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RESUMO 

 

 

SOUZA, Aline Rayboltt da Cruz. Projeto ótimo de pratos perfurados em colunas de 
destilação. 2022. 164 f. Tese (Doutorado em Engenharia Química) – Instituto de Química, 
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022. 

 

A abordagem tradicional do projeto de colunas de destilação é o procedimento 

heurístico, baseado no método de tentativa e erro. Nas últimas décadas, a literatura apresenta 

diversos trabalhos de otimização de colunas de destilação integrados, em sua maioria, a um 

simulador comercial. Entretanto, nestes trabalhos somente há a preocupação do 

dimensionamento do diâmetro e altura da coluna, que fazem parte do custo total da coluna, as 

outras variáveis importantes para a funcionalidade da coluna não são dimensionadas. Neste 

contexto, o presente trabalho apresenta a otimização do projeto ótimo de pratos de colunas de 

destilação usando duas técnicas diferentes: programação não linear inteira mista e Set 

Trimming. Além disso, se propõe a aperfeiçoar os parâmetros das correlações de inundação e 

arraste da literatura, a fim de melhorar a acurácia da formulação do projeto. O objetivo desta 

otimização é dimensionar todas as variáveis geométricas do prato, respeitando as restrições 

hidráulicas do mesmo (inundação, arraste, gotejamento e downcomer backup). Duas possíveis 

funções objetivas são testadas, a minimização do custo da coluna e a minimização da massa 

da coluna. A abordagem proposta é aplicada em um exemplo da literatura, o resultado ótimo 

obtido através da programação matemática e Set Trimming são comparados com o resultado 

obtido pelo procedimento heurístico (retirado da literatura e descrito no texto) e as diferentes 

técnicas são comparadas entre si. A comparação indica que ambas as técnicas apresentam 

resultados melhores que o procedimento heurístico, porém o Set Trimming é mais robusto que 

a programação matemática. Na estimação dos parâmetros das correlações utilizou-se 

programação matemática. Os novos parâmetros são aplicados em três exemplos de projetos de 

colunas da literatura e comparados com as correlações já existentes. Os resultados obtidos 

apresentaram uma redução significativa no erro médio e máximo das correlações em relação 

aos dados originais. 

 
 
Palavras-chave: destilação; otimização; projeto; estimação de parâmetros; Set Trimming. 
  



 
 

 

ABSTRACT 

 

 

SOUZA, Aline Rayboltt da Cruz. Optimal design of sieve trays in distillation columns. 2022. 
164 f. Tese (Doutorado em Engenharia Química) – Instituto de Química, Universidade do 
Estado do Rio de Janeiro, Rio de Janeiro, 2022. 

 

The traditional approach to distillation column design is the heuristic procedure, based 

on the trial-and-error method. In recent decades, the literature presents several works on the 

optimization of distillation columns, mostly integrated with a commercial simulator. 

However, these works are only concerned with the sizing of the diameter and height of the 

column, which are part of the total cost of the column; the other important variables for the 

functionality of the column are not measured. In this context, this work presents the 

optimization of the optimal design of distillation column trays using two different techniques: 

mixed integer nonlinear programming and Set Trimming. In addition, it is proposed to refine 

the parameters of the flooding and entrainment correlations in the literature in order to 

improve the accuracy of the design formulation. The objective of this optimization is to size 

all the geometric variables of the tray while respecting its hydraulic constraints (flooding, 

entrainment, weeping, and downcomer backup). Two possible objective functions are tested, 

the column cost minimization and the column mass minimization. The proposed approach is 

applied to an example from the literature, the optimal result obtained by mathematical 

programming and Set Trimming are compared with the result obtained by the heuristic 

procedure (taken from the literature and described in the text), and the different techniques are 

compared with each other. Mathematical programming was used to estimate the parameters of 

the correlations. The new parameters are applied to three example column designs from the 

literature and compared with preexisting correlations. The results obtained showed a 

significant reduction in the mean and maximum error of the correlations compared to the 

original data. 

 
 
Keywords: distillation; optimization; design; parameter estimation; Set Trimming.  
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INTRODUCTION 

 

 

Distillation columns are of great important in the chemical industry, being the main 

equipment for purification and separation. The traditional method of design distillation 

column trays consists of a trial and error procedure, where the designer selects certain 

characteristics of the tray and checks whether the tray is feasible for its hydraulic constraints, 

this is done sequentially until he finds the tray that respects these constraints. However, the 

speed of such a process depends on the experience of the professional. 

Due to the wide use of distillation columns, the capital invested in this equipment is of 

great importance, becoming a crucial point in the search for cost reduction in industrial plants. 

The traditional method is not flawed, it is possible to obtain a feasible column, but there is no 

way to guarantee that the solution found will be the one with the lowest cost. 

Nowadays, with the development of more powerful computational tools and 

algorithms, optimization works for the design of distillation columns have emerged. The main 

focus of these works has been to optimize the column diameter, the number of trays, and the 

reflux ratio, seeking to minimize the total annualized cost. However, few works seek to 

optimize a set of tray dimensions.  

In this context, this thesis aims to present the optimization of the design of distillation 

column trays, focusing on sizing all geometric variables in order to respect the hydraulic 

constraints (flooding, entrainment, dripping, and downcomer backup) and minimize the 

cost/mass of the column. The solution to this problem is explored using different optimization 

techniques in order to find the one associated with the lowest computational effort with a 

guarantee of the global optimum. 

This thesis is organized in the form of articles. Then, Chapter 1 represents the first 

article and presents the mathematical formulation of the problem of Mixed Integer Nonlinear 

Programing (MINLP) to the design of distillation column trays using commercial global 

solvers; Chapter 2 represents the second article and presents the design of distillation column 

trays by applying the Set Trimming technique. 

In the search for better correlations of flooding and entrainment that best fit Fair’s 

curves to use in formulations, it was observed that the correlations in the literature have some 

large errors in certain regions, which can generate a suboptimal design. Therefore, a third 

article was done seeking to refine the parameters of the literature correlations and improve the 
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fit to the original data. This article is presented in Chapter 3. Finally, the conclusions and 

suggestions are presented. 
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1 GLOBALLY OPTIMAL DISTILLATION TRAY DESIGN USING A 

MATHEMATICAL PROGRAMMING APPROACH 

 

 

This article presents the optimization of the design of distillation column trays. We 

develop a mixed-integer nonlinear optimization model, which we solve using mathematical 

programming. The objective of this formulation is to size all geometric variables of the tray. 

Two possible alternative objective functions are tested: column cost and column mass. The 

utilization of the proposed approach is illustrated through a design example from the 

literature. In this example, the optimal result obtained through the proposed approach is 

compared with the one obtained following the spirit of a traditional heuristic design procedure 

employed in process equipment design textbooks. The comparison indicates a reduction of 

both objective functions tested as compared to the result of the heuristic procedure. 

 

 

1.1 Introduction 

 

 

In the United States, it is estimated that there are more than 40,000 distillation 

columns in operation, accounting for 90 % of the separation and purification processes. It is 

estimated that the capital invested in these systems is around US$ 8 billion (Humphrey, 

1995). Because the costs associated with this equipment are high, a considerable number of 

papers have addressed the optimal design of distillation columns. The main focus of these 

procedures is to optimize the column diameter, the number of trays, and the reflux ratio to 

minimize the total annualized cost. 

Several different mathematical programming approaches were used to address this 

design problem: nonlinear programming (NLP) (Dowling; Biegler, 2015; Yeoh; Hui, 2021), 

mixed-integer nonlinear programming (MINLP) (Viswanathan; Grossmann, 1993; Kong; 

Maravelias, 2019), and generalized disjunctive programming (GDP) (Yeomans; Grossmann, 

2000). Additionally, a combination of mathematical programming and commercial simulators 

was proposed by Caballero et al. (2005) and Caballero (2015). 

Aiming at avoiding convergence drawbacks and local optimality problems associated 

with mathematical programming, some authors proposed the utilization of stochastic 

optimization methods for the solution of the aforementioned optimal design problem. 
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Different techniques were tested, such as, particle swarm optimization (PSO) (Javaloyes-

Antón; Ruiz-Femenia; Caballero, 2013), genetic algorithms (GA) (Ibrahim; Jobson; Guillén-

Gosálbez, 2017) and differential evolution (DE) associated with parallel computing (Lyu et 

al., 2021). 

In all the aforementioned approaches, the dimensions of the column internals, namely, 

tray spacing, weir length, weir height, etc., have been not included. The traditional approach 

for the design of distillation column trays is based on trial and verification schemes, as 

depicted in several textbooks: Fair (1963), Wankat (1988), Kister (1992), Chuang and 

Nandakumar (2000), and Towler and Sinnott (2013). These schemes are considered reliable, 

but they depend on the designer's experience to attain a feasible choice of the tray geometric 

dimensions, with no guarantee that the solution found will feature the lowest cost. We know 

of only two works that employ optimization techniques for identifying the optimal set of tray 

dimensions: Ogboja and Kuye (1990) and Lahiri (2014, 2020). Ogboja and Kuye (1990) 

developed a sieve tray optimization formulation, solved using the Complex method (Box, 

1965). The objective function was represented for the tray efficiency and the constraints are 

related to geometrical and phenomenological features. The decision variables was column 

diameter, spacing trays, tray thickness, weir length and height, hole diameter, and clearance 

height under the downcomer. As a way of validating the method, they used an exhaustive 

method that analyzes all sets of variables and determines their efficiency. Lahiri (2014, 2020) 

employed the PSO method together with the Aspen Plus simulator for the optimization of the 

distillation column including the specifications of the column tray. Lahiri (2014, 2020) 

considered complex tray configurations, such as multiple passes, sieve and valved trays, and 

segmental downcomer. The objective function to be minimized is the total annualized cost, 

considering the column capital costs and the costs associated with utility consumption. 

In this article, we address the design of distillation column trays including the column 

diameter and all the geometric variables. We formulate the problem as a mixed-integer 

nonlinear model and we solve it using commercial global solvers (BARON and 

ANTIGONE). Previous approaches that addressed the tray design optimization employed 

local optimization methods (Ogboja; Kuye, 1990) or stochastic methods, which can escape to 

a local optima, i.e. global optimality cannot be guaranteed (Lahiri, 2014, 2020). Additionally, 

the aforementioned works consider continuous variables, whereas the optimization method 

proposed in this work is based on discrete design variables. Indeed, the utilization of 

continuous variables to later use of commercial/standard geometric discrete values demands 

rounding procedures that can imply suboptimal or even infeasible solutions. 
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The article is organized as follows. Section 1.2 presents the tray operating limits that 

define the design constraints. Section 1.3 presents the dimensions of the sieve trays that are 

employed as optimization variables in the design problem. Sections 1.4 and 1.5 present the 

constraints and the objective functions of the Mixed Integer Nonlinear Model (MINLM), 

respectively. Section 1.6 presents the heuristic design procedure employed in the comparison 

of the results. Section 1.7 illustrates the performance of the proposed formulation and 

compares it with the heuristic procedure. The conclusions are finally presented in Section 1.8. 

 

 

1.2 Tray operating range limits 

 

 

In a given distillation column, the liquid and vapor flows must be between within 

certain limits. Different authors characterize the phenomena associated with the operating 

limits of a tray in a different manner, often using different nomenclatures. In this work, we 

will use the terminology adopted by Kister (1992). The operational limits that must be obeyed 

by the designer are flooding, entrainment, downcomer flooding, and weeping, as illustrated in 

Figure 1. These operational limits origin the mathematical relations that compose the 

constraints of the optimization problem. 

 

Figure 1 – Tray performance diagram 
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1.3 Sieve tray layout 

 

 

Sieve trays feature different types of configurations for downcomer (segmental, 

circular, etc.), weir (straight, picket fence, etc.), and the number of passes (one or multiple 

passes, the latter option mostly employed for large diameters). Figure 2 depicts the simplest 

configuration, which is the one we use in this work. The total column area (Ac) is Figure 2a. 

The downcomer area (Adc) is equivalent to the area of the inlet downcomer of the liquid flow 

from the tray above or the area of the outlet downcomer of the liquid flow to the tray below 

(Figure 2b). The vapor flow area (An) corresponds to the difference between the cross-

sectional area of the column and the downcomer area (Figure 2c). The active area (Aa) is the 

tray area where liquid and vapor get in contact (Figure 2d). The hole area (Ah) is the total area 

of the perforations on the tray (Figure 2e). 
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Figure 2 – Area definition 

 
Subtitle: (a) Total column area, (b) downcomer area, (c) vapor flow area, (d) active area, (e) hole area, (f) 

calming zone area, (g) unperforated strip area. 

Source: The author, 2022. 

 

Surrounding the active area, there are strips without holes. The almost rectangular 

strips, close to the downcomer slit and close to the weir, are referred to as “calming zones”. 

The calming zone region (Figure 2f). close to the downcomer, with width wczin, aims to 

reduce the vorticity of the flow from the downcomer connected to the tray above. In turn, the 

calming zone region close to the weir, characterized by the width wczout, aims to reduce 
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the column shell and the active area is called “unperforated strip” (Figure 2g). This gap is 

used for the support ring and does not have an explicitly hydraulic role (Towler; Sinnott, 

2013). 

Figure 3 depicts a side view of the tray, showing the tray spacing (lt), the weir height 

(hw), the height of the liquid crest over the weir (how), the clearance height under the 

downcomer (hap), the difference between weir and clearance height under the downcomer 

(hdwap), and the downcomer backup height (hb). 

 

Figure 3 – Tray side view 

hap hw

hb
how

weir

downcomer

hdwap

wczin wczout

lt

 
Source: The author, 2022. 

 

 

1.4 Tray design constraints 

 

 

The optimization is focused on the design of the trays of a distillation column. It is 

assumed that the flow rates of the liquid and vapor and the corresponding physical properties 

were already previously calculated for each tray. These data are obtained from the distillation 

design, through a traditional approach based on heuristics or any of the optimization 

procedures available in the literature (see Section 1.1). Therefore, the model parameters 

associated with each tray sNt, represented here with a symbol “^” on top, are: the liquid mass 

flow rate (𝐿�̂�𝑠𝑁𝑡), the vapor mass flow rate (𝑉�̂�𝑠𝑁𝑡), the density of the liquid (𝜌�̂�𝑠𝑁𝑡), the 

density of the vapor (𝜌�̂�𝑠𝑁𝑡), and the surface tension of the liquid (�̂�𝑠𝑁𝑡). 
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Some additional parameters are calculated based on the values of the parameters listed 

above, as the liquid-vapor flow factor (𝐹𝑙�̂�𝑠𝑁𝑡) used in the Fair correlation (Fair, 1961): 

𝐹𝑙�̂�𝑠𝑁𝑡 =
𝐿�̂�𝑠𝑁𝑡

𝑉�̂�𝑠𝑁𝑡
√
𝜌�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
              ∀ 𝑠𝑁𝑡 (1) 

and the residual pressure drop in the column tray (ℎ�̂�𝑠𝑁𝑡), as proposed by Hunt et al. (1955): 

ℎ�̂�𝑠𝑁𝑡 =
12.5

𝜌�̂�𝑠𝑁𝑡
              ∀ 𝑠𝑁𝑡 (2) 

Other specific parameters associated with the objective function are presented later. 

 

 

1.4.1 Discrete representation of geometric variables  

 

 

All the dimensions of the tray are represented by a set of discrete values. This 

representation is associated with the physical nature of some variables (e.g. hole layout: 

triangular or square); availability of commercial standards (e.g. tray thickness); or 

constructional patterns (e.g. manufacturing of mechanical pieces in inches or fractions of an 

inch). 

The discrete representation of the design variables uses binary variables. Let x be a 

design variable that is associated with a set of possible values 𝑝�̂�𝑖 . The selection of the 

discrete values 𝑝�̂�𝑖 is represented by the binary variables 𝑦𝑥𝑖 . Therefore, the variable x is 

related to the corresponding set of binary variables by: 

𝑥 = ∑ 𝑝�̂�
𝑖
𝑦𝑥

𝑖𝑖  (3) 

∑ 𝑦𝑥
𝑖
= 1𝑖  (4) 

This representation is applied to the following set of variables associated with the tray 

design: column diameter (Dc), hole diameter (dh), the difference between weir and clearance 

height under the downcomer (hdwap), weir height (hw), tray spacing (lt), weir length (lw), 

hole pitch (lp), tray thickness (tt), and hole layout (lay): 

𝐷𝑐 = ∑ 𝑝𝐷�̂�𝑠𝐷𝑐  𝑦𝐷𝑐𝑠𝐷𝑐
𝑠𝐷𝑐𝑚𝑎𝑥
𝑠𝐷𝑐=1  (5) 

𝑑ℎ = ∑ 𝑝𝑑ℎ̂𝑠𝑑ℎ  𝑦𝑑ℎ𝑠𝑑ℎ
𝑠𝑑ℎ𝑚𝑎𝑥
𝑠𝑑ℎ=1  (6) 

ℎ𝑑𝑤𝑎𝑝 = ∑ 𝑝ℎ𝑑𝑤𝑎𝑝̂
𝑠ℎ𝑑𝑤𝑎𝑝  𝑦ℎ𝑑𝑤𝑎𝑝𝑠ℎ𝑑𝑤𝑎𝑝

𝑠ℎ𝑑𝑤𝑎𝑝𝑚𝑎𝑥
𝑠ℎ𝑑𝑤𝑎𝑝=1  (7) 

ℎ𝑤 = ∑ 𝑝ℎ�̂�𝑠ℎ𝑤  𝑦ℎ𝑤𝑠ℎ𝑤
𝑠ℎ𝑤𝑚𝑎𝑥
𝑠ℎ𝑤=1  (8) 

𝑙𝑡 = ∑ 𝑝𝑙�̂�𝑠𝑙𝑡  𝑦𝑙𝑡𝑠𝑙𝑡
𝑠𝑙𝑡𝑚𝑎𝑥
𝑠𝑙𝑡=1  (9) 

𝑙𝑤 = ∑ 𝑝𝑙�̂�𝑠𝑙𝑤  𝑦𝑙𝑤𝑠𝑙𝑤
𝑠𝑙𝑤𝑚𝑎𝑥
𝑠𝑙𝑤=1  (10) 
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𝑙𝑝 = ∑ 𝑝𝑙�̂�𝑠𝑙𝑝  𝑦𝑙𝑝𝑠𝑙𝑝
𝑠𝑙𝑝𝑚𝑎𝑥
𝑠𝑙𝑝=1  (11) 

𝑡𝑡 = ∑ 𝑝𝑡�̂�𝑠𝑡𝑡  𝑦𝑡𝑡𝑠𝑡𝑡
𝑠𝑡𝑡𝑚𝑎𝑥
𝑠𝑡𝑡=1  (12) 

𝑙𝑎𝑦 = ∑ 𝑝𝑙𝑎�̂�𝑠𝑙𝑎𝑦  𝑦𝑙𝑎𝑦𝑠𝑙𝑎𝑦
𝑠𝑙𝑎𝑦𝑚𝑎𝑥
𝑠𝑙𝑎𝑦=1  (13) 

∑ 𝑦𝐷𝑐𝑠𝐷𝑐
𝑠𝐷𝑐𝑚𝑎𝑥
𝑠𝐷𝑐=1 = 1 (14) 

∑ 𝑦𝑑ℎ𝑠𝑑ℎ
𝑠𝑑ℎ𝑚𝑎𝑥
𝑠𝑑ℎ=1 = 1 (15) 

∑ 𝑦ℎ𝑑𝑤𝑎𝑝𝑠ℎ𝑑𝑤𝑎𝑝
𝑠ℎ𝑑𝑤𝑎𝑝𝑚𝑎𝑥
𝑠ℎ𝑑𝑤𝑎𝑝=1 = 1 (16) 

∑ 𝑦ℎ𝑤𝑠ℎ𝑤
𝑠ℎ𝑤𝑚𝑎𝑥
𝑠ℎ𝑤=1 = 1 (17) 

∑ 𝑦𝑙𝑡𝑠𝑙𝑡
𝑠𝑙𝑡𝑚𝑎𝑥
𝑠𝑙𝑡=1 = 1 (18) 

∑ 𝑦𝑙𝑤𝑠𝑙𝑤
𝑠𝑙𝑤𝑚𝑎𝑥
𝑠𝑙𝑤=1 = 1 (19) 

∑ 𝑦𝑙𝑝𝑠𝑙𝑡
𝑠𝑙𝑝𝑚𝑎𝑥
𝑠𝑙𝑝=1 = 1 (20) 

∑ 𝑦𝑡𝑡𝑠𝑡𝑡
𝑠𝑡𝑡𝑚𝑎𝑥
𝑠𝑡𝑡=1 = 1 (21) 

∑ 𝑦𝑙𝑎𝑦𝑠𝑙𝑎𝑦
𝑠𝑙𝑎𝑦𝑚𝑎𝑥
𝑠𝑙𝑎𝑦=1 = 1 (22) 

 

 

1.4.2 Tray dimensions 

 

 

The geometric equations are based on the sieve tray description presented in Towler 

and Sinnott (2013). The downcomer area is obtained by the difference between the circular 

sector area (Asector) and the triangle area (Atriangle), as illustrated in Figure 4.  

 

Figure 4 – Graphical representation of the downcomer area evaluation 
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Source: The author, 2022. 
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Let θ be the weir angle, i.e. the central angle associated with the column circumference 

and the chord referring to weir length. Thus:  

𝜃 − 2 arcsin(𝛿) = 0  (23) 

where 𝛿 is the ratio between the weir length and the column diameter: 

𝛿 𝐷𝑐 − 𝑙𝑤 = 0 (24) 

 

The area of the sector defined by the weir angle is: 

𝐴𝑠𝑒𝑐𝑡𝑜𝑟 −
𝐷𝑐2𝜃

8
= 0 (25) 

The area of the isosceles triangle is defined by the weir angle and the weir length as 

follows: 

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 −
𝑙𝑤

2
√(

𝐷𝑐

2
)
2

− (
𝑙𝑤

2
)
2

= 0 (26) 

Therefore, the total column area, the downcomer area, and the vapor flow area are 

given by: 

𝐴𝑐 −
𝜋𝐷𝑐2

4
= 0 (27) 

𝐴𝑑𝑐 − 𝐴𝑠𝑒𝑐𝑡𝑜𝑟 + 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 0 (28) 

𝐴𝑛 − 𝐴𝑐 + 𝐴𝑑𝑐 = 0 (29) 

The calming zone area (Acz) is approximated by the area of two trapezoids, as 

illustrated in Figure 5, and is given by: 

𝐴𝑐𝑧 −
(𝑙𝑐𝑧𝑖𝑛+𝑙𝑤)

2
𝑤𝑐�̂�𝑖𝑛 −

(𝑙𝑐𝑧𝑜𝑢𝑡+𝑙𝑤)

2
𝑤𝑐�̂�𝑜𝑢𝑡 = 0 (30) 

where lczin and lczout are the lengths of the inlet and outlet calming zones. These lengths are 

related to other variables by: 

𝑙𝑐𝑧𝑖𝑛 − 𝑙𝑤 + 2(𝑤𝑐𝑧𝛽𝑖𝑛) = 0 (31) 

𝑙𝑐𝑧𝑜𝑢𝑡 − 𝑙𝑤 + 2(𝑤𝑐𝑧𝛽𝑜𝑢𝑡) = 0 (32) 

where: 

𝑤𝑐𝑧𝛽𝑖𝑛 tan( 𝛽) − 𝑤𝑐�̂�𝑖𝑛 = 0 (33) 

𝑤𝑐𝑧𝛽𝑜𝑢𝑡 tan( 𝛽) − 𝑤𝑐�̂�𝑜𝑢𝑡 = 0 (34) 

The angle β is the calming zone angle: 

2𝛽 − 𝜋 + 𝜃 = 0 (35) 
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Figure 5– Calming zones and unperforated strip areas 

 
Source: The author, 2022. 

 

Several references suggest a value for the width of the calming zone between 2 and 5 

in, without differing inlet and outlet values (Wankat, 1988; Dutta, 2007; Towler; Sinnott, 

2013; AMACS Process Tower Internals, 2020). Then, we consider the width of the inlet and 

outlet calming zones (𝑤𝑐�̂�𝑖𝑛 and 𝑤𝑐�̂�𝑜𝑢𝑡) equal to 0.050 m (2 in) in the proposed formulation. 

The unperforated strip area (Aus) is determined using the angle of active area (α) and 

the width of the unperforated strip (Towler; Sinnott, 2013): 

𝐴𝑢𝑠 − 𝑤𝑢𝑠 𝛼(𝐷𝑐 − 𝑤𝑢𝑠) = 0 (36) 

𝛼 − 𝜋 + 𝜃 = 0 (37) 

The width of the unperforated strip varies according to the column diameter (AMACS 

Process Tower Internals, 2020), as follows: 

𝑤𝑢𝑠 =

{
 
 

 
 
0.0381,                          𝐷𝑐 ≤ 0.7620
0.0508,       0.7620 < 𝐷𝑐 ≤ 1.6764 
0.0635,       1.6764 < 𝐷𝑐 ≤ 3.8100
0.0762,       3.8100 < 𝐷𝑐 ≤ 5.9436
0.0889,       5.9436 < 𝐷𝑐 ≤ 7.4676
0.1143,                          𝐷𝑐 > 7.4676

 (38) 

The reorganization of Eq. (38) into a set of inequalities using a set of auxiliary binary 

variables yields: 

𝑤𝑢𝑠 − 0.0381 𝑦𝑤𝑢𝑠1 − 0.0508 𝑦𝑤𝑢𝑠2 − 0.0635 𝑦𝑤𝑢𝑠3 − 0.0762 𝑦𝑤𝑢𝑠4 −

0.0889 𝑦𝑤𝑢𝑠5 − 0.1143 𝑦𝑤𝑢𝑠6 = 0 (39) 

𝐷𝑐 − 0.7620 𝑦𝑤𝑢𝑠1 − 1.6764 𝑦𝑤𝑢𝑠2 − 3.8100 𝑦𝑤𝑢𝑠3 − 5.9436 𝑦𝑤𝑢𝑠4 −

7.4676 𝑦𝑤𝑢𝑠5 ≤ 0 (40) 

β

lw

lcz

q

α
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𝐷𝑐 − 0.7620 𝑦𝑤𝑢𝑠2 − 1.6764 𝑦𝑤𝑢𝑠3 − 3.8100 𝑦𝑤𝑢𝑠4 − 5.9436 𝑦𝑤𝑢𝑠5 −

7.4676 𝑦𝑤𝑢𝑠6 − 𝜀̂ ≥ 0 (41) 

∑ 𝑦𝑤𝑢𝑠𝑠𝑤𝑢𝑠
6
𝑠𝑤𝑢𝑠=1 = 1 (42) 

where 𝜀̂ = 10-6. 

The active area corresponds to the cross-sectional area of the column minus the areas 

of the downcomers, unperforated strip, and calming zone. 

𝐴𝑎 − 𝐴𝑐 + 2 𝐴𝑑𝑐 + 𝐴𝑢𝑠 + 𝐴𝑐𝑧 = 0 (43) 

The total area of all the active holes is a fraction of the active area, which depends on 

the hole layout: 

𝐴ℎ − 𝑘𝜑2𝐴𝑎 = 0               (44) 

where: 

𝜑 𝑙𝑝 − 𝑑ℎ = 0 (45) 

𝑘 − 0.785𝑦𝑙𝑎𝑦1 − 0.905𝑦𝑙𝑎𝑦2 = 0 (46) 

where ylay1 and ylay2 are associated with the square and triangular layouts, respectively. 

 

 

1.4.3 Geometric Constraints 

 

 

The weir length must be smaller than the column diameter: 

𝑙𝑤 ≤ 𝐷𝑐 (47) 

The hole pitch must be higher than twice the hole diameter (Towler; Sinnott, 2013): 

𝑙𝑝 ≥ 2𝑑ℎ (48) 

Assuming that the tray holes are punched, the tray thickness cannot be higher than the 

hole diameter (Chuang; Nandakumar, 2000): 

𝑑ℎ ≥ 𝑡𝑡 (49) 

The range of the ratio between the hole area and the active area must be: 

0.06𝐴𝑎 ≤ 𝐴ℎ ≤ 0.16𝐴𝑎 (50) 

The lower bound on Eq. (50) is necessary to use the Fair flooding correlation (Fair, 

1961) and the upper bound avoids conditions where significant weeping and entrainment may 

coexist and the design equations may not apply (Chuang; Nandakumar, 2000). 

Finally, to use the Fair flooding correlation, the following bound must be applied 

(Fair, 1961): 
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ℎ𝑤 ≤ 0.15 𝑙𝑡  (51) 

 

 

1.4.4 Operational constraints 

 

 

These constraints consist of equations representing the limits of flooding, entrainment, 

weeping, downcomer backup, and residence time in the downcomer. 

 

 

1.4.4.1 Flooding 

 

 

To avoid flooding, an upper bound on the vapor flow velocity is used: 

𝑢𝑛𝑠𝑁𝑡 − 0.85 𝑢𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 ≤ 0         ∀ 𝑠𝑁𝑡 (52) 

where un is the vapor flow velocity and uflood is the flooding velocity, both based on the 

vapor flow area. 

The vapor flow velocity can be evaluated as follows: 

𝑢𝑛𝑠𝑁𝑡𝐴𝑛 − 
𝑉�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
= 0         ∀ 𝑠𝑁𝑡 (53) 

The determination of the flooding condition is given by Fair (1961): 

𝑢𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 −𝐾1 𝐶𝑠𝑏𝑠𝑁𝑡√
𝜌�̂�𝑠𝑁𝑡−𝜌�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
(
�̂�𝑠𝑁𝑡

0.02
)
0.2

= 0         ∀ 𝑠𝑁𝑡 (54) 

where Csb is the Sounders-Brown coefficient. 

In turn, the parameter K1 varies with the fraction of the hole area: 

𝐾1 = {

0.8,        0.06 ≤ 𝑘𝜑2 ≤ 0.08 

0.9,        0.08 ≤ 𝑘𝜑2 ≤ 0.10 

1.0,       0.10 ≤ 𝑘𝜑2 ≤ 0.16

 (55) 

The parameter K1 had to be rearranged into inequalities using binary variables to 

represent the different options in purely algebraic form: 

𝐾1 − 0.8 𝑦𝐾11 − 0.9 𝑦𝐾12 − 1.0 𝑦𝐾13 = 0 (56) 

𝑘𝜑2 − 0.08𝑦𝐾11 − 0.10𝑦𝐾12 − 0.16𝑦𝐾13 ≤ 0 (57) 

𝑘𝜑2 − 0.06𝑦𝐾11 − 0.08𝑦𝐾12 − 0.10𝑦𝐾13 ≥ 0 (58) 

∑ 𝑦𝐾1𝑠𝐾1
3
𝑠𝐾1=1 = 1 (59) 
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Several authors have presented curve fitting of the Fair’s correlation (Economopoulos, 

1978; Lygeros; Magoulas, 1986; Ogboja; Kuye, 1990). The expression we use is the proposed 

by Ogboja and Kuye (1990):  

𝐶𝑠𝑏𝑠𝑁𝑡 − 0.0129 −  0.1674 𝑙𝑡 − 0.0063𝐹𝑙�̂�𝑠𝑁𝑡 + 0.2686 𝑙𝑡 𝐹𝑙�̂�𝑠𝑁𝑡 + 0.008𝐹𝑙�̂�𝑠𝑁𝑡
2
−

0.01448𝑙𝑡 𝐹𝑙�̂�𝑠𝑁𝑡
2
= 0         ∀ 𝑠𝑁𝑡 (60) 

 

 

1.4.4.2 Entrainment 

 

 

The constraint to avoid entrainment is represented by an upper bound on the fractional 

entrainment variable (𝜓𝑠𝑁𝑡): 

𝜓𝑠𝑁𝑡 − 0.1 ≤ 0         ∀ 𝑠𝑁𝑡 (61) 

The fractional entrainment can be estimated by the correlations proposed by 

Economopoulos (1978) or Ogboja and Kuye (1990). We choose to use the correlation of 

Ogboja and Kuye (1990): 

𝜓𝑠𝑁𝑡 −

{
 
 

 
 

𝑒𝑥𝑝

[
 
 
 
 

−7.9196 + 1.0891𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
−(0.0705 + 2.1916𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡) ln 𝐹𝑙�̂�𝑠𝑁𝑡

+(0.046− 0.605𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 + 1.2669𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
2

−0.9563𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
3)(ln 𝐹𝑙�̂�𝑠𝑁𝑡)

2
]
 
 
 
 

}
 
 

 
 

= 0         ∀ 𝑠𝑁𝑡 (62) 

where Fflood is the factor of flooding: 

𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡  𝑢𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 − 𝑢𝑛𝑠𝑁𝑡 = 0         ∀ 𝑠𝑁𝑡 (63) 

 

 

1.4.4.3 Weeping 

 

 

The constraint to assure that the tray design will not be subjected to weeping is 

represented by a lower bound on the flow velocity throughout the tray holes: 

𝑢ℎ𝑠𝑁𝑡 − 𝑢ℎ𝑚𝑖𝑛𝑠𝑁𝑡 ≥ 0         ∀ 𝑠𝑁𝑡 (64) 

where uh is the vapor flow velocity throughout the tray holes and it can be calculated by: 

𝑢ℎ𝑠𝑁𝑡𝐴ℎ − 
𝑉�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
= 0         ∀ 𝑠𝑁𝑡 (65) 
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and the weeping point associated with the minimum vapor flow velocity (uhmin) can be 

determined by the following correlation (Eduljee, 1959): 

𝑢ℎ𝑚𝑖𝑛𝑠𝑁𝑡 −
𝐾2𝑠𝑁𝑡−0.9(25.4−10

3𝑑ℎ)

(𝜌�̂�𝑠𝑁𝑡)
1
2

= 0         ∀ 𝑠𝑁𝑡 (66) 

where K2 is evaluated by the correlation proposed by Ogboja and Kuye (1990): 

𝐾2𝑠𝑁𝑡 − 23.48 − 1.66 ln[10
3(ℎ𝑤 + ℎ𝑜𝑤𝑠𝑁𝑡)] = 0         ∀ 𝑠𝑁𝑡  (67) 

The height of the liquid crest over the weir (how) can be estimated using the Francis 

weir formula: 

ℎ𝑜𝑤𝑠𝑁𝑡 − 750 ∙ 10
−3 (

𝐿�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡  𝑙𝑤
)

2

3
= 0    ∀ 𝑠𝑁𝑡 (68) 

 

 

1.4.4.4 Downcomer backup 

 

 

The constraint to avoid flooding in the downcomer must impose an upper bound on 

the downcomer backup height: 

ℎ𝑏𝑠𝑁𝑡 −
1

2
(𝑙𝑡 + ℎ𝑤) ≤ 0         ∀ 𝑠𝑁𝑡 (69) 

ℎ𝑏𝑠𝑁𝑡 − ℎ𝑤 − ℎ𝑜𝑤𝑠𝑁𝑡 − ℎ𝑡𝑠𝑁𝑡 − ℎ𝑑𝑐𝑠𝑁𝑡 = 0         ∀ 𝑠𝑁𝑡 (70) 

where ht is total tray head loss and hdc is head loss in the downcomer.  

The total tray head loss is the sum of the head of clear liquid on the tray (hw+how) and 

the dry tray drop (hd): 

ℎ𝑡𝑠𝑁𝑡 − ℎ𝑤 − ℎ𝑜𝑤𝑠𝑁𝑡 − ℎ𝑑𝑠𝑁𝑡 − ℎ�̂�𝑠𝑁𝑡 = 0         ∀ 𝑠𝑁𝑡 (71) 

The dry tray head loss is given by: 

ℎ𝑑𝑠𝑁𝑡𝐶𝑜
2 − 51 ∙ 10−3𝑢ℎ𝑠𝑁𝑡

2 𝜌�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
= 0         ∀ 𝑠𝑁𝑡 (72) 

where Co is the orifice coefficient that can be estimated by the correlations proposed by 

Economopoulos (1978) or Ogboja and Kuye (1990). We choose to use the correlation of 

Ogboja and Kuye (1990): 

𝐶𝑜 − 0.6323 + 0.0255𝜔 − 0.1495𝜔2 − 0.777𝑘𝜑2 = 0 (73) 

where: 

𝜔 𝑑ℎ = 𝑡𝑡 (74) 

Cicalese et al. (1947) estimated the head loss in the downcomer by: 
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ℎ𝑑𝑐𝑠𝑁𝑡𝐴𝑎𝑝 − 166 ∙ 10
−3 (

𝐿�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
) = 0         ∀ 𝑠𝑁𝑡 (75) 

where Aap is the clearance area under the downcomer that can be determined by: 

𝐴𝑎𝑝 − ℎ𝑎𝑝 𝑙𝑤 = 0 (76) 

The height of the clearance under the downcomer (hap) is given by: 

ℎ𝑎𝑝 − ℎ𝑤 + ℎ𝑑𝑤𝑎𝑝 = 0 (77) 

 

 

1.4.4.5 Residence time 

 

 

The downcomer residence time (time) must be enough for promoting vapor and liquid 

separation and preventing that the heavily aerated liquid be transported under the downcomer 

(Towler; Sinnott, 2013): 

𝑡𝑖𝑚𝑒𝑠𝑁𝑡 − 3 ≥ 0         ∀ 𝑠𝑁𝑡 (78) 

 

where: 

𝑡𝑖𝑚𝑒𝑠𝑁𝑡 − 𝐴𝑑𝑐 ℎ𝑏𝑠𝑁𝑡
𝜌�̂�𝑠𝑁𝑡

𝐿�̂�𝑠𝑁𝑡
= 0         ∀ 𝑠𝑁𝑡 (79) 

 

 

1.4.5 Variable bounds 

 

 

Bounds on the design variables (Dc, dh, hdwap, hw, lt, lw, lp, tt, and lay) are 

aggregated considering the available options associated with the tray manufacturing process, 

usual alternatives employed in practice and literature recommendations: 

𝐷�̂�𝑚𝑖𝑛 ≤ 𝐷𝑐 ≤ 𝐷�̂�𝑚𝑎𝑥 (80) 

𝑑ℎ̂𝑚𝑖𝑛 ≤ 𝑑ℎ ≤ 𝑑ℎ̂𝑚𝑎𝑥 (81) 

ℎ𝑑𝑤𝑎𝑝̂
𝑚𝑖𝑛 ≤ ℎ𝑑𝑤𝑎𝑝 ≤ ℎ𝑑𝑤𝑎𝑝̂

𝑚𝑎𝑥 (82) 

ℎ�̂�𝑚𝑖𝑛 ≤ ℎ𝑤 ≤ ℎ�̂�𝑚𝑎𝑥 (83) 

𝑙�̂�𝑚𝑖𝑛 ≤ 𝑙𝑡 ≤ 𝑙�̂�𝑚𝑎𝑥 (84) 

𝑙�̂�𝑚𝑖𝑛 ≤ 𝑙𝑤 ≤ 𝑙�̂�𝑚𝑎𝑥 (85) 

𝑙�̂�𝑚𝑖𝑛 ≤ 𝑙𝑝 ≤ 𝑙�̂�𝑚𝑎𝑥 (86) 
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𝑡�̂�𝑚𝑖𝑛 ≤ 𝑡𝑡 ≤ 𝑡�̂�𝑚𝑎𝑥 (87) 

𝑙𝑎�̂�𝑚𝑖𝑛 ≤ 𝑙𝑎𝑦 ≤ 𝑙𝑎�̂�𝑚𝑎𝑥 (88) 

Bounds are also imposed to the variables Wshell and twall that appears in the objective 

function to represent the mass of the column shell and the column thickness (Towler; Sinnott, 

2013): 

𝑊𝑠ℎ𝑒𝑙𝑙̂
𝑚𝑖𝑛 ≤ 𝑊𝑠ℎ𝑒𝑙𝑙 ≤ 𝑊𝑠ℎ𝑒𝑙𝑙̂

𝑚𝑎𝑥 (89) 

𝑡𝑤𝑎𝑙𝑙̂
𝑚𝑖𝑛 ≤ 𝑡𝑤𝑎𝑙𝑙 ≤ 𝑡𝑤𝑎𝑙𝑙̂

𝑚𝑎𝑥 (90) 

Finally, bounds on the following variables are related to their physical nature: 

0.0381 m ≤ 𝑤𝑢𝑠 ≤ 0.143 m (91) 

0.8 ≤ 𝐾1 ≤ 1.0 (92) 

0 ≤ 𝛽 ≤
𝜋

2
 (93) 

 

 

1.5 Objective function 

 

 

The optimization seeks to minimize the capital cost associated with the distillation 

column. An equation for evaluation of the capital cost of a distillation column, provided by 

Towler and Sinnott (2013), is employed as the objective function: 

Min 𝐶𝑡𝑜𝑡𝑎𝑙 = (130 + 440𝐷𝑐1.8)𝑁�̂� + 11600 + 34 𝑊𝑠ℎ𝑒𝑙𝑙0.85 (94) 

where 𝑁�̂� is the number of trays and Wshell is the mass of the column shell. This equation is 

valid for carbon steel columns with 0.5 m  Dc  5.0 m and 160 kg  Wshell  250,000 kg. 

The mass of the column shell is given by: 

𝑊𝑠ℎ𝑒𝑙𝑙 −  𝜋 𝜌𝑠ℎ𝑒𝑙𝑙̂  𝐷𝑐 𝐻𝑐 𝑡𝑤𝑎𝑙𝑙 = 0 (95) 

where 𝜌𝑠ℎ𝑒𝑙𝑙̂  is the density of the shell material and Hc is the height of the column between 

tangent lines i.e. without heads, given by: 

𝐻𝑐 − 𝑁�̂� 𝑙𝑡 = 0 (96) 

The column wall thickness depends on the column diameter: 

𝑡𝑤𝑎𝑙𝑙 − ∑ 𝑃𝑡𝑤𝑎𝑙𝑙̂
𝑠𝐷𝑐  𝑦𝐷𝑐𝑠𝐷𝑐

𝑆𝐷𝑐𝑚𝑎𝑥
𝑠𝐷𝑐=1 = 1 (97) 

where 𝑃𝑡𝑤𝑎𝑙𝑙̂
𝑠𝐷𝑐  is the thickness value corresponding to the mechanical design associated 

with the column diameter related to the binary variable 𝑦𝐷𝑐𝑠𝐷𝑐. 

Another alternative of the objective function consists in minimizing the mass of the 

distillation column (Wtotal), considering the mass of the column (Wcolumn) and trays (Wt). 
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Min 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑐𝑜𝑙𝑢𝑚𝑛 +𝑊𝑡 𝑁�̂� (98) 

The mass of the column is given by (Towler; Sinnott, 2013): 

𝑊𝑐𝑜𝑙𝑢𝑚𝑛 − 𝐶�̂� 𝜋 𝜌𝑠ℎ𝑒𝑙𝑙̂  𝐷𝑚 (𝐻𝑐 + 0.8𝐷𝑚) 𝑡𝑤𝑎𝑙𝑙 = 0 (99) 

where 𝐶�̂� is a factor responsible for the mass of nozzles, manways, internal supports, etc, 

(assumed equal to 1.15), and Dm is the mean diameter of the column. The mean diameter is 

given by: 

𝐷𝑚 −𝐷𝑐 − 𝑡𝑤𝑎𝑙𝑙 = 0 (100) 

The mass of the tray is determined by the volume of the tray deck (Vt) and the volume 

of the weir together with the downcomer (Vwdc). 

𝑊𝑡 − (𝑉𝑡 + 𝑉𝑤𝑑𝑐)𝜌�̂� = 0 (101) 

where 𝜌�̂� is the specific mass of tray material. 

The Vwdc is given by a rectangular plate: 

𝑉𝑤𝑑𝑐 − (ℎ𝑤 + 𝑡𝑡 + 𝐻𝑑𝑐)𝑡𝑡 𝑙𝑤 = 0 (102) 

where Hdc is the height of the downcomer: 

𝐻𝑑𝑐 − 𝑙𝑡 + ℎ𝑎𝑝 = 0 (103) 

The volume for each tray is given by the area of the column minus the areas of the 

downcomer and holes. 

𝑉𝑡 − (𝐴𝑐 − 𝐴𝑑𝑐 − 𝐴ℎ)𝑡𝑡 = 0 (104) 

 

 

1.6 Heuristic design procedure 

 

 

Aiming at comparing the performance of the proposed approach for the sizing of 

distillation columns with traditional schemes, a heuristic procedure based on Towler and 

Sinnott (2013) is presented in this section. 

The original design discussion in Towler and Sinnott (2013) does not describe in detail 

all the steps of the procedure, deferring implicitly to the designer certain decisions. We seek 

to provide a design scheme that could be as systematic as possible, avoiding as much as 

possible from calls to vague changes. However, some decisions from a practitioner are still 

needed. 
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In the next paragraphs, we present an analysis based on the literature about the 

selection of certain dimensions of the sieve tray. The values presented here serve as initial 

guesses in the design procedure. 

a) Tray spacing: Towler and Sinnott (2013) do not provide guidelines. Kister 

(1992) shows a range for tray spacing from 8 in until 36 in, but adopting 24 in, 

other authors (Fair, 1963; Wankat, 1988) agree with him. Therefore, we settle 

in adopting 24 in as a first choice. 

b) Downcomer area: we use the direct recommendation given by Towler and 

Sinnott (2013), that is, 12 % of the total column area as the starting point.   

c) Vapor velocity: The recommendation provided by Towler and Sinnott (2013) 

and Fair (1963) is to pick a vapor velocity equal to 85 % of the flooding 

velocity. Other values used are 80 % by Kister (1992) and Couper et al. (2012) 

and 75 % by Wankat (1988). We adopt the largest value of the literature. 

d) Hole area: The hole area is initially estimated at 10 % of the active area by 

different authors (Wankat, 1988; Kister, 1992; Towler; Sinnott, 2013; Couper 

et al., 2012). We use this choice as the initial guess. 

e) Tray thickness: Towler and Sinnott (2013) do not recommend the use of any 

specific value, but they use 5 mm in their example. We choose 3.4 mm, which 

is the smallest thickness used in the literature (Kister, 1992; Chuang; 

Nandakumar, 2000). 

f) Hole diameter: Towler and Sinnott (2013) offer the following limits: 

0.0025 m ≤ 𝑑ℎ ≤ 0.012 m. They also state that the diameter is subject to a 

limit related to the tray thickness (𝑑ℎ/𝑡𝑡 ≥ 1). Towler and Sinnott (2013) do 

not offer a criterion and in their example, they use 5 mm, pretty much in the 

middle of the range. For Kister (1992) the choice depends on the service, for 

clean services is 3/16 in, for fouling services is 1/2 in. Other authors also 

choose 3/16 in (Fair, 1963; Wankat, 1988; Kooijman; Taylor, 2006). Engel 

(2020) indicates that small holes are preferable due to hydraulic reasons, but 

penalize the fabrication costs. We adopt the valor shared by most of the 

literature 3/16 in (≈ 4.8 mm) and later change it if there is a need to do it. 

g) Weir height: For Towler and Sinnott (2013) the choice depends on the 

operation, for columns operating above atmospheric pressure is 0.040 m ≤

ℎ𝑤 ≤ 0.090 m, for vacuum operation is 0.006 m ≤ ℎ𝑤 ≤ 0.012 m. It must be 

ℎ𝑤 < 0.15 𝑙𝑡. Other authors also choose 2 in (0.051 m) (Fair, 1963; Wankat, 
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1988; Kister, 1992; Kooijman; Taylor, 2006; Couper et al., 2012; Towler; 

Sinnott, 2013). Larger heights have a significant effect on pressure drop, so 

from this point of view, smaller values should be preferred. We adopt the valor 

shared by most of the literature (2 in). 

h) Difference between weir and clearance height under the downcomer: Towler 

and Sinnott (2013) consider the following values 0.005 m ≤ ℎ𝑑𝑤𝑎𝑝 ≤

0.010 m. Kister (1990) explains that the largest value is to avoid an excessive 

increase in the pressure drop, which would cause a downcomer backup 

flooding. The smallest value is adopted to avoid that the vapor flows up the 

downcomer. Other authors specify certain valor (Fair, 1963; Kister, 1990; 

Kooijman; Taylor, 2006) for this variable as 10 mm. We decided to adopt this 

value. 

 

Our procedure mimics the one suggested by Towler and Sinnott (2013) and 

complemented with our considerations and is the following: 

Step 1: Data collection: Obtain flow rates and physical properties of the vapor and 

liquid streams of two representative trays, one from the rectifying section and another from 

the stripping section (one can extend this exercise to all trays in each section and then 

somehow find compromise solutions for each section, but we do not pursue this here, thus 

sticking to the classical recommendation). 

Step 2: Perform preliminary specifications: Select values of tray spacing, downcomer 

area fraction of total area (𝐹𝐴𝑑𝑐), and flooding fraction to determine the column diameter 

(0.85).  

Step 3: Determine the column diameter corresponding to both trays (rectifying and 

stripping section representatives) based on flooding considerations: 

𝐷𝑐 = [
4𝑉�̂�

𝜋 0.85 𝑢𝑓𝑙𝑜𝑜𝑑 𝜌�̂�(1−𝐹𝐴𝑑𝑐)
]
0.5

 (105) 

Because only one diameter is sought after (unless there are serious mismatches and the 

column needs more than one diameter), the largest of both diameters is picked. 

The column diameter must be higher than 0.60 m to avoid difficulties of installation 

(Towler; Sinnott, 2013). If the value obtained is smaller than 0.60 m, then return to Step 2 and 

reduce the tray spacing or increase the downcomer area fraction. We offer the following 

rationale. If the diameter obtained violates the above inequality by a small amount, it is 

advisable to change the downcomer area criteria (increase 12 % by a small amount), to make 
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the calculated diameter fit the inequality. If the diameter obtained is far away from the limit 

established by the inequality, that is, it is very small in comparison, then it is advisable to 

reduce the tray spacing. 

Step 4: Finalize tray geometry specifications 

a) Evaluate an initial estimative of the active area: 

𝐴𝑎 = 𝐴𝑐 − 2𝐴𝑑𝑐 (106) 

b) Hole area: use 10 % of the active area or other value if needed for respecting 

the constraint for the use of the Fair correlation 0.06 < 𝐴ℎ/𝐴𝑎 < 0.16 (Fair, 

1963). 

c) Tray thickness: We use the smallest value (3.4 mm) as discussed above. 

d) Hole diameter: We use the recommendations discussed above (4.8 mm). 

Because the thickness has already been set in the previous step, we choose a 

hole diameter that respects the limit established by the thickness (𝑑ℎ/𝑡𝑡 ≥ 1). 

e) Weir height: We use 51 mm (2 in) as discussed above. 

f) Difference between weir and clearance height under the downcomer: We use 

the largest value (10 mm) as discussed above. 

g) Weir length: It is determined based on a graphical relation present in Towler 

and Sinnott (2013) (𝑙𝑤 < 𝐷𝑐). 

Step 5: Check the weeping safety factor (Eq. (64)); if unsatisfactory, return to Step 4, 

reducing the hole area. 

Step 6: Check the downcomer backup safety factor (Eq. (69)). If unsatisfactory return 

to Step 4, increasing the hole area, reducing the downcomer area, and/or increasing the tray 

spacing. 

Step 7: Check the downcomer residence time safety factor (Eq. (78)); if unsatisfactory, 

return to Step 4, reducing the hole area or increasing the downcomer area. 

Step 8: Specify tray layout details: 

a) Width of the calming zone: We choose 0.050 m for the input and output 

calming zones (the same values adopted in our optimization model). 

b) Width of unperforated areas: We choose what we use in our model (Eq. (38)).  

c) Hole layout: We adopt the option shared by most of the literature as triangular 

layout (Fair, 1963; Wankat, 1988; Kister, 1992; Kooijman; Taylor, 2006; 

Towler; Sinnott, 2013). 

d) Recalculate the active area considering calming zone area and unperforated 

strip area: 
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𝐴𝑎 = 𝐴𝑐 − 2𝐴𝑑𝑐 − 𝐴𝑐𝑧 − 𝐴𝑢𝑠 (107) 

Step 9: Determine the hole pitch by Eq. (108) and check the safety factor (𝑙𝑝 ≥ 2𝑑ℎ), 

if unsatisfactory, then return to Step 4, increasing the hole diameter. 

𝑙𝑝 = 𝑑ℎ (
0.905𝐴𝑎

𝐴ℎ
)
0.5

  (108) 

Step 10: Check the flooding safety factor (Eq. (52)), if unsatisfactory, then return to 

Step 4, increasing the tray spacing. 

Step 11: Check the entrainment safety factor (Eq. (61)), if unsatisfactory then return to 

Step 4, increasing the tray spacing. Otherwise, stop.  

Other procedures and equations used in the literature exist and they are all based on 

trial and verification steps. The intervention of an experienced designer becomes important in 

Steps 2, 4, and 8 to adequately select the values of the design variables to be verified. In the 

verification steps, a check is made to see if the design is feasible or not (Steps 5, 6, 7, 9, 10, 

and 11). 

 

 

1.7 Results 

 

 

The performance of the proposed MINLP procedure for the optimal design of 

distillation columns trays is illustrated by the solution of an example from the literature 

(Towler; Sinnott, 2013) together with a comparison with the corresponding results of the 

heuristic procedure.   

The example considers a distillation column with an aqueous waste stream as feed, 

where it is desired to recover acetone. The feed is a stream with 454.5 kmol/h of a mixture 

containing 10 % of acetone (all compositions are expressed here using a molar basis). The top 

stream must contain 95 % of acetone and the bottom stream must not contain more than 1 % 

of acetone. The example considers ten equilibrium stages with a total condenser. The 

operation pressure some equal to 1 atm for all trays. 

The column was simulated in the Aspen Plus software using the property method 

UNIQ-RK, which employs the Redlich-Kwong equation of state (Redlich; Kwong, 1979) and 

the UNIQUAC activity coefficient model (Abrams; Prausnitz, 1975). The reflux ratio is 1.24 

and the feed tray corresponds to stage 8. The results of the simulation for the nine ideal stages 

are presented in Table 1 (the equilibrium stage 10 corresponds to the kettle reboiler). 
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Table 1 – Operational parameters of the example 

Parameters/
Tray 1 2 3 4 5 6 7 8 9 

𝐿�̂� (kg/s) 0.82 0.80 0.78 0.76 0.72 0.66 0.51 3.12 2.78 

𝑉�̂� (kg/s) 1.50 1.48 1.46 1.43 1.40 1.34 1.18 1.02 0.68 

𝜌�̂� (kg/m³) 753.76 754.64 755.64 756.92 758.84 762.57 776.27 873.01 900.73 

𝜌�̂� (kg/m³) 2.10 2.09 2.07 2.04 2.01 1.95 1.78 1.61 1.02 

�̂� (N/m)103 22.28 23.20 24.21 25.45 27.21 30.28 38.60 59.14 60.79 
Source: The author, 2022. 

 

The overall efficiency was assumed to be equal to 60 %. Excluding the reboiler, the 

nine ideal stages correspond to 15 real stages. This value was employed for the evaluation of 

the column height in the objective function. The column material was carbon steel (𝜌�̂� = 

7900 kg/m3). 

Table 2 displays the standard alternatives of the discrete geometric variables employed 

in the design problem. This set of options corresponds to a search space composed of 

7,931,520 candidates (total number of possible combinations of the values of the design 

variables). The lower and upper bounds are outlined by Eqs. (80-88) correspond to the 

minimum and maximum values displayed in Table 2. The lower and upper bounds on the 

variable Wshell are 𝑊𝑠ℎ𝑒𝑙𝑙̂
𝑚𝑖𝑛 =  160 𝑘𝑔 and 𝑊𝑠ℎ𝑒𝑙𝑙̂

𝑚𝑎𝑥 = 250000 𝑘𝑔, according to the 

validity range of the correlation in Eq. (94). 

Table 2 – Discrete values of the design variables 

Variables Discrete values 

Dc (m) 0.61 0.76 0.91 1.07 1.27 1.47 1.68 1.93 2.18 2.44 2.74 3.05 3.35 3.71 4.06 4.42 4.83 

dh (mm) 3.60 4.00 4.40 4.80 5.20 5.60 6.00 6.40          

hdwap 
(mm) 5.00 6.00 7.00 8.00 9.00 10.0            

hw (cm) 3.81 4.44 5.08 5.71 6.35 6.98 7.62 8.25 8.89         

lt (m) 0.15 0.23 0.31 0.47 0.62 0.91            

lw (m) 0.41 0.66 0.91 1.17 1.42 1.68 1.93 2.18 2.44 2.69 2.95 3.20 3.45 3.71 3.96   

lp (mm) 9.00 12.0 15.0 18.0 21.0 24.0            

tt (mm) 3.40                 

lay square triangular              

Source: The author, 2022. 
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The column diameters vary between 0.6096 m (2 in) and 4.826 m (19 in), the diameter 

lower bound being necessary to avoid difficulties of installation (Towler; Sinnott, 2013), and 

the upper bound is related to the maximum that the column cost equation allows (Eq. (94)) 

(Towler; Sinnott, 2013). The discrete values of the diameters employed in the optimization 

were selected in such a way that the differences between them increase as the diameter 

increases. 

The diameters of the holes correspond to the commercial standardization of drills 

(Oberg et al., 2004). Their limits are chosen to respect the Fair entrainment correlation limits 

(Fair, 1961), that is, between 1.6 mm (1/16 in) and 6.4 mm (1/4 in). Moreover, hole diameters 

must respect the geometric constraints (Eqs. (48-49)). The limits of the variables hdwap, hw 

and lt were established based on their corresponding typical values (Towler; Sinnott, 2013). 

Finally, the limits of the variables lw and lp were generated from the limits of the variables Dc 

and dh according to the relations suggested by Towler and Sinnott (2013): 

0.6 ≤
𝑙𝑤

𝐷𝑐
≤ 0.85 (109) 

2.5 ≤
𝑙𝑝

𝑑ℎ
≤ 4.0 (110) 

The values of the column shell thickness related to each column diameter alternative 

are shown in Table 3, according to Towler and Sinnott (2013). The lowest and highest values 

of thicknesses are employed as lower and upper bounds on the variable twall.  

 

Table 3 – Shell thickness for each column diameter 

Dc (m) 0.61 0.76 0.91 1.07 1.27 1.47 1.68 1.93 2.18 2.44 2.74 3.05 3.35 3.71 4.06 4.42 4.83 

twall (mm) 5 5 5 7 7 7 7 7 9 9 10 12 12 12 12 12 12 

Source: The author, 2022. 

 

The MINLM formulation of the design optimization problem is composed of 79 

binary variables, 169 discrete variables and 309 constraints for the cost minimizing. For the 

mass minimizing has an addition of 1 discrete variable and 1 constraint. The formulation was 

solved by MINLP procedures using the GAMS software interface (version 24.7.1) and the 

global optimization solvers ANTIGONE (version 1.1) (Misener; Floudas, 2014), and BARON 

(version 16.3.4) (Sahinidis, 1996). 

Because ANTIGONE and BARON do not accept trigonometric functions, Taylor 

series expansions to represent those functions were used (Gradshteyn; Ryzhik, 2015):  
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tan 𝑥 = ∑
22𝑘(22𝑘−1)

(2𝑘)!
|𝐵𝑒2𝑘|𝑥

2𝑘−1∞
𝑘=1 ,                |𝑥| <

𝜋

2
 (111) 

𝑎𝑟𝑐𝑠𝑖𝑛 𝑥 = ∑
(2𝑘)!

22𝑘(𝑘)!2(2𝑘+1)
𝑥2𝑘−1∞

𝑘=0   (112) 

where Be is the Bernoulli number obtained from Plouffe (2001). The series representing the 

tangent function was evaluated using 81 terms and the series of the arcsine function involved 

14 terms, which have an error below 0.001. 

The computational times associated with the optimization using the solver 

ANTIGONE were 73 s and 20 s for cost and mass as objective functions, respectively. The 

corresponding computational times using the solver BARON were 136 s and 36 s. These 

times were collected in a computer with an Intel Core i7 processor with 8 Gb of RAM. 

The comparison of the solutions obtained using ANTIGONE and BARON indicates 

that BARON did not attain the global optimum in the minimization of the cost (the value of 

the objective function obtained using BARON was 13 % higher than the solution using 

ANTIGONE). The results obtained using ANTIGONE are displayed in Table 4, for different 

objective functions. These solutions are similar, exhibiting different masses: 1,339.42 kg for 

the cost objective function and 1,335.52 kg for the mass objective function. The total cost is 

the same ($ 28,915.69) because the cost function is not detailed enough to be sensitive to the 

minor differences between these similar solutions. 

The heuristic design procedure was also applied to the solution of the same design 

example. The details of the application of the heuristic procedure are present in the Appendix 

A, including all the candidates tested during the search. The final feasible solution found is 

also presented in Table 4. This solution is associated with a cost and a mass equal to $ 

31,822.12 and 1,831.70 kg, respectively. 

The comparison of the optimal values of the objective function with the results 

obtained using the heuristic procedure indicates that the optimization attained a reduction of 9 

% of the cost and 27 % of the mass of steel. 
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Table 4 – Results 

 MINLP – Minimization 
of the column cost 

MINLP – Minimization 
of the column mass Heuristics 

Ctotal ($) 28,915.69 28,915.69 31,822.12 

𝑊𝑡𝑜𝑡𝑎𝑙 (kg) 1,339.42 1,335.52 1,831.70 

Dc (m) 0.9144 0.9144 0.7307 

dh (m) 0.0036 0.0036 0.0048 

hdwap (m) 0.008 0.005 0.010 

hw (m) 0.0381 0.0381 0.0508 

lt (m) 0.4572 0.4572 0.9144 

lw (m) 0.6604 0.6604 0.5550 

lp (m) 0.009 0.009 0.011 

lay square triangular triangular 
Source: The author, 2022. 

 

 

1.8 Conclusions 

 

 

This paper presented a Mixed Integer Nonlinear Model solved using a MINLP 

procedure for the tray design of distillation columns. For a given set of flow rates and 

physical properties, the optimization determines the optimal value of the column diameter and 

all the dimensions of the trays. Two alternative objective functions were used: cost and mass. 

The method can be also extended for other internals (e.g. valve trays, bubble cap trays, etc.) or 

objective functions (e.g. more detailed cost functions based on mechanical design). 

Additionally, a step-by-step heuristic procedure, based on the literature, was presented and 

used for comparison. Significant reductions were obtained in both objective functions. 

Besides the advantages of the mathematical programming approach, the heuristic 

procedures have another disadvantage: they rely on experienced practitioners. Therefore, a 

novice engineer may obtain a more expensive solution than an experienced one. 

Comparatively, the application of the optimization approach is automatic and the least cost 

design is attained, no matter the experience of the user. 
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2 SET TRIMMING APPROACH FOR THE GLOBALLY OPTIMAL DESIGN 

OF SIEVE TRAYS IN SEPARATION COLUMNS 

 

 

In this article, we use Set Trimming to obtain the globally optimal design of 

distillation column trays, that is, the column diameter and the geometrical design of the trays 

(weir, downcomer, etc.) that minimize mass or cost. We assume that the operating conditions 

(vapor and liquid flow rates, compositions, temperatures) are given. The design task is, to this 

day, presented in textbooks as a trial and verification procedure. We show that Set Trimming 

guarantees global optimality and is amenable to exploring alternative global optima. 

Compared with the employment of a mixed-integer nonlinear programming (MINLP) 

approach using commercial global optimizers, we show that Set Trimming is a more robust 

option with competitive computational times for individual design problems. It also exhibits a 

significant reduction in computational effort when alternative optimal solutions are sought. 

 

 

2.1 Introduction 

 

 

The design of column trays in separation columns has been traditionally handled using 

trial-and-verification procedures through step-by-step procedures (Fair, 1963; Wankat, 1988; 

Douglas, 1988; Kister, 1992; McCabe; Smith; Harriott, 1993; Seader; Henley; Roper, 2011; 

Chuang; Nandakumar, 2000; Towler; Sinnott, 2013). Some of these procedures are based on 

bold assumptions and heuristics that facilitate obtaining viable answers, with the intended 

effect of keep changing the trial geometries until one is viable. For example, the area of the 

downcomer is assumed to be 10% of the total area right after the diameter is selected based on 

a flooding velocity (Towler; Sinnott, 2013). 

The utilization of optimization techniques for the design of column trays was 

addressed by a few works. Ogboja and Kuye (1990) used the Complex Method (Box, 1965) to 

solve a sieve tray optimization. They obtained the optimal tray design by maximizing tray 

efficiency according to geometrical and phenomenological constraints. The problem 

formulation was restricted to optimizing only one plate and not the total set of column trays. 

Lahiri (2014, 2020) presented a method to obtain the optimal tray design based on the 

minimization of the total annualized cost, showing better results when compared with a 
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commercial simulator. More recently, Souza et al. (2022) presented a mixed-integer nonlinear 

mathematical model (MINLM) solved using a global optimizer for the design of column 

trays, based on the equations presented in Towler and Sinnott (2013). 

As shown by Souza et al. (2022), the solution to the tray design-optimization problem 

using mathematical programming can attain better results than the traditional trial and 

verification approach. However, further numerical tests indicate that the global solution of the 

tray design problem using mathematical programming may be difficult sometimes. Aiming at 

providing a fast and reliable optimization tool for the solution of the optimal tray design 

problem, we present in this work the application of Set Trimming (Costa; Bagajewicz, 2019). 

According to the results presented in this article, the proposed technique for solving the tray 

design problem is more robust than mathematical programming using global solvers, 

presenting competitive computational times. 

Another important aspect of the proposed technique is the solution based on optimal 

sets, instead of optimal points. Conventional optimization techniques identify a single optimal 

solution. However, Set Trimming can identify all of the optimal solutions with the lowest 

value of the objective function (if there is more than one). Therefore, the user can choose one 

of these solutions considering other additional criteria that were not originally contemplated 

in the problem formulation. The identification of this set using conventional optimization 

techniques demands a recursive solution to the optimization problem, but Set Trimming can 

do it in a single run. We discuss more details about Set Trimming later in the article.  

This article is organized as follows: Section 2.2 presents the geometric variables that 

are employed in the design problem, Section 2.3 presents the problem constraints, Section 2.4 

presents different objective functions employed for the formulation of the design optimization 

problem, Section 2.5 presents the Set Trimming technique, and Section 2.6 illustrates the 

performance of the proposed formulation and compares it with mathematical programming. 

The conclusions are finally presented in Section 2.7. 

 

 

2.2 Sieve tray geometry 

 

 

The proposed optimization procedure is applied here for the design of sieve trays (the 

same optimization technique can be also employed for bubble cap or valve trays). A sieve tray 

is composed of the active and downcomer areas, with some calming zones. There are several 
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types of configurations that use multiple passes (mostly for large diameters) and others, as 

well as different downcomer geometries (segmental, circular, etc.).  

Figure 6 shows the simplest configuration (one pass and segmental downcomer), 

which is the one we use in this article and our previous one (Souza; Bagajewicz; Costa, 2022). 

Summarizing the detailed description given in the aforementioned article, we cite the 

components: active area (Aa), downcomers areas (Adc), hole area (Ah), calming zones (wczin 

and wczout), and unperforated strips (wus).  

 

Figure 6 – Sieve tray top view 

wczout
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Source: The author, 2022. 

 

Figure 3 shows a side view of the tray highlighting another set of model variables: tray 

spacing (lt), weir height (hw), height of the liquid crest over the weir (how), clearance height 

under the downcomer (hap), the difference between weir and clearance height under the 

downcomer (hdwap), and the height of the downcomer backup (hb). The independent 

geometric variables we use are introduced in Table 5. The optimization problem consists of 

the determination of the values of these variables associated with the optimal value of one of 

the objective functions described in Section 2.4. These variables are discrete in practice, 

namely dh, tt and lt, because are standardized, while many other variables, namely Dc, 

hdwap, hw, lw and lp are usually considered continuous, but fabrication forces the use of 

discrete values. The tray mathematical model allows the determination of the values of the 

other model variables based on a given set of values of this set of independent variables 
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Figure 3 – Tray side view 
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Source: The author, 2022. 

 

 

Table 5 – Independent  geometric variables 

Variable Definition Unit 

Dc Column diameter m 
dh Hole diameter m 

hdwap Difference between weir and gap height m 
hw Weir height m 
lt Tray spacing m 
lw Weir length m 
lp Hole pitch m 
tt Tray thickness m 
lay Hole layout (triangle and squared)         - 

Source: The author, 2022. 

 

Figure 4 depicts the downcomer area, which is obtained as the difference between the 

circular sector area (Asector) and the triangle area (Atriangle). The following equations show 

the geometrical relations among the several tray dimensions. Details of their development and 

source are given by Souza et al. (2022). 
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Figure 4– Tray downcomer area 
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Source: The author, 2022. 

 

The central angle of the circle that spans the weir is given by: 

𝜃 = 2 arcsin (
𝑙𝑤

𝐷𝑐
)  (113) 

The area of the sector defined by the weir angle is: 

𝐴𝑠𝑒𝑐𝑡𝑜𝑟 =
𝐷𝑐2𝜃

8
 (114) 

and the area of the triangle defined by the column radius and the weir length is: 

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
𝑙𝑤

2
√(

𝐷𝑐

2
)
2

− (
𝑙𝑤

2
)
2

 (115) 

The total column cross-sectional area (Ac), the cross-sectional area of the downcomer 

(Adc), and the net area available for vapor-liquid interaction (An) are given by:  

𝐴𝑐 =
𝜋𝐷𝑐2

4
 (116) 

𝐴𝑑𝑐 = 𝐴𝑠𝑒𝑐𝑡𝑜𝑟 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 (117) 

𝐴𝑛 = 𝐴𝑐 − 𝐴𝑑𝑐 (118) 

Additional geometric relations involving the calming zones and unperforated strip 

areas are shown below, associated with the representation in Figure 5. 
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Figure 5 – Calming zones and unperforated strip areas 

 
Source: The author, 2022. 

 

The calming zone area (Acz) is the area of two trapezoids, as illustrated in Figure 5, 

and it is given by: 

𝐴𝑐𝑧 =
(𝑙𝑐𝑧𝑖𝑛+𝑙𝑤)

2
𝑤𝑐�̂�𝑖𝑛 +

(𝑙𝑐𝑧𝑜𝑢𝑡+𝑙𝑤)

2
𝑤𝑐�̂�𝑜𝑢𝑡 (119) 

The length of the calming zone (lcz) is given by: 

𝑙𝑐𝑧𝑖𝑛 = 𝑙𝑤 − 2(
𝑤𝑐�̂�𝑖𝑛

tan𝛽
) (120) 

𝑙𝑐𝑧𝑜𝑢𝑡 = 𝑙𝑤 − 2(
𝑤𝑐�̂�𝑜𝑢𝑡

tan𝛽
) (121) 

where β is the calming zone angle: 

𝛽 =
𝜋−𝜃

2
 (122) 

The width of the inlet and outlet calming zone has been suggested to be between 2 and 

5 in (AMACS Process Tower Internals, 2020; Dutta, 2007; Towler; Sinnott, 2013; Wankat, 

1988). Then, we consider 𝑤𝑐�̂�𝑖𝑛 and 𝑤𝑐�̂�𝑜𝑢𝑡 equal to 0.050 m (2 in). 

As a consequence, the unperforated strip area (Aus) is determined using the angle of 

the active area (α) and the width of the unperforated strip (wus) (Towler; Sinnott, 2013). 

𝐴𝑢𝑠 = 𝑤𝑢𝑠 𝛼(𝐷𝑐 − 𝑤𝑢𝑠) (123) 

𝛼 = 𝜋 − 𝜃 (124) 

The width of the unperforated strip varies according to diameter (AMACS Process 

Tower Internals, 2020):  

β

lw

lcz

q

α



55 
 

 

𝑤𝑢𝑠 =

{
 
 

 
 
0.0381,                          𝐷𝑐 ≤ 0.7620
0.0508,       0.7620 < 𝐷𝑐 ≤ 1.6764 
0.0635       1.6764 < 𝐷𝑐 ≤ 3.8100
0.0762       3.8100 < 𝐷𝑐 ≤ 5.9436
0.0889       5.9436 < 𝐷𝑐 ≤ 7.4676
0.1143                          𝐷𝑐 > 7.4676

 (38) 

The active area is the column cross-sectional area less the downcomer area, the 

unperforated strip area, and the calming zone areas: 

𝐴𝑎 = 𝐴𝑐 − 2 𝐴𝑑𝑐 − 𝐴𝑢𝑠 − 𝐴𝑐𝑧 (125) 

The hole area (Ah) can be determined as follows (Kister, 1990): 

𝐴ℎ = 𝑘 (
𝑑ℎ

𝑙𝑝
)
2

𝐴𝑎 (126) 

where k is 0.785 or 0.905 from square or triangular hole layout, respectively. 

 

 

2.3 Optimization constraints 

 

 

The set of constraints involves geometric and operational constraints. 

 

 

2.3.1 Geometric constraints 

 

 

 The weir length must be limited to the column diameter: 

𝑙𝑤 ≤ 𝐷𝑐 (127) 

The hole pitch must be equal to or greater than twice the hole diameter (Towler; 

Sinnott, 2013). 

𝑙𝑝 ≥ 2 𝑑ℎ (128) 

The thickness must be limited by the hole diameter (Chuang; Nandakumar, 2000): 
𝑑ℎ

𝑡𝑡
≥ 1  (129) 

 The ratio of the hole area to the active area is bounded: 

0.06 ≤
𝐴ℎ

𝐴𝑎
 ≤ 0.16 (130) 

Finally, to use the Fair flooding correlation, the following constraint holds:(Fair, 1961) 

ℎ𝑤 ≤ 0.15 𝑙𝑡  (131) 
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Except for Eqs. (127) and (128), which are logical constraints, all the rest are 

heuristics.  

 

 

2.3.2 Operational constraints 

 

 

The operational constraints are the limits of flooding, entrainment, weeping, 

downcomer backup, and residence time in the downcomer of the sieve tray design. Because 

the flow rates and physical properties of the vapor and liquid stream vary along the column, 

these constraints must be applied for each tray, identified by the index sNt. These constraints 

are also reproduced below from Souza et al. (2022) without further discussion. 

- Flooding: 

𝑢𝑛𝑠𝑁𝑡 ≤ 0.85 𝑢𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡         ∀ 𝑠𝑁𝑡 (132) 

𝑢𝑛𝑠𝑁𝑡 = 
𝑉�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡   𝐴𝑛
           ∀ 𝑠𝑁𝑡 (133) 

𝑢𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 = 𝐾1 𝐶𝑠𝑏𝑠𝑁𝑡√
𝜌�̂�𝑠𝑁𝑡−𝜌�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
(
�̂�𝑠𝑁𝑡

0.02
)
0.2

          ∀ 𝑠𝑁𝑡 (134) 

𝐹𝑙�̂�𝑠𝑁𝑡 =
𝐿�̂�𝑠𝑁𝑡

𝑉�̂�𝑠𝑁𝑡
√
𝜌�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
              ∀ 𝑠𝑁𝑡 (135) 

𝐾1 =

{
 
 

 
 0.8,        0.06 ≤

𝐴ℎ

𝐴𝑎
 ≤ 0.08 

0.9,        0.08 ≤
𝐴ℎ

𝐴𝑎
 ≤ 0.10 

1.0,       0.10 ≤
𝐴ℎ

𝐴𝑎
 ≤ 0.16

 (136) 

𝐶𝑠𝑏𝑠𝑁𝑡 = 0.0129 +  0.1674 𝑙𝑡 + 0.0063𝐹𝑙�̂�𝑠𝑁𝑡 − 0.2686 𝑙𝑡 𝐹𝑙�̂�𝑠𝑁𝑡 − 0.008𝐹𝑙�̂�𝑠𝑁𝑡
2
+

0.01448 𝑙𝑡 𝐹𝑙�̂�𝑠𝑁𝑡
2
              ∀ 𝑠𝑁𝑡 (137) 

- Entrainment  

𝜓𝑠𝑁𝑡 ≤ 0.1             ∀ 𝑠𝑁𝑡 (138) 

𝜓𝑠𝑁𝑡 =

{
 
 

 
 

𝑒𝑥𝑝

[
 
 
 
 

−7.9196+ 1.0891𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
−(0.0705 + 2.1916𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡) ln 𝐹𝑙�̂�𝑠𝑁𝑡

+(0.046 − 0.605𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 + 1.2669𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
2

−0.9563𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
3)(ln𝐹𝑙�̂�𝑠𝑁𝑡)

2
]
 
 
 
 

}
 
 

 
 

         ∀ 𝑠𝑁𝑡 (139) 

𝐹𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡 = 
𝑢𝑛𝑠𝑁𝑡

𝑢𝑓𝑙𝑜𝑜𝑑𝑠𝑁𝑡
         ∀ 𝑠𝑁𝑡 (140) 

- Weeping: 

𝑢ℎ𝑠𝑁𝑡 ≥ 𝑢ℎ𝑚𝑖𝑛𝑠𝑁𝑡          ∀ 𝑠𝑁𝑡 (141) 
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𝑢ℎ =  
𝑉�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡 𝐴ℎ
       ∀ 𝑠𝑁𝑡 (142) 

𝑢ℎ𝑚𝑖𝑛𝑠𝑁𝑡 =
𝐾2𝑠𝑁𝑡−0.9(25.4−10

3𝑑ℎ)

(𝜌�̂�𝑠𝑁𝑡)
1
2

         ∀ 𝑠𝑁𝑡 (143) 

𝐾2𝑠𝑁𝑡 = 23.48 − 1.66 ln[10
3(ℎ𝑤 + ℎ𝑜𝑤𝑠𝑁𝑡)]         ∀ 𝑠𝑁𝑡  (144) 

ℎ𝑜𝑤𝑠𝑁𝑡 = 750 ∙ 10
−3 [

𝐿�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡   𝑙𝑤
 ]
2/3

          ∀ 𝑠𝑁𝑡 (145) 

- Downcomer Backup   

ℎ𝑏𝑠𝑁𝑡 ≤
1

2
(𝑙𝑡 + ℎ𝑤)         ∀ 𝑠𝑁𝑡 (146) 

ℎ𝑏𝑠𝑁𝑡 = ℎ𝑤 + ℎ𝑜𝑤𝑠𝑁𝑡 + ℎ𝑡𝑠𝑁𝑡 + ℎ𝑑𝑐𝑠𝑁𝑡          ∀ 𝑠𝑁𝑡 (147) 

ℎ𝑡𝑠𝑁𝑡 = ℎ𝑤 + ℎ𝑜𝑤𝑠𝑁𝑡 + ℎ𝑑𝑠𝑁𝑡 + ℎ�̂�𝑠𝑁𝑡         ∀ 𝑠𝑁𝑡 (148) 

ℎ𝑟𝑠𝑁�̂� =
12.5

𝜌�̂�𝑠𝑁𝑡
         ∀ 𝑠𝑁𝑡 (149) 

ℎ𝑑𝑠𝑁𝑡 = 51 ∙ 10
−3 (

𝑢ℎ𝑠𝑁𝑡

𝐶𝑜
)
2 𝜌�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡
         ∀ 𝑠𝑁𝑡 (150) 

𝐶𝑜 = 0.6323− 0.0255
𝑡𝑡

𝑑ℎ
+ 0.1495(

𝑡𝑡

𝑑ℎ
)
2

+ 0.777
𝐴ℎ

𝐴𝑎
 (151) 

ℎ𝑑𝑐𝑠𝑁𝑡 = 166 ∙ 10
−3 (

𝐿�̂�𝑠𝑁𝑡

𝜌�̂�𝑠𝑁𝑡   𝐴𝑎𝑝
)         ∀ 𝑠𝑁𝑡 (152) 

𝐴𝑎𝑝 = ℎ𝑎𝑝 𝑙𝑤 (153) 

ℎ𝑎𝑝 = ℎ𝑤 − ℎ𝑑𝑤𝑎𝑝 (154) 

- Residence time:   

𝑡𝑖𝑚𝑒𝑠𝑁𝑡 ≥ 3 𝑠         ∀ 𝑠𝑁𝑡 (155) 

𝑡𝑖𝑚𝑒𝑠𝑁𝑡 =
𝐴𝑑𝑐 ℎ𝑏𝑠𝑁𝑡 𝜌�̂�𝑠𝑁𝑡

𝐿�̂�𝑠𝑁𝑡
         ∀ 𝑠𝑁𝑡 (156) 

 

 

2.4 Objective function 

 

 

The optimization proposal consists in minimizing the costs associated with the sieve 

tray design of a distillation column. Two alternative objective functions are explored: a capital 

cost equation and an expression of the mass of the distillation column. 

The cost equation is given by (assuming a carbon steel column) (Towler; Sinnott, 

2013): 

𝑀𝑖𝑛 𝐶𝑡𝑜𝑡𝑎𝑙 = (130 + 440𝐷𝑐1.8)𝑁�̂� + 11600+ 34 𝑊𝑠ℎ𝑒𝑙𝑙0.85 (157) 
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where 𝑁�̂� is the number of trays and Wshell is the mass of the column shell. The equation is 

validated from 0.5 < Dc < 5.0 m and 160 < Wshell < 250,000 kg. The mass of the column 

shell is given by: 

𝑊𝑠ℎ𝑒𝑙𝑙 =  𝜋 𝜌𝑠ℎ𝑒𝑙𝑙̂  𝐷𝑐 𝐻𝑐 𝑡𝑤𝑎𝑙𝑙 (158) 

where 𝜌𝑠ℎ𝑒𝑙𝑙̂  is the density of the shell material, 𝑡𝑤𝑎𝑙𝑙 is the column wall thickness and Hc is 

the height of the column between tangent lines, given by: 

𝐻𝑐 = 𝑁�̂� 𝑙𝑡 (159) 

Another alternative objective function consists in minimizing the mass of the 

distillation column and its trays (Wtotal):  

𝑀𝑖𝑛 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑐𝑜𝑙𝑢𝑚𝑛 +𝑊𝑡 𝑁�̂� (160) 

The mass of the column is given by:(2013) 

𝑊𝑐𝑜𝑙𝑢𝑚𝑛 = 𝐶�̂� 𝜋 𝜌𝑠ℎ𝑒𝑙𝑙̂  𝐷𝑚(𝐻𝑐 + 0.8𝐷𝑚)𝑡𝑤𝑎𝑙𝑙 (161) 

where 𝐶�̂� is a factor responsible by the mass of nozzles, manways, internal supports, etc., to 

distillation columns is 1.15 and Dm is the mean diameter of the column, given by: 

𝐷𝑚 = 𝐷𝑐 + 𝑡𝑤𝑎𝑙𝑙 (162) 

The mass of the tray is determined by the volume of the tray (Vt) and the volume of the weir 

together with the downcomer (Vwdc). 

𝑊𝑡 = (𝑉𝑡 + 𝑉𝑤𝑑𝑐)𝜌�̂� (163) 

where 𝜌�̂� is the specific mass of tray material. The volume of the tray (Vt) is given by the area 

of the column minus the areas of the downcomer and holes, and the volume of the 

combination weir/downcomer (Vwdc) is given by a rectangular plate: 

 𝑉𝑡 =  (𝐴𝑐 − 𝐴𝑑𝑐 − 𝐴ℎ)𝑡𝑡 (164) 

𝑉𝑤𝑑𝑐 =  [ℎ𝑤 + 𝑡𝑡 + 𝐻𝑑𝑐]𝑡𝑡 𝑙𝑤 (165) 

where Hdc is the height of downcomer: 

𝐻𝑑𝑐 =  𝑙𝑡 − ℎ𝑎𝑝 = 𝑙𝑡 − (ℎ𝑤 − ℎ𝑑𝑤𝑎𝑝) (166) 

 

 

2.5 Set Trimming 

 

 

The Set Trimming technique was initially proposed by Gut and Pinto (2004) for the 

specific case of the design of plate heat exchangers. Costa and Bagajewicz (2019) generalized 

it conceptually to apply to any optimization problem with discrete independent variables. The 
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same technique was successfully applied by Lemos et al. (2020) and Nahes et al. (2021) to 

the design optimization of shell and tube heat exchangers and plate heat exchangers, 

respectively. 

The Set Trimming technique is applied to problems with a combinatorial 

representation of the search space, where each candidate solution corresponds to a set of 

discrete values of the decision variables. The technique consists of applying the inequality 

constraints sequentially to the set of candidates so that after testing each constraint, the 

number of candidates decreases. Thus, in the end, if all constraints are applied, only feasible 

candidates remain, that is, the candidates that respected all the constraints of the model. 

Consequently, after Set Trimming, the global optimum can be obtained through a simple 

sorting procedure applied to the objective function of the feasible candidates. This technique 

is a global optimization technique because only the infeasible candidates are eliminated and, 

in the end, there is a selection, to obtain the best alternative among feasible candidates (Costa; 

Bagajewicz, 2019). 

 

Figure 7 – Set Trimming structure 

 

Source: The author, 2022. 

 



60 
 

 

The steps of each trim of Set Trimming method, using the model of the sieve tray 

design are shown below, according to the representation depicted in Figure 7. In these steps, 

each set is defined as a subset of the previous one, thus eliminating the infeasible candidates 

from each step. The initial candidate set is the set of all combinations of the independent 

geometric variables of the problem (Table 5). 

The Set Trimming starts with the geometrical constraints, that is, using the inequalities 

Eqs. (127)-(131). This set of constraints trims the majority of candidates for which some of 

the operational limits do not even make sense. The application of all the other operational 

inequalities follows. The order of the trims was selected through an analysis of the 

computational efficiency of the elimination of candidates provided by each constraint (see 

Section 2.6). After Set Trimming, the optimal solution is identified through a simple sorting 

procedure of the values of the objective function of the feasible candidates.  

 

 

2.6 Power Analysis 

 

 

The order of the constraints in the Set Trimming is very important for its 

computational performance. Because the time used to trim a set depends on its size, one wants 

to identify what are the constraints that trim the largest amount of candidates. However, the 

time to evaluate each constraint also matters. Therefore, both need to be taken into account. 

Aiming at identifying the effectiveness of the trim action associated with each 

constraint, we use the following procedure. Using the first set of candidates obtained after 

geometric Set Trimming as a starting point, we apply each constraint separately. Thus, based 

on the number of candidates eliminated and the computational time spent on each constraint, 

it is possible to determine the fraction of candidates eliminated and the number of candidates 

eliminated per second by each trim action. The power of each constraint is in eliminating 

more candidates in less time.  

After that, the appropriate ordering of the constraints is determined by picking the 

constraints in descending order of power (number of candidates eliminated/second). Therefore 

the trimmings of the constraints that are slower and eliminate fewer candidates will be applied 

later, which will provide a reduction in the computational time. While this ordering is not 

guaranteed to render the smallest computational time in all cases (it still depends on the 

particular problem), it is a step in the right direction. 
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2.7 Results 

 

 

We use an example taken from Towler and Sinnott (2013), where acetone is recovered 

from a 10% mol of acetone aqueous waste. The top stream of the distillation column must 

contain 95% mol of acetone and the bottom stream must not contain more than 1% mol of 

acetone. The number of real stages is 15, considering a column efficiency of 60% and 

excluding the reboiler. The column material was carbon steel (𝜌𝑠ℎ𝑒𝑙𝑙̂ = 𝜌�̂� = 7900 kg/m3). 

Table 1 presents the operational parameters of the nine ideal stages, with stage 8 as the 

feed tray. These were obtained by a simulation in the Aspen Plus software using the property 

package UNIQ-RK, which employs the Redlich-Kwong equation of state (Redlich; Kwong, 

1979) and the UNIQUAC activity coefficient model (Abrams; Prausnitz, 1975). The reflux 

ratio is 1.24.  

Table 2 presents the standard alternatives of the geometric variables. The column 

diameters vary between 0.6096 m (2 ft – 24 in) and 4.826 m (15.8 ft – 190 in), the lower limit 

is the diameter needed to avoid installation difficulties, and the upper limit is the largest 

diameter for which the cost equation is valid (Towler; Sinnott, 2013). This set of diameters is 

selected in such a way that the differences between the diameter values increases as the 

diameter increases. Table 3 shows the values of the column shell thickness related to each 

column diameter alternative, according to Towler and Sinnott (2013). Further details of the 

selection of the possible values for the other design variables can be found in Souza et al. 

(2022). All the computational results presented here were obtained using a computer with 

Intel Core i7 (8th Gen) processor with 8 Gb of RAM, using GAMS version 24.7.1 (it is 

important to mention that none of the GAMS solvers was used to implement the Set 

Trimming algorithm, only the manipulation resources of sets were employed) (Bussieck; 

Meeraus, 2004). 

 

Table 1 – Operational parameters of the investigated example 

Parameter 1 2 3 4 5 6 7 8 9 

𝐿�̂� (kg/s) 0.82 0.80 0.78 0.76 0.72 0.66 0.51 3.12 2.78 
𝑉�̂� (kg/s) 1.50 1.48 1.46 1.43 1.40 1.34 1.18 1.02 0.68 
𝜌�̂� (kg/m³) 753.76 754.64 755.64 756.92 758.84 762.57 776.27 873.01 900.73 
𝜌�̂� (kg/m³) 2.10 2.09 2.07 2.04 2.01 1.95 1.78 1.61 1.02 
�̂� (N/m)103 22.28 23.20 24.21 25.45 27.21 30.28 38.60 59.14 60.79 

Source: The author, 2022. 
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Table 2 – Candidate dimensions for the design variables 
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Dc 
(m - in) 

0.61 
24 

0.76 
30 

0.91 
36 

1.07 
42 

1.27 
50 

1.47 
58 

1.68 
66 

1.93 
76 

2.18 
86 

2.44 
96 

2.74 
108 

3.05 
120 

3.35 
132 

3.71 
146 

4.06 
160 

4.42 
174 

4.83 
190 

dh  
(mm - in) 

3.60 
9/64 

4.00 
5/32 

4.40 
11/64 

4.80 
3/16 

5.20 
13/64 

5.60 
7/32 

6.00 
15/64 

6.40 
1/4          

hdwap 
(mm) 5.00 6.00 7.00 8.00 9.00 10.0            

hw 
(cm - in) 

3.81 
1 1/2 

4.44 
1 3/4 

5.08 
2 

5.71 
2 1/4 

6.35 
2 1/2 

6.98 
2 3/4 

7.62 
3 

8.25 
3 

1/4 
8.89 
3 1/2         

lt (m - in) 0.15 
6 

0.23 
9 

0.31 
12 

0.47 
18 

0.62 
24 

0.91 
36            

lw 
(m - in) 

0.41 
16 

0.66 
26 

0.91 
36 

1.17 
46 

1.42 
56 

1.68 
66 

1.93 
76 

2.18 
86 

2.44 
96 

2.69 
106 

2.95 
116 

3.20 
126 

3.45 
136 

3.71 
146 

3.96 
156   

lp (mm) 9.00 12.0 15.0 18.0 21.0 24.0            

tt (mm) 3.40                 

lay square triangular              

Source: The author, 2022. 

 

Table 3 – Shell thickness for each column diameter 
Dc (m) 0.61 0.76 0.91 1.07 1.27 1.47 1.68 1.93 2.18 2.44 2.74 3.05 3.35 3.71 4.06 4.42 4.83 

twall (mm) 5 5 5 7 7 7 7 7 9 9 10 12 12 12 12 12 12 

Source: The author, 2022. 

 

The result of the power analysis is shown in Table 6. The initial number of candidates 

where those constraints are applied corresponds to 738,900. We conclude that the weeping 

and residence time are the sets that quickly eliminate a large number of candidates, and for 

this reason, they should be applied first. Downcomer backup calculations are needed for the 

evaluation of the residence time so this precedence order is preserved. The sets of flooding 

and entrainment are the last conditions because they eliminate few candidates per unit time. 
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Table 6 – Power analysis of Set Trimming 

Constraint Candidates 
eliminated  

Fraction of 
candidates 
eliminated 

Computational 
time (s) 

Candidates 
eliminated per 

second 

Flooding 13680 1.75% 49.77 274.86 

Entrainment 13716 1.75% 49.52 276.98 

Weeping 739032 94.28% 48.25 15316.73 
Downcomer 

backup 26384 3.37% 63.08 418.26 

Residence time 233160 29.74% 59.52 3917.34 
Source: The author, 2022. 

 

The computational time employed by Set Trimming using the sequence determined by 

the power analysis is shown in Table 7. Table 7 also shows the computational time of a 

different arbitrary sequence. We observe that this sequence is associated with a computational 

time that is almost double the one obtained using the sequence determined by the power 

analysis, which illustrates the importance of a proper ordering of the constraints in the Set 

Trimming procedure and the effectiveness of the power analysis to provide a good sequence. 

We remark that this choice is not universal. A study analyzing several different columns with 

different vapor and liquid traffic might reveal different sequences to be more efficient under 

specific flowrate traffic conditions.  

 

Table 7 – Set Trimming computational time using two different sequences of constraints 
Constraint order Time (s) 

Power analysis: Weeping / Downcomer backup / Residence time / Flooding / Entrainment 43.66 

Arbitrary: Flooding / Entrainment / Weeping / Downcomer backup / Residence time 84.14 

Source: The author, 2022. 

 

The results of the application of the technique of Set Trimming with the objective 

function column cost (Eq. (157)) are shown in Table 8, where the number of candidates after 

the trim using each constraint is shown.  
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Table 8 – Number of active candidates after the trim related to each constraint 

Constraint Number of active candidates 

Starting set 7,931,520 
Geometric 1 – max lw 4,167,936 
Geometric 2 – min lp 3,560,112 

Geometric 3 – max hw 1,648,200 
Geometric 4 – min Ah/Aa 924,600 
Geometric 5 – max Ah/Aa 738,900 

Weeping 44,868 
Downcomer backup 27,286 

Residence time 18,587 
Flooding 18,301 

Entrainment 18,097 
Source: The author, 2022. 

 

According to Table 8, the search space of the optimization problem is composed of 

7,931,520 candidates. The Set Trimming procedure identifies only 18,097 (0.22 %) feasible 

design alternatives. We observe that the operational constraints (Eqs. (132-156)) are applied 

to a considerably lower number of candidates, which is a fundamental aspect of the 

computational efficiency of the Set Trimming procedure. 

After the Set Trimming procedure, the optimal solution can be identified through the 

application of a simple sorting procedure. The results of the sorting procedure are presented in 

Table 9, which shows the number of feasible candidates identified by the Set Trimming and 

the number of candidates sharing the lowest value of the objective function. Two alternative 

objective functions are considered: cost (Eq. (157)) and mass (Eq. (160)). The optimal values 

obtained for both objective functions, $ 28,915.69 and 1335.52 kg, respectively, are the same 

as the ones found by Souza et al. (2022) 

Because there are multiple candidates with the same value of the objective function, it 

is possible to apply a second criterion to the optimal set. This feature of Set Trimming allows 

the user to analyze the final set of solutions with the lowest value of the objective function to 

consider other aspects of the problem. In our case, we use a second sorting to identify the 

subset of optimal candidates with the lowest pressure drop (P): 

∆𝑃 = �̂� ∑ ℎ𝑡𝑠𝑁𝑡𝑠𝑁𝑡 𝜌�̂�𝑠𝑁𝑡  (167) 

where �̂� is the gravity acceleration. According to Table 9, there are 6 candidates with the 

lowest pressure drop with optimal cost and a single candidate with the lowest pressure drop 
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with minimal mass. In both cases, the smallest value of pressure drop is 6,254.94 N/m² (0.907 

psi), which is relatively low. 

 

Table 9 – Candidates sharing the same optimal objective function values 
 Objective function 

Sorting Cost Mass 
Number of feasible candidates 18,097 18,097 

Candidates with the minimum objective function 354 5 
Candidates in the subset featuring minimum ΔP 6 1 

Source: The author, 2022. 

 

The optimal values of the design variables with the smallest pressure drop are 

presented in Table 10. Among the 6 candidates of optimal cost and smallest pressure drop, the 

hdwap is the only variable that changes among all candidates. We remark that this variable 

has no effect on pressure drop, which explains the multiplicity of results. The results 

correspond to the lowest height of the liquid in the downcomer backup. 

 

Table 10 – Optimal design variables 
 Objective function 

Variable Cost Mass 
Dc (m) 0.9144 0.9144 
dh (m) 0.0036 0.0036 

hdwap (m) 0.005 0.005 
hw (m) 0.0381 0.0381 
lt (m) 0.4572 0.4572 
lw (m) 0.6604 0.6604 
lp (m) 0.009 0.009 

lay triangular triangular 
Cost ($) 28915.69 28915.69 

Mass (kg) 1335.52 1335.52 
ΔP (N/m²) 6254.94 6254.94 

Source: The author, 2022. 

 

The histogram in Figure 8 shows the distribution of column costs for the 18,097 

feasible candidates identified by the Set Trimming technique. In this histogram, the minimum 

cost of $ 28,915.69, associated with only 354 candidates, corresponds to less than 2% of the 

total of feasible candidates. Among the objective function values of the feasible candidates, 

there are several alternatives with objective function values much higher than the optimum 



66 
 

 

value, some up to 115% more expensive. These data indicate that just guaranteeing a feasible 

solution as a result of the design can imply high costs, thus questioning the value of trial-and-

verification procedures.  

 

Figure 8 – Histogram of the column cost of the feasible alternatives 

 
Source: The author, 2022. 

 

Design textbooks present heuristics that aim to guide the designer to a “good” 

solution. Towler and Sinnott (2013) suggested the following values for the ratios Adc/Ac and 

Ah/Aa: 0.12 and 0.10, respectively. Therefore, one can identify which solution candidates 

present similar ratios of this type, within the bounds: 

0.09 ≤
𝐴𝑑𝑐

𝐴𝑐
≤ 0.15 (168) 

0.08 ≤
𝐴ℎ

𝐴𝑎
≤ 0.12 (169) 

The histogram of all feasible options, which comply with the heuristics conditions 

according to Eqs. (168)-(169), is given in Figure 9. We observe that the heuristics are useful 

to eliminate a large number of expensive candidates. However, the number of optimal 

candidates is still a small fraction of the set of candidates: the optimal candidates are only 

10% of the total number of candidates that follows the heuristics, i.e. from the histogram, we 

conclude that there is only 10% chance that a designer that follows the heuristics picks a 

column of minimum cost. Likewise, there is a 45% chance that the designer can pick a 

solution with a 27% higher cost. We also note that among the set of columns of minimum 
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cost, only 180 of the 354 feasible columns follow the guidelines. Incidentally, among the 6 

columns with minimum pressure drop, all follow the heuristic condition of Adc/Ac and none 

follow the heuristic condition of Ah/Aa. 

 

Figure 9 – Histogram of the column cost, heuristic results 

 
Source: The author, 2022. 

 

Figure 10 shows the histogram with the distribution of column mass for the 18,097 

feasible candidates identified by the Set Trimming technique. We observe that 20 of 18,097 

candidates (0.11%) present a mass of 1336 kg, close to the optimum shown in Table 10. 

Without an optimization tool, an inexperienced designer could find a feasible column up to 4 

times heavier than the optimum. Roughly, the probability of this event is 10%.  
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Figure 10 – Histogram of the column mass of the feasible alternatives 

 
Source: The author, 2022. 

 

The histogram based on mass, presented in Figure 11, shows all the feasible options 

which comply with the heuristics conditions. In this histogram, there is only 10% of the 

solutions that follow the heuristics close to the optimum (1340-1344 kg) and 45% of the 

heuristic-based solutions have a mass around 77% heavier than the optimum. Therefore, there 

is a considerable chance that a designer that follows the heuristics get a poor solution. 

 

Figure 11 – Histogram of the column mass, heuristic results 

 
Source: The author, 2022. 
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The sieve tray performance diagram is illustrated in Figure 12. This figure shows the 

operating point (vapor and liquid flow rates, for tray 5) and the area of the satisfactory 

operation, bounded by tray stability limits: entrainment, flooding, downcomer backup, and 

weeping. The operational point must be inside the area of satisfactory operation.  

Figure 12a shows the results for the minimum cost solution ($ 28,915.69) and Figure 

12b shows the results of a tray with a $ 61,884.37 cost. The satisfactory operating area 

depends on the geometric variables of the trays. For each different tray, the curves of the 

operating limits change, but the operating point remains the same. The comparison of Figures 

12a and 12b indicates that the large cost of the latter is associated with oversizing. The 

expensive tray can be used for other operating points with different liquid and vapor flows, 

while the optimal tray, should only be used for operating points close to the ones in the 

example because it has a smaller operating area. 

 

Figure 12 – Sieve tray performance diagram 

Weeping

Entr
ain

men
t Flooding

Downcomer 

Backup

 

Weeping

Entrainment

Downcomer Backup

Flooding

 
(a)       (b) 

Subtitle: (a) optimal tray: Dc = 0.9144 m, dh = 0.0036 m, hdwap = 0.005 m, hw  = 0.0381 m, lt = 0.4572 m, lw = 
0.6604 m, lp = 0.009 m, lay = triangular - (b) expensive tray: Dc = 1.4732 m, dh = 0.0036, hdwap = 
0.005 m, hw = 0.0381 m, lt = 0.9144 m, lw = 1.4224 m, lp = 0.009 m, lay = triangular. 

Source: The author, 2022. 
 

 

2.8 Computational comparison with the MINLP approach 

 

 

The computational performance of the proposed Set Trimming procedure for column 

tray design is compared with the mathematical programming of the Mixed-Integer Nonlinear 

Model (MINLM) described in Souza et al. (2022), using different solvers: ANTIGONE 1.1 
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(Misener; Floudas, 2014) and BARON 16.3.4 (Sahinidis, 1996). All of the tests involving 

mathematical programming were conducted using default initial estimates and a stopping 

criterion of 0% gap between the upper and lower bounds. 

To provide a clearer assessment of the comparison of the performance of Set 

Trimming and mathematical programming, the tests were conducted using 32 different 

optimization runs. The runs were based on the tray design problem presented above, for both 

objective functions, and associated with different sets of values of the liquid and vapor flow 

rates as well as different search spaces. The set of tested distillation column flow rates 

corresponds to the values reported in Table 1 multiplied by 0.5, 1.0, 2.0, and 3.0. The tested 

search spaces were generated through an increase of the number of possible values for the 

column diameters (the search space of the other variables was not modified), therefore, the 

corresponding tested sample was composed of 7,931,520 candidates, 9,331,200 candidates, 

10,730,880 candidates, and 12,130,560 candidates. The details of each run are shown in the 

Appendix B, where the objective function and the computational time employed by each 

solution method are reported. 

The analysis of the values of the optimal objective function of each run indicates that 

Set Trimming always finds the lowest cost solution. Despite the global nature of the solvers 

ANTIGONE and BARON, the lowest-cost solution was not found in a considerable fraction 

of the test sample. ANTIGONE solutions were trapped in a local optimum in 13 runs (41% of 

the sample). BARON did not converge in 5 runs (16% of the sample) and was trapped in a 

local optimum in 8 runs (25% of the sample). 

Among the set of runs where the mathematical programming solver attained the lowest 

value of the objective function (19 ANTIGONE and BARON runs), an analysis of the 

computational time indicates that Set Trimming was faster than ANTIGONE in 8 runs (42% 

of this sample) and faster than BARON in 12 runs (63%). 

Another comparison was done asking that mathematical programming finds other 

solutions with the same optimal cost, the same way as Set Trimming. To do this, we added in 

mathematical programming the following constraints that remove the previously found 

solution (Floudas, 1995). 

∑ �̂�𝑖,𝑗𝑦𝑥𝑖𝑖 − (�̂�𝑗 − 1) ≤ 0 (170) 

�̂�𝑖,𝑗 = {
1,
−1,

  
𝑖𝑓 𝑦𝑥𝑖 = 1 
𝑖𝑓 𝑦𝑥𝑖 = 0

 (171) 

�̂�𝑗 = ∑ �̂�𝑖,𝑗𝑖 , ∀  �̂�𝑖,𝑗 = 1  (172) 
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where i is a set of binary variables, j is a set of constraints, �̂�𝑖,𝑗 and �̂�𝑗 are parameters. Then, 

for each new solution, a new constraint is added to the set j. The variable x is related to the 

corresponding set of binary variables by: 

𝑥 = ∑ 𝑝�̂�
𝑖
𝑦𝑥

𝑖𝑖  (173) 

∑ 𝑦𝑥
𝑖
= 1𝑖  (174) 

After adding these equations to the mathematical programming formulations using a 

recursive algorithm, the solvers ANTIGONE and BARON could identify only 3 least-cost 

solutions in 121 s and 150 s, respectively. Thus, comparing Set Trimming and mathematical 

programming, Set Trimming obtained a set of 354 least-cost solutions in 43.66 s, while 

mathematical programming fails to obtain all and employs three times as much time to obtain 

only 3 of the 354 solutions. 

A similar procedure was applied for the identification of the set of least-cost solutions 

with minimum pressure drops. In this case, the mathematical programming formulations were 

modified by substituting the objective function to use the minimization of the pressure drop 

and the insertion of an additional constraint of an upper bound on the cost, equivalent to the 

minimum cost already found. The minimization of pressure drop after minimizing the cost 

using the solver ANTIGONE identified all 6 solutions in 108.44 s. The same procedure using 

BARON could not identify a solution. The Set Trimming obtained the 6 solutions in 43.66 s. 

 

 

2.9 Conclusions 

 

 

This paper presented a method to obtain a globally optimal design of distillation 

column trays, determining the independent geometrical variables of the tray. Two alternative 

objective functions were studied: minimization of column cost and mass. The method used is 

Set Trimming, to sequentially eliminate alternatives that do not follow the inequality 

constraints. 

The analysis of the optimization results indicates that the results found for Set 

Trimming, after the sorting step, would unlikely be found by a designer guided by heuristic 

rules. However, the sorting step depends on a designer to select the best candidate. 

Another important aspect of the Set Trimming procedure is its capacity to identify all 

of the global optima of the problem. Therefore, the user can analyze the different optimal 
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solutions, considering other aspects of the problem to choose the more adequate alternative. A 

similar result using mathematical programming demands a set of recursive runs, which is 

computationally expensive. 

A comparison with two different global solvers (ANTIGONE and BARON) indicates 

that Set Trimming is more robust than MINLP approaches. For a given sample of 

optimization problems, Set Trimming always attained the lowest value of the objective 

function, but mathematical programming approaches were trapped in a local optimum or did 

not converge in a considerable number of runs (41% of the sample). The computational time 

of the Set Trimming runs was competitive when compared with the mathematical 

programming runs. 

Therefore, because of its robustness and computational efficiency, the proposed 

procedure can be a useful tool for the design of distillation columns, especially in situations 

where its recursive use is needed, such as in design under uncertainty.  
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3 IMPROVED CORRELATIONS FOR THRESHOLD FLOODING AND 

ENTRAINMENT IN SIEVE TRAYS IN DISTILLATION/ABSORPTION 

COLUMNS 

 

 

The data available in the literature about flooding and entrainment in 

distillation/absorption columns were originally reported in graphs. Aiming at the use of these 

data for computational applications, several algebraic correlations were proposed for 

evaluation of the Souders-Brown flooding constant (Csb) and the fractional entrainment (𝜓). 

In this article, we revisit these correlations, using the graphs presented by Fair (1961) as a 

source of data and targets to match. We digitized these graphs to obtain a set of points for 

each reported curve. Comparing these data with the correlations predictions, we show that 

there are considerable deviations. Therefore, we use the collected dataset to re-estimate the 

parameters of several correlations, also exploring the scheme of splitting the domain of a 

correlation in multiple regions and estimate parameters for each region. We found that our 

results reduce the error of the original correlations significantly. We also conducted a study of 

how the correlations with their original parameters behave when used for designing trays. We 

show that the mentioned deviations of these correlations can affect the design problem 

solution, which emphasizes the importance to use the results presented here. 

 

 

3.1 Introduction 

 

 

The design of sieve trays in distillation/absorption columns is usually performed by 

checking proposed geometries for their performance using several hydraulic extremes, namely 

flooding, entrainment, weeping, downcomer choking, and residence time (Kister, 1992; 

Towler; Sinnott, 2013; Wankat, 1988). Some of these tests are based on data that were 

originally presented in the form of graphs. In this article, we are concerned with two: flooding 

and entrainment. 

With the increased use of computers for process equipment design, the need to rely on 

equations, instead of manual data extraction from graphs emerged. Thus, several correlations 

attempting to fit the data from these graphs into different expressions as a function of the 

independent variables were developed. 
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Correlations for the flooding graphical information presented by Fair (1961) (also 

reproduced in Fair (1963), Coulson et al. (2005), and Kister et al. (2008)) were proposed by 

Economopoulos (1978), Lygeros e Magoulas (1986), Kessler and Wankat (1988), and Ogboja 

and Kuye (1990). In turn, correlations for entrainment were proposed by Economopoulos 

(1978), Lygeros and Magoulas (1986), and Ogboja and Kuye (1990). Later, these correlations 

were employed by many authors involving different separation systems and problems. 

The correlations proposed by Economopoulos (1978) were employed for the hydraulic 

design of CO2 and H2S absorbers (Al-Baghli et al., 2001). The correlations proposed by 

Lygeros e Magoulas (1986) were employed in investigations of the interactions between 

optimal design and control, involving double-effect distillation (Bansal et al., 2000), reactive 

distillation (Georgiadis et al., 2002; Miranda et al., 2008), and multicomponent distillation 

(Bansal; Perkins; Pistikopoulos, 2002). These correlations were also used for the analysis of 

other separation systems, such as: supercritical fluid extraction (Boukouvalas; Magoulas; 

Tassios, 1998), high pressure separation of carbon dioxide and methane (Pereira et al., 2011), 

dehydration of natural gas using triethylene glycol (Jaćimović et al., 2011), and azeotropic 

separation processes with ionic liquids (Chen et al., 2019). The correlation of Kessler and 

Wankat (1988) for flooding was used for modelling an ammonia absorber of an ammonia-

water refrigeration cycle (Chávez-Islas; Heard, 2009). The liquid entrainment correlation of 

Ogboja and Kuye (1990) was employed for the nonequilibrium modelling of multicomponent 

separation processes (Taylor; Kooijman; Hung, 1994). More recently, the correlations of 

Ogboja and Kuye (1990) were employed in the optimal design of sieve plates using mixed-

integer nonlinear programming (Souza; Bagajewicz; Costa, 2022). 

The accuracy of the results from the papers mentioned above depends on the accuracy 

of the employed correlations. Therefore, it is important to evaluate how close the correlations 

predictions are from the original Fair’s data and try to reduce the corresponding errors. The 

availability of more accurate predictions is important for future works about analysis and 

optimization of distillation/absortion columns using computational tools. 

According to these needs, we compare in this article the correlations predictions with 

the Fair’s dataset, identifying the errors associated with each alternative and providing more 

accurate options based on the same correlations. The reduction of the errors associated with 

these correlations was attained by a reevaluation of the correlation parameters through the 

solution of parameter estimation problems using modern optimization algorithms. The split of 

the correlations domain and the estimation of the parameters for each resultant region was 

also employed to provide more accurate results. It is important to observe that the original 
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correlations were published from 1978 until 1990, i.e. the original parameters were 

determined using older optimization tools, which can explain the accuracy problems shown in 

this paper (according to our knowledge, there are not newer alternatives of correlations 

available in the literature). 

The current article is organized as follows. Section 3.2 presents the published 

correlations of flooding and entrainment associated with an analysis of the corresponding 

errors in relation to the original data from Fair (1961). Section 3.3 presents the objective 

function for the estimation of the parameters. Section 3.4 presents the results of the parameter 

estimation of the correlations applied in this paper. Section 3.5 illustrates the application of 

the correlations with the original and new parameters for the design of distillation columns. 

The conclusions are finally presented in Section 3.6. 

 

 

3.2 Accuracy of the correlations available in the literature 

 

 

To determine the accuracy of the models found in the literature, we obtained 

numerical values of Fair’s curves using the Engauge Digitizer software version 4.1 (Mitchell 

et al., 2002) and calculated the errors of the correlations proposed to fit the original curves. 

The data collection corresponds to 328 points about flooding and 379 points about 

entrainment, individually reported in the Appendix C. 

 

 

3.2.1 Flooding correlations 

 

 

A flooding correlation usually determines the limiting velocity of the vapor (𝑢𝑓𝑙𝑜𝑜𝑑) 

in the active zone. In tray rating/design, the following constraint is used (Towler; Sinnott, 

2013):  

𝑢𝑛 ≤ 0.85 𝑢𝑓𝑙𝑜𝑜𝑑 (175) 

This correlation states that the velocity (𝑢𝑛) of the vapor in the active zone must be below 

85% of the flooding velocity (𝑢𝑓𝑙𝑜𝑜𝑑). In turn, the flooding velocity is given by: 

𝑢𝑓𝑙𝑜𝑜𝑑 = 𝐾 𝐶𝑠𝑏√
𝜌𝑙−𝜌𝑣

𝜌𝑣
(
𝜎

0.02
)
0.2

  (176) 
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where 𝜌𝑙 and 𝜌𝑣 are the liquid and vapor densities, respectively, 𝜎 is the surface tension, 𝐾 is 

a constant depending exclusively on the tray geometry and 𝐶𝑠𝑏  is the Souders-Brown 

constant. The Souders-Brown constant depends on the tray spacing (lt) and the liquid-vapor 

flow factor (Flv): 

𝐹𝑙𝑣 =
𝐿

𝑉
√
𝜌𝑣

𝜌𝑙
  (177) 

where 𝐿 and 𝑉 are the liquid and vapor flow rates, respectively.  

Fair (1961) presented graphs from which one is supposed to extract the value of 𝐶𝑠𝑏. 

Several correlations were proposed to obtain 𝐶𝑠𝑏 algebraically, where the parameter values 

were obtained by undisclosed methods (maybe nonlinear fitting): Economopoulos (1978), 

Lygeros e Magoulas (1986), Kessler and Wankat (1988), and Ogboja and Kuye (1990). These 

correlations are shown next, according to the original units of lt presented in the respective 

papers: 

 Economopoulos (1978): 

𝐶𝑠𝑏 = min[𝜃𝐶𝑠𝑏,1 exp(𝜃𝐶𝑠𝑏,2 𝑙𝑡(in)), 𝜃𝐶𝑠𝑏,3 exp(𝜃𝐶𝑠𝑏,4𝑙𝑡(in))(𝜃𝐶𝑠𝑏,5 + 𝜃𝐶𝑠𝑏,6 ln 𝐹𝑙𝑣)] (178) 

 Lygeros e Magoulas (1986): 

𝐶𝑠𝑏 = 𝜃𝐶𝑠𝑏,1 + 𝜃𝐶𝑠𝑏,2 [𝑙𝑡(m)]
𝜃𝐶𝑠𝑏,3exp(−𝜃𝐶𝑠𝑏,4 𝐹𝑙𝑣

𝜃𝐶𝑠𝑏,5) (179) 

 Ogboja and Kuye (1990): 

𝐶𝑠𝑏 = 𝜃𝐶𝑠𝑏,1 + 𝜃𝐶𝑠𝑏,2 𝑙𝑡(m) + 𝜃𝐶𝑠𝑏,3 𝐹𝑙𝑣 + 𝜃𝐶𝑠𝑏,4𝑙𝑡(m) 𝐹𝑙𝑣 + 𝜃𝐶𝑠𝑏,5𝐹𝑙𝑣
2 + 𝜃𝐶𝑠𝑏,6 𝑙𝑡(m) 𝐹𝑙𝑣

2 (180) 

Kessler and Wankat (1988), quadratic expressions: 

log10 𝐶𝑠𝑏 = −𝜃𝐶𝑠𝑏,1 − 𝜃𝐶𝑠𝑏,2 log10 𝐹𝑙𝑣 − 𝜃𝐶𝑠𝑏,3(log10 𝐹𝑙𝑣)
2   (181) 

Kessler and Wankat (1988), cubic spline expressions: 

For 𝐹𝑙𝑣 ≤ 0.1: 

log10 𝐶𝑠𝑏 = −𝜃𝐶𝑠𝑏,1 − 𝜃𝐶𝑠𝑏,2 (log10 𝐹𝑙𝑣 + 2) + 𝜃𝐶𝑠𝑏,3(log10 𝐹𝑙𝑣 + 2)
2 

−𝜃𝐶𝑠𝑏,4(log10 𝐹𝑙𝑣 + 2)
3 (182) 

For 𝐹𝑙𝑣 > 0.1: 

log10 𝐶𝑠𝑏 = −𝜃𝐶𝑠𝑏,1 − 𝜃𝐶𝑠𝑏,2 (log10 𝐹𝑙𝑣 + 1) + 𝜃𝐶𝑠𝑏,3(log10 𝐹𝑙𝑣 + 1)
2 

−𝜃𝐶𝑠𝑏,4(log10 𝐹𝑙𝑣 + 1)
3 (183) 

where 𝜃𝐶𝑠𝑏,𝑘 , for k = 1,…, 6, are correlation parameters, displayed in Tables 11-13 (the 

parameters of the quadratic and cubic correlations of Kessler and Wankat (1988) depend on 

the tray spacing and the parameters of the cubic correlation also depend on the Flv range). 
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Table 11 – Parameters of the correlations of Economopoulos (1978), Lygeros e Magoulas 
(1986), and Ogboja and Kuye (1990) 

Correlation 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 𝜃𝐶𝑠𝑏,6 
Economopoulos (1978) 0.118 0.0479 0.425 0.0479 0.1092 -0.058 

Lygeros e Magoulas (1986) 0.0105 0.1496 0.755 1.463 0.842 - 
Ogboja and Kuye (1990) 0.0129 0.1674 0.0063 -0.2686 -0.008 0.1448 

Source: Economopoulos, 1978; Lygeros; Magoulas, 1986; Ogboja; Kuye, 1990. 

 

Table 12 – Parameters of the correlation of Kessler and Wankat (1988), quadratic expression 
Tray spacing (in) 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 

6 1.1977 0.53143 0.18760 
9 1.1622 0.56014 0.18168 
12 1.1175 0.61567 0.19510 
18 1.0262 0.63513 0.20097 
24 0.94506 0.70234 0.22618 
36 0.85984 0.73980 0.23735 

Source: Kessler; Wankat, 1987. 

 

Table 13 – Parameters of the correlation of Kessler and Wankat (1988), cubic expression 
Tray spacing (in) Flv 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 

6 

≤ 0.1 

0.858 0.0398 0.148 0.112 
9 0.744 0.0598 0.100 0.0891 
12 0.646 0.00908 0.00179 0.0509 
18 0.538 0.0281 0.0319 0.0681 
24 0.420 0.0294 0.0636 0.0918 
36 0.301 0.0340 0.0389 0.0751 
6 

> 0.1 

0.862 0.0808 0.189 0.0515 
9 0.793 0.127 0.167 0.0605 
12 0.708 0.165 0.155 0.0729 
18 0.602 0.169 0.172 0.0673 
24 0.478 0.178 0.212 0.0623 
36 0.371 0.181 0.186 0.0985 

Source: Kessler; Wankat, 1987. 

 

Tables 14-18 present the errors of the correlations proposed by Economopoulos 

(1978), Lygeros e Magoulas (1986), Ogboja and Kuye (1990), and Kessler and Wankat 

(1988), respectively, as compared to the data extracted from the original Fair’s graph (Fair 

(1961)) (the values of tray spacing are depicted in these tables according to the original units 

of the correlation): 
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Table 14 – Errors of the flooding correlation by Economopoulos (1978) 

Tray spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 9.09 21.98 
9 5.44 15.76 
12 4.32 18.48 
18 5.56 37.99 
24 8.38 53.82 
36 52.33 85.06 

Source: The author, 2022. 
 
Table 15 – Errors of the flooding correlation by Lygeros and Magoulas (1986) 

Tray spacing (m) Average  
error (%) 

Maximum  
error (%) 

0.1524 5.02 15.90 
0.2286 5.05 21.52 
0.3048 4.24 13.26 
0.4572 4.56 15.09 
0.6096 3.12 6.67 
0.9144 2.51 4.57 

Source: The author, 2022. 

 

Table 16 – Errors of the flooding correlation by Ogboja and Kuye (1990). 

Tray spacing (m) Average  
error (%) 

Maximum  
error (%) 

0.1524 12.78 15.17 
0.2286 10.76 208.61 
0.3048 11.48 290.24 
0.4572 16.39 433.40 
0.6096 17.40 504.05 
0.9144 14.97 20.71 

Source: The author, 2022. 
 
Table 17 – Errors of the flooding quadratic correlation by Kessler and Wankat (1988) 

Tray spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 4.47 7.81 
9 5.10 9.79 
12 7.43 25.59 
18 5.06 15.27 
24 5.16 10.55 
36 6.67 15.63 

Source: The author, 2022. 
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Table 18 – Errors of the cubic flooding correlation by Kessler and Wankat (1988) 

Tray spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 1.24 7.47 
9 1.70 14.81 
12 2.99 11.96 
18 2.42 11.82 
24 2.60 9.83 
36 5.53 7.84 

Source: The author, 2022. 
 

Figures 13-17 show the points of the data extracted from the original curve and the 

curves of the correlations of Economopoulos (1978), Lygeros and Magoulas (1986), Ogboja 

and Kuye (1990), and Kessler and Wankat (1988). The original set of points were reduced 

from 328 to 45 in these figures for better visualization. The points associated with the 

maximum errors of each correlation are marked in the graph to provide an identification of the 

regions with higher deviations between the correlation and the original data. 

 

Figure 13 – Comparison of the original data of the Souders-Brown constant with the 
correlation proposed by Economopoulos (1978). 

 

Source: The author, 2022. 
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Figure 14 - Comparison of the original data of the Souders-Brown constant with the 
correlation proposed by Lygeros and Magoulas (1986). 

 
Source: The author, 2022. 
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Figure 15 – Comparison of the original data of the Souders-Brown constant with the 
correlation proposed by Ogboja and Kuye (1990). 

 
Source: The author, 2022. 
 
Figure 16 – Comparison of the original data of the Souders-Brown constant with the quadratic 
correlation proposed by Kessler and Wankat (1988). 

 
Source: The author, 2022. 
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Figure 17 - Comparison of the original data of the Souders-Brown constant with the cubic 
correlation proposed by Kessler and Wankat (1988). 

 
Source: The author, 2022. 

 

The analysis of the accuracy of each correlation indicates the presence of large errors, 

which can compromise the results of the computational applications that use these 

correlations. 

The correlation of Economopoulos (1978) presents lower accuracy for larger values of 

tray spacing. It is possible to observe in Figure 13 that the results of this correlation are far 

from the Fair’s data along the entire dataset of the 36 in tray spacing (the maximum error here 

is 85.06%). 

The correlation of Lygeros and Magoulas (1986) is more accurate, with a maximum 

error of 21.52% (but it is still considerably large). Figure 14 indicates that the higher 

deviations are concentrated in the data with smaller values of Flv. 

The correlation of Ogboja and Kuye (1990) presents average errors higher than the 

correlations of Economopoulos (1978) and Lygeros and Magoulas (1986). The maximum 

errors are particularly high because the profile of the curves for large values of Flv are in an 

opposite trend when compared with the Fair’s data, as it can be observed in Figure 15. 

The correlation of Kessler and Wankat (1988) based on a cubic expression presents a 

better performance than the quadratic expression. The average errors are the smallest ones, 
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compared with the other correlations, but there are errors up to 14.81%. The best performance 

of this correlation can be explained by the separation of the domain in different regions of tray 

spacing and Flv. Additionally, Kessler and Wankat (1988) correlation are only available for 

the discrete values of tray spacing reported in Fair (1961) (the dependency with the tray 

spacing in the other correlations are explicitly include in the mathematical expression). 

 

 

3.2.2 Entrainment correlations 

 

 

Entrainment in sieve trays is controlled by limiting the fractional entrainment (𝜓), 

which is defined as the fraction of liquid carried to the tray above by the vapor. Typically, this 

limit corresponds to the following constraint, employed in rating/design procedures (Towler; 

Sinnott, 2013):   

𝜓(𝐹𝑓𝑙𝑜𝑜𝑑) ≤ 0.1 (184) 

where 𝐹𝑓𝑙𝑜𝑜𝑑 is the fractional flooding, in turn, defined by:  

𝐹𝑓𝑙𝑜𝑜𝑑 =  
𝑢𝑛

𝑢𝑓𝑙𝑜𝑜𝑑
 (185) 

Ogboja and Kuye (1990), Lygeros and Magoulas (1986), and Economopoulos (1978) 

proposed the following correlations: 

Ogboja and Kuye (1990): 

𝜓 = exp[𝜃𝜓,1 + 𝜃𝜓,2 𝐹𝑓𝑙𝑜𝑜𝑑 − (𝜃𝜓,3 + 𝜃𝜓,4 𝐹𝑓𝑙𝑜𝑜𝑑) ln(𝐹𝑙𝑣) + (𝜃𝜓,5 + 𝜃𝜓,6 𝐹𝑓𝑙𝑜𝑜𝑑 +

𝜃𝜓,7 𝐹𝑓𝑙𝑜𝑜𝑑
2 + 𝜃𝜓,8 𝐹𝑓𝑙𝑜𝑜𝑑

3)(ln(𝐹𝑙𝑣))2] (186) 

Economopoulos (1978): 

𝜓 = exp[−(𝜃𝜓,1 + 𝜃𝜓,2 𝐹𝑓𝑙𝑜𝑜𝑑)𝐹𝑙𝑣
(𝜃𝜓,3+𝜃𝜓,4𝐹𝑓𝑙𝑜𝑜𝑑)] (187) 

Lygeros and Magoulas (1986): 

𝜓 = 𝜃𝜓,1 + 𝜃𝜓,2 exp[−𝜃𝜓,3𝐹𝑙𝑣
(𝜃𝜓,4)] (188) 

where 𝜃𝜓,𝑘 , for k = 1, …, 8, are correlation parameters (the parameters of the correlation of 

Lygeros and Magoulas (1986) depend on discrete values of fractional flooding), as depicted in 

Tables 19 and 20. 
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Table 19 – Parameters of the correlations of Ogboja and Kuye (1990) and Economopoulos 
(1978) for evaluation of the fractional entrainment 

Correlation 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 𝜃𝜓,5 𝜃𝜓,6 𝜃𝜓,7 𝜃𝜓,8 
Ogboja and Kuye (1990)  -7.9196 1.0891 0.0705 2.1916 0.046 -0.605 1.2699 -0.9563 
Economopoulos (1978) 6.692 1.956 -0.132 0.654 - - - - 

Source: Economopoulos, 1978; Ogboja; Kuye, 1990 

 

Table 20 – Parameters of the correlation of Lygeros and Magoulas (1986) for evaluation of 
the fractional entrainment 

Fractional flooding 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 
90% 0.51710-2 1.050 10.837 0.511 
80% 0.22410-2 2.377 9.394 0.314 
70% -0.50910-3 81.82 11.389 0.1317 
60% -0.86810-3 1537.05 14.205 0.0828 

Source: Lygeros; Magoulas, 1986 
 

Tables 21 – 23 present the errors of the models of Economopoulos (1978), Ogboja and 

Kuye (1990) and Lygeros e Magoulas (1986) as compared to the data extracted from the 

original Fair’s graph. 

 

Table 21 – Errors of the entrainment correlations by Economopoulos (1978). 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 20.73 42.68 
80 26.99 48.38 
70 28.94 50.60 
60 22.88 32.24 
50 6.23 13.61 
45 5.48 8.34 
40 2.95 5.79 
35 3.87 15.35 
30 9.49 31.56 

Source: The author, 2022. 
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Table 22 – Errors of the entrainment correlations by Ogboja and Kuye (1990). 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 9.02 23.69 
80 34.37 75.84 
70 36.24 82.41 
60 19.27 29.17 
50 7.18 24.22 
45 8.26 26.15 
40 5.69 16.22 
35 1.54 4.73 
30 23.63 47.92 

Source: The author, 2022. 
 

Table 23 – Errors of the entrainment correlations by Lygeros and Magoulas (1986) 

Fractional flooding Average  
error (%) 

Maximum  
error (%) 

90% 15.26 42.88 
80% 14.61 37.60 
70% 14.54 44.68 
60% 12.88 27.52 

Source: The author, 2022. 
 

Figures 18 – 20 show the points of the data extracted from the original Fair’s graph 

and the curves of the models of Economopoulos (1978), Ogboja and Kuye (1990), and 

Lygeros and Magoulas (1986). The original points in these figures were reduced from 380 to 

50 points for better visualization. The points associated with the maximum errors of each 

correlation are marked in the graph to provide an identification of the regions with higher 

deviations between the correlations and the original data. 
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Figure 18 - Comparison of the original data of entrainment fraction with the correlation 
proposed by Economopoulos (1978). 
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Source: The author, 2022. 
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Figure 19 - Comparison of the original data of entrainment fraction with the correlation 
proposed by Ogboja and Kuye (1990) 
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Source: The author, 2022. 
 
Figure 20 - Comparison of the original data of entrainment fraction with the correlation 
proposed by Lygeros and Magoulas (1986) 
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Source: The author, 2022. 
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The analysis of the performance of each correlation does not indicate clearly the most 

accurate alternative. The lowest average errors related to different values of fractional 

flooding are associated with different correlations (e.g. the lowest average error for the values 

of fractional flooding 35%, 40%, and 60% are associated with the correlations of Ogboja and 

Kuye (1990), Economopoulos (1978), and Lygeros and Magoulas (1986), respectively). 

The maximum errors associated with the correlations of Ogboja and Kuye (1990) and 

Lygeros and Magoulas (1986) are located at the lowest or at the highest values of Flv. The 

maximum errors of the correlation Economopoulos (1978) are located at the lowest or 

intermediate values of Flv. 

 

 

3.2.3 Critical analysis 

 

 

The investigated correlations present different performances, from good adherence to 

the original data to very poor fittings. The main question to be made is if these errors are 

tolerable, that is, if the design solutions obtained using these correlations would later violate 

the operational limits established. Additionally, considering optimization design problems, 

there is also the issue if the correlations will lead to suboptimal designs. 

In the rest of our article, we recalculate the parameters of the above presented 

correlations. In addition, we study situations in the design procedure where the correlation 

predictions indicate the acceptance of a distillation column that is, in reality, infeasible (i.e. a 

“false positive” result) and other situations where the correlation indicates that a certain 

distillation column is infeasible, but it is actually feasible (i.e. a “false negative” result). 

 

 

3.3 Parameter estimation procedure 

 

 

The previous section showed that the errors associated with the correlations available 

in the literature for the evaluation of flooding and entrainment can be significant. Therefore, 

aiming at reducing these errors, we applied a parameter estimation procedure to reevaluate the 

correlations parameters. 
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The objective function employed for the estimation of the parameters was the 

weighted least squares: 

𝐹𝑜𝑏𝑗 = Min𝜃 ∑
(𝑦𝑖

𝑔𝑟𝑎𝑝ℎ
(𝒙𝑖)−𝑦𝑖

𝑚𝑜𝑑𝑒𝑙(𝒙𝑖,𝜽))
2

𝜎𝑦,𝑖
2

𝑁𝑃
𝑖=1  (189) 

where i is the index of each data point collected from the Fair’s graphs (i = 1,…,NP), 𝒙𝑖  is the 

vector of the independent variable values at the data point i, 𝜽 is the vector of parameters to 

be estimated, 𝑦𝑖
𝑔𝑟𝑎𝑝ℎ(𝒙𝒊) is the data obtained from the Fair’s graph (Csb or ) for each set of 

independent variables 𝒙𝒊 (Flv and lt or only Flv for flooding correlations, Flv and Fflood or 

only Flv for the entrainment correlations) and 𝑦𝑖𝑚𝑜𝑑𝑒𝑙(𝒙𝒊, 𝜽) is the correlation prediction of 

the corresponding dependent variable associated with the set of independent variables 𝒙𝑖 and 

parameters 𝜽, and 𝜎𝑦,𝑖2  is the variance of the data points. The values of the variance of the data 

points are unknown, but we use 𝜎𝑦,𝑖2  to avoid a bias of the models output towards larger values 

of the dependent variables. Therefore, the value adopted for 𝜎𝑦,𝑖2  is 0.1𝑦𝑖
𝑔𝑟𝑎𝑝ℎ

(𝒙𝑖). This aspect 

is particularly important due to the large variations of the values of Csb and  in the dataset 

collected from the Fair´s graphs. 

 

 

3.4 Parameter estimation results 

 

 

The estimation of the parameters for the correlations of flooding and entrainment was 

conducted without any linearization procedure previously applied to the models. The 

parameter estimation procedures employed global optimization solvers initialized by the 

solutions obtained by local solvers, using the GAMS software (version 24.7.1). The unique 

exception was the parameter estimation of the flooding correlation using the Economopoulos 

(1978) correlation. In this case, the GAMS solvers failed, then the initialization was provided 

by a stochastic algorithm and the parameter estimation problem was solved using a local 

solver from Scilab. 

Aiming at providing additional error reductions of the correlation predictions, 

parameter estimations were also tried using the split of the domain. For each region, different 

set of parameters were obtained. The corresponding results are shown below. Equivalent 

results without the domain split of the parameter estimation are available in the Appendix C. 
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3.4.1 Flooding correlation 

 

 

In the flooding correlation, the parameters of the models of Lygeros and Magoulas 

(1986), Kessler and Wankat (1987), Ogboja and Kuye (1990) and Economopoulos (1978) 

were determined. 

The Flv domain was split into two regions, followed by the application of the 

parameter estimation procedure to each region separately (i.e. two sets of parameters were 

evaluated, each one valid for a given region). The split was made at the median of the values 

of Flv.  

 

 

3.4.1.1 Lygeros and Magoulas (1986) 

 

 

The parameters were determined for each discrete value of the tray spacing present in 

Fair’s data using the ANTIGONE solver (Misener; Floudas, 2014) with initial estimates 

provided by a previous CONOPT solver run (Drud, 1985).  

Table 24 shows the new parameters. The errors of the correlation with the new 

parameters are shown in Table 25. Figure 21 shows the corresponding comparison between 

the original data and the correlation. 
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Table 24 – New parameters for the correlation of Lygeros and Magoulas (1986), considering 
two regions 
Tray spacing 

(m) Flv 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 

0.1524 

≤ 0.12 

-83.6202 9.02113252 -
1.18390552 2.02951064 5.47697064 

0.2286 0.04761459 0.70987588 3.51949019 2.59157610+6 6.18532635 
0.3048 0.05633279 0.59564551 3.62416469 1.36792210+4 3.92480287 
0.4572 0.07300709 0.56207926 5.14476362 2.25335710+4 4.09383704 
0.6096 0.09482061 0.83479308 8.02227176 1.02296110+4 3.78047576 
0.9144 0.14942903 -0.00867470 0.63306988 -5.75281342 0.67489572 
0.1524 

> 0.12 

0.00976870 0.15259236 0.75500000 1.29662151 0.92188085 
0.2286 0.00514023 0.16754077 0.75499476 1.21933126 0.73465549 
0.3048 0.00701328 0.15604655 0.75500000 1.34131675 0.77460268 
0.4572 0.00567572 0.17037018 0.75500000 1.40632291 0.67788468 
0.6096 0.00771888 0.17865301 0.75500000 1.50815571 0.69988173 
0.9144 -0.01764596 0.23479760 1.94962958 1.17643572 0.53675747 

Source: The author, 2022. 
 

Table 25 – Errors of the flooding correlation by Lygeros and Magoulas (1986) with new 
parameters, considering two regions 

Tray spacing (m) Average  
error (%) 

Maximum  
error (%) 

0.1524 0.99 7.05 
0.2286 0.89 7.82 
0.3048 0.71 4.66 
0.4572 0.74 5.19 
0.6096 0.77 4.84 
0.9144 0.25 0.94 

Source: The author, 2022. 
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Figure 21 - Comparison of Fair’s data from Souders-Brown constant with the correlation 
proposed by Lygeros and Magoulas (1986) with new parameters, considering two regions 

 
Source: The author, 2022. 

 

 

3.4.1.2 Kessler and Wankat (1988) 

 

 

New parameters were estimated for the Kessler and Wankat (1988) correlation for 

each discrete value of the tray spacing. Only the quadratic equation was employed because it 

is simpler and provided a good fit. The parameter estimation problem was solved using the 

BARON solver (Sahinidis, 1996) associated with the CONOPT solver (Drud, 1985) to 

provide an initial estimate. 

Table 26 shows the new parameters after splitting Flv into two regions, Table 27 

shows the errors of the correlation with new parameters for each region and Figure 22 shows 

a comparison between the original data and the correlation predictions. 
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Table 26 – New parameters of the quadratic correlation of Kessler and Wankat (1988), 
considering two regions 

Tray spacing (in) Flv 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 
6 

≤ 0.1263 

1.0605 0.2969 0.1054 
9 1.0973 0.4533 0.1533 
12 1.0454 0.4795 0.1528 
18 0.9432 0.4925 0.1576 
24 0.8635 0.5450 0.1729 
36 0.8152 0.6473 0.2313 
6 

> 0.1263 

1.1837 0.5868 0.2814 
9 1.1563 0.6597 0.3127 
12 1.1110 0.7059 0.3320 
18 1.0270 0.7434 0.3360 
24 0.9423 0.7964 0.3596 
36 0.8393 0.7543 0.3245 

Source: The author, 2022. 

 

Table 27 - Errors of the flooding quadratic correlation by Kessler and Wankat (1988) with 
new parameters, considering two regions 

Tray Spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 0.46 2.47 
9 0.44 2.07 
12 0.45 2.48 
18 0.50 4.27 
24 0.52 1.82 
36 0.45 2.81 

Source: The author, 2022. 

 



94 
 

 

Figure 22 – Comparison of Fair’s data from Souders-Brown constant with the quadratic 
correlation proposed by Kessler and Wankat (1988) with new parameters, considering two 
regions 

 

Source: The author, 2022. 

 

 

3.4.1.3 Ogboja and Kuye (1990) 

 

 

New parameters were determined for each discrete value of the tray spacing for the 

Ogboja and Kuye (1990). The parameter estimation problem was solved using the BARON 

solver (Sahinidis, 1996) associated with the CONOPT solver (Drud, 1985) to provide an 

initial estimate.  

Table 28 shows the new parameters considering the split of the Flv range in two 

regions. The errors of the correlation with the new parameters are shown in Table 29 and 

Figure 23 shows the corresponding comparison between the original data and the correlation. 
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Table 28 – New parameters for the correlation of Ogboja and Kuye (1990), considering two 
regions 
Tray spacing (m) Flv 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 𝜃𝐶𝑠𝑏,6 

0.1524 

≤ 0.1263 

-0.4168 3.0206 -0.3346 1.9667 3.0713 -20.0825 
0.2286 0.0525 0 -0.0461 0 0.0138 0 
0.3048 0.7902 -2.3816 -0.2686 0.6759 -1.2452 4.1504 
0.4572 -1.2979 3.0206 -0.9831 1.9667 -0.3059 0.7279 
0.6096 0.1098 0 -0.1174 0 0.03841 0 
0.9144 -2.6236 3.0206 -1.9837 1.9667 3.0713 -3.2559 
0.1524 

> 0.1263 

0.0129 0.2011 0.0061 -0.2686 -0.008 0.1229 
0.2286 0.0129 0.1731 0.0153 -0.2686 -0.008 0.0954 
0.3048 0.0129 0.1688 0.0193 -0.2686 -0.008 0.0914 
0.4572 0.0129 0.1535 0.0388 -0.2686 -0.008 0.0763 
0.6096 0.0129 0.1589 0.0464 -0.2686 -0.008 0.0761 
0.9144 0.0129 0.1373 0.0603 -0.2686 -0.008 0.1116 

Source: The author, 2022. 

 

Table 29 – Error the flooding correlation by Ogboja and Kuye (1990) with new parameters, 
considering two regions 

Tray spacing (m) Average  
error (%) 

Maximum  
error (%) 

0.1524 1.94 9.88 
0.2286 3.20 18.81 
0.3048 4.16 29.10 
0.4572 4.55 37.23 
0.6096 5.46 43.77 
0.9144 2.01 10.38 

Source: The author, 2022. 
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Figure 23 – Comparison of Fair’s data from Souders-Brown constant with the correlation 
proposed by Ogboja and Kuye (1990) with new parameters, considering two regions 

 

Source: The author, 2022. 

 

 

3.4.1.4 Economopoulos (1978) 

 

 

The parameters were determined for each discrete value of the tray spacing present in 

Fair’s data considering the split of the Flv range in two regions. The Simplex optimization 

method (Nelder; Mead, 1965; Spendley; Hext; Himsworth, 1962) was used with initial 

estimates provided by the Particle Swarm Optimization (PSO) (Kennedy; Eberhart, 1995). 

Because of the stochastic nature of PSO, 10 parameter estimation runs were made and the one 

with the lowest objective function is presented here. 

The results are shown in Table 30. Table 31 shows the errors of the correlation with 

the new values of the parameters and Figure 24 shows the corresponding comparison between 

the original data and the correlation.  
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Table 30 – New parameters for the correlation of Economopoulos (1978), considering two 
regions 

Tray 
Spacing 

(in) 
Flv 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 𝜃𝐶𝑠𝑏,6 

6 

≤ 0.1263 

4.4000697 - 0.5775733 4.8304139 2.6799314 4.4557714 - 3.103613 
9 4.7269972 - 0.3699619 - 4.999006 - 0.5977399 - 4.9983493 0.8334274 

12 4.7459131 - 0.2593782 - 4.3885062 - 0.4428965 - 5.9949766 1.2393609 
18 4.9470236 - 0.1610794 - 4.9915123 - 0.2783693 - 4.9998887 1.0445176 
24 4.9999759 - 0.1093138 - 4.1404762 - 0.1918679 - 4.9961433 1.2133206 
36 4.1266714 3.1289251 - 3.6024925 - 0.1147729 - 4.6425641 0.9738661 
6 

> 0.1263 

4.5178369 - 0.5942546 4.8414634 - 0.9702420 4.6445794 - 2.557437 
9 3.7605707 - 0.3571457 4.6764574 - 0.6410964 4.8750665 - 3.0671162 

12 4.3937897 4.667488 4.9192652 - 0.4728603 4.7185437 - 3.1293533 
18 3.0470916 3.5050506 4.9563515 - 0.3076338 4.9621191 - 3.6316262 
24 3.3388334 3.2393369 4.7410224 - 0.2191914 4.797542 - 3.8619151 
36 3.8511541 3.7137044 4.6400848 - 0.1383541 4.6007155 - 3.6763634 

Source: The author, 2022. 

 

Table 31 – Error the flooding correlation by Economopoulos (1978) with new parameters, 
considering two regions 

Tray Spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 1.46 6.67 
9 1.45 7.89 
12 1.41 4.64 
18 1.21 5.17 
24 1.38 11.16 
36 0.91 4.11 

Source: The author, 2022. 
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Figure 24 – Comparison of Fair’s data from Souders-Brown constant with the correlation 
proposed by Economopoulos (1978) with new parameters, considering two regions 

 

Source: The author, 2022. 

 

 

3.4.1.5 Performance comparison 

 

 

Table 32 shows a comparison of the accuracy of the flooding correlations with the 

original parameters (Tables 14 and 18) and with the parameters obtained in this paper (Tables 

25, 27, 29 and 31) for different values of tray spacing. According to these data, there is a 

considerable reduction of the average and maximum errors (e.g. the upper bounds of the 

average and maximum error ranges were reduced by more than a half). 
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Table 32 – Performance comparison of the entrainment correlations with the original 
parameter and the new ones 

 Original parameters Parameters from this paper 

Correlation 
Average 

error range 
(%) 

Maximum 
error range 

(%) 

Average 
error range 

(%) 

Maximum 
error range 

(%) 
Lygeros and Magoulas (1986) 2.51 - 5.05 4.57 - 21.52 0.25 - 0.99 0.94 – 7.82 

Kessler and Wankat (1988) 1.24 - 5.53 7.47 - 14.81 0.44 – 0.52 1.82 – 4.27 
Ogboja and Kuye (1990) 10.76 - 17.40 15.17 - 504.05 1.94 – 5.46 9.88 – 43.77 
Economopoulos (1978) 4.32 - 52.33 15.76 - 85.06 0.91 – 1.46 4.11 – 11.16 

Source: The author, 2022. 

 

 

3.4.2 Entrainment correlation 

 

 

The parameters of the correlations of Economopoulos (1978), Ogboja and Kuye 

(1990), and Lygeros and Magoulas (1986) were reevaluated using the parameter estimation 

procedure discussed in the previous section. Considering the reduction of the error shown 

above through the split of the correlation domain, the same procedure was applied here. 

Instead of using a single set of parameters for the entire domain of the independent variables, 

the domain was split in a certain number of regions and the parameter estimation was applied 

for each region. 

 

 

3.4.2.1 Economopoulos (1978) 

 

 

The parameter estimation of the Economopoulos (1978) correlation model was done 

by splitting the domain of Flv and Fflood in 6 regions. The parameter estimation problem was 

solved using the ANTIGONE solver (Misener; Floudas, 2014) with initial estimates provided 

by a previous CONOPT solver run (Drud, 1985). The results are displayed in Table 33. Table 

34 shows the errors of the correlation with new parameters. Figure 25 shows the comparison 

between the Fair’s data and the correlation with new parameters. 
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Table 33 – New parameters of the correlation of Economopoulos (1978) for evaluation of the 
fractional entrainment 

Flv Fflood 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 
𝐹𝑙𝑣 ≤ 0.05 𝐹𝑓𝑙𝑜𝑜𝑑 ≥ 0.6 3.377 8.327 -0.211 0.773 

0.05 < 𝐹𝑙𝑣 ≤ 0.1 𝐹𝑓𝑙𝑜𝑜𝑑 ≥ 0.6 3.896 4.551 -0.273 0.734 
𝐹𝑙𝑣 > 0.1 𝐹𝑓𝑙𝑜𝑜𝑑 ≥ 0.6 7.758 -0.175 -0.062 0.478 
𝐹𝑙𝑣 ≤ 0.05 𝐹𝑓𝑙𝑜𝑜𝑑 < 0.6 3.862 9.567 -0.233 0.916 

0.05 < 𝐹𝑙𝑣 ≤ 0.1 𝐹𝑓𝑙𝑜𝑜𝑑 < 0.6 7.028 1.145 -0.098 0.563 
𝐹𝑙𝑣 > 0.1 𝐹𝑓𝑙𝑜𝑜𝑑 < 0.6 7.434 0.267 -0.071 0.503 

Source: The author, 2022. 

 

Table 34 – Errors of entrainment correlations by Economopoulos (1978) with new 
parameters, considering multiple regions 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 1.95 7.91 
80 1.56 7.10 
70 2.01 7.23 
60 2.72 11.40 
50 1.26 4.08 
45 1.42 3.75 
40 2.72 5.25 
35 2.96 4.92 
30 3.85 8.24 

Source: The author, 2022. 
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Figure 25 – Comparison of Fair’s data from entrainment fraction with the correlation 

proposed by Economopoulos (1978) with new parameters, considering multiple regions 

 

Source: The author, 2022. 

 

 

3.4.2.2 Ogboja and Kuye (1990) 

 

 

The parameter estimation of the correlation of Ogboja and Kuye (1990) was done by 

splitting the domain of Flv and Fflood in 3 regions using the solver CONOPT (Drud, 1985). 

The results are displayed in Table 35. Table 36 shows the errors and the corresponding 

standard deviation of the correlation with the new parameters. Figure 26 shows the 

comparison between the Fair’s data and the correlation prediction. 
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Table 35 – New parameters of the correlation of Ogboja and Kuye (1990) for evaluation of 
the fractional entrainment, considering multiple regions 

Flv  Fflood 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 𝜃𝜓,5 𝜃𝜓,6 𝜃𝜓,7 𝜃𝜓,8 
𝐹𝑙𝑣 ≤ 0.15  𝐹𝑓𝑙𝑜𝑜𝑑 ≥ 0.5 -7.395 0.324 -0.222 2.516 0.146 -0.430 0.234 -0.153 
𝐹𝑙𝑣 > 0.15 𝐹𝑓𝑙𝑜𝑜𝑑 ≥ 0.5 -7.743 0.270 -0.170 3.001 0.927 -3.806 4.706 -2.217 
∀𝐹𝑙𝑣 𝐹𝑓𝑙𝑜𝑜𝑑 < 0.5 -7.903 1.135 -0.073 2.066 -0.647 4.309 -10.301 8.308 

Source: The author, 2022. 

 

Table 36 – Errors of the entrainment correlations of Ogboja and Kuye (1990) with new 
parameters, considering multiple regions 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 1.17 4.58 
80 1.56 4.84 
70 2.54 6.09 
60 0.69 3.94 
50 1.51 3.57 
45 1.64 5.62 
40 2.03 4.25 
35 1.59 4.78 
30 2.69 4.44 

Source: The author, 2022. 
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Figure 26 – Comparison of the original data from entrainment fraction with the correlation 
proposed by Ogboja and Kuye (1990) with new parameters 
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 Source: The author, 2022. 

 

 

3.4.2.3 Lygeros and Magoulas (1986) 

 

 

The parameter estimation of the Lygeros and Magoulas (1986) correlation was done 

for each discrete value of the flooding fraction present in Fair’s graph using the solver 

CONOPT (Drud, 1985). 

The estimated parameters are shown in Table 37. Table 38 shows the errors of the 

correlation with the new parameters and Figure 27 shows the comparison between the Fair’s 

data and the correlation prediction. 
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Table 37 – New parameters of the correlation of Lygeros and Magoulas (1986) for evaluation 
of the fractional entrainment for each Fflood value 

Fflood (%) 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 
90 3.17810-3 1.262 9.116 0.4071 
80 2.06710-3 1.381 8.794 0.3322 
70 4.49910-4 4.741 9.054 0.2003 
60 -6.57510-4 23.761 10.264 0.1270 
50 -2.47510-4 531.301 13.484 0.0794 
45 -1.37710-4 38.812 11.025 0.0919 
40 -4.03510-4 6.598 8.946 0.0857 
35 -3.15210-4 0.0742 4.658 0.1666 
30 2.67710-4 0.0066 3.242 0.3532 

Source: The author, 2022. 

 

Table 38 – Errors of entrainment correlations by Lygeros and Magoulas (1986) with new 
parameters for each Fflood value 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 2.35 25.01 
80 3.01 22.32 
70 2.72 9.10 
60 0.24 3.40 
50 0.36 2.77 
45 0.19 1.02 
40 0.26 1.61 
35 0.18 0.56 
30 0.23 1.22 

Source: The author, 2022. 
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Figure 27 – Comparison of experimental data from entrainment fraction with the correlation 
proposed by Lygeros and Magoulas (1986) with new parameters 
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Source: The author, 2022. 
 

 

3.4.2.4 Performance comparison 

 

 

Table 39 shows a comparison of the accuracy of the entrainment correlations with the 

original parameters (Tables 21 - 23) and with the parameters obtained in this paper (Tables 

34, 36 and 38) for different values of fractional flooding. It is possible to observe that a large 

improvement of the model predictions was attained. 
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Table 39 – Performance comparison of the entrainment correlations with the original 
parameter and the new ones 

 Original parameters Parameters from this paper 

Correlation 
Average 

error range 
(%) 

Maximum 
error range 

(%) 

Average 
error range 

(%) 

Maximum 
error range 

(%) 
Economopoulos (1978) 2.95 - 28.94 5.79 - 50.60 1.26 - 3.85 3.75 – 11.40 

Ogboja and Kuye (1990) 1.54 - 36.24 4.73 - 82.41 0.69- 2.69 3.57 – 6.09 
Lygeros and Magoulas (1986) 12.88 - 15.26 27.52 - 44.68 0.18 – 3.01 0.56 – 25.01 
Source: The author, 2022. 
 

 

3.5 Performance of the correlations 

 

 

This paper has shown that the correlations available in the literature for sieve tray 

performance may present considerable deviations in relation to the original Fair’s data and the 

application of a new procedure for parameter estimation can reduce these errors significantly. 

Therefore, considering that the original correlations were employed in several other 

papers, this section presents an analysis of how the corresponding deviations can affect the 

design of a distillation column, comparing the design solutions obtained using these 

correlations with the design solutions using the improved predictions developed in this paper. 

Three design optimization problems of distillation columns were considered. Example 

1 is the design of a depropanizer column and was taken from Kister (1992), with larger flow 

rates (the original values of the flow rates were multiplied by 2.0). Example 2 is the design of 

a distillation column for acetone recovery from a waste stream and was taken from Towler 

and Sinnott (2013), also with larger flow rates (the original values were multiplied by 2.0). 

Example 3 consists of a methanol purification column and was taken from Kiss and Ignat 

(2012), with lower flow rates (the original values were multiplied by 0.5). The optimization 

search space and the details of each example are described in the Appendix C. 

The distillation column of each example was optimally designed using the Set 

Trimming procedure described by Costa and Bagajewicz (2019), applied to sieve tray design 

(Souza; Bagajewicz; Costa, 2023). This procedure guarantees global optimality of the design 

problem and is robust. 

The design problems were solved using two different alternatives of flooding and 

entrainment correlations from the literature, with their original parameters: Economopoulos 

(1978) and Ogboja and Kuye (1990). The same problems were also solved using the best 
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results developed in this paper, represented by the correlations of Kessler and Wankat (1988) 

for flooding and Ogboja and Kuye (1990) for entrainment, with the new parameters calculated 

here. The optimal design solutions are depicted in Table 40. The geometric details of each 

optimal solution are described in the Appendix C. 

 

Table 40 – Design Results 

Example Result Economopoulos 
(1978) 

Ogboja and Kuye 
(1990) 

New 
correlations 
parameters 

 Cost total ($) 316,361.07 352,484.38 441,644.54 
1 Column diameter (m) 3.0480 3.3528 4.064 
 Tray spacing (m) 0.9144 0.9144 0.9144 
     
 Cost total ($) 36,738.14 45,604.67 40,852.56 
2 Column diameter (m) 0.9144 1.2700 1.2700 
 Tray spacing (m) 0.9144 0.6096 0.4572 
     
 Cost total ($) 31,955.10 31,955.10 30,643.87 
3 Column diameter (m) 0.7620 0.7620 0.6096 
 Tray spacing (m) 0.4572 0.4572 0.6096 

Source: The author, 2022. 

 

 The results displayed in Table 40 indicate that the deviations of the literature 

correlations predictions have a direct impact in the design results. In Example 1, the original 

literature correlations are associated with distillation columns with smaller diameters. 

However, considering that the correlations with the new parameters proposed in the current 

paper provide the most accurate predictions, the distillation columns designed with the 

original correlations may not operate adequately. The opposite situation occurs in Example 3, 

the distillation columns designed with the original correlations are associated with a larger 

diameter, i.e. the literature correlations excluded from the search feasible distillation column 

associated with a smaller capital cost. The results of Example 2 contain both problems: one 

column designed using the literature correlations is infeasible and the other is unnecessarily 

expensive. 

Aiming at providing a better comprehension of the detachments indicated in Table 40, 

the analysis of the correlations was also conducted through the evaluation of each solution 

candidate of the search space of the design problem. This analysis is based on 783,900 

different candidate solutions composed of different plate dimensions. 
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Considering the constraints of flooding (Eq. (175)) and entrainment (Eq. (184)), the 

results are classified in four different classes, based on the comparison of the plates that did or 

did not abide by the restrictions of flooding and entrainment. 

 Feasible: feasible design under the correlation from the literature and the 

predictions developed in this paper. 

 Infeasible: infeasible design under the correlation from the literature and the 

predictions developed in this paper. 

 False positive: the correlation of the literature indicates that the design is 

feasible, but the prediction developed in this paper indicates that the design is 

not feasible. 

 False negative: the correlation of the literature indicates that the design is 

infeasible, but the prediction developed in this paper indicates that the design is 

feasible. 

 

The main deviations are associated with the design problem of Example 1, as 

discussed below. The comparison of the performance of the correlations of Economopoulos 

(1978) with our predictions is shown in Figure 28. False positives are associated with the 

flooding constraint and false negatives are associated in the entrainment constraint, as shown 

in Figure 28a and 28b, respectively. These deviations are relevant because they affect the 

solution of the optimal design problem, as shown in Table 40. The solution of the optimal 

design problem using the correlation of Economopoulos (1978) is a distillation column with a 

cost of $316,361.07. However, this solution is a false positive, i.e. testing this optimal design 

with the more accurate predictions developed in this paper, it is verified that this column is 

not feasible. 
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Figure 28 – Example 1: Comparison between correlations of the Economopoulos (1978) and 
our predictions 

 

Subtitle: (a) Flooding, (b) Entrainment 

Source: The author, 2022. 

 

The correlation of Ogboja and Kuye (1990) present a smaller number of false positives 

and negatives, as depicted in Figure 29. However, these deviations also affects the solution of 

the optimal design problem, i.e. another false positive is associated with the design 

optimization. 

 

Figure 29 - Example 1: Comparison between correlations of the Ogboja and Kuye (1990) and 
our readjusted correlations 

 

Subtitle: (a) Flooding, (b) Entrainment 

Source: The author, 2022. 

 

 Similar analysis are available in the Appendix C for Examples 2 and 3. The number of 

deviations is smaller, but, as shown in Table 40, they can affect the result of the optimal 

design. 
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3.6 Conclusions 

 

 

This paper presented an update of the flooding and entrainment correlation parameters 

from the literature for sieve trays. First, the errors in the literature correlations compared to 

the original data were analyzed. To reduce errors and improve the fit of the curves, several 

attempts were made, the best parameter updates obtained were with the flooding correlation 

of Kessler and Wankat (1988) and the entrainment correlation of Ogboja and Kuye (1990). 

The readjustment of correlations was applied in three examples from the literature on 

globally optimal design procedures, the result was compared with the literature correlations 

Economopoulos (1978) and Ogboja and Kuye (1990). In all three examples, the optimal tray 

found is a false positive or a false negative, thus they are infeasible results for our 

readjustment (false positive) or results that eliminate feasible designs that should be 

considered at lower cost (false negative). 
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CONCLUSIONS AND SUGGESTIONS 

 

 

This chapter is intended to present the conclusions and observations reached through 

the articles seen in the previous chapters and to propose suggestions for future work, to 

improve the optimization developed. 

 

 

Conclusions 

 

 

Distillation columns are of great importance in the chemical industry, being the main 

purification and separation equipment. The cost of distillation columns is high, and it is 

important to try to reduce them. The literature presents optimization works that seek to 

minimize the costs of distillation columns, but these works do not always aim at the complete 

sizing of the tray. 

Therefore, the present thesis proposes an optimal distillation column design able to 

size all the independent variables of the tray. This formulation is solved using two different 

optimization techniques, MINLP formulation and Set Trimming, and two alternative objective 

functions, minimization of column cost and mass. Both techniques used were better than the 

heuristic techniques, they present optimal results that one designer could hardly obtain.  

Comparing the techniques, the Set Trimming procedure presents a better result than 

the MINLP formulation using global solvers. The results of the Set Trimming procedure 

always obtained the lowest column cost or mass, while the MINLP formulation obtained a 

local optimal or did not converge. The Set Trimming procedure shows 354 feasible solutions 

for the example with the same optimal cost, while the MINLP formulation shows only 3 of 

these solutions in three times as much time as the Set Trimming procedure. Then, the Set 

Trimming procedure is more robust than the MINLP formulation. 

Seeking to increase formulation accuracy, the present thesis also proposes a 

readjustment of literature correlations of flooding and entrainment. Due to the significant 

error that the literature correlations show in certain regions of the graph. All the readjustments 

had a significant reduction in average error and maximum error, but the new parameters of 

flooding correlation of Kessler and Wankat (1987) and the entrainment correlation of Ogboja 

and Kuye (1990) present the best results. The comparison of the updated correlations with the 
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correlations in the literature shows that the optimal tray found is an infeasible result for our 

readjustment (false positive) or results that should not be considered at the optimal tray (false 

negative). 

From the results obtained in the thesis, it is concluded that the Set Trimming 

procedure is a good computational tool for the design of trays in distillation columns and that 

the new parameters of flooding and entrainment correlations can be used as a substitute for 

the original parameters of correlations. 

 

 

Suggestions 

 

 

To complement the optimal design of sieve trays in distillation columns, the following 

proposals are made as suggestions for future work: 

 Update the formulation developed for other types of trays (bubble-cap and 

valved); 

 Analyze the efficiency of the tray as an objective function and compare it with 

the column cost result; 

 Include different flow rates in the formulation to obtain trays with greater 

flexibility; 

 Apply the formulation developed for tray design in a distillation column where 

the number of the ideal tray and the flow rates are also variables. This 

formulation should have the equations of liquid vapor equilibrium, mass and 

energy balance. 
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APPENDIX A – Supplementary Material of Article 1 

 

 

The heuristic design procedure presented in Section 1.6 of the paper was applied to the 

design example described in Section 1.7. This Supplementary Material describes the details of 

the search for a feasible solution using the heuristic design procedure. Five iterations needed 

to finish the procedure, which are presented below. 

 

Iteration 1 

The application of Steps 1, 2, and 3 yielded the results shown in Table 41. The column 

diameter is smaller than 0.60 m, therefore it was necessary to return to Step 2, reducing the 

tray spacing. 

 

Table 41 – Results of Iteration 1 

Variables Valor 

lt 0.6096 m 

FAdc 12% 

Dc 0.5696 m 
Source: The author, 2022. 

 

Iteration 2 

The tray spacing was reduced to 0.4572 m in the return to Step 2. Then, the procedure 

went to Steps 3, where it was checked that the infeasibility of the column diameter was 

corrected. After Step 3, the procedure followed to Steps 4, 5, and 6. In Step 6, it stopped, 

because the constraint of the downcomer backup was infeasible. Table 42 presents the results 

of the second iteration. 

Aiming at correcting the identified problem, the procedure returned to Step 4, 

increasing the percentage of the hole area to fix the identified problem. 
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Table 42 – Results of Iteration 2 

Variables Valor 

lt 0.4572 m 

FAdc 12% 

Dc 0.7307 m 

FAh 10% 

tt 0.0034 m 

dh 0.0048 m 

hw 0.0508 m 

hdwap 0.01 m 

lay triangular 

lp 0.012 m 

lw 0.5550 

wus 0.0381 m 
Source: The author, 2022. 

 

Iteration 3 

The percentage of the hole area was increased to 12% in the return to Step 4. Then, the 

procedure followed to Steps 5 and 6. In Step 6, it was verified that the problem of the 

violation of the downcomer backup constraint was solved. The subsequent steps were then 

checked: Steps 7, 8, 9 and 10. In Step 10, the procedure stopped because the flooding 

constraint was violated. Table 43 presents the results associated with the third iteration. 

After the identification that the flooding constraint was violated, the procedure 

returned to Step 4, increasing the tray spacing to fix the problem. 
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Table 43 – Results of Iteration 3 

Variables Valor 

lt 0.4572 m 

FAdc 12% 

Dc 0.7307 m 

FAh 12% 

tt 0.0034 m 

dh 0.0048 m 

hw 0.0508 m 

hdwap 0.01 m 

lay triangular 

lp 0.011 m 

lw 0.5550 

wus 0.0381 m 
Source: The author, 2022. 

 

Iteration 4  

The spacing tray was increased to 0.6096 m in the return to Step 4. Then, the 

procedure followed to Steps 5, 6, 7, 8, 9, and 10. In Step 10, it was observed that the 

constraint of flooding was still not feasible. Table 44 presents the results associated with the 

fourth iteration. 

After the identification that the flooding constraint was violated, the procedure 

returned to Step 4, increasing the tray spacing further to fix the constraint violation. 
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Table 44 – Results of Iteration 4 

Variables Valor 

lt 0.6096 m 

FAdc 12% 

Dc 0.7307 m 

FAh 12% 

tt 0.0034 m 

dh 0.0048 m 

hw 0.0508 m 

hdwap 0.01 m 

lay triangular 

lp 0.011 m 

lw 0.5550 

wus 0.0381 m 
Source: The author, 2022. 

 

Iteration 5  

The tray spacing was increased to 0.9144 m in the return to Step 4. Then, all the 

remaining steps yielded positive results, i.e. no constraints were violated. Therefore, the 

column design was finalized. Table 45 depicts the corresponding values of the variables. 
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Table 45 – Results of Iteration 5 

Variables Valor 

lt 0.9144 m 

FAdc 12% 

Dc 0.7307 m 

FAh 12% 

tt 0.0034 m 

dh 0.0048 m 

hw 0.0508 m 

hdwap 0.01 m 

lay triangular 

lp 0.011 m 

lw 0.5550 

wus 0.0381 m 
Source: The author, 2022. 
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APPENDIX B – Supplementary Material of Article 2 

 

 

Table 46 – Comparison between Set Trimming and mathematical programming – objective 
function cost – mass flow rates (x1) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

1 7,931,520 28915.69 43.66 28915.69 72.70 32644,00 135.84 

2 9,331,200 28915.69 52.46 29914.09 77.61 28915.69 56.72 

3 10,730,880 28915.69 66.77 28915.69 51.80 28915.69 20.82 

4 12,130,560 28915.69 82.75 28915.69 89.35 28915.69 69.07 

Source: The author, 2022. 

 

Table 47 – Comparison between Set Trimming and mathematical programming – objective 
function cost – mass flow rates (x0.5) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

1 7,931,520 25076.82 43.02 25076.82 10.31 25076.82 63.40 

2 9,331,200 24767.20 50.73 25076.82 66.25 no converge 

3 10,730,880 24767.20 59.55 24767.20 62.77 no converge 

4 12,130,560 24767.20 72.98 25076.82 105.58 no converge 

Source: The author, 2022. 

 

Table 48 – Comparison between Set Trimming and mathematical programming – objective 
function cost – mass flow rates (x2) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

1 7,931,520 45604.67 46.67 45604.67 51.26 no converge 

2 9,331,200 38845.80 53.53 45604.67 48.41 38845.80 48.79 

3 10,730,880 38845.80 69.92 42691.48 52.51 38845.80 105.83 

4 12,130,560 38845.80 88.35 38845.80 29.60 42691.48 53.49 

Source: The author, 2022. 
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Table 49 – Comparison between Set Trimming and mathematical programming – objective 
function cost – mass flow rates (x3) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

Optimal 
solution 

($) 

Computational 
time (s) 

1 7,931,520 51658.05 51.52 51658.05 37.34 no converge 

2 9,331,200 51658.05 58.35  51658.05 45.47 51658.05 67.85 

3 10,730,880 48593.50 67.88 48593.50 65.60 49092.81 90.23 

4 12,130,560 48593.50 94.35 48593.50 35.46 49092.81 30.46 

Source: The author, 2022. 

 

Table 50 – Comparison between Set Trimming and mathematical programming – objective 
function weight – mass flow rates (x1) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

1 7,931,520 1335.52 43.99 1335.52 19.64 1335.52 36.26 

2 9,331,200 1335.52 51.24 1335.52 41.60 1335.52 89.04 

3 10,730,880 1335.52 65.09 1477.05 74.13 1335.52 98.76 

4 12,130,560 1335.52 86.26 1853.85 49.28 1335.52 39.22 

Source: The author, 2022. 

 

Table 51 – Comparison between Set Trimming and mathematical programming – objective 
function weight – mass flow rates (x0.5) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

1 7,931,520 1007 42.74 1501 34.04 1007 119.14 

2 9,331,200 895 49.65 1045 42.49 895 140.05 

3 10,730,880 895 52.78 1045 42.93 895 101.88 

4 12,130,560 895 65.97 1078 68.69 895 63.83 

Source: The author, 2022. 
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Table 52 – Comparison between Set Trimming and mathematical programming – objective 
function weight – mass flow rates (x2) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

1 7,931,520 3146 45.00 3146 94.34 3146 45.49 

2 9,331,200 2574 53.41 2574 92.99 3146 116.04 

3 10,730,880 2574 65.32 2574 54.78 2574 69.77 

4 12,130,560 2574 84.54 2854 97.60 2577 108.02 

Source: The author, 2022. 

 

Table 53 – Comparison between Set Trimming and mathematical programming – objective 
function weight – mass flow rates (x3) original values 

Examples 
Total 

number of 
candidates 

Set Trimming ANTIGONE BARON 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

Optimal 
solution 

(kg) 

Computational 
time (s) 

1 7,931,520 3686 49.17 3686 69.12 3686 56.32 

2 9,331,200 3686 57.62 3686 66.26 3686 43.78 

3 10,730,880 3420 72.40 3420 63.47 3421 87.35 

4 12,130,560 3420 96.64 4022 44.92 3421 106.44 

Source: The author, 2022. 
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APPENDIX C – Supplementary Material of Article 3 

 

 

Data Collection 

 

Table 54 – Data collection to flooding correlation 
Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.0101859 0.1289470 0.1568780 0.2017750 0.2589700 0.3459780 - 
0.0101971 0.1289470 0.1569060 0.2018000 0.2589700 0.3460170 - 
0.0102755 0.1289470 0.1571080 0.2019800 0.2589700 0.3462840 - 
0.0104160 0.1289470 0.1574670 0.2022990 0.2589700 0.3467580 - 
0.0106396 0.1289470 0.1580300 0.2027990 0.2589700 0.3475010 - 
0.0109474 0.1289470 0.1587880 0.2034720 0.2589700 0.3485000 - 
0.0109594 0.1289700 0.1588170 0.2034980 0.2589700 0.3485390 - 
0.0110438 0.1291370 0.1590220 0.2036800 0.2594410 0.3488080 - 
0.0118694 0.1307090 0.1609580 0.2053940 0.2639120 0.3488080 - 
0.0123889 0.1316520 0.1621200 0.2064190 0.2666050 0.3504850 - 
0.0125638 0.1319630 0.1625020 0.2067560 0.2669810 0.3510350 - 
0.0126500 0.1321140 0.1626880 0.2067560 0.2671650 0.3513040 - 
0.0126652 0.1321410 0.1627060 0.2067560 0.2671980 0.3513510 - 
0.0133152 0.1332560 0.1634540 0.2067560 0.2685480 0.3540870 - 
0.0134061 0.1334080 0.1635560 0.2067560 0.2685480 0.3544600 - 
0.0136942 0.1338850 0.1638740 0.2072480 0.2685480 0.3556300 - 
0.0139100 0.1342370 0.1642720 0.2076110 0.2685480 0.3564930 - 
0.0142078 0.1347150 0.1648120 0.2081040 0.2685480 0.3571270 - 
0.0143049 0.1348690 0.1649860 0.2082630 0.2685480 0.3573310 - 
0.0150401 0.1360090 0.1662720 0.2082630 0.2685480 0.3588380 - 
0.0151672 0.1362010 0.1664490 0.2082630 0.2685480 0.3590910 - 
0.0159332 0.1373320 0.1674850 0.2082630 0.2685480 0.3590910 - 
0.0163010 0.1378590 0.1674850 0.2082630 0.2685480 0.3590910 - 
0.0164050 0.1380070 0.1674850 0.2082630 0.2685480 0.3590910 - 
0.0164115 0.1380160 0.1674850 0.2082710 0.2685480 0.3590910 - 
0.0168742 0.1386610 0.1674850 0.2088550 0.2695870 0.3590910 - 
0.0171244 0.1386610 0.1674850 0.2091650 0.2701390 0.3590910 - 
0.0173938 0.1386610 0.1681440 0.2094940 0.2707260 0.3590910 - 
0.0176256 0.1386610 0.1687060 0.2097740 0.2712240 0.3602900 - 
0.0176316 0.1386610 0.1687060 0.2097810 0.2712370 0.3603210 - 
0.0181357 0.1386610 0.1687060 0.2097810 0.2723010 0.3628880 - 
0.0184269 0.1386610 0.1687060 0.2097810 0.2729050 0.3643460 - 
0.0188136 0.1386610 0.1687060 0.2097810 0.2736930 0.3643460 - 
0.0189432 0.1386610 0.1687060 0.2102170 0.2739550 0.3643460 - 
0.0198045 0.1386610 0.1692880 0.2130600 0.2756520 0.3643460 - 
0.0202069 0.1386610 0.1695520 0.2143590 0.2764240 0.3668150 - 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.0202207 0.1386610 0.1695610 0.2144030 0.2764500 0.3668990 - 
0.0202288 0.1386610 0.1695660 0.2144030 0.2764650 0.3669480 - 
0.0202377 0.1386610 0.1695720 0.2144030 0.2764650 0.3670020 - 
0.0208048 0.1386610 0.1699350 0.2144030 0.2764650 0.3670020 - 
0.0215763 0.1386610 0.1706290 0.2144030 0.2764650 0.3670020 - 
0.0217175 0.1386610 0.1707540 0.2145590 0.2764650 0.3670020 - 
0.0217410 0.1386610 0.1707750 0.2145850 0.2764650 0.3670020 - 
0.0217507 0.1386610 0.1707830 0.2145960 0.2764650 0.3670020 - 
0.0221997 0.1386610 0.1711740 0.2150870 0.2764650 0.3678430 - 
0.0226776 0.1386610 0.1715830 0.2156010 0.2764650 0.3687210 - 
0.0230229 0.1386610 0.1718730 0.2159660 0.2764650 0.3693450 - 
0.0231985 0.1386610 0.1720190 0.2157820 0.2764650 0.3696590 - 
0.0232090 0.1386610 0.1720280 0.2157710 0.2764650 0.3696780 - 
0.0236882 0.1386610 0.1724220 0.2152780 0.2764650 0.3696780 - 
0.0245660 0.1386610 0.1724220 0.2144030 0.2764650 0.3696780 - 
0.0249058 0.1386610 0.1724220 0.2144030 0.2764650 0.3696780 - 
0.0249327 0.1386920 0.1724220 0.2144030 0.2764650 0.3696780 - 
0.0249441 0.1387040 0.1724220 0.2144030 0.2764810 0.3696780 - 
0.0252762 0.1390740 0.1724220 0.2144030 0.2769420 0.3696780 - 
0.0262129 0.1400980 0.1724220 0.2144030 0.2782140 0.3696780 - 
0.0264133 0.1403130 0.1724220 0.2144030 0.2784810 0.3696780 - 
0.0267683 0.1406910 0.1724220 0.2144030 0.2780650 0.3696780 - 
0.0268088 0.1406910 0.1724220 0.2144030 0.2780180 0.3696780 - 
0.0269706 0.1406910 0.1724220 0.2144030 0.2778300 0.3696780 - 
0.0281837 0.1406910 0.1731880 0.2144030 0.2764650 0.3696780 - 
0.0288130 0.1406910 0.1735740 0.2144030 0.2764650 0.3696780 - 
0.0289872 0.1406910 0.1736790 0.2144030 0.2764650 0.3696780 - 
0.0302686 0.1406910 0.1736790 0.2144030 0.2764650 0.3696780 - 
0.0302786 0.1406910 0.1736790 0.2144030 0.2764650 0.3696780 - 
0.0302906 0.1406910 0.1736790 0.2144030 0.2764650 0.3696780 - 
0.0303044 0.1406910 0.1736790 0.2144030 0.2764650 0.3696780 - 
0.0323084 0.1406910 0.1736790 0.2144030 0.2764650 0.3696780 - 
0.0323359 0.1406910 0.1736790 0.2143870 0.2764650 0.3696780 - 
0.0325314 0.1406910 0.1736790 0.2142790 0.2764650 0.3694280 - 
0.0325551 0.1406910 0.1736790 0.2142660 0.2764650 0.3693980 - 
0.0345033 0.1406910 0.1736790 0.2132230 0.2764650 0.3670020 - 
0.0349634 0.1406910 0.1736790 0.2129860 0.2764650 0.3670020 - 
0.0349888 0.1406910 0.1736650 0.2129730 0.2764650 0.3670020 - 
0.0352276 0.1406910 0.1735330 0.2128510 0.2764650 0.3670020 - 
0.0370826 0.1406910 0.1725390 0.2128510 0.2764650 0.3670020 - 
0.0373068 0.1406910 0.1724220 0.2128510 0.2764650 0.3667550 - 
0.0373344 0.1406910 0.1724220 0.2128510 0.2764650 0.3667240 - 
0.0378611 0.1406910 0.1724220 0.2128510 0.2760320 0.3661500 - 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.0395681 0.1406910 0.1724220 0.2122610 0.2746720 0.3643460 - 
0.0403859 0.1406910 0.1724220 0.2119870 0.2740440 0.3643460 - 
0.0404332 0.1406910 0.1724220 0.2119720 0.2740080 0.3643460 - 
0.0421578 0.1406910 0.1724220 0.2114150 0.2727300 0.3628160 - 
0.0424899 0.1405670 0.1724220 0.2113110 0.2724900 0.3625290 - 
0.0434050 0.1402320 0.1724220 0.2113110 0.2718410 0.3617520 - 
0.0434554 0.1402140 0.1724020 0.2113110 0.2718050 0.3617090 - 
0.0449834 0.1396720 0.1718030 0.2113110 0.2707560 0.3617090 - 
0.0453383 0.1397370 0.1716670 0.2113110 0.2705180 0.3617090 - 
0.0453558 0.1397410 0.1716600 0.2112920 0.2705060 0.3617090 - 
0.0453764 0.1397440 0.1716520 0.2112710 0.2704930 0.3617090 - 
0.0466494 0.1399740 0.1711740 0.2099660 0.2697400 0.3594750 - 
0.0483765 0.1402760 0.1711740 0.2082630 0.2687540 0.3565600 - 
0.0484172 0.1402830 0.1711740 0.2082630 0.2687310 0.3564930 - 
0.0487459 0.1403390 0.1711740 0.2082630 0.2685480 0.3562500 - 
0.0504995 0.1406330 0.1711740 0.2082630 0.2685480 0.3549830 0.4337980 
0.0505151 0.1406360 0.1711630 0.2082630 0.2685480 0.3549720 0.4337850 
0.0505352 0.1406390 0.1711470 0.2082550 0.2685480 0.3549580 0.4337670 
0.0505731 0.1406450 0.1711180 0.2082390 0.2685480 0.3549310 0.4337350 
0.0508493 0.1406910 0.1709100 0.2081250 0.2685480 0.3547360 0.4334970 
0.0538837 0.1388760 0.1687060 0.2069130 0.2685480 0.3526700 0.4309720 
0.0542569 0.1386610 0.1687060 0.2067690 0.2685480 0.3524250 0.4306720 
0.0542908 0.1386610 0.1687060 0.2067560 0.2685480 0.3524030 0.4306450 
0.0543131 0.1386610 0.1687060 0.2067560 0.2685480 0.3523890 0.4306270 
0.0543532 0.1386610 0.1687060 0.2067560 0.2685280 0.3523620 0.4305950 
0.0559257 0.1386610 0.1687060 0.2067560 0.2677570 0.3513510 0.4289840 
0.0574959 0.1386610 0.1687060 0.2067560 0.2670110 0.3504610 0.4274260 
0.0583495 0.1386610 0.1687060 0.2067560 0.2666150 0.3499880 0.4265990 
0.0583727 0.1386610 0.1687060 0.2067390 0.2666050 0.3499750 0.4265760 
0.0604719 0.1386610 0.1687060 0.2052720 0.2645030 0.3488450 0.4246000 
0.0604905 0.1386610 0.1687000 0.2052590 0.2644850 0.3488350 0.4245830 
0.0605408 0.1386610 0.1686860 0.2052420 0.2644360 0.3488080 0.4245360 
0.0622844 0.1386610 0.1682040 0.2046560 0.2627590 0.3478120 0.4229550 
0.0641541 0.1386610 0.1677040 0.2040470 0.2618910 0.3467770 0.4213140 
0.0649920 0.1386610 0.1674850 0.2037800 0.2615110 0.3463230 0.4211240 
0.0650119 0.1386610 0.1674790 0.2037740 0.2615020 0.3463130 0.4211190 
0.0650659 0.1386610 0.1674630 0.2037270 0.2614770 0.3462840 0.4211070 
0.0664590 0.1386610 0.1670660 0.2025440 0.2608580 0.3452290 0.4207970 
0.0684331 0.1386610 0.1665200 0.2009210 0.2598980 0.3437780 0.4203700 
0.0693480 0.1386610 0.1662720 0.2001890 0.2594630 0.3426290 0.4201760 
0.0703352 0.1386610 0.1662720 0.1994130 0.2590020 0.3414110 0.4199690 
0.0703552 0.1386610 0.1662720 0.1993970 0.2589920 0.3413860 0.4199650 
0.0703752 0.1386610 0.1662670 0.1993810 0.2589830 0.3413620 0.4199610 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.0704040 0.1386610 0.1662590 0.1993810 0.2589700 0.3413270 0.4199550 
0.0724944 0.1386610 0.1657160 0.1993810 0.2582070 0.3388200 0.4195290 
0.0750708 0.1386610 0.1650690 0.1993810 0.2573000 0.3376290 0.4190200 
0.0755933 0.1386610 0.1649540 0.1993810 0.2571210 0.3373930 0.4189190 
0.0756363 0.1386550 0.1649440 0.1993810 0.2571060 0.3373740 0.4189110 
0.0756664 0.1386500 0.1649380 0.1993720 0.2570960 0.3373610 0.4189050 
0.0779130 0.1383040 0.1644520 0.1987200 0.2558860 0.3363670 0.4184790 
0.0790716 0.1381300 0.1642080 0.1983920 0.2552770 0.3363670 0.4182650 
0.0806820 0.1378920 0.1638740 0.1979450 0.2544490 0.3363670 0.4150890 
0.0807058 0.1378890 0.1638690 0.1979380 0.2544370 0.3363670 0.4150420 
0.0807728 0.1378790 0.1638560 0.1979200 0.2544030 0.3363670 0.4149120 
0.0837633 0.1374520 0.1632570 0.1971160 0.2529160 0.3333000 0.4092490 
0.0855665 0.1372020 0.1629070 0.1966460 0.2520490 0.3315160 0.4083250 
0.0861151 0.1371270 0.1628020 0.1965060 0.2517890 0.3312490 0.4080490 
0.0867126 0.1370460 0.1626880 0.1961150 0.2515080 0.3309610 0.4077490 
0.0905448 0.1365410 0.1615110 0.1936880 0.2497610 0.3291630 0.4058830 
0.0905705 0.1365380 0.1615010 0.1936720 0.2497490 0.3291510 0.4058710 
0.0906066 0.1365330 0.1614860 0.1936640 0.2497330 0.3291350 0.4058540 
0.0906457 0.1365280 0.1614710 0.1936560 0.2497220 0.3291170 0.4058350 
0.0960581 0.1358530 0.1593870 0.1925270 0.2482670 0.3248700 0.4033460 
0.0966124 0.1357870 0.1591820 0.1924160 0.2481230 0.3244510 0.4026790 
0.0967202 0.1357740 0.1591820 0.1923940 0.2480950 0.3243700 0.4025490 
0.0973403 0.1357000 0.1591820 0.1922700 0.2479360 0.3240220 0.4018090 
0.0973790 0.1356950 0.1591820 0.1922550 0.2479260 0.3240010 0.4017630 
0.1008830 0.1352860 0.1591820 0.1908890 0.2464580 0.3220820 0.3976930 
0.1009120 0.1352830 0.1591770 0.1908790 0.2464460 0.3220670 0.3976610 
0.1009950 0.1352730 0.1591640 0.1908470 0.2464120 0.3220230 0.3975670 
0.1010280 0.1352690 0.1591590 0.1908340 0.2463990 0.3220010 0.3975290 
0.1084240 0.1344560 0.1580300 0.1881360 0.2434920 0.3174480 0.3928400 
0.1084530 0.1344530 0.1580250 0.1881260 0.2434810 0.3174310 0.3928220 
0.1085420 0.1344430 0.1580120 0.1881080 0.2434470 0.3173780 0.3927680 
0.1108690 0.1342000 0.1576750 0.1876620 0.2425820 0.3166260 0.3913710 
0.1150230 0.1337790 0.1570910 0.1868910 0.2407900 0.3153240 0.3889600 
0.1156620 0.1337160 0.1570040 0.1867750 0.2405210 0.3151290 0.3882930 
0.1157230 0.1337090 0.1569950 0.1867640 0.2404960 0.3151100 0.3882300 
0.1158170 0.1336980 0.1569830 0.1867280 0.2404560 0.3150810 0.3881310 
0.1165280 0.1336150 0.1568860 0.1864570 0.2401600 0.3144340 0.3873960 
0.1191540 0.1333160 0.1561050 0.1854740 0.2390830 0.3120880 0.3847270 
0.1235770 0.1328270 0.1548360 0.1838780 0.2379880 0.3082900 0.3804020 
0.1243070 0.1327480 0.1546310 0.1836210 0.2378120 0.3081070 0.3797080 
0.1243370 0.1327380 0.1546230 0.1836110 0.2378040 0.3080990 0.3796800 
0.1262270 0.1321090 0.1543880 0.1829550 0.2373530 0.3076310 0.3779070 
0.1263190 0.1320780 0.1543770 0.1829230 0.2373180 0.3076090 0.3778220 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.1308060 0.1306340 0.1538350 0.1814160 0.2356540 0.3065290 0.3763480 
0.1328140 0.1300090 0.1535990 0.1808590 0.2349320 0.3060580 0.3757070 
0.1336310 0.1297580 0.1535040 0.1806360 0.2346420 0.3049260 0.3754490 
0.1347860 0.1294070 0.1531910 0.1803230 0.2342350 0.3033410 0.3750870 
0.1356610 0.1291430 0.1529560 0.1800880 0.2339300 0.3021560 0.3744950 
0.1376840 0.1285420 0.1524200 0.1795510 0.2327690 0.2994610 0.3731430 
0.1394980 0.1280130 0.1519480 0.1790780 0.2317470 0.2990670 0.3719510 
0.1405810 0.1280760 0.1516690 0.1787990 0.2311460 0.2988340 0.3712490 
0.1447500 0.1283120 0.1506220 0.1776330 0.2288870 0.2979550 0.3686080 
0.1479760 0.1284900 0.1498370 0.1767580 0.2280410 0.2972940 0.3666280 
0.1510480 0.1286560 0.1491080 0.1759470 0.2272560 0.2957590 0.3647920 
0.1511470 0.1286620 0.1490980 0.1759210 0.2272310 0.2957100 0.3647330 
0.1565560 0.1289470 0.1485710 0.1745410 0.2264270 0.2931010 0.3616130 
0.1613420 0.1281660 0.1481210 0.1733680 0.2257410 0.2908860 0.3589620 
0.1623380 0.1280080 0.1480290 0.1731290 0.2256010 0.2902850 0.3584230 
0.1624450 0.1279910 0.1480070 0.1731030 0.2255860 0.2902210 0.3583650 
0.1682560 0.1270870 0.1468470 0.1717460 0.2224110 0.2868130 0.3553010 
0.1707800 0.1267700 0.1463580 0.1711740 0.2210800 0.2853820 0.3540110 
0.1709740 0.1267450 0.1463210 0.1711350 0.2209790 0.2852730 0.3539120 
0.1721520 0.1265990 0.1460960 0.1708980 0.2203680 0.2846160 0.3529950 
0.1732170 0.1264680 0.1458940 0.1706860 0.2198200 0.2841740 0.3521730 
0.1745810 0.1263020 0.1456640 0.1704160 0.2191260 0.2836130 0.3511300 
0.1756920 0.1261670 0.1454770 0.1701990 0.2188460 0.2831600 0.3502890 
0.1823690 0.1250650 0.1443880 0.1689240 0.2172070 0.2805110 0.3453840 
0.1835420 0.1248770 0.1442010 0.1687060 0.2169260 0.2801480 0.3445480 
0.1861620 0.1244610 0.1437900 0.1681710 0.2163080 0.2793490 0.3427070 
0.1876280 0.1242320 0.1434850 0.1678760 0.2159660 0.2789080 0.3416920 
0.1918660 0.1235810 0.1426210 0.1670380 0.2149960 0.2776550 0.3388200 
0.1945130 0.1231840 0.1420940 0.1665260 0.2144030 0.2768890 0.3373980 
0.1958420 0.1229860 0.1418320 0.1662720 0.2139130 0.2765100 0.3366940 
0.1959980 0.1229630 0.1418020 0.1662300 0.2138550 0.2764650 0.3366120 
0.2501550 0.1161070 0.1327480 0.1538660 0.1970230 0.2529700 0.3123370 
0.2520220 0.1159040 0.1325490 0.1535040 0.1965310 0.2522860 0.3116250 
0.2540420 0.1156870 0.1323360 0.1532300 0.1960050 0.2515540 0.3108630 
0.2632590 0.1147210 0.1313890 0.1520120 0.1936720 0.2485590 0.3074830 
0.2672740 0.1143130 0.1309890 0.1514970 0.1926890 0.2472990 0.3060580 
0.2688500 0.1141550 0.1308340 0.1512980 0.1923090 0.2468110 0.3053340 
0.2689110 0.1141490 0.1308220 0.1512900 0.1922940 0.2467920 0.3053060 
0.2707370 0.1139680 0.1304880 0.1509870 0.1918580 0.2462310 0.3044740 
0.2710630 0.1139400 0.1304290 0.1509330 0.1917800 0.2461310 0.3043260 
0.2808970 0.1131250 0.1286830 0.1493470 0.1894970 0.2426200 0.2999840 
0.2848020 0.1128100 0.1280130 0.1487370 0.1887080 0.2412730 0.2983180 
0.2909700 0.1123240 0.1276680 0.1477950 0.1874890 0.2391970 0.2957520 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.3017080 0.1113030 0.1270870 0.1462160 0.1854460 0.2357270 0.2914610 
0.3018860 0.1112870 0.1270490 0.1461900 0.1854120 0.2356710 0.2913920 
0.3020000 0.1112760 0.1270250 0.1461740 0.1853810 0.2356350 0.2913480 
0.3039570 0.1110950 0.1266120 0.1458940 0.1848450 0.2349540 0.2905900 
0.3087010 0.1106620 0.1256270 0.1451370 0.1835670 0.2333290 0.2887800 
0.3196060 0.1096980 0.1234480 0.1434540 0.1807330 0.2297270 0.2843230 
0.3221090 0.1094830 0.1230170 0.1430780 0.1801030 0.2289260 0.2833310 
0.3222300 0.1094730 0.1229960 0.1430600 0.1800800 0.2288870 0.2832830 
0.3243220 0.1092940 0.1226400 0.1427490 0.1796890 0.2282250 0.2824630 
0.3293800 0.1088690 0.1217920 0.1418610 0.1787570 0.2266470 0.2805110 
0.3360810 0.1083180 0.1206980 0.1407140 0.1775510 0.2246110 0.2779060 
0.3410160 0.1076130 0.1199120 0.1398890 0.1766840 0.2231490 0.2760360 
0.3436910 0.1072370 0.1197030 0.1394490 0.1762210 0.2223690 0.2750380 
0.3438160 0.1072190 0.1196930 0.1394290 0.1761780 0.2223330 0.2749920 
0.3485520 0.1065640 0.1193270 0.1386610 0.1745640 0.2208050 0.2732550 
0.3511970 0.1062030 0.1191250 0.1381920 0.1736790 0.2199640 0.2722990 
0.3538670 0.1058440 0.1189230 0.1377240 0.1730910 0.2191260 0.2713460 
0.3585950 0.1052160 0.1185700 0.1369080 0.1720650 0.2178270 0.2696830 
0.3638690 0.1043480 0.1181830 0.1360150 0.1709420 0.2164060 0.2678650 
0.3719010 0.1030640 0.1170730 0.1346910 0.1692780 0.2143000 0.2651690 
0.3747240 0.1026230 0.1166910 0.1342250 0.1687060 0.2135750 0.2642420 
0.3775720 0.1021830 0.1163100 0.1337600 0.1680630 0.2128510 0.2633160 
0.3826900 0.1014050 0.1156360 0.1329370 0.1669260 0.2114110 0.2616790 
0.4023980 0.0985578 0.1131540 0.1299120 0.1627530 0.2061260 0.2556620 
0.4024850 0.0985578 0.1131430 0.1299000 0.1627350 0.2061040 0.2556370 
0.4025720 0.0985578 0.1131320 0.1298870 0.1627170 0.2060810 0.2556110 
0.4027140 0.0985578 0.1131140 0.1298710 0.1626880 0.2060450 0.2555690 
0.4294470 0.0985578 0.1099030 0.1270970 0.1580700 0.1994750 0.2480720 
0.4295450 0.0985578 0.1098950 0.1270870 0.1580540 0.1994520 0.2480460 
0.4296910 0.0985578 0.1098820 0.1270710 0.1580300 0.1994180 0.2480070 
0.4299940 0.0985578 0.1098560 0.1270370 0.1579730 0.1993470 0.2479260 
0.4324810 0.0985578 0.1096430 0.1267600 0.1575150 0.1987680 0.2471770 
0.4515890 0.0971363 0.1080620 0.1247050 0.1541190 0.1944830 0.2416370 
0.4550320 0.0966415 0.1077870 0.1243480 0.1535300 0.1937390 0.2406770 
0.4551820 0.0966200 0.1077750 0.1243260 0.1535040 0.1937070 0.2406350 
0.4582200 0.0961888 0.1075340 0.1238880 0.1530200 0.1930590 0.2397970 
0.4614520 0.0957354 0.1071830 0.1234260 0.1525110 0.1923760 0.2389150 
0.4619560 0.0956959 0.1071280 0.1233550 0.1524320 0.1922700 0.2387780 
0.4888330 0.0936718 0.1043460 0.1197080 0.1483960 0.1886510 0.2318020 
0.4929070 0.0933398 0.1039440 0.1191820 0.1478130 0.1881260 0.2307960 
0.5144860 0.0916448 0.1018920 0.1165020 0.1448380 0.1827830 0.2256680 
0.5148430 0.0916176 0.1018590 0.1164590 0.1447880 0.1826980 0.2255860 
0.5217740 0.0910950 0.1012270 0.1156360 0.1438150 0.1810620 0.2239020 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.5259140 0.0907876 0.1008550 0.1151250 0.1432430 0.1801030 0.2229130 
0.5450080 0.0894134 0.0991956 0.1128480 0.1406910 0.1761000 0.2185040 
0.5493260 0.0891121 0.0988320 0.1123500 0.1401940 0.1752260 0.2175400 
0.5567210 0.0886038 0.0982188 0.1115110 0.1393560 0.1737550 0.2158700 
0.5571070 0.0885776 0.0981871 0.1114770 0.1393130 0.1736790 0.2157840 
0.5815170 0.0869677 0.0962472 0.1093550 0.1366620 0.1694400 0.2105170 
0.5859180 0.0866877 0.0959102 0.1089860 0.1358330 0.1687060 0.2096050 
0.5940150 0.0861803 0.0952995 0.1083180 0.1343360 0.1673760 0.2079530 
0.6028340 0.0856388 0.0946482 0.1075160 0.1327480 0.1659610 0.2061950 
0.6068710 0.0853947 0.0943547 0.1071550 0.1321910 0.1653240 0.2054030 
0.6162180 0.0848383 0.0935503 0.1063320 0.1309230 0.1638740 0.2036020 
0.6200340 0.0846145 0.0932272 0.1060020 0.1304150 0.1631950 0.2028790 
0.6202530 0.0846045 0.0932088 0.1059830 0.1303860 0.1631570 0.2028380 
0.6385890 0.0837803 0.0916999 0.1040550 0.1280130 0.1599920 0.1994610 
0.6390320 0.0837608 0.0916642 0.1040090 0.1279570 0.1599170 0.1993810 
0.6434290 0.0835680 0.0913128 0.1035610 0.1274060 0.1591820 0.1984480 
0.6475180 0.0833903 0.0909893 0.1031480 0.1268980 0.1584210 0.1975890 
0.6570410 0.0829822 0.0902708 0.1022030 0.1257350 0.1566800 0.1956250 
0.6615770 0.0827906 0.0899343 0.1017990 0.1251910 0.1558670 0.1947060 
0.6764650 0.0817649 0.0888541 0.1005020 0.1234480 0.1532650 0.1917630 
0.6815840 0.0814202 0.0884911 0.1000660 0.1229790 0.1523930 0.1907760 
0.7058870 0.0798377 0.0868237 0.0980659 0.1208260 0.1488450 0.1862560 
0.7063450 0.0798079 0.0867931 0.0980293 0.1207870 0.1487800 0.1861730 
0.7110840 0.0795010 0.0864786 0.0976523 0.1202790 0.1481130 0.1853230 
0.7267550 0.0785086 0.0856380 0.0964333 0.1186370 0.1459580 0.1825790 
0.7431090 0.0775083 0.0847882 0.0950901 0.1169850 0.1437900 0.1798190 
0.7482390 0.0772016 0.0845272 0.0946786 0.1164790 0.1430440 0.1789740 
0.7587180 0.0765854 0.0840021 0.0938523 0.1152590 0.1415460 0.1772790 
0.7698600 0.0759447 0.0832644 0.0929939 0.1139950 0.1399940 0.1755190 
0.7807830 0.0753306 0.0825576 0.0920698 0.1127870 0.1385100 0.1738350 
0.7818050 0.0752765 0.0824923 0.0919845 0.1126750 0.1383730 0.1736790 
0.7871750 0.0749936 0.0821513 0.0915393 0.1120930 0.1376580 0.1727010 
0.7926100 0.0747103 0.0818100 0.0910940 0.1115110 0.1370230 0.1717230 
0.8041030 0.0741211 0.0811005 0.0901693 0.1099030 0.1357030 0.1696940 
0.8043680 0.0741076 0.0810843 0.0901482 0.1098870 0.1356730 0.1696480 
0.8451670 0.0721181 0.0786928 0.0870417 0.1074770 0.1315070 0.1628590 
0.8462440 0.0720563 0.0786322 0.0869632 0.1074160 0.1314010 0.1626880 
0.8520760 0.0717243 0.0783061 0.0865408 0.1070860 0.1308340 0.1618140 
0.8579680 0.0713928 0.0779802 0.0861192 0.1067560 0.1300660 0.1609420 
0.9029020 0.0689840 0.0756084 0.0830591 0.1025230 0.1245200 0.1546230 
0.9084120 0.0687024 0.0753306 0.0827017 0.1020290 0.1238750 0.1537710 
0.9214580 0.0680468 0.0745223 0.0818701 0.1008830 0.1223760 0.1517930 
0.9356810 0.0674190 0.0736638 0.0809860 0.0996654 0.1207870 0.1496960 
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Flv 6 in 9 in 12 in 18 in 24 in 36 in 

0.9489680 0.0668462 0.0728821 0.0801807 0.0985578 0.1193890 0.1477920 
0.9622800 0.0662852 0.0721181 0.0793930 0.0974103 0.1180240 0.1459340 
0.9703010 0.0659531 0.0716499 0.0789272 0.0967329 0.1172180 0.1448380 
0.9902770 0.0651449 0.0705135 0.0777955 0.0950898 0.1152630 0.1421830 
1.0049200 0.0645687 0.0697060 0.0769902 0.0939234 0.1138750 0.1403000 
1.0128000 - 0.0692800 0.0767211 0.0933086 0.1131430 - 
1.0346100 - 0.0681319 0.0759924 0.0916527 0.1113350 - 
1.0722400 - 0.0662485 0.0747854 0.0889406 0.1083650 - 
1.0728600 - 0.0662184 0.0747467 0.0888972 0.1083180 - 
1.0954500 - 0.0651449 0.0733698 0.0873539 0.1063130 - 
1.1279700 - 0.0641910 0.0714786 0.0852314 0.1035600 - 
1.1604300 - 0.0632793 0.0696914 0.0834529 0.1009580 - 
1.2213000 - 0.0608785 0.0665828 0.0803412 0.0964333 - 
1.2929600 - 0.0583084 0.0632793 0.0770078 0.0910416 - 
1.2933600 - 0.0582948 0.0632659 0.0769902 0.0910134 - 
1.3030400 - 0.0579668 0.0629394 0.0764128 0.0903308 - 
1.3401900 - 0.0567470 0.0617245 0.0742757 0.0880543 - 
1.3602000 - 0.0560954 0.0610936 0.0731734 0.0868775 - 
1.4003100 - 0.0548388 0.0598746 0.0713436 0.0846145 - 
1.4508700 - 0.0533435 0.0584200 0.0691725 0.0823743 - 
1.4833500 - 0.0524308 0.0573121 0.0678509 0.0810060 - 
1.5258700 - 0.0512885 0.0559286 0.0662007 0.0787287 - 
1.5702400 - 0.0501551 0.0542129 0.0645676 0.0764839 - 
1.5936400 - 0.0494119 0.0533482 0.0637406 0.0753505 - 
1.6755200 - 0.0469758 0.0505208 0.0613698 0.0716356 - 
1.6874400 - 0.0466412 0.0502957 0.0610418 0.0711253 - 
1.6885500 - 0.0466171 0.0502748 0.0610113 0.0710780 - 
1.7374800 - 0.0455839 0.0493777 0.0597070 0.0692398 - 
1.7749000 - 0.0448281 0.0487189 0.0580781 0.0678996 - 
1.8272300 - 0.0438178 0.0476597 0.0559286 0.0661140 - 
1.8277100 - 0.0438088 0.0476503 0.0559096 0.0660981 - 
1.8801500 - 0.0428471 0.0466412 0.0538937 0.0640339 - 
1.9209600 - 0.0421314 0.0458898 0.0524125 0.0625106 - 
1.9500100 - 0.0416381 0.0453716 0.0514012 0.0614672 - 

Source: The author, 2022. 
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Table 55 – Data collection to entrainment correlation 
Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.00504 0.43167 0.29191 0.19396 0.12534 0.07524 0.04387 0.02190 0.01046 0.00427 
0.00507 0.43041 0.29106 0.19340 0.12474 0.07486 0.04368 0.02182 0.01043 0.00426 
0.00514 0.42790 0.28936 0.19227 0.12356 0.07412 0.04331 0.02167 0.01038 0.00425 
0.00533 0.42170 0.28516 0.18948 0.12065 0.07228 0.04239 0.02130 0.01026 0.00422 
0.00544 0.41802 0.28267 0.18783 0.11893 0.07121 0.04185 0.02108 0.01018 0.00421 
0.00556 0.41437 0.28020 0.18619 0.11724 0.07014 0.04131 0.02087 0.01011 0.00419 
0.00568 0.41075 0.27776 0.18456 0.11558 0.06910 0.04072 0.02065 0.01003 0.00418 
0.00572 0.40955 0.27695 0.18402 0.11500 0.06875 0.04053 0.02058 0.01001 0.00418 
0.00597 0.40243 0.27213 0.18082 0.11159 0.06672 0.03938 0.02016 0.00987 0.00414 
0.00601 0.40126 0.27134 0.18022 0.11103 0.06638 0.03920 0.02009 0.00984 0.00414 
0.00614 0.39775 0.26897 0.17842 0.10920 0.06528 0.03864 0.01988 0.00977 0.00412 
0.00619 0.39659 0.26818 0.17783 0.10859 0.06492 0.03848 0.01982 0.00975 0.00411 
0.00627 0.39428 0.26662 0.17664 0.10739 0.06420 0.03816 0.01968 0.00970 0.00410 
0.00641 0.39084 0.26429 0.17488 0.10605 0.06340 0.03768 0.01948 0.00963 0.00408 
0.00650 0.38856 0.26275 0.17372 0.10517 0.06287 0.03737 0.01934 0.00959 0.00407 
0.00664 0.38517 0.26046 0.17199 0.10386 0.06209 0.03691 0.01914 0.00953 0.00406 
0.00669 0.38404 0.25970 0.17141 0.10327 0.06177 0.03675 0.01908 0.00951 0.00406 
0.00688 0.37958 0.25668 0.16914 0.10093 0.06050 0.03614 0.01882 0.00944 0.00405 
0.00693 0.37847 0.25593 0.16857 0.10035 0.06018 0.03598 0.01875 0.00941 0.00404 
0.00698 0.37737 0.25517 0.16801 0.09978 0.05987 0.03581 0.01869 0.00938 0.00404 
0.00708 0.37517 0.25366 0.16689 0.09883 0.05925 0.03548 0.01856 0.00933 0.00403 
0.00723 0.37189 0.25141 0.16452 0.09743 0.05833 0.03500 0.01837 0.00925 0.00400 
0.00733 0.36973 0.24992 0.16296 0.09650 0.05772 0.03468 0.01824 0.00921 0.00399 
0.00739 0.36865 0.24918 0.16218 0.09601 0.05742 0.03452 0.01818 0.00918 0.00398 
0.00744 0.36757 0.24823 0.16141 0.09552 0.05713 0.03436 0.01812 0.00916 0.00398 
0.00771 0.36224 0.24354 0.15844 0.09312 0.05566 0.03357 0.01781 0.00906 0.00394 
0.00776 0.36116 0.24261 0.15786 0.09265 0.05537 0.03342 0.01775 0.00903 0.00394 
0.00782 0.36009 0.24180 0.15727 0.09218 0.05508 0.03327 0.01768 0.00901 0.00393 
0.00793 0.35796 0.24019 0.15611 0.09125 0.05451 0.03296 0.01755 0.00897 0.00392 
0.00816 0.35374 0.23701 0.15301 0.08941 0.05338 0.03236 0.01729 0.00889 0.00389 
0.00821 0.35269 0.23622 0.15225 0.08895 0.05311 0.03221 0.01723 0.00886 0.00388 
0.00833 0.35008 0.23464 0.15073 0.08805 0.05256 0.03192 0.01710 0.00882 0.00388 
0.00845 0.34749 0.23308 0.14922 0.08716 0.05201 0.03162 0.01697 0.00877 0.00387 
0.00851 0.34620 0.23230 0.14848 0.08672 0.05174 0.03151 0.01690 0.00875 0.00387 
0.00869 0.34237 0.22999 0.14626 0.08542 0.05094 0.03116 0.01670 0.00868 0.00386 
0.00876 0.34110 0.22913 0.14553 0.08500 0.05067 0.03104 0.01664 0.00866 0.00386 
0.00882 0.33996 0.22829 0.14481 0.08457 0.05041 0.03093 0.01657 0.00863 0.00386 
0.00901 0.33657 0.22576 0.14265 0.08331 0.04963 0.03058 0.01638 0.00857 0.00384 
0.00914 0.33433 0.22409 0.14122 0.08220 0.04911 0.03026 0.01625 0.00852 0.00383 
0.00927 0.33211 0.22243 0.14005 0.08111 0.04860 0.02995 0.01612 0.00848 0.00382 
0.00933 0.33088 0.22144 0.13946 0.08057 0.04835 0.02979 0.01606 0.00845 0.00381 
0.00940 0.32965 0.22046 0.13888 0.08024 0.04810 0.02963 0.01599 0.00843 0.00380 
0.00947 0.32843 0.21948 0.13831 0.07990 0.04785 0.02948 0.01593 0.00841 0.00380 
0.00967 0.32479 0.21657 0.13658 0.07891 0.04714 0.02901 0.01574 0.00834 0.00378 
0.00974 0.32359 0.21548 0.13590 0.07858 0.04690 0.02886 0.01568 0.00832 0.00378 
0.00988 0.32120 0.21334 0.13455 0.07793 0.04643 0.02856 0.01559 0.00828 0.00377 



136 
 

 

Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.00995 0.32001 0.21227 0.13387 0.07754 0.04620 0.02841 0.01554 0.00826 0.00376 
0.01002 0.31882 0.21121 0.13320 0.07715 0.04597 0.02826 0.01550 0.00823 0.00376 
0.01009 0.31764 0.21015 0.13254 0.07676 0.04574 0.02811 0.01545 0.00821 0.00375 
0.01024 0.31529 0.20806 0.13122 0.07600 0.04528 0.02781 0.01536 0.00816 0.00374 
0.01031 0.31412 0.20722 0.13056 0.07562 0.04506 0.02767 0.01531 0.00814 0.00374 
0.01038 0.31296 0.20640 0.12991 0.07524 0.04483 0.02753 0.01527 0.00811 0.00373 
0.01046 0.31180 0.20557 0.12926 0.07486 0.04461 0.02739 0.01520 0.00809 0.00373 
0.01053 0.31064 0.20475 0.12861 0.07449 0.04439 0.02725 0.01514 0.00806 0.00372 
0.01060 0.30926 0.20393 0.12797 0.07412 0.04416 0.02712 0.01507 0.00804 0.00371 
0.01076 0.30652 0.20230 0.12669 0.07338 0.04358 0.02685 0.01494 0.00799 0.00370 
0.01091 0.30380 0.20069 0.12543 0.07265 0.04300 0.02658 0.01481 0.00794 0.00369 
0.01099 0.30245 0.19988 0.12480 0.07228 0.04271 0.02647 0.01475 0.00792 0.00368 
0.01114 0.29977 0.19822 0.12356 0.07156 0.04215 0.02625 0.01463 0.00787 0.00367 
0.01130 0.29711 0.19657 0.12215 0.07085 0.04173 0.02603 0.01450 0.00783 0.00365 
0.01138 0.29579 0.19575 0.12146 0.07050 0.04152 0.02592 0.01444 0.00781 0.00365 
0.01147 0.29448 0.19494 0.12076 0.07009 0.04131 0.02582 0.01438 0.00780 0.00364 
0.01155 0.29317 0.19412 0.12007 0.06969 0.04110 0.02571 0.01432 0.00778 0.00363 
0.01163 0.29187 0.19332 0.11939 0.06930 0.04090 0.02558 0.01427 0.00776 0.00363 
0.01171 0.29057 0.19235 0.11871 0.06890 0.04069 0.02545 0.01422 0.00775 0.00362 
0.01179 0.28936 0.19139 0.11811 0.06851 0.04049 0.02532 0.01416 0.00773 0.00361 
0.01196 0.28695 0.18948 0.11693 0.06773 0.04007 0.02507 0.01406 0.00770 0.00360 
0.01213 0.28457 0.18759 0.11577 0.06694 0.03966 0.02482 0.01396 0.00767 0.00359 
0.01222 0.28338 0.18665 0.11519 0.06655 0.03945 0.02470 0.01390 0.00765 0.00359 
0.01231 0.28220 0.18572 0.11461 0.06616 0.03925 0.02457 0.01385 0.00763 0.00358 
0.01240 0.28102 0.18479 0.11404 0.06578 0.03904 0.02445 0.01379 0.00760 0.00358 
0.01248 0.27978 0.18387 0.11338 0.06539 0.03884 0.02433 0.01373 0.00758 0.00357 
0.01257 0.27853 0.18295 0.11272 0.06501 0.03864 0.02421 0.01367 0.00756 0.00357 
0.01266 0.27729 0.18204 0.11206 0.06463 0.03842 0.02409 0.01362 0.00754 0.00356 
0.01293 0.27361 0.17932 0.11011 0.06383 0.03777 0.02373 0.01345 0.00747 0.00355 
0.01303 0.27240 0.17842 0.10947 0.06356 0.03755 0.02361 0.01340 0.00745 0.00354 
0.01312 0.27119 0.17753 0.10883 0.06330 0.03734 0.02349 0.01335 0.00743 0.00354 
0.01321 0.26998 0.17664 0.10821 0.06303 0.03712 0.02337 0.01330 0.00740 0.00353 
0.01331 0.26863 0.17576 0.10759 0.06277 0.03694 0.02326 0.01325 0.00738 0.00353 
0.01340 0.26729 0.17488 0.10698 0.06251 0.03675 0.02314 0.01320 0.00736 0.00352 
0.01369 0.26330 0.17227 0.10516 0.06127 0.03620 0.02279 0.01305 0.00729 0.00351 
0.01379 0.26199 0.17141 0.10455 0.06086 0.03602 0.02268 0.01301 0.00727 0.00350 
0.01388 0.26068 0.17052 0.10403 0.06045 0.03584 0.02257 0.01297 0.00725 0.00350 
0.01398 0.25937 0.16964 0.10351 0.06015 0.03566 0.02245 0.01293 0.00723 0.00349 
0.01408 0.25829 0.16876 0.10300 0.05985 0.03546 0.02234 0.01289 0.00721 0.00349 
0.01428 0.25615 0.16702 0.10197 0.05926 0.03504 0.02212 0.01281 0.00717 0.00347 
0.01449 0.25402 0.16529 0.10095 0.05866 0.03464 0.02190 0.01274 0.00712 0.00346 
0.01459 0.25296 0.16443 0.10045 0.05837 0.03443 0.02179 0.01270 0.00710 0.00345 
0.01470 0.25190 0.16358 0.09978 0.05808 0.03423 0.02168 0.01266 0.00708 0.00344 
0.01480 0.25085 0.16280 0.09911 0.05775 0.03403 0.02157 0.01260 0.00706 0.00343 
0.01501 0.24835 0.16126 0.09780 0.05709 0.03365 0.02136 0.01247 0.00702 0.00342 
0.01512 0.24711 0.16049 0.09715 0.05676 0.03345 0.02125 0.01241 0.00700 0.00341 
0.01533 0.24465 0.15896 0.09586 0.05612 0.03307 0.02104 0.01229 0.00696 0.00340 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.01544 0.24342 0.15821 0.09522 0.05580 0.03288 0.02095 0.01223 0.00694 0.00340 
0.01555 0.24221 0.15730 0.09459 0.05547 0.03270 0.02086 0.01216 0.00691 0.00340 
0.01566 0.24100 0.15641 0.09396 0.05515 0.03253 0.02078 0.01211 0.00689 0.00339 
0.01589 0.23859 0.15463 0.09271 0.05451 0.03221 0.02060 0.01201 0.00685 0.00338 
0.01612 0.23622 0.15286 0.09148 0.05387 0.03189 0.02043 0.01191 0.00681 0.00337 
0.01623 0.23503 0.15199 0.09096 0.05356 0.03173 0.02035 0.01186 0.00679 0.00337 
0.01635 0.23386 0.15098 0.09044 0.05325 0.03157 0.02025 0.01181 0.00677 0.00336 
0.01646 0.23269 0.14997 0.08992 0.05294 0.03141 0.02015 0.01177 0.00675 0.00335 
0.01658 0.23153 0.14898 0.08941 0.05264 0.03129 0.02006 0.01172 0.00673 0.00334 
0.01670 0.23037 0.14823 0.08890 0.05234 0.03116 0.01996 0.01168 0.00671 0.00334 
0.01694 0.22807 0.14675 0.08788 0.05175 0.03091 0.01977 0.01159 0.00668 0.00332 
0.01706 0.22693 0.14602 0.08730 0.05145 0.03079 0.01968 0.01155 0.00666 0.00331 
0.01718 0.22580 0.14529 0.08672 0.05116 0.03058 0.01958 0.01151 0.00664 0.00331 
0.01755 0.22243 0.14312 0.08500 0.05034 0.02998 0.01929 0.01138 0.00659 0.00329 
0.01767 0.22116 0.14231 0.08443 0.05007 0.02978 0.01919 0.01133 0.00657 0.00329 
0.01792 0.21864 0.14068 0.08331 0.04954 0.02938 0.01900 0.01124 0.00654 0.00328 
0.01805 0.21739 0.13988 0.08276 0.04928 0.02919 0.01891 0.01119 0.00652 0.00328 
0.01818 0.21615 0.13908 0.08220 0.04902 0.02899 0.01880 0.01114 0.00650 0.00327 
0.01844 0.21369 0.13750 0.08111 0.04849 0.02866 0.01858 0.01105 0.00646 0.00326 
0.01857 0.21262 0.13670 0.08057 0.04822 0.02850 0.01848 0.01100 0.00644 0.00326 
0.01870 0.21156 0.13590 0.08011 0.04794 0.02834 0.01837 0.01096 0.00642 0.00325 
0.01897 0.20945 0.13432 0.07920 0.04740 0.02801 0.01816 0.01088 0.00638 0.00323 
0.01911 0.20841 0.13354 0.07875 0.04713 0.02785 0.01807 0.01084 0.00636 0.00323 
0.01938 0.20633 0.13199 0.07785 0.04659 0.02753 0.01789 0.01076 0.00633 0.00321 
0.01952 0.20530 0.13122 0.07741 0.04632 0.02737 0.01780 0.01072 0.00631 0.00320 
0.01966 0.20420 0.13034 0.07696 0.04605 0.02721 0.01771 0.01068 0.00629 0.00320 
0.01980 0.20311 0.12948 0.07651 0.04578 0.02705 0.01763 0.01064 0.00627 0.00319 
0.02008 0.20095 0.12776 0.07562 0.04525 0.02674 0.01745 0.01056 0.00623 0.00318 
0.02022 0.19988 0.12691 0.07518 0.04498 0.02658 0.01736 0.01053 0.00621 0.00317 
0.02036 0.19874 0.12606 0.07474 0.04472 0.02645 0.01728 0.01049 0.00620 0.00317 
0.02051 0.19761 0.12522 0.07430 0.04446 0.02632 0.01719 0.01045 0.00618 0.00316 
0.02066 0.19648 0.12451 0.07387 0.04420 0.02618 0.01710 0.01041 0.00616 0.00315 
0.02110 0.19313 0.12239 0.07240 0.04343 0.02579 0.01685 0.01029 0.00611 0.00313 
0.02125 0.19203 0.12169 0.07192 0.04318 0.02566 0.01676 0.01025 0.00609 0.00313 
0.02140 0.19091 0.12099 0.07144 0.04293 0.02554 0.01668 0.01021 0.00607 0.00312 
0.02155 0.18980 0.12030 0.07097 0.04268 0.02539 0.01660 0.01017 0.00605 0.00312 
0.02171 0.18869 0.11950 0.07050 0.04243 0.02525 0.01651 0.01012 0.00604 0.00312 
0.02233 0.18433 0.11635 0.06864 0.04147 0.02467 0.01619 0.00996 0.00597 0.00310 
0.02249 0.18326 0.11558 0.06818 0.04123 0.02453 0.01611 0.00991 0.00595 0.00309 
0.02265 0.18221 0.11481 0.06773 0.04100 0.02439 0.01602 0.00986 0.00593 0.00309 
0.02281 0.18117 0.11414 0.06727 0.04076 0.02425 0.01594 0.00981 0.00591 0.00308 
0.02364 0.17606 0.11085 0.06506 0.03975 0.02355 0.01555 0.00956 0.00580 0.00305 
0.02380 0.17503 0.11020 0.06463 0.03955 0.02341 0.01547 0.00954 0.00578 0.00304 
0.02397 0.17401 0.10956 0.06420 0.03936 0.02328 0.01538 0.00951 0.00576 0.00304 
0.02414 0.17299 0.10883 0.06377 0.03916 0.02315 0.01530 0.00948 0.00574 0.00303 
0.02432 0.17199 0.10811 0.06335 0.03890 0.02301 0.01521 0.00945 0.00572 0.00302 
0.02502 0.16801 0.10526 0.06168 0.03787 0.02249 0.01486 0.00934 0.00565 0.00299 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.02519 0.16705 0.10455 0.06127 0.03762 0.02236 0.01479 0.00931 0.00563 0.00298 
0.02537 0.16610 0.10386 0.06086 0.03737 0.02223 0.01472 0.00925 0.00562 0.00297 
0.02555 0.16515 0.10317 0.06045 0.03716 0.02210 0.01464 0.00919 0.00560 0.00296 
0.02574 0.16421 0.10248 0.06005 0.03695 0.02197 0.01457 0.00913 0.00558 0.00295 
0.02592 0.16327 0.10180 0.05965 0.03673 0.02184 0.01450 0.00909 0.00557 0.00295 
0.02629 0.16141 0.10045 0.05886 0.03632 0.02159 0.01435 0.00901 0.00553 0.00294 
0.02648 0.16034 0.09978 0.05847 0.03611 0.02146 0.01428 0.00898 0.00552 0.00293 
0.02666 0.15927 0.09911 0.05808 0.03590 0.02134 0.01421 0.00894 0.00550 0.00293 
0.02685 0.15821 0.09845 0.05769 0.03569 0.02122 0.01414 0.00890 0.00549 0.00293 
0.02724 0.15611 0.09715 0.05693 0.03528 0.02098 0.01400 0.00883 0.00545 0.00292 
0.02743 0.15507 0.09650 0.05655 0.03507 0.02086 0.01393 0.00879 0.00544 0.00291 
0.02763 0.15404 0.09586 0.05617 0.03487 0.02074 0.01386 0.00876 0.00542 0.00291 
0.02782 0.15327 0.09522 0.05580 0.03467 0.02062 0.01379 0.00873 0.00540 0.00290 
0.02802 0.15250 0.09459 0.05543 0.03446 0.02048 0.01372 0.00870 0.00538 0.00289 
0.02822 0.15174 0.09396 0.05506 0.03426 0.02035 0.01364 0.00867 0.00536 0.00289 
0.02903 0.14873 0.09148 0.05361 0.03321 0.01981 0.01333 0.00854 0.00528 0.00287 
0.02924 0.14798 0.09087 0.05325 0.03295 0.01968 0.01326 0.00850 0.00526 0.00286 
0.02945 0.14683 0.09026 0.05289 0.03270 0.01958 0.01318 0.00846 0.00524 0.00285 
0.02966 0.14569 0.08966 0.05254 0.03254 0.01948 0.01311 0.00842 0.00523 0.00285 
0.03051 0.14122 0.08730 0.05096 0.03193 0.01910 0.01285 0.00826 0.00517 0.00282 
0.03095 0.13958 0.08614 0.05019 0.03162 0.01891 0.01273 0.00819 0.00513 0.00281 
0.03117 0.13877 0.08557 0.04981 0.03144 0.01878 0.01266 0.00815 0.00512 0.00280 
0.03139 0.13796 0.08494 0.04948 0.03126 0.01865 0.01260 0.00812 0.00510 0.00280 
0.03206 0.13556 0.08311 0.04849 0.03071 0.01828 0.01241 0.00802 0.00505 0.00278 
0.03229 0.13477 0.08250 0.04817 0.03053 0.01816 0.01235 0.00799 0.00503 0.00278 
0.03252 0.13387 0.08191 0.04785 0.03035 0.01804 0.01229 0.00796 0.00501 0.00277 
0.03275 0.13298 0.08131 0.04753 0.03018 0.01795 0.01223 0.00793 0.00499 0.00276 
0.03299 0.13210 0.08072 0.04722 0.02998 0.01786 0.01216 0.00790 0.00497 0.00276 
0.03346 0.13034 0.07955 0.04659 0.02958 0.01768 0.01203 0.00784 0.00494 0.00275 
0.03370 0.12948 0.07897 0.04628 0.02938 0.01760 0.01196 0.00781 0.00492 0.00274 
0.03418 0.12776 0.07793 0.04566 0.02899 0.01742 0.01182 0.00775 0.00490 0.00273 
0.03442 0.12691 0.07741 0.04536 0.02880 0.01733 0.01175 0.00772 0.00489 0.00272 
0.03467 0.12606 0.07689 0.04506 0.02863 0.01722 0.01169 0.00768 0.00488 0.00272 
0.03491 0.12522 0.07638 0.04476 0.02847 0.01710 0.01162 0.00765 0.00486 0.00271 
0.03541 0.12356 0.07537 0.04416 0.02815 0.01688 0.01148 0.00757 0.00484 0.00270 
0.03592 0.12192 0.07420 0.04358 0.02783 0.01665 0.01135 0.00749 0.00480 0.00269 
0.03617 0.12111 0.07362 0.04329 0.02767 0.01654 0.01128 0.00746 0.00479 0.00268 
0.03643 0.12030 0.07305 0.04300 0.02748 0.01645 0.01122 0.00742 0.00477 0.00268 
0.03669 0.11950 0.07249 0.04271 0.02730 0.01635 0.01115 0.00739 0.00475 0.00267 
0.03695 0.11871 0.07192 0.04243 0.02712 0.01626 0.01110 0.00735 0.00473 0.00267 
0.03721 0.11791 0.07138 0.04215 0.02694 0.01617 0.01104 0.00732 0.00471 0.00266 
0.03775 0.11635 0.07029 0.04159 0.02658 0.01598 0.01093 0.00726 0.00468 0.00265 
0.03801 0.11570 0.06976 0.04131 0.02640 0.01589 0.01088 0.00723 0.00466 0.00265 
0.03829 0.11506 0.06923 0.04103 0.02623 0.01580 0.01082 0.00719 0.00465 0.00264 
0.03856 0.11442 0.06870 0.04076 0.02605 0.01570 0.01077 0.00716 0.00463 0.00263 
0.03883 0.11379 0.06818 0.04049 0.02588 0.01560 0.01071 0.00713 0.00462 0.00263 
0.03911 0.11316 0.06765 0.04022 0.02571 0.01551 0.01066 0.00710 0.00460 0.00262 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.03939 0.11253 0.06713 0.03999 0.02556 0.01542 0.01061 0.00707 0.00459 0.00262 
0.04023 0.10969 0.06557 0.03931 0.02513 0.01514 0.01045 0.00697 0.00455 0.00260 
0.04052 0.10876 0.06506 0.03909 0.02498 0.01505 0.01040 0.00694 0.00454 0.00259 
0.04110 0.10693 0.06420 0.03864 0.02470 0.01486 0.01029 0.00688 0.00451 0.00258 
0.04139 0.10603 0.06377 0.03838 0.02454 0.01477 0.01024 0.00685 0.00450 0.00258 
0.04198 0.10424 0.06293 0.03787 0.02422 0.01459 0.01012 0.00679 0.00446 0.00256 
0.04258 0.10248 0.06209 0.03744 0.02390 0.01442 0.01001 0.00673 0.00443 0.00255 
0.04319 0.10075 0.06045 0.03702 0.02359 0.01424 0.00990 0.00667 0.00440 0.00254 
0.04412 0.09821 0.05926 0.03639 0.02313 0.01399 0.00974 0.00658 0.00435 0.00252 
0.04539 0.09493 0.05769 0.03544 0.02253 0.01365 0.00952 0.00647 0.00428 0.00249 
0.06290 0.06420 0.04106 0.02622 0.01665 0.01032 0.00737 0.00528 0.00361 0.00221 
0.06335 0.06377 0.04076 0.02605 0.01654 0.01026 0.00733 0.00525 0.00359 0.00221 
0.06380 0.06335 0.04053 0.02588 0.01643 0.01019 0.00729 0.00522 0.00358 0.00220 
0.06564 0.06168 0.03961 0.02520 0.01600 0.00995 0.00713 0.00512 0.00353 0.00218 
0.06610 0.06127 0.03938 0.02503 0.01589 0.00989 0.00709 0.00510 0.00351 0.00217 
0.06657 0.06086 0.03916 0.02486 0.01579 0.00982 0.00705 0.00507 0.00350 0.00216 
0.06705 0.06045 0.03890 0.02470 0.01568 0.00976 0.00701 0.00504 0.00349 0.00216 
0.06849 0.05926 0.03813 0.02428 0.01537 0.00956 0.00689 0.00496 0.00344 0.00214 
0.06898 0.05886 0.03787 0.02414 0.01527 0.00950 0.00685 0.00494 0.00343 0.00213 
0.06947 0.05847 0.03762 0.02400 0.01517 0.00944 0.00681 0.00492 0.00342 0.00213 
0.07046 0.05769 0.03712 0.02373 0.01496 0.00931 0.00673 0.00488 0.00339 0.00211 
0.07096 0.05731 0.03687 0.02357 0.01486 0.00925 0.00670 0.00485 0.00337 0.00211 
0.07147 0.05693 0.03663 0.02341 0.01477 0.00919 0.00666 0.00483 0.00336 0.00210 
0.07249 0.05617 0.03614 0.02310 0.01457 0.00908 0.00658 0.00479 0.00334 0.00209 
0.07300 0.05580 0.03590 0.02295 0.01447 0.00903 0.00654 0.00477 0.00333 0.00209 
0.07405 0.05481 0.03543 0.02264 0.01428 0.00893 0.00647 0.00473 0.00331 0.00208 
0.07457 0.05433 0.03519 0.02249 0.01419 0.00888 0.00643 0.00470 0.00330 0.00208 
0.07510 0.05384 0.03496 0.02234 0.01409 0.00883 0.00639 0.00468 0.00329 0.00207 
0.07564 0.05337 0.03472 0.02219 0.01400 0.00877 0.00636 0.00466 0.00328 0.00207 
0.07618 0.05289 0.03449 0.02205 0.01390 0.00871 0.00632 0.00463 0.00327 0.00206 
0.07727 0.05219 0.03397 0.02175 0.01372 0.00859 0.00625 0.00459 0.00324 0.00205 
0.07837 0.05150 0.03345 0.02146 0.01354 0.00848 0.00617 0.00455 0.00322 0.00203 
0.07893 0.05116 0.03320 0.02132 0.01343 0.00842 0.00614 0.00453 0.00320 0.00203 
0.07949 0.05082 0.03295 0.02118 0.01333 0.00837 0.00610 0.00451 0.00319 0.00202 
0.08006 0.05048 0.03270 0.02104 0.01323 0.00832 0.00606 0.00449 0.00318 0.00202 
0.08120 0.04948 0.03219 0.02076 0.01303 0.00821 0.00599 0.00445 0.00315 0.00200 
0.08236 0.04849 0.03169 0.02048 0.01283 0.00811 0.00592 0.00441 0.00312 0.00199 
0.08295 0.04817 0.03145 0.02035 0.01273 0.00806 0.00589 0.00438 0.00311 0.00199 
0.08354 0.04785 0.03120 0.02021 0.01263 0.00801 0.00586 0.00436 0.00309 0.00198 
0.08473 0.04722 0.03079 0.01994 0.01244 0.00791 0.00579 0.00432 0.00307 0.00197 
0.08533 0.04690 0.03058 0.01981 0.01234 0.00786 0.00576 0.00430 0.00305 0.00196 
0.08594 0.04659 0.03038 0.01968 0.01225 0.00781 0.00573 0.00428 0.00304 0.00196 
0.08655 0.04628 0.03018 0.01955 0.01216 0.00776 0.00570 0.00425 0.00303 0.00195 
0.08717 0.04587 0.02998 0.01942 0.01208 0.00771 0.00567 0.00423 0.00302 0.00195 
0.08779 0.04546 0.02978 0.01929 0.01200 0.00766 0.00564 0.00422 0.00300 0.00194 
0.08904 0.04466 0.02925 0.01903 0.01184 0.00757 0.00559 0.00418 0.00298 0.00193 
0.08968 0.04426 0.02899 0.01889 0.01177 0.00752 0.00556 0.00416 0.00297 0.00193 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.09031 0.04387 0.02880 0.01874 0.01169 0.00747 0.00553 0.00415 0.00296 0.00192 
0.09160 0.04310 0.02842 0.01846 0.01153 0.00737 0.00546 0.00411 0.00293 0.00191 
0.09226 0.04271 0.02823 0.01832 0.01146 0.00732 0.00542 0.00409 0.00292 0.00190 
0.09357 0.04196 0.02785 0.01804 0.01130 0.00722 0.00535 0.00405 0.00290 0.00189 
0.09424 0.04159 0.02767 0.01790 0.01123 0.00718 0.00531 0.00403 0.00289 0.00188 
0.09491 0.04122 0.02742 0.01776 0.01115 0.00714 0.00528 0.00401 0.00288 0.00187 
0.09764 0.03978 0.02646 0.01722 0.01076 0.00697 0.00515 0.00393 0.00283 0.00186 
0.09834 0.03942 0.02623 0.01709 0.01067 0.00693 0.00512 0.00391 0.00282 0.00185 
0.09904 0.03916 0.02600 0.01696 0.01057 0.00689 0.00508 0.00389 0.00281 0.00185 
0.09974 0.03890 0.02576 0.01683 0.01050 0.00685 0.00505 0.00387 0.00280 0.00184 
0.10045 0.03864 0.02554 0.01670 0.01043 0.00680 0.00502 0.00386 0.00279 0.00184 
0.10261 0.03762 0.02486 0.01632 0.01023 0.00667 0.00493 0.00380 0.00275 0.00182 
0.10334 0.03729 0.02467 0.01620 0.01016 0.00662 0.00490 0.00378 0.00274 0.00181 
0.10408 0.03696 0.02448 0.01607 0.01009 0.00658 0.00487 0.00376 0.00273 0.00180 
0.10482 0.03663 0.02429 0.01594 0.01001 0.00654 0.00484 0.00374 0.00272 0.00180 
0.10557 0.03630 0.02410 0.01582 0.00993 0.00649 0.00481 0.00371 0.00271 0.00179 
0.10708 0.03566 0.02373 0.01558 0.00978 0.00641 0.00475 0.00367 0.00268 0.00178 
0.10860 0.03503 0.02337 0.01534 0.00963 0.00632 0.00470 0.00363 0.00266 0.00177 
0.10938 0.03472 0.02319 0.01522 0.00956 0.00628 0.00467 0.00361 0.00265 0.00176 
0.11094 0.03411 0.02284 0.01498 0.00944 0.00620 0.00462 0.00358 0.00262 0.00175 
0.11173 0.03381 0.02266 0.01486 0.00937 0.00615 0.00459 0.00357 0.00261 0.00174 
0.11253 0.03351 0.02249 0.01473 0.00931 0.00611 0.00456 0.00355 0.00260 0.00174 
0.11413 0.03292 0.02210 0.01447 0.00919 0.00603 0.00451 0.00352 0.00258 0.00173 
0.11495 0.03262 0.02190 0.01434 0.00907 0.00599 0.00449 0.00350 0.00257 0.00172 
0.11576 0.03233 0.02170 0.01422 0.00901 0.00595 0.00446 0.00349 0.00256 0.00172 
0.11659 0.03205 0.02151 0.01409 0.00895 0.00591 0.00444 0.00347 0.00255 0.00171 
0.11742 0.03176 0.02132 0.01400 0.00889 0.00587 0.00441 0.00345 0.00254 0.00171 
0.11909 0.03120 0.02095 0.01381 0.00877 0.00580 0.00435 0.00342 0.00251 0.00170 
0.11994 0.03089 0.02076 0.01372 0.00871 0.00576 0.00432 0.00341 0.00250 0.00169 
0.12080 0.03058 0.02058 0.01363 0.00865 0.00572 0.00429 0.00339 0.00249 0.00169 
0.12166 0.03028 0.02039 0.01354 0.00858 0.00568 0.00426 0.00337 0.00248 0.00168 
0.12252 0.02998 0.02021 0.01345 0.00850 0.00564 0.00423 0.00335 0.00247 0.00168 
0.12427 0.02938 0.01986 0.01321 0.00835 0.00557 0.00418 0.00331 0.00245 0.00167 
0.12605 0.02886 0.01950 0.01298 0.00820 0.00549 0.00414 0.00328 0.00243 0.00165 
0.12695 0.02861 0.01933 0.01286 0.00815 0.00546 0.00411 0.00326 0.00242 0.00165 
0.12785 0.02835 0.01916 0.01275 0.00809 0.00542 0.00409 0.00324 0.00241 0.00164 
0.12876 0.02810 0.01899 0.01265 0.00804 0.00538 0.00406 0.00322 0.00240 0.00163 
0.12968 0.02785 0.01882 0.01255 0.00799 0.00535 0.00404 0.00320 0.00239 0.00163 
0.13246 0.02697 0.01833 0.01227 0.00783 0.00524 0.00397 0.00316 0.00236 0.00161 
0.13341 0.02669 0.01816 0.01218 0.00776 0.00521 0.00395 0.00314 0.00235 0.00161 
0.13436 0.02640 0.01800 0.01208 0.00769 0.00517 0.00393 0.00312 0.00234 0.00160 
0.13531 0.02617 0.01784 0.01198 0.00762 0.00514 0.00391 0.00311 0.00232 0.00160 
0.13628 0.02594 0.01768 0.01187 0.00755 0.00510 0.00388 0.00309 0.00231 0.00160 
0.13822 0.02548 0.01737 0.01166 0.00742 0.00504 0.00383 0.00306 0.00229 0.00159 
0.13921 0.02525 0.01722 0.01156 0.00736 0.00500 0.00380 0.00305 0.00228 0.00158 
0.14020 0.02503 0.01707 0.01146 0.00731 0.00497 0.00378 0.00303 0.00227 0.00157 
0.14220 0.02450 0.01676 0.01128 0.00720 0.00490 0.00373 0.00300 0.00224 0.00156 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.14423 0.02398 0.01647 0.01110 0.00709 0.00484 0.00368 0.00297 0.00223 0.00155 
0.14526 0.02373 0.01632 0.01102 0.00704 0.00481 0.00365 0.00296 0.00222 0.00154 
0.14629 0.02352 0.01618 0.01093 0.00699 0.00477 0.00363 0.00294 0.00221 0.00154 
0.14733 0.02331 0.01603 0.01083 0.00693 0.00474 0.00361 0.00293 0.00220 0.00153 
0.14944 0.02290 0.01575 0.01064 0.00680 0.00468 0.00356 0.00290 0.00218 0.00152 
0.15050 0.02269 0.01561 0.01055 0.00674 0.00465 0.00354 0.00288 0.00217 0.00152 
0.15157 0.02249 0.01547 0.01046 0.00668 0.00462 0.00352 0.00287 0.00216 0.00151 
0.15265 0.02229 0.01534 0.01036 0.00662 0.00459 0.00350 0.00285 0.00215 0.00151 
0.15374 0.02210 0.01520 0.01025 0.00658 0.00456 0.00348 0.00284 0.00214 0.00150 
0.15594 0.02170 0.01493 0.01002 0.00649 0.00450 0.00344 0.00281 0.00212 0.00149 
0.15816 0.02132 0.01467 0.00985 0.00641 0.00444 0.00340 0.00278 0.00210 0.00148 
0.15929 0.02109 0.01449 0.00976 0.00636 0.00441 0.00337 0.00277 0.00209 0.00148 
0.16042 0.02085 0.01432 0.00967 0.00632 0.00438 0.00335 0.00276 0.00208 0.00148 
0.16157 0.02062 0.01415 0.00959 0.00626 0.00435 0.00333 0.00274 0.00207 0.00147 
0.16272 0.02040 0.01398 0.00950 0.00621 0.00432 0.00331 0.00273 0.00206 0.00147 
0.16387 0.02019 0.01381 0.00941 0.00615 0.00428 0.00328 0.00271 0.00205 0.00146 
0.16621 0.01976 0.01357 0.00924 0.00605 0.00422 0.00324 0.00268 0.00203 0.00145 
0.16740 0.01955 0.01345 0.00915 0.00599 0.00419 0.00322 0.00266 0.00202 0.00145 
0.16859 0.01935 0.01333 0.00907 0.00594 0.00415 0.00320 0.00265 0.00201 0.00144 
0.16979 0.01916 0.01321 0.00899 0.00589 0.00412 0.00319 0.00263 0.00200 0.00144 
0.17100 0.01897 0.01309 0.00891 0.00583 0.00409 0.00317 0.00262 0.00199 0.00143 
0.17468 0.01841 0.01268 0.00867 0.00568 0.00401 0.00311 0.00258 0.00197 0.00142 
0.17592 0.01821 0.01254 0.00859 0.00564 0.00399 0.00309 0.00257 0.00196 0.00141 
0.17717 0.01802 0.01241 0.00852 0.00559 0.00396 0.00307 0.00256 0.00195 0.00141 
0.17843 0.01783 0.01229 0.00844 0.00555 0.00393 0.00305 0.00254 0.00195 0.00140 
0.17970 0.01764 0.01216 0.00837 0.00551 0.00390 0.00303 0.00253 0.00194 0.00140 
0.18098 0.01745 0.01204 0.00829 0.00547 0.00387 0.00301 0.00252 0.00193 0.00139 
0.18357 0.01703 0.01180 0.00815 0.00538 0.00381 0.00297 0.00249 0.00191 0.00138 
0.18487 0.01683 0.01169 0.00807 0.00534 0.00378 0.00295 0.00247 0.00190 0.00137 
0.18751 0.01643 0.01148 0.00792 0.00526 0.00373 0.00291 0.00244 0.00188 0.00136 
0.18885 0.01629 0.01138 0.00784 0.00522 0.00370 0.00289 0.00243 0.00187 0.00136 
0.19019 0.01614 0.01128 0.00777 0.00518 0.00368 0.00287 0.00242 0.00186 0.00135 
0.19155 0.01600 0.01118 0.00769 0.00514 0.00365 0.00285 0.00240 0.00185 0.00135 
0.19291 0.01586 0.01108 0.00762 0.00509 0.00363 0.00284 0.00239 0.00184 0.00134 
0.19428 0.01572 0.01096 0.00755 0.00504 0.00361 0.00282 0.00237 0.00183 0.00134 
0.19567 0.01558 0.01084 0.00748 0.00499 0.00358 0.00280 0.00236 0.00182 0.00133 
0.19706 0.01538 0.01073 0.00741 0.00494 0.00356 0.00278 0.00235 0.00182 0.00133 
0.19988 0.01500 0.01050 0.00727 0.00485 0.00351 0.00274 0.00232 0.00180 0.00132 
0.20130 0.01481 0.01040 0.00720 0.00481 0.00349 0.00272 0.00231 0.00179 0.00131 
0.20273 0.01462 0.01029 0.00713 0.00476 0.00346 0.00271 0.00230 0.00178 0.00131 
0.20417 0.01444 0.01019 0.00707 0.00472 0.00344 0.00269 0.00229 0.00177 0.00130 
0.20563 0.01426 0.01009 0.00700 0.00468 0.00341 0.00267 0.00227 0.00176 0.00130 
0.20856 0.01390 0.00989 0.00688 0.00460 0.00336 0.00263 0.00225 0.00174 0.00129 
0.21154 0.01366 0.00965 0.00676 0.00452 0.00331 0.00260 0.00223 0.00173 0.00128 
0.21305 0.01354 0.00954 0.00669 0.00448 0.00328 0.00258 0.00222 0.00172 0.00127 
0.21457 0.01342 0.00942 0.00661 0.00444 0.00326 0.00257 0.00220 0.00171 0.00127 
0.21609 0.01330 0.00931 0.00654 0.00440 0.00323 0.00255 0.00219 0.00170 0.00126 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.21763 0.01318 0.00923 0.00647 0.00436 0.00321 0.00253 0.00218 0.00169 0.00126 
0.21918 0.01304 0.00915 0.00641 0.00432 0.00319 0.00251 0.00217 0.00168 0.00125 
0.22074 0.01290 0.00907 0.00634 0.00428 0.00316 0.00250 0.00215 0.00168 0.00125 
0.22231 0.01276 0.00896 0.00628 0.00424 0.00314 0.00248 0.00214 0.00167 0.00124 
0.22390 0.01263 0.00885 0.00622 0.00421 0.00311 0.00246 0.00213 0.00166 0.00124 
0.22549 0.01249 0.00875 0.00615 0.00417 0.00309 0.00245 0.00212 0.00165 0.00123 
0.22871 0.01220 0.00854 0.00603 0.00411 0.00305 0.00242 0.00209 0.00163 0.00122 
0.23363 0.01177 0.00827 0.00587 0.00402 0.00299 0.00237 0.00206 0.00160 0.00121 
0.23529 0.01162 0.00818 0.00582 0.00399 0.00297 0.00235 0.00204 0.00159 0.00120 
0.23697 0.01149 0.00809 0.00577 0.00395 0.00295 0.00234 0.00203 0.00159 0.00120 
0.23865 0.01135 0.00801 0.00572 0.00392 0.00293 0.00232 0.00202 0.00158 0.00119 
0.24035 0.01121 0.00793 0.00566 0.00388 0.00290 0.00230 0.00201 0.00157 0.00119 
0.24206 0.01108 0.00785 0.00560 0.00385 0.00288 0.00229 0.00200 0.00156 0.00119 
0.24552 0.01084 0.00770 0.00548 0.00378 0.00284 0.00226 0.00197 0.00155 0.00118 
0.24727 0.01073 0.00762 0.00542 0.00374 0.00281 0.00224 0.00196 0.00154 0.00117 
0.24903 0.01062 0.00755 0.00537 0.00370 0.00279 0.00223 0.00195 0.00153 0.00117 
0.25080 0.01050 0.00747 0.00531 0.00366 0.00277 0.00221 0.00194 0.00152 0.00116 
0.25438 0.01022 0.00732 0.00521 0.00358 0.00273 0.00219 0.00192 0.00151 0.00115 
0.25620 0.01008 0.00723 0.00516 0.00355 0.00271 0.00217 0.00191 0.00150 0.00115 
0.25802 0.00994 0.00715 0.00510 0.00352 0.00269 0.00216 0.00190 0.00149 0.00115 
0.26171 0.00967 0.00698 0.00500 0.00346 0.00265 0.00213 0.00187 0.00148 0.00114 
0.26357 0.00954 0.00689 0.00494 0.00343 0.00263 0.00211 0.00186 0.00147 0.00113 
0.26544 0.00941 0.00682 0.00489 0.00340 0.00261 0.00210 0.00185 0.00146 0.00113 
0.26733 0.00928 0.00675 0.00484 0.00337 0.00259 0.00209 0.00184 0.00145 0.00113 
0.26924 0.00916 0.00668 0.00479 0.00334 0.00257 0.00207 0.00182 0.00144 0.00112 
0.27308 0.00891 0.00654 0.00469 0.00328 0.00253 0.00204 0.00180 0.00143 0.00111 
0.27503 0.00879 0.00645 0.00464 0.00325 0.00251 0.00203 0.00179 0.00142 0.00111 
0.27698 0.00867 0.00636 0.00459 0.00322 0.00249 0.00201 0.00178 0.00141 0.00110 
0.28294 0.00832 0.00611 0.00445 0.00313 0.00243 0.00197 0.00175 0.00139 0.00109 
0.28496 0.00821 0.00604 0.00441 0.00311 0.00241 0.00195 0.00174 0.00138 0.00109 
0.28698 0.00809 0.00597 0.00436 0.00308 0.00239 0.00194 0.00173 0.00137 0.00108 
0.28903 0.00802 0.00590 0.00432 0.00305 0.00237 0.00192 0.00172 0.00136 0.00108 
0.29316 0.00788 0.00576 0.00423 0.00299 0.00233 0.00190 0.00170 0.00135 0.00107 
0.29524 0.00781 0.00569 0.00419 0.00296 0.00230 0.00189 0.00168 0.00134 0.00107 
0.29946 0.00767 0.00555 0.00411 0.00290 0.00227 0.00186 0.00166 0.00132 0.00106 
0.30374 0.00747 0.00542 0.00403 0.00284 0.00224 0.00184 0.00164 0.00131 0.00105 
0.30590 0.00737 0.00536 0.00399 0.00282 0.00223 0.00182 0.00163 0.00130 0.00105 
0.30808 0.00727 0.00529 0.00395 0.00279 0.00221 0.00181 0.00162 0.00129 0.00104 
0.31027 0.00718 0.00523 0.00391 0.00277 0.00220 0.00180 0.00161 0.00129 0.00104 
0.31920 0.00680 0.00498 0.00375 0.00267 0.00212 0.00175 0.00156 0.00126 0.00103 
0.32376 0.00662 0.00486 0.00368 0.00261 0.00209 0.00173 0.00154 0.00124 0.00102 
0.33072 0.00636 0.00469 0.00357 0.00251 0.00203 0.00170 0.00151 0.00122 0.00101 
0.33784 0.00611 0.00453 0.00346 0.00244 0.00198 0.00166 0.00148 0.00120 0.00100 
0.34024 0.00603 0.00447 0.00343 0.00242 0.00196 0.00165 0.00147 0.00119 0.00099 
0.34266 0.00595 0.00442 0.00340 0.00239 0.00195 0.00164 0.00146 0.00119 0.00099 
0.34510 0.00587 0.00437 0.00336 0.00237 0.00193 0.00163 0.00145 0.00118 0.00098 
0.35503 0.00560 0.00416 0.00323 0.00229 0.00187 0.00159 0.00142 0.00115 0.00097 
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Flv 90% 80% 70% 60% 50% 45% 40% 35% 30% 

0.36010 0.00544 0.00406 0.00317 0.00225 0.00184 0.00156 0.00140 0.00114 0.00096 
0.37047 0.00512 0.00387 0.00304 0.00217 0.00178 0.00152 0.00136 0.00111 0.00095 
0.38384 0.00474 0.00365 0.00289 0.00208 0.00170 0.00147 0.00132 0.00108 0.00093 
0.39770 0.00447 0.00343 0.00275 0.00199 0.00162 0.00142 0.00127 0.00105 0.00091 

Source: The author, 2022. 
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Parameter estimation for flooding correlation without split of the domain 

 

 

The new parameters for flooding correlation without split the Flv domain were 

determined. The results for each model were shown in Tables 56, 57 and Figure 30 (Lygeros; 

Magoulas, 1986); Tables 58, 59 and Figure 31 (Kessler; Wankat, 1988); Tables 60, 61 and 

Figure 32 (Ogboja; Kuye, 1990); Tables 62, 63 and Figure 33 (Economopoulos, 1978).  

 

Table 56 – New parameters for the correlation of Lygeros and Magoulas (1986) 
Tray spacing 

(m) 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 

0.1524 0.01915556 0.10122625 0.77982775 2.77286068 1.54949375 
0.2286 0.01157324 0.12704042 0.75974423 1.49836952 1.08102670 
0.3048 0.06460206 -8.1728110-8 -11.6583 0.73138154 -0.55954042 
0.4572 0.08323371 -1.04948410-7 -17.6475 0.65513710 -0.60413469 
0.6096 0.01608333 0.14477439 0.75252671 1.71753015 0.93773419 
0.9144 0.01763829 0.14388256 0.75412396 1.64074437 0.79462743 

Source: The author, 2022. 

 

Table 57 – Errors of the flooding correlation by Lygeros and Magoulas (1986) with new 
parameters 

Tray spacing (m) Average  
error (%) 

Maximum  
error (%) 

0.1524 1.54 8.00 
0.2286 1.97 9.88 
0.3048 1.06 5.03 
0.4572 0.89 5.44 
0.6096 1.85 7.67 
0.9144 0.47 1.82 

Source: The author, 2022. 
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Figure 30 – Comparison of Fair’s data from Souders-Brown constant with the correlation 
proposed by Lygeros and Magoulas (1986) with new parameters 

 
Source: The author, 2022. 

 

Table 58 – New parameters of the quadratic correlation of Kessler and Wankat (1988) 
Tray spacing (in) 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 

6 1.1578 0.4515 0.1624 
9 1.1483 0.5513 0.1938 
12 1.1021 0.5841 0.1951 
18 1.0165 0.6232 0.2094 
24 0.9309 0.6666 0.2214 
36 0.8305 0.6973 0.2633 

Source: The author, 2022. 

 

Table 59 – Error of flooding correlation by Kessler and Wankat (1988) with new parameters 

Tray Spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 1.64 7.45 
9 2.30 13.76 
12 2.42 13.58 
18 2.53 18.62 
24 2. 60 17.08 
36 0.82 4.94 

Source: The author, 2022. 
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Figure 31 – Comparison of Fair’s data from Souders-Brown constant with the quadratic 
correlation proposed by Kessler and Wankat (1988) with the new parameters 

 
Source: The author, 2022. 

 

Table 60 – New parameters for the correlation of Ogboja and Kuye (1990) 
Tray spacing (m) 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 𝜃𝐶𝑠𝑏,6 

0.1524 0.0129 0.2011 0.0061 -0.2686 -0.008 0.1229 
0.2286 0.0129 0.1731 0.0153 -0.2686 -0.008 0.0954 
0.3048 0.0129 0.1688 0.0193 -0.2686 -0.008 0.0914 
0.4572 0.0129 0.1535 0.0388 -0.2686 -0.008 0.0763 
0.6096 0.0129 0.1589 0.0464 -0.2686 -0.008 0.0761 
0.9144 0.0129 0.1373 0.0603 -0.2686 -0.008 0.1116 

Source: The author, 2022. 

 

Table 61 – Error the flooding correlation by Ogboja and Kuye (1990) with new parameters 

Tray spacing (m) Average  
error (%) 

Maximum  
error (%) 

0.1524 1.94 9.90 
0.2286 3.21 18.81 
0.3048 4.13 29.10 
0.4572 4.56 37.23 
0.6096 5.47 43.77 
0.9144 2.01 10.38 

Source: The author, 2022. 
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Figure 32 – Comparison  of Fair’s data from Souders-Brown constant with the correlation 
proposed by Ogboja and Kuye (1990) with new parameters 

 

Source: The author, 2022. 

 

Table 62 – New parameters for the correlation of Economopoulos (1978) 
Tray spacing (in) 𝜃𝐶𝑠𝑏,1 𝜃𝐶𝑠𝑏,2 𝜃𝐶𝑠𝑏,3 𝜃𝐶𝑠𝑏,4 𝜃𝐶𝑠𝑏,5 𝜃𝐶𝑠𝑏,6 

6 4.6144707 -0.5853533 4.9526855 -0.9774971 4.9179433 - 2.3130686 
9 2.3786258 -0.2944786 -4.962861 -0.6446075 - 4.8080764 2.7702027 

12 3.0359264 - 0.2228002 - 4.9247237 - 0.4620664 - 4.2113957 2.5712821 
18 4.9446145 - 0.1615520 - 4.8172325 - 0.3025193 - 4.7330993 3.2151896 
24 4.5304367 - 0.1055046 4.785858 - 0.2199283 4.9397237 - 3.6547326 
36 3.6044579 4.359803 4.1460763 - 0.1339737 4.7870535 - 3.0333122 

Source: The author, 2022. 

 

Table 63 – Errors of the flooding correlation by Economopoulos (1978) with new parameters 

Tray spacing (in) Average  
error (%) 

Maximum  
error (%) 

6 1.85 6.77 
9 2.49 8.04 
12 2.57 9.87 
18 2.36 6.39 
24 2.42 7.36 
36 3.44 13.41 

Source: The author, 2022. 
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Figure 33 – Comparison of Fair’s data from Souders-Brown constant with the correlation 
proposed by Economopoulos (1978)with new parameters 

 
Source: The author, 2022. 
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Parameter estimation for entrainment correlation without split of the domain 

 

 

The new parameters for entrainment correlation without split in regions were 

determined. The results for each model were shown in Tables 64, 65 and Figure 34 

(Economopoulos, 1978); Tables 66, 67 and Figure 35 (Ogboja; Kuye, 1990). 

 
Table 64 – New parameters of the correlation of Economopoulos (1978) for evaluation of the 
fractional entrainment 

Parameters 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 
6.5975 2.4158 -0.1115 0.6019 

Source: The author, 2022. 

 

Table 65 – Errors of entrainment correlations by Economopoulos (1978) with new parameters 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 8.10 38.62 
80 7.83 32.28 
70 9.38 28.34 
60 5.03 15.68 
50 10.34 24.23 
45 6.67 16.51 
40 3.71 7.85 
35 4.38 16.90 
30 15.33 45.65 

Source: The author, 2022. 
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Figure 34 – Comparison of Fair’s data from entrainment fraction with the correlation 

proposed by Economopoulos (1978) with new parameters 

90 %
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Source: The author, 2022. 

 

Table 66 – New parameters of the correlation of Ogboja and Kuye (1990) for evaluation of 
the fractional entrainment 

Parameters 𝜃𝜓,1 𝜃𝜓,2 𝜃𝜓,3 𝜃𝜓,4 𝜃𝜓,5 𝜃𝜓,6 𝜃𝜓,7 𝜃𝜓,8 
-7.7036 0.7153 -0.0499 2.2989 -0.2424 1.1750 -1.9799 0.8633 

Source: The author, 2022. 

 

Table 67 – Errors of the entrainment correlations of Ogboja and Kuye (1990) with new 
parameters 

Fflood (%) Average  
error (%) 

Maximum  
error (%) 

90 1.22 8.18 
80 2.68 8.82 
70 2.88 8.12 
60 3.77 12.65 
50 5.63 10.93 
45 2.76 5.24 
40 2.80 5.69 
35 2.57 7.66 
30 7.11 10.75 

Source: The author, 2022. 
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Figure 35 – Comparison of the original data from entrainment fraction with the correlation 
proposed by Ogboja and Kuye (1990) with new parameters 
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Source: The author, 2022. 
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Distillation design examples 

 

 

Tray design variables 

 

 

Tray design variables is composed by column diameter (Dc), hole diameter (dh), tray 

spacing (lt), the weir height (hw), the difference between weir and clearance height under the 

downcomer (hdwap), the weir lengh (lw), hole pitch (lp), tray thickness (tt), and hole layout 

(lay). Table 2 show discrete values adopted for this variables. 

 

Table 2 –Discrete values of the design variables 
Variables Discrete values 

Dc (m) 0.61 0.76 0.91 1.07 1.27 1.47 1.68 1.93 2.18 2.44 2.74 3.05 3.35 3.71 4.06 4.42 4.83 

dh (mm) 3.60 4.00 4.40 4.80 5.20 5.60 6.00 6.40          

hdwap 
(mm) 5.00 6.00 7.00 8.00 9.00 10.0            

hw (cm) 3.81 4.44 5.08 5.71 6.35 6.98 7.62 8.25 8.89         

lt (m) 0.15 0.23 0.31 0.47 0.62 0.91            

lw (m) 0.41 0.66 0.91 1.17 1.42 1.68 1.93 2.18 2.44 2.69 2.95 3.20 3.45 3.71 3.96   

lp (mm) 9.00 12.0 15.0 18.0 21.0 24.0            

tt (mm) 3.40                 

lay square triangular              

Source: The author, 2022. 

 

 

Example 1 

 

Example 1 consists of a depropanizer column and was taken from Kister (1992), with 

changes in flow rates (multiplied by 2.0). The feed of the distillation column is crude oil, the 

top stream contains 99.5% mol of methane, ethane, and propane, and the bottom stream 

contains 1% mol of propane. The operational parameters of the nineteen ideal stages are 

shown in Table 68, where the feed tray is tray 9 and the reflux ratio is 1.5. 
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Table 68 – Operational parameters of Example 1 

Stage Vapor mass 
flow rate (kg/s) 

Density of 
vapor (kg/m³) 

Liquid mass 
flow rate (kg/s) 

Density of 
liquid (kg/m³) 

Sufarce tension 
(N/m)103 

1 27.61 38.43 18.60 477.66 5.31 
2 30.40 39.64 21.38 448.17 3.37 
3 30.49 39.69 21.48 447.61 3.30 
4 30.04 39.50 21.03 451.50 3.35 
5 29.74 39.31 20.72 456.48 3.44 
6 29.47 39.07 20.45 461.57 3.53 
7 28.87 38.54 19.86 467.85 3.66 
8 27.50 37.24 18.49 482.49 4.44 
9 20.85 48.33 35.02 464.99 3.40 

10 23.55 49.90 37.72 455.82 3.60 
11 25.26 51.05 39.43 451.05 3.41 
12 26.65 52.07 40.82 447.45 3.28 
13 27.98 53.02 42.15 444.26 3.16 
14 29.14 53.90 43.31 441.68 3.07 
15 29.98 54.62 44.15 439.76 3.00 
16 30.81 55.25 44.98 438.00 2.94 
17 31.44 55.85 45.61 436.78 2.90 
18 31.88 56.59 46.05 436.09 2.87 
19 32.48 57.89 46.66 435.55 2.84 

Source: KISTER, 1992. 

 

The result of the Set Trimming procedure for correlations of Economopoulos (1978), 

Ogboja and Kuye (1990) and our readjusted is shown in Table 69. 
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Table 69 – Results of Example 1 

 Economopoulos 
(1978) 

Ogboja and Kuye 
(1990) 

Our readjusted 
correlations 

Cost total ($) 316361.07 352484.38 441644.54 

Dc (m) 3.0480 3.3528 4.064 

dh (m) 0.0036 0.0036 0.0036 

hdwap (m) 0.005 0.005 0.005 

hw (m) 0.0508 0.0445 0.0381 

lt (m) 0.9144 0.9144 0.9144 

lw (m) 2.9464 3.2004 3.9624 

lp (m) 0.009 0.012 0.012 

lay square triangular square 
Source: The author, 2022. 

 

Example 2 

 

Example 2 was taken from Towler and Sinnott (2013), with changes in flow rates 

(multiplied by 2.0), where acetone is recovered from a 10% mol of acetone aqueous waste. 

The top stream of the distillation column must contain 95% mol of acetone and the bottom 

stream must not contain more than 1 mol of acetone.  

The operational parameters of the nine ideal stages are shown in Table 70, the Stage 8 

is the feed tray and the reflux ratio is 1.24. These were obtained by a simulation in the Aspen 

software using the property method UNIQ-RK, which employs the Redlich-Kwong equation 

of state and the UNIQUAC activity coefficient model.  

 

 

 

 

 

 

 

 



155 
 

 

Table 70 – Operational parameters of Example 2 

Stage 
Vapor mass 

flow rate 
(kg/s) 

Density of vapor 
(kg/m³) 

Liquid mass 
flow rate 

(kg/s) 

Density of liquid 
(kg/m³) 

Sufarce tension 
(N/m)103 

1 2.99 2.10 1.64 753.76 22.28 
2 2.96 2.09 1.60 754.64 23.20 
3 2.92 2.07 1.56 755.64 24.21 
4 2.87 2.04 1.51 756.92 25.45 
5 2.80 2.01 1.44 758.84 27.21 
6 2.68 1.95 1.32 762.57 30.28 
7 2.37 1.78 1.01 776.27 38.60 
8 2.04 1.61 6.24 873.01 59.14 
9 1.36 1.02 5.57 900.73 60.79 

Source: TOWLER; SINNOTT, 2013. 

 

Table 71 shows the result of the Set Trimming procedure for correlations of 

Economopoulos (1978), Ogboja and Kuye (1990) and our readjusted. 

 

Table 71 – Results of Example 2 

 Economopoulos 
(1978) 

Ogboja and Kuye 
(1990) 

Our readjusted 
correlations 

Cost total ($) 36738.14 45604.67 40852.56 

Dc (m) 0.9144 1.2700 1.2700 

dh (m) 0.0036 0.0036 0.0036 

hdwap (m) 0.005 0.005 0.005 

hw (m) 0.0699 0.0381 0.0381 

lt (m) 0.9144 0.6096 0.4572 

lw (m) 0.6604 0.9144 0.9144 

lp (m) 0.009 0.009 0.009 

lay square square square 
Source: The author, 2022. 

 
The comparison of the correlations of Economopoulos (1978) with our predictions is 

shown in Figure 36. It is possible to observe a small fraction of false positive and false 

negative candidates in both constraints. Despite the small number of false positive candidates, 

one of them is the solution of the optimization problem when the Economopoulos (1978) 

correlation is employed, associated with a cost of $36,738.14. The solution with our 
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predictions in the model has a higher cost, $40,852.57, i.e. the solution using the correlation 

of Economopoulos (1978) was another false positive. 

 

Figure 36 – Example 2: Comparison between correlations of the Economopoulos (1978) and 
our readjusted correlations 

 
Subtitle: (a) Flooding, (b) Entrainment 

Source: The author, 2022. 

 

Figure 37 shows the results related to the correlations of Ogboja and Kuye (1990), 

where there is a small amount of false positive and false negative candidates. Here, the 

solution is also affected, but in an opposite way, the optimal solution has a cost of $45,604.67, 

but there is another alternative, which is feasible according to the predictions of this paper, 

with a smaller cost, $40,852.57, i.e. it is a false negative. 

 

Figure 37 – Example 2: Comparison between correlations of the Ogboja and Kuye (1990) and 
our readjusted correlations 

 
Subtitle: (a) Flooding, (b) Entrainment 

Source: The author, 2022. 
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Example 3 

 

 

Example 3 consists of a methanol purification column and was taken from Kiss and 

Ignat (2012), with changes in flow rates (multiplied by 0.5). The feed of the distillation 

column is a ternary mixture of methanol-water-glycerol (0.473–0.054–0.473 % mass). The 

top stream of the distillation column must contain 99.9% mass of methanol and the bottom 

stream must contain 90% mass of glycerol. To prevent the degradation of glycerol, the 

operating pressure is 0.5 bar. 

The operational parameters of the fourteen ideal stages are shown in Table 72, Stage 9 

is the feed tray and the reflux ratio is 1.4. These were obtained by a simulation in the Aspen 

software using the property method UNIQUAC activity coefficient model.  

 

Table 72 – Operational parameters of Example 3 

Stage Vapor mass 
flow rate (kg/s) 

Densityof 
vapor (kg/m³) 

Liquid mass 
flow rate (kg/s) 

Density of 
liquid (kg/m³) 

Sufarce tension 
(N/m)103 

1 0.456 0.600 0.266 765.503 20.411 
2 0.456 0.600 0.266 765.566 20.464 
3 0.455 0.600 0.265 765.671 20.551 
4 0.455 0.599 0.265 765.844 20.694 
5 0.454 0.598 0.264 766.130 20.928 
6 0.452 0.597 0.262 766.604 21.311 
7 0.450 0.594 0.260 767.395 21.934 
8 0.445 0.585 0.255 768.729 22.943 
9 0.441 0.581 0.647 898.886 30.101 

10 0.421 0.564 0.633 904.710 32.018 
11 0.376 0.508 0.588 926.350 38.349 
12 0.292 0.399 0.505 984.956 51.279 
13 0.236 0.297 0.449 1043.560 59.270 

Source: Kiss; Ignat, 2012. 

 

The result of the Set Trimming procedure is shown in Table 73 for correlations of 

Economopoulos (1978), Ogboja and Kuye (1990) and our readjusted. 
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Table 73 – Results of Example 3 

 Economopoulos 
(1978) 

Ogboja and Kuye 
(1990) 

Our readjusted 
correlations 

Cost total ($) 31955.10 31955.10 30643.87 

Dc (m) 0.7620 0.7620 0.6096 

dh (m) 0.0036 0.0036 0.0036 

hdwap (m) 0.005 0.005 0.005 

hw (m) 0.0381 0.0381 0.0381 

lt (m) 0.4572 0.4572 0.6096 

lw (m) 0.4064 0.4064 0.4064 

lp (m) 0.009 0.009 0.009 

lay square square square 
Source: The author, 2022. 

 

 

Figures 38 and 39 show the comparison of the performance of the correlations of 

Economopoulos (1978) and Ogboja and Kuye (1990), respectively. These figures indicate a 

small percentage of false positive and negative candidates.  

 

Figure 38 – Example 3: Comparison between correlations of the Economopoulos (1978) and 
our readjusted correlations 

 
Subtitle: (a) Flooding, (b) Entrainment 

Source: The author, 2022. 
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Figure 39 – Example 3: Comparison between correlations of the Ogboja and Kuye (1990) and 
our readjusted correlations 

 
Subtitle: (a) Flooding, (b) Entrainment 

Source: The author, 2022. 

 

The results of Set Trimming optimization to minimize cost using the correlations of 

Economopoulos (1978) or Ogboja and Kuye (1990) have a cost of $31,955.10, while the 

result with our predictions is $ 30,643.874, i.e. another example of a false negative candidate. 
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APPENDIX D – Scientific Production 

 

 

In this appendix the scientific production developed during the thesis period is 

presented. Only the first page of the complete paper is shown. 

 

Journal: Chemical Engineering Research and Design, 2022. 

 Title: Globally optimal distillation tray design using a mathematical 

programming approach. Authors: Aline R.C. Souza, Miguel J. Bagajewicz, 

André L.H. Costa. 

 

Journal: AIChE Journal, 2023. 

 Title: Set Trimming approach for the globally optimal design of sieve trays in 

separation columns. Authors: Aline R. da Cruz Souza, Miguel J. Bagajewicz, 

André Luiz Hemerly Costa. 

 

Journal: Chemical Engineering Research and Design, 2024. (Received for 

publication).  

 Title: Improved correlations for threshold flooding and entrainment in sieve 

trays in distillation/absorption columns. Authors: Aline R. C. Souza, Miguel J. 

Bagajewicz, André L. H. Costa. 
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