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ABSTRACT

ANDRADE, G.C. An introduction to dynamical camera analysis with
analytical mechanics and surface path motion. 2024. 73 f. Dissertação (Mestrado
em Modelagem Computacional) – Instituto Politéctico, Universidade do Estado do Rio
de Janeiro, Nova Friburgo, 2024.

Structure from motion (SfM) is a computer vision problem that aims to obtain
three-dimensional scenes from a set of images captured from different viewpoints without
prior knowledge of the camera configuration. SfM involves two primary steps: camera
pose estimation and geometric recovery. In the initial phase, algorithms are employed to
determine the position of a camera based on a single image and 3D scene, or using two or
three images where the objective is to utilize one image to determine the positions of the
other two cameras relative to it. The current investigation commenced by implementing a
three-view-based reconstruction within a widely-used structure from motion system and
examining the regions deemed problematic in the dynamical system of the model arising
from fast polynomial homotopy continuation. Due to the high complexity of the model,
locating these regions was deemed impractical at the time. The model itself was cons-
tructed using generic formulations adapted to the problem, necessitating an alternative
approach. The work of Fabbri and Kimia provides foundational concepts of differential
geometry for multiview reconstruction and basic notions on continuous time approaches
for cameras, focusing on the velocity and acceleration of curves. Analyzing the camera
structure, similarities with Lagrangian and Hamiltonian mechanics were identified. This
work extends the concepts of Fabbri and Kimia by incorporating Lagrangian and Ha-
miltonian mechanics and introducing a model of camera path constrained by a surface.
This constraint is utilized not only because it replicates practical applications but also
simplifies both camera estimation and phase space analysis, which is employed to study
the problematic regions and their implications for the formed image. Ultimately, a stre-
amlined procedure for camera pose estimation for one or more cameras is proposed, along
with conclusions and directions for future research.

Keywords: 3D reconstruction; computer vision; dynamical systems theory; analytical
mechanics.



RESUMO

ANDRADE, G.C. Uma introdução à análise de câmera dinâmica com mecânica
analítica e movimento sobre superfícies de caminho. 2024. 73 f. Dissertação
(Mestrado em Modelagem Computacional) – Instituto Politéctico, Universidade do
Estado do Rio de Janeiro, Nova Friburgo, 2024.

Estrutura a partir de movimento (do inglês Structure from motion ou SfM) cons-
titui um problema de visão computacional cujo objetivo é obter cenas tridimensionais a
partir de um conjunto de imagens capturadas de diferentes pontos de vista, sem conheci-
mento prévio da configuração da câmera. O SfM compreende duas etapas fundamentais:
a estimação da pose da câmera e a recuperação geométrica. Na primeira etapa, algo-
ritmos buscam determinar a posição da câmera com base em uma única imagem e cena
3D, ou com duas ou três imagens, onde o objetivo é utilizar uma delas como referência
para encontrar as outras. A pesquisa apresentada iniciou-se com a implementação de um
método de reconstrução baseado em três câmeras, em um sistema de estrutura a partir
de movimento amplamente utilizado, investigando as regiões consideradas problemáticas
no sistema dinâmico do modelo proveniente da homotopia contínua polinomial rápida.
Devido à alta complexidade do modelo, a identificação dessas regiões tornou-se imprati-
cável e, à época, o modelo foi construído utilizando-se um modelo genérico adaptado ao
problema, o que motivou a adoção de uma abordagem diferente. O trabalho de Fabbri e
Kimia oferece noções de geometria diferencial para a reconstrução de múltiplas vistas e
noções básicas em abordagem com câmera contínua, com foco na velocidade e aceleração
de curvas. Ao analisar a estrutura da câmera, observa-se que ela se assemelha àquela uti-
lizada em mecânica Lagrangiana e Hamiltoniana. Este trabalho expande os conceitos de
Fabbri e Kimia, introduzindo mecânica Lagrangiana e Hamiltoniana, além de um modelo
de caminho de câmera sob vínculo de superfície. Este vínculo é utilizado não apenas por
reproduzir um modelo prático, mas também por simplificar tanto a estimação da câmera
quanto a análise do espaço de fase, que é utilizado para estudar as regiões consideradas
problemáticas e o que elas representam em relação à imagem formada. Ao final, propõe-se
um procedimento para estimação de câmera para uma ou mais câmeras, além de serem
apresentadas conclusões e sugestões para trabalhos futuros decorrentes desta pesquisa.

Palavras-chave: reconstrução 3D; visão vomputacional; teoria de sistemas dinâmicos;
mecânica analítica.



LIST OF FIGURES

Figure 1 - An general approach of single view methods. . . . . . . . . . . . . . . . 14
Figure 2 - An general approach of bifocal method. . . . . . . . . . . . . . . . . . . 15
Figure 3 - An trifocal method example. . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4 - Capitol High experimental frames. . . . . . . . . . . . . . . . . . . . . 17
Figure 5 - Absolute Vodka experimental images with no rotation. . . . . . . . . . 17
Figure 6 - Notation for P3P lambdatwist. . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7 - Five-point algorithm schematic illustration. . . . . . . . . . . . . . . . 25
Figure 8 - A representation of the trifocal problem from oriented points codena-

med Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9 - Plane real × imaginary homotopy. . . . . . . . . . . . . . . . . . . . . 30
Figure 10 - The 14 variables homotopy path generated by MiNuS Chicago problem. 31
Figure 11 - An ilustration of 2D image manifold to 2D local space. . . . . . . . . . 39
Figure 12 - An ilustration of 3D scene manifold to 2D image. . . . . . . . . . . . . 40
Figure 13 - A representation of a particle in non-inertial frame. . . . . . . . . . . . 43
Figure 14 - 3D camera distribution from synthcurves . . . . . . . . . . . . . . . . . 47
Figure 15 - Blender 3D barcelona chair sequence with its current view . . . . . . . 48
Figure 16 - Phase space pθ × θ (p0 and q0 respectively) . . . . . . . . . . . . . . . . 53
Figure 17 - A coffee bag example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 18 - Coffee bottle example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF TABLES

Table 1 - Gauss elimination table. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 2 - Polynomial constraint matrix in z. . . . . . . . . . . . . . . . . . . . . 27
Table 3 - Static camera estimation algorithms table. . . . . . . . . . . . . . . . . 56
Table 4 - Dynamic camera estimation algorithms table. . . . . . . . . . . . . . . 56



LIST OF SYMBOLS

Γw 3D point world coordinates[Fabbri and Kimia IJCV2016]
Γr Referential 3D point
Γr

s Referential 3D point geometric derivative in camera space
Γr

t Referential 3D point temporal derivative in camera space
Γ 3D point in camera space
Γs 3D point geometric derivative in camera space
Γt 3D point temporal derivative in camera space
γ Projected 2D point camera space
γs Projected 2D point camera space geometric derivative
γt Projected 2D point camera space temporal derivative
ρ Depth factor
ρs Depth factor geometric derivative
ρt Depth factor temporal derivative
Tr Referential 3D tangent
Tr

s Referential 3D tangent geometric derivative
Tr

t Referential 3D tangent temporal derivative
T 3D tangent in camera space
Ts 3D tangent geometric derivative in camera space
Tt 3D tangent temporal derivative in camera space
t Projected 2D tangent camera space
ts Projected 2D tangent geometric derivative camera space
tt Projected 2D tangent temporal derivative camera space
st Geometric parameter temporal derivative
R Rotation matrix
Rt Rotation matrix temporal derivative
T Translation matrix
Tt Translation matrix temporal derivative
θ Elevation angle
ϕ Azimuth angle
r radius



CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1 PREVIOUS WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1 One-view estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.1 Direct Linear Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.2 Perspective-three-point algorithm . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Bifocal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.1 Five point algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Trifocal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 BASIC CONCEPTS OF TIME-SPACE OPTICAL DYNAMICS 33
2.1 Differential geometry and dynamics . . . . . . . . . . . . . . . . . . 33
2.2 Lagrangian and Hamiltonian mechanics . . . . . . . . . . . . . . . . 35
2.3 Topology of image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Image as Galilean group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 The point vs position problem . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Special case: Uncalibrated camera dynamics . . . . . . . . . . . . . 41
2.6 Translation from physics to SfM . . . . . . . . . . . . . . . . . . . . . 42
3 DYNAMICAL CAMERA MODEL UNDER SURFACE MOTION

PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1 Model inspirations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Modeling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 The Lagrangian of camera positioning . . . . . . . . . . . . . . . . . 48
3.4 Phase space analysis of camera position under spherical surface

constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Possible relationships between image and cameras in energy levels . . . . . 53
3.4.1.1 Absolute single camera estimation problem . . . . . . . . . . . . . . . . . 54
3.4.1.2 Absolute multiple camera estimation problem . . . . . . . . . . . . . . . . 54
3.4.1.3 Relative camera estimation problem . . . . . . . . . . . . . . . . . . . . . 55
3.5 Dynamic camera pose estimation . . . . . . . . . . . . . . . . . . . . 56
3.5.1 Absolute pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Relative pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . 60
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
APPENDIX A – How compute stacked form from five point . . . . . . 66
APPENDIX B – How we compute Γ, γ geometric tangents, velocities
and acceleration with s = s(t) . . . . . . . . . . . . . . . . . . . . . . . . 67
APPENDIX C – Quick overview of Frenet frames . . . . . . . . . . . . 70



APPENDIX D – Lagrangian and Hamiltonian metrics . . . . . . . . . 71
APPENDIX E – Hamiltonian form of axial geometric optics . . . . . . 73



13

INTRODUCTION

Structure from motion (SfM) is a computer vision problem that aims to obtain
three-dimensional scenes from a set of images captured from different viewpoints without
prior knowledge of the camera configuration. SfM involves two essential steps: camera
pose estimation and geometric recovery.

Geometric recovery aims to ascertain 3D points, curves, and surface properties,
such as tangency, curvature, and torsion. Prominent works, including those by Cipolla
e Giblin (1999) and Fabbri e Kimia (2016), develop concepts of differential geometry
for curves and surfaces. Fabbri and Kimia demonstrate how these principles can be
applied as an alternative to standard key-point applications, enabling the extraction of a
complete curve sketch of the object Fabbri e Kimia (2010). This approach contrasts with
traditional point-cloud geometric recovery methods by providing a more comprehensive
representation of the object’s geometry.

Camera estimation, which precedes geometric recovery, endeavors to determine
either the global position (referred to as absolute pose estimation) of a single or multi-
ple cameras within a scene, or the relative positioning of a set of images with respect
to a selected view (referred to as relative pose estimation). These processes are inte-
gral components of widely-utilized software, such as OpenMVG Moulon et al. (2016) and
Colmap Schönberger e Frahm (2016), Schönberger et al. (2016). In these applications,
an incremental (or sequential) pipeline structure is employed. Within this framework,
relative pose estimation is used to establish an initial set of 3D points, and absolute pose
estimation is subsequently applied to compute the positions of the remaining cameras
sequentially, a process also known as resection.

Drawbacks of absolute single view camera estimation

Single camera estimation holds significant relevance for computing the camera
position by correlating a 3D scene with a single image. Various algorithms have been de-
veloped for this purpose. The classic Direct Linear Transformation (DLT) algorithm,
as discussed by Hartley e Zisserman (2004), is one such method. The most widely utilized
algorithm in standard multiview reconstruction software is the three-point algorithm
(P3P)Persson e Nordberg (2018). More recently, the two-point algorithm with tan-
gent (P2Pt) Fabbri, Giblin e Kimia (2020), which incorporates an additional geometric
tangent constraint, has demonstrated notable improvements. However, this algorithm
has only been validated experimentally and has yet to be extensively tested within these
software applications.
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Figure 1 – An general approach of single view methods.

Legend: Schematic representation of single view methods.
Source: Hartley e Zisserman (2004)

The general issues associated with these algorithms are as follows:

• Lack of image depth introduces an additional problem that can generate an ambi-
guity in scale, leading to issues in translation estimation Helou, Shahpaski e Süs-
strunk (2019). Many recent works, such as P3P, attempt to address this issue by
determining the depth before computing the position of the camera.

• Many algorithms express their final equations with rotation representation unk-
nowns that are not statistically optimal. For instance, using quaternions or Cayley
parameters rather than axis-angle representation with a Gaussian error distribution.

Drawbacks of two-view camera estimation

Two-view camera estimation, also referred to as bifocal estimation, constitutes the
principal method for relative pose estimation. While single-view estimation is theoreti-
cally optimal due to its direct approach, practical application is infrequent because of
the insufficient availability of 3D geometric information, thereby necessitating exclusive
reliance on image data.

The fundamental principle involves computing the relative pose of one image with
respect to another. This is typically achieved by solving the equation γ2ρ2 = Rγ1ρ1 + T ,
where R denotes rotation, T represents translation, and γ and ρ correspond to the image
point and depth factor, respectively. An epipolar constraint γ2ρ2Eγ1ρ1 = 0 is imposed,
where E is the essential matrix, defined as E = T×R.
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Figure 2 – An general approach of bifocal method.

Legend: Schematic representation of bifocal methods goal.
Source: The author, 2024.

The basic algorithm is the eight-point algorithm Hartley (1997), but the most
used one is five-point algorithm Nistér (2004) both with similar structure, but the
first one computes the fundamental matrix, which is more general considering unknown
camera matrices and the second considers that they are known.

Approaches to reconstruction utilizing two-view estimation to generate the initial
seed for reconstruction also exist. These methods often employ neural networks Xiao et
al. (2023). However, they necessitate a significant quantity of input images to achieve
precise reconstruction.

The general issues associated with these algorithms are as follows:

• Dependence on the geometric structure of each image: Images with ambiguous struc-
tures, such as rounded curves, can cause the algorithm to fail in reliably determining
the camera position using RANSAC.

• Texture dependency: The number of detectable features by standard feature de-
tection algorithms is reduced for objects with plain textures, leading to unreliable
camera position estimation.

• Reflectivity and transparency: Reflective and transparent surfaces can introduce
ambiguities in feature detection, causing failures in both detection algorithms and
the estimator. These challenges are thoroughly described in ARkit (2018).

• Distant camera images: Two-view camera estimation often fails for images repre-
senting distant viewa due to a reduced number of common features across them.
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Drawbacks of three-view camera estimation

The three-view camera estimation, also referred to as trifocal estimation, is tho-
roughly detailed in chapters 15 and 16 of Hartley e Zisserman (2004). A more practi-
cal implementation of this method is realized through the MInimal problem NUmerical
continuation Solver (MiNuS) which is available at https://github.com/rfabbri/minus.git.

The primary objective of the trifocal method is to augment the previously men-
tioned software by offering an alternative solution in cases where bifocal estimation is
inadequate. Additionally, three views are necessary for curve-based structure from mo-
tion. Although it may seem to simply involve an additional image in the system, the
trifocal method employs a distinct computational approach compared to the previous
relative pose estimators. For instance, MiNuS utilizes different classes of problems to
compute the trifocal tensor in a unique manner.

Figure 3 – An trifocal method example.
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Legend: An ilustration showing what is the final goal of
trifocal implementations.

Source: Fabbri e Kimia (2016)

During the initial year of our research, we conducted experiments with MiNuS’s
standard differential equations and addressed formulation issues. Using the Capitol High
Building test, we presented findings at the XXVI Encontro Nacional de Modelagem Com-
putacional e XIV Encontro de Ciência e Tecnologia dos Materiais Andrade et al. (2023),
indicating that out of 199 correspondences, the least favorable scenario yielded 68.84%
inliers, while the most favorable achieved 79.65% inliers from the triplet of images 4.

Furthermore, the stability of trifocal estimation was demonstrated by establishing
the minimal number of points necessary to compute camera positions using rotation-free

https://github.com/rfabbri/minus.git
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Figure 4 – Capitol High experimental frames.

(a) (b) (c)

Legend: Selected frames for trifocal testing (a)
frame_00001, (b) frame_00030 and
(c)frame_00066.

Source: Fabbri e Kimia (2010)

images from a curated bottle dataset 5.

Figure 5 – Absolute Vodka experimental images with
no rotation.

(a) (b) (c)

Legend: The stability of trifocal was shown by getting
at least the minimum of points to enable the
trifocal model to recover the camera positions.

Source: The author, 2024.

The general issues associated with these algorithms are as follows:

• Testing with the official openMVG demo dataset, Sceaux Castle, revealed that ca-
mera distance remains a significant issue. If at least one of the three images is
sufficiently sparse, the trifocal tensor cannot be computed. This was determined by
testing each possible triplet from the dataset.

• The trifocal method still encounters issues similar to those in two-view camera
estimation concerning transparency, reflectivity, and texture of the material. In-

https://github.com/openMVG/ImageDataset_SceauxCastle.git
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troducing rotation into the bottle dataset resulted in an inability to compute the
camera positions.

• Some features generated by the solver, upon analysis of the correspondences, were
found to be incorrect in the third image correspondence or at least within the
threshold. This was observed in tests with the Capitol High frames 4, where each
inlier considered by the model was analyzed.

Advantages of dynamical camera estimation

Continuous camera approaches, also referred to as dynamical methods, are discus-
sed in works such as Ma et al. (2004), providing valuable yet primarily limited insights
to two-view camera estimation. Fabbri e Kimia (2016) further contribute to this field by
introducing a version of motion in 3D camera space and 2D image projective space, focu-
sing on point velocity and acceleration. This study advances their work by incorporating
a novel approach using Lagrangian and Hamiltonian mechanics.

The application of functionals is prevalent in physics and differential geometry for
computing the least path between two points or determining a curve that minimizes the
geometric derivative of the curvature function, as elucidated in Kimia, Frankel e Popescu
(2003). By employing a similar approach in the temporal domain and utilizing analytical
mechanics, functionals can be effectively applied in continuous time camera estimation, a
method referred to as the dynamical approach.

It is important to address a significant aspect derived from discussions with physi-
cists: when importing ideas from mechanics, certain aspects pertinent to formalism, such
as physical quantities, are considered in our context as parameterization values. These
can be viewed, to some extent, as information-theoretic interpretations of the physical
concepts.

Main contribution

Our main contributions are outlined as follows:

• Expansion of existing theory through the integration of Lagrangian and Hamiltonian
mechanics. This involves a foundational review based on Fabbri e Kimia (2016),
introducing novel concepts such as image topology. It is illustrated that images can
be interpreted as part of the Galileo group at a high level, along with dynamics of
the camera calibration matrix.

• Review of physics literature, particularly in analytical mechanics and physical geo-
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metry, to establish connections between Structure from Motion (SfM) and mecha-
nics. Building upon concepts observed in works by Ma et al. (2004) and Fabbri e
Kimia (2016), the discussion extends to include the Lagrangian formulation of 3D
curve points in camera space and its applicability to projected 2D points. Additio-
nally, Fermat’s principle for optical cameras, as described by Holm (2008a), Holm
(2008b), is introduced as a foundation for future work.

• Development of a practical model incorporating a surface constraint—specifically a
spherical surface—where cameras move freely or under a simulated potential field
constraint. Phase space analysis is conducted, establishing an association between
orbital energy levels and "states of the image."

• Proposal of a practical camera estimation procedure based on this theory. Leve-
raging the camera surface path model, the minimum number of required points is
minimized, employing tangents as an additional constraint for rotational estimation.
The proposal outlines a unified procedure applicable to both absolute and relative
pose estimation.

Dissertation organization

In Chapter 1, the default algorithms used by the community for estimating camera
positioning, such as DLT, P3P for absolute positioning, the five-point algorithm for bifocal
estimation, and the trifocal method using MiNuS as a framework, are presented.

In Chapter 2, fundamental concepts and innovative ideas are introduced. Initi-
ally, Fabbri and Kimia’s theories on point and tangent velocities are presented, which
are subsequently extended to incorporate time-dependent geometric parameters. The
importance of these parameters in camera estimation within conventional frameworks
is discussed. Following this, the principles of Lagrangian and Hamiltonian mechanics
are explored, with a detailed examination of Hamiltonian systems of differential equa-
tions. A distinction is made between geometric and optical considerations, highlighting
the cameras’ fundamental relationship with mechanics and geometry. Additionally, brief
discussions on image topology concepts are provided, followed by an overview analysis of
the dynamics of projection matrices and camera matrices.

In Chapter 3, the model assumptions, sources of inspiration, literature review
connecting physics with Structure from Motion (SfM), historical development overview,
and the model itself are presented. This includes a detailed analysis of phase space and
hypotheses regarding the relationship between energy orbitals and their effects on images.
Finally, the presented theory proposes a procedure for camera pose estimation applicable
to both absolute and relative pose estimation.
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In Chapter 3.5.2, a summary of the study’s achievements is presented alongside
future research directions.
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1 PREVIOUS WORK

In this section, detailed discussions are presented on the algorithms utilized for
camera estimation. The primary objective is to provide a thorough description of these
algorithms as they are employed in the estimation process. A concise review of previous
work is necessary to highlight the advancements achieved in this study.

1.1 One-view estimation

The classical approach used for both camera estimation and error estimation is the
Direct Linear Transform method (DLT), detailed in Hartley e Zisserman (2004). A con-
temporary family of algorithms known as Perspective-n-Points (PnP) is considered state-
of-the-art for estimating single camera positions. Among these, the perspective-three-
point algorithm (P3P) is the current standard, while the more cutting-edge perspective-
two-point algorithm with a tangent (P2Pt) Fabbri, Giblin e Kimia (2020) has garnered
significant attention.

The implementation of the P2Pt algorithm in practical software frameworks such as
OpenMVG was developed as a library by Ariel Nogueira Kovaljski during his undergraduate
final project, under the supervision of Prof. Fabbri. This implementation forms part of a
larger package that includes the trifocal method (implemented by the author under similar
conditions) and the P2Pt resection method. Given that P2Pt, along with trifocal method,
is currently in the final stages of implementation (including testing and preparation for
publication), this discussion will focus on DLT and P3P, which are extensively employed
within the SfM community.

1.1.1 Direct Linear Transform

The Direct Linear Transform (DLT) algorithm is defined as follows:

Definition 1.1.1 Given at least four points Γ and γ′ being both 3D scene space and 2D
image space, compute the projection matrix P that Γ ↔ γ′.

If the camera calibration matrix is known, the camera pose is computed as [R|T ] =
K−1P. Otherwise, both the rotation and translation are derived directly from the QR
decomposition of P. The relationship between the 2D image and 3D representation is ex-
pressed by γ′

i = PΓ′
i, where γ′

i = (xi, yi, zi)⊤ and Γi = (Zi, Yi, Zi, 1)⊤ denote homogenized
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coordinates. The construction of the cross product γ′
i × PΓ′

i leads to equation (1).

Aip =


0 −ziΓ′

i yiΓ′
i

ziΓ′
i 0 −xiΓ′

i

−yiΓ′
i xiΓ′

i 0



P 1

P 2

P 3

 (1)

Given a scale factor zi where xi and yi are independent, construct M using only
the first two rows of Ai from equation (2):

Mip =

 0 −ziΓ′
i yiΓ′

i

ziΓ′
i 0 −xiΓ′

i



P 1

P 2

P 3

 (2)

Next, compute the Singular Value Decomposition (SVD) of the stacked matrix
H = (M1, M2, M3, M4)⊤ to obtain the vector corresponding to the minimum singular
value, which is found in the last column of D from H = SΛD⊤.

DLT typically exhibits the following issues:

• The high computational complexity of DLT primarily arises from the Singular Value
Decomposition (SVD), which can significantly slow down the algorithm’s perfor-
mance. When the calibration matrix is unknown, the process of obtaining rotation
and translation becomes even more complex, often requiring QR decomposition of
the projection matrix. These factors contribute to DLT’s computational demands
and can affect its efficiency in practical applications.

• The geometric ambiguity inherent in images can severely limit the number of dis-
cernible features available for camera estimation. This limitation often results in
either poor performance of the estimation algorithms or, in some cases, the inability
to estimate the camera pose altogether.

• A noisy 3D scene can lead to inaccurate selection of points, causing incorrect cor-
respondences between images and the scene.

• Occluding curves can lead to insufficient features for accurately estimating camera
positions using DLT.

1.1.2 Perspective-three-point algorithm

The current perspective-three-point algorithm, referred to as the Lambda twist Pers-
son e Nordberg (2018), is integrated into openMVG as the conventional resection method.
The problem is formulated as follows:
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Definition 1.1.2 Given a calibrated pinhole camera, three 3D points Γi = (xi, yi, zi)⊤,
and corresponding homogeneous image coordinates yi ∼ (ui, vi, 1) such that |yi| = 1, then:

ρiyi = Rγi + T , i = 1, 2, 3 (3)

where the rotation R ∈ SO(3) and translation T ∈ R3. Depending on the configu-
ration of the points, P3P has up to four solutions.

Figure 6 – Notation for P3P lambdatwist.

Source: Persson e Nordberg (2018)

The initial phase of the method involves establishing invariant constraints by computing
the distance between two points, γi and γj, as defined in (3). Furthermore, given that
|γi| = 1, the values aij and bij are determined for i, j ∈ 12, 13, 23 as shown in (4).


|λiyi − λjyj|2 = |xi − xj|2 = aij ⇒ λ2
i + λ2

j − 2bij = aij

bij = y⊤
i yj

(4)

From (4), five quadratic equations are derived: three inhomogeneous and two homoge-
neous. The inhomogeneous equations are represented in matrix form as (4), while the
homogeneous equations are derived from these (5).


Λ⊤M12Λ = a12, Λ⊤M13Λ = a13, Λ⊤M23Λ = a23

D1 = M12 · a23 − M23 · a12 = (d11, d12, d13),

D2 = M13 · a23 − M23 · a13 = (d21, d22, d23)

Λ⊤DiΛ = 0, i = 1, 2

(5)
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The matrices M12, M13, and M23 are defined as shown in (6).

M12 =


1 −b12 0

−b12 1 0
0 0 0

 , M13 =


1 0 −b13

0 0 0
−b13 0 1

 , M23 =


0 0 0
0 1 −b23

0 −b23 1

 (6)

Next, an additional constraint Λ⊤D0Λ = 0 is constructed, where D0 = D1 + αD2. Fol-
lowing this, det(D0) = 0 is computed to derive the cubic equation with coefficients as
presented in (7).

c =



c3

c2

c1

c0

 =



det(D2)
d⊤

21(d12 × d13) + d⊤
22(d13 × d11) + d⊤

23(d11 × d12)
d⊤

11(d22 × d23) + d⊤
12(d23 × d21) + d⊤

13(d21 × d22)
det(D1)

 (7)

D0 undergoes diagonalization to simplify its form through eigenvalue decomposition, yi-
elding D0 = ESE⊤, where E spans R3 and S = [σ1e1, σ2e2, 0e3] with σ1 > 0 and σ2 ≥ 0.
The zero in the third eigenvalue arises from the condition det(D0) = 0, which necessitates
at least one eigenvalue being zero.

Subsequently, the problem is formulated as p⊤Sp = 0 with p = E⊤Λ. For each
solution s, Λ = (λ1, λ2, λ3)⊤ is computed. Geometric consistency is verified by reparame-
terizing λi in terms of τ and solving the quadratic homogeneous equations, considering
only real positive values as valid solutions. For each feasible solution, Λ⊤

k M23Λk = a23 is
solved, discarding any solutions where λ1k < 0. Finally, R and T are recovered using (8).


R = ((λ1γ1 − λ2γ2) × (λ2γ2 − λ3γ3))((Γ1 − Γ2) × (Γ2 − Γ3))−1

T = λiγi − RΓi

(8)

The challenges associated with this version of P3P, as documented in the paper and during
meetings conducted in early 2020, are as follows:

• Both the paper and one of the authors reported that c3 or c0 can be zero, or com-
putationally close to zero, leading to instability.

• As of the time of the meeting, there was no practical implementation of P3P in
openMVG utilizing the quaternion form detailed in the appendix section.
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1.2 Bifocal geometry

The two-view camera estimation, alternatively known as bifocal geometry or re-
lative pose estimation, aims to compute rotation and translation matrices using infor-
mation from one image relative to another. Traditionally, this is achieved through the
eight-point algorithm, while the contemporary approach utilizes the five-point algorithm
integrated with AContrario RANSAC (ACRANSAC) Moulon, Monasse e Marlet (2012),
Moisan, Moulon e Monasse (2012), renowned for its robust model estimation capabilities.
ACRANSAC enhances the standard methodology by dynamically adjusting the threshold
during the model estimation process. Presented here are the foundational principles of the
five-point algorithm applicable to both standard and ACRANSAC variants of RANSAC.

1.2.1 Five point algorithm

The five-point algorithm represents a fundamental method in Structure from Mo-
tion (SfM) for computing the relative pose between two views. This problem is typically
formulated as follows:

Definition 1.2.1 Given at five points γ and γ′ from two images, compute the essential
matrix E that relates γ ↔ γ′.

Figure 7 – Five-point algorithm schematic
illustration.

Source: Rabozzi et al. (2018)

The algorithm proposed by Nistér (2004) assumes that the cameras are calibrated,
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thereby reducing the epipolar constraint to its simplified form (9).


γ̃⊤Ẽ = 0

γ̃ = (γ1γ
′
1, γ1γ

′
2, γ1γ

′
3, γ2γ

′
1, γ2γ

′
2, γ2γ

′
3, γ3γ

′
1, γ3γ

′
2, γ3γ

′
3)⊤

Ẽ = (e11, e12, e13, e21, e22, e23, e31, e32, e33)⊤

(9)

and the additional constraints (10).


det(E) = 0

EE⊤E − 1
2Tr(EE⊤)E = 0

. (10)

First, the null-space of the matrix representing all five points is obtained by performing
a QR decomposition of a 9 × 9 matrix, as described in equation (11) (see A).

[γ̃1 γ̃2 γ̃3 γ̃4 γ̃5| I4×9]⊤, (11)

Next, extract the four rightmost vectors from the decomposition to populate the 3 × 3
matrices X, Y, Z, and W. These matrices are subsequently utilized within the essential
matrix framework, represented as equation (12).

E = xX + yY + zZ + wW. (12)

Here, x, y, z, and w represent scalars that, when normalized by a common factor, result in
w = 1. The subsequent step involves deriving a system of 10 equations by expanding both
conditions in (10). Partial Gaussian elimination is then applied, following the authors’
recommendation, terminating four rows earlier within the matrix A. Here, . denotes a

Table 1 – Gauss elimination table.
A x3 y3 x2y xy2 x2z x2 y2z y2 xyz xy x y 1
⟨a⟩ 1 . . . . . . . . . [2] [2] [3]
⟨b⟩ 1 . . . . . . . . [2] [2] [3]
⟨c⟩ 1 . . . . . . . [2] [2] [3]
⟨d⟩ 1 . . . . . . [2] [2] [3]
⟨e⟩ 1 [2] [2] [3]
⟨f⟩ 1 [2] [2] [3]
⟨g⟩ 1 [2] [2] [3]
⟨h⟩ 1 [2] [2] [3]
⟨i⟩ 1 [2] [2] [3]
⟨j⟩ 1 [2] [2] [3]

Source: Nistér (2004).

scalar value, and [I] represents a polynomial of degree in the variable z. Additionally, it
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is defined as shown in (13).


⟨k⟩ = ⟨e⟩ − z⟨f⟩

⟨l⟩ = ⟨g⟩ − z⟨h⟩

⟨m⟩ = ⟨i⟩ − z⟨j⟩

(13)

they are arranged into matrix B containing polynomials in z. with (x, y, 1)⊤ being the

Table 2 – Polynomial constraint matrix in z.

B x y 1
⟨k⟩ [3] [3] [4]
⟨l⟩ [3] [3] [4]
⟨m⟩ [3] [3] [4]

Source: Nistér (2004).

nullvector of B, det(B) = 0 which a tenth degree polynomial, thus compute its roots and,
for each real root, find x and y in system represented by matrix B. Finally compute E
and recover R and T that is represented by E = RT× using and SVD E = U±V⊤, then
T = (u13, u23, u33) and R = UDV⊤, with D defined as

D =


0 1 0

−1 0 0
0 0 1

 . (14)

The five-point algorithm typically exhibits the following issues:

• Requires prior information on internal parameters. Without this prerequisite kno-
wledge, the method fails due to insufficient information.

• The computational cost can be significant depending on the model estimation appro-
ach employed. Despite its widespread use by the SfM community and the availability
of methods such as ACRansac that mitigate the cost, the algorithm can reach the
maximum number of iterations without computing the essential matrix, depending
on the views selected.

• Necessitates additional steps post-calibration, such as bundle adjustment and chei-
rality test refinement. While these steps are also utilized in the trifocal method, they
exhibit less sensitivity to errors. Internal tests conducted during the implementation
of the trifocal method from 2020 to 2022 demonstrated that the five-point algorithm
exhibits lower precision compared to the trifocal method. This discrepancy is at-
tributed to the fact that fewer tests were required to confirm that a point was an
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inlier in the trifocal method, potentially introducing noise, even if undetectable to
the human eye, in camera positioning.

1.3 Trifocal geometry

The initial year of the research was dedicated to advancing the implementation
+of MiNuS within openMVG, using the Chicago problem as the standard approach. Mi-
NuS Fabbri et al. (2023) is a C++ framework developed to compute minimal problems,
particularly the trifocal tensor, with the two primary problems being Chicago and Cle-
veland. The Chicago problem was selected as the standard due to its relative simplicity
compared to the Cleveland problem, and it is defined as follows:

Definition 1.3.1 Given three corresponding points x1v, x2v, x3v and two lines l1v, l2v where
in views v = 1, 2, 3, such that lpv meets xpv for p = 1, 2, v = 1, 2, 3, compute relative pose
R2, T2, R3, T3

Figure 8 – A representation of the trifocal problem from oriented points codenamed
Chicago

(a)

ℓ3ℓ1

ℓ5

x1
x3

x2

ℓ2

ℓ4 ℓ2,4

ℓ3,4

x2,2

x3,2

X1

X2

X3

L1

L5

L4

L2

L3 out of plane

out of plane

π3,4

π2,4π1,4

(b)

Legend: (a) The general trifocal approach, (b) A diagram of Chicago problem itself.
Source: Fabbri et al. (2023)

These corresponding points can be obtained through oriented point-feature detec-
tion, edge detection, or moving point trajectories. The fundamental equations utilized for
the trifocal method are the parametric forms of the point and tangent equations (15).


ρpvγpv = Rvρp1γp1 + Tv p = 1, 2

(ρpvtpv + µpvγpv) = Rv(ρp1tp1 + µp1γp1) v = 1, 2, 3
, (15)
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The two vector equations yield a system consisting of 30 equations with 9 depth para-
meters and 12 line parameters. Upon applying constraints, this system is reduced to 14
equations with 14 variables. These variables include four associated with the Cayley ho-
mogenized rotation (16) and three related to the translation parameters for R2, T2, R3,
and T3. Despite this reduction, the number of parameters increases to 56.

R =


wv −zv yv

zv wv −xv

yv xv wv



wv −zv yv

zv wv −xv

yv xv wv


−1

. (16)

In total, there are 27 independent line parameters, 12 dependent line parameters, and
three random variables: v1 and v2 in C5, and v3 in C7. These variables originate from
the linear inhomogeneous chart equations (17).

(r1 1)v1 = 0, (r2 1)v2 = 0, (T2
⊤ T3

⊤ 1)v3 = 0. (17)

Let r1 = (w2, x2, y2, z2) and r2 = (w3, x3, y3, z3) be selected for simplification. It is posited
that incorporating a more nonlinear set of internal constraints for these variables could
improve algorithmic performance by potentially enhancing stability.

These equations are employed in homotopy continuation, an algebraic technique
that, in essence, relates two functions (or systems of functions) through the homotopic
function (18).

H(z, t) = f(z)(1 − t) + g(z)t, z ∈ Cn, t ∈ [0, 1]. (18)

This provides input to Davidenko’s partial differential equation (19) in its matrix form.

Jac(H)z
dz

dt
+ ∂H

∂t
= 0, (19)

that results in the system (20)

dz

dt
= −(Jac(H)z)−1 ∂H

∂t
. (20)

The homotopy function employed in the trifocal model is referred to as the global ho-
motopic function, defined as H(R, s) = f(R, (1 − s)A0 + sA∗). Here, R represents the
variables, A0 denotes the parameters of the initial system which have been precomputed
and hardcoded into the algorithm, and A∗ represents the parameters of the target system.
These parameters are encapsulated in a function α(s) such that f(R, (1 − s)A0 + sA∗) =
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f(R, α(s)) (21).

α(s) = (1 − s)A0 + sA∗, (21)

In order to maintain genericity and path a technique called the gamma trick is used that
consists in converting the homotopy’s path from real to complex space using a random
γ ∈ C (different from the parametric point) and building a function τ(s) ∈ C, s ∈ [0, 1)
that corresponds to it (22).


F (R, α(s)) = F (R, (1 − τ(s))A0 + τ(s)A∗) = (1 − τ(s))F (R, A0) + τ(s)F (R, A∗)

τ(s) = γs
1+(γ−1)s , s ∈ [0, 1)

,

(22)

The τ(s) function follows a circular arc instead of the straight line described by α(s) in
the homotopy function. This approach allows for path variation with each execution of
the algorithm, ensuring that the multiple paths generated by the homotopy function are
smooth and do not intersect each other. It serves as a sub-optimal yet broadly applicable
method to mitigate failure, although it may still lead to a slowdown of the homotopy
continuation solver 9. To obtain the initial system, the monodromy method is employed.

Figure 9 – Plane real × imaginary homotopy.

Legend: Homotopy path with gamma trick,
depending which γ is chosen, has an
increased execution time of MiNuS.

Source: The author, 2024.

This procedure involves selecting one of the 14 variables to be free, with the remaining
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variables expressed as functions of the chosen variable. Consequently, the Chicago pro-
blem transforms into a 20-degree polynomial equation with 312 complex solutions. These
solutions are utilized to seed the variables, which may result in singularities, blow-ups,
or well-conditioned solutions for the continuation exemplified in 10. The initial task in-

Figure 10 – The 14 variables homotopy path generated by MiNuS
Chicago problem.

Legend: This was done as part of Juliana Barcellos, member of
Labvis team, work.

Source: Ventura, Fabbri e Moura Neto (2022).

volved investigating the regions corresponding to singularities that are responsible for
sub-optimal estimation and incorporating "avoidance conditions"into the solver. This in-
vestigation utilized dynamical systems theory to analyze the relationship between the
fixed (or critical) points of the differential system of equations (20) and the singularities,
which could represent the complete presence or absence of the latter. It was anticipated
that this approach might be ineffective, computationally expensive, and time-consuming
due to the following reasons:

• The equations are highly coupled to the extent that not only symbolic computation
libraries such as Sympy, but also software tools like Maple, WxMaxima, and Matlab
were unable to symbolically solve both the differential equation system and its
fixed points. Attempting to obtain the solution for (20) manually was also deemed
unfeasible due to its low practical payoff after careful consideration. Additionally,
the coupling problem poses a significant challenge, as it can lead to rank-deficient
solutions. Such solutions, while algebraically valid, may not correspond to critical
points of the system Prado (1994).



32

• The continuation method and the gamma trick do not inherently represent the
model itself but rather provide a generic approach for performing trifocal camera
estimation. While this approach may be functional, it does not elucidate the limi-
tations and internal structure of the problem, nor does it address the experimental
issues outlined in the introduction.
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2 BASIC CONCEPTS OF TIME-SPACE OPTICAL DYNAMICS

The concept of developing a dynamical camera model emerged while addressing
the complexities associated with trifocal geometry. As detailed in 1.3, the equations in-
volved in the current trifocal model are highly complex, rendering stability analysis of
the differential equation system intractable using both symbolic computation and manual
methods due to significant complexity and variable coupling.In the course of this research,
the exploration of alternative solutions led to an examination of a pertinent study Fabbri
e Kimia (2016). This investigation revealed the potential for formulating a direct mo-
del for camera positioning over time, utilizing principles from dynamical systems theory
and analytical mechanics. This approach represents a viable strategy for addressing the
challenges previously encountered.

The units of measurement used in this work are defined as follows: the geometric
parameter s is measured in pixels when referring to image space and in meters when
referring to 3D scene space. The time parameter t is defined as the runtime of future
algorithms developed based on this work.

2.1 Differential geometry and dynamics

Differential geometry and dynamics underlie the differential geometry approach
introduced by Fabbri e Kimia (2016) (for details regarding the geometry involving cur-
vature and torsion, see C). The 3D projected point equation Γ = [x, y, z]⊤, as specified
in (23), has been adapted in this context from the original notation Γw to Γr. Here,
r represents the reference frame, which may correspond to either the three-dimensional
world coordinates or the three-dimensional parametric representation of the image used
for estimation. This adaptation is intended to enhance clarity in communication with
physicists, although both notations remain functionally equivalent.

Γ(s, t) = R(t)Γr(s, t) + T (t). (23)

Here, s denotes the geometric parameter and t represents the temporal parameter. Addi-
tionally, a point in the image γ = [ξ, η, 1]⊤ is related to Γ by projecting it onto the plane
z = 1 and incorporating the depth factor ρ = z = Γzez, as defined by (24).

Γ(s, t) = ρ(s, t)γ(s, t) = [ρξ, ρη, ρ]⊤. (24)
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The image is derived by applying the inverse distortion correction to the projected plane,
utilizing the calibration matrix K as specified in (25).

γim(s, t) = Kγ(s, t). (25)

The velocities of the 3D and 2D points are derived by differentiating the initial equations
with respect to the temporal parameter t, as specified in the point equation (26).


Γt = RtΓr + RΓr
t + Tt

γt = 1
ρ
(RtΓr + RΓr

t + Tt) − ρt

ρ2 (RΓr + T )
(26)

For camera estimation, when the geometric parameter s is independent of time, it is
sufficient to consider only the tangent. By differentiating the equation (23) with respect
to the geometric parameter s, the 3D tangent vector T is derived as follows:

T(s, t) = ∂Γ
∂s

= ∂

∂s
(RΓw + T ) = R

∂Γr

∂s
= RTr (27)

Further differentiation of T with respect to the arc parameter s yields the expression KN,
where:

KN = RKrNr (28)

The binormal vector B is then given by:

B = T × N = RTr × RKrNr = RKr(Tr × Nr) = RKrBr (29)

Since all Frenet frame components depend solely on the rotation matrix, it is sufficient to
include only the tangent vector as an additional constraint in the camera pose estimation
process.

The 3D and 2D tangent velocities, expressed in terms of the 3D tangent velocities,
are described by equations (30).


Tt = RtTr + RTr

t

tt = 1
ρ
(RtTr + RTr

t ) + 1
ρ2 [ρtRTr − (ρst + ρsρt

ρ
)(RΓr + T ) − ρs(RtΓr + RΓr

t + Tt)].
(30)

The 2D point and tangent velocities are obtained by differentiating γ = Γ
ρ

= 1
ρ
(RΓr + T )

first with respect to time and subsequently with respect to space.

γt = 1
ρ

(RtΓr + RΓr
t + Tt) − ρt

ρ2 (RΓr + T ) (31)
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tt = −ρs

ρ2 (RtΓr + RΓr
t + Tt) + 1

ρ
(RtTr + RTr

t ) − 1
ρ2 (RΓr + T )

(
ρst − ρsρt

ρ

)
− ρt

ρ2 RTr.

An aspect not addressed in their work, but considered in this study for further inves-
tigation, is the fact that the spatial parameter can be a function of time, s = s(t).
Consequently, the time derivatives require modification, as detailed for the points in (32).


Γt + Γsst = RtΓr + R(Γr

t + Γr
sst) + Tt

γt + γsst = 1
ρ
[RtΓr + R(Γr

t + Γr
sst) + Tt − 1

ρ
(RΓr + T )(ρt + ρsst)],

(32)

and for tangent (33)


Γts + Γtt
1
st

− 1
s2

t
Γtstt = Rt(Γr

t
1
st

+ Γr
s) + R(Γr

ts + Γr
tt

1
st

− 1
s2

t
Γr

t stt)

γts + γtt
1
st

− 1
s2

t
γtstt = 1

ρ
[Rt(Γr

t
1
st

+ Γr
s) + R(Γr

ts + Γr
tt

1
st

− 1
s2

t
Γr

t stt)]

+ 1
ρ2 [(ρt + ρs

1
st

)R(Γr
t

1
st

+ Γr
s)

−[(ρs + ρt
1
st

) + 1
ρ
(ρs + ρt

1
st

)(ρt + ρsst)](RΓr + T )

−(ρs + ρt
1
st

)(RtΓr + R(Γr
t + Γr

sst) + Tt)]

. (33)

2.2 Lagrangian and Hamiltonian mechanics

Given that the parameters of camera location are solely time-dependent, the uti-
lization of Lagrangian and Hamiltonian mechanics is warranted. This study adopts a
contemporary approach, in contrast to a classical one, notwithstanding the latter’s im-
portance.

As articulated by Landau e Lifshitz (1976) and further developed in Holm (2008a),
Holm (2008b), the Lagrangian is derived from the principle of least action. This principle
asserts that the action, defined by (34), remains stationary under small variations. Fun-
damentally, this implies that the Lagrangian function delineates a minimal path taken by
the action integral, which can be expressed in terms of either the temporal or geometric
parameter. Given the emphasis on the temporal parameter, the action integral (34) is
defined with respect to t.

S =
∫ t1

t0
L(q, q̇)dt, (34)

Where L denotes the Lagrangian function, and let q and q̇ represent the generalized co-
ordinates and velocities, respectively, where q̇ = dq/dt. According to a modern approach
involving topology Frankel (2011), given a configuration space Mn, the Lagrangian func-
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tion encapsulates not only the dynamics of the configuration space in its local coordinates
(q, q̇), but also serves as both a Finsler metric and a pseudo-Riemannian metric (see D).

When the action integral is assumed to be stationary, it is stated that a variation
δ between the functions defining this action does not affect its path behavior, represented
by δS = 0. Applying the differential δ to both sides of (34) yields (35).

δS =
∫ t1

t0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δqdt = 0. (35)

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (36)

The Hamiltonian function, as defined in (37), serves to analyze the phase space dynamics
of the phenomena under study. In a modern framework Frankel (2011), the Hamiltonian
function is employed within symplectic geometry, which finds applications in fields such
as relativity.

H(q, p) = p · q̇ − L(q, q̇), (37)

Where the generalized momenta p is defined as p = ∂L/∂q̇, obtained through a process
known as the Legendre transform. This transform aims to convert q̇, which depends
on coordinates, into an independent variable (see D). This transformation results in a
2n-dimensional phase space derived from the configuration space Mn. By applying the
Poisson brackets, the Hamiltonian system of first-order differential equations (38) is ob-
tained.

dq1
dt

= ∂H
∂p1

dp1
dt

= − ∂H
∂q1

...
dqn

dt
= ∂H

∂pn

dpn

dt
= − ∂H

∂qn

. (38)

To construct an accurate Lagrangian model for Structure from Motion (SfM) problem
classes, it is essential to determine not only the specific structure under study (e.g.: curve
motion, curve geometric information, camera motion, or any combination thereof) but
also the nature of the parameters involved, namely the geometric parameter s or the
temporal parameter t. Thus, the following hypotheses are proposed.

• The geometric parameter s is conceptually linked to Fermat’s principle and the
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Eikonal equation, as discussed by Holm (2008a). This relationship stems from the
notion of the ray path, which characterizes how a point in a three-dimensional scene
is projected onto the camera sensor. The projection process is influenced by factors
such as the reflectivity of materials and the refractive index of both the medium in
the scene and the camera lens. In the case of non-rigid curves, this hypothesis is
extended to encompass a more general framework that considers the "dynamics"of
the curve parameter s over time, thus framing the problem as an optical-dynamical
issue.

• The time parameter t pertains to the dynamics of the scene or the camera itself.
In this context, the Lagrangian and Hamiltonian formulations are associated with
kinetic and potential energies. An overview by Ma et al. (2004) introduces the con-
cept of rigid body dynamics in camera motion, while Fabbri e Kimia (2016) explores
the concept of curve motion in three-dimensional and two-dimensional spaces. The
hypothesis asserts that, regardless of the specific modeling approach employed, the
system must fundamentally comply with the laws of motion, thereby necessitating
a classical mechanical framework.

Given that this work focuses on examining dynamical camera motion, it is imperative
that the problem adheres to the fundamental laws of motion as previously discussed.
Accordingly, within the framework of classical mechanics, the Lagrangian and Hamiltonian
functions are characterized by their relationships with kinetic and potential energies, as
detailed in (39).


L(q, q̇) = K(q̇) − U(q) = 1
2mq̇2 − U(q)

H(q, p) = K(p) + U(q) = 1
2m

p2 + U(q)
. (39)

By separating camera localization from geometry recovery and employing this Lagrangian
functional, the aim is to achieve more reliable modeling in real-world scenarios. This ap-
proach not only facilitates a deeper understanding of the practical issues in estimation but
also addresses the root causes of these issues. Commonly used algorithms for camera esti-
mation often focus solely on mathematical limitations without considering their practical
implications. For instance, certain positions may be problematic for the camera, raising
questions about the underlying causes and their significance in real-world experiments.

2.3 Topology of image

Prior to the development of this dissertation, during the initial phases of this
research, a discussion was prompted by a master’s course on Differentiable Manifolds. As
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outlined in Frankel (2011), a manifold is a topological space that locally resembles Rn in
accordance with certain structures, which may be topological, differentiable, or algebraic.
The following statement is proposed for consideration:

The image space can be regarded as a differentiable manifold of dimension two,
with the pixel coordinates γim serving as its local coordinates. If the 3D scene manifold
and the image domain are considered as the embedding space of the 2D spatio-temporal
manifold, they can be directly related through a function. While the image is typically flat,
it can exhibit various structures depending on the level of modeling, such as topological
structure, affine structure, or projective structure. Additionally, viewing an image as a
manifold helps in understanding the curved nature of projective space, which represents
the space of un-oriented light rays passing through the camera center. This assertion
is based on the premise that detection algorithms can be mathematically expressed as
local coordinate functions mapping the image manifold M2 into the R2 image space. In
a specific manner, γim functions as a mapping from M into R2. Given a fixed value in
the time parameter, this can be simplified to γim(s, t0) = γim(s).

γim : M2 → R2 (40)
m(s) 7→ γim(m(s)) = (x, y)⊤.

The local derivatives, corresponding to the geometrical Frenet frames t, n, are comprehen-
sively detailed in Fabbri e Kimia (2016).

t = 1
||dγ

ds
||

dγ

ds
, n = t⊥ = 1

||dt
ds

||
t. (41)

Image 11 illustrates this concept.
A similar concept can be applied to 3D space. By assuming that the 3D manifold’s

local coordinates are based on a fixed rigid 3D referential curve, we can simplify the
representation to Γr(s, t0) = Γr(s).

Γr : N 3 → R3 (42)
n(s) 7→ Γr(n(s)) = (X, Y, Z)⊤. (43)

The local derivatives, corresponding to the geometrical Frenet frames T, N, B, are com-
prehensively detailed in Fabbri e Kimia (2016).

Tr = 1
||dΓr

ds
||

dΓr

ds
, N = T⊥ = 1

||dTr

ds
||

dT
ds

r

, Br = Tr × Nr. (44)

To represent the projection in a coordinate-free manner, it is necessary to compute a
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Figure 11 – An ilustration of 2D image manifold to 2D local
space.

Legend: A representation, in this work notation, of the
transition of symbolic system of coordinates to
numeric.

Source: The author, 2024

function from N to M. Let the function f be defined as follows:

f : N 3 → M2 (45)
n(s) 7→ f(n(s)).

It is established that both local coordinates can be related by combining equations (23)
and (25), resulting in γim = K 1

ρ
(RΓr + T ). This leads to the conclusion that f(n(s)) =

γ−1
im ◦ Γr(n(s)). The image 12 illustrates how the 3D scene manifold and the 2D image

manifold are interconnected.
This approach provides a foundation for a deeper understanding of the geometric

parameters of a 2D image curve, as it allows for an abstract and symbolic relationship
between the image and the world. This is particularly useful when dealing with numerous
coordinate transformations, which, when performed continuously, may exhibit complex
behavior independent of the geometric problem itself.

2.3.1 Image as Galilean group

The proposed approach considers the image as part of the Galilean group. In
relativistic mechanics, the Galilean group encompasses all Galilean transformations. Es-
sentially, a Galilean transformation refers to a change in the reference frames over time.

The underlying concept is that each image corresponds to a distinct 2D projec-
tive space frame, which is linked to its specific camera position. This relationship can
be framed within the Galilean group Gal(3) under specific conditions. Although a com-
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Figure 12 – An ilustration of 3D scene manifold to 2D image.

Legend: An Ilustrative representation of how 2D image topology and 3D
scene space are related.

Source: The author, 2024

prehensive proof demonstrating that images belong to the Galilean group Gal(3) involves
detailed verification of group properties, this discussion outlines the manner in which
such a relationship can be conceptualized. By definition, the Galileo group Gal(3), as
described in Nadjafikhah e Forough (2007), is defined in matrix form (46)

G · r =


R v T
0 1 s

0 0 1



x
t

1

 =


Rx + vt + T

t + s

1

 , (46)

where R denotes the 3D rotation matrix, T represents the translation vector, v is the
relative motion velocity of the frame in R3, and s ∈ R signifies the time difference between
frames. If the relative motion velocity v = 0, the perspective projection formula (23) can
be derived as follows. By selecting the first coordinate vector of the Galilean group Gal(3)
(defined as π1(G · r)) and assuming x = Γr, the image coordinates are computed as:

G · r =


R 0 T
0 1 s

0 0 1



Γr

t

1

 =


Rx + T

t + s

1

 → γim = Kπ1(G · r). (47)
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2.4 The point vs position problem

Given two images of an object that initially appear similar, how can one ascertain
that both images represent the same object, with one being a rotated version of the other?
There are two primary approaches to address this question:

• One approach involves mentally reconstructing the object and manually rotating
and translating it to match the projections seen in the images. The main challenge
with this method is that it may result in the loss of crucial information necessary
to determine if the images depict the same object, such as hidden curves or features
that are not visible from certain angles.

• Another approach involves searching for correspondences between points and edges
in the two images, and then inferring whether the images represent the same object.
This method does not require prior knowledge of the exact rotation and translation
but instead relies on identifying matching features to deduce the transformations
between the images.

At a broad level, points and curves are often considered fundamental to object re-
construction. However, in practice, these perspectives address different aspects of Struc-
ture from Motion (SfM). The multiview triangulation problem underscores that both vi-
ewpoints are applicable, depending on the specific objectives and challenges within SfM.
The distinction is as follows:

For multiview triangulation, where camera positions are known, points and curves
are crucial for verifying that two images represent the same object from different view-
points. In contrast, for camera position estimation, the primary focus is on the rotations
and translations. In this case, the points and curves projected onto the image are a result
of the camera’s position and orientation.

2.5 Special case: Uncalibrated camera dynamics

The dynamics considered in this study are predominantly based on the assumption
of a constant calibration matrix, whether utilizing a single device or, when switching
devices, by knowing the internal parameters of each. The impact of an uncalibrated
camera on the dynamical approach has not been thoroughly explored at a fundamental
level. This opens avenues for future research, particularly regarding the dynamics of the
calibration matrix with practical applications, such as zooming effects. The core assertion
of this research is that the camera calibration matrix can exhibit its own dynamics.

The principle is analogous to the human eye, where the lens can adjust its shape
over time due to its muscular structure. For cameras with unknown internal parame-
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ters, the projection matrix P = K[R|T] translates 3D points into 2D image projections.
Standard estimation algorithms generally assume P is fixed. In the proposed model, P is
considered a function of time, P = P(t), to account for changes due to the motion of the
physical device, while assuming internal parameters remain constant. If K is also time-
dependent, K = K(t), the projection matrix’s velocity can be described by equation (48).

dP

dt
= dK

dt
[R|T] + K d

dt
([R|T]) (48)

If the parameters of K are known, its differential is zero, reverting to the conventional
scenario where internal parameters are fixed. In the absence of camera movement, the
dynamics of the internal parameters can be examined by analyzing dK/dt, as described
in equation (49).

dK
dt

=


ḟx β̇ ċx

0 ḟy ċy

0 0 0

 (49)

The foundational equations proposed for initial investigation involve the focal length
parameters ḟx, ḟy, and β̇ as detailed in (50).


ḟx = ḟ 1
px

ḟy = ḟ 1
py

β̇ = ḟx tan(α)

(50)

A thorough investigation into this matter is deferred to future research due to the substan-
tial mathematical and physical complexity involved, which has yet to be fully addressed.
Currently, a literature review is being conducted, and recent advancements in this area
have been reported in Cin et al. (2024).

2.6 Translation from physics to SfM

One of the primary challenges in this work is translating the concepts of analytical
mechanics into the Structure from Motion (SfM) framework. Given that camera motion
and image positioning are interpreted as a dynamical system exhibiting characteristics
akin to physical problems, the objective is to develop a model that effectively integrates
these mechanical principles into the SfM context.

The initial approach involves a comprehensive review of the literature to identify



43

the most appropriate physical model for camera estimation. The foundational reference
was Landau e Lifshitz (1976), a classical source for the preliminary model. Upon re-
viewing Holm (2008a), it was noted that the first chapter covers optical phenomena,
providing valuable insights into how the geometric parameter of a curve can be linked to
the optical properties of image formation, including Fermat’s Principle and the Eikonal
equation. Additionally, sources such as Holm (2008b), Ma et al. (2004) clarify that the
camera estimation problem aligns closely with the rigid body problem, which is the main
concern of this work.

The analysis of works such as Lemos (2018), Landau e Lifshitz (1976) on rigid body
problems has revealed two distinct categories: the camera body motion problem and the
curve motion problem. In the context of camera motion, two aspects are considered: the
motion of the camera body in the inertial frame (from the scene’s perspective) and the
motion in the body frame (the camera’s own space), which involves the rotation of the
camera. Further expansion includes the rotation motion of the inertial frame, a topic
reserved for future exploration.

On the side of curve motion, the problem is primarily one of coordinate trans-
formation, specifically transforming the curve motion from inertial frame coordinates to
camera frame coordinates. This transformation is analogous to canonical transformati-
ons in physics, as represented by figure 13. In this notation, the 3D point within the

Figure 13 – A representation of a particle in non-inertial frame.

Legend: A representation of particle in non-inertial frame. Σ is
the inertial frame and Σ′ is the non-inertial frame.

Source: The author, 2024.

camera space is represented by the particle with "dimensionless"mass. As stated in , this
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mass serves as a parameterization value, utilized as an information-theoretic analogue to
physical concepts. The vector r0 designates the position of the center of the camera in
non-inertial frame coordinates, rnon indicates the position of the particle in non-inertial
frame coordinates, and rin represents the position of the particle in the inertial frame.

rnon = R(rin − r0), (51)

with R representing the rotation matrix corresponding to the vectorial basis of the non-
inertial system of coordinates Σ′. To compute the velocity of the particle, we take the
time derivative of the position vector given in (51). This will yield the velocity vector in
terms of the time rates of change of the respective components.

vnon = R(vin − v0) + Rt(rin − r0), (52)

with vin denoting the velocity of the particle in the inertial frame coordinates, and vnon

represent the velocity of the particle in the non-inertial frame coordinates. The term
ω × (rin − r0), where ω is the angular velocity of the frame, represents the rotational
velocity of the non-inertial frame. Converting the notation from figure 13 to align with
the notation used in this work, based on Fabbri e Kimia (2016), the center of the camera
space r0 corresponds to c, which is defined as c = −R⊤T . The 3D point in camera
coordinates is denoted as rnon = Γ, while the 3D point in scene coordinates is denoted as
rin = Γr. Thus, equation (51) is rewritten as follows:

rnon = R(rin − r0) = Rrin − Rr0 = RΓr − Rc = RΓr + T = Γ. (53)

Converting (52) to its 3D curve point version

vnon = R(vin − v0) + Rt(rin − r0) = Rvin − Rv0 + Rtrin − Rtr0

= RΓr
t − Rct + RtΓr − Rtc = RΓr

t + RtΓr − (Rct + Rtc)
= RΓr

t + RtΓr + Tt = Γt

(54)

The corresponding Lagrangian, which characterizes the motion of a 3D curve within
the camera space, is derived from the Lagrangian of non-inertial motion as described
by Landau e Lifshitz (1976). The mechanical formulation is delineated below:

L = m

2 v2
in + mvin · (ω × rin) + m

2 (ω × rin)2 − ma0r − U, a0 = dv0

dt
(55)

Finally, the Lagrangian for the motion of a 3D camera curve is derived using equation (55),
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resulting in the following expression:

L = m

2 (RΓr)2 + RΓr · (ΩRΓr) + m

2 (ΩRΓr)2 − TttRΓr − U (56)

In this formulation, U represents the potential energy applied to the system, potentially
incorporating additional constraints. The 2D projected version can be derived by calcula-
ting γt and adapting our previous equations accordingly. This marks the initial attempt
to apply Lagrangian mechanics to the motion of curves, with potential applications in
visual odometry.

This research also establishes a relationship between the geometric parameter s of
3D and 2D curves and optical phenomena at a physical level, proposing further investi-
gation to enhance the theory of multiview differential geometry. Fermat’s principle, as
introduced in Holm (2008a) and presented in (57), describes the action of a stationary
ray path r(s).

S =
∫ B

A
η(r(s))ds =

∫ B

A
η(r(s))ds =

∫ B

A
L(r, rs)ds, L(r, rs) = η(r(s))√rs · rs (57)

The axial geometric interpretation of Fermat’s principle posits that the light path within
optical systems aligns with the line of sight, which is coextensive with the z-axis of the
camera. Consequently, this alignment also corresponds with the image plane projection.
The differential element ds is thereby substituted with dz, yielding the formulation pre-
sented in (58).

S =
∫ B

A
L(x, xz, y, yz, z)dz, L(x, xz, y, yz, z) = η(x, y, z)

√
x2

z + y2
z + 1. (58)

Assuming an q = (x, y), (58) product is rewritten as

S =
∫ B

A
L(q, qz)dz, L(q, qz) = η(q, z)

√
|qz|2 + 1 (59)

This assumption leads to the Hamiltonian form, as detailed in E, expressed as follows:

H(q, p) = −
√

η(q, z)2 − |p|2 (60)

Here, η represents the refractive index, q denotes the position coordinates, and p denotes
the conjugate momentum coordinates in the optical system’s phase space.
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3 DYNAMICAL CAMERA MODEL UNDER SURFACE MOTION PATH

The static camera estimation algorithms previously discussed frequently incorpo-
rate various mathematical techniques to mitigate issues that may arise. These issues
include incorrect polynomial root solutions, matrix rank deficiencies (e.g., the p3p algo-
rithm cannot accurately determine the camera position if the matrices are rank-deficient,
or if they are mathematically singular with a determinant of zero, or computationally
ill-conditioned, which is characterized by a high condition number—a measure related
to the normalized determinant). Additionally, problems may occur in Gaussian elimina-
tion, QR decomposition, and Singular Value Decomposition (SVD) computations. Neural
network-based approaches, such as those proposed in Xiao et al. (2023), necessitate a subs-
tantial amount of input data and are sensitive to noise. While these methods primarily
address overall reconstruction challenges from a geometric perspective, they often lack a
comprehensive explanation specifically tailored to camera estimation problems.

The key distinction of this research, in contrast to previous methodologies, is the
application of principles from physics. The adoption of a continuous-time camera model
facilitates the use of an extensive range of source materials for both modeling and analysis.
This approach enables the integration of tools and techniques from analytical mechanics,
as detailed in 2. Furthermore, phase space analysis was performed using software develo-
ped in 2019, known as Hsystem Analysis Andrade et al. (2019). The forthcoming public
release of openHSA (open Hamiltonian System Analysis) is currently pending, due to
ongoing code review and comprehensive testing by collaborators involved in the project.

3.1 Model inspirations

The surface path camera motion model is based on the experimental synthcur-
ves dataset, which is accessible at https://github.com/labv1z/synthcurves-multiview-3d-
dataset Computer. . . (2012), Fabbri, Giblin e Kimia (2012), Fabbri e Kimia (2016). In
this dataset, cameras are positioned on a spherical surface with the object of interest
centrally located, as depicted in image 14.

3.2 Modeling assumptions

The fundamental assumptions underlying this work are outlined to establish a
practical framework:

• Known and Consistent Camera Internal Parameters: The camera’s internal

https://github.com/labv1z/synthcurves-multiview-3d-dataset
https://github.com/labv1z/synthcurves-multiview-3d-dataset
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Figure 14 – 3D camera distribution from synthcurves

Legend: The orange ones are the cameras and the blue
structure in the center is the 3D scene object

Source: Computer. . . (2012), Fabbri, Giblin e Kimia
(2012), Fabbri e Kimia (2016).

parameters are assumed to be known and consistent across all images in the dataset.
This assumption facilitates future practical applications by enabling the use of less
common features in multiview camera relative pose estimation.

• Implicit Surface or Curve Path Distribution of Cameras: It is posited that
the cameras are arranged along an implicit surface or curve path. The surface ca-
mera path is considered the global model, encompassing all potential curve paths
that a camera may follow. The curve path, a specific instance of this model, as-
sumes that cameras are arranged along a closed or semi-closed path, as illustrated
in 15. This approach effectively reduces the model’s degrees of freedom from six
(comprising three rotational and three translational components) to at most four
(one rotational and up to three translational components).

• Using 3D stationary curves: The study employs 3D stationary curves (Γr
t = 0),

simplifying both 3D and 2D projected curve motion to be solely dependent on
camera movement. This is significant in the initial investigation as it suggests that
image projection is a consequence of camera motion. Practical experiments, such
as the "dark chamber,"which represents the primitive pinhole camera model, can be
conducted to validate this hypothesis.
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Figure 15 – Blender 3D barcelona chair sequence with its current
view

Legend: Example of camera curve path of the experimental
dataset represented by the blue line on the left panel of
Blender.

Source: Usumezbas, Fabbri e Kimia (2016), Computer. . . (2016)
and screenshot by the author, 2024.

3.3 The Lagrangian of camera positioning

Despite demonstrating that the complete model can be classified as a rigid body
problem, it is important to outline the progression of the modeling process over time
to highlight its refinement. Initially, the hypothesis was to model the camera as a free
particle traversing a spherical surface. This assumption of a surface camera path implies
that the camera’s field of view is consistently directed towards the scene, thereby allowing
the rotational aspect of the model to be disregarded.

This simplified representation, employed to study the phenomenon under investiga-
tion, provided a clearer understanding of the overall absolute camera movement. However,
it was hypothesized that the dynamics might differ when considering the relative pose es-
timation problem. The initial hypothesis suggests that by overlapping images, a temporal
trajectory of a point could be formed. Additionally, applying the same logic in camera
space could generate the action described in equation (61).

S =
∫ b

a
|dΓ|. (61)

To analyze the motion of the curve over time, the total time derivative was computed
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using the chain rule, resulting in the following expression:

S =
∫ t

0

∣∣∣∣∣dΓ
dt

∣∣∣∣∣dt, (62)

The conclusion that the Lagrangian is L = |dΓ/dt| addresses the motion of a point and,
by extension, a curve over time. However, this approach does not capture the motion of
the camera itself. The camera, as a physical object in motion, must adhere to
the laws of motion. Instead of using Γ directly as the Lagrangian functional,
it should be considered within the context of the camera’s movement.

To describe the camera motion accurately, the Lagrangian should be formulated to
reflect the dynamics of the camera as a physical entity. Applying the mechanical form of
the Lagrangian equation with (Γ, Γt) as the generalized coordinates and velocities results
in:

L(Γ, Γt) = K(Γt) − U(Γ) (63)

Considering that Γ incorporates both rotational and translational components, the La-
grangian can be expressed as L = Lrot + Ltra. This decomposition is based on the
assumption that the point in the reference frame Γr does not influence the camera mo-
tion, thereby allowing the Lagrangian to be formulated as the sum of its rotational and
translational components, as described in equation (64).

L = Lrot + Ltra = (Krot(Γt) − Urot(Γ)) + (Ktra(Γt) − Utra(Γ)) (64)

The initial model, which constitutes the main focus of this initial expliration, characteri-
zes a free particle within spherical coordinates, under the assumption that the camera’s
rotational component does not influence the phase space analysis and that the transla-
tional potential Utra(Γ) is zero. Accordingly, the Lagrangian for this model is given by
equation (65).

L(Tt) = m

2 T 2
t (65)

A more generalized formulation accounts for free rotation about all three axes of the ca-
mera, indicating that the camera’s orientation is no longer constrained to focus on the
scene. Consequently, the Lagrangian function becomes more complex, as represented
in equation (66). This expanded model includes both rotational and translational com-
ponents, thereby extending the analysis to encompass both rotational and translational
phase spaces.

L = 1
2ωIω + m

2 T 2
t (66)
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In this formulation, both the mass m and the moment of inertia tensor I are parameters
representing information-theoretic interpretations of their respective physical concepts.

3.4 Phase space analysis of camera position under spherical surface
constraint

An advancement of this approach, compared to previous methodologies, lies not
only in the continuous-time formulation of camera movement but also in the introduction
of phase space analysis. This analytical tool provides a comprehensive framework for
examining the dynamics of camera systems across various camera path surfaces. The
absence of rotational influence in the phase space analysis is due to the use of surface path
camera motion with a focus on the scene. This approach results in a model where only the
z-axis of the camera remains unconstrained, while the other axes are fixed and dependent
on the z-axis rotation. Consequently, the rotational component can be excluded from
the phase space analysis, leaving only the translational component to contribute to the
analysis.

The proposed hypothesis suggests that the energy level orbits derived from the
physical model can be translated not only in terms of spatial positioning but also in their
influence on the captured image. To establish this, the translation matrix in spherical
coordinates is presented, as specified in equation (67).

T (t) = r ·


sin θ cos ϕ

sin θ sin ϕ

cos θ

 . (67)

In this framework, the angles θ and ϕ are treated as time-dependent functions, while r

denotes a fixed radius. Previous works, such as those by Landau e Lifshitz (1976) and
Lemos (2018), have provided formulations for the Lagrangian and Hamiltonian functions
in spherical coordinates using time-dependent radius function. However, analysis indi-
cates that these formulations are not directly applicable to the practical model under
consideration, as the critical radial momentum is zero, meaning only the angular compo-
nents θ and ϕ vary over time. The choice of rotation representation is flexible; however,
the model assumes the camera’s rotational axes are defined by the unit vectors corres-
ponding to the spherical coordinate system (θ̂, ϕ̂, r̂). Given that the model allows free
rotation around the z-axis, careful consideration is necessary in selecting the appropriate
vectors (θ̂, ϕ̂, r̂), since a point can lie on multiple intersecting paths. The rotational matrix
R(t) = span(ϕ̂, θ̂, −r̂) is delineated in (68), with a practical approach for implementation
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proposed in 3.5.

R(t) =


− sin ϕ cos θ cos ϕ − sin θ cos ϕ

cos ϕ cos θ sin ϕ − sin θ sin ϕ

0 − sin θ − cos θ

 , (68)

Since the camera’s rotational component does not influence the phase space analysis and
the camera motion is considered to be under free motion, the computation proceeds from
equation (65). The first step involves computing the time differential of Tt, yielding the
following result:

Tt(t) = r ·


cos θ cos ϕθt − sin θ sin ϕϕt

cos θ sin ϕθt + sin θ cos ϕϕt

− sin θθt

 . (69)

Next, the inner product T 2
t = ⟨Tt, Tt⟩ is computed, resulting in the expression:

T 2
t = r2[(cos θ cos ϕθt − sin θ sin ϕϕt)2 + (cos θ sin ϕθt + sin θ cos ϕϕt)2 + (− sin θθt)2]

= r2[(cos θ cos ϕθt)2 − 2 cos θ cos ϕθt sin θ sin ϕϕt + (sin θ sin ϕϕt)2 + (cos θ sin ϕθt)2+
2 cos θ sin ϕθt sin θ cos ϕϕt + (sin θ cos ϕϕt)2 + (− sin θθt)2]
= r2[(cos θ cos ϕθt)2 + (sin θ sin ϕϕt)2 + (cos θ sin ϕθt)2 + (sin θ cos ϕϕt)2 + (− sin θθt)2]
= r2{[(sin2 ϕ + cos2 ϕ) cos2 θ + sin2 θ]θ2

t + (sin ϕ2 + cos2 ϕ) sin θ2ϕ2
t }

= r2(θ2
t + sin2 θϕ2

t ).
(70)

By substituting the computed T 2
t into equation (65) and assuming the parametric mass

m = 1, the Lagrangian function is obtained as:

L(θ, θt, ϕt) = r2

2 (θ2
t + sin2 θϕ2

t ). (71)

Applying the Euler-Lagrange equation yields a system of second-order differential equa-
tions.

∂L
∂θ

− d
dt

(
∂L
∂θt

)
= 0 → r2(−θtt + sin θ cos θϕ2

t ) = 0

d
dt

(
∂L
∂ϕt

)
= 0 → ∂L

∂ϕt
= r2 sin2 θϕt = c0 → ϕt = c0

r2 sin2 θ

. (72)

This indicates that the momentum is conserved in the ϕ direction (pϕ = c0), which
reduces the system to a single degree of freedom. To conduct the phase space analysis,
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the Hamiltonian, derived from the corresponding Lagrangian, must be calculated, followed
by solving Hamilton’s equations. Initially, θt is expressed in terms of pθ.

pθ = r2θt → θt = 1
r2 pθ. (73)

Compute the Legendre transform H(q, p) = ⟨p, qt⟩ − L(q, qt) with p = pθ and q = θ, as
given in equation (74).

H(θ, pθ) = 1
2r2 (p2

θ − csc2 θc2
0). (74)

Next, construct the Hamilton’s system of equations
dθ
dt

= 1
r2 pθ

dpθ

dt
= c2

0
r2 csc2 θ cot θ

. (75)

The critical points are obtained by solving the simultaneous equations dθ/dt = 0 and
dpθ/dt = 0. This yields the following results:


dθ
dt

= 1
r2 pθ = 0 → pθ = 0

dpθ

dt
= c2

0
r2 csc2 θ cot θ = c2

0
r2 csc3 θ cos θ = 0 → θ = ±π

2

. (76)

The critical points P1,2 = (±π/2, 0) indicate that the camera experiences no move-
ment at the north and south poles of the sphere, while maintaining the freedom to
move in any azimuthal direction. The corresponding energies at these critical points
are Enorth = Esouth = −c2

0/2r2. The Jacobian matrix is then computed by performing a
Taylor expansion of (75) to the first derivative, resulting in (77).

J =

 0 1
r2

csc2 θ(csc2 θ + 2 cot2 θ) c2
0

r2 0

 . (77)

Both critical points have same Jacobian matrix (78)

J =

 0 1
r2

c2
0

r2 0

 . (78)

Next, compute the eigenvalues of the Jacobian matrix, which are used to analyze the local
behavior near the poles.

det(J − λId) =

∣∣∣∣∣∣∣
−λ 1

r2

c2
0

r2 −λ

∣∣∣∣∣∣∣ = λ2 − c2
0

r4 = 0 → λ1,2 = ±c0

r2 , (79)
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The critical points are characterized as hyperbolic saddle points, signifying their inherent
instability. As a result, even minor perturbations in energy will lead the system away from
these points without returning. This instability poses challenges for the estimation pro-
cess, potentially hindering its efficiency or, in extreme cases, compromising its feasibility,
as detailed in subsequent sections. Figure 16 depicts the phase space pθ × θ.

Figure 16 – Phase space pθ × θ (p0 and q0 respectively)

Source: From author software openHSA, 2024.

3.4.1 Possible relationships between image and cameras in energy levels

With the physical framework for the camera problem established, we propose a
relationship between energy levels, as represented by phase space orbits, and image sta-
tes. This relationship addresses both absolute and relative pose estimation problems.
Specifically, for a given orbit, various states of the image correspond to positions on a
circumference where θ = θ0 and ϕ ∈ [0, 2π]. Given that the rotational component has
been removed from the phase space analysis, it is sufficient to state that in the context
of a rotation-free scenario across different cameras under a spherical motion model, the
cameras maintain fixed angles θ0 and ϕ0 while varying their radial distance. This is equi-
valent to asserting that the camera is either approaching or receding from the scene while
maintaining the same angular orientation.

While certain challenges are directly associated with physical problems, the image
projection resulting from the camera position and the geometric properties of the 3D scene
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can introduce additional complexities. The following subsections present hypotheses on
the relationship between the phase space, represented by the set of camera positions
that may lead to a specific energy orbital, and the geometric information of the image
projection.

3.4.1.1 Absolute single camera estimation problem

The image formed by a camera at a critical point position is characterized by dege-
neration. Degeneration occurs when the majority of curves are occluded in the resultant
image, rendering the image unable to provide sufficient information for the error function
in practical algorithms. This phenomenon is exemplified in image 17, illustrating the
hypothesis.

Figure 17 – A coffee bag example.

(a) (b) (c)

Legend: The top and bottom of coffee bag occludes partially
or completely the curves represented in the front of
it.(a) Front side, (b) Bottom side and (c) Top side.

Source: The author, 2024.

3.4.1.2 Absolute multiple camera estimation problem

Images of a geometrically ambiguous 3D scene can cause practical algorithms to
inaccurately determine the camera’s position on the same energy level orbit. This issue
is particularly pertinent in incremental pipeline applications, such as those implemented
in software like openMVG. After constructing the initial reconstruction, these systems
typically use single camera pose estimation to identify the remaining images. If a geo-
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metrically ambiguous image corresponds to a camera located on the same energy orbital
but at a different position, practical algorithms might incorrectly interpret this image
as originating from the same position as the initial camera determined by the resection
method. This hypothesis is illustrated in image 18.

Figure 18 – Coffee bottle example.

(a) (b)

Legend: Geometrically speaking, two images with ambiguity,
the same energy level can make the dynamical
camera will find one camera and will understand
the other ones as the first found.

Source: The author, 2024

3.4.1.3 Relative camera estimation problem

In camera relative pose estimation, two main hypotheses may arise in practical
applications with a dynamic camera approach:

• Geometric ambiguity in one or more images can be interpreted as the camera either
following a closed path, oscillating between positions, or remaining stationary. Such
ambiguities may occur if matching algorithms are unable to accurately distinguish
between repeated observations of the same point, which can result in incorrect
camera estimations.

• In practical applications using a dynamic approach, image projections from cameras
positioned at critical points can be understood as being rotated by 90◦ relative to
each other. This can be derived from the parametric form of the projection equation
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ργ = Rρrγr + T . If ρr is arbitrary and both R and T correspond to critical point
regions, then the condition ⟨ργ, ρrγr⟩ = 0 holds, indicating that the projections are
orthogonal.

3.5 Dynamic camera pose estimation

The static camera position estimation algorithms discussed in 1 are based exclusi-
vely on the projective geometry properties of the image using algebraic formulations, with
the assumption that the calibration matrix is known. Consequently, the formulations that
account for the case where the camera is not calibrated are not considered at this stage.
The table below summarizes the number of points required by each algorithm outlined
in 1.

Table 3 – Static camera estimation algorithms table.

Type Algorithm Required
Single Camera DLT At least 4 points across 3D scene and image

P3P Exactly 3 points across 3D scene and image
Bifocal Five-point algorithm Exactly 5 points across two images
Trifocal Chicago Problem 3 points and 2 lines across three images

Source: The author, 2024.

The dynamical approach posits that image projections are determined by the ca-
mera’s position at a specific instant in time. For single-camera position estimation, it
is proposed that using two 3D oriented points and two oriented image correspondences
is sufficient to determine the camera location. This approach is inspired by the P2Pt
method Fabbri, Giblin e Kimia (2020), which employs tangents as additional constraints
to deal with multiple rotation representations. For bifocal and trifocal scenarios, the hy-
pothesis suggests that three oriented points, similar to those used in trifocal cases, could
be effective, though it needs to be validated for bifocal configurations. This is summarized
in the table below: Given that images may exhibit local or global geometric ambiguity,

Table 4 – Dynamic camera estimation algorithms table.
Type Required

Single Camera At least two 3D points and tangents (Γ,T) and two set of image points and tangent (γ,t) correspondences
Bifocal At least three points and tangents (γ,t) across two images
Trifocal At least three points and tangents (γ,t) across three images

Source: The author,2024.

it is proposed that utilizing multiple correspondences can mitigate these issues. Moreo-
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ver, employing additional correspondences enhances the robustness of practical estimation
solvers. Given the potential for multiple rotation representations and the surface camera
motion path, it is possible to constrain the camera rotation such that only the camera
z-axis is known. This constraint permits the use of Rodrigues’ rotation formula as the
rotation representation, leading to the following result:

R = Id + sin(ν)A|p + (1 − cos(ν))A2|p (80)

Where p = (θ0, ϕ0)⊤ and A is the skew-matrix form of the camera z-axis that is
described in (81)

A =


0 cos θ − sin θ sin ϕ

− cos θ 0 sin θ cos ϕ

sin θ sin ϕ − sin θ cos ϕ 0

 . (81)

To compute the translational motion in a surface path camera model, it is necessary to
derive the Lagrangian system of second-order differential equations. This process yields
the following:

θtt − 2 sin θ cos θϕ2
t = 0 → θtt − sin 2θϕ2

t = 0

sin θ2ϕtt = 0
. (82)

Now build a system of ODEs
θt = pθ

ϕt = c0
sin θ2

pθt = sin 2θϕ2
t

. (83)

Assuming that the simplified Lagrangian system of equations is more suitable than the
Hamiltonian approach for directly addressing camera dynamics space and avoiding poten-
tial simplifications from reducing degrees of freedom, the resulting simplified Lagrangian
system yields first-order differential equations of the form dq/dt = F(q, t). Although a
functional algorithm is not yet available, a step-by-step procedure for computing both
absolute and relative pose estimation will be detailed in the following sections.

3.5.1 Absolute pose estimation

The proposed steps for absolute pose estimation are as follows:
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1. Input: A 3D scene object, the calibration matrix and an Image. Output: Rotation
and translation matrices

2. Choose a random (θ0, θ̇0) and (ϕ0, ϕ̇0) to begin the system.

3. Compute with Runge Kutta the step i + 1 from the Euler-Lagrange system of
equations.

4. For each η ∈ [0, 2π) compute the rotation matrix with Axis-angle Rodrigues nota-
tion.

(a) Project both the 3D point in image with γproj = K 1
ρ
(RΓ + T ), ρ = Γze3 and

3D tangent tproj = K[ 1
ρ
(RT) − ρs

ρ2 (RΓ + T )], ρ = Γze3, ρs = Tze3

(b) Compute the distance d(γ, γproj) and angle ∡(t, tproj).

(c) If d(γ, γproj) < δ and ∡(t, tproj) < ϵ, finish the process.

5. If the camera was not found, update the angles and velocities and go to step 3.

6. If in some iteration θ = ±π
2 , go to step 2.

3.5.2 Relative pose estimation

A notable aspect of the model for relative camera pose estimation is its capacity
to reduce an N ≥ 2 camera pose estimation problem to multiple "absolute pose estima-
tion"problems. This is accomplished by analyzing each camera pose γim1 at t = t1, γim2

at t = t2, and so on up to γimN at t = tN as separate absolute pose estimation tasks.
The relative pose estimation process is similar to the absolute pose estimation, but

with three key differences:

1. Parametric Form: Employ the parametric form Γ = ργ to represent camera poses.

2. Initial Depth: Use an arbitrary initial depth ρ0, with ρ0 = 1 recommended for
simplification.

3. Calibration Matrix: The calibration matrix is not required, as it is assumed that
all images are from the same calibrated camera. The proposed steps for relative
pose estimation are as follows

1. Input: N images im1, ..., imN correspondences. Output: Rotation(s) and transla-
tion(s) matrices [Rk|Tk], k = 1, . . . , N

2. Choose a random (θ0, θ̇0) and (ϕ0, ϕ̇0) to begin the system.
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3. Compute with Runge Kutta the step i + 1 from the Euler-Lagrange system of
equations.

4. For each η ∈ [0, 2π) compute the rotation matrix with Axis-angle Rodrigues nota-
tion.

(a) Reproject both the point and tangent from the first image to the image with
(ργ)reproj = Rkρ0γ0 + Tk and (ρsγ + ρt)reproj = Rk(ρs0γ0 + ρ0t0)

(b) Compute the distance d(γ, γreproj) and angle ∡(t, treproj).

(c) If d(γ, γreproj) < δ and ∡(t, treproj) < ϵ, finish the process.

5. If the camera was found, store [Rk|Tk], update the angles and velocities and go to
step 3. Otherwise update the angles and velocities and go to step 3.

6. If in some iteration θ = ±π
2 , go to step 2.
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CONCLUSION AND FUTURE WORK

This dissertation presents an extension of the dynamical camera theory, building
upon the temporal parameter theory discussed in Fabbri e Kimia (2016), and addres-
sing previously unexplored aspects. The work introduces a novel relationship between
mechanics and camera pose estimation through the application of Lagrangian and Ha-
miltonian mechanics. During the first year of research, the focus was on advancing the
trifocal method and addressing implementation challenges. The robustness of the trifo-
cal method was demonstrated in Andrade et al. (2023), achieving 79.65% inliers with the
best model obtained via RANSAC, and showing stability in deriving a model with camera
rotation-free properties.

Despite its robustness, the trifocal method’s high complexity necessitated subs-
tantial computational effort to identify singularity regions within the model. The use of
generic formulations, such as homotopy continuation adapted for computing the trifocal
tensor, did not fully address the potential issues inherent in the method. To address these
challenges, an initial formulation of a continuous camera approach was developed. This
approach, representing a type of continuation in real space, offers a more precise repre-
sentation of the phenomena and facilitates easier study and optimization. As a result, the
project Hsystems-analysis, developed by the author, has been improved and will soon
be available as Open Hamiltonian System Analysis (openHSA).

On the theoretical side, additional concepts were introduced regarding geometric
curves that depend on time, such as the velocity of 3D and 2D points and their respective
tangents. The appendix includes details on acceleration for both cases. Propositions
were also made to provide further insight into the topological aspects of images. This
includes an explanation of why an image can be considered both a differential manifold
and a member of the Galilean group, and how these perspectives can be applied to study
functionals relevant to each problem.

The difference between point and curve correspondences for identifying rotation
and translation across images was also discussed. This involved matching curves and
points by modeling a potential 3D object and rotating it to align with each image. This
exploration, while seemingly peripheral, contributes to the development of various functi-
onals for different applications, such as those recently developed by the LEMS group for
multiview triangulation (currently in the process of publication).

Subsequently, the model is presented with its fundamental constraints. These
constraints include the assumption that the reference 3D point is part of a stationary
rigid curve, and the formulation of a surface camera path constraint. This constraint
facilitates the temporal distribution of cameras, resulting in a model where the primary
issues are determined by translation, while rotation is unrestricted only around the z-axis
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of the camera. Rotation around the x and y axes of the camera is fixed according to
the surface constraint. Hypotheses were presented regarding the interpretation of energy
orbitals in phase space analysis and their relation to image states. It was concluded that
challenges in camera pose estimation may stem not only from the physical model but also
from the geometric structure of the image, which can lead to incorrect location estimation.

A procedure for determining both absolute and relative pose estimation, based on
the theory presented, was also proposed.

Future work

In the theoretical investigation of camera positioning problems using physics, the
initial step involves assuming that the curve is not stationary. This assumption introduces
a potential on the camera side, arising from the 3D camera space point. Even without
a potential constraint, the standalone rotation of the 3D point contributes to the kinetic
energy.

The subsequent step involves analyzing a scenario where the camera is fixed while
the scene is moving. This results in both the camera and the scene undergoing movement
according to the following:

• First Configuration: This configuration facilitates the examination of the dyna-
mics of the calibration matrix. By analyzing the camera lens equation, it is proposed
that variations in parameters such as lens radius or refractive index over time might
be significant. The hypothesis is that, despite being undetectable by the human eye,
photon pressure could affect the lens’s internal calibration by altering the refractive
index. Future work will focus on applying Fermat’s Principle with time-dependent
refractive index and lens radius, and assessing these effects. Additionally, the po-
tential impact of aperture velocity on internal parameters may be investigated if
necessary.

• Moving Scene and Camera Interaction: When both the camera and scene are
in motion, interactions between points in camera space and scene space can occur.
This investigation will focus on understanding how a moving scene affects camera
position algorithms and overall reconstruction accuracy.

Subsequently, the investigation will focus on geometric parameters in the context
of physics. Initial studies into the dynamics of Frenet frames indicated that curvature
and torsion significantly influence phase space direction within the TNB space. Following
this, cuspidal theory will be explored, as preliminary results suggest that critical regions
are linked to occluding curves or epipolar tangencies. The objective is to further examine
the relationship between critical points on curves and their associated occlusions.
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We have proposed to future research the application of the Lagrangian of axial
geometry and Fermat’s principle as presented by Holm (2008a) to study geometric pa-
rameters using optical Lagrangian and Hamiltonian formulations. This approach may
facilitate the exploration of the phase space of camera optics and enable connections with
established differential geometry concepts. Further investigation of the literature is nee-
ded to determine whether this idea has been previously explored and to build upon those
findings.

The latest review of literature revealed that what initially appeared to be a Hamilton-
Jacobi formulation was, with the assistance of Prof. Germano, identified as a Lagrangian
density functional. This distinction, supported by materials from field theory, suggests
potential applications of field theory in multiview reconstruction and camera estimation
theory.

Additionally, a recent study by Pascual Pascual-Escudero et al. (2021) provides a
singularity analysis of the P4P problem and proposes that a similar approach could be
applied to trifocal and P2Pt problems. A detailed review of this paper is required to
determine its applicability and potential improvements for our work.

On the practical side, the next steps are as follows:

1. Complete Integration Tests: Finalize the integration of the trifocal and P2Pt
methods within the openMVG framework.

2. Further Developments:

3. Bifurcation Analysis: Since direct identification of topological regions in homoto-
pic differential equations via phase space analysis has been challenging, bifurcation
theory will be applied to investigate stability loss in these systems. Bifurcations
occur when a dynamical system begins to lose integrability, indicating that the
homotopic differential equation is approaching instability.

4. Dynamical Camera Model: Develop and experiment with the dynamical camera
model as outlined in the presented methodology. Report the results to validate and
refine the approach.

5. Expansion and Publication: Publish and expand the Open Hamiltonian Sys-
tem Analysis (openHSA) package, enhancing its capabilities for both qualitative
and quantitative analysis in physics. This will also involve creating an internal
framework to study qualitative aspects of multiview reconstruction, curves, and
camera-related problems.
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APPENDIX A – How compute stacked form from five point

Here we are going to show how is computed the stacked form of five point algorithm
since the original paper from Niéster does not show how and seems quite confusing.
Assume x′Ex with x = (x, y, w)⊤, x′ = (x′, y′, w′)⊤ and E a three by three essential
matrix.

x̃′Ex = [x′, y′, w′]


e11 e12 e13

e21 e22 e23

e31 e32 e33




x

y

w

 =

xx′e11 + xy′e21 + xw′e31 + yx′e12 + yy′e22 + yw′e32 + yx′e13 + wy′e23 + ww′e33 =
x̃Ẽ

(84)
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APPENDIX B – How we compute Γ, γ geometric tangents, velocities and acceleration
with s = s(t)

Let’s take Γ(s, t) = Γ(s(t), t) and compute total differential dΓ

dΓ = ∂Γ
∂s

ds + ∂Γ
∂t

dt (85)

The 3D point velocity is obtained by computing total time derivative:

dΓ
dt

= ∂Γ
∂s

ds

dt
+ ∂Γ

∂t
(86)

The 3d point acceleration is computing taking second total time derivative

d2Γ
dt2 = d

dt

(
dΓ
dt

)
= d

dt

(
∂Γ
∂s

ds

dt
+∂Γ

∂t

)
= d

dt

(
∂Γ
∂s

ds

dt

)
+ d

dt

(
∂Γ
∂t

)
= d

dt

(
∂Γ
∂s

)
ds

dt
+∂Γ

∂t

d2s

dt2 + d

dt

(
∂Γ
∂t

)
(87)

The 3D geometric tangent is obtained in

dΓ
ds

= ∂Γ
∂s

+ ∂Γ
∂t

dt

ds
(88)

The 3D geometric tangent velocity is obtained

d

dt

(
dΓ
ds

)
= d

dt

(
∂Γ
∂s

+∂Γ
∂t

dt

ds

)
= d

dt

(
∂Γ
∂s

)
+ d

dt

(
∂Γ
∂t

dt

ds

)
= d

dt

(
∂Γ
∂s

)
+ d

dt

(
∂Γ
∂t

)
dt

ds
−
(

dt

ds

)2
∂Γ
∂t

d2s

dt2

(89)

and 3D tangent acceleration is given by

d

dt

(
d

dt

(
dΓ
ds

))
= d

dt

(
d

dt

(
∂Γ
∂s

)
+ d

dt

(
∂Γ
∂t

)
dt

ds
−
(

dt

ds

)2
∂Γ
∂t

d2s

dt2

)

= d2

dt2

(
∂Γ
∂s

)
+ d2

dt2

(
∂Γ
∂t

)
dt

ds
− 2 d

dt

(
∂Γ
∂t

)(
dt

ds

)2
d2s

dt2 − ∂Γ
∂t

(
dt

ds

)2
d3s

dt3

+ ∂Γ
∂t

(
dt

ds

)3(
d2s

dt2

)2

(90)

Now computing 2D versions. compute differential element dγ

dγ = ∂γ

∂s
ds + ∂γ

∂t
dt (91)
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now compute the 2d point velocity

dγ

dt
= ∂γ

∂s

ds

dt
+ ∂γ

∂t
(92)

and 2D point acceleration

d2γ

dt2 = d

dt

(
dγ

dt

)
= d

dt

(
∂γ

∂s

ds

dt
+∂γ

∂t

)
= d

dt

(
∂γ

∂s

ds

dt

)
+ d

dt

(
∂γ

∂t

)
= d

dt

(
∂γ

∂s

)
ds

dt
+∂γ

∂t

d2s

dt2 + d

dt

(
∂γ

∂t

)
(93)

This can be computed in relation to 3D by assuming γ = Γ
ρ

dγ

dt
= 1

ρ

(
dΓ
dt

− 1
ρ

dρ

dt
Γ
)

(94)

with dΓ
dt

described earlier and dρ
dt

dρ

dt
= ∂ρ

∂s

ds

dt
+ ∂ρ

∂t
(95)

and its acceleration is given by

d2γ

dt2 = d

dt

(
1
ρ

(
dΓ
dt

−1
ρ

dρ

dt
Γ
))

= 1
ρ

[
−dρ

dt

1
ρ

(
dΓ
dt

−1
ρ

dρ

dt
Γ
)

+d2Γ
dt2 + 2

ρ2

(
dρ

dt

)2

Γ−1
ρ

d2ρ

dt2 Γ−1
ρ

dρ

dt

dΓ
dt

]
(96)

With d2ρ
dt2 defined as

d2ρ

dt2 = d

dt

(
∂γ

∂s

)
ds

dt
+ ∂γ

∂t

d2s

dt2 + d

dt

(
∂γ

∂t

)
(97)

the 2D tangent is written as

dγ

dt
= ∂γ

∂s
+ ∂γ

∂t

dt

ds
(98)

The 2D tangential velocity is given by

d

dt

(
dγ

ds

)
= d

dt

(
∂γ

∂s
+∂γ

∂t

dt

ds

)
= d

dt

(
∂γ

∂s

)
+ d

dt

(
∂γ

∂t

dt

ds

)
= d

dt

(
∂γ

∂s

)
+ d

dt

(
∂γ

∂t

)
dt

ds
−
(

dt

ds

)2
∂γ

∂t

d2s

dt2

(99)
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and 2D tangent acceleration is given by

d

dt

(
d

dt

(
dγ

ds

))
= d

dt

(
d

dt

(
∂γ

∂s

)
+ d

dt

(
∂γ

∂t

)
dt

ds
−
(

dt

ds

)2
∂γ

∂t

d2s

dt2

)

= d2

dt2

(
∂γ

∂s

)
+ d2

dt2

(
∂γ

∂t

)
dt

ds
− 2 d

dt

(
∂γ

∂t

)(
dt

ds

)2
d2s

dt2 − ∂γ

∂t

(
dt

ds

)2
d3s

dt3

+ ∂γ

∂t

(
dt

ds

)3(
d2s

dt2

)2

(100)

The γ = Γ
ρ

of the tangent is

dγ

ds
= 1

ρ

(
dΓ
ds

− 1
ρ

dρ

ds
Γ
)

(101)

with dΓ
ds

described earlier and dρ
ds

dρ

ds
= ∂ρ

∂s
+ ∂ρ

∂t

dt

ds
(102)

Its velocity is computed as

d

dt

(
dγ

ds

)
= d

dt

(
1
ρ

(
dΓ
ds

− 1
ρ

dρ

ds
Γ
))

= 1
ρ

[
− 1

ρ

dρ

dt

(
dΓ
ds

− 1
ρ

dρ

ds
Γ
)

+ d2Γ
dtds

− dΓ
dt

(
dρ

ds

)
1
ρ

− Γ
(

d2ρ

dtds

)
1
ρ

+ Γdρ

ds

1
ρ2

dρ

dt

] (103)

And finally the acceleration is given by

d2

dt2

(
dγ

ds

)
= d

dt

(
1
ρ

[
− 1

ρ

dρ

dt

(
dΓ
ds

− 1
ρ

dρ

ds
Γ
)

+ d2Γ
dtds

− dΓ
dt

(
dρ

ds

)
1
ρ

− Γ
(

d2ρ

dtds

)
1
ρ

+ Γdρ

ds

1
ρ2

dρ

dt

])

= 1
ρ

{
1
ρ

dρ

dt

[
1
ρ

dρ

dt

(
dΓ
ds

− 1
ρ

dρ

ds
Γ
)

− d2Γ
dtds

+ dΓ
dt

(
dρ

ds

)
1
ρ

+ Γ
(

d2ρ

dtds

)
1
ρ

− Γdρ

ds

1
ρ2

dρ

dt

]

+ d3Γ
dt2ds

−
[

d2Γ
dt2

(
dρ

ds

)
1
ρ

+ dΓ
dt

(
d2ρ

dtds

)
1
ρ

− dΓ
dt

dρ

ds

dρ

dt

1
ρ2

]

−
[

dΓ
dt

(
d2ρ

dtds

)
1
ρ

+ Γ
(

d3ρ

dt2ds

)
1
ρ

− Γ d2ρ

dtds

dρ

dt

1
ρ2

]

−
[

1
ρ

[
− 1

ρ

dρ

dt

(
dΓ
ds

− 1
ρ

dρ

ds
Γ
)

+ d2Γ
dtds

− dΓ
dt

(
dρ

ds

)
1
ρ

− Γ
(

d2ρ

dtds

)
1
ρ

+ Γdρ

ds

1
ρ2

dρ

dt

]}
(104)
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APPENDIX C – Quick overview of Frenet frames

Fabbri and Kimia IJCV2016 provide in page 6 a quick overview in differential
geometry. Here we are going to adapt from theirs to ours.

The Frenet frame of a point in a 3D curve is composed by three vectors which are
the tangent, the normal and binormal. Assuming the time invariance for simplicity and,
from the authors, the local Frenet frame of a 3D point Γ defined by its unit vectors T, N
and B are defined as

T = 1
G

Γs, N = T⊥ = 1
G · K

Ts, B = T × N, (105)

with the tangential parametric “velocity” G = ||Γs|| the 3D curvature K = ||Ts||
G

and
torsion τ = −Bs·N

G
. Since classical books such as Carmo (1976) provide in-depth detail in

Frenet frame “dynamics”, we state them here it, in matrix form, as
Ts

Ns

Bs

 =


0 K 0

−K 0 τ

0 −τ 0




T
N
B

 (106)

The local frame for 2D γ is composed only by its 2D tangent t and normal n

t = 1
g

γs, n = t⊥ = 1
g · κ

ts, g = ||γs||, κ = ||ts||
g

. (107)
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APPENDIX D – Lagrangian and Hamiltonian metrics

This work uses notions and definition of manifolds from Frankel (2011). The
tangent space at a point x is defined as the space containing all tangent vectors passing
through x. If a function f : Rn 7→ Rm is a smooth map where yi = f i(x), i = 1, . . . , m,
then a tangent vector v of a smooth curve x(t) in Rn at x0 = x(0) defined as ẋ(0) = v :=
dx/dt(0) has tangent vector w at y0 defined by the chain rule

wi = yi(0) =
n∑

k=1

∂yi

∂xk
(x0)vi. (108)

This expression leads to a linear transformation, differential form of f at x0 that maps
v 7→ w

f∗ : Rn
x0 7→ Rm

y0 , f∗(v) = w. (109)

Where the matrix that defines this transformation is called Jacobian matrix which its
elements are ∂yi/∂xk(x0).

The tangent bundle TMn in a differential manifold Mn is defined as the union
of all tangent spaces TMn

m at all points m ∈ Mn. A point in the tangent bundle
consists in 2n-tuple (m, v) where m ∈ Mn (with local coordinate map q ∈ Rn →
q(m) = (q1(m), q2(m), . . . , qn(m))⊤ that can be used applying the chain rule) and v is
the tangent space TMn

m (with local tangent map defined as w : TMn
m 7→ Rn, w =∑n

k=1(∂qi/∂mk)|m0(dmk/dt)).
The cotangent bundle T∗Mn in a differential manifold Mn is defined as the union

of all cotangent spaces T∗Mn
m at all points m ∈ Mn. A cotangent space is defined as

the dual space of the tangent space TMn, in other words, contains all linear functions
in TMn. Let a function g : Mn 7→ R with differential of f at m, defined as df : Mn

m 7→
R, df(v) = vm(f). Rewriting to local coordinates, ej = ∂/∂qj|m defining a basis for Mn

m

with

df

(∑
vj

∂

∂qj

)
=
∑

vj(m) ∂f

∂qj

(m). (110)

If f is a function of the local mapping of the components of v, the differential of the i-th
component is given by

dqi

(
∂

∂qj

)
= ∂qi

∂qj

= δi,j, (111)
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with δi,j being the Kronecker delta. Rewriting (112), is obtained

dqi

(∑
vj

∂

∂qj

)
=
∑

vjdqi

(
∂

∂qj

)
= vj. (112)

Consequently, dqi, i = 1, . . . , n represents the linear functionals that forms the basis of
the cotangent space Mn∗

m .
The Lagrangian function, in terms of classical mechanics, is defined as a scalar

function in a tangent bundle in configuration space with local generalized coordinates q

and local generalized velocities q̇ = dq/dt,

L : TMn → R (113)
(q, q̇) 7→ L(q, q̇) = K(q, q̇) − U(q),

where K(q, q̇) is the kinetic energy and U(q) is the potential energy. Tipically the potential
energy is considered independent of q̇ and the kinetic energy is oftenly a positive definite
symmetric quatratic form of the velocities

K(q, q̇) = 1
2
∑
ij

gij(q)q̇iq̇j, (114)

with gij(q) defining a "mass matrix"according to Frankel (2011). The construction of
the kinetic energy constitutes a Finsler metric since the Lagrangian function is positive
definite, is homogeous of first degree in q̇ (a proof can be performed by applying the
Lagrangian in Euler-Lagrange equation) and has the property of triangular inequality at
q̇ (L(q, q̇1 + q̇2) ≤ L(q, q̇1) + L(q, q̇2)). The generalized momenta is defined as,

p : TMn → T∗Mn (115)

(q, q̇) 7→ p(q, q̇) = ∂L

∂q̇i

=
∑
ij

gij(q)q̇j.

This work finally states the reasons why the Hamiltonian function is part of the sympletic
geometry from the Differential equations course at Msc. program. They are the following:

• It has a closed and non-degenerate 2-form ω(X, Y ) where X, Y ∈ TM (this means
that dω = 0 and ∀m ∈ M, v ∈ TM → ∃w ∈ TM, ω(v, w) ̸= 0)

• Dim(M) = 2n
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APPENDIX E – Hamiltonian form of axial geometric optics

Beginning with the axial geometric Lagrangian function

L(q, qz) = η(q, z)
√

|qz|2 + 1. (116)

Computing p = ∂L/∂q̇, results in

p = η(q, z) qz√
|qz|2 + 1

. (117)

Isolating q̇, results in

p2 = η2(q, z) q2
z

|qz|2 + 1 →

p2(|qz|2 + 1) = η2(q, z)q2
z →

q2
z(η2(q, z) − |p|2) = p2 →

qz = p√
η2(q, z) − |p|2

.

(118)

Computing the Lagrangian function with new variable p

L(q, qz) = η(q, z)

√√√√ p2

η2(q, z) − |p|2
+ 1 = η(q, z)

√√√√(p2 + η2(q, z) − |p|2)
η2(q, z) − |p|2

= η2(q, z)√
η2(q, z) − |p|2

.

(119)

Applying this result in the Legendre transformation H = p · q̇ − L, results in

H = p · q̇ − L = p2√
η2(q, z) − |p|2

− η2(q, z)√
η2(q, z) − |p|2

= − η2(q, z) − |p|2√
η2(q, z) − |p|2

= −
√

η2(q, z) − |p|2

(120)
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