
 

Universidade do Estado do Rio de Janeiro 

Centro de Tecnologia e Ciências 

Faculdade de Engenharia 

 

 

 

 

 

Fernando Rocha Sarquis 

 

 

 

 

 

Numerical assessment of fixed-ended short-to-intermediate stainless 

steel starred hot-rolled equal-leg angle sections built -up columns 

 

 

 

 

 

 

 

 

 

 

Rio de Janeiro 

2024 



Fernando Rocha Sarquis 

 

 

 

Numerical assessment of fixed-ended short-to-intermediate stainless steel starred hot-

rolled equal-leg angle sections built -up columns 

 

 

 

 

 

PhD Thesis presented as a partial requirement 

to obtain the PhD Degree in Civil Engineering 

from the Civil Engineering Post Graduate 

Program at the State University of Rio de 

Janeiro. Concentration Area: Structures. 

 

 

 

 

 

 

 

 

 

 

Supervisor: Prof. Dr. Luciano Rodrigues Ornelas de Lima 

 

 

 

 

 

 

 

Rio de Janeiro 

2024



 

 

 

 

 

 

 

 

 

 

CATALOGAÇÃO NA FONTE 

UERJ / REDE SIRIUS / BIBLIOTECA CTC/B 

 

 

 

 

 

 

 

 

 

 

  

Bibliotecária: Júlia Vieira ï CRB7/6022 

 

 

 

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, 

desde que citada a fonte. 

 

 

   

Assinatura  Data 

 

S246 Sarquis, Fernando Rocha.  

Numerical assessment of fixed-ended short-to-intermediate stainless steel 

starred hot-rolled equal-leg angle sections built-up columns / Fernando Rocha 

Sarquis. ï 2024. 

168 f. 

 

Orientador: Luciano Rodrigues Ornelas de Lima. 

Tese (Doutorado) ï Universidade do Estado do Rio de Janeiro,  

Faculdade de Engenharia. 

 

1. Engenharia civil - Teses. 2. Aço austenítico - Teses. 3. Colunas - Teses. 

4. Método dos elementos finitos - Teses. 5. Análise estrutural (Engenharia) - 

Teses. I. Magalhães, Margareth da Silva. II. Pimenta, André Rocha. III. 

Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. IV. 

Título. 

 

CDU 624.072.44 



Fernando Rocha Sarquis 

 

Numerical assessment of fixed-ended short-to-intermediate stainless steel starred hot-

rolled equal-leg angle sections built -up columns 

 

PhD Thesis presented as a partial requirement 

to obtain the PhD Degree in Civil Engineering 

from the Civil Engineering Post Graduate 

Program at the State University of Rio de 

Janeiro. Concentration Area: Structures. 

Approved on: 05th October 2024. 

Examination board: 

 

_______________________________________________________ 

Prof. Luciano Rodrigues Ornelas de Lima (Supervisor), DSc 

Structural Engineering Department, Faculty of Engineering ï UERJ 

 

_______________________________________________________ 

Prof. André Tenchini da Silva, PhD 

Structural Engineering Department, Faculty of Engineering ï UERJ 

 

_______________________________________________________ 

Prof. Rodrigo Bird Burgos, DSc 

Structural Engineering Department, Faculty of Engineering ï UERJ 

 

_______________________________________________________ 

Prof. Eduardo de Miranda Batista, DSc 

Federal University of Rio de Janeiro, COPPE ï UFRJ 

 

_______________________________________________________ 

Profa. Arlene Maria Cunha Sarmanho, DSc 

Federal University of Ouro Preto, PROPEC ï UFOP 

 

Rio de Janeiro 

2024



 

 

DEDICATION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is dedicated to my family, especially my parents, Ana Cristina Rocha and 

Flavio Sarquis. 

 



 

 

ACKNOWLEDMENTS  

 

 

My deepest gratitude to my parents, Ana Cristina Rocha and Flavio Sarquis, for their 

tireless support and motivation throughout my academic journey. The love and values they have 

imparted and their commitment to my education have been fundamental to my personal and 

professional development. Their emotional and financial support has been pivotal, providing 

the foundation of confidence necessary to achieve my goals. Thank you very much. 

My grandfather, Bento Marinheiro, my godmother, Ceci Borges, and my brother, Flavio 

Junior, thank you all for your love, guidance, and support, which have been instrumental in my 

development. This achievement would not have been possible without each of you. 

My supervisor, Prof. Dr Luciano Rodrigues Ornelas de Lima, who has been an 

invaluable source of guidance, inspiration, and support throughout this challenging and 

inspiring journey. His teachings have significantly expanded my knowledge and shaped my 

approach to research and problem-solving. Our conversations have provided profound insights 

and motivation, while his friendship has offered the encouragement and confidence I needed to 

persevere through difficult times. I am deeply grateful for his mentorship, inspiration, and 

friendship. 

My late masterôs supervisor, Prof. Dr Pedro Colmar Gonçalves da Silva Vellasco, whose 

guidance and wisdom have left an enduring impact on my academic journey. His teachings 

continue to inspire me. 

To the masterôs student, Ada Kayser, for trusting and confiding in my ideas throughout 

her academic journey, from her undergraduate research and bachelorôs degree to her masterôs 

work. Your dedication and hard work have been truly inspiring. 

My friends Tatiane Capellani and Augusto Cezar, for their invaluable conversations, 

advice, and partnership from our undergraduate years through to the completion of my doctoral 

studies. 

To the other many friends I made during this journey, I will not quote names to avoid 

being unfair. However, thank you all for making this journey lighter and more enjoyable. 

The financial support from the Brazilian government is via CAPES during the doctoral 

degree program. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two things awe me most, the starry sky above me and the moral law within me. 

Immanuel Kant 

 



 

 

RESUMO 

 

 

SARQUIS, Fernando Rocha. Investigação numérica de colunas engastadas compostas por 

seções cantoneiras de abas iguais laminadas a quente com seção cruciforme de aços 

inoxidáveis. 2024. 168 f. Tese (Doutorado em Engenharia Civil) ï Faculdade de Engenharia, 

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2024. 

 

Os aços inoxidáveis austenítico e duplex são escolhidos para uma vasta gama de 

construções devido às suas notáveis características como, por exemplo, elevada resistência à 

corrosão, durabilidade, resistência e apelo estético. Contudo, as diretrizes de projeto atuais do 

Eurocódigo 3: Parte 1.4, específico para estruturas de aços inoxidáveis, frequentemente 

baseiam-se em analogias com o comportamento do aço carbono, o que pode não ser adequado, 

devido às características específicas do material, como o seu comportamento não-linear. 

Adicionalmente, seções cantoneira de abas iguais são comumente empregadas em aplicações 

estruturais, particularmente para colunas de comprimentos curtos a intermediários, que exibem 

comportamentos estruturais distintos. A geometria de sua seção transversal, caracterizada pelo 

encontro das linhas média (baixa rigidez torcional) e centroide não alinhado com o centro de 

cisalhamento, afeta o comportamento pós-flambagem das colunas, devido à interação entre 

deslocamentos ao redor dos eixos de maior e menor inércia, influenciando diretamente a 

resistência final do elemento. Neste contexto, a utilização de uma seção cruciforme, formada 

pela união de duas seções cantoneira de abas iguais conectadas pelo canto ï alinhando o 

centroide e o centro de cisalhamento, emerge como uma solução eficiente para mitigar o 

deslocamento nos eixos de maior e menor inércia durante o comportamento pós-flambagem, 

resultando em uma estrutura mais estável. Com o objetivo de abordar as lacunas relacionadas 

ao uso de aços inoxidáveis e à aplicação de colunas com seção cruciforme, este estudo realiza 

uma investigação numérica sobre colunas com apoios fixos constituídas de aços inoxidáveis 

austenítico e duplex com seções cruciforme (tanto soldadas quanto parafusadas) de 

comprimentos curtos a intermediários, portanto suscetíveis à flambagem torsional. Um modelo 

de elementos finitos sólido foi desenvolvido e validado com resultados experimentais para 

examinar: (i) o comportamento de flambagem elástica das colunas, (ii) os caminhos de 

equilíbrio no comportamento elástico pós-flambagem, (iii) a sensibilidade à imperfeição 

geométrica inicial, (iv) a influência das propriedades mecânicas dos aços inoxidáveis 

austenítico e duplex, e (v) obter a carga máxima das colunas. Uma análise paramétrica foi 

realizada, considerando seções transversais compactas típicas de cantoneiras de abas iguais (ou 

seja, b/t < 20) e selecionando comprimentos de colunas ï com base no comportamento de 

flambagem elástica ï propensas à falha por flambagem torsional. Por fim, (vi) a resistência 

última numérica obtida é usada para avaliar se as disposições de cálculo do Eurocódigo 3: Parte 

1.4, especificamente a curva de flambagem ñbò, prevê com precisão a carga última. As 

discrepâncias encontradas entre a carga última numérica e a resistência à flambagem por torção 

prevista pelo Eurocódigo indicaram um conservadorismo desnecessário. Consequentemente, 

propõe-se duas modificações ao código europeu, incluindo uma reclassificação da seção e uma 

modificação da curva de flambagem ñbò usada atualmente para o dimensionamento desses 

elementos estruturais. 
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ABSTRACT  

 

 

SARQUIS, Fernando Rocha. Numerical assessment of fixed-ended short-to-intermediate 

stainless steel starred hot-rolled equal-leg angle sections built-up columns. 2024. 168 p. 

Thesis (DSc. in Civil Engineering) ï Faculty of Engineering, State University of Rio de 

Janeiro, Rio de Janeiro, 2024. 

 

Austenitic and duplex stainless steels are chosen for many constructions due to their 

remarkable corrosion resistance, durability, strength, and aesthetic appeal. However, the current 

design guidelines of Eurocode 3: Part 1.4, specific to stainless steel structures, often rely on 

analogies with the behaviour of carbon steel, which may not be suitable due to the specific 

characteristics of the material, such as its nonlinear behaviour. Additionally, equal-leg angle 

sections are commonly employed in structural applications, particularly for short-to-

intermediate columns exhibiting distinct structural behaviours. The cross-section geometry is 

characterized by the mid-lines intersecting at a common point (low torsional stiffness), and the 

centroid is not aligned with the shear centre, which affects these columnsô post-buckling 

behaviour due to the interaction between displacements around the major and minor inertia 

axes, directly influencing the elementôs ultimate strength. In this context, the use of a starred 

section, formed by joining two equal-leg angle sections at the corner ï aligning the centroid and 

shear centre, emerges as an efficient solution to mitigate displacement in the major and minor 

axes during post-buckling behaviour, resulting in a more stable structure. In order to address 

the gaps related to the use of stainless steel and the application of columns with starred sections, 

this study conducts a numerical investigation on short-to-intermediate length columns with 

fixed supports made of austenitic and duplex stainless steel starred sections (both welded and 

bolted), thus susceptible to torsional buckling. A solid finite element model was developed and 

validated against experimental results to assess (i) the columnsô elastic buckling behaviour, (ii) 

elastic post-buckling behaviour equilibrium paths, (iii) initial geometrical imperfection 

sensitivity, (iv) influence of material mechanical properties of austenitic and duplex stainless 

steel, and (v) the columnsô ultimate failure load. A parametric analysis was performed through 

typical compact equal-leg angle cross-sections (i.e., b/t < 20) and selecting column lengths 

susceptible to torsional buckling failure based on the elastic buckling behaviour. Finally, the 

numerical ultimate strengths obtained are used to assess whether the design provisions of 

Eurocode 3: Part 1.4 ï column buckling curve ñbò ï can accurately forecast the ultimate load. 

Discrepancies between the numerical failure load and the predicted Eurocode buckling ultimate 

torsional load revealed unduly conservatism. Consequently, two proposed modifications to the 

European code are suggested, involving a cross-section classification and change of the current 

buckling curve ñbò actually used to assess the design of these structural elements. 

 

Keywords: Austenitic stainless steel; Duplex stainless steel; Equal-leg angles under 

compression; Eurocode 3; Fixed-ended columns; Finite element model; Numerical 

investigation; Starred sections; Torsional buckling. 
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NOTATIONS  

 

 

A Cross-section area 

Ag Gross cross-section area 

Aeff Effective cross-section area 

b Equal-leg angle width  

beff Effective equal-leg angle width 

C Cross-section centroid 

dm Major-axis displacement ï minor-axis flexural buckling 

dM Minor-axis displacement ï major-axis flexural buckling 

db Connection bolt diameter 

dp Bolted connection platesô hole diameter 

E Youngôs Modulus 

F Fixed-ended columns 

fu,b Connection bolt ultimate tensile strength 

G Shear modulus 

hp Connection plateôs height 

i0 Polar gyration radius relative to the shear centre 

I0 Polar moment inertia 

Iu Second moment of area about the u-axis 

Iv Second moment of area about the v-axis 

IT Welded torsional constant 

Ix Second moment of area about the x-axis 

Iy Second moment of area about the y-axis 

Iw Warping constant 

Iws Secondary warping constant 

J Literature torsional constant 

k Plate buckling coefficient 

L Column length 

LTFS Fixed-ended welded starred column transition length 

m Number of longitudinally sinusoidal half-wave 

Pcr,FT Elastic critical flexural-torsional buckling load 



 

 

Pcr,L Elastic critical plate buckling load 

Pcr,T Elastic critical torsional buckling load 

Pcr,u Elastic critical major-axis flexural buckling load 

Pcr,v Elastic critical minor-axis flexural buckling load 

Pu,EC3 Eurocode 3 design torsional buckling resistance 

Pu,FE Numerical ultimate load 

Pu,RS Numerical ultimate load with residual stress 

Pu,WRS Numerical ultimate load without residual stress 

t Equal-leg angle thickness 

tp Bolted connection platesô thickness 

u Equal-leg angle cross-section first principal axis 

u0 Equal-leg angle cross-section distance between the shear centre and the centroid 

v Equal-leg angle cross-section second principal axis 

wp Bolted connection platesô width 

Ŭ Eurocode 3 imperfection factor 

ɓ Column mid-span cross-section torsional rotation 

ɓ0 Initial geometrical imperfection column mid-span cross-section torsional rotation 

ɓRS Welded starred section residual stress maximum and minimum value 

ɔM1 Eurocode 3 partial safety factor 

ȹ Displacement 

Ů Eurocode 3 non-dimensional parameter relating to materialôs mechanical 

properties 

Ůu Stainless steel failure strain 

ɚ0 Eurocode 3 curve non-dimensional slenderness limit 

ɚp Eurocode 3 plateôs non-dimensional slenderness limit 

ɚT Non-dimensional torsional slenderness 

ɡ Poissonôs coefficient 

ɟ Eurocode 3 plateôs reduction factor 

ů0,2% Stainless steel 0.2% proof strength 

ůy Carbon steel yield strength 

ůu Stainless steel's ultimate strength 

ɢ Eurocode 3 column reduction factor 

ɢRS Residual stress reduction factor 



 

 

ɣ Eurocode 3 parameter, which correlates the plateôs internal normal stress ratio 
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 INTRODUCTION  

 

 

Generalities 

 

 

Stainless steel offers several advantages in civil engineering structural applications, as 

elucidated by Badoo [1]. According to the Design Manual for Structural Stainless Steel [2], two 

prevalent types of stainless steel are commonly used in structural applications: (i) austenitic 

grade 1.4301 (widely known as 304) and (ii) duplex grade 1.4462. Austenitic stainless steels 

are typically chosen for structural members that demand good strength, corrosion resistance, 

and excellent elongation before fracture. Duplex stainless steels are suitable in situations where 

high strength and corrosion resistance are required. In recent years, the increasing need for 

durable and enduring structures with minimal maintenance has increased the demand for 

stainless steel in the construction sector. The ease of fabrication into several structural 

components, appearance, and corrosion qualities of stainless steel make it a preferred material 

for functional and visually appealing components in modern structural projects. 

However, this material presents particular stress-strain curve behaviour. Unlike carbon 

steel, which typically displays linear elastic behaviour with a clearly defined yield stress, ůy, 

stainless steel exhibits a non-linear elastic response without a well-defined yielding plateau 

strength, conventionally identified as a 0.2% proof strength (ů0.2%), as illustrated in Figure 1. 

Afshan and Gardner [3] highlighted a critical aspect concerning the European code design 

guidelines for structural members made of austenitic and duplex stainless steel ï Eurocode 3: 

Part 1.4 [4]. Its formulation relies on limit state design provisions derived from the behaviour 

of carbon steel established in Eurocode 3: Part 1.1 [5]. This methodology reveals insufficient 

information concerning the stainless steel membersô experimental and numerical structural 

response data. 

Additionally, in structural engineering, selecting cross-section shapes for columns (i.e., 

axial compressive loads) is a critical decision which significantly dictates the overall structural 

response and efficiency of the constructions. This decision is achieved by in-depth knowledge 

concerning the columnsô mechanical behaviour of different cross-sections, i.e., (i) elastic 

buckling, (ii) elastic and elastic-plastic post-buckling behaviour, and (iii) ultimate strength, to 

obtain a safe and proper columns buckling design curve equations for these structural members. 
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a) b) 

Figure 1: a) Stress versus strain curve comparison for stainless steel and carbon steel ranging from 0 to 

0.75% strain, and b) definition of the stainless steelôs 0.2% proof strength. 

 

Equal angle sections, also known as L-shaped, are widely employed in various structural 

applications due to their geometry simplicity, cost-effectiveness, and ease of connection. As 

crucial supports, they contribute significantly to the strength and stability of buildings, bridges, 

towers, and various other structures. A notable application of these sections is in high-voltage 

transmission or telecommunication towers, as shown in Figure 2(a). Particularly, these equal-

leg angle columns are designed with short to intermediate lengths to accommodate the essential 

connections within the structure. 

Nevertheless, the inherent geometrical properties of this section (monosymmetric open 

section) cause low torsional stiffness and the non-coincidence of the centroid and shear centre, 

predisposing the short-to-intermediate equal-leg angle columnsô to failure by flexural-torsional 

buckling. This phenomenon involves (i) bending about the first principal axis (major-axis 

flexural buckling) and (ii) cross-section torsional rotation (torsional buckling). It is well-known 

that the major-axis bending participation influences the equal-leg angle columnsô elastic and 

elastic-plastic post-buckling behaviour and, consequently, directly impacts the load-bearing 

capacity of these structural members. 

As the need for power and telecommunications services grows, existing transmission 

towers must increasingly accommodate additional loads that surpass their initial design 

capacities. In response, a prevalent retrofitting strategy in civil engineering involves adding L-

shaped profiles, using two equal-leg angles to form a built-up ñstarredò cross-section, which 

serves as a reinforcement for the lattice structures of these towers, as shown in Figure 2(b) 

highlighted in red. 
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This reinforcement can be constructed by connecting a pair of equal-leg angles using 

bolted plates or welding at sectionsô corners, as depicted in Figure 3. A notable characteristic 

of this geometrical configuration assembly is that the centroid and shear centre are now 

coincident, influencing the overall structural behaviour. As a result of this geometry, columns 

with these types of starred sections are expected to be free from major-axis flexural buckling 

corner displacement. However, due to the inherent low torsional stiffness, the short-to-

intermediate columns remain vulnerable to pure torsional buckling failure modes. 

It is within this context of ensuring fixed-ended starred columnsô integrity that it 

becomes crucial to emphasize that columns susceptible to failure by flexural-torsional and 

torsional buckling are assessed under European standard codes (i.e., for carbon [5] and stainless 

steel [4]) using the same buckling design curve, identified as curve ñbò, to predict their ultimate 

strength. This methodology underscores the existing experimental and numerical data gap 

necessary to distinguish these starred columnsô resistance, which presents distinct post-buckling 

behaviour compared to a single equal-leg column. Therefore, the mechanical behaviour of these 

starred columns requires a different design approach to ensure a rational and adequate/accurate 

load-bearing capacity.  

 

  
a) b) 

Figure 2: a) Telecommunication angle steel tower [6] and b) structural reinforcement high-voltage 

tower [7]. 
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a) b) 

Figure 3: Dual equal-leg angle starred built-up section with a) bolted plate and b) welds. 

 

 

Objectives 

 

 

The main objectives of this thesis are to assess the (i) elastic buckling and (ii) elastic 

post-buckling behaviour of fixed-ended short-to-intermediate starred built-up columns 

(including bolted plate and welds) to gain insight into the mechanical behaviour of these 

structural members, focusing exclusively on geometrical nonlinearity. Subsequently, austenitic 

and duplex stainless steel materials behaviour are introduced into the analysis, aiming (iii) to 

validate the finite element model against experimental results documented in the existing 

literature. With this validation, it is possible (iv) to conduct a parametric analysis covering a 

wider range of equal-leg angle cross-sections and short-to-intermediate columnsô lengths that 

fail due to torsional buckling, i.e., verify the influence of the stainless steel materialôs 

nonlinearity on these columnsô strength. Finally, (v) the obtained numerical ultimate strengths 

are used to assess the accuracy of Eurocode 3: Part 1.4 column buckling curve ñbò in predicting 

the ultimate load capacity. 

 

 

Outline of the thesis 

 

 

This doctoral thesis is structured into an introduction followed by seven chapters. The 

introductory section offers insights into the stainless steel material employed in this study, along 

Equal-leg angle 1 

Equal-leg angle 2 

Bolts 

Equal-leg angle 1 

Equal-leg angle 2 

Welds 

Plates 
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with an exploration of the structural uses of equal-leg angle sections and built-up sections 

composed of two equal-leg angle sections. 

Chapter one is dedicated to the literature review, initially discussing the reasons why 

many studies have misinterpreted local and torsional deformations in short-to-intermediate 

equal-leg angle columns. It elucidates the distinctions in post-buckling behaviour between 

columns with equal-leg angles and cruciform sections and summarizes pivotal studies on the 

structural aspects of these stainless steel columns. 

Chapter two delves into the European normative framework (Eurocode 3: Part 1.4) and 

describes its design methodology for stainless steel structural members. This methodology 

traditionally relies on the behavioural insights gained from carbon steel structures. 

Chapter three compiles significant experimental data from the literature on short-to-

intermediate length stainless steel fixed-ended columns, both welded and bolted cross-sections, 

highlighting their failure modes, displacements, equilibrium paths, and ultimate strengths. 

Chapter four details the finite element modelling approach used in this study, discussing 

the chosen finite element, meshing techniques, geometry, boundary conditions, and the 

inclusion of initial geometrical imperfection in the numerical models. This chapter further 

explores the welded starred columns' buckling and elastic post-buckling behaviours, validation 

against experimental data, and sensitivity to initial geometrical imperfections. 

Chapter five presents a parametric analysis aiming to extend the results previously 

achieved experimentally. It takes into account austenitic and duplex stainless steel materials, 

equal-leg angle compact sections, and column lengths that are prone to failure by torsional 

buckling. 

Chapter six provides a detailed description of the finite element model development for 

bolted starred columns, emphasising the key parameters and assumptions made during the 

numerical analysis. This section covers the assumptions of the developed finite element model, 

including column geometry, element types, mesh size, boundary conditions, contact modelling, 

bolt preload, the implementation of initial geometrical imperfections, and the solution technique 

employed. 

Chapter 7 presents the elastic buckling behaviour of bolted starred columns, followed 

by elastic post-buckling behaviour. It includes the validation of the numerical model, a 

sensitivity study on geometrical imperfections, and a comprehensive parametric analysis. 

Chapter 8 exposes the current design procedures outlined by Eurocode 3 for their 

excessive conservatism. In response, it proposes two adjustments consistent with Eurocode 3ôs 

methodology to refine the design process. 
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Chapter 9 summarizes the principal conclusions obtained from this research and outlines 

a schedule for future work. It mainly focuses on extending the analysis to columns with bolted 

sections to ensure a comprehensive understanding of their structural behaviour. 
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1 LITERATURE REVIEW  

 

 

1.1 Intro duction 

 

 

This section presents a comprehensive literature review on the structural behaviour of 

short-to-intermediate fixed-ended equal-leg angle and cruciform columns. It focuses on the 

columnsô elastic buckling and post-buckling behaviour, elastic-plastic behaviour, and ultimate 

strength. Thus, an initial investigation into the atypical short-to-intermediate equal-leg angle 

columnsô elastic buckling behaviour is necessary, highlighting the challenge of distinguishing 

between local and torsional deformations over the years. 

However, applying Generalized Beam Theory (GBT) analysis has uncovered significant 

new insights into these columnsô elastic mechanical buckling behaviour, enhancing 

understanding of their natural mechanical behaviour. Due to these two cross-section 

geometries, it is demonstrated that columns with equal-leg angles and cruciform profiles of 

short to intermediate lengths are respectively susceptible to failure by flexural-torsional 

buckling and pure torsional buckling without the occurrence of local buckling. Based on these 

results, it is possible to highlight the significant differences between these two phenomena 

(flexural-torsional and torsional) post-buckling behaviour, which are critical to the columnsô 

stability and ultimate strength. 

It is essential to underscore that the analysis extends to the structural behaviour of 

cruciform columns to draw parallels to built-up double equal-leg angle starred sections. This 

evolution of understanding from basic column types to more complex configurations, including 

columns with starred cross-sections, combines the benefits of equal-leg angle (a standard steel 

profile) and cruciform sections (known for stable post-buckling behaviour).  

Therefore, this comprehensive review aims (i) to elucidate the short-to-intermediate 

fixed-ended equal-leg angle and cruciform columnsô buckling behaviours and (ii) provide a 

solid foundation for understanding and improving the structural behaviour of fixed-ended short-

to-intermediate starred columns by integrating these insights. 
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1.2 Torsional and flexural-torsional buckling 

 

 

1.2.1 Introduction 

 

 

Cross-sections composed of thin plates with mid-lines intersecting at a single point (e.g., 

equal-leg angles and cruciform sections) exhibit no primary warping resistance (Iw = 0). This 

characteristic inherently leads to a significantly low torsional stiffness. Furthermore, the 

alignment of the centroid and the shear centre in these cross-sections plays a crucial role in 

influencing the stability of the columns. As a result, (i) columns with cruciform sections are 

distinctly vulnerable to buckling phenomena associated with pure torsion (torsional buckling). 

In contrast, (ii) columns with equal-leg angle sections are prone to failure through a 

combination of major-axis flexural buckling and torsion (flexural-torsional buckling). 

 

 

1.2.2 Torsional buckling 

 

 

Pioneering studies carried out by Wagner [8], followed by reviews from Timoshenko 

[9], Timoshenko and Gere [10], and the detailed investigation by Gaylord and Gaylord [11], 

significantly contributed to understanding the torsional buckling theory. It is known that if the 

cross-section geometry consists of thin elements intersecting at a common point and if the axis 

of rotation (z) is assumed to pass through the shear centre (S), then the primary warping constant 

is zero (Iw = 0). 

Figure 4(a) depicts a cruciform section with four identical legs, each defined by a width 

b and thickness t, which presents the centroid coincident with the shear centre due to the double 

symmetry (x and y axes). This characteristic naturally means a very low torsional stiffness, 

making these sections particularly susceptible to torsional buckling, i.e., buckling that involves 

the cross-section torsion rotation. Thus, if the structural member is submitted to concentrically 

axial compression (columns), torsional buckling may occur ï depending on the length (L) ï 

under a smaller load than the minor-axis flexural buckling. 

Figure 4(b) shows cruciform columns subject to failure by torsional buckling under 

compression. It is essential to highlight two phenomenonôs mechanical behaviour 



31 

 

characteristics: (i) each leg behaves identically, showing rigid-body rotation (ɓ) about the shear 

centre z-axis, and (ii) the columnôs axis (z) remaining straight, i.e., there are no (major or minor 

axes) flexural displacements, as depicted in Figure 4(c). Consequently, the columnsô elastic 

critical torsional buckling load (Pcr,T) ï well-established in the literature ï can be expressed by 

Eq. (1). 

 

 

Where i0
2 is the polar radius of gyration relative to the shear centre, Ix and Iy are the 

principal second moment of area, A is the gross cross-section area, G is the shear modulus, J is 

the torsion constant, E is the Youngôs Modulus, Iw is the primary warping constant, Leff is the 

effective length for torsion failure mode, GJ is the St. Venant torsional stiffness, and EIw is the 

warping torsion stiffness. 

 

 

 

 

a) b) c) 

Figure 4: a) Cruciform geometry, b) column torsional buckling, and c) mid-span cross-section 

torsional rotation. 
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1.2.3 Flexural-torsional buckling 

 

 

Despite the simplicity, equal-leg angle sections exhibit two essential geometrical 

characteristics: monosymmetric open section, i.e., the centroid does not coincide with the shear 

centre, and their wall mid-lines intersect at a single point. Figure 5(a) depicts the equal-leg angle 

section geometry, showing the leg width (b) and thickness (t), the centroid (C), and the shear 

centre (S). Also, it depicts the sectionôs principal axes, which are rotated by 45º relative to the 

geometrical axes (x and y), thus defining the major and minor axes (u and v), respectively. 

As aforementioned, columns with monosymmetric open sections are marked by low 

torsional stiffness because the primary warping constant is null (Iw = 0). This characteristic, 

combined with the misalignment between the centroid and the shear centre, results in a unique 

mechanical behaviour in terms of elastic stability analysis. The particular geometry and cross-

section properties provoke a structural response encompassing both (i) flexural bending about 

the major-axis and (ii) torsional movements around the shear centre. 

This susceptibility arises from how columns with monosymmetric sections buckle under 

axial compression. The process begins with rotation about the shear centre due to the low 

torsional stiffness, referred to as the z1-axis, which occurs along an axis parallel to the 

longitudinal z-axis. This cross-section torsional rotation movement inherently couples with 

bending along one of the columnôs principal planes, identified as u-z and v-z. Notably, the v-z 

principal plane does not align with the shear centre, so the bending around the major-axis (u) 

becomes evident. 

Figure 5(b) illustrates an equal-leg angle column that is susceptible to flexural-torsional 

buckling, showcasing the two significant mechanical behaviour characteristics: (i) the cross-

section undergoes a rigid-body rotation around the longitudinal shear centre z1-axis, and (ii) the 

z1-axis does not remain straight, showing bending displacements about the major-axis, (major-

axis flexural buckling).  

Additionally, Figure 5(c) illustrates these two types of rigid-body motions at the 

columnôs mid-span, where dM means the cornerôs displacements due to the major-axis flexural 

buckling, and ɓ represents the cross-sectionôs shear centre torsional rotation, providing a clear 

visualisation of the columnôs behaviour. Furthermore, the equation for calculating the columnsô 

elastic critical flexural-torsional buckling (Pcr,FT) is outlined in Eq. (3): 
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where Pcr,u is the elastic critical major-axis flexural buckling load, Iu is the major-axis 

second moment of area, u0 is the shear centre coordinates with respect to the centroid of gross 

cross-section, and ɖ is a dimensionless parameter. 

 

 

 

 

a) b) c) 

 

Figure 5: a) Equal-leg angle section geometry, b) column with equal-leg angle cross-section prone to 

failure by flexural-torsional buckling, and c) mid-span cross-section buckling deformation. 
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1.3.1 Local/torsional mixed deformations mode 

 

 

In 1963, Timoshenko and Gere [10] highlighted the peculiarities of equal-leg angle 

sections. The authors showed that when the sectionôs leg is subjected to uniformly distributed 

compression in short-to-intermediate lengths, the local buckling mode of the legs displays a 

local deformed configuration akin to global pure torsional buckling, as depicted in Figure 6. 

Considering that the mechanical deformation response varies between local and global 

(torsional) buckling modes, this discrepancy significantly impacts these columnsô ultimate 

strength. 

 

 

Figure 6: Short equal-leg angle columnsô buckling mode according to Timoshenko and Gere [10]. 

 

For this reason, investigations into the local and torsional elastic critical buckling 

behaviour ï often described as a virtually identical phenomenon ï were carried out in equal-leg 

angle columns due to the difficulty distinguishing between these two deformations [12]-[14]. 

In 2005, Rasmussen [12] demonstrated the coincidence between local and torsional elastic 

critical buckling load grounded in the theory that monosymmetric cross-sections, in which the 

mid-lines intersect at a common point, exhibiting a null primary warping constant (Iw = 0). 

Consequently, the elastic critical torsional buckling load ï Eq. (1) ï is simplified to Eq. (6). 
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In Eq. (6), all the terms can be expressed solely in terms of the equal-leg angle cross-

section geometry (leg width b and thickness t) and the elastic steel materialôs properties 

(Youngôs Modulus and Poissonôs ratio), as shown in Eq. (7) and Eq. (8), respectively. 

 

 

The author also showed the well-established concept of elastic critical plate buckling 

stress (ůcr,L), which is derived from the elastic critical plate buckling load (Pcr,L), as shown in 

Eq. (9). Additionally, this equation can further be adapted to incorporate the equal-leg angle 

cross-sectionsô geometry (b and t), with A = 2bt, leading to the derivation of Eq. (10). 

 

 

In Eq. (10), the only different term is related to the platesô buckling coefficient k. 

However, according to Rasmussen [12], each leg of an equal-leg angle behaves like a 

rectangular plate in end compression with one longitudinally supported edge and the other free, 

as depicted in the frontal perspective presented in Figure 7. Following this, the platesô buckling 

coefficient k can be obtained according to Bulson [15] and expressed in Eq. (13) for typical 

column lengths (rectangular platesô elastic stability is assessed in detail in Section 1.3.3). 
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Figure 7: Equal-leg angle columns comparison with a rectangular plate in end compression with one 

longitudinally simply supported edge and the other free. 

 

Therefore, substituting Eq. (11) into Eq. (10) reveals that an identical formula is arrived 

at for both the elastic critical torsional and local buckling loads, as demonstrated in Eq. (12). 

From this observation, the author concluded that the elastic critical loads are equivalent and 

coincident for conventional lengths of equal-leg angle columns. 

 

 

However, this approach does not provide any details on the deformations and 

mechanical behaviour of the structural elements. Moreover, to understand the distinction 

behaviours of local and torsional deformations in equal-leg angles columns, it is crucial to 

underscore two fundamental concepts that hold relevance to understanding the structural 

behaviour of short-to-intermediate equal-leg angle columns for this work, i.e., (i) the concepts 

of the Generalized Beam Theory (GBT) and (ii) the study carried out by Bulson in 1970 [15] 

focusing on flat rectangular plates. 
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1.3.2 Brief overview of Generalised Beam Theory (GBT) principles 

 

 

This section briefly reviews the Generalised Beam Theory (GBT) principles considering 

a cold-formed steel member composed of an open thin-walled unbranched cross-section that 

aims to distinguish between the mechanical behaviour of local and torsional deformations in 

equal-leg angle columns. The Generalised Beam Theory (GBT), pioneered by Schardt [16]-

[17], represents an extension of Vlasovôs [18] classical bar theory by incorporating folded-plate 

concepts. It serves as a sophisticated framework for analysing the structural behaviour of cold-

formed steel thin-walled members. 

Davies, Leach and colleagues ([19]-[24]) have extensively employed GBT to investigate 

the buckling behaviour of cold-formed steel thin-walled members. Their research has 

significantly validated GBT as a viable and often preferred alternative to numerical finite 

element or finite strip analyses. GBT integrates both cross-section and global (member) modes 

of deformation, facilitating the execution of geometrically linear analyses (first-order GBT) or 

linear stability analyses (second-order GBT). 

This second approach offers a unified methodology for obtaining precise and insightful 

solutions to diverse structural problems. Indeed, the distinctive decomposition of the memberôs 

buckling mode shape into a linear combination of cross-section deformation modes is 

accountable for the clarity of the GBT solutions. In this context, the GBT buckling analysis 

approach involves two primary tasks: (i) conducting a cross-section analysis, i.e., aimed at 

obtaining the so-called ñcross-section deformation modesò, and (ii) performing a member linear 

stability analysis to assess the participation of each deformation mode in the longitudinal axis. 

 

 

1.3.2.1 Elementary warping functions and cross-section modal properties introduction 

 

 

According to Davies and Leach [19], the theoryôs core involves ñwarping elementary 

functionsò1, where each cross-section deformation mode k is associated with axial strain 

                                                 

1 Initially, it is essential to highlight that the term "warping" is frequently encountered in the context of Generalised 

Beam Theory (GBT). Its use may be confused as it is often linked with non-uniform torsion. However, in this context, 

ñwarpingò encompasses axial deformation and is not solely related to the torsion deformation mode. 
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distribution ku . In this context, the first mode exhibits a uniform distribution of axial strain 

across the cross-section, represented by the warping function 1 1u=- for all points s of the 

cross-section. The second and third modes correspond to bending, featuring warping functions 

that depict linear strain distributions about the two principal axes. Lastly, the fourth mode, i.e., 

torsion about the shear centre, retains its traditional definition of warping, wherein the warping 

function represents the sectorial coordinate reflecting the distribution of axial strain induced by 

the bi-moment. These four modes are often called the ñrigid-bodyò modes because they do not 

entail cross-section distortion, i.e., the cross-section geometry remains unchanged, and the 

elements remain straight. 

Figure 8(a) presents a cross-section with five natural nodes to illustrate these concepts. 

Figure 8(b) illustrates the four rigid-body modes, and Figure 8(c) the cross-section distortion 

mode 5. According to GBT principles, each of these five nodes can independently ñwarpò, with 

the warping functions exhibiting linearity between the nodes. Consequently, each warping 

function possesses five degrees of freedom, resulting in the section having five orthogonal 

deformation modes and their respective associated warping functions. Additional distortion 

modes can be incorporated into the analysis by introducing intermediate nodes between the 

natural ones. Therefore, each mode k is defined by (i) a warping function, (ii) a specific pattern 

of cross-section displacements, and (iii) cross-section properties denoted as kC , 
kD  and 

kB . 

Additionally, the authors [19] provided an equivalence between the conventional theory 

of structural mechanics and GBT section properties to establish an evident mechanical meaning 

behaviour concerning the deformation modes ï presented in Table 1. In this table, A is the cross-

section area, Ixx is the second moment of area about the first principal axis, Iyy is the second 

moment of area about the second principal axis, Iw is the warping constant, and J is the Saint 

Venant torsional constant. 

This comparison shows that C represents the stiffness associated with direct stress in the 

respective mode, D indicates the stiffness related to shear stresses resulting from torsion, and B 

signifies the stiffness of transverse bending stress. For instance, focusing solely on mode 3 

(minor-axis bending), it becomes evident that its resistance is directly linked to the second 

moment of area about the second principal axis (Iyy). Now, shifting focus to mode 4, it becomes 

clear that it pertains to the warping constant (Iw) and the St. Venant torsional constant (J). 
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a) 

Mode k Warping Function Displaced Shape 

1) Axial Stress 

  

2) Major-axis bending 

 
 

3)Minor-axis bending 

 
 

4) Torsion 

 
 

b) 

5) Distortion 

  
c) 

Figure 8: Common cross-section deformation profiles and warping functions a) cross-section with five 

nodes, b) rigid-body modes (k = 1 - 4), and c) cross-section distortion mode (k = 5) [20]. 
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Table 1: Cross-section properties in Conventional Notations and GBT [20]. 

Deformation mode Conventional theory Generalised beam theory 

1 A   1C    

2 Ixx   2C    

3 Iyy   3C    

4 Iw J  4C  4D   

k ? ? ? kC  kD  
kB  

 

 

1.3.2.2 Cross-section analysis ï displacement field 

 

 

The derivation presented pertains to a prismatic member featuring an arbitrary 

unbranched2 open thin-walled cross-section comprised of rectangular plate elements with 

uniform thickness (t). It is essential to highlight that fundamental assumptions used in GBT 

cross-section deformation modes are extensively elucidated by Silvestre and Camotim [25]-

[26] and briefly presented in this section ï aiming to present the most crucial theory concepts 

to understand the study of short-to-intermediate equal-leg angle columns. 

In order to initiate this derivation, it is imperative to establish initial definitions. A right-

handed orthogonal local coordinate system is introduced, denoted as x, s, z. In this arrangement, 

the x-coordinate aligns parallel to the member axis. At the same time, the s-coordinate runs 

along the cross-sectional midline, and the z-coordinate is perpendicular to the cross-sectional 

mid-plane. This local coordinate system defines the local displacements u, v, and w, as 

illustrated in Figure 9(a). 

Gonçalves et al. [28] describe that the cross-section is divided into multiple plate 

elements determined by nodes, i.e., cross-section discretisation. Within this analysis, two node 

types are distinguished: natural nodes and intermediate nodes. Natural nodes are positioned at 

the intersection of two plate elements or free edges. On the other hand, intermediate nodes are 

situated within a plate element, positioned between two plateôs natural nodes. This arrangement 

is illustrated in Figure 9(b). 

                                                 

2 This definition applies in cases where a maximum of two walls exclusively share each cross-section node. 
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a) b) 

Figure 9: Prismatic member a) geometry/axes displacements and b) cross-section discretisation [27]. 

 

The mid-line displacement field representation is adopted following Vlasovôs classical 

thin-walled beam theory [18], expressing each local displacement component as a product of 

two single-variable functions ï u(x, s), v(x, s), and w(x, s) ï a technique commonly employed 

in rectangular plate analysis. In other words, one variable depends on the longitudinal axis 

coordinate (x), while the other is dependent on the cross-section mid-line abscissa (s), as 

presented in Eq. (13). 

 

 ,( , ) ( ). ( )k xu x s u s xy=  ( , ) ( ). ( )kv x s v s xy=  ( , ) ( ). ( )kw x s w s xy=  (13)  

 

Where (i) the comma subscripts denote partial derivatives, (ii) the mid-line 

ñdisplacements profilesò are represented by ( )u s , ( )v s  and ( )w s  (iii) ( )xy  is a dimensionless 

ñdisplacement amplitude functionò along the member length (0 Ò x Ò L). 

According to Silvestre and Camotim [25], GBT's most distinctive feature lies in 

expressing the transverse mid-line displacement profiles ( )v s  and ( )w s  in terms of the 

longitudinal displacement ( )u s , which are geometrical. This approach enables a 

comprehensive definition of the memberôs behaviour, encompassing displacements, strains, 

stresses, and internal forces, based solely on the knowledge of the longitudinal displacement 

( , )u x s . Additionally, the authors assume that ( )u s  varies linearly within each plate element, 

implying that a linear function is employed across the entire cross-section. This assumption 

signifies that ( )u s  can be fully determined by its nodal values based on the cross-section 

discretisation. In other words, the process involves sequentially introducing (i) elementary 
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warping functions at natural nodes and (ii) elementary flexural functions at intermediate nodes. 

Further elucidation on this procedural aspect is available in the referenced literature [25]-[32]. 

Thus, the displacement ( )u s  along the coordinate s in a member can be expressed as 

shown in Eq. (14). It is calculated as the product of the displacement ( )ku s  at node k multiplied 

by the interpolation function ( )ku s , which is a linear function of s that has a unit value at node 

k and zero value at all other nodes. This equation means that the displacement along the element 

is calculated by multiplying the displacement at the node by the value of the interpolation 

function associated with the node.  

 

 ( ) ( ) ( )k ku s u s u s=  (14)  

 

This process effectively entails ñdiscretisingò the deformed configuration of the cross-

section into a set of modes equivalent to the number of nodes. The nodal warping values serve 

as the degrees of freedom, i.e.,  the number of degrees of freedom depends on whether 

intermediate nodes are included. If intermediate nodes are excluded, the number of degrees of 

freedom equals the number of natural nodes. However, if intermediate nodes are included, the 

number of degrees of freedom equals the total number of nodes plus two additional degrees of 

freedom associated with the two boundary nodes. Therefore, the displacement field for a 

member formed by k nodes is expressed as shown in Eq. (15). 

 

 ,( , ) ( ). ( )k k xu x s u s xf=  ( , ) ( ). ( )k kv x s v s xf=  ( , ) ( ). ( )k kw x s w s xf=  (15)  

 

Where the ( )ku s , ( )kv s  and ( )kw s  are the shape functions to approximate the cross-

section displacement field, i.e., cross-section deformation modes, and ( )k xf  quantifies the 

magnitude of these deformation modes along the length of the member ï the common 

displacement amplitude function and defined in Eq. (16). Finally, the memberôs behaviour is 

determined by summing over the cross-section deformation modes k. This approach allows 

users to select which modes to consider and assess the influence of different deformation modes 

on the overall behaviour of the member.  
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 ( ) ( ). ( )k k kx u s xf y=  (16)  

 

 

1.3.2.3 Assumptions and kinematic relations 

 

 

The formulation of the GBT is based on two simplifying approximations rooted in thin 

plate theory. Firstly, Kirchhoffôs hypothesis is valid for each plate forming the member. 

Consequently, fibres normal to the mid-plane are expected to remain straight, inextensional, 

and perpendicular to the deformed mid-plane throughout deformation, as presented in Eq. (17). 

Secondly, only longitudinal extensions are considered in terms of membrane strains, while 

shear strains and transverse extensions are neglected ï as shown in Eq. (18).  

 

 0xz sz zzg g e= = = (17)  

 0M

xxe ¸  and 0M M

xs ssg e= = (18)  

 

These simplifications lead to the kinematic strain-displacement relations for the mid-

plane displacement, as expressed in Eq. (19), for membrane strains (.M) and strains 

corresponding to the bending of the plate element (.F). Finally, incorporating Eq. (15) into the 

kinematic relations results in Eq. (20), where membrane and flexural axial extensions are 

grouped. 

 

 ,

M

xx xue = ;      ,.F

xx xxz we =- ;      ,.F

ss ssz we =-     and     ,2 .F

xs xsz wg =-  (19)  

 ,( )xx k k k xxu zwe f= - ;     ,ss k ss kzwe f=-      and     , ,2xs k s k xzwg f=-  (20)  

 

 

1.3.2.4 Linear stability analysis 

 

 

A typical GBT elastic buckling analysis comprises two main steps: (i) cross-section 

analysis, where the GBT deformation modes and their associated modal mechanical properties 
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are determined, and (ii) member linear stability analysis, focused on computing the memberôs 

stability for each deformation mode. For the arbitrary q-walled member illustrated in Figure 

9(a), and considering the cross-section discretisation in Figure 9(b) with q+1 natural nodes and 

m intermediate nodes, a total of q+m+1 GBT deformation modes are obtained.  

For an illustration purpose, a lipped channel cross-section discretisation is presented in 

Figure 10(a) ï composed of five walls (q = 5), resulting in six natural nodes (q + 1 = 6) and 

nine intermediate nodes added (m = 9). Figure 10(b) shows the first eight most relevant in-plane 

shapes (excluding mode 1, which represents axial extension) of deformation modes to illustrate 

the cross-section deformed configurations. It is worth highlighting that modes 2, 3, and 4 are 

considered global modes, while modes 5 and 6 are categorised as distortional modes3, and 

modes 7 and 8 are classified as local-plate modes. 

 

 

a) 

Rigid-bod modes Distortional Local-plate 

Major-axis 

bending 

Minor-axis 

bending 
Torsion     

 

b) 

Figure 10: Lipped channel a) cross-section discretisation and b) first eight deformation modes in-plane 

shapes (rigid-body, distortional and local-plate). 

 

                                                 

3 It is essential to highlight that equal-leg angle or cruciform sections do not present distortional modes. Thus, modes 

5 and 6 become local plate in GBT notation. 

- Natural node

- Intermediate node

y

x
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Upon following (i) the adoption of Vlasovôs assumptions concerning null membrane 

shear strains and transverse extensions, (ii) consideration of the material constants (Youngôs 

modulus E, shear modulus G, and Poissonôs ratio ɜ), and (iii) application of either the principle 

of virtual work or the principle of stationary potential energy, the GBT system equilibrium 

equations are derived in Eq. (21), with one equation corresponding to each deformation mode 

k. 

 

 , , .0 , 0ik k xxxx ik k xx ik k j jik k xxEC GD EB W Xsf f f l f- + + = (21)  

 ( ).0 , 0 .0 , 00 0L L

j i x i jik j k x iW W X Ws t sdf l df df= + = 

 

(22)  

 
2

,i ik k xx ik kW EC GDs f f= +  (23)  

 , ,i i x ik k xW W GDt s f=- +  (24)  

 

Where .0jWs
 are the pre-buckling uniform internal force/moment members; l is the load 

parameter; Cik, Dik, Bik are the linear stiffness matrices; Xjik geometrical stiffness matrix; iWs 

and iWt are the generalised normal and shear stress resultant arising from the cross-section 

integration of the displacements and their derivatives. 

It is essential to note that once the initial shape functions (( )ku s , ( )kv s  and ( )kw s ) are 

established, the computation of basic matrices [Cik], [Bik], [Dik], and [Xjik] are calculated 

according to Eqs. (25)-(28), respectively. The initial three terms in Eq. (21) pertain to the first-

order memberôs behaviour, i.e., the linear stiffness matrices Cik, Dik and Bik. Conversely, the last 

term addresses second-order effects related to the interaction between pre-buckling normal 

stresses and cross-section out-of-plane deformations, represented by the geometrical effects 

Xjik.  
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 ( )3 3

, , , ,2

1

3 12 (1 )
ik i s k s i k ss k i ss

S S

E
D t w w ds t w w w w ds

G v

n
= - +

-ñ ñ  (27)  

 ( )j

jik i k i k

jjS

tu
X v v w w ds

C
= +ñ  (28)  

 

Finally, Eq. (21), together with the specified boundary conditions, yields a standard 

eigenvalue problem, which provides the memberôs bifurcation stress resultants and buckling 

modes, i.e., combinations of the GBT deformation modes along the member length. For 

instance, Figure 11 depicts a common flexural-torsional critical buckling mode observed in 

lipped channel columns. This buckling mode is identified in GBT notation by the simultaneous 

occurrence of cross-section deformation modes 2+4, indicating major-axis flexural buckling 

and cross-section torsional rotation deformations. 

 

 

Figure 11: Lipped channel column buckling mode as a linear combination of GBT cross-section 

deformation modes 2 and 4 (known as flexural-torsional buckling). 

 

Therefore, based on the mechanical properties obtained and by GBT terminology, cross-

section deformation modes are classified into four distinct categories based on their mechanical 

characteristics: (i) flexural, (ii) torsional, (iii) local-plate, and (iv) distortional. A mode is 

deemed: 

i) Flexural if it exhibits non-zero values for the parameters Ckk, while Dkk and Bkk remain 

null (Ckk Í 0, Dkk = 0, Bkk = 0); 

ii)  Torsional modes, on the other hand, are identified by non-zero values for both Ckk and 

Dkk, with Bkk being zero (Ckk Í 0, Dkk Í 0, Bkk = 0);  

= +

Applied uniform

compression stress

Buckling mode Mode 2 Mode 4
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iii)  Local-plate modes are defined by non-zero values for all three parameters: Ckk, Dkk, and 

Bkk, coupled with a condition of zero displacement uk (Ckk Í 0, Dkk Í 0, Bkk Í 0, uk = 0); 

iv) In contrast, distortional modes possess non-zero values for Ckk, Dkk, and Bkk, but with a 

non-zero displacement uk (Ckk Í 0, Dkk Í 0, Bkk Í 0, uk Í 0); 

 

It is worth noting a fundamental distinction between torsional and local modes in the 

GBT approach: while torsional modes feature straight cross-section walls and rigid-body 

motions with no transverse curvatures (wk,ss = 0) and zero Bkk = 0, local modes involve 

transverse bending of the cross-section walls, resulting in non-zero transverse curvatures (wk,ss) 

and non-zero Bkk Í 0 values. 

 

 

1.3.3 Rectangular plates with loaded edges simply supported elastic stability 

 

 

1.3.3.1 Analytical and energy method solution ï Bulson 1970 [15] 

 

 

Compressive end loads amplify the lateral deflections when a plate is subjected to edge 

loads only. With a gradual increment in edge loading, a critical point is reached where deflection 

undergoes a significant increase, eventually leading to infinite deflection, indicative of 

instability. This critical point marks the onset of elastic plate instability, defined by the 

minimum compression stress value required to induce this phenomenon, i.e., elastic critical 

buckling stress (ůcr).  

Bulson [15] investigated the elastic stability of rectangular flat plates subjected to 

uniform compression in one direction (ůx), with supported loaded edges, characterized by a 

longitudinal length L and width b. Considering this simplest loading condition, the platesô 

equilibrium equation is well-known and presented in Eq. (29). 

 

 
4 4 4 2

4 2 2 4 2

2 xtw w w w

x x y y D x
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 (29)  
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-
 is the flexural rigidity of the plate. 
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Assuming that the plate buckles into m sinusoidal half-waves in the direction of 

compression (longitudinal). The general solution for displacement w can thus be formulated as 

presented in Eq. (30). Where f(y) describes the leg transverse deflection (displacement) 

functions. 

 

()sin
m x

w f y
L

p
=  (30)  

 

Therefore, the fundamental investigation ï for this work ï carried out by Bulson [15] 

considers plate boundary conditions where one longitudinal edge is simply supported (S). In 

contrast, the opposite edge is entirely free (F), as shown in Figure 12(a). In this case, the author 

demonstrates that the deflected form w1 presented in Eq. (31) can satisfy the specified boundary 

conditions using energy solutions. Consequently, it is possible to obtain the value of the elastic 

critical buckling stress (ůcr) and the plate buckling coefficient (k) delineated in Eq. (32) and Eq. 

(33), respectively. It can be noted that the plate buckling curve k( )ʟ does not exhibit a ñgarlandò 

form, where each ñgarlandò corresponds to a buckling mode characterized by a specific number 

of sinusoidal half-waves in the load direction (m). Notably, the plate buckling coefficient k 

tends towards a constant value as the plate's length and leg width (L/b) increases, denoted as ʟ.  

This structural behaviour implies two essential observations: (i) the minimum value of 

k consistently corresponds to the free edge (F) buckling always into a single half-wave number 

(m = 1) regardless of the plate length; (ii) during buckling, there is no plate transverse bending, 

and the elementôs deflection forms a flat plane (rigid body rotation) as can be seen in the 

deflection transverse function employed f(y) = y/b. Additionally, (iii) for a Poissonôs ratio (ɡ) 

of 0.3, the value of k approaches 0.425 as  ʟtends to infinity ( ), i.e., for very long plates. 
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These findings are better clarified when contrasting a plate with one edge built-in (B) 

and the opposite free (F), as illustrated in Figure 12(c). In this second scenario, the deflected 
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form w2 presented in Eq. (34) is assumed to satisfy the specified boundary conditions. Hence, 

by employing the energy method solution specifically for a singular buckling mode m = 1 (i.e., 

one half-wave in the direction of loading regardless of the plateôs length), the critical elastic 

buckling stress (ůcr) and the plate buckling coefficient (k) are derived, as outlined in Eq. (35) 

and Eq. (36), respectively.  

It is noted that the shape of a ñgarlandò curve becomes apparent, reaching a minimum 

value of k, denoted as kmin, and this behaviour signifies (i) a notable increase in wavelengths (m 

> 1) in the longitudinal direction with increasing plate length. Additionally, (ii) plate transverse 

bending occurs during the buckling, as seen in the deflection transverse function employed f(y) 

= [1-cos(ˊy/2b)]. Finally, taking Poissonôs ratio (ɡ) of 0.3, the minimum value of k is observed 

at 1.424 when ʟ = 1.636. 
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a) b) 

Figure 12: Rectangular plate in end compression with a) longitudinal edge simply supported and other 

free (S-F) and b) longitudinal edge built-in and other free (B-F) [15]. 

 

 

1.3.3.2 Generalized Beam Theory (GBT) approach 

 

 

Similarly, in 2010, Dinis et al. [30] expanded the investigation conducted by Bulson 

[15], presenting the results of an outstand flange stability analysis using Generalized Beam 

Theory (GBT). It is important to highlight the significant distinction between torsional and local 

modes, as described in 1.3.2. Recalling in GBT notation, (i) torsional modes are characterized 

by straight cross-section walls undergoing rigid-body motions. On the other hand, (ii) local 

modes involve transverse bending of the cross-section walls, resulting in non-null transverse 

curvatures. 

Therefore, this study assessed an outstand flange with length L and width b uniformly 

compressed along the simply supported transverse edges (x = 0 and x = L). In contrast, the 

longitudinal edges are load-free, i.e., plates with identical dimensions and loading conditions 

studied by Bulson [15]. However, the authors extended the boundary conditions, with the 

longitudinal supported edge at s = 0 being elastically restrained by a rotational spring with 

stiffness S, and the edge s = b is maintained free. 

The investigation included two GBT deformation mode analyses, as shown in Figure 

13: (i) mode 1, which exhibits a rigid-body rotation of the plate about the elastically restrained 

edge s = 0, and (ii) mode 2, which has a null rotation at the elastically restrained edge s = 0 but 

exhibits transverse bending. The local plate buckling coefficient (kcr) was evaluated as a 

function of the plate aspect ratio (ʟ = L/b), for several values of the dimensionless rotational 

stiffness parameter (Ŭ) ï Eq. (37), as presented in Figure 14. 
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Figure 13: Elastically restrained outstanding flange and two GBT deformation modes included in the 

analysis [30]; 

 

 

Figure 14: Variation of buckling coefficient kcr with the aspect ratio ʟ and Ŭ [30]. 

 

The authors concluded that for Ŭ = 0, i.e., no rotational stiffness, the curve kcr( )ʟ is 

monotonically descendent (no local minimum exists) and tends to kcr = 0.425 ï same conclusion 

obtained in Bulson [15]. The flange buckles in a single half-wave mode regardless of its length 

L (or ʟ ). This means that a simply supported flange with a length larger than four times its width 

kcr 

 ʟ= L/b 
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(L > 4b) always buckles in a single half-wave mode without transverse bending. Mechanically 

speaking, the buckling mode involves pure torsion about the simply supported edge, which is 

designated as global mode 4 (torsion) in GBT. However, in all curves where Ŭ > 0, a local 

minimum is observed in kcr( )ʟ. This pattern signifies that even a slight spring rotational stiffness 

results in flange buckling with multiple half-waves (m > 1). Moreover, with increasing values 

of Ŭ, the corresponding minimum kcr increases as the corresponding  ʟvalues decrease. This 

trend occurs due to the changing contributions of modes 1 and 2: as the contribution of mode 1 

decreases, the contribution of mode 2 increases. Therefore, in accordance with GBT, the 

presence of rotational stiffness along the longitudinal supported edge is imperative for local 

plate buckling. 

 

 

1.3.3.3 Finite element numerical analysis 

 

 

This work employed a shell finite element model in ANSYS 17.0 [29] software to 

illustrate the elastic buckling behaviour of plates under uniform compressive loading, 

considering the two cases examined by Bulson (S-F and B-F), as depicted in Figure 15. The 

numerical model incorporates (i) a 5 mm x 5 mm element size, (ii) an elastic plate material with 

properties E = 210000 MPa and v = 0.3, and (iii) three different geometries defined by 

dimensionless ratios  ʟof 4, 6, and 8 (i.e., L/b). 

The results obtained are presented in Table 2, indicating the dimensionless aspect ratio 

( )ʟ, the elastic critical buckling mode, and the number of half-waves in the longitudinal 

direction (m) for the two specified boundary conditions. The following comments can be made: 

In the scenario designated as S-F, where one longitudinal edge is simply supported, and 

the opposite edge remains free, it was consistently noted that, regardless of the plate length (L), 

a singular half-wave (m = 1) alongside rotation of the transverse section were invariably 

manifested, in alignment with findings reported by Bulson [15] and Dinis et al. [30]. This 

pattern intimates a predominately global torsional buckling mode, distinctly marked by 

torsional phenomena around the simply supported edge. 

In contrast, under the B-F condition ï where one longitudinal edge is rigidly fixed, and 

the opposite edge is free ï a local plate buckling behaviour emerged. With increasing plate 

length, a proliferation of half-waves was observed along the longitudinal axis. Additionally, 

unlike the S-F condition, the B-F condition was associated with transverse section bending, 
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further highlighting the influence of boundary conditions on the buckling behaviour of the 

plates. 

 

 

Figure 15: Finite element model elastic buckling analysis of simply supported (S) or built-in (B) 

longitudinally rectangular plate with other free. 

 

Table 2: Comparison of longitudinal free edge sinusoidal half-wave plate deformation patterns 

between S-F and B-F varying the aspect ratio ʟ. 

  ʟ(L/b) 

 4 6 8 

S-F 
 

 
 

m = 1 m = 1 m = 1 

B-F 
 

 
 

 m = 2 m = 4 m = 5 

 

 

1.3.4 Equal-leg angle columnsô elastic buckling behaviour 

 

 

1.3.4.1 Simply supported steel equal-leg angle columns 

 

 




































































































































































































































