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RESUMO

SARQUIS Fernando Rochdnvestigacao numérica de colunasgastadas compostas por
secdes cantoneiras de abas iguaminadas a quenteom secaeruciformede acos
inoxidaveis 2024. 168 f. Tese(Doutoradoem Engenharia Civil) Faculdade d&ngenharia,
Universicade do Estado do Rio de Janeiro, Rio de Janei@d, 20

Os acos inoxidaveis austenitico e duplex sdo escolhida@s ymaa vasta gama de
construcbes devidos&uas notaveis caracteristicas conpor exemplo, elevadeesisténcia a
corrosao, durabilidadeesisténcia apelo estético. Contudo, as diretrizes de projeto atuais do
Eurocddigo 3: Parte 1.despecificopara estituras de agoinoxidaves, frequentemente
baseiarse em analogias comcomportamento daco carbono, o que pode néo ser adequado
devido as caracteristicas especificls material,como o seu comportamento HA#tear.
Adicionalmente, se¢cfes cantoneiraai@s iguais sdo comumente empregadaaplicacdes
estruturais, particularmente para colunas de comprimentos cimtesnaediariosque exibem
comportamentos estruturais distintos. A geometria de sua sec¢ao transversal, caracterizada pelo
encontro das fihas média (baixa rigidez torcionalrentroide ndo alinhado com o centro de
cisalhamento, afeta o comportamento-flésibagem das colunadevido a interacdo entre
deslocamentos ao redor dos eixos de maior e menor inércia, influenciando diretamente a
ressténcia final do elementdede contexto, a utilizacdo de uma secaaciforme formada
pela unido de duas secOes cantoneira de abas muastadagpelo cantoi alinhando o
centroide e o centro de cisalhamento, emerge como uma solucdo eficienteitigaraom
deslocamento nos eixos de maior e menor inércia durante o comportamefiémnpéagem
resultando em uma estrutura mais esté®@em o objetivo de abordar as lacunas relacionadas
ao uso de a@inoxidavas e a aplicacdo de colunas com segédwiforme este estudo realiza
uma investigacdo numérica sobre colucas apoios fixogonstituidas dacacs inoxidaves
austenitico e duplex com secfesuciforme (tanto soldadas quanto parafusadas) de
comprimentos curtosiatermediariosportanto suscetiveisflambagem torsiondlm modelo
de elementos finitos sdlido foi desenvolvido e validado com resultados experimentais para
examinar: (i) o comportamento de flambagem elastica das colunas, (ii) os caminhos de
equilibrio no comportamento elastico g@mnbagem, (iii) a sensibilidade a imperfeicdo
geométrica inicial, (iv) a influéncia das propriedades mecéanicas dos acos inoxidaveis
austenitico e duplex, e (@btera cargamaximadas colunas. Uma andlise paramétfma
realizada, considerando sec¢oes trarsaisrcompactas tipicas dantoneiras de abaguais (ou
seja,b/t < 20) e selecionando comprimentos de colun&@®m base no comportamento de
flambagem elastica propensas a falha por flambagem torsioRal fim, (vi) a resisténcia
altima numérica obtia € usada para avaliar se as disposi¢es de calculo do Eurocédigo 3: Parte
1.4, especificamente a curva fambagemfbo ,prevé com precisdo a carga ultima. As
discrepéancias encontradas entre a caltjaanumérica e aesisténciaflambagenpor torgéo
prevista pelo Eurocodigo indicaram um conservadorismo desnecessario. Consequentemente,
propdese duas modificagbes ao cddigo europeu, incluindo uma reclassificacdo da secdo e uma
modificacdoda curva ddlambagemiibo usadaatuamenteparao dimensionamentdesses
elementos estruturais.



Palavraschave:Aco inoxidavel austeniticdd¢o inoxidavel duplexCantoneirasle abas iguais
em compressadzurocode 3Colunas biengastapg&lementos finitosinvestigacdo numérica
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ABSTRACT

SARQUIS Fernando Roch&lumerical assessment of fixedded shorto-intermediate
stainless steel starred hatlled equatleg angle sectionBuilt-up columns 2024. 168p.
Thesis(DSc in Civil Engineering)i Faculty ofEngineering, State University of Rio de
Janeiro, Rio de Janeiro, 240

Austenitic and duplex stainless steels are chosen for many constructions due to their
remarkable corrosion resistance, durability, strength, and aesthetic appeal. However, the current
design guidelines of Eurocode 3: Part 1.4, specific to stainless steel structures, often rely on
analogies with the behaviour of carbon steel, which may not be suitable due to the specific
characteristics of the material, such as its nonlinear behavidditionally, equalleg angle
sections are commonly employed in structural applications, particularly for-tehort
intermediate columns exhibiting distinct structural behaviours. The-sgut®n geometry is
characterized by the mithes intersecting & common point (low torsional stiffness), and the
centroid is not aligned with the shear centre, which affects these cduymosibuckling
behaviour due to the interaction between displacements around the major and minor inertia
axes, directly influencinghe elemeris ultimate strength. In this context, the use of a starred
section, formed by joining two equlgEg angle sections at the coriiealigning the centroid and
shear centre, emerges as an efficient solution to mitigate displacement in thenuajonar
axes during podbuckling behaviour, resulting in a more stable structure. In order to address
the gaps related to the use of stainless steel and the application of columns with starred sections,
this study conducts a numerical investigation oartsto-intermediate length columns with
fixed supports made of austenitic and duplex stainless steel starred sections (both welded and
bolted), thus susceptible to torsional buckling. A solid finite element model was developed and
validated againstexperaant al results to assess (i) the ¢
elastic posbuckling behaviour equilibrium paths, (iii) initiajeometrical imperfection
sensitivity, (iv) influence of material mechanical properties of austenitic and duplebestain
steel, and (v) the columnsd ultimate failur
typical compact equdég angle crossections (i.e.p/t < 20) and selecting column lengths
susceptible to torsional buckling failure based on the elbatikling behaviour. Finally, the
numerical ultimate strengths obtained are used to assess whether the design provisions of
Eurocode 3: Part 14c ol umn b u c koli can accuately ferecasfithe ultimate load.
Discrepancies between the numericdlfa load and the predicted Eurocode buckling ultimate
torsional load revealed unduly conservatism. Consequently, two proposed modifications to the
European code are suggested, involving a esestion classification and change of the current
buckling curv ebo dictually used to assess the design of these structural elements

Keywords: Austenitic stainless steelDuplex stainless steel; Eqtialg angles under
compression Eurocode 3; Fixedended columns Finite element model; Numerical

investigation; Staad sections; Torsional buckling
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NOTATIONS

A Crosssection area

Ag Grosscrosssection area

Aet Effective crosssection area

b Equalleg angle width

Det Effective equaleg angle width

C Crosssection centroid

Om Major-axis displacemerit minor-axis flexural buckling
dwm Minor-axis displacemerit major-axis flexural bukling
db Connection bolt diameter

dp Boltedonnecti on platesd hole diameter
E Youngds Modul us

F Fixed-ended columns

fub Connection blt ultimate tensile strength

G Shear modulus

hp Connection platebs height
io Polar gyration radius relative todlshear centre
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Ltrs Fixed-ended welded starred column transition length
m Number of longitudinally sinusoidal halfave
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INTRODUCTION

Generdities

Stainless steel offers several advantages in civil engineering structural applications, as
elucidated by Badof]. According to the Design Manual for Structural Stainless §gelwvo
prevalent types of stainless steel are commonly used in structural applications: (i) austenitic
grade 1.4301 (widelknown as 304and (i) duplexgrade 1.4462Austenitic stainless steels
are typically chosen for structural members that demand good strength, corrosion resistance,
and excellent elongation before fracture. Duplex stainless steels are suitable imsituh&ce
high strength and corrosion resistance are required. In recent years, the increasing need for
durable and enduring structures with minimal maintenance has increased the demand for
stainless steel in the construction secfbne ease of fabricatiomto several structural
componentsappearance, and corrosion qualities of stainless steel make it a preferred material
for functional and visually appealing components in modern structural projects.

However, this material presents particular ststssn curve behaviour. Unlike carbon
steel, which typically displays linear elastic behaviour with a clearly defined yiek§ siye
stainless steel exhibits a ntinear elastic response without a weé#fined yieldng plateau
strength, conventionally identified as a 0.2% proof stren@itby, as illustrated irFigure 1.

Afshan and Gardn€d3] highlighted a critical aspect concerning the Europeade design
guidelines for structural members made of austenitic and duplex stainlessBteetode 3:

Part 1.4[4]. Its formulation rées on limit state design provisions derived from the behaviour

of carbon steel established in Eurocode 3: Parf5].1IThis methodology reveals insufficient

i nformation concer ni ngexpehnentas dnd numérieab sdructsral e e |
response data.

Additionally, in structuralengineering, selecting cressction shapes for columns (i.e.,
axial compressive loads) is a critical decision which significantly dictates the overall structural
response ahefficiency of the constructions. This decision is achieved {mepth knowledge
concerning the columnsd me c fsectiors da,l() enstib avi o
buckling, (ii) elastic and elastiglastic postouckling behaviour, and (iii) uthate strength, to

obtain a safe and proper columns buckling design aquationdor these structural members.
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Figurel: a) Stress versus atn curve comparison for stainless steel and carbon steel ranging from 0 to
0.75% strain, and b) definition of the stainless st&P% proof strength.

Equal angle sections, also known ashaped, are widelmployedn variousstructural
applications due to thegeometrysimplicity, costeffectiveness, and ease of connectibs
crucial supports, they contribute significantly to the strength and stability of buildings, bridges,
towers, and various other structur@snotable application of these sectiaasn high-voltage
transmission or telecommunication towersshswnin Figure2(a). Particularly, these equal
leg angle columns are designed with short to intermediate lengthsdmmodate the essential
connections within the structure.

Nevertheless, the inhereggometricaproperties of this séion (monosymmetric open
section) causkw torsional stiffness anithe noncoincidence of the centroid and shear centre,
predisposing the shetb-intermediateequatleg anglec ol umns 6 t o fta&diohabr e b
buckling. This phenomenon involves) (bending about the first principal axis (magots
flexural buckling and (ii) crosssection torsional rotatioftorsional buckling)lt is well-known
that the majoiaxis bending participation influences the equad g angl e col umns
elasticplastic postbuckling behaviour and, consequently, directly impacts the-beading
capacity of these structural members.

As the need for power and telecommunications services grows, existing transmission
towers must increasingly accommodate additionatidothat surpass their initial design
capacities. In response, a prevalent retrofitting strategy in civil engineering involves adding L
shaped profiles, using two eqgdaf angles to forma buili p A s t a r-sectich,ovhichr o s s
serves as a reinforcemeruir fthe lattice structures of these towers, as showfigare 2(b)

highlighted in red
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This reinforcement can be constructeddoyinectinga pair of equaleg angles using
bolted plates or weldingts e ¢ t comerssadepictedin Figure3. A notable characteristic
of this geometricalconfigurationassemblyis that the centroid and shear cenare now
coincident, influencing theoverall structural behaviouAs a result of this geometry, columns
with these typs of starred sectionare expected to be free from magods flexural buckling
corner displacement. However, due to the inherent low torsional stiffnesshemteo-
intermediate columnsemain vulnerable tpuretorsional buckling failure modes

It is within this context of ensuring fixeelnded starred col umns
becomes crucial to emphasize that columns susceptible to failure by fleosrahal and
torsional buckling are assessed under European standard codes (i.e., fofs¢abd stainless
stee[4])) using the same buckl i nbo,detsoi gpnr ecduircvte ,t
strength. This methodology underscores the existing experimental and nurdatacaap
necessary to distinguish these st arbudkldg col u
behaviourcompared to a single eqeialy column Therefore, thenechanical behaviour of these
starred columneequires a different design approactenhsure a rational and adequate/accurate

load-bearing capacity.

Figure2: a) Telecommunication angle steel to@rand b) structural reinforcement higbltage

tower[7].
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a) b)
Figure3: Dual equalleg angle starreduilt-up section with a) bolted plate and b) welds.

Objectives

The mainobjectivesof this thesisare toassess the (i) elastic buckling and (ii) elastic
postbuckling behaviour of fixeggnded shorto-intermediate starredouilt-up columns
(including bolted plate and welds) to gain insight into the mechanical behaviour of these
structural members$ocusing exclusively ogeometricahonlinearity.Subsequentlyaustenitic
and duplex stainless steel materia¢haviourareintroducedinto the analysis, aiming (iii) to
validate the finite element model against experimental results documented in the existing
literature. With this validation, it is possible (iv) tor@uct a parametric analysis covering a
wider range of equdkg angle crossections and shoto-i nt er medi at e col umn
fail due to torsional buckling, i.e., verify the influence of teiminless steemat er i al 6
nonlinearity on thee columndstrength. Finally, (v) thebtainednumerical ultimate strengths
areusedtassess he accuracy of Eurocode b8: i Raptetli 4

the ultimate load capacity.

Outline of the thesis

This doctoralthesisis structured int@n introduction followed by seven chapters. The

introductory section offers insights into thtainless ste@haterial employed in this study, along
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with an exploration of the structural uses of egaglangle sections and builip sections
composed ofwo equallegangle sections.

Chapter one is dedicated to the literature review, initially discussing the reasons why
many studies have misinterpreted local amsional deformations inshortto-intermediate
equalleg anglecolumrs. It elucidates the disictions in posbuckling behaviar between
columns with equaleg angls and cruciform sections and summarizes pivotal studies on the
structural aspects of these stainless steel columns.

Chapter two delves into the European normative framework (Eurocétst3t.4) and
describes its design methodology for stainless steel structural members. This methodology
traditionally relies on the behavioural insights gained from carbon steel structures.

Chapter three compiles significant experimental data from theatitre on shotto-
intermediate length stainless steel fixattled columns, both welded and bolted cs®sgions,
highlighting their failure modes, displacements, equilibrium paths, and ultimate strengths.

Chapter four details the finite element modejlapproach used in this study, discussing
the chosen finite element, meshing techniques, geometry, boundary conditions, and the
inclusion of initial geometricalimperfection in thenumericalmodels. This chapter further
explores thavelded starredolumnsbuckling and elastic poftuckling behaviours, validation
against experimental data, and sensitivity to ingedmetricaimperfections.

Chapter fivepresentsa parametric analysis aimirtg extend the results previously
achieved experimentallyt takes into account austenitic and duplex stainless steel materials,
equatleg anglecompact sections, and column lengths that are prone to fayurersional
buckling.

Chapter six provides a detailed description of the finite element model development for
bdted starred columngmphasisinghe key parameters and assumptions made during the
numerical analysis. This section coversabsumptionsf the developed finite element model,
including column geometry, element types, mesh size, boundary conditintegstanodelling,
bolt preload, the implementation of initgggometricaimperfections, and the solution technique
employed.

Chapter 7 presents tleastic buckling behaviour of bolted starred colupfodowed
by elastic posbuckling behaviour. It inclues the validation of the numerical model, a
sensitivity study omeometricaimperfections, and a comprehensive parametric analysis.

Chapter 8 exposethe current design procedures outlined by Eurocode 3 for their
excessive conservatism. In response,appses two adjustments consistent with Eurocdsle 3

methodology to refine the design process.
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Chapte© summarizes the principal conclusiaitgainedrom this researchnd outlines
a schedule for future work. It mainly focus®s extending the analysis ¢olumns with bolted

sections to ensure a comprehensive understanding of their structural behaviour.



1LITERATURE REVIEW

1.1 Intro duction

This section presents a comprehensive literature review on the structural behaviour of
shortto-intermediate fixeeended equaleg angle and cruciform columnk focuses on the
col umns6 el ast tbucklitgbeh&viour, elgstipastiadbehawosrt and ultimate
strength.Thus, an initial investigation into the atypical shmrintermediate equdeg angle
coumns o el asti c buc k]!l highlgghtibgehe ehellengaiof distinguisiing c e s
between local and torsional deformations over the years

However, applying Generalized Beam Theory (GBT) analysis has uncovered significant
new insights into thesec ol umns 6 el astic mechani cal bu
understanding of their natural mechanical behaviddue to thesetwo crosssection
geometriesjt is demonstratethat columns with equdég angles and cruciform profiles of
short to intermediatdengths arerespectivelysusceptible to failureoy flexuraktorsional
buckling and pure torsional buckling without the occurrence of local bucklegedon thes
results,it is possible to highlight the significant differendestween these two phenomena
(flexurattorsional and torsionppostbo uc k|l i ng behaviour , whi ch a
stability and ultimate strength.

It is essential to underscore that the analysis extends to the structural behaviour of
cruciform columns to draw parallels tailt-up double equaleg anglestarred sections. This
evolution of understanding from basic column types to more complex configurations, including
columns with starred crosections, combines the benefits of egeglangle (a standard steel
profile) andcruciform sections (known for stable pdmickling behaviour).

Therefore, this comprehensive review aims (i) to elucidateshiogtto-intermediate
fixed-endedequatleg angle and cruciform ol umns & buckl ing behavic
solid foundatiorfor understanding and improving the structural behaviour of fecated short

to-intermediate starred columns by integrating these insights.
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1.2 Torsional and flexural-torsional buckling

1.2.1Introduction

Crosssections composed of thin plates witld-linesintersecting at a single point (e.qg.,
equatleg angles and cruciform sections) exhibit no primary warping resistansedj. This
characteristic inherently leads to a significantly low torsional stiffn€ssthermore, the
alignment of the centroid arttie shear centre in these crsggtions plays a crucial role in
influencing the stability of the columns. As a result, (i) columns with cruciform sections are
distinctly vulnerable to buckling phenomena associated with pure torsion (torsional buckling).
In contrast, (i) columns with equaleg angle sections are prone to failure through a
combination of majeaxis flexural buckling and torsion (flexuredrsional buckling).

1.2.2Torsional buckling

Pioneering studiesarried outoy Wagner{8], followed by reviews from Timoshenko
[9], Timoshenko and Gell@0], and the detailed investigation by Gaylord and Gayjiid,
significantly contributedd understanding the torsional buckling theatys knownthat if the
crosssectiongeometryconsists of thin elemenistersectingat a common point and if thexis
of rotation ) is assumed to pass through the shear ce®)tridaén theprimary warpingconstant
is zero(lw = 0).

Figure4(a) depicts a cruciform section with four identical legs, each defined by a width
b and thickness which presents the centroid coincident with the shear centre due to the double
symmetry X and y axes).This characteristic naturally means a very low torsional stiffness,
makingthesesectionsparticularly susceptible to torsional buckling, i.e., buckling that involves
the crosssection torsion rotatio.hus, if the structurahemberis submittel to concentrically
axial compressioiicolumrs), torsional buckling may occur depending on the length)(i
under a smaller loaithanthe minor-axis flexural buckling

Figure 4(b) shows cruciform columns subject to failure bysional bucklingunder

compression. It i s es sent i arhechanical bbhawpbrl i g h
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characteristics: (i) each leg behaves identically, showing-bgdl rotation(b) about theshear
centrezzaxis,and (i i) t hZrensamihgustmaigld, s.e., theaeeso (nfajor or minor
axes) flexural displacementas depicted irFigure 4(c). Consequently,iec o | u elastco

critical torsiond buckling load(Pcr,7) i well-establishedhn theliteraturei can beexpressedby
Eq.(1).

L2, (1)

2o Lty (2)
0

Wherei3 is the polar radius of gyration relative to the sheatreeh andly arethe
principal second moment of are®is the gross crossection area is the shear modulud,is
the torsionconstanEi s t he Y o u nwgs@he prikharg watpingsconstaries is the
effective lengttfor torsionfailure mode, GJis the St. Venant torsionatiffness andElw is the

warping torsiorstiffness

y . il
_ » Centroid M
: * Shear centre N |
b : \\\ : ///.
| el
! === > L P =7 SR
LCS x =2 N
b | T
b b -t s
y
a) b) c)

Figure4: a) Cruciform geometry, ljolumn torsional buckling, and c) mgpban crossection

torsional rotation.
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1.2.3Flexurattorsional buckling

Despite the simplicity, equd¢g angle sections exhibit two essentigdometrical
characteristics: monosymmetric open section, i.e., the centroid does not coincide with the shear
centre, and their wall mitines intersect at a single ipt Figure5(a) depictsthe equaleg angle
section geometry, showing the leg widh) &nd thicknesst), the centroid €), and the shear
centre . Al so, it depi c teswhichaee rodael byt4b° celativesto ther i n ¢
geometricabxes k andy), thus defining the major and minor axasfdv), respectively.

As aforementioned,atumns with monosymmetric open sections are marked by low
torsional stiffnesdecausdhe primary warping constaris null (I = 0). This characteristic,
combined with the misalignment between the centroid and the shear centre, results in a unique
mechanical behaviour in terms of elastic stability analysis. The particular geometry and cross
sectionpropertiesprovoke a suctural response encompassing both (i) flexural bending about
the majoraxis and (ii) torsional movements around the shear centre.

Thissusceptibilityarises from howolumns with monosymmetric sections buckle under
axial compression. The process beginthwotation about the shear centtee to the low
torsional stiffnessreferredto as thez-axis, which occurs along an axis parallel to the
longitudinal z-axis. This crossection torsioal rotation movement inherently couples with
bending alongonedfhe col umnés pr i ncuzapraV-z Notabynteasz, i de
principal plane does not align with the shear cestwé¢he bending around the majaxis ()
becomesvident

Figure5(b) illustrates arequatleg angle columthatis susceptible to flexurabrsional
buckling showcasinghe two significant mechanical behaviour characteristics: (i) the €ross
section undergoes a riglibdy rotation around the longitudinal shear centt@xis, and (ii) the
z;-axis does not remain straight, showing bending displacements about thearisjdmajof
axis flexural buckling).

Additionally, Figure 5(c) illustratesthese two types of rigidody madions at the
c o | u md-$épan, wherely meanghec or ner 6 s di s p | mapreaxsdlexural due
buckling, andb represents therosss e c t i 0 n 0 s torsidnal eotatiorg, grovidimge clear
visualisatioro f t he c¢ ol u Runtl@ersnore, thdemuatioofarcalaui i ng t he col

elastic critical flexuratorsional buckling Rcrr7) is outlined in Eq(3):
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wherePq . is theelastic criticalmajor-axis flexuralbucklingload Iy is themajoraxis
second moment of area, is the shear centre coordinates with respect to the centroid of gross

crosssection andd is a dimensionless parameter

» Centroid |
» Shear centre !

Vi

a) b) c)

Figure5: a) Equatleg angle section geomeftty) column with equaleg angle crossection prone to

failure by flexuraitorsional buckling, and c) mispan crossection bucklingleformation.

1.3 Structural behaviour of short-to-intermediate equatleg angle columns
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1.3.1Local/torsional mixed deformations mode

In 1963, Timoshenko and Gerg0] highlighted the peculiarities of equialg angle
sections The authors shoedthatwhen the sectias leg is subjected to uniformly distributed
compression in shetb-intermediate lengths, the local buckling mode of the legs displays a
local deformed configuration akin to global pure torsional buckling, as depictEgyure 6.
Considering that themechanical deformatiomesponse varies between local agidbal
(torsional)buc k!l i ng modes, this discrepancy signi

strength.

Figure6: Shortequal e g angl e columns6é buckling nl@dde accoa

For this reason,nvestigations into the local and torsional elastic critical buckling
behaviouii oftendescribed aavirtually identicalphenomenoin were carried out in equégg
angle columns due to the difficulty distinguishing betwtderse twadeformationg12]-[14].
In 2005, Rasmuss€i2] demonstrated the coincidence between local and torsional elastic
critical buckling load grounded in the theory thanosymmetricrosssectionsjn whichthe
mid-lines intersect at aommonpoint, exhibitng a null primary warping constarity = 0).

Consequentlythe elastic critical torsional buckling load=q. (1) i is simplified toEq. (6).
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GJ
Per = il (6)

0
In Eq.(6), all the termscan beexpressed solely in terms of the egleg) angle cross

section geometry (leg width and thicknesg) and theelastic steelmat er i al 6s ©pr
(Youngds Modul us,asashavn iR Bd7)asddEa(d)gespectively.o )

" 20+v) 773 bt LY ")
Rt @
T @1+v) b

The author also shad the wellestablished concept of elastic critical plate buckling
stress {ir,L), which isderived fromthe elastic critical plate buckling loaBd.), as shown in
Eq. (9). Additionally, this equation can further be adapted to incorporate the-leguahgle
crosss e ct i 0 n s ®andtg witm&=t 2bt,Jeading to the derivation of E(LO).

02

. PE &t _ PE  t&
s, =k—L—=—54% 8. p =Ak—L=_
TN v)S 2 12(1-vV) b& ()

p -y P _E T (10)
“t - v)@ W) b

In Eqg. (10), the only different term is related to thel a buelding coefficientk.
Howeve, according to Rasmussdi?], each leg of an equ##g angle behaves like a
rectangular platen end compressiowith one longitudinally supported edge and the other free,
as depicted in the frontal perspective present&iguare7. Following this, thep | a buekbng
coefficientk can be obtained according to Bulgd®] and expressed ikq. (13) for typical

columnlengthgre ct angul ar pl atesd el asticl33F. ability

6(1- v)

Jo,

k =

(11)

Crosssection geometry Equalleg angle column Rectangular plate



36

} i ! §
x x
X X

Figure7: Equatleg argle columns comparison with a rectangular plate in end compression with one
longitudinally simply supported edge and the other free.

Therefore, substituting E¢L1) into Eq.(10) reveals that ardentical formula is arrived
at for both the elastic critical torsional and local buckling loads, as demonstrated(i2Eq.
From this observation, the author concldidleat theelasticcritical loads are equivalent and

coincident for conventional lengths of equleg angle columns.

3
I:?:rT = F?:r L = E t_ (12)
* Y @+v) b

However, this approach does nptovide any detailson the deformations and
mechanical behaviour of the structural elemeMsreover to understand the distinction
behaviours of local and torsional deformations in edgmlangles columns, it is crucial to
underscore two fundamental concepts that hold relevemasderstandinghe structural
behaviour of shofto-intermediate equdeg angle columns for this warke., (i) the concepts
of the Generalized Beam Theory (GBT) and (ii) the study carried out by Bulson if11%]70

focusing on flat rectangular plates.
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1.3.2Brief overview of Generalised Beam Theory (GBT) principles

This sectim briefly reviewsthe Generalised Beam Theory (GBT) principles considering
a coldformed steel member composed of an openwahed unbranched crosectionthat
aims to distinguish betwedhe mechanical behaviour tufcal and torsional deformations in
equatleg angle columnsThe Generalised Beam Theory (GBT), pioneered by Schistt
[17], represent s an[l8classeal [witheolyy mdorporatire oldeglate
conceptslt serves as a sophisticated framework for analysing the structural behaviourof cold
formed steel thirwalled members.

Davies, Leach and colleagu¢q]-[24]) have extensively employed GBT to investigate
the buckling behaviour of colbrmed steel thirwalled members. Their research has
significantly validated GBT as a viable and often preferred alternative to numerical finite
element or finite strip analyseGBT integrates both cressction and global (member) modes
of deformation, facilitating the execution géometricdly linear analyses (firsbrder GBT) or
linear stability analyses (secondder GBT).

This second approach offers a unified methodofogpbtaining precise and insightful
solutions to diverse structural probl ems.
buckling mode shape into a linear combination of ceesgion deformation modes is
accountable for the clarity of the GBsblutions. In this context, the GBT buckling analysis
approach involves two primary tasks: (i) conducting a esession analysis, i.e., aimed at
obtainingthesa@ a |l | e & eficctrioosns def or mati on modeso, and
stability anaysis to assess the participation of each deformation imdtie longitudinal axis.

1.3.2.1Elementary warping functions and cresection modal properties introduction

According to Davies and Lead¢h9], the theorgs core involvesi war pi ng el e mi

f un c t iwbheneseach crossection deformation modk is associated with axial strain

Linitially, it is essential to highlight that the term "warping" is frequently encountered in the context of Generalised
Beam Theory (GBT). Its use mde confusedas it is often linked with nomniform torsion. However, in this context,

iwar pi n gasseeania deformation and is not solely related to the torsion deformation mode.
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distribution *". In this context, the first mode exhibits a uniform distribution of axial strain

across the crossection,represented by the warping functid™ for all pointss of the
crosssection. The second and third modes correspond to bending, featuring warping functions
that depict linear strain distributions about the two principal axesyl&s#l fourth mode, i.e.,
torsion about the shear centre, retains its traditional definition of warping, wherein the warping
function represents the sectorial coordinate reflecting the distribution of axial strain induced by
the bimoment. These four modasr e of t en chbad d yedd niohdee si rbiegci adu s «
entail crosssection distortion, i.e., the cresection geometry remains unchanged, and the
elements remain straight.

Figure8(a) presents a crosection with five natral nodes to illustrate these concepts.
Figure8(b) illustrates the four rigidhody modes, an#ligure8(c) the crosssection distortion
mode 5. According to GBT principles, each of these five nodesicdreependent | y fAwa
the warping functions exhibiting linearity between the nodes. Consequently, each warping
function possesses five degrees of freedom, resulting in the section having five orthogonal
deformation modes and their respective associamging functions. Additional distortion
modes can be incorporated into the analysis by introducing intermediate nodes between the
natural ones. Therefore, each made defined by (i) a warping function, (ii) a specific pattern

of crosssection displaagaents, and (iii) crossection properties denoted 3, D and“B.

Additionally, the authorfl9] provided an equivalence betwea@econventional theory
of structural mechanics and GBT section properties to estahlsvidentmechanical meaning
behaviour concerning the deformation modesesented ifablel. In this table A is the cross
section arealxx is the second momenof area abouthe first principal axis,lyy is the second
moment of area abotie second principal axidy is the warping constant, adds the Saint
Venant torsional constant.

This comparison shows th@trepresents the stiffness associated with dgtess in the
respective modd) indicates the stiffness related to shear stresses resulting from torsi@, and
signifies the stiffnessf transverse bending stress. For instance, focusing solely on mode 3
(minor-axis bending), it becomes evident that iesistance is directly linked to the second
moment of area about the second principal dyjs Now, shifting focus to mode 4, it becomes

clear that it pertains to the warping constagt &nd the St. Venant torsional constalt (
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Modek Warping Function Displaced Shape

1) Axial Stress

2) Major-axis bending

3)Minor-axis bending

4) Torsion

5) Distortion

Figure8: Common crossection deformation profiles and warping functions a) esession with five

nodes, b) rigiecbody modesk = 1- 4), and c) crossection distortion mode& & 5) [20].
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Tablel: Crosssection properties in Conventional Notations and GEI.

Deformation mode Conventional theory Generalised beam theory
1 A 'C
2 | ’C
3 lyy ’C
4 lw J iC ‘D
k ? ? ? kC kD kB

1.3.2.2Crosssection analysis displacement field

The derivation presented pertains to a prismatic member featuring an arbitrary
unbrancheti open thinwalled crosssection corprised of rectangular plate elements with
uniform thicknesstj. It is essential to highlight that fundamental assumptions used in GBT
crosssection deformation modes are extensively elucidated by Silvestre and C4&msjtim
[26] and briefly presented in this sectibraiming to present the most crucial theory concepts
to understand the study of shtatintermediate equdeg angle columns.

In order to initiate this derivation, it is imperative toadsish initial definitions. A right
handed orthogonal local coordinate system is introduced, denoteg] adn this arrangement,
the x-coordinate aligns parallel to the member a¥sthe same timethe s-coordinate runs
along the crossectional miline, and the-coordinate is perpendicular to the cresstional
mid-plane. This local coordinate system defines the local displacemgnts and w, as
illustrated inFigure9(a).

Gongalveset al [28] describe thathe crosssection is divided into multiple plate
elements determined by nodes, i.e., cgion discretisation. Within this analysis, two node
types are distinguished: natural nodes and intermediate nodes. Natural nodes are pasitioned
the intersection of two plate elements or free edges. On the other hand, intermediate nodes are
Ssituated within a plate element, positioned
is illustrated inFigure9(b).

2 This definition appliesn cases where a maximum of two walls exclusively share eachsgossn node.
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O Natural node
O- ntermediate node

b)

Figure9: Prismatic member a) geometry/axes displacements and b)setssn discretisatiof27].

The midline displacement field representation is adoptdidwingVl asov bés cl a
thin-walled beam theor{l8], expressing each local displacement component as a product of
two singlevariable function$ u(x, s), V(x, ), andw(x, s) i a technique commonly employed
in rectangular plate analysis. In other wordse variable depends on the longitudinal axis
coordinate X), while the other is dependent on the cresstion midline abscissag], as
presented in E|13).

u(x 9= U9y, (X V(% 9=\3y . (X WX 9= W3y, (X (13)

Where (i) the comma subscripts denote partial derivatives, (i) nheline

=]

di spl acements pr oud(9,lvesandwEr(i® y(xeipadmsnsiontessd by

=]

di spl acement amplitude f udxOL)i ondo along the
According to Silvestre and Camotifi25], GBT's most distinctive feature lies in
expressingthe transverse mitine displacement pfites v(s) and w(s) in terms of the
longitudinal displacementu(s), which are geometrical This approach enables a
comprehensive definition of the meméebehaviour, encompassing displacetagstrains,
stresses, and internal forces, based solely on the knowledge of the longitudinal displacement
u(x 9. Additionally, the authors assume thats) varies linearly within each plate element,
implying tha a linear function is employed across the entire esestion. This assumption

signifies thatu(s) can be fully determined by its nodal values based on the-seati®n

discretisation. In other wordshe process involves sequefifiaintroducing (i) elementary
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warping functions at natural nodes and (ii) elementary flexural functions at intermediate nodes.
Further elucidation on this procedural aspect is available in the referenced litgta}+82].

Thus, the displacement(s) along the coordinatein a member can be expressed as
shown in Eq(14). It is calculated as the product of the displacenuggt) at nodek multiplied
by the interpolation functiom, (s), which is a linear function afthat has a unit value at node

kand zero value at all other nodes. Tégsiatiormeans that the displacement along the element
is calculatedby multiplying the displacement at the node by the value of the interpolation

function associated with the node.

u(e)=us) yl s (14)

This process effectively entails fdiscre
section into a setfonodes equivalent to the number of nodes. The nodal warping values serve
as the degrees of freedom, i.e., the number of degrees of freedom depends on whether
intermediate nodes are included. If intermediate nodes are excluded, the number of degrees of
freedom equals the number of natural nodes. However, if intermediate nodes are included, the
number of degrees of freedom equals the total number of nodes plus two additional degrees of
freedom associated with the two boundary nodes. Therdfmedisplacemant field for a

member formed bk nodes is expressed as shown in @#§).

u(x 9=y (95, (X V(% 9= y(35. (X wWx 9=w(3/ (X (15)

Where theu, (9), v, (s) and w, (s) are the shape functions to approximate the eross
section displacement field, i.e., cressction deformation modes, arfd(x) quantifies the

magnitude of these deformation modes along the length of #maberi the common
displacement amplitude function and defined in@6). Fi nal | vy, the member
determined by summing over the cregsxtion deformation modds This approach allows

users to select which modesdonsider and assess the influence of different deformation modes

on the overall behaviour of the member.
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£ (9 =u(8)- 1 (X (16)

1.3.2.3Assumptions and kinematic relations

The formulation of the GBT is based on two simplifying approximations raonttdn
pl ate theory. Firstly, Kirchhoffds hypothe
Consequently, fibres normal to the npthne are expected to remain straight, inextensional,
and perpendicular to the deformed midne throughout deformati, as presented in Ed.7).
Secondly, only longitudinal extensions are considered in terms of membrane strains, while

shear strains and transverse extensions are negieaseshown in Eq(.18).

gXZ = g = ZZé‘g (17)

el Oandgl= ¢ 0 (18)

These simplifications lead to the kinematic strdisplacement relations for the mid
plane displacement, as expressed in E), for membrane strainsM) and strains
corresponding tethe bending of the plate elemenf)(.Finally, incorporating Eq(15) into the
kinematic relations results in EQR0), where membrane andefural axial extensionare

grouped.

1.3.2.4Linear stability analysis

A typical GBT elastic buckling analysis comprises two main steps: (i) -Sexgson
analysis, where the GBT deformation modes and their associated modal mechanical properties
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are determined, and (i) memden near stability analysis, f
stability for each deformation mode. For the arbitrgiwyalled member illustrated iRigure

9(a), and considering the cressction discretisatiom Figure9(b) with g+1 natural nodes and
mintermediate nodes, a total@fn+1 GBT deformation modes are obtained.

Foran illustrationpurposealipped channel crossection discretisation is presented in
Figure1Q(a) T composed ofive walls (@ = 5), resulting insix natural nodesq+ 1 = 6) and
nineintermediate nodes addad £ 9). Figure10(b) shows the first eight most relevaniglane
shapes (excluding mode which represents axial extension) of deformation modes to illustrate
the crosssection deformed configurations. It is worth highlighting that modes 2, 3, and 4 are
considered global modes, while modes 5 and 6categorisedas distortional modésand

modes 7 and 8 are classified as |lgaate modes.

y
X o - Natural node
5 C o - Intermediate noc
m Centroid
® Shear centre
O—D—D—D—g
a)
Rigid-bod modes Distortional Local-plate
Major-axis Minor-axis )
) ) Torsion
bending bending
— 1 1
1 T 1 1 1 L — N
Mode 2 Mode 3 Mode4 ' | Mode5 Mode 6 Mode 7 Mode 8
J [ \R\J )/,/J‘ i y y
b)

Figure1Q: Lipped channel a) crosection discretisation and b) firsgkt deformation modes {iplane

shapes (rigiebody, distortional and locgdlate).

31t is essential to highlight that eqelaly angleor cruciformsections do not present distortional modes. Thus, modes

5 and6 become locaplatein GBT notation.

(O
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Upon following (1) the adoption of VI as
shear strains and transverse extensions, (ii) consideration of the material constangs@Youn
modulusk, shear modulu&, an d P o i3)sand(in)@mplicatiantofieither the principle
of virtual work or the principle of stationary potential enerth)e GBT systenequilibrium
equations are derived in E@1), with one equation corresponding to each deformanode
K.

EC/\ v~ GDy £ EBy f +W XJlk o O (21)
Wid £ |5 =0 (Wt e Wo “a)fi‘Lo de (22)
W* = EG/, GO { (23)
W' = W; 8Qf, (24)

WhereW;; are the préouckling uniform internal force/moment membefsis the load
parameterCik, Dik, Bik are the linear stiffness matrice§k geometricaktiffness matrix;W*

and W' are the generalised normal and shear stress resultdngdrésm the crossection

integration of the displacements and their derivatives.

It is essential to note thance the initial shape functions,(s), v, (s) andw,(9)) are

established, the computation of basic matricgg],[ [Bi], [Di], and [Xji] are calculated
according to Eq925)-(28), respectivelyThe initial three terms in E¢21) pertain to the first
or der me mb e red the lihearlstdfivess onatnic€x, Dik andBik. Conversely, the last
term addresses secoentder effects related to the interaction betweenbpekling normal

stresses and crasection ouof-plane deformations, represented by ge®metricaleffeds

Xiik.

Cy = Sﬁu Y ds 12(1 ﬁvw d (25)
1

B ds
|k 12(1 v )ﬁ WSSM ss (26)
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I nE
Dik - 35 \Ni,svvk,sds 12G (1_ \/2 )S fﬁwv\!ss W"Ysg d (27)

_ Y . (28)

X S(F”(w vy ) d
Finally, Eq.(21), together with the specified boundary conditions, yields a standard

eigerv al ue probl em, which provides the member
modes, i.e., combinations of the GBT deformation modes along the member length. For
instance,Figure 11 depicts a common flexuréorsional critical buckling mode observed in
lipped channel columns. This buckling mode is identified in GBT notation by the simultaneous
occurrence of crossection deformation modes 2+4, indicating magris flexural buckling

and crosssection torsioal rotation deformations.

Tp-C L

Buckling mode Mode 2 Mode 4

Applied uniform
compression stress

Figurell: Lipped channel column buckling mode as a linear combinati@Bdf crosssection

deformationmodes 2 and 4 (known as flexutarsional buckling).

Therefore, based on the mechanical propsbtained anoly GBT terminology, cross
section deformation modes are classified into four distinct categories based on their mechanical
characteristics: (i) flexural, (ii) torsional, (iii) localate, and (iv) distortional. A mode is
deemed:
i) Flexural f it exhibits nonzero values for the paramet&s, while Dk andB remain
null (Cuci D=0, Bk = 0);
ii)  Torsional modes, on the other hand, are identified byzeoa values for botlx and

Dik, With Bicbeing zeroCul  Dixl  Bi,= 0);
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i)  Localplate modes are defined by npero values for all three parameteZg;, Dw, and
Bw, coupled with a condition of zero displacemen{Ci| DI Bl @& 35 0);
iv)  In contrast, distortional modes possess-nero values foCyk, Dk, andBik, but with a

nonzero displacement (CiI Dkl Bal &I 0) ;

It is worth noting a fundamental distinction between torsional and local modkes in
GBT approach: while torsional modes feature straight esesson walls and rigitbody
motions with no transverse curvaturesigs = 0) and zeroBw = O, local modes involve
transverse bending of the cres=ction walls, resulting in nerero transverse curvatures g9

and norzeroBwi 0O val ues.

1.3.3Rectangulaplates with loaded edges simpbypported elastistability

1.3.3.1Analytical and energy method solutiorBulson 197(15]

Compressive end loads amplify the lateral deflections when a plate is subjected to edge
loads onlyWith a gradual increment in edge loaglj a critical point is reached where deflection
undergoes a significant increase, eventually leading to infinite deflection, indicative of
instability. This critical point marks the onset of elagtiate instability, defined by the
minimum compression sess value required to induce this phenomemen, elastic critical
buckling stresstt).

Bulson [15] investigatedthe elastic stability of rectangular flat plates subjected to
uniform compression in one directiodk), with supported loaded edgesharacterizedy a
longitudinal lengthL and widthb. Considering tfs simplest loading condition, the | at e s 0

equilibrium equation isvell-known andoresented ii£q. (29).

Ww, 2fw ‘w st °w (29)
Ky yY'm D X

3

Where D :E—t2 Is the flexural rigidity of the plate.
12(1- n°)
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Assuming that the plate buckles into sinusoidal halwaves in the direction of
compression (longitudinal). The general solution for displacemean thus be formulated as
preented in Eq.(30). Wheref(y) describesthe leg transverse deflection (displacement)

functions.

w= f(y)sin%( (30)

Therefore, lhe fundamentainvestigationi for this worki carried outby Bulson[15]
considersplate boundary conditions where one longitudinal edge is simply supporteth(S)
contrastthe opposite edge entirelyfree (F) as shown irfFigure12(a). In thiscase the author
demonstratethat thedeflected fornw; presented in Eq31) can satisfy the specified boundary
conditionsusing energy solution€onsequentlyi is possible to obtain the value of the elastic
critical buckling stresslr) and the plate bucklgcoefficient k) delineated in E(32) and Eq.

(33), respectivelylt can be noted thaheplatebucklingcurvek(t ) does noexhibita fAgar | anc
form,wheree ach fAgar |l ando mgmodesharpctenzety a dpecificaumibeu ¢ k |

of sinusoidalhalf-wavesin the load directior{m). Notably, te plate buckling coefficierk

tends towards a constant vahsthe plate's length and leg widttylp) increasesdenoted as.

This structural behviour implies two essentiadbservations(i) the minimum value of
k consistently corresponds to the free edge (F) buckling always into a singlealkialihumber
(m= 1) regardless of the plate length; (ii) during buckling, there is no plate transvedseg)e
andthee | e maeflechioaforms a flat plane (rigid body rotatiords can be seen in the
deflection transverse function employid) = y/b. Additionally, (i) f or a Poig@ sonao:

of 0.3, the value ok approaches 0.42584 ends t o le.nférieny ortg plategs. ) , i

_ A Y Mo X
W= ALSIT (31)
o -8l 6(-n) s PE A&t T
Cr_gfz ’ ﬁ 32(1_ 2,)% E (32)
_e1 6(1-n)
k-gfz R (33)

Thesefindings are betterclarified when ontrastinga plate vith one edge buHin (B)

and the opposite free (Fsillustrated inFigure 12(c). In this seond scenaripthe deflected
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form w. presented in E(34) is assumedo satisfy the spefied boundary conditiondHence,
by employing the energy method solutgpecifically for a singular buckling moade= 1 (i.e.,
onehalwave in the direction of | otleditcagelastie gar c
buckling stressl() and the plate buckling coefficierk) (are derived, as outlined in E@5)
and Eq(36), respectively.

ltisnotedt hat the shape of a figarl andod curve
value ofk, denoted akmin, and this behaviour signifi¢g anotable increase in wavelengtins (
> 1) in the longitudinal direction with increasing plate length. Additionally, (ii) plate transverse
bending occurs during the buckling, as seen in the deffettansverse function employ&y)
=[1-c o y/2b)]. Finally,a ki ng Poi g) sf®.8, the miminautn vatue d&fis observed
at 1.424 whehn = 1.636.

L (34)

s 8l pf . p4 e 'Epard

“"&72 163p 8) 2(3 p8) Y2 24D (35)
_e1  pf Nz (36)
&? 16(3p 8) 2(3 p8)
S . Flat plane S | Transverse
i i bending
S F B F
s ! G5
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251 k 5 -

2 4+
15+ 34
1 24
0.5 + 14
Kii=0.425 |

L L

O T T T —t—t+— O } | } 4 |

0 1 2 3 4 5 0 1 2 3 4 5

a) b)

Figurel2 Rectangular plate in end compression with a) longitudinal edge simply supported and other
free (SF) and b) longitudinal edge built and other free (&) [15].

1.3.3.2GeneralizedeamTheory(GBT) approach

Similarly, in 2010, Dinis et al. [30] expandedhe investigation conducteoly Bulson
[15], presentingthe results of amutstand flangestability analysis using Generalized Beam
Theory (GBT) It is impatant to highlight the significant distinction between torsional and local
modes as described ifi.3.2 Recalling n GBT notation(i) torsional modes are characterized
by straight crossection walls undergoing rigidody motons. On the other handj) local
modes involve transverse bending of the ciesdion walls, resulting in nemull transverse
curvatures.

Therefore, liis studyassessedn outstand flange with lengthand widthb uniformly
compressed along the sim@ypported transverse edges=(0 andx = L). In contrastthe
longitudinal edgs areloadfree, i.e., plates with identical dimensions and loading conditions
studiedby Bulson[15]. However, the authors #®ndedthe boundary enditions, with the
longitudinal supported edge at= 0 being elastically restrained by a rotational spring with
stiffnessS and the edge = bis maintained free.

The investigationincluded two GBT deformation modanalyss, as shown irFigure
13: (i) mode 1, which exhibits a rigidody rotation of the plate about the elastically restrained
edges= 0, and (ii)) mode 2, which has a null rotation at the elastically restrained edybut
exhibits transverse bendinghe local pate buckling coefficient k) was evaluated aa
function of the plate aspect ratio € L/b), for several values of the dimensionless rotational

stiffness parametet)(i Eq.(37), as presented iRigure14.
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_12Sb

0 1 -4a) (37)

a

x(u)

zZ(w)

s(v)

AD
b s
Wy (s)=b |1-cos | —
2b

Figurel3: Elastially restrained outstamnth flange and two GBT deformation modes included in the
analysiq30];

50105 a=2 o=1 o=05 o=0.2

o=0.1

o =0.05

kcr \ k
0.8 %

06 R =001
==L o =0.005

0.4

0.2

L =L/b

Figure14: Variation of buckling coefficienk. with the aspect ratio andU[30].

The authors concluded that for= 0, i.e., no rotational stiffness, the curkg( ) is
monotonically descendent (no local minimum exists) and terldst®.425 same conclusion
obtained in Bulsoifl5]. The flange buckles in a single halfave mode regardless of its length

L (ort). This means that a simply supported flange wléngth larger than four times its width
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(L > 4b) always buckles in a single halfave mode without transverse bending. Mechanically
speaking, the buckling mode involves pure torsion about the simply supported edge, which is
designated as global mode 4 (torsion) in GBT. However, in all curves Wier@, a local
minimum is observed ik.(* ). This pattern signifies that even a slightiisg rotational stiffness
results in flange buckling with multiple halfaves (n > 1). Moreover, with increasing values

of U, the corresponding minimuik; increases as the correspondingalues decrease. This

trend occurs due to the changing contribigiohmodes 1 and 2: as the contribution of mode 1
decreases, the contribution of mode 2 increases. Therefore, in accordance with GBT, the
presence of rotational stiffness along the longitudinal supported edge is imperative for local
plate buckling.

1.3.3.3Finite elementumerical analysis

This work employed a shell finite element model in ANSYS 1]20] softwareto
illustrate the elastic buckling behaviour of plates under uniform compressive loading,
considering the two cases exaed by Bulson (S and BF), as depicted ifrigure15. The
numerical model incorporates (i) a 5 mm x 5 mm element sizen@lgatic plate material with
propertiese = 210000 MPa and/ = 0.3, and (iii) three different geometsi defined by
dimensionless ratiosof 4, 6, and 8 (i.eL/b).

The resultobtainedare presented ihable2, indicating the dimensionlesspectatio
(+), the elastic critical buckling mode, and the number of-Wwalfes in the longitudinal
direction () for thetwo specified boundary conditioriBhe following comments can be made:

In the scenario designated a& Svhere one longitudinal edge is simply suppqraed
the opposite edge remains free, it was consistently noted that, regardless of the plate)|length (
a singular hakvave M = 1) alongside rotation of the transverse section were invariably
manifested, in alignment with findings reported by Bul$ds] and Diniset al. [30]. This
pattern intinates a predominately global torsional buckling mode, distinctly marked by
torsional phenomena around the simply supported edge.

In contrast, under the-B conditioni where one longitudinal edge is rigidly fixed, and
the opposite edge is fréea local plae buckling behaviour emerged. With increasing plate
length, a proliferation of halivaves was observed along the longitudinal axis. Additionally,

unlike the SF condition, the BF condition was associated with transverse section bending,
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further highlighing the influence of boundary conditions on the buckling behaviour of the

plates.

Figurel5: Finite element modedlastic bucklinganalysis of simply supporté®) or built-in (B)

longitudinally rectangular plate with other free

Table2: Comparison ofongitudinal free edgsinusoidal halHwvave plate deformation patterns

between S and BF varying the aspect ratia

L (Lb)

L
%)

B-F

rielastic buckling behaviour

1.3.4Equalleg angle colum

1.3.4.1Simply supported steel eqdealg angle columns






















































































































































































































































































































































