m2 (m2ξ + p2)2 −
ie3ξv

(m2ξ + p2)2 +
3ie3ξp2v

2m2 (m2ξ + p2)2

)
+ χ

(
m2ξ

)( ie3ξ2p2v

m2
h (m2ξ + p2)2 +

ie3ξv (m2
h + p2)

m2 (m2ξ + p2)2

− ie3ξvm2
h

m2 (m2ξ + p2)2 +
ie3ξp2v

2m2 (m2ξ + p2)2 −
ie2mξ2p2

m2
h (m2ξ + p2)2

)]
Lµν . (483)

The ninth term, the one-loop correction shown in frame (12) of Figure 40, gives

−iev2pµ〈ρ(p)hAv(−p)〉

= −iev2

[
− ie (m2

h + p2)χ (m2ξ)

2m2 (m2ξ + p2)

− 1

2m2 (m2ξ + p2)

(
ie
(
−
(
m2
h + p2

) (
m2
h +m2(−ξ) + p2

)
η
(
m2ξ,m2

h

)
+

((
m2
h −m2 + p2

)
2 + 4m2p2

)
η
(
m2,m2

h

)
−m2χ

(
m2
h

)
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− m2
hχ
(
m2
)
− p2χ

(
m2
)

+m2χ
(
m2
)) )]

Lµν . (484)

The tenth term, the one-loop correction shown in frame (14) of Figure 40, gives

−1

2
vpµpν〈hρ(p)ρ(−p)〉 =

−1

2
v

[
p2
(
− e2vm2

hη (m2ξ,m2
h)

m2 (m2ξ + p2)
− (d− 1)e2vχ (m2)

m2
h (m2ξ + p2)

− 3e2vχ (m2
h)

2m2 (m2ξ + p2)
− e2ξvχ (m2ξ)

m2
h (m2ξ + p2)

− e2vχ (m2ξ)

2m2 (m2ξ + p2)
+

emξχ (m2ξ)

m2
h (m2ξ + p2)

)]
Lµν . (485)

The eleventh term, the one-loop correction shown in frame (15) of Figure 40, gives

ivpν〈∂xµhρ(p)ρ(−p)〉 =

iv
[ie2m2

hvχ (m2ξ)

2m4ξ + 2m2p2
− ie2m2

hv ((m2
h −m2ξ − p2) η (m2ξ,m2

h) + χ (m2
h))

2m2 (m2ξ + p2)

]
Lµν . (486)

The twelfth term, the one-loop correction shown in frame (16) of Figure 40, gives

1

4
pµpν〈hh(p)ρρ(−p)〉 = p2η

(
m2ξ,m2

h

)
Lµν . (487)

The thirteenth term, the one-loop correction shown in frame (17) of Figure 40, gives

−〈∂xµhρ(p)h∂yνρ(−p)〉

= −
[((−m2

h+m2ξ+p2)2

p2
+ 4m2

h

)
η (m2

h,m
2ξ)

4(d− 1)
+
χ (m2ξ) (−m2

h +m2ξ − p2)

4(d− 1)p2

− χ (m2
h) (−m2

h +m2ξ + p2)

4(d− 1)p2

]
Pµν

−
[
− (m2

h +m2(−ξ)− p2) (m2
h +m2(−ξ) + p2) η (m2ξ,m2

h)

4p2

+
χ (m2ξ) (m2

h +m2(−ξ)− p2)

4p2
− χ (m2

h) (m2
h +m2(−ξ) + p2)

4p2

]
Lµν . (488)

The fourteenth term, the one-loop correction shown in frame (18) of Figure 40, gives

1

4
v2pµpν〈ρ(p)ρ(−p)〉 =[
p2
(e4v2m4

hη (m2ξ,m2
h)

m4 (m2ξ + p2)2 +
e2 ((m2

h −m2 + p2) 2 + 4m2p2) η (m2,m2
h)

m2 (m2ξ + p2)2
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− e2 (m2
h + p2) 2η (m2

h,m
2ξ)

m2 (m2ξ + p2)2 +
(d− 1)e4v2χ (m2)

m2 (m2ξ + p2)2 −
(d− 1)e2χ (m2)

(m2ξ + p2)2 +
e4v2m2

hχ (m2ξ)

2m4 (m2ξ + p2)2

+
3e4v2m2

hχ (m2
h)

2m4 (m2ξ + p2)2 +
e4ξv2χ (m2ξ)

m2 (m2ξ + p2)2 −
e3ξvχ (m2ξ)

m (m2ξ + p2)2 +
e2χ (m2ξ) (m2

h +m2ξ + p2)

m2 (m2ξ + p2)2

− e2χ (m2
h)

(m2ξ + p2)2 −
e2χ (m2) (m2

h −m2 + p2)

m2 (m2ξ + p2)2 − 3e2m2
hχ (m2ξ)

2m2 (m2ξ + p2)2 −
e2m2

hχ (m2
h)

2m2 (m2ξ + p2)2

− e2ξχ (m2ξ)

(m2ξ + p2)2

)]
Lµν . (489)
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APPENDIX H – Propagators and vertices of the SU(2) Higgs model in the Rξ gauge

The tree level elementary propagators of the fields are easily computed, being given

by

〈Aaµ(p)Abν(−p)〉 =
δab

p2 +m2
Pµν(p) + δab

ξ

p2 + ξm2
Lµν(p),

〈ρa(p)ρb(−p)〉 =
δab

p2 + ξm2
,

〈h(p)h(−p)〉 =
1

p2 +m2
h

,

〈Aaµ(p)bb(−p)〉 = δab
pµ

p2 + ξm2
,

〈ba(p)ρb(−k)〉 = δab
im

p2 + ξm2
(490)

and

〈c̄a(p)cb(−p)〉 =
δab

p2 + ξm2
(491)

for the ghost propagator. For all vertices, adopting the convention that the momentum

is flowing towards the vertex, we get

• The AAh-vertex: ΓAaµAbνh(−p1,−p2,−p3) = −g2v
2
δµνδ

abδ(p1 + p2 + p3).

• The ρρA-vertex: ΓρaρbAcµ(−p1,−p2,−p3) = g
2
iεabc(pµ,1 − pµ,2)δ(p1 + p2 + p3).

• The Aρh-vertex: ΓAaµρbh(−p1,−p2,−p3) = ig
2
δab(pµ,3 − pµ,2)δ(p1 + p2 + p3).

• The hhh vertex: Γhhh(−p1,−p2,−p3) = −3λv δ(p1 + p2 + p3).

• The hρρ vertex: Γhρaρb(−p1,−p2,−p3) = −λvδab δ(p1 + p2 + p3).

• The AAA-vertex: ΓAaµAbνAcσ(−p1,−p2,−p3)

= −igfabc [(p1 − p3)νδσµ + (p3 − p2)µδνσ + (p2 − p1)σδνµ] δ(p1 + p2 + p3).

• The cAc-vertex: ΓcaAbµcc(−p1,−p2,−p3) = igfabcp1,µδ(p1 + p2 + p3).

• The AAAA-vertex: ΓAaµAbνAcρAdσ(−p1,−p2,−p3,−p4)

= g2[f eabf ecd(δµσδνρ − δµρδνσ) + f eacf ebd(δµσδνρ − δµνδρσ)

+ f eadf ebc(δµρδνσ − δµνδρσ)]δ(p1 + p2 + p3 + p4).

• The AAhh-vertex: ΓAaµAbνhh(−p1,−p2,−p3,−p4) = −1
2
g2δabδµν .

• The AAρρ-vertex: ΓAaµAbνρcρd(−p1,−p2,−p3,−p4) = −1
2
g2δµνδ

abδcd.
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APPENDIX I – Elementary propagators of the SU(2) Higgs model in the Rξ gauge

Here we will calculate the one-loop corrections to the Higgs and gauge field prop-

agator. This requires the calculation 16 of the Feynman diagrams as shown in Figures 41

and 42. We will use the following definitions:

η(m1,m2) ≡ 1

(4π)d/2
Γ(2− d

2
)

∫ 1

0

dx
(
p2x(1− x) + xm1 + (1− x)m2

)d/2−2
,

χ(m1) ≡ 1

(4π)d/2
Γ(1− d

2
)m

d/2−1
1 . (492)

Notice that the last four diagrams for both particles are zero for 〈h〉 = 0. In fact, in-

cluding these diagrams has the same effect as making a shift in the minimizing value of

the scalar field Φ to demand 〈h〉 = 0, see the Appendix of (DUDAL et al., 2019) for the

technical details. In the context of the FMS operators, we found it more convenient to

expand around the (classical) v that is gauge invariant, and thus to include the tadpoles.

Expanding the FMS operator around the quantum corrected vev would lead to cancella-

tions in that quantum vev coming from the propagator loop corrections to render it gauge

invariant again, indeed the minimum of the quantum corrected effective Higgs potential

is not gauge invariant itself.

I.0.1 Higgs propagator

The first diagrams contributing to the Higgs self-energy are of the snail type,

renormalizing the masses of the internal fields. The Higgs boson snail (first diagram in

the first line of Figure 41):

Γhh,1(p2) = − 3λχ (m2
h)

2 (m2
h + p2)

2 , (493)

the Goldstone boson snail (second diagram in the first line of Figure 41):

Γhh,2(p2) = − 3λχ (m2ξ)

2 (m2
h + p2)

2 , (494)

16 We have used from (PASSARINO; VELTMAN, 1979) the technique of modifying integrals into “master
integrals” without numerators.



196

Figure 41 - Propagator 〈h(p)h(−p)〉

Legend: One-loop contributions to the propagator 〈h(p)h(−p)〉. Curly lines represent the gauge field,

dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost field.

Source: The author, 2020.

and the gauge field snail (third diagram in the first line of Figure 41):

Γhh,3(p2) = −3(d− 1)g2χ (m2)

4 (m2
h + p2)

2 − 3g2ξχ (m2ξ)

4 (m2
h + p2)

2 . (495)

Next, we meet a couple of sunset diagrams. The Higgs boson sunset (fourth diagram in

the first line of Figure 41):

Γhh,4(p2) =

∫ 1

0

dx
{9λ2v2η (m2

h,m
2
h)

2 (m2
h + p2)

2

}
, (496)

the gauge field sunset (first diagram in the second line of Figure 41):

Γhh,5(p2) =

∫ 1

0

dx
{3g2η (m2,m2) (4(D − 1)m4 + 4m2p2 + p4)

8m2 (m2
h + p2)

2

+
3g2 (2m2ξ + p2)

2
η (m2ξ,m2ξ)

8m2 (m2
h + p2)

2

− 3g2 (m4(ξ − 1)2 + 2m2ξp2 + 2m2p2 + p4) η (m2,m2ξ)

4m2 (m2
h + p2)

2

+
3g2(ξ − 1)χ (m2)

4 (m2
h + p2)

2

− 3g2(ξ − 1)χ (m2ξ)

4 (m2
h + p2)

2

}
, (497)
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the ghost sunset (second diagram in the second line of Figure 41):

Γhh,6(p2) = −
∫ 1

0

dx
{3g2m2ξ2η (m2ξ,m2ξ)

4 (m2
h + p2)

2

}
, (498)

the Goldstone boson sunset (third diagram in the second line of Figure 41):

Γhh,7(p2) =

∫ 1

0

dx
{3λ2v2η (m2ξ,m2ξ)

2 (m2
h + p2)

2

}
, (499)

and a mixed Goldstone-gauge sunset (fourth diagram in the second line of Figure 41):

Γhh,8(p2) =

∫ 1

0

dx
{3g2

(
(m2(ξ − 1) + p2)

2
+ 4m2p2

)
η (m2,m2ξ)

4m2 (m2
h + p2)

2

− 3g2 (m2ξ + p2)
2
η (m2ξ,m2ξ)

4m2 (m2
h + p2)

2

+
3g2χ (m2ξ) (m2(2ξ − 1) + p2)

4m2 (m2
h + p2)

2 − 3g2χ (m2) (m2(ξ − 1) + p2)

4m2 (m2
h + p2)

2

}
. (500)

Finally, we have the tadpole diagrams. The Higgs balloon (first diagram on the third line

of Figure 41):

Γhh,9(p2) =
9λ2v2χ (m2

h)

2m2
h (m2

h + p2)
2 , (501)

the gauge balloon (second diagram on the third line of Figure 41):

Γhh,10(p2) =
9gλmv ((d− 1)χ (m2) + ξχ (m2ξ))

2m2
h (m2

h + p2)
2 , (502)

the Goldstone boson balloon (third diagram on the third line of Figure 41):

Γhh,11(p2) =
9λ2v2χ (m2ξ)

2m2
h (m2

h + p2)
2 , (503)

the ghost balloon (fourth diagram on the third line of Figure 41):

Γhh,12(p2) = −9gλmξvχ (m2ξ)

2m2
h

. (504)

Putting together eqs. (493) to (504) we find the Higgs propagator up to first order in h̄

〈h(x)h(y)〉 =
1

p2 +m2
h

+ g2

∫ 1

0

dx
{3 (4(d− 1)m4 + 4m2p2 + p4)

8m2
η
(
m2,m2

)
+

9m4
h

8m2
η
(
m2
h,m

2
h

)
+

3 (m4
h − p4)

8m2
η
(
m2ξ,m2ξ

)
+

(6(d− 1)m2 − 3p2)

4m2
χ
(
m2
)

+
3 (m2

h + p2)

4m2
χ
(
m2ξ

)
+

3m2
h

4m2
χ
(
m2
h

)} 1

(p2 +m2
h)

2
. (505)
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The resummed one-loop Higgs propagator can be now approximated by

G−1
hh (p2) = p2 +m2

h − g2

∫ 1

0

dx
{3 (4(d− 1)m4 + 4m2p2 + p4)

8m2
η
(
m2,m2

)
+

9m4
h

8m2
η
(
m2
h,m

2
h

)
+

3 (m4
h − p4)

8m2
η
(
m2ξ,m2ξ

)
+

(6(d− 1)m2 − 3p2)

4m2
χ
(
m2
)

+
3 (m2

h + p2)

4m2
χ
(
m2ξ

)
+

3m2
h

4m2
χ
(
m2
h

)}
. (506)

For d = 4, the above expression, eq. (506), is divergent. Employing the procedure of

dimensional regularization, i.e. setting d = 4 − ε, the divergent part for Ghh(p
2) is given

by:

Ghh,div(p2) =
g2
(

3m4
h

m2 − 3ξm2
h − 3ξp2 + 9p2

)
32π2ε

, (507)

which, following the MS-scheme, are re-absorbed by the introduction of suitable local

counterterms. We remain thus with the finite part of the Higgs propagator, given in

eq. (320).

I.0.2 Gauge field propagator

The first diagram contributing to transverse part of the gauge field self-energy is

the gauge field snail (first diagram in the first line of Figure 42) and gives a contribution:

ΠAAT ,1(p2) =
2g2 (p2 − d (d2 − 3d+ 3) p2)χ (m2)

(d− 1)dp2 (m2 + p2)2

− 2g2ξ ((d− 2)dp2 + p2)χ (m2ξ)

(d− 1)dp2 (m2 + p2)2 . (508)

The second diagram is the Goldstone boson snail (second diagram in the first line of

Figure 42):

ΠAAT ,2(p2) = − 3g2χ (m2ξ)

4 (m2 + p2)2 . (509)

The third diagram is the Higgs boson snail (third diagram in the first line of Figure 42):

ΠAAT ,3(p2) = − g2χ (m2
h)

4 (m2 + p2)2 . (510)

The fourth diagram is the gauge field sunrise (first diagram in the second line of Figure

42):

ΠAAT ,4(p2) =
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Figure 42 - One-loop gauge field self-energy

Legend: Contributions to the one-loop gauge field self-energy.

Source: The author, 2020.

g2

∫ 1

0

dx
{η (m2,m2ξ) (2m2p2(−2d+ ξ + 3) +m4(ξ − 1)2 + p4)

2(d− 1)m4p2

− (4m2 + p2) η (m2,m2) (4(d− 1)m4 + 4(3− 2d)m2p2 + p4)

4(d− 1)m4 (m2 + p2)2

− (4m2ξp4 + p6) η (m2ξ,m2ξ)

4(d− 1)m4 (m2 + p2)2

+
χ (m2ξ)

2(d− 1)dm2p2 (m2 + p2)2

×
(
4d2
(
m2(ξ + 1)p2 + p4

)
+ d

(
m4(ξ − 1)−m2(6ξ + 7)p2 + (ξ − 7)p4

)
+ 4m2ξp2

)
− χ (m2) (4d2p4 + d (m4(ξ − 1) +m2(2ξ − 5)p2 + (ξ − 7)p4) + 4m2p2)

2(d− 1)dm2p2 (m2 + p2)2

}
. (511)

The fifth diagram is the ghost sunrise (second diagram in the second line of Figure 42):

ΠAAT ,5(p2) = g2

∫ 1

0

dxη
(
m2ξ,m2ξ

)( 2m2ξ

(d− 1) (m2 + p2)2 +
p2

2(d− 1) (m2 + p2)2

)
− χ (m2ξ)

(d− 1) (m2 + p2)2 . (512)
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The sixth diagram is the Goldstone sunrise (first diagram in the third line of Figure 42):

ΠAAT ,6(p2) = g2

∫ 1

0

dxη
(
m2ξ,m2ξ

)
(− m2ξ

(d− 1) (m2 + p2)2

− p2

4(d− 1) (m2 + p2)2 )

+
χ (m2ξ)

2(d− 1) (m2 + p2)2 . (513)

The seventh diagram is the mixed Goldstone-Higgs sunrise (second diagram in the third

line of Figure 42):

ΠAAT ,7(p2) =

g2

∫ 1

0

dx−

(
(−m2

h +m2ξ + p2)
2

+ 4m2
hp

2
)
η (m2

h,m
2ξ)

4(d− 1)p2 (m2 + p2)2 +
χ (m2

h) (−m2
h +m2ξ + p2)

4(d− 1)p2 (m2 + p2)2

+
χ (m2ξ) (m2

h −m2ξ + p2)

4(d− 1)p2 (m2 + p2)2 . (514)

The eighth diagram is the mixed Goldstone-gauge field sunrise (third diagram in the third

line of Figure 42):

ΠAAT ,8(p2) = g2

∫ 1

0

dx

(
(m2

h −m2ξ + p2)
2

+ 4m2ξp2
)
η (m2

h,m
2ξ)

4(D − 1)p2 (m2 + p2)2

−
η (m2,m2

h)
(

(m2
h −m2 + p2)

2 − 4(D − 2)m2p2
)

4(D − 1)p2 (m2 + p2)2 − m2(ξ − 1)χ (m2
h)

4(D − 1)p2 (m2 + p2)2

− χ (m2ξ) (m2
h −m2ξ + p2)

4(D − 1)p2 (m2 + p2)2 +
χ (m2) (m2

h −m2 + p2)

4(D − 1)p2 (m2 + p2)2 . (515)

Finally, we have four tadpole (balloon) diagrams. The Higgs boson balloon (first diagram

of the last line in Figure 42):

ΠAAT ,5(p2) =
3gmχ (m2

h)

2v (m2 + p2)2 , (516)

the Goldstone boson balloon (second diagram of the last line in Figure 42):

ΠAAT ,6(p2) =
3gλmvχ (m2ξ)

2m2
h (m2 + p2)2 , (517)

The gauge field balloon (third diagram of the last line in Figure 42):

ΠAAT ,7(p2) =
3(D − 1)g2m2χ (m2)

2m2
h (m2 + p2)2 +

3g2m2ξχ (m2ξ)

2m2
h (m2 + p2)2 (518)
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and finally, the ghost balloon (fourth diagram of the last line in Figure 42):

ΓAAT ,8(p2) = −3g2m2ξχ (m2ξ)

2m2
h (m2 + p2)2 . (519)

Combining all these contributions (508)-(519), we find the total one-loop correction to

the gauge field self-energy

〈Aaµ(p)Abν(p)〉
T

=
δab

p2 +m2

+ δabg2

∫ 1

0

dx
{
− (2(3− 2d)m2p2 +m4

h − 2m2
h (m2 − p2) +m4 + p4)

4(d− 1)p2
η
(
m2,m2

h

)
+

(m2 + p2)
2

(2m2p2(−2d+ ξ + 3) +m4(ξ − 1)2 + p4)

2(d− 1)m4p2
η
(
m2,m2ξ

)
+

(m4 − p4) (4m2ξ + p2)

4(d− 1)m4
η
(
m2ξ,m2ξ

)
− (4m2 + p2) (4(d− 1)m4 + 4(3− 2d)m2p2 + p4)

4(d− 1)m4
η
(
m2,m2

)
+

1

4(d− 1)m2
hm

2p2

× (m2
h

(
−m2p2

(
8d2 − 24d+ 4ξ + 13

)
− 2p4(4d+ ξ − 7) +m4(1− 2ξ)

)
+ 6(d− 1)2m4p2 +m4

hm
2)χ
(
m2
)

− ((d− 2)p2 +m2
h −m2)

4(d− 1)p2
χ
(
m2
h

)
+

(m2p2(5d+ 4ξ − 13) + 2p4(4d+ ξ − 7) + 2m4(ξ − 1))

4(d− 1)m2p2
χ
(
m2ξ

)
+

3

4
χ
(
m2
h

)
+

3

4
χ
(
m2ξ

)} 1

(p2 +m2)2
(520)

and the resummed propagator for the transverse gauge field can be approximated, at

one-loop order, by

G−1
AAT

= δab

(
p2 +m2

−g2

∫ 1

0

dx
{
− (2(3− 2d)m2p2 +m4

h − 2m2
h (m2 − p2) +m4 + p4)

4(d− 1)p2
η
(
m2,m2

h

)
+

(m2 + p2)
2

(2m2p2(−2d+ ξ + 3) +m4(ξ − 1)2 + p4)

2(d− 1)m4p2
η
(
m2,m2ξ

)
+

(m4 − p4) (4m2ξ + p2)

4(d− 1)m4
η
(
m2ξ,m2ξ

)
− (4m2 + p2) (4(d− 1)m4 + 4(3− 2d)m2p2 + p4)

4(d− 1)m4
η
(
m2,m2

)
+

1

4(d− 1)m2
hm

2p2
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× (m2
h

(
−m2p2

(
8d2 − 24d+ 4ξ + 13

)
− 2p4(4d+ ξ − 7) +m4(1− 2ξ)

)
+ 6(d− 1)2m4p2 +m4

hm
2)χ
(
m2
)

− ((d− 2)p2 +m2
h −m2)

4(d− 1)p2
χ
(
m2
h

)
+

(m2p2(5d+ 4ξ − 13) + 2p4(4d+ ξ − 7) + 2m4(ξ − 1))

4(d− 1)m2p2
χ
(
m2ξ

)
+

3

4
χ
(
m2
h

)
+

3

4
χ
(
m2ξ

)})
. (521)

For d = 4 − ε, following the procedure of dimensional regularization, we find that the

divergent part for GAAT (p2) is given by:

GAAT ,div(p2) =
g2

π2ε

(
− 9m4

16m2
h

− 3m2
h

32
− m2ξ

8
− 3m2

32
− ξp2

8
+

25p2

48

)
, (522)

and these terms can be, following the MS-scheme, absorbed by means of appropriate

counterterms. We remain with the finite part of the propagator, given in eq. (330).
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APPENDIX J – Contributions to 〈O(p)O(−p)〉

The diagrams which contribute to the correlation function 〈O(p)O(−p)〉 are de-

picted in Figure(43)

The first term is v2 times the one-loop correction to the Higgs propagator, given

in eq. (506). The second term is

v〈h(p)(ρaρa)(−p)〉 = −3
m2
hη (m2ξ,m2ξ)

m2
h + p2

. (523)

The third term is

v〈h(p)h2(−p)〉 = −3m2
hη (m2

h,m
2
h)

m2
h + p2

− 3χ (m2
h)

m2
h + p2

− χ (m2ξ)

m2
h + p2

− 2(D − 1)m2χ (m2)

m2
h (m2

h + p2)

− 2m2ξχ (m2ξ)

m2
h (m2

h + p2)

+
2m2ξχ (m2ξ)

m2
h (m2

h + p2)
. (524)

The fourth term is

〈m2
h(p)m

2
h(−p)〉 =

1

2
η
(
m2
h,m

2
h

)
. (525)

The fifth term is

〈(ρaρa)(p)(ρbρb)(−p)〉 =
3

2
η
(
ξm2, ξm2

)
(526)

and together these terms give the correlation function of the scalar composite operator O

up to first order in h̄

〈O(p)O(−p)〉 =
v2

p2 +m2
h

+

∫ 1

0

dx
{3

2
η
(
m2,m2

)
(4(d− 1)m4 + 4m2p2 + p4)

+
1

2
(p2 − 2m2

h)
2η
(
m2
h,m

2
h

)
− 3p2χ(m2)(2(d− 1)m2 +m2

h)

m2
h

− 3p2χ(m2
h)
} 1

(p2 +m2
h)

2
. (527)

Thus, for the one-loop resummed correlation function, we get

G−1
OO(p2) =

p2 +m2
h

v2
− 1

v4

∫ 1

0

dx
{3

2
η
(
m2,m2

)
(4(d− 1)m4 + 4m2p2 + p4)

+
1

2
(p2 − 2m2

h)
2η
(
m2
h,m

2
h

)
− 3p2χ(m2)(2(d− 1)m2 +m2

h)

m2
h

− 3p2χ(m2
h)
} 1

(p2 +m2
h)

2
. (528)
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Figure 43 - Correlation function 〈OO〉

Legend: One-loop contributions to the correlation function 〈OO〉. Wavy lines represent the gauge field,

dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost field.

The • indicates the insertion of a composite operator.

.
Source: The author, 2020.
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Following the procedure of dimensional regularization for d = 4 − ε, we find that the

divergent part of the correlator is given by

G−1
OO,div =

1

4v4π2ε

(9g4p2v2

16λ
+

9g4v4

16
+

9

8
g2p2v2 + p4 +

1

2
λp2v2 + λ2v4

)
, (529)

which can be accounted for by appropriate counterterm, following the MS-scheme renor-

malization procedure. We remain with the finite part of the correlator, given in eq. (375).
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APPENDIX K – A few comments on the unitary gauge

It is well-known that in the unitary gauge the unphysical fields, like the Goldstone

and ghost fields, decouple, a feature which allows for a more direct link with the spec-

trum of the elementary excitations of the model. However, this gauge is known to be

non-renormalizable. In fact, working directly with the elementary tree level propagators

taken already in the unitary limit, i.e. ξ → ∞, and following the steps of dimensional

regularization, we find that the divergent part of the Higgs propagator reads

G−1
hh,div(p2) =

3g2 (m4
h + 6m2p2 + p4)

64π2m2ε
. (530)

In expression (530) we clearly see the presence of the term ∼ p4

εm2 , signalling the aforemen-

tioned issue of the non-renormalizability. Nevertheless, it is interesting to observe that, if

we remove the divergent part (530) anyway, we obtain the spectral function as shown in

Figure 44. This spectral function is almost identical to that obtained for the composite

operator O(x), see Figure 37.

For the gauge field propagator, proceeding in the same way, we find the divergent

part

G−1
AA,div(p2) =

1

ε

(
− 9g2m4

16π2m2
h

− g2p6

96π2m4
+

7g2p4

48π2m2
+

3g2m2

32π2
+

83g2p2

96π2
− 3λm2

8π2

)
(531)

which shows again the non-renormalizability of unitary gauge, through the terms ∼ p6

εm4

and ∼ p4

εm2 . However, if we remove again those terms anyway, we obtain the spectral

function as shown in Figure 45. Nevertheless, as already remarked in the previous sections,

this nice behaviour of the spectral densities for the Higgs and gauge field obtained by a

direct use of the tree level propagators already taken in the unitary limit, ξ → ∞, can

be, to some extent, justified by the fact that we are working at the one-loop order in

perturbation theory. Since overlapping divergences start from one-loop onward, we can

easily figure out that the naive use of the elementary tree level propagators taken already

in the unitary limit will run into severe non-renormalizibility issues, making the removal

of the (overlapping) divergent parts (530), (531) quite problematic.
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Figure 44 - Spectral function of 〈h(p)h(−p)〉 in the unitary gauge
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Legend: Spectral function for the propagator 〈h(p)h(−p)〉 in the unitary gauge, with t given in

unity of µ2, for the Region I (left) and Region II (right), with parameter values given in Table

3.

Source: The author, 2020.

Figure 45 - Spectral function of 〈Aaµ(p)Abν(−p)〉 in the unitary gauge
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Legend: Spectral function for the propagator 〈Aaµ(p)Abν(−p)〉 in the unitary gauge, with t given in

unity of µ2, for the Region I (left) and Region II (right), with parameter values given in Table

3.

Source: The author, 2020.
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