
Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências

Faculdade de Engenharia

Diego Matos Silva Lopes

EVALUATION OF A SPARSE REGRESSION MACHINE

LEARNING TECHNIQUE FOR DYNAMICAL SYSTEMS

DISCOVERY

Rio de Janeiro

2024



Diego Matos Silva Lopes

EVALUATION OF A SPARSE REGRESSION MACHINE LEARNING

TECHNIQUE FOR DYNAMICAL SYSTEMS DISCOVERY

Master’s Thesis presented to the Mechanical
Engineering Graduate Program of the Uni-
versidade do Estado do Rio de Janeiro as a
partial requirement to obtain the degree of
Master in Sciences. Field of concentration:
Solid Mechanics.

Advisor: Prof. Americo Barbosa da Cunha Junior, D.Sc.

Rio de Janeiro

2024



CATALOGAÇÃO NA FONTE 

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B 

Bibliotecária: Júlia Vieira – CRB7/6022 

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou 

parcial desta tese, desde que citada a fonte. 

Assinatura Data 

L864 Lopes, Diego Matos Silva. 
Evaluation of a sparse regression machine learning technique for 

dynamical systems discovery / Diego Matos Silva Lopes. – 2024. 
78 f. 

Orientador: Americo Barbosa da Cunha Junior. 
Dissertação (Mestrado) – Universidade do Estado do Rio de 

Janeiro, Faculdade de Engenharia. 

1. Engenharia mecânica - Teses. 2. Aprendizado do computador -
Teses. 3. Sistemas dinâmicos diferenciais - Teses. I. Cunha Junior, 
Americo Barbosa da. II. Universidade do Estado do Rio de Janeiro, 
Faculdade de Engenharia. III. Título. 

CDU 517.93 

01/07/2024



Diego Matos Silva Lopes

EVALUATION OF A SPARSE REGRESSION MACHINE LEARNING

TECHNIQUE FOR DYNAMICAL SYSTEMS DISCOVERY

Master’s Thesis presented to the Mechanical
Engineering Graduate Program of the Uni-
versidade do Estado do Rio de Janeiro as a
partial requirement to obtain the degree of
Master in Sciences. Field of concentration:
Solid Mechanics.

Approved on march 08, 2024.

Examining Committee:

Prof. Americo Barbosa da Cunha Junior, D.Sc. (Advisor)
Universidade do Estado do Rio de Janeiro (UERJ)

Prof. Fernando Alves Rochinha, D.Sc.
Universidade Federal do Rio de Janeiro (UFRJ)

Prof. Karla Tereza Figueiredo Leite, D.Sc.
Universidade do Estado do Rio de Janeiro (UERJ)

Prof. Samuel da Silva, D.Sc.
Universidade Estadual Paulista (UNESP)

Rio de Janeiro

2024



DEDICATION

I dedicate this to my late grandmother Adinilsa de Matos Silva; Semper in memoria

mea.



ACKNOWLEDGMENTS

I would like to express my deepest appreciation to all my closest family members

and all the integrants of NUMERICO reseacrh group for the support and help, especially

for my mother Wanda Matos, my advisor Prof. Americo Cunha Jr. And express my

appreciation to the FAPERJ for funding my master’s scholarship under the following

grant 200.525/2020.



ABSTRACT

MATOS SILVA LOPES, Diego. Evaluation of a Sparse Regression Machine Learning
Technique for Dynamical Systems Discovery. 2024. 78 f. Master’s Thesis (Master in
Mechanical Engineering) – Faculdade de Engenharia, Universidade do Estado do Rio de
Janeiro, Rio de Janeiro, Brazil, 2024.

This work comprehensively and didactically presents the Sparse Identification of
Nonlinear Dynamics (SINDy) method, applying it to various dynamic systems to assess
the robustness and effectiveness of the method in inferring their evolution equations. The
method proved effective in inferring dynamic systems, including chaotic ones. A test with
a trigonometric nonlinearity using only polynomial functions in the candidate function li-
brary was conducted. It was observed that the Taylor series polynomials for this function
were inferred, albeit with differences in parameters and the presence of a dissipative term.
Furthermore, a sequence of tests was developed, where two crucial statistical parameters
(root mean square error and correlation) were calculated to evaluate the quality of the
inferred dynamics compared to the dynamics that originated the data. The quality of the
obtained data was altered in three ways: an increased number of data samples in the same
time interval, different intensities of Gaussian noise in the data, and varying time intervals
while maintaining the same number of data points. In each of these tests, the number
of candidate functions was also altered to assess the influence of additional functions on
result quality. The results showed a significant impact of the number of data points and
noise on the outcomes. Conversely, the data capture interval did not yield differences in
the measured values to evaluate the proximity of dynamics between different intervals.
With an increased number of functions, there was a tendency for divergence between the
dynamics.

Keywords: Dynamical systems; Nonlinear dynamics; Machine learning; SINDy.



RESUMO

MATOS SILVA LOPES, Diego. Avaliação de uma Técnica de Aprendizado de Máquina
de Regressão Esparsa para Identificar Sistemas Dinâmicos. 2024. 78 f. Master’s Thesis
(Master in Mechanical Engineering) – Faculdade de Engenharia, Universidade do Estado
do Rio de Janeiro, Rio de Janeiro, Brazil, 2024.

Este trabalho apresenta de forma didática e completa o método de SINDy, aplicando-
o em diferentes sistemas dinâmicos em busca de testar a robustez e eficácia do método
em inferir sistemas caóticos, onde o método mostrou-se eficaz em inferir os sistemas
dinâmicos, até mesmo os caóticos. Um teste com um sistema trigonométrico apenas
com funções polinomiais na biblioteca de funções candidatas foi realizado, onde foi obser-
vado que os polinômios da série de Taylor para esta função foi inferido mas com diferença
nos parâmetros e com a presença de um termo dissipativo. Também foi desenvolvido
uma sequencia de testes onde dois importantes parâmetros estat́ısticos (raiz quadrada do
erro médio e correlação) são calculados para avaliar a qualidade da dinâmica inferida em
relação a dinâmica que deu origem aos dados ao alterar a qualidade dos dados obtidos,
três diferentes alterações na qualidade dos dados são propostos, maior número de amostra
de dados em um mesmo intervalo de tempo, diferentes intensidades de rúıdo gaussiano
nos dados e por último diferentes intervalos de tempo mantendo o mesmo número de
amostras de pontos de dados, em cada um destes testes também foi alterado o número
de funções candidatas para avaliar a influencia que funções a mais causam na qualidade
do resultado. Observou-se que o número de pontos de dados e o rúıdo afetaram conside-
ravelmente os resultados, enquanto que o intervalo de captura dos pontos de dados não
apresentou diferença nos valores de medidos para avaliar a proximidade das dinâmicas
entre os diferentes intervalos. Quanto maior o número de funções houve uma tendência
de aumento de divergência entre as dinâmicas.

Palavras-chave: Sistema dinâmicos; Dinâmica não linear; Aprendizado de máquinas;

SINDy.
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GENERAL INTRODUCTION

The majority of classical physics, mathematical, biological equations, among other

fields of science, has been discovered thru intense work of observation, experiments, and

usage of first principles to reach an equation that describes the phenomenon studied.

These first principles include phenomena like the balance of mass, Newton’s law of motion,

the laws of thermodynamics, and others (ODEN, 2011). However, for modern dynamical

systems where these first principles are unknown, some examples are epidemiological mod-

eling (DANTAS; TOSIN; Cunha Jr, 2018; DANTAS; TOSIN; Cunha Jr, 2019; RITTO;

JR; BARTON, 2021; LOPES; Cunha Jr, 2022; JR; BARTON; RITTO, 2023), structural

health monitoring (VILLANI; SILVA; Cunha Jr, 2018; VILLANI et al., 2019; YANO

et al., 2023), neuroscience (GLASER et al., 2019; MARBLESTONE; WAYNE; KORD-

ING, 2016; RICHARDS; LILLICRAP; BEAUDOIN, 2019). Discovering these dynamic

systems’ evolution law becomes an almost impossible assignment to complete analytically.

With the advent of the information age and the evolution of computers, numer-

ical methods, and artificial intelligence (AI), new ways of studying, working, analyze is

being developed every single day, revolutionizing science. Some specialists in economics

agree that we are in the fourth industrial revolution, works of Schwab (2016), Xu, David

and Kim (2018) show the evolution between each industrial revolution and highlight the

challenges and opportunities of the actual revolution. These works also explore new tools

that arise in this new era. Examples of these are the internet of things (IoT), advanced

robotics, 3D printing, and cognitive computing. Nevertheless, another essential term is

big data. Never before in the human story was created and stored the quantity of data

like now.

In recent years, the evolution of AI, especially machine learning (ML) techniques,

has been impressive. All this started with the study of Rosenblatt (1958) leads to the

perceptron’s creation in the late ’50s. The creation of the nearest neighbor algorithm in

the work of Cover and Hart (1967) in the ’60s. After that, all the research in AI and ML

was essential to develop all the tools used today, tools like multilayers neural networks,

feedforward neural networks, and backpropagation, regression techniques such as LASSO

(Least absolute shrinkage and selection operator) and Bayesian linear regression.

The neural networks (NN) was not very popular in the ’70s and ’80s, but with the

increase of computational processing power and improvements in software and program-

ming, NN became popular in the ’90s. The successful results in speech recognition by

Hochreiter and Schmidhuber (1997) is one example of the applications done for the NN

in the past. Nowadays, the applications are countless, including product recommenda-

tions, natural language procession, fraud detection, and more. All this is possible thanks

to the amount of data available today. In the scientific mean, that is not different. It
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works like (RICHARDS; LILLICRAP; BEAUDOIN, 2019; HASSANIBESHELI; BOERS;

KURTHS, 2020; LECUN; BENGIO; HINTON, 2015; MILLS; SPANNER; TAMBLYN,

2017; PATHAK et al., 2018; ZIO; ROCHINHA, 2020) developing NN, in the fields of ker-

nel methods; some examples are (CAMASTRA; VERRI, 2005; APSEMIDIS; PSARAKIS;

MOGUERZA, 2020; BADDOO et al., 2022), and even more, complex neural networks like

Physics-informed neural networks (ZHANG; GUO; KARNIADAKIS, 2019; ALMEIDA;

SILVA; JR, 2023; NATH et al., 2023; HE; ZHAO; YAN, 2023; ZHANG et al., 2024) use to

recognize complex patterns based on physics. Despite having an incredible generalization,

NN-based methods lack in providing interpretability to the user. Therefore, regression

methods are more proper for providing the interpretability that NN does not have.

Nonlinear equations are not rare for complex engineering problems, e.g., the sim-

ple pendulum, Duffing oscillator, Navier-Stokes, and others. Typically, complex dynam-

ical systems undergo simplifications to enable mathematical modeling. Thus, utilizing

data acquired from sensors of the phenomenon of interest has the benefit of obtaining

more reliable data reflecting reality. Nevertheless, it is more and more common to use

ML techniques in engineering problems. That varies in helping control complex systems

(VAMVOUDAKIS et al., 2015), predict mechanical failure (LI et al., 2014), helping with

the engineering design (PANCHAL et al., 2019), and others. However, with the evolution

of sensors and the amount of data available today, it is not impossible to use data to dis-

cover the evolution law that governs this data set. Some advances in regression methods

are getting prominence results for nonlinear dynamical systems. The works of Brun-

ton, Proctor and Kutz (2016) show a new method able to deal with nonlinear dynamical

systems with only data.

Objective

This study aims to investigate the capabilities of a relatively novel ML technique,

known as Sparse Identification of Nonlinear Dynamics (SINDy), in the complex task of

inferring nonlinear evolution equations from time series data. The goal is to get an insight

into the method’s strong and weak points and construct pedagogical material for future

generations of students who may be interested in applying this technique to nonlinear

dynamics problems. This document can be seen as a shortcut to those interested in

SINDy. Initially, we offer a comprehensive overview of the methodology, followed by a

series of tests encompassing a variety of dynamic systems. These tests include scenarios

characterized by both regular and chaotic behavior across different dynamical systems.

Additionally, we assess the method’s capability to interpret trigonometric dynamics solely

through polynomial functions, illustrated using the simple pendulum dynamics.

Furthermore, a set of tests is conducted by systematically varying the hyperparam-
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eters of the ML technique to infer their practical effect. Through a statistical analysis,

we investigate how the quality of these parameters impacts the method’s overall perfor-

mance. The objective is to identify which simulation parameters exert a more pronounced

influence on the results and quantify this impact.

Literature Review

The field of ML evolved considerably in the past few years, but the essence is

unknown to most people. Samuel (1959) wrote in his paper: ”... a computer can be

programmed so that it will learn to play a better game of checkers than can be played

by the person who wrote the program”. In this same work, the author complements:

”Programming computers to learn from experience should eventually eliminate the need

for much of this detailed programming effort”. The significant difference of ML with

traditional programming is that with ML algorithms, the computer can use data, trials,

or both to learning a specific task without the necessity of explicitly wrote a code that

contemplates all possible incomes. Furthermore, is used a scoring method to measure how

good the computer is for these tasks.

This definition contemplates many methods that are very different from each other.

With that, some authors of ML create subgroups of specific characteristics to distinguish

the methods. The author Géron (2019) classified them depending on specific criteria, and

the most important and widely used is the training method is supervised with humans

or not. The other two are whether or not the method can learn on the fly, and the last,

whether the technique work by comparing a new data point with the training data set or

detecting pattern on the training data to construct a predictive model.

The principal classification based on human supervision or not has three or four

subclassifications. Authors like Bishop (2006) and Herbrich (2002) divided this into su-

pervised, unsupervised, and reinforcement learning sub-categories. The first has the name

supervised because the data training has labels, and the ML method can predict or classify

based on these labels. The unsupervised does not have labels on the training data, and

the method tries to without this information to find patterns. The last is very different

from the other two; the ML algorithm observes the result obtained after the training, and

by a set of parameters chosen by the programmer is obtained a score, after the following

run of the code with, any positive change in the outcome results in a better score, and the

opposite is true. More recent works like Géron (2019) considers one more, semi-supervised

learning. These methods can deal with data sets data with labels mixed with unlabeled

data.

The regression methods like linear, polynomial, and logistic regression are in the

supervised learning category. However, regression techniques do not start with ML. Re-
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gression is a vital tool in statistical modeling. The first and earliest form of regression

is the classical method of least squares developed in the XIX century by Legendre and

Gauss to solve problems in astronomy, much time before any computer.

The basic premise of the regression method is to estimate the relationship between

the variables that minimize the error of the predicted model to the data. The most basic

regression is the simple linear regression, given by

y = β0 + β1x+ ϵ, (1)

where y and x are the dependent and independent variables, respectively, the β0 and β1

are the coefficients that the method seeks to discover, and the ϵ is the error term that the

method tries to minimize. The standard approach to do this is to use the method of the

least square to obtain the values of β0 and β1 that best fit the data. The first step is to

rewrite equation (1), isolating the error or residual ϵ resulting in

ϵ = y − (β0 + β1x), (2)

as the objective of the least square is to minimize the sum of squared residuals, or the

mean squared error (MSE), given by

MSE =
n∑

i=1

ϵi
2 =

n∑
i=1

(yi − β0 − β1xi)
2, (3)

where n is the number of data points.

To obtain the minimal value is necessary to take the partial derivative of MSE

with the coefficients and obtain the value of the result equation equal to zero. The result

equations are

∂MSE

∂β0

= 2
n∑

i=1

(yi − β0 − β1xi)(−1) = 0 (4)

and

∂MSE

∂β1

= 2
n∑

i=1

(yi − β0 − β1xi)(−xi) = 0. (5)

Working in these equations, the resulting expression for the estimated coefficients’ are

β̂1 =

∑
xiyi − (

∑
xi)(

∑
yi)/n∑

x2
i − (

∑
xi)2/n

(6)
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Figure 1 - Overfitting
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Caption: An example of overfitting in a simple

data set, it is possible to notice how

the predicted curve is adjusting to

the fluctuations of the data set.

and

β̂0 = y − β̂1x, (7)

where x and y are the mean values of x and y, respectively. For more details of the

arithmetics and mathematical properties, the work of Ryan (2008) brings all the details.

After that, more complex regression formulas with this basic premise were created,

e.g., the polynomial or logistic regression, where high order terms are present to capture

more information. However, one of the biggest problems with this method is the possibility

of overfitting the data; i.e., the predicted equation is adjusting too much with the data

fluctuations. Figure 1 shows an example of overfitting. The predicted curve follows the

fluctuation of the data set, resulting in problems of prediction. However, overfitting is

easy to detect for simple problems with low dimensional data, but that is not trivial for

a more complex data set.

One way to avoid overfitting is using regularized regression, where a regularized

parameter lambda is present in error. This parameter penalizes the error term intending

to decrease the number of independent variables of the predicted curve. Using a λ term

equal to zero is equivalent to the regression with the least-squares method. Whit λ equal

to infinity, all variables will decrease to zero. The two most famous regularized regressions

are Ridge and Lasso regression (HOERL; KENNARD, 1970; TIBSHIRANI, 1996). The
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Ridge regression or L2 regularization will penalize the method as follows

J = MSE + λ

p∑
j=1

β1
2
j , (8)

where p is the number of independent variables or features, and J is the cost function of

the method (GéRON, 2019). Equation (8) results in the variables going to zero but never

there. This method deals better with problems that have the presence of multicollinear

independent variables (GRUBER, 1998).

The Lasso regression, also known as L1 regularization, has the cost function given

by

J = MSE + λ

p∑
j=1

|β1j|. (9)

The significant difference between Ridge and Lasso is that Lasso will shrinkage some

features to zero (TIBSHIRANI, 1996). Because of that, Lasso is better em features

selection for data sets with many features. The selection of the value λ is crucial to a

good result. Using a λ too low will result in terms that do not correspond to the original

data, and using a λ too high will cut some essential features. Because of that, some

ML techniques help calibrate this parameter, tools, and techniques like split the data

in training, test and validation data, cross-validation, and others are fundamentals for

complex problems (GéRON, 2019; BISHOP, 2006).

Since then, regression analysis has evolved a lot. Many methods emerged to solve

different problems. Methods like the elastic net regression (HANS, 2011), principal com-

ponents regression (LIU et al., 2003), support vector regression (SMOLA; SCHÖLKOPF,

2004), among others, have their theory and practical applications. However, in recent

years, a method is getting attention, the sparse identification of nonlinear dynamics

(SINDy). The original work of SINDy present the method and shows examples of in-

ference nonlinear dynamics evolution law using data only.

Dissertation Organization

This dissertation is organized such that, following this general introduction, the

next chapter will comprehensively present the studied method. It will delve into the math-

ematical concepts involved, providing a didactic and profound understanding necessary

for the method’s application.

Following this, the benchmark systems employed to test SINDy are introduced.

Four dynamic systems were chosen for this purpose. The primary and most utilized
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in this work is the Duffing oscillator, selected for its nonlinear stiffness term and well-

established physical applications. The next system is the simple pendulum, composed of

only one trigonometric function, making it an ideal candidate to test the method’s ability

to identify such a function through polynomials, resembling a Taylor series. Lastly, two

more dynamic systems, the Van der Pol oscillator, and the Rössler system, are presented.

These two are used to demonstrate the method’s versatility in inferring different dynamics

and illustrate the shapes of attractors identified in chaotic cases.

Subsequently, the results of the mentioned tests for each benchmark are presented.

Following this, a series of tests varying the quality of the data used were conducted on

the Duffing oscillator. First, the result quality is tested by varying the number of data

points used in the same time range. Second, by varying the intensity of the noise used in

synthetic data. Lastly, by using the same amount of data points but captured at different

time intervals. Each of these tests was also performed by varying the number of candidate

mathematical functions to compose the inferred evolution law, aiming to determine how

the presence of more functions would affect result quality.

Finally, conclusions from this work are presented, summarizing the main charac-

teristics of the method, the use of different dynamic systems, and the results, with a focus

on highlighting which data parameters most influenced the outcomes.
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1 SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS

The Sparse Identification of Nonlinear Dynamics (SINDy) method is a recent

Machine Learning technique that employs regression fundamentals to discern the evo-

lutionary laws of dynamical systems using only data, as described Brunton, Proctor and

Kutz (2016). Since its inception, variations and hybrids of SINDy have been introduced

by the original authors and others (BRUNTON; KUTZ; PROCTOR, 2017; ZHENG et

al., 2019; BRUNTON et al., 2019; LYDON; POLAGYE; BRUNTON, 2023; JACOBS

et al., 2023). Other authors, too, have articles and works using this method showing

the technique’s potential (CORBETTA, 2020; FUKAMI et al., 2021; HONIGBAUM;

ROCHINHA, 2022).The possibilities that arise with a new method, e.g., combining the

ideas of different methods applying SINDy to verify the possibilities of improvements, like

the sparse polynomial chaos expansion (ZENG et al., 2022) with SINDy, is an exciting

idea.

However, different works address the inefficiency of SINDy in inferring the dynamic

system from highly noisy data, irregular sampling frequencies, or missing values (YANG;

MOHAMED; PERDIKARIS, 2020; MESSENGER; BORTZ, 2021; CORTIELLA; PARK;

DOOSTAN, 2022; WENTZ; DOOSTAN, 2023). This results in unreliable inferred param-

eters or even the method’s inability to determine the correct dynamics, especially from

real data. These studies present different methodologies applied alongside SINDy in an

attempt to improve this deficiency, demonstrating how the method has much room for

improvement.

This chapter will contemplate the fundamentals of the SINDy method and show

others more recent possibilities with this algorithm.

Consider a one-dimensional autonomous dynamical system in which the state x(t)

evolves according to the initial value problem

ẋ(t) = f (x(t)) , x(0) = a, (10)

where the vector field (evolution law) f : R → R is unknown.

Suppose the only known information about this system is a sample set with m

measurements of x(t) and its temporal derivative ẋ(t) at instant t1, t2, · · · , tm. The basic

idea of SINDy is to reconstruct the original dynamics employing a regression, where the

right-hand side of equation (10) is the approximation of a linear combination of certain

elementary functions in a given user-defined library.

For instance, if this library of functions consists of polynomials up to degree n− 2

and trigonometric functions such as sine and cosine of unit angular frequency, the following
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regression problem must be solved

ẋ(t1) ≈ ξ1 + ξ2x(t1) + . . .+ ξn−2x
n−2(t1) + ξn−1 sin t1 + ξn cos t1 ,

ẋ(t2) ≈ ξ1 + ξ2x(t2) + . . .+ ξn−2x
n−2(t2) + ξn−1 sin t2 + ξn cos t2 ,

ẋ(t3) ≈ ξ1 + ξ2x(t3) + . . .+ ξn−2x
n−2(t3) + ξn−1 sin t3 + ξn cos t3 , (11)

...
...

ẋ(tm) ≈ ξ1 + ξ2x(tm) + . . .+ ξn−2x
n−2(tm) + ξn−1 sin tm + ξn cos tm ,

In matrix forms is given by

ẋ(t1)

ẋ(t2)

ẋ(t3)
...

ẋ(tm)


≈



1 x(t1) . . . xn−2(t1) sin t1 cos t1

1 x(t2) . . . xn−2(t2) sin t2 cos t2

1 x(t3) . . . xn−2(t3) sin t3 cos t3
...

...
. . .

...
...

...

1 x(tm) . . . xn−2(tm) sin tm cos tm




ξ1

ξ2
...

ξn

 , (12)

or

ẋ ≈ Θ(x)Ξ. (13)

SINDy aplies to first order dynamical systems of form

d

dt
x(t) = f(x(t)) , (14)

where x(t) ∈ Rn is the state vector, dx(t)/dt ∈ Rn is the time-derivative of the state

vector, and f(x(t)) : Rn → Rn is the unknown evolution law.

A fundamental observation, in this case, is that higher-order systems usually, and

surprisingly, have simplistic evolution laws, which a minimum set of elementary functions

can represent. SINDy seeks to build this representation, promoting sparse solutions to

the regression problem (BRUNTON; PROCTOR; KUTZ, 2016).

It is necessary to have measurements of the time series of the vectors x(t) and ẋ(t)

to determine the evolution law f . If the ẋ(t) is not available by any factor, numerical

differentiation is an alternative to obtain this data. These data need to be collected into

matrix structures as follows,

X =


xT (t1)

xT (t2)
...

xT (tm)

 =



x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

...
. . .

...

x1(tm) x2(tm) . . . xn(tm)


, (15)
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Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =



ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)
...

...
. . .

...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)


. (16)

After that, it is necessary to construct a library of candidate functions, denoted

by Θ(x). Choosing polynomial, trigonometric, exponential functions, this library read as

follows

Θ(x) =

1 X XP2 XP3 XP4 . . . XPk sin(X) cos(X) eX

 . (17)

Where each column in this matrix represents a candidate function, and the XPn notation

indicates all possible n-order polynomials formed by combining the variables.

Generalizing the regression for the one-dimensional example, defined by equation

(13), to the n-dimensional dynamical system of interest, the least-squares problem be-

comes

Ẋ ≈ Θ(X)Ξ , (18)

where Ξ is a set of coefficients vectors as follows

Ξ =

Ξ1 Ξ2 . . . Ξn

 , (19)

where each column activates the candidate’s functions for each column of Ẋ.

In more formal terms, this least-squares problem states

Ξ∗ = argmin
Ξ

∥∥∥Ẋ−Θ(X)Ξ
∥∥∥
2
, (20)

this equation aims to minimize the error between the observed derivatives Ẋ and the

product of the library of functions Θ(X) with the coefficients Ξ. This equation can be

seen as a manifestation of the least squares optimization problem, which can be written

more formally as:

Ξ∗ = argmin
Ξ

∥E∥22 , (21)
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where E = Ẋ−Θ(X)Ξ is the residual error, and ∥·∥22 is the squared L2 norm.

The objective of this optimization problem is to find the coefficient vector Ξ that

minimizes the squared residuals, hence producing the best fit between the observed and

approximated dynamics.

Breaking down the error term E:

E = Ẋ−Θ(X)Ξ, (22)

ETE = (Ẋ−Θ(X)Ξ)T (Ẋ−Θ(X)Ξ), (23)

= ẊT Ẋ− ΞTΘ(X)T Ẋ− ẊTΘ(X)Ξ + ΞTΘ(X)TΘ(X)Ξ. (24)

To find the optimal Ξ∗, you would differentiate this expression with respect to Ξ

and equate it to zero, then solve for Ξ. This differentiation leads you back to the simplified

equation provided:

Ξ∗ = argmin
Ξ

∥∥∥Ẋ−Θ(X)Ξ
∥∥∥
2
, (25)

indicating the optimal coefficients that result in the least squares fit between the observed

and approximated dynamics (HASTIE; TIBSHIRANI; FRIEDMAN, 2009; NOCEDAL;

WRIGHT, 2006).

To produce a sparse solution in machine learning, it is common to use a statistics

technique known as Panalized regression, it is used where there are many predictors or

features when some form of regularization is needed to prevent overfitting. This process

aims to find the best-fitting model that explains the relationship between the indepen-

dent variables and the dependent variable while penalizing overly complex models. This

is achieved by adding a penalty term λ to the standard regression objective function,

typically the sum of squared errors or the likelihood function.

To induce sparsity in machine learning solutions, practitioners commonly employ

a statistical technique called penalized regression. This approach is utilized in scenarios

with numerous predictors or features, requiring regularization to mitigate overfitting. Its

objective is to discover the optimal model that elucidates the relationship between inde-

pendent variables and the dependent variable while penalizing excessive model complexity.

This process entails augmenting the standard regression objective function, typically the

sum of squared errors or the likelihood function, with a penalty term denoted as λ.

In penalized regression with convex relaxation, the penalty term assumes the form

of a convex function, facilitating sparsity in the model coefficients. The optimization

objective can be expressed as

Ξ∗ = argmin
Ξ

∥∥∥Ẋ−Θ(X)Ξ
∥∥∥
2
+ λ Penalty(Ξ), (26)
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Here, Penalty(Ξ) represents the convex regularization term applied to the coefficients.

Notable examples include LASSO (TIBSHIRANI, 1996), Least Angle Regression (LARS)

(EFRON et al., 2004), and Basis Pursuit Denoising (BPDN) (CHEN; DONOHO; SAUN-

DERS, 2001). In the SINDy paper, Brunton, Proctor and Kutz (2016) introduced a

novel methodology for promoting sparsity known as Sequential Thresholded Least Squares

(STLS).

The STLS methodology consists of an iterative method that eliminates Ξ’s coeffi-

cients that are smaller than a threshold value λ. First is made a regression to obtain a

non-sparse matrix Ξ. This matrix will have several spurious terms activating functions

that do not compose the evolution law of the dynamics. Then, the module of each element

of Ξ is thresholded with the value of λ, values of |ξ| that are smaller than λ will cut off,

and the subsequent regression will not contain this mathematical function. This process

continues until the convergence of Ξ.

Knowing the magnitude of the dynamics is very important to calibrate the λ value.

How the parameter λ acts as a direct threshold,parameters with the same or higher order of

magnitude as the dynamics will eliminate original mathematical functions of the evolution

law. When this information is missing, it is vital to use machine learning techniques (like

cross-validation) to test different values and validate the lambda values chosen.

The difference between STLS and other classical promote sparsity methods like

LASSO is that STLS is cheaper computationally and more precise for the dynamical

systems tested in this works. Figure 2 exemplifies how the SINDy algorithm works to

identify a Duffing oscillator for which measurements are available. The STLS in this

example was able to infer the correct mathematical functions with the coefficients very

close to the original.

The upper part of figure 2 is the time series of the dynamic following some evolution

law. In that example is the data of a Duffing oscillator with chaotic behavior. That

data is organized in a matrix as the equations (15) and (16) and given as input to the

SINDy. Next, the user has to decide the mathematical functions composing the matrix

of candidate functions. In that case, polynomials function until the fifth-order and cosine

trigonometric functions compose the matrix. The data provided in a matrix and the

sparsity promoter STLS (With a calibrated λ) and the candidate functions, combining all

that, the inferred dynamical system has the same mathematical functions as the original

system that originated the data.
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Figure 2 - SINDy schematics
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Caption: Schematics of how the SINDy method works for the case of a

Duffing oscillator.
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2 BENCHMARKS SYSTEMS

As this work aims to verify the consistency and obtain insights into the SINDy

method, it is crucial to use different dynamical systems to confirm this. Figure 3 shows the

four dynamical systems present in this chapter. This chapter presents a brief introduction

to all the dynamic systems used.

2.1 Duffing oscillator

The dynamical system chosen for most of the tests is the Duffing oscillator. This os-

cillator has many possible applications, such as structural dynamics (ZHANG et al., 2020),

energy harvesting (COTTONE; VOCCA; GAMMAITONI, 2009; LOPES; PETERSON;

Cunha Jr, 2017; PETERSON; LOPES; Cunha Jr, 2016; GUYOMAR et al., 2009; ROCA

et al., 2019; NORENBERG et al., 2023), and complex and well-known dynamic behavior.

Figure 3a shows a schematic of a vibratory system that behaves like a Duffing

oscillator. The dynamic behavior evolves according to

ẍ+ δ ẋ+ αx+ β x3 = γ cos(ωt) , (27)

where the function x = x(t) is the displacement of the beam tip, and the ẋ and ẍ are,

respectively, the first and second derivative of x, i.e., the velocity and acceleration (BREN-

NAN; KOVACIC, 2011). Equation 27 can change to the first-order system given by

ẋ1 = ω,

ẋ2 = x3, (28)

ẋ3 = −δx3 − αx2 − βx2
3 + γ cos(x1).

The parameters in the equation of motion are:

• The damping coefficient δ.

• The linear stiffness α.

• The nonlinear stiffness β.

• The external excitation amplitude γ.

• The external excitation frequency ω.
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Figure 3 - Benchmarks systems

(a) Duffing oscillator schematic
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2.2 Simple pendulum

This system is the most basic trigonometric dynamical system. The equation is

given by

d2θ

dt2
+

g

l
sin θ = 0, (29)

where g is the acceleration of gravity, l is the length of the cord or rod, and θ is the

vertical angle between the actual position of the pendulum and the stationary point of

equilibrium. Considering the l variable with the same length as the acceleration of gravity

g, it is possible to simplify the evolution law to be dependent on only the θ variable,

resulting in

d2θ

dt2
= − sin θ, (30)

or

θ̈ = − sin θ. (31)

Figure 3b shows the schematics of that pendulum. Equation 31 can change to the first-

order system given by

θ̇1 = θ2,

θ̇2 = − sin θ2. (32)

2.3 Van der Pol Oscillator

The Van der Pol oscillator is another valuable benchmark system explored due

to its rich and varied dynamical behaviors, making it a helpful model for the SINDy

method. It has historical significance in nonlinear dynamics and finds applications in

electronic circuits, cardiac dynamics, and other areas (POL, 1926; KENNEDY; CHUA,

1986; ZDUNIAK; BODNAR; FORYś, 2014).

Figure 3c a simplified representation of the Van der Pol dynamics. The governing

equation for the time evolution of the system’s state is given by

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0, (33)

where:

• x = x(t) is the state variable representing the displacement from the equilibrium.



27

• µ is a nonlinearity parameter.

• dx
dt

and d2x
dt2

are the first and second-time derivatives of x, respectively.

Converting Equation 33 into a system of first-order ordinary differential equations

(ODEs):

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − x1. (34)

This conversion facilitates the application and analysis using the SINDy method.

2.4 Rössler System

The Rössler system is a well-studied and canonical example of a chaotic dynamical

system, offering a wealth of complex dynamic behaviors, including chaos, complex dy-

namics, and fractals, with applications in various fields such as physics, engineering, and

biology (RöSSLER, 1976; BETANCOURT-MAR; ALARCóN-MONTELONGO; NIETO-

VILLAR, 2005).

Figure 3d depicts a dynamic representation of the Rössler system. The dynamic

equations governing the Rössler system are given by:

ẋ = −y − z,

ẏ = x+ ay, (35)

ż = b+ z(x− c),

where:

• x, y, and z are the state variables.

• a, b, and c are system parameters influencing the behavior and characteristics of the

dynamic responses.

The Rössler system’s nonlinearity and complex dynamics make it a crucial and

insightful case for applying and analyzing the SINDy method.
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3 RESULTS AND DISCUSSION

This chapter will discuss the results obtained by applying the SINDy method to the

systems, as mentioned earlier. Initially, we will describe the process of data generation

for the tests. Following this, we will present the results derived from applying SINDy

to the Duffing and Van der Pol oscillators and the Rössler system. Subsequently, we

will explore the Simple Pendulum case, accompanied by a detailed study examining how

various parameters influence the outcomes generated by the method. All the MATLAB

codes used for this thesis are available at ⟨https://github.com/DiegoMSL/dissertation

codes.git⟩.

3.1 Generated Data

To generate synthetic data, we utilized MATLAB’s ODE45 for numerically in-

tegrating the evolution law, resulting in the time series of the dynamical system. The

process of simulating experimental measurements to produce this synthetic data involves

three main steps:

• Integrate the system dynamics using a small time step to achieve high-precision

data.

• Introduce white Gaussian noise into the Ẋ data to simulate the fluctuations com-

monly found in experimental measurements. We anchieve this by adding a matrix

Z, populated with zero-mean Gaussian entries, scaled by the noise intensity σ, to

the time series.

• Selectively extract data points from the noise-infused time series to form a more

sparse dataset suitable for the SINDy method.

Figure 4 illustrates the three stages involved in the synthetic data generation pro-

cess.

3.2 Analysis of the Duffing oscillator

We began by modeling a Duffing oscillator system, ensuring the selection of pa-

rameters that would preclude the system from descending into chaos. This culminated in

the subsequent evolutionary rule:

https://github.com/DiegoMSL/dissertation_codes.git
https://github.com/DiegoMSL/dissertation_codes.git
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Figure 4 - Generated data
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Caption: The data generation process consists of three main steps. First, we utilize a

numerical integrator to produce high-precision data. Next, we introduce

Gaussian noise with an intensity of σ to mimic the data one might obtain

experimentally. Finally, we curate a dataset with a more extended time

interval than that used during the initial data generation.

ẋ1 = x2,

ẋ2 = −0.1x2 + 1.0x1–1.0x1
3 + 1.0 cos(x3), (36)

ẋ3 = 2.0.

For the training phase, the initial conditions set for dimensions ẋ1, ẋ2, and ẋ3 were

2.0, −2.0, and 0.0 respectively. We procured 151 samples, uniformly distributed from

time 0 to 15, and introduced Gaussian noise at an intensity of 0.01. In terms of SINDy

parameters, we opted for a function library encompassing power functions up to the fifth

degree and cosine trigonometric functions through the fifth order. We designated the

value of λ as 0.02. Consequently, the dynamic system derived was:

ẋ1 = 1.0003x2,

ẋ2 = −0.0992x2 + 1.0006x1–1.0001x2
3 + 0.9976 cos(x1), (37)

ẋ3 = 1.9996.

From our observations, the terms discerned through the method align with the

foundational data, underscoring the precision and efficacy of the SINDy in this scenario.
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Figure 5 - Duffing oscillator numerical dynamics compared with data driven

dynamics

(a) Displacement time series
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(b) Velocity time series
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Caption: The figures display the displacement, velocity, and phase space of the

non-chaotic Duffing oscillator. We used 151 data points, depicted as

green dots, for the method. The continuous colored lines illustrate the

numerical system, while the black dashed lines correspond to the results

inferred by the SINDy method.
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Figure 6 - Differences in numerical dynamics versus data-driven approaches over

extended durations

(a) Displacement time series
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(b) Velocity time series
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Caption: An excerpt from the Duffing oscillator’s time series emphasizes that, over

prolonged periods, the results from SINDy reveal notable discrepancies.

These differences lead to a misplacement between the two dynamics.

Visual representation of this data can be gleaned from figures 8a, 8b and 8c.

Here, the original system dynamics are depicted as a continuous colored line, the SINDy-

identified system as a dashed line, and the set of 151 data points are marked in green.

While the dynamic representations largely coincide up to time 60, disparities in the coef-

ficients predictably lead to a phase drift in the identified system over an extended period,

as elucidated in figures 6a and 6b.

Another crucial aspect of the method emerges in the subsequent test. For this, we

again employ the parameters and initial conditions from the non-chaotic Duffing test to

train the method. We then set the initial conditions ẋ1, ẋ2, and ẋ3 to values of −3.0, 1.0,

and 0.0 respectively. This adjustment allows us to validate the model and compare it to

the numerical results. In Figure 7, the green dots correspond to the 151 data samples

from the method’s initial training condition. The represented lines showcase the dynamics

under the new initial condition: the continuous line for the numerical dynamics and the
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Figure 7 - Duffing Oscillator Numerical Dynamics Compared with Data-Driven

Training with Different Initial Conditions

(a) Displacement Time Series
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Caption: The figures illustrate the displacement and velocity of the non-chaotic

Duffing oscillator. 151 data samples from the same oscillator but with

different initial conditions were used, as indicated by the green points

exhibiting distinct behavior from the identified and numerical dynamics.

dashed line for the inferred method’s result. This clear delineation indicates that the

SINDy result, derived from this initial condition, holds validity even for alternative initial

conditions. Given that the SINDy method determines the parameters of the evolutionary

law, a successful inference process ensures that alterations in initial conditions will not

impact the training outcome.

The Duffing oscillator exhibits a wide range of dynamic behaviors. By adjusting

certain parameters and setting specific initial conditions, the system can achieve chaotic

dynamics. The following equations describe this behavior:



33

ẋ1 = x2,

ẋ2 = −0.1x2 + 1.0x1–0.25x1
3 + 2.5 cos(x3), (38)

ẋ3 = 2.0.

The system starts with conditions for ẋ1, ẋ2, and ẋ3 at 1.0, −1.0, and 0.0 re-

spectively. Using 151 samples spanning 0 and 15, we incorporated a Gaussian noise of

magnitude 0.01 and set a sparsity parameter, λ, to 0.02. Our functional library included

polynomial functions up to the fifth order and trigonometric cosine functions, which led

to the production of the following dynamic system:

ẋ1 = 1.0003x2,

ẋ2 = −0.0992x2 + 0.9995x1–0.2501x2
3 + 2.4999 cos(x1), (39)

ẋ3 = 1.9996.

Even though the system behaves chaotically, SINDy’s inferences align closely with

it, displaying parameters that resemble those from the numerical data. As shown in

the Figure 8, minor variations in these parameters can result in significant disparities,

significantly beyond the range of the training data in both temporal and phase spaces, a

hallmark of chaotic systems.

The Duffing oscillator offers many test possibilities, and the ones mentioned are

just a few among many. For a deeper dive into various configurations, one can refer to

the works by Lopes and Cunha Jr (2019) and Cunha Jr and Lopes (2021). In a distinct

study, Lopes and Cunha Jr (2022) scrutinized the physical consistency of sparse regres-

sions with SINDy, focusing on the disparities in energy and momentum balance of the

detected system compared to its original — both in contexts with pristine data and those

tainted by noise. Notably, as time progressed, these differences became more pronounced.

This amplification was particularly evident when Gaussian noise was present, revealing a

proportional relationship between the noise intensity and the growing discrepancies.

3.3 Analysis of the pendulum dynamics

Another interesting test involves verifying if the SINDy method can capture the

behavior of trigonometric functions using only polynomial functions in the function library,
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Figure 8 - Comparison between the chaotic Duffing oscillator’s numerical dynamics

and its data-driven dynamics
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(b) Velocity time series
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Caption: These visualizations capture the displacement, velocity, and phase space

dynamics of the chaotic Duffing oscillator. We used 151 data points,

represented as green dots, for the method. Continuous colored lines

represent the numerical system, while black dashed lines outline the

results inferred using the SINDy method.
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approximating them through the Taylor series. As a result, Equation 32 transforms into:

θ̇1 = θ2,

θ̇2 = −θ2 +
θ2

3

6
− θ2

5

120
+O(θ2

7), (40)

or

θ̇1 = θ2,

θ̇2 = −θ2 + 0.1667θ2
3 − 0.0083θ2

5 +O(θ2
7). (41)

We used ODE45 to select 151 equally spaced samples over the time interval from 0

to 15, with initial conditions for θ̇1 and θ̇2 set to 1.0 and 1.0, respectively. We deliberately

avoided introducing Gaussian noise into the data to ensure maximum data precision and

to verify accuracy. Polynomial functions up to the fifth order were employed to compare

them with the inferred parameters to those of Equation 41. Using a lambda (λ) value of

0.001, the method’s result is:

θ̇1 = 1.0000θ2,

θ̇2 = −0.8599θ2 + 0.0937θ2
3 − 0.0730θ1θ2

2 − 0.0083θ2
5. (42)

Notice that the method identified a dissipative polynomial that should not be

present, specifically, the −0.0730θ1θ2
2 term. Since the numerical ODE45 method is dis-

sipative, we speculated that SINDy might have identified this additional term. To test

this hypothesis, we used the ODE78 method (EAGLE, 2023), known for having less dis-

sipation, to see if it would alter the parameters or even exclude the term. However, the

result remained precisely the same. We also tested variations by altering the number of

collected data points and the data collection time interval, but none of these scenarios al-

tered the inferred evolution law. Figure 9 demonstrates that, despite the dissipative term,

the inferred dynamics correspond well to the original dynamics within a short interval.

3.4 Analysis of the Van der Pol oscillator

Considering the Van der Pol oscillator system shown in the previous chapter, we

used Equation 34 to generate 151 samples between 0 and 15. The library of polynomial

functions consists of polynomials up to the fifth order without trigonometric terms. The

initial condition is given as x1 = 0.5 and x2 = −0.2. Gaussian noise with an intensity

of 0.1 and an STLS dispersion parameter of 0.5 were used. The result obtained for the
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Figure 9 - Time series of the simple pendulum with a Taylor series

(a) Angular time series
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Caption: Comparison of numerical time series with data-inferred ones, where the

numerical series uses the sine trigonometric function, and the inferred

series uses Taylor polynomials up to the fifth order for the sine function.

Represented by the green points, a total of 151 data samples were used.
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Figure 10 - Van der Pol oscillator numerical dynamics compared with data-driven

dynamics

(a) Time series of x1
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Caption: Time series of dimensions x1 and x2 of the Van der Pol system. The

colored solid line represents the original dynamics that generated the

data, the 151 green points are the samples used in the SINDy method,

and the dashed line is the dynamics identified by the method.

system with µ = 4 was

ẋ1 = 0.9997x2,

ẋ2 = −1.0000x1 + 4.0002x2 − 4.0005x1
2x2. (43)

Similar to the Duffing oscillator, the Van der Pol system had its dynamics accurately

inferred by the SINDy method. The results of the time series and phase space are shown

in the following figures.
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Figure 11 - Three-dimensional phase space of the Van der Pol oscillator
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Caption: Phase space of the Van der Pol oscillator comparing the original trajectories

with those identified by the data, represented by the green points.

3.5 Analysis of the Rössler system

The choice of the Rössler System as the final system in the Benchmark Systems

chapter is due to its dynamic behavior. We use Equation 35 with the following parameters:

a = 0.1, b = 0.1, and c = 14. The system exhibits chaos starting from the initial condition

x0 = −8, y0 = 8, and z0 = 0. We use 250 samples for this simulation, equally distributed

between 0.001 and 25, with Gaussian noise of intensity 0.5. We also construct a library of

polynomial functions up to the fifth order with a dispersion parameter of λ = 0.05. The

result is the following dynamics:

ẋ = −0.9922y − 1.0063z,

ẏ = 0.9954x+ 0.0969y, (44)

ż = 0.0938− 14.0639z + 1.0037xz.

Once again, SINDy correctly identifies the dynamics. However, as this system is chaotic,

the time series rapidly diverge. This divergence is illustrated in the figures 12, which

compare the original dynamics with the identified dynamics of the three dimensions: x,

y, and z of the system. Despite these differences, when we examine the Rössler attractor,

as shown in figure 13, the shape of the attractor reconstructed by the identified system

closely resembles that of the original system. This demonstrates that despite variations

in parameters and time series, SINDy effectively captures the behavior of the chaotic

dynamics.
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Figure 12 - Time Series of the Three Dimensions of the Rössler System

(a) Time series of x
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Caption: Comparison of the identified time series (black dashed line) with the

numerical counterpart (colored solid line) along with the 250 samples

(green dots) used to feed the SINDy method. Due to the chaotic nature

of the system, it can be observed that after some time, the identified

dynamics diverges from the numerical, especially in the z dimension.



40

Figure 13 - Rössler Attractor That Originated the Data Compared to the One

Reconstructed by the Identified Dynamics

Caption: The left attractor (True attractor) illustrates the phase space of the original

dynamics, where the red dots represent the 250 samples used by the SINDy

method to infer the evolution law. On the right is the reconstructed

attractor based on the inferred dynamics; it can be observed that despite

the chaotic nature of the dynamics, the shapes of the attractors exhibit

similar characteristics.
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3.6 Convergence Test for Number of Simulations

In the following section, a series of statistical tests varying key parameters in SINDy

simulations will be conducted, and the quality of the results will be assessed. First and

foremost, it is crucial to establish the minimum number of simulations required to achieve

satisfactory statistical outcomes. To address this, the average Root Mean Squared Error

(RMSE) between the numerical dynamics and those inferred from the Duffing oscillator

data is examined by iteratively applying the SINDy method 10, 25, 50, 100, 250, and 500

times.

The initial condition [1.0,−1.0, 0.0] for dimensions x1, x2, and x3 is employed to

generate training data based on Equation 38. The data is evenly distributed over 301

samples spanning from 0 to 30. This ample dataset is chosen to minimize the likelihood

of inferring evolution laws different from those that generated the data, thus avoiding

outliers. Despite the same initial condition and evolution law, each inference involves

generating Gaussian noise, ensuring unique noise patterns for each run and resulting in

slight fluctuations in the parameters of the inferred evolution law.

Subsequently, three additional initial conditions IC1 = [2, 0, 0], IC2 = [0,−2, 0],

and IC3 = [−2, 0, 0] are used in the dynamics inferred by SINDy and compared against

their numerical counterparts. For this evaluation, 1001 samples between 0 and 100 are

utilized, and the average RMSE for each data point across the entire dynamics is com-

puted. This process is repeated for varying numbers of repetitions, with the final step

involving the calculation of the average of all RMSE means. The outcomes of this test

are presented in Figure 14, illustrating these averages for each initial condition across

different simulation quantities. Notably, only IC1 for 10 repetitions displayed elevated

RMSE, indicating sensitivity to potential outlier results with only 10 simulations. Despite

expectations that increasing the number of simulations would yield improved results be-

yond a certain threshold, this was not consistently observed across all initial conditions.

This suggests that a higher computational workload may not necessarily translate to en-

hanced results. As satisfactory outcomes were observed with 25 to 100 simulations, 100

simulations were chosen as the standard to ensure a robust statistical evaluation without

excessive computational burden.

3.7 Analysis of the RMSE and Correlation

These tests use a variety of parameters numbers, such as:

• Number of data points,

• noise intensity,
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Figure 14 - Average RMSE for Different Numbers of Time Series
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Caption: Results of three dynamics with different initial conditions, depicting the

average RMSE between the identified and numerical dynamics for six

simulation quantities (10, 25, 50, 100, 250, and 500).

• the time interval of the data.

To calculate the influence of parameters in the result, the root-mean-squared error (RMSE)

and correlation between the original and identified dynamics. The RMSE is a statisti-

cal tool to measure the distance of a model with the data given by one equation. This

equation is important not only for statistical but for machine learning. Some techniques

use the RMSE as a calibration tool, minimizing the RMSE, which normally results in

better models. The correlation, or dependence, is also a statistical tool. This measure

the relationship between two variables given by a complex equation. The result of this

equation varies between −1 and 1, where closer to 1 is the correlation between more linear

and noisiness, and closer to −1 is the inverse linear and noisiness, if the result is zero, the

variables do not correlate.

Therefore the Duffing oscillator is again used for these tests because of the complex

dynamics and a well-known system. The parameters of the dynamical system are selected

in a way that chaos is avoided because the nature of chaotic systems of any variation

results in a divergence after some time. The system identified is given by

ẋ1 = x2,

ẋ2 = −0.1x2 + 1.0x1 − 1.0x3
1 + 2 cos x3, (45)

ẋ3 = 2.0,

this equation and initial condition [1,−1, 0]. Three different initial conditions are used to

validate the result. for each of the three variation parameters, the number of candidate

functions is changing too.
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Table 1 - RMSE for different number of data points with poly order 3

Data points 200 300 400 600 1000 1500 3000

IC1 0.27006 0.30438 0.27924 0.24941 0.21911 0.17059 0.13369
IC2 0.03620 0.03004 0.02483 0.01907 0.01795 0.01338 0.00878
IC3 0.07226 0.05815 0.04680 0.03342 0.02478 0.01969 0.01410

Table 2 - RMSE for different number of data points with poly order 4

Data points 200 300 400 600 1000 1500 3000

IC1 0.29546 0.31513 0.32203 0.29607 0.24659 0.18359 0.15996
IC2 0.06064 0.04338 0.05791 0.03228 0.01795 0.03486 0.02954
IC3 0.088 0.07123 0.10707 0.07728 0.07030 0.04865 0.10156

3.7.1 Number of data points

In this case, we examine the impact on result quality by varying solely the number

of equally spaced data points obtained within the time interval of 0 to 30. Databases with

200, 300, 400, 600, 1000, 1500, and 3000 points were employed, all originating from the

same initial condition dynamics [1,−1, 0]. Following the database generation, Gaussian

noise with an intensity of 0.005 is introduced. A sparsity parameter of 0.085 is consistently

applied across all simulations.

Once the dynamic system is identified, we select 1001 points within the time span

from 0 to 100 in both the identified and numerical dynamics. However, these are de-

termined using three distinct initial conditions: IC1 = [1, 0, 0], IC2 = [1.5,−0.5, 0], and

IC3 = [−2, 1, 0]. These points are then compared, allowing us to compute the RMSE and

correlation for these dynamics. The RMSE results are visually presented in Figures 15a,

15b, and 15c, with detailed tabular information available in Tables 1, 2, and 3. The dis-

tinction among these three results lies in the number of polynomial functions included in

the library for determining the inferred dynamics. Figure 15a and Table 1 correspond to

dynamics with a library comprised of combinations of polynomials up to the third order,

totaling 20 potential polynomial functions excluding trigonometrics. Similarly, Figure 15b

and Table 2 utilized polynomials up to the fourth order, while Figure 15c and Table 3

encompassed polynomials up to the fifth order.

Analyzing the results in Table 1, it is evident that, overall, the RMSE value de-

creases as the number of data points increases. This trend, however, does not hold true

for the variation between 200 and 300 points for IC1, where there is a 12.7% increase

in RMSE. When comparing results from 200 to 3000 data points for different initial

conditions, there are significant reductions of 50.50%, 75.73%, and 80.49%, respectively.

Despite the improvement in RMSE with an increased number of data points, a straight-
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Figure 15 - RMSE with different number of data points
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Caption: RMSE between the identified and original Duffing oscillator with

different number of data points varying the number of candidate

functions, each result is the mean of one hundred simulations for three

different initial conditions.
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Table 3 - RMSE for different number of data points with poly order 5

Data points 200 300 400 600 1000 1500 3000

IC1 0.32613 0.34596 0.34366 0.2859 0.24659 0.19308 0.14821
IC2 0.18997 0.07969 0.05761 0.03860 0.02459 0.02720 0.02954
IC3 0.30077 0.22143 0.19227 0.07760 0.09954 0.03394 0.05818

Table 4 - Correlation ẋ1 for different number data points with poly order 3

Data points 200 300 400 600 1000 1500 3000

IC1 0.98407 0.98093 0.98311 0.98625 0.98884 0.99244 0.99502
IC2 0.99969 0.99978 0.99985 0.9999 0.99992 0.99996 0.99998
IC3 0.99541 0.99924 0.99947 0.99975 0.99986 0.99992 0.99996

forward correlation between the number of data and RMSE value is not observed. For

instance, examining the results for IC2, an increase from 200 to 300 points yields a 50%

rise in the number of points and a 17.03% reduction in RMSE. Similarly, between 300

and 400 points, a 33.33% increase results in a 17.34% RMSE reduction, and between 600

and 1000 points, with a 66.67% increase, there is only a −5.91% RMSE decrease.

Turning to Figures 15b and 15c, along with Tables 2 and 3, most considerations

made for the results with a library up to the third-degree polynomial remain valid. How-

ever, more increases in the RMSE value are observed when increasing the number of

points. Nevertheless, when comparing between 200 and 3000 data points, a notable drop

in RMSE is observed, except for IC3, which experiences a 108.77% increase. This high

value suggests that, in some simulations, SINDy failed to accurately determine the dy-

namics, resulting in an outlier. Disregarding this result and comparing 200 with 1500

data points, there is a −44.72% drop in RMSE.

Next, examining the results with the difference in the number of functions in the

library, a comparison between the results in Tables 1 and 2 reveals that most values

increased, with only one remaining the same. IC3 with 3000 data points experienced

the highest proportional increase, where 0.01410 RMSE increased to 0.10156, marking a

620.44% increase. Individually analyzing the values in search of any correlation reveals

that, for example, for IC2, an increase in functions yielded the same RMSE value. Com-

paring Tables 2 and 3, once again, most values increased with the addition of functions.

However, there were cases where the result was better with more functions, such as the

case with 3000 data points, which experienced a −42.71% decrease. Instances where the

results improved were less frequent, and the relative improvement in percentage was less

pronounced, with the highest increase in RMSE being 241.78% between the values of

0.08800 and 0.30077 for IC3 with 200 data points.

The correlation analysis was divided into four distinct evaluations. The results
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Figure 16 - Correlation of ẋ1 with different number of data points
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Caption: Correlation of the ẋ1 variable between the identified and original Duffing

oscillator with different number of data points varying the number of

candidate functions, each result is the mean of one hundred tests with

changes on the fluctuation on the noise.
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Table 5 - Correlation ẋ1 for different number data points with poly order 4

Data points 200 300 400 600 1000 1500 3000

IC1 0.97267 0.97557 0.96640 0.96483 0.97771 0.98689 0.98405
IC2 0.99692 0.99818 0.99611 0.99839 0.99992 0.99740 0.99770
IC3 0.98848 0.99400 0.97575 0.98289 0.98159 0.98872 0.96696

Table 6 - Correlation ẋ1 for different number data points with poly order 5

Data points 200 300 400 600 1000 1500 3000

IC1 0.96221 0.96041 0.95562 0.97006 0.97771 0.98180 0.98949
IC2 0.95270 0.98485 0.99351 0.99779 0.99912 0.99839 0.99770
IC3 0.90608 0.93445 0.94318 0.98272 0.97065 0.99421 0.98328

Table 7 - Correlation ẋ2 for different number data points with poly order 3

Data points 200 300 400 600 1000 1500 3000

IC1 0.95845 0.94997 0.95565 0.96374 0.97057 0.98009 0.98689
IC2 0.99936 0.99955 0.99969 0.9998 0.99983 0.99992 0.99996
IC3 0.99391 0.99844 0.99891 0.99948 0.99970 0.99983 0.99991

Table 8 - Correlation ẋ2 for different number data points with poly order 4

Data points 200 300 400 600 1000 1500 3000

IC1 0.94561 0.94409 0.93623 0.93994 0.95767 0.97371 0.97421
IC2 0.99363 0.99625 0.99183 0.99663 0.99983 0.99462 0.99506
IC3 0.98926 0.99338 0.97661 0.98468 0.98290 0.99002 0.96900

Table 9 - Correlation ẋ2 for different number data points with poly order 5

Data points 200 300 400 600 1000 1500 3000

IC1 0.93116 0.92719 0.92355 0.94562 0.95767 0.96830 0.98043
IC2 0.93153 0.97789 0.9887 0.99527 0.99819 0.99661 0.99506
IC3 0.90671 0.93467 0.94391 0.98403 0.97235 0.99524 0.98449

Table 10 - Correlation ẋ3 for different number data points with poly order 3

Data points 200 300 400 600 1000 1500 3000

IC1 1 1 1 1 1 1 1
IC2 1 1 1 1 1 1 1
IC3 1 1 1 1 1 1 1
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Figure 17 - Correlation of ẋ2 with different number of data points
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Caption: Correlation of the ẋ2 variable between the identified and original Duffing

oscillator with different number of data points varying the number of

candidate functions, each result is the mean of one hundred tests with

changes on the fluctuation on the noise.
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Figure 18 - Correlation of ẋ3 with different number of data points
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Caption: Correlation of the ẋ3 variable between the identified and original Duffing

oscillator with different number of data points varying the number of

candidate functions, each result is the mean of one hundred tests with

changes on the fluctuation on the noise.
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Table 11 - Correlation ẋ3 for different number data points with poly order 4

Data points 200 300 400 600 1000 1500 3000

IC1 1 1 1 1 1 1 1
IC2 1 1 1 1 1 1 1
IC3 1 1 1 1 1 1 1

Table 12 - Correlation ẋ3 for different number data points with poly order 5

Data points 200 300 400 600 1000 1500 3000

IC1 1 1 1 1 1 1 1
IC2 1 1 1 1 1 1 1
IC3 1 1 1 1 1 1 1

Table 13 - Total correlation for different number of data points with poly order 3

Data points 200 300 400 600 1000 1500 3000

IC1 0.99993 0.99992 0.99993 0.99994 0.99995 0.99997 0.99998
IC2 1 1 1 1 1 1 1
IC3 0.99999 1 1 1 1 1 1

Table 14 - Total correlation for different number of data points with poly order 4

Data points 200 300 400 600 1000 1500 3000

IC1 0.99991 0.99991 0.99990 0.99990 0.99993 0.99996 0.99996
IC2 0.99999 0.99999 0.99999 0.99999 1 0.99999 0.99999
IC3 0.99997 0.99999 0.99995 0.99996 0.99996 0.99998 0.99993

Table 15 - Total correlation for different number of data points with poly order 5

Data points 200 300 400 600 1000 1500 3000

IC1 0.99988 0.99988 0.99987 0.99991 0.99993 0.99995 0.99997
IC2 0.99987 0.99996 0.99998 0.99999 1 0.99999 0.99999
IC3 0.99965 0.99975 0.99981 0.99996 0.99994 0.99999 0.99996
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Figure 19 - Correlation of phase space with different number of data points
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Caption: Correlation of the phase space variable between the identified and

original Duffing oscillator with different number of data points varying

the number of candidate functions, each result is the mean of one

hundred tests with changes on the fluctuation on the noise.
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were presented by separately examining each of the three dimensions of the Duffing system

modeling, and the final analysis encompassed the phase space composed of these three

dimensions. Overall, the ẋ3 dimension did not yield particularly interesting results, as

observed in the graphs in Figure 18 and Tables 10, 11, and 12. This is because it is

composed of only a constant term, mostly demonstrating a high correlation between the

dynamics.

Analyzing the correlation results between the dynamics, as illustrated in Figures

16 to 19 and Tables 4 to 15, in most cases where the RMSE increased, the correlation

decreased. For instance, between 200 and 300 data points for IC1 with third-order poly-

nomial functions, there was a 12.71% increase in RMSE and a decrease in the correlation

of ẋ1 by −0.00314 or −0.32% concerning the correlation with 200 data points. Similarly,

for ẋ2, there was a decrease of −0.00848 or −0.88%. There was only one comparison

where the correlation value increased as the RMSE value rose; the correlation increased

by 0.0029 or 0.30% when the RMSE increased by 6.66%. Although there were also cases

where the correlation decreased as the RMSE decreased, comparing simulations with 3000

data points to those with 200 data points, the correlation increased, except for cases with

polynomials up to the fourth order for IC3 due to the presence of an outlier. However,

like the RMSE, when compared to 1500 data points, the dynamics exhibited higher cor-

relation.

The increase in correlation as the number of data points rises is further supported

by the phase space correlation, depicted in Tables 13, 14, and 15, as well as Figure

19. It is also quite evident how simulations with only polynomial functions up to the

third order in the library exhibit higher correlation with the numerical data. Although

the correlation values are higher for simulations with 3000 data points when there are

polynomial functions up to the fifth order compared to those up to the fourth order,

for the first three quantities 200, 300, and 400 data points those with functions up to

the fourth order have higher correlation values. Similar to RMSE, it is not possible to

determine how adding more functions will affect the result. However, when comparing all

correlation and RMSE results with polynomial functions up to the third degree, it is noted

that the compared dynamics have better values than in the other two cases. It is also

safe to state that increasing the number of data points can indeed improve results, even

though an exact relationship between the number of points and the result improvement

is not observed.

3.7.2 Noise intensity

In this case, we test how the quality of the available data will affect the identified

dynamics. For this purpose, seven different intensities of Gaussian noise were selected,
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Table 16 - RMSE for different noise intensity with poly order 3

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 2.6532e−14 0.02817 0.049328 0.08883 0.14142 0.21762 0.24869
IC2 3.062e−12 0.33483 0.57198 0.8484 1.1206 1.249 1.4121
IC3 3.3498e−14 0.026759 0.048535 0.08527 0.14134 0.1791 0.26094

Table 17 - RMSE for different noise intensity with poly order 4

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 3.0979e−14 0.02817 0.049328 0.17735 0.17572 0.68755 0.89416
IC2 3.0367e−12 0.33483 0.57198 0.85026 1.1672 1.4149 1.6394
IC3 2.9903e−14 0.026759 0.048535 0.14118 0.36987 0.55666 0.92621

namely 0, 0.005, 0.010, 0.015, 0.025, 0.035, and 0.050. The time interval for obtaining

the samples was from 0 to 30 with 601 evenly distributed samples. All other parameters

remained the same as in the simulations, with the only change being the number of data

points, except for IC3, which was set as [2,−1, 0]. This adjustment was made because,

in some of the 100 simulations with a noise intensity of 0.050, the method was unable

to identify the dynamics, resulting in the identification of many polynomial terms. The

MATLAB code was unable to calculate the dynamics until the time of 100 to measure

the RMSE and correlation.

Examining the results in Tables 16, 17, and 18, as well as Figure 20, it was observed

that as the noise intensity increased, the RMSE also increased for all simulations, except

for IC1 simulations with polynomials up to the fourth order and a noise intensity of 0.025,

where the decrease was only −0.00163 or −0.92%. Also noteworthy were the results for a

noise intensity of 0, where the RMSE value could be considered computationally zero. This

was expected based on the results of Lopes and Cunha Jr (2022), as at a noise intensity

of 0, the differences in momentum and conservation of energy between the dynamics were

also numerically zero. Another interesting pattern to observe was that for noise intensities

of 0.005 and 0.010, regardless of the number of polynomial functions used, the RMSE

values were the same. Only from 0.015 onwards did the RMSE increase as the number

of polynomial functions increased. The only exception was at a noise intensity of 0.015

between fourth and fifth-order polynomial functions, showing a decrease of −0.02313 or

−16.38%.

Analyzing the results of correlation, we observe Tables 19 to 30 and Figures 21

to 24. It becomes evident that noise intensity has a negative impact on the inferred

dynamics’ quality. Starting with an analysis of the correlation in dimension ẋ1 with

polynomials up to the third order, it’s clear that increasing noise intensity reduces the

correlation between dynamics. The most significant difference is observed for IC2, with



54

Figure 20 - RMSE with different intensity noise
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Caption: RMSE between the identified and original Duffing oscillator with

different intensity noise varying the number of candidate functions, each

result is the mean of one hundred tests with changes on the fluctuations

on the noise.
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Table 18 - RMSE for different noise intensity with poly order 5

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 2.6532e−14 0.02817 0.049328 0.32106 0.60406 1.121 1.2533
IC2 3.062e−12 0.33483 0.57198 0.90164 1.4525 1.9175 1.9581
IC3 3.3498e−14 0.026759 0.048535 0.11805 0.60669 1.1241 1.2361

Table 19 - Correlation of ẋ1 for different noise intensity with poly order 3

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 0.99991 0.99975 0.99917 0.99785 0.99539 0.9931
IC2 1 0.9882 0.95993 0.90895 0.86586 0.83622 0.79942
IC3 1 0.99993 0.99975 0.99932 0.99806 0.99684 0.99303

a drop of 0.20058 or −19.10% between the lowest and highest noise levels. This pattern

repeats for simulations with more functions in the library, showing a decreasing correlation

as noise levels increase. For function libraries with polynomials up to the fourth and fifth

orders, there are correlation drops of 0.31226 and 0.4156, respectively, for IC2.

Now, comparing the same noise levels but with different numbers of functions,

we observe a more distinct percentage difference compared to simulations varying the

quantity of data. For instance, the correlation values show drops of −14.86%, −13.97%,

and −17.02% when comparing the correlation of noise intensity 0.05 with polynomials up

to the fourth order compared to up to the third order. The same comparison, but now

between fifth-order polynomials compared to fourth-order ones, shows drops of −14.63%,

−15.03%, and −11.70%. Comparing the tests with more functions to those with fewer

functions, the drops are −37.60%, −36.79%, and −36.48%. Achieving an exact value

would require a very large number of simulations due to the use of different random

generations of Gaussian numbers, but the close values indicate a stronger relationship

than in simulations with varying data points.

As for the correlation results for dimensions ẋ2 and ẋ3, they do not present any

new findings that have not been highlighted before. Dimension ẋ2 shows a behavior

similar to ẋ1, as discussed earlier, while ẋ3 mostly has values very close to 1, similar to

simulations with varying data points. The same can be said for the total correlation. In

this set of simulations, it emphasizes again how lower noise intensity and fewer polynomial

functions yield better results. These results highlight the importance of capturing high-

quality sample results to feed into the SINDy method. The lower the quality, the results

also demonstrate that greater knowledge of possible functions and avoiding excessive

quantities of functions can contribute to a better outcome.
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Figure 21 - Correlation of ẋ1 with different intensity noise

(a) Until 3rd polynomial order
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Caption: Correlation of the ẋ1 variable between the identified and original Duffing

oscillator with different intensity noise varying the number of candidate

functions, each result is the mean of one hundred tests with changes on

the fluctuation on the noise.
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Table 20 - Correlation of ẋ1 for different noise intensity with poly order 4

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 0.99991 0.99975 0.97598 0.98863 0.89817 0.84548
IC2 1 0.9882 0.96118 0.90727 0.85358 0.76006 0.68774
IC3 1 0.99993 0.99975 0.99044 0.95379 0.90387 0.82401

Table 21 - Correlation of ẋ1 for different noise intensity with poly order 5

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 0.99991 0.99975 0.93619 0.86521 0.7948 0.72175
IC2 1 0.9882 0.95993 0.88631 0.73815 0.61111 0.5844
IC3 1 0.99993 0.99975 0.99024 0.87852 0.7534 0.7276

Table 22 - Correlation of ẋ2 for different noise intensity with poly order 3

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 0.99989 0.99969 0.99897 0.99734 0.99431 0.99151
IC2 1 0.98151 0.94512 0.8858 0.83061 0.79754 0.7566
IC3 1 0.99992 0.99969 0.99916 0.99761 0.99611 0.99147

Table 23 - Correlation of ẋ2 for different noise intensity with poly order 4

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 0.99989 0.99969 0.97538 0.98803 0.8965 0.84284
IC2 1 0.98151 0.94728 0.88387 0.81821 0.72374 0.6514
IC3 1 0.99992 0.99969 0.99036 0.95368 0.9037 0.82282

Table 24 - Correlation of ẋ2 for different noise intensity with poly order 5

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 0.99989 0.99969 0.93521 0.86393 0.79073 0.71966
IC2 1 0.98151 0.94512 0.86362 0.70472 0.57664 0.55231
IC3 1 0.99992 0.99969 0.99019 0.87955 0.75517 0.72871

Table 25 - Correlation of ẋ3 for different noise intensity with poly order 3

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 1 1 1 1 1 1
IC2 1 1 1 1 1 1 1
IC3 1 1 1 1 1 1 1
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Figure 22 - Correlation of ẋ2 with different intensity noise

(a) Until 3rd polynomial order
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Caption: Correlation of the ẋ2 variable between the identified and original Duffing

oscillator with different intensity noise varying the number of candidate

functions, each result is the mean of one hundred tests with changes on

the fluctuation on the noise.
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Figure 23 - Correlation of ẋ3 with different intensity noise

(a) Until 3rd polynomial order
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Caption: Correlation of the ẋ3 variable between the identified and original Duffing

oscillator with different intensity noise varying the number of candidate

functions, each result is the mean of one hundred tests with changes on

the fluctuation on the noise.
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Table 26 - Correlation of ẋ3 for different noise intensity with poly order 4

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 1 1 1 1 0.99998 0.99998
IC2 1 1 1 1 1 1 1
IC3 1 1 1 1 1 1 1

Table 27 - Correlation of ẋ3 for different noise intensity with poly order 5

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 1 1 1 1 0.99995 0.99998
IC2 1 1 1 1 1 0.99996 0.99997
IC3 1 1 1 1 1 0.99996 1

Table 28 - Total correlation for different noise intensity with poly order 3

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 1 1 1 1 0.99999 0.99999
IC2 1 0.99997 0.99992 0.99983 0.99975 0.9997 0.99964
IC3 1 1 1 1 1 0.99999 0.99998

Table 29 - Total correlation for different noise intensity with poly order 4

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 1 1 0.99996 0.99998 0.9998 0.99971
IC2 1 0.99997 0.99992 0.99983 0.99973 0.9996 0.99949
IC3 1 1 1 0.99998 0.99991 0.99982 0.99967

Table 30 - Total correlation for different noise intensity with poly order 5

Noise int. 0 0.005 0.010 0.015 0.025 0.035 0.05

IC1 1 1 1 0.99989 0.99976 0.99961 0.99951
IC2 1 0.99997 0.99992 0.9998 0.99956 0.99935 0.9993
IC3 1 1 1 0.99998 0.99978 0.99953 0.99949
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Figure 24 - Correlation of phase space with different intensity noise
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Caption: Correlation of the phase space variable between the identified and

original Duffing oscillator with different intensity noise varying the

number of candidate functions, each result is the mean of one hundred

tests with changes on the fluctuation on the noise.
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Table 31 - RMSE for different time interval with poly order 3

∆ time 30 40 50 60 80 100

IC1 0.19712 0.20817 0.23268 0.21787 0.20472 0.20858
IC2 0.015755 0.01628 0.017698 0.014526 0.014124 0.01586
IC3 0.014797 0.019587 0.018819 0.01819 0.021511 0.018593

3.7.3 Time interval

Finally, we conduct a series of simulations where we determine various time in-

tervals with a fixed number of 1000 data points, specifically, intervals of 30, 40, 50, 60,

80, and 100. All other parameters remain consistent with the test set that varies noise

intensity, except for the fixed noise intensity at 0.005 in this simulation.

Upon examining Figure 25 and Tables 31,32, and 33, which present the results of

the RMSE calculation, it is evident that, unlike the first two sets of simulations, there

is no clear relationship between the increase in data capture time and the quality of the

inferred dynamics. This, in turn, affects the RMSE value. For example, when looking

at the results for IC1 with third-order polynomial functions in the first row of Table 31,

there is an increase in RMSE of 0.01105 or 5.61% between 30 and 40 time intervals. From

40 to 50, there is an increase of 0.02451 or 11.77%. Between 50 and 60, there is a decrease

of −0.01481 or −6.36%, followed by another decrease of −0.01315 or −6.04% from 60 to

80. Finally, there is an increase of 0.00386 or 1.89%. Comparing the largest and smallest

data collection time intervals, we observe an increase of only 0.01146 or 5.81%. This lack

of a clear tendency is present for all initial conditions across the three different numbers

of polynomial functions in the library, demonstrating no direct relationship between the

improvement of RMSE in the inferred dynamics and an increase in the time interval.

However, when comparing values between different simulations with various func-

tion libraries, we find that all RMSE values with polynomials up to the fourth order are

higher than those up to the third. On the other hand, those with fifth-order polynomials

mostly decrease when compared to simulations up to the fourth order, similar to the re-

sults observed in simulations with different numbers of data points. The most interesting

result emerges when comparing values between simulations with polynomial libraries up

to the third and fifth orders. We observe that, for the data collection time interval up to

30, the RMSE values for simulations with more functions are higher. However, after this

point, all values remain consistent. As the random number generation is fixed with the

seed, and when changing the number of polynomial functions in the library, the random

number generation is restarted. This may indicate that for these specific simulations, the

time interval of 40 is the ideal value, and increasing the interval further will not affect the

result’s quality.
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Figure 25 - RMSE with different time interval
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Caption: RMSE between the identified and original Duffing oscillator with

different time interval varying the number of candidate functions, each

result is the mean of one hundred tests with changes on the fluctuations

on the noise.
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Table 32 - RMSE for different time interval with poly order 4

∆ time 30 40 50 60 80 100

IC1 0.19712 0.24087 0.26427 0.21787 0.22632 0.22914
IC2 0.03695 0.040366 0.026913 0.026515 0.083481 0.045199
IC3 0.094949 0.075452 0.026174 0.02644 0.043767 0.04218

Table 33 - RMSE for different time interval with poly order 5

∆ time 30 40 50 60 80 100

IC1 0.22293 0.20817 0.23268 0.21787 0.20472 0.20858
IC2 0.036932 0.01628 0.017698 0.014526 0.014124 0.01586
IC3 0.072229 0.019587 0.018819 0.01819 0.021511 0.018593

Upon examining the correlation results across different dimensions, illustrated in

Figures 26, 27, 28, and 29, as well as detailed in Tables 34 to 45, it becomes apparent

that the extension of the data capture time interval has no discernible impact on the

quality of the results. The most significant relative difference between the longest and

shortest intervals led to a mere 2.19% correlation increase, observed in IC3 for the corre-

lation of the ẋ2 dimension with polynomials up to the fourth order. Comparing identical

simulations but augmenting the number of functions similarly revealed no disparity in

the RMSE results. A marginal decrease in value is noted when contrasting correlations

with polynomials up to the fourth order against those up to the third order. Likewise, in

the comparison of correlations with polynomials up to the fourth order versus those with

fifth-order polynomials, most exhibit a correlation closer to 1 in the library composed of

polynomials up to the fifth order. Hence, the results suggest that augmenting the data

capture time interval does not equate to an enhancement, as the smallest interval already

furnishes adequate data for inferring the dynamics.

Table 34 - Correlation of ẋ1 for different time interval with poly order 3

∆ time 30 40 50 60 80 100

IC1 0.99103 0.98957 0.98751 0.9891 0.98965 0.9894
IC2 0.99993 0.99993 0.99993 0.99995 0.99995 0.99994
IC3 0.99994 0.99991 0.99992 0.99992 0.9999 0.99991
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Figure 26 - Correlation of ẋ1 with different time interval
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Caption: Correlation of the ẋ1 variable between the identified and original Duffing

oscillator with different time interval varying the number of candidate

functions, each result is the mean of one hundred tests with changes on

the fluctuation on the noise.
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Table 35 - Correlation of ẋ1 for different time interval with poly order 4

∆ time 30 40 50 60 80 100

IC1 0.99103 0.97487 0.97413 0.9891 0.98218 0.9823
IC2 0.99748 0.99619 0.99838 0.99728 0.98167 0.99156
IC3 0.98272 0.98752 0.99901 0.9986 0.99681 0.99657

Table 36 - Correlation of ẋ1 for different time interval with poly order 5

∆ time 30 40 50 60 80 100

IC1 0.98009 0.98957 0.98751 0.9891 0.98965 0.9894
IC2 0.99747 0.99993 0.99993 0.99995 0.99995 0.99994
IC3 0.98795 0.99991 0.99992 0.99992 0.9999 0.99991

Table 37 - Correlation of ẋ2 for different time interval with poly order 3

∆ time 30 40 50 60 80 100

IC1 0.97638 0.97246 0.96712 0.97124 0.97273 0.97209
IC2 0.99985 0.99986 0.99985 0.99989 0.9999 0.99987
IC3 0.99988 0.99981 0.99982 0.99983 0.99979 0.99981

Table 38 - Correlation of ẋ2 for different time interval with poly order 4

∆ time 30 40 50 60 80 100

IC1 0.97638 0.95568 0.95149 0.97124 0.96298 0.96267
IC2 0.9947 0.99305 0.99696 0.99529 0.97065 0.98675
IC3 0.97219 0.98053 0.99809 0.99754 0.994 0.99351

Table 39 - Correlation of ẋ2 for different time interval with poly order 5

∆ time 30 40 50 60 80 100

IC1 0.96375 0.97246 0.96712 0.97124 0.97273 0.97209
IC2 0.99474 0.99986 0.99985 0.99989 0.9999 0.99987
IC3 0.97976 0.99981 0.99982 0.99983 0.99979 0.99981

Table 40 - Correlation of ẋ3 for different time interval with poly order 3

∆ time 30 40 50 60 80 100

IC1 1 1 1 1 1 1
IC2 1 1 1 1 1 1
IC3 1 1 1 1 1 1
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Figure 27 - Correlation of ẋ2 with different time interval
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Caption: Correlation of the ẋ2 variable between the identified and original Duffing

oscillator with different time interval varying the number of candidate

functions, each result is the mean of one hundred tests with changes on

the fluctuation on the noise.
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Figure 28 - Correlation of ẋ3 with different time interval
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Caption: Correlation of the ẋ3 variable between the identified and original Duffing

oscillator with different time intensity varying the number of candidate

functions, each result is the mean of one hundred tests with changes on

the fluctuation on the noise.
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Table 41 - Correlation of ẋ3 for different time interval with poly order 4

∆ time 30 40 50 60 80 100

IC1 1 1 1 1 1 1
IC2 1 1 1 1 1 1
IC3 1 1 1 1 1 1

Table 42 - Correlation of ẋ3 for different time interval with poly order 5

∆ time 30 40 50 60 80 100

IC1 1 1 1 1 1 1
IC2 1 1 1 1 1 1
IC3 1 1 1 1 1 1

Table 43 - Total correlation for different time interval with poly order 3

∆ time 30 40 50 60 80 100

IC1 0.99996 0.99996 0.99995 0.99995 0.99996 0.99996
IC2 1 1 1 1 1 1
IC3 1 1 1 1 1 1

Table 44 - Total correlation for different time interval with poly order 4

∆ time 30 40 50 60 80 100

IC1 0.99996 0.99993 0.99992 0.99995 0.99994 0.99994
IC2 0.99999 0.99999 0.99999 0.99999 0.99995 0.99998
IC3 0.99995 0.99996 1 1 0.99999 0.99999

Table 45 - Total correlation for different time interval with poly order 5

∆ time 30 40 50 60 80 100

IC1 0.99994 0.99996 0.99995 0.99995 0.99996 0.99996
IC2 0.99999 1 1 1 1 1
IC3 0.99996 1 1 1 1 1
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Figure 29 - Correlation of phase space with different time interval
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Caption: Correlation of the phase space variable between the identified and

original Duffing oscillator with different time intensity varying the

number of candidate functions, each result is the mean of one hundred

tests with changes on the fluctuation on the noise.
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CONCLUSIONS

In summary, this study comprehensively presented the Sparse Identification of

Nonlinear Dynamics (SINDy) method, showcasing its application across diverse dynamic

systems to rigorously test its robustness and efficacy in inferring chaotic systems. The

method demonstrated exceptional effectiveness in accurately capturing the underlying

dynamics, even in chaotic scenarios. An examination of a trigonometric system, incorpo-

rating solely polynomial functions in the candidate function library, revealed intriguing

results. While the Taylor series expansion of the trigonometric function was inferred,

an additional dissipative polynomial term surfaced. Attempts to attribute this spurious

term to the dissipation of the ODE45 MATLAB integrator were disproven through the

utilization of an alternative integration method (ODE78), yielding identical results for

both datasets.

To validate the method further, two distinct dynamic systems, the Van der Pol

oscillator and the Rössler system, were employed. SINDy successfully reconstructed the

original dynamic systems from the provided data, even accurately capturing the shape

of attractors in simulations with chaotic dynamics. The investigation into the impact

on dynamic proximity, by varying fundamental parameters in both the data and SINDy

parameters, uncovered valuable insights. Three alterations directly affecting the captured

data points from the Duffing oscillator’s numerical dynamic simulation were examined.

Increasing the number of data points demonstrated a consistent trend of decreasing RMSE

and increasing correlation, albeit with sporadic deviations attributed to Gaussian noise

randomness. Notably, simulations with fewer unnecessary functions in the library out-

performed those with more functions, emphasizing the importance of precision in the

selection of candidate functions.

Similarly, varying the intensity of Gaussian noise underscored its predictable influ-

ence on inferred dynamics, reaffirming that lower data capture quality adversely impacts

results. The analyses of datasets with the same number of data points but different time

intervals revealed nuanced fluctuations in RMSE and correlation, indicating no significant

improvement or deterioration with varying time intervals.

This extensive exploration positions the SINDy method as a compelling choice for

applications across diverse scientific domains, particularly in mechanical systems such as

the oscillatory dynamics of the Duffing oscillator. Furthermore, the findings emphasize

the pivotal role of data precision, with an increased number of samples showcasing po-

tential positive impacts on inferred dynamics. The study underscores how uncertainties

in knowledge about fundamental laws negatively impact results, advocating for stream-

lined libraries with fewer unnecessary mathematical functions. Lastly, the demonstrated

insensitivity of the method to prolonged data capture intervals suggests that the optimal
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timeframe for data collection is crucial for accurate dynamics inference.

In summary, this study intricately elucidates the SINDy method in a didactic ap-

proach, employing diverse dynamical systems as benchmarks. The accompanying MAT-

LAB codes, available on GitHub via the link ⟨https://github.com/DiegoMSL/dissertation

codes.git⟩, make it particularly accessible for beginners keen on grasping the intricacies of

the method. Throughout the master’s program, several materials on the method were dis-

seminated, including presentations at prestigious national and international conferences

such as VETOMAC XV, DINCON XIV, and the 14th WCCM-ECCOMAS (LOPES;

Cunha Jr, 2019; LOPES; Cunha Jr, 2022; MATOS; JR, 2021). Additionally, a book

chapter emerged from a presentation at the international conference NODYCON (LOPES;

Cunha Jr, 2022). Looking ahead, future research endeavors could entail the application

of the method to more intricate systems and real-world datasets, such as those derived

from a Duffing oscillator or epidemiological phenomena like COVID-19.

https://github.com/DiegoMSL/dissertation_codes.git
https://github.com/DiegoMSL/dissertation_codes.git
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