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Mendes Lopes Neto, Pedro Rogério Alvarez da Silva, Alana Ramos Maganha, Bárbara Ronsoni
de Olivera and João Henrique Luttmer.

I would also unapologetically like to thank Alexandra Elbakyan for courageously being
the greatest research enabler of our generation.

Finally, I would like to thank my girlfriend and beloved, Clara de Moraes Souza, for all
her love, patience, and much needed support. I hope to have made her as proud with this as she
always makes me with everything she does.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior – Brasil (CAPES) – Finance Code 001.



“Don’t worry: it’s always possible to prove the opposite”

“It is very common for an unbelievable truth to transform into an easily assimilable lie”

Millôr Fernandes. Millôr Definitivo – A Bı́blia do Caos.
Entries “Ângulo” and ”Verdade”, freely translated from Portuguese.



ABSTRACT

BARROSO NASCIMENTO, V. L. Foundational Studies in Proof-theoretic Semantics. 2024.
138 f. Tese (Doutorado em Filosofia) – Instituto de Filosofia e Ciências Humanas,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2024.

This thesis investigates the technical and conceptual foundations of multibase seman-
tics, a new kind of proof-theoretic semantics. Proof-theoretic semantics are frameworks in
which the tools of Proof Theory are used for the semantic analysis of logics, bridging the gap
between formal syntax and semantics. The first part of the thesis focuses on conceptual aspects
of the notions of truth and proof, arguing that their distinct philosophical characteristics nat-
urally lead to differences in their formal characterizations. It is also argued that, even though
such proposals are usually presented by defenders of intuitionistim, proof-theoretic semantics
should not be made for the intuitionist alone. The second part focuses on the technical aspects
of multibase semantics. Multibases are presented in a standard and a focused version; stan-
dard multibases are no different from Kripke models for minimal logic, but focused multibases
are shown to have many other interesting properties. In particular, focused multibases allow
a generalization of the notion of S-validity, one of the main selling points of another seman-
tics called proof-theoretic validity. Proof-theoretic validity, originally proposed by Prawitz and
later championed by Dummett, was one of the first proposed proof-theoretic semantics, but the
interest initially surrounding it was partially lost after a plethora of negative results were dis-
covered (including incompleteness ones). Generalized S-validity is shown to have almost all
of the properties originally expected to hold for S-validity, including completeness with respect
to minimal logic. In particular, generalized S-validity is shown to be completely reducible to
atomic derivability, and it is shown that multibases for predicate logic can be obtained without
the aid of any model-theoretic notions. We also show that, as is expected of proof-theoretic
semantics, it is possible to use methods characteristic of Proof Theory to obtain results that are
semantic in nature.

Keywords: proof-theoretic semantics; base-extension semantics; proof-theoretic validity.



RESUMO

BARROSO NASCIMENTO, V. L. Estudos Fundacionais em Semânticas Prova-teóricas.
2024. 138 f. Tese (Doutorado em Filosofia) – Instituto de Filosofia e Ciências Humanas,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2024.

O objetivo desta tese é investigar os fundamentos técnicos e conceituas da semântica de
multibases, uma nova modalidade de semântica prova-teórica. Semânticas prova-teóricas são
aquelas nas quais se busca analisar aspectos semânticos de lógicas através do uso de ferramenas
tı́picas de Teoria da Prova, promovendo uma aproximação entre sintaxe e semântica formal. A
primeira parte da tese aborda aspectos conceituais das noções de prova e verdade, argumentando
que diferenças filosóficas entre ambas naturalmente levam a diferenças em suas caracterizações
formais. Também é apontado que, embora as propostas prova-teóricas frequentemente sejam
apresentadas por defensores do intuicionismo, elas não deveriam se restringir apenas a este
público. A segunda parte aborda aspectos técnicos da nova semântica. Multibases possuem
uma versão padrão e uma versão focada; multibases padrão não são significativamente difer-
entes de modelos de Kripke para a lógica minimal, mas multibases focadas possuem muitas
propriedades adicionais interessantes. Em particular, multibases focadas nos permitem gener-
alizar a noção de S-validade, um dos principais conceitos da abordagem semântica denominada
validade prova-teórica. Originalmente proposta por Prawitz e posteriormente capitaneada por
Dummett, a validade prova-teórica é considerada uma das principais propostas apresentadas du-
rante a gênese das semânticas prova-teóricas, mas o interesse nela se esvaiu com a descoberta de
uma série de resultados negativos (inclusive resultados de incompletude). Nós demonstramos
que a noção de S-validade generalizada possui quase todas as propriedades esperadas da noção
original de S-validade, o que inclui resultados de completude para a lógica minimal. Dentre
os principais resultados, destacamos os que mostram a total redutibilidade da S-validade gen-
eralizada à noção de demonstrabilidade atômica, bem como os que mostram a possibilidade
de extensão da semântica para as lógicas de predicados sem o auxı́lio de qualquer ferramenta
modelo-teórica. Também demonstramos que, como seria esperado de uma semântica genuina-
mente prova-teórica, é possı́vel usar ferramentas tı́picas de Teoria da Prova para provar resulta-
dos de natureza semântica.

Palavras-chave: semânticas prova-teóricas; semânticas de extensão de base; validade
prova-teórica.



CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1 PHILOSOPHICAL DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . 12
1.1 Preliminary discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.1 The axiomatic nature of philosophy . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 Consequence relations and the definition of logic . . . . . . . . . . . . . . . . 14
1.1.3 Evaluations and metalanguages . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.4 Inferences, composition and arguments . . . . . . . . . . . . . . . . . . . . . 19
1.2 Truth and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Property preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 The concept of truth and its formal properties . . . . . . . . . . . . . . . . . . 22
1.2.3 The concept of proof and its formal properties . . . . . . . . . . . . . . . . . 26
1.3 Special topics on truth and proof . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.1 Intuitionistic truth and proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Mathematical truth and proof . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.1 Technical and conceptual semantics . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.2 Inferential and bilateral syntax and semantics . . . . . . . . . . . . . . . . . . 39
1.4.3 Reasons for the adoption of proof-theoretic semantics . . . . . . . . . . . . . 42
2 MATHEMATICAL GROUNDWORK . . . . . . . . . . . . . . . . . . . . 44
2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.1 Preliminary conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.2 On constants, variables and quantification . . . . . . . . . . . . . . . . . . . . 44
2.1.3 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Natural deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.1 Rule schemas, rules and deductions . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.2 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.3 First-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Model-theoretic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 First-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Second-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1 On the nature of second-order logic . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.2 Second-order natural deduction . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.3 Second-order model-theoretic semantics . . . . . . . . . . . . . . . . . . . . 60
2.5 Atomic bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.1 Standard bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



2.5.2 Higher-order bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3 MULTIBASE SEMANTICS . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1 Proof-theoretic validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.1 Original definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.2 Generalized proof-theoretic validity . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Multibases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.2 Focused multibases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 Soundness and completeness for propositional multibases . . . . . . . . . . . 74
3.2.4 Classical and intuitionistic focused multibases . . . . . . . . . . . . . . . . . 79
3.3 Results for generalized S-validity . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Reducibility of semantic values to derivability . . . . . . . . . . . . . . . . . 83
3.3.2 Binding by bases, Export and Import . . . . . . . . . . . . . . . . . . . . . . 89
3.3.3 Classical and intuitionistic generalized S-validity . . . . . . . . . . . . . . . . 95
3.4 Multibases for predicate logic . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4.1 Simplified domains and literal interpretations . . . . . . . . . . . . . . . . . . 100
3.4.2 Natural domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.3 First-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.4 Second-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.5 Classical and intuitionistic predicate focused multibases . . . . . . . . . . . . 115
3.5 Results for predicate generalized S-validity . . . . . . . . . . . . . . . . . 117
3.5.1 Extension of propositional results . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.6 Additional remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.6.1 Technical differences between multibases and models . . . . . . . . . . . . . 126
3.6.2 The philosophy of multibases . . . . . . . . . . . . . . . . . . . . . . . . . . 127

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



10

INTRODUCTION

Mathematization wrought, at the same time, the greatest blessing and direst curse to
ever befall logic. The precise and orderly nature of formal methods granted logicians the ability
to repeatedly temper theories until their strongest versions are reached, while at the same time
distancing them from the very intuitions that led to formalization. As eloquently put by Dana
Scott, “it is all too tempting to refine methods well beyond the level of applicability. The puzzle
is the opiate of the thinker” (SCOTT, 1973). The emancipation of logical form from logical
matter inevitably made possible both the study of formalism for its own sake and the creation
of post hoc intuitions for systems of logic, two unfortunate paths many contemporary logicians
choose to take.

It is in this vein that Dirk van Dalen opens the preface of his book “Logic and Structure”
by stating that:

Logic appears in a “sacred” and in a “profane” form; the sacred form is domi-

nant in proof theory, the profane form in model theory.

Sacrality is nothing more than a shield against the emancipation from intuition that pro-
fanity brings about, and also from the sins it may lead to (in the shape of antinomies and para-
doxes). Proof theory allows us to remain true to our mission by promoting the safe development
of intuitions through mathematical restraint, whereas model theory gives us powerful wings that
do not fare well if one gets too close to the sun.

The purpose of this thesis is to further advance the study of proof-theoretic semantics, an
approach in which the tools of proof theory are used to deal with a subject traditionally analyzed
through the lens of model theory. Ideally, this will lead to a framework in which sacred methods
lay solid grounds for activities requiring profane powers, in the hopes that this yields something
with the solidity and simplicity usually observed in proof theory and the power and generality
usually observed in model theory.

The first chapter lays out the philosophical grounds of our work. Its discussions range
from (confessedly idiosyncratic) topics in philosophy to important notions that will later lend
themselves to formalization. Particularly important are the discussions on the concepts of proof
and truth, as the main philosophical difference between model-theoretic and proof-theoretic
semantics is which notion is taken as fundamental. Since Proof Theory is often still associated
with syntactic methods, we also discuss what makes a definition semantic and how there can be
a semantics in terms of proofs.

The second chapter defines basic technical notions and provides model-theoretic seman-
tic definitions, later to be compared to their proof-theoretic counterparts.

The third and final chapter presents technical results and philosophical discussions on
a new kind of proof-theoretic semantics called multibase semantics. This new semantics is
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very similar to Prawitz and Dummett’s approach to proof-theoretic validity, and it also allows
a generalization of their concept of S-validity. Almost all of the desiderata originally listed
for S-validity are shown to hold for generalized S-validity, including soundness and com-
pleteness with respect to minimal and intuitionistic logic, complete reducibility of validity to
atomic derivability, and validity of Export. Multibases can also be used to deal with predicate
logic without the aid of any model-theoretic notions. Since domains and interpretations are
defined entirely through proof-theoretic means, predicate generalized S-validity is still com-
pletely reducible to atomic derivability, and most of the results for propositional multibases can
be smoothly extended to first and second-order multibases.
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1 PHILOSOPHICAL DISCUSSIONS

1.1 Preliminary discussions

1.1.1 The axiomatic nature of philosophy

The starting point of any philosophical investigation must be the personal perspective of
an acting subject. Breaking through a initial moment of inertia, the subject reflects about his own
perceptions in order to attain a theoretical understanding of reality. Provided he also inquires
about his own philosophizing, the subject either recognizes his active subjecthood or incurs a
contradiction, since in denying it he would be exercising the same faculties he denies having.
The subject can thus neither deny his existence nor deny his activity, since only an active,
existing being is capable of denial. It is with this insight that Descartes laid the groundwork for
modern philosophy in his Meditations (DESCARTES, 2008), a magnanimous contribution to
philosophy that also sets a very convenient starting point for any inquiry on its nature.

Although Descartes proceeds to construct a very particular corpus from his original
insight, one does not need to be a full-fledged Cartesian to recognize active subjecthood as a
necessary condition for philosophical activity. A subject can, for example, assert his own active
subjecthood while also rejecting Descartes’ proofs of the existence of an external world. This is
so because Descartes relies on additional insights to develop his ideas, the acceptance of which
is quite independent from that of the first one.

The initial insight guarantees only that a philosopher must either recognize his own ac-
tive subjecthood or contradict himself. It does not prevent him from failing to pay heed to the
warning and denying his own ability to deny. It does not show, absent other insights, to what
direction should philosophical inquiry be conducted. It also does not prevent the philosopher
from returning to his inertia and abstaining from any further inquiries. It merely sets up, to
borrow an expression from Dummett (DUMMETT, 1991, pg. 16), a base camp for conducting
a non self-contradictory philosophical assault. The foundational act of recognition does pro-
vide us with a solid foundation for the construction of doctrines, but it does not determine any
philosophical guideline or endpoint.

From each of his own insights1 the philosopher may extract one or more philosophical

axioms2, which for convenience may be divided into static and dynamic axioms. Static ax-
ioms dictate what is axiomatically accepted, whereas dynamic axioms dictate which methods

1 Insights are behavioral in nature and their content is primitive, in the sense of not being definable in terms of
any constituents.

2 Due to their foundational nature, we could say that the content of a philosophical axiom is what Wittgenstein
calls a hinge proposition (WITTGENSTEIN, 1972, pg. 44).
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capable of leading to the acceptance of non-axioms are axiomatically accepted. When a suffi-
cient amount of axioms is established, the philosopher may produce arguments and establish a
complete philosophical doctrine.

A natural conclusion of this characterization is that any philosophical doctrine must have
as its foundation those axioms, which are based only on the subject’s insights3. Since they are
nothing more than constructions based on subjective experiences, they have no extra-subjective
validation. But, and this is the crux of philosophical disputes, the philosopher may perceive the
possibility of different insights and yearn for a stronger kind of validation, hoping for there to
be some absolute criterion allowing him to differentiate between correct and incorrect axioms.
Sadly, when he tries to do so, he must again rely on axioms that classify other axioms into cor-
rect and incorrect, so he perpetuates his self-grounding dilemma. Unfortunately, this means that
philosophy must be characterized as a deeply personal, profoundly dogmatic, and inescapably
idiosyncratic subject.

All is not lost. Provided a subject perceives something akin to an external world and
entities akin to independent subjects, philosophy may start to be characterized as a social ac-
tivity. The subject does not even need to concede the externality of those perceptions, as they
are already sufficient for the justification of his activities. He may engage those perceptions
with the intent of refining his axioms, leading to new doctrinal developments and, incidentally,
to the furthering of the subject’s sense of knowledge. Even though this framework makes all
knowledge uncertain, the philosopher might find it quite therapeutic to entertain the impression
that he is peering into the nature of reality.

A philosopher who adopts this perspective and wishes to be honest must then admit the
absolute subjectiveness of his own insights, and thus of his axioms. Ideally, this should not
discourage him from presenting the reasoning behind his doctrine as best as he can, either be-
cause he draws satisfaction from the sensation of obtaining knowledge or because he personally
believes in the externality of his perceptions and wishes to collectively reach a better sense of
understanding.

3 Though our phrasing might suggest otherwise, we are not adopting the dogmatist solution to Agrippa’s trilemma.
According to the trilemma, which draws upon three of Agrippa’s five modes (WHITE, 2021, pgs. 399-
400)(ANNAS; BARNES, 2000, pgs. 40-43), anyone attempting to justify a claim should also justify the justifi-
cation, and this leads to one of three issues: either some justification is accepted without any further justification
(mode by hypothesis), every justification is given a new justification in a infinite chain (mode of endless regress)
or some justification is circularly justified by something it justifies (mode via reciprocals). This arguments is
used by Agrippa in defense of Phyrronian skepticism (FOGELIN, 1994). The trilemma is only indirectly re-
lated to our account because it concerns how accepted claims are justified, whereas we only deal with the act of
acceptance itself.



14

1.1.2 Consequence relations and the definition of logic

There are many perspectives from which one can obtain an insight of what ought to be
the definition of logic. Such a definition can be produced from the internal perspective of any
philosophical doctrine, and a robust doctrine naturally yields a substantive but partisan notion.
One philosopher might give a definition which leads to the conclusion that classical logic is
the one true logic, and another might do just the same with a definition justifying intuitionistic
logic. An empiricist such as Mill might give an account based on empiricist axioms (MILL,
1874), and a platonist such as Frege might rebuke it based on platonist axioms (FREGE, 1958).
Our earlier considerations may be taken to dispel any illusion of giving a properly agnostic,
doctrine-independent definition, since definitions are always given in terms of axioms. But
there is still an important choice to be made: we can either give a robust definition, based on
many philosophical axioms, or a minimalist definition, based on only a few.

A definition grounded on few axioms may be used together with new axioms to obtain
a new definition, which will then be grounded both on the new axioms and on those of the first
definition. As such, for any corpus we can construct an ordering of definitions in terms of how
many axioms they presuppose: the greater the number, the less basic the notion. The most basic
notions of a doctrine are usually regarded as their foundations, since they provide justification
for more complex (and usually less intuitive) notions. Thus, in order to choose between robust
and minimalist definitions, we must take into account how basic we want our notion of logic to
be.

If we intend to give a definition of logic which is taken to explain or justify the validity
of arguments in general, the insight that it must be a very basic notion seems quite reasonable.
In fact, the notion of logic seems to be a prerequisite for valid argumentative justification of
any philosophical claim4. Whenever we argue in favour of something instead of just taking it
for granted, we are already depending on some notion of what constitutes a valid argument –
however vague, informal, or unstated. Since an axiomatic definition of what counts as a valid
argument is a prerequisite for the justification of any philosophical claim, it seems desirable
that a definition of logic be given as soon as we wish to produce justified claims instead of just
creating new axioms. Hence, as long as we want as many claims as possible to be justified and
argued for, it is only natural that we consider logic to be one of the most basic notions.

Following this insight, an elegant and quite basic definition which may be adopted is the
following (BEALL; RESTALL, 2006, pg. 3):

Logic is about consequence. Logical consequence is the heart of logic; it is

also at the centre of philosophy and many theoretical and practical pursuits be-

sides. Logical consequence is a relation among claims (sentences, statements,

4 Prawitz applies similar reasoning to the notions of argument and validity (PRAWITZ, 2012, pg. 2).
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propositions) expressed in a language. An account of logical consequence is an

account of what follows from what—of what claims follow from what claims

(in a given language, whether it is formal or natural). An account of logical

consequence yields a way of evaluating the connections between a series of

claims—or, more specifically, of evaluating arguments.

It is possible to axiomatically establish, borrowing this definition, that a logic is an
account of relations of logical consequence between statements. We take for granted both that
we have a language in which statements can be expressed and that there can be relations between
them, and then stipulate criteria according to which some of the latter are considered to be
relations of logical consequence. As such, although quite basic, this notion is still restricted by
the constraint of logicality.

This narrows down the basics, but also leaves open an important question. What is
logical consequence, and which requirements a consequence relation must fulfill in order to
be logical? Those requirements are usually imposed in order to separate logical consequences
from those of another kind, such as material consequences. Some properties, such as necessity

and formality, are commonly listed as basic desiderata (BEALL; RESTALL; SAGI, 2019). The
literature contains many debates on the subject, but an overarching agreement on the essential
properties of logicality has yet to be established5.

An insight which might serve those who want the most basic definition of logic is that
logicality constraints fulfill the purpose of negative criteria, that is, they exclude a subset of
the set of all consequence relations from the set of properly logical relations. While those
restrictions might be philosophically interesting, the notion of logical consequence obtained
through such a constraint is strictly less basic than an unristricted notion encompassing all
consequence relations. From this perspective, the most basic notion of logical consequence is
one in which no logicality constraint is imposed at all.

This unrestricted notion of logical consequence may be seen as one which takes to heart
Carnap’s Principle of Tolerance (CARNAP, 2014, pg. 52):

In logic, there are no morals. Everyone is at liberty to build up his own logic,

i.e. his own form of language, as he wishes. All that is required of him is that,

if he wishes to discuss it, he must state his methods clearly, and give syntactical

rules instead of philosophical arguments.

5 “If one wants to know whether there is unanimity or disagreement among the experts concerning the basic
tenets of a particular subject, one way to find out is to look at what they say when introducing their subject to
the uninitiated. Applying this approach to logic, one is tempted to conclude that the foundations of the subject
must be in disarray. An examination of respected texts written by established practitioners reveals consider-
able disagreement about the pre-theoretic notion of logical consequence. Furthermore, these texts usually do
not mention this disagreement. It is as though their authors either haven’t noticed it or don’t recognize its
importance” (HANSON, 1997, pg. 366).
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This position will undoubtedly be considered outrageous by those with more robust
insights on the matter, but it must be pointed out that it is entirely possible to conduct logical
investigations without pledging alliance to any notion of logicality. In fact, if we are inclined
to consider that two people operating under incompatible logicality notions may both be doing
logic, we are implicitly using a definition that is independent of logicality. Although the study of
formal systems deemed adequate by some demarcation may be of great philosophical interest,
there is no reason for us to choose a constraint for the delimitation of the study of logic itself6.

Tarski seems to have faced essentially the same issue when trying to draw a line between
logical and non-logical constants (TARSKI, 1983, pgs. 418-420). When discussing how to
define which constants should be regarded as logical for the purpose of defining a formal notion
of consequence, he writes:

On the other hand, no objective grounds are know to me which permit us to

draw a sharp boundary between the two groups of terms. It seems to be pos-

sible to include among logical terms some which are usually regarded by logi-

cians as extra-logical without running into consequences which stand in sharp

contrast to ordinary usage. In the extreme case we could regard all terms of

the language as logical. The concept of formal consequence would then co-

incide with that of material consequence. (...) Perhaps it will be possible

to find important objective arguments which will enable us to justify the tra-

ditional boundary between logical and extra-logical expressions. But I also

consider it to be quite possible that investigations will bring no positive results

in this direction, so that we shall be compelled to regard such concepts as ‘log-

ical consequence’, ‘analytical statement’, and ‘tautology’ as relative concepts

which must, on each occasion, be related to a definite, although in greater or

less degree arbitrary, division of terms into logical and extra-logical.

By establishing that logic is an account of consequence relations in general, we allow
many distinct notions of logicality to flourish under it, since an account of consequence relations
informed by a particular notion of logicality is still an account of consequence relations (and
thus a logic). The notion can be viewed as basic precisely because it does not exclude any
particular definition of logicality from the field of logic7.

In order to further support this point, perhaps the most controversial of this section, a
quick analogy can be made to show the usefulness of such a broad conception.

One of the oldest debates in the field of Philosophy of Law is the one concerning basic
moral requirements a law should fulfill in order to be considered a proper legal rule. Some
philosophers, most notably Hans Kelsen (KELSEN, 1967) and H. L. A. Hart (HART, 2012),

6 This may be characterized as a position in which logic is viewed as a method, not as a subject matter, a distinc-
tion entertained in (MACFARLANE, 2000.).

7 This position is very similar to the one described as Relativist in (MACFARLANE, 2017).
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adopt some kind of basic notion in which no morality requirements are imposed upon the con-
tent of laws8. Other philosophers, such as Gustav Radbruch, argue for the existence either of
an idea of “natural law” or of a binding idea of justice, which precedes man-made “positive
laws” and morally constrains them (RADBRUCH; PAULSON; PAULSON, 2006). A positive
law is thus considered a proper legal rule only if it does not conflict with basic moral contents
of the natural laws or of the idea of justice. As such, those philosophers characterize extremely
immoral state-enacted legislation to be not an example of “immoral law”, but an example of
“absence of law”9. The first school of thought is usually called legal positivism, the second one
jusnaturalism.

Many objections can be levied against the jusnaturalist conception, but one is of special
interest to us: if we consider extremely unjust laws to be non-laws (that is, positive laws which
are not legal rules) instead of just immoral laws, we run the risk of seeing “non-laws” applied
in a way which is functionally indistinguishable from the application of proper laws. A non-
law enacted in a dictatorship could empirically (albeit immorally) be enforced with the aim of
seizing property of oppressed minorities just as much as a proper law could be enforced with
the aim of seizing property of a debtor in a less unjust system. The distinction between law and
non-law is irrelevant to the subject of the State with respect to practical consequences of the
law, thus the difference between positive laws and proper legal rules is irrelevant to anyone but
the legal theorist10.

We claim that the relation between positive law and natural law is of the same nature
as the relation between consequence and logicality. Logicality is just as contingent to the basic
characterization of logic as morality is to the basic characterization of law. In fact, there seems
to be as much disagreement between logicians on the contents of logicality as there is between
practitioners of law on the contents of morality. By introducing morality into the concept of
law and logicality into the concept of logic, we are guaranteeing that laws are always moral and
logics always well-behaved, but at the cost of ignoring the existence of many “non-laws” and

8 “The thesis, widely accepted by traditional science of law but rejected by the Pure Theory of Law, that the law
by its nature must be moral and that an immoral social order is not a legal order, presupposes an absolute moral
order, that is, one valid at all times and places. Otherwise it would not be possible to evaluate a positive social
order by a fixed standard of right and wrong, independent of time and place” (KELSEN, 1967, pg. 68).

9 “One line of distinction, however, can be drawn with utmost clarity: Where there is not even an attempt at justice,
where equality, the core of justice, is deliberately betrayed in the issuance of positive law, then the statute is not
merely ’flawed law’, it lacks completely the very nature of law. For law, including positive law, cannot be
otherwise defined than as a system and an institution whose very meaning is to serve justice. Measured by
this standard, whole portions of National Socialist law never attained the dignity of valid law” (RADBRUCH;
PAULSON; PAULSON, 2006, pg. 7).

10 The distinction could still be, and usually is, rhetorically useful to lawyers whenever the positive law (or even
legal practice, considered in a broad sense) imposes morality constraints on the application of laws, but this can
happen only when those criteria of morality are somehow positively incorporated into the legal system. But this
discussion is, of course, entirely outside the scope of this thesis.
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“non-logics” with the same effects of their proper counterparts11. Morality and logicality have
been on the spotlight for so long and present themselves to us so frequently that this impor-
tant conceptual distinction may not be immediately intuitive, but it is an important distinction
nevertheless.

We need not consider all distinct logics to be equally interesting, but we also need not
deny their character as proper logics. Just as an extremely unjust legal order should still be con-
sidered a (absolutely immoral) legal order, an extremely useless logic should still be considered
a (absolutely uninteresting) logic. When specifying some property of consequence relations
considered of particular philosophical interest, we are merely specifying which subset of the set
of all possible logics we are interested in.

1.1.3 Evaluations and metalanguages

A logic is defined through an account of consequence relations, that is, through the spec-
ification of a formal method for evaluating and classifying consequence relations between state-
ments of a language. This is done by fixing both a collection of evaluation categories, in terms
of which consequence relations between particular statements (or collections of statements) are
to be judged, and a collection of evaluation criteria, in terms of which such judgements shall
be dispensed. In other words, evaluation categories are the values assigned (implicitly or ex-
plicitly) to consequence relations, and evaluation criteria specify how these assignments are
made.

Many distinct possibilities become available after we do away with the moral require-
ments of logicality, as any collection of categories and criteria may be taken as sufficient for
defining a particular logic. Nevertheless, even in the context of non-classical logics, it is quite
usual for a logic to be defined through a binary collection of evaluation categories, which sepa-
rates consequence relations into valid and invalid, and some collection of criteria which is total,
in the sense that it assigns either the value “valid” or the value “invalid” to all consequence
relations on the appropriate language.

Once the categories and criteria are determined, both the logic itself and its metalan-

guage have been defined. The logic is defined through the value assignments made to each
consequence relation, and the metalanguage through both the choice of evaluating categories
and structural properties of assignment procedures determined by the criteria. If in some ac-
count we observe that the consequence relations have behaviors expected of intuitionistic logic
but that it has two evaluation categories and criteria which determine procedures with structural

11 For many examples of (modal) logics which would be considered non-logics by some due to not being closed
under uniform substitution, see the first footnote of (HOLLIDAY; HOSHI; ICARD III, 2013).
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properties characteristic of classical logic, we may conclude that it is a definition of intuitionistic
logic through a classical metalanguage.

Curiously enough, a particular logic is usually identified only through the behavior of its
object language, even though it is impossible to define an object language without also defining
a metalanguage. This allows the same logic to receive very distinct characterizations. Not only
are we allowed to use different metalanguages in order to characterize the same logic, but also
to give different collections of categories and criteria which, in the end, will amount to different
descriptions of the same logic. Some of those differences have important and far-reaching
consequences, such as the one between syntactic and semantic specification procedures (to be
examined in more depth later).

1.1.4 Inferences, composition and arguments

When defining the criteria which determine how categories are assigned to consequence
relations, we can either provide a total specification, in which we effectively make a list of which
relation belongs to which category, or a procedural specification, in which we define a list of
basic procedures for evaluating consequences and use them to define which relations belong to
which category. Since total specification is quite impractical, logics are usually defined through
procedural specification.

For convenience, we may define procedural specification by recourse to two kinds of
basic units. The first one is what is usually known as an inference, which amounts to a direct
evaluation of a consequence relation between a linguistic object or a collection12 of linguistic
objects Γ and a linguistic object or collection of linguistic objects ∆ according to an evaluation
category c. It may be graphically represented as follows:

Γc
∆

This inference evaluates as c the consequence relation between the object/collection Γ

and the object/collection ∆. References to the category c may naturally be omitted whenever
inferences are defined only for one category. Notice also that collections of collections of
linguistic objects may also be considered linguistic objects themselves.

The second basic unit, which we may call reasoning procedures, consists in any proce-
dure specifying how linguistic elements and inferences may be used to evaluate consequence
relations. Unlike inferences, which directly specify the evaluation of a consequence, reasoning

12 “Collection” is used here in a very broad sense: we can use sequences, sets, multisets or any other formal way
of agglomerating linguistic elements.
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procedures have as their output the evaluation of consequence relations13. If we take natu-
ral deduction as an example, the notions of self-deduction (any assumption A can be taken as
a deduction of A from A) and composition (deductions can be used together with inferences
to obtain new deductions) may be taken to be reasoning procedures, as they specify how de-
ductions showing the validity of a consequence relation can be obtained through the use of
inferences and the language.

Once a collection of basic units of specification has been established, we can define the
notion of argument for a given logic by recourse to combinations of inferences and reasoning
procedures. Arguments are structures obtained through such procedures with the purpose of
evaluating a consequence relation between a first object/collection Γ (the argument’s premises)
and a second object/collection ∆ (the argument’s conclusion). The evaluation criteria usually
dictate that the existence of an argument establishes validity for a consequence relation between
its premises and its conclusion, and also that any relation for which an argument cannot be given
is considered invalid.

Two aspects of the previous definitions are worthy of comment.
First, we should specify that we are dealing with a basic notion of inference, not a robust

notion of valid inference. Inferences are usually presented as the basis of argumentation in
general, whilst valid inferences are presented as the basis of logical argumentation in particular
(PRAWITZ, 2019b) (PRAWITZ, 2012). But validity-based notions are too restrictive for those
who wish to regard the notion of inference as basic, that is, to adopt a notion as tolerant as
our notion of logic. The relation between validity and inference is of the same nature as the
relation between logicality and consequence, so validity must be kept separate from inference
if we desire our notions to be as basic as possible.

Second, even though our presentation is graphically similar to the one usually seen in
natural deduction and other proof-theoretic systems, we aim to give a much broader definition of
procedural validity. Consider, for example, the clause for conjunction in usual model-theoretic
semantics:

v(A ∧B) ⇐⇒ v(A) = 1 and v(B) = 1.

If we take valuation functions to be linguistic objects and the semantics to be two-valued
(with values 1 and 0), this can be interpreted as a simultaneous definition of the following seven
inferences for every valuation v:

v(A ∧B) = 1

v(A) = 1

v(A ∧B) = 1

v(B) = 1

v(A) = 1 v(B) = 1

v(A ∧B) = 1

13 As noted before, the distinction is merely conventional: inferences can be defined as special cases of reasoning
procedures if we consider direct specification to be a special kind of procedure.
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v(A ∧B) = 0 v(A) = 1

v(B) = 0

v(A ∧B) = 0 v(B) = 1

v(A) = 0

v(A) = 0

v(A ∧B) = 0

v(B) = 0

v(A ∧B) = 0

We also include in our set of procedures one (and only one), of the two following infer-
ences, for every v and every A:

v(A) = 1 v(A) = 0

The first definition can clearly be replicated for all other connectives according to usual
model-theoretic definitions. Combining those with the usual notion of deduction defined in
natural deduction (PRAWITZ, 2006), truth for a formula A in a particular model v can be
reduced to the existence of a deduction of v(A) = 1, and falsity for A in v to the existence of
a deduction of v(A) = 0. Validity for the semantic consequence relation Γ ⊨ A between a set
of formulas Γ and a formula A can then be defined through a broader evaluation criterion as
holding whenever an argument for the truth of A can be given in every v for which an argument
can be given for the truth of all formulas in Γ.

We thus argue that inferences and reasoning procedures may be considered basic units
of evaluation even in frameworks such as model-theoretic semantics14, although the notation
used here is confessedly more convenient for proof-theoretic projects.

1.2 Truth and Proof

Up until now our main goal was to use as few philosophical axioms as possible in order
to define basic notions. We will now impose additional constraints on those to obtain some
robust notions that are deemed of interest.

1.2.1 Property preservation

As mentioned before, inferential definitions of logic are often obtained by using some
notion of validity to constrain the notion of inference, which then yields some concept of valid

14 A similar argument can be seen in (MARTIN-LÖF, 1987).
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inference. Naturally, a robust account of inferential validity must be grounded in some philo-
sophical notion that allows us to explain what makes an inference valid. One way to do so is
by defining validity in terms of property preservation: an inference is valid if, whenever the
premises of the inference have some property, it follows that the conclusion of the inference
necessarily has that property15. Likewise, a valid argument may be defined as an argument ob-
tained through the use of valid reasoning procedures, that is, procedures which guarantee that,
if all of the argument’s inferences are valid, then the property is transmitted from the argument’s
premises to its conclusion. Inferences are then regarded as valid due to their ability to transmit
the chosen property from its premises to its conclusion, and reasoning procedures are valid due
to their ability to allow the construction of valid arguments from valid inferences.

Despite its robustness, the definition of validity through property preservation has no
particular philosophical affiliation. Although it is traditionally used by model-theoretic seman-
tics to define inferential validity as the necessary preservation of truth (DOGRAMACI, 2015),
it has also been used in the context of proof-theoretic semantics to define inferential validity as
the necessary preservation of proofs, grounds or justifications (PRAWITZ, 2012) (PRAWITZ,
2019b). Since the property to be preserved is not defined beforehand, the notion may be used for
the definition of many distinct notions of validity, and thus lends itself to very different logical
traditions.

The precise conditions under which any given property is preserved through an inference
is usually a matter of intense debate. The necessary and sufficient conditions for truth preser-
vation are a prominent topic in discussions on logicality, as different notions of what it means
for a consequence to be logical will lead to different requirements for the preservation of truth
(BEALL; RESTALL; SAGI, 2019). In the context of proof or ground preservation, a precise ac-
count of what gives a valid inference its epistemic power has been singled out by Prawitz as the
most fundamental problem of general proof theory (PRAWITZ, 2019a). The matter is far from
settled in both cases, as characterizations of conditions for inferential property transmission are
often quite diverse.

For our purposes, two properties are of special importance: truth and proof.

1.2.2 The concept of truth and its formal properties

Truth is traditionally taken to be one of the fundamental categories of the semantic
analysis of logic. Its formal study was pioneered by Tarski, who gave rise to model theory by
proposing mathematical definitions of satisfaction and truth that came to be widely accepted by
logicians (TARSKI, 1944). Even before this formal characterization, it was already considered

15 For a critical reading of this “transmission view”, see (SCHROEDER-HEISTER, 2012).
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one of the fundamental concepts of logic at least16 since Aristotle (ROSS, 1949), together with
modal concepts such as logical compatibility and inferential concepts such as syllogism. Many
distinct philosophical theories aim to explain the nature of truth, and contemporary debates on
this topic are very rich (HAACK, 1978, pgs. 86-134). In this work, however, we’ll deal only
with two kinds of theories: coherence theories of truth and correspondence theories of truth.
Both usually agree that truth is a property of propositions17, but disagree on what it means for a
proposition to be true.

According to correspondence theories of truth, a proposition is true whenever it corre-
sponds to reality, and false otherwise (DAVID, 2022). They adopt the definition of Aristotle,
which withstood the test of time (ARISTOTLE, 2006, pg. 248):

Truth is saying of what is the case that it is the case, or of what is not the case

that it is not the case; falsity is saying of what is the case that it is not the case,

or of what is not the case that it is the case.

Correspondence theories must rely both on some notion of reality and some notion of
correspondence to define truth. The nature of reality and of this correspondence between reality
and propositions must be fixed by the philosophical axioms of some particular theory, distinct
axioms leading to distinct types of correspondence theories. Definitions of reality adopted by
correspondence theorists are usually associated with metaphysical realism, and definitions of
correspondence usually characterize it as either the result of mere linguistic conventions or as
the result of some kind of structural isomorphism between propositions and reality (KIRKHAM,
1995, pg. 119), the most famous example of the latter being Wittgenstein’s picture theory of
language (WITTGENSTEIN, 2001).

According to coherence theories of truth, a proposition is true whenever it is coherent
with some specified set of propositions (YOUNG, 2018). Depending on how strong the notion
of coherence is, non-coherence of a proposition may or may not be sufficient for its falsity.
While correspondence theories define truth in terms of correspondence and reality, coherence
theories define it in terms of a notion of coherence and criteria for specification of the relevant
set of propositions.

16 It was also widely discussed by stoic logicians; see (MATES, 1961, pgs. 33–36) (BOBZIEN, 2003). In fact,
many contemporary concepts were discussed by them, including truth-functional connectives and material im-
plication (MATES, 1961, pg. 43–45). Susanne Bobzien argues that the many parallels between contemporary
concepts and stoic notions are due to the fact that Frege, who is regarded by many as the founder of modern
logic, essentially plagiarized the stoics (BOBZIEN, 2021).

17 They agree that there are entities which we may call “propositions” that bear truth values, but not on what
propositions themselves are. “Proposition” is used here as a synonym of “bearer of a truth value”. The existence
of some entity able to fulfill this role is taken for granted, but we remain agnostic with respect to theories
determining what kind of entity this is. The longstanding debates concerning which linguistic or conceptual
entities should be regarded as propositions (token statements, statements, conceptual content of statements, etc)
are thus avoided. The reader is referred to (HAACK, 1978, pgs. 74-85) and (MCGRATH; FRANK, 2020) for
comprehensive overviews of this subject.
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Although coherence theories are not nearly as cohesive as correspondence theories,
many of them are developed using the following rationale (PRIEST, 2005, pg. 50):

Typically, those who endorsed the theory have held that it makes no sense to

define truth in terms of some objective reality, independent of our cognitive

functioning: there is no such thing, or if there is, we have no access to it. If we

are to have any meaningful notion of truth, this can be defined only in terms

of what we are justified in believing (maybe in the ideal limit). The criteria of

coherence are therefore the criteria of justification.

Due to the fact that they do not rely on the existence of a subject-independent real-
ity, coherence theories are usually adopted by metaphysical idealists. However, some partic-
ular brands of coherentism have also been advocated by non-idealists (NEURATH, 1983)(DA
COSTA; BUENO; FRENCH, 2007).

Before we proceed, some remarks about relations between truth theories and our charac-
terization of philosophical activity are in order. We have previously established that truth values
are ascribed to propositions, regardless of what they are taken to be. We have also established
that philosophical activity is reliant on the acceptance of philosophical axioms. We have not
established, however, in what consists this acceptance, and it is certainly tempting to assume
that acceptance of an axiom is acceptance of its evident truth. But this creates two problems:
not only would the acceptance of a theory of truth already presuppose a notion of truth (applied
to the axioms concerning its nature), but the distinction between correspondence and coherence
theories would collapse.

To see why this is so, consider that any correspondence theory must axiomatically es-
tablish the constituents of the external reality to which propositions must correspond in order
to be true. If that was not so, we would not be able to distinguish between reality and false
perceptions of reality (or even between external reality and subject-dependent experiences). As
such, what does and does not constitute reality must be fixed by axioms, which are also propo-
sitions. Since the truth conditions for propositions are now reliant on one or more propositions,
by saying that a proposition corresponds to reality we are essentially saying that a proposition
corresponds to something that another proposition establishes as being a part of reality, which
is tantamount to saying that propositions are true whenever they are coherent with propositions
which are taken to constitute reality.

Both problems are avoided if acceptance of an axiom is not conflated with acceptance
of its truth. Correspondence and coherence theories are then distinguished by the fact that
coherence is a relation between propositions and other propositions, whereas correspondence
is a relation between propositions and an axiomatically (but not propositionally) established
reality. It should be noted, however, that the desirability (or even possibility) of using truth
as a primitive notion — whether for philosophy in general or for particular subjects — is still
a matter of debate. A particular example is the controversy between Dummett and Davidson
concerning language, in which Davidson’s claim that the notion of meaning must be defined
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in terms of an irreducible notion of truth18 is contested by Dummett, who argues that semantic
theories (including truth-functional ones) must be preceded by a theory of meaning19. Even
though we agree with Dummett that a sensible theory of sentential meaning should precede a
sensible theory of sentential truth, we should not a priori preclude philosophers from claiming
otherwise20.

Both correspondence and coherence theories may be used for the purpose of establishing
validity of inferences and arguments through property transmission. However, features com-
monly observed in coherence theories make the concept of truth very similar to other markedly
epistemic notions, such as intuitionistic notions of proof. It is no coincidence that both in-
tuitionism and coherence theories are usually defended by philosophers strongly opposed to
metaphysical realism, as the notions of coherent truth and intuitionistic proof (or even intuition-
istic mental construction) are independent of metaphysically realist notions such as that of a
previously given external reality. But there may still be reasons to accept a notion of truth that
is similar, albeit not identical to, an intuitionistic notion of proof — a pivotal point in some
arguments of Prawitz and Dummett that will be examined later — and the best candidates for
this would naturally be coherence theories.

To conclude our discussion of this topic, we will comment on three aspects of formaliza-
tions of concepts of truth that are important in the context of justification of inferences through
property preservation. Those are usually seen all at once in correspondence theories, but some
may be absent in coherence theories.

Truth is monolithic, in the sense that it is a single concept applied directly and uniformly
to propositions. To say that there are multiple true propositions is to say that there are multiple

18 “It is a misfortune that dust from futile and confused battles over these questions has prevented those with a
theoretical interest in language - philosophers, logicians, psychologists, and linguists alike - from recognizing in
the semantical concept of truth (under whatever name) the sophisticated and powerful foundation of a competent
theory of meaning”(DAVIDSON, 1967).

19 “This becomes evident if we imagine the theory stated by using, for the semantic values of sentences, not the
familiar words ‘true’ and ‘false’, but some pair of hitherto unknown words. We should certainly then be under
no impression that we had been provided with an adequate theory of meaning for the language. Even if we
guessed that the two words denoted the two truth-values, we should not know which stood for the value true and
which for the value false until we knew how the sentences were in practice used. It is what would have to be
explained, concerning the newly introduced pair of terms, which we implicitly know concerning the terms ‘true’
and ‘false’, and which ought to be made explicit by any fully explanatory theory of meaning” (DUMMETT,
2006, pgs. 52-53).

20 We must disclaim that here we are specifically considering the analysis of linguistic sentences (and thus re-
stricting ourselves to philosophy of language), as the claim that meaning precedes truth is not necessarily in-
compatible with the view that acceptance of an axiom is acceptance of its truth. Remember that acceptance
of an axiom must always be preceded by some primitive insight and the extraction of an axiom from it, so it
would be perfectly reasonable to characterize meaning as one of the components of the extraction of axioms and
truth as the property recognized during the acceptance of axioms. It would also be possible, however, to locate
truth at a supra-axiomatic level, regardless of where meaning is located. In any case, the question concerning
which notion should precede the other is relatively independent from the question concerning in what consists
the acceptance of an axiom.
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propositions to which the same semantic value (truth) is assigned, and truth-functional theories
usually need to define only one notion of truth.

Truth is total, in the sense that it is usually defined for all appropriate propositions. Given
any proposition, either truth applies to it (hence the proposition is true) or does not (hence it
is false). A definite truth value must be ascribed to all propositions, and propositions are not
allowed to be valueless21.

Lastly, truth is categorical, in the sense that it applies unconditionally once defined. The
truth of a proposition is contingent only on the obtainment of its truth conditions, regardless of
its verifiability or our knowledge of it. After definitions of truth and falsity are supplied, the
truth or falsity of every proposition immediately follows.

As will be shown, those aspects make truth-based formal theories very different from
proof-based formal theories, which gives rise to important structural differences between model-
theoretic and proof-theoretic semantics.

1.2.3 The concept of proof and its formal properties

The characterization of mathematical proofs as autonomous objects of study began with
Hilbert’s works on axiomatic systems (RATHJEN; SIEG, 2022), giving rise to what is nowa-
days known as “proof theory”. Originally conceived in the context of a project aimed at pro-
viding formalist foundations for mathematics, which was famously frustrated by Gödel’s in-
completeness results (ZACH, 2005) (ZACH, 2023), proof theory was soon given new life by
Gentzen’s studies on logical deduction (GENTZEN, 1969, pg. 68-131) and Prawitz’s furthering
of Gentzen’s natural deduction (PRAWITZ, 2006)2223.

The general concept of proof, with mathematical proof as one of its particular instances,
has been studied for as long as the concept of truth. It has also been present in logic since the
beginning. Not only did Aristotle study deductive proofs in his syllogistic doctrine (SMITH,
2022), the stoics also developed their own brand of syllogism through the notions of indemon-

strables and themata (BOBZIEN, 1996), remarkably similar to contemporary proof-theoretic
notions. Just as Tarski’s truth definitions may be interpreted as an anachronistic formal counter-

21 Although this is a core tenet of traditional semantics, it is rejected by some contemporary approaches, such as
Belnap and Dunn’s four-valued First-Degree Entailment (BELNAP, 2019)(DUNN, 1976).

22 As Prof. Luiz Carlos Pereira puts it: Gentzen created natural deduction as most proof theorists know it, but
Prawitz was responsible for providing it with citizenship status.

23 Although Gentzen’s approach became the dominant one, we should not forget that natural deduction was discov-
ered independently by Jaśkowski (JAŚKOWSKI, 1934), in a formulation that was later given new notation by
Fitch (FITCH, 1952) (PELLETIER; HAZEN, 2023). Fitch-Jaśkowski natural deduction is not only still used for
pedagogical purposes in some books (MORTARI, 2001), but has also given its own independent contributions
to logic and proof theory (INDRZEJCZAK, 1998).
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part to Aristotle’s definition of truth24, Gentzen’s sequent calculus and natural deduction may
both be interpreted as formal counterparts of stoic deductive notions (BOBZIEN, 2019)(NASCI-
MENTO, 2023).

For the purposes of our study, a proof (or a justification) will be defined as evidence

in favour of a given object or collection of objects having a certain quality25. Since assertions
concerning the possession of a quality by an object may or may not be characterized as proposi-
tions, we use the word statements to refer to linguistic entities to which proofs apply (whatever
their nature).

What counts as evidence is generally dependent on what kind of proof we are dealing
with: mathematical proofs require mathematical evidence, whereas legal proofs require legal
evidence. The typology of proofs is also dependent on the nature of the corresponding state-
ments: mathematical statements require mathematical proofs through mathematical evidence,
whereas legal statements require legal proofs through legal evidence. Obviously, what qualities
a statement’s object may have is also determined by the object’s nature. Our concept of proof
is thus reliant both on the concept of statement (which is reliant on the concepts of object and
quality) and the concept of evidence, and this leads to some important differences with respect
to definitions of truth.

Since statements, objects, qualities and evidence are not used in the previously given
definitions of truth, both notions are taken to be independent. This should not be overlooked, as
many philosophers argue in favour of there being a subordination between them. The literature
contains both traditions in which the notion of truth is used to define proof and in which the
notion of proof is used to define truth (MARTIN-LÖF, 1987).

This subject is especially contentious in debates concerning philosophy of logic. Ac-
cording to Dummett, it is incoherent to define a notion of truth that is independent of some
notion of proof or justification, so the concept of proof must be prior to any concept of truth
(DUMMETT, 1991). According to Tarski, however, proofs should be viewed as syntactic means
to establish the truth of propositions, so the concept of truth must be prior to any concept of
proof (TARSKI, 1969). The independence approach is also viable, and we could even argue
that Plato’s doctrine of knowledge as justified true belief (GETTIER, 1963)(PLATO, 1977) im-
plicitly contains such an independence claim, since if truth presupposed justification, knowledge
would simply be true belief, and if justification presupposed truth, knowledge would simply be

24 This was explicitly stated by Tarski to be his intention (TARSKI, 1944).
25 We once more define operational notions in order to avoid the many pitfalls of traditional discussions. It is

not clear, for example, which treatment should be dispensed to non-existing objects, a subject dealt with exten-
sively in Meinong’s (sadly often misinterpreted and misjudged (SMITH, 1985)) Theory of Objects (MEINONG,
1904), Russell’s famous response to it (RUSSELL, 1905) and Quine’s equally famous later remarks (QUINE,
1948). Both “Bigfoot exists” and “Every positive even integer can be written as the sum of two primes” are
considered statements subject to proof, but we will not delve into what it means for these objects to have the
specified qualities. For a comprehensive overview of the subject, the reader is referred to (REICHER, 2022).
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justified belief26.
Another important aspect of our definition is that proof is treated as a strictly semantic

notion. Proofs are semantic values preserved by inferences, not syntactic arguments. A vicious
circle is created if, for example, one defines proofs by recourse to valid arguments and valid
inferences as inferences that are proof preserving, since the notion of valid inference is already
used in the definition of a valid argument (PRAWITZ, 2019b) (PRAWITZ, 2023a). In order
to deal with this dilemma, one must choose between defining proof as a valid argument, thus
refraining from using it as a semantic notion, or defining proof as a semantic notion, thus re-
fraining from using it as a name for syntactic structures. Both solutions seem equally viable:
Prawitz himself adopts the first and criticizes the second as being an inversion of the “natural
conceptual order” (PRAWITZ, 2019b), whereas some approaches in proof-theoretic semantics
defy this by defining proofs as the basic units of semantic analysis (SCHROEDER-HEISTER,
2022).

Although Prawitz argues that the best option would be to adopt a syntactic notion of
proof, we claim that the semantic notion, aside from being very intuitive, provides a satisfying
answer to the dilemma. The concept of proof is considered prior to the notion of argument,
but this does not mean that arguments cannot provide us with proofs. Since proof-preserving
arguments are syntactic structures enabling the production of a proof of the conclusion given
proofs of the premises, the semantic content of an argument is a proof of the fact that from
the justification of the premises follows the justification of the conclusion. Arguments are not
proofs themselves, but the semantic content of an argument is always a proof. The existence
of an argument is a sufficient, but not necessary, condition for the existence of a proof, and the
vicious circle is avoided because proofs are no longer defined in terms of valid arguments. This
also helps us in dealing with specific issues concerning mathematical proofs, as will be argued
later.

Aside from having the intended practical effect of allowing us to claim the existence
of a proof whenever we have an argument, an interesting consequence of this notion is that
different proofs of the premises of an argument may produce different proofs of its conclusion.
The existence of a procedure of proof conversion does not ensure by itself that for any proofs
taken as input the same proof will be produced as an output. This naturally raises new questions
concerning identity criteria between proofs, since it is not at all clear under which conditions
different proofs of the premises produce the same proof of the conclusion. Prawitz’s conjecture
(or thesis) concerning proof identity (PRAWITZ, 1971) may still be used together with the
semantic notion, since it’s possible to claim that two arguments will have the same proof as
their semantic content if and only if they are equivalent – but the question of identity criteria for

26 For an argument in favour of precisely this kind of collapse, see (MARTIN-LÖF, 1998).
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other kinds of proof remains open27.
The uncontroversial epistemic nature of proof blurs the distinction between correspon-

dence and coherence theories. Proofs are used to facilitate knowledge and knowledge can only
be acquired by subjects, so it is usually agreed upon that proof is subject-dependent. Ontological
notions such as truth usually require a great deal of metaphysical assumptions about the world
in general, but epistemic notions require only assumptions concerning the knowing subject and
the object of knowledge. One may still distinguish between correspondence and coherence the-
ories, but it is not clear at all that this would be a helpful distinction. Correspondence theories
could, for example, adopt epistemic notions according to which something is a proof only if it
imparts cognitive changes (such as the formation of beliefs) in particular subjects, whereas co-
herence theories could adopt notions according to which proofhood is independent of concrete
effects on particular subjects. Even it this case, however, it seems that disagreements would not
be as deep as disagreements between defenders of correspondence and coherence theories of
truth.

Just as in the case of truth, from the very concept of proof it follows that some behaviors
are expected of any reasonable formal characterization. The differences between behaviors
expected from formal notions of truth and proof are the very reason behind structural differences
between model-theoretic proof-theoretic semantics.

Proof is fragmentary, in the sense that the general notion of proof characterizes a mul-
titude of elements (distinct proofs) assigned in a non-homogeneous fashion to statements. Al-
though “proof” may be treated as a single philosophical notion, a statement may have more than
one proof, and it is even possible for some evidence to prove more than one statement 28.

Proof is non-total, in the sense that it is possible for a statement to have no proof value
assigned to it. Given any object, there may or may not be evidence for it possessing or not
possessing some particular quality. Since proofs are essentially dependent on some kind of
human activity, any statement that never had any human action directed towards its epistemic
constituents will have no evidence related to it, and thus no proofs29.

Lastly, proof has both categorical and hypothetical aspects, in the sense that proofs may
be conditional or unconditional even after a definition of what counts as evidence has been
given. Unlike in the case of truth, assignment of proof values is not immediately provided

27 For more on technical and philosophical aspects of proof identity and synonimity, the reader is referred to
(WIDEBÄCK, 2001) (DOŠEN, 2003) (ALVES, 2019).

28 The possibility of assigning more than one proof to the same statement is essentially the idea behind proof-
based type-theories and “propositions-as-types” interpretations of logic, such as Martin-Löf’s famous typed
system (MARTIN-LÖF, 1985). It can also be argued that it is precisely this fragmentary nature that explains
why some logics aimed at formalizing proof (such as intuitionistic and minimal logic) cannot be given finitely
valued traditional semantics (GÖDEL, 1986, pg. 223).

29 This naturally induces structural behavior commonly observed in logics rejecting the principle of bivalence,
especially if proof of negation is interpreted as evidence of some object not possessing some quality (that is, as
a refutation of the statement).
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by proof conditions. The existence of particular proofs of statements must be supplied, so
for a statement to have a proof some evidence must be produced. Evidences produced by a
subject may be conditional, in the sense that they show that a statement is proved conditional on
some other statement being proved, or unconditional, in the sense that they prove the statement
directly. To give an example, some particular legal proof may be accepted unconditionally by
a court, but it may also be accepted on the condition that some evidence be produced of the
acquisition of the proof by lawful means.

Both categorical and hypothetical notions of proof can be encountered in the litera-
ture of proof-theoretic semantics. Prawitz’s view of proof-theoretic validity in terms of closed
arguments (PRAWITZ, 1971) (SCHROEDER-HEISTER, 2022) and Dummett’s fundamental
assumption (DUMMETT, 1991) are examples of semantic analysis conducted through categor-
ical notions, while Popper’s (POPPER, 2022) notion of abstract derivability and Sanz’s (SANZ,
2022)(SANZ, 2019) notion of consequence relations for hypotheses may be cited as examples
of analysis conducted through hypothetical notions. Although the dual nature of proof is of-
ten recognized, it is still common practice to define one aspect in such a way as to obtain the
other as a byproduct. Categorical definitions are used more frequently due to established prac-
tices, but the desirability of this dogma has already been subjected to criticism (SCHROEDER-
HEISTER, 2012).

1.3 Special topics on truth and proof

1.3.1 Intuitionistic truth and proof

The hegemonic truth-based approaches to logic were subjected to heavy criticism by
mathematician and philosopher L. E. J. Brouwer in the 20th century. According to Brouwer,
the only coherent way to characterize mathematics is as a languageless activity of mental con-
struction by a creative subject (VAN DALEN, 1981). Mathematical objects are thus essentially
subject-dependent, and any formal investigation in which no construction is effected is merely
a linguistic effort devoid of any mathematical content. In particular, the traditional rule of re-

ductio ad absurdum is no longer acceptable, as from a proof of the fact that the negation of
a construction is inconsistent it does not follow that we have effected the construction itself.
Mathematical theories of truth are also to be regarded as incoherent, inasmuch they character-
ize truth as not depending on any subject.

Brouwer’s disruption led to the genesis of what is now known as the intuitionistic or
constructivist conception of logic. Arend Heyting, one of his disciples, gave the first formaliza-
tion of Brouwer’s ideas in his intuitionistic logic, which is now taken as the main (but not only)
formal representation of intuitionism (HEYTING, 1971). By then, intuitionism had become a
highly heterogeneous school of thought (HESSELING, 2003). Intuitionists diverge on how no-
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tions of mental construction, proof or justification should be characterized, but they agree that
subject-independent concepts of truth are not apt to justify mathematics or logic. Since distinct
philosophical notions lead to distinct formalizations, the divergence also manifests itself at the
level of formalism – a notable case being that of miminal logic, independently proposed by Inge-
bridt Johansson and Alexei Kolmogorov (JOHANSSON, 1937) (KOLMOGOROV, 2002) and
recognized by Heyting himself as a viable formalization of intuitionistic thought (HEYTING,
1971, pg. 106).

The traditional enmity of intuitionists towards truth is justified only by the traditional
association of truth with correspondence theories. Intuitionism is not a priori incompatible
with theories of truth. In particular, since both reject subject-independent foundations, coher-
ence theories are generally compatible with intuitionism. Some brands of intuitionism may
regard truth as superfluous because any acceptable theory would collapse into notions such as
proof or mental construction, but others consider the distinction desirable. It is in this vein that
Dummett and Prawitz, for example, have argued in favour of the coexistence of non-collapsing
intuitionistic notions of proof and truth. In the context of our framework, both Prawitz and
Dummett would agree that propositions are also statements, and so that whatever is subject to
truth values is also subject to proof. But their theories are very different: Dummett clearly
adopts a coherence theory of truth, whereas Prawitz aims to provide a constructively acceptable
correspondence theory.

In Dummett’s conception, a statement can be asserted (or proved) whenever there is an
actual construction of its object, and it is true whenever a procedure which leads to a construc-
tion of its object is available, even if the construction itself has not been obtained, and regard-
less of our knowledge of the fact that the procedure will lead to this construction (DUMMETT,
1998). Dummett prevents the collapse by establishing that some statements may be true because
their construction will be an inevitable consequence of some available constructing procedure,
even though they are not assertible due to our lack of knowledge that this construction will be
produced. Dummett further argues that his theory should be adopted even outside of mathe-
matics. This would allow interesting constructive interpretations of temporal phenomena, for
example, but one still has to deal with problems faced by traditional conceptions – such as the
Sea Battle problem, which may now be applied to statements concerning the past (PEREIRA,
2014).

The problem with this theory is that it makes the concept of truth very weak, in the sense
that the distinction between truth and assertability becomes slim. This may be the reason that
led Prawitz to ask whether Dummett was adopting the same conditions for truth and correct
assertion, as reported in (DUMMETT, 1998, pgs. 122-123). It would be quite reasonable, even
from an intuitionistic perspective, to adopt a stronger notion of proof which encompasses both
what Dummett means by truth and what he means by assertability. This collapsed notion would
still be intuitionistically acceptable, so the usefulness of such a distinction is not at all clear.

In Prawitz’s conception, a statement can be asserted when there is a proof of it, and it
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is true when it is in principle provable (PRAWITZ, 1998). This is also the position of Martin-
Löf (MARTIN-LÖF, 1987)(MARTIN-LÖF, 1998). The difference between truth and proof
becomes the difference between actual and potential existence of proofs. Proofs are allowed to
exist regardless of our knowledge of them, but a provable statement is considered to be merely
true (thus being not assertible) until a proof is provided.

While this is a simple, intuitive and powerful distinction, Dummett argues (DUMMETT,
1998) that it inevitably takes us back to the realm of realist theories, and is thus not an intuition-
istically acceptable theory of truth. This is so, he argues, because the concept of provability
naturally allows one to define the category of unprovable statements by exclusion. Since every
statement must either be provable or unprovable, the resulting concept leads to an intuitionisti-
cally unnaceptable principle of bivalence.

Prawitz responds to Dummett’s accusation as follows (PRAWITZ, 1998, pg. 48):

Although the idea of proofs existing independently of our hitting upon them

certainly contains a flavour of realism, I do not think that it amounts to a full

step to realism. I want to give two reasons for thinking so. Firstly, proofs as

here understood are something that in principle can be known by us, and hence

there is no talk about in principle unknowable proofs. Secondly, I do not see

why the disjunction “either there exists a proof of A or there does not exist a

proof of A” must be taken in a classical way. Although we think of the proofs

as having some kind of existence even before we find them, an intuitionist

may still maintain that to assert the disjunction that either there is or there is

not a proof of A requires that we know how to find a verification either of

the existence of a proof of A or of the non-existence of a proof of A. For an

arbitrary A we do not know how to find such a verification, and we should

then have no difficulty in resisting the thought that the disjunction in question

is true.

Prawitz’s first reason establishes that his concept of provability successfully prevents
collapse with respect to notions of truth which admit in principle unknowable truths (although,
of course, it does not immediately prevent collapse with realist notions admitting only knowable
truths). However, Prawitz’s second reason does not seem sufficient to repel Dummett’s accusa-
tion. We can, in fact, interpret the statement “either there exists a proof of A or there does not
exist a proof of A” constructively, so in order to assert it one would need to either produce a
proof of A or show that A is impossible to prove. The problem is that Prawitz is discussing the
disjunction’s assertion conditions, not its truth conditions. In the presence of this distinction, it
is not clear why by observing that the disjunction is not in general assertible we should have no
difficulty resisting the thought that it is true, since it might be true despite not being assertible.

In fact, Prawitz’s theory allows us to presuppose the existence of merely true statements,
but not to assert it. In order to assert that there are true but non-assertible statements, we need to
produce at least one statement that is known to be in principle provable without being assertible.
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As Prawitz himself argues, we need to know how to verify a statement in order to assert it, so
we need a verification showing that there is a proof we have not yet obtained. However, a
constructive verification of the abstract existence of a proof would have to actually show this
proof, so the statement itself would already be assertible30. A non-constructivist could claim
that this is done by the rule of reductio ad absurdum, since by proving a contradiction from the
assumption that a statement has no proof we guarantee that it has a not yet obtained proof, but
this path is not available to the constructivist. A statement can thus only be said to be true if it
is assertible, which beats the point of distinguishing between truth and proof conditions.

One might still try to avoid this by reading “verification” in a weakly constructive sense,
so as to argue that possessing a verification of a statement does not entail possession of a proof
of the statement, but only availability of a procedure which guarantees its production. But this
is exactly Dummett’s theory of truth, and we may still argue that the distinction is so weak that
perhaps there is no use in it.

The existence of non-assertible truths is thus non-assertible, but perhaps one should be
content with simply presupposing truths instead of asserting the existence of true statements.
This is perfectly possible, albeit strongly realistic. The only difference between this position and
the traditional ones is in what kind of realism we are dealing with. This debate is, of course,
senseless to intuitionists that follow the tradition of rejecting the notion of truth altogether, but
it leaves deviant ones in an awkward position. Intuitionistic assertion conditions (as defended
by Dummett, Prawitz and Martin-Löf) are not taken to be a merely epistemic notion subservient
to an ontological notion of truth, but a much stronger notion able to account for all meaningful
human thinking. In order to obtain a truth theory capable of coexisting peacefully with an
assertion theory in this sense, one must either weaken assertion conditions in order to create
space for a coherentist truth31 or renounce intuitionism altogether and adopt a concept of truth
that transcends assertion.

At this point, it is necessary to remember that we have been discussing a strong, all-
encompassing philosophical reading of intuitionism. It is still possible to adopt a strong but
contained reading of intuitionism by arguing, for example, that truth is inadequate specifically

30 This is recognized by Martin-Löf, who contends that in order to justifiedly assert the truth of a proposition one
must have a proof of it (MARTIN-LÖF, 1998, pg. 112). He also accepts the existence of a “metaphysical truth”
or “reality”, which is taken as a given, but only after distinguishing it from truth as applied to propositions
(MARTIN-LÖF, 1987, pgs. 418-420).

31 Martin-Löf argues that intuitionism is actually a correspondence theory of truth (MARTIN-LÖF, 1998, pg. 112),
with the novelty that propositions must correspond to proofs that exist in the world in order to be true. But this
is, of course, very different from what is usually taken as the definition of a correspondence theory, so we prefer
to characterize it as a coherence theory.
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in the context of logic and mathematics32. It is also possible to adopt an ontological notion of
truth together with an epistemic constructivism. Intuitionistic logic could then be viewed as a
system concerned with how we are able to prove or refute the truth of a proposition, which is
given beforehand and independently of any cognitive activity. This is a very sensible approach,
and perhaps we could claim it is the prevailing one amongst students of intuitionistic logic that
do not profess the intuitionistic faith.

1.3.2 Mathematical truth and proof

Correspondence theories have a hard time pinning down the truth conditions of mathe-
matics. Mathematical propositions must correspond to states of affairs in order to be true, and
most conceptions of what a state of affairs is lead to an undesirable reification of mathematical
objects. If states of affairs are strictly empirical, mathematical truths must be empirical, and
if mathematical truths are necessary, mathematical truths must be necessary empirical truths,
subverting the whole idea of empiricism. On the other hand, if states of affairs are allowed to
be merely conventional, truths may also be conventional; but conventions, unlike mathematical
truths, may change at any time. It would be awkward to contend that Gödel’s incompleteness
results could be made false via agreement. It would also be awkward to claim that mathemati-
cal truths are conventional but immutable, since that would also subvert the very idea of what a
convention is.

Problems of this kind are avoided altogether by those not particularly loyal to the mate-
rial world. Coherence theories may satisfactorily explain mathematical truth in terms of coher-
ence between mathematical propositions. Correspondence theories may satisfactorily explain
mathematical truth if one fully embraces reification and concedes the existence of abstract ob-

32 This is arguably the position of Heyting. In the opening dialogue of his introductory book on intuitionism
(HEYTING, 1971), his representation of the intuitionistic position does not seem to dispute that there are non-
mathematical subjects to which “traditional logic” correctly applies. We have underlined some parts of the
relevant text which are taken to corroborate this reading:

CLASS. Thank you. I bet you worked on that hobby of yours, rejection of
the excluded middle, and the rest. I never understood why logic should be
reliable everywhere else, but not in mathematics.
INT. We have spoken about that subject before. The idea that for the de-
scription of some kinds of objects another logic may be more adequate than
the customary one has sometimes been discussed. But it was Brouwer who
first discovered an object which actually requires a different form of logic,
namely the mental mathematical construction. The reason is that in mathe-
matics from the very beginning we deal with the infinite, whereas ordinary
logic is made for reasoning about finite collections.
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jects, as do platonists33 like Frege (FREGE, 1958). Intuitionists may also satisfactorily explain
mathematical truth in terms of either correspondence or coherence with mental constructions,
depending on how mental constructions themselves are characterized. This challenge poses
itself only to those who wish to reconcile a material view of the world with the abstract and
immutable nature of mathematics.

Intriguing answers are provided by what Benacerraf calls combinatorial theories of truth
(BENACERRAF, 1973), which perhaps are the prevailing ones in the literature. According to
combinatorialists, mathematical truths must be accounted for in terms of some relation between
mathematical propositions and mathematical axioms. Arithmetical truth may be characterized,
for example, as derivability from the Peano axioms, and by switching axioms one could also
obtain other notions of mathematical truth. Collapse between notions of truth and proof are
also avoided, since saying that something is derivable is not the same as saying that it has been
derived. But, of course, combinatorial views preclude one from claiming the universal adequacy
of formal theories such as Tarski’s, since Gödel’s incompleteness results would then decisively
refute them.

There are many distinct flavours of combinatorialism, but perhaps their point could be
put as as follows: mathematical truths are not conventions, but consequences of conventions.
We are free to choose our axioms, but not what truths they beget. These consequences are
not logical or mathematical in nature, since that would lead to an untenable, circular, all-
encompassing conventionalism (WARREN, 2017)(QUINE, 1936), but we may characterize
them empirically by reference to behavioral and linguistic phenomena. Mathematical truths
are thus characterized as empirical consequences of linguistic conventions. To put it as an an-
swer to the discovery versus invention debate: mathematical axioms are invented, but the truths
they create must be discovered.

We deem this the most adequate answer to the initial dilemma, and thus the most con-
vincing characterization of mathematical truth. It also has some peculiar features. Although
clearly a correspondence theory, it is strikingly similar to Dummett’s theory of truth. The main
difference is that, in the combinatorial theory (as presented here), mathematical truths empiri-
cally follow from axioms fixed by convention, whereas in Dummett’s theory they follow from
constructions capable of showing those truths once carried out. In both cases some activity of a
subject makes propositions true – regardless of whether the subject knows it – but in Dummett’s
case the subject must already be in a position to know those truths if he wishes. The combinato-
rial position may thus be viewed as a weakened, non-epistemic version of Dummett’s position.

The characterization of mathematical proofs is considerably less controversial, mostly
due to the fact that one does not need to advance particular ontological or metaphysical doc-

33 Surprisingly, mathematical platonism may not be an accurate characterization of the views held by Plato (LIN-
NEBO, 2023).
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trines in order to talk about them. Regardless of how mathematical truths are conceived, a
mathematical proof may be characterized as a conclusive proof of the truth of a mathematical
proposition. Since the quality being proved is that of a proposition being true, the distinction
between statements and propositions is no longer relevant.

The conclusive nature of mathematical evidence brings about some difficulties concern-
ing validity of inferences via proof preservation. In Prawitz’s view, conclusive proofs34 are
given by closed valid arguments, and closed valid arguments are unconditional arguments con-
taining only valid inferences. But valid inferences are defined as inferences which preserve
conclusive proofs, leading to interdependence at best and circularity at worst. Prawitz once ar-
gued that this interdependence was only apparent (PRAWITZ, 2019b), but later conceded that
it was real (PRAWITZ, 2023a), although arguing that this is not necessarily a reason for us to
abandon these definitions (PRAWITZ, 2023b).

It is quite natural to define a valid argument as an argument containing only valid infer-
ences. It is also natural to claim that a valid argument yields some kind of proof, even in our
weak sense. This is already sufficient for there to be some amount of interdependence, as valid
inferences must preserve something which may have been given to us by a valid argument. But
it is significantly more problematic to define – as Prawitz sometimes seems to – valid inferences
as those capable of preserving conclusive proofs, as in this case the mutual dependece morphs
into full circularity: an inference is valid just in case it preserves something obtainable only
through the use of valid inferences.

Inferences capable of preserving proofs in general are also capable of preserving conclu-
sive proofs in particular, hence this lax definition of validity is already sufficient for an adequate
account of mathematical proofs. It also leads to a weaker form of interdependence, since va-
lidity of inferences is now defined prior to validity of arguments. This conceptual precedence
cannot be achieved if validity of inferences is explained in terms of preservation of conclusive
proofs; unlike the general notion of proof, the notion of conclusive proof already presupposes
the notion of valid argument. As such, we conclude that by letting unconditional arguments be
sufficient, but not necessary for the production of proofs we satisfactorily justify proof preser-
vation without incurring full circularity.

This view can also be used to justify natural deduction and its procedures. Arguments al-
ways provide proofs, but not all proofs are provided by arguments – even though all conclusive
proofs are provided by unconditional arguments. Just in case a proof is provided by an argu-
ment, it can be used in another argument to yield another proof; if we have an argumentative
proof showing that from A follows B and another one showing that from B follows C, these
can be put together to yield an argumentative proof showing that from A follows C. Likewise,

34 Prawitz sometimes refers to conclusive proofs simply as “proofs”, differing significantly from the terminology
used here.
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if we have a conclusive proof of A and an argumentative proof showing that from A follows B,
we can meld those together to obtain a conclusive proof of B. This is, of course, nothing more
than a semantic reading of the syntactic process of deduction composition.

We do not aim to solve all problems concerning mathematical truth and proof in this
section, but we do claim to have shortly provided a sensible account of both. In any case, it
seems clear that our definitions fulfill the important desiderata of defining mathematical proof
and truth as particular cases of general notions instead of characterizing them as exceptional35.

1.4 Syntax and semantics

1.4.1 Technical and conceptual semantics

The distinction between syntax and semantics was imported by logicians from the field
of linguistics, but most of its original significance has been lost. Syntax was originally con-
cerned with the structure of sentences, whereas semantics was concerned with their meaning.
Systems of logic are traditionally defined through formal languages, so the distinction should
still apply – and it does. When a logician says that a notion is syntactic or semantic, however,
he expresses an idea barely related to the original distinction.

Given any syntactically specified structure (such as well-formed formulas), there are at
least two senses in which another structure can be said to give a semantics for it: the conceptual

sense and the technical sense. The conceptual sense is very close to the original linguistic dis-
tinction, but the technical sense is the prevailing one in mathematical logic. This is most likely
explained by an undue association of formal semantics with model theory and Tarski’s defini-
tion of truth. In fact, it is precisely due to the frequent conflation of formal semantics with model
theory that Peter Schroeder-Heister coined the term “proof-theoretic semantics”, rescuing the
original meaning of semantics and challenging the traditional limitation of formal semantics to
model-theoretic denotationalism (SCHROEDER-HEISTER, 2022)(SCHROEDER-HEISTER,
1991).

A structure is a semantics in the conceptual sense just in case it formalizes notions used
to confer meaning to a syntactic structure. Tarski’s truth theory is a semantics in this sense,
since it gives a formal definition of truth that allows the meaning of syntactic sentences to be
defined in terms of their truth value. A formalization of the notion of proof allowing proofs to be
assigned to uninterpreted structures (say, arguments) would also be semantics in the conceptual
sense. The only requirement is that a semantic notion must be defined, no constraints being
imposed on structural aspects of the definition.

35 Anti-exceptionalism is especially desirable if one wants to justify logic abductively (ERICKSON, 2021).
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A structure is a semantics in the technical sense just in case it defines properties as-
signed to elements of an uninterpreted structure. Tarski’s truth theory is also a semantics in this
sense, as would be a proof-theoretic definition in which proof values are assigned to sentences.
The technical sense is commonly used to differentiate between syntactic and semantic ways of
specifying consequence relations: a relation is semantic if it is defined by recourse to properties
assigned to classes of structures, and syntactic if it is defined by recourse to algorithmic pro-
cesses. The only requirement is that the definition must have this structure, no constraints being
imposed on the property being defined.

From the definitions it follows that the conceptual and technical senses are quite in-
dependent of each other. Definitions of formal semantics usually aim to be semantic in both
senses, but there is no reason for us to exclude the possibility of semantics which are concep-
tually semantic but technically syntactic. On the other hand, it would be quite unreasonable
to say that a definition in which an arbitrary property with no semantic bearing is assigned to
sentences may also be called formal semantics. Precedence must be given to the conceptual
sense, even though the technical sense also has its own worth.

This may be taken as an explanation of why many logicians are confused by the ex-
pression “proof-theoretic semantics”: proof theory is mostly syntactic (in the technical sense),
whereas model theory is mostly semantic (in the technical sense), whence it should make no
(technical) sense to think of a proof-theoretic semantics. There is both a technical and a concep-
tual problem with this line of reasoning. For the conceptual problem, pointing out that formal
semantics should be concerned primarily with semantics in the conceptual sense is already
sufficient to show that not all semantics are model-theoretical. As for the technical problem,
consider that the only requirement for a definition to be semantic is that it must define proper-
ties assigned to uninterpreted structures. There is no constraint on how such properties are to be
defined, and they may as well be algorithmically specified. This is exactly what is done in some
proof-theoretic semantics that define basic proofs by recourse to atomic (syntactic) derivability
and then assign proof values to sentences based on the availability of atomic proofs.

Both senses are usually adopted in proof-theoretic semantics, as suggested by Schroeder-
Heister’s distinction between semantics of proofs and semantics in terms of proofs (SCHROEDER-
HEISTER, 2022). When our definitions provide, for example, a conceptual proof semantics for
syntactic derivations, we are dealing with a semantics of derivations; when they provide a tech-
nical proof semantics whose properties are given by syntactic derivations, we are dealing with a
semantics in terms of derivations. Just as in the original distinction, the semantics of derivations
may also be given in terms of derivations, in which case it would be a semantics in both senses.
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1.4.2 Inferential and bilateral syntax and semantics

The inferential framework given in sections 2.1.3 and 2.1.4 may help us elucidate what
is behind the (technical) distinction between syntax and semantics. A consequence relation
may be defined procedurally, that is, through a procedure saying which consequences hold and
which do not. One such procedure may be given by the use of valid inferences to produce
valid arguments. This is clearly a syntactic definition, so it would be straightforward to use it
in order to define natural deduction or sequent calculus. But, as shown in 2.1.3, validity in a
model may also be defined through the use of (syntactic) arguments. Since the truth-functional
(semantic) consequence relation is defined as holding just in case every model that makes the
premises true also makes the conclusion true, we could inferentially define a truth-functional
relation as holding whenever in all models on which there is an argument showing the truth of
the premises there is also one showing the truth of the conclusion (or, more directly, whenever
in all models there is a argument showing that from the truth of the premises follows the truth
of the conclusion).

From this perspective, the technical distinction amounts to this:

Definition 1.4.1 Let I be a set of inferences and IS a set of subsets of I . Define Γ ⊢K
D A

as holding whenever there is a deduction D with premises Γ and conclusion A that uses only
inferences contained in K. Then:

1. A syntactic relation Γ ⊢syn A holds if and only if there is a D such that Γ ⊢I
D A;

2. A semantic relation Γ ⊢sem A holds iff for all S ∈ IS there is a D such that Γ ⊢S
D A.

In other words, a syntactic definition quantifies existentially over deductions, whereas
a semantic one quantifies universally (possibly over deductions in different systems). This
approach has some interesting interactions with other frameworks that allow the comparison
of syntactic and semantic notions, such as the bilateralist approach to consequence relations
presented in (BLASIO; CALEIRO; MARCOS, 2019). In this approach, a S-consequence Γ�∆

holds whenever the assertion of all formulas in Γ commits one to the assertion of all formulas
in ∆, and a compatibility consequence Γ � ∆ holds whenever it is possible to simultaneously
affirm all formulas in Γ and deny all formulas in ∆. S-consequences have a syntactic flavour
to them, and compatibility consequences exhibits some behaviors one would expect from a
semantic consequence relation.

Definition 1.4.2 A S-consequence relation is any relation � between sets of formulas and sets
of formulas satisfying the following properties:

1. Γ�∆ implies Γ ∪ Γ′ �∆ ∪∆′ (Monotonicity);

2. Γ ∩∆ ̸= ∅ implies Γ�∆ (Reflexivity);
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3. Σ′ ∪ Γ�∆ ∪ (Σ \ Σ′) for every Σ′ ⊆ Σ implies Γ�∆ (Cut).

Definition 1.4.3 A compatibility relation is any relation � between sets of formulas and sets
of formulas satisfying the following properties36:

1. If Γ ∪ Γ�∆ ∪∆′ then Γ�∆ (Reducibility);

2. Γ�∆ implies Γ ∩∆ ̸= ∅ (Disjointness);

3. If Γ�∆, then there is some Σ′ ⊆ Σ such that Σ′ ∪ Γ�∆ ∪ (Σ \ Σ′) (Expansion).

S-consequences can easily be used to provide syntactic procedures for the evaluation of
consequence relations. For instance, classical sequent calculus can be defined by requiring �

to satisfy rules for logical operations, as exemplified by the following:

1. Γ�c ∆ ∪ A implies Γ�c ∆ ∪ A ∨B (R∨ rule);

2. Γ ∪ A�c ∆ and Γ ∪B �c ∆ implies Γ ∪ A ∨B �c ∆ (L∨ rule).

Validity of structural rules (Weakening, Contraction and Exchange) for the calculus fol-
lows immediately from the properties of S-consequences and the use of sets.

Compatibility relations may also be used to provide semantic procedures for conse-
quence evaluation. Classical truth-functional semantics can be defined by requiring validity of
all maximal consequences Γ�c ∆ satisfying the usual semantic clauses:

1. A ∧B ∈ Γ if and only if A ∈ Γ and B ∈ Γ;

2. A ∨B ∈ Γ if and only if A ∈ Γ or B ∈ Γ;

3. A→ B ∈ Γ if and only if A /∈ Γ or B ∈ Γ;

4. ¬A ∈ Γ if and only if A /∈ Γ

5. For all A, A ∈ ∆ if and only if A /∈ Γ

Every formula is either asserted or denied according to the truth-functional clauses, so
every maximal consequence Γ�c∆ represents a particular model. Non-maximal consequences
represent the existence of at least one model making all formulas in Γ true and all in ∆ false,
since maximal consequences may be obtained via Expansion.

S-consequences naturally lend themselves to the direct specification of consequence
relations, in contrast to compatibility relations’ capability of allowing negative specification via
absence of counterexamples:

36 The names “Reducibility”, “Disjointness” and “Expansion” are not used in the original work and were included
only for pedagogical purposes.
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Proposition 1.4.4 Classical syntactic consequence (⊢c), syntactic non-consequence (⊬c), se-
mantic consequence (⊨c) and semantic non-consequence (⊭c) may be defined as follows:

1. Γ ⊢c ∆ if and only if Γ�c ∆;

2. Γ ⊬c A if and only if Γ�c ∆ does not hold;

3. Γ ⊨c ∆ if and only if Γ�c ∆ does not hold;

4. Γ ⊭c ∆ if and only if Γ�c ∆.

This is a very general framework, and by generalizing it further we could use � and � to
define even more syntactic and semantic specification procedures. By allowing relations to be
typed, defining 0-ary relations �0 as holding between sets of formulas and n-ary relations �n

(for n > 1) as holding between sets of �n−1 consequences, we could provide natural character-
izations of higher-order natural deduction (SCHROEDER-HEISTER, 1984) and hypersequent
calculus (CIABATTONI; RAMANAYAKE; WANSING, 2014). A similar generalization of
� could be used to characterize Kripke semantics and define semantics for substructural and
modal logics (RESTALL, 2018)(CHELLAS, 1980)37.

In view of all of this, are we to conclude that � is an essentially syntactic relation and
� a essentially semantic one? The answer is a resounding no, and we have many counterex-
amples to that. Syntactic characterizations of � are provided by complementary sentential
logics (VARZI, 1990); in particular, classical complementary logic admits characterization via
Hilbert systems, sequent calculi and proof nets (MORGAN, 1973)(PULCINI; CARNIELLI,
2015)(PULCINI; VARZI, 2023). Semantic uses of � are also frequent in proof-theoretic se-
mantics, as exemplified by proof-theoretic validity (SCHROEDER-HEISTER, 2022) and others
that rely on syntactic notions such as atomic derivability.

A more accurate reading of the bilateralist framework is one in which � is essentially
a proof-theoretic relation, whereas � is essentially a model-theoretic one. The temptation to
associate relations satisfying properties of � with semantics and those satisfying properties of
� with syntax is yet another product of the conflation of formal semantics with model theory
and syntactic procedures with proof theory. Proof-theoretic semantics can be obtained by quan-
tifying universally over S-consequences, just as much as model-theoretic syntactic calculi can
be obtained by quantifying existentially over compatibility consequences.

37 Although the characterization of higher-order natural deduction seems to require all n-ary relations, traditional
hypersequent calculi and Kripke semantics seem to require only arities 0 and 1. The sequents constituting
a hypersequent would be 0-ary S-consequences, hypersequents themselves being 1-ary relations. Likewise,
the Kripke worlds of a Kripke frame would be 0-ary compatibility relations, frames themselves being 1-ary
relations. It would also be possible to allow both �n−1 relations and �n−1 relations to occur on the sets
related by �n and �n, leading to a generalized bilateral framework similar to the one presented in (BLASIO;
CALEIRO; MARCOS, 2019). Further considerations on this subject are outside of the scope of this thesis,
however.
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1.4.3 Reasons for the adoption of proof-theoretic semantics

The aim of this thesis is to justify proof-theoretic semantics from a general point of
view, not from the perspective of the philosophical doctrines often associated with it (such as
intuitionism). Proof-theoretic semantics will have its development considerably hindered if it
refuses to emancipate itself from those doctrines, as many logicians (this author included) do not
find arguments in their favour very convincing – especially those to the effect that intuitionism
should be adopted outside of logic and mathematics.

There are many technical and philosophical reasons for developing proof-theoretic se-
mantics as a separate body of knowledge. Proof theory seems better suited for the representation
of epistemic phenomena than model theory, which is arguably better at representing ontolog-
ical phenomena. Model theory is currently used in many philosophical and technical projects
for which it might not be the best available framework, either from a technical or conceptual
standpoint.

A good reason for the study of proof-theoretic semantics is that fragmentary, non-total
and hypothetical proof semantics are much more intuitive than their truth-functional (non-
standard) counterparts. While the possibility of philosophical justification of truth-value gaps
(that is, propositions with no truth value) is still controversial (SHAW, 2014), the non-total
character of proofs makes it so that gaps are present from the start. The same happens with the
multiplicity of semantic values: it is still a matter of debate whether many-valued logical no-
tions such as that of truth degrees can be philosophically justified (GOTTWALD, 2022), but it
is entirely reasonable to expect such fragmentary behavior from the notion of proof. Finally, the
categorical nature of truth only allows one to entertain the notion of hypothetical judgements by
introducing foreign epistemic or counterfactual elements (since hypothetical reasoning shows
us what would be the case if some particular propositions were to be true, even though its truth
or falsity is already determined), but some notions of proof prioritize the hypothetical over the
categorical.

There is also an additional reason for the adoption of proof-preserving inferences instead
of truth-preserving inferences in logic and mathematics: since in this context we are only inter-
ested in preserving conclusive proofs and conclusive proofs guarantee truth, proof-preserving
inferences also preserve truth, whereas truth-preserving inferences do not necessarily preserve
proof. Regardless of what definition of mathematical truth is adopted, the absolute epistemic
grounds guaranteed by conclusive proofs have strong ontological bearings, but it is not gener-
ally the case that one can extract epistemic grounds from ontological grounds. A proposition
for which we have absolute evidence is necessarily true, but propositions might be true despite
our lack of evidence, so foundations built on the notion of proof are semantically more robust
than those built on the notion of truth.

This list of justifications is not supposed to be exhaustive, especially since proof-theoretic
semantics is a relatively new field of research. There is much yet to be considered, as its founda-



43

tions are still being laid out. But there is already sufficient reason to believe that its development
will yield many fruits, which is all that we need to start.
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2 MATHEMATICAL GROUNDWORK

2.1 Basic definitions

2.1.1 Preliminary conventions

Whenever the number of syntactic objects used in a certain context becomes relevant (or
when it improves readability), superscripts n will be used to distinguish between each element.
Other syntactic markers are also used when convenient (e.g. S, S ′ and S ′′).

The distinction between a syntactic object and an occurrence of it will be taken for
granted (e.g. there are two occurrences of the object “s” in the word “chess”).

A sequence of objects will sometimes be said to contain a particular object whenever
that object occurs in the sequence (in an abuse of set-theoretic terminology).

Whenever a relation is defined, a second relation is implicitly defined which holds if and
only if the original relation does not hold. This new relation is denoted by putting a slash over
the original relation (e. g. Γ ⊬ A holds iff Γ ⊢ A does not hold).

The same syntactic object (e.g. ⊨) may be used to denote different notions whenever the
notion being denoted is clear from the context.

Uppercase letters (A, B, C) are sometimes used to denote arbitrary objects of a kind
specified by the definitions in which they appear.

The expression “iff” is sometimes used as an abbreviation for “if and only if”.
Parentheses and commas will be dropped whenever no ambiguity ensues. They are also

added in some occasions to improve readability.

2.1.2 On constants, variables and quantification

When introducing names for objects, logical languages usually distinguish between con-

stants and variables. The object named by a constant is fixed, but we may change the denota-
tion of variables. Variables are essential for the definition of quantification, since it only makes
sense to refer to all possible denotations of a name when the denotation can actually be changed.
There is no significant difference between both when quantification is not allowed, since using
the fixed denotation of a constant or the denotation fixed by a particular interpretation function
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assigning objects to variables amounts to the same38. We will opt for the use of constants when-
ever there is a choice to be made, since this makes some comparisons between proof-theoretic
and model-theoretic semantics smoother.

2.1.3 Languages

We use three kinds of basic syntactic symbols: constants, variables, and logical sym-
bols39. Logical symbols (also called connectives or operators) are constants naming structurally
fixed logical operations. As noted before, constants and variables are used to denote objects.
We define ⊥ as a predicate constant (instead of a logical symbol) in order to allow it to figure
in second-order quantification.

Definition 2.1.1 A set is a propositional language if it contains the following elements:

1. An enumerable infinite number of predicate constants of arity 0. Notation: P,Q,R;

2. ⊥, a special predicate constant of arity 0;

3. The logical symbols ∧, ∨, →.

Definition 2.1.2 A set is a first-order language if it contains the following elements:

1. An enumerable infinite number of predicate constants of arity n. Notation: Pn, Qn, Rn;

2. ⊥, a special predicate constant of arity 0;

3. An enumerable infinite number of individual variables. Notation: x, y, z;

4. Any number (possibly zero) of individual constants. Notation: a, b, c;

5. The logical symbols ∧, ∨, →, ∃ and ∀;

Definition 2.1.3 A set is a second-order language if it contains the following elements:

1. An enumerable infinite number of predicate variables of arity n. Notation: Xn, Yn, Zn;

2. ⊥, a special predicate constant of arity 0;

38 Some books don’t even bother to specify if propositions and predicates are constants or variables, using names
such as “propositional symbols” and “predicate symbols” until the need to make a distinction arises. For an
example, see (VAN DALEN, 2013, pgs. 7, 56 and 145).

39 Functions and the logical constant for equality are left out of definitions for the sake of simplicity. They may
still be defined in terms of relations on the quantified calculi, so nothing is lost.
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3. Any number (possibly zero) of predicate constants of arity n distinct from ⊥;

4. An enumerable infinite number of individual variables;

5. Any number (possibly zero) of individual constants;

6. The logical symbols ∧, ∨, →, ∃ and ∀;

Definition 2.1.4 Every individual constant and individual variable of a language is a first-order

term of that language. Every predicate constant and predicate variable of a language is a second-

order term of that language.

The arity of predicate constants, variables and terms will sometimes be omitted when
they are irrelevant or can be inferred from the context.

Definition 2.1.5 The set of propositional formulas of a language L is defined as follows:

1. Every 0-ary second-order term in L is a propositional formula of L;

2. If A and B are propositional formulas of L, then (A ∧ B), (A ∨ B) and (A → B) are
propositional formulas of L;

Definition 2.1.6 The set of first-order formulas of a language L is defined as follows:

1. If Tn is a second-order term in L and t1 ... tn is a sequence containing n first-order terms
in L, then Tnt1 ... tn is a first-order formula of L.

2. If A and B are first-order formulas of L, then A ∧ B, A ∨ B and A → B are first-order
formulas of L;

3. If A is a first-order formula of L and x is an individual variable in L, then ∀xA and ∃xA
are first-order formulas of L;

Definition 2.1.7 The set of second-order formulas of a language L is defined as follows:

1. If Tn is a second-order term in L and t1 ... tn is a sequence containing n first-order terms
in L, then Tnt1 ... tn is a second-order formula of L.

2. If A and B are second-order formulas of L, then A ∧ B, A ∨ B and A → B are second-
order formulas of L;

3. If A is a second-order formula of L and x is an individual variable in L, then ∀xA and
∃xA are second-order formulas of L;

4. If A is a second-order formula of L and X is a predicate variable in L, then ∀XA and
∃XA are second-order formulas of L;
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We speak simply of formulas whenever its specific type (propositional, first-order or
second-order) can be inferred from the context.

Definition 2.1.8 The set of atomic formulas of L is defined as follows:

1. If Tn is a second-order term of L and t1 ... tn is a sequence containing n first-order terms
in L, then Tnt1 ... tn is a atomic formula of L.

Definition 2.1.9 ¬A is an abbreviation for A→ ⊥.

We must also define substitution operations for formulas in order to deal with quanti-
fiers in an orderly manner. There is more than one viable approach to this. We can, as does
Prawitz (PRAWITZ, 2006, pg.13), adopt a syntactical distinction between variables (which al-
ways occur bound) and parameters (which always occur free). Another possibility is to use the
approach of van Dalen (VAN DALEN, 2013, pg.61-62), in which substitution is defined only
for unbound variables and for terms which are “free for” them in the formula (that is, terms
which will not become bound after the substitution). Since constants will be used extensively
later on and Prawitz’s approach requires the use of an additional type of syntactic object, we
adopt an approach similar to van Dalen’s for the sake of linguistic simplicity.

Definition 2.1.10 A variable occurrence in a formula is bound in the following cases:

1. If A is an atomic formula, no variable occurrence in it is bound;

2. Every variable occurrence which is bound in A and in B is also bound in A ∧ B, A ∨ B
and A→ B;

3. Every variable occurrence which is bound in A is also bound in ∃xA and ∀xA. Addition-
ally, every occurrence of x in ∃xA and ∀xA is bound.

4. Every variable occurrence which is bound in A is also bound in ∃XA and ∀XA. Addi-
tionally, every occurrence of X in ∃XA and ∀XA is bound.

Definition 2.1.11 A variable occurrence is free in a formula if it is not bound.

Notice that the definition is given for occurrences of variables, not variables themselves.
An occurrence of a variable is always either bound or free, but the same variable can occur both
bound and free in the same formula (VAN DALEN, 2013, pg.60).

Definition 2.1.12 A closed formula (or sentence) is a formula with no free variable occur-
rences. Every formula which is not a closed formula is a open formula.

Definition 2.1.13 Let A be a open formula and ⟨X1, ... Xn, xn+1, ... , xm⟩ a sequence contain-
ing all free predicate and individual variables of A by order of appearance (from left to right).
Then ∀X1 ... ∀Xn∀xn+1 ... ∀xm(A) is the universal closure of A.
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The notions of free and bound variable occurrences are defined in order to facilitate the
definition of appropriate substitution operations. We give a naı̈ve notion which is later refined
by some constraints:

Definition 2.1.14 Naı̈ve substitution operations for formulas A are defined as follows:

1. If t1 and t2 are first-order terms, then A[t1/t2]N is obtained by replacing every free occur-
rence of t1 in A (if any) by an occurrence of t2.

2. If T 1 and T 2 are second-order terms of the same arity, then A[T 1/T 2]N is obtained by
replacing every free occurrence of T 1 in A (if any) by an occurrence of T 2;

Such substitutions are naı̈ve because the terms t1 and T 2 may become bound after the
substitution (e.g. (∀xPyx)[y/x], which yields ∀xPxx).

In order to circumvent this, we define the following notions:

Definition 2.1.15 The term t1 can be substituted by t2 in in A if t2 is not a bound variable in A.
T 1 can be substituted by T 2 in A if T 2 if it not a bound variable in A.

Definition 2.1.16 Substitution operations (Notation: A[t1/t2] and A[T 1/T 2]) are naı̈ve substi-
tution operations A[t1/t2]N and A[T 1/T 2]N such that t1 can be substituted by t2 and T 1 by T 2

in A.

WheneverA[t1/t2] andA[T 1/T 2] are used, we assume that the terms t2 and T 2 are being
chosen in such a way that there is a substitution operation available.

Definition 2.1.17 Subformulas of formulas are defined as follows:

1. Every formula is a subformula of itself;

2. A and B are subformulas of A ∧B, A ∨B and A→ B;

3. If t is a first-order term and T is a second-order terms, then A[x/t] is a subformula of
∀xA and ∃xA, and A[X/T ] is a subformulas of ∀XA and ∃XA.

Definition 2.1.18 The degree or complexity of a formula is the number of logical operators
occuring in it.

Degrees are defined for the sake of inductive proofs, so all inductive steps are inductions
on the degree of formulas unless otherwise specified.

Before proceeding to the next section, we introduce new syntactic objects called formula

variables. Those will be used to define schemas, which are placeholders for formulas. The
notation (ϕ, ψ, σ) will be employed.
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Definition 2.1.19 A formula schema is defined as follows:

1. If ϕ is a formula variable, then ϕ is a formula schema;

2. If ϕ and ψ are formula schemas, then ϕ ∧ ψ, ϕ ∨ ψ, and ϕ → ψ are formula schemas. If
x is a individual variable and X a predicate variable, then ∃xϕ, ∀xϕ, ∃Xϕ and ∀Xϕ are
also formula schemas.

Definition 2.1.20 Let {ϕ1, ... , ϕn} be the set of all formula variables occurring on a formula
schema and {A1, ... , An} be a set of formulas. An instance of that formula schema is the result
of replacing all occurrences of variables ϕm in it by Am (1 ≤ m ≤ n).

Since our main interest lies in the relation between formulas, formula schemas will be
used as representatives of their instances. Notions involving validity and deduction are defined
for formulas, but schemas allow us to deal with them in a uniform manner.

2.2 Natural deduction

2.2.1 Rule schemas, rules and deductions

We will now give definitions for Gentzen-style natural deduction (GENTZEN, 1969,
pg. 68-80), our main deductive framework. Our definitions are similar to those used by van
Dalen (VAN DALEN, 2013), but with some elements taken from Prawitz (PRAWITZ, 2006).
We define two kinds of objects: natural deduction rules (or inferences), in which formulas are
used as premises to conclude another formula, and natural deduction rule schemas, in which
formula schemas and formulas are used as premises to conclude a formula schema or formula.
Just as in the case of formulas and formula schemas, a rule schema is meant to be read as a
placeholder for particular rules.

Definition 2.2.1 Let ⟨A1, ... , An⟩ be a sequence of n formulas, ⟨∆1, ... ,∆n⟩ a sequence of n
sets of formulas and B a formula. Then:

[∆1]
...
A1 ...

[∆n]
...
An

B

Is a natural deduction rule. We represent this horizontally by writing [∆1 ⇒ A1, ... ,∆n ⇒
An/ B], and ∆m ⇒ Am may be simplified to Am when ∆m is empty.
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Definition 2.2.2 Let ⟨ϕ1
∗, ... , ϕ

n
∗ ⟩ be a sequence of schemas and/or formulas, ⟨Θ1

∗, ... ,Θ
n
∗ ⟩ a

sequence of n sets containing schemas and/or formulas and ψ∗ a formula schema or formula.
Then:

[Θ1
∗]...

ϕ1
∗ ...

[Θn
∗ ]...

ϕn
∗

ψ∗

Is a natural deduction rule schema. We represent this horizontally by [Θ1
∗ ⇒ ϕ1

∗, ... ,Θ
n
∗ ⇒

ϕn
∗/

R ψ∗], and Θm ⇒ ϕm
∗ may be simplified to ϕn

∗ when Θm is empty.

In both cases, the formulas/formula schemas with superscripts 1 through n are called
the premises of the rule/rule schema, and the formulas/formula schemas without superscripts
its conclusion. The formulas in the sets ∆1 through ∆n and formulas/formula schemas in Θ1

through Θn are discharged by the rule/rule schema. Notice that the premises are not neces-
sarily distinct from each other, from the conclusion or from formulas/formula schemas in the
discharged sets.

Definition 2.2.3 Let {ϕ1, ... , ϕn} be the set of all formula variables occurring in some formula
schema in a natural deduction rule and {A1, ... , An} any set of formulas. A uniform substitution

for that rule is the result of replacing all occurrences of each formula variable ϕm in every
formula schema of the rule by the formula Am (1 ≤ m ≤ n).

Definition 2.2.4 A natural deduction rule is an instance of a natural deduction rule schema iff
the rule can be obtained from the rule schema via uniform substitution.

Natural deduction rule schemas are allowed to use both formulas and schemas. Formula
occurrences are preserved by uniform substitution, so whenever a formula occurs in a rule
schema its position is fixed in all of its instances.

Definition 2.2.5 A deduction (also called derivation) of a formula A depending on a set Γ of

formulas, denoted by
Γ
Π
A

, is defined as follows:

1. If A is a formula, A itself is a deduction of A depending on Γ ∪ {A}, for any Γ;

2. If
Γm

Πm

Am
is a deduction ofAm depending on Γm for (1 ≤ m ≤ n) and

[∆1]
...
A1 ...

[∆n]
...
An

B

is a natural deduction rule, then

Γ1, [∆1]

Π1

A1 ...

Γn, [∆n]

Πn

An

B

is a deduction of B de-

pending on
⋃

1≤k≤n

Γk −∆k.
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Definition 2.2.6 A formulaA is a assumption of a deduction ofB if and only if it the deduction
of B depends on Γ and A ∈ Γ. B may also be said to depend on A.

Definition 2.2.7 A deduction is closed if it depends on the empty set.

Definition 2.2.8 A restriction on a natural deduction rule schema is any condition imposed on
its formula schemas or uniform substitutions.

Definition 2.2.9 A deduction is valid in a given logic iff all formulas occurring in it are of the
appropriate language, all natural deduction rules in it are instances of a natural deduction rule
schema considered valid by that logic and all restrictions imposed on the rules schemas are
satisfied by its instances.

2.2.2 Propositional logic

We are now equipped to define rule schemas used in natural deduction systems of propo-
sitional, first-order and second-order minimal, intuitionistic and classical logic. Minimal propo-
sitional logic is used as a starting point; intuitionistic and classical propositional logic are ob-
tained by adding new rule schemas to it. In the same fashion, the first-order version of a logic is
obtained by using a first-order language and adding rule schemas for the first-order quantifiers
to its propositional system, whereas second-order versions are obtained by using a second-order
language and adding rule schemas for second-order quantifiers to the first-order systems.

Definition 2.2.10 A natural deduction system for minimal propositional logic is obtained by
using a propositional language and regarding the following schemas as valid:

ϕ ψ
I∧

ϕ ∧ ψ
ϕ ∧ ψ

E∧1

ϕ

ϕ ∧ ψ
E∧2

ψ

ϕ
I∨1

ϕ ∨ ψ
ψ

I∨2

ϕ ∨ ψ
ϕ ∨ ψ

[ϕ]
...
σ

[ψ]
...
σ

E∨σ

[ϕ]
...
ψ

I →
ϕ→ ψ

ϕ ϕ→ ψ
E →

ψ
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Definition 2.2.11 A natural deduction system for intuitionistic propositional logic is obtained
by using a propositional language and regarding all rule schemas of minimal propositional logic
as valid, plus the rule of ex falso quodlibet:

⊥ EFQ
ϕ

This schema is different from the minimal ones due to its use of a formula; the occur-
rence of ⊥ in the premise is fixed in all instances of EFQ.

Definition 2.2.12 A natural deduction system for classical propositional logic is obtained by
using a propositional language and regarding all rules of intuitionistic propositional logic as
valid40, plus the rule schema of reductio ad absurdum:

[¬ϕ]
...
⊥

RAA
ϕ

Propositional syntactic consequence is defined for the three logics as follows:

Definition 2.2.13 Let L be a propositional language. Let Γ be a set of propositional formulas
and A a propositional formula of L. The relations ⊢0

m, ⊢0
i and ⊢0

c hold between them if and only
if there is a deduction with premises Γ and conclusion A using only the valid rules of minimal,
intuitionistic and classical propositional logic, respectively.

2.2.3 First-order logic

We use ϕ[x/t] as shorthand for a restriction: if ϕ and ϕ[x/t] occur in the same rule,
then every uniform substitution which replaces ϕ by A must also replace ϕ[x/t] by A[x/t].
Restrictions are imposed on instances of rules schemas, not the schemas themselves.

Definition 2.2.14 Natural deduction systems for minimal, intuitionistic and classical first-order

logics are obtained by using a first-order language and regarding the rule schemas of minimal,
intuitionistic and classical propositional logic as valid (respectively), plus the following first-
order quantification rule schemas:

40 Or even of minimal logic, as EFQ is a particular instance of RAA.
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ϕ
I∀1∀x(ϕ)

∀x(ϕ)
E∀1

ϕ[x/t]

ϕ[x/t]
I∃1∃x(ϕ)

∃x(ϕ)

[ϕ[x/t]]
...
ψ

E∃1
ψ

Restriction on I∀1: x does not have free occurrences on formulas on which ϕ depends;

Restriction on E∃1: t does not have free occurrences on ψ, ϕ or any formula on which the upper
occurrence of ψ depends other than ϕ[x/t];

First-order syntactic consequence is defined as follows:

Definition 2.2.15 Let L be a first-order language. Let Γ be a set of first-order formulas and A a
first-order formula of L. The relations ⊢1

m, ⊢1
i and ⊢1

c hold between them if and only if there is a
deduction with premises Γ and conclusionA using only the valid rules of minimal, intuitionistic
and classical first-order logic, respectively.

2.3 Model-theoretic Semantics

2.3.1 Propositional logic

In this section we present standard Kripke semantics (VAN DALEN, 2013, pgs. 164-
165)(COLACITO; JONGH; VARGAS, 2017) for propositional and first-order minimal, intu-
itionistic and classical logic. Second-order logic is left for later. We start by dealing with
minimal logic and later use it to define intuitionistic and classical logic.

Definition 2.3.1 Let L be a propositional language. A minimal propositional model K for it is
any sequence ⟨W,≤, v⟩ such that:

1. W is a non-empty set of objects k;

2. ≤ is a partial order on the elements of W ;

3. v is a valuation function, assigning either the value T (true) or the value ∅ (non-true) to
every ordered pair (A, k) comprised of atomic sentences A (cf. Definitions 2.1.5 and
2.1.8) and objects k of W . Valuation functions must satisfy the requirement that if k ≤ k′

and v(A, k) = T then v(A, k′) = T .

W corresponds to the usual set of “worlds” or “nodes”; ≤ is the usual accessibility re-
lation. The semantic value “non-true” is used so as to avoid confusion with standard (classical)
semantic definitions of falsity. The function v establishes what atoms are true in each world k.
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The condition imposed on v is called the heredity or monotonicity condition, and it guarantees
that whenever the truth of an atom has been established in a world it must also be established in
all accessible worlds. Although the condition is imposed on atoms, it is possible to prove that it
spreads over to all standard operators41.

Once models have been defined, we may define semantic consequence for minimal
propositional logic as follows, fixing ⇐⇒ as a synonym of “iff”:

Definition 2.3.2 Let L be a language. Given a minimal propositional model K, the relations
⊨K
k and ⊨K are defined for the sentences of the language as follows:

1. ⊨K
k A⇐⇒ v(A, k) = T , for atomic sentences A;

2. ⊨K
k A ∧B ⇐⇒ ⊨K

k A and ⊨K
k B;

3. ⊨K
k A ∨B ⇐⇒ ⊨K

k A or ⊨K
k B;

4. ⊨K
k A→ B ⇐⇒ A ⊨K

k B;

5. ⊨K
k Γ ⇐⇒ {⊨K

k Ai | Ai ∈ Γ}, where Γ is a set of propositional sentences;

6. Γ ⊨K
k A⇐⇒ ∀k′(k ≤ k′) : ⊨K

k′ Γ implies ⊨K
k′ A;

7. Γ ⊨K A⇐⇒ ∀k(k ∈ W ) : Γ ⊨K
k A.

Definition 2.3.3 A minimal propositional modelK is also an intuitionistic propositional model

just in case v(⊥, k) = ∅ for all k ∈ W .

Definition 2.3.4 An intuitionistic propositional modelK is also a classical propositional model

just in case ⊭K
k A and k ≤ k′ implies ⊭K

k′ A.

To see why classical propositional models are enough to give us classical logic, notice
that the new condition makes quantification over accessible worlds redundant, since either ⊨K

k A

and thus ⊨K
k′ A for every k ≤ k′ (heredity condition) or ⊭K

k A and thus ⊭K
k′ A for every k ≤ k′

(classical condition). In particular, clause 4 of Definition 2.3.2 boils down to (⊨K
k A→ B ⇐⇒

⊭K
k A or ⊨K

k B), since for A ⊨K
k B to be satisfied either ⊭K

k A and the relation is satisfied
vacuously or ⊨K

k A and then ⊨K
k B. Since ¬A is a abbreviation of A → ⊥, in every k of a

classical model we also have that either ⊨K
k A holds or ⊭K

k′ A holds for every k ≤ k′, which
vacuously satisfy clause 4 of Definition 2.3.2 and yields ⊨K

k ¬A, from which we conclude
⊨K
k A ∨ ¬A. Definition 2.3.4 makes it so that accessible worlds become completely irrelevant,

which leads to a collapse into the traditional models of classical logic. However, it should be
noted that it is enough to require preservation of the value ∅ assigned to atoms to induce classical

41 For a quick proof, see the footnotes in (PRIEST, 2008, pgs. 105-106).
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behavior in propositional models, but some problems arise in the first-order and second-order
cases.

Propositional semantic consequence is defined as follows:

Definition 2.3.5 Let L be a propositional language. Let Γ be a set of propositional formulas
and A a propositional formula of L. The relations ⊨0

m, ⊨0
i and ⊨0

c hold between them if and
only if Γ ⊨K A holds for every minimal, intuitionistic and classical propositional model K,
respectively.

2.3.2 First-order logic

We need to introduce the notions of domain and interpretation before defining first-
order minimal models. It is also necessary to choose how to deal with formulas containing free
variables, since valuations are defined only for sentences. Before going to the definitions, we
briefly fix the convention that, whenever a function f is defined, f (s) will be used to denote the
value of the function when applied to the argument s.

Definition 2.3.6 A domain D is any non-empty set of objects.

Definition 2.3.7 A domain assignment function α for a set W is a function assigning a domain
α(k) to every k ∈ W and

⋃
k∈W

α(k) to W itself.

Definition 2.3.8 Let L be a language, W a set of objects k and α a domain assignment function
for W . An interpretation function β is a function assigning to every constant of the language
an element of α(W ) and to every pair (Pn, k) of n-ary predicate constants of L (for n ≥ 1) and
elements k of W an n-ary relation (a1, ... , an) on elements of α(k).

Definition 2.3.9 Let α be a domain assignment function for W . The language L(α(W )) is
obtained by adding to L one distinct individual constant for each element of α(W ).

First-order models are defined only for languages with at least one constant for every
object of its domains. Instead of imposing a restriction on languages, we may start with any
language and, given a model, enrich it with enough constants to name all objects of all domains.
The function α will be used to specify the domains α(k) of every k and the set α(W ) of all
objects occurring in some domain, so we may use β to assign the same name to an object even
if it occurs in different domains. β will also used to induce a particular behavior on the function
v.

First-order minimal models are defined as follows:

Definition 2.3.10 Let L be a first-order language. A first-order minimal model K for the ex-
tended language L(α(W )) is a sequence ⟨W,≤, α, β, v⟩ such that:
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1. W and ≤ are as in Definition 2.3.1;

2. α is a domain assignment function for W , satisfying the conditions that k ≤ k′ implies
α(k) ⊆ α(k′);

3. β is an interpretation function for L, W and α, satisfying the conditions that k ≤ k′

implies β(Pn, k) ⊆ β(Pn, k
′) and, for every element e of α(W ), there is a constant

a ∈ L(α(W )) such that β(a) = e;

4. v is as in Definition 2.3.2 for 0-ary predicate constants. For predicates of greater arity,
v(Pn(a

1, ... , an), k) = T iff ⟨β(a1), ... , β(an)⟩ ∈ β(Pn, k)
42.

Definition 2.3.11 Let L be a first-order language and K a first-order minimal model. The
relations ⊨K

k and ⊨K are defined for the sentences of L(α(W )) as follows:

1. Clauses 1 through 9 are the same as in Definition 2.3.2;

10. ⊨K
k ∀x(A) ⇐⇒ ∀k′(k ≤ k′) : ⊨K

k′ A[x/a], for all a such that β(a) ∈ α(k);

11. ⊨K
k ∃x(A) ⇐⇒ ⊨K

k A[x/a], for some a such that β(a) ∈ α(k);

The clauses are defined only for sentences, but we may extend them to open formulas as
follows:

Definition 2.3.12 If A is an open formula and A∗ its universal closure, ⊨K
k A⇐⇒ ⊨K

k A∗.

Classical and intuitionistic first-order models are defined by imposing the same propo-
sitional conditions (Definitions 2.3.3 and 2.3.4) on minimal first-order models.

As mentioned before, Definition 2.3.4 is necessary to induce classical behavior in pred-
icate logics, while in the propositional case it is enough to require preservation of the values of
atoms. To see why this is so, consider a model K with a k such that α(k) = {a}, a k′ such that
k ≤ k′ with α(k′) = {a, b} and a k′′ such that k ≤ k′′ with α(k′′) = {a, c}. Suppose now that,
for all k of K, ⊨K

k Pa and ⊨K
k Pb, but ⊭K

k Pc. It is easy to see that, provided there are no other
worlds accessible from k, k′ and k′′, we have ⊨K

k′ ∀xPx, ⊭K
k′′ ∀xPx, and ⊭K

k ∀xPx. But, since
k ≤ k′, we also have ⊭K

k ¬∀xPx, and so ⊭K
k (∀xPx) ∨ ¬(∀xPx), which takes us away from

classical logic.
Finally, we may define first-order semantic consequence as follows:

Definition 2.3.13 Let L be a first-order language. Let Γ be a set of first-order formulas and A a
first-order formula of L. The relations ⊨1

m, ⊨1
i and ⊨1

c hold between them if and only if Γ ⊨K A

holds for every minimal, intuitionistic and classical first-order model K, respectively.

42 It is not necessary to impose the heredity condition on predicates with arity greater than 0, as the property
follows from the definition of β.
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2.4 Second-order logic

2.4.1 On the nature of second-order logic

The name “second-order logic” is used ambiguously in the literature. Although some-
times used to refer to standard models of second-order logic, for which incompleteness results
infamously hold (EBBINGHAUS; FLUM; THOMAS, 1984, pgs. 162-165), it is also used
to refer to a calculus created by Church (CHURCH, 1956, pgs. 295-302), subsequently used
as the main definition of second-order logic in many studies (PRAWITZ, 2006, pgs. 63-73)
(VAN DALEN, 2013, pgs. 145-152). It may also reasonably be used for Henkin’s F ∗ calculus
(HENKIN, 1953), a proper subsystem of Church’s calculus.

For convenience, we may refer to the standard models as strong second-order logic,
to Church’s calculus as intermediate second-order logic and to Henkin’s F ∗ calculus as weak

second-order logic. Our main source on this subject will be the study conducted by Manzano
(MANZANO, 1996), in which Henkin’s definition corresponds to the calculusC−

2 and Church’s
definition corresponds to C2. Due to the incompleteness results, no calculus can be given for
strong second-order logic43.

The calculus we’ll use corresponds to weak second-order logic, and thus to Manzano’s
C−

2 . Our semantic discussions also focus mostly on the weak logic, but we’ll always comment
on ways of obtaining semantics for the intermediate and strong logics. To justify this choice,
we will now present three reasons for the use of the weaker version.

The first one is syntactic simplicity. Quantification works in the same way for individuals
and predicates in the weak logic. The weak second-order calculus is a straightforward extension
of the first-order one, even though it does not have properties some would expect of second-
order logics – such as derivability of all instances of the comprehension schema, according to
which ∃X∀x1 ... ∀xn(Xx1 ... xn ↔ A), provided X does not have free occurrences on A.
Intermediate second-order logic, on the other hand, requires either that one (i) Substantially
change how substitution works in second-order quantification (VAN DALEN, 2013, pg. 147);
(ii) Add rules allowing one to prove all instances of the comprehension schema (MANZANO,
1996, pg. 79), or (iii) Define an independent λ operator, which interacts with the quantifier
rules and allows one to prove all instances of the comprehension schema (PRAWITZ, 2006,
pg. 66). In all cases, the behavior of second-order substitution becomes quite unnatural, and
the desired properties are induced either through direct stipulation, through indirect interference
of the λ operator, or through effects of the modified definition of substitution on second-order
quantifications.

43 For a interesting but brief discussion on the differences between the three definitions of second-order logic, the
reader is referred to (MANZANO, 1996, pgs. 73-75).



58

The second is semantic generality. It is usually the case that semantic definitions sound
and complete for C−

2 can be extended to C2 by simply imposing the requirement that all models
must satisfy all instances of the comprehension schema. Moreover, strong second-order logic
is usually obtainable from both by considering saturated (or principal) models, which contain
all possible n-ary relations in its predicate domains. As such, adoption of the weaker semantics
in our completeness proofs allows us to indirectly provide semantics also for intermediate and
strong second-order logic.

The third is constructive adequacy. Although strong, intermediate and weak defini-
tions are all acceptable from the perspective of classical logic, it is questionable whether this
is the case from a constructive perspective. Strong second-order logics usually have a prob-
lematic relationship with the Axiom of Choice (VÄÄNÄNEN, 2021), rejected by constructive
mathematicians. Intermediate second-order logic also has many properties usually deemed un-
desirable by constructivists, such as interdefinability of logical connectives and failure of weak
normalization44 (PRAWITZ, 2006, pg.67-73). This is not entirely unexpected, as the com-
prehension schema guarantees the existence of predicates satisfying some strong requirements
regardless of their effective construction. Although some results due to Prawitz may be used to
argue for its intuitionistic acceptability (PRAWITZ, 1970), such properties make it so that the
intermediate calculus’ constructive character is certainly suspicious. Since we want to provide
semantics acceptable to both classical and constructive logicians (even though, as established in
the first chapter, we are not adopting the constructive viewpoint), avoidance of the intermediate
calculus is advisable. None of these properties are observed in the weak calculus, so acceptance
of its constructive character is much less problematic.

One last problem must be faced before we proceed. The main objection raised against
the recognition of weak second-order logic as properly second-order is the fact that it is so
similar to first-order logic one could argue it is actually just first-order logic in disguise (MAN-
ZANO, 1996, pg. 73) (SHAPIRO, 1991). In fact, the weak logic can be embedded in first-order
many-sorted logic, which in turn is embeddable in first-order logic (MANZANO, 1996). Since
it only uses first-order models, the weak logic, just like many-sorted logic, could be viewed as
first-order logic with a change of notation.

Are we to conclude that intermediate and strong second-order logic are the only logics
properly distinct from the first-order ones, and thus the only second-order logics? The answer
is no, because the models of intermediate and strong second-order logic are also first-order

models. To see why, remember that validity in the intermediate logic is equivalent to validity
in all weak models satisfying the comprehension axiom45, and validity in the strong logic is

44 Normalization may be recovered if one imposes additional constraints on substitutions in order to obtain rami-
fied (“typed”) second-order logic (PRAWITZ, 2006, pgs. 68-73).

45 For a embedding of the intermediate logic into many-sorted logic, see (MANZANO, 1996, pg. 277-290). For a
similar embedding into first-order logic, see (VAN DALEN, 2013, pg. 148-149).
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equivalent to validity in all models with saturated predicate domains. Since weak models are
first-order and validity in the intermediate and strong logics can be viewed as validity in a
restricted class of weak models, validity in the intermediate and strong logics can be viewed
as validity in a restricted class of first-order models. The power of such logics stems not from
properties of second-order quantification, but from the fact that only first-order models of a
restricted (and very strong) kind are considered. It should then not be considered a complete
surprise that no standard finitary calculus can be given for the strong logic, since it is already
known that validity in some simple classes of first-order models may yield properties such as
undecidability46.

The same reasons justifying the use of many-sorted logics (instead of first-order logics)
and intermediate or strong second-order models (instead of restricted first-order models) also
justify the use of weak second-order logic. In all cases we have mere changes in notation, but
the point is that those are interesting changes in notation. An intuitive proof in second-order
logic may not be intuitive in its first-order counterpart. The gains are in intuitive content and
mathematical elegance, not expressive power.

This is also the justification van Dalen gives for the use of semantics for the intermediate
logic instead of first-order models (VAN DALEN, 2013, pg. 149):

Note that the above translation could be used as an excuse for not doing second-

order logic at all, were it not for the fact that the first-order version is not nearly

as natural as the second-order one. Moreover, it obscures a number of interest-

ing and fundamental features; e.g. validity in all principal models (see below)

makes sense for the second-order version, whereas it is rather an extraneous

matter for the first-order version.

It is this author’s opinion that weak second-order logic is the most natural extension of
first-order logic, so the intermediate and strong logics should be treated either as extensions (if
we are dealing with syntactic calculi) or restrictions (if we are dealing with semantic conse-
quence) of it. Nevertheless, our proof-theoretic semantics are easily extendable to intermediate
and strong second-order semantics, so those who prefer stronger logics will be rightfully con-
templated.

2.4.2 Second-order natural deduction

Definition 2.4.1 Natural deduction systems for minimal, intuitionistic and classical weak second-

order logics are obtained by using a second-order language and regarding all rules of mini-

46 In particular, Trakhtenbrot’s theorem shows that validity in the class of finite first-order models is undecidable
(EBBINGHAUS; FLUM, 2006). It is still possible to give an infinitary calculus for it, however (ARRUDA;
MARTINS; PEREIRA, 2012).
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mal, intuitionistic and classical first-order logic as valid (respectively), plus the following rule
schemas for second-order quantification:

ϕ
I∀2∀X(ϕ)

∀X(ϕ)
E∀2

ϕ[X/T ]

ϕ[X/T ]
I∃2∃X(ϕ)

∃X(ϕ)

[ϕ[X/T ]]
...
ψ

E∃2
ψ

Restriction on I∀2: X does not have free occurrences on formulas on which ϕ depends;
Restriction on E∃2: T does not have free occurrences on ψ, ϕ or any formula on which the
upper occurrence of ψ depends other than Aϕ[X/T ];

As noted before, many calculi can be given for intermediate logic, none of them as
natural as the weak calculus. If one does not wish to define a new operator λ or use the com-
prehension schema as an axiom, substitution must be defined not only for terms, but also entire
formulas (e.g. X0[X0/P ∨ Q] is a substitution yielding the formula P ∨ Q). As mentioned
before, the incompleteness results for strong second-order logic prevents us from defining a
natural deduction system for it.

Definition 2.4.2 Let L be a second-order language. Let Γ be a set of second-order formulas
and A a second-order formula of L. The relations ⊢2

m, ⊢2
i and ⊢2

c hold between them if and only
if there is a deduction with premises Γ and conclusion A using only the valid rules of minimal,
intuitionistic and classical second-order logic, respectively.

2.4.3 Second-order model-theoretic semantics

Models for weak minimal second-order logic are obtained by generalizing first-order
definitions. We define a domain of individuals and n-ary domains for each n ≥ 0, partially fol-
lowing a convention briefly suggested by Prawitz in Remarks 1 and 2 of (PRAWITZ, 1970, pgs.
263-264). Instead of containing n-ary relations, our n-ary domains contain arbitrary objects to
which n-ary relations are assigned. This avoids some complications with the tracking of deno-
tations across domains; since n-ary relations are used to evaluate predicate constants (instead
of being objects named by them), a relation in αn(k) might not be present in αn(k′) even when
k ≤ k′. Notice also that, unlike what is suggested in (PRAWITZ, 1970), we have a domain for
0-ary predicates, which is not strictly necessary but makes some aspects of models smoother.
These modification also makes our semantics closer to many-sorted semantics for second-order
logic (SHAPIRO, 1991, pgs. 74-76)(MANZANO; ARANDA, 2022) than to Henkin semantics
(SHAPIRO, 1991, pg. 73-74), as well as closer to the proof-theoretic semantics we will later
present.
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Definition 2.4.3 A generalized domain assignment function α for a set W is a function assign-
ing, for every n ≥ 0, an n-ary domain αn(k) to every k ∈ K and n-ary domain

⋃
k∈W

αn(k) to

W , as well as a domain α(k) to every k and a domain
⋃

k∈W
α(k) to W .

Definition 2.4.4 Let L be a language, W a set of objects k and α a generalized domain assign-
ment function for W . A generalized interpretation function β is a function assigning to every
individual constant of L an element of α(W ), to every n-ary predicate constant of L an element
of αn(W ) and to every pair (en, k) of an element en of αn(W ) and an element k of W an n-ary
relation on elements of α(k).

Definition 2.4.5 Let α be a generalized domain assignment function for W . The language
L(α(W )) is obtained by adding to L one distinct individual constant for each element of α(W )

and one distinct n-ary predicate constant for each of αn(W ).

The definition of second-order models is quite symmetric to Definition 2.3.10:

Definition 2.4.6 Let L be a second-order language. A weak second-order minimal model K

for the extended language L(α(W )) is a sequence ⟨W,≤, α, β, v⟩ such that:

1. W and ≤ are as in Definition 2.3.1;

2. α is a generalized domain assignment function for W , satisfying the conditions that k ≤
k′ implies α(k) ⊆ α(k′) and αn(k) ⊆ αn(k′) for every n ≥ 0;

3. β is a interpretation function for L,W and α, satisfying the conditions that k ≤ k′ implies
β(β(Pn), k) ⊆ β(β(Pn), k

′). For every element e of α(W ) there must be a individual
constant a ∈ L(α(W )) such that β(a) = e, for every element en of αn(W ) there must be
a n-ary predicate constant Pn ∈ L(α(W )) such that β(Pn) = en, and for every k there
must be some e0 ∈ α0(k) such that β(e0) = ⊥;

4. v is as in Definition 2.3.1 for 0-ary predicate constants, but satisfying the condition that
β(P0) /∈ α0(k) implies v(P0, k) = ∅. For predicates of arity greater than 0, β(Pn) /∈
αn(k) implies v(Pn(a

1, ..., an), k) = ∅, and β(Pn) ∈ αn(k) implies v(Pn(a
1, ..., an), k) =

T iff ⟨β(a1), ... , β(an)⟩ ∈ β(β(Pn), k)
47.

Definition 2.4.7 Let L be a second-order language andK a weak second-order minimal model.
The relations ⊨K

k and ⊨K are defined for the sentences of L(α(W )) as follows:

1. Clauses 1 through 9 are the same as in Definition 2.3.2. Clauses 10 and 11 are the same
as in definition 2.3.11;

47 Just like in the first-order case, from the definition of β it follows that every atomic formula satisfies the heredity
property.
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12. ⊨K
k ∀Xn(A) ⇐⇒ ∀k′(k ≤ k′) : ⊨K

k′ A[Xn/Pn], for all Pn such that β(Pn) ∈ αn(k);

13. ⊨K
k ∃Xn(A) ⇐⇒ ∀k′(k ≤ k′) : ⊨K

k′ A[Xn/Pn], for some Pn such that β(Pn) ∈ αn(k);

The clauses are defined only for sentences, but we may once again extend them to for-
mulas via Definition 2.3.12. Just like in propositional and first-order semantics, intuitionistic
and classical second-order models are defined by imposing the conditions of Definitions 2.3.3
and 2.3.4 on minimal second-order models.

Aside from being a multi-sorted semantics, this presentation differs from the usual ones
because second-order languages may contain any number of predicate constants. Since first-
order languages are special cases of second-order languages, the traditional “full languages”
may be obtained by switching back to first-order languages.

Second-order weak semantic consequence may be defined as follows:

Definition 2.4.8 Let L be a second-order language. Let Γ be a set of second-order formulas
and A a second-order formula of L. The relations ⊨2

m, ⊨2
i and ⊨2

c hold between them if and
only if Γ ⊨K A holds for every minimal, intuitionistic and classical second-order model K,
respectively.

As for intermediate and strong second-order logic, we require satisfaction of the follow-
ing properties:

Definition 2.4.9 A weak minimal second-order modelK is also an intermediate minimal second-

order model if, for all A, ⊨K
k ∃X∀x1 ... ∀xn(Xx1 ... xn ↔ A) holds, provided X does not have

free occurrences in A.

Definition 2.4.10 A weak minimal second-order model K is also a strong minimal second-

order model if, for all n ≥ 1 and all k, ifR is a n-ary relation on α(k) then there is a en ∈ αn(k)

such that β(en, k) = R.

Intermediate models must satisfy all instances of the comprehension schema, and each
n-ary domain of strong models must contain all n-ary relations on its 0-ary domain. We may
once again obtain intuitionistic and classical versions of such models by imposing the con-
straints of Definition 2.3.3 and 2.3.4. Semantic consequence relations for these logics may also
be obtained by a straightforward adaptation of Definition 2.4.8.

2.5 Atomic bases

Before proceeding to the next chapter, we define the notion of atomic bases (also called
atomic systems or just bases), thoroughly used in Chapter 3. Bases are sets of atomic rules,
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defined as natural deduction rules (cf. Definition 2.2.1) in which the premises and conclusion
are atomic sentences (cf. Definitions 2.1.8 and 2.1.12).

Atomic bases figure prominently in proof-theoretic validity and base-extension seman-
tics, two proof-theoretic semantics in which validity in bases is used to define validity in a
broader logical system. Intuitively, bases contain rules one is inclined to accept as valid, but not
logically valid. They may thus be regarded as inferential knowledge bases, specifying which
non-logical rules one can justifiably make. Logical validity may then be defined by considering
validity in bases and their possible extensions – that is, new bases obtainable from them by
regarding new atomic rules as valid.

To exemplify, consider the following rule:

It is sunny
It is light

or S0

L0

Many would regard it as valid, but not as logically valid. Consider now a base S which
regards this rule as the only valid one. Clearly, every extension S ′ of S allowing us to categori-
cally affirm that it is sunny – that is, allowing us to give a closed deduction of S0 – also allows
us to categorically affirm “It is light” by giving a closed deduction of L0, since every rule of S
is contained in its extension S ′ and we may apply this rule at the end of the closed deduction
of S0 to obtain a new closed deduction of L0 in S ′. If we define “It is A, therefore it is B” as
holding in a base whenever, for every extension of it, if there is a closed deduction of A there is
also one of B, then we may conclude that “It is S0, therefore it is L0” (“It is sunny, therefore it
is light”) holds in S.

2.5.1 Standard bases

We start by defining bases themselves:

Definition 2.5.1 An atomic rule is a natural deduction rule in which the premises, the conclu-
sion and the formulas in discharged sets are atomic sentences.

Definition 2.5.2 A atomic base is a set of atomic rules.

Bases may also be classified according to the complexity of their rules:

Definition 2.5.3 A atomic axiom (or axiomatic rule) is a atomic rule with an empty sequence
of premise.

Definition 2.5.4 A production rule is a atomic rule discharging no formulas.

Definition 2.5.5 A axiomatic base is a set of atomic axioms.
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Definition 2.5.6 A production base is a set of production rules.

Axiomatic bases are particular cases of production bases, which in turn are particular
cases of atomic bases. This classification becomes relevant whenever we want to exclude the
possibility of hypothetical judgments, and thus of inferential discharge.

We also define a few auxiliary notions:

Definition 2.5.7 A base S ′ is an extension48 of a base S if S ⊆ S ′.

Definition 2.5.8 Let Γ be a (possibly empty) set of atomic sentences and A a atomic sentence.
Γ ⊢S A holds if there is a deduction of A from Γ using only the rules of S. We call any such
deduction a atomic deduction.

Definition 2.5.9 A base S is consistent if ⊬S ⊥.

Definition 2.5.10 Propositional and first-order bases are those in which all sentences occurring
on the base’s rules are propositional and first-order sentences, respectively49.

We also define the notion of composition of deductions. It is commonly defined for all
operators and used to prove normalization results (PRAWITZ, 2006), but we define only for
atomic deductions.

Definition 2.5.11 A composition of a deduction Π with conclusion A and a deduction Π′ de-
pending on Γ with conclusionB is a deduction Π′′ obtained by putting one copy of the deduction
Π above every undischarged A occurring in Π′ (if any).

To exemplify, consider the following deductions with rules labelled 1, 2, 3 and 4:

Π =
P

1
Qab Qba

2
Rabc

Π′ = Rabc
3

S
4

Qed

Π′′ =

P
1

Qab Qba
2

Rabc
3

S
4

Qed

Π′′ is a composition of Π with Π′. From the definition it follows that, if Π depends on
∆ and Π′ depends on Γ, Π′′ depends on ∆ ∪ {Γ − {A}}, and also that, if Π′ does not depend
on A, then by composing a deduction Π concluding A with it the Π′′ is Π′ itself.

48 This definition uses a minor variation of the notation in (PIECHA; SCHROEDER-HEISTER, 2016).
49 There is no need to go beyond first-order, since all second-order sentences are also first-order sentences.
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2.5.2 Higher-order bases

We may also use higher-order natural deduction systems (SCHROEDER-HEISTER,
1984) to define atomic systems containing atomic rules capable of discharging other atomic
rules. This requires not only a generalization of atomic bases, but also of the natural deduction
definitions given in Section 2.2. Higher-order rules are typically defined by assigning levels to
rules and modifying Definition 2.2.1 so as to allow rules of level l to discharge sets containing
rules of lesser level. The notion of rule schema is likewise modified, so rules schemas of level l
are instantiated by rules of level l.

Using the same notation as in Definition 2.2.1, we define50 (higher-order) natural deduc-
tion as follows:

Definition 2.5.12 Higher-order rules are defined as follows:

1. A natural deduction rule with a empty sequence of premises (cf. Definition 2.2.1 and the
comments that follow it) is a higher-order rule of level 0;

2. For levels greater than 0, let ⟨A1, ... , An⟩ be a sequence of n formulas, ⟨Ω1, ... ,Ωn⟩ a
sequence of n sets of higher-order rules with maximum level l and B a formula. Then:

[Ω1]
...
A1 ...

[Ωn]
...
An

B

Is a higher-order rule of level l + 1. We represent this in horizontal notation by [Ω1 ⇒
A1, ... ,Ωn ⇒ An/H B], and Ωm ⇒ Am is written as Am when Ωm is empty.

The definition of deduction may be adapted as follows:

50 Our definitions slightly diverge from those given by Schroeder-Heister, as do our definitions of higher-order
atomic bases from authoritative sources such as (PIECHA, 2016). The main difference is that, in our definition,
the premises of higher-order rules are formulas, whereas in traditional definitions they are rules of lesser level.
We still get as a result that only rule assumptions may be used in deductions (since it follows from our definitions
that a formula can only occur in a deduction as a consequence of a rule), but this change allows our notation
to be somewhat closer to that of standard natural deduction. A consequence of this is that the most natural
representation of our definitions are in tree form, while the original ones are arguably more natural when spelled
out in horizontal notation.
It should also be noted that our definitions lead to a slight difference on how the level of rules is treated: in the
original definition, every rule of level l can only discharge rules whose level is at most l− 2, while our rules are
allowed to discharge rules whose level is at most l− 1. This is so because the traditional rules of level 1 (which
do not discharge rules) and 2 (which discharge only rules of level 0) both become particular cases of our rules
of level 1.
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Definition 2.5.13 A higher-order deduction (or higher-order derivation) of a formula A de-

pending on a set Γ of higher-order rules, denoted by
Γ
Π
A

, is defined as follows:

1. IfR0 is a rule of level 0 with conclusionA,R0 is a deduction ofA depending on Ω∪{R0},
for any set Ω of higher-order rules;

2. If
Γm

Πm

Am
is a higher-order deduction of Am depending on Γm for (1 ≤ m ≤ n) and

[Ω1]
...
A1 ...

[Ωn]
...
An

B

is a higher-order natural deduction rule R, then

Γ1, [Ω1]

Π1

A1 ...

Γn, [Ωn]

Πn

An

B

is a higher-order deduction of B depending on the set

R ∪ (
⋃

1≤k≤n

Γk − Ωk) of higher-order rules.

Validity of deductions can no longer be defined as in Definition 2.2.9, since in order to
entertain the idea of rule assumptions we must allow deductions of a logic to manipulate rules
not considered valid by that logic. Instead of defining validity for each logic, we go straight to
valid syntactic consequence relations:

Definition 2.5.14 Let ∆ be the set of all rules regarded as valid by a logic L. Then Γ ⊢L A

holds if and only if there is a higher-order deduction of A depending on ∆ ∪ Γ.

The intuition behind this is that, when higher-order natural deduction is considered, the
definition of deduction in which every possible rule can be used is shared by all logics, but the
rules considered valid by a particular logic can be “taken for granted” and excluded from the
set of rules that are genuine assumptions.

Higher-order versions of definitions for standard bases may be given as follows:

Definition 2.5.15 A higher-order atomic rule is a higher-order rule with atomic sentences for
premises and conclusion and only higher-order atomic rules in its sets of discharged rules.

Definition 2.5.16 A higher-order atomic deduction is a deduction that uses only higher-order
atomic rules (even for discharged rules).

Definition 2.5.17 A higher-order base is a set of higher-order rules.
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Definition 2.5.18 Let Γ be a (possibly empty) set of higher-order atomic rules and A an atomic
sentence. Γ ⊢S A holds iff there is a higher-order atomic deduction of A depending on S ∪ Γ.

The reason we define higher-order systems in a separate section instead of using them
from the start is that, even though many results on the proof-theoretic literature hold in greater
generality when higher-order systems are considered, this does not seem to be the case for
the semantics we present. Differences may arise when particular cases are considered, but the
general cases do not seem to be affected by their use. We therefore opt to use standard natural
deduction for the sake of simplicity, mentioning higher-order systems only in order to briefly
comment on some of their relations with other systems and some particular cases in which
differences might appear.
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3 MULTIBASE SEMANTICS

As seen in Section 1.2.3, the concept of proof has both categorical and hypothetical

aspects. Categorical proofs are those in which statements must be proved directly, as opposed
to proved conditional on some other statement being proved. This chapter introduces a proof-
theoretic semantics in which proofs are initially defined categorically, but then proven to also
have important hypothetical characteristics.

The semantics here considered is very similar to generalized proof-theoretic validity

(STAFFORD; NASCIMENTO, 2023), and also to base-extension semantics (SANDQVIST,
2015). In fact, our main completeness result for propositional logic is essentially the same
as the result for generalized proof-theoretic validity51, but we also provide new propositional
results and new generalizations to first-order and second-order logics.

3.1 Proof-theoretic validity

3.1.1 Original definitions

Proof-theoretic validity is a proof-theoretic semantics due to Prawitz (with simplifica-
tions by Schroeder-Heister) in which the semantic content of formulas is determined by closed
canonical proofs in natural deduction (PRAWITZ, 1973)(SCHROEDER-HEISTER, 2006). This
can be defined through recourse to atomic bases: an atom is valid in a base if it is possible to
give a closed proof of it using only its rules, validity for non-atomic formulas being given ei-
ther by the introduction rules of logical connectives (rules I∧, I∨1, I∨2 and I → of Definition
2.2.10)52 or semantic clauses inspired by them. In other words, atomic rules allow us to obtain
categorical proofs of atoms in a given base, which may be used together with either introduc-
tion rules or semantic clauses to obtain categorical proofs of the connectives in that same base.
Logical validity is then defined as validity in all possible atomic bases.

Since atomic sentences will be used extensively in this section, we temporarily fix the

51 I am eternally grateful to Will Stafford for letting me coauthor the paper in which those results were first
presented. They were discovered independently, but he was the first one to find them. Though he had every
right to publish as the sole author, he gracefully suggested we coauthor a paper to present the results together.
Due to the independent discovery, however, there were two very different notations for essentially the same
semantic framework; his notation was used in (STAFFORD; NASCIMENTO, 2023), mine is used in this thesis.
The new notation is introduced mainly because some of the new results seem more natural in it.

52 The canonical proofs mentioned earlier are proofs ending with an application of an introduction rule.
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notation {a, b, c, ...} for propositional atoms53, to be used whenever there is no risk of confusion
with individual constants.

Semantic clauses for proof-theoretic validity are given by Piecha, Sanz and Schroeder-
Heister in (PIECHA; SCHROEDER-HEISTER, 2016) and (PIECHA; SANZ; SCHROEDER-
HEISTER, 2015):

Definition 3.1.1 S-validity (⊨S) and proof-theoretic validity (⊨) are defined as follows:

1. ⊨S a⇐⇒ ⊢S a, for atomic a;

2. ⊨S A ∧B ⇐⇒ ⊨S A and ⊨S B;

3. ⊨S A ∨B ⇐⇒ ⊨S A or ⊨S B;

4. ⊨S A→ B ⇐⇒ A ⊨S B;

5. ⊨S Γ ⇐⇒ {⊨S Ai | Ai ∈ Γ}, where Γ is a set of formulas;

6. Γ ⊨S A⇐⇒ ∀S ′(S ⊆ S ′) : ⊨S′ Γ implies ⊨S′ A;

7. Γ ⊨ A⇐⇒ ∀S : Γ ⊨S A.

These clauses are similar to those in Definition 2.3.2, but they differ both because atoms
are now evaluated according to their derivability in bases and because clause 6 refers to all
extensions S ′ of S instead of using accessibility relations of models.

Prawitz had conjectured (PRAWITZ, 1971) that proof-theoretic validity (plus a particu-
lar treatment of ⊥) would be complete with respect to derivability in intuitionistic logic, in the
sense that Γ ⊨ A plus a clause excluding the possibility of a proof of ⊥ would imply Γ ⊢0

i A.
We could also reasonably expect that the above clauses (without any special treatment for ⊥)
would be complete with respect to ⊢m

0 , since they do seem to reflect both the intuitive mean-
ing of logical constant and the rules of natural deduction. Sadly, this was proven not to be the
case in (PIECHA; SANZ; SCHROEDER-HEISTER, 2015), and it was later shown that proof-
theoretic validity is complete with respect to a stronger logic called general inquisitive logic54

(STAFFORD, 2021).
On the other hand, completeness results were obtained by Goldfarb and Sandqvist for

deviant definitions of validity (GOLDFARB, 2016)(SANDQVIST, 2009). Though very inter-
esting, Sandqvist’s results use a hypothetical definition of proof, and Goldfarb’s use a semantic
framework significantly different from the standard ones.

53 The clause in Definition 2.3.2 does not use this notation because then they could not be extended to first and
second-order logic without adaptations.

54 Since it is not closed under substitution, general inquisitive logic would not be considered a logic by standard
definitions of logicality. We argue this should be taken as yet another argument in favour of logicality-free
definitions of logic.
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3.1.2 Generalized proof-theoretic validity

Completeness results for generalized proof-theoretic validity – a framework very similar
to proof-theoretic validity – were given in (STAFFORD; NASCIMENTO, 2023). The main
difference between proof-theoretic validity and generalized proof-theoretic validity is that, in
the latter, we fix a proof-theoretic system and evaluate formulas in a base by considering only
extensions contained inside that particular proof-theoretic system, as opposed to considering all
its possible extensions.

Definition 3.1.2 A base is explosive if it contains a rule [⊥/a] for every atom a (cf. the hori-
zontal notation of Definition 2.2.1).

Definition 3.1.3 A minimal proof-theoretic system G is a set of bases.

Definition 3.1.4 A intuitionistic proof-theoretic system G is a set of explosive bases.

Definition 3.1.5 The relations of weak system validity (⊨G
S ), system validity (⊨G) and general-

ized proof-theoretic validity (⊨′) are defined as follows, for S ∈ G:

1. ⊨G
S a ⇐⇒ ⊢S a, for atomic a;

2. ⊨G
S A ∧B ⇐⇒ ⊨G

S A and ⊨G
S B;

3. ⊨G
S A ∨B ⇐⇒ ⊨G

S A or ⊨G
S B;

4. ⊨G
S A→ B ⇐⇒ A ⊨G

S B;

5. ⊨G
S Γ ⇐⇒ {⊨G

S Ai | Ai ∈ Γ}, where Γ is a set of formulas;

6. Γ ⊨G
S A⇐⇒ ∀S ′(S ′ ∈ G and S ⊆ S ′) : ⊨G

S′ Γ implies ⊨G
S′ A;

7. Γ ⊨G A⇐⇒ ∀S ∈ G : Γ ⊨G
S A.

8. Γ ⊨′ A⇐⇒ ∀G : Γ ⊨G A.

The completeness results in (STAFFORD; NASCIMENTO, 2023) are proved for intu-
itionistic propositional logic and intuitionistic proof-theoretic systems, but (as will be shown)
it is straightforward to adapt the proof so that it shows completeness for minimal propositional
logic and minimal proof-theoretic systems.

Since proof-theoretic systems fix a set of possible extensions just like Kripke models
fix a set of worlds, generalized proof-theoretic validity is even closer to Kripke semantics than
standard proof-theoretic validity. The main difference is that we may use any partial order on
W in models, whereas generalized proof-theoretic validity always uses the extension relation.
Generalized proof-theoretic validity also differs from standard proof-theoretic validity by quan-
tifying over proof-theoretic systems to define general validity (as opposed to quantifying over
bases), so the notion of S-validity is lost.
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3.2 Multibases

We now introduce the semantic framework that will be investigated in this thesis, called
multibase semantics.

3.2.1 Basic definitions

We start by defining the following notions:

Definition 3.2.1 A multibase is any non-empty sequence of bases.

Definition 3.2.2 An atomic base S ′ is an extension of the base S in the multibase M (written
S ⊆M S ′) if and only if S ⊆ S ′ and both S and S ′ are in the multibase M .

Just as in the case of generalized proof-theoretic validity, validity in a base can be defined
more narrowly by considering only their extensions contained in a multibase. Multibases can
be thought of as collection of bases and their “admissible evolutions”, in the sense that every
element of the sequence is a possible state of inferential knowledge and every extension of a
base in the same multibase is a possible extension of that state of inferential knowledge. Bases
occurring in a multibase do not necessarily have any kind of relation with their successors or
predecessors, which can be interpreted as the possibility of always introducing a completely
new state of knowledge.

For now we consider only propositional bases (cf. Definition 2.5.10). First-order bases
will be left for the section dealing with predicate logic.

Definition 3.2.3 The relations of base validity (⊩M
S ), multibase validity (⊩M ) and standard

validity (⊩) are defined as follows, for S ∈M :

1. ⊩M
S a ⇐⇒ ⊢S a, for atomic a;

2. ⊩M
S A ∧B ⇐⇒ ⊩M

S A and ⊩M
S B;

3. ⊩M
S A ∨B ⇐⇒ ⊩M

S A or ⊩M
S B;

4. ⊩M
S A→ B ⇐⇒ A ⊩M

S B;

5. ⊩M
S Γ ⇐⇒ {⊩M

S Ai | Ai ∈ Γ}, where Γ is a set of formulas;

6. Γ ⊩M
S A⇐⇒ ∀S ′(S ⊆M S ′) : ⊩M

S′ Γ implies ⊩M
S′ A;

7. Γ ⊩M A⇐⇒ ∀S ∈M : Γ ⊩M
S A.

8. Γ ⊩ A⇐⇒ ∀M : Γ ⊩M A.
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This is clearly a mere restatement of the clauses for generalized proof-theoretic validity,
the only difference being that now we use sequences instead of sets. It is not clear what the
benefits of using sequences are when we consider general validity for multibases, but this is no
longer the case when we transition to focused validity.

3.2.2 Focused multibases

Focused multibases are defined as follows:

Definition 3.2.4 A focused multibase F for S1 is any multibase ⟨S1, S2, ...⟩ such that, for all
n > 1 (if any), there is an Sm with m < n such that Sm ⊆ Sn.

Intuitively, we now fix an initial state of knowledge and consider only its possible devel-
opments inside a fixed frame of possibilities, not allowing new states of knowledge not related
to S1 to occur in the sequence. Every Sn expands some previous state of knowledge Sm and,
due to transitivity of the extension relation, also S1.

Focused multibases may also be defined by considering only the initial base:

Corollary 3.2.5 F is a focused multibase for S1 ⇐⇒ F is of shape ⟨S1, S2, ...⟩ and, for all
n > 1 (if any), S1 ⊆F S

n.

Proof:
(⇒): Let Sk be any base on the focused multibase F . By definition, there must be a

j < k such that Sj ⊆F Sk. This also holds for Sj , so there must be a Si with i < j such
that Si ⊆F Sj . Since the number is always decreasing, we eventually reach a Sm such that
S1 ⊆F S

m and, by transitivity of extension, we conclude S1 ⊆F S
k.

(⇐): If S1 ⊆F S
k for all Sk ∈ F the result is immediate, since 1 < k. □

Focused multibases for S may also be called multibases focused on S, or simply focused
multibases when the particular S is not relevant.

Focused multibases enjoy many properties that standard multibases lack. For instance,
we can recover the notion of S-validity as follows:

Definition 3.2.6 A focused multibase F for S is saturated if S ⊆F S
′ implies S ′ ∈ F .

Proposition 3.2.7 Let F ∗ be a saturated focused multibase for S. Then Γ ⊨S A holds (cf.
Definition 3.1.1) if and only if Γ ⊩F ∗

S A holds.

Corollary 3.2.8 Γ ⊨ A holds if and only if, for all S, we have that Γ ⊩F ∗
S A holds for some

saturated focused multibase F ∗ for S.
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Proof: Notice that ⊨S is defined by taking into account all extensions of S, and so is
⊩F ∗

S . This leads to a collapse between clause 6 of both definitions, which in turn leads to a
collapse between clauses 1 through 5. □

Aside from recovering the original notion of S-validity and proof-theoretic validity, we
can provide new notions of generalized S-validity and focused validity:

Definition 3.2.9 Generalized S-validity (⊩S) and focused validity (⊩0
m) are defined as follows:

1. Γ ⊩S A iff Γ ⊩F A for all focused multibases F for S.

2. Γ ⊩0
m A holds iff Γ ⊩S A for all S.

Notice that Γ ⊩0
m A holds iff Γ ⊩S A for all S and Γ ⊩S A holds iff Γ ⊩F A for all F

focused on S, so it follows that Γ ⊩0
m A holds iff Γ ⊩F A holds for all multibases F focused

on some S (that is, all focused multibases).
Since generalized S-validity is defined as validity in all focused multibases for S and

S-validity is equivalent to validity in saturated focused multibases for S, S-validity is a special
case of generalized S-validity. Focused validity is then defined as validity in all multibases
focused on S for every S, which is much closer to proof-theoretic validity than standard multi-
base validity and generalized proof-theoretic validity – since they quantify over multibases and
proof-theoretic systems instead of bases.

This change is not merely aesthetic: focused validity has properties that standard multi-
base validity, generalized proof-theoretic validity and even semantic consequence for Kripke
models lack. Many properties that differentiate proof-theoretic semantics from model-theoretic
semantics are a direct consequence of quantification over bases and variants of S-validity. This
is not to say that all interesting properties of proof-theoretic semantics are a consequence of
variants of S-validity, however; as will be shown, some features of multibase semantics for
predicate logic that are entirely absent in Kripke models are present even in standard multi-
bases.

Notice that, when defining focused multibases, we do not forbid extensions of a base to
precede it in the sequence, so validity in a base might depend on validity in its predecessors.
From the fact that a new state of knowledge is obtained by extending any previous one it does
not follow that there is no previously obtained state of knowledge stronger than it. There might
also be repetitions of bases. This is corrected if the sequence is built by ordering the bases
appropriately and deleting repetitions, but we do not impose this as a formal requirement to
simplify some proofs.

Although we are dealing only with multibases, similar notions may be obtained in gen-
eralized proof-theoretic validity as follows:

Definition 3.2.10 A multibase system G/S is a proof-theoretic system G such that S ⊆ S ′

holds for all S ′ ∈ G.
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Focused proof-theoretic systems for S may be defined as proof-theoretic systems with
S as its fixed point, and all other focused notions may be adapted accordingly.

It is not entirely clear how one would justify the use of proof-theoretic systems with fixed
points instead of general proof-theoretic systems, whereas the interpretation we gave of focused
multibases makes it quite natural to give special treatment to the first element of the sequence.
This is, in fact, a purely aesthetic matter, but sequences are a better fit for some intuitions than
set-theoretical formulations. Some proofs also seem to become more intuitive when sequences
are used. Other philosophical aspects of focused multibases that may be considered of interest
will also be presented in section 3.6.2.

3.2.3 Soundness and completeness for propositional multibases

Standard validity and focused validity for multibases with propositional bases are sound
and complete with respect to ⊢0

m (cf. Definition 2.2.13), and this holds even if we consider only
finite multibases. We start by showing that the notions of standard validity and minimal propo-
sitional semantic consequence (cf. Definitions 2.3.2 and 2.3.5) are equivalent, then showing
how this results in soundness and completeness for our notions.

We refer to multibases containing only propositional bases simply as “multibases” for
now; unrestricted multibases will be used only when dealing with predicate logic.

Definition 3.2.11 For any multibaseM , its corresponding Kripke minimal modelKM (cf. Def-
inition 2.3.1) is defined as follows:

1. The set W of KM is the set of all bases occurring in M ;

2. S ≤ S ′ if and only if S ⊆M S ′.

3. For any atom a, v(a, S) = T if and only ⊢S a

Since every rule in a base S is contained in all its extensions S ′, every closed argument
showing ⊢S a is also a closed argument showing ⊢S′ a, which guarantees that the heredity
condition is satisfied. It also follows from the fact that ⊆M induces a partial order that ≤ is also
a partial order (and thus that this is indeed a Kripke model).

Lemma 3.2.12 ⊨KM

S A⇐⇒ ⊩M
S A.

Proof: The result is immediate for atomic formulas. For other formulas, we prove it via
induction on formulas:

1. ⊨KM

S A ∧ B. Then ⊨KM

S A and ⊨KM

S B. Induction hypothesis: ⊩M
S A and ⊩M

S B.
Therefore, ⊩M

S A ∧ B. For the other direction, let ⊩M
S A ∧ B. Therefore, ⊩M

S A and
⊩M

S B. Induction hypothesis: ⊨KM

S A and ⊨KM

S B. Therefore, ⊨KM

S A ∧B.
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2. ⊨KM

S A ∨ B. Then either ⊨KM

S A or ⊨KM

S B. Induction hypothesis: either ⊩M
S A or

⊩M
S B. In any case we have ⊩M

S A ∨ B. For the other direction, let ⊩M
S A ∨ B. Then

either ⊩M
S A or ⊩M

S B. Induction hypotheses: either ⊨KM

S A or ⊨KM

S B. In any case we
have ⊨KM

S A ∨B.

3. ⊨KM

S A → B. Then A ⊨KM

S B, and so ⊨KM

S′ A implies ⊨KM

S′ B for any S ≤ S ′.
Induction hypothesis: since S ≤ S ′ iff S ⊆M S ′ by construction, ⊩M

S′ A implies ⊩M
S′ B

for any S ⊆M S ′. Therefore A ⊩M
S B, and so ⊩M

S A → B. For the other direction, let
⊩M

S A → B. Then A ⊩M
S B, and so ⊩M

S′ A implies ⊩M
S′ B for any S ⊆M S ′. Induction

hypothesis: since S ⊆M S ′ iff S ≤ S ′ by construction, ⊨KM

S′ A implies ⊨KM

S′ B for any
S ≤ S ′. Therefore A ⊨KM

S B, and so ⊨KM

S A→ B. □

Corollary 3.2.13 Γ ⊨KM
A⇐⇒ Γ ⊩M A.

Theorem 3.2.14 Γ ⊨0
m A implies Γ ⊩ A

Proof: Assume Γ ⊨0
m A. Then Γ ⊨K A for any minimal propositional model K. Let M

be any multibase. By Corollary 3.2.13 we have Γ ⊨KM
A ⇐⇒ Γ ⊩M A. Since Γ ⊨K A holds

for all minimal propositional K, we have Γ ⊨KM
A, thus Γ ⊩M A. □

The other direction is trickier. The extension relation is entirely defined by the contents
of bases, so we are not free to decide which base extends which. We can, however, construct
bases in such a way that extensions work exactly as intended.

Definition 3.2.15 A vacuous rule is an atomic rule concluding an atomic sentence from itself
(e.g. [a/a], [b/b])

Vacuous rules add absolutely nothing to the deductive power of a base, but they are rules
nevertheless. They can be used to induce precisely the structure we want.

We briefly show that they are deductively void as follows:

Lemma 3.2.16 If there is a deduction in S, then there is a deduction in S using no vacuous
rules.

Proof: The following procedure eliminates vacuous rules:

Π
a
a
Π′

b

is transformed into
Π
a
Π′

b
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We repeat the procedure until all vacuous rules are removed to show the result. □

Now consider, for example, two models K and K ′ with the following assignments:

v(k, a) = ∅ , v(k, b) = ∅ , v(k′, a) = T , v(k′, b) = ∅ , v(k′′, a) = T , v(k′′, b) = T

Let k ≤ k′ and k′ ≤ k′′ be the only relations holding in K, and let k ≤ k′ and k ≤ k′′

be the only ones holding in K ′ (relations induced by partial ordering also hold implicitly). If
we briefly fix the notation k, {a, ...., an} to represent the fact that only the atoms a, ..., an are
assigned T in k, the resulting models are as follows:

k′′, {a, b}

K : k′, {a}

k, {∅}

K ′ : k′, {a} k′′, {a, b}

k, {∅}

In both cases, the multibase obtained by adding a atomic axiom [/a] to some S for every
v(a, k) = T is as follows:

M = ⟨S = {∅}, S ′ = {[/a]}, S ′′ = {[/a], [/b]}⟩

Since the final set {[/a], [/b]} is an extension of the previous set {[/a]}, S ′ ⊆M S ′′

necessarily holds, thus the multibase is isomorphic only to K.
This may be remedied by the use of vacuous rules, which allow us to generate the fol-

lowing multibases by assigning a vacuous rule to each k:

M = ⟨S = {[a/a]}, S ′ = {[/a], [a/a], [b/b]}, S ′′ = {[/a], [/b], [a/a], [b/b], [c/c]}⟩
M ′ = ⟨S = {[a/a]}, S ′ = {[/a], [a/a], [b/b]}, S ′′ = {[/a], [/b], [a/a], [c/c]}⟩

We have both S ⊆M S ′ and S ′ ⊆M S ′′, since the vacuous rule [b/b] of S ′ is contained in
S ′′. However, S ′ ⊆M ′ S ′′ does not hold, as S ′′ does not contain [b/b] and thus is not an extension
of S ′. Vacuous rules thus give us full control over extensions.

Definition 3.2.17 For any minimal model K, a corresponding multibase MK for it is defined
as follows:
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1. The sequence of M contains one system Sk for each k ∈ W .

2. If v(a, k) = T , we add to Sk the atomic axiom concluding a.

3. If k ≤ k′, we add the vacuous rule [ak/ak] to Sk′ .

4. Each Sk contains no rules other than those added by the above procedures.

Lemma 3.2.18 k ≤ k′ if and only if Sk ⊆MK Sk′ .

Proof: Assume k ≤ k′. Then Sk and Sk′ are constructed by the addition of axioms rule
and vacuous rules for k and k′, respectively. Due to the heredity condition, if v(a, k) = 1 then
v(a, k′) = 1, hence all atomic axioms in Sk are also in Sk′ . Now assume that there is some
vacuous rule [ak

′′
/ak

′′
] in k. Then k′′ ≤ k and, due to transitivity of ≤ and our assumption,

k′′ ≤ k′ holds, hence the vacuous rule is also in k′. Since all atomic axioms and vacuous rules
of Sk are in Sk′ , we conclude Sk ⊆MK Sk′ .

For the other direction, let Sk ⊆Mk Sk′ . Since every vacuous rule [ak
′′
/ak

′′
] in Sk is

also in Sk′ , by the structure of the procedure for adding vacuous rules we conclude that k′′ ≤ k

implies k′′ ≤ k′, for every k′′. By reflexivity of ≤ we have k ≤ k, thus k ≤ k′. □

Lemma 3.2.19 ⊩MK

Sk A⇐⇒ ⊨K
k A.

Proof: v(a, k) = T implies ⊢Sk a by construction, so ⊨K
k a implies ⊩MK

Sk a. For the
other direction, notice that all axiomatic rules in Sk are added by the procedure and that ⊢Sk a

holds only if [/a] was added to Sk (per Lemma 3.2.16 we can ignore the vacuous rules of Sk),
thus ⊢Sk a implies v(a, k) = T and so ⊩MK

Sk a implies ⊨K
k a.

The proof proceeds as in Theorem 3.2.12, the only differences being that we substitute
⊨KM

S by ⊨K
k , ⊩M

S by ⊩MK

Sk and that, in the proof for A → B, the equivalence k ≤ k′ iff
Sk ⊆Mk Sk′ holds due to Lemma 3.2.18 instead of by definition. □

Corollary 3.2.20 Γ ⊨K A⇐⇒ Γ ⊩MK
A.

Lemma 3.2.21 Γ ⊩ A implies Γ ⊨0
m A.

Proof: Assume Γ ⊩ A. Then Γ ⊩M A for any multibase M . Let K be any minimal
propositional model. By Corollary 3.2.20 we have Γ ⊨K A ⇐⇒ Γ ⊩MK

A. Since Γ ⊩M A

holds for all multibases M , we have Γ ⊩MK
A, thus Γ ⊨K A. □

From Lemmas 3.2.14 and 3.2.21 we immediately conclude:

Theorem 3.2.22 Γ ⊨0
m A ⇐⇒ Γ ⊩ A.

The following also hold:
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Theorem 3.2.23 Γ ⊨1
i A⇐⇒ Γ ⊢1

i A.

Corollary 3.2.24 Γ ⊨0
m A⇐⇒ Γ ⊢0

m A

Proof: See (VAN DALEN, 2013, pgs. 168-172). The proof for ⊢1
i can be transformed

into a proof for ⊢0
m if we treat ⊥ as a common 0-ary predicate and remove the steps for the

treatment of first-order formulas that are not propositional formulas. □

From Theorem 3.2.22 and Corollary 3.2.24 follows soundness (Γ ⊢0
m A ⇒ Γ ⊩ A)

and completeness (Γ ⊩ A ⇒ Γ ⊢0
m A) for standard multibase validity:

Theorem 3.2.25 (Soundness and Completeness) Γ ⊩ A ⇐⇒ Γ ⊢0
m A.

Which is what we wanted to prove.
In order to extend the result to focused validity, we define the following notion:

Definition 3.2.26 A model is rooted if there is a k ∈ W such that k ≤ k′ for all k′ ∈ W . This
k is called the model’s root.

Which leads to the following results for focused validity:

Lemma 3.2.27 Γ ⊩0
m A iff Γ ⊨K A for all rooted minimal models K.

Proof: From Corollary 3.2.5 it follows that, if F is focused on S, for all S ′ ∈ F we have
S ⊆F S

′. Since the procedures in Definitions and 3.2.11 and 3.2.17 preserve the structure of ≤
and ⊆ (by construction in the first case and due to Lemma 3.2.18 in the second), by transforming
a multibase focused on S we obtain a model with S as its root, and by transforming a model
with root k and putting Sk at the beginning of the sequence we have a multibase focused on Sk.
The result can then be obtained by restricting the reasoning used in Lemmas 3.2.14 and 3.2.21
to focused multibases and rooted models. □

The proof of the theorem here numbered as 3.2.24 and numbered as 6.3.10 in (VAN
DALEN, 2013, pgs. 172) shows not only completeness for all models, but also for all rooted

models:

Theorem 3.2.28 Γ ⊢1
i A⇐⇒ Γ ⊨K A for all rooted first-order intuitionistic models K.

Corollary 3.2.29 Γ ⊢0
m A⇐⇒ Γ ⊨K A for all rooted minimal propositional models K.

Proof: See once again the proof in (VAN DALEN, 2013, pgs. 168-172), especially
his Lemma 6.3.9. By restricting the proof for ⊢1

i just as done to obtain Corollary 3.2.24 from
Theorem 3.2.23 we obtain the result for ⊢0

m. □

From this the desired result follows:
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Theorem 3.2.30 (Focused Soundness and Completeness) Γ ⊩0
m A ⇐⇒ Γ ⊢0

m A.

Proof: The results follow immediately from Lemma 3.2.27 and Corollary 3.2.29. □

The results can be further improved:

Theorem 3.2.31 The class of all intuitionistic Kripke models that are finite trees with unique
roots are sufficient to generate all counterexamples to intuitionistic validities.

Corollary 3.2.32 (Finite Soundness and Completeness) Let Γ ⊩fin A hold if and only if
Γ ⊩M A holds for every finite multibase M and Γ ⊩∗

fin A hold if and only if Γ ⊩F A holds for
every finite focused multibase F . Then Γ ⊩fin A ⇐⇒ Γ ⊩∗

fin A ⇐⇒ Γ ⊢0
m A.

Proof: See Theorems 6.8 and 6.12 in (TROELSTRA; VAN DALEN, 1988), which may
be adapted to show the same for minimal validity just like Theorem 3.2.23 was adapted to yield
Corollary 3.2.24. □

Since we are mainly interested in focused multibases, from now on we deal only with
them. It is generally straightforward to adapt each result so that it holds for multibases in gen-
eral (except the results for generalized S-validity). All soundness and completeness results pre-
sented also hold for finitary versions of the corresponding multibases and focused multibases,
but since the proofs usually involve a straightforward adaptation of the non-finitary proofs we
omit them for the sake of simplicity.

We have adopted sequences to justify some philosophical intuitions, but one may clearly
redesign focused multibases so they become focused trees or even focused finite trees, both with
unique roots. As a bonus, the ordering mentioned before – no extension of a base precedes it in
a sequence – is always present in uniquely rooted trees.

3.2.4 Classical and intuitionistic focused multibases

We now extend the results to classical and intuitionistic propositional logic. This is done
in a separate section because the new framework allows different extensions with very different
proof-theoretic properties, so we briefly discuss some of our choices.

There are at least four ways to obtain intuitionistic logic from minimal logic, all in-
volving changing the semantics of ⊥. The first two are shared between model-theoretic and
proof-theoretic semantics, but the last two are unique to the latter:

Proposition 3.2.33 Intuitionistic multibase semantics can be obtained from minimal multibase
semantics through any of the following modifications, for all S in all M :

1. ⊮M
S ⊥;
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2. ⊩M
S ⊥ iff ⊩M

S a, for all atomic a;

3. S must be consistent (cf. Definition 2.5.9);

4. S must be explosive (cf. Definition 3.1.2).

The first two regard ⊥ as a non-atomic formula and define it at the level of semantic
clauses; the last consider it an atom and define it in terms of atomic derivability.

The first definition, commonly used in intuitionistic Kripke models, cannot be used in
standard proof-theoretic validity or base-extension semantics because, if we always take into
account all possible extensions of bases and allow every atom to be validated in some exten-
sion, it becomes possible to prove things such as ⊨ ¬¬a for all atomic a (PIECHA; SANZ;
SCHROEDER-HEISTER, 2015). This is not problematic in multibase semantics because we
are allowed to limit the set of possible extensions so as to avoid this.

The second definition is not seen very often, but it is used in (SANDQVIST, 2015).
The third definition was presented in (NASCIMENTO; PEREIRA; PIMENTEL, 2023)

to provide base-extension semantics for ecumenical logics. When requiring all bases to be
consistent, we indirectly restrict the set of all possible extensions by only considering consistent

extensions of bases. This makes it so that, for example, by including the following rule in a base:

a
⊥

We prevent its extensions from deriving a, since any such extension would be inconsis-
tent. The end result is a successful implementation of the principle behind the first definition at
the syntactic level, which works in base-extension semantics as well as in multibase semantics
and generalized proof-theoretic validity.

Just like the third definition is the syntactic counterpart of the first, the fourth is the
syntactic counterpart of the second. It is extensively used in the literature, and was also used in
the completeness proof in (STAFFORD; NASCIMENTO, 2023).

Although the choice might look irrelevant at first glance, it has many important conse-
quences. First of all, extension of the embedding in Definition 3.2.11 is not immediate if we
use the second or fourth definitions. Some of the results for generalized S-validity that will be
presented later also become less general if the first or second definitions are used, and there are
even differences between the results one may obtain by using the third or the fourth. The final
reason is that the definition one chooses impacts the possible ways of extending intuitionistic
logic to classical logic.

The definition that works best for our purposes is the third one. Not only do the re-
sults for generalized S-validity become more interesting and the extension of Definition 3.2.11
becomes trivial, but the transition to classical logic also becomes smoother.

As such, we obtain intuitionistic multibases as follows:
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Definition 3.2.34 A base is intuitionistic if it is consistent.

Definition 3.2.35 Let S be an intuitionistic base. An intuitionistic focused multibase for S is
any focused multibase for S with only intuitionistic bases.

Definition 3.2.36 Let S be a intuitionistic base. Γ ⊩i
S A iff Γ ⊩F A holds for all intuitionistic

multibases F focused on S. The relation ⊩i
S will be called intuitionistic generalized S-validity.

Definition 3.2.37 Γ ⊩0
i A iff Γ ⊩i

S A for all intuitionistic S.

Lemma 3.2.38 Γ ⊩0
i A iff Γ ⊨K for all rooted intuitionistic models K.

Proof: Since ⊬S ⊥ holds for every S in any intuitionistic focused multibase, it is easy
to see that Definition 3.2.11 yields a model such that, for all k ∈ W , v(⊥, k) = ∅, so it is a
intuitionistic model (cf. Definition 2.3.3). Likewise, all multibases obtained from intuitionistic
models through Definition 3.2.17 are easily seen to have only consistent bases, so they are
intuitionistic bases. In both cases we can adapt the reasoning used to prove Lemma 3.2.27
to show that all models obtained are rooted and all multibases are focused (provided the Sk

obtained from the root k is the first base of the sequence). Just like in the minimal case, the
desired results follow if we apply the reasoning in prove Lemmas 3.2.14 and 3.2.21. □

The following is also a corollary of Theorem 3.2.28:

Corollary 3.2.39 Γ ⊢0
i A iff Γ ⊨K A for all intuitionistic rooted K;

Proof: Just like in the proof of Corollary 3.2.29, we restrict the proof of Theorem 3.2.28.
The steps for the treatment of first-order formulas that are not propositional formulas are re-
moved, but this time we retain the special treatment given to ⊥. □

Now we may finally conclude:

Theorem 3.2.40 Γ ⊩0
i A iff Γ ⊢0

i A .

Proof: The result follows from Lemma 3.2.38 and Corollary 3.2.39. □

Just as in the previous case, there are many distinct ways to obtain classical multibases
from intuitionistic multibases. We list four:

Proposition 3.2.41 Classical multibase semantics can be obtained from intuitionistic multibase
semantics through any of the following modifications, imposed on all S and M :

1. If ⊮M
S a and S ⊆M S ′ then ⊮M

S′ a.

2. ⊩M
S a or a ⊩M

S ⊥, for all atomic a;
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3. If ⊬S a and S ⊆M S ′ then ⊬S′ a.

4. For all S, either ⊢S a or a ⊢S ⊥.

The first two cannot be viewed as mere new clauses because they interfere with the
semantics of all atomic formulas (instead of just ⊥), so they are best viewed as properties
expected of all multibases that will be used to define classical multibases.

Clearly, the third is the syntactic counterpart of the first, and the fourth of the second.
Our preference must once again rest in the use of syntactic definitions due to their relation
with generalized S-validity. Even though the third definition is closer to the restriction used on
Definition 2.3.4, we choose the fourth because it is the only one defined without reference to
the multibases containing it.

Definition 3.2.42 A intuitionistic base is classical if, for every a, either ⊢S a or a ⊢S ⊥.

Definition 3.2.43 Let S be a classical base. A classical focused multibase for S is a focused
multibase for S with only classical bases.

Definition 3.2.44 Let S be a classical base. Γ ⊩c
S A iff Γ ⊩F A holds for all classical multi-

bases F focused on S. The relation ⊩c
S will be called classical generalized S-validity.

Definition 3.2.45 Γ ⊩0
c A iff Γ ⊩c

S A for all classical S.

We briefly mentioned after Definition 2.3.4 that, in the propositional case, it is sufficient
to require preservation of non-truth of atoms to induce classical behavior. We now prove a
similar result for multibases:

Lemma 3.2.46 For all A and all S in a classical focused multibase M , either ⊩M
S′ A for all

S ⊆M S ′ or ⊮M
S′ A for all S ⊆M S ′.

Proof:

1. Atomic case: If ⊢S a for a ̸= ⊥, the atomic deduction showing this can be replicated
in all extensions of S ′, so by Definition 3.2.3 we have ⊩M

S′ a for all S ⊆M S ′. If ⊬S a,
from the definition of classical bases it follows that a ⊢S ⊥. Since classical bases are also
intuitionistic bases, every base in a classical focused multibase must be consistent. Now
assume, for the sake of contradiction, that there is a extension S ′ of S such that ⊩M

S′ a.
Then we have ⊢S′ a. Since S ⊆ S ′, we can reproduce the deduction showing a ⊢S ⊥ to
show a ⊢S′ ⊥. But then we may put the deduction showing ⊢S′ a above each premise a
on which ⊥ depends in the deduction showing a ⊢S′ ⊥ and produce a deduction showing
⊢S′ ⊥, contradicting the consistency requirement. Therefore, ⊬S′ a for all S ⊆ S ′, so
⊮M

S′ a for all S ⊆M S ′.

In the case of ⊥ we immediately obtain ⊮M
S′ ⊥ for all S ⊆M S ′ from the fact that all bases

are consistent.
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2. A ∧ B: If ⊩M
S′ A for all S ⊆M S ′ and ⊩M

S′ B for all S ⊆M S ′ we have ⊩M
S′ A ∧ B for all

S ⊆M S ′. If either ⊮M
S′ A for all S ⊆M S ′ or ⊮M

S′ B for all S ⊆M S ′, we have ⊮M
S′ A∧B

for all S ⊆M S ′.

3. A∨B: If either ⊩M
S′ A for all S ⊆M S ′ or ⊩M

S′ B for all S ⊆M S ′, we have ⊩M
S′ A∨B for

all S ⊆M S ′. If ⊮M
S′ A for all S ⊆M S ′ and ⊮M

S′ B for all S ⊆M S ′, we have ⊮M
S′ A ∨ B

for all S ⊆M S ′.

4. A → B: From transitivity of ⊆M it follows that, for any S ⊆M S ′′, if ⊩M
S′ A for all

S ⊆M S ′ then ⊩M
S′′′ A for all S ′′ ⊆M S ′′′, and if ⊮M

S′ A for all S ⊆M S ′ then ⊮M
S′′′ A for

all S ′′ ⊆M S ′′′. Hence, if either ⊮M
S′ A for all S ⊆M S ′ or ⊩M

S′ B for all S ⊆M S ′, we
have ⊩M

S′ A → B for all S ⊆M S ′. If both ⊩M
S′ A for all S ⊆M S ′ and ⊮M

S′ B for all
S ⊆M S ′ we have ⊮M

S′ A→ B for all S ⊆M S ′
□

We immediately get:

Corollary 3.2.47 If F is a classical focused multibase, ⊩M
S A ∨ ¬A for all S ∈ F .

Proof: If ⊩M
S A the result is immediate. If ⊮M

S A then, by Lemma 3.2.46, for all
S ⊆ S ′ we have ⊮M

S′ A, vacuously satisfying the clause for A→ ⊥ and yielding ⊩M
S ¬A, hence

⊩M
S A ∨ ¬A. □

Which yields:

Theorem 3.2.48 Γ ⊩0
c A iff Γ ⊢0

c A.

Proof: Since classical bases are also intuitionistic bases, all classical focused multibases
are also intuitionistic focused multibases, which together with Theorem 3.2.40, yields that Γ ⊢0

i

A implies Γ ⊩F A for all classical focused multibases F . Corollary 3.2.47 shows that Γ ⊩M

A ∨ ¬A holds for every A in every classical focused multibase. But intuitionistic logic is
obtained from classical logic by removing the excluded middle (MOSCHOVAKIS, 2022), so
after revalidating all instances of it we are back in classical logic. □

3.3 Results for generalized S-validity

3.3.1 Reducibility of semantic values to derivability

In its conception, proof-theoretic validity aimed to reduce validity of logical connec-
tives to validity in production bases (cf. Definition 2.5.6). S-validity of atoms would be es-
tablished by considering their proofs in S, and S-validity of logical connectives by consid-
ering the rules of natural deduction together with proofs in S and its extensions (PRAWITZ,
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2006)(SCHROEDER-HEISTER, 2006). Direct reducibility of logical validity to atomic deriv-
ability is one of the cornerstones of proof-theoretic validity.

S-validity is lost in general proof-theoretic validity and standard multibase validity.
Bases are used only to establish what is valid in a particular proof-theoretic system or multibase,
so their contribution to validity is indirect. This is no longer the case if we use focused validity
and generalized S-validity. By once again focusing on bases we allow many properties charac-
teristic of S-validity to be proved also for its generalized version. Not only so, but it is possible
to argue (as we would like to) that generalized S-validity is an effective implementation of the
idea behind Prawitz’s and Dummett’s definitions.

We start our discussions by proving an important theorem:

Theorem 3.3.1 {a1, ... , an} ⊩S b iff {a1, ... , an} ⊢S b.

Proof:
(⇒): Assume {a1, ... , an} ⊩S b. Then {a1, ... , an} ⊩F b for every F focused on S, so

for every such F we have {a1, ... , an} ⊩F
S′ b for every S ′ ∈ F . Let S ′′ be the base obtained by

adding to S one rule [/am] for each 1 ≤ m ≤ n, and F ∗ the focused multibase ⟨S, S ′′⟩. Clearly,
⊢S′′ am holds for every am ∈ {a1, ... , an}, so by putting F = F ∗ and S ′ = S ′′ to obtain
{a1, ... , an} ⊩F ∗

S′′ b we have ⊩S′′ b by clauses 5 and 6 of Definition 3.2.3, hence ⊢S′′ b. As
such, there must be a deduction Π concluding b which depends on no premises and uses only
the rules of S ′′.

If Π does not use any of the rules added to S to obtain S ′′, it is already a deduction in S,
which shows ⊢S b and then {a1, ... , an} ⊢S b (cf. Definitions 2.5.8 and 2.2.5).

If Π does use some of the rules added to S, let Π′ be the deduction obtained from Π by
substituting all application of rules [/aS′′ ] such that [/aS′′ ] ∈ S ′′ but [/aS′′ ] /∈ S by assumptions
with shape aS′′ . Represented in tree form, the procedure is as follows:

a1S′′ ... amS′′

Π
b

is transformed into
a1S′′ ... amS′′

Π′

b

Notice that, since all rules in S ′′ but not in S were removed from Π, Π′ only contains
rules in S, so Π′ is a deduction showing {a1S′′ , ... , amS′′} ⊢S b. But if a rule [/a] was added to S
in the construction of S ′′ then [/a] ∈ {a1, ... , an}, hence {a1S′′ , ... , amS′′} ⊆ {a1, ... , an}, thus
{a1, ... , an} ⊢S b.

(⇐): Assume {a1, ... , an} ⊢S b, which is shown by a deduction Π. Let F be any
multibase focused on S. Let S ′′ be any base with S ′′ ∈ F and ⊩F

S′′ {a1, ... , an}. Then for
every am (1 ≤ m ≤ n) there must be a deduction Πm concluding am and depending on no
formulas. Since Π is a deduction in S and S ⊆F S ′′, Π is also a deduction in S ′′. We compose
the deductions Πm with Π to obtain a deduction of b depending on no formulas:
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Π1

a1 ...
Πn

an

Π
b

This shows ⊢F
S′′ b, so ⊩F

S′′ b. Since this is also a deduction on every extension of S ′′,
we conclude ⊩F

S′′′ b for all S ′′ ⊆F S ′′′, so {a1, ... , an} ⊩F
S′′ b and, since S ′′ is arbitrary,

{a1, ... , an} ⊩F b. But F is also a arbitrary multibase focused on S, hence {a1, ... , an} ⊩S b.
□

This theorem shows that generalized S-validity for atoms is reducible to atomic deriv-
ability in S. Since our definitions of validity are recursive, generalized S-validity of all con-
nectives is ultimately reducible to derivability in S. Semantic values are entirely determined by
derivability, and so is semantic consequence. This is essentially what was intended by Prawitz
and Dummett (PIECHA; SCHROEDER-HEISTER, 2016, pg. 49)(PRAWITZ, 1971)(DUM-
METT, 1991), so generalized S-validity can be considered an effective implementation of the
ideas originally behind proof-theoretic validity.

If we consider specifically the case in which the context Γ of Γ ⊩ A is empty, some
additional results can be obtained. First we prove some lemmata:

Lemma 3.3.2 (Monotonicity) For any focused multibase F and any S ∈ F , ⊩F
S A and S ⊆F

S ′ implies ⊩F
S′ A.

Proof:

1. Atomic case: immediate from the fact that if there is a deduction Π showing ⊢S a then it
is also a deduction showing ⊢S′ a, since S ′ has the rules of S.

2. (A ∧ B): Assume ⊩F
S A ∧ B. Then ⊩F

S A and ⊩F
S B. Induction hypothesis: if S ⊆F S ′

then ⊩F
S′ A and ⊩F

S′ B. Hence ⊩F
S′ A ∧B.

3. (A ∨ B): Assume ⊩F
S A ∨ B. Then ⊩F

S A or ⊩F
S B. Induction hypothesis: if S ⊆F S ′,

then ⊩F
S A implies ⊩F

S′ A and ⊩F
S B implies ⊩F

S′ B. Since either ⊩F
S A or ⊩F

S B, either
⊩F

S′ A or ⊩F
S′ B, hence ⊩F

S′ A ∨B.

4. (A→ B): Assume ⊩F
S A→ B. Then A ⊩F

S B, so for every S ⊆F S
′ it holds that ⊩F

S′ A

implies ⊩F
S′ B. By transitivity of ⊆F we have that S ′ ⊆ S ′′ implies S ⊆ S ′′, hence for all

extensions S ′′ of S ′ it holds that ⊩F
S′′ A implies ⊩F

S′′ B, which yields A ⊩F
S′ B and then

⊩F
S′ A→ B. □

Lemma 3.3.3 (Isomorphism) Let M and M ′ be multibases. Let Q = ⟨S1, S2, ...⟩ be a sub-
sequence of M such that Sn ⊆M S implies S ∈ Q for all (n ≥ 1), and Q′ = ⟨S ′

1, S
′
2, ...⟩ a

subsequence of M ′ such that S ′
n ⊆M ′ S ′ implies S ′ ∈ Q′ for all (n ≥ 1). If it holds that ⊢Sn a

if and only if ⊢S′
n
a and Sn ⊆M Sm if and only if S ′

n ⊆M ′ S
′
m for all (n ≥ 1) and (m ≥ 1), then

⊩M
Sn
A if and only if ⊩M ′

S′
n
A, and also Γ ⊩M

Sn
A if and only if Γ ⊩M

S
′
n
A.
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Proof: We start by proving ⊩M
Sn
A if and only if ⊩M ′

S′
n
A for arbitrary n.

1. Atomic case: immediate from the fact that ⊢Sn a if and only if ⊢S
′
n
a for every a;

2. (A∧B): ⊩M
Sn
A∧B. Then ⊩M

Sn
A and ⊩M

Sn
B. Induction hypothesis: ⊩M ′

S′
n
A and ⊩M ′

Sn
B.

Then ⊩M ′

S′
n
A ∧B. The converse can be proved in a similar fashion.

3. (A∨B): ⊩M
Sn
A∨B. Then ⊩M

Sn
A or ⊩M

Sn
B. Induction hypothesis: ⊩M ′

S′
n
A or ⊩M ′

Sn
B. If

⊩M ′

S′
n
A then ⊩M ′

S′
n
A ∨B, and if ⊩M ′

S′
n
B then ⊩M ′

S′
n
A ∨B, so in any case ⊩M ′

S′
n
A ∨B. The

converse can be proved in a similar fashion.

4. (A → B): Assume ⊩M
Sn

A → B. Then A ⊩M
Sn

B, so for every Sn ⊆M S it holds that
⊩M

S A implies ⊩M
S B. Since Sn ⊆ S implies S ∈ Q we have that all such bases S are

Sm ∈ Q, so for all Sn ⊆M Sm it holds that ⊩M
Sm

A implies ⊩M
Sm

B. Induction hypothesis:
if Sn ⊆M Sm then ⊩M ′

S′
m
A implies ⊩M ′

S′
m
B. But Sn ⊆M Sm if and only if S ′

n ⊆M ′ S
′
m

and Sn ⊆M ′ S ′ implies S ′ is some S ′
m ∈ Q′, hence ⊩M ′

S′
m
A implies ⊩M ′

S′
m
B for every

S
′
n ⊆M ′ S

′
m and so for all S ′

n ⊆M ′ S ′, hence A ⊩M ′

S′
n
B, whence ⊩M ′

S′
n
A → B. The

converse can be proved in a similar fashion.

The previous steps have shown ⊩M
Sn
C if and only if ⊩M ′

S′
n
C for all C. To finish the proof,

assume Γ ⊩M
Sn
A. Then for every Sn ⊆M S it holds that ⊩M

S B for every B ∈ Γ implies
⊩M

S A, and again for all Sn ⊆M Sm we have ⊩M
Sm

B for all B ∈ Γ implies ⊩M
Sm

A. For all
S

′
n ⊆M ′ S

′
m we have ⊩M

Sm
C if and only if ⊩M ′

S′
m
C for all C, so ⊩M ′

S′
m
B for every B ∈ Γ

implies ⊩M ′

S′
m
A. But for every S ′

n ⊆M ′ S ′ we have that S ′ is some S ′
m ∈ Q′, so this holds

for all S ′

n′ ⊆M ′ S ′, hence Γ ⊩M ′

S′
n
A. The converse can be proved in a similar fashion. □

Then we prove the desired results:

Theorem 3.3.4 The following equivalences hold:

1. ⊩S a ⇐⇒ ⊢S a;

2. ⊩S A→ B ⇐⇒ A ⊩S B;

3. ⊩S A ∧B ⇐⇒ ⊩S A and ⊩S B;

4. ⊩S A ∨B ⇐⇒ ⊩S A or ⊩S B.

Proof:

1. Atomic case: immediate from Theorem 3.3.1.

2. A → B: Assume ⊩S A → B. Let F be any multibase focused on S. Then ⊩F A → B

holds, and so ⊩F
S′ A → B for every S ′ ∈ F . From this we conclude A ⊩F

S′ B for every
such S ′, thus A ⊩F B. But F is an arbitrary multibase focused on S, so A ⊩S B. For the
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other direction, assumeA ⊩S B, and let F be any multibase focused on S. ThenA ⊩F
S′ B

holds for every S ′ ∈ F , hence ⊩F
S′ A→ B for every such S ′ and so ⊩F A→ B. Since F

is again arbitrary, we conclude ⊩S A→ B.

3. A ∧ B: Assume ⊩S A ∧ B, and let F be any multibase focused on S. Then ⊩F A ∧ B
holds and thus ⊩F

S′ A ∧ B for any S ′ ∈ F . Hence ⊩F
S′ A and ⊩F

S′ B for every S ′ ∈ F , so
both ⊩F A and ⊩F B and, since F is arbitrary, ⊩S A and ⊩S B. For the other direction,
assume ⊩S A and ⊩S B, and let F be an arbitrary multibase focused on S. Then ⊩F A

and ⊩F B, hence ⊩F
S′ A and ⊩F

S′ B for all S ′ ∈ F , hence ⊩F
S′ A ∧ B for all S ′, hence

⊩F A ∧B for this arbitrary F , whence ⊩S A ∧B.

4. A ∨ B: The proof of this case is much more involved. Our strategy for proving the left-
to-right direction consists in picking one focused multibase yielding a counterexample
to the generalized S-validity of A, another yielding a counterexample to the generalized
S-validity of B, and then melding them together to construct a single focused multibase
which is a counterexample to the S-validity of A∨B, which is then used to conclude the
desired result by contraposition. The converse is much simpler to prove.

Assume ⊮S A and ⊮S B. Then there must be a multibase F focused on S such that ⊮F A

and a multibase F ′ focused on S such that ⊮F ′
B. For any Sk ∈ F , let Sk

F be the system
obtained by adding a vacuous rule [ak′F /a

k′
F ] to Sk for every Sk′ ⊆F S

k. Likewise, for any
Sj ∈ F ′, let Sj

F ′ be the base obtained by adding a vacuous rule [aj
′

F ′/a
j′

F ′ ] to Sj ∈ F ′ for
every Sj′ ⊆F ′ Sj . Assume that none of the new vacuous rules were originally in some
base of the multibase and, if the language does not contain a sufficient amount of atoms
(e.g. one of the bases contain all possible vacuous rules), enrich the language so that new
rules become available55. Assume also that the rules have been chosen so that no rule
added in the procedure for F is added in the procedure for F ′ and vice-versa.

Let F ′′ be the focused multibase starting with S and containing precisely the Sk
F and Sj

F

previously obtained. The same reasoning used in Lemma 3.2.18 can be used here to show
that Sk

F ⊆F ′′ Sk′
F if and only if Sk ⊆F Sk′ and Sj

F ′ ⊆F ′′ Sj′

F ′ if and only if Sj ⊆F ′ Sj′ .
Since only vacuous rules were added, derivability of atoms remains the same per Lemma
3.2.16. Notice that, for any new atom b added to the language to produce vacuous rules,
we have (⊬Sk b), (⊬Sk

F
b), (⊬Sj b) and (⊬Sj

F ′
b) since b does not occur in Sk or Sj and

only possibly occurs in Sk
F or Sj

F ′ as premise and conclusion of vacuous rules. Since
Sk
F ⊆F ′′ Sk′

F if and only if Sk ⊆F Sk′ , for every C we have ⊩F ′′

Sk
F
C if and only if ⊩F

Sk C

55 In order to prove the result for a particular language, we can simply start by considering multibases for a
reduced language (e.g. the language obtained by numbering every 0-ary constant of the target language and
deleting every predicate that receives a even number) and then enrich the reduced language in such a way that it
becomes precisely the target language.
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per Lemma 3.3.3. The same applies to the Sj , so ⊩F ′′

Sj

F ′
C if and only if ⊩F ′

Sj C.

Now assume ⊩F ′′
S A ∨ B. Then either ⊩F ′′

S A or ⊩F ′′
S B. In the first case we get ⊩F ′′

S′ A

for all S ′ ∈ F ′′ by Lemma 3.3.2. But since S ⊆F ′′ Sk
F for every k it is also the case that

⊩F ′′

Sk
F
A for every k and thus ⊩F

Sk A for every Sk ∈ F , yielding ⊩F A and contradicting
the assumption that ⊮F A. Likewise, if ⊩F ′′

S B then ⊩F ′′

Sj

F ′
B for every j and thus ⊩F ′

Sj B

for every Sj ∈ F , yielding ⊩F ′
B and contradicting the assumption that ⊮F ′

B. We
finally conclude ⊮F ′′

S A ∨B, thus ⊮F ′′
A ∨B and ⊮S A ∨B.

For the other direction, assume that either ⊩S A or ⊩S B. If ⊩S A we have ⊩F A for all
F focused on S, thus for arbitrary F we have ⊩F

S′ A for all S ′ ∈ F , yielding ⊩F
S′ A ∨ B

for all S ′ ∈ F and then ⊩F A∨B, thus ⊩S A∨B. A simular argument proves that ⊩S B

implies ⊩S A ∨B, so in any case we have ⊩S A ∨B. □

Theorem 3.3.5 A ⊩S B implies (⊩S A ⇒ ⊩S B).

Proof: Assume ⊩S A and A ⊩S B. Then in every multibase F focused on S we have
both ⊩F A and ⊩F A → B, hence ⊩F

S′ A and ⊩F
S′ A → B for all S ′ ∈ F . Since ⊩F

S′ A → B

we also have A ⊩F
S′ B, which combined with ⊩F

S′ A yields ⊩F
S′ B; since S ′ is arbitrary we have

⊩F B, and since F was arbitrary we have ⊩S B. □

Theorem 3.3.6 It does not hold that (⊩S A ⇒ ⊩S B) implies A ⊩S B.

Proof: Let A = a and B = b for any two atoms with a ̸= b. Consider the focused
multibase F = ⟨S = {∅}, S ′ = {[/a]}⟩. Since ⊬F

S a we have that (⊩S a ⇒ ⊩S b) is vacuously
satisfied. But since ⊢F

S′ a and ⊬F
S′ b we have ⊩F

S′ a and ⊮F
S′ b, thus a ⊮F

S′ b, hence a ⊮F b and so
a ⊮S b, so the consequent is not satisfied. □

In the next section it will become clear that there are good reasons for the failure of this
principle. In any case, we should not be misled by the previous results: generalized S-validity
and semantic consequence is still defined by considering validity in focused multibases, not by
recourse to the clauses in Theorem 3.3.4.

The reason why generalized S-validity works (and traditional S-validity doesn’t) is that
the structure of focused multibases enables the production of many new counterexamples to
validities. In fact, as seen before, if a Kripke model with root k is a counterexample to validity
of some formula, the corresponding focused multibase will also be a counterexample to validity
of the same formula. When we look at Theorem 3.3.4 and Definition 3.1.1 things seem more or
less the same, but as soon as we try to find a counterexample for something we notice that the
underlying structure is much richer.
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3.3.2 Binding by bases, Export and Import

Many results for proof-theoretic validity, base-extension semantics and similar notions
depend on the kind of atomic bases being used. Results are often restricted to specific bases;
some results for production bases do not hold when we consider standard or higher-order ones56.
S-validity is usually bound in some way by the rules of S, so by allowing new types of rules
one may also be allowing different kinds of binding.

Theorem 3.3.1 already suggests that results of this kind are present in generalized S-
validity. We examine this topic in further detail:

Theorem 3.3.7 Let S be any base containing a rule with the following shape:

a1 ... an

b

Then ⊩S (a1 ∧ ... ∧ an) → b

Proof: A single application of the rule already shows {a1, ... , an} ⊢S b, hence by
Theorem 3.3.1 we have {a1, ... , an} ⊩S b and so {a1, ... , an} ⊩F

S′ b for any S ′ in any F
focused on S. If on any such S ′ we have that ⊩S′ a1∧ ... ∧an holds, iterated applications of the
clause for conjunction yields ⊩F

S′ {a1, ... , an}, hence ⊩F
S′ b, hence a1 ∧ ... ∧ an ⊩F

S′ b, whence
⊩F

S′ (a1 ∧ ... ∧ an) → b, which by arbitrariness of S ′ and F yields ⊩S (a1 ∧ ... ∧ an) → b. □

Production rules thus bind generalized S-validity for the S in which they occur. Curi-
ously, this is not the case for rules discharging formulas or other rules, so the result does not
generalize:

Theorem 3.3.8 Let S contain one of the following rules, and no other:

[a]
...
b
c

[/a]
...
b
c

Then ⊮S (a→ b) → c.

Proof: Assume S contains only the rule on the left, and let F be a multibase containing
only S. Notice that, since there are no rules with a or b as their conclusions, there cannot be
a proof of a or of b in S. Since there is no rule with conclusion b, it is also the case that an

56 For some examples, see the completeness and incompleteness results for the disjunctionless fragment of the
language in (SANDQVIST, 2009)(SANDQVIST, 2009)(PIECHA; SANZ; SCHROEDER-HEISTER, 2015).
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application of the rule of S always depends on the assumption b, so derivations of c always
depend on either c or b. Then we have ⊬S a, ⊬S b and ⊬S c. But since ⊬S a and the only
extension of S in the multibase is itself, a ⊩F

S b holds vacuously, hence ⊩F
S a → b. But since

⊬S c we have ⊮F
S c, hence a → b ⊮F

S c and thus ⊮F
S (a → b) → c, hence ⊮F (a → b) → c,

whence ⊮S (a→ b) → c. A similar argument establishes the result also for a system containing
only the rule on the right. □

Production rules bind generalized S-validity more strongly than rules discharging hy-
pothesis, or even discharging other rules. This is not to say that such rules do not bind ex-
tensions at all: if a base S has the rule on the left, whenever some extension S ⊆ S ′ has a
deduction showing a ⊢S′ b a single application of the rule yields a deduction showing ⊢S′ c.
The same holds for the rule on the right in the presence of a deduction showing [/a] ⊢S′ b.
This may be particularly important if one considers focused multibases on which particular re-
strictions are imposed – as shown by the case of saturated focused multibases, since both stan-
dard and higher-order rules strongly bind the original notion of S-validity (PIECHA; SANZ;
SCHROEDER-HEISTER, 2015).

Those results are related to two general properties studied in the literature of proof-
theoretic semantics:

Definition 3.3.9 (Export) A proof-theoretic semantics satisfies Export iff, for every S, there is
a set of ∨-free formulas S∗ such that Γ ⊩S A ⇐⇒ Γ, S∗ ⊩ A holds.

Definition 3.3.10 (Import) A proof-theoretic semantics satisfies Import iff, for every S, every
∨-free Γ and every A, there is a base S + Γ such that Γ ⊩S A ⇐⇒ ⊩S+Γ A.

Although stated very generally, such properties are often studied alongside something
we call the standard mapping of rules into formulas:

Definition 3.3.11 For any set Γ = {c1, ... , cn} of atoms or set ∆ = {[/c1], ... , [/cn]} of level
0 atomic higher-order rules,

∧
Γ and

∧
∆ are defined as c1 ∧ ... ∧ cn.

Definition 3.3.12 The standard mapping is defined as follows:

1. Every axiomatic rule and higher-order level 0 rule with shape [/a] is mapped to the atom
a;

2. Every non-axiomatic atomic rule with shape [{Γ1} ⇒ a1, ... , {Γn} ⇒ an/b] is mapped
to the formula ((

∧
Γ1 → a1) ∧ ... ∧ (

∧
Γn → an)) → b;

3. Every level 1 higher-order rule with shape [{∆1} ⇒ a1, ... , {∆n} ⇒ an/b] is mapped to
the formula ((

∧
∆1 → a1) ∧ ... ∧ (

∧
∆n → an)) → b;
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4. Every higher-order rule with shape [{∆1} ⇒ a1, ... , {∆n} ⇒ an/b] and level greater
than 1 is mapped to the formula ((

∧
∆1

∗ → a1) ∧ ... ∧ (
∧
∆n

∗ → an)) → b, in which
each set ∆m

∗ (1 ≤ m ≤ n) is defined as the conjunction of all formulas to which the rules
in ∆m are mapped.

5. If a rule R is mapped to a formula F , F is also mapped57 to R.

Definition 3.3.13 Let S be either a base or a higher-order base. Then S∗ is the set of all formu-
las to which the rules of S are mapped.

From the structure of the mapping it follows that production rules do not allow iteration
of implications on the antecedent of the formula, rules discharging formulas allow at most one
iteration per premise, and higher-order rules with level n allow at most n − 1 iterations per
premise. This makes it so that the mapping for higher-order rules is much more general than
the mapping for for standard rules, so Import can only reasonably be expected to hold if we use
higher-order bases.

It is shown in (PIECHA; SCHROEDER-HEISTER, 2019) that if we have the results
proved in Theorem 3.3.4 and Theorem 3.3.5, the converse of Theorem 3.3.5 and either Import
or Export, incompleteness of the semantics ensues. Those very general results are blocked by
Theorem 3.3.6, which shows that the converse of Theorem 3.3.5 does not hold, thus invalidat-
ing important steps of the proof (e.g. the last step of the proof of Lemma 2.1 in (PIECHA;
SCHROEDER-HEISTER, 2019)).

We are still left with the task of investigating whether Import and Export hold for the
standard mapping. Some negative results are immediately obtainable from our preliminary
theorems:

Theorem 3.3.14 Export does not hold in general if the standard mapping is used.

Proof: Immediate from the proof Theorem 3.3.8. □

Theorem 3.3.15 Import does not hold if the standard mapping is used.

Proof: Consider the valid consequence ((a → b) → c) ⊩ ((a → b) → c). If we
consider only standard bases, the rule mapped to those formulas is [{a} ⇒ b/c], so let F =

⟨S = {[{a} ⇒ b/c]}⟩. By Theorem 3.3.8 it follows that ⊮S (a → b) → c). The same can be
proved for the higher-order bases through the rule [{[/a]} ⇒ b/c]. □

We say that Export does not hold in general but Import does not hold tout court be-
cause the former is defined by existentially and the latter by universally quantifying over bases,

57 Notice that, since standard rules and higher-order rules might be mapped to the same formula, the mapping from
formulas to rules is not unique.
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so the provided counterexamples show failure of Import in its entirety and failure of Export
specifically in bases with rules discharging either formulas or other rules.

Fortunately, we can also obtain positive results if we only admit production bases in our
semantics:

Definition 3.3.16 A production multibase is a focused multibase containing only production
rules.

Lemma 3.3.17 Γ, R∗ ⊩S A if and only if Γ ⊩S∪R A, provided only production multibases are
admitted in the semantics.

Proof: We start each step of the proof by considering only rules with non-empty premises,
but the proof for atomic axioms is provided immediately after.

1. Assume (Γ, R∗ ⊩S A). By Theorem 3.3.7 and Definition 3.3.12 we have ⊩S∪R R
∗, thus

⊩F
S1 R∗ for every multibase F focused on S∪R and every S1 ∈ F . Now pick any focused

multibase F = ⟨S ∪ R, ...⟩, and let F 1 = ⟨S, S ∪ R, ...⟩. From our initial assumption it
follows that Γ, R∗ ⊩F 1

A, hence Γ, R∗ ⊩F 1

S2 A for all S2 ∈ F 1. Since S does not extend
any base in F 1 other than itself we can remove it to reobtain F and conclude Γ, R∗ ⊩F A

per Lemma 3.3.3, thus Γ, R∗ ⊩F
S2 A for all S2 ∈ F . Now assume there is a S3 ∈ F such

that ⊩F
S3 Γ. By putting S1 = S2 = S3 we have ⊩F

S3 Γ, R∗ and Γ, R∗ ⊩F 1

S3 A, hence ⊩F
S3 A

and so ⊩F
S4 A for all S3 ⊆ S4 by monotonicity, which shows Γ ⊩F

S3 A, hence Γ ⊩S∪R A

follows from the arbitrariness of S3 and F .

Theorem 3.3.7 is not required to prove the result for atomic axioms, since [/a] ∈ S

obviously implies ⊩S a. The proof is otherwise identical.

2. Assume Γ ⊩S∪R A. Let R = [a1, ... an/b]. Then we have R∗ = (a1 ∧ ... ∧ an) → b.
Let F be any multibase focused on S, and assume ⊩F

S1 Γ ∪ R∗ for some S1 ∈ F . Assign
a vacuous rule [aS

2
/aS

2
] to every S2 ∈ F , and assume that the atoms of each rule do not

occur on rules of any base in F (we once again enrich the language if necessary). Let
S2
v be the base obtained from S2 by adding the rule [aS

3
/aS

3
] whenever S3 ⊆F S2. Now

let F 1 be the multibase focused on S ∪ R such that, for bases distinct from S ∪ R, for
every S2 ∈ F , we have (S2

v ∪ R) ∈ F 1 if and only if S1 ⊆F S2. From our assumptions
it follows that Γ ⊩F 1

A and, once again, since validity in a base depends only on validity
in its extensions which occur in the multibase per isomorphism, by omitting the S ∪ R,
possibly reordering the F 1 and putting S1

v ∪ R at the beginning of the sequence we can
apply Lemma 3.3.3 to get a multibase F 2 focused on S1

v ∪R such that Γ ⊩F 2

S2
v∪R

A for all
(S2

v ∪R) ∈ F 2.

Let Π be any deduction showing ⊢S2
v∪R c for some c and some (S2

v∪R) ∈ F 2. Remove all
vacuous rules from it through Lemma 3.2.16 to obtain a deduction Π′. If Π′ does not use
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R, it is already a deduction showing ⊢S2 c. If it does useR, then there is some application
of R in Π′ which does not stand below any other58, so the deduction has the following
shape:

Π1

ai (...)
Πn

an
I

b
Πj

c

Since the rules of production bases are incapable of discharging formulas, the deductions
Π1 through Πn cannot contain any open assumptions. Since we picked the topmost ap-
plication of R, those deductions also do not contain applications of R, so they are deduc-
tions showing ⊢S2 am for every 1 ≤ m ≤, hence ⊩F

S2 {a1 , ..., an}. But since ⊩F
S1 R∗ and

S1 ⊆ S2 we have ⊩F
S2 (a1 ∧ ... ∧ an) → b by monotonicity, hence (a1 ∧ ... ∧ an) ⊩F

S2 b,
hence {a1 , ..., an} ⊩F

S2 b, whence ⊩F
S2 b, so there must be a deduction Πk showing ⊢S2 b.

We can then transform the deduction Π′ showing ⊢S2∪R c into a deduction Π′′ showing
⊢S2 c by removing every application of R in Π through reiterated use of the following
transformation:

Π1
∗

ai (...)
Πn

∗
an

I
b
Πj

∗
c

is transformed into

Πk

b
Πj

∗
c

So Π′′ is a deduction showing ⊢S2 c, from which we conclude that ⊢S2
v∪R c implies

⊢S2 c. Since the converse immediately follows from the fact that S2 ⊆ (S2
v ∪ R), we

conclude that ⊢S2 c holds if and only if ⊢S2
v∪R c holds. Since by construction it holds

that (S4
v ∪ R) ⊆F 2 (S5

v ∪ R) if and only if S4 ⊆F S5 for any extensions S4 and S5 of
S1 (as this is structure is induced by the vacuous rules added to bases) and, additionally,
⊢S2 c iff ⊢S2

v∪R c for any S1 ⊆F S2, we conclude ⊩F
S2 A if and only if ⊩F 2

S2
v∪R

A, for all
S1 ⊆F S2. Since we have previously obtained Γ ⊩F 2

S2
v∪R

A for all (S2
v ∪ R) ∈ F 2, we

conclude Γ ⊩F
S2 A for all S1 ⊆F S2. Since ⊩F

S1 Γ, by monotonicity we have ⊩F
S2 Γ for

all S1 ⊆F S2, hence ⊩F
S2 A for all S1 ⊆F S2. But S1 is an arbitrary extension of S in F

such that ⊩F
S1 Γ∪R∗, and F is a arbitrary multibase focused on S, so we finally conclude

Γ, R∗ ⊩S A.

58 Just as in (PRAWITZ, 2006), we can simply pick an arbitrary application of the rule and switch to any applica-
tion above it (if there are any). Since deductions are always finite, by repeating this procedure we will eventually
reach an application which does not occur below any other.
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As for the case of atomic axioms, notice that ⊩F
S1 R∗ for R∗ = a implies the existence of

a deduction showing ⊢S1 a, hence it immediately follows that for all S1 ⊆F S2 we have
⊢S2 c iff ⊢S2

v∪{[/a]} c, and the rest of the proof proceeds as before. □

Lemma 3.3.18 Γ ⊩0
m A if and only if Γ ⊩∅ A.

Proof: If Γ ⊩0
m A then Γ ⊩S A for all S, so by putting S = ∅ we have Γ ⊩∅ A. For the

converse, assume Γ ⊩∅ A. Then Γ ⊩F A for all multibases F focused on ∅. Now let F ′ be a
multibase focused on S, for any S ̸= ∅, and let F ′′ be the focused multibase obtained by putting
∅ at the beginning of F ′. F ′′ is a multibase focused on ∅, so Γ ⊩F ′′

A and then Γ ⊩F ′′

S′ A for all
S ′ ∈ F ′′. But the value of Γ ⊩F ′′

S′ A for each S ′ ∈ F ′′ depends only on the value of Γ ⊩F ′′

S′′ A for
S ′ ⊆F ′′ S ′′ per isomorphism, and since ∅ is not a extension of any other set in F ′′ by omiting
it we reobtain F ′ and conclude Γ ⊩F ′

S′ A for any S ′ ∈ F ′, so Γ ⊩F ′
A. But F ′ is a arbitrary

focused multibase on S, so Γ ⊩S A. But the S is also arbitrary, so Γ ⊩S A holds for all S,
hence Γ ⊩0

m A. □

Theorem 3.3.19 Export holds for production multibases with the standard mapping.

Proof: Assume Γ ⊩S A. By applying Lemma 3.3.17 a sufficient number of times we
get Γ, S∗ ⊩∅ A, so by Lemma 3.3.18 we have Γ, S∗ ⊩ A. Now assume Γ, S∗ ⊩ A. By Lemma
3.3.18 we have Γ, S∗ ⊩∅ A, so by applying Lemma 3.3.17 a sufficient number of times we get
Γ ⊩S A. □

Notice that the proof of Lemma 3.3.17 only works if focused multibases only contain
production bases. No features of rules capable of discharge were used in any results on Sections
3.2.3, 3.3.1 or 3.3.2 (except the negative results in Theorems 3.3.8 and 3.3.15), hence they all
hold for production multibases. As such, we are in principle allowed to admit only production
multibases in the semantics.

This result brings focused validity even closer to Prawitz and Dummett’s proposals,
since they originally considered only production bases. Rules capable of discharging formulas
or other rules are considered undesirable by some inasmuch they bring considerable deductive
structure to bases, but they were shown to be essential for the proof of important results for
standard S-validity in sources such as (SANDQVIST, 2009)(SANDQVIST, 2015)(PIECHA;
SANZ; SCHROEDER-HEISTER, 2015). Our positive results for Export in production multi-
bases and negative results for Export in standard focused multibases show that there might actu-
ally be good reasons for considering only production bases. We should keep in mind, however,
that failure of Import and Export were proven only for multibases in general; provided further
restrictions are imposed on multibases, it is possible to reobtain them even in the presence of
rules capable of discharge. This means, of course, that there might be reasons to consider such
rules in specific contexts (such as when we desire to obtain semantics for logics stronger than
minimal logic).
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As mentioned before, it is proven in (PIECHA; SCHROEDER-HEISTER, 2019) that
any semantics with all of the desiderata normally associated with S-validity (the results proved
in Theorem 3.3.4, Theorem 3.3.5 and its converse, Import and Export) is necessarily incomplete.
We have proven that most of the desiderata hold for focused multibases in general. Since Import
is only expected to hold in the presence of higher-order bases, all but one of the desiderata (the
converse of Theorem 3.3.5, disproved in Theorem 3.3.6) hold in production multibases, so this
seems to be the closest we can get to implementing the original idea behind proof-theoretic
validity.

There might also be an excellent reason for the failure of the aforementioned desiderata:
due to soundness and completeness we have Γ ⊩S A for all S if and only if Γ ⊢0

m A, so our
notion of consequence successfully encodes minimal derivability. On the other hand, the impli-
cation (⊩S Γ ⇒ ⊩S A) seems to induce behaviors characteristic of the notion of admissibility.
It is easy to use the clauses of Theorem 3.3.5 to prove, for example, (⊩S A → (B ∨ C) ⇒
(⊩S A → B) or (⊩S A → C)), something that would be expected of an admissibility notion
but not of a derivability one. This would explain why virtually all of the incompleteness results
for S-validity show that completeness fails because a consequence that is admissible becomes
derivable, since derivability implies admissibility but not the other way around. This won’t be
proved here, however, so this section ends with a conjecture:

Conjecture 3.3.20 (⊩S A ⇒ ⊩S B) holds for arbitrary S if and only if the rule [A/B] is
admissible in minimal logic.

3.3.3 Classical and intuitionistic generalized S-validity

The constraints imposed on multibases in order to obtain semantics for classical and
intuitionistic logic have important consequences. In fact, adoption of the consistency constraint
leads to the failure of Theorem 3.3.1. On the first step of the proof we construct a base S ′′ by
adding axiomatic rules to S, but in order to do so in an intuitionistic setting we would have to
guarantee that S ′′ is also consistent. This cannot be done in general, which leads to a distinct
result:

Theorem 3.3.21 {a1, ... , an} ⊩i
S b iff either ({a1, ... , an} ⊢S b) or ({a1, ... , an} ⊢S ⊥).

Proof:
(⇒): We construct a base S ′′ from the base S by using the procedure shown in the

first part of Theorem 3.3.1. If S ′′ is consistent, the proof proceeds in the same fashion, so we
conclude {a1, ... , an} ⊢S b. If S ′′ is inconsistent, there must be a deduction showing ⊢S′′ ⊥.
Since it must use one of the new rules (else S would be inconsistent), by applying the same
procedure of replacing applications of atomic axioms by assumptions we obtain a deduction
showing Γ ⊢S ⊥ for some Γ ⊆ {a1, ... , an}, hence {a1, ... , an} ⊢S ⊥.
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(⇐): If {a1, ... , an} ⊢S b, the proof proceeds just like in the second part of Theorem
3.3.1. Now suppose {a1, ... , an} ⊢S ⊥, and let F be a intuitionistic multibase focused on
S. If there were a S ′ ∈ F such that ⊩S {a1, ... , an} we could use the deductions showing
⊢S′ am (1 ≤ m ≤ n) together with the deduction showing {a1, ... , an} ⊢S ⊥ (since it is also a
deduction showing {a1, ... , an} ⊢S′ ⊥) to prove ⊢S′ ⊥. Since every intuitionistic base has to
be consistent, there can be no such S ′. Hence {a1, ... , an} ⊩F

S′ b is satisfied vacuously for any
S ′ ∈ F , whence {a1, ... , an} ⊩i

S b by arbitrariness of F . □

It is still the case that validity of formulas in general is reducible to atomic derivability,
but the dynamics of this interaction changes. Moreover, no other theorems of Section 3.3 require
the construction of bases or multibases in this fashion59, so they also hold for intuitionistic
generalized S-validity. In particular, since ∅ is a consistent base, Lemma 3.3.18 holds for it.
Notice that in Lemma 3.3.17 the S ∪R must be consistent, else Γ ⊩i

S∪R A would not have been
defined, but this does not interfere in the proof of Export because in the statement of the theorem
it is already assumed that we consider only S for which the semantic relation is defined. Since
Lemmas 3.3.17 and 3.3.18 hold for intuitionistic generalized S-validity, Theorem 3.3.19 also
holds for it.

Theorem 3.3.1 would still hold if intuitionistic multibases were defined through explo-
sive bases, since the process of adding rules to such bases preserve explosion. Although the em-
bedding in Definition 3.2.11 no longer works, completeness could be proved using the strategy
in (STAFFORD; NASCIMENTO, 2023). This might initially suggest that the use of explosion
is preferable, but there are other trade-offs to consider.

Theorem 3.3.22 The following principles hold for any intuitionistic S:

(⊥) ⊮i
S ⊥;

(EFQ) ⊩i
S (A ∧ ¬A) → B.

Proof:

(⊥) Immediate from Definitions 3.2.34, 3.2.35, 3.2.36 and the clause for atoms in Definition
3.2.3.

59 When dealing with disjunction in Theorem 3.3.4 we only add vacuous rules to bases, and in other cases we only
use bases that have to be consistent due to the assumption that the multibases being considered are intuitionistic.
We also do not have to prove consistency for the S2 ∪R used in Theorem 3.3.19, since it is shown that ⊢S2∪R c
holds if and only if ⊢S2 c for every S2 and the S2 are consistent by construction, hence when c = ⊥ we have
⊬S2∪R ⊥. Notice that a curious property arises from the proof: if {a1, ... , an} ⊢S2∪I ⊥ then no deduction
showing ⊢S2∪I c can use R, since if it were used we would be able to obtain proofs showing ⊢S2 am for every
(1 ≤ m ≤ 1) and use them to show ⊢S2 ⊥.
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(EFQ) There cannot be any intuitionistic multibase F focused on S such that ⊩F
S′ A ∧ ¬A for

some S ′ ∈ F , since by the semantic clauses for conjunction and implication this would
lead to ⊩F

S′ ⊥ and then ⊢S′ ⊥, contradicting the consistency requirement. Hence (A ∧
¬A) ⊩F

S′ B is vacuously satisfied by all S ′ ∈ F , as is ⊩F
S′ (A ∧ ¬A) → B, so ⊩F (A ∧

¬A) → B, hence by arbitrariness of the (intuitionistic) F focused on S and arbitrariness
of the (intuitionistic) S have ⊩i

S (A ∧ ¬A) → B. □

The first principle cannot be recovered if we consider only explosive bases, even though
we could recover Sandqvist’s semantic clause (cf. clause 2 of 3.2.33). The second principle can
be recovered, albeit this would require induction on the subformulas of B.

The strongest argument in favor of using the consistency requirement is that principle
(⊥) is the main desiderata for the semantics of ⊥. Principle (EFQ), which expresses the idea
of logical explosion, is usually expected to be a consequence of the definition of ⊥, not the
definition itself. It has been argued before that the definition of ⊥ in terms of atomic explosion
is one of the weaknesses of most approaches to intuitionistic S-validity, since it leads to a
departure from the intuition behind intuitionistic negation (PIECHA; SANZ; SCHROEDER-
HEISTER, 2015):

This fact, that any atom a is validated in some extension of any atomic system,

might be considered a fault of validity-based proof-theoretic semantics, since

it speaks against the intuitionistic idea of negation ¬A as expressing that A can

never be verified.

This idea is recovered if the consistency requirement is used. We have shown this for
generalized S-validity here, but it also holds for base-extension semantics (NASCIMENTO;
PEREIRA; PIMENTEL, 2023). Theorem 3.3.21 is a natural consequence of these intuitions, so
Theorem 3.3.1 should not be expected to hold in general.

Since classical multibases are obtained from intuitionistic multibases without adding
new negative requirements, all proofs for intuitionistic generalized S-validity also hold for
classical generalized S-validity – except the proof of Export, since now Lemma 3.3.18 does
not hold because ∅ is not a classical base.

But we can also obtain new results:

Theorem 3.3.23 The following principle holds for all classical S:

(EM) ⊩c
S A ∨ ¬A.

Proof: Immediate from Theorem 3.2.47 and Definition 3.2.44. □

Lemma 3.3.24 For any S in any classical focused multibase, Γ ⊩F
S A if and only if ⊮F

S B for
some B ∈ Γ or ⊩F

S A.
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Corollary 3.3.25 For any S in any classical focused multibase, ⊩F
S A→ B if and only if ⊮F

S A

or ⊩F
S B.

Proof: Assume Γ ⊩F
S A. If ⊮F

S B for some B ∈ Γ, by Lemma 3.2.46 we have ⊮F
S′ B

for all S ′ ∈ F , so Γ ⊩F
S A holds vacuously. If ⊩F

S B for all B ∈ Γ then since Γ ⊩F
S A we have

⊩F
S A. For the converse, if ⊮F

S B for some B ∈ Γ then by Lemma 3.2.46 we have ⊮F
S′ B for

all S ′ ∈ F , so Γ ⊩F
S A holds vacuously. If ⊩F

S A then by Lemma 3.2.46 we have ⊩F
S′ A for all

S ′ ∈ F , so Γ ⊩F
S A holds. □

Theorem 3.3.26 Γ ⊩c
S A iff Γ ⊩⟨S⟩

S A.

Proof: From Lemma 3.2.46 it follows that, in every classical multibase F focused on S,
for any S ′ ∈ F we have ⊩F

S′ A if and only if ⊩F
S A, so for all such S ′ we have ⊢S′ a if and only

if ⊢S a. A simple induction on formulas shows that ⊩F
S′ A for all S ′ ∈ F if and only if ⊩⟨S⟩

S′ A

for all S ′ ∈ ⟨S⟩ if and only if ⊩⟨S⟩
S A, so also Γ ⊩F

S′ A for all S ′ ∈ F if and only if Γ ⊩⟨S⟩
S A.

But then Γ ⊩F A if and only if ⊩⟨S⟩
S A, and since F was a arbitrary multibase focused on S we

conclude Γ ⊩c
S A if and only if Γ ⊩⟨S⟩

S A. □

So focused multibases and generalized proof-theoretic validity add nothing to classical
proof-theoretic semantics, since we could consider only derivability and validity in S (without
considering extensions) from the start.

Although the previously presented proof of Export does not hold for classical multi-
bases, a different proof can be obtained as follows:

Definition 3.3.27 For any classical base S, the set Sc of formulas is defined as follows:

1. ⊢S a implies a ∈ Sc;

2. a ⊢S ⊥ implies ¬a ∈ Sc;

3. No other formula is in Sc

Theorem 3.3.28 Γ, Sc ⊩0
c A if and only if Γ ⊩c

S A.

Proof: (⇒): Assume Γ, Sc ⊩0
c A. Let F be any multibase focused on S. From the

definition of Sc we have that a ∈ Sc implies ⊢S a, which by Lemma 3.2.46 implies ⊩F
S′ a for

any S ′ ∈ F , and ¬a ∈ Sc implies a ⊢ ⊥ and thus ⊬S a, which by Lemma 3.2.46 implies ⊮F
S′ a

for any S ′ ∈ F and so ⊩F
S′ ¬a vacuously for any S ′ ∈ F . Hence ⊩F

S′ Sc for any S ′ ∈ F .
From our assumption we have Γ, Sc ⊩c

S A and so Γ, Sc ⊩F A for any F focused on S, hence
Γ, Sc ⊩F

S′ A for any S ′ ∈ F . Now let S ′′ be any extension of any S ′ such that ⊩F
S′′ Γ. Then

⊩F
S′′ Γ ∪ Sc and, since Γ, Sc ⊩F

S′ A, we also have ⊩F
S′′ A, so from the arbitrariness of S ′′ we

conclude Γ ⊩F
S′ A, hence from the arbitrariness of S ′ ∈ F and of F we have Γ ⊩c

S A.
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(⇐): Assume Γ ⊩c
S A, and let F be an arbitrary classical multibase focused on a arbi-

trary base. Suppose there is some S ′ ∈ F such that ⊩F
S′ Γ ∪ Sc. Then ⊩F

S′′ Γ ∪ Sc for arbitrary
S ′′ ∈ F by Lemma 3.2.46. Since ⊩F

S′′ Sc we have that either a ∈ Sc, and so both ⊢S a and
⊢S′′ a, or ¬a ∈ Sc, hence it can be easily shown that ⊬S a and ⊬S′′ a. We conclude ⊢S′′ a

if and only if ⊢S a for all S ′′ ∈ F . A reasoning similar to that used to prove Theorem 3.3.26
shows that, for any ∆ and any B, ∆ ⊩F

S′′ B for all S ′′ ∈ F if and only if ∆ ⊩⟨S⟩
S B. Since

from our assumptions it follows that Γ ⊩⟨S⟩
S A we conclude Γ ⊩F

S′′ A for arbitrary S ′′ ∈ F ,
and since ⊩F

S′′ Γ ∪ Sc and so ⊩F
S′′ Γ we conclude ⊩F

S′′ A for arbitrary S ′′, hence Γ, Sc ⊩F
S′′ A

for arbitrary S ′′ and so Γ, Sc ⊩F A. If there is no S ′ ∈ F such that ⊩F
S′ Γ ∪ Sc we have that

Γ, Sc ⊩F
S′ A is satisfied vacuously for all S ′ ∈ F , hence Γ, Sc ⊩F A. Since this covers all cases

we conclude Γ, Sc ⊩F A. Since F was a arbitrary classical multibase focused on any arbitrary
base, we conclude Γ, Sc ⊩0

c A. □

3.4 Multibases for predicate logic

The use of domains and interpretation functions makes the structure of first and second-
order models much more reliant on model-theoretic tools than their propositional counterparts.
We certainly do not want a semantics in which derivability must be supplemented by functions,
so atomic bases themselves should ideally be able to provide both domains and interpretations.
It is possible to obtain a purely proof-theoretic semantics in this sense, but first we must promote
some simplifications of Kripke models.

As noted before, we now use first-order atomic rules, understood as atomic rules with
first-order sentences. This may be exemplified as follows:

P
Q

Pab
Qab

Pa Qbcd
Re

Pa

[Qbc]
...
Rd

Sef

The contributions of this section are aimed at proof-theoretic semantics in general, not
just multibase semantics. Most approaches still limit themselves to the propositional case due
to a lack of results on how to define purely proof-theoretic predicate semantics. Our definitions
can be adapted to other contexts – provided bases or similar structures are available – so they
may also be used to extend other semantics to predicate logic.

Naturally, from now on when speaking of multibases we are speaking specifically of
first-order multibases.



100

3.4.1 Simplified domains and literal interpretations

Models are defined over domains, understood simply as sets of objects. After the do-
mains are fixed, an interpretation function shows how we may talk about its objects in a specific
language. The intuition behind the use of domains and interpretations is that, to build a model,
we fix a set of objects considered of interest, use the constants of the language as names for them
(adding new constants in case there are not enough names), and then use predicate constants to
name relations between them.

Domains can be given both abstract and concrete readings, as can interpretations of
predicates. If we consider a domain SG = { Apollo, Huitzilopochtli, Ra, ... }, understood
as the set of all mythological sun gods, a interpretation function can be defined such that h is
used to name the god Huitzilopochtli, A is used to name the predicate “is a Aztec god”, and
h is included in the set of objects satisfying A, making Ah (“Huitzilopochtli is a Aztec god”)
true. The elements of domains are defined as abstract objects, so we do not need to specify
their meanings in this manner when investigating general properties of a model. Once we start
dealing with models intended to have concrete meanings, however, it becomes necessary to also
provide meaning to the elements.

If we are interested only in concrete models, the description just provided contains a
redundancy. Since sets are abstract representations of collections, objects of SG are clearly
names or representations of sun gods, not the sun gods themselves. The expression “understood
as the set of all mythological sun gods” is not entirely accurate, even though it successfully
conveys the model’s intended meaning. This makes it so that, when assigning constants to
elements of a domain, we are essentially naming other names.

The redundancy can be eliminated if we directly add the names of the set to the language

instead of using other names for them. However, this would lead to awkward and heterogeneous
notation, so we should ideally simplify the names somehow. Since domains are defined as arbi-
trary sets of objects, we can partly maintain the model-theoretic tradition of regarding constants
as names by considering only domains that are sets of constants. This way, we start with do-
mains only containing constants, add them to the language and then define interpretations in
which each constant is named by itself.

From these ideas we obtain the following definitions:

Definition 3.4.1 A domain is simplified if all its members are individual constants.

Definition 3.4.2 A domain assignment function α (cf. Definition 2.3.7) is simplified if it only
assigns simplified domains.

Definition 3.4.3 Let L be a language, W a set of objects k and α a simplified domain assign-
ment function. An interpretation function β for them (cf. Definition 2.3.8) is literal if a ∈ α(W )

and a ∈ L implies β(a) = a.
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Definition 3.4.4 A pure first-order language P is a first-order language (cf. Definition 2.1.2)
with no individual constants.

Literal functions use constants to name themselves whenever they are both an object
in the domain of W and a constant of the language L. But if a constant of the domain does
not occur in the language, it must be named by some other constant, and if a constant of the
language does not occur on the domain, it must name another constant. In order to make it so
that every constant names itself and no other constant names it60, when defining a model with
objects W we start with a pure language and use the extended language P ∪ α(W ) instead of
the arbitrary extensions of Definition 2.3.9.

Definition 3.4.5 A first-order minimal model K with objects W and language P ∪ α(W ) (cf.
Definition 2.3.10) is simplified if α is a simplified domain assignment function and β is a literal
interpretation function.

We now prove that nothing is lost if we consider only simplified models:

Theorem 3.4.6 Let K be a first-order minimal model for a extended language L(α(W )), and
letW be its set of objects k. There is a simplified first-order minimal modelK ′ for the language
L(α(W )) with a set W ′ of objects k′ such that ⊩K

k A if and only if ⊩K′

k′ A.

Proof: We start by picking any W ′ with the same number of objects as W , and then
construct the simplified α′ and literal β′ as follows:

1. a ∈ α′(k′) if and only if β(a) ∈ α(k).

2. ⟨a1, ..., an⟩ ∈ β′(Pn, k
′) if and only if ⟨β(a1), ..., β(an)⟩ ∈ β(Pn, k).

In other words, the domain of each k′ ∈ W ′ is the set of all constants assigned to some
object of the domain of k. Since all constants of L(α(W )) must have been assigned to some
element of α(W ), we have that α′(W ′) is just the set of all individual constants in L(α(W )), so
this is indeed a language P∪α′(W ′). The interpretation that β′ gives to each individual constant
is determined by the fact that it is literal, and it also includes in the n-ary relation β′(Pn, k

′)

assigned to each pair (Pn, k
′) a n-tuple ⟨a1, ... an⟩ of constants whenever the objects originally

assigned to each constant were also in a similar tuple included in the relation β(Pn, k). The
number of tuple increases if more than one constant was originally used to name an object (as

60 This might not be ideal in some contexts. If we wish to define a = b as holding whenever β(a) = β(b),
fullfilment of this requirement implies that every constant is equal only to itself. This is not problematic if we
define equality in terms of transitive, reflexive and symmetric relations, but definitions in terms of interpretations
require at least that we let constants not on the domain to occur in the language.
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does the domain), but the construction process guarantees that all tuples of constants behave
exactly as the tuples of objects they were originally assigned to.

Let v be the valuation function of K and v′ be the function of K ′. We first stipulate that,
for all 0-ary predicates, v(P0) = T iff v′(P0) = T .

Now assume ⊩K
k Pn(a

1, ..., an). Then v(Pn(a
1, ..., an), k) = T , so ⟨β(a1), ..., β(an)⟩ ∈

β(Pn, k)). By our definition of β′ we have ⟨a1, ..., an⟩ ∈ β′(Pn, k
′). Since from the fact that β′

is literal we have β′(a) = a for all a, it also holds that ⟨β′(a1), ..., β′(an)⟩ ∈ β′(Pn, k
′), thus

v′(Pn(a
1, ..., an), k′) = T , hence ⊩K′

k′ Pn(a
1, ..., an). The converse can be proved in a similar

fashion.
The induction for formulas without quantifiers is straightforward. For quantified for-

mula, it proceeds as follows:

1. Assume ⊩K
k ∀xA. Then ⊩K

j A[x/a] for all a such that β(a) ∈ α(j) in all k ≤ j. Induction
hypothesis: ⊩K′

j′ A[x/a] for all a such that β(a) ∈ α(j) in all k′ ≤ j′. But by definition
we have β′(a) ∈ α′(j′) if and only if a ∈ α′(j′) if and only if β(a) ∈ α(j), so it holds
that ⊩K′

j′ A[x/a] for all a such that β′(a) ∈ α′(j′) in all k′ ≤ j′, hence ⊩K′

k′ ∀xA. The
converse can be proved in a similar fashion.

2. Assume ⊩K
k ∃xA. Then ⊩K

k A[x/a] for some a such that β(a) ∈ α(k). Induction
hypothesis: ⊩K′

k′ A[x/a] for some a such that β(a) ∈ α(k). We can show β′(k′) ∈ α′(k′)

if and only if β(k) ∈ α(k) once again, so ⊩K′

k′ A[x/a] for some a such that β′(a) ∈ α′(k′),
hence ⊩K′

k′ ∃xA. The converse can be proved in a similar fashion. □

Corollary 3.4.7 There is a model K such that Γ ⊨K A in the language L if and only if there is
a simplified model K ′ with Γ ⊨K′

A in the language L.

Corollary 3.4.8 First-order minimal logic is sound and complete with respect to first-order
simplified Kripke models.

Proof: The left-to-right direction of the first corollary follows from Theorem 3.4.1, and
the right-to-left direction follows from the fact that a simplified model is still a model. The
soundness and completeness results follow immediately from the equivalence. □

We have thus proved that constants included in domains may be later used to name
themselves. Notice that we do not extract the constants from any fixed language, so this is
not the same as requiring every constant of the domain to already have a name61. In fact, this
constraint cannot be imposed: by requiring all objects to have preexisting names we obtain
incompleteness results (ARRUDA; MARTINS; PEREIRA, 2012).

61 I am thankful to Prof. Luiz Carlos Pereira for pointing out that this relation was in need of clarification.
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To see why, consider the invalid consequence ({Pa1, Pa2, ...} ∪ ∃x¬Px) ⊭1
m ⊥. If we

introduce one object en in all domains for every constant an with 1 ≤ n and put β(an) = en, put
en ∈ β(P, k) for all k ∈ K and all such n, put v(⊥, k) = ∅ for all k, introduce a new object e in
the domain of all k such that e /∈ β(P, k) and add a new constant b to the language to name it,
we get a model making all formulas in ({Pa1, Pa2, ...}∪∃x¬Px) true, but not ⊥. Now assume
there is a language L with constants an and such that for, any element e of any domain, there
is some am ∈ L (1 ≤ m) such that β(am) = e. Pick any model K. Since for every e ∈ α(K)

we have β(am) = e for some m, for {Pa1, Pa2, ...} to be true we must have e ∈ β(P, k) for
all k. But now we cannot add an object e′ to the domain of any k such that e′ /∈ (P, k) for
some k, since we would have some am such that β(am) = e′, hence e′ ∈ (P, k). We conclude
that no model making ({Pa1, Pa2, ...}) true in this language can also make ∃x¬Px true, so
the consequence ({Pa1, Pa2, ...} ∪ ∃x¬Px) ⊨1

m ⊥ holds vacuously. Failure of completeness
ensues, as do failure of properties such as compactness. We conclude that it is not possible to
consider only languages in which every conceivable object already has a name.

This is different from our definitions because we have not assumed that the constants
were obtained from some language, so it is always possible to add to the domain some new
constant that is not in the language we are considering. In other words, our supply of constants
is limited neither by our choice of domain nor by our choice of language, and the problem only
appears under the assumption that the language limits the supply of new (unnamed) objects. If
we have a language L containing all constants an for 1 ≤ n and consider a series of formulas
{Pa1, Pa2, ...}, we can always add a new constant b to the domain of all k and put b /∈ β(P, k)

to obtain a model making ({Pa1, Pa2, ...} ∪ ∃x¬Px) true in the language L ∪ b. Constants
receive the same treatment usually dispensed to elements of sets, so the problem is avoided.

In light of this, the important part is that the following property is satisfied:

Definition 3.4.9 (Fresh constants requirement) For every language L, there is some constant
a such that a /∈ L and L ∪ a is also a language.

So after adding every constant of the domains to the pure language we would still have
some constant not in the new language, which could be added to the original domain of the
model in order to extend it and then also added to the language. This new constant cannot
have a preexisting (literal) name in the language precisely because it was not in the language.
Paradoxes of this kind are thus avoided.

3.4.2 Natural domains

In propositional bases, the semantic properties of propositions are entirely determined
by how they may be used together with rules to prove other propositions. The meaning of a
proposition is fixed by its inferential content in some relevant sense. This is also expected of
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first-order bases, so the meaning of a first-order sentence should also be fixed by its inferential
content in some relevant sense. The same reasoning applies to domains and interpretations,
since they are also determinants of the meaning of first-order sentences. We will later show that
interpretation functions can be replaced by first-order atomic derivability, but for now we focus
on first-order domains.

The domain of discourse is defined in order to specify to which objects the semantics
is being applied to. Due to the shape of their premises and conclusions, first-order rules es-
tablish derivability relations between first-order sentences even before the individual constants
occurring in them are interpreted. As seen before, a constant can be interpreted by itself if we
adopt literal interpretations, and in this case each sentence of a derivation would be affirming
something of the constants occurring in it. But, since the sentences are affirming things of the
constants themselves, we can already determine a domain of discourse: the set of all objects of
which something can be affirmed when an inference licensed by the base is made – that is, the

set of all individual constants appearing in premises, conclusions, or dischargeable formulas

of rules of the base.
This idea contains a single caveat: the logics we are working with only admit non-

empty domains, but the domain of discourse of a base may be empty (e.g. nothing is affirmed
of anything in the empty base, so its domain is empty)62. This can be solved either by fixing
a “special” constant, which must be in the domain of discourse even if it is not used by any
rules63, or requiring all bases to contain at least one rule making use of a individual constant.
Both options are equally functional, but we adopt the latter due to the model-theoretic character
of the former.

The idea is formalized as follows:

Definition 3.4.10 (Existential import) A multibase satisfies the property of existential import

if every base in it has some rule in which at least one individual constant occurs in a premise,
conclusion, or dischargeable formula.

From now on we assume that all multibases satisfy existential import.

Definition 3.4.11 For any base S, its natural domain N(S) is the set of all individual constants
occurring in premises, conclusions, or dischargeable formulas of rules in S.

Definition 3.4.12 For any multibase M , its natural domain N(M) is
⋃

S∈M
N(S).

62 This means that a more general framework is obtained if we consider inclusive versions of each logic as starting
points, since empty domains would then become acceptable (NOLT, 2021).

63 Focused multibases for S would only require one special constant, since the domain of discourse of S must be a
subset of every other domain of discourse and so there must be at least one constant shared by all domains. This
is not a feature of multibases in general, so it might be desirable to consider multiple selected constants when
dealing with standard validity.
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A desirable consequence follows:

Theorem 3.4.13 S ⊆ S ′ implies N(S) ⊆ N(S ′).

Proof: Let S and S ′ be any bases such that S ⊆ S ′. Then every rule of S is also a rule of
S ′, so every constant occurring in some rule of S also occurs in some rule of S ′. But this makes
it so that every constant extracted from the rules of S is also extracted from the inferences of
S ′, so N(S) ⊆ N(S ′). □

The natural domain of a base is just the set of all individual constants its rules use, and
that of a multibase is just the union of the natural domains of its bases. As a consequence, the
content of each domain is entirely determined by the rules of the corresponding base, so the
definition is purely proof-theoretic. Preservation of domains is then a direct consequence of
preservation of rules by the extension relation.

3.4.3 First-order logic

Natural domains are the proof-theoretic counterparts of model-theoretic domain assign-
ment functions, but we must still provide a proof-theoretic version of interpretation functions.
Literal interpretations already eliminate the need for explicit interpretations of individual con-
stants, but models still need the function to interpret predicate constants. However, the sole
purpose of predicate interpretations is to establish for which tuples of objects each predicate
holds, and this can be done by atomic derivability itself.

We are now ready to define validity for first-order multibase semantics:

Definition 3.4.14 The (first-order) relations of base validity (⊩M
S ), multibase validity (⊩M ),

standard validity (⊩), generalized S-validity (⊩S) and focused validity (⊩1
m) are defined as

follows, for S ∈M and in the language P ∪N(M)

1. ⊩M
S Pa1 ... an ⇐⇒ ⊢S Pa

1 ... an;

2. Clauses 2 through 8 are as in Definition 3.2.3;

9. ⊩M
S ∀x(A) ⇐⇒ ∀S ′(S ⊆ S ′) : ⊩M

S′ A[x/a], for all a ∈ N(S ′);

10. ⊩M
S ∃x(A) ⇐⇒ ⊩M

S A[x/a], for some a ∈ N(S);

11. Γ ⊩S A iff Γ ⊩F A for all first-order multibases F focused on S;

12. Γ ⊩1
m A iff Γ ⊩S A for all S.
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The interpretation of individual constants is implicitly taken to be literal, and the n-
tuples for which the predicates hold is given by derivability in the first-order base instead of by
interpretations. The simplified, natural domains are also extracted directly from the structure of
bases. There are no reminiscences of model theory in this semantics, so we conclude that this
is indeed an entirely proof-theoretic first-order semantics.

We now prove completeness for this semantics by adapting Definitions 3.2.11 and 3.2.17
to the first-order case.

Definition 3.4.15 For any first-order focused multibase M , its corresponding simplified first-
order minimal Kripke model KM is defined as follows:

1. The set W of KM is the set of all bases occurring in M ;

2. S ≤ S ′ if and only if S ⊆M S ′.

3. For any 0-ary predicate P , v(P, S) = T if and only ⊢S P ;

4. For any (n+ 1)-ary predicate Pn, ⟨a1, ... , an⟩ ∈ β(P, S) if and only if ⊢S Pa
1 ... an;

5. α(S) = N(S);

6. β is literal.

From α(S) = N(S) it follows that the domains are simplified, and from the definitions
of domains for models and multibases we have α(M) = N(M). Since the multibase is defined
for the language P ∪ N(M) the language is also P ∪ α(M), hence a literal β is available.
From our construction and Theorem 3.4.13 if follows that S ≤ S ′ implies α(S) ⊆ α(S ′).
From preservation of rules by extensions we also have that ⊢S Pa

1 ... an and S ⊆ S ′ implies
⊢S′ Pa1 ... an, so due to our construction S ≤ S ′ and ⟨a1, ... an⟩ ∈ S implies ⟨a1, ... an⟩ ∈ S ′,
hence S ≤ S ′ implies β(P, S) ⊆ β(P, S ′). This means that, aside from the specific conditions
of simplified models, all conditions of Definition 2.3.10 are satisfied, so KM is indeed a first-
order simplified minimal Kripke model.

Theorem 3.4.16 ⊩M
S A ⇐⇒ ⊨KM

S A.

Proof:

1. Atomic case: for 0-ary predicates the result is immediate. For (n + 1)-ary predicates, in
any S ∈M , ⊩M

S Pa1 ... an implies ⊢S Pa
1 ... an implies ⟨a1, ... , an⟩ ∈ β(P, S) implies

v(Pa1 ... an, S) = T , which implies ⊨KM

S Pa1 ... an. For the converse, ⊨KM

S Pa1 ... an

implies v(Pa1 ... an, S) = T implies ⟨a1, ... , an⟩ ∈ β(P, S), but due to our construction
procedure this must be because ⊢S Pa

1 ... an, hence ⊩M
S Pa1 ... an.

2. (∧), (∨) and (→): identical to the proof in Theorem 3.2.12.
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3. (∀): Let ⊩M
S ∀xA. Then for all S ⊆M S ′ we have ⊩M

S′ A[x/a] for all a ∈ N(S ′).
Induction hypothesis: for all S ⊆M S ′ we have ⊨KM

S′ A[x/a] for all a ∈ N(S ′). But
S ⊆M S ′ if and only if S ≤ S ′ and N(S ′) = α(S ′), hence S ≤ S ′ implies ⊨KM

S′ A[x/a]

for all a ∈ α(S ′), hence ⊨KM

S ∀xA. For the converse, let ⊨KM

S ∀xA. For all S ≤ S ′

we have ⊨KM

S′ A[x/a] for all a ∈ α(S ′). Induction hypothesis: for all S ≤ S ′ we have
⊩M

S′ A[x/a] for all a ∈ α(S ′). Since S ≤ S ′ if and only if S ⊆M S ′ and α(S ′) = N(S ′),
S ⊆M S ′ implies ⊩M

S′ A[x/a] for all a ∈ N(S ′), hence ⊩M
S ∀xA.

4. (∃): Let ⊩M
S ∃xA. Then ⊩M

S A[x/a] for some a ∈ N(S). Induction hypothesis: ⊨KM

S

A[x/a] for some a ∈ N(S). But N(S) = α(S), so ⊨KM

S A[x/a] for some a ∈ α(S),
hence ⊨KM

S ∃xA. For the converse, let ⊨KM

S ∃xA. Then ⊨KM

S A[x/a] for some a ∈ α(S).
Induction hypothesis: ⊩M

S A[x/a] for some a ∈ α(S). But N(S) = α(S), so again
⊨KM

S A[x/a] for some a ∈ N(S), hence ⊩M
S ∃xA. □

Corollary 3.4.17 ⊩M A ⇐⇒ ⊨KM
A.

Corollary 3.4.18 Γ ⊨1
m A implies Γ ⊩ A.

Proof: Identical to that of Theorem 3.2.14. □

Definition 3.4.19 A structural vacuous rule is a atomic rule concluding an 0-ary predicate from
itself (e.g. [P/P ], [Q/Q])

Definition 3.4.20 A discursive vacuous rule is a atomic rule concluding an sentence with a
1-ary predicate from itself (e.g. [Pa/Pa], [Qa/Qa])

Due to our definition of natural domains, we must use 0-ary predicates in order to avoid
including unwarranted constants on domains when inducing a specific order through structural
vacuous rules. Discursive vacuous rules are used to induce precisely the domain we want in
each base, since they add nothing in terms of derivability but contribute to the natural domain
of the base.

Definition 3.4.21 For any first-order simplified minimal model K, a corresponding multibase
MK for it defined as follows:

1. The sequence of M contains one system Sk for each k ∈ W , and no other;

2. If v(P, k) = T for 0-ary P , we add to Sk the atomic axiom [/P ];

3. If ⟨a1, ..., an⟩ ∈ β(P, k), we add to Sk the atomic axiom [/Pa1 ... an];

4. If k ≤ k′, we add the structural vacuous rule [P k/P k] to Sk′ .

5. Let Q be a fixed 1-ary predicate. If a ∈ α(k) then [Qa/Qa] ∈ Sk;
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6. Each Sk contains no rules other than those added by the above procedures.

From the fact that the domain of each k is non-empty it follows that the multibase satis-
fies existential import, since for every Sk there will be a rule [Qa/Qa] ∈ Sk.

Lemma 3.4.22 k ≤ k′ if and only if Sk ⊆Mk Sk′ .

Proof:
(⇒): Assume k ≤ k′. Then Sk and Sk′ are constructed by the addition of axioms,

structural vacuous rules and discursive vacuous rules for k and k′, respectively. Due to the
heredity condition, for 0-ary P we have that if v(P, k) = T then v(P, k′) = T , hence all 0-ary
atomic axioms in Sk are also in Sk′ . We also have that ⟨a1, ... an⟩ ∈ β(P, k) and k ≤ k′ implies
⟨a1, ... an⟩ ∈ β(P, k′), so all n-ary axiom rules of Sk are also in Sk′ .

As for the discursive vacuous rules, notice that k ≤ k′ implies α(k) ⊆ α(k′) and so
a ∈ α(k) implies a ∈ α(k′), hence [Qa/Qa] ∈ Sk implies [Qa/Qa] ∈ Sk′ .

Now assume that there is some structural vacuous rule [P k′′/P k′′ ] in k. Just as in the
propositional case, we have k′′ ≤ k and, due to transitivity of ≤ and our assumption, k′′ ≤ k′

holds, hence the vacuous rule is also in Sk′ . Since all atomic axioms and vacuous rules of Sk

are in Sk′ , we conclude Sk ⊆MK Sk′ .
(⇐): Assume Sk ⊆M Sk′ . Since every structural vacuous rule [P k′′/P k′′ ] in Sk is also

in Sk′ , by the structure of the procedure for adding vacuous rules we conclude that k′′ ≤ k

implies k′′ ≤ k′, for every k′′. By reflexivity of ≤ we have k ≤ k, thus k ≤ k′. □

Lemma 3.4.23 α(k) = N(Sk).

Proof: For every a ∈ α(k) we have [Qa/Qa] ∈ Sk, so by the definition of natural
domains a ∈ α(k) implies a ∈ N(Sk). For every a ∈ N(Sk), due to the structure of Sk, either
a occurs in a atomic axiom or in a discursive vacuous rule. If [Qa/Qa] ∈ Sk then the rule
was added because a ∈ α(k). If [/Pa1, ... an] ∈ Sk then ⟨a1, ... an⟩ ∈ β(P, k), but since
all elements of β(P, k) are sets of tuples of elements in α(k) we have am ∈ α(k) for every
(1 ≤ m ≤ n). But then every individual constant occurring in a axiomatic rule or vacuous
discursive rule of Sk is also in α(k), so a ∈ N(Sk) implies a ∈ α(k), and since all elements of
α(k) are in N(Sk) and vice-versa we conclude α(k) = N(Sk). □

Lemma 3.4.24 ⊨K
k A ⇐⇒ ⊩MK

Sk A.

Proof:

1. 0-ary predicates: v(P, k) = T implies ⊢Sk P by construction, so ⊨K
k P implies ⊩MK

Sk P .
For the other direction, notice that all 0-ary axiomatic rules in Sk are added by the proce-
dure and that ⊢Sk P holds only if [/P ] was added to Sk, thus ⊢Sk P implies v(P, k) = T ,
so ⊩MK

Sk P implies ⊨K
k P .
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2. (n + 1)-ary predicates: v(Pa1 ... an, k) = T implies ⟨a1, ... , an⟩ ∈ β(P, k), which by
construction implies [/Pa1 ... an] ∈ Sk, hence ⊢Sk Pa1 ... an and ⊩MK

Sk Pa1 ... an, so
⊨K
k Pa1 ... an implies ⊩MK

Sk Pa1 ... an. For the other direction, notice that all (n + 1)-
ary atomic axioms in Sk are added by the procedure and that ⊢Sk Pa1 ... an holds only
if [/Pa1 ... an] was added to Sk, so ⊢Sk Pa1 ... an implies ⟨a1, ... , an⟩ ∈ β(P, k)

implies v(Pa1, ... , an, k) = T implies ⊨K
k Pa1 ... an, hence ⊩MK

Sk Pa1 ... an implies
⊨K
k Pa1 ... an

3. (∧), (∨) and (→): just like in the propositional case, the proof proceeds as in Theorem
3.2.12, the only differences being that we substitute ⊨KM

S by ⊨K
k , ⊩M

S by ⊩MK

Sk and that,
in the proof for A → B, the equivalence k ≤ k′ iff Sk ⊆MK Sk′ holds due to Lemma
3.4.22 instead of by definition.

4. (∀) and (∃): identical to the proof of Theorem 3.4.16, but instead of holding by definition
α(k) = N(Sk) holds due to Lemma 3.4.23, as does k ≤ k′ iff Sk ⊆MK Sk′ due to Lemma
3.4.22. □

Corollary 3.4.25 Γ ⊨K A⇐⇒ Γ ⊩MK
A.

Lemma 3.4.26 Γ ⊩ A implies Γ ⊨1
m A.

Proof: Identical to that of Lemma 3.2.21. □

Theorem 3.4.27 (Soundness and completeness) Γ ⊨1
m A ⇐⇒ Γ ⊩ A.

Theorem 3.4.28 (Focused soundness and completeness) Γ ⊨1
m A ⇐⇒ Γ ⊩1

m A.

Proof: Identical to the proofs of Theorems 3.2.25 and 3.2.30. □

Just like before, the result also holds for finite multibases and focused multibases.

3.4.4 Second-order logic

The extension of the results for first-order logic to second-order logic is mostly straight-
forward. Some features of constructions must be adapted, but almost every step of every proof
is a straightforward adaptation of the corresponding first-order result.

We start by expanding the definitions of simplified models to second-order logic.

Definition 3.4.29 A n-ary domain is simplified if it is a set of n-ary predicate constants.

Definition 3.4.30 A generalized domain assignment function is simplified if the domains α(k)
it assigns to each k are simplified domains, the n-ary domains αn(k) it assigns to each k are
simplified n-ary domains and the condition that ⊥ ∈ α0(k) for all k is satisfied.
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Definition 3.4.31 Let L be a language, W a set of objects k and α a simplified generalized
domain assignment function. A generalized interpretation function for them (cf. Definition
2.4.4) is literal if a ∈ α(W ) and a ∈ L implies β(a) = a and Pn ∈ αn(W ) and Pn ∈ L implies
β(Pn) = Pn.

Definition 3.4.32 A pure second-order language P is a second-order language (cf. Definition
2.1.3) with no individual constants and no n-ary constants aside from ⊥.

Definition 3.4.33 A second-order minimal modelK for the language P∪α∗(W ) is simplified if
α is a simplified generalized domain assignment function and β is a literal generalized domain
assignment function.

Theorem 3.4.34 Let K be a second-order minimal model for a extended language L(α∗(W ))

(cf. Definition 2.4.5), and let W be its set of objects k. There is a simplified second-order
minimal model K ′ for the language L(α∗(W )) with a set of objects k′ such that ⊩K

k A if and
only if ⊩K

k A.

Proof: The proof is very similar to that of Theorem 3.4.6. The construction of K ′ is as
follows:

1. a ∈ α′(k′) if and only if β(a) ∈ α(k);

2. Pn ∈ αn(k′) if and only if β(Pn) ∈ αn(k);

3. If Pn ∈ αn(k) then ⟨a1 ... an⟩ ∈ β′(Pn, k
′) iff ⟨β(a1), ... β(an)⟩ ∈ β(β(Pn), k).

Let b be the valuation function of K and v’ the function of K ′. If β(P0) /∈ α0(k) then
v(P0, k) = ∅, but then by construction P0 /∈ α0(k′) and since β(P0) = P0 also v(P0, k) = ∅. If
β(P0) ∈ α0(k) then also P0 ∈ α0(k), and since we are now free to choose the value of P0 we
stipulate that v(P0, k) = T if and only if v(P0, k) = T .

Now assume ⊩K
k Pn(a

1, ..., an). Then v(Pn(a
1, ..., an), k) = T , so ⟨β(a1), ..., β(an)⟩ ∈

β(β(Pn), k)), so also (β(Pn), k) ∈ αn(k) (cf. the clause for v in Definition 2.4.7). By our
definition of β′ and αn(k′) we have Pn ∈ αn(k′), and also ⟨a1, ..., an⟩ ∈ β′(Pn, k

′). Since from
the fact that β′ is literal we have β′(a) = a for all a and also β′(Pn) = Pn, it also holds that
⟨β′(a1), ..., β′(an)⟩ ∈ β′(β′(Pn), k

′), thus v′(Pn(a
1, ..., an), k′) = T , hence ⊩K′

k′ Pn(a
1, ..., an).

The converse can be proved in a similar fashion.
All steps of the induction proceeds exactly as in Theorem 3.4.6, second-order quantifiers

receiving the same treatment as first-order quantifiers. □

Definitions of natural domains must also be adapted:

Definition 3.4.35 (Generalized existential import) A multibase satisfies the property of gen-

eralized existential import if every base in it has some rule in which at least one individual
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constant occurs in a premise, conclusion or dischargeable formula, some rule in which at least
one (n + 1)-ary predicate constant occurs in a premise, conclusion of dischargeable formula,
and some rule in which ⊥ occurs in a premise, conclusion of dischargeable formula.

Adding new 0-ary constants is entirely optional because we must already guarantee that
⊥ is in the 0-ary domain of every base, so the 0-ary domains will never be empty.

Definition 3.4.36 Given any first-order base S, its natural domain N(S) is the set of all indi-
vidual constants occurring in premises, conclusions, or dischargeable formulas of rules in S,
and its n-ary natural domains Nn(S) are the sets of all n-ary predicate constants occurring in
premises, conclusions, or dischargeable formulas of rules in S.

Definition 3.4.37 The natural domain N(M) of a multibase M is
⋃

S∈M
N(S), and its natural

n-ary domains are
⋃

S∈M
Nn(S). Its total domain T (S) is the union of its natural domain and all

its natural n-ary domains.

As in the first-order case, we have:

Theorem 3.4.38 S ⊆ S ′ implies N(S) ⊆ N(S ′) and Nn(S) ⊆ Nn(S ′), for every n.

Proof: Straightforward adaptation of the proof of Theorem 3.4.13. □

Second-order validity for second-order multibases (understood as first-order multibases
satisfying generalized existential import) may be defined as follows:

Definition 3.4.39 The (second-order) relations of base validity (⊩M
S ), multibase validity (⊩M ),

standard validity (⊩), generalized S-validity (⊩S) and focused validity (⊩2
m) are defined as

follows, for S ∈M and in the language P ∪ T (M):

1. Clauses 1 through 10 are as in Definition 3.4.14;

11. ⊩M
S ∀Xn(A) ⇐⇒ ∀S ′(S ⊆ S ′) : ⊩M

S′ A[Xn/Pn], for all Pn ∈ Nn(S ′);

12. ⊩M
S ∃Xn(A) ⇐⇒ ⊩M

S A[Xn/Pn], for some Pn ∈ Nn(S);

13. Γ ⊩S A iff Γ ⊩F A for all second-order multibases F focused on S;

14. Γ ⊩2
m A iff Γ ⊩S A for all S.

The proof of completeness can also be adapted as follows:

Definition 3.4.40 For any second-order focused multibase M , its corresponding simplified
second-order minimal Kripke model KM is defined as follows:

1. Clauses 1 through 6 are defined as in 3.4.15;
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7. αn(S) = Nn(A), for all n

This can be shown to be a second-order model by the same reasoning used to show the
result for first-order multibases.

Theorem 3.4.41 ⊩M
S A ⇐⇒ ⊨KM

S A.

Proof:

1. Atomic case, (∧), (∨) and (→), (∀x) and (∃x) are identical to the proof for Theorem
3.4.16;

2. (∀Xn) and (∃Xn): straightforward adaptation of the proof for (∀x) and (∃x) in Theorem
3.4.16 □

Corollary 3.4.42 ⊩M A ⇐⇒ ⊨KM
A.

Corollary 3.4.43 Γ ⊨2
m A implies Γ ⊩ A.

Proof: Identical to that of Corollaries 3.4.17 and 3.4.18. □

The adaptation of Definition 3.4.21 is also very simple, albeit not as immediate. We
can no longer pick arbitrary 0-ary predicates P to use in structural vacuous rules or a arbitrary
1-ary Q to use in discursive rules, since we would be adding P and Q themselves to the natural
domains. We must also figure out a way to add all the desired n-ary constants to the n-ary
natural domains.

Since ⊥ is in all 0-ary domains by definition (cf. Definition 3.4.35), we can define n-ary
structural rules by using only ⊥:

Definition 3.4.44 A n-ary vacuous ⊥ rule is a rule conclusion ⊥ from a sequence containing n
occurrences of ⊥.

The rules look as follows:

⊥
⊥

⊥ ⊥
⊥

⊥ ⊥ ⊥
⊥ (...)

They clearly add only ⊥ to domains, so their inclusion in bases is not problematic.
As for discursive rules, we pick predicate constants in the domain of the starting simplified
model instead of picking a arbitrary 1-ary constants, so every n-ary constant used to introduce a
individual constant is already a predicate constant that should be added to the n-ary domain. We
also use the individual constants that should be added to the domain of individuals to produce
vacuous rules with the predicate constants that should also be added to the n-ary domains (e.g.
if α(k) = {a} and α2(k) = {P} we can use the vacuous rule [Paa/Paa] in Sk to add P and a
to the domains).

We now adapt Definition 3.4.21 as follows:
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Definition 3.4.45 For any second-order simplified minimal model K, a corresponding multi-
base MK for it defined as follows:

1. Clauses 1, 2 and 3 are as in Definition 3.4.21;

4. If kn ≤ km, we add the n-ary ⊥ rule [⊥1, ... ,⊥n/⊥] to Sk
m.

5. If Pn ∈ αn(k) and am ∈ α(k) for 1 ≤ m ≤ n, then [Pna
1 ... an/Pna

1 ... an] ∈ Sk;

6. Each Sk contains no rules other than those added by the above procedures.

Since the n-ary domain of each k is non-empty it follows that the multibase satisfies
generalized existential import, as for every Sk there will be a rule [Pna

1 ... an/Pna
1 ... an] ∈ Sk

for each n.

Lemma 3.4.46 k ≤ k′ if and only if Sk ⊆M Sk′ .

Proof: Straightforward adaptation of Lemma 3.4.22. Notice that, for every n, k ≤ k′

implies α(k) ⊆ α(k′) and αn(k) ⊆ αn(k′), so we still have that [Pna
1 ... an/Pna

1 ... an] ∈ Sk

implies [Pna
1 ... an/Pna

1 ... an] ∈ Sk′ . □

Lemma 3.4.47 α(k) = N(Sk) and αn(k) = Nn(Sk), for every n.

Proof: Straightforward adaptation of Lemma 3.4.23. □

Lemma 3.4.48 ⊨K
k A ⇐⇒ ⊩MK

Sk A.

Proof: The proof for atoms, ∧, ∨, →, ∀x and ∃x is identical to that of Lemma 3.4.24.
For ∀X and ∃X the proof can be obtained through a straightforward adaptation of the proofs
for ∀x and ∃x in the same lemma. □

Corollary 3.4.49 Γ ⊨K A⇐⇒ Γ ⊩MK
A.

Lemma 3.4.50 Γ ⊩ A implies Γ ⊨2
m A.

Proof: Identical to that of Lemma 3.4.26. □

Theorem 3.4.51 (Soundness and completeness) Γ ⊨2
m A ⇐⇒ Γ ⊩ A.

Theorem 3.4.52 (Focused soundness and completeness) Γ ⊨2
m A ⇐⇒ Γ ⊩2

m A.

Proof: The completeness proof in (VAN DALEN, 2013, pgs. 169-172) must first be
adapted so that it also proves completeness for weak second-order logic with respect to weak
second-order natural deduction. This can be done if we treat second-order quantification just
like first-order quantification, so when constructing a prime theory Γ′ for a set Γ of formulas
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we add witnessing n-ary constant Pn to the language for every n-ary quantification ∃Xn(A)

just like we add a individual constant a for each quantification ∃x(A). In every other step of
the proof we deal with second-order quantification in the same way we deal with first-order
quantification. The result follows if we employ the same reasoning used in Theorems 3.4.27,
3.4.28, 3.2.25 and 3.2.30. □

Just as in the propositional and first-order cases, the result also holds for finite multibases
and focused multibases.

As expected, there are few differences between first and second-order multibases, so
weak second-order semantics is very close to the first-order semantics. Not all first-order multi-
bases are second-order multibases, but only because satisfaction of existential import does not
imply satisfaction of generalized existential import. Another minor but notable difference is
that, even though multibases themselves may be finite, each base of a multibase satisfying gen-
eralized existential import is necessarily infinite. Only finitely many predicate constants occur
in each atomic rule, so every finite set of rules contains only finitely many n-ary predicate con-
stants; since we require all n-ary domains (with n ≥ 0) to be non-empty, from the definition of
natural domains it follows that the set of rules cannot be finite. This is not the case if we demand
only the satisfaction of existential import. But those are clearly minor differences related to how
we prevent natural domains from being empty, so they are still essentially the same. In fact, first
and second-order multibases collapse into each other if domains are allowed to be empty.

We have argued before that weak second-order logic is interesting in its own right, but
multibase semantics can also be extended to intermediate and strong second-order semantics. It
is not immediately clear what restriction should be imposed on atomic derivability in order to
obtain intermediate semantics, so this is left as a open question. Even though this is not ideal, it
is still possible to obtain intermediate semantics by requiring second-order multibases to satisfy
all instances of the comprehension schema.

In the case of strong second-order logic, the appropriate atomic restriction is immedi-
ately evident:

Definition 3.4.53 A second-order multibase M is a multibase for strong second-order logic if,
for every S ∈ M , if R is a n-ary relation on the objects of N(S) then there is a Pn ∈ Nn(S)

such that ⟨a1, ... , an⟩ ∈ R if and only if ⊢S Pn(a
1 ... an).

If we consider only simplified second-order models it is clear that this restriction corre-
sponds to Definition 2.4.10. A consequence relation for minimal strong second-order logic can
then be defined by considering only multibases for strong second-order logic.

The significance of this last result lies in the fact that strong second-order logic has a
proof-theoretic semantics in which validity is reduced to atomic derivability, even though it

has no syntactic system. From this we conclude that validity in strong second-order logic can
be reduced to derivability in collections of systems of natural deduction, even though it is not
reducible to derivability in any single system of natural deduction.
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3.4.5 Classical and intuitionistic predicate focused multibases

As in the case of propositional logic, from now on we deal only with focused multibases.
We also fix the notation (A,B, C) for arbitrary atomic sentences.

The extension to first-order intuitionistic logic is straightforward, as we only need to
adapt the definitions and proofs of Section 3.2.4 to the first-order case. On the other hand,
the extension to classical logic is not immediate because, as commented soon after Definition
2.3.12, it is not enough to impose the restrictions of Definition 2.3.4 on atoms to obtain classical
models from intuitionistic models.

This complication is avoided altogether by our way of defining classical multibases.
When adapting Definitions 3.2.42 and 3.2.43 to first-order logic, we get the following:

Definition 3.4.54 A first-order intuitionistic focused multibase M is classical if, for every
atomic sentence A of P ∪N(F ) and every S ∈M , either ⊢S A or A ⊢S ⊥.

This condition holds for every sentence in the language in every base. But this means
that every sentence of the language must be used somehow in every base and, since every
constant of the language occurs in some sentence, every constant of the language is in the

domain of every base. We prove this as follows:

Lemma 3.4.55 If F is a first-order classical focused multibase, for every S ∈ F we have
N(F ) = N(S).

Proof: Since F is a classical multibase, for any (n+1)-ary predicate constant P , either
⊢S Pa1 ... an or Pa1 ... an ⊢S ⊥ for every atomic sentence Pa1 ... an of P ∪ N(F ) and
every S ∈ F . If ⊢S Pa1 ... an, then there is a deduction with no premises and last formula
Pa1 ... an, so there must be some rule with conclusion Pa1 ... an in S, hence am ∈ N(S) for
every 1 ≤ m ≤ n due to the definition of natural domains.

If Pa1 ... an ⊢S ⊥, there must be a deduction with conclusion ⊥ depending on Pa1 ... an

in S. Due to Definitions 2.2.5 and 2.5.8, for sets of atomic sentences Γ and ∆, if Γ ⊢S a then
Γ ∪ ∆ ⊢S a, so it is not necessary for a sentence to occur in a deduction in order for the
conclusion to depend on it. However, if there is a deduction showing Γ ∪ ∆ ⊢S a which does
not use any formula in ∆ we may obtain a new deduction that omits the redundant formulas to
show Γ ⊢S a. As such, if the deduction did not use the formula Pa1 ... an in any way, we could
omit it in the deduction showing Pa1 ... an ⊢S ⊥ to obtain a deduction showing ⊢S ⊥, which
would violate the consistency requirement. We then conclude that Pa1 ... an cannot have been
added vacuously to the deduction, so it must be used in some way by the rules. From the fact
that the deduction showing Pa1 ... an ⊢S ⊥ uses a undischarged instance of Pa1 ...an it follows
that there is some rule in S with Pa1 ...an as a premise, so once again am ∈ N(S) for every
1 ≤ m ≤ n due to the definition of natural domains.
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Hence every individual constant of P ∪ N(F ) which occurs in some atomic sentence
must be included in N(S). But from the definition of atomic sentence it follows that every
individual constant of a language occurs in some atomic sentence of that language, so by the
definition of natural domains every constant of the language P ∪ N(F ) must occur in N(S),
and since the only individual constants in P∪N(F ) are the elements of N(F ) (as the language
P is pure), we conclude a ∈ N(F ) implies a ∈ N(S). But by the definition of N(F ) we also
have a ∈ N(S) implies A ∈ N(F ), so N(S) = N(F ). □

This means that classical multibases have constant natural domains, which is sufficient
to block the problem present in the model-theoretic definition.

Lemma 3.4.56 For all A and all S in a classical focused multibase F , either ⊩F
S′ A for all

S ⊆ S ′ or ⊮F
S′ A for all S ⊆F S

′.

Proof: Atomic case, (∧), (∨) and (→): identical to Lemma 3.2.46.

(∀x): Assume ⊩F
S′ A[x/a] for all a ∈ N(F ) in all S ⊆F S ′. By Lemma 3.4.55 we have

N(S ′) = N(F ) for all such S ′, so for every S ⊆F S ′ we have ⊩F
S′ A[x/a] for all

a ∈ N(S ′). Since for every S ′ ⊆F S
′′ we have S ⊆F S

′′ by transitivity and so ⊩F
S′′ A[x/a]

for all a ∈ N(S ′′), we conclude ⊩F
S′ ∀xA for all S ⊆F S ′. Now assume ⊮F

S′ A[x/a] for
some a ∈ N(F ) in all S ⊆F S ′. Since N(F ) = N(S ′) we have ⊮F

S′ A[x/a] for some
a ∈ N(S ′), so ⊮F

S′ ∀xA, hence by arbitrariness of S ′ we conclude ⊮F
S′ ∀xA for all

S ⊆F S
′.

(∃x): Assume ⊩F
S′ A[x/a] for some a ∈ N(F ) in all S ⊆F S ′. Since N(F ) = N(S ′) we

have ⊩F
S′ A[x/a] for some a ∈ N(S ′), so ⊩F

S′ ∃xA, hence by arbitrariness of S ′ we
conclude ⊩F

S′ ∃xA for all S ⊆F S ′. Now assume ⊮F
S′ A[x/a] for all a ∈ N(F ) in all

S ⊆F S ′. Then for every S ⊆F S ′ we have ⊮F
S′ A[x/a] for all a ∈ N(S ′). Since for

every S ′ ⊆F S ′′ we have S ⊆F S ′′ by transitivity and so ⊮F
S′′ A[x/a] for all a ∈ N(S ′′),

we conclude ⊮F
S′ ∃xA for all S ⊆F S

′. □

All proofs for classical propositional multibases in Section 3.2.4 can be extended to
first-order multibases if we replace every use of Lemma 3.2.46 by a use of Lemma 3.4.56.

The extension to second-order intuitionistic multibases is also straightforward, and the
extension to classical logic can be obtained by promoting two small adaptations on the previous
proofs. Lemma 3.4.55 must be adapted so that deduction with 0-ary predicates are also con-
sidered, hence all n-ary predicate constants can be shown to be in the n-ary natural domains
through the same strategy. Notice that a single occurrence of ⊥ is already a deduction showing
⊥ ⊢S ⊥ in any S, so our argument does not show that ⊥ occurs in the premise or the conclusion
of some rule – but this is not problematic because satisfaction of generalized existential import
already guarantees that ⊥ occurs in some rule. Lemma 3.4.56 must be adapted in order to deal
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with second-order quantification, but since we can deal with second-order quantification in the
same way we have dealt whit first-order quantification the adaptation is straightforward. Once
those adaptations have been made, all results in Section 3.2.4 can be extended to second-order
classical logic.

3.5 Results for predicate generalized S-validity

3.5.1 Extension of propositional results

All of the results in Sections 3.3.1 and 3.3.2 can be extended to first-order minimal
focused multibases, with the exception of the proof of Export. This is so because ⟨∅⟩ does not
satisfy existential import and is thus not a first-order multibase, hence we cannot use Lemma
3.3.18. For reasons that will soon become clear, there is also a additional problem concerning
uses of the isomorphism lemma that cannot be corrected, so Export does not hold in general.
But a limited version of Export is still available.

We start by extending monotonicity and isomorphism to first-order multibases. The
statement of monotonicity is still the same, but notice that isomorphism now requires identity
of domains:

Lemma 3.5.1 (Monotonicity) For any focused multibase F and any S ∈ F , ⊩F
S A and S ⊆F

S ′ implies ⊩F
S′ A.

Proof:

1. Atomic case, (A ∧B), (A ∨B), (A→ B): identical to Lemma 3.3.2.

2. (∀x): Assume ⊩F
S ∀xA. Then for all S ⊆F S ′ we have ⊩F

S′ A[x/a] for all a ∈ N(S ′).
Pick any S ′ ⊆M S ′′. By transitivity of ⊆F we have S ⊆F S ′′ and so ⊩M

S′′ [x/a] for all
a ∈ N(S ′′), so by arbitrariness of S ′′ we have ⊩F

S′ ∀xA.

3. (∃x): Assume ⊩F
S ∃xA. Then ⊩F

S A[x/a] for some a ∈ N(S). Fix the a. Induction
hypothesis: for every S ⊆F S ′ we have ⊩F

S′ A[x/a]. But by Lemma 3.4.13 we have
a ∈ N(S ′), so ⊩F

S′ ∃xA. □

Lemma 3.5.2 (Isomorphism) Let M and M ′ be multibases. Let Q = ⟨S1, S2, ...⟩ be a sub-
sequence of M such that Sn ⊆M S implies S ∈ Q for all (n ≥ 1), and Q′ = ⟨S ′

1, S
′
2, ...⟩

a subsequence of M ′ such that S ′
n ⊆M ′ S ′ implies S ′ ∈ Q′ for all (n ≥ 1). If it holds that

N(Sn) = N(S
′
n), ⊢Sn A if and only if ⊢S′

n
A and Sn ⊆M Sm if and only if S ′

n ⊆M ′ S
′
m for

all (n ≥ 1) and (m ≥ 1), then ⊩M
Sn
A if and only if ⊩M ′

S′
n
A, and also Γ ⊩M

Sn
A if and only if

Γ ⊩M
S′
n
A.
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Proof:

1. Atomic case, (A ∧B), (A ∨B), (A→ B): identical to Lemma 3.3.3.

2. (∀x): Assume ⊩M
Sn

∀xA. Then for all Sn ⊆M S we have ⊩M
S A[x/a] for all a ∈ N(S),

and since Sn ⊆M S implies S ∈ Q we have that all such S are Sm ∈ Q. Induction
hypothesis: if Sn ⊆M Sm then ⊩M ′

S′
m
A[x/a] for all a ∈ N(Sm). But N(Sm) = N(S

′
m),

so also ⊩M ′

S′
m
A[x/a] for all a ∈ N(S

′
m). But for every S ′

n ⊆M ′ S ′ we have that S ′ is some
S

′
m ∈ Q′, and since Sn ⊆M Sm if and only if S ′

n ⊆M ′ S
′
m we have ⊩M ′

S′
m
A[x/a] for all

a ∈ N(S
′
m) in any S ′

n ⊆M ′ S
′
m, so also ⊩M ′

S′ A[x/a] for all a ∈ N(S
′
) in any S ′

n ⊆M ′ S
′ ,

hence ⊩M ′

S′
n
∀xA. The converse can be proved in a similar fashion.

3. (∃x): Assume ⊩M
Sn

∃xA. Then ⊩M
Sn
A[x/a] for some a ∈ N(Sn). Induction hypothesis:

⊩M ′

S′
n
A[x/a] for some a ∈ N(Sn). But N(Sn) = N(S

′
n), so also ⊩M ′

S′
n
A[x/a] for some

a ∈ N(S
′
n), hence ⊩M ′

S′
n
∃xA. The converse can be proved in a similar fashion.

To finish the proof we just repeat the final step of Lemma 3.3.3. □

The additional requirement of the isomorphism lemma is mostly unproblematic because,
with the exception of Lemma 3.3.17, in all proofs of Section 3.3 we apply it only in contexts
that guarantee equality of domains, provided only vacuous structural rules have been used to
order bases. However, the new requirement of the isomorphism lemma is indeed problematic
in a particular step of the proof of Export: there is no guarantee that N(S2) = N(S2

v ∪ R), as
the R could be adding new constants to the natural domain. This cannot be fixed, as shown by
the following:

Theorem 3.5.3 Γ, S∗ ⊩1
m A implies Γ ⊩S A, provided only first-order production multibases

are admitted in the semantics.

Proof: Assume Γ, S∗ ⊩1
m A. Let F be any focused multibase for S. By Theorem 3.3.7

and through use of the standard mapping we have ⊩S R
∗, thus ⊩F R∗ and then ⊩F

S′ R∗ in every
S ′ ∈ F and for every R ∈ S, so by Definition 3.3.13 also ⊩F

S′ S∗ in all such S ′. Now assume
⊩F

S′′ Γ for some S ′′ ∈ F . Then clearly ⊩F
S′′ Γ ∪ S∗. From our assumption we have Γ, S∗ ⊩S A

and thus Γ, S∗ ⊩F A, so also Γ, S∗ ⊩F
S′′ A, hence from ⊩F

S′′ Γ ∪ S∗ we obtain ⊩F
S′′ A. But this

was a arbitrary S ′′ such that ⊩F
S′′ Γ, hence for all S ′ ∈ F we can conclude Γ ⊩F

S′ A, hence from
arbitrariness of S ′ we conclude Γ ⊩F A, whence from arbitrariness of F we conclude Γ ⊩S A.
□

Theorem 3.5.4 It is not the case that Γ, S∗ ⊩1
m A if and only if Γ,⊩S A implies Γ, S∗ ⊩1

m A,
even if only production multibases are admited in the semantics.

Proof: For a counterexamples, let S = {[Pa/Pa]}. Let F be any focused multibase for
S. Let S ′ ∈ F , and assume ⊩F

S′′ ∀xPx for some S ′ ⊆F S ′′. We have a ∈ N(S ′′) by Lemma
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3.4.13, so in particular ⊩F
S′′ Pa. But this is a arbitrary S ′ ⊆F S

′′, so we conclude ∀xPx ⊩F
S′ Pa.

S ′ is also arbitrary, so ∀xPx ⊩F
S′ Pa holds for all S ′ ∈ F , hence ∀x ⊩F Pa, and since F is a

arbitrary multibase focused on S we have ∀xPx ⊩S Pa.
The standard mapping yields [Pa/Pa] = (Pa→ Pa), so we must show (∀xPx, Pa→

Pa ⊮ Pa). Let F ′ = ⟨S1 = {[/Pb]}, S2 = {[/Pa], [/Pb]}⟩. It is easy to see that (⊩F ′

S1

∀xPx, Pa→ Pa) but (⊮F ′

S1 Pa), so (∀xPx, Pa→ Pa ⊮F ′

S1 Pa), hence (∀xPx, Pa→ Pa ⊮F ′

Pa), hence (∀xPx, Pa→ Pa ⊮S1 Pa), and we conclude (∀xPx, Pa→ Pa ⊮ Pa). □

Corollary 3.5.5 Export does not hold in general for first-order multibase semantics.

This problem is caused specifically by interactions between the universal quantifier and
bases, so a restricted version of Export can still be proved. We started by proving a weakened
version of isomorphism, in which domains are not required to be equal but formulas are not
allowed to contain universal quantifiers as subformulas.

First we prove two preparatory lemmas on substitution, which are equivalent to Theorem
3.5.6. and Definition 3.3.10 of (VAN DALEN, 2013):

Lemma 3.5.6 If ⊩F
S ∃xA and y does not occur in A, then ⊩F

S ∃xA ⇐⇒ ⊩F
S ∃y(A[x/y]).

Corollary 3.5.7 Every formulaA is equivalent to a formulaA∗ such that no variable x occuring
in A∗ is bound by two different quantifiers.

Proof: Let ⊩F
S ∃xA. The formula A[x/y] consists in the original A with y at every

place in which x was, and since y does not occur in A it only occurs in A[x/y] on places in
which x was. As such, we have ⊩F

S ∃xA implies ⊩F
S A[x/a] implies ⊩F

S A[x/y][y/a] implies
⊩F

S ∃yA[x/y]. For the converse, let ⊩F
S ∃yA[x/y]. Then ⊩F

S A[x/y][y/a]. But then instead
of replacing x by y and y by a we can directly replace x by a, so ⊩F

S A[x/y][y/a] implies
⊩F

S A[x/a], hence ⊩F
S ∃xA.

The corollary follows from the fact that every subformula ∃xB of A can be replaced by
the equivalent formula ∃y(B[x/y]) for y not in B, and if we do this using a distinct y for every
distinct quantifier the result follows. □

Lemma 3.5.8 The following hold:

1. A ∧B[x/a] = A[x/a] ∧B[x/a];

2. A ∨B[x/a] = A[x/a] ∨B[x/a];

3. A→ B[x/a] = A[x/a] → B[x/a];

4. If x = y then ∃yB[x/a] = ∃yB, and if x ̸= y then ∃yB[x/a] = ∃y(B[x/a]).
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Proof: The first three items follow immediately from our definition of substitution. As
for the fourth, notice that if x = y then there is no free occurrences of x in B, so ∃yB[x/a] =

∃yB by our definition of substitution. If x ̸= y then ∃yB[x/a] is obtained by replacing all
occurences of x in B by a, which is the same formula as ∃y(B[x/a]). □

Lemma 3.5.8 could be a definition instead of a Lemma, but this makes no difference.

Lemma 3.5.9 (Weakened isomorphism) Let M and M ′ be multibases. Let Q = ⟨S1, S2, ...⟩
be a subsequence ofM such that Sn ⊆M S implies S ∈ Q for all (n ≥ 1), andQ′ = ⟨S ′

1, S
′
2, ...⟩

a subsequence ofM ′ such that S ′
n ⊆M ′ S ′ implies S ′ ∈ Q′ for all (n ≥ 1). If it holds that ⊢Sn A

if and only if ⊢S′
n
A and Sn ⊆M Sm if and only if S ′

n ⊆M ′ S
′
m for all (n ≥ 1) and (m ≥ 1), then

⊩M
Sn
A if and only if ⊩M ′

S′
n
A, and also Γ ⊩M

Sn
A if and only if Γ ⊩M

S′
n
A, provided no formula of

Γ ∪ A has some formula of shape ∀xB as its subformula.

Proof: We first prove by induction that, for any multibase satisfying those conditions,
a ∈ N(Sn) and ⊩M

Sn
A[x/a] if and only if a ∈ N(S

′
n) and ⊩M ′

S′
n
A[x/a] for all Sn and all

a, provided A[x/a] does not have universal quantifications as subformulas. We assume that
Lemma 3.5.6 and Corollary 3.5.7 have been used to substitute every variable bound by two
distinct quantifiers on the same formula, so no subformula of a formula ∃xA has a subformula
of shape ∃xB for some B. The induction is a straightforward adaptation of proof steps of
Lemmas 3.3.3 and 3.5.2, but we write them again in order to show how substitutions factor in.

1. Atomic case: if a ∈ N(Sn) and ⊩F
Sn

A[x/a], then ⊢Sn A[x/a] and so ⊢Sn A[x/a] by
construction, so ⊩F

S′
n
A[x/a] by construction, and since there is a deduction of A[x/a]

in S ′
n then there must be a rule concluding A[x/a] in S ′

n, so a ∈ N(S
′
n). Proof of the

converse is similar.

2. (A[x/a] = (B ∧ C)[x/a]). Since ⊩M
Sn

(B ∧ C)[x/a], we have ⊩M
Sn

B[x/a] and ⊩M
Sn

C[x/a]. Induction hypothesis: ⊩M
S′
n
B[x/a] and ⊩M

S′
n
C[x/a], with a ∈ N(S

′
n), hence

⊩M
S
′
n
(B ∧ C)[x/a] for a ∈ N(S

′
n). Proof of the converse is similar.

3. (A[x/a] = (B∨C)[x/a]). Since ⊩M
Sn

(B∨C)[x/a], we have ⊩M
Sn
B[x/a] or ⊩M

Sn
C[x/a].

Induction hypothesis: ⊩M
S
′
n
B[x/a] or ⊩M

S
′
n
C[x/a] with a ∈ N(S

′
n), hence in both cases

we have ⊩M
S
′
n
(B ∨ C)[x/a] for a ∈ N(S

′
n). Proof of the converse is similar.

4. (B[x/a] = (B → C)[x/a]). Since ⊩M
Sn

(B → C)[x/a], we have B[x/a] ⊩M
Sn
C[x/a], so

for every Sn ⊆M S we have ⊩M
S B[x/a] implies ⊩M

S C[x/a]. But Sn ⊆M S implies that
S is some Sm ∈ Q′, so ⊩M

Sm
B[x/a] implies ⊩M

Sm
C[x/a] for all Sn ⊆M Sm. Induction

hypothesis: ⊩M
Sm

B[x/a] implies ⊩M
Sm

C[x/a] with a ∈ N(S
′
n) for all Sn ⊆M S

′
m. But

Sn ⊆M Sm if and only if S ′
n ⊆M S

′
m and S ′

n ⊆M S ′ if and only if S ′ is some S ′
m ∈ Q′,

so ⊩M
S′ B[x/a] implies ⊩M

S′ C[x/a] for all S ′
n ⊆M S ′, hence ⊩M

S′
n
(B → C)[x/a] for

a ∈ N(S
′
n). Proof of the converse is similar.
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5. (A[x/a] = (∃yB)[x/a]). Our previous applications of Lemma 3.5.6 and Corollary
3.5.7 guarantee that x ̸= y. Assume ⊩M

Sn
(∃yB)[x/a]. Then ⊩M

Sn
∃y(B[x/a]). By

the semantic clause we have ⊩M
Sn

B[x/a][y/b] for some b ∈ N(Sn). Induction hy-
pothesis: ⊩M ′

S′
n
B[x/a][y/b] and b ∈ N(S

′
n), hence we have ⊩M ′

S′
n

(∃yB[x/a]), hence
⊩M ′

S′
n
(∃yB)[x/a]. Proof of the converse is similar.

Since no formula has ∀xB as a subformula and validity is defined inductively we do not
need to treat it in the induction steps.

Now for the remaining steps of the proof:

1. Atomic case, (A ∧B), (A ∨B), (A→ B): identical to Lemma 3.3.3.

2. (∃x): Assume ⊩Sn ∃xA. Then ⊩Sn A[x/a] for some a ∈ N(Sn). Induction hypothesis:
⊩S′

n
A[x/a] for some a ∈ N(Sn). By the previous result we have a ∈ N(S

′
n), so we

conclude ⊩S′
n
∃xA. Proof of the converse is similar.

To finish the proof we just repeat the final step of Lemma 3.3.3. □

The intuition behind weakened isomorphism is that by guaranteeing equality of deriv-
ability we also guarantee equality of the “witnessing constants” for existential quantifiers, so it
is not necessary to require domains to be equal.

Now we are finally ready to prove the restricted Export:

Theorem 3.5.10 Γ, S∗ ⊩1
m A if and only if Γ ⊩S A, provided only first-order production

multibases are admitted in the semantics and no formula in Γ ∪ A has universal quantifiers as
subformulas.

Proof:
(⇒) is a particular case of Theorem 3.5.3. For (⇐), assume Γ ⊩S A. Let F be any

multibase focused on any base, and assume ⊩F
S1 Γ ∪ S∗ for some S1 ∈ F . We make the same

constructions used in Lemma 3.3.17, but instead of building sets S2
v ∪ R we build sets S2

v ∪ S.
We then create a multibase F 1 focused on S such that (S2

v ∪ S) ∈ F 1 if and only if S ′ ⊆F S2

for all bases different from S. We let F 2 be the multibase obtained by deleting the first S and
putting S1

v ∪ S at the start of the sequence, so from isomorphism (possibly after a reordering of
F 2) we have Γ ⊩F

S2
v∪S

A for every (S2
v ∪ S) ∈ F .

Let Π be a deduction in a arbitrary (S2
v ∪ S) ∈ F ′2 showing ⊢S2

v∪S A. By removing
all vacuous rules from Π we obtain a deduction Π′ showing ⊢S2∪S A. If there is a [/B] ∈ S

then B ∈ S∗, so there must be a deduction in S1 showing ⊢S1 B and so also ⊢S2 B, hence all
axiomatic rules used in Π′ can be replaced as follows:

B1 ... Bn

Πj

A

is transformed into

Π1

B1 ...
Πn

Bn

Πj

A
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After replacing every rule we obtain a deduction Πn that uses no axiomatic rules, n
being the number of production rules not in S2 that are used in the deduction. If n > 0, we can
use the procedure shown in the proof of Lemma 3.3.17 to remove the uppermost rule and obtain
a deduction Πn−1, and the process can be reiterated until n = 0, which is a deduction showing
⊢S2 A. Since A was a arbitrary atom and ⊢S2 A also implies ⊢S2

v∪S A we conclude ⊢S2 A
if and only if ⊢S2

v∪S A. Unlike in Theorem 3.3.17, we cannot use isomorphism to conclude
the desired results because the domains of S2 and (S2

v ∪ S) might not be equal. But since no
formulas in Γ∪A have universal quantifiers as their subformulas we can use apply the weakened
isomorphism lemma to F and F 2, hence Γ, S∗ ⊩F

S2 A for all S1 ⊆F S2. Since ⊩F
S1 Γ ∪ S∗ by

monotonicity ⊩F
S2 Γ ∪ S∗ for all such S2, so for all S2 we have ⊩F

S2 A. But this is an arbitrary
S1 ∈ F such that ⊩F

S1 Γ ∪ S∗, hence Γ, S∗ ⊩F
S3 A for all S3 ∈ F . Since S3 is arbitrary we

conclude Γ ⊩F A, and since F is a arbitrary multibase focused on a arbitrary base we conclude
Γ, S∗ ⊩1

m A. □

So even though Export does not hold in general, this limited version still holds in predi-
cate logic. All other results for propositional logic extend to predicate logic without problems,
so this is our only real loss.

The treatment of second-order is similar, but there is once again an additional complica-
tion. Unlike in the propositional and first-order cases, we cannot freely add new 0-ary constants
in the language to produce new structural vacuous rules without impacting quantification over
0-ary predicates (this was the very reason that led us to use n-ary vacuous ⊥ rules instead of
the usual structural rules). To remedy this, instead of adding a collection of 0-ary constants we
add a single special constant ⊥∗, to be used as a replacement of ⊥ whenever there are no n-ary
⊥ rules available. We define n-ary ⊥∗ vacuous rules as rules concluding ⊥∗ from a sequence
with n occurrences of ⊥∗. Additionally – and this is the important part – we add a rule [/⊥∗] to
a base S that is being ordered whenever ⊢S ⊥, so that we have ⊢S ⊥ if and only if ⊩S ⊥∗ on
every base ordered through the use of vacuous ⊥∗ rules.

This solves the problem because we always start by defining validity or consequence for
formulas Γ ∪ A occuring in the original language, so ⊥∗ cannot occur in Γ ∪ A. It is, however,
a subformula of formulas with 0-ary quantifications, but since ⊢S ⊥ if and only if ⊩S ⊥∗ by
design we can always replace ⊥∗ by ⊥ in quantifications.

We exemplify this by adapting the isomorphism lemma:

Lemma 3.5.11 (Adapted isomorphism) LetM andM ′ be two multibases. LetQ = ⟨S1, S2, ...⟩
be a subsequence ofM such that Sn ⊆M S implies S ∈ Q for all (n ≥ 1), andQ′ = ⟨S ′

1, S
′
2, ...⟩

a subsequence of M ′ such that S ′
n ⊆M ′ S ′ implies S ′ ∈ Q′ for all (n ≥ 1). Let ⊥∗ be a 0-ary

predicate constant not in L((N(M)). If it holds that:

1. ⊩S′
n
⊥ if and only if ⊩S′

n
⊥∗ for all S ′

n ∈ Q′;

2. N0(Sn) = (N0(S
′
n) ∪ ⊥∗));
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3. N(Sn) = N(S
′
n);

4. Nm(Sn) = Nm(S
′
n) for all m > 0;

5. ⊢Sn A if and only if ⊢S′
n
A for A ≠ ⊥∗;

6. Sn ⊆M Sm if and only if S ′
n ⊆M ′ S

′
m for all (n ≥ 1) and (m ≥ 1);

7. Γ ∪ A is a set of formulas in the language L(N(M));

Then ⊩M
Sn
A if and only if ⊩M ′

S′
n
A, and also Γ ⊩M

Sn
A if and only if Γ ⊩M

S′
n
A.

Proof:

1. Atomic case: since A ∈ L(N(M)) and ⊥∗ /∈ L(N(M)) we have A ̸= ⊥∗, and the result
follows from the fact that ⊢Sn A if and only if ⊢S′

n
A for A ≠ ⊥∗.

2. (A ∧B), (A ∨B)and (A→ B): identical to Lemma 3.3.3.

3. (∀x) and (∃x): identical to Lemma 3.5.2.

4. (∀X0): We invert the usual order and start by proving (⇐).

Assume ⊩M ′

S′
n
∀X0A. Then S ′

n ⊆M ′ S ′ implies ⊩M ′

S′ A[X0/P ] for all P ∈ N0(S ′), and
since S ′

n ⊆M ′ S ′ implies S ′ ∈ Q′ all such S ′ are S ′
m ∈ Q′. Induction hypothesis: if

S ′
n ⊆M ′ S ′

m then ⊩M
Sm

A[X0/P ] for all P ∈ N0(S ′
m).

For all P ∈ N0(Sm) we have P ̸= ⊥∗ implies P ∈ N0(S
′
m), so ⊩M ′

Sm
A[X0/P ] holds for

all P ̸= ⊥∗. This includes ⊥, so ⊩M
Sm

A[X0/⊥] holds. But ⊩M
Sm

A[X0/⊥] if and only
if ⊩M

Sm
A[X0/⊥∗] (easily proved by a straightforward induction), hence ⊩M

Sm
A[X0/⊥∗]

and so ⊩M
Sm

A[X0/P ] for all P ∈ N0(Sn).

For every Sn ⊆M S we have that S is some Sm ∈ Q, and since S ′
n ⊆M ′ S

′
m if and only

if Sn ⊆M Sm we have ⊩M
Sm

A[X0/P ] for all P ∈ N0(Sm) in any Sn ⊆M Sm, and so
also ⊩M

S A[X0/P ] for all P ∈ N0(S) in any Sn ⊆M S, hence ⊩M
Sn

∀X0A. The converse
can be proved in a similar fashion; no special treatment for ⊥∗ is needed in the inductive
step because ⊩M ′

S′
m
A[X0/P ] for all P ∈ N0(Sm) already implies ⊩M ′

S′
m
A[X0/P ] for all

P ∈ N0(S
′
m).

5. [∃X0]: Assume ⊩M
Sn

∃X0A. Then ⊩M
Sn

A[X0/P ] for some P ∈ N0(Sn). Induction
hypothesis: ⊩M ′

S′
n
A[X0/P ] for some P ∈ N0(Sn). But N0(Sn) ⊆ N0(S

′
n), so also

⊩M ′

S′
n
A[X0/P ] for some P ∈ N(S

′
n), hence ⊩M ′

S′
n

∃X0A. For the converse, assume
⊩M

S′
n
∃X0A. Then ⊩M

S′
n
A[X0/P ] for some P ∈ N(S

′
n). If P ̸= ⊥∗ then P ∈ N0(Sn),

hence ⊩M
S′
n
A[X0/P ] for some P ∈ N(Sn). If P = ⊥∗ then ⊩M ′

S
′
m
A[X0/⊥] if and only

if ⊩M ′

S
′
m
A[X0/⊥∗], so ⊩M

S
′
n
A[X0/⊥], thus ⊩M

S
′
n
A[X0/P ] for some P ∈ N0(Sn) (namely,

⊥). In both cases we can conclude ⊩M
Sn

∃X0A, as desired.
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6. [∀Xn] and [∃Xn], for n > 0: straightforward adaptation of the proof for ∀x and ∃x in
Lemma 3.5.2.

To finish the proof we just repeat the final step of Lemma 3.3.3. □

The inclusion of ⊥∗ is not problematic because it does not occur in the formulas Γ ∪ A
of the original consequence and because it can always be replaced by ⊥ on inductive steps.
Adaptation of all remaining proofs for second-order logic is straightforward, so we only need
to be mindful about making derivability for ⊥ and ⊥∗ coincide in all bases. This is also only
necessary in minimal multibases, as in classical and intuitionistic multibases the consistency
requirement makes it so that we only need to add vacuous rules (since then we will have both
⊬S ⊥ and ⊬S ⊥∗ in all bases).

As for intuitionistic predicate logic, no results of Section 3.3.1, 3.3.2 3.3.3 needs any
adaptation besides those shown above, so they also hold for predicate logic. The only extra
adaptations needed for classical logic are presented in Section 3.4.5, so the results for proposi-
tional classical multibases also hold for predicate classical multibases.

3.5.2 New results

The results at the end of Section 3.3.1 also have counterparts in predicate logic. As
usual, we start proving the results for first-order multibases:

Theorem 3.5.12 The following equivalences holds:

1. ⊩S ∀xA ⇐⇒ ⊩S′ A[x/a] for all a ∈ N(S ′) in all S ⊆ S ′;

2. ⊩S ∃xA ⇐⇒ ⊩S A[x/a] for some a ∈ N(S).

Proof:

1. (∀x): Assume ⊩S ∀xA, and let S ′ be an arbitrary base with S ⊆ S ′. Let F ′ be a arbitrary
multibase focused on S ′. For any Sk ∈ F ′, define Sk

F ′′ as the base obtained from Sk

by adding a vacuous structural rule [P j/P j] to Sk whenever Sj ⊆F ′ Sk. Define F ′′ as
multibase focused on the base S ′

F ′′ (obtained from S ′) such that Sk ∈ F ′ if and only if
Sk
F ′′ ∈ F ′′.

Now let F be the focused multibase F = ⟨S, S ′

F ′′ , ...⟩, obtained by putting S at the start
of F ′′. Since this is a multibase focused on S, the original assumption yields ⊩F ∀xA,
so ⊩F

S′′ ∀xA for all S ′′ ∈ F . In particular, ⊩F
S
′
F ′′

∀xA and also ⊩F
Sm
F ′′

A[x/a] for all

a ∈ N(Sm
F ′′) in all S ′

F ⊆F ′′ Sm
F ′′ . By putting S

′

F ′′ = Sm
F ′′ we have ⊩F

S
′
F ′′

A[x/a] for
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all a ∈ N(S
′

F ′′), and by monotonicity also ⊩F
Sm
F ′′

A[x/a] for all a ∈ N(S
′

F ′′) in all
S

′

F ′′ ⊆F Sm
F ′′ . By Lemma 3.5.2 we have ⊩F ′

Sk A[x/a] for every a ∈ N(S ′) in every
Sk ∈ F ′, so ⊩F ′

A[x/a] for every a ∈ N(S ′). But this is an arbitrary F ′ focused on S ′,
so ⊩S′ A[x/a] for all a ∈ N(S ′). The base S ′ is also an arbitrary base with S ⊆ S ′, so
⊩S′ A[x/a] for all a ∈ N(S ′) in all S ⊆ S ′, as desired.

For the converse, assume ⊩S′ A[x/a] for all a ∈ N(S ′) in all S ⊆ S ′. Let F be a
multibase focused on S, and pick any S ′′ ∈ F . Let F ′′ be the multibase focused on S ′′

such that S ′′′ ∈ F ′′ if and only if S ′′ ⊆F S ′′′. Since F ′′ is a focused multibase for S ′′ and
S ⊆ S ′′ we have ⊩S′′ A[x/a] for all a ∈ N(S ′′), hence ⊩F ′′

A[x/a] for all a ∈ N(S ′′) and
in particular ⊩F ′′

S′′ A[x/a] for all a ∈ N(S ′′), which by isomorphism yields ⊩F
S′′ A[x/a]

for all a ∈ N(S ′′). But S ′′ is a arbitrary base in F , so for all S ′′ ∈ F we have ⊩F
S′′ A[x/a]

for all a ∈ N(S ′′). This can be used together with the clause for universal quantification
to conclude ⊩F

S′′ ∀xA for all S ′′ ∈ F , hence ⊩F ∀xA, whence ⊩S ∀xA by arbitrariness
of F .

2. (∃x): The proof is a straightforward adaptation of the inductive step for disjunction in
Theorem 3.3.4. We omit some details in the second part for the sake of simplicity.

Assume ⊩S A[x/a] for some a ∈ N(S). Then ⊩F A[x/a] for all F focused on S and
⊩F

S′ A[x/a] for all S ′ ∈ F . Since a ∈ N(S) and F is focused on S, by Lemma 3.4.13 we
have a ∈ N(S ′) for all S ′ ∈ F , hence ⊩F

S′ ∃xA, whence ⊩F ∃xA by arbitrariness of S ′

and ⊩S ∃xA by arbitrariness of F .

For the converse, assume ⊮S A[x/a] for all a ∈ N(S) but still ⊩S ∃xA. For every
b ∈ N(S) there must be a multibase F b focused on S such that ⊮F b

A[x/b]. For each
F b we create a multibase F b

v by including vacuous rules in the bases of F b just like in the
inductive step for disjuction, and after this is done we put all bases in the multibases F x

v

(for x ∈ N(S)) in a single multibase F focused on S. Since this is a multibase focused
on S, from the assumption that ⊩S ∃xA we have ⊩F ∃xA, hence ⊩F

S ∃xA, whence
⊩F

S A[x/c] for some c ∈ N(S). By monotonicity we have ⊩F
S′ A[x/c] for every S ′ ∈ F .

Regardless of the c we have picked, we will have ⊩F
Sc A[x/c] for all Sc ∈ F c, so by

isomorphism we will have ⊩F c

Sc A[x/c] for all Sc ∈ F c and so ⊩F c
A[x/c], contradicting

the the assumption that ⊮F c
A[x/c]. Since this works for every choice of constant c, we

obtain a contradiction, so we conclude ⊮S ∃xA and then ⊩S ∃xA implies ⊩S A[x/a] for
some a ∈ N(S) by contraposition. □

As usual, we also have the following:

Theorem 3.5.13 The following equivalences hold:

1. ⊩S ∀XnA ⇐⇒ ⊩S′ A[Xn/Pn] for all Pn ∈ N(S ′) in all S ⊆ S ′, given (n ≥ 0);

2. ⊩S ∃XnA ⇐⇒ ⊩S A[Xn/Pn] for some Pn ∈ N(S), given (n ≥ 0).
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Proof: Straightforward adaptation of the proof for Theorem 3.5.12, □

Since only properties of minimal logic were used, the results naturally extend also to
classical and intuitionistic multibases.

With this we conclude that generalized S-validity of formulas is ultimately reducible to
atomic derivability even if quantifiers are introduced in the language, so the semantics smoothly
extends to predicate logic without losing its fundamental properties.

3.6 Additional remarks

3.6.1 Technical differences between multibases and models

The rich inner structure of bases is responsible for many of the differences between
models and multibases. In Kripke semantics we need to specify domains, interpretations and
accessibility relations, but in multibases all of this is done indirectly by bases themselves. As
shown by our completeness proofs, Kripke models can be viewed as degenerate multibases
with no interesting structure, composed only of axiomatic rules (to substitute assignments and
interpretations) and vacuous rules (to specify domains and relations).

The structure of bases also enables use of the extension relation. Although use of a fixed
relation instead of arbitrary ones may seem disadvantageous at first, we reap many benefits from
its predetermined character. Preservation of atomic derivability would not hold in general were
the relations to be arbitrary. This preservation also has as natural byproducts proof-theoretic
equivalents of the monotonicity and domain preservation conditions, two properties that need
to be externally imposed on Kripke models.

Generalized S-validity, perhaps the most interesting feature of multibase semantics, is
so heavily reliant on base structure that it has no correspondent in Kripke semantics. It is also
faithful to the original notion of S-validity as conceptualized by Prawitz and Dummett, proof of
this being that almost all results expected to hold for S-validity hold for generalized S-validity.
The new definitions also entirely avoid some problematic interactions between disjunction and
implication, often responsible for the incompleteness results that have long plagued the litera-
ture.

It is also worthy of note that ours is a proof-theoretic semantics in more than one sense.
First, the semantic evaluation of sentences is entirely determined by derivability in bases of a
multibase, and generalized S-validity is entirely determined by derivability in bases – not even
being bound by multibases. Second, everything done externally by functions in model-theoretic
semantics is done internally by features of bases, so after bases have been defined everything
else follows. Third, bases are clearly syntactic structures in the technical sense (see Section
1.4.2), even though multibases are clearly semantic in nature, which reinforces our point that
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semantics in terms of proofs are possible because the semantic nature of structures is given by
universal quantification over their components, not the components themselves. Lastly, many
of our results make clear use of proof-theoretic methods to show semantic results (the most
notable being our proof of the Export principle in Theorems 3.3.19 and 3.5.10), which shows
that the properties and structures studied in Proof Theory indeed have semantic bearing.

3.6.2 The philosophy of multibases

The philosophical principles underlying multibases are also entirely different from those
justifying model-theoretic semantics, especially concerning the properties listed in Sections
1.2.2 and 1.2.3. The lack of inner structure in models is closely related to the strictly categori-
cal nature of truth, as by introducing such components we would make evaluations conditional
and thus introduce foreign counterfactual or epistemic elements. Problems created by the total
character of truth are avoided in Kripke semantics by the introduction of modal elements capa-
ble of diversifying truth assignments, but its monolithic character is preserved by the flat nature
of assignment functions. On the other hand, multibase semantics clearly has both categori-
cal and hypothetical elements, as witnessed by the fact that, even though semantic clauses are
defined categorically, consequence relations for generalized S-validity are entirely determined
by hypothetical derivability (see Theorems 3.3.1 and 3.3.4). The non-total character of proof
also makes it so that that semantic evaluations considering multiple bases and possible states of
knowledge are entirely faithful to the initial concept, as opposed to ad hoc elements added to
diversify a rigid concept of truth. Finally, the fragmentary nature of proofs is directly responsi-
ble for the concept of generalized S-validity; even though semantic values are determined by a
single concept of proof, bases with different proofs of the same result may have very different
semantic properties.

Some principles underlying multibases are also different from those of other proof-
theoretic semantics. Unlike in Sandqvist’s base-extension semantics (SANDQVIST, 2015),
the semantic clauses are now defined categorically; the hypothetical nature of consequences is a
product of the structure of bases, not of the clauses. We would still like to claim, however, that
defining proofs categorically is not the same as defining them in terms of their introduction rules
in natural deduction. The present author is entirely skeptical of the claim that only introduction
rules are used in definitions of proof-theoretic validity. A more sensible claim would be that, in
the definition (⊩M

S A ∧ B ⇐⇒ ⊩M
S B and ⊩M

S A), the (⇒) direction is given by introduction
rules, but (⇐) is given by elimination rules.

The arguments usually marshalled to justify the priority of introduction rules are undue
extrapolations of an insight due to Gentzen, expressed in the following often cited passage
(GENTZEN, 1969, pgs. 80-81):

The introductions represent, as it were, the “definitions” of the symbols con-
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cerned, and the eliminations are no more, in the final analysis, than the conse-

quences of these definitions. This fact may be expressed as follows: In elimi-

nating a symbol, we may use the formula with whose terminal symbol we are

dealing only “in the sense afforded it by the introduction of that symbol”. (...)

By making these ideas more precise it should be possible to display the E-

rules as unique functions of their corresponding I-rules, on the basis of certain

requirements.

Introduction rules can only be seen as definitions of logical operators if we have pre-
viously established that they are to be paired with the strongest possible harmonic elimination
rules. In this case, both introduction and elimination rules are unique functions of each other.
Even so, this does not mean that elimination rules do not contribute to the meaning of operators,
but only that our choice of introduction rules already determines which elimination rules should
be chosen to complete the intended meaning. In other words, the semantic value of operators is
given both by introduction and elimination rules, but if our interest lies in operators satisfying
this condition the introduction rules may be taken as definitions of operators precisely because
they also define their indispensable semantic complements. In view of this, multibase seman-
tics differs from base-extension semantics inasmuch semantic clauses are defined categorically
(as opposed to hypothetically), not in virtue of a supposed definition of semantic conditions
exclusively in terms of introduction rules (as opposed to definitions making more explicit use
of elimination rules, as is the case of Sandqvist’s clause for disjunction).

Multibase semantics also departs from other similar approaches in its treatment of infin-
ity. Even though both generalized S-validity and the original S-validity evaluate sentences in a
base by considering its infinitely many possible extensions, we argue that generalized S-validity
uses a procedural notion of infinity, as opposed to the total notion inadvertently invited by the
original definition.

Although mathematically quite inelegant, our definition of focused multibases in terms
of sequences (instead of sets) may help elucidate this claim. Focused multibases should be seen
as representations of different points reached in an iterated process of knowledge extension.
We have not included those characteristics in our definitions because this would unnecessarily
complicate many proofs, but a focused multibase should ideally have no repetitions and no
bases being preceded by its extensions. This would induce a tree-like structure in which at each
point we are extending at least one of the tree’s leafs, so at every step we are extending some
previously obtained state of inferential knowledge. In this reading, focused multibases are to
be viewed as pictures taken at particular moments in a dynamic process, not as static finished
structures.

This can be represented graphically as follows:
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Instant 1: ⟨S⟩

Instant 2: ⟨S, S ′⟩

Instant 3: ⟨S, S ′, S ′′⟩

(...)

The fact that we only need to consider finite multibases lends further credence to this
reading. Since we, as finite beings, can only expand our states of knowledge finitely many
times, each possible state of knowledge should be finite, even though infinitely many states are
in principle reachable. We need to factor in all possible extensions in our evaluations, but not

at the same time. A formula is then considered generally S-valid if it is valid regardless of the

state of knowledge we are currently in. In contrast, the original notion of S-validity evaluates
formulas in terms of a completed infinity containing all possible states of knowledge, so this
iterated reading of extension procedures is lost.
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CONCLUSION

The ideas presented in the early stages of proof-theoretic semantics were as elegant as
they were bold. It seemed inconceivable that proofs, whose function was to lay grounds for the
rigorous establishment of truths, would not only become independent entities, but also truth’s
equal. It is certainly unfortunate that many interesting proposals were shown to be lacking, but
it’s becoming increasingly clear that this was only a minor setback.

We hope it is not hubris to claim that multibase semantics is a worthy contribution to
the field. Generalized S-validity does seem significantly close to S-validity, and it is certainly
illuminating to see why it works and the original proposal doesn’t. The power and flexibility
of multibases becomes evident when it is shown to be a proof-theoretic alternative to Kripke
models, perhaps the most widely used contemporary model-theoretic framework. The fact that
proof-theoretic structures play a significant role on the inner workings of the semantics is also
essential to its status as a proper proof-theoretic semantics – and I must confess that, as a
proof theorist, I find it incredibly satisfying to prove semantic results using features of natural
deduction.

This is hopefully only the beginning of a bigger project. Multibases are flexible enough
to lend themselves to many purposes, and the fact that atomic restrictions can be used to mate-
rialize new concepts of proof leaves open the question of what other interesting semantics we
may obtain. The framework does also seem to have considerable untapped potential, so perhaps
there is still much to discover about the properties of multibases themselves. But this, of course,
only the future will tell.
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1. ed. [S.l.]: Birkhäuser Basel, 2003. (Science Networks. Historical Studies 28).

HEYTING, A. Intuitionism. An introduction. [3d rev. ed.]. [S.l.]: North-Holland Pub. Co,
1971. (Studies in logic and the foundations of mathematics).

HOLLIDAY, W. H.; HOSHI, T.; ICARD III, T. Information dynamics and uniform substitution.
Synthese, Springer Verlag, v. 190, n. 1, p. 31–55, 2013.
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