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RESUMO 

 

 

SARQUIS, Fernando Rocha. Investigação numérica de colunas engastadas compostas por 

seções cantoneiras de abas iguais laminadas a quente com seção cruciforme de aços 

inoxidáveis. 2024. 168 f. Tese (Doutorado em Engenharia Civil) – Faculdade de Engenharia, 

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2024. 

 

Os aços inoxidáveis austenítico e duplex são escolhidos para uma vasta gama de 

construções devido às suas notáveis características como, por exemplo, elevada resistência à 

corrosão, durabilidade, resistência e apelo estético. Contudo, as diretrizes de projeto atuais do 

Eurocódigo 3: Parte 1.4, específico para estruturas de aços inoxidáveis, frequentemente 

baseiam-se em analogias com o comportamento do aço carbono, o que pode não ser adequado, 

devido às características específicas do material, como o seu comportamento não-linear. 

Adicionalmente, seções cantoneira de abas iguais são comumente empregadas em aplicações 

estruturais, particularmente para colunas de comprimentos curtos a intermediários, que exibem 

comportamentos estruturais distintos. A geometria de sua seção transversal, caracterizada pelo 

encontro das linhas média (baixa rigidez torcional) e centroide não alinhado com o centro de 

cisalhamento, afeta o comportamento pós-flambagem das colunas, devido à interação entre 

deslocamentos ao redor dos eixos de maior e menor inércia, influenciando diretamente a 

resistência final do elemento. Neste contexto, a utilização de uma seção cruciforme, formada 

pela união de duas seções cantoneira de abas iguais conectadas pelo canto – alinhando o 

centroide e o centro de cisalhamento, emerge como uma solução eficiente para mitigar o 

deslocamento nos eixos de maior e menor inércia durante o comportamento pós-flambagem, 

resultando em uma estrutura mais estável. Com o objetivo de abordar as lacunas relacionadas 

ao uso de aços inoxidáveis e à aplicação de colunas com seção cruciforme, este estudo realiza 

uma investigação numérica sobre colunas com apoios fixos constituídas de aços inoxidáveis 

austenítico e duplex com seções cruciforme (tanto soldadas quanto parafusadas) de 

comprimentos curtos a intermediários, portanto suscetíveis à flambagem torsional. Um modelo 

de elementos finitos sólido foi desenvolvido e validado com resultados experimentais para 

examinar: (i) o comportamento de flambagem elástica das colunas, (ii) os caminhos de 

equilíbrio no comportamento elástico pós-flambagem, (iii) a sensibilidade à imperfeição 

geométrica inicial, (iv) a influência das propriedades mecânicas dos aços inoxidáveis 

austenítico e duplex, e (v) obter a carga máxima das colunas. Uma análise paramétrica foi 

realizada, considerando seções transversais compactas típicas de cantoneiras de abas iguais (ou 

seja, b/t < 20) e selecionando comprimentos de colunas – com base no comportamento de 

flambagem elástica – propensas à falha por flambagem torsional. Por fim, (vi) a resistência 

última numérica obtida é usada para avaliar se as disposições de cálculo do Eurocódigo 3: Parte 

1.4, especificamente a curva de flambagem “b”, prevê com precisão a carga última. As 

discrepâncias encontradas entre a carga última numérica e a resistência à flambagem por torção 

prevista pelo Eurocódigo indicaram um conservadorismo desnecessário. Consequentemente, 

propõe-se duas modificações ao código europeu, incluindo uma reclassificação da seção e uma 

modificação da curva de flambagem “b” usada atualmente para o dimensionamento desses 

elementos estruturais. 
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Seção estrelada; Flambagem torsional. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

 

 

SARQUIS, Fernando Rocha. Numerical assessment of fixed-ended short-to-intermediate 

stainless steel starred hot-rolled equal-leg angle sections built-up columns. 2024. 168 p. 

Thesis (DSc. in Civil Engineering) – Faculty of Engineering, State University of Rio de 

Janeiro, Rio de Janeiro, 2024. 

 

Austenitic and duplex stainless steels are chosen for many constructions due to their 

remarkable corrosion resistance, durability, strength, and aesthetic appeal. However, the current 

design guidelines of Eurocode 3: Part 1.4, specific to stainless steel structures, often rely on 

analogies with the behaviour of carbon steel, which may not be suitable due to the specific 

characteristics of the material, such as its nonlinear behaviour. Additionally, equal-leg angle 

sections are commonly employed in structural applications, particularly for short-to-

intermediate columns exhibiting distinct structural behaviours. The cross-section geometry is 

characterized by the mid-lines intersecting at a common point (low torsional stiffness), and the 

centroid is not aligned with the shear centre, which affects these columns’ post-buckling 

behaviour due to the interaction between displacements around the major and minor inertia 

axes, directly influencing the element’s ultimate strength. In this context, the use of a starred 

section, formed by joining two equal-leg angle sections at the corner – aligning the centroid and 

shear centre, emerges as an efficient solution to mitigate displacement in the major and minor 

axes during post-buckling behaviour, resulting in a more stable structure. In order to address 

the gaps related to the use of stainless steel and the application of columns with starred sections, 

this study conducts a numerical investigation on short-to-intermediate length columns with 

fixed supports made of austenitic and duplex stainless steel starred sections (both welded and 

bolted), thus susceptible to torsional buckling. A solid finite element model was developed and 

validated against experimental results to assess (i) the columns’ elastic buckling behaviour, (ii) 

elastic post-buckling behaviour equilibrium paths, (iii) initial geometrical imperfection 

sensitivity, (iv) influence of material mechanical properties of austenitic and duplex stainless 

steel, and (v) the columns’ ultimate failure load. A parametric analysis was performed through 

typical compact equal-leg angle cross-sections (i.e., b/t < 20) and selecting column lengths 

susceptible to torsional buckling failure based on the elastic buckling behaviour. Finally, the 

numerical ultimate strengths obtained are used to assess whether the design provisions of 

Eurocode 3: Part 1.4 – column buckling curve “b” – can accurately forecast the ultimate load. 

Discrepancies between the numerical failure load and the predicted Eurocode buckling ultimate 

torsional load revealed unduly conservatism. Consequently, two proposed modifications to the 

European code are suggested, involving a cross-section classification and change of the current 

buckling curve “b” actually used to assess the design of these structural elements. 

 

Keywords: Austenitic stainless steel; Duplex stainless steel; Equal-leg angles under 

compression; Eurocode 3; Fixed-ended columns; Finite element model; Numerical 

investigation; Starred sections; Torsional buckling. 
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NOTATIONS 

 

 

A Cross-section area 

Ag Gross cross-section area 

Aeff Effective cross-section area 

b Equal-leg angle width  

beff Effective equal-leg angle width 

C Cross-section centroid 

dm Major-axis displacement – minor-axis flexural buckling 

dM Minor-axis displacement – major-axis flexural buckling 

db Connection bolt diameter 

dp Bolted connection plates’ hole diameter 

E Young’s Modulus 

F Fixed-ended columns 

fu,b Connection bolt ultimate tensile strength 

G Shear modulus 

hp Connection plate’s height 

i0 Polar gyration radius relative to the shear centre 

I0 Polar moment inertia 

Iu Second moment of area about the u-axis 

Iv Second moment of area about the v-axis 

IT Welded torsional constant 

Ix Second moment of area about the x-axis 

Iy Second moment of area about the y-axis 

Iw Warping constant 

Iws Secondary warping constant 

J Literature torsional constant 

k Plate buckling coefficient 

L Column length 

LTFS Fixed-ended welded starred column transition length 

m Number of longitudinally sinusoidal half-wave 

Pcr,FT Elastic critical flexural-torsional buckling load 



 

 

Pcr,L Elastic critical plate buckling load 

Pcr,T Elastic critical torsional buckling load 

Pcr,u Elastic critical major-axis flexural buckling load 

Pcr,v Elastic critical minor-axis flexural buckling load 

Pu,EC3 Eurocode 3 design torsional buckling resistance 

Pu,FE Numerical ultimate load 

Pu,RS Numerical ultimate load with residual stress 

Pu,WRS Numerical ultimate load without residual stress 

t Equal-leg angle thickness 

tp Bolted connection plates’ thickness 

u Equal-leg angle cross-section first principal axis 

u0 Equal-leg angle cross-section distance between the shear centre and the centroid 

v Equal-leg angle cross-section second principal axis 

wp Bolted connection plates’ width 

α Eurocode 3 imperfection factor 

β Column mid-span cross-section torsional rotation 

β0 Initial geometrical imperfection column mid-span cross-section torsional rotation 

βRS Welded starred section residual stress maximum and minimum value 

γM1 Eurocode 3 partial safety factor 

Δ Displacement 

ε Eurocode 3 non-dimensional parameter relating to material’s mechanical 

properties 

εu Stainless steel failure strain 

λ0 Eurocode 3 curve non-dimensional slenderness limit 

λp Eurocode 3 plate’s non-dimensional slenderness limit 

λT Non-dimensional torsional slenderness 

υ Poisson’s coefficient 

ρ Eurocode 3 plate’s reduction factor 

σ0,2% Stainless steel 0.2% proof strength 

σy Carbon steel yield strength 

σu Stainless steel's ultimate strength 

χ Eurocode 3 column reduction factor 

χRS Residual stress reduction factor 



 

 

ψ Eurocode 3 parameter, which correlates the plate’s internal normal stress ratio 
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 INTRODUCTION 

 

 

Generalities 

 

 

Stainless steel offers several advantages in civil engineering structural applications, as 

elucidated by Badoo [1]. According to the Design Manual for Structural Stainless Steel [2], two 

prevalent types of stainless steel are commonly used in structural applications: (i) austenitic 

grade 1.4301 (widely known as 304) and (ii) duplex grade 1.4462. Austenitic stainless steels 

are typically chosen for structural members that demand good strength, corrosion resistance, 

and excellent elongation before fracture. Duplex stainless steels are suitable in situations where 

high strength and corrosion resistance are required. In recent years, the increasing need for 

durable and enduring structures with minimal maintenance has increased the demand for 

stainless steel in the construction sector. The ease of fabrication into several structural 

components, appearance, and corrosion qualities of stainless steel make it a preferred material 

for functional and visually appealing components in modern structural projects. 

However, this material presents particular stress-strain curve behaviour. Unlike carbon 

steel, which typically displays linear elastic behaviour with a clearly defined yield stress, σy, 

stainless steel exhibits a non-linear elastic response without a well-defined yielding plateau 

strength, conventionally identified as a 0.2% proof strength (σ0.2%), as illustrated in Figure 1. 

Afshan and Gardner [3] highlighted a critical aspect concerning the European code design 

guidelines for structural members made of austenitic and duplex stainless steel – Eurocode 3: 

Part 1.4 [4]. Its formulation relies on limit state design provisions derived from the behaviour 

of carbon steel established in Eurocode 3: Part 1.1 [5]. This methodology reveals insufficient 

information concerning the stainless steel members’ experimental and numerical structural 

response data. 

Additionally, in structural engineering, selecting cross-section shapes for columns (i.e., 

axial compressive loads) is a critical decision which significantly dictates the overall structural 

response and efficiency of the constructions. This decision is achieved by in-depth knowledge 

concerning the columns’ mechanical behaviour of different cross-sections, i.e., (i) elastic 

buckling, (ii) elastic and elastic-plastic post-buckling behaviour, and (iii) ultimate strength, to 

obtain a safe and proper columns buckling design curve equations for these structural members. 
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a) b) 

Figure 1: a) Stress versus strain curve comparison for stainless steel and carbon steel ranging from 0 to 

0.75% strain, and b) definition of the stainless steel’s 0.2% proof strength. 

 

Equal angle sections, also known as L-shaped, are widely employed in various structural 

applications due to their geometry simplicity, cost-effectiveness, and ease of connection. As 

crucial supports, they contribute significantly to the strength and stability of buildings, bridges, 

towers, and various other structures. A notable application of these sections is in high-voltage 

transmission or telecommunication towers, as shown in Figure 2(a). Particularly, these equal-

leg angle columns are designed with short to intermediate lengths to accommodate the essential 

connections within the structure. 

Nevertheless, the inherent geometrical properties of this section (monosymmetric open 

section) cause low torsional stiffness and the non-coincidence of the centroid and shear centre, 

predisposing the short-to-intermediate equal-leg angle columns’ to failure by flexural-torsional 

buckling. This phenomenon involves (i) bending about the first principal axis (major-axis 

flexural buckling) and (ii) cross-section torsional rotation (torsional buckling). It is well-known 

that the major-axis bending participation influences the equal-leg angle columns’ elastic and 

elastic-plastic post-buckling behaviour and, consequently, directly impacts the load-bearing 

capacity of these structural members. 

As the need for power and telecommunications services grows, existing transmission 

towers must increasingly accommodate additional loads that surpass their initial design 

capacities. In response, a prevalent retrofitting strategy in civil engineering involves adding L-

shaped profiles, using two equal-leg angles to form a built-up “starred” cross-section, which 

serves as a reinforcement for the lattice structures of these towers, as shown in Figure 2(b) 

highlighted in red. 
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This reinforcement can be constructed by connecting a pair of equal-leg angles using 

bolted plates or welding at sections’ corners, as depicted in Figure 3. A notable characteristic 

of this geometrical configuration assembly is that the centroid and shear centre are now 

coincident, influencing the overall structural behaviour. As a result of this geometry, columns 

with these types of starred sections are expected to be free from major-axis flexural buckling 

corner displacement. However, due to the inherent low torsional stiffness, the short-to-

intermediate columns remain vulnerable to pure torsional buckling failure modes. 

It is within this context of ensuring fixed-ended starred columns’ integrity that it 

becomes crucial to emphasize that columns susceptible to failure by flexural-torsional and 

torsional buckling are assessed under European standard codes (i.e., for carbon [5] and stainless 

steel [4]) using the same buckling design curve, identified as curve “b”, to predict their ultimate 

strength. This methodology underscores the existing experimental and numerical data gap 

necessary to distinguish these starred columns’ resistance, which presents distinct post-buckling 

behaviour compared to a single equal-leg column. Therefore, the mechanical behaviour of these 

starred columns requires a different design approach to ensure a rational and adequate/accurate 

load-bearing capacity.  

 

  
a) b) 

Figure 2: a) Telecommunication angle steel tower [6] and b) structural reinforcement high-voltage 

tower [7]. 
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a) b) 

Figure 3: Dual equal-leg angle starred built-up section with a) bolted plate and b) welds. 

 

 

Objectives 

 

 

The main objectives of this thesis are to assess the (i) elastic buckling and (ii) elastic 

post-buckling behaviour of fixed-ended short-to-intermediate starred built-up columns 

(including bolted plate and welds) to gain insight into the mechanical behaviour of these 

structural members, focusing exclusively on geometrical nonlinearity. Subsequently, austenitic 

and duplex stainless steel materials behaviour are introduced into the analysis, aiming (iii) to 

validate the finite element model against experimental results documented in the existing 

literature. With this validation, it is possible (iv) to conduct a parametric analysis covering a 

wider range of equal-leg angle cross-sections and short-to-intermediate columns’ lengths that 

fail due to torsional buckling, i.e., verify the influence of the stainless steel material’s 

nonlinearity on these columns’ strength. Finally, (v) the obtained numerical ultimate strengths 

are used to assess the accuracy of Eurocode 3: Part 1.4 column buckling curve “b” in predicting 

the ultimate load capacity. 

 

 

Outline of the thesis 

 

 

This doctoral thesis is structured into an introduction followed by seven chapters. The 

introductory section offers insights into the stainless steel material employed in this study, along 

Equal-leg angle 1 

Equal-leg angle 2 

Bolts 

Equal-leg angle 1 

Equal-leg angle 2 

Welds 

Plates 
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with an exploration of the structural uses of equal-leg angle sections and built-up sections 

composed of two equal-leg angle sections. 

Chapter one is dedicated to the literature review, initially discussing the reasons why 

many studies have misinterpreted local and torsional deformations in short-to-intermediate 

equal-leg angle columns. It elucidates the distinctions in post-buckling behaviour between 

columns with equal-leg angles and cruciform sections and summarizes pivotal studies on the 

structural aspects of these stainless steel columns. 

Chapter two delves into the European normative framework (Eurocode 3: Part 1.4) and 

describes its design methodology for stainless steel structural members. This methodology 

traditionally relies on the behavioural insights gained from carbon steel structures. 

Chapter three compiles significant experimental data from the literature on short-to-

intermediate length stainless steel fixed-ended columns, both welded and bolted cross-sections, 

highlighting their failure modes, displacements, equilibrium paths, and ultimate strengths. 

Chapter four details the finite element modelling approach used in this study, discussing 

the chosen finite element, meshing techniques, geometry, boundary conditions, and the 

inclusion of initial geometrical imperfection in the numerical models. This chapter further 

explores the welded starred columns' buckling and elastic post-buckling behaviours, validation 

against experimental data, and sensitivity to initial geometrical imperfections. 

Chapter five presents a parametric analysis aiming to extend the results previously 

achieved experimentally. It takes into account austenitic and duplex stainless steel materials, 

equal-leg angle compact sections, and column lengths that are prone to failure by torsional 

buckling. 

Chapter six provides a detailed description of the finite element model development for 

bolted starred columns, emphasising the key parameters and assumptions made during the 

numerical analysis. This section covers the assumptions of the developed finite element model, 

including column geometry, element types, mesh size, boundary conditions, contact modelling, 

bolt preload, the implementation of initial geometrical imperfections, and the solution technique 

employed. 

Chapter 7 presents the elastic buckling behaviour of bolted starred columns, followed 

by elastic post-buckling behaviour. It includes the validation of the numerical model, a 

sensitivity study on geometrical imperfections, and a comprehensive parametric analysis. 

Chapter 8 exposes the current design procedures outlined by Eurocode 3 for their 

excessive conservatism. In response, it proposes two adjustments consistent with Eurocode 3’s 

methodology to refine the design process. 
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Chapter 9 summarizes the principal conclusions obtained from this research and outlines 

a schedule for future work. It mainly focuses on extending the analysis to columns with bolted 

sections to ensure a comprehensive understanding of their structural behaviour. 
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1 LITERATURE REVIEW 

 

 

1.1 Introduction 

 

 

This section presents a comprehensive literature review on the structural behaviour of 

short-to-intermediate fixed-ended equal-leg angle and cruciform columns. It focuses on the 

columns’ elastic buckling and post-buckling behaviour, elastic-plastic behaviour, and ultimate 

strength. Thus, an initial investigation into the atypical short-to-intermediate equal-leg angle 

columns’ elastic buckling behaviour is necessary, highlighting the challenge of distinguishing 

between local and torsional deformations over the years. 

However, applying Generalized Beam Theory (GBT) analysis has uncovered significant 

new insights into these columns’ elastic mechanical buckling behaviour, enhancing 

understanding of their natural mechanical behaviour. Due to these two cross-section 

geometries, it is demonstrated that columns with equal-leg angles and cruciform profiles of 

short to intermediate lengths are respectively susceptible to failure by flexural-torsional 

buckling and pure torsional buckling without the occurrence of local buckling. Based on these 

results, it is possible to highlight the significant differences between these two phenomena 

(flexural-torsional and torsional) post-buckling behaviour, which are critical to the columns’ 

stability and ultimate strength. 

It is essential to underscore that the analysis extends to the structural behaviour of 

cruciform columns to draw parallels to built-up double equal-leg angle starred sections. This 

evolution of understanding from basic column types to more complex configurations, including 

columns with starred cross-sections, combines the benefits of equal-leg angle (a standard steel 

profile) and cruciform sections (known for stable post-buckling behaviour).  

Therefore, this comprehensive review aims (i) to elucidate the short-to-intermediate 

fixed-ended equal-leg angle and cruciform columns’ buckling behaviours and (ii) provide a 

solid foundation for understanding and improving the structural behaviour of fixed-ended short-

to-intermediate starred columns by integrating these insights. 
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1.2 Torsional and flexural-torsional buckling 

 

 

1.2.1 Introduction 

 

 

Cross-sections composed of thin plates with mid-lines intersecting at a single point (e.g., 

equal-leg angles and cruciform sections) exhibit no primary warping resistance (Iw = 0). This 

characteristic inherently leads to a significantly low torsional stiffness. Furthermore, the 

alignment of the centroid and the shear centre in these cross-sections plays a crucial role in 

influencing the stability of the columns. As a result, (i) columns with cruciform sections are 

distinctly vulnerable to buckling phenomena associated with pure torsion (torsional buckling). 

In contrast, (ii) columns with equal-leg angle sections are prone to failure through a 

combination of major-axis flexural buckling and torsion (flexural-torsional buckling). 

 

 

1.2.2 Torsional buckling 

 

 

Pioneering studies carried out by Wagner [8], followed by reviews from Timoshenko 

[9], Timoshenko and Gere [10], and the detailed investigation by Gaylord and Gaylord [11], 

significantly contributed to understanding the torsional buckling theory. It is known that if the 

cross-section geometry consists of thin elements intersecting at a common point and if the axis 

of rotation (z) is assumed to pass through the shear centre (S), then the primary warping constant 

is zero (Iw = 0). 

Figure 4(a) depicts a cruciform section with four identical legs, each defined by a width 

b and thickness t, which presents the centroid coincident with the shear centre due to the double 

symmetry (x and y axes). This characteristic naturally means a very low torsional stiffness, 

making these sections particularly susceptible to torsional buckling, i.e., buckling that involves 

the cross-section torsion rotation. Thus, if the structural member is submitted to concentrically 

axial compression (columns), torsional buckling may occur – depending on the length (L) – 

under a smaller load than the minor-axis flexural buckling. 

Figure 4(b) shows cruciform columns subject to failure by torsional buckling under 

compression. It is essential to highlight two phenomenon’s mechanical behaviour 
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characteristics: (i) each leg behaves identically, showing rigid-body rotation (β) about the shear 

centre z-axis, and (ii) the column’s axis (z) remaining straight, i.e., there are no (major or minor 

axes) flexural displacements, as depicted in Figure 4(c). Consequently, the columns’ elastic 

critical torsional buckling load (Pcr,T) – well-established in the literature – can be expressed by 

Eq. (1). 

 

 

Where i0
2 is the polar radius of gyration relative to the shear centre, Ix and Iy are the 

principal second moment of area, A is the gross cross-section area, G is the shear modulus, J is 

the torsion constant, E is the Young’s Modulus, Iw is the primary warping constant, Leff is the 

effective length for torsion failure mode, GJ is the St. Venant torsional stiffness, and EIw is the 

warping torsion stiffness. 

 

 

 

 

a) b) c) 

Figure 4: a) Cruciform geometry, b) column torsional buckling, and c) mid-span cross-section 

torsional rotation. 
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1.2.3 Flexural-torsional buckling 

 

 

Despite the simplicity, equal-leg angle sections exhibit two essential geometrical 

characteristics: monosymmetric open section, i.e., the centroid does not coincide with the shear 

centre, and their wall mid-lines intersect at a single point. Figure 5(a) depicts the equal-leg angle 

section geometry, showing the leg width (b) and thickness (t), the centroid (C), and the shear 

centre (S). Also, it depicts the section’s principal axes, which are rotated by 45º relative to the 

geometrical axes (x and y), thus defining the major and minor axes (u and v), respectively. 

As aforementioned, columns with monosymmetric open sections are marked by low 

torsional stiffness because the primary warping constant is null (Iw = 0). This characteristic, 

combined with the misalignment between the centroid and the shear centre, results in a unique 

mechanical behaviour in terms of elastic stability analysis. The particular geometry and cross-

section properties provoke a structural response encompassing both (i) flexural bending about 

the major-axis and (ii) torsional movements around the shear centre. 

This susceptibility arises from how columns with monosymmetric sections buckle under 

axial compression. The process begins with rotation about the shear centre due to the low 

torsional stiffness, referred to as the z1-axis, which occurs along an axis parallel to the 

longitudinal z-axis. This cross-section torsional rotation movement inherently couples with 

bending along one of the column’s principal planes, identified as u-z and v-z. Notably, the v-z 

principal plane does not align with the shear centre, so the bending around the major-axis (u) 

becomes evident. 

Figure 5(b) illustrates an equal-leg angle column that is susceptible to flexural-torsional 

buckling, showcasing the two significant mechanical behaviour characteristics: (i) the cross-

section undergoes a rigid-body rotation around the longitudinal shear centre z1-axis, and (ii) the 

z1-axis does not remain straight, showing bending displacements about the major-axis, (major-

axis flexural buckling).  

Additionally, Figure 5(c) illustrates these two types of rigid-body motions at the 

column’s mid-span, where dM means the corner’s displacements due to the major-axis flexural 

buckling, and β represents the cross-section’s shear centre torsional rotation, providing a clear 

visualisation of the column’s behaviour. Furthermore, the equation for calculating the columns’ 

elastic critical flexural-torsional buckling (Pcr,FT) is outlined in Eq. (3): 
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where Pcr,u is the elastic critical major-axis flexural buckling load, Iu is the major-axis 

second moment of area, u0 is the shear centre coordinates with respect to the centroid of gross 

cross-section, and η is a dimensionless parameter. 

 

 

 

 

a) b) c) 

 

Figure 5: a) Equal-leg angle section geometry, b) column with equal-leg angle cross-section prone to 

failure by flexural-torsional buckling, and c) mid-span cross-section buckling deformation. 
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1.3.1 Local/torsional mixed deformations mode 

 

 

In 1963, Timoshenko and Gere [10] highlighted the peculiarities of equal-leg angle 

sections. The authors showed that when the section’s leg is subjected to uniformly distributed 

compression in short-to-intermediate lengths, the local buckling mode of the legs displays a 

local deformed configuration akin to global pure torsional buckling, as depicted in Figure 6. 

Considering that the mechanical deformation response varies between local and global 

(torsional) buckling modes, this discrepancy significantly impacts these columns’ ultimate 

strength. 

 

 

Figure 6: Short equal-leg angle columns’ buckling mode according to Timoshenko and Gere [10]. 

 

For this reason, investigations into the local and torsional elastic critical buckling 

behaviour – often described as a virtually identical phenomenon – were carried out in equal-leg 

angle columns due to the difficulty distinguishing between these two deformations [12]-[14]. 

In 2005, Rasmussen [12] demonstrated the coincidence between local and torsional elastic 

critical buckling load grounded in the theory that monosymmetric cross-sections, in which the 

mid-lines intersect at a common point, exhibiting a null primary warping constant (Iw = 0). 

Consequently, the elastic critical torsional buckling load – Eq. (1) – is simplified to Eq. (6). 
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In Eq. (6), all the terms can be expressed solely in terms of the equal-leg angle cross-

section geometry (leg width b and thickness t) and the elastic steel material’s properties 

(Young’s Modulus and Poisson’s ratio), as shown in Eq. (7) and Eq. (8), respectively. 

 

 

The author also showed the well-established concept of elastic critical plate buckling 

stress (σcr,L), which is derived from the elastic critical plate buckling load (Pcr,L), as shown in 

Eq. (9). Additionally, this equation can further be adapted to incorporate the equal-leg angle 

cross-sections’ geometry (b and t), with A = 2bt, leading to the derivation of Eq. (10). 

 

 

In Eq. (10), the only different term is related to the plates’ buckling coefficient k. 

However, according to Rasmussen [12], each leg of an equal-leg angle behaves like a 

rectangular plate in end compression with one longitudinally supported edge and the other free, 

as depicted in the frontal perspective presented in Figure 7. Following this, the plates’ buckling 

coefficient k can be obtained according to Bulson [15] and expressed in Eq. (13) for typical 

column lengths (rectangular plates’ elastic stability is assessed in detail in Section 1.3.3). 
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Figure 7: Equal-leg angle columns comparison with a rectangular plate in end compression with one 

longitudinally simply supported edge and the other free. 

 

Therefore, substituting Eq. (11) into Eq. (10) reveals that an identical formula is arrived 

at for both the elastic critical torsional and local buckling loads, as demonstrated in Eq. (12). 

From this observation, the author concluded that the elastic critical loads are equivalent and 

coincident for conventional lengths of equal-leg angle columns. 

 

 

However, this approach does not provide any details on the deformations and 

mechanical behaviour of the structural elements. Moreover, to understand the distinction 

behaviours of local and torsional deformations in equal-leg angles columns, it is crucial to 

underscore two fundamental concepts that hold relevance to understanding the structural 

behaviour of short-to-intermediate equal-leg angle columns for this work, i.e., (i) the concepts 

of the Generalized Beam Theory (GBT) and (ii) the study carried out by Bulson in 1970 [15] 

focusing on flat rectangular plates. 
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1.3.2 Brief overview of Generalised Beam Theory (GBT) principles 

 

 

This section briefly reviews the Generalised Beam Theory (GBT) principles considering 

a cold-formed steel member composed of an open thin-walled unbranched cross-section that 

aims to distinguish between the mechanical behaviour of local and torsional deformations in 

equal-leg angle columns. The Generalised Beam Theory (GBT), pioneered by Schardt [16]-

[17], represents an extension of Vlasov’s [18] classical bar theory by incorporating folded-plate 

concepts. It serves as a sophisticated framework for analysing the structural behaviour of cold-

formed steel thin-walled members. 

Davies, Leach and colleagues ([19]-[24]) have extensively employed GBT to investigate 

the buckling behaviour of cold-formed steel thin-walled members. Their research has 

significantly validated GBT as a viable and often preferred alternative to numerical finite 

element or finite strip analyses. GBT integrates both cross-section and global (member) modes 

of deformation, facilitating the execution of geometrically linear analyses (first-order GBT) or 

linear stability analyses (second-order GBT). 

This second approach offers a unified methodology for obtaining precise and insightful 

solutions to diverse structural problems. Indeed, the distinctive decomposition of the member’s 

buckling mode shape into a linear combination of cross-section deformation modes is 

accountable for the clarity of the GBT solutions. In this context, the GBT buckling analysis 

approach involves two primary tasks: (i) conducting a cross-section analysis, i.e., aimed at 

obtaining the so-called “cross-section deformation modes”, and (ii) performing a member linear 

stability analysis to assess the participation of each deformation mode in the longitudinal axis. 

 

 

1.3.2.1 Elementary warping functions and cross-section modal properties introduction 

 

 

According to Davies and Leach [19], the theory’s core involves “warping elementary 

functions”1, where each cross-section deformation mode k is associated with axial strain 

                                                 

1 Initially, it is essential to highlight that the term "warping" is frequently encountered in the context of Generalised 

Beam Theory (GBT). Its use may be confused as it is often linked with non-uniform torsion. However, in this context, 

“warping” encompasses axial deformation and is not solely related to the torsion deformation mode. 
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distribution ku . In this context, the first mode exhibits a uniform distribution of axial strain 

across the cross-section, represented by the warping function 1 1u    for all points s of the 

cross-section. The second and third modes correspond to bending, featuring warping functions 

that depict linear strain distributions about the two principal axes. Lastly, the fourth mode, i.e., 

torsion about the shear centre, retains its traditional definition of warping, wherein the warping 

function represents the sectorial coordinate reflecting the distribution of axial strain induced by 

the bi-moment. These four modes are often called the “rigid-body” modes because they do not 

entail cross-section distortion, i.e., the cross-section geometry remains unchanged, and the 

elements remain straight. 

Figure 8(a) presents a cross-section with five natural nodes to illustrate these concepts. 

Figure 8(b) illustrates the four rigid-body modes, and Figure 8(c) the cross-section distortion 

mode 5. According to GBT principles, each of these five nodes can independently “warp”, with 

the warping functions exhibiting linearity between the nodes. Consequently, each warping 

function possesses five degrees of freedom, resulting in the section having five orthogonal 

deformation modes and their respective associated warping functions. Additional distortion 

modes can be incorporated into the analysis by introducing intermediate nodes between the 

natural ones. Therefore, each mode k is defined by (i) a warping function, (ii) a specific pattern 

of cross-section displacements, and (iii) cross-section properties denoted as kC , 
k D  and 

k B . 

Additionally, the authors [19] provided an equivalence between the conventional theory 

of structural mechanics and GBT section properties to establish an evident mechanical meaning 

behaviour concerning the deformation modes – presented in Table 1. In this table, A is the cross-

section area, Ixx is the second moment of area about the first principal axis, Iyy is the second 

moment of area about the second principal axis, Iw is the warping constant, and J is the Saint 

Venant torsional constant. 

This comparison shows that C represents the stiffness associated with direct stress in the 

respective mode, D indicates the stiffness related to shear stresses resulting from torsion, and B 

signifies the stiffness of transverse bending stress. For instance, focusing solely on mode 3 

(minor-axis bending), it becomes evident that its resistance is directly linked to the second 

moment of area about the second principal axis (Iyy). Now, shifting focus to mode 4, it becomes 

clear that it pertains to the warping constant (Iw) and the St. Venant torsional constant (J). 
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a) 

Mode k Warping Function Displaced Shape 

1) Axial Stress 

  

2) Major-axis bending 

 
 

3)Minor-axis bending 

 
 

4) Torsion 

 
 

b) 

5) Distortion 

  
c) 

Figure 8: Common cross-section deformation profiles and warping functions a) cross-section with five 

nodes, b) rigid-body modes (k = 1 - 4), and c) cross-section distortion mode (k = 5) [20]. 
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Table 1: Cross-section properties in Conventional Notations and GBT [20]. 

Deformation mode Conventional theory Generalised beam theory 

1 A   1C    

2 Ixx   2C    

3 Iyy   3C    

4 Iw J  4C  4D   

k ? ? ? kC  k D  
k B  

 

 

1.3.2.2 Cross-section analysis – displacement field 

 

 

The derivation presented pertains to a prismatic member featuring an arbitrary 

unbranched2 open thin-walled cross-section comprised of rectangular plate elements with 

uniform thickness (t). It is essential to highlight that fundamental assumptions used in GBT 

cross-section deformation modes are extensively elucidated by Silvestre and Camotim [25]-

[26] and briefly presented in this section – aiming to present the most crucial theory concepts 

to understand the study of short-to-intermediate equal-leg angle columns. 

In order to initiate this derivation, it is imperative to establish initial definitions. A right-

handed orthogonal local coordinate system is introduced, denoted as x, s, z. In this arrangement, 

the x-coordinate aligns parallel to the member axis. At the same time, the s-coordinate runs 

along the cross-sectional midline, and the z-coordinate is perpendicular to the cross-sectional 

mid-plane. This local coordinate system defines the local displacements u, v, and w, as 

illustrated in Figure 9(a). 

Gonçalves et al. [28] describe that the cross-section is divided into multiple plate 

elements determined by nodes, i.e., cross-section discretisation. Within this analysis, two node 

types are distinguished: natural nodes and intermediate nodes. Natural nodes are positioned at 

the intersection of two plate elements or free edges. On the other hand, intermediate nodes are 

situated within a plate element, positioned between two plate’s natural nodes. This arrangement 

is illustrated in Figure 9(b). 

                                                 

2 This definition applies in cases where a maximum of two walls exclusively share each cross-section node. 
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a) b) 

Figure 9: Prismatic member a) geometry/axes displacements and b) cross-section discretisation [27]. 

 

The mid-line displacement field representation is adopted following Vlasov’s classical 

thin-walled beam theory [18], expressing each local displacement component as a product of 

two single-variable functions – u(x, s), v(x, s), and w(x, s) – a technique commonly employed 

in rectangular plate analysis. In other words, one variable depends on the longitudinal axis 

coordinate (x), while the other is dependent on the cross-section mid-line abscissa (s), as 

presented in Eq. (13). 

 

 ,( , ) ( ). ( )k xu x s u s x  ( , ) ( ). ( )kv x s v s x  ( , ) ( ). ( )kw x s w s x  (13)  

 

Where (i) the comma subscripts denote partial derivatives, (ii) the mid-line 

“displacements profiles” are represented by ( )u s , ( )v s  and ( )w s  (iii) ( )x  is a dimensionless 

“displacement amplitude function” along the member length (0 ≤ x ≤ L). 

According to Silvestre and Camotim [25], GBT's most distinctive feature lies in 

expressing the transverse mid-line displacement profiles ( )v s  and ( )w s  in terms of the 

longitudinal displacement ( )u s , which are geometrical. This approach enables a 

comprehensive definition of the member’s behaviour, encompassing displacements, strains, 

stresses, and internal forces, based solely on the knowledge of the longitudinal displacement 

( , )u x s . Additionally, the authors assume that ( )u s  varies linearly within each plate element, 

implying that a linear function is employed across the entire cross-section. This assumption 

signifies that ( )u s  can be fully determined by its nodal values based on the cross-section 

discretisation. In other words, the process involves sequentially introducing (i) elementary 
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warping functions at natural nodes and (ii) elementary flexural functions at intermediate nodes. 

Further elucidation on this procedural aspect is available in the referenced literature [25]-[32]. 

Thus, the displacement ( )u s  along the coordinate s in a member can be expressed as 

shown in Eq. (14). It is calculated as the product of the displacement ( )ku s  at node k multiplied 

by the interpolation function ( )ku s , which is a linear function of s that has a unit value at node 

k and zero value at all other nodes. This equation means that the displacement along the element 

is calculated by multiplying the displacement at the node by the value of the interpolation 

function associated with the node.  

 

 ( ) ( ) ( )k ku s u s u s  (14)  

 

This process effectively entails “discretising” the deformed configuration of the cross-

section into a set of modes equivalent to the number of nodes. The nodal warping values serve 

as the degrees of freedom, i.e.,  the number of degrees of freedom depends on whether 

intermediate nodes are included. If intermediate nodes are excluded, the number of degrees of 

freedom equals the number of natural nodes. However, if intermediate nodes are included, the 

number of degrees of freedom equals the total number of nodes plus two additional degrees of 

freedom associated with the two boundary nodes. Therefore, the displacement field for a 

member formed by k nodes is expressed as shown in Eq. (15). 

 

 ,( , ) ( ). ( )k k xu x s u s x  ( , ) ( ). ( )k kv x s v s x  ( , ) ( ). ( )k kw x s w s x  (15)  

 

Where the ( )ku s , ( )kv s  and ( )kw s  are the shape functions to approximate the cross-

section displacement field, i.e., cross-section deformation modes, and ( )k x  quantifies the 

magnitude of these deformation modes along the length of the member – the common 

displacement amplitude function and defined in Eq. (16). Finally, the member’s behaviour is 

determined by summing over the cross-section deformation modes k. This approach allows 

users to select which modes to consider and assess the influence of different deformation modes 

on the overall behaviour of the member.  
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 ( ) ( ). ( )k k kx u s x   (16)  

 

 

1.3.2.3 Assumptions and kinematic relations 

 

 

The formulation of the GBT is based on two simplifying approximations rooted in thin 

plate theory. Firstly, Kirchhoff’s hypothesis is valid for each plate forming the member. 

Consequently, fibres normal to the mid-plane are expected to remain straight, inextensional, 

and perpendicular to the deformed mid-plane throughout deformation, as presented in Eq. (17). 

Secondly, only longitudinal extensions are considered in terms of membrane strains, while 

shear strains and transverse extensions are neglected – as shown in Eq. (18).  

 

 0xz sz zz      (17)  

 0M

xx   and 0M M

xs ss    (18)  

 

These simplifications lead to the kinematic strain-displacement relations for the mid-

plane displacement, as expressed in Eq. (19), for membrane strains (.M) and strains 

corresponding to the bending of the plate element (.F). Finally, incorporating Eq. (15) into the 

kinematic relations results in Eq. (20), where membrane and flexural axial extensions are 

grouped. 

 

 ,

M

xx xu  ;      ,.F

xx xxz w   ;      ,.F

ss ssz w       and     ,2 .F

xs xsz w    (19)  

 ,( )xx k k k xxu zw   ;     ,ss k ss kzw        and     , ,2xs k s k xzw    (20)  

 

 

1.3.2.4 Linear stability analysis 

 

 

A typical GBT elastic buckling analysis comprises two main steps: (i) cross-section 

analysis, where the GBT deformation modes and their associated modal mechanical properties 
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are determined, and (ii) member linear stability analysis, focused on computing the member’s 

stability for each deformation mode. For the arbitrary q-walled member illustrated in Figure 

9(a), and considering the cross-section discretisation in Figure 9(b) with q+1 natural nodes and 

m intermediate nodes, a total of q+m+1 GBT deformation modes are obtained.  

For an illustration purpose, a lipped channel cross-section discretisation is presented in 

Figure 10(a) – composed of five walls (q = 5), resulting in six natural nodes (q + 1 = 6) and 

nine intermediate nodes added (m = 9). Figure 10(b) shows the first eight most relevant in-plane 

shapes (excluding mode 1, which represents axial extension) of deformation modes to illustrate 

the cross-section deformed configurations. It is worth highlighting that modes 2, 3, and 4 are 

considered global modes, while modes 5 and 6 are categorised as distortional modes3, and 

modes 7 and 8 are classified as local-plate modes. 

 

 

a) 

Rigid-bod modes Distortional Local-plate 

Major-axis 

bending 

Minor-axis 

bending 
Torsion     

 

b) 

Figure 10: Lipped channel a) cross-section discretisation and b) first eight deformation modes in-plane 

shapes (rigid-body, distortional and local-plate). 

 

                                                 

3 It is essential to highlight that equal-leg angle or cruciform sections do not present distortional modes. Thus, modes 

5 and 6 become local plate in GBT notation. 

- Natural node

- Intermediate node

y

x
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Upon following (i) the adoption of Vlasov’s assumptions concerning null membrane 

shear strains and transverse extensions, (ii) consideration of the material constants (Young’s 

modulus E, shear modulus G, and Poisson’s ratio ν), and (iii) application of either the principle 

of virtual work or the principle of stationary potential energy, the GBT system equilibrium 

equations are derived in Eq. (21), with one equation corresponding to each deformation mode 

k. 

 

 , , .0 , 0ik k xxxx ik k xx ik k j jik k xxEC GD EB W X         (21)  

  .0 , 0 .0 , 00 0L L

j i x i jik j k x iW W X W         

 

(22)  

 
2

,i ik k xx ik kW EC GD     (23)  

 , ,i i x ik k xW W GD      (24)  

 

Where .0jW 
 are the pre-buckling uniform internal force/moment members;   is the load 

parameter; Cik, Dik, Bik are the linear stiffness matrices; Xjik geometrical stiffness matrix; iW  

and iW   are the generalised normal and shear stress resultant arising from the cross-section 

integration of the displacements and their derivatives. 

It is essential to note that once the initial shape functions ( ( )ku s , ( )kv s  and ( )kw s ) are 

established, the computation of basic matrices [Cik], [Bik], [Dik], and [Xjik] are calculated 

according to Eqs. (25)-(28), respectively. The initial three terms in Eq. (21) pertain to the first-

order member’s behaviour, i.e., the linear stiffness matrices Cik, Dik and Bik. Conversely, the last 

term addresses second-order effects related to the interaction between pre-buckling normal 

stresses and cross-section out-of-plane deformations, represented by the geometrical effects 

Xjik.  
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  3 3

, , , ,2

1

3 12 (1 )
ik i s k s i k ss k i ss

S S

E
D t w w ds t w w w w ds

G v


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   (27)  

  j

jik i k i k

jjS

tu
X v v w w ds

C
   (28)  

 

Finally, Eq. (21), together with the specified boundary conditions, yields a standard 

eigenvalue problem, which provides the member’s bifurcation stress resultants and buckling 

modes, i.e., combinations of the GBT deformation modes along the member length. For 

instance, Figure 11 depicts a common flexural-torsional critical buckling mode observed in 

lipped channel columns. This buckling mode is identified in GBT notation by the simultaneous 

occurrence of cross-section deformation modes 2+4, indicating major-axis flexural buckling 

and cross-section torsional rotation deformations. 

 

 

Figure 11: Lipped channel column buckling mode as a linear combination of GBT cross-section 

deformation modes 2 and 4 (known as flexural-torsional buckling). 

 

Therefore, based on the mechanical properties obtained and by GBT terminology, cross-

section deformation modes are classified into four distinct categories based on their mechanical 

characteristics: (i) flexural, (ii) torsional, (iii) local-plate, and (iv) distortional. A mode is 

deemed: 

i) Flexural if it exhibits non-zero values for the parameters Ckk, while Dkk and Bkk remain 

null (Ckk ≠ 0, Dkk = 0, Bkk = 0); 

ii) Torsional modes, on the other hand, are identified by non-zero values for both Ckk and 

Dkk, with Bkk being zero (Ckk ≠ 0, Dkk ≠ 0, Bkk = 0);  

= +

Applied uniform

compression stress

Buckling mode Mode 2 Mode 4
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iii) Local-plate modes are defined by non-zero values for all three parameters: Ckk, Dkk, and 

Bkk, coupled with a condition of zero displacement uk (Ckk ≠ 0, Dkk ≠ 0, Bkk ≠ 0, uk = 0); 

iv) In contrast, distortional modes possess non-zero values for Ckk, Dkk, and Bkk, but with a 

non-zero displacement uk (Ckk ≠ 0, Dkk ≠ 0, Bkk ≠ 0, uk ≠ 0); 

 

It is worth noting a fundamental distinction between torsional and local modes in the 

GBT approach: while torsional modes feature straight cross-section walls and rigid-body 

motions with no transverse curvatures (wk,ss = 0) and zero Bkk = 0, local modes involve 

transverse bending of the cross-section walls, resulting in non-zero transverse curvatures (wk,ss) 

and non-zero Bkk ≠ 0 values. 

 

 

1.3.3 Rectangular plates with loaded edges simply supported elastic stability 

 

 

1.3.3.1 Analytical and energy method solution – Bulson 1970 [15] 

 

 

Compressive end loads amplify the lateral deflections when a plate is subjected to edge 

loads only. With a gradual increment in edge loading, a critical point is reached where deflection 

undergoes a significant increase, eventually leading to infinite deflection, indicative of 

instability. This critical point marks the onset of elastic plate instability, defined by the 

minimum compression stress value required to induce this phenomenon, i.e., elastic critical 

buckling stress (σcr).  

Bulson [15] investigated the elastic stability of rectangular flat plates subjected to 

uniform compression in one direction (σx), with supported loaded edges, characterized by a 

longitudinal length L and width b. Considering this simplest loading condition, the plates’ 

equilibrium equation is well-known and presented in Eq. (29). 

 

 
4 4 4 2
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 is the flexural rigidity of the plate. 
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Assuming that the plate buckles into m sinusoidal half-waves in the direction of 

compression (longitudinal). The general solution for displacement w can thus be formulated as 

presented in Eq. (30). Where f(y) describes the leg transverse deflection (displacement) 

functions. 

 

 sin
m x

w f y
L


  (30)  

 

Therefore, the fundamental investigation – for this work – carried out by Bulson [15] 

considers plate boundary conditions where one longitudinal edge is simply supported (S). In 

contrast, the opposite edge is entirely free (F), as shown in Figure 12(a). In this case, the author 

demonstrates that the deflected form w1 presented in Eq. (31) can satisfy the specified boundary 

conditions using energy solutions. Consequently, it is possible to obtain the value of the elastic 

critical buckling stress (σcr) and the plate buckling coefficient (k) delineated in Eq. (32) and Eq. 

(33), respectively. It can be noted that the plate buckling curve k(ϕ) does not exhibit a “garland” 

form, where each “garland” corresponds to a buckling mode characterized by a specific number 

of sinusoidal half-waves in the load direction (m). Notably, the plate buckling coefficient k 

tends towards a constant value as the plate's length and leg width (L/b) increases, denoted as ϕ.  

This structural behaviour implies two essential observations: (i) the minimum value of 

k consistently corresponds to the free edge (F) buckling always into a single half-wave number 

(m = 1) regardless of the plate length; (ii) during buckling, there is no plate transverse bending, 

and the element’s deflection forms a flat plane (rigid body rotation) as can be seen in the 

deflection transverse function employed f(y) = y/b. Additionally, (iii) for a Poisson’s ratio (υ) 

of 0.3, the value of k approaches 0.425 as ϕ tends to infinity (ꝏ), i.e., for very long plates. 
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These findings are better clarified when contrasting a plate with one edge built-in (B) 

and the opposite free (F), as illustrated in Figure 12(c). In this second scenario, the deflected 



49 

 

form w2 presented in Eq. (34) is assumed to satisfy the specified boundary conditions. Hence, 

by employing the energy method solution specifically for a singular buckling mode m = 1 (i.e., 

one half-wave in the direction of loading regardless of the plate’s length), the critical elastic 

buckling stress (σcr) and the plate buckling coefficient (k) are derived, as outlined in Eq. (35) 

and Eq. (36), respectively.  

It is noted that the shape of a “garland” curve becomes apparent, reaching a minimum 

value of k, denoted as kmin, and this behaviour signifies (i) a notable increase in wavelengths (m 

> 1) in the longitudinal direction with increasing plate length. Additionally, (ii) plate transverse 

bending occurs during the buckling, as seen in the deflection transverse function employed f(y) 

= [1-cos(πy/2b)]. Finally, taking Poisson’s ratio (υ) of 0.3, the minimum value of k is observed 

at 1.424 when ϕ = 1.636. 
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a) b) 

Figure 12: Rectangular plate in end compression with a) longitudinal edge simply supported and other 

free (S-F) and b) longitudinal edge built-in and other free (B-F) [15]. 

 

 

1.3.3.2 Generalized Beam Theory (GBT) approach 

 

 

Similarly, in 2010, Dinis et al. [30] expanded the investigation conducted by Bulson 

[15], presenting the results of an outstand flange stability analysis using Generalized Beam 

Theory (GBT). It is important to highlight the significant distinction between torsional and local 

modes, as described in 1.3.2. Recalling in GBT notation, (i) torsional modes are characterized 

by straight cross-section walls undergoing rigid-body motions. On the other hand, (ii) local 

modes involve transverse bending of the cross-section walls, resulting in non-null transverse 

curvatures. 

Therefore, this study assessed an outstand flange with length L and width b uniformly 

compressed along the simply supported transverse edges (x = 0 and x = L). In contrast, the 

longitudinal edges are load-free, i.e., plates with identical dimensions and loading conditions 

studied by Bulson [15]. However, the authors extended the boundary conditions, with the 

longitudinal supported edge at s = 0 being elastically restrained by a rotational spring with 

stiffness S, and the edge s = b is maintained free. 

The investigation included two GBT deformation mode analyses, as shown in Figure 

13: (i) mode 1, which exhibits a rigid-body rotation of the plate about the elastically restrained 

edge s = 0, and (ii) mode 2, which has a null rotation at the elastically restrained edge s = 0 but 

exhibits transverse bending. The local plate buckling coefficient (kcr) was evaluated as a 

function of the plate aspect ratio (ϕ = L/b), for several values of the dimensionless rotational 

stiffness parameter (α) – Eq. (37), as presented in Figure 14. 
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Figure 13: Elastically restrained outstanding flange and two GBT deformation modes included in the 

analysis [30]; 

 

 

Figure 14: Variation of buckling coefficient kcr with the aspect ratio ϕ and α [30]. 

 

The authors concluded that for α = 0, i.e., no rotational stiffness, the curve kcr(ϕ) is 

monotonically descendent (no local minimum exists) and tends to kcr = 0.425 – same conclusion 

obtained in Bulson [15]. The flange buckles in a single half-wave mode regardless of its length 

L (or ϕ). This means that a simply supported flange with a length larger than four times its width 

kcr 

ϕ = L/b 
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(L > 4b) always buckles in a single half-wave mode without transverse bending. Mechanically 

speaking, the buckling mode involves pure torsion about the simply supported edge, which is 

designated as global mode 4 (torsion) in GBT. However, in all curves where α > 0, a local 

minimum is observed in kcr(ϕ). This pattern signifies that even a slight spring rotational stiffness 

results in flange buckling with multiple half-waves (m > 1). Moreover, with increasing values 

of α, the corresponding minimum kcr increases as the corresponding ϕ values decrease. This 

trend occurs due to the changing contributions of modes 1 and 2: as the contribution of mode 1 

decreases, the contribution of mode 2 increases. Therefore, in accordance with GBT, the 

presence of rotational stiffness along the longitudinal supported edge is imperative for local 

plate buckling. 

 

 

1.3.3.3 Finite element numerical analysis 

 

 

This work employed a shell finite element model in ANSYS 17.0 [29] software to 

illustrate the elastic buckling behaviour of plates under uniform compressive loading, 

considering the two cases examined by Bulson (S-F and B-F), as depicted in Figure 15. The 

numerical model incorporates (i) a 5 mm x 5 mm element size, (ii) an elastic plate material with 

properties E = 210000 MPa and v = 0.3, and (iii) three different geometries defined by 

dimensionless ratios ϕ of 4, 6, and 8 (i.e., L/b). 

The results obtained are presented in Table 2, indicating the dimensionless aspect ratio 

(ϕ), the elastic critical buckling mode, and the number of half-waves in the longitudinal 

direction (m) for the two specified boundary conditions. The following comments can be made: 

In the scenario designated as S-F, where one longitudinal edge is simply supported, and 

the opposite edge remains free, it was consistently noted that, regardless of the plate length (L), 

a singular half-wave (m = 1) alongside rotation of the transverse section were invariably 

manifested, in alignment with findings reported by Bulson [15] and Dinis et al. [30]. This 

pattern intimates a predominately global torsional buckling mode, distinctly marked by 

torsional phenomena around the simply supported edge. 

In contrast, under the B-F condition – where one longitudinal edge is rigidly fixed, and 

the opposite edge is free – a local plate buckling behaviour emerged. With increasing plate 

length, a proliferation of half-waves was observed along the longitudinal axis. Additionally, 

unlike the S-F condition, the B-F condition was associated with transverse section bending, 
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further highlighting the influence of boundary conditions on the buckling behaviour of the 

plates. 

 

 

Figure 15: Finite element model elastic buckling analysis of simply supported (S) or built-in (B) 

longitudinally rectangular plate with other free. 

 

Table 2: Comparison of longitudinal free edge sinusoidal half-wave plate deformation patterns 

between S-F and B-F varying the aspect ratio ϕ. 

 ϕ (L/b) 

 4 6 8 

S-F 
 

 
 

m = 1 m = 1 m = 1 

B-F 
 

 
 

 m = 2 m = 4 m = 5 

 

 

1.3.4 Equal-leg angle columns’ elastic buckling behaviour 

 

 

1.3.4.1 Simply supported steel equal-leg angle columns 
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In 2010, Dinis et al. [30] presented an analytical approach based on Generalized Beam 

Theory (GBT) – cross-section deformation modes – to investigate the buckling behaviour of 

simply supported steel slender equal-leg angle columns. This work was essential in effectively 

distinguishing the mechanical characteristics between local and torsional deformations in these 

members. 

As discussed in Section 1.3.3.2, according to the GBT principles, the global torsional 

buckling mode is characterised by rigid-body movement, meaning there is no deformation in 

the cross-section. Consequently, the cross-section geometry remains unchanged, and the 

elements remain straight. Conversely, the local buckling mode is identified by longitudinal half-

waves, indicating transverse bending within the element. This distinction between torsional and 

local buckling mode along the member length is elucidated and illustrated in Figure 12 and 

Table 2, respectively. 

Therefore, Figure 16(a) presents the mid-lines equal-leg cross-section discretisation 

applied, identifying three GBT global modes (2-4) and 2q-1 local deformation modes – where 

“q” signifies the number of cross-section walls. These modes comprise three rigid-body 

deformations, precisely bending about the major-axis (mode 2), bending about the minor-axis 

(mode 3), and pure torsion (mode 4), alongside three local modes 5, 6, and 7, as depicted in 

Figure 16(b). 

 

 
a) 

Rigid-body modes Local-plate 

 
b) 

Figure 16: Equal-leg angle cross-section GBT a) discretisation and b) in-plane deformation mode 

shapes (2-7) [30]. 

 

Figure 17(a) and (b) present the results obtained from the GBT analysis, elucidating the 

elastic buckling behaviour of simply supported columns featuring equal-leg angle cross-section 

L70701.2 mm, i.e., high width-to-thickness ratio (b/t) equal to 58.33. It depicts the elastic 

- Independent natural (warping) node

- Dependent natural (warping) node

2 3 4 5 6 7
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critical buckling load as the column length increases on a logarithmic scale – the so-called 

“signature” curve Pb vs. L – and the column lengths modal participation diagram. This diagram 

quantifies each GBT deformation mode’s contribution to the column’s critical buckling modes, 

offering new insights into their mechanical characteristics. 

From these findings, the following primary observations must be highlighted: 

i) Across the entire length range (L = 4 cm to 2000 cm), the critical buckling 

behaviour of angle columns can be characterized by just four cross-section 

deformation modes (2, 3, 4, 6); 

ii) For very short columns (L < 30 cm) – highlighted in red – buckling occurs in a 

combination of torsional and local modes (i.e., 4+6). Figure 17(c) illustrates the 

deformed shape of the cross-section at the mid-span for a column length L = 5 

cm. As the length increases, ranging from very short to short lengths (30 < L < 

80 cm) – highlighted in blue – columns buckle in pure torsional mode, i.e., mode 

4;  

iii) Columns with intermediate lengths (80 < L < 400 cm), highlighted in green, 

demonstrate buckling behaviour characterized by a combination of major-axis 

flexural and torsional modes (2+4), commonly referred to as flexural-torsional 

buckling. These behaviours are illustrated in Figure 17(c) for column lengths of 

100 cm and 300 cm, respectively. For a column length of 100 cm, the buckling 

is predominantly in the pure torsional mode (mode 4). Whereas as the column 

length increases (L = 300 cm), major-axis flexural buckling participation 

becomes more evident, characterized by cross-section corner displacement; 

iv) For longer columns (L > 400 cm) – highlighted in yellow – buckling occurs in a 

pure minor-axis flexural mode (mode 3), as illustrated in Figure 17(c) for column 

lengths of 1000 cm; 

v) In general, the critical load (Pb) consistently decreases monotonically with the 

length, corresponding to a single half-wave buckling mode (m = nw = 1). The 

torsion mode 4 almost always plays a key role. Therefore, the authors concluded 

that for columns categorized as short to intermediate, i.e., in a practical range 

(30 < L < 400 cm), the global torsional buckling (mode 4) predominates.  
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a) 

 
b) c) 

Figure 17: Equal-leg angle column buckling behaviour a) Pb vs. L curves, b) modal participations 

diagram, and c) critical buckling mode shapes of columns with different lengths [30]. 

 

1.3.4.2 Secondary warping constant (Iws) 

 

 

Dinis et al. [30] show that despite the equal-leg angle sections exhibiting no primary 

warping resistance (Iw = 0), the warping cross-section resistance is derived solely from the 

secondary warping constant (Iws ≠ 0). The authors demonstrate this mechanical behaviour 

considering only mode 4 (torsional) in the GBT buckling analysis. In other words, this statement 

can be demonstrated considering the displacement in each wall equal to Eq. (38), i.e., the 

flexural displacement in each wall is equal to s (a linear function, as illustrated in Figure 13). 

 

4w s  (38)  

 

Based on this displacement field and introducing Eq. (38) in Eqs. (25)-(28), it is possible 

to calculate the modal geometrical properties referring to mode 4 as expressed in Eqs. (39)-

(42).  
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Where Iws is the secondary warping constant and I0 is the polar moment inertia with 

respect to the shear centre. It is worth mentioning that modal property B44 is null due to its 

dependency on the second derivative of the displacement field – for this cross-section 

deformation mode, there is no transverse bending. This mechanical behaviour illustrates that 

the equal-leg angle cross-sections’ resistance relies solely on properties C44 and D44. 

Subsequently, the GBT system equilibrium equation for mode 4 – Eq.(21) – is solved 

according to columns’ boundary condition to derive the critical elastic load, identified as P4 and 

expressed in Eq. (43). Furthermore, incorporating Eqs. (39), (41), and (42) into Eq. (43) yields 

the familiar torsional buckling formula (Pcr,T) outlined in Eq. (44).  
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By expressing the geometrical properties, i.e., the polar moment inertia (I0), the 

secondary warping constant (Iws), and the torsional constant (J), in terms of the cross-section’s 

geometry formed by two plates (i = 2) sharing the same width and thickness(b and t), and 

following some algebraic manipulations – as detailed in Eqs. (45)-(47) – the elastic critical 

torsional buckling load derives into Eq. (48). 
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Moreover, the critical torsional stress (σcr,T) can be calculated by dividing the critical 

load and the cross-section area (A), as shown in Eq. (49). In order to establish a correlation with 

plate behaviour, it is possible to derive an equation for the critical stress based on the inverse 

of the plates’ aspect ratio (ϕ = L/b) that composed the cross-section, considering that G = 

E/2(1+v), as expressed in Eq. (50).  
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(50)  

 

Therefore, the authors [30] show that (i) the initial bracketed term represents the equal-

leg angle cross-sections’ secondary warping stiffness (Iws) and (ii) it is crucial to be maintained 

in buckling analysis to accurately capture the initial downward trend of the equal-leg angle 

columns buckling signature curves – shown in Figure 17. Additionally, considering Poisson’s 

ratio (v = 0.3), this initial term gradually diminishes for longer columns (L → ꝏ), resulting in 

a plate buckling coefficient (k = 0.425) identical to that obtained by Bulson for plates S-F as 
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shown in Eq. (33). Thus, it is evident that, in equal-leg angle columns elastic buckling 

behaviour, torsional deformations prevails as the predominant mode. Moreover, accurate 

prediction of the elastic buckling behaviour necessitates the consideration of secondary warping 

effects in analysis to capture the actual structural behaviour. 

 

 

1.3.4.3 Boundary conditions employed in experimental investigations (F, PC and PS) 

 

 

In 2012, Dinis et al. [31] extended research on carbon steel cold-formed equal-leg angle 

columns. They conducted a numerical study using the computational code based on Generalised 

Beam Theory – GBTul [32] – and the finite element software ABAQUS [33] to investigate 

equal-leg angle columns’ elastic buckling behaviour under boundary conditions employed in 

experimental tests. 

The authors adopted the same cross-section of L70701.2 mm investigated in the 

previous work [30], where rounded corners were disregarded, resulting in negligible primary 

warping (Iw = 0). In order to ensure experimental boundary conditions, secondary warping and 

local/displacement rotations at the supports are restrained (i.e., rigid end plates). Consequently, 

global torsional rotations were always consistently prevented. As for global flexural rotations, 

the analysis addresses three distinct conditions: (i) both major and minor-axis bending are 

constrained (fixed end sections – F condition), (ii) only major-axis bending is restricted 

(“cylindrically pinned” end sections – PC condition), and (iii) both major and minor-axis 

bending are unrestricted (“spherically pinned” end sections – PS condition). 

The results for each boundary (F, PC and PS) are depicted in Figure 18(a) in terms of 

the critical elastic buckling load versus column length (on a logarithmic scale) – Pcr vs. L – 

where each curve represents a boundary condition. Figure 18(b) presents the modal 

participation diagrams, and Figure 18(c) depicts the cross-section deformation at mid-span 

(L/2) for two column lengths (L = 100 and 364 cm) with cylindrically pinned end (PC). These 

buckling findings lead to the following remarks: 

i) Throughout the entire range of lengths, the primary buckling modes of all 

columns exclusively involve deformation modes 2, 3, 4, and 6, notably 

excluding the symmetric local mode 5; 

ii) Equal-leg angle short-to-intermediate columns exhibit flexural-torsional 

buckling, i.e., a combination of GBT modes 2 (major-axis bending) and 4 
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(torsion), due to the cross-section’s symmetry concerning the major-axis. 

However, it is essential to note in Figure 18(b) that the mode 2 increases as the 

length increases, being almost imperceptible at short length (but not zero); 

iii) The three support conditions (F, PC and PS) exhibit similar characteristics 

regarding elastic buckling behaviour. The critical load (Pcr) decreases with 

length (L) and corresponds always to a single sinusoidal half-wave (m = 1). 

Results obtained via GBT and ABAQUS (FEM) are coincident, and mode 4 

(torsion) is extremely important as it manifests in all lengths (except in cases 

where buckling occurs about the minor-axis – mode 3); 

iv) Regarding the support conditions F and PC for short-to-intermediate columns, 

the difference lies in the transition length (LT) between flexural-torsional 

buckling and minor-axis bending. For PC columns, the transition occurs at a 

length of L = 420 cm, while for F columns, it occurs at L = 890 cm. In other 

words, for columns with L < 420 cm, flexural-torsional mode occurs with 

identical critical loads for both boundary conditions; 

v) Concerning the PC support conditions for short to intermediate columns, the 

difference lies at the end of the plateau due to the participation of mode 2, 

representing a transition critical load for PS columns 7.4% lower than PC 

columns. 

  

a) b) 

 

c) 

Figure 18: (a) Pcr vs. L curves, (b) GBT modal participation diagrams for F, PC, and PS columns, and 

(c) in-plane shapes of 2 buckling modes and the first 5 GBT deformation modes for PC columns [31]. 
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1.3.5 Fixed-ended equal-leg angle column's elastic post-buckling behaviour 

 

 

Dinis et al. [31] extended the numerical study using shell finite element analyses through 

ABAQUS [33] to investigate the elastic post-buckling behaviour of short-to-intermediate fixed-

ended equal-leg angle columns, i.e., featuring flexural-torsional critical modes with initial 

geometrical imperfections having an amplitude equal to 10% of the thickness (i.e., 0.1t). This 

approach corresponds to mid-span torsional rotations of approximately β0 = 0.098 rad (recall 

that the equal-leg angle cross-section is L70701.2 mm).  

The short-to-intermediate columns investigated length varying are equal to: F1 = 53 cm, 

F2 = 98 cm, F3 = 133 cm, F4 = 182 cm, F5 = 252 cm, F6 = 364 cm, F7 = 420 cm, F8 = 532 cm, 

F9 = 700 cm, and F10 = 890 cm – as illustrated in Figure 18. It is essential to highlight that the 

F10 corresponds to the column transition length (LT), i.e., the transition between flexural–

torsional and minor-axis flexural buckling critical mode. 

Figure 19(a) shows the upper parts of the elastic post-buckling equilibrium paths (P/Pcr 

vs. β) for columns F1 – F10, where P/Pcr is the ratio between the applied load and elastic torsional 

critical load, and β denotes the mid-span clockwise rigid-body rotation. These post-buckling 

results prompt the following remarks: 

i) As the length (L) increases, the equilibrium paths (P/Pcr vs. β) become 

progressively more flexible. Additionally, columns from F1 to F10 demonstrate 

qualitatively different post-buckling behaviours. While (i1) the shorter columns 

(F1 to F7) exhibit evident stability, (i2) the longer ones (F8 to F10) display well-

defined limit points. These limit points manifest as abrupt changes followed by 

significant torsional rotation reversals (F8 to F9) or smooth transitions without 

torsional rotation reversals (F10). Moreover, noticeable corner displacements are 

observed in the longer columns, as depicted in detail in Figure 19(a) for the F9 

column; 

ii) In columns, F8 and F9, the flexural-torsional deformation pattern transitions 

from a single half-wave to three half-waves upon reaching the peak load (i.e., 

the limit point), and this transition occurs for progressively smaller values of β 

as the length L increases (F8 to F9). This configuration transition is evident in 

Figure 19(b), where a comparison of the mid-span (L/2) and quarter-span (L/4) 

cross-section deformation of the F9 column reveals opposite rotations, 

corresponding to the post-peak equilibrium state 3; 
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iii) This behaviour can be explained by the significant occurrence of flexure, 

primarily along the minor axis, within the column, resulting in tensile stress 

within the corner regions of the cross-section. It is important to highlight that the 

flexural displacements along both the major and minor axes play a role in the 

torsional rotations observed along the descending branch of the equilibrium path 

of the F9 column, which is linked to significant reversals in torsional rotation; 

iv) Figure 20 shows that the mid-line cross-sections’ normal stress distribution 

remains uniform for all columns until practically P/Pcr ≈ 0.8. However, as the 

load increases, the stress distribution becomes progressively non-uniform, i.e., 

the stresses are practically linear in both legs and gradually “shift” from the leg 

edges towards the corner. However, their distributions exhibit differences 

between shorter and longer columns. Specifically, the stresses are practically 

symmetric for the shorter columns (F3), while they are clearly asymmetric for 

the longer columns (F9); 

v) Furthermore, it is worth noting that neither of the stress distributions aligns with 

the widespread belief proposed by Rasmussen [12] that short-to-intermediate 

equal-leg angle columns exhibit a parabolic normal stress distribution with a 

higher value at the corner. In other words, each leg does not behave like a 

pinned-free longitudinally long plate (S-F). 

 

The results obtained unveiled some unexpected behavioural characteristics concerning 

fixed-ended short-to-intermediate equal-leg angle columns. Despite their critical stresses or 

loads remaining relatively consistent across different lengths, as shown by an almost horizontal 

plateau in the Pcr vs. L curve – Figure 18(a), these fixed-ended columns demonstrate notably 

diverse elastic post-buckling behaviours. They display a broad spectrum of post-critical 

strength reserve levels, varying from relatively high (for smaller lengths – F1) to rather low (for 

larger lengths – F10), indicative of post-buckling behaviours ranging from stable to unstable. 

The magnitude of corner flexural displacements emerged as a significant factor in 

distinguishing between these various short-to-intermediate columns' post-buckling behaviours. 

Therefore, the observed disparity between the post-buckling behaviours of fixed-ended equal-

leg angle columns arises from the occurrence of corner flexural displacements (i.e., major and 

minor axis flexural), evident in the longer columns (F8-F10). 
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a) 

 
b) 

Figure 19: a) F1-F10 columns mid-span equilibrium paths P/Pcr vs. β and b) F3 and F9 columns cross-

section deformed configuration evolutions [31]. 

 

 

Figure 20: Evolution of the F3 and F9 column mid-span normal stress distribution concerning three 

load levels [31]. 

 

In order to gain insight into how flexural displacements influence the post-buckling 

behaviour of fixed-ended angle columns, the evolution of corner section displacements in 

columns F3, F6, and F9 columns are investigated. Thus, Figure 21(a) and (b) illustrate the upper 

portions of the corresponding post-buckling equilibrium paths (P/Pcr vs. dM/t and P/Pcr vs. dm/t), 

where dM and dm represent the mid-span (L/2) corner displacements resulting from major-axis 
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and minor-axis flexure, respectively (i.e., minor-axis displacement and major-axis 

displacement). Additionally, Figure 22(a) and (b) show the longitudinal profile displacement 

along the normalised columns’ length (x3/L) and different scales for dM/t and dm/t for each 

column. For instance, the values for the F9 column are 80 times larger than those for the F3 

column. Among several conclusions obtained by the authors, the main ones deserve to be 

highlighted: 

i) Major-axis flexural displacements (dM) are observed in the critical buckling 

mode, as indicated by the mode 2 participation diagram in Figure 18(a). 

Consequently, these displacements are integrated into the columns’ initial 

geometrical imperfections. Therefore, it is expected that the dM value will 

progressively increase with the applied load. Moreover, their longitudinal 

displacement profiles exhibit the typical mode shape seen in fixed-ended column 

critical buckling, which includes one inner half-wave and two outer “quarter-

waves” with zero end slopes. This pattern is depicted in Figure 22(a); 

ii) For the shorter (F3) and intermediate (F6) columns, the equilibrium paths of P/Pcr 

vs. dM/t progress steadily, with the dM values consistently remaining relatively 

small, showing an increase with L. This trend is not observed in the longer (F9) 

column’s equilibrium path, which progresses steadily until approximately P/Pcr 

= 1.05. Subsequently, it undergoes a sudden “dM reversal” coinciding with a 

similarly abrupt increase in minor-axis flexural displacements (dm); 

iii) As the column lengths increase, the critical buckling load for minor-axis flexural 

buckling (Pcre) approaches the flexural-torsional buckling load (Pcrft). In other 

words, the relationship between these critical loads for columns F3, F6, and F9 

are 27.1, 5.5 and 1.6, respectively. Thus, it is explained the increase in minor-

axis flexural displacements (dm) for the longer column (F9); 

iv) Consequently, in longer columns (F7 – F9), this influence means “ buckling 

mode interaction”, i.e., a significant interaction between flexural-torsional 

buckling and minor-axis flexural buckling displacements. Specifically, the 

flexural-torsional and flexural buckling loads for these columns are initially 

relatively close and become even closer due to the reduction in axial stiffness 

associated with the flexural-torsional post-buckling behaviour; 

v) Finally, the occurrence of displacements in both the major and minor axes, along 

with the fully restrained end condition (fixed-ended), accounts for the linear 

distribution of normal stresses in the cross-sectional area (see Figure 20). 
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Furthermore, the asymmetry in the normal stress distribution, minimal for 

column F3 and pronounced for column F9, reflects the combination of moments 

about both major and minor axes. 

 

 

a) b) 

Figure 21: F3, F6, and F9 columns a) P/Pcr vs. dm/t and b) P/Pcr vs. dm/t equilibrium paths [31]. 

 

 

a) b) 

Figure 22: F3, F6, and F9 columns a) P/Pcr vs. dM/t and a) P/Pcr vs. dm/t longitudinal profiles [31]. 
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1.3.6 Fixed-ended equal-leg angle columns elastic-plastic post-buckling behaviour and strength 

 

 

Dinis et al. [34] also investigated the elastic-plastic behaviour and strength 

characteristics of fixed-ended short-to-intermediate angle columns. Their findings include two 

columns, F3 and F9, with four different yield-to-critical stress ratios (σy/σcr ≈ 1.3, 2.5, 5.0, where 

σy = 30, 60 120N/mm² and σcr = 24N/mm²). It is essential to highlight that σy/σcr ≈ ꝏ corresponds 

to the elastic post-buckling behaviour (Section 1.3.5). 

Figure 23(a) and Figure 24(a) show the upper portions of the elastic-plastic equilibrium 

paths (P/Pcr vs. β) for the shorter and longer fixed-ended columns (F3), respectively, where 

(P/Pcr > 0.5). Additionally, in Figure 23(b) and Figure 24(b), there are three plastic strain 

diagrams, each corresponding to equilibrium states along the σy/σcr = 2.5 equilibrium path, 

illustrating the collapse mechanism of the columns. Considering the results, the following 

comments deserve to be highlighted: 

i) The shorter column (F3) reveals that σy/σcr ≈ 1.3 and 2.5 fail at the point of 

yielding, while the one with σy/σcr ≈ 5.0 shows a minimal elastic-plastic strength 

reserve. Additionally, the column's ultimate load increases with σy. Considering 

σy = 30 to 120 N/mm² approximately doubles the load-carrying capacity. The 

plastic strain diagram I in Figure 23(b) shows yielding initiates in the quarter 

and three-quarter-span regions of the corner's longitudinal edge, where the shear 

and longitudinal normal stresses are elevated due to variations in torsional 

rotation; 

ii) The longer column (F9) reveals that the ultimate strength is nearly unaffected by 

σy because geometrically nonlinear factors mainly drive collapse. Specifically, 

for σy/σcr ≈ 2.5 and 5.0, the column remains elastic until failure, with yielding 

starting well into the descending branch of the equilibrium path. This onset of 

yielding occurs in the middle of the vertical leg mid-span region, as depicted in 

Figure 24(b) (diagram II). 
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a) b) 

Figure 23: F3 column elastic-plastic post-buckling behaviour a) P/Pcr vs. β equilibrium paths, for σy/σcr 

≈ 1.3, 2.5, 5.0 and b) plastic strain diagrams and failure mechanism, for σy/σcr ≈ 2.5 [34]. 

 

 

a) b) 

Figure 24: F9 column elastic-plastic post-buckling behaviour a) P/Pcr vs. β equilibrium paths, for σy/σcr 

≈ 1.3, 2.5, 5.0 and b) plastic strain diagrams and failure mechanism, for σy/σcr ≈ 2.5 [34]. 

 

 

1.3.7 Equal-leg angle columns with hot-rolled steel equal-leg angle sections 

 

 

In 2017, Dinis et al. [35] conducted a numerical investigation into the (i) buckling, (ii) 

elastic post-buckling behaviour, and (iii) elastic-plastic and strength of short-to-intermediate 

columns featuring equal-leg angle hot-rolled compact sections, i.e., b/t < 20. Their findings 

revealed a behaviour closely resembling that of columns with cold-formed (slender) cross-

sections. 

(F3 Column) 

(F9 Column) 



68 

 

Initially, the authors compare the columns’ elastic buckling behaviour using both the 

compact angle section (b/t ≤ 20) and the slender section (b/t > 20) concerning three boundary 

conditions employed in the investigation (F, PC and PS) as illustrated in Figure 25. The authors 

concluded that the columns’ elastic buckling behaviour with compact cross-sections resembles 

that of slender sections. However, they noted a reduction in the flexural-torsional plateau, 

indicating that the transition from flexural-torsional (FT) to minor-axis flexural buckling (Fm) 

occurs at shorter lengths. In fixed-ended columns, the critical buckling mode switches abruptly 

from flexural-torsional to minor-axis flexural at the transition length (LT.F) calculated according 

to Eq. (51). 
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 (51)  

 

  

Figure 25: fcr vs. L curves for F, PC, and PS columns with b = 90 mm and b/t = 40 or b/t = 20 [35]. 

 

Posteriorly, in Figure 26, the results concerning fixed-ended (F) short-to-intermediate 

columns’ elastic post-buckling behaviour with b/t = 10, 15, 20, and 58 and lengths L ≈ 0.25LT, 

0.50LT, 0.75LT, and 1.00LT.F, are presented in terms of the columns’ mid-span equilibrium paths 

P/Pcr vs. β and P/Pcr vs. dm. With these results, the following observations deserve to be 

highlighted: 

i) Columns with identical b/t and L/LT.F values demonstrate nearly identical 

equilibrium paths, indicating similar post-buckling behaviours. Furthermore, 

these behaviours are primarily unaffected by b/t and show a pronounced length-

dependent interaction between major-axis flexural-torsional and minor-axis 

flexural buckling; 

ii) The length-dependent interaction between flexural-torsional and flexural 

buckling can be observed by observing the simultaneous occurrence of cross-
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section torsional rotations and translations and the noticeable effect of minor-

axis flexural displacements on the post-buckling strength of the column; 

iii) Two distinct behavioural patterns are identifiable: one observed in the shortest 

columns (L ≈ 0.25LT), characterized by minimal translations and associated with 

relatively small post-critical strength changes, and the other observed in the 

remaining columns (L/LT.F = 0.5 to 1.0), involving significant translations and 

associated with clearly defined limit points. Notably, in F columns, such limit 

points are only evident for L/LT.F ≥ 0.75. 

 

 

Figure 26: Fixed-ended columns’ elastic equilibrium paths P/Pcr vs. β and P/Pcr vs. dm/t with L/LT ≈ 

0.25, 0.50, 0.75, 1.00. 

 

 

1.4 Structural behaviour of short-to-intermediate cruciform columns 

 

 

1.4.1 Introduction 

 

 

Unlike equal-leg angle sections, the cruciform section benefits from cross-section 

double symmetry, featuring a coincident centroid and shear centre. This characteristic ensures 

the absence of corner flexural displacements, resulting in each of the four legs behaving 

identically. Hence, understanding the buckling, post-buckling behaviour, and resistance of 

columns with cruciform cross-sections is essential to extrapolating knowledge to the equal-leg 

angle starred columns’, as illustrated in Figure 27. 
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Single angle – Flexural-torsional buckling Starred – Torsional buckling 

 
a) b) c) d) 

Figure 27: a) Equal-leg angle cross-section, b) flexural-torsional buckling, c) welded starred torsional 

buckling and d) bolted starred torsional buckling. 

 

 

1.4.2 Elastic buckling behaviour 

 

 

Dinis et al. [30] and Dinis and Camotim [36] also conducted a numerical investigation 

using GBT and shell finite element analyses (through ABAQUS [33]) to investigate the elastic 

buckling behaviour of steel fixed and pinned short-to-intermediate cruciform columns. The 

authors adopted a cruciform section with typical dimensions (b = 80 mm and t = 4 mm) and 

steel material behaviour (E = 210000 MPa and v = 0.3). 

Figure 28(a) shows the “signature” curve in a logarithmic scale – Pcr vs. L – obtained 

from GBT analyses for both fixed (F) and pinned (P) cruciform columns. These analyses 

encompass eight deformation modes, comprising three global modes (2, 3, and 4) and five local 

modes (5-9). In Figure 28(b), the GBT modal participation diagram is depicted, while Figure 

28 (c) showcases the buckling mode shapes of the pinned (P) columns with lengths of 20 cm, 

200 cm, and 1000 cm. Based on these results, it is possible to conclude that: 

i) The GBT and ABAQUS results show almost perfect agreement for pinned and 

fixed columns. These consistencies entail (i1) the critical load Pcr decreasing 

with increasing L, always indicating single half-wave buckling (m =1), (i2) they 

exhibit the typical approximately “horizontal plateaus”, and (i3) the pivotal role 

of the torsion mode 4, contributing to the critical buckling modes of all columns 

except the very long ones; 

ii) Across the entire length spectrum, the critical buckling modes of all pinned and 

fixed columns encompass just three deformation modes (2/3, 4, and 6). For very 
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short lengths, the buckling mode combines local-torsional modes (4+6), with 

mode 4 contributing dominantly. Short-to-intermediate columns buckle 

primarily in pure torsional modes (4), while the longer ones buckle in pure 

minor-axis flexural mode (3); 

 

 

 

a) 

 

b) c) 

Figure 28: Pinned and fixed column a) Pcr vs. L curves, b) GBT modal participation diagrams, and c) 3 

pinned column buckling modes and 8 GBT deformations mode shapes [36]. 

 

 

1.4.3 Fixed-ended elastic post-buckling behaviour 

 

 

The authors [36] also employed a numerical finite element analysis in ABAQUS [33] 

to investigate the elastic post-buckling response of fixed-ended columns of short to intermediate 

lengths, i.e., L3-L8, as illustrated in Figure 28(a). This investigation included the incorporation 

of initial geometrical imperfections in the critical mode, set at an amplitude of 0.1t, which 

specifically involves torsional deformations at the mid-span cross-section, quantified by β0 = 

0.005 rad. Figure 29(a) shows the upper portion of the post-buckling equilibrium paths for 

fixed-ended columns, covering lengths L3 – L8, and displays the deformed mid-span cross-
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section configuration at β = 0.4 rad the column L7. Based on these results, it is possible to 

conclude that: 

i) The post-buckling behaviour of short-to-intermediate fixed-ended cruciform 

columns is evidently stable, revealing high post-critical strength. However, post-

critical stiffness reduces as the column's length increases. Additionally, these 

behaviours are characterized exclusively by rigid-body rotations of the cross-

section, without any displacements of the cross-section's shear centre, as 

illustrated by the deformed configurations of the mid-span cross-sections in 

column L7. 

ii) Moreover, the authors demonstrated that the fixed-ended cruciform columns 

behave precisely as (ii1) fixed-ended equal-leg angle columns with the corners’ 

displacements (major and minor axes) constrained or (ii2) a plate of identical 

dimensions, as shown in Figure 29(b). This underscores that the characteristic 

behaviour of angle sections with equal-leg angles is attributed to displacements 

(bending) occurring at the section's corners, a phenomenon extensively 

discussed in their studies [31][34][35]. 

 

  

a) b) 

Figure 29: a) Fixed P/Pcr vs. β column equilibrium paths and L7 column mid-span cross-section 

deformed configurations and b) P/Pcr vs. β equilibrium paths for F plate, FR angle and L7 column [36]. 

 

 

1.4.4 Fixed-ended elastic-plastic post-buckling behaviour and strength 

 

 

In the continuation of their study, the authors investigated the elastic-plastic post-

buckling behaviour and strength concerning six different yield-to-critical stress ratios (σy/σcr ≈ 
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1.2, 1.8, 2.6, 4.0, 6.0, and 9.0. These ratios correspond to yield strengths σy = 235, 355, 520, 

800, 1200, and 1800 MPa and critical stress σcr = 201 MPa. The main observations can be made: 

i) Initially, it is observed that the majority of fixed columns, with the exception of 

those having notably low yield stress, demonstrate (i1) a significant reserve of 

elastic-plastic strength (evidenced by load increase post-yielding), (i2) a 

substantial level of ductility before failure; 

ii) As illustrated in Figure 30(c) in diagram I, the yield occurs primarily near the 

quarter and three-quarter span zones along the central longitudinal edge of the 

column. This behaviour is explained by the longitudinal normal and shear 

stresses reaching their peak due to the derivative of torsional rotation; 

iii) The collapse is characterized by the extensive yielding across most of the 

column’s volume, as depicted in diagram II of Figure 30(c), with only the areas 

immediately adjacent to the end and mid-span cross-sections maintaining their 

elasticity upon failure. 

 

 

a) b) c) 

Figure 30: F3, F5, F9 column a) P/Pcr,Av vs. β and b) P/Pcr,Av vs. ε paths (5 σy/σcr), and c) deformed 

configuration and plastic strain evolution (L5 + σy/σcr ≈ 2.6) [36]. 

 

 

1.5 Fixed-ended equal-leg angle and starred columns’ ultimate strength and design 

 

 

1.5.1 Carbon steel material 

 

 

In 2013, Silvestre et al. [37], followed by Dinis and Camotim [38] in 2015, undertook a 

comprehensive evaluation of the design curves for fixed-ended short-to-intermediate carbon 
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steel cold-formed equal-leg angle columns through experimental tests and numerical analyses, 

focused on the flexural-torsional buckling plateau. Considering the unique columns' structural 

behaviour, the objective was to improve the accuracy and reliability of failure load predictions. 

This significant contribution introduced new design approaches for equal-leg angle 

columns based on the Direct Strength Method (DSM) [39]. This method provides more accurate 

predictions by directly considering the columns’ elastic buckling modes. The authors proposed 

to change the single local buckling curve to a comprehensive set of columns’ buckling curves, 

meticulously derived from their observations concerning post-buckling behaviour involving the 

simultaneous occurrence of cross-section torsional rotations and flexural (corner) 

displacements, which significantly influence the post-critical strength reserve.  

This approach leads to more accurate predictions of ultimate strength, ensuring safer 

and more efficient design practices for such structural elements. This advancement in the field 

offered a more rational basis for the design of equal-leg angle columns. It paved the way for 

future research to refine the design and analysis of structural components subjected to buckling. 

It is essential to highlight that the same process was carried out for hot-rolled equal-leg angle 

columns [35]. 

Sirqueira et al. [40] conducted an experimental and numerical investigation into the 

fixed-ended carbon steel hot-rolled equal-leg and the behaviour of hot-rolled carbon steel equal-

leg angle sections under compression, focusing on the flexural-torsional buckling failure mode. 

Through experimental campaigns and a numerical finite element model, the study confirmed 

the conservatism of the Eurocode 3: Part 1.1 [5], highlighting the more accurate performance 

of the modified Direct Strength Method (mDSM) developed by [35]. 

 

 

1.5.2 Stainless steel material 

 

 

In 2013, Reynolds [41] aimed to evaluate the stainless steel design codes, specifically 

Eurocode 3: Part 1.4 [4], by conducting 33 experimental tests on columns made from welded 

duplex stainless steel S32003 angle sections under centred compression. Reynolds concluded 

that the non-linear behaviour of the material becomes more pronounced for shorter column 

lengths, both in terms of ultimate load and deformation. It was also demonstrated that at such 

lengths, the columns were more prone to flexural-torsional buckling phenomena, especially 

with higher b/t ratios. The tests indicated that the design rules of Eurocode 3: Part 1.4 [4] do 
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not accurately reflect the columns’ behaviour, either predicting the ultimate limit state 

incorrectly or being overly conservative. 

In 2017, Menezes et al. [42] also aimed to gain a deeper understanding of fixed-ended 

columns’ behaviour featuring hot-rolled equal-leg angle cross-section L64646.4 made of 

austenitic stainless steel 304. This investigation was conducted through eleven experimental 

tests at the Civil Engineering Laboratory (LEC) of the State University of Rio de Janeiro 

(UERJ), examining columns of six different lengths ranging from 500 mm to 1500 mm. The 

findings indicated that columns shorter than 750 mm predominantly failed due to flexural-

torsional buckling, while those of greater lengths exhibited minor-axis flexural buckling as the 

primary failure mode. Additionally, the study assessed the applicability of the design standard 

provisions outlined in Eurocode 3: Part 1-4 [4], concluding that these provisions did not offer 

an accurate design for these columns. 

In 2018, Liang et al. [43] conducted 16 tests on fixed-end columns with hot-rolled equal-

flange compact stainless steel angles using two types of stainless steel – EN 1.4307 and EN 

1.4571 – which correspond to austenitic stainless steel 304L and austenitic stainless steel 316, 

respectively, according to European nomenclature. Two cross-sections were adopted, L8080

10 and L10010010, with four tests conducted for each section and steel type, varying the 

length. The authors assessed the current design criteria for stainless steels and also the new 

methodology based on the Direct Strength Method, concluding that the proposal based on the 

Direct Strength Method, although developed for carbon steel columns, can predict a more 

coherent ultimate load for stainless steel columns than European standard design. 

In 2020, Sirqueira et al. [44] at LEC/UERJ conducted eighteen tests to investigate the 

ultimate strength of fixed-ended austenitic stainless steel 304 hot-rolled equal-leg angle 

columns. Three cross-sections were used, namely L64644.8, L76766.4, and L102102

6.4, with lengths ranging from 152 to 1893 mm. According to the authors, it was concluded 

that for the three assessed sections, at lengths shorter than 500 mm, flexural-torsional buckling 

occurred. For the L64x64x4.8 section with lengths between 500 mm and 1000 mm, flexural-

torsional buckling was observed, and above these lengths, bending buckling occurred in the 

minor axis. For the L76x76x6.4 section with lengths between 500 mm and 1200 mm, failure 

due to flexural-torsional was observed, and above these, buckling occurred due to bending in 

the minor axis. For the L102x102x6.4 section with lengths between 500 mm and 1500 mm, 

flexural-torsional buckling was observed, and above these lengths, bending buckling occurred 

in the minor axis. 
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In 2020, Sarquis et al. [45] conducted a comprehensive experimental and numerical 

investigation into the flexural-torsional buckling behaviour of fixed-ended hot-rolled austenitic 

stainless steel 304 columns. The experimental phase encompassed four main activities: 

selecting the cross-sections and lengths of the columns through elastic buckling analysis; 

prototypes’ initial geometrical imperfections measurements, including local (cross-section 

rotation) and global (bending along the major and minor axes) imperfections; stainless steels’ 

material characterization based on compressive and tensile responses; and conducting ten tests 

to identify the failure modes, establish the equilibrium paths, and obtain the columns’ ultimate 

strength. Concurrently, a numerical study was performed with a finite element model validated 

against the experimental data, thereby extending the findings to additional cross-sections and 

column lengths prone to failure by flexural-torsional buckling. This study also evaluated two 

design methods: the standard provisions for stainless steel materials in Eurocode 3: part 1.4 [4] 

and a design procedure based on the direct strength method by Dinis et al. [35] for carbon steel 

materials. Both methods were found to be inadequate for predicting the ultimate loads of the 

columns, prompting the proposal of two new design procedures adapted from the Eurocode 3: 

Part 1.4 [4] approach. These two proposed design methods yielded more reliable outcomes, 

particularly when the design of fixed-ended austenitic stainless steel hot-rolled equal-leg angle 

columns. 

In 2020, Dobrić et al. [46] conducted axial load tests on cold-formed stainless steel angle 

columns, identifying unique behavioural patterns under axial loads that are crucial for accurate 

modelling and design. The following year, Filipović et al. [47] expanded this research to hot-

rolled stainless steel angle columns, providing essential data through experimental tests. 

Concurrently, another study by Filipović et al. [48] delved into the performance of laser-welded 

stainless steel angle columns, revealing that these connections could enhance structural 

capabilities, opening up new avenues for construction applications. Furthermore, in 2021, 

Dobrić et al. [49] proposed new design procedures for cold-formed stainless steel equal-leg 

angle columns, achieving improvements in structural behaviour prediction. Collectively, these 

studies from 2020 and 2021 have made pivotal contributions to the structural engineering field, 

offering deeper insights into the design and application of stainless steel angle columns across 

different manufacturing and connection techniques. These findings not only augment the 

existing body of knowledge but also provide practical guidance for safer and more efficient 

construction practices involving stainless steel angle columns. 

These series of studies underscore the need for an updated approach in the European 

code to accurately reflect the actual behaviour of stainless steel short-to-intermediate equal-leg 
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angle columns. The gathered research highlight significant gaps in the Eurocode 3: Part 1.4 [4]. 

The results indicate that the standard design approach is not only scattered and conservative for 

stainless steel short-to-intermediate equal-leg angle columns, but the cross-section 

classification and column buckling curve “b” used to estimate the flexural-torsional buckling 

resistance is unable to predict the drop in columns’ ultimate strength. In other words, a change 

in the methodology used by the European code is necessary to improve the accuracy of 

forecasting resistance according to the actual columns’ structural behaviour. 

For this purpose, Botelho et al. [50] conducted an experimental campaign considering 

hot-rolled equal-leg angle section L63.504.76 (b/t = 13.34) to evaluate the structural response 

of these types of starred columns’ assembly procedure (welded and bolted – as illustrated in 

Figure 27(c) and (d)). The study focused on austenitic stainless steel fixed-ended short-to-

intermediate starred columns prone to failure by torsional buckling to assess these columns’ 

torsional buckling ultimate strength. The findings revealed significant discrepancies in the 

ultimate strength of the columns between the experimental results and the predictions from the 

European code.  
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2 STAINLESS STEEL COLUMNS’ DESIGN – EUROCODE 3: PART 1.4 (EC3) 

 

 

2.1 Introduction 

 

 

Design standards evaluate structures by identifying limit states, representing conditions 

beyond which the structure no longer meets its design requirements. Three categories of limit 

states are identified: ultimate, serviceability, and durability. For ultimate limit states, the 

following relationship must be satisfied: Sd ≤ Rd, i.e., the design action effect value due to the 

load applied (Sd) must be less or equal to the members’ design resistance value (Rd). 

Members under uniform axial compression (i.e., columns) are susceptible to several 

forms of failure, including (i) cross-section yielding, (ii) local buckling, (iii) global buckling – 

(iii1) minor-axis flexural buckling, (iii2) torsional buckling, and (iii3) flexural-torsional buckling 

– and (iv) interaction between local-global buckling. For instance, local buckling may reduce 

the effective area of the cross-section that contributes to load-bearing capacity, consequently 

decreasing the critical load necessary to initiate global buckling. Likewise, the emergence of 

global buckling can introduce extra stresses, worsening local buckling conditions. 

Thus, the European code design guidelines check the columns’ buckling ultimate limit 

state from the (i) cross-section classification, (ii) cross-section resistance, and (iii) member 

buckling resistance. Therefore, this section shows the European standard design rules 

procedures for structural austenitic and duplex stainless steel columns prone to failure by 

torsional buckling – Eurocode 3: Part 1.4 (EN 1993-1-4) [4]. 

 

 

2.2 Cross-section classification and resistance 

 

 

The European steel design code establishes that cross-section evaluations must be 

conducted independently of the global analysis. This analysis is crucial for ensuring that 

elements subjected to full or partial compression are thoroughly assessed for their susceptibility 

to local buckling (which reduces the member resistance). Consequently, the code guidance on 

classifying cross-sections emerges as a critical component of the members’ design process, and 

the section’s susceptibility to local buckling is assessed through four distinct rotational 
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capacities behaviours, categorised into class 1, 2, 3, or 4 – as illustrated in Figure 31. This 

methodology leads to the classification of cross-sections by comparing the maximum 

slenderness ratio of the component plates (b/t) with a non-dimensional parameter related to the 

materials’ mechanical properties ε = [(235/σ0.2%)/(E/210000)]0.5. 

Specifically, class 1 cross-sections are designed to achieve the plastic moment of 

resistance (Mpl) and accommodate significant deformations beyond the elastic limit, allowing 

for the application of plastic hinges in designs (internal force redistribution). Class 2 cross-

sections also reach the plastic moment of resistance but have a limited capacity for inelastic 

deformation before encountering local buckling. Meanwhile, class 3 cross-sections, being more 

slender, can only reach the elastic moment (Mel). Class 4 cross-sections are extremely slender 

plates elements that undergo local buckling before achieving the theoretical elastic moment. 

Employing these cross-sections classified as class 4 necessitates adherence to the additional 

stipulations outlined in Eurocode 3: Part 1.5 [51], ensuring a thorough and comprehensive 

approach to steel structure design. 

 

 

Figure 31: Eurocode 3 categorizes cross-sections into four distinct behavioural classes. 

 

However, as specified in Eurocode 3: Part 1.4 [4] within Table 5.2, an equal-leg angle 

cross-section can only be classified as either class 3 or 4 – shown in Table 3. Therefore, the 

properties of a class 4 cross-section (b/t > 11.5ε) are determined by reducing the gross cross-

section area (Ag) according to the Effective Width Method (EWM). The concept adopted in this 

method transforms a non-uniform stress distribution diagram into a uniform one, as illustrated 

in Figure 32. It is assumed that the stress distribution becomes uniform across the fictitious 

effective width “beff” with a value equal to the edge stresses, i.e., neglecting a part of the 
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section’s width that fails to reach the yield stress (ineffective areas). By applying this reduction 

factor (ρ), the effective width (beff) is assessed and multiplied by the element thickness (t) to 

determine the effective area (Aeff). 

For calculating the effective width (beff), EC3 employs a parameter which correlates the 

internal normal stresses ratio in the cross-sections’ element (ψ) with the plate buckling 

coefficient (kσ), as shown in Table 4 for outstanding elements in compression. Therefore, it 

becomes evident that, in scenarios concerning columns (i.e., uniform compression σ2/σ1 = 1), 

the buckling coefficient value is kσ = 0.43. Subsequently, the reduction factor (ρ) for outstanding 

elements in compression can be determined based on the element’s slenderness (λp), using the 

Winter-type curve developed by George Winter in 1947 [52] through a semi-empirical 

approach, as expressed in Eqs. (52) and (53), respectively. 

 

Table 3: Angle section maximum width-to-thickness ratio for compression parts [4]. 

Angles 

Refers also to Outstand 

flanges 

 

Does not apply to 

angles in continuous 

contact with other 

components. 

Class Section in compression 

3 
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2

h b h

t t
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E




 
  
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Grade 1.4301 1.4401 1.4462 

0.2%  (N/mm²) 210 220 460 

   1,03 1,01 0,689 
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Figure 32: The concept of the Effective Width Method for cross-section class 4 – transforming non-

uniform stress distribution into a uniform one. 

 

Table 4: Effective width of outstand compression elements [51]. 

Stress distribution Effective width beff 
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2.3 Columns buckling design curves 

 

 

The design evaluations for stainless steel axial compression members [4] closely 

resemble those for carbon steel counterparts [5]. The adopted European multiple buckling 

curves indexed as “a0”, “a”, “b”, “c”, and “d”, find their roots in comprehensive studies by the 

European Convention for Constructional Steelwork (ECCS), including pivotal experimental 

research by Stinfesco [53] and Jacquet [54], alongside theoretical contributions from Beer and 

Schultz [55]. 

Each curve, from “a0” to “d”, is developed to reflect buckling behaviours in assessing 

steel structural members’ stability. The “Ayrton-Perry” [56] equation plays a crucial role in 

calculating the column reduction factor (χ) by utilizing the relevant buckling curve, defined by 

the non-dimensional slenderness limit (λ0 = 0.2) and corresponding imperfection factor (α = 

0.13, 0.21, 0.34, 0.49 and 0.76, respectively), as shown in Figure 33(a). This strategy allows for 

a specific approach to various steel grades and cross-section shapes, as presented in Table 6.2 

in Eurocode 3: Part 1.1 [5]. 

As one progresses from curve “a0” to curve “d”, there is a notable transition towards 

members with a lower inherent strength. This gradation signifies an increasing risk of buckling, 

necessitating careful consideration in the design procedure to ensure structural integrity. When 

comparing the buckling curve “a0” with curve "d" across identical non-dimensional slenderness 

values, a notable discrepancy in the reduction factor emerges, with curve “a0” presenting a 

higher factor, thus predicting a greater ultimate strength. For example, with a non-dimensional 

slenderness (λ) of 0.8, the reduction factors are χa0 = 0.85 and χd = 0.58, respectively, marking 

a substantial difference of 31.76% in the resistance forecast. On the other hand, it is also 

possible to observe that as the non-dimensional slenderness increases, this difference 

significantly diminishes. 

However, the columns’ torsional buckling resistance – the main aim of this work – is 

determined employing column buckling curve “b”, defined by the non-dimensional slenderness 

limit (λ0 = 0.2) and the imperfection factor (α = 0.34), as shown in Figure 33(b). Therefore, the 

columns’ buckling resistance obtained by Eurocode 3: Part 1.4 [4] (Pu,EC3) is assessed according 

to Eqs. (54)-(57), where: A is equal to the Ag for class 3 or Aeff for class 4 cross-section; σ0.2% is 

the stainless steel proof stress; χT is the column reduction factor determined from the buckling 

curve “b”; λT is the non-dimensional torsional slenderness calculated by Eq. (57) – Aσ0.2% is the 
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cross-section resistance (Ag or Aeff) and Pcr,T is the elastic critical torsional buckling load defined 

in Eq. (1). 

 

  
a) b) 

Figure 33: Eurocode 3: Part 1.1 a) multiple column buckling curves [5] and b) curve “b”. 
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3 STAINLESS STEEL FIXED-ENDED STARRED COLUMNS EXPERIMENTAL 

RESULTS 

 

 

3.1 Introduction 

 

 

Botelho et al. [50] conducted an experimental campaign to evaluate the structural 

response of short-to-intermediate austenitic stainless steel columns with fixed ends created by 

two equal-leg angles cross-sections L63.504.76 forming a starred section, i.e., prone to failure 

by torsional buckling. 

This experimental programme may be briefly summarised in the following sequences 

of steps: assembly procedure of dual equal-leg angle starred cross-sections with two different 

connections approaches, including the use of two directions bolted plates and the application of 

fillet welding, both positioned at distances corresponding to one-third (1/3) and two-thirds (2/3) 

of the columns’ length (L); material characterisation through tensile and compression tests 

aimed at determining the mechanical properties of the stainless steel; columns’ initial 

geometrical imperfections measurements to map the prototypes’ primary maximum amplitude; 

compression tests were performed to evaluate columns’ ultimate load, load versus axial 

shortening curves, mid-span load versus transverse displacements, and failure modes. The 

entire experimental programme can be seen in detail in [50]. 

Therefore, this section aims to provide significant details (which will be used in the 

numerical study presented in the following sections) regarding the experimental (i) columns’ 

assembly procedure, (ii) instrumentation setup, and (iii) the results obtained, i.e., (iii1) columns’ 

ultimate load, (iii2) equilibrium paths, and (iii3) failure mode. 

 

 

3.2 Welded and bolted starred columns’ assembly procedure of Botelho et al. [50] 

 

 

The welded starred columns (denoted as WSC) were assembled by connecting the 

corners of two austenitic equal-leg angle profiles L63.504.76, which have a longitudinal (y) 

length of 700 mm, using four stainless steel welds. These welds were strategically positioned 
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at one-third and two-thirds of the column’s total length (L), employing a fillet weld with a leg 

length matching the thickness (t) of the angle profile, as shown in Figure 34. 

The assembly procedure for the bolted starred columns (denoted as BSC) entailed the 

connection of the same equal-leg angle profiles (austenitic stainless steel, cross-section 

dimensions of L63.504.76, and longitudinal length equal to 700 mm). The configuration of 

the BSC was established by implementing two bolted connections, each positioned at specific 

longitudinal (y) locations placed at one-third (1/3) and at two-thirds (2/3) of the column’s length 

(L) through two bolts and a connection plate in the z and x transversal directions, respectively, 

as shown in Figure 35(a). 

The connections employed ASTM A490 structural hexagonal steel bolts having a 

minimum ultimate tensile strength (fu,b) of 1034.21 MPa with a 1/2'' diameter (i.e., db = 12.70 

mm) for easy gripping and ensuring a tight and secure fit – offering strength and reliability. 

Also, the plate connections were carefully designed with specific dimensions, i.e., the plate’s 

height, width, and thickness (hp = b – 3t, wp = 2b + t, and tp = t) were determined based on the 

equal-leg angle cross-section profile selected (b = 63.50 and t = 4.76 mm). 

Figure 35(b) provides a visual illustration highlighting the section of the equal-leg angle 

profile cut to manufacture the connection plates. Furthermore, Figure 35(c) presents the 

dimensions of the designed plates measuring 131.7649.224.76 mm and showing the 

position of two holes made in the plate with a diameter (dp) of 14 mm to fit the selected bolts 

for the connection (db = 12.70 mm). It is crucial to emphasise that this assembly approach 

ensures two pivotal aspects: (i) the plate used in the connection has the same stainless steel 

mechanical properties as the equal-leg angle profiles used to create the starred columns, and (ii) 

this technique simplifies the column’s assembly procedure in practice – standardising the 

connection plate according to the equal-leg angle cross-section selected. 

After setting the geometry with the welds and bolted connection components, the next 

step was to include (through dot welds) robust square plates with a thickness of 30 mm at the 

column’s prototype top and bottom – ensuring that the centroid of the prototype aligns precisely 

with the thick plates’ centroids. This experimental methodology ensures the column’s uniform 

distribution of normal stress and effectively restrains torsion and secondary warping at the 

supports. For instance, Figure 36 presents the prototypes of two bolted starred columns to 

conduct the tests. 
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Figure 34: Column’s layout procedure to create a welded starred cross-section [50]. 

 

 

 

a) b) c) 

Figure 35: Equal-leg angle bolted starred column, b) section cut from the equal-leg angle profile to 

produce the connection plates, and c) designed plate dimensions for experimental bolted connection. 
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Figure 36: Bolted starred columns experimental prototypes [50]. 

 

 

3.3 Experimental setup and instrumentation 

 

 

The specimens were placed in the Universal Lousenhausenwerk test machine so that the 

centroid of the column was precisely aligned with the centroids of the top and bottom plates of 

the load application system. It is essential to note that this test machine allows only longitudinal 

displacement (Δy) of the bottom plate, thus establishing fully fixed-ended support conditions. 

The instrumentation setup was achieved using 10 Linear Variable Differential 

Transducers (LVDT) to read longitudinal and transversal displacements during the tests. Two 

LVDTs (V1 and V2) were vertically positioned at the press machine's bottom plate to acquire 

the column axial shortening (Δy). Furthermore, eight LVDTs were horizontally positioned 15 

mm from the equal-leg angle section edge along the entire column length to obtain the starred 

cross-section’s transversal displacements (Δx e Δz), i.e., four LVDTs (V3, V4, V9, and V10) 

were placed at a longitudinal distance of L/6 from both the columns' top and bottom ends. In 

contrast, the remaining four (V5, V6, V7, and V8) were positioned at the mid-length of the 

column (L/2).  

It is essential to highlight that the results obtained by LVDTs V3, V4, V9 and V10 are 

not discussed in this work. This arrangement was developed to comprehensively understand the 

columns’ behaviour during the tests, i.e., (i) axial shortening and (ii) mid-span cross-section 

torsional rotation equilibrium paths. Figure 37(a) shows an overview of the tests’ setup, and 

Figure 37(b) highlights the mid-span cross-section’s instrumentation. 

Bottom thick plate 

Top thick plate 
Bolted plate connection 
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Finally, during the test procedure, an initial preload of 20 kN, i.e., a minute compressive 

load, was applied to eliminate any potential gaps between the machine’s end support and the 

specimens. After the load application, a displacement control strategy was used with a loading 

rate consistently maintained at 0.003 mm/s until the end of the tests. This approach provides a 

more controlled and precise means of assessing the column’s behaviour under increasing loads, 

allowing for a detailed analysis of its structural response. 

 

 

 

Figure 37: An overview of the experimental layout with a) displacement transducer position and b) 

mid-span cross-section (L/2) instrumentation. 

 

 

3.4 Experimental results 

 

 

This section provides an overview of the experimental results obtained from austenitic 

stainless steel fixed-end welded and bolted starred columns tests, including (i) columns’ 

ultimate load (Pu,exp), (ii) load versus axial shortening curves (P vs Δy), (iii) mid-span load versus 

transverse displacements (P vs Δx and P vs Δz), as well as the observed failure mode. Table 5 
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briefly provides the experimental ultimate loads and failure modes of the conducted tests, 

outlined by test repetition indexes A and B. 

 

Table 5: WSC and BSC experimental ultimate load and failure mode. 

Test Pu,exp Failure mode 

 (kN)  

WSC 63.5x4.76 – A 640.40 Torsional buckling 

WSC 63.5x4.76 – B 652.44 Torsional buckling 

BSC 63.5x4.76 – A 680.08 Torsional buckling 

BSC 63.5x4.76 – B 608.26 Torsional buckling 

 

 

3.4.1 Welded starred columns 

 

 

Figure 38 displays for WSC the equilibrium paths obtained from the experimental tests 

regarding the load and axial shortening (P vs Δy) curves and five deformed shapes developed 

throughout test A. Additionally, Figure 39 depicts the columns’ mid-span (L/2) load versus 

transverse displacements (P vs Δx and P vs Δz). The observation of these experimental results 

prompts the following observations: 

i) The equilibrium paths for welded starred columns (WSC) indicate a high degree 

of similarity, with ultimate loads of 640.40 kN and 652.44 kN, showing a 

minimal variation of about 2%. This consistency underscores the repeatability 

of the tests, which align on a common deformation mode predominantly 

characterized by torsional rotation, as evidenced by a single sinusoidal half-wave 

(m = 1) across the column’s effective length; 

ii) Essentially, (ii1) the columns’ axial shortening equilibrium paths reveal uniform 

trends and a failure mode characterized by a pronounced pure torsional rotation 

at the mid-span cross-section, i.e., torsional buckling. However, (ii2) a slight 

variation in post-buckling response was observed, with test B showing greater 

flexibility; 

iii) Figure 38 presents the WSC–A’s failure mode evolution as a clearly defined 

shape with rigid-body torsional rotation at the mid-span cross-section. As the 

applied load approaches the ultimate load (at points “a” and “b”), the 
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deformation gradually intensifies until failure is reached (point “c”), followed 

by a significant increase in torsional deformation at points “d” and “e”; 

iv) Additionally, Figure 39(a) showcases the relationship between the experimental 

applied load and its transverse displacement at mid-span (L/2), highlighting the 

typical cross-section deformation by torsional rotation. Specifically, all four 

mid-span LVDTs (V5, V6, V7, and V8) recorded similar measurements in 

opposite transverse directions (x and z) during the test. For example, upon 

reaching the column’s ultimate failure load (P = 640.40 kN), the LVDT readings 

were V5 = +4.10 mm and V7 = -4.84 mm in the x direction, while V6 = -4.22 

mm and V8 = +4.43 mm in the z-direction. This pattern of readings suggests a 

consistent response among all four legs of the cross-section, i.e., torsional rigid-

body movement. Figure 40(b) visualizes the motions of the cross-section’s legs, 

further confirming the torsional behaviour of the columns. 

 

 

     
a) 330.56 kN b) 514.20 kN c) 634.44 kN d) 586.76 kN e) 535.58 kN 

Figure 38: Welded starred column (WSC) equilibrium path – load versus axial shortening curves (P vs 

Δy) – and five deformed shapes throughout test A. 
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a) b) 

Figure 39: a) Welded starred column (WSC-A) equilibrium path – mid-span (L/2) load versus 

transverse displacements (P vs Δx and P vs Δz) – and b) the cross-section torsional rotation. 

 

 

3.4.2 Bolted starred columns 

 

 

Figure 40 exhibits the results of the experimental test BSC-A, presenting load versus 

axial shortening curves (P vs Δy), including four deformed shapes observed during the test – 

showing a closer perspective of the final deformed configuration. Additionally, Figure 41 

depicts the mid-span (L/2) load versus transverse displacements (P vs Δx and P vs Δz). Lastly, 

Figure 42 shows the column’s failure mode. The observation of these experimental results 

prompts the following observations: 

i) The experimental columns’ ultimate loads display a difference of approximately 

10.56%. This variation is intricately linked to the bolt-tightening procedure, as 

evidenced by the discernible accommodation of the column in the equilibrium 

path of BSC-B, leading to a subsequent decline in applied load, i.e., with 

possible slight slippage between the equal-leg angle and the plate used at the 

connection until accommodation occurs. 

ii) However, the equilibrium paths of the bolted starred columns also exhibit similar 

trends and failure modes, characterised by a noticeable mid-span cross-section 

pure torsional rotation, i.e., columns’ torsional buckling failure mode. Figure 40 

depicts the column’s load versus axial shortening curve (P vs Δy) in conjunction 

with a visual representation of torsional buckling failure mode evolution as the 
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load is applied during the test. Initially, the column’s deformation undergoes a 

gradual and nearly imperceptible deformation increase, as evident from points 

“a” and “b”, until it reaches the column’s failure load represented by point “c”. 

After this point, a noticeable and advanced increase in cross-section torsional 

deformation becomes apparent due to the column’s stiffness decrease, as 

depicted by point “d”; 

iii) Additionally, Figure 41(a) also presents the column’s load versus transverse 

displacement mid-span (L/2) curves, evidencing the deformed shape 

characterised by mid-span cross-section torsional rotation. In other words, all 

four LVDTs (V5, V6, V7, and V8) display comparable readings in opposing 

transverse directions (x and z) throughout the test. For instance, when the applied 

load reaches the column’s ultimate failure load (P = 680.00 kN), the LVDTs’ 

readings were V5 = +3.71 mm and V7 = -3.74 mm in direction x, while V6 = -

3.72 mm and V8 = +3.78 mm in direction z. This reading pattern indicates rigid 

body movement of the cross-section as the load is applied, i.e., identical 

behaviour across each of the four cross-section legs (pure torsion). Figure 41(b) 

illustrates the torsional rotation deformed cross-section; 

iv) Figure 42 shows the final column’s torsional buckling failure deformed 

configuration from two viewpoints. Visually, the failure mechanisms observed 

stem from the torsional deformation pattern observed: (iii1) development of 

“plastic hinges” adjacent to the cross-sections at one and three-quarters of the 

column’s height, (iii2) all mid-span four legs exhibit identical behaviour, i.e., 

pure torsion, and (iii3) the columns buckle in a single half-wavelength along the 

column’s effective length; 

v) These findings indicate that the method of assembling the columns, entailing the 

precise positioning of bolts and plates at one-third (1/3) and two-thirds (2/3) of 

the column's length (L) in two transverse directions, effectively integrates the 

connected equal-leg angle profiles into a starred cross-section. This assembly 

procedure is practical and allows for straightforward disassembly if needed. 
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a) 215.19 kN b) 539.88 kN c) 680.08 kN d) 593.46 kN 

Figure 40: Bolted starred column (BSC) equilibrium path – load versus axial shortening curves (P vs 

Δy) – and four deformed shapes throughout test A. 

 

  
 

a) b) 

Figure 41: a) Bolted starred column (BSC-A) equilibrium path – mid-span (L/2) load versus transverse 

displacements (P vs Δx and P vs Δz) – and b) the cross-section torsional rotation. 
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Figure 42: Bolted starred columns experimental results column’s failure mode through two 

viewpoints. 

 

 

3.4.3 Conclusions 

 

 

Based on these experimental results, it is possible to obtain the following conclusions 

regarding austenitic stainless steel short-to-intermediate fixed-ended welded and bolted starred 

columns: 

i) The assembly procedure used for the columns, involving strategic placement of 

welds and bolts with plates at one-third and two-thirds of the column’s length 

(L) along two transverse directions, efficiently unifies the equal-leg angle 

profiles into a starred cross-section (i.e., centroid and shear centre coincident), 

and, consequently, due to the geometry the fixed-ended short-to-intermediate 

columns are susceptible to pure torsional buckling failure mode – the main aim 

of this work; 

ii) Comparing welded and bolted starred columns reveals subtle differences in 

assembly and potential structural integrity. While both methods effectively 

create the desired starred cross-section, welded columns offer a more permanent 

solution with potentially greater rigidity due to the continuous nature of the 

welds. In contrast, bolted connections provide flexibility for disassembly, 

making them advantageous for applications requiring adjustability or temporary 

assembly; 
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iii) However, the susceptibility to torsional buckling suggests that regardless of the 

assembly method, careful consideration of the columns’ geometrical properties 

is crucial in design and analysis to prevent early failure. However, a more 

extensive study is needed to encompass a broader range of fixed-ended welded 

and bolted starred columns and validate whether this structural behaviour is 

consistent across varied geometries. Hence, the objective of this study is to 

numerically extend these findings to gain a deeper understanding of these 

columns’ behaviour. 
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4 WELDED STARRED COLUMNS ELASTIC BUCKLING BEHAVIOUR AND 

FINITE ELEMENT MODEL VALIDATION 

 

 

4.1 Introduction 

 

 

A numerical model was developed using the finite element software ANSYS 17.0 [29] 

to investigate the structural behaviour and ultimate strength of (austenitic and duplex) stainless 

steel fixed-ended short-to-intermediate welded starred columns, i.e., columns susceptible to 

torsional buckling failure. This section presents the particulars of the developed finite element 

model, including information on column geometry, element types, mesh size, boundary 

conditions, the implementation of initial geometrical imperfections, and the employed solution 

technique. 

In order to comprehend the structural behaviour of the fixed-ended short-to-intermediate 

stainless steel welded starred columns, it is essential to conduct a preliminary investigation. 

Two types of structural analyses – assuming an elastic material behaviour (E = 210 GPa and v 

= 0.3) and columns geometries including a pair of compact equal-leg angle cross-sections (b/t 

< 20) – were initially conducted to gain insight into fixed-ended welded starred columns’ 

stability.  

Firstly, (i) linear buckling analysis is performed (i1) to verify the columns assembly 

procedure and (i2) to identify column lengths susceptible to torsional buckling failure as the 

length increases – the “signature” curve. Based on the column buckling behaviour, (ii) a non-

linear elastic post-buckling analysis is performed to determine the columns’ equilibrium path 

as the length increases, i.e., evaluating the welded starred columns’ structural response 

regarding solely the geometrical non-linearity associated with torsional buckling failure. These 

analyses play a crucial role in verifying the effectiveness of the column assembly procedure 

across a range of column geometries – varying cross-section width (b), thickness (t), and 

column length (L). 

Afterwards, (iii) the austenitic stainless steel behaviour is included in the finite element 

model, considering material non-linearity to assess the columns’ strength accuracy and to 

validate by comparing the numerical results against the experimental results obtained by 

Botelho et al. [50]. Finally, (iv) an initial imperfection sensitivity study is conducted to assess 
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the impact of amplitude on the non-linear behaviour of the fixed-ended bolted starred stainless 

steel columns. 

 

 

4.2 Solid finite element model development 

 

 

All the components of the welded starred columns were discretised into SOLID185 

elements – homogenous structural solid elements present in the ANSYS library [29] – defined 

by eight nodes having three degrees of freedom at each node: translations in the nodal directions 

x, y, and z. According to the software manual, this element is suitable for modelling general 

solid structures, even in irregular regions, such as welds. Moreover, the element has plasticity, 

stiffening, large displacements, and large deformations, which are capabilities necessary for 

instability phenomena. 

Initially, the column geometry is modelled following the specifications used by Botelho 

et al. [50], which involves two equal-leg angles profiles (2Lb t) joined by a fillet weld, where 

the weld’s leg length matches the section’s thickness (t). It is strategically placed at both one-

third and two-thirds of the column’s length with 50 mm, as illustrated in Figure 43(a). However, 

the role of the columns’ built-up procedure (bolted or welded) is exclusive to ensure that the 

pair of equal-leg angle sections are joined, working uniquely to form a starred cross-section 

along the entire column length, i.e., shear centre and centroid coincident. Therefore, to solve 

and eliminate this spacing issue between welding points in the future parametric analysis, this 

work employs a fillet weld continually along the column length (L), as shown in Figure 43(b). 

To clarify this observation, Figure 44 presents an elastic buckling analysis that compares 

these two assembly procedures considering three starred column lengths L = 700, 1400 and 

2800 mm featuring 2L63.504.76. For the experimentally tested column length (L = 700 mm), 

there is no difference in the column structural behaviour using weld spacing L/3 or continuously 

along the column’s length. Given the relatively short length of these columns, such spacing is 

deemed adequate for maintaining proper structural integrity. This behaviour is also observed in 

columns of intermediate lengths (L = 1400 mm). However, for longer columns (L = 2800 mm, 

for instance), reduced spacing between weld points becomes necessary, i.e., it is crucial to add 

more parts of welds along the column length to guarantee the welded starred section properties.  
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a) b) 

Figure 43: a) Experimental assembly procedure used in Botelho et al. [50] and b) finite element model 

assembly procedure with continuous fillet weld. 
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Figure 44: Starred columns’ elastic buckling behaviour featuring two equal-leg angle sections 2L63.50

 4.76 and varying length L = 700, 1400 and 2800 comparison between welding a) spaced at intervals 

of L/3, and b) applied continuously along the entire length of the column. 
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After the geometry definition, the fixed supports are modelled by creating point 

elements (MASS21) having six degrees of freedom – nodal translations in x, y and z directions 

and rotations about the x, y, and z axes – positioned at the end sections centroid. Each end 

section node was rigidly connected to the point element of the respective end section (bottom 

and top), creating two rigid regions. So, the support condition is imposed in these point 

elements, restraining translation and rotation in all three directions (x, y, and z), except for the 

column top axial displacement (UY), which was free to move. 

Column geometry, including initial geometrical imperfections, was created through a 

linear buckling analysis, which was performed to determine the critical buckling mode shape 

(eigenvector). For the investigated instability phenomena in this work, the first eigenvector 

(representing the critical mode) corresponds to the pure torsional buckling, characterised by a 

cross-section torsional rotation (β) about the longitudinal axis (y), with the maximum amplitude 

occurring at the cross-section located at the mid-span (L/2), i.e., constituting one half-

wavelength. After this analysis, the “UPGEOM” command updates the ideal column geometry 

mesh – Figure 45(a) – to a column real mesh by including the initial geometrical imperfections 

vector sum with a maximum amplitude specified value. This procedure results in a mid-span 

(L/2) rigid-body rotation (β0), i.e., each of the four legs works together, as presented in Figure 

45(b) with an amplified scale. 

The analysis methodology encompassed several key steps: (i) the definition of fixed-

ended equal-leg angle welded starred column mesh, (ii) performing a linear buckling analysis, 

(iii) introduction of initial geometrical imperfection by updating the column geometry to 

include the torsional buckling mode, (iv) uniform compression loading was applied using by 

imposing a prescribed displacement (UY) at the centroid of the column’s top end, and (v) a non-

linear solution strategy was employed using an incremental-iterative approach based on the full 

Newton-Raphson algorithm. This comprehensive methodology accounted for both material and 

geometrical non-linearities. Finally, a mesh convergence investigation revealed that an 8 mm x 

8 mm element size could provide a real correlation between numerical and experimental 

behaviour, requiring a fair computational effort. 
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a) b) 

Figure 45: a) Welded starred column geometry with initial geometrical imperfection and b) mid-span 

(L/2) cross-section torsional rotation. 

 

 

4.3 Column buckling behaviour 

 

 

The first step was to employ the finite element model to investigate the linear stability 

of fixed-ended welded starred columns to obtain the cross-section “signature” curve (Pcr vs. L), 

i.e., understanding the structural element’s elastic buckling behaviour as the column length 

increases.  

Figure 46(a) shows the variation of the elastic critical buckling load (Pcr) obtained by 

ANSYS with the column length (L) – in logarithmic scale – for columns with fixed ends created 

by a pair of welded equal-leg angles cross-section L63.504.76 (b/t = 13.34) and L88.904.76 

(b/t = 18.68), respectively. These elastic buckling results lead to the following comments: 

i) According to the plate classical theory [10],[15] and also verified by Dinis et al. 

[30] using the Generalized Beam Theory (GBT) [16], it is established that local 

buckling (or plate buckling) occurs in a structural element if its signature curve 

has a local minimum and the buckling mode exhibits multiple half-waves – only 

possible if the plate bends transversally. In a practical range (L ≥ 30 cm), it is 

noted that the fixed-ended welded starred columns’ signature curve shows (i1) 

no cross-section plate bending during the buckling, (i2) all lengths always 

buckles in single half-wave mode along the column’s effective length, and (i3) 

for that reason no local minimum exists in the signature curve. Consequently, 

the critical column buckling deformation mode involves two rigid body 
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movements depending on the column length, i.e., solely global buckling modes: 

pure torsion about the shear centre for short-to-intermediate columns – Figure 

46(b) – or major-axis displacements about the centroid for longer lengths; 

ii) It is observed for the entire length range investigated (30 cm to 1000 cm) that 

the critical buckling load (Pcr) decreases as column length increases (L) and 

shows two distinct branches revealing the critical global buckling mode: (ii1) 

torsional buckling approximately “plateau” for short-to-intermediate column 

lengths and (ii2) minor-axis flexural buckling for long and very long lengths. It 

is essential to highlight that this elastic buckling behaviour is the same obtained 

in fixed-ended columns with plain cruciform sections [36]; 

iii) Dinis et al. [30] underscore the critical role of considering secondary warping 

effects (Iws) for a precise representation of the initial descending portion of the 

torsional buckling in the “signature” curve. Consequently, this study includes a 

numerical analysis in Appendix A using ANSYS [29], aiming to investigate and 

determine the properties of dual equal-leg angle welded starred sections; 

iv) Notably, the onset of minor-axis flexural critical buckling mode limits the 

torsional buckling plateau, i.e., at a given column length, the elastic critical loads 

are equivalent (Pcr,T = Pcr,F). The length at which this shift in the buckling 

phenomenon occurs along the columns’ signature curve is referred to as the 

transition length, denoted in this work for fixed-ended welded starred columns 

as LTFS; 

v) Moreover, with the increasing b/t ratio (13.34 up to 18.68) straightforward 

observations must be highlighted: (iv1) the column length transition (LTFS) 

increases; (iv2) elastic critical buckling loads decrease; (iv3) the elastic behaviour 

remains consistent across the varying b/t ratios for compact cross-sections, i.e., 

the elastic buckling behaviour in fixed-ended welded equal-leg angle columns 

does not alter its shape and tends to follow the same pattern. For instance, Figure 

47 illustrates a column length range from 0.30LTFS up to 0.95LTFS (torsional 

plateau) considering columns created by a pair of welded equal-leg angles 

2L63.504.76 with LTFS = 2950 mm and 2L88.904.76 with LTFS = 6100 mm; 

vi) Another pivotal consideration is ascertaining that as the column’s length extends 

from 0.30LTFS up to 0.95LTFS, the relationship between elastic critical torsional 

and minor-axis flexural buckling (highlighted in red dotted line) exhibits a 

substantial high ratio (Pcr,F/Pcr,T) for 90% of column lengths (i.e., L ≤ 0.90LTFS). 
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This characteristic indicates that only a limited number of column lengths might 

display interaction between global modes (torsional and minor-axis flexural 

buckling) during the post-buckling analysis. This behaviour will be further 

investigated in section 4.4; 

 

  

 

Rigid-body 

rotation (pure 

torsional) 

 

a) b) 

Figure 46: Pcr vs. L curves for columns with fixed ends created through two equal-leg angle b/t ratios 

of 13.34 and 18.64, respectively, and b) columns’ mid-span (L/2) torsional buckling deformation. 
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b) 

Figure 47: Torsional buckling elastic buckling shape for columns with lengths from 0.30LTFS up to 

0.95LTFS considering a) b/t = 13 and b) b/t = 18. 
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4.4 Column elastic post-buckling behaviour 

 

 

The next step was to investigate the elastic non-linear post-buckling behaviour of fixed-

ended short-to-intermediate bolted equal-leg angles starred columns, i.e., prone to failure by 

torsional buckling (L ≤ LTFS). These analyses containing critical-mode initial geometrical 

imperfection are employed to determine the equilibrium paths, i.e., curves that correlate the 

corresponding load parameter value and mid-span (L/2) rigid-body cross-section torsional 

rotation (P/Pcr vs. β), is essential for study the potential mode interaction between critical global 

torsional buckling and minor-axis flexural buckling at lengths approaching the transition length 

(LTFS), directly affecting the columns’ ultimate load (Pu). 

Therefore, five distinct column lengths sharing the same L/LTFS ratio were selected for 

each cross-section (L63.504.76 and L88.904.76) to determine the equilibrium paths as the 

length increase on the signature curve (0.30LTFS, 0.60LTFS, 0.75LTFS, 0.90LTFS, and 0.95LTFS), 

aiming to cover the torsional buckling range – depicted in Figure 48. All columns containing 

torsional critical mode initial geometrical imperfections with amplitudes equivalent to 10% of 

the equal-leg angle section thickness4 (0.1t) yielding an initial mid-span rigid-body cross-

section torsional rotation equal to β0 = 0.0075 rad and 0.0053 rad for L63.504.76 and L88.90

4.76, respectively. 

Figure 48 presents the elastic post-buckling columns equilibrium paths (P/Pcr vs. β) 

results, where β represents the mid-span rigid-body cross-section torsional rotation relating to 

the applied load and is positive clockwise. Based on these elastic post-buckling results, the 

following comments can be made: 

i) As the width-to-thickness ratio (b/t) increases from 13.34 to 18.68, the elastic 

post-buckling behaviours of columns with fixed ends (created by a pair of 

welded equal-leg angles 2L63.504.76 and 2L88.904.76) reveals nearly 

identical equilibrium paths. Indicating that this behaviour is practically 

equivalent in lengths that share the same L/LTFS ratio on the signature curve 

                                                 

4 According to Schaffer and Pekoz [57], this value is significant enough to avoid numerical problems, whereas it is 

ideal for allowing other critical buckling modes to contribute to the nonlinear analysis, i.e., accurately representing the column's 

elastic behaviour.  
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regardless of the b/t ratio up to 20, i.e., varying the compact equal-leg angle 

cross-section dimensions; 

ii) Additionally, it is essential to observe that all columns fixed-ended bolted starred 

columns exhibit clear, stable behaviour with substantial post-buckling strength 

(P > Pcr,T). Nevertheless, as the column lengths increase, approaching the 

transition length, there is a decrease in the post-buckling strength, although the 

load parameter consistently remains above 1; 

iii) After reaching the critical elastic torsional buckling load (P/Pcr,T = 1), all 

columns deformed configurations solely involve mid-span cross-section rigid-

body rotations, with no occurrences of centroid displacements. In order to clarify 

this comment, Figure 49 provides, respectively, an isometric and top view 

showing the progression of the deformed configuration from 0.1 to 0.5 rad in 

columns with a length of 0.95LTFS formed by a pair of welded equal-leg angles 

of 2L63.50 4.76 and 2L88.90 4.76, showing the position of each deformed 

configuration on the column equilibrium path; 

iv) Consequently, it has been observed that fixed-ended columns of short-to-

intermediate length, composed of two compact equal-leg angle sections 

(specifically, with a width-to-thickness ratio b/t < 20) and featuring welded 

connections throughout their length, demonstrate no interaction between the two 

principal global critical modes – torsional and minor-axis flexural buckling – 

even for large deformations (β = 0.6 rad). This finding underscores such 

structural configurations' stability and distinct behaviour under critical 

conditions; 

v) Finally, the elastic post-buckling behaviour observed in this study for fixed-

ended short-to-intermediate welded starred columns closely resembles that of 

fixed-ended short-to-intermediate cruciform columns that fail by torsional 

buckling. This similarity arises from the assembly procedure, which ensures the 

equal-leg angle columns’ connection and overall column structural stability. 
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a) b) 

Figure 48: Fixed-ended welded starred columns equilibrium paths P/Pcr vs. β created through equal-

leg angle cross-section with a) b/t = 13.34 and b) b/t = 18.64. 

 

 

   

   

a) 

 

   

   
b) 

Figure 49: P/Pcr vs β equilibrium path for fixed-ended welded starred columns with length equal to 

0.95LTFS showing three columns deformed configuration as the cross-section torsional rotation 

increases from 0.1 to 0.5 rad featuring a) b/t = 13.34 and b) b/t = 18.68 
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4.5 Numerical model validation – stainless steel material behaviour 

 

 

Following the preliminary investigation into the elastic buckling and post-buckling 

column behaviour, the finite element model was updated to include three crucial features from 

the experimental programme conducted by Botelho et al. [50]: (i) column geometry (L63.50

4.76 cross-section with a column length of 700 mm), (ii) the experimental nonlinear austenitic 

stainless steel material behaviour stress-strain curve obtained from tensile coupon tests average 

depicted in Figure 50, and (iii) initial geometrical imperfection experimental amplitude 

measured equal to t/13.64 to establish the mid-span rigid-body rotation as illustrated in Figure 

45(b). 

The purpose was to evaluate the numerical model’s accuracy (including a non-linear 

stress-strain material behaviour) and validate comparing against the experimental results 

concerning columns’ ultimate load (Pu), load versus axial shortening curves (P vs Δy), load 

versus transverse displacements (P vs Δx and P vs Δz), and failure modes. Figure 51 compares 

the experimental and numerical results for fixed-ended bolted starred columns. These validation 

results provide the following comments: 

i) Concerning columns’ ultimate loads, a satisfactory correlation is observed when 

comparing the finite element model and experimental loads, with a minor 

discrepancy of 2.43%. The numerical ultimate load reached 656.38 kN, whereas 

the experimental loads were 640.40 and 652.44 kN, respectively; 

ii) As shown in Figure 51(a), quantitative analysis reveals that the disparity in initial 

axial stiffness (observed during the linear phase) among equilibrium paths is 

roughly 8%, as indicated by the variance in slopes between the experimental and 

numerical findings. Furthermore, the divergence in post-buckling behaviour is 

less than 1% when comparing WSC-A and reaches 9.88% for WSC-B, up to an 

axial displacement of Δy = 7mm. These results demonstrate a suitable correlation 

between experimental and numerical results of axial shortening equilibrium 

paths’; 

iii) A less pronounced disparity is observed in transverse displacements (Δx and Δz), 

with the maximum value reaching 6% at (LVDT) V7 – Figure 51(b) – after a 

large displacement Δx = 18mm. This variation may be attributed to inherent 

inaccuracies that are unavoidable in real structural engineering tests. It should 
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be highlighted that LVDT measurements positioned at the mid-span (L/2) might 

exhibit deviations due to slip during the load application phase of the test, 

causing the measurement point to vary. As a consequence, this variability 

diminishes the precision of the acquired readings. However, the results make it 

possible to verify that the finite element model also defines these transverse 

equilibrium paths satisfactorily; 

iv) Figure 52 compares the experimental and numerical failure modes, emphasizing 

the notable agreement in the columns’ deformed configuration in the finite 

element model, i.e., reproducing the torsional global buckling column 

behaviour. It is essential to visualise that the cross-section rotation causes the 

column collapse mechanism, i.e., the torsional failure mode start of yielding 

arises around the ¼ and ¾ – span zones of the welded starred column – 

highlighted in red circles. Mechanically, torsional buckling deformation cannot 

occur exclusively in one or two flanges of the starred cross-section, i.e., the 

cross-section’s four flanges must behave identically (rigid body movement); 

v) It is worth noting that, in alignment with the study of elastic post-buckling 

analysis, the initial geometrical imperfection arising from torsional effects of 

mid-span rigid-body rotation ensures an adequate columns’ structural response 

when also including the material behaviour nonlinearity; 

vi) Finally, considering all these observations, it can be concluded that the finite 

element model effectively replicates the behaviour of fixed-ended stainless steel 

welded starred columns prone to torsional buckling failure regarding (vi1) 

ultimate failure load, (vi2) equilibrium paths and (vi3) failure mode. 
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Figure 50: a) Tensile coupon tests obtained by Botelho et al. [50] and b) average stress-strain curve 

adopted to validate the finite element model. 

 

   
a) b) 

Figure 51: Finite element model validation comparing the column’s equilibrium path concerning a) 

load versus axial shortening curves (P vs Δy) and b) load versus transverse displacements (P vs Δx and 

P vs Δz). 

 

  

Figure 52: Finite element model comparing torsional failure mode. 
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mid-span initial cross-section torsional rotation (β0), specifically t/20, t/10 t/5, t/2.5, and t – as 

illustrated in Figure 45(b). 

Firstly, the effect of the initial geometrical imperfection amplitude is assessed using the 

measured imperfection amplitude from the experimental column geometry as a reference, i.e., 

the validation study (VS) – L63.50 4.76, L = 700 mm, and t/13.64. The subsequent stage 

expands this investigation to evaluate this impact on two additional intermediate columns as 

the length increases (1600 mm and 2400 mm), consequently ranging from 0.24L/LTFS to 

0.82L/LTFS.  

Table 6 provides the amplitude of the initial geometrical imperfection adopted, the 

initial mid-span cross-section torsional rotation yielded, and the ultimate numerical load 

obtained for each column. Additionally, Figure 53 shows load vs axial shortening curves (P vs 

Δy) concerning each initial geometrical imperfection amplitude for the selected columns. Based 

on the obtained results, the following remarks can be highlighted: 

i) As expected, there is a decrease in columns’ ultimate loads with an increase in 

the initial geometrical imperfection. However, this reduction becomes 

significant only when comparing the extremes of initial geometrical 

imperfection amplitudes, from the smallest (t/20) to the largest (t), showing 

reductions up to 17.80% for a column length of 700 mm, 14.89% for 1600 mm, 

and 12.47% for 2400 mm in length. This trend suggests that the impact of initial 

geometrical imperfections on the ultimate load diminishes as the column length 

increases; 

ii) The decrease in the ultimate load is significantly less prominent within the 

amplitude range from t/20 to t/2.5, reaching a maximum value of 10.27% for the 

column length of 700 mm. Following this reasoning, a comparison between 

amplitudes of t/20 and t/5 reveals that the reduction in ultimate load is restricted 

to a maximum of 5.31%; 

iii) These comparisons emphasise the need for a considerable increase in the initial 

geometrical imperfection amplitude value to influence the column’s ultimate 

load consistently. In other words, an increase of almost 20 times (t/20 → t) in 

the initial geometrical imperfection amplitude value is necessary for this 

influence to become statistically significant; 

iv) Additionally, as depicted in Figure 53, concerning most substantial amplitude 

values equal to t/2.5 and t, it becomes evident that a substantial increase in the 

initial geometrical imperfection value induces a deviation in the column’s 
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equilibrium path-load vs axial shortening curves (P vs Δy). These results indicate 

that when using a high initial geometrical imperfection value might lead to 

misinterpretation of the structural element’s behaviour and, consequently, 

ultimate strength; 

v) In general, it is observed in Table 6 and Figure 53 that the initial geometrical 

imperfection amplitude value equal to t/20, t/10, and t/5 presents (v1) an 

adequate correlation concerning the column’s ultimate load and (v2) equilibrium 

path for each length, i.e., mitigating the reduction in column resistance while 

ensuring a satisfactory non-linear response; 

vi) Indeed, the initial geometrical imperfection amplitude value equal to t/10 

(highlighted in blue) is commonly used in previous works concerning fixed-

ended short-to-intermediate columns that fail by torsional buckling with 

cruciform section [36], consistently achieving satisfactory results. Therefore, 

based on these observations and in alignment with the previous works available 

in the literature, the initial geometrical imperfection amplitude value t/10 is 

adopted in the developed parametric analysis in this work. 

 

Table 6: Initial geometrical imperfection sensitivity study for fixed-ended stainless steel welded 

starred columns ranging from 0.24L/LTFS to 0.83L/LTFS. 

Column Amplitude β0 Pu,FE 

  (rad) (kN) 

L63.50   4.76 – 700 mm 

t/13.64 – VS 0.0055 656.38 

t/20 0.0037 662.10 

t/10 0.0075 650.39 

t/5 0.0149 626.95 

t/2.5 0.0299 594.06 

t 0.0748 544.20 

L63.50   4.76 – 1600 mm 

t/20 0.0037 637.40 

t/10 0.0075 627.66 

t/5 0.0149 608.00 

t/2.5 0.0299 582.36 

t 0.0748 542.47 

L63.50   4.76 – 2400 mm 

t/20 0.0037 629.67 

t/10 0.0075 619.60 

t/5 0.0149 604.64 

t/2.5 0.0299 584.98 

t 0.0748 550.56 
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a) b) c) 

Figure 53: Load vs axial shortening curves (P vs Δy) concerning each initial geometrical imperfection 

amplitude for fixed-ended welded starred columns with a length equal to a) 700 mm, b) 1600 mm, and 

c) 2400 mm. 
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5 WELDED STARRED COLUMNS NUMERICAL PARAMETRIC INVESTIGATION 

 

 

5.1 Introduction 

 

 

Following the validation of the finite element model and the sensitivity study regarding 

the initial geometrical imperfections, a parametric investigation was conducted to expand the 

database of numerical ultimate loads of austenitic and duplex stainless steel fixed-ended short-

to-intermediate bolted starred columns, i.e., solely column lengths that fail by torsional buckling 

– the main aim of this work. 

Hence, the subsequent steps encompassed: (i) including the austenitic and duplex 

stainless steel behaviour derived from experimental tests; (ii) selecting the appropriate cross-

section profiles (b/t < 20); (iii) numerical investigation of the geometrical section’s properties, 

i.e., torsional constant (It) and secondary warping (Iws); (iv) column length selection through 

elastic buckling analysis (L ≤ LTFS); (iv) initial geometrical imperfection with amplitude equal 

to t/10; (v) the influence of residual stress distribution on the ultimate load; and (vi) nonlinear 

analysis to achieve the fixed-ended short-to-intermediate welded starred columns numerical 

ultimate load (Pu,FE). 

 

 

5.2 Austenitic and duplex stainless steel material behaviour 

 

 

The stress-strain curve of austenitic and duplex stainless steel incorporated into the finite 

element model was obtained from tensile tests – crucial for characterising material properties – 

conducted by Sarquis et al. [45] and Afshan et al. [3] for austenitic and duplex stainless steel, 

respectively. Given the material’s nonlinear behaviour, the stress-strain curves were 

represented using a multilinear isotropic curve implemented through the “MISO” command in 

ANSYS software [29].  

Figure 54(a) and (b) depict the complete stress-strain curves (σ vs. ε) employed in this 

parametric analysis, derived from the experimental data and characterised by twenty-two points 

for austenitic stainless steel and twenty-nine points for duplex stainless steel. Table 7 briefly 

provides the essential material properties for austenitic and duplex stainless steel, in which E is 
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Young’s Modulus, σ0.2% is the stainless steel 0.2% proof stress, σu is the ultimate stress, and εu 

is the failure strain at σu. The observation of Table 7 and Figure 54 prompts the following 

comments: 

i) It is well-known that stainless steel material exhibits remarkable ductility and 

strain-hardening characteristics. Nevertheless, there is a notable disparity in 

ductility between austenitic and duplex materials. Austenitic stainless steel 

demonstrates a ductility of up to 60.69% strain (εu) at the point of ultimate stress 

(σu). In contrast, duplex stainless steel displays lower ductility, with a value of 

20.02%; 

ii) The initial Young's Modulus (E) is a critical mechanical property in columns’ 

structural behaviour and instability phenomena. It is worth mentioning that 

austenitic stainless steel (EA = 207.91 GPa) exhibits greater initial stiffness 

compared to duplex stainless steel (ED = 177.97 GPa), with a ratio (EA / ED) of 

1.17. Poisson’s ratio remains constant at ν = 0.3, and the shear modulus is 

calculated as G = E/[2(1+ ν)];  

iii) This difference directly influences the columns’ elastic critical loads, i.e., the 

torsional buckling load and minor-axis flexural buckling load decrease in the 

same ratio as Young’s Modulus. Nonetheless, despite the disparity in Young’s 

Modulus of the materials, the transition length of the welded columns will 

remain consistent for both materials, simplifying the process of selecting column 

lengths for parametric investigation, i.e., LTFS,A = LTFS,D; 

iv) Furthermore, austenitic stainless steel exhibits a 0.2% proof stress (σ0.2%A = 

310.11 MPa) – a parameter used as the yield strength in design calculations – 

which is notably lower than that of duplex stainless steel (σ0.2%D = 548.99 MPa). 

This results in a ratio (σ0.2%A / σ0.2%D) of 0.56 between these two types of stainless 

steel, highlighting another crucial difference for the investigated instability 

phenomena; 

v) This variation in 0.2% proof stress allows for a broader range of non-

dimensional torsional slenderness (λT) to be covered without requiring 

modifications to the column’s geometry. In other words, identical column 

geometries will yield two distinct non-dimensional torsional slenderness values 

solely due to the difference in material strength. 
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Table 7: Summary of essential material properties used in the finite element model. 

Stainless Steel E σ0.2% σu εu σu/σ0.2% 

 (GPa) (MPa) (MPa) (%)  

Austenitic (A) 207.91 310.11 718.62 60.69 2.31 

Duplex (D) 177.97 548.99 743.28 20.02 1.35 

 

  

Figure 54: a) Austenitic and b) Duplex stainless steel stress-strain curves adopted in the finite element 

model. 

 

5.3 Equal-leg angle cross-section selection 

 

 

Twelve equal-leg angle cross-sections were selected from Elinox's catalogue [58], a 

recognised supplier of stainless steel in Brazil. This selection was explicitly centred on compact 

equal-leg angles, i.e., b/t < 20, to assess the ultimate loads of fixed-ended short-to-intermediate 

welded starred columns. It comprises a range of equal-leg angle cross-section geometries 

encompassing variations in width (b), thickness (t), and width/thickness ratio (b/t) to cover a 

practical hot-rolled cross-section range completely. Table 8 provides information on the cross-

section identification (ID), dimensions (b and t), and width/thickness ratio (b/t) from 5 up to 

18.68. 
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Table 8: Equal-leg angle cross-section selection to create a welded starred section. 

ID Cross-section b t b/t 

  (mm) (mm)  

S1 63.50x12.70 63.50 12.70 5.00 

S2 76.20x12.70 76.20 12.70 6.00 

S3 63.50x9.53 63.50 9.53 6.66 

S4 101.60x12.70 101.60 12.70 8.00 

S5 28.58x3.18 28.58 3.18 8.99 

S6 76.20x7.94 76.20 7.94 9.60 

S7 63.50x6.35 63.50 6.35 10.00 

S8 76.20x6.35 76.20 6.35 12.00 

S9 63.50x4.76 63.50 4.76 13.34 

S10 69.85x4.76 69.85 4.76 14.67 

S11 76.20x4.76 76.20 4.76 16.01 

S12 88.90x4.76 88.90 4.76 18.68 

 

 

5.4 Welded starred section properties 

 

 

Appendix A shows that the welded cross-section geometrical properties of welded 

starred and plain cruciform cross-sections are distinct, i.e., secondary warping constant (Iws) 

and torsion constant (IT). Therefore, a numerical study compared the selected twelve welded 

starred sections with plain cruciform sections sharing the same geometry. Table 9 shows the 

cross-section identification (ID) and the geometrical properties (IT and Iws) of welded starred 

and plain cruciform. The following comments can be made: 

i) The main parameter for comparing welded starred and plain cruciform sections’ 

properties is the width/thickness ratio (b/t). Note, regardless of cross-section 

geometry (b and t – Table 8), the results show tendencies concerning the values 

of torsion constants (IT,sta/IT,cru) and secondary warping (Iws,sta/Iws,cru) as the b/t 

ratio increases from 5 to 18.68; 

ii) There is not much difference in the ratio between the torsion constants of starred 

and cruciform sections (IT,sta/IT,cru), with a maximum of 22% and a tendency to 

approach unity as the b/t ratio increases; 

iii) The welded starred cross-section secondary warping constant (Iws,sta) tends to be 

approximately four times the plain cruciform cross-section secondary warping 

constant (Iws,cru). This value is more evident as the b/t ratio increases; 
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iv) It is also noted that from the ratio b/t ≥ 10 (i.e., S7 to S12), the results show 

convergence in section properties, meaning that the welded starred secondary 

warping constant (Iws,sta) can be calculated employing a simple modification in 

Eq. (A.1), given by Eq. (58). This modification results in a maximum 

discrepancy of 2%, decreasing as the b/t ratio increases. Similarly, the welded 

starred torsion constant (IT,sta) can be calculated according to Eq. (59). 

v) Based on these statements, Eqs. (58) and (59) can simplify and aid the welded 

starred columns’ design through analogies between cross-sections since 

calculating the geometrical properties for columns with plain cruciform sections 

is a straightforward task. In contrast, the welded starred sections present a greater 

complexity due to their geometry. 
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Table 9: Comparison between welded starred and cruciform geometrical sections’ properties. 

ID 

Welded starred section Cruciform section 
,

,

T sta

T cru

I

I
 

,

,

ws sta

ws cru

I

I
 IT,sta 

(mm4) 

Iws,sta 

(mm6) 

IT,cru 

(mm4) 

Iws,cru 

(mm6) 

S1 211478 221642781 173429 58276012 1.22 3.80 

S2 246169 389171145 208115 100700949 1.18 3.86 

S3 85394 95763135 73280 24623930 1.17 3.89 

S4 315534 936344838 277487 238698548 1.14 3.92 

S5 1380 328183 1225 83411 1.13 3.93 

S6 56711 97043911 50857 24608430 1.12 3.94 

S7 24068 28764863 21678 7284501 1.11 3.95 

S8 28401 49882887 26014 12587618 1.09 3.96 

S9 9895 12182747 9131 3068312 1.08 3.97 

S10 10807 16233194 10044 4083923 1.08 3.97 

S11 11719 21093111 10957 5302043 1.07 3.98 

S12 13544 33535618 12783 8419448 1.06 3.98 

    Mean 1.12 3.93 

    CoV 0.05 0.05 
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5.5 Residual stresses effects 

 

 

The residual stresses (defined as self-equilibrating) in welded starred columns arise from 

the construction process to join two equal-leg angles by the corner (welding technique). This 

effect was included in the finite element model using the command “INISTATE”, i.e., the solid 

finite element’s initial stress is assigned at each numerical integration (Gauss points) according 

to its position in the cross-section.  

The 3-point distribution was employed with negative values (“-”) corresponding to 

compressive stresses and positive values (“+”) to tensile stresses – currently used in the 

Eurocode 3 [4][5] and also adopted by Trahair [59] in plain cruciform sections. The βRS = 0.3 

was adopted as the maximum value that correlates the yield strength (σ0.2%) to the peak 

(maximum) residual stress, illustrated in Figure 55(a). Additionally, Figure 55(b) presents the 

residual stress distribution in the finite element model for an austenitic stainless welded starred 

column (σ0.2% = 310 MPa). 

 

 

  
a) b) 

Figure 55: a) Adopted 3-point residual stress distribution on the welded starred cross-section and b) 

applied residual stress in the finite element model in ANSYS [29]. 

 

The effect caused by the residual stresses on the torsional buckling of fixed-ended 

austenitic and duplex stainless steel welded starred columns’ behaviour was assessed by 
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comparing the (i) equilibrium paths (Pu,FE vs. Δv), (ii) deformed shapes development and (iii) 

ultimate load for columns with and without residual stresses, Pu,RS and Pu,WRS, respectively. 

Therefore, a parametric study was carried out verifying four different cross-sections (S4, 

S7, S9, and S12) and 24 lengths for each material (austenitic and duplex stainless steel), i.e., 48 

investigated cases covering a broad L/LTFS ratio from 0.11 up to 1.0, and, consequently, a non-

dimensional torsional slenderness range (λT) from 0.40 up to 1.52. It is essential to highlight 

that columns with the same L/LTFS ratio but with different materials (austenitic or duplex) have 

different non-dimensional torsional slenderness. 

Initially, Figure 56 and Figure 57 show a comparison between welded starred columns’ 

equilibrium paths and deformed shape evolution with identical geometry (S9 and L = 700 mm) 

considering columns without residual stresses (WRS) and with residual stresses (RS) for 

austenitic and duplex stainless steel, respectively. In addition, Figure 58(a) summarises the 

parametric investigation results graphically, displaying the variation of the ultimate load ratio 

(Pu,RS/Pu,WRS) with the non-dimensional L/LTFS ratio. The observation of these results leads to 

the following comments: 

i) For both austenitic and duplex stainless steel, the welded starred columns 

without or with initial stresses exhibit similar equilibrium paths and deformed 

shape evolution, indicating a consistent failure mode across both materials; 

ii) As expected, the ultimate loads of fixed-ended welded starred columns decrease 

when the residual stresses are included in the finite element model. However, 

the results reveal that residual stresses have a minor effect on torsional buckling 

resistance for both materials, with a decrease of 0.9% for austenitic and 6.1% for 

duplex, as illustrated in Figure 56 and Figure 57, respectively. Indeed, duplex 

stainless steel presents a more significant drop due to the elevated 0.2% proof 

stress (as referenced in Table 7), which contributes to a greater distribution of 

residual stresses in the columns compared to those made from austenitic stainless 

steel; 

iii) The quantitative analysis presented in Figure 58(b) shows an overview of the 

reduction factor (χRS) relative to the column length within the scope of this study, 

specifically L ≤ LTFS. It is observed that closer to the transition length, the impact 

of residual stress becomes more pronounced, with reduction factors reaching up 

to 6.75% for duplex stainless steel columns and up to 4.3% for austenitic 

stainless steel columns. Additionally, this decrease can be explicitly attributed 
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to the longer lengths exhibiting lower post-buckling resistance compared to 

shorter ones; 

iv) Therefore, it becomes evident that the impact of residual stresses on the 

behaviour of fixed-ended welded starred columns subjected to torsional buckling 

is negligible for both types of steel. This observation is consistent with results 

from similar studies on fixed-ended hot-rolled equal-leg angle columns prone to 

failure by flexural-torsional buckling [35], as well as research on angle sections 

by Može et al. [60]. 

 

 

WRS 

    
 a) 13.16 kN b) 193.28 kN c) 366.90 kN d) 321.00 kN 

RS 

    
 a) 13.16 kN b) 193.28 kN c) 363.59 kN d) 317.58 kN 

Figure 56: Equilibrium paths (Pu,FE vs. Δv) and deformed configuration development of austenitic 

stainless steel welded starred column without and with residual stresses. 
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WRS 

    
 a) 11.96 kN b) 278.71 kN c) 530.97 kN d) 471.34 kN 

RS 

    
 a) 11.96 kN b) 278.71 kN c) 498.55 kN d) 461.78 kN 

Figure 57: Equilibrium paths (Pu,FE vs. Δv) and deformed configuration development of duplex 

stainless steel welded starred column without and with residual stresses. 

 

  
a) b) 

Figure 58: a) Ultimate strength ratio (Pu,RS/Pu,WRS) and b) reduction factor (χRS) concerning non-

dimensional L/LTFS ratio. 
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5.6 Numerical results 

 

 

Based on the elastic buckling behaviour, the column lengths selection for each welded 

starred cross-section was limited to the transition length in the signature curve (i.e., L ≤ LTFS)
5, 

aiming to investigate only the torsional buckling failure mode – the main purpose of this work. 

Table 10 shows the cross-section identification (ID), the geometrical properties (Ag, It, and Iws), 

and the selected lengths (L), increasing by 100 to 100 mm – except the last one – ranging from 

300 mm up to each welded starred cross-section transition length (LTFS). 

As observed before, it is essential to highlight that the transition length is always equal 

for both austenitic and duplex stainless steel. Therefore, the exact column lengths were 

investigated for each material, totalling 544 finite element models, in which A and D designate 

austenitic and duplex stainless steel columns, respectively. 

Figure 59 summarises the parametric analysis results graphically. The vertical axis 

represents the normalised strength, i.e., the variation of the numerical ultimate load ratio 

Pu,FE/Agσ0.2% with non-dimensional torsional slenderness λT = [(Agσ0.2%)/Pcr,T]0.5 in the 

horizontal axis covering a range from 0.19 to 1.52. The observation of all these results enables 

the following conclusions: 

i) For the same column geometry, the difference in non-dimensional torsional 

slenderness λT is directly related to the 0.2% proof stress materials (σ0.2%A / σ0.2%D 

= 0.56) since the discrepancy in elastic critical torsional buckling load (Pcr,T) is 

short, equal to 17% as shown in Figure 59(a). In other words, their non-

dimensional slenderness increases or decreases by varying the proof stress 

(σ0.2%), improving the investigation and covering a more comprehensive range. 

For instance, concerning columns formed by cross-section S11, the austenitic 

stainless steel columns’ non-dimensional slenderness range is from 0.80 to 1.00, 

while for duplex stainless steel columns’ it is 0.86 to 1.32; 

ii) Based on the non-dimensional torsional slenderness values covered in this work, 

two distinct column failure modes are evident: (ii1) gross cross-section yielding 

occurs for columns with normalised slenderness up to 0.74, while (ii2) column 

failure due to torsional buckling becomes apparent beyond this threshold; 

                                                 

5 All Pcr,T/Pcr,F elastic buckling load ratio is evidently under 1, covering a range from 0.05 to 0.40 ratios – except for 

the transition length (LTFS). 
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iii) Notably, the columns formed by sections S1 up to S7 (b/t = 5 up to 10, 

respectively) present failure due to gross cross-section yielding, i.e., the 

numerical failure load is greater or equal to squash load (Pu,FE/Agσ0.2% ≥ 1), 

reaching a ratio up to 1.5. It can be explained because stocky columns formed 

by compact sections present a high critical torsional buckling load, leading to 

the cross-section yielding failure before column torsional buckling occurs (Pcr,T 

>> Agσ0.2%). Also, these values reveal the strain-hardening capacity of stainless 

steel; 

iv) Similarly, the torsional buckling failure mode becomes predominant from this 

value λT = 0.74 onwards, where a decrease in gross cross-section yielding of up 

to approximately 30% was observed, i.e., Pu,FE/Aσ0.2% = 0.7; 

v) Regardless of stainless steel type, columns with similar non-dimensional 

torsional slenderness (λT) values present similar behaviour and ultimate 

strengths. As columns with closely matched torsional slenderness values display 

nearly identical ultimate strengths, it becomes apparent that this parameter is a 

practical and convenient metric for constructing a design column buckling curve, 

i.e., the design curve proves to be effective in predicting the load-carrying 

capacity of columns susceptible to torsional buckling failure; 

vi) It indicates that the design standard developed is satisfactory for setting a 

buckling curve – Eurocode 3: Part 1.4 [4] column buckling curve “b” – to 

forecast the ultimate strength of fixed-ended stainless steel columns subjected to 

torsional buckling. This observation is particularly evident when comparing the 

numerical results to the two curves established by Eurocode 3: Part 1.4 [4], 

specifically “a0” and “b”. The European code assessment is presented in section 

8.2. 
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Table 10: Cross-section dimensions, ratio b/t, geometrical section’s properties, and chosen lengths for 

numerical parametric investigation. 

ID Ag IT Iws L Austenitic columns Duplex columns 

 (mm2) (mm4) (mm6) (mm) (A) (D) 

S1 2991.93 211478.85 221642781.00 300 – 810 6 6 

S2 3637.09 246169.21 389171145.00 300 –1200 8 8 

S3 2288.93 85394.87 95763135.90 300 – 1250 10 10 

S4 4927.41 315534.47 936344838.00 300 – 2540 23 23 

S5 348.87 1380.11 328183.45 300 – 790 5 5 

S6 2328.70 56711.05 97043911.90 300 – 2370 21 21 

S7 1554.43 24068.71 28764863.50 300 – 2070 18 18 

S8 1877.01 28401.84 49882887.00 300 – 3120 29 29 

S9 1176.19 9895.20 12182747.70 300 – 2950 27 27 

S10 1297.09 10807.49 16233194.20 300 – 3640 34 34 

S11 1417.99 11719.86 21093111.40 300 – 4370 41 41 

S12 1659.80 13544.60 33535618.90 300 – 6100 50 50 

 

 

Figure 59: Numerical results compared to buckling curves “a0” and “b” for torsional buckling failure 

mode. 
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6 BOLTED STARRED COLUMNS FINITE ELEMENT MODEL DEVELOPMENT 

 

 

The numerical model was developed using the finite element software ANSYS 17.0 [29] 

to investigate the structural behaviour and ultimate strength of stainless steel fixed-ended short-

to-intermediate bolted starred columns, i.e., columns susceptible to torsional buckling failure. 

This section presents the particulars of the developed finite element model, including 

information on column geometry, element types, mesh size, boundary conditions, contact 

modelling, bolt preload, the implementation of initial geometrical imperfections, and the 

employed solution technique. 

 

 

6.1 Element type and bolted starred column geometry 

 

 

The finite element model bolted starred column geometry assembly procedure follows 

the same steps in the experimental programme described in section 3.2. Initially, two distinct 

equal-leg angle columns length (L) are created and aligned along the longitudinal axis (y) with 

an equal spacing – equivalent to half of the cross-section thickness (t/2) – in both the transverse 

directions (x and z). Four holes with a diameter equal to 14 mm (dh = 14 mm) – that exceed the 

nominal diameter of the bolt (db = 12.70 mm) – are created at the midpoints of the one equal-

leg angle cross-section (b/2), two positioned at one-third (1/3L) and two others at two-thirds 

(2/3L) of the columns’ length, at z and x transverse directions, respectively, to fit the holes of 

the connection plates. 

Additionally, two rectangular plates, each with two holes (dp = 14 mm), were positioned 

to function as the intermediary connection interface between the columns, one plate at one-third 

and the other at two-thirds of the columns’ length, with dimensions based on the equal-leg angle 

cross-section (b x t), featuring a height, width and thickness plate equal to hp = 3b-t, wp = 2b+t 

and tp = t, respectively. For instance, for equal-leg angle cross-section L63.50   4.76, the 

dimensions of the connection plate are shown in Figure 35(c). 

The four bolts are also represented using 3D shapes elements, with each node having 

three degrees of freedom (3 DOFs). This configuration leads to a substantial number of 

equations that must be solved during the analysis. Thus, a simplified cylinder solid bolt 
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modelling approach was adopted, in which the threads on the bolt are removed6, and the nut 

and the bolt head share identical diameter and thickness dimensions (db,h = db,n = 17 mm and tb 

= 5 mm) with grip length equal to 2t. 

Figure 60 illustrates the finite element model bolted connection, the dimensions of the 

plate and the bolt geometry used. It is essential to highlight that all the column geometries 

investigated in this study have identical dimensions of the connection plates’ holes and the bolts 

(except for the bolt grip length, which naturally adjusts according to the cross-section thickness 

t). 

 

 

  

Figure 60: Finite element model bolt connection overview, including connection plate dimensions and 

bold geometry. 

 

 

6.2 Contact modelling at the bolt connection 

 

 

In bolted joints employed in this work, three crucial contact interfaces are evident, as 

illustrated in Figure 61: the connection between the bolt head and the flange of the equal-leg 

angle column, the juncture between the flange of the equal-leg angle column and the plate, and 

the interface involving the bolt nut and the plate. Establishing these three contact interactions 

in ANSYS [29] software is pivotal for adequate transmitting forces between the bolts and the 

                                                 

6 It is considered that the threads have adequate strength for the applied load and can be omitted from the numerical 

simulation. 
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assembled components. Consequently, surface-to-surface contact elements CONTA174 and 

TARGE170 were used to capture the non-linear response in these contact regions. 

CONTA174 has capabilities to define precisely the interface between contact structural 

components with parameter settings – such as KEYOPT(2), KEYOPT(4), KEYOPT(10), and 

KEYOPT(12) – adjusted to dictate crucial aspects of the contact mechanic. In this work, these 

adjustments encompass the selection of the Augmented Lagrange method as the preferred 

contact algorithm, the specification that contact detection operates at the nodes of the contact 

elements rather than Gauss points, the prescription for contact stiffness updates to occur during 

each iteration, and the specification of the behaviour for contact surfaces, expressly permitting 

sliding without separation with friction coefficient (μ) assumed to be 0.3.  

Complementing this, TARGE170 enables the definition of target surfaces for the 

associated contact elements. Together, these two elements can simulate contact-induced forces 

and deformations, ensuring the accurate representation of inter-component interactions in the 

finite element model. 

 

 

 

 

Figure 61: Three pairs of contact interactions: 1) the bolt head and the flange of the equal-leg angle 

column; 2) the plate and the equal-leg angle columns; 3) the bolt nut and the plate. 

 

 

6.3 Bolt preload 

 

 

The bolt used in the conducted tests [50] was not characterised, as its sole purpose was 

to guarantee the interaction between the two equal-leg angle sections, forming a unique starred 
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section. In this specific application, the bolt works primarily as a tightening mechanism rather 

than contributing structurally, ensuring the authentic behaviour of the starred columns, i.e., 

shear centre and centroid coincident. 

Hence, the nominal characteristics of ASTM A490 bolts were included in the finite 

element model using a bilinear isotropic hardening stress-strain material behaviour (BISO in 

ANSYS [29]), characterised by Young’s Modulus E = 210000 MPa, Poisson’s ratio ν = 0.3, 

yield strength fy,b = 940 MPa, ultimate tensile strength fu,b = 1034.21 MPa, and tangent modulus 

ET = 695 MPa. 

To establish the bolted connection, the bolts’ preload was applied using a pretension 

procedure by the PSMESH command. This command creates the bolt pretension section and 

the corresponding meshes, inserting pretension elements PRETS179. Subsequently, the 

SLOAD command was employed to establish the pretension loads upon these created 

pretension sections, specified to be equivalent to 70% of the bolt's ultimate tensile strength (fu,b 

= 1034.21 MPa) multiplied by the cross-sectional area of the bolt (Ab = 126.67 mm²) providing 

91.70 kN. Figure 62 displays, for instance, the von-Mises stress distribution generated at the 

bolted connection due to the bolt preload application.  

 

 

 
 

Figure 62: Numerical von Mises stresses at the bolt connection due to the bolt preload application. 
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6.4 Boundary conditions 

 

 

The fixed supports were modelled by creating two point elements (MASS21) having six 

degrees of freedom – translations in x, y and z directions and rotations about the x, y and z axes 

– positioned at the bottom and top end sections centroid. Each node at the end section is 

connected to the corresponding point element, resulting in two distinct rigid regions (top and 

bottom). The boundary conditions were enforced by restraining the corresponding 

displacements and rotations of the nodes in all directions (x, y, and z), except for the column 

top axial displacement (UY) that was free – as depicted in Figure 63(a). At this stage, it is 

essential to emphasise that the cross-sections at the column ends are fully constrained, thereby 

preventing any cross-sectional torsional rotation and secondary warping. 

 

 

6.5 Initial geometrical imperfection and residual stress  

 

 

The column geometry, including initial geometrical imperfections, was generated 

following the same procedures used for welded starred columns in section 4.2. First, a linear 

buckling analysis was performed to determine the critical buckling mode shape (eigenvector). 

Subsequently, the “UPGEOM” command was used to update the perfect column geometry 

mesh to the actual mesh. This process corresponds to pure torsional buckling, characterized by 

a cross-section torsional rotation (β) about the longitudinal axis (y), with the maximum 

amplitude occurring at the cross-section located at mid-span (L/2), thereby constituting one 

half-wavelength with cross-section rigid-body rotation (β0), as presented in Figure 63(b) with a 

scale amplified factor. 

Regarding residual stress, it is well known in the available literature that its influence is 

negligible in equal-leg angle columns that fail due to flexural-torsional buckling [35],[60]. 

Additionally, the results obtained in section 5.5 revealed that the effect of residual stress is also 

negligible on the ultimate strength of austenitic and duplex stainless steel equal-leg angle 

welded starred columns, showing a reduction factor of up to 6.75% for duplex stainless steel 

columns and up to 4.3% for austenitic stainless steel ultimate strength columns. Therefore, 

considering the minor influence on the fixed-ended equal-leg angle welded starred columns’ 
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ultimate strength – which represents the most critical assembly procedure scenario – this work 

did not account for the effect of residual stress in the finite element model. 

 

 
a) b) 

Figure 63: a) Bolted starred equal-leg angle columns boundary conditions and b) mid-span (L/2) cross-

section torsional rotation – initial geometrical imperfection. 

 

 

6.6 Analysis methodology and solution 

 

 

The analysis methodology encompassed several key steps: (i) the definition of fixed-

ended equal-leg angle bolted starred column mesh, (ii) establishing the contact modelling to 

define the behaviour between parts of the bolted joint, (iii) applying of the bolt preload, (iv) 

perform a linear buckling analysis, (v) introduction of initial geometrical imperfection by 

updating the column geometry to include the torsional buckling mode, (vi) uniform 

compression loading was applied using imposing a prescribed displacement (UY) at the centroid 

of the column's top end, and (vii) a nonlinear solution strategy was employed using an 

incremental-iterative approach based on the full Newton-Raphson algorithm. This 

comprehensive methodology accounted for both material and geometrical non-linearities. 

Finally, a mesh convergence study was performed to ensure the accuracy of the 

numerical results. Different mesh configurations were considered, varying the element sizes 

from 10 mm to 4 mm. Based on the results, the finite element model discretisation used is a 
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finer mesh at the bolt connections with element sizes equal to 4 mm and 8 mm in other general 

parts provide an adequate correlation between numerical and experimental behaviour, requiring 

a fair computational effort. 
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7 BOLTED STARRED COLUMNS' ELASTIC BUCKLING BEHAVIOUR, FINITE 

ELEMENT MODEL VALIDATION, AND PARAMETRIC INVESTIGATION 

 

 

7.1 Introduction 

 

 

Two types of structural analyses were initially conducted to assess the fixed-ended 

bolted starred columns’ stability, assuming an elastic material behaviour (E = 210 GPa and υ = 

0.3) and column geometries featuring a pair of compact equal-leg angle cross-section (b/t < 20). 

First, (i) a linear buckling analysis is performed, (i1) to verify the columns assembly procedure, 

and (i2) to identify column lengths susceptible to torsional buckling failure as the length 

increases. Based on the column buckling behaviour, i.e., “signature” curve, (ii) a nonlinear 

elastic post-buckling analysis is carried out to determine the columns’ equilibrium paths as the 

length increases, evaluating the structural response of the fixed-ended bolted starred columns 

concerning geometrical non-linearity associated with torsional buckling failure mode. 

Afterwards, (iii) the austenitic stainless steel nonlinear material behaviour is incorporated into 

the finite element model to validate the numerical results by comparing them with the 

experimental results obtained by Botelho et al. [50]. Finally, (iv) a sensitivity study on initial 

torsional geometrical imperfections was conducted to assess their impact on these columns’ 

ultimate strength. 

Following the validation of the finite element model and the sensitivity study concerning 

the initial geometrical imperfections effect, (v) a parametric investigation was conducted to 

expand the database of numerical ultimate loads of austenitic and duplex stainless steel fixed-

ended short-to-intermediate bolted starred columns, i.e., solely columns lengths that fail by 

torsional buckling – the main aim of this work. 

 

 

7.2 Column buckling behaviour 

 

 

The first step was to investigate the fixed-ended columns’ buckling behaviour to obtain 

the “signature” curve (Pcr vs. L). Figure 64(a) shows the variation of the elastic buckling critical 

load (Pcr) obtained by ANSYS with the column length (L) – in logarithmic scale – for columns 
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with fixed ends created by a pair of bolted equal-leg angles cross-section L63.50   4.76 (b/t = 

13.34) and L88.90   4.76 (b/t = 18.68), respectively. This elastic buckling analysis led to the 

following comments: 

i) Unlike fixed-ended welded starred columns, using plates at the 1/3L and 2/3L 

positions, adjusted according to cross-section geometry (hp = 3b-t, wp = 2b+t 

and tp = t), effectively ensures that the shear centre and centroid of the bolted 

starred columns remain coincident. This method significantly improves the 

columns’ assembly procedure effectiveness and stability, leading to better 

overall structural performance; 

ii) For practical lengths (L ≥ 30 cm), the signature curve of fixed-ended bolted 

starred columns reveals that (ii1) there is no cross-section plate bending during 

buckling, (ii2) all column lengths buckle in a single half-wave mode, and (ii3) no 

local minimum is present. Consequently, the critical buckling deformation mode 

involves two rigid body movements depending on the column length, i.e., purely 

global buckling modes: pure torsion about the shear centre (as illustrated in 

Figure 64(b)) or major-axis displacement about the centroid (minor-axis 

bending); 

iii) Consequently, it is observed that across the entire investigated length range (30 

cm to 1000 cm), the critical buckling load (Pcr) decreases as column length (L) 

increases. The results show two distinct branches indicating the critical global 

buckling modes: (iii1) torsional buckling for short-to-intermediate column 

lengths and (ii2) minor-axis flexural buckling for long and very long lengths. It 

is important to note that this elastic buckling behaviour is consistent with 

findings for fixed-ended columns with cruciform cross-sections [36] and welded 

equal-leg angle starred cross-sections demonstrated in section 4.3. Notably, the 

onset of minor-axis flexural critical buckling mode limits the torsional buckling 

mode, i.e., at a given column length referred to as the transition length, LTFS, the 

elastic critical loads are equivalent (Pcr,T = Pcr,F); 

iv) Moreover, as the b/t ratio increases from 13.34 to 18.68, several key 

observations can be made: (iv1) the transition length (LTFS) also increases; (iv2) 

the elastic critical buckling loads decrease; (iv3) the elastic buckling behaviour 

remains consistent across different b/t ratios for compact cross-sections (b/t < 

20), meaning the elastic buckling behaviour in fixed-ended bolted equal-leg 

angle columns maintains its pattern; 
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v) Another crucial observation is to note that as the column’s length extends from 

0.30LTFS up to 0.95LTFS, the relationship between the elastic critical torsional and 

minor-axis flexural buckling (highlighted in red dotted line) exhibits a 

substantial-high ratio (Pcr,F/Pcr,T) for 90% of column lengths (i.e., L ≤ 0.90LTFS). 

This pattern closely mirrors the behaviour noted in fixed-ended welded starred 

columns, suggesting that only a small range of column lengths may exhibit 

global interaction modes in the post-buckling analysis. However, these 

relationships will be further examined in 7.3; 

vi) Lastly, the elastic buckling analysis reveals that the bolted plate assembly 

procedure at one-third and two-thirds of their length ensures the actual columns’ 

behaviour, regardless of the column geometry using compact equal-leg angle 

sections. This method consistently results in torsional buckling behaviour as the 

column length increases up to the transition length (L ≤ LTFS). For example, 

Figure 65 illustrates a column length range from 0.30LTFS up to 0.95LTFS 

considering columns created by a pair of bolted equal-leg angles 2L63.50   

4.76, where LTFS = 2280 mm. 

 

  

 

a) b) 

Figure 64: a) Pcr vs. L curves for columns with fixed ends created through two equal-leg angle b/t 

ratios of 13.34 and 18.64, respectively, and b) columns’ mid-span (L/2) torsional buckling 

deformation. 
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0.30LTFS 0.60LTFS 0.75LTFS 0.90LTFS 0.95LTFS 

     

Figure 65: Torsional buckling failure mode shape for columns with lengths from 0.30LTFS up to 

0.95LTFS. 

7.3 Column elastic post-buckling behaviour 

 

 

Following the same strategy used for welded starred columns, five distinct column 

lengths with the same L/LTFS ratio were investigated (0.30LTFS, 0.60LTFS, 0.75LTFS, 0.90LTFS, 

and 0.95LTFS – as depicted in Figure 64(a)) for each selected cross-section (L63.50   4.76 and 

L88.90   4.76). In this context, all columns considered torsional buckling critical mode initial 

geometrical imperfections with amplitudes equivalent to 0.1t, yielding an initial mid-span rigid-

body cross-section torsional rotation β0.  

As mentioned, this approach is essential to determine the columns’ mid-span 

equilibrium paths (P/Pcr vs. β) as the length increases along the signature curve, allowing for 

an in-depth investigation of potential global mode interactions (torsional and minor-axis 

flexural buckling). Figure 66 presents the results of the elastic post-buckling equilibrium paths 

for the selected columns. Therefore, the following observations can be made: 

i) The elastic post-buckling behaviour of fixed-ended columns exhibits nearly 

identical equilibrium paths as the width-to-thickness ratio (b/t) increases from 

13.34 to 18.68 for column lengths with the same L/LTFS ratio on the signature 

curve. This pattern indicates that the elastic post-buckling behaviour remains 

consistent regardless of the b/t ratio for compact cross-sections (b/t < 20); 

ii) Furthermore, it is important to note that all fixed-ended bolted starred columns 

also exhibit stable behaviour with substantial elastic post-buckling strength (P > 

Pcr,T). However, as the column lengths increase and approach the transition 

length, there is a noticeable decrease in post-buckling strength, although the load 

parameter (P/Pcr,T) always remains greater than unity. Notably, bolted starred 

b/t = 13.34 
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columns demonstrate higher post-buckling strength compared to welded starred 

columns, as evidenced by the comparison between Figure 48 and Figure 66; 

iii) Upon reaching the critical elastic torsional buckling load (P = Pcr,T), all columns’ 

deformed configuration exclusively involves mid-span cross-section rigid-body 

rotations, with no centroid displacements observed. To illustrate this behaviour, 

Figure 67 presents isometric and top views showing the evolution of the 

deformed configuration from 0.1 to 0.5 rad in the most critical column 

investigated in this work with a length of 0.95LTFS, composed of a pair of bolted 

equal-leg angle 2L88.90   4.76, highlighting the position of each deformed 

state along the column’s equilibrium path; 

iv) Consequently, it is observed that short-to-intermediate fixed-ended columns 

show no interaction between the two global critical modes (torsional and minor-

axis flexural buckling), even when subjected to large deformations (β = 0.6 rad). 

Given this, it can be concluded that the short-to-intermediate bolted starred 

columns examined in this study fail exclusively by torsional buckling. 

 

  
a) b) 

Figure 66: Fixed-ended bolted starred columns equilibrium paths P/Pcr vs. β created through equal-leg 

angle cross-section with a) b/t = 13.34 and b) b/t = 18.64. 
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Figure 67: P/Pcr vs β equilibrium path for fixed-ended bolted starred columns with length equal to 

0.95LTFS and three columns deformed configuration as the cross-section torsional rotation increases 

from 0.1 to 0.5 rad. 

 

 

7.4 Numerical model validation – stainless steel material behaviour 

 

 

Following the same methodology used in the welded starred columns, the next step 

involves incorporating the experimental non-linear stress-strain behaviour of austenitic 

stainless steel, obtained by Botelho et al. [50] and presented in Figure 50. This approach aims 

to evaluate the accuracy and validate the finite element model by comparing it against the 

experimental results, including (i) columns’ ultimate load (Pu), (ii) load versus axial shortening 

curves (P vs Δy), (iii) load versus transverse displacements (P vs Δx and P vs Δz), and (iv) failure 

modes. 

Figure 68 and Figure 69 compare the experimental data with the numerical outcomes 

for fixed-end bolted starred columns. The following observations arise from these validation 

results: 

i) When examining the ultimate loads of the columns, there is a satisfactory 

correlation between the experimental and numerical results, with a minor 

discrepancy of 3.87%. The numerical ultimate load was 653.64 kN, while the 

experimental load was 680.08 kN; 

ii) As shown in Figure 68(a), quantitative analysis shows that the initial axial 

stiffness (during the linear stage) between the equilibrium paths differs by 
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approximately 0.05%, as indicated by the slope difference between experimental 

and numerical results. Moreover, the difference in post-buckling behaviour 

remains below 1% until reaching an axial displacement Δy = 7mm. These results 

demonstrate a suitable correlation between the experimental and numerical axial 

shortening curves (P vs. Δy); 

iii) A more significant disparity is observed in transverse displacements (Δx and Δz), 

with the maximum discrepancy reaching 9% at (LVDT) V7 – Figure 68(b) – 

following a large displacement of Δx = -20mm. It is important to note that LVDT 

measurements at the mid-span (L/2) may show deviations due to slip during the 

load application phase. Nonetheless, the finite element model satisfactorily 

defines these transverse equilibrium paths as well, showing the mid-span rigid-

body rotation; 

iv) Figure 69 compares the experimental and numerical failure modes, highlighting 

the notable agreement in the deformed shape of the columns, which reproduces 

the torsional global buckling behaviour; 

v) Finally, it can be confirmed that the FEM accurately replicates the behaviour of 

fixed-ended stainless steel bolted starred columns prone to torsional buckling 

failure mode in terms of ultimate failure load, equilibrium paths, and failure 

mode. 

 

   
a) b) 

Figure 68: Finite element model validation comparing the column’s equilibrium path: a) load versus 

axial shortening curves (P vs Δy) and b) load versus transverse displacements (P vs Δx and P vs Δz). 
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a)  b) 

Figure 69: Finite element model validation comparing the column’s failure mode through two 

viewpoints. 

 

 

7.5 Initial geometrical imperfection sensitivity 

 

 

The sensitivity study on the initial geometrical imperfection of fixed-ended stainless 

steel bolted starred columns’ ultimate strength involves comparing the numerical ultimate loads 

(Pu,FE) and the load vs. axial shortening curves (P vs. Δy). Consequently, five different amplitude 

values are considered for the initial torsional rotation of the mid-span cross-section (β0), 

specifically t/20, t/10, t/5, t/2.5, and t, as illustrated in Figure 63(b). 

The effect of the initial geometrical imperfection amplitude on the columns’ ultimate 

strength is assessed using the measured imperfection amplitude from the experimental column 

geometry as a reference, i.e., the validation study (VS) – L63.50   4.76, L = 700 mm, and 

t/13.64. The next stage extends this analysis to assess the effect on two additional intermediate 

columns as the length increases to 1400 mm and 2100 mm, covering a range from 0.30L/LTFS 

to 0.92L/LTFS – the main aim of this work (L ≤ LTFS). 

Table 11 provides the adopted amplitudes of the initial geometrical imperfections, the 

mid-span cross-section torsional rotation, and the ultimate loads for each column. Furthermore, 

Figure 70 presents the load versus axial shortening curves (P vs. Δy) for each initial geometrical 

imperfection in the selected columns. From these results, several key observations can be made: 

i) As foreseen, the ultimate loads decrease as the initial geometrical imperfection 

increases. This reduction is most noticeable when comparing the smallest (t/20) 
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and largest (t) initial geometrical imperfection amplitude values. For column 

lengths of 700 mm and 1400 mm, the ultimate load decreases by up to 17%, 

while for a column length of 2100 mm, the reduction is 15%; 

ii) The decrease in ultimate load is significantly less pronounced within the 

amplitude range of t/20 to t/2.5, with a maximum reduction of 9% for the 1400 

mm column. Comparing the amplitudes of t/20 and t/5 reveals a maximum 

reduction of 6% in the ultimate load; 

iii) These comparisons highlight the necessity of a substantial increase in the initial 

geometrical imperfection amplitude value to influence the column’s ultimate 

load consistently. Specifically, an increase of nearly 20 times (t/20 to t) in the 

initial geometrical imperfection amplitude is required for this influence to 

become statistically significant; 

iv) Additionally, Figure 70 shows that for the most significant initial geometrical 

imperfection amplitude values (t/2.5 and t), a deviation in the column’s 

equilibrium path load vs. axial shortening curves (P vs Δy) is noted. These 

outcomes suggest that using a high initial geometrical imperfection value might 

lead to a misinterpretation of the ultimate strength and, consequently, the 

structural element's behaviour; 

v) Generally, as observed in Table 11 and Figure 70, initial geometrical 

imperfection amplitudes of t/20 and t/10 provide (v1) an adequate correlation 

with the column’s ultimate load and (v2) equilibrium path for each selected 

length, mitigating the reduction in column resistance while ensuring a 

satisfactory non-linear response; 

vi) Indeed, as mentioned in 4.6, an initial geometrical imperfection amplitude of 

t/10 (highlighted in blue) is commonly used in previous studies on fixed-ended 

short-to-intermediate columns that fail by torsional buckling with cruciform 

sections and welded equal-leg angle starred sections (in this work), consistently 

yielding satisfactory results. Therefore, based on these observations and in 

alignment with previous works available in the literature, an initial geometrical 

imperfection amplitude of t/10 is adopted for the parametric analysis developed 

in the next section. 
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Table 11: Initial geometrical imperfection sensitivity study for fixed-ended stainless steel bolted 

starred columns ranging from 0.30L/LTFS to 0.92L/LTFS. 

Column Amplitude β0 Pu,FE 

  (rad) (kN) 

L63.50   4.76 – 700 mm 

t/13.64 – VS 0.0055 653.64 

t/20 0.0037 658.48 

t/10 0.0075 648.82 

t/5 0.0149 632.34 

t/2.5 0.0299 605.16 

t 0.0748 550.40 

L63.50   4.76 – 1400 mm 

t/20 0.0037 591.92 

t/10 0.0075 580.94 

t/5 0.0149 554.94 

t/2.5 0.0299 536.54 

t 0.0748 491.72 

L63.50   4.76 – 2100 mm 

t/20 0.0037 555.08 

t/10 0.0075 542.13 

t/5 0.0149 532.42 

t/2.5 0.0299 512.95 

t 0.0748 476.69 

 

   
a) b) c) 

Figure 70: Load vs axial shortening curves (P vs Δy) concerning each initial geometrical imperfection 

amplitude for fixed-ended bolted starred columns with a length equal to a) 700 mm, b) 1400 mm, and 

c) 2100 mm. 
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selecting appropriate cross-section profiles (b/t < 20); (iii) choosing column lengths based on 

elastic buckling analysis (L ≤ LTFS); (iv) applying an initial geometrical imperfection with an 

amplitude equal to t/10; and (v) performing nonlinear analysis to determine the numerical 

ultimate load (Pu,FE) of fixed-ended short-to-intermediate bolted starred columns. 

As detailed in section 5.2, the stress-strain curves for austenitic and duplex stainless 

steel used in the finite element model were obtained from tensile tests conducted by Sarquis et 

al. [45] for austenitic stainless steel and Afshan et al. [3] for duplex stainless steel. Twelve 

equal-leg angle cross-sections were selected explicitly centred on compact sections, i.e., b/t < 

20, to assess the ultimate loads of fixed-ended short-to-intermediate bolted starred columns. 

The column lengths for each bolted starred cross-section were chosen based on their elastic 

buckling behaviour, with lengths limited by the transition length in the signature curve (L ≤ 

LTFS). Table 12 provides detailed information on the cross-section identification (ID), 

width/thickness ratios (b/t) ranging from 5 to 18.68, and the selected lengths (L), which span 

from 300 mm up to the transition length (LTFS) in 100 mm increments. It is essential to 

emphasize that the same column lengths were evaluated for each material, resulting in a total 

of 488 finite element models. These models are designated as A for austenitic stainless steel 

columns and D for duplex stainless steel columns. 

 

Table 12: Typical compact cross-section dimensions and lengths selection for parametric analysis. 

ID Cross-section b/t Ag L Austenitic columns Duplex columns 

   (mm2) (mm) (A) (D) 

S1 63.50x12.70 5.00 2830.64 300 – 810 7 7 

S2 76.20x12.70 6.00 3475.80 300 – 920 8 8 

S3 63.50x9.53 6.66 2198.11 300 – 1060 9 9 

S4 101.60x12.70 8.00 4766.12 300 – 2140 20 20 

S5 57.16x6.35 8.99 1353.07 300 – 1460 13 13 

S6 76.20x7.94 9.60 2265.65 300 – 1950 18 18 

S7 63.50x6.35 10.00 1516.34 300 – 1660 15 15 

S8 76.20x6.35 12.00 1836.69 300 – 2630 25 25 

S9 63.50x4.76 13.34 1153.53 300 – 2280 21 21 

S10 69.85x4.76 14.67 1274.43 300 – 3260 31 31 

S11 76.20x4.76 16.01 1395.34 300 – 3890 37 37 

S12 88.90x4.76 18.68 1637.14 300 – 4160 40 40 

 

Figure 71 provides a graphical summary of the parametric analysis results in terms of 

the ratio of the numerical ultimate load and squash load (Pu,FE/Agσ0.2%) – with non-dimensional 

torsional slenderness (λT = [(Agσ0.2%)/Pcr,T]0.5) covering a range from 0.19 to 1.60. Additionally, 
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it includes the design buckling curves from Eurocode 3: Part 1.4 [4], specifically curve “b” 

(appropriate for torsional buckling curve), “a0”, and curve “a”. The observation of all these 

results allows the following conclusions: 

i) When considering identical column geometry, the variations in non-dimensional 

torsional slenderness λT directly correlate with the materials’ 0.2% proof stress 

(σ0.2%A = 348 MPa and σ0.2%D = 548 MPa). In other words, modifying the proof 

stress (σ0.2%) leads to a corresponding adjustment in the non-dimensional 

slenderness, thus extending the scope of the investigation and encompassing a 

more comprehensive range. For example, in the case of columns featuring the 

S9 cross-section, the non-dimensional slenderness for austenitic stainless steel 

columns varies from 0.47 to 0.81, while for duplex stainless steel columns, it 

ranges from 0.64 to 1.15; 

ii) Moreover, as depicted in Figure 72, exemplified by the S4, S9, and S12 cross-

sections, it is evident that the results consistently display a complementary 

relationship between fixed-ended austenitic and duplex stainless steel columns 

prone to failure by torsional buckling mode. This observation signifies a 

continuous pattern of columns’ ultimate strength with the increasing of the non-

dimensional torsional slenderness, reflecting the increased materials’ resistance 

strategy to cover a more comprehensive non-dimensional slenderness range; 

iii) Based on the non-dimensional torsional slenderness values covered in this work, 

two distinct column failure modes are evident: (iii1) gross cross-section yielding 

occurs for columns with normalised slenderness up to 0.56, while (iii2) column 

failure due to torsional buckling becomes apparent beyond this threshold; 

iv) Notably, columns composed of sections S1 through S7 (with b/t ratios ranging 

from 5 to 10) predominantly experience gross cross-section yielding failure. In 

these cases, the numerical failure load exceeds or equals the squash load 

(Pu,FE/Agσ0.2% ≥ 1), with a ratio reaching 1.27. This phenomenon can be 

attributed to stocky columns constructed from compact sections possessing a 

significantly high elastic critical torsional buckling load, causing cross-section 

yielding to precede column torsional buckling failure (Pcr,T >> Agσ0.2%). These 

findings also underscore the strain-hardening capacity of austenitic and duplex 

stainless steel; 

v) Similarly, the torsional buckling failure mode becomes predominant from the 

point of λT =0.56 onward, i.e., (Pu,FE/Agσ0.2% < 1). This transition denotes a 
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gradual decrease in columns’ resistance of up to 52%, which is established by 

the ratio Pu,FE/Aσ0.2% = 0.48 for the normalised torsional slenderness equal to 

1.60; 

vi) As columns with closely matched torsional slenderness values display nearly 

identical ultimate strengths, it becomes apparent that this parameter is a practical 

and convenient metric for constructing a design column buckling curve, i.e., the 

design curve proves to be effective in predicting the load-carrying capacity of 

columns susceptible to torsional buckling failure. This observation is 

particularly evident when compared to the three curves established by Eurocode 

3: Part 1.4 [4], specifically “a0”, “a”, and “b”; 

vii) Moreover, regardless of stainless steel type (austenitic or duplex), columns with 

similar non-dimensional torsional slenderness (λT) values present similar 

behaviour and normalised ultimate strengths. Therefore, it means that the design 

standard preconised in Eurocode 3: Part 1.4 [4] is satisfactory for setting a unique 

design column buckling curve in order to forecast the ultimate strength of short-

to-intermediate fixed-ended stainless steel columns subjected to torsional 

buckling, i.e., curve “b” specific to the torsional buckling phenomenon since 

providing a conservative design. 

 

 

Figure 71: Numerical results compared to buckling curves “a0”, “a”, and “b” for stainless steel 

columns torsional buckling failure mode. 
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a) b) c) 

Figure 72: Continuous normalised ultimate strength pattern as non-dimensional torsional slenderness 

increases considering the austenitic and duplex stainless steel for a) S4, b) S9, and S12 cross-sections. 
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8 EUROCODE 3: PART 1.4 COLUMNS’ DESIGN ASSESSMENT 

 

 

8.1 Introduction 

 

 

This section assesses the design rules for austenitic and duplex stainless steel fixed-

ended welded and bolted starred columns established in the European standard code for 

structural stainless steel – Eurocode 3: Part 1.4 (EN 1993-1-4) [4]. The European code design 

guidelines check the buckling ultimate limit state from the cross-section classification, cross-

section resistance, and structural member buckling resistance. 

A preliminary cross-section classification (class 1 up to 4) is initially required to 

determine the susceptibility to local buckling according to the maximum width-to-thickness 

ratio (b/t) of elements in compression. At this point, it is essential to emphasise that there is no 

classification for cruciform, welded or bolted starred cross-sections. However, equal-leg angles 

cross-section can be classified as class 3 or 4, limiting class 3 to a ratio of up to 11.5ε. So, the 

resistance of class 4 cross-sections (b/t > 11.5ε) is reduced using effective widths elements, i.e., 

due to local buckling occurrence, the gross cross-section area (Ag) is reduced to an effective 

area (Aeff) through a reduction factor (ρ). 

For the resistance of structural members in axial uniform compression (columns), the 

column buckling curve “b” determines the resistance of all columns susceptible to torsional 

buckling and is defined by the non-dimensional slenderness limit (λ0 = 0.2) and the imperfection 

factor (α = 0.34).  

 

 

8.2 Fixed-ended short-to-intermediate stainless steel welded starred columns 

 

 

Table 13 shows the classification of equal-leg angle cross-sections according to the 

materials (austenitic and duplex) and effective area (Aeff). It can be noted that (i) except for 

austenitic S1 to S6 and duplex S1 to S3, all other cross-sections are classified as class 4 due to 

a high value of 0.2% proof stresses (Table 7) and low cross-sections b/t ratio, (ii) showing a 

reduction of 49% in the gross cross-section area for duplex stainless steel S12 (855.18/1659.80 

= 0.51). 
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Figure 73(a) and Table 14 show the assessment of Eurocode 3: Part 1.4 [4] design 

approach by comparing the numerical failure load (Pu,FE) against the non-factored design 

torsional buckling resistance forecast (Pu,EC3). The observation of the comparison prompts the 

following conclusions: 

i) The results reveal that column buckling curve “b” – specific for torsional 

buckling – yields a high conservatism and scatter in the torsional buckling 

resistance forecast of fixed-ended welded starred austenitic and duplex stainless 

steel columns. The quantitative examination in Table 14 corroborates this 

comment, where the maximum value is 2.39, the minimum is 1.14, and the mean 

ratio is 1.56, with the coefficient of variation (CoV) equal to 0.24 – showing 

excessive inaccuracy in the design; 

ii) As seen in elastic buckling behaviour, it is verified that the cross-section 

classification is inappropriate, i.e., the local buckling does not occur in fixed-

ended welded starred columns. Therefore, this inaccurate classification 

contributes to the high level of conservatism in the design, as it results in an 

overly conservative estimation of the cross-section resistance (Aσ0.2%) directly 

related to the non-dimensional torsional slenderness – as shown in Eq. (57). For 

instance, Figure 59 and Figure 73(a) depicts the reduction in non-dimensional 

torsional slenderness (λT) from 1.56 to 1.12 due to the effective area; 

iii) Following the design steps used in the European standard code, the first recourse 

for less conservatism in torsional buckling resistance is to maintain the cross-

section classification, i.e., A = Ag or Aeff; and to change the column buckling 

curve “b” for the column buckling curve “a0” adopted for high-strength steels. 

This strategy decreases the imperfection factor from α = 0.34 to α = 0.13 and, 

consequently, a higher torsional strengths forecast. Figure 73(b) shows the 

results of this approach using buckling curve “a0”, demonstrating a general 

improvement in the torsional buckling resistance forecast. It is possible to note 

in Table 14 that there is a widespread quantitative reduction, i.e., the maximum 

ratio value reduced by 21% (2.39/1.98), and the new mean ratio of 1.35 shows a 

CoV equal to 0.16, revealing the design improvement just adjusting the type of 

column buckling curve; 

iv) However, another alternative for a more reliable and less conservative design is 

adopting the column buckling curve “a0” and no cross-section classification, i.e., 

permanently A = Ag. So, it is possible to define the actual torsional column 
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behaviour (no local buckling), assuming a minor imperfection factor (α = 0.13). 

As seen in Figure 73(c), compared with the established steps in the European 

standard code – Figure 73(a), this strategy yielded a more precise torsional 

buckling resistance forecast across the entire natural range of non-dimensional 

torsional slenderness (0.26 to 1.56). Table 14 depicts a reduction in the mean 

ratio from 1.56 to 1.21 with a CoV equal to 0.10, which indicates a more reliable 

and accurate design. Moreover, it is essential to highlight that all strengths 

forecasts are in the safe zone (Pu,FE/Pu,EC3 ≥ 1). 

 

Table 13: Classification of cross-section, gross area (Ag) and effective area (Aeff). 

ID b/t Ag Austenitic Class Aeff Duplex Class Aeff 

  (mm2)  (mm2)  (mm2) 

S1 5.00 2991.93 3 - 3 - 

S2 6.00 3637.09 3 - 3 - 

S3 6.66 2288.93 3 - 3 - 

S4 8.00 4927.41 3 - 4 4838.70 

S5 8.99 348.87 3 - 4 326.59 

S6 9.60 2328.70 3 - 4 2078.63 

S7 10.00 1554.43 4 1532.26 4 1345.16 

S8 12.00 1877.01 4 1854.84 4 1407.74 

S9 13.34 1176.19 4 1080.30 4 809.48 

S10 14.67 1297.09 4 1110.41 4 823.14 

S11 16.01 1417.99 4 1134.22 4 835.35 

S12 18.68 1659.80 4 1173.40 4 855.18 

 

   
a) b) c) 

Figure 73: Welded starred columns comparison of numerical results with Eurocode 3: Part 1.4 [4] a) 

column buckling curve “b”, b) column buckling curve “a0”, and) column buckling curve “a0” using Ag. 
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Table 14: Welded starred columns strengths comparison summary (Pu,FE/Pu,EC3). 

 

EC3 Curve 

“b” 

A = Ag or Aeff 

EC3 Curve 

“a0” 

A = Ag or Aeff 

EC3 Curve 

“a0” 

A = Ag 

Maximum 2.39 1.98 1.73 

Minimum 1.14 1.06 1.05 

Mean 1.56 1.35 1.21 

CoV 0.24 0.16 0.10 

 

 

8.3 Fixed-ended short-to-intermediate stainless steel bolted starred columns 

 

 

Table 15 shows the gross cross-section area, the classification of cross-sections 

according to each material, and the respective effective area. It can be noted that the 

classification of cross-sections differs based on the material employed, attributed to differences 

in the values of 0.2% proof stress and Young’s Modulus for each material. Six sections (S7 to 

S12) and nine sections (S4 to S12) are classified as class 4 for austenitic and duplex material, 

respectively. This classification reduces the cross-section geometrical properties, notably 

observed in the gross cross-section area for duplex stainless steel S12, undergoing a decrease 

of up to 46.80% (870.96/1637.14 = 0.53). 

 

Table 15: Eurocode 3: Part 1-4 [4] – cross-section classification, gross area (Ag) and effective area 

(Aeff). 

ID b/t Ag Austenitic Class Aeff Duplex Class Aeff 

  (mm2)  (mm2)  (mm2) 

S1 5.00 2830.64 3 - 3 - 

S2 6.00 3475.80 3 - 3 - 

S3 6.66 2198.11 3 - 3 - 

S4 8.00 4766.12 3 - 4 4766.12 

S5 8.99 1353.07 3 - 4 1289.48 

S6 9.60 2265.65 3 - 4 2064.01 

S7 10.00 1516.34 4 1516.34 4 1340.44 

S8 12.00 1836.69 4 1836.69 4 1412.41 

S9 13.34 1153.53 4 1073.94 4 815.54 

S10 14.67 1274.43 4 1107.48 4 832.20 

S11 16.01 1395.34 4 1134.41 4 846.97 

S12 18.68 1637.14 4 1178.74 4 870.96 
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Figure 74(a) and Table 16 show the assessment of the Eurocode 3: Part 1.4 [4] design 

methodology. This evaluation compares the ratio between the numerical failure load (Pu,FE) and 

the non-factored EC3 design torsional buckling resistance forecast (Pu,EC3) plotted against the 

member's buckling non-dimensional torsional slenderness λT. The observation of this 

comparison results leads to the following conclusions: 

i) These results indicate that the design approach employed by Eurocode 3 for 

(austenitic and duplex) stainless steel fixed-ended bolted starred columns 

susceptible to torsional buckling yields a conservative forecast of ultimate 

strengths. In other words, combining cross-section classification and design 

buckling curve "b" excessively reduces the columns' resistance. The quantitative 

analysis in Table 16 reinforces this observation, showing a maximum ratio value 

of 2.08 and a mean of 1.39. Also, the coefficient of variation (CoV) is 0.20, 

highlighting a significant level of scatter and inaccuracy in the established 

design; 

ii) According to the columns’ elastic buckling behaviour, the cross-section class 4 

is inappropriate for fixed-ended bolted starred columns. As previously 

presented, local buckling does not occur regardless of the cross-section geometry 

(i.e., b/t ≤ 20). This misclassification significantly contributes to the high 

conservatism observed in the Eurocode 3 design methodology by reducing the 

cross-section resistance (Aσ0.2%) through the effective area (Aeff); 

iii) As shown in Table 15, the selected cross-sections may exhibit reductions in 

resistance of up to 46.80% for duplex stainless steel. Moreover, this 

classification also directly influences the columns’ non-dimensional torsional 

slenderness values (λT), leading to a reduction in this crucial design parameter 

from 1.60 to 1.18; 

iv) For this reason, the initial approach to mitigate the conservatism in the Eurocode 

3 resistance forecast – for stainless steel fixed-ended bolted starred columns 

susceptible to torsional buckling – is considering all cross-sections as class 3, 

i.e., the cross-section resistance (Aσ0.2%) is always calculated using its gross area 

(A = Ag). Consequently, an essential adjustment in the design is implemented 

based on the columns’ actual structural buckling behaviour; 

v) Figure 74(b) presents the outcomes of this approach, revealing a notable 

improvement in the torsional buckling resistance forecast. This strategy leads to 

a more aligned design with the buckling phenomenon investigated in this work, 
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i.e., without reducing the columns’ non-dimensional torsional slenderness (λT), 

covering the original range from 0.19 to 1.60. Additionally, Table 16 shows the 

modified design enhancement through the quantitative analysis, with the 

maximum ratio value decreasing by 23% (2.08/1.59) and the mean ratio reaching 

1.25, accompanied by a lower coefficient of variation (CoV) equal to 0.09. These 

values emphasise the improved design achieved through a straightforward 

adjustment based on the columns’ structural behaviour; 

vi) However, these findings also indicate that column buckling curve “b” still 

presents a considerable conservatism in design forecasting. It is noted that the 

resistance of fixed-ended bolted starred austenitic and duplex stainless steel 

columns decreased up to 59%. Consequently, further improvements in 

predicting these columns’ resistance may be achieved by applying the same 

strategy (all cross-sections class 3) but changing curve “b” with others provided 

in the Eurocode 3, specifically curves “a” and “a0”. 

 

  
a) b) 

Figure 74: Bolted starred columns comparison of numerical results with Eurocode 3: Part 1.4 [4] a) 

column buckling curve “b” using A = Ag or Aeff and) column buckling curve “b” using Ag. 
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the European code, namely "a" and "a0". Figure 75(a) and (b) show the comparative results 

using EC3 design buckling curves “a” and “a0”, respectively. Additionally, Table 16 presents 

the summarised quantitative analysis. Based on these results, it is possible to note that the 

evaluation of these two buckling curves yields the following observations: 
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i) It can be noted in Figure 75(a) that more appropriate resistance forecasts are 

obtained when employing the buckling curve “a” in comparison to the 

predictions associated with the curve "b", i.e., by decreasing the imperfection 

factor from 0.34 to 0.21. This conclusion is based on the quantitative analysis, 

revealing improved design accuracy. Specifically, the maximum ratio value 

decreased by 8% (1.59/1.47), and the new mean ratio of 1.16, coupled with a 

coefficient of variation (CoV) equal to 0.07, highlights a more consistent column 

design. Moreover, it is essential to highlight that all strengths forecasts are safe 

(Pu,FE/Pu,EC3 ≥ 1); 

ii) Nevertheless, in Figure 75(b), it is noteworthy that excessively diminishing the 

imperfection factor from 0.21 to 0.13, i.e., buckling curve “a0”, results in an 

inevitable columns’ resistance deterioration. In 7% of the obtained results, the 

columns exhibited a ratio below 1 (Pu,FE/Pu,EC3 < 1), reaching a minimum value 

of 0.97, showing that the predicted resistance exceeds the obtained resistance 

and leading to unsafe design; 

iii) Based on these two buckling curve evaluations (“a” and “a0”), it is possible to 

note that an imperfection factor within the range of 0.13 to 0.21 is imperative for 

achieving more precise resistance predictions. However, the main aim of this 

study is to propose an alternative design that adheres to the well-defined 

guidelines outlined in the European code for consistency according to the current 

design rules; 

iv) Therefore, for a more consistent and less conservative resistance forecast in 

Eurocode 3: Part 1-4 [4] for austenitic and duplex stainless steel fixed-ended 

bolted starred columns susceptible to torsional buckling failure mode, two 

modifications are proposed: (iii1) maintaining a cross-section class 3 for equal-

leg angle regardless of b/t ratio, i.e., permanently A = Ag, and (iii2) adopting the 

column buckling curve “a”. Consequently, it becomes feasible to characterise 

the actual torsional column behaviour, free from local buckling effects, by 

assuming a minor imperfection factor (α = 0.21). 
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a) b) 

Figure 75: Bolted starred columns comparison of numerical results with Eurocode 3: Part 1.4 [4] a) 

column buckling curve “a” using Ag and) column buckling curve “a0” using Ag. 

 

Table 16: Bolted starred columns strengths comparison summary (Pu,FE/Pu,EC3). 

 
EC3 Curve “b” 

A = Ag or Aeff 

EC3 Curve “b” 

A = Ag 

EC3 Curve “a” 

A = Ag 

EC3 Curve “a0” 

A = Ag 

Maximum 2.08 1.59 1.47 1.40 

Minimum 1.12 1.12 1.04 0.97 

Mean 1.39 1.25 1.16 1.09 

CoV 0.20 0.09 0.07 0.08 

 

 

8.4 Reliability analysis 

 

 

This section presents a reliability analysis – following the standard procedure outlined 

in Annex D of EN 1990 [61] – to assess (i) the Eurocode 3: Part 1.4 [4] and (ii) the two proposed 

modifications to the existing EC3 design rules (specifically, employing curve “b” and curve 

“a0” or “a” while consistently using cross-section gross area A = Ag) concerning welded and 

bolted starred columns made of (austenitic and duplex) stainless steel with fixed-ends 

susceptible to failure by torsional buckling. 

The methodology of Annex D of EN 1990 [61] initiates with a comparison of theoretical 

resistance values (rt,i), obtained either from the EC3 formulation or employing the two proposed 

design modifications, with the corresponding experimental/numerical results from each 

conducted test/simulation (re,i) to calculate the mean value correction factor (b). These 
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correlations between resistance values are graphically depicted in Figure 76 and Figure 77 for 

the resistance of austenitic and duplex stainless steel welded starred columns and in Figure 78 

and Figure 79 for the resistance of austenitic and duplex stainless steel bolted starred columns. 

 

   
a) b) c) 

Figure 76: Austenitic stainless steel welded starred columns experimental/numerical (re) x theoretical 

(rt) results plot a) EC3 approach curve “b”, b) modified EC3 approach curve “a0” and c) modified 

EC3 approach curve “a0” using Ag. 

 

   
a) b) c) 

Figure 77: Duplex stainless steel welded starred columns experimental/numerical (re) x theoretical (rt) 

results plot a) EC3 approach curve “b”, b) modified EC3 approach curve “a0” and c) modified EC3 

approach curve “a0” using Ag. 
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a) b) c) 

Figure 78: Austenitic stainless steel bolted starred columns experimental/numerical (re) x theoretical 

(rt) results plot a) EC3 approach curve “b”, b) modified EC3 approach curve “b” using Ag and c) 

modified EC3 approach curve “a” using Ag. 

 

   
a) b) c) 

Figure 79: Duplex stainless steel bolted starred columns experimental/numerical (re) x theoretical (rt) 

results plot a) EC3 approach curve “b”, b) modified EC3 approach curve “b” using Ag and c) modified 

EC3 approach curve “a” using Ag. 

 

The next step is to calculate the error for each numerical result pair (determined from 

the expression δi = re,i/brt,i), showing the deviation of the numerical results. The coefficient of 

variation (CoV) of this error (Vδ) is used to measure the variabilities related to resistance 

function predictions, considering a normal probability distribution of δi, calculated from Eq. 

(60), where 
2s  is the corresponding variance. 
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Moreover, the column buckling resistance function can be expressed in terms of 

Young’s modulus (E), yield strength (σ0.2%), and the cross-section area (A). According to 

Afshan et al. [62], the different stainless steel types have an influence and must be accounted 

for in the reliability analysis. Therefore, following the procedures developed by the cited 

authors [62], the material over-strength parameter values (fy,mean/fy,nom), i.e., the ratio of mean to 

specified yield nominal strength, and the corresponding CoV of yield strength (Vfy) were 

adopted as 1.3 and 0.06 for austenitic, and 1.1 and 0.03 for duplex, respectively. The CoV of 

Young’s modulus (VE) was taken as 0.03 based on prior knowledge for both materials 

(austenitic and duplex) [62]. Regarding the cross-section geometry (area), a larger coefficient 

of variation parameter (VA) value equal to 0.05 is more appropriate for stainless steel sections 

in the reliability analysis, as provided in [62]. These values of Vfy, VE, and VA are used to 

calculate the coefficient of variation parameter (Vrt) according to equation D.15b from Annex 

D of EN 1990 [61], presented in Eq. (61), i.e., including the effect of the variability of the basic 

variables in the resistance function. 

 

 2 2 2 2 2
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The design resistance value (rd) can be obtained from equation D.21 in Annex D of EN 

1990 [61], considering that the nominal strength in this study was taken as the mean strength 

from measured test data, reduced by the relevant over-strength factor, e.g., fy,nom = fy,mean/(over-

strength factor) being the overstrength factor for each material. Finally, following the procedure 

presented in [62], the partial safety factor for torsional buckling resistances M1 can be assessed 

from Eq. (62), where rn,i is the nominal resistance based on EN 1993-1-4 [4] or EC3 approaches 

torsional buckling design equations and rd,i is the design resistance – mentioned before obtained 

from eq. D.21 from Annex D of EN 1990 [61] – both evaluated for each experimental/numerical 

result.  
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A summary of the key results is reported in Table 17 and Table 18 for welded starred 

columns and bolted starred columns, respectively, and prompts the following comments: 

i) The statistical analysis results show that the obtained partial safety factor for the 

two proposed approaches is nearly equal to the current EC3 approach for both 

materials (austenitic and duplex); 

ii) The results for austenitic stainless steel fixed-ended welded starred columns 

suggest that all design resistance (EC3 curve “b”, EC3 curve “a0” and EC3 curve 

“a0” Ag) has a good agreement and fulfil the Eurocode reliability requirements, 

i.e., almost equal to 1. Concerning duplex stainless steel results, all the achieved 

partial factors (γM1) are greater than the austenitic results. However, the EC3 

curve “a0” Ag design approach presents a slight difference between the materials 

(only 5%), revealing an improvement in the member resistance for both 

materials; 

iii) For short-to-intermediate fixed-ended austenitic stainless steel bolted starred 

columns shows that the derived partial safety factors (γM1) obtained for the 

proposed approaches in this work (EC3 curve “a” using Ag) has a value slightly 

above the target value of approximately 1.1 as specified in EN 1993: Part 1-4 

[4] for member buckling design, and is considered acceptable in the context of 

the analysis. Regarding duplex stainless steel column results, it is noteworthy 

that all attained partial factors surpass those obtained for austenitic stainless 

steel. Nevertheless, when adopting the EC3 curve “a” Ag design approach, a 

marginal distinction between the two stainless steel types is observed, amounting 

to a mere 9%; 

iv) Overall, it is feasible to conclude that the proposed alternative design approaches 

for short-to-intermediate fixed-ended austenitic stainless steel welded and bolted 

starred columns (susceptible to torsional buckling failure) exhibit clear 

advantages over the current EC3 standard rules. Both present a more consistent 

design with actual columns’ structural behaviour and reliable resistance forecast, 

i.e., consistently maintaining safety factors of approximately 1.1 for each type 

of stainless steel. 
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Table 17: Reliability analysis results assessed according to EN 1990 [61] for welded starred columns. 

Formulation Grade n kd,n b Vδ Vr M1 

EC3 – curve “b” Austenitic 272 3.121 1.362 0.088 0.122 1.077 

 Duplex 272 3.121 1.321 0.167 0.179 1.248 

EC3 – curve “a0” Austenitic 272 3.121 1.259 0.050 0.098 1.076 

 Duplex 272 3.121 1.211 0.124 0.140 1.192 

EC3 – curve “a0” Ag Austenitic 272 3.121 1.237 0.038 0.092 1.074 

 Duplex 272 3.121 1.158 0.089 0.110 1.136 

 

Table 18: Reliability analysis results assessed according to EN 1990 [61] for bolted starred columns. 

Formulation Grade n kd,n b Vδ Vr M1 

EC3 – curve “b” Austenitic 244 3.128 1.217 0.080 0.116 1.182 

 Duplex 244 3.128 1.230 0.158 0.171 1.404 

EC3 – curve “b” Ag Austenitic 244 3.128 1.198 0.026 0.088 1.084 

 Duplex 244 3.128 1.194 0.087 0.121 1.224 

EC3 – curve “a” Ag Austenitic 244 3.128 1.155 0.039 0.076 1.080 

 Duplex 244 3.128 1.132 0.075 0.100 1.208 
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9 FINAL CONSIDERATIONS 

 

 

A numerical investigation was conducted using ANSYS 17.0 [29] to assess the 

structural behaviour and evaluate the ultimate strength of fixed-ended short-to-intermediate 

welded and bolted starred austenitic and duplex stainless steel columns, i.e., prone to failure by 

torsional buckling. From the preliminary structural analysis, three essential notes deserve to be 

highlighted: the welded and bolted starred section assembly procedure guarantees adequate 

cross-section behaviour (i.e., shear centre and centroid are coincident); consequently, short-to-

intermediate column lengths fail by pure torsional buckling; and the columns’ torsional post-

buckling equilibrium paths are stable as the column lengths approach to the transition length in 

the signature curve (L ≤ LTFS), i.e., with no minor-axis flexural buckling global interaction 

mode.  

Based on the results obtained in the parametric analyses, which covered non-

dimensional torsional slenderness (λT) ranging from 0.26 up to 1.56 for welded starred columns 

and from 0.19 up to 1.60 for bolted starred columns, it was possible to assess the provisions 

established for torsional buckling in Eurocode 3: Part 1.4 [4] – specifically column buckling 

curve “b”. Based on this comparison, the following main conclusions can be mentioned: 

i) Considering different material mechanical properties from austenitic and 

duplex, columns with equivalent non-dimensional torsional slenderness (λT) 

values share similar behaviour and ultimate strengths regardless of material type. 

This characteristic reveal that a unique column buckling curve can effectively 

forecast the ultimate failure load of fixed-ended welded or bolted starred 

columns susceptible to torsional buckling for both austenitic and duplex stainless 

steel materials. Therefore, there is no need to change the methodology already 

used by the European code; 

ii) The analysis of fixed-ended stainless steel welded starred columns using 

Eurocode 3: Part 1.4 [4] revealed inappropriate cross-section classifications and 

high conservatism in buckling curve “b,” with predictions up to 59% higher than 

the ultimate resistance. To improve the design of welded starred columns, two 

modifications to Eurocode 3: Part 1.4 [4] are proposed: avoiding the 

classification of cross-sections as class 4, as local buckling does not occur in 

short-to-intermediate columns, and changing the column buckling curve from 
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“b” to “a0”, reducing the imperfection factor and leading to more accurate 

resistance predictions; 

iii) Similarly, the provisions of Eurocode 3: Part 1.4 [4] for bolted starred columns 

also showed overly conservative results, reducing some columns’ strength by up 

to 48% due to improper cross-section classification and a high imperfection 

factor in the buckling curve. It is proposed to consistently classify the cross-

section as class 3 (A = Ag) and to change the column buckling curve from “b” to 

“a,” reducing the imperfection factor from 0.34 to 0.21 to achieve more reliable 

design predictions for bolted starred columns. This results in a less conservative 

and more reliable design approach for fixed-ended bolted starred austenitic and 

duplex stainless steel columns susceptible to torsional buckling; 

iv) Finally, for short-to-intermediate austenitic stainless steel bolted starred 

columns, the derived partial safety factors (γM1) using the proposed approaches 

(EC3 curve “a” using Ag) slightly exceeded the target value of approximately 

1.1 (current value used in Eurocode 3 – Part 1.4 [4]). While duplex stainless steel 

columns showed higher partial factors than austenitic ones, adopting the EC3 

curve “a” design approach resulted in only a marginal difference of about 9%. 

The proposed alternative design approaches provide more consistent designs 

with actual structural behaviour, maintaining reliable safety factors of 

approximately 1.1 for each type of stainless steel. 
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APPENDIX A 

 

 

This appendix aims to investigate and obtain the welded starred section properties using 

ANSYS software [29] based on finite beam elements. It is known that if the cross-section 

consists of thin elements which cross at a common point and if the rotation axis is assumed to 

pass through the shear centre, there is no primary warping constant (Iw = 0). However, the 

warping cross-section resistance comes exclusively from the secondary warping constant (Iws ≠ 

0) – based on a secondary distribution of normal stress.  

Therefore, the secondary warping constant (Iws) is one of the crucial section properties 

for the torsional buckling behaviour of structural members. Initially, a usual plain cruciform 

cross-section illustrated in Figure A.1(a) – created through symmetrical rectangular plates – 

was used to validate the approach, i.e., acquire numerical results of an already learned section. 

According to the classical torsion theory, it is well-known that the rectangular cross-section 

secondary warping constant is given by 
3 3 144h t . Likewise, the plain cruciform section 

secondary warping constant (Iws,cru) is calculated using the warping stiffness sum of two 

rectangular sections – replacing the width h for 2b – according to Eq. (A.1). Additionally, the 

plain cruciform torsion constant (IT,cru) is assessed by Eq. (A.2) 

 

 
a) b) 

Figure A.1: a) Symmetrical plain cruciform cross-section and b) dual equal-leg angle welded cross-

section. 
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The strategy to acquire the welded sections’ properties – Figure A.1(b) – in Ansys 

software consists of the following steps: (i) create the cross-section geometry; (ii) generate areas 

enclosed by previously established lines; (iii) define a custom section using the command 

SECWRITE to create a file (“.sect”) containing user mesh section information through defined 

areas; (iv) hereafter, the SECTYPE command is employed to associate a beam section; (v) when 

the cross-section (mesh) is established, the software creates a numerical model using a nine-

node cell on the areas to calculate the section properties; (vi) finally, the SECREAD command 

is used to obtain the section properties. 

Figure A.2(a) shows a plot with a better-detailed view of the plain cruciform section 

properties assembled by rectangular plates with b = 63.50 mm and t = 4.76 mm, specifically 

the (secondary) warping constant and torsion constant – highlighted in red. Table A.1 compares 

quantitatively the values obtained from Ansys (Iws,cruA and IT,cruA) and calculated according to 

Eqs. (A.1) and (A.2) for three distinct dimensions cruciform sections. These results show: (i) 

excellent accuracy – approximately 100% – when plain cruciform numerical section properties 

are compared to the results from classical torsion theory, (ii) revealing an ideal approach to 

calculate the welded starred section properties. 

Similarly, Figure A.2(b) displays the plot of the welded starred section properties 

assembled by two equal-leg angles L63.54.76 mm with a fillet weld leg length equal to the 

thickness (t = 4.76 mm). The (secondary) warping (Iws,sta) and torsion (IT,sta) constants are also 

highlighted in red. Table A.2 compares the numerical properties of the welded starred and 

cruciform sections. The observation of this comparison leads to the following comments: 

i) The welded starred torsion constant (IT,sta) presents a slight difference of only 

8% when compared to the cruciform section (IT,cru), revealing a good correlation; 

ii) However, the welded starred secondary warping (Iws,sta) is about four times 

greater than the cruciform section (Iws,cru). This value can be explained by the 

warping stiffness of the equal-leg angles that build the section – rounded corner 

neglected; 

iii) This difference in the welded starred secondary warping constant shows a 

significant improvement in warping resistance, i.e., despite the exact 
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dimensions, plain cruciform sections are more flexible in torsion than welded 

starred; 

iv) Therefore, to facilitate the design of structural elements with welded starred 

sections, a parametric study will be carried out in section 5.4, aiming for a simple 

manner of calculating this section’s secondary warping constant (Iws) and torsion 

constant (IT). 

 

  
a) b) 

Figure A.2: Plot of a) plain cruciform and b) welded starred cross-sections in Ansys [29]. 

 

Table A.1: Secondary warping and torsion constant comparative numerical results (Iws,cruA and IT,cruA) 

and equations provided (Iws,cru and IT,cru) for the cruciform cross-section properties. 

Rectangular Ansys Results Eqs. (A.1) and (A.2)  
,

,

ws cruA

ws cru

I

I
 

,

,

T cruA

T cru

I

I
 b t Iws,cruA IT,cruA Iws,cru IT,cru 

(mm) (mm) (mm6) (mm4) (mm6) (mm4)   

63.50 4.76 3047681.24 9125.91 3068312.04 9131.31 0.99 1.00 

63.50 6.35 7196657.61 21553.88 7284501.58 21678.72 0.99 0.99 

76.20 4.76 5277140.42 10920.34 5302043.21 10957.57 1.00 1.00 

 

Table A.2: Secondary warping and torsion constant comparison welded starred and plain cruciform 

cross-sections. 

 Welded Starred Section Cruciform Section 
,

,

ws sta

ws cru

I

I
 

,

,

T sta

T cru

I

I
 b t Iws,sta IT,sta Iws,cru IT,cru 

(mm) (mm) (mm6) (mm4) (mm6) (mm4) 

63.50 4.76 12178563.20 9879.86 3047681.24 9125.91 3.96 1.08 

 


