

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Geologia

Marcela de Carvalho Lobato

Proveniência das rochas metassedimentares dos diferentes terrenos tectonoestratigráficos da Faixa Ribeira Central, com base em dados U-Pb e Lu-Hf obtidos em grãos de zircão detríticos

> Rio de Janeiro 2018

Marcela de Carvalho Lobato

Proveniência das rochas metassedimentares dos diferentes terrenos tectonoestratigráficos da Faixa Ribeira Central, com base em dados U-Pb e Lu-Hf obtidos em

grãos de zircão detríticos

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis, da Universidade do Estado do Rio de Janeiro. Área de concentração: Tectônica, Petrologia Ígnea e Recursos Minerais.

Orientador: Prof. Dr. Claudio de Morisson Valeriano Coorientadores: Prof.^{*} Dr^a. Monica da Costa Pereira Lavalle Heilbron Prof. Dr. Ivo Antônio Dussin

> Rio de Janeiro 2018

CATALOGAÇÃO NA FONTE UERJ/REDE SIRIUS/CTCC

L796	Lobato, Marcela de Carvalho. Proveniência das rochas metassedimentares dos diferentes terrenos tectono- estratigráficos da Faixa Ribeira Central, com base em dados U-Pb e Lu-Hf obtidos em grãos de zircão detríticos / Marcela de Carvalho Lobato. – 2018. 228 f. : il.
	Orientador: Claudio de Morisson Valeriano. Coorientadores: Monica da Costa Pereira Lavalle Heilbron e Antônio Dussin. Tese (Doutorado) – Universidade do Estado do Rio de Janeiro, Faculdade de Geologia.
	1. Geologia estratigráfica - Teses. 2. Rochas sedimentares – Teses. 3. Sedimentação e depósitos - Teses. 4. Mineralogia – Teses. 5. Orogênese – Teses. I. Valeriano, Claudio de Morisson. II. Heilbron, Monica da Costa Pereira Lavalle. III. Dussin, Antônio. IV Universidade do Estado do Rio de Janeiro. Faculdade de Geologia. V. Título. CDU: 551.25

Bibliotecária Responsável: Priscila Freitas Araujo/ CRB-7: 7322

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura

Marcela de Carvalho Lobato

Proveniência das rochas metassedimentares dos diferentes terrenos tectonoestratigráficos da Faixa Ribeira Central, com base em dados U-Pb e Lu-Hf obtidos em grãos de zircão detríticos

Tese apresentada, como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis, da Universidade do Estado do Rio de Janeiro. Área de concentração: Tectônica, Petrologia Ígnea e Recursos Minerais.

Aprovada em 29 de Agosto de 2018.

Orientador:	Prof. Dr. Claudio de Morisson Valeriano
	Faculdade de Geologia - UERJ
Coorientadores:	Prof. ^a Dr ^a . Monica da Costa Pereira Lavalle Heilbron
	Faculdade de Geologia – UERJ
	Prof. Dr. Ivo Antônio Dussin
	Faculdade de Geologia – UERJ

Banca Examinadora:

Prof. Dr. Elton Luiz Dantas

Instituto de Geociências - UnB

Prof.^a Dr^a. Joseneusa Brilhante Rodrigues Companhia de Pesquisa de Recursos Naturais (CPRM)

Prof.^a Dr^a. Caroline Peixoto Faculdade de Geologia – UERJ

Prof. Dr. Marcelo dos Santos Salomão Faculdade de Geologia – UERJ

> Rio de Janeiro 2018

AGRADECIMENTOS

Agradeço a Prof^a. Monica da Costa Pereira Lavalle Heilbron pela orientação, estímulo, parceria, amizade, e por ter sido muito generosa e positiva. Obrigada pelo caminho!

Ao Prof. Claudio de Morisson Valeriano pelos ensinamentos e sua clareza didática.

Agradeço o Prof. Miguel Tupinambá pelas sugestões.

A Prof^a. Caroline Peixoto por ter me conduzido no início de tudo. Parceria de campo e apontar a objetividade.

Agradeço a Prof^a. Diana Ragatky pelo incentivo.

A todos os professores da casa, aos funcionários da Faculdade de Geologia e ao Programa de Pós-Graduação, motoristas e demais funcionários administrativos.

A equipe do Laboratório Geológico de Processamento de amostras (LGPA), principalmente a Gabriela.

Aos professores coordenadores e aos colaboradores dos laboratórios de geocronologia isotópica da UERJ (LAGIR e MULTILAB) e da UnB.

Agradeço a CAPES pela bolsa de doutorado sanduíche realizado na Universidade de Notre Dame, nos EUA. Ao Prof. Antonio Simonetti e sua equipe.

As instituições e projetos que financiaram a minha pesquisa e as bolsas concedidas: FAPERJ, CAPES e Pronageo.

A minha amiga Mariana Carvalho pelo apoio, ajuda e simplesmente por ser maravilhosa. Ao meu amigo Igor Drummond pela ajuda e bom senso. A calmaria e as boas vibrações do Vitalino. Aos amigos que estiveram por perto, sempre positivos e que dividiram as agonias e alegrias.

Agradeço a minha família.

E por fim, a instituição que me proporcionou esta oportunidade, querida UERJ.

RESUMO

LOBATO, Marcela de Carvalho. **Proveniência das rochas metassedimentares dos diferentes terrenos tectono-estratigráficos da Faixa Ribeira Central, com base em dados U-Pb e Lu-Hf obtidos em grãos de zircão detríticos**. 2018. 228 f. Tese (Doutorado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.

Este trabalho consiste no emprego das metodologias U-Pb e Lu-Hf, utilizadas em cristais de zircão detríticos, para o entendimento de proveniência em associações metassedimentares neoproterozoicas de diferentes domínios da Faixa Ribeira Central, no Sudeste do Brasil. São avaliados os seguintes grupos: a) São Fidélis do Domínio Costeiro, b) Bom Jesus de Itabapoana do Domínio Cambuci, c) Paraíba do Sul e d) Raposos do Domínio Juiz de Fora. O Grupo São Fidélis apresenta fontes de idades entre ca. 3,3 Ga e 2,5 Ga, associadas a granitóides presentes nas paleoplacas São Francisco e Congo, e robustas contribuições do Paleoproterozoico e do Mesoproterozoico. Contribuições do Riaciano-Orosiriano entre 2,2 e 2,0 Ga sugerem eventos registrados no Cráton São Francisco (CSF) correspondentes ao desenvolvimento de arcos magmáticos, e idades em torno de 1,9 Ga são atribuídas aos ortognaisses do embasamento do Terreno Cabo Frio, último a se juntar aos demais terrenos da Faixa Ribeira Central. Contribuições detríticas do final do Paleoproterozoico e do Mesoproterozoico, de ca. 1,7 e 1,5 Ga, com assinatura juvenil, estariam relacionados aos episódios anorogênicos extensivos no CSF. Apresenta cristais com idades entre 1,5 e 1,0 Ga, comuns nos terrenos correspondentes do lado africano. As idades do Neoproterozoico obtidas em grãos de zircão detríticos em ca. 900 Ma de alta razão Th/U apontam magmatismo extensional no CSF, e contribuições entre 898-823 e 794-620 Ma estão relacionados aos arcos magmáticos juvenis neoproterozoicos do Terreno Oriental (Serra da Prata e Rio Negro). Em relação ao Grupo Bom Jesus de Itabapoana, os dados obtidos apresentam populações de assinatura crustal, que concentram no Neoproterozoico, em intervalos de idades ²⁰⁶Pb/²⁰⁸U em ca. 553-609 Ma, ca. 615-638 Ma, ca. 640-699 Ma e ca. 728-778 Ma. Os dados do Grupo Paraíba do Sul apontam contribuição do Arqueano, com idades entre 3220 e 2560 Ma, e fontes paleoproterozoicas com moda principal em 2,1 Ga. Esta sequência metassedimentar siliciclástica apresenta contribuição relacionada ao próprio embasamento Paleoproterozoico-Argueano. Idades do Neoproterozoico foram obtidas em grãos com textura de recristalização compatíveis com o desenvolvimento de arcos magmáticos cordilheiranos nas faixas Ribeira e Araçuaí. Em relação ao Grupo Raposos, os dados coletados indicam fontes argueanas, com idades entre 3378 Ma e 2514 Ma, e paleoproterozoicas de intervalo de idades entre 2383 e 1624 Ma. No Terreno Oriental as marcantes contribuições recentes estão relacionadas ao desenvolvimento de arcos magmáticos orogênicos do Neoproterozoico. As supracrustais dos terrenos Ocidental (Grupo Raposos) e Paraíba do Sul (Grupo Paraíba do Sul), com associações de ambasamento documentadas, apontam marcante contribuição do Paleoproterozoico ca. 2,1-2,2 Ga.

Palavras-chave: faixa ribeira central; grupo são fidélis; grupo bom jesus de Itabapoana; grupo

raposos; grupo paraíba do sul; quartzito; zircão; U-pb; Lu-hf; proveniência.

ABSTRACT

LOBATO, Marcela de Carvalho. **Provenance of metasedimentary rocks from the different tectono-stratigraphic terrains of the Central Ribeira Belt, based on U-Pb and Lu-Hf data obtained from detrital zircon grains**. 2018. 228 f. Tese (Doutorado em Geociências) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.

This work involves the use of U-Pb and Lu-Hf methodologies, applied to detrital zircon crystals, to understand provenance in Neoproterozoic metasedimentary associations from different domains of the Central Ribeira Belt in Southeastern Brazil. The following groups are evaluated: a) São Fidélis from the Coastal Domain, b) Bom Jesus de Itabapoana from the Cambuci Domain, c) Paraíba do Sul, and d) Raposos from the Juiz de Fora Domain. The São Fidélis Group presents sources with ages between ca. 3.3 Ga and 2.5 Ga, associated with granitoids present in the São Francisco and Congo paleoplates, and robust contributions from the Paleoproterozoic and Mesoproterozoic. Contributions from the Rhyacian-Orosirian between 2.2 and 2.0 Ga suggest events recorded in the São Francisco Craton (SFC) corresponding to the development of magmatic arcs, and ages around 1.9 Ga are attributed to orthogneisses from the basement of the Cabo Frio Terrane, the last to join the other terranes of the Central Ribeira Belt. Detrital contributions from the late Paleoproterozoic and Mesoproterozoic, around 1.7 and 1.5 Ga, with a juvenile signature, would be related to extensive anorogenic episodes in the SFC. It presents crystals with ages between 1.5 and 1.0 Ga, common in the corresponding terrains on the African side. Neoproterozoic ages obtained in detrital zircon grains around 900 Ma with a high Th/U ratio indicate extensional magmatism in the SFC, and contributions between 898-823 and 794-620 Ma are related to Neoproterozoic juvenile magmatic arcs of the Eastern Terrane (Serra da Prata and Rio Negro). Regarding the Bom Jesus de Itabapoana Group, the obtained data present crustal signature populations, concentrated in the Neoproterozoic, in age intervals 206Pb/208U around 553-609 Ma, around 615-638 Ma, around 640-699 Ma, and around 728-778 Ma. Data from the Paraíba do Sul Group indicate Archean contribution, with ages between 3220 and 2560 Ma, and Paleoproterozoic sources. with a main mode at 2.1 Ga. This siliciclastic metasedimentary sequence shows contributions related to the Paleoproterozoic-Archean basement itself. Neoproterozoic ages were obtained in grains with recrystallization textures compatible with the development of magmatic arc systems in the Ribeira and Araçuaí belts. Regarding the Raposos Group, the collected data indicate Archean sources, with ages between 3378 Ma and 2514 Ma, and Paleoproterozoic sources with ages ranging from 2383 to 1624 Ma. In the sector of increasing metamorphic conditions towards the top of the tectonic stack (Central Sector), contributions of older ages are restricted. The source areas for these intervals, with juvenile and crustal signatures, would be associated with the Juiz de Fora and Mantiqueira complexes and the Archean paleoplates. The supracrustal rocks of the Western (Raposos Group) and Paraíba do Sul (Paraíba do Sul Group) terrains, with documented basement associations, indicate a significant contribution from the Paleoproterozoic around 2.1-2.2 Ga.

Keywords: central ribeira belt; são fidélis group; bom jesus de itabapoana group; raposos

group; paraíba do sul group; quartzite; zircon; U-pb; Lu-hf; provenance.

LISTA DE FIGURAS

Figura 1 –	Localização da área de estudo, baseada nas folhas 1:100.000,	
	mapeadas pelo Grupo TEKTOS/UERJ. A área abrange todo o Estado	
	do Rio de Janeiro e divisa entre os estados de Minas Gerais e Espírito	
	Santo	22
Figura 2 –	Possíveis etapas de cristalização de zircão durante o metamorfismo em	
	desenvolvimento de um orógeno quente, durante um período (Δt) da	
	ordem de milhões de anos	33
Figura 3 –	Morfologia e texturas internas em grãos de zircão	34
Figura 4 –	Imagens de catodo luminescência e as correspondentes ilustrações	
	esquemáticas mostrando as estruturas internas de recristalização de	
	zircão	36
Figura 5 –	Padrões de ETR representativos dos tipos de zircão e outros minerais	
	relevantes, normalizados para os valores de condrito	37
Figura 6 –	Imagens de Catodoluminescência (CL) obtidas em cristais de zircão de	
	alto grau metamórfico compilados de Vavra et al. (1999)	39
Figura 7 –	Imagens de cristais de zircão de diferentes estágios metamórficos	40
Figura 8 –	Subdivisão das unidades tectônicas da Província Mantiqueira (Sul do	
	Brasil e Uruguai)	41
Figura 9 –	Mapa tectônico do segmento central do Sistema Orogênico	
	Mantiqueira	43
Figura 10 –	Seção estrutural composta do Orógeno Ribeira com a relação entre os	
	diferentes terrenos e domínios estruturais	43
Figura 11 –	Mapa geológico da extremidade sul do Orógeno Brasília	48
Figura 12 –	Organização estratigráfica da Megassequência Andrelândia sugerida	
	por Paciullo (1997)	49
Figura 13 –	Mapa geológico simplificado do Orógeno Ribeira Central	52
Figura 14 –	Mapa geológico do segmento norte da Faixa Ribeira	53
Figura 15 –	Distribuição das idades U-Pb obtidas para o Grupo São Fidélis e	
	divisão estratigráfica do Grupo São Fidélis e sua relação com as rochas	
	intrusivas	57

Figura 16 –	Integração dos mapas geológicos dos estados do Rio de Janeiro e	
	trecho do sul de Minas Gerais, produzidos pelo Grupo Tektos/UERJ	60
Figura 17 –	Fotos de afloramentos das duas diferentes unidades do Grupo São	
	Fidélis	62
Figura 18 –	Fotomicrografia de amostras de paragnaisses do Grupo São Fidélis	63
Figura 19 –	Unidade Superior do Grupo São Fidélis	64
Figura 20 –	Histogramas para idades U-Pb (Ma) vs. probabilidade relativa dos	
	quartzitos encaixados no biotita gnaisse, da Unidade Superior do	
	Grupo São Fidélis	66
Figura 21 –	Imagens de catodoluminescência de grãos de zircão representativos da	
	mostra IG-1028, da lente quartzítica encaixada no biotita gnaisse,	
	pertencentes ao Grupo São Fidélis (Unidade Superior)	67
Figura 22 –	Resultados de geocronologia U-Pb obtido para o biotita gnaisse	
	(amostra IG-1028), Unidade Superior do Grupo São Fidélis	68
Figura 23 –	Imagens de Catodoluminescência de grãos de zircão representativos da	
	amostra SM-MB-02	70
Figura 24 –	Resultados de geocronologia U-Pb obtido para o biotita gnaisse	
	(amostra SM-MB-02), Unidade Superior do Grupo São Fidélis	71
Figura 25 –	Imagens de catodoluminescência de grãos de zircão representativos do	
	Biotita gnaisse bandado milonítico (THE-12A) pertencentes ao Grupo	
	São Fidélis, Domínio Costeiro	72
Figura 26 –	Resultados de geocronologia U-Pb obtido para o biotita gnaisse	
	bandado milonítico (amostra THE-12A), do Grupo São Fidélis	73
Figura 27 –	Imagens de catodoluminescência de grãos de zircão representativos do	
	granada biotita gnaisse (THE-21) pertencentes a Unidade Inferior do	
	Grupo São Fidélis	74
Figura 28 –	Resultados de geocronologia U-Pb obtido para o biotita gnaisse da	
	Unidade Superior do Grupo São Fidélis (amostra THE-21)	75
Figura 29 –	Diagrama Idade (Ma) vs. Epsilon Hf _(t) para cristais de zircão da	
	amostra quartzítica IG-1028, da Unidade Superior do Grupo São	
	Fidélis	76
Figura 30 –	Diagrama Idade (Ma) vs. Epsilon Hf(t) para cristais de zircão do	
	Neoproterozoico, pertencentes à amostra quartzíticas THE-21A, da	

	Unidade Inferior do Grupo São Fidélis	76
Figura 31 –	Diagrama Idade (Ma) vs. Epsilon Hf _(t) para cristais de zircão	
	pertencentes a amostra quartzítica THE-21A, da Unidade Inferior do	
	Grupo São Fidélis	77
Figura 32 –	Diagrama Idade (Ma) vs. Epsilon Hf _(t) para cristais de zircão do	
	Neoproterozoico, pertencentes às amostras quartzíticas (Qtzt) e pelítica	
	(Paragns) da Unidade São Fidélis Superior	78
Figura 33 –	Integração dos mapas geológicos dos estados do Rio de Janeiro e	
	trecho do sul de Minas Gerais, produzidos pelo Grupo Tektos/UERJ	81
Figura 34 –	Mapa geológico simplificado do segmento norte da Faixa Ribeira, no	
	limite dos estados de Minas Gerais e Rio de Janeiro	84
Figura 35 –	Perfis transversais a estruturação da Faixa Ribeira Central: a) Zona	
	Central; b) Zonas NW e SE	85
Figura 36 –	Quartzitos miloníticos recristalizados da Escamas Tectônicas Frontais	
	do Grupo Raposos na Zona Estrutural NW	87
Figura 37 –	Grupo Raposos (Megassequência Andrelândia distal) no Domínio Juiz	
	de Fora, Zona NW	88
Figura 38 –	Litotipos comuns dos gnaisses encaixantes das lentes quartzíticas do	
	Grupo Raposos, no domínio estrutural central	90
Figura 39 –	Litotipos dos afloramentos amostrados na Zona SE	91
Figura 40 –	Imagens de catodoluminescência de grãos de zircão representativos da	
	amostra quartzítica BP-JE-15A	92
Figura 41 –	Resultados de geocronolologia UPb em zircão detrítico da amostra	
	quartzítica BP-JE-15A, pertencente ao Grupo Raposos (Sequência	
	Andrelândia Distal) no Domínio Juiz de Fora	93
Figura 42 –	Imagens de catodoluminescência de grãos de zircão representativos da	
	amostra quartzítica SRJ-JE-159B, pertencente ao Grupo Raposos,	
	intercalada em biotita gnaisse bandado, no segmento basal do Zona	
	NW	94
Figura 43 –	Resultados de geocronologia U-Pb em zircão detrítico da amostra	
	quartzítica SRJ-JE-159B, pertencente ao Grupo Raposos (Sequência	
	Andrelândia Distal) no Domínio Juiz de Fora, Zona NW	94
Figura 44 –	Imagens de catodoluminescência de grãos de zircão representativos da	

	amostra ARG-03, lente quartzítica pertencente ao Grupo Raposos,	
	intercalada em biotita gnaisse bandado, no segmento basal do Zona	
	NW	95
Figura 45 –	Histograma para idades U-Pb detríticas (Ma) vs. probabilidade relativa	
	da amostra ARG-03, lente quartzítica pertencente ao Grupo Raposos	
	(Sequência Andrelândia Distal), Domínio Juiz de Fora, Zona NW	96
Figura 46 –	Diagramas concórdia U-Pb, exibem idades do Neoproterozoíco obtidas	
	em cristais de zircão das lentes quartzíticas miloníticas, pertencentes ao	
	Grupo Raposos	96
Figura 47 –	Imagens de catodoluminescência de grãos de zircão representativos da	
	amostra quartzítica ARG-03, no segmento basal da Zona NW	97
Figura 48 –	Resultados de geocronologia U-Pb detrítico para a amostra quartzítica	
	ARG-04, pertencente ao Grupo Raposos (Sequência Andrelândia	
	Distal) no Domínio Juiz de Fora, Setor NW	98
Figura 49 –	Diagramas concórdia U-Pb para a amostra quartzítica ARG-04, do	
	Grupo Raposos, Zona NW	98
Figura 50 –	Diagramas U-Pb para a amostra quartzítica MI-BR-37, pertencente ao	
	Grupo Raposos, Zona Central	100
Figura 51 –	Diagrama concórdia U-Pb (b) para a amostra quartzítica MI-BR-37,	
	pertencente ao Grupo Raposos, Zona Central	101
Figura 52 –	Resultados de geocronologia U-Pb em zircão detrítico da amostra IV-	
	M-6 oriunda da lente quartzítica pertencente ao Grupo Raposos do	
	Domínio Juiz de Fora, Zona SE	102
Figura 53 –	Histogramas para idades U-Pb (Ma) vs. probabilidade relativa e;	
	diagrama concórdia (b e c) da amostra IV-M-6 oriunda da lente	
	quartzítica, pertencente ao Grupo Raposos do Domínio Juiz de Fora,	
	Zona SE	103
Figura 54 –	Imagens de catodoluminescência de grãos de zircão representativos da	
	amostra quartzítica THE-17, pertencente ao Grupo Raposos,	
	intercalada em biotita gnaisse bandado, no segmento basal do Zona SE	104
Figura 55 –	Resultados de geocronologia em zircão detrítico da lente quartzítica	
	(THE-17) do Grupo Andrelândia no Domínio Juiz de Fora, Zona SE	105
Figura 56 –	Diagramas concórdia das idades U-Pb (LA-ICP-MS) do	

Neoproterozoico, obtidas em grãos de zircão extraídos em lente quartzítica (THE-17) do Grupo Raposos no Domínio Juiz de Fora, 106 Setor SE Figura 57 – Gáficos binários para as razões Th/U vs. idade U-Pb (Ma) das amostras quartzíticas oriundas do Grupo Raposos, Domínio Juiz de Fora 107 Figura 58 – Gráficos das razões isotópicas de Hf obtidas em cristais de zircão das amostras quartzíticas pertencentes ao Grupo Raposos (Sequência Andrelândia Distal) do Domínio Juiz de Fora 108 Figura 59 – Diagrama Idade (Ma) vs. EHf_(t) para cristais de zircão de amostras do 111 Grupo Raposos, no Domínio Juiz de Fora Figura 60 – Padrões de ETR para cristais de zircão das rochas metassedimentares pertencentes ao Grupo Raposos (Sequência Andrelândia Distal) do Domínio Juiz de Fora, normalizados por Condrito 114 Figura 61 – Diagrama de elementos-traço para diferentes áreas dos cristais de zircão de duas amostras de quartzitos recristalizados (ARG-03 e ARG-04) da Escama Tectônica Inferior, pertencentes ao Grupo Raposos (Sequência Andrelândia Distal) do Domínio Juiz de Fora 116 Figura 62 – Histogramas para idades U-Pb (Ma) integradas das lentes quartzíticas do Grupo Raposos (Grupo Andrelândia Distal) do Domínio Juiz de Fora 118 Figura 63 – Estratigrafia do Grupo Raposos no Domínio Juiz de Fora do Terreno Oriental 121 Figura 64 – Imagens de CL apresentando texturas primárias e secundárias de cristais de zircão de alto grau metamórfico extraídos de lentes quartzíticas do Grupo Raposos 122 Figura 65 – Mapa geológico simplificado do segmento norte da Faixa Ribeira, no limite dos estados de Minas Gerais e Rio de Janeiro 125 Figura 66 – Sillimanita-granada-biotita gnaisse com cordierita, Grupo Paraíba do Sul (SA-ML-28) 126 Figura 67 – Fotos de afloramento do granada-biotita gnaisse, pertencente ao Grupo Bom Jesus de Itabapuana 127 Figura 68 – Imagens de catodoluminescência de grãos de zircão representativos da amostra quartzítica SD-ML-01, Grupo Paraíba do Sul 128

Figura 69 –	Resultados de Geocronologia U-Pb em zircão detrítico de rochas	
	metassedimentares quartzíticas do Grupo Paraíba do Sul (SD-ML-01).	129
Figura 70 –	Diagrama Idade (Ma) vs. $\epsilon H f_{(t)}$ para cristais de zircão da lente	
	quartzítica SD-ML-01, do Grupo Paraíba do Sul	130
Figura 71 –	Resultados de Geocronologia U-Pb em zircão detrítico de Granada-	
	Sillimanita gnaisse (AS-ML-28) do Grupo Paraíba do Sul (SD-ML-01)	131
Figura 72 –	Imagens de catodoluminescência de grãos de zircão representativos das	
	amostras paraderivadas do granada sillimanita gnaisse (SA-ML-28) do	
	Grupo Paraíba do Sul	132
Figura 73 –	Diagramas concórdia para idades U-Pb da amostra SA-ML-28	
	(Granada sillimanita gnaisse)	133
Figura 74 –	Diagrama Idade (Ma) vs. $\epsilon Hf_{(t)}$ para a amostra SA-ML-28 (Garanada	
	sillimanita gnaisse) pertencentes ao Grupo paraíba do Sul	134
Figura 75 –	Imagens de catodoluminescência de grãos de zircão representativos da	
	amostra oriunda do (Opx)-granada-gnaisse migmatítico (THE-03), do	
	Grupo Bom Jesus de Itababoana	135
Figura 76 –	Resultados de geocronologia UPb em zircão detrítico para a amostra	
	THE-03 - (Opx)-granada-gnaisse migmatítico do Grupo Bom Jesus do	
	Itabapoana	136
Figura 77 –	Diagrama Idade (Ma) vs. $\epsilon H f_{(t)}$ para a amostra THE-03 - (Opx)-	
	granada-gnaisse migmatítico, do Grupo Bom Jesus de Itabapoana	137
Figura 78 –	Histogramas para idades U-PB comparativos para amostras de rochas	
	metassedimentares da Faixa Ribeira Central	141

LISTA DE TABELAS

Tabela 1 –	Etapas de processamento e preparação de amostras, destinadas às	
	análises geocronológicas em grãos de zircão	25
Tabela 2 –	Amostras utilizadas nesta pesquisa para o estudo geocronológico e	
	elementos traços por meio de análises in situ em grãos de zircão. Os	
	equipamentos (espectrômetro de massa) utilizados para as	
	metodologias estão relacionados a sistemas de laser acoplados	28
Tabela 3 –	Divisão dos litotipos e posição estrutural adotados neste trabalho para	
	o Grupo Andrelândia distal na Faixa Ribeira Central, no Domínio Juiz	
	de Fora, e suas respectivas amostras para estudo geocronológico U-Pb	85
Tabela 4 –	Abundâncias de elementos principais (wt%) e traços (ppm) de zircão	
	das amostras de quartzito milonítico das amostras ARG-03 e ARG-04	113
Tabela 5 –	Localização das análises elementos terras raras nos cristais de zircão	
	das amostras ARG-3 e ARG-04	115
Tabela 6 –	Localização das análises ETR nos cristais de zircão das amostras	
	ARG-3 e ARG-04	116
Tabela 7 –	Litotipos do Grupo Raposos em diferentes porções	144
Tabela 8 –	Síntese das análises U-Pb obtidas para os cristais de detríticos do	
	Grupo Raposos	144

SUMÁRIO

	INTRODUÇÃO
	Estudo de proveniência em sucessões metassedimentares de alto grau
	metamórfico associado à evolução orogenética
	Justificativa
	Objetivos e Metas
	Localização da área de estudo
	Estruturação da Tese
	MATERIAL E MÉTODOS
.1	Levantamento bibliográfico e construção de base de dados
.2	Trabalhos de campo
.3	Petrografia
.4	Separação dos minerais pesados
.5	Métodos isotópicos e procedimentos analíticos
.5.1	Análises U-Pb por espectrômetro de massa multi-coletor com plasma induzido
	acoplado a laser (LA-MC-ICP-MS)
.5.2	Análises U-Pb por SHRIMP
.5.3	Tratamento dos dados U-Pb
.5.4	Análises Lu-Hf por espectrômetro de massa multi-coletor com plasma induzido
	(LA-MC-ICP-MS)
	ZIRCÃO METAMÓRFICO
1	Morfologia e características internas de zircão modificado
2	Assinatura química de zircão em metamorfismo de alto grau
	CONTEXTO REGIONAL
.1	Compartimentação tectônica do Faixa Ribeira Central
.2	Contextualização das unidades metassedimentares da Faixa Ribeira
	Central no sistema orogênico e sedimentação da bacia precursora de
	margem passiva da paleoplaca São Francisco-Congo (Bacia Andrelândia)
.2.1	Sedimentação associada à margem sul do Cráton São Francisco-Congo
.2.1.1	Grupo Andrelândia (bacia precursora-margem passiva)
.3	Contextualização das unidades metassedimentares da Faixa Ribeira

	Central associadas à margem continental ativa e/ou arco de ilhas e bacias
	de ante-arco
3.3.1	Grupo Paraíba do Sul
3.3.2	Grupo Bom Jesus de Itapapoana
3.3.3	Grupo Italva
3.3.4	Grupo São Fidélis
4	RESULTADOS E DISCUSSÕES (PARTE I): PROVENIÊNCIA DO
	GRUPO SÃO FIDÉLIS NO DOMÍNIO COSTEIRO/TERRENO
	ORIENTAL DA FAIXA RIBEIRA CENTRAL
4.1	Introdução
4.2	Geologia local e amostragem
4.3	Geologia do Grupo São Fidélis
4.3.1	Unidade Inferior
4.3.2	Unidade Superior
4.4	Resultados isotópicos
4.4.1	Novos dados U-Pb para o Grupo São Fidélis
4.4.1.1	Resultados U-Pb em grãos de zircão detríticos das lentes quartzíticas da
	Unidade Superior do Grupo São Fidélis
4.4.1.2	Idades U-Pb obtidas em grãos de zircão detríticos dos paragnaisses da Unidade
	Superior do Grupo São Fidélis
4.4.1.3	Idades U-Pb obtidas em grãos de zircão detríticos no granada-biotita gnaisse do
	Grupo São Fidélis da Unidade Inferior
4.4.2	Resultados Lu-Hf
4.4.2.1	Assinatura Lu-Hf em grãos de zircão detrítico do Grupo São Fidélis, Unidade
	Superior
4.4.2.2	Assinatura Lu-Hf em grãos de zircão detrítico do Grupo São Fidélis Unidade
	Inferior
4.4.2.3	Assinatura Lu-Hf em grãos de zircão do Neoproterozoico do Grupo São Fidélis
	(Unidade Superior)
5	RESULTADOS E DISCUSSÕES (PARTE II): PROVENIÊNCIA DO
	GRUPO RAPOSOS (EQUIVALENTE DISTAL DA SEQUÊNCIA
	ANDRELÂNDIA) NO DOMÍNIO JUIZ DE FORA/TERRENO
	OCIDENTAL DA FAIXA RIBEIRA CENTRAL

5.1	Introdução	80
5.2	Geologia local e amostragem	82
5.2.1	Zona Estrutural NW	86
5.2.1.1	Quartzitos miloníticos recristalizados intercalados no Sillimanita-granada-	
	biotita gnaisse (amostras ARG-03 e ARG-04)	86
5.2.1.2	Quartzitos Impuros (BP-JE-15 e SRJ-JE-159B) intercalados no biotita gnaisse	
	bandado e migmatítico	88
5.2.2	Zona Central	89
5.2.3	Zona SE, entre os terrenos Paraíba do Sul e Oriental	90
5.3	Resultados Isotópicos	92
5.3.1	Análises U-Pb	92
5.3.1.1	Zona NW	92
5.3.1.2	Zona Central	99
5.3.1.3	Zona SE	101
5.3.1.4	Razão Th/U	106
5.3.2	Resultados Lu-Hf	108
5.3.3	Assinaturas de elementos-traços em zircão	112
5.4	Discussão	116
5.4.1	Caracterização da ambientação tectônica e da Proveniência da Bacia	
	Andrelândia distal representada pelo Grupo Raposos no Segmento Central da	
	Faixa Ribeira	116
5.4.2	Detalhamento dos Zircões Metamórficos e Evolução do Metamorfismo	
	Brasiliano	119
5.4.3	Imagens de CL vs. Composição dos Zircões: O que funcionou para as rochas	
	metamórficas de alto grau da área de estudo	122
6	RESULTADOS E DISCUSSÕES (PARTE III): PROVENIÊNCIA DAS	
	ROCHAS METASSEDIMENTARES DOS GRUPOS PARAÍBA DO SUL	
	E BOM JESUS DE ITABAPOANA	124
6.1	Introdução	124
6.2	Geologia local e amostragem	124
6.3	Resuldados das Idades U-Pb e Lu-Hf em grãos de zircão	128
6.3.1	<u>Grupo Paraíba do Sul</u>	128
6.3.2	Grupo Bom Jesus de Itabapuana	134

6.4	Discussões (ambiente tectonico, prováveis fontes, metamorfismo/	
	intrusivsas)	137
6.4.1	Grupo Paraíba do Sul	137
6.4.2	Grupo Bom Jesus de Itabapoana	138
	CONSIDERAÇÕES FINAIS	140
	REFERÊNCIAS	146
	APÊNDICE A – Tabelas de dados U-Pb de análises realizadas em	
	espectrômetro de massa (LA-MC-ICP-MS) em grãos de zircão, no LG-IG-UnB,	
	no MULTILAB-UERJ e ND	157
	APÊNDICE B – Tabelas de dados U-Pb para análises realizadas por SHRIMP	
	em grãos de zircão na Universidade Nacional Australiana	208
	APÊNDICE C – Tabelas de dados Lu-Hf para análises realizadas em	
	espectrômentro de massa (LA-MC-ICP-MS) em grãos de zircão	220

INTRODUÇÃO

Estudo de proveniência em sucessões metassedimentares de alto grau metamórfico associado à evolução orogenética

Processos orogenéticos ocorridos durante o Neoproterozoico-Ordoviciano associados à Plataforma Sul-Americana são bem descritos na literatura, os quais se destacam os mecanismos de geração de crosta continental, ambientação de bacias e evolução para colagens de grandes blocos cratônicos. A colagem orogênica Brasiliano/Pan-Africana resultou das interações diacrônicas com fases sequenciais envolvendo regimes de rifteamento que evoluíram para restritas margens passivas continentais, desenvolvimento de litosferas oceânicas, seguido por processos convergentes que levaram ao fechamento de antigos oceanos (BRITO-NEVES *et al.*, 1999). Por conseguinte, os processos contínuos de erosão e deposição em bacias sedimentares estão associados à evolução geológica, ao longo do tempo, e suas relativas implicações com elementos tectônicos.

Estudos isotópicos em rochas metapsamíticas e metapelíticas têm sido amplamente utilizados para desvendar a história deposicional e a configuração tectônica de antigas bacias sedimentares. Neste contexto, a utilização da geocronologia é indispensável para o entendimento da proveniência de sequências metassedimentares em ambiente orogênico, em condições de alto grau de metamorfismo, para as quais registros de estruturas primárias e fossilíferas foram apagados.

A investigação de zircão metamórfico por métodos analíticos *in situ* e a utilização de imagens vem sendo muito utilizadas para estudar aspectos importantes da tectônica de placas, como processos de subducção e exumação de rochas crustais. As ferramentas metodológicas, além de expressarem qualidade nas respostas analíticas, permitem, inclusive, escolher os domínios de interesse no cristal, podendo, assim, investigar aspectos texturais. O estudo detalhado do comportamento de cristais de zircão e as condições de pressão e temperatura, em terrenos metamórficos de alto grau, assim como as relações com a paragênese metamórfica, podem contribuir para o entendimento de processos tectono-evolutivos, relacionados a orogêneses como foram abordados por Rubatto (2002), Harley *et al.* (2007), Rubatto e Hermann (2007) e Rubatto (2017).

Os processos evolutivos da Faixa Ribeira Central, juntamente com as outros segmentos que compõem a colagem do Gondwana, na região sudeste do Brasil, geraram aglutinação diacrônica de diversos elementos tectônicos, incluindo blocos cratônicos, microcontinentes e arcos magmáticos, com suas respectivas bacias sedimentares. Os elementos tectônicos que compõem o Orógeno Ribeira Central, foram definidos por Heilbron *et al.* (1995, 2000, 2004, 2008, 2010, 2013, 2017), Heilbron e Machado (2003), Trouw *et al.* (2000), Tupinambá *et al.* (2000, 2012), Schmitt *et al.* (2008), Valeriano *et al.* (2011), Bento dos Santos *et al.* (2015), Peixoto *et al.* (2017). Os apontamentos sobre posicionamentos tectônicos, idades relativas, individualização dos compartimentos tectônicos balizados por grandes estruturas como zonas de cisalhamento, as associações de embasamento, as coberturas supracrustais, incluindo as sequencias metavulcanossedimentares e os maciços de corpos intrusivos marcam os estágios evolutivos da orogenia.

Estudos isotópicos por meio de zircão detrítico em unidades metassedimentares, na compartimentação da Faixa Ribeira Central, as prováveis fontes, os limites de sedimentação e idades relacionadas ao metamorfismo foram abordados por Valladares *et al.* (2004, 2008), Schmitt *et al.* (2004), Lobato *et al.* (2015) e Fernandes *et al.* (2015).

A pesquisa em questão aborda a investigação sistemática de proveniência de grãos de zircão detrítico por datação U-Pb, utilizando espectrômetro de massa multi-coletor com plasma induzido acoplado a *laser* (LA-ICP-MS) e microssonda iônica de alta resolução e de alta sensibilidade (SHRIMP). Utilizou-se o método Lu-Hf (LA-ICP-MS) para amostras de rochas metassedimentares representativas dos diferentes terrenos tectônicos que compõem a Faixa Ribeira Central, além de análise de elementos-traço em grãos de zircão de amostras metassedimentares representativas do Domínio Juiz de Fora, para o entendimento de processos de recristalização.

Justificativa

Este trabalho está focado no estudo de proveniência das sequências metassedimentares que compõem diferentes terrenos do segmento Faixa Ribeira Central, assim como as relações com unidades correlatas aos demais orógenos limítrofes. Apresenta novas idades detríticas obtidas em grãos de zircão das sequências distais da Megassequência Andrelândia expostas no Domínio Juiz de Fora do Terreno Ocidental, bem como o Grupo Paraíba do Sul (Terreno Paraíba do Sul) e os grupos Bom Jesus de Itabapoana e São Fidélis do Terreno Oriental. As unidades foram interpretadas como constam nos mapas geológicos recentes, produtos da parceria realizada entre o Serviço Geológico do Brasil (CPRM) e o Grupo de Pesquisa TEKTOS da Universidade do Estado do Rio de Janeiro (www.cprm.gov.br/ Pls/publico/geobank).

Dados geocronológicos U-Pb para estudos de proveniência dos limites temporais de sedimentação e do metamorfismo são as melhores ferramentas para abordar as unidades metassedimentares acumuladas nos diferentes ambientes de sedimentação. Uma questão chave nesta reconstituição da evolução Neoproterozoica da Faixa Ribeira é a diferenciação das bacias associadas à margem passiva do sul do Cráton São Francisco, com outras sucessões associadas à margens de microcontinentes ou da África Ocidental, daquelas formadas em margem ativa, com proveniência dos arcos magmáticos.

Atenta-se, neste trabalho, para as dificuldades em correlacionar as unidades metassedimentares regionalmente, devido ao alto grau metamórfico e grande deformação encontrados em muitas faixas móveis neoproterozoicas no Brasil, principalmente nas porções mais internas, como é o caso da Faixa Ribeira Central.

Objetivos

O objetivo principal desta pesquisa é entender a proveniência das unidades metassedimentares dos diferentes terrenos tectônicos nos seus respectivos ambientes de deposição na Faixa Ribeira Central, por meio de seções geológicas transversais regionais – ortogonais à estruturação regional, combinados com os dados geológicos e geocronológicos já existentes. Aborda a continuação da investigação sistemática de grãos de zircão detrítico por datação U-Pb (LA-ICP-MS e SHRIMP) e pelo método Lu-Hf.

Como objetivos específicos, além da determinação de idades de proveniência, foram desenvolvidas metodologias complementares para solucionar as dificuldades encontradas na interpretação de idades obtidas em rochas de alto grau metamórfico, com grãos exibindo texturas internas complexas. Assim de forma esquemática, estas metas estão abaixo listadas:

a) Identificação de fontes com base em idades (U-Pb) de zircão detrítico;

 b) Determinação de idades de metamorfismo com base no estudo das bordas de sobrecrescimento e/ou texturas de reabsorção em cristais de zircão; c) Caracterização de fontes juvenis, relacionadas à contribuição de arcos magmáticos ou fontes recicladas, utilizando a metodologia Lu-Hf;

 d) Correlacionar a composição de elementos traços em zircão e as condições metamórficas em terreno de alto grau para o Grupo Raposos no Terreno Ocidental;

e) Integração dos novos dados geocronológicos com dados existentes na literatura, visando contribuir o entendimento da evolução tectônica das bacias neoproterozoicas do segmento central da Faixa Ribeira.

Localização da área de estudo

A área de estudo está localizada na região sudeste do Brasil. Compreende todo o estado do Rio de Janeiro e região limítrofe com o estado de Minas Gerais e Espírito Santo (Figura 1). A escolha da área de estudo levou em consideração o aprofundamento da investigação sistemática de proveniência das unidades metassedimentares dos diferentes terrenos constituintes da Faixa Ribeira Central. A base de dados geológicos utilizada constituiu na integração de mapas na escala 1:100.000, desenvolvidos nos últimos anos pela equipe TEKTOS da Faculdade de Geologia da Universidade do Estado do Rio de Janeiro através do PRONAGEO e do Programa Geologia do Brasil (PGB) desenvolvido pela CPRM - Serviço Geológico do Brasil. Também foram utilizados mapas referentes ao projeto Sul de Minas, convênio CODEMIG-UFMG, produzidos pelo grupo de pesquisa citado acima.

Figura 1 – Localização da área de estudo, baseada nas folhas 1:100.000, mapeadas pelo Grupo TEKTOS/UERJ. A área abrange todo o Estado do Rio de Janeiro e divisa entre os estados de Minas Gerais e Espírito Santo.

Fonte: TEKTOS/UERJ.

Estruturação da Tese

O documento está divido em 8 secções. Após esta secção introdutória, seguem: o detalhamento dos métodos analíticos utilizados (secção 1); uma revisão teórica sobre o comportamento do zircão no metamorfismo (secção 2). A abordagem da compartimentação tectônica estabelecida para a Faixa Ribeira Central, bem como uma revisão dos dados isotópicos das unidades metassedimentares já publicadas são apresentadas na secção 3. Apresentando os resultados da pesquisa, seguem as secções 4, 5, e 6.

A secção 4 trata os resultados do estudo de proveniência e metamorfismo do Grupo São Fidélis no Domínio Costeiro/Terreno Oriental da Faixa Ribeira. Parte dos resultados estão redigidos em formato de artigo já publicado no Journal of South American Earth Sciences por Lobato et al. (2015), e parte inclui novos dados obtidos. A secção 5 aborda o estudo de proveniência das unidades metassedimentares do Grupo Raposos (equivalente distal do Grupo Andrelândia), inserido no Domínio Juiz de Fora do Terreno Ocidental. Este capítulo apresenta os resultados isotópicos U-Pb e Lu-Hf; além de abordar o estudo de elementos-traços em zircão, para ajudar no entendimento das idades e o significado geológico das características internas do cristal.

Já os estudos de proveniência do Grupo Paraíba do Sul no terreno homônimo e do Grupo Bom Jesus de Itabapoana do Domínio Cambuci no Terreno Oriental está apresentado na secção 6.

Por fim, integram este documento um capítulo de síntese e conclusão (secção 7) e as referências bibliográficas. Como Apêndices as tabelas com todos os resultados isotópicos obtidos para esta tese de doutoramento.

1 MATERIAIS E MÉTODOS

A metodologia de trabalho utilizada nesta pesquisa envolveu as ferramentas abaixo descritas, focadas no estudo isotópico em cristais de zircão.

1.1 Levantamento bibliográfico e construção de base de dados

A revisão bibliográfica foi realizada ao longo do desenvolvimento deste trabalho, baseada em artigos publicados em revistas científicas, relatórios e mapas geológicos de campanhas de levantamentos de geologia básica, capítulos de livros, além de dissertações e teses. A construção de bases de dados geocronológicos desta pesquisa é contribuir para a complementação dos mapeamentos geológicos que vem sendo executados pelo grupo de pesquisa TEKTOS.

1.2 Trabalhos de campo

As atividades de campo foram executadas em várias etapas, cujos propósitos consistiram em coletas sistemáticas de amostras para geocronologia e reconhecimento das unidades litoestratigráficas.

A primeira coleta para estudo U-Pb em grãos de zircão aconteceu na região de Santa Maria Madalena, na Folha Santo Antônio de Pádua 1:100.000 (SF.23-X-D-VI), referente às amostras de rochas quartzíticas e paragnaisse da unidade superior do Grupo São Fidélis, bem como uma unidade intrusiva (ortognaisse do Complexo Rio Negro). Essas amostras foram utilizadas para a conclusão do curso da graduação da Faculdade de Geologia da UERJ no ano de 2010. Nos dois anos seguintes esses mesmos dados foram retrabalhados em uma dissertação de mestrado (LOBATO, 2013), para o qual foi incluído mais uma amostra de rocha intrusiva nos metassedimentos para o estudo U-Pb; também foram realizadas análises em monazita pelo método TIMS, nas mesmas amostras quartzíticas. Posteriormente, os resultados das idades de proveniência e cristalização de corpos ígneos foram transformados

em publicações em revistas científicas por Lobato *et al.* (2015) e os resultados de monazita por Neto *et al.* (2014).

Em 2014 foi iniciado o doutorado com suas campanhas objetivas de campo, visando o reconhecimento das unidades litológicas e a coleta sistemática de material para estudo geocronológico. Ao longo da pesquisa também foram incorporadas amostras obtidas por meio do acervo do Grupo TEKTOS (Tabela 1).

	Amostra	Rocha	Britagem/ moagem	Bateia	Separação por imã de mão	Separador Frantz	Seleção de gãos	Seção Delgada
Domíni o Costeir o	TJ-M-03	Ortognaisse	Х	Х	Х	Х	Х	Х
	SM-MB-13	Ortognaisse	Х	Х	Х	Х	Х	Х
	SM-MB-05	Quartzito	Х	Х	Х	Х	Х	Х
	SM-MB-07	Quartzito	Х	Х	Х	Х	Х	
	SM-MB-09	Quartzito	Х	Х	Х	Х	Х	Х
	SM-MB-15	Quartzito	Х	Х	Х	Х	Х	Х
	SM-MB-02	Paragnaisse	Х	Х	Х	Х	Х	Х
	THE-21A	Paragnaisse	Х	Х	Х	Х	Х	
	THE-12A	Paragnaisse	Х	Х	Х	Х	Х	
	IG-1028	Quartzito	Х	Х	Х	Х	Х	Х
Domíni o Juiz de Fora	MI-BR-37	Quartzito	Х	Х	Х	Х	Х	Х
	IT-M-7	Quartzito	Х	Х	Х	Х	Х	
	Arg-03	Quartzito	Х	Х	Х	Х	Х	Х
	Arg-04	Quartzito	Х	Х	Х	Х	Х	Х
	IV-M-6	Quartzito	Х	Х	Х	Х	Х	
	SP-BR-01	Quartzito	Х	Х	Х	Х	Х	
	THE-17	Quartzito	Х	Х	Х	Х	Х	
	BP-JE-15	Quartzito	Х	Х	Х	Х	Х	
	SRJ-JE-159B		Х	Х	Х	Х	Х	
Domíni								
o Cambu ci	THE-03	Paragnaisse	Х	Х	Х	Х	Х	
Klippe Paraíb a do Sul	Ap-tup-28	Quartzito	Х	Х	Х	Х	Х	
	SD-ML-01	Quartzito	Х	Х	Х	Х	Х	
	SA-ML-28	Paragnaisse	Х	Х	Х	Х	Х	Х

Tabela 1 – Etapas de processamento e preparação de amostras, destinadas às análises geocronológicas em grãos de zircão.

Fonte: A autora, 2018.

1.3 Petrografia

As amostras coletadas foram enviadas para laminação no Laboratório Geológico de Processamento de Amostras (LGPA) da Faculdade de Geologia da UERJ, onde foram geradas seções delgadas de aproximadamente 30 µm de espessura, estudadas em microscópio petrográfico. Nem todas as amostras coletadas foram passíveis de corte por estarem alteradas (Tabela 1), considerando que muitos afloramentos de pontos de coleta geocronológica, apresentavam-se bastante intemperizados.

1.4 Separação dos minerais pesados

A preparação das amostras foi realizada no LGPA/UERJ, através das seguintes etapas: a) limpeza das amostras e fragmentação manual das mesmas, utilizando marreta, para que ficassem em bloquetes com tamanho de cerca de 10 cm²; b) britagem em britador de mandíbulas para que os fragmentos da amostra fossem reduzidos até 1 cm²; c) moagem em moinho de disco, a fim de obter granulometria de 200 µm; d) concentração de minerais densos por processo de bateamento; e) separação de minerais magnéticos com imã de mão; f) na fração não magnética foi utilizado bromofórmio (CHBr₃), manuseado na capela de exaustão, acarretando na sepação dos minerais mais densos que 2,89 g/cm³; g) na separação de minerais mais densos que o bromofórmio foi realizada separação magnética, com a utilização do separador isomagnético Frantz; h) foram utilizadas para seleção dos minerais as frações finais do Frantz, assim como as iniciais para algumas amostras que apresentavam menor evidência de grãos nos concentrados finais; i) após serem selecionados os grãos foram montados em resina epoxy; j) imagens de catodoluminescência foram obtidas para algumas amostras antes de serem analisados, outras após o procedimento de análise, o critério em ter ou não as imagens dependeram de verbas e disponibilidades dos laboratóriois. A Tabela 1 apresenta as etapas de preparação realizada para grupos de amostras.

1.5 Métodos isotópicos e procedimentos analíticos

As análises geocronológicas utilizando LA-ICP-MS (*laser ablation-inductively coupled plasma-mass spectrometer*) foram realizadas nos seguintes laboratórios: *a*) Laboratório de Geocronologia do Instituto de Geociências da Universidade de Brasília (LG-IG-UnB); *b*) Laboratório Multimeios-Geologia Isotópica (MULTILAB) da UERJ; *c*) *MITERAC ICP-MS Facility* pertencente ao *Department of Civil & Environmental Engineering & Earth Sciences of University of Notre Dame* (Notre Dame, Indiana, EUA) (UND). As análises geocronológicas utilizando SHRIMP (*Sensitive High Resolution Ion Microprobe*) foram realizadas no Laboratório da *Australian National University* (ANU), Canberra. (Tabela 2)

1.5.1 <u>Análises U-Pb por espectrômetro de massa multi-coletor com plasma induzido acoplado</u> <u>a laser (LA-MC-ICP-MS)</u>

As análises U-Pb realizadas no LG-IG-UnB foram efetuadas em espectrômetro de massa do tipo Thermo Finningan Neptune com *laser* Arf NewWave acoplado (µm 213 nm) Nd-YAG (LA-MC-ICP-MS). A frequência do laser foi de 6-10 Hz, o tamanho do diâmetro do *spot* entre 25 a 30 µm e a energia variou de 83 a 90%. As medidas de gás Ar entre 0,910 e 0,975 m/l e gás He constante em 0,40 m/l. A sequência de aquisição dos dados na medição foi de um branco, seguido pelo padrão GJ-01 (JACKSON *et al.*, 2004), as medidas de cristais da amostra de interesse, um novo branco e finalizando com a medição de um padrão GJ-01. A redução dos dados, assim como procedimentos analíticos foram criados pelo próprio laboratório de geocronologia da UNB (BUHN *et al.*, 2009), e recentemente uma nova planilha de redução de Oliveira *et al.* (2014).

As determinações de idades U-Pb no MULTILAB-UERJ sucederam através do LA-MC-ICP-MS tipo Thermo Finningan Neptune com *laser* Teledyne's Analyte G2 Excimer. A frequência do laser usada foi de 10 Hz, *spot* com diâmetro de 25 µm, a energia do laser em 50% e vazão do Ar ficou em torno de 0,790 l/min. Neste laboratório a rotina de aquisição de dados se deu pela medição do branco, análise do padrão primário (GJ1), nove medições em cristais de interesse, leitura dos padrões 91500 (securdário, WIEDENBECK *et al.*, 1995), GJ1 e finalmente com uma nova leitura do branco. As condições analíticas e redução de dados utilizados pelo laboratório estão conduzidos por Chamale *et al.* (2012).

		Amostra	Coordenada UTM	Rocha	U-Pb	Lu-Hf	Traços
Domí nio Coste iro	Grupo São Fidélis	TJ-M-03	796517/7562353	Biotita ortognaisse	ICP-MS (UnB)		
		SM-MB-13	805885/7577318	Ortognaisse	ICP-MS (UnB)		
		SM-MB-05	797145/7567963	Quartzito	ICP-MS (UnB)	ICP-MS (UERJ)	
		SM-MB-07	797838/7567711	Quartzito	ICP-MS (UnB)	ICP-MS (UERJ)	
		SM-MB-09	797351/7570846	Quartzito	ICP-MS (UnB)	ICP-MS (UERJ)	
		SM-MB-15	804006/7578129	Quartzito	ICP-MS (UnB)	ICP-MS (UERJ)	
		SM-MB-02	794113/7567548	Gr biotita gnaisse	ICP-MS (UnB)	ICP-MS (UERJ)	ICP-MS(UND)
		THE-21A	796260/7574792	Gr biotita gnaisse	ICP-MS (UERJ)	ICP-MS(UND)	ICP-MS(UND)
		THE-12A	728749/7559997	Gr biotita gnaisse	ICP-MS (UnB)	ICP-MS(UND)	ICP-MS(UND)
		IG-1028	635733/7496167	Quartzito	ICP-MS(UND)	ICP-MS(UND)	
Domí nio Juiz de Fora	Grupo Andrelând ia	MI-BR-37	798126/7629323	Quartzito	Shrimp (ANU)		
		IT-M-7	198950/7660480	Quartzito	Shrimp (ANU)		
		ARG-03	723387/7612630	Quartzito	ICP-MS (UERJ)	ICP-MS(UND)	ICP-MS(UND)
		ARG-04	708549/7599708	Quartzito	ICP-MS (UERJ)		ICP-MS(UND)
		IV-M-6	223787/7638235	Quartzito	Shrimp (ANU)		
		SP-BR-01	738008/7599928	Quartzito	Shrimp (ANU)		
		THE-17	762266/7582085	Quartzito	ICP-MS (UERJ)	ICP-MS(UND)	
		BP-JE-15	608632/7537420	Quartzito	ICP-MS(UND)	ICP-MS(UND)	
		SRJ-JE-159B	599091/7540521	Quartzito	ICP-MS(UND)	ICP-MS(UND)	
Domí nio Cam buci	Grupo Bom Jesus de Itabapoan	THE-03	217690/7643771	Opx granada ganisse	ICP-MS (UnB)	ICP-MS(UND)	ICP-MS(UND)
	a						
Terre no Paraí ba do Sul	Grupo Paraíba do Sul	Ap-tup-28	741772/7591435	Quartzito	Shrimp (ANU)		
		SD ML 01	729462/7594982	Quartzito	ICP MS (UnP)	ICD MS(UND)	
		5D-MIL-01	127402/1374702	Qualizito			
		SA-ML-28	702494/7557775	Gr sill gnaisse	ICP-MS (UERJ)	ICP-MS(UND)	ICP-MS(UND)

Tabela 2 – Amostras utilizadas nesta pesquisa para o estudo geocronológico e elementos traços por meio de análises in situ em grãos de zircão. Os equipamentos (espectrômetro de massa) utilizados para as metodologias estão relacionados a sistemas de laser acoplados.

Fonte: A autora, 2018.

Os resultados U-Pb obtidos na Universidade de Notre Dame foram realizadas por meio espectrômetro de alta resolução do tipo NuPlasma II (Nu Instruments) acoplado ao sistema de *laser* UP193 nm (New Wave Research). O diâmetro do *spot* do laser usado foi de 35 µm, densidade de energia de 10-5 J/cm2, frequência em 4 Hz do laser, energia em 73%. Para validar a precisão dos resultados de idade U-Pb foram utilizados três padrões de zircão,

GJ-01, 91500 e Plešovice (SLAMA *et al.*, 2008), para dez medidas desconhecidas. Detalhes de correções e procedimentos analíticos utilizados nesta metodologia estão descritos por Simonetti *et al.* (2008).

1.5.2 Análises U-Pb por SHRIMP

As datações U-Pb por SHRIMP (*Sensitive High Resolution Ion Microprobe*) realizadas na ANU, em cristais de zircão montados em seções circulares de epóxi com 2,54 cm de diâmetro e 6 mm de espessura, polidas e metalizadas com ouro. Utilizou-se nas análises um spot de ca. 25 μ m de diâmetro com um feixe de íon. Os procedimentos aplicados seguem os descritos em Compston *et al.* (1984), Stern (1998) e Williams (1998).

1.5.3 Tratamento dos dados U-Pb

Os resultados isotópicos U-Pb obtidos foram processados no *software* Isoplot 4.15 (LUDWIG, 2008) e estão apresentados sob a forma de histogramas de distribuição juntamente com o diagrama de densidade de probabilidade. Para a construção de histogramas foram utilizadas as razões de idades 207 Pb/ 206 Pb > 1Ga < 206 Pb/ 208 U e desconsideradas idades com discordância maior que 20% e Pb comum maior que 3% Os erros individuais e as razões Th/U foram consideradas para interpretação dos dados.

1.5.4 <u>Análises Lu-Hf por espectrômetro de massa multi-coletor com plasma induzido (LA-MC-ICP-MS)</u>

Os isótopos de Lu-Hf medidos no MULTILAB-UERJ através do equipamento Thermo Finningan Neptune acoplado ao Excimer Laser 193 µm (Photon – Machines Inc. Modelo ATLEX SI). As análises foram pontuais, realizadas no mesmo local das análises U-Pb com um *spot* de 50 µm de tamanho. O fluxo de gás Hélio utilizado para o carreamento das amostras no laser ablation foi de 0.800 m/l enquanto o fluxo de gás Argônio utilizado no ICP-MS foi de 0.989 m/l. A sequência de aquisição de dados é iniciada com análise do branco seguido pelas análises dos padrões GJ1 e Mud Tank, respectivamente. Após estas leituras são analisados 10 grãos de amostras desconhecidas, finalizando com análises dos padrões 91500 e GJ1 e do branco nesta ordem. Após as aquisições dos dados foi feito o tratamento utilizando uma planilha Excel adaptada pelo próprio laboratório para correções isobáricas do método no laboratório.

A metodologia Lu-Hf realizada na University of Notre Dame pela sistemática LA-ICP-MS, através do espectômetro de alta resolução do tipo NuPlasma II (Nu Instruments) acoplado ao laser UP193 (New Wave Research). O diâmetro do *spot* do laser usado foi de 50 µm de diâmetro, com ablação em 60s após um background de 30s, energia em 78%, taxa de repetição de 5 Hz, densidade de energia em 11 J/cm². Foram adquiridos os seguintes isótopos: ¹⁷⁶Hf, ¹⁷⁵Lu, ¹⁸⁰Hf, ¹⁷¹Yb, ¹⁷³Yb, ¹⁸¹Ta e ¹⁸²W. As correções realizadas e mais detalhes da metodologia podem ser vistos em Simonetti e Neal (2010). As medidas foram aferidas pelos padrões Plesovice, BR266 e 91500. A interferência de massa de ¹⁷⁶Lu com ¹⁷⁶Hf foi corrigida usando a razão ¹⁷⁶Lu/¹⁷⁵Lu de 0,02655 (União Internacional de Química Pura e Aplicada 1998) e a constante de decaimento de ¹⁷⁶Lu de 867 × 10⁻¹¹ (SÖDERLUND *et al.*, 2004). As razões condríticas usadas para cálculos de ɛHf foram ¹⁷⁶Hf/¹⁷⁷Hf = 279718, ¹⁷⁶Lu/¹⁷⁷Hf = 0,0336 (BOUVIER *et al.*, 2008), e as razões atuais do manto empobrecido de ¹⁷⁶Hf/¹⁷⁷Hf = 0,28325 e ¹⁷⁶Lu/¹⁷⁷Hf = 0,0388 (GRIFFIN *et al.*, 2000; atualizado por ANDERSEN *et al.*, 2009)

2 ZIRCÃO METAMÓRFICO

A investigação de idades isotópicas e observação de aspectos de texturas em cristais de zircão em terrenos de alto grau metamórfico, podem fornecer idades de protólitos, identificar fases de recristalização, cristalização em processos de fusão parcial, assim como limitar idades de deformação e metamorfismo correlacionados à processos de orogênese. Sendo assim, é necessário compreender o comportamento do zircão sob metamorfismo de fácies anfibolito superior e granulito e as respectivas idades que documentam o tempo de eventos metamórficos, deformação e anatexia. É importante reconhecer a alteração do zircão pelos fluídos hidrotermais e/ou fluídos anatéticos, durante o metamorfismo de alto grau para corretamente interpretar as análises do sistema isotópico U-Pb (GEISLER *et al.*, 2007; HOSKIN e BLACK, 2000).

O zircão (ZrSiO₄) é um nesossilicato do sistema cristalino tetragonal, de hábito prismático; densidade 3,8 a 4,86 g/cm³; dureza 6,5 e 7,5, apresenta-se incolor e em variadas colorações das quais as mais comuns são amarelo, vermelho e marrom. Este mineral denota alta resistência sob condições de 1000 °C e 20 Kbar e por isso permite registrar informações geocronológicas baseadas no decaimento de U e Th para Pb. O mineral em questão pode formar-se por cristalização a partir de fluídos ou magmas e por meio de reações metamórficas, discutidas amplamente na literatura (VAVRA *et al.*, 1999; HOSKIN e BALCK, 2000; RUBATTO, 2002; RUBATTO e HERMANN, 2007; HARLEY *et al.*, 2007; RUBATTO, 2017). A cristalização por meio de reações metamórficas envolve a quebra de outros minerais portadores de Zr, que ocasionam o crescimento de bordas neoformadas ao redor de grãos de zircão pré-existentes e/ou novos grãos em fase de retrometamorfismo (FRASER, 1997; BEA *et al.*, 2006; HARLEY *et al.*, 2007).

A recristalização de cristais de zircão consiste em processos secundários que promovem feições irregulares e descontínuas como reentrâncias e limites sinuosos entre domínios alterados e preservados, e mudança textural primária caracterizada por feições sobrepostas. Estas feições são responsáveis pelas redefinições de idades U-Pb, que independem do grau do dano da radiação do cristal, podem datar o evento de recristalização, e é possível ser próximo à idade da cristalização primária ou refletir uma idade posterior, relacionada ao metamorfismo (PIDGEON, 1992). Aspectos texturais no cristal de zircão de metamorfismo associado a alta temperatura são ocasionados por mecanismos que causam reequilíbrio físico-químico, induzindo ou não defeitos cristalinos por radiação, em um

processo gradual que migra da borda para o núcleo do cristal, em interação com os fluídos aquosos (HOSKIN e BLACK, 2000; GEISLER *et al.*, 2007; RUBATTO e HERMANN, 2003; RUBATTO *et al.*, 2008).

Geisler *et al.* (2007) definiram que processos de reequilíbrio em grãos de zircão estão associados a mecanismos de dissolução-reprecipitação e difusão-reação, comuns em condições metamórficas. Estes mecanismos acarretam ao reequilíbrio químico do zircão cristalino em solução-sólida durante a interação com fluídos aquosos ou anatéticos, assim causam mudanças na textura interna e na composição deste mineral, amplamente abordados na literatura (*e.g.*, VAVRA *et al.*, 1996; SCHALTEGGER *et al.*; 1999; HOSKIN e BLACK, 2000; RUBATTO, 2002).

Harley et al. (2007) destacam o comportamento do zircão no decorrer de possíveis etapas evolutivas de um orógeno (Figura 2) e consideram a importância de combinar dados isotópicos U-Pb, análise de texturas e a composição química deste mineral (baseada em elementos-traço e razões Th/U) para definir a melhor abordagem da história térmica de terrenos de alta temperatura. A evolução do orógeno e o subsequente comportamento do zircão envolve fases progressivas que podem cristalizar este mineral e recristalizá-lo em ampla faixa de pressão e temperatura, quando se alcança o pico metamórfico (RUBATTO *et al.*, 1999; HOSKIN e BLACK, 2000), como também forma-se em sucessivos processos retrogradantes, com diminuição de temperatura (RUBATTO *et al.*, 2001).

3.1 Morfologia e características internas de zircão modificado

Somente a observação da morfologia externa do zircão não é suficiente para o entendimento da natureza do cristal; torna-se importante a utilização de técnicas adequadas como o imageamento, através de luz catodoluminescência (CL) e elétrons espalhados (BSE), com o objetivo de entender texturas internas, reconhecer núcleos detríticos e domínios modificados em possíveis eventos de metamorfismo.

Legenda: (A) indica a fusão parcial durante o aquecimento, este mecanismo é causado por dissolução de grãos mais finos pré-existentes e posteriormente precipita como sobrecrescimento em grãos remanescentes (B). No resfriamento, após o pico metamórfico, ocorre a formação de novos grãos influenciados pela presença de fluídos/magmas (C, D). Cristalização de um novo zircão ou cristalização em bordas de grãos pré-existentes, por reações de liberação de Zr de outros minerais, como por exemplo, granada (Grt) e rutilo (Rt) (E). Fusões parciais tardias podem cristalizar novos grãos de zircão (F), assim como fluídos liberados em fase final do metamorfismo, causam recristalização de zircão existente (G). Recristalização em domínios no zircão podem ocorrer em qualquer fase durante o metamorfismo, e podem dominar na região de pico próximo. Fonte: Harley *et al.* (2007).

Corfu *et al.* (2003) exemplificam uma ampla variedade morfológica e textural de cristais de zircão e abordam as respectivas relações com os processos de formação e modificação. Dentre eles, estão os desenvolvimentos de bordas neoformadas que envolvem núcleos antigos e são as evidências mais representativas do novo crescimento durante o metamorfismo, ou podem representar assimilação em fases finais de cristalização magmática. Os núcleos podem indicar origem detrítica (Figura 3A); ou núcleos gerados em um novo magmatismo, que apresentam sobrecrescimento de bordas geometricamente irregulares que truncam o zonamento interno (Figuras 3B e 3C). O desenvolvimento de zonamento, a partir de um grão já pré-existente, pode indicar reabsorção profunda e localmente revelar o crescimento de um novo cristal com orientação cristalográfica (Figura 3C). Os sobrecrescimentos podem apresentar volumes consideráveis, mas também passíveis de

salientar a presença de núcleo menor, como resultado, principalmente, da dissolução parcial de grãos maiores (VAVRA *et al.*, 1996).

Figura 3 - Morfologia e texturas internas em grãos de zircão.

Legenda: Imagens extraídas de Corfu, et al. (2004) (A-D e G). Sobrecrescimento marcado por zonamento: (A) núcleo detrítico, permite indicar a fragmentação no processo de transporte sedimentar; (B) e (C) núcleos de xenocristais ígneos. Textura convoluta associada a estágio pós ou tardio-magmático (D, Corfu, et al., 2003); zonamento complexo ocasionado por recristalização (E, Harley et al., 2007); F) zircão recristalizado em metamorfismo de fácies granulito, apresentando núcleo herdado e zona convoluta, que aponta idade U-Pb redefinida (Hoskin e Schaltegger (2003); G) zircão recristalizado no metamorfismo de alto grau com textura caótica, assim como reentrâncias que migram da bora para o núcleo; H) zircão de hábito euédrico denominado "soccer-ball" por Harley et al., 2007. Fonte: A autora, 2018.

Estruturas complexas causadas pela modificação de texturas primárias e/ou crescimento de um novo grão de zircão estão relacionadas às fases finais em processos de cristalização magmática, resfriamento de corpos intrusivos e eventos metamórficos. Tais circunstâncias podem gerar domínios irregulares homogêneos (reabsorção) e texturas convolutas ou sinuosas, consideradas texturas caóticas nas quais os zonamentos planares são interrompidas por texturas homogeneizadas (Figuras 3D a 3G). Domínios no cristal que exibem texturas irregulares e homogêneas associadas a recristalização, um processo promovido pela percolação de fluídos que expulsa elementos-traços, que muda a composição para mais próximo do zircão puro, e aparentemente concentra as impurezas em zonas convolutas ricas em elementos-traço (CORFU *et al.*, 2003).

Em terrenos que apresentam metamorfismo de alta temperatura é comum a identificação de cristais euédricos equidimensionais, denominados soccer-ball (Figura 3H),

que estão relacionados ao crescimento durante anatexia, no caminho progradante (VAVRA *et al.*, 1996) ou pela dissolução de grãos muito finos dissolvidos dentro de um fluído a partir de núcleos sobreviventes (VAVRA *et al.*, 1999).

Hoskin e Black (2000) caracterizam texturas secundárias em cristais de zircão de protólito ígneo, metamorfisados em fácies granulito, relacionadas a recristalização parcial no estado sólido, através da migração de elementos nas extremidades dos grãos por defeito de difusão. As texturas são diacrônicas, com limites bem definidos para os processos de recristalização e interrompem texturas primárias. O mecanismo caracteriza a presença de uma área recristalizada transgressiva associada a uma frente de recristalização (na qual os elementos terras raras são acumulados), rumo ao centro do grão, desta forma, torna-se a frente de recristalização enriquecida e as áreas recristalizadas empobrecidas (Figura 4). Pidgeon (1992) e Pidgeon *et al.* (1998) também discutem os estágios do desenvolvimento da textura localmente homogeneizada e as relações com os elementos-traço em protólitos ígneos, estas texturas são desenvolvidas por recristalização relacionadas a prováveis presença de fluídos aquosos derivados de magmas quentes.

2.2 Assinatura química de zircão em metamorfismo de alto grau

Critérios químicos (elementos-traço, assim como concentrações de Th e U) podem relacionar composição do zircão a assembleias metamórficas, sendo particularmente úteis para a interpretação de idades por meio de sistemas isotópicos (Pb) (RUBATTO, 2017). A assinatura química de é uma ferramenta relevante para petrogênese metamótfica, além de fornecer detalhes sobre protólitos, deformação, evolução de temperatura, processos fluídicos e auxiliar no entendimento de evolução crustal. A partição dos elementos-traço na composição do zircão, particularmente os elementos terras raras (ETR) médios e os pesados, coexistindo junto a outros minerais metamórficos, conferem ao zircão a característica de vincular as idades U-Pb às condições petrogenéticas (FRASER *et al.*, 1997; RUBATTO, 2002; HOSKIN e SCHALTEGGER, 2003; BEA *et al.*, 2006; RUBATTO e HERMAN, 2007; RUBATTO 2017).

Figura 4 – Imagens de catodo luminescência e as correspondentes ilustrações esquemáticas mostrando as estruturas internas de recristalização de zircão.

Legenda: A mancha de cor preta indica a região com textura de caráter transgressivo, que ocorrem nas terminações dos cristais ou migram para as porções internas; seguida por uma frente de recristalização, representada pela cor cinza (acúmulo de elementos) e regiões as regiões com texturas primárias. P - protólito ígneo; C1 e C2 - núcleos herdados. Fonte: Hoskin e Black, 2000.

As propriedades físicas e químicas do zircão e sua capacidade de incorporar e reter íons são determinadas pela sua estrutura cristalina. O sobrecrescimento de zircão em equilíbrio com fusão parcial se assemelha ao zircão magmático em termos de alto teor de Y, Hf e P; com padrões de ETR caracterizados por anomalia positiva de Ce, anomalia negativa de Eu e padrões íngremes de ETR pesados (ETRP); também se definem por baixa razão Th/U (inferiores a 0,1) comparados aos cristais magmáticos (HOSKIN e IRELAND, 2000; RUBATTO, 2002; HOSKIN e SCHALTEGGER, 2003).

Rubatto (2002) obteve assinatura química em domínios de zircão metamórfico em fácies eclogito atribuídos à formação concomitante de granada sob condições de subsolidus, no qual o particionamento de ETRP de zircão/granada indica que o zircão metamórfico se formou em equilíbrio com a borda da granada, ou seja, no pico metamórfica na fácies eclogito, e as reduzidas anomalias em Eu estão relacionadas as assembleias livres de feldspato (Figura 5A; SCHALTEGGER et al., 1999; RUBATTO, 2017). Em fácies granulito o zircão metamórfico cresce em anatexia adquirindo forte anomalia de Eu, assim como na fácies anfibolito, apontando o seu crescimento a uma assembleia rica em fases de baixos a médios ETR (Figura 5B e 5C).

Figura 5 - Padrões de ETR representativos dos tipos de zircão e outros minerais relevantes, normalizados para os valores de condrito.

Legenda: O zircão magmático é plotado para referência em todos os diagramas. Minerais relavantes contendo ETR, coexistindo com o zircão metamórfico em fácies eclogito (A) e granulito (B) e anfibolito (C), são representados nos diagramas descritivos para ilustrar a competição de ETR de zircão metamórfico e das demais minerais nas assembéias.

As razões Th/U são comumente usadas para identificar a formação de zircão metamórfico e magmático. Rubatto e Gebauer (2000) identificaram baixas razões Th/U (inferiores a 0,1) em domínios de sobrecrescimento em grãos de zircão (comparados aos núcleos dos protólitos ígneos), sob condições de baixa temperatura e alta pressão; as baixas razões foram atribuídas ao mecanismo de lixiviação de Pb, U e Th no metassomatismo. Rubatto (2002) associou as baixas razões Th/U em sobrecrescimentos metamórficos de zircão oriundo de paragnaisses em fácies eclogito e granulito, como sendo a única característica química que distingue o zircão metamórfico do ígneo. O zircão magmático apresenta valores da razão Th/U > 0,1, a menos que tenham sido submetidos a alteração, como demonstrado por Belousova *et al.* (2002) e Grimes *et al.* (2015).

Baixas razões Th/U (< 0,1) também foram encontradas por Hoskin e Black (2000) e Schaltegger *et al.* (1999) para cristais recristalizados em alto grau metamórfico, enquanto Vavra *et al.* (1999) obteve altos valores desta razão para grãos de zircão recristalizados de rochas metassedimentares em fácies granulito. Pidgeon (1992) também detectou domínios de cristais recristalizados com razão Th/U superior a 1,0, porém ainda menores comparados as razões das porções com textura primária (zonamento).

Vavra *et al.* (1999) associaram a morfologia, textura e grau metamorfico às razões Th/U de cristais de zircão recristalizados em alto grau metamórfico. Resumidamente, as observações consistiram em: *i*) baixas razões Th/U em sobrecrescimento de grãos prismáticos em fácies anfibolito alto a granulito; *ii*) os grãos prismáticos curtos/equidimensionais, de fácies metamórfica intermediária, obtiveram valores medianos dessas razões; *iii*) enquanto os sobrecrescimentos isométricos, desenvolvidos em fácies anfibolito, apresentaram altas razões Th/U (Figura 6). Nesta mesma referência, foram relacionados mecanismo de perda de Pb e alteração (observados por meio de interferências de CL), no qual apontaram que zircão com domínios de alta luminescência estariam relacionados à expulsão de concentrações de Th e U, em comparação aos domínios de baixa luminescência. Rubatto e Gebauer (2000) também apontaram a redução de U nos domínios de alta luminescência, independentes do tipo de rocha e condições de formação do zircão.

O processo de recristalização de grãos primários em alto grau metamórfico tem efeito de abolir do retículo cristalino constituintes não essenciais. Sendo assim, o zircão modificado traz consequências para interpretação, uma vez que há perda de componentes essenciais do sistema U-Pb. A composição deste mineral, formado sob metamorfismo, também é relevante para identificar o seu equilíbrio junto a outros minerais indicativos de condições metamórficas específicas (RUBATTO, 2002).

Legenda: Barras de escala: 30 µm. Grãos de metapelito em fácies granulito: (A) núcleo preservado e ampla obliteração de fraca luminescência; (B) prisma curto com desenvolvimento de pequenas faces com alta luminescência em setores zonados alterados (ZCA); (C) sobrecrescimento de hábito prismático com zonamento bem marcado, a partir de gão pré-existente, com forte interferência de CL no estágio do sobrecrescimento isométrico. (D) e (E) sobrecrescimento isométrico de grande volume e núcleo detrítico arredondado, em cristais de lente de meta-arenito. (F) zircão de hábito prismático curto com pequenas faces, apresenta sobrecrescimento com padrão de alteração superfícial (SCA) marcado por alta luminescência, proveniente de lente metapelítica. Cristais de protólito ígneo: (G) fortemente corroído e textura primária completamente apagada (SCA) e alteração maior no sobrecrescimento marcado, apresentam discretos sobrecrescimentos isométricos e alguma porção do zonamento alterados (ZCA). Fonte: Modificado pela autora a partir de Vavra *et al.* (1999).

O reconhecimento das modificações e formações de cristais de zircão em rochas submetidas a metamorfismo de alto grau, podem dar informações sobre a diminuição de temperatura, tempo e taxas de exumação das rochas crustais subductadas (RUBATTO *et al.*, 2007, RUBATO e HERMAN, 2007; RUBATTO, 2017). Rubatto (2017) caracteriza a petrogênese de rochas metamórficas e a presença de zircão em principais ambientes/processos que correspondem, aproximadamente, ao aumento do grau metamórfico: *i*) diagênese e metamorfismo de baixa T; *ii*) substituição ou dissolução-precipitação de zircão no subsolidus, na presença de fluidos aquosos; *iii*) zircão em sistemas metamórficos dominados por fusão; e *iv*) reações de formação de zircão envolvendo outros minerais sob condições de fácies anfibolito a granulito. Exemplos de textura e as categorias dos ambientes/processos citados anteriormente dos tipos comuns de zircão sob condições metamórficas estão representados na Figura 7.

Figura 7 – Imagens de cristais de zircão de diferentes estágios metamórficos.

Legenda: Imagens backscatter (A, B e N) e CL para os demais, de grãos de zircão de diferentes graus metamórficos ilustrando o processo de subducção, com as variadas condições de pressão e temperatura, representadas pelo diagrama de fácies metamórficas no centro da figura. A barra de escala horizontal em todas as imagens é de 20 mícrons. Fonte: Rubatto, 2017.

Os trabalhos citados nesta revisão mostram a complexidade das texturas secundárias e diferentes composições químicas baseadas em mecanismos de alteração, e a subsequente implicação nos resultados do sistema U-Pb, em grãos de zircão que podem representar uma complexa mistura de idades. No desenvolvimento desta pesquisa foram obtidas, para algumas amostras de rochas metassedimentares, imagens de CL muito complexas em cristais de zircão que forneceram idades coerentes com o metamorfismo, incluindo a progressão, pico térmico e retrogressão, e também grãos que apresentam idades resetadas. Estes registros incluem texturas que indicam intensos processos de recristalização e sobrecrescimento em cristais pré-existentes. Cristais de zircão com texturas modificadas dificultam a separação entre idades de cristais detríticos (idade mínima de deposição) e metamórficos.

3 CONTEXTO REGIONAL

O embasamento cristalino da região sudeste brasileira está localizado na Província Mantiqueira (Figura 8; ALMEIDA *et al.*, 1977, 1981), que representa um sistema orogênico do Neoproterozoico, produto da amalgamação do Supercontinente Gondwana. A Faixa Ribeira constitui um dos orógenos do Sistema Orogênico da Província Mantiqueira, resultado da colisão entre o paleocontinente São Francisco, micro-continentes, arcos magmáticos e porções cratônicas africanas. A evolução tectônica da Faixa Ribeira é complexa, evolvendo processos acrescionários resultantes do fechamento de oceanos, que sucederam no desenvolvimento de arcos magmáticos seguidos por três etapas colisionais em ca. 620-605 Ma, 605-565 Ma e 535-510 Ma. (HEILBRON *et al.*, 1995; 2000; 2004a; 2004b; 2008; 2017).

Legenda: Fragmentos cratônicos: CLA, Luís Alves; CRP, Rio de la Plata.1- bacias sedimentares pós-Cambriano; 2-4 terrenos da Faixa Ribeira, 2- Terreno Apiaí, 3- Terreno Curitiba, 4-Terreno Oriental; 5terrenos Ocidental, Paraíba do Sul e Embú; 6-Faixa São Gabriel; 7-Faixa Brasília; 8-cobertura cratônica; 9embasamento do Cráton São Francisco e outros crátons. Cidades: RJ-Rio de Janeiro; SP-São Paulo; CR-Curitiba; PA-Porto Alegre).

Fonte: Heilbron et al. (2008).

As pesquisas geológicas de detalhe nas regiões sul e sudeste do Brasil vem acontecendo por mais de 60 anos, através das várias instituições de ensino superior e parcerias com outros órgãos públicos e instituições privadas. Nos últimos 30 anos, o grupo de pesquisa da Faculdade de Geologia TEKTOS/UERJ, vem realizando estudos nas regiões que compõem as faixas móveis Ribeira Central e Brasília, assim como na zona de interferência entre elas, e mais recentemente na continuidade para a Faixa Araçuaí. Tais trabalhos apresentam consideráveis volumes de publicações, atuando na temática da evolução do sudeste brasileiro e de sua correlação com os terrenos da África Ocidental, no âmbito do Supercontinente Gondwana. Os trabalhos deste grupo enfocam o estudo de processos tectônicos que resultaram de sua amalgamação entre o Neoproterozoico e Cambriano, assim como na etapa do *break-up* entre o Eo-Cretáceo até os dias atuais.

3.1 Compartimentação tectônica do Faixa Ribeira Central

A compartimentação tectônica adotada neste trabalho tem como ponto de partida os estudos realizados por Heilbron *et al.* (2000, 2004), que subdividiram a Faixa Ribeira Central (FRC) em diferentes terrenos tectônicos estruturados como escamas crustais empurradas em direção ao Cráton São Francisco (CSF) (Figura 9). A sistemática de trabalho destes autores é resultado do mapeamento, em cada um destes terrenos, de diferentes associações litológicas, incluindo: unidades do embasamento paleoproterozoico; sucessões mesoproterozoicas de bacias intracratônicas; sucessões metassedimentares que retratam bacias precursoras neoproterozoicas e/ou sin-orogênicas, além de rochas de arco magmático e granitóides sin a pós-colisonais.

Os quatro terrenos tectono-estratigráficos que compõem o segmento central do Orógeno Ribeira foram definidos pelos autores citados acima como produtos de uma estruturação oblíqua. Esses terrenos apresentam trend estrutural NE-SW e são delimitados por descontinuidades estruturais nas formas de zonas de cisalhamento dúcteis e falhas de empurrão, tendo sido amalgamados em vários episódios colisionais junto a borda SE do CSF (Figuras 9 e 10). De NW para SE, esses terrenos são abaixo sumarizados:

Figura 9 - Mapa tectônico do segmento central do Sistema Orogênico Mantiqueira.

Legenda: 1- Bacias sedimentares fanerozoicas; 2-Plútons alcalinos do Cretáceo Superior e Paleógeno. Faixa Brasília Meridional: 3- Nappe Guaxupé e 4- Nappe Passos, Sistema de Nappes Andrelândia; Cráton São Francisco (CSF): 5-Embasamento arqueano paleoproterozoico; 6-Cobertura neoproterozoica-Grupo Bambuí; 7-Sequências metassedimentares mesoproterozoicas e neoproterozoicas autóctones e paraautóctones; Faixa Ribeira: TOC-Terreno Ocidental: 8-Domínio Andrelândia; 9-Domínio Juiz de Fora (DJF); TC-Terreno Central: 10-Domínio Socorro; 11-Domínio Apiaí; 12-Domínio Embu; 13-Terreno Paraíba do Sul (PS); 14-Domínio Cambuci (CAM); TOR-Terreno Oriental:15 -Arco Magmático Rio Negro; 16- Domínio Costeiro; 17-Domínio Italva; 18- TCF-Terreno Cabo Frio; CTB-Limite Tectônico Central (sutura da Faixa Ribeira).

Fonte: Heilbron et al. (2004).

Figura 10 – Seção estrutural composta do Orógeno Ribeira com a relação entre os diferentes terrenos e domínios estruturais.

Legenda: Terreno Ocidental (1-6): 1 a 3- Megassequência Andrelândia nos domínios Autóctone, Andrelândia e Juiz de Fora; 4 a 6- Associações do embasamento (complexos Barbacena, Mantiqueira e Juiz de Fora); Terreno Paraíba do Sul (7-8): 7- Grupo Paraíba do Sul; 8- Complexo Quirino; Terreno Oriental (9-13): 9- Domínio Cambuci; 10- Domínio Italva, 11- Grupo São Fidélis, 12-Arco Magmático Rio Negro; 13- Granitos colisionais; Terreno Cabo Frio (14-15): 14-sequências Búzios e Palmital; 15-Complexo Região do Lagos.

Fonte: Heilbron et al. (2004).

O Terreno Ocidental constitui a margem sudeste do CSF retrabalhada durante o Neoproterozoico. Engloba desde as associações de rochas do embasamento com idades do Paleoproterozoico ao Arqueano, sucessões de unidades siliciclásticas metamorfisadas e granitóides sin-colisionais brasilianos. O metamorfismo varia de baixo a alto grau, em regime de pressão alta a intermediária. As sucessões metassedimentares vêm sendo atribuídas a uma extensa margem passiva neoproterozoica (Bacia Andrelândia, RIBEIRO *et al.*, 1995; PACIULLO *et al.*, 1997; 2000, TROUW *et al.*, 2000; HEILBRON *et al.*, 2004), com registros de inversão tectônica no topo da pilha, controlada pelo avanço da frente orogênica, que evidencia a migração térmica superimposta, em direção ao CSF (CAMPOS NETO *et al.*, 2004).

O Terreno Ocidental foi subdividido nos seguintes domínios estruturais (HEILBRON et al., 2001; 2004): Autóctone, Andrelândia e Juiz de Fora, que exibem diferentes associações de embasamentos. No Domínio Autóctone afloram uma faixa do tipo greenstone belt e granitóides paleoproterozoicos de arco magmático do Cinturão Mineiro, além de ortognaisses do Complexo Mantiqueira (TEIXEIRA et al., 2015; HEILBRON et al., 2010). Já no Domínio Andrelândia ou Domínio III de Ribeiro et al. (1990; 1995), ocorrem ortognaisses migmatíticos de idade ca. 2,2-2,1 Ga e rochas anfibolíticas, incluídas no Complexo Mantiqueira, de metamorfismo predominantemente com paragêneses indicativas de fácies anfibolito superior, embora ocorram corpos isolados de rochas granutilíticas (NOCE et al., 2007a; 2007b; HEILBRON et al., 2000, 2003; DUARTE et al., 2004). O Domínio Juiz de Fora, por sua vez, expõe um conjunto de ortognaisses paleoproterozoicos com metamorfismo do Brasiliano de fácies granulito, incluídos no Complexo Juiz de Fora, com idades de cristalização entre ca. 2,2 e 1,7 Ga (NOCE et al., 2007a; 2007b; HEILBRON et al., 2001). Os efeitos deformacionais relacionados aos episódios colisionais em direção ao CSF apontam uma superposição do metamorfismo referente à Faixa Brasília (ca. 640-610 Ma) e de pelos menos três episódios colisionais relacionados à evolução da Faixa Ribeira, em ca. 620-605 Ma, 605-565 e 535-510 Ma (HEILBRON et al., 2008; 2017; BENTO DOS SANTOS, 2015).

No contexto da Faixa Ribeira Central, o Terreno Ocidental é separado do Terreno Oriental por uma zona de sutura, representada por uma zona de cisalhamento de mais de 200 km de extensão com mergulho para NW ou SE, denominada de Contato Tectônico Central – CTB (ALMEIDA *et al.*, 1998).

O Terreno Paraíba do Sul (ou *Klippe* Paraíba do Sul) é definido como uma escama de empurrão com estrutura sinformal que cavalga o Domínio Juiz de Fora,

unidade estrutural do topo do Terreno Ocidental (Figuras 9 e 10). Esta unidade tectônica é composta por ortognaisses de fácies anfibolito superior, com idades do Paleoproterozoico e herança arqueana, denominado Complexo Quirino (VALLADARES *et al.*, 2002; 2010; TAVARES *et al.*, 2010), além de uma sequência metassedimentar rica em lentes de rochas calcissilicáticas, mármores dolomíticos e gonditos (TUPINAMBÁ *et al.*, 2007; HEILBRON *et al.*, 2004). A unidade metassedimentar apresenta paragêneses metamórficas também indicativas para fácies anfibolito superior. Relacionam-se a este terreno granitóides pré-colisionais (Complexo Marceleza, com idades de cristalização ca. 600-618 Ma, CORRALES, 2015), granitóides sin e pós-colisionais (VALERIANO *et al.*, 2011; HEILBRON *et al.*, 2000, 2004, 2008).

A sul, o Terreno Paraíba do Sul faz contato com o Terreno Embu (Figura 9), a partir da região limítrofe entre os estados do Rio de Janeiro e São Paulo, marcado por uma zona de cisalhamento destral (CAMPOS NETO, 2000; HEILBRON *et al.*, 2004; 2008). O Terreno Embu compreende associações de ortognaisses paleoproterozoicos, granitos e associações metassedimentares. Dados geocronológicos apontam que ambos os terrenos colidiram com o CSF em ca. 620-580 Ma (HEILBRON *et al.*, 2008). Trabalhos mais recentes de Trouw *et al.* (2013) sugerem que estas duas unidades poderiam constituir um único bloco tectônico.

Segundo a compartimentação do modelo tectônico adotado, o Terreno Oriental compreende os domínios estruturais: Italva, Cambuci e Costeiro. O Domínio Italva é caracterizado como uma klippe sinformal disposta sobre os domínios Costeiro e Cambuci e representa a escama basal do Terreno Oriental (Figura 10). Este domínio apresenta associações vulcano-sedimentares com mármores, metamorfisados em fácies anfibolito alto, bem como ortogansisses foliados do arco magmático juvenil Serra da Prata, com idades em ca de 856-840 Ma (PEIXOTO e HEILBRON, 2010; PEIXOTO et al., 2017).

O Domínio Cambuci inclui uma sucessão de rochas vulcano-sedimentares metamorfisadas em fácies granulito denominada Grupo Bom Jesus de Itabapoana, invadidas por uma sequência de rochas magmáticas intrusivas (TUPINAMBÁ *et al.*, 2007; HEILBRON e MACHADO, 2003). Destaca-se por uma associação de rochas com assinatura de arco cordilheirano do Neoproterozoico, correlacionada a outros arcos dos orógenos Ribeira e Araçuaí (Complexo Serra da Bolívia, HEILBRON *et al.*, 2013).

Mais recentemente, alguns autores sugeriram a possibilidade de correlacionar o Domínio Cambuci e o Arco Serra da Bolívia (HEILBRON e MACHADO, 2003) com o Domínio Interno de Tedeschi *et al.* (2016) que inclui o Arco Rio Doce, já na conexão com a Faixa Araçuaí. Os contatos entre estes domínios estruturais estão materializados por zonas de cisalhamento oblíquas, transpressivas destrais.

O Domínio Costeiro inclui rochas do Arco Magmático Rio Negro, com ca. 790 Ma e 637-620 Ma (TUPINAMBÁ *et al.*, 2000; 2012; HEILBRON e MACHADO, 2003) intrusivas em uma sequência metassedimentar metamorfisada em fáceis granulito representada pelo Grupo São Fidélis, além de inúmeros corpos de rochas granitóides sina pós- colisionais, com idades de cristalização entre 605 e 480 Ma (MACHADO *et al.*, 1996; HEILBRON e MACHADO, 2003; VALERIANO *et al.*, 2011). As associações metassedimentares do Grupo São Fidélis são constituídas por gnaisses bandados gnaisses kinzigíticos com intercalações de lentes quartzíticas, calcissilicáticas e raras ocorrências de mármore.

Os três terrenos citados acima (Ocidental, Oriental e Paraíba do Sul) foram amalgamados entre 620 e 565 Ma, em dois episódios colisionais ao redor de 620-605 Ma ca. 605-565 Ma (HEILBRON *et al.*, 2017, BENTO DOS SANTOS *et al.*, 2010), incluídos previamente no estágio denominado por Heilbron *et al.* (2004) como Estágio Colisional II. Estes episódios colisionais resultaram na progressiva amalgamação dos terrenos Paraíba do Sul e Oriental junto à borda S-SE do paleocontinente São Francisco. Considera-se como um dos registros da subducção de litosfera oceânica neste processo de convergência, a presença de inúmeros corpos granitóides com assinaturas de arcos magmáticos no Terreno Oriental (Serra da Prata e Complexo Rio Negro) e poucos no Terreno Paraíba do Sul (Complexo Marceleza).

Já o Terreno Cabo Frio foi o último a ser amalgamado à Faixa Ribeira (Figuras 9 e 10), ao redor de 520 Ma. Está sobreposto ao Terreno Oriental por uma falha de empurrão de baixo ângulo, complexamente redobrada. O embasamento deste terreno (Complexo Região dos Lagos) compreende associações de ortognaisses cálcio-alcalinos de idades U-Pb interpretadas como idade cristalização em 2,0 – 1,95 Ga (Schmitt, 2001; Schmitt *et al.*, 2004). A cobertura (Sucessão Búzios-Palmital) apresenta associações de paragnaisses com diferentes populações de zircão detrítico em ca 2,6 Ga, 2,0 Ga, 1,2 Ga, 1,0 Ga e 0,8 Ga (idades U-Pb por SHRIMP), obtidos por Schmitt *et al.* (2004) e Fernandes *et al.* (2015). Segundo estes autores as idades do Neoproterozoico obtidas, em torno de 620 Ma, são compatíveis com as idades de cristalização obtida para lentes anfibolítos a ca 604 Ma, foram interpretadas como idades máxima de sedimentação.

3.2 Contextualização das unidades metassedimentares da Faixa Ribeira Central no sistema orogênico e sedimentação da bacia precursora de margem passiva da paleoplaca São Francisco-Congo (Bacia Andrelândia)

Esta seção aborda a proveniência e o metamorfismo das unidades metassedimentares pertencentes ao Domínio Juiz de Fora/Terreno Ocidental da FRC, denominadas Grupo Raposos (equivalente distal do Grupo Andrelândia). Tal abordagem está registrada nos mapeamentos realizados por contratos entre a CPRM e CODEMIG junto à Universidades do Estado do Rio de Janeiro (UERJ), à Universidade Federal do Rio de Janeiro (UFRJ), e à Universidade Federal de Minas Gerais (UFMG). Neste caso, se faz necessário entender as sucessões na área-tipo, que são correlatas aos setores de maior grau metamórfico na Faixa Ribeira Central.

3.2.1 Sedimentação associada à margem sul do Cráton São Francisco-Congo

As sucessões siliciclásticas da borda sul do Cráton São Francisco representam as sucessões do Grupo Andrelândia que afloram no Terreno Ocidental, no domínio autóctone e nos sistemas de *nappes* da Faixa Brasília (Figuras 10 e 11) (HEILBRON *et al.*, 2004; 2008, 2017). Neste setor, os estudos de proveniência (TROUW *et al.*, 2000; VALERIANO *et al.*, 2004; VALLADARES *et al.*, 2004; 2008; CAMPOS NETO *et al.*, 2004; 2007; SANTOS, 2011; CAMPOS NETO, 2011; BELÉM *et al.*, 2011; WESTIN e CAMPOS NETO, 2013, WESTIN *at al.*, 2016; COELHO *et al.*, 2017; FRUGIS *et al.*, 2018) sugerem uma interpretação de depósitos plataformais marinhos que gradam para uma porção distal profunda.

Os resultados das pesquisas apontadas acima serão discutidos mais adiante. Tais estudos envolvem vastas informações isotópicas U-Pb em minerais acessórios (como monazita e zircão), dados Lu-Hf, Sm-Nd, química mineral e rocha total. Os métodos não só contribuem para o entendimento de proveniência, mas também para a caracterização de eventos metamórficos e idades de cristalização de rochas magmáticas.

Figura 11 - Mapa geológico da extremidade sul do Orógeno Brasília.

Legenda: (a) Mapa geológico da extremidade sul do Orógeno Brasília (modificado de Trouw et al., 2000 e Ribeiro et al., 2003). Legenda: Megassequência Andrelândia: Sequência Carrancas (1-4) 1+2 - paragnaisse com intercalações de anfibolito, quartzito e xisto; 3 – mica verde quartzito; 4 - filito/xisto cinzento, com quartzitos subordinados; Sequência Rio do Turvo (5-6) 5 - biotita filito/xisto fino; 6 – biotita xisto/gnaisse grosso, com intercalações de anfibolito, quartzito, gondito e rochas cálcio-silicáticas; ga - granitos anatéticos; gn – Nappe Guaxupé; mc - Megassequência Carandaí: sequências Barroso e Prados; dl - Delta do Lenheiro: Sequência Lenheiro; pt – Plataforma Tiradentes: sequências Tiradentes, São José e Tejuco. Associações do embasamento pré-1,7 Ga: I - Faixas Greenstone; II – Complexo Gnáissico, Gr -Granitóides, Mg - Metagabro, Ms - Supergrupo Minas, Dc - Diorito Capivari, Gp - Gnaisse Piedade, Gm -Gnaisse Sienítico Matola; (b) Domínios autóctone (I) e alóctones (II e III) extraído de Ribeiro et al. (1995). Fonte: Heilbron *et al.* (2004).

3.2.1.1 Grupo Andrelândia (bacia precursora-margem passiva)

A sucessão metassedimentar Grupo ou Megassequência Andrelândia é interpretada como produto de sedimentação neoproterozoica de uma bacia de margem passiva denominada Bacia Andrelândia, desenvolvida às margens sul da paleoplaca São Francisco-Congo (RIBEIRO *et al.*, 1995; PACIULLO, 1997; SIJLLNER e TROUW, 1997; PACIULLO *et al.*, 2000; TROUW *et al.*, 2000). Os ciclos deposicionais caracterizados por Paciullo *et al.* (2000) apontam paleoambiente de plataforma rasa costeira com sistemas deposicionais transgressivo

e regressivo, incluindo sistema de leque submarino, assim como fases de magmatismo máfico refletindo a fase evolutiva da bacia.

A Bacia Andrelândia (RIBEIRO *et al.*, 1995) teve a definição tectônica detalhada por Paciullo (1997) e Paciullo *et al.* (2000) e com base nesses trabalhos foi redefinida como Megassequência Andrelândia por Trouw et al. (2000). Esta bacia recobre duas bacias sedimentares intracontinentais paleo-mesoproterozoicas (bacias São João dei Rei e Carandaí), desenvolvidas sobre um embasamento de idade superior a 1,8 Ga. Os autores citados acima apontam que a Bacia Andrelândia é preenchida por duas sequências deposicionais distintas que gradam lateralmente para sucessões distais, e retratam intercalações de fácies pelágicas, separadas por uma discordância interna regional: a) Sequência Carrancas está relacionada a uma extensa margem passiva, sobreposta a sedimentação paleoproterozoica (Complexo São Vicente); b) no topo a Sequência Serra do Turvo, associada a uma plataforma distal, com fluxos de correntes e turbidíticas (Figuras 11 e 12).

SEQUÊNCIA	SERVER DO JUNO		$\langle \rangle$	ASSOCIAÇÕES DE LITOFÁCIES 5 E 6 (5) biolita xistos/gnaisses finos (6) biolita xistos/gnaisses grossos, com intercalações de rochas cálcio-silicáticas e anfibolitos (7)	Glácio-marinho Fundo marinho	Fase Margem Co
SEQUÊNCIA CARRANCASI				ASSOCIAÇÃO DE LITOFÁCIES: 4 filitos/vistos dinzentos, com quartzitos subordinados	Marinho raso plataformal proximal e distal	rtinontal Intrapleca
		4	M	ASSOCIAÇÃO DE LITOFACIES 3 quartzitos, com xistos subordinados ASSOCIAÇÃO DE LITOFÁCIES 2 biotta gnaisses finos, com intercalações de quarteitos e xistos	Misto planicie costeira e linha de costa (?) magmatismo toleitico	Fase Proto-
		R T T - transgressão R - regressão		ASSOCIAÇÃO DE LITOFÁCIES 1 biotita gnaisses finos, bandados, com anfibolitos associados.	Continental Planicie de rios entrelaçados magmatismo toleítico (basaltos continentais)	Fase Rife
				embasamento		

Figura 12 - Organização estratigráfica da Megassequência Andrelândia sugerida por Paciullo (1997).

Fonte: Heilbron et al., 2004.

As unidades de rochas metassedimentares da Bacia Andrelândia são marcadas por sucessivos episódios deformacionais e pelo metamorfismo Brasiliano; atualmente estão representadas por um sistema de *nappes* imbricadas em sentido ao CSF. Os eventos termo-tectônicos geraram conjuntos de estruturas colisionais nas faixas móveis Brasília Sul e Ribeira

Central, e a consequente zona de interferência entre elas, divididas por Ribeiro *et al.* (1990, 1995) em três distintos domínios (Figura 11B). Nestes domínios estão reconhecidos ciclos deposicionais referentes às bacias meso-paleoproterozoicas de caráter intra-continental, sobrepostas por sedimentação neoproterozoica de ambiente de mar plataformal raso em evento transgressivo (Megassequência Andrelândia): um domínio autóctone (I) referente aos ciclos deposicionais mais velhos e parte da sedimentação neoproterozoica, aonde as sequências estão em posição original e apresentam aumento de deformação para SE, e dois domínios alóctones (II e III) que representam todo o ciclo neoproterozoico e suas sucessões são marcadas pelo processo de transporte tectônico de W para E, gerando sequências de nappes e escamas empurradas, e outras estruturas associadas.

No Orógeno Brasília Sul as sucessões metassedimentares podem ser agrupadas, resumidamente, nos seguintes conjuntos de nappes (Figura 11A): a) Sistema de Nappes Andrelândia (CAMPOS NETO *et al.*, 2004; 2007; 2010) e; b) Nappe Socorro-Guaxupé, descrita como um remanescente de arco magmático criogeniano (Arco Socorro-Guaxupé, CAMPOS NETO e CABY, 1999; 2000; JANASI, 1999; 2002; TROUW et al., 2000).

As sucessões neoproterozoicas expostas nos conjuntos de nappes nos domínios alóctones (II e III), exibem idades de zircão detrítico com estimativa de máxima idade de deposição em ca. 633 Ma (SANTOS, 2011) e 680 Ma (FRUGIS *et al.*, 2018) para a unidade que representa porção distal da bacia de margem passiva, a Unidade Santo Antônio.

Valladares *et al.* (2008) obteveram as primeiras idades de proveniência para as sucessões distais da Bacia Andrelândia no Domínio Juiz de Fora do Terreno Ocidental da FRC, ao estudar associações quartzíticas psamíticas e pelíticas altamente deformadas em condições de fácies metamórfica granulítica. Os resultados com idades U-Pb apresentam importante colaboração detrítica paleoproterozoica, com moda em 2,1-2,2 Ga e subordinada contribuição do Arqueano; também foram identificadas idades de metamorfismo do Brasiliano.

Belém *et al.* (2011) obtiveram resultados U-Pb para o topo da Sequência Andrelândia que aflora no Domínio Juiz de Fora, representado por paragnaisses de alto grau metamórfico (biotita xisto- A5), interpretados como contribuição detrítica de arcos magmáticos juvenis e idades relacionadas ao clímax metamórfico-anatético (ca. 565 Ma.)

A interpretação para o limite de deposição desta bacia apresentada por Campos Neto (2000), por meio de resultados isotópicos de Sr e Nd em plagioclásio gnaisse da sequência superior (Sequência Serra do Rio Turvo), indicam contribuição juvenil, relacionada a magmatismo intrabacinal, ou por contribuição de arco magmático do Neoproterozoico.

3.3 Contextualização das unidades metassedimentares da Faixa Ribeira Central associadas à margem continental ativa e/ou arco de ilhas e bacias de ante-arco

As associações supracrustais da Faixa Ribeira Central estão relacionadas a depósitos sedimentares de bacia de margem passiva neoproterozoica, além da contribuição de bacias associadas ao desenvolvimento de arcos magmáticos. Neste item serão abordadas as unidades metassedimentares dos domínios tectônicos de interesse, descritos nos mapas geológicos recentes (UERJ-TEKTOS-CPRM-CODEMIG): *i*) Grupo Paraíba do Sul Terreno (Paraíba do Sul), *ii*) Grupo Bom Jesus de Itabapoana (Domínio Cambuci) e as sucessões do Grupo São Fidélis (Domínio Costeiro) do Terreno Oriental. Os resultados para entendimento das unidades que compõem as coberturas supracrustais neoproterozoicas (HEILBRON e MACHADO, 2003; SCHMITT *et al.*, 2004; 2003; VALLADARES *et al.*, 2008; VIANA 2008; LOBATO *et al.*, 2015; FERNADES *et.*, *al.*, 2015; PEIXOTO *et al.*, 2018) assinalam forte influência da alta deformação e dos efeitos do intenso metamorfismo brasiliano (Figuras 13 e 14).

3.3.1 Grupo Paraíba do Sul

As primeiras propostas litoestratigráficas para o Grupo Paraíba do Sul foram descritas por Rosier (1965) e Ebert (1968), que propuseram que estas unidades metassedimentares se estenderiam desde as regiões limítrofes do Estado do Rio de Janeiro, até a região da Serra dos Órgãos (hoje incluída no Terreno Oriental de Heilbron *et al.*, 2000, 2004). Posteriormente, a ocorrência do Grupo Paraíba do Sul foi limitada ao Terreno Paraíba do Sul (HEILBRON *et al.*, 2000, 2004). (Figuras 13 e 14).

Figura 13 – Mapa geológico simplificado do Orógeno Ribeira Central.

Legenda: 1-Sedimentos quaternários; 2- Sedimentos terciários; 3-Rochas alcalinas cretáceas/terciárias; 4granitóides brasilianos sin a pós-colisionais (4-9) - 4-biotita granitos pós-colisionais (510-480 Ma, G5), 5granitos contemporâneos às zonas de cisalhamentos D3 (535-520 Ma, G4), 6- granitos e charnockitos tardicolisionais (ca. 560 Ma, G3), 7-Granitos porfiróides sin-colisionais (590-560 Ma); 8-Leucogranitos e charnockitos tipo S ou híbridos sin-colisionais (ca. 580 Ma, G2); granitóides com idade indeterminada (9-10): 9-Hornblenda granito gnaisse; 10-Suítes Anta e São Primo; 11-Arco Magmático Rio Negro (790-620 Ma); Terreno Ocidental (12-17): Megassequência Andrelândia (12-14): 12-Seqüência Rio do Turvo em fácies granulito de alta P; 13- Sequência Rio do Turvo; 14- Sequência Carrancas; 15-Complexo Mantiqueira; 16-Fácies distais da Megassequência Andrelândia no Domínio Juiz de Fora; 17-Complexo Juiz de Fora; 18-Complexo Embu indiviso; Terreno Paraíba do Sul (19-20): 19- Grupo Paraíba do Sul; 20-Complexo Quirino; Terreno Oriental (21-22): 21-Sucessão metassedimentar Italva; 22- Sucessão metassedimentar Costeiro; Terreno Cabo Frio (23-24): 23-Sucessão Búzios e Palmital; 24-Complexo Região dos Lagos. Fonte: Heilbron *et al.* (2004).

A estruturação observada nas rochas que compõem a *klippe* sinformal do Terreno Paraíba do Sul, apresenta aba norte mergulhando para SE e aba sul para NW. No interior deste terreno caracteriza-se duas gerações de dobras D₂ e D₃. As dobras D₂ são apertadas, com vergência para NW, enquanto as dobras D₃ são inclinadas a normais, com planos axiais subverticais e eixos sub-horizontais de caimento NE-SW. Este dobramento, visível na escala do mapa, é responsável pela repetição entre as unidades metassedimentares do Grupo Paraíba do Sul e os ortognaisses do embasamento Paleoproterozoico, representados pelo Complexo Quirino (HEILBRON *et al.*, 2004; TUPINAMBÁ *et al.*,2007). As rochas metassedimentares do Terreno Paraíba do Sul mostram uma xistosidade de médio ângulo de mergulho, deformada por dobras apertadas e abertas. Rochas com fabric milonítico são observadas, especialmente, junto aos contatos desta unidade tectônica com os terrenos Ocidental e Embu (HEILBRON *et al.*, 2000, 2004). Estão sobrepostas aos ortognaisses paleoproterozoicos de composição, predominantemente, granítica a granodiorítica. Ambas as unidades apresentam paragêneses metamórficas da fácies anfibolito superior, com indícios de fusão parcial in situ, representada por estruturas migmatíticas variadas, sempre com leucossomas bordejados por melanossomas.

Figura 14 – Mapa geológico do segmento norte da Faixa Ribeira.

Legenda: 1-falhas, 2-zona de cisalhamento Além Paraíba, 3-principais empurrões (limites de sutura entre os terrenos), 4-empurrões subordinados, 5-cobertura cenozoica, 6-Formação Barreiras do Neogeno, 7 granitos sin-pós tectônicos do Neoproterozoico-Ordoviciano (Orogênese Brasiliana). Terreno Oriental: 8 Arco Serra da Bolívia, 9 associações metassedimentares de alto grau, 10 unidade metassedimentar de bacia fore arc, 11 arcos magmáticos Rio Negro e Serra da Prata, 12 bacia intra-back arc rica em carbonato, 13 unidade metassedimentar de alto grau (Grupo São Fidélis). Terreno Ocidental (margem do Cráton São Francisco retrabalhada): 14-15 ortognaisses e granitóides do Complexo Mantiqueira, 16 margem passiva proximal (Megassequência Andrelândia), 17 embasamento ortogranulítico (Complexo Juiz de Fora), 18 margem passiva distal (Megassequência Andrelândia). Terreno Paraíba do Sul-Embu: embasamento (Complexo Quirino|), 20 margem neoproterozoica rica em carbonato (Grupo Paraíba do Sul?). Fonte: Heilbron *et al.* (2017).

O Grupo Paraíba do Sul compreende uma sequência metassedimentar siliciclástica composta por gnaisses bandados (metapsamitos) e por xistos aluminosos (metapelitos) contendo muitas lentes de mármores dolomíticos, rochas calcissilicáticas e gonditos. Lentes de rochas quartzíticas são muito raras, sendo esta a maior diferença para as unidades

metassedimentares do sopreposto Grupo Embu, tal como descrito por Eirado Silva (EIRADO *et al.*, 2006) para a região entre Bananal e Arapeí, em São Paulo. Idades ²⁰⁷Pb/²⁰⁶Pb, obtidas em zircão via LA-ICP-MS por Viana (2008), apontaram idades predominantemente paleoproterozoicas com subordinadas contribuições arqueanas, indicando fontes do próprio embasamento.

3.3.2 Grupo Bom Jesus de Itapapoana

Esta unidade aflora no Domínio Cambuci (Terreno Oriental) que é interpretado como uma associação ante-arco por Heilbron e Machado (2003), relacionado ao desenvolvimento do arco cordilheirano interno da FRC, o Complexo Serra da Bolívia (HEILBRON *et al.*, 2013) com idades entre ca. 630 Ma e 605 Ma. (Figuras 9, 10 e 14).

O Grupo Bom Jesus de Itabapoana (GBJI) abrange associações de rochas metavulcano-sedimentares metamorfisadas em fácies anfibolito alto a granulito. Na região NW do Estado do Rio de Janeiro não foram documentadas rochas do embasamento (pré-1,7 Ga); entretanto, seguindo para o Estado do Espírito Santo, na divisa com o estado de Minas Gerais, começam a aparecer ortognaisses de idade paleoproterozoica (MARQUES, 2015). As sucessões metavulcano-sedimentares são invadidas por diversas gerações de rochas granitóides (HEILBRON e MACHADO, 2003; TUPINAMBÁ *et al.*, 2007).

Este conjunto de rochas paraderivadas é constituído por gnaisses pelíticos a semipelíticos associados a anfibolitos, rochas calcissilicáticas, rochas meta-ultramáficas, gonditos e mármores (predominantemente de composição dolomítica) contendo olivina. Heilbron *et al.* (2012) definiram que a estrutura mais evidente para o conjunto de rochas do Domínio Cambuci seria a foliação S₂, representada por uma xistosidade grossa que transiciona para uma xistosidade de crenulação apertada nos níveis mais micáceos dos paragnaisses. Seus contatos basais são representados por rochas com texturas miloníticas.

Tupinambá *et al.* (2007) correlacionaram a sequência metassedimentar do Domínio Cambuci com as sequências metassedimentares do Grupo Rio Doce, pertencentes ao Orógeno Araçuaí. O GBJI é caracterizado como sedimentação turbidítica de mar profundo; as associações metassedimentares são intrudidas por granitóides que indicam idade mínima maior que 620 Ma (HEILBRON *et al.*, 2004). Heilbron e Machado (2003) obtiveram uma discórdia com intercepto superior em 623 \pm 5 Ma por meio de monazita e zircão em leucossomas oriundos do gnaisse kinzigítico, definindo o metamorfismo ou possivelmente herança.

3.3.3 Grupo Italva

O Grupo Italva compreende um conjunto de gnaisses pelíticos, mármores puros a impuros e lentes anfibolíticas que variam de mesocráticos a melanocráticos (variedades mais ultramáficas). Apresenta metamorfismo em fácies anfibolito. A deformação principal é moderada, caracterizada por uma xistosidade grossa, além de dobras recumbentes a reclinadas. (Figuras 9, 10, 13 e 14).

Dados U-Pb obtidas por Peixoto (2010), Peixoto e Heilbron (2010) e Peixoto *et al.* (2016; 2017) em lentes anfibolíticas intercaladas nas unidades metassedimentares do Domínio Italva forneceram idades compreendidas entre 0,7 Ga e 0,9 Ga, interpretadas como fontes para as rochas metassedimentares da Bacia Italva. Heilbron e Machado (2003) também encontraram idade de 850 Ma nas mesmas associações anfibolíticas.

Peixoto e Heilbron (2010) sugerem que o Domínio Italva teria evoluído em um ambiente de bacia de retro-arco, em estágios iniciais da subducção, desde ca. 848 Ma, com contribuição de rochas carbonáticas, rochas vulcânicas e ou vulcanoclásticas e rochas anfibolíticas relacionadas a regimes extensionais (Figura 14).

3.3.4 Grupo São Fidélis

O Grupo São Fidélis é subdividido por uma unidade basal compreendendo gnaisses kinzigíticos relativamente homogêneos, sobreposta por gnaisses pelíticos bandados com frequentes intercalações de lentes e camadas de quartzito de espessuras decimétricas a métricas, lentes calciossilicáticas e raramente anfibolitos. Heilbron *et al.* (1993) e Khun *et al.* (2004) apontaram temperatura em fácies granulito para este conjunto. A deformação principal é representada pela foliação metamórfica S1, paralela a veios leucossomáticos de origem anatética e por dobras D_2 apertadas, com planos axiais sub-horizontais a inclinados, gerando

dobras recumbentes, reclinadas a inclinadas (ALMEIDA *et al.*, 1998; HEILBRON *et al.*, 2008; 2009; LOBATO *et al.*, 2015) (Figuras 10, 13 e 14).

Este grupo representa sucessões metassedimentares relacionadas à porção distal de uma bacia de margem passiva, invadidas por rochas do arco magmático Neoproterozoico durante processo orogênico, indicando a passagem para fase de margem passiva para margem ativa.

As rochas metassedimentares clásticas do Grupo São Fidélis com idades de proveniência arqueana, paleoproterozoica e mesoproterozoica sugerem fonte do CSF e do embasamento africano (Congo) apontados por Schimtt *et al.* (2004), Valladares *et al.* (2008), Lobato *et al.* (2015) e Fernandes *et al.* (2015). Incluem também contribuição de rochas do Neoproterozoico associadas dos arcos magmáticos Rio Negro (790 e 635-620 Ma) e Serra da Prata (856-840 Ma) (LOBATO *et al.*, 2015; HEILBRON *et al.*, 2017).

Os dados U-Pb (LA-ICP-MS) foram obtidos para unidade topo do Grupo São Fidélis (São Sebastião do Alto, TUPINAMBÁ *et al.*, 2007) por Lobato (2013) e Lobato *et al.* (2015), em grãos de zircão de rochas quartzíticas. O estudo demonstra significativas contribuições de idades do Mesoproterozoico e Paleoproterozoico, contribuições do Arqueano e idades do Neoproterozoico interpretadas como fontes e de eventos metamórficos. Sinteticamente, os resultados obtidos foram (Figura 15A): a) idades concordantes do Arqueano com ca. 2,85, 2,84 e 2,70 Ga; b) grãos de zircão do Paleoproterozoico (ca. 2,3 a 1,7 Ga), maior concentração em torno de 2,2 Ga; c) idades mesoproterozoicas entre 1,6 e 1,3 Ga; d) grãos de zircão detríticos do Neoproterozoico, com idades em intervalos ca. 0,95-0,90 Ga e 0,86-0,61 Ga. Em vários grãos detríticos foram observadas bordas de sobrecrescimento metamórfico em ca. 602-570 Ma.

Os estudos isotópicos de Lobato *et al.* (2015) apontam idades de cristalização de ortognaisses intrudidos na unidade basal do Grupo São Fidélis (Figura 15B) em 620 Ma, equivalentes ao período pré-colisional de geração de rochas do Arco Magmático Rio Negro (HEILBRON e MACHADO 2004; TUPINAMBÁ *et al.*, 2012). Combinando as idades em ca. 620 Ma com os núcleos de grãos de zircão detríticos mais jovens, contemporâneos ao Arco Rio Negro em 613 Ma, pode-se definir o intervalo máximo de contribuição da unidade superior do Grupo São Fidélis, no Neoproterozoico. Cristais de monazita selecionados para análise U-Pb pelo método ID-TIMS (diluição isotópica) analisados por Lobato (2013) e Neto *et al.* (2014) apresentam registros com os principais episódios tectono-metamórficos da Faixa Ribeira. Dois cristais de uma amostra quartzítica e dois do ortognaisse Rio Grande (Complexo Rio Negro) alinham-se em uma discórdia com idades de ca. 603 Ma, referente ao

metamorfismo progressivo descrito na literatura, durante a Orogenia Brasiliana. Também foram obtidas idades mais jovens nestes grãos de monazita, em torno de 535 Ma, interpretadas como referente ao metamorfismo M₂ de (MACHADO *et al.*, 1996, HEILBRON *et al.*, 2000), relacionado com a colagem do Terreno Cabo Frio.

Figura 15 – Distribuição das idades U-Pb obtidas para o Grupo São Fidélis e divisão estratigráfica do Grupo São Fidélis e sua relação com as rochas intrusivas.

Legenda: a) Distribuição das idades U-Pb obtidas para o Grupo São Fidélis (quatro lentes quartzíticas). b) Divisão estratigráfica do Grupo São Fidélis e sua relação com as rochas intrusivas. 1-granitos sin-colisionais; 2 e 3-Grupo São Fidélis Superior, 2-granada-biotita gnaisse, 3-quartzitos; 4-Rochas de arco magmático do Complexo Rio Negro; 5-Unidade Inferior do Grupo São Fidélis; Embasamento do Cráton Angola e Complexo Região dos Lagos; 7-Proveniência. Fonte: Lobato *et al.* (2015).

4 RESULTADOS E DISCUSSÕES (PARTE I): PROVENIÊNCIA DO GRUPO SÃO FIDÉLIS NO DOMÍNIO COSTEIRO/TERRENO ORIENTAL DA FAIXA RIBEIRA CENTRAL

4.1 Introdução

O Grupo São Fidélis (GSF) foi originalmente definido por Erbert (1957), no estado do Rio de Janeiro, como um conjunto de rochas bandadas migmatíticas representado por biotita gnaisses com granada e sillimanita, possuindo lentes quartzíticas e rochas calcissiliocáticas. Este conjunto de rochas metassedimentares é constituído por duas unidades, associadas a uma sequência deposicional. Trata-se de uma unidade basal, definida por gnaisses kinzigíticos, Unidade São Fidélis (SILVA *et al.*, 1978;1978; BATISTA, 1984; 1986; REIS e MANSUR, 1995), seguida por uma unidade superior representada por gnaisses com camadas de quartzito, São Sebastião do Alto (TUPINAMBÁ *et al.*, 2007). Heilbron *et al.* (1993) e Khun *et al.* (2004) apontam para a unidade kinzigítica, metamorfismo em fácies anfibolito alto a granulito. Dados de proveniência para estas associações foram obtidos por Valladares *et al.* (2008), Schmitt *et al.* (2004), Fernandes *et al.* (2015) e Lobato *et al.* (2015). Neste trabalho estas unidades serão denominadas, respectivamente, de unidades superior e inferior (LOBATO *et al.*, 2015). Estas associações metassedimentares encontram-se invadidas por diversas rochas granitóides, relacionadas ao arco magmático do Neoproterozoico (Arco Rio Negro) e por granitos tardi a pós tectônicos.

No seguimento desta pesquisa, o Domínio Costeiro já apresenta dados publicados e uma série de novos dados a serem discutidos e divulgados a seguir: *i*) artigo publicado na revista *Journal of South American Earth Sciences*, focado no estudo de proveniência da unidade superior do Grupo São Fidélis, com base em dados U-Pb obtdos através de grãos de zircão detríticos e investigação de duas unidades granitóides intrusivas (*Provenance of the Neoproterozoic high-grade metasedimentary rocks of the arc-related Oriental Terrane of the Ribeira belt: Implications for Gondwana amalgamation.*); *ii*) análises em monazitas pelo método TIMS (LAGIR-UERJ) foram apresentadas por Neto *et al.* (2013) em três amostras metassedimentares discutidas no artigo já publicado (LOBATO *et al.*, 2015).

Nesta secção serão retratados novos histogramas com dados U-Pb compilados, para as amostras metassedimentares da unidade superior do Grupo São Fidélis, e demonstradas análises do sistema isotópico Lu-Hf para cristais do Neoproterozoico das mesmas amostras dos trabalhos citadas acima. Bem como resultados recentes U-Pb e Lu-Hf para novas amostras.

4.2 Geologia local e amostragem

Foram abordas inicialmente para os estudos geocronológicos no Domínio Costeiro, quatro amostras de lentes quartzíticas e sua encaixante (biotita granada gnaisse), na unidade superior do GSF; e duas amostras representativas de unidades intrusivas (ortognaisses) nos metassedimentos, coletadas na região de Santa Maria Madalena e Macuco (NW do estado do Rio de Janeiro), abordadas por Lobato *et al.* (2015). No andamento desta pesquisa foi inserida mais uma amostra de biotita granada gnaisse (THE-21) da unidade inferior do GSF, coletada nas proximidades da região citada anteriormente. (Figura 16).

Por fim, duas amostras foram coletadas junto ao contato com o terreno Ocidental, adjacentes ao Contato Tectônico Central (CTB de ALMEIDA *et al.*, 1998), em lentes das rochas metassedimentares estruturadas como escamas tectônicas, na região serrana do Estado do Rio de Janeiro, na rodovia Teresópolis-Além Paraíba (THE-12A) e aos arredores de Seropédica-RJ (IG-1028) (Figura 16). Neste trabalho considera-se que as unidades representadas pelo biotita gnaisse bandado (THE-12A), com intercalações de quartzitos e rochas calcissilicáticas em camadas contínuas de espessura decamétrica a centimétrica, e a lente de biotita granada gnaisse rica em lentes quartzíticas (IG-1028) e mármores, façam parte da unidade superior do GSF.

Apesar das inúmeras nomenclaturas utilizadas e diferentes cartografias, neste trabalho foi empregada a proposta estratigráfica apresentada nos novos mapas geológicos dos estados do Rio de Janeiro e Minas Gerais, executados respectivamente pelo grupo de pesquisa Tektos-UERJ e pela CPRM, baseados na subdivisão estratigráfica proposta por Tupinambá (2007).

Figura 16 - Integração dos mapas geológicos dos estados do Rio de Janeiro e trecho do sul de Minas Gerais, produzidos pelo Grupo Tektos/UERJ

Fonte: A autora, 2018.

4.3 Geologia do Grupo São Fidélis

4.3.1 Unidade Inferior

Esta unidade é caracterizada por gnaisses kinzigíticos, de modo que predominam (cordierita)-sillimanita-granada-biotita gnaisses, relativamente homogêneos, sem bandamento composicional evidente. Apresentam bolsões lenticulares de leucossomas e melanossomas, ricos em granada e/ou coordierita, localmente podem ocorrer porções ricas em migmatíticos (Figuras 17 A-D).

Os minerais constituintes são: K-feldspato, quartzo, plagiclásio, biotita, granada, sillimanita e subordinadamente, cordierita, palhetas de muscovita e sericita, minerais opacos, zircão e apatita. (Figura 18 A-D).

4.3.2 Unidade Superior

Compreende (granada) biotita gnaisses bandados (bandamento metamórfico e migmatítico estromático), com freqüentes camadas centimétricas a métricas de quartzitos puros a impuros ricos em feldspato e/ou sillimanita, em algumas regiões estas intercalações se tornam muito espessas, atingindo até 120 m. (Figura 19).

Foram observados granada-biotita gnaisse e sillimanita-granada-biotita gnaisse migmatíticos com lentes de quartzito grosso puro (Figuras 17E e 17F). O gnaisse apresenta granulação fina a média e textura variando de granoblástica a profiroblástica, com porfiroblastos/porfiroclastos médios a grossos (0,2 a 0,7 cm) de granada e feldspatos. Os minerais constituintes são: microclina, plagioclásio, quartzo, biotita, granada, sillimanita, mineral opaco, zircão e apatita; muscovita, sericita e carbonato são fases secundárias. (Figuras 18E e 18F).

Figura 17 - Fotos de afloramentos das duas diferentes unidades do Grupo São Fidélis.

Legenda: (A e B) Granada biotita gnaisse diatexítico, corte de estrada na RJ- 158, próximo ao município de São Fidélis; (C e D) granada biotita gnaisse migmatítico, lajedo no Rio Macabu (Bar da Cachoeira) -Unidade Inferior. (E) Granada biotita gnaisse, na RJ-158, proximidade do distrito de Pureza; (F) Quartzito grosso intercalado com sillimanita (granada) gnaisse, RJ-142 entre os distritos de Casimiro de Abreu e Lumiar - Unidade Superior.

Figura 18 – Fotomicrografias de amostras de paragnaisses do Grupo São Fidélis.

Legenda: (A) e (B) Granada sillimanita biotita gnaisse, (C) e (D) Granada biotita gnaisse - Unidade Inferior. (E) e (F), granada biotita gnaisse - Unidade Superior. Fonte: A Autora (2018).

Figura 19 – Unidade Superior do Grupo São Fidélis.

Legenda: a) e b) quartzito impuro foliado com mica e feldspato, respectivamente o detalhe do afloramento e fotomicrografia; c) lente de quartzito impuro intercalada no paragnaisse, observados em afloramento alterado; d) e e) sillimanita granada biotita gnaisse, com leucossoma sigmoidal; f) ortognaisse intrudido nos metassedimentos.

Fonte: LOBATO et al. (2015).

4.4 Resultados isotópicos

4.4.1 Novos dados U-Pb para o Grupo São Fidélis

Os novos resultados obtidos para este grupo consistem tanto em análises realizadas nas mesmas amostras metassedimentares já publicadas, no mesmo laboratório (LG-IG-UnB), bem como mais duas novas amostras do paragnaisse, analisadas no Multilab-UERJ e uma amostra quartzítica analisada na UND.

Na seção 5.1.2.1 serão apresentados os histogramas de idades U-Pb compiladas de Lobato *et al.* (2015) juntamente com os novos dados obtidos nesta tese. O propósito desta abordagem foi aumentar o número de dados (idades concordantes), assim foram investigados mais grãos de zircão das amostras de rochas quartzíticas (SM-MB-05, SM-MB-07, SM-MB-09, SM-MB-15) e o paragnaisse encaixante (SM-MB-02), coletadas entre as regiões de Santa Maria Madalena e Macuco (no NW do estado do Rio de Janeiro). Foram escolhidas análises concordantes entre 95% a 105%, utilizando idades ${}^{206}Pb/{}^{238}U < 1Ga e idades {}^{207}Pb/{}^{206}Pb > 1Ga.$

4.4.1.1 Resultados U-Pb em grãos de zircão detríticos das lentes quartzíticas da Unidade Superior do Grupo São Fidélis

Amostras SM-MB-05, SM-MB-07, SM-MB-09 e SM-MB-15

Os cristais de zircão detríticos das amostras quartzíticas são, em geral, prismáticos e equidimensionais com extemidades arredondadas ou não; incolores, com coloraração em variados tons de amarelo. Muitos grãos apresentam núcleo e bordas sobrecrescidas, dispondo de zonamento magmático, zonamento convoluto, reabsorção magmática, além de recristalização marcada por homogeneização parcial ou total dos grãos, além de texturas complexas (CORFU *et al.*, 2003; HARLEY *et al.*, 2007).

Os resultados obtidos para as lentes quartzíticas da Unidade Superior do Grupo São Fidélis (Figura 20, Apêndice A) apontam idades ²⁰⁷Pb/²⁰⁶Pb de fontes arqueanas entre 2,5 e 3,3 Ga; e apresentam uma predominância de distribuição bimodal de grãos do Mesoproterozoico e Paleoproterozoico, com moda respectivamente em 1,1 Ga e entre 1,9-2,1 Ga. Foram reconhecidas idades ²⁰⁶Pb/²³⁸U detríticas do Neoproterozoico, de pico máximo em torno de 625 Ma e idade máxima ediacarana em 610 Ma. No geral, o padrão de distribuição dos novos dados não mudou a configuração da distribuição das idades de proveniência junto às amostras compiladas de Lobato *et al.* (2015). Foram registradas idades ²⁰⁶Pb/²³⁸U relacionadas ao metamorfismo, variando entre 600 Ma e 512 Ma (Apêndice A).

Figura 20 – Histogramas para idades U-Pb (Ma) vs. probabilidade relativa dos quartzitos encaixados no biotita gnaisse, da Unidade Superior do Grupo São Fidélis.

Fonte: A autora, 2018.

Os agrupamentos de idades de proveniência do Neoproterozoico foram descritos por Lobato *et al.* (2015) como: contribuição do magmatismo Toniano (950-900Ma), relacionado a abertura de *rifts*; proveniência de arcos magmáticos em 900-700 Ma (Serra da Bolívia e Serra da Prata); e idades obtidas de grãos com zonamento magmático em 790 e 605 Ma referentes ao Arco Rio Negro; e metamorfismo Brasiliano.

Amostra IG-1028

A lente quartítica intercalada no (sillimanita)-(granada) biotita gnaisse encostada no Terreno Ocidental, está localizado próximo a região de Seropédica-RJ. A amostra apresenta cristais de zircão equidimensionais e prismáticos curtos (2:1, 3:1) com terminações. Aspecto de homogeneização na superfície do grão (de alta e baixa luminescência) são comuns, conferindo aos grãos textura de reabsorção e alguns prismáticos apresentam zonamento. (Figura 21).

Figura 21 – Imagens de catodoluminescência de grãos de zircão representativos da mostra IG-1028, da lente quartzítica encaixada no biotita gnaisse, pertencentes ao Grupo São Fidélis (Unidade Superior).

As análises U-Pb por LA-ICPMS na UND indicam eventos episódios de perda de Pb (Figura 22A) para os cristais de zircão detríticos, com idades mais jovens relacionadas ao metamorfismo obtidas através de sobrecrescimento dos cristais. A amostra apresenta evidentes concentrações de idades ²⁰⁶Pb/²³⁸U do Toniano (ca. 898-850 Ma) e idades ²⁰⁷Pb/²⁰⁶Pb para fontes do Mesoproterozoico (ca. 1558-1012 Ma), contribuições do

Fonte: A autora, 2018).

Paleoproterozoico (ca. 2291-1732 Ma), e apenas duas idades do Arqueano ca. 3121 Ma e 2767 Ma (Figura 22B).

Figura 22 – Resultados de geocronologia U-Pb obtido para o biotita gnaisse (amostra IG-1028), Unidade Superior do Grupo São Fidélis.

Legenda: (a) Diagrama concórdia; (b) histograma para idades U-Pb (Ma) *vs.* probabilidade relativa (b) obtidos em cristais de zircão do biotita gnaisse, Unidade Superior do Grupo São Fidélis, amostra IG-1028. Fonte: a Autora (2018).

4.4.1.2 Idades U-Pb obtidas em grãos de zircão detríticos dos paragnaisses da Unidade Superior do Grupo São Fidélis

Conforme abordado anteriormente, para a amostra SM-MB-02 será apresentada a compilação de dados já publicados por Lobato *et al.* (2015) com os dados recentes. Em seguida serão abordados os dados da amostra THE-12A.

O granada-biotita gnaisse (SM-MB-02) consiste em um paragnaisse rico em veios leucossomáticos. Apresenta estrutura bandada, porfiroblástico, com abundante granada e biotita, com presença de sillimanita, a amostra foi coletada nas proximidades da cidade São Sebastião do Alto-RJ (rodovia RJ-176).

A amostra THE-12A, biotita gnaisse bandado apresenta-se como uma lente tectônica, com textura milonítica, foi caracterizada como uma rocha gnáissica composta por quartzo, plagioclásio, K-fedslpato, biotita, além de rara granada, apatita, zircão e minerais opacos. Foi coletada uma amostra nas proximidades de Nova Friburgo-RJ, região serrana.

Granada biotita gnaisse (Amostra SM-MB-02)

Ao fazer a integração dos novos dados com os obtidos anteriormente, o número de análises consideradas para a produção do histograma para esta amostra de paragnaisse mais que duplicou. Nas duas campanhas de análise, realizadas no LG-IG-UnB (ver Apêndice A), foram obtidas apenas idades do Neoproterozóico. Com o objetivo de compreender melhor estas amostras, foi providenciado uma nova montagem de grãos, oriundos do mesmo concentrado, para que fossem investigadas no Multilab-UERJ. (Apêndice A).

Os cristais de zircão com idades do Neoproterozoico observados, variam de equidimensionais, arredondados, prismáticos longos (5:1 a 4:1) e curtos (2:1) com as extremidades piramidais ou arredondadas. Texturas de reabsorção, sobreimpressao, presença de núcleo e sobrecescimento são comuns (CORFU *et al.*, 2004). As imagens de CL (Figura 23) revelam que os cristais euédricos apresentam textura sopreposta homogênea em toda superfície. Alguns cristais prismáticos curtos exibem zonamento magmático concêntrico, localmente cortados por domínios recristalizados de composição homogênea, assim como textura de reabsorção, compatíveis com alta temperatura. Zircão de alto grau metamórfico, descritos na literatura como "soccerball" ou "multifacetado" (HARLEY *et al.*, 2007; VAVRA *et al.*, 1996), associado a alta temperatura anatética, foram observados nesta amostra (Figura 5.6, z01, z02 z23 e z24), representativos do metamorfismo M₁.

Os cristais mais velhos exibem cristais de hábito prismático e poucos grãos euédricos, ambos grupos com extremidades arredondadas. São majoritariamente marcados por zonamento concêntrico, textura de reabsorção e pouca recristalização observada através de reimpressão local. A amostra expressa quantidades significativas de fontes do Mesoproterozoico e do Neoproterozoico (Figura 24A). A primeira refere-se a dados obtidos em um conjunto de grãos prismáticos e equidimensionais; e a segunda relacionada a cristais que denotam textura associada a zonamento magmático, e assim refletem proveniência do arco magmático Rio Negro (TUPINAMBÁ *et al.*, 2012; HEILBRON e MACHADO, 2003). O biotita granada gnaisse apresenta dados do Neoproterozoico (Figura 24B) que resultaram em uma idade concórdia em 575 \pm 2 Ma, compatível ao metamorfismo de alta temperatura que alcançou fácies granulito (M1, MACAHDO *et al.*, 1996); e outra idade associada ao metamorfismo mais jovem, em 539 \pm 18 Ma. As idades foram obtidas em cristais do tipo *soccerball*, juntamente com aquelas de hábito prismático curto.

Figura 23 - Imagens de Catodoluminescência de grãos de zircão representativos da amostra SM-MB-02.

Fonte: A autora, 2018.

Figura 24 – Resultados de geocronologia U-Pb obtidos para o biotita gnaisse (amostra SM-MB-02), Unidade Superior do Grupo São Fidélis.

Legenda: (a) Histograma para idades U-Pb (Ma) *vs.* probabilidade relativa; e, (b) diagrama concórdia com idades de metamorfismo do biotita gnaisse da Unidade Superior do Grupo São Fidélis, amostra SM-MB-02. Fonte: A autora, 2018.

Amostra THE-12A (Biotita gnaisse milonítico)

Para a lente tectônica, foram identificadas apenas idades do Neoproterozoico, obtidas em cristais com textura de sobreposição, conferindo ao cristal uma textura homogênea. Em geral, os grãos de zircão desta amostra exibem-se como prismas curtos a longos, de coloração amarela. É possível observar através das imagens de CL texturas de recristalização, raros e discretos zonamento interno, além de núcleos e sobrecrescimentos. Predominam cristais que exibem textura secundária, tendem a apresentar registros de zonamento oscilatório primário um tanto apagados. (Figura 25).

As idades ²⁰⁶Pb/²³⁸U obtidas para esta amostra são predominantemente concordantes entre 90-110% (Apêndice A), e são restritas ao Neoproterozoico, compreendendo um intervalo de idades do Criogeniano entre 673 Ma e 636 Ma e um intervalo Ediacarano de 633 Ma até 506 Ma (Figura 26).

Figura 25 – Imagens de catodoluminescência de grãos de zircão representativos do Biotita gnaisse bandado milonítico (THE-12A) pertencentes ao Grupo São Fidélis, Domínio Costeiro.

Fonte: A autora, 2018.

Os conjuntos de idades em torno de 620-630 Ma e 590 Ma, têm suas distribuições claras para o padrão das idades esperadas de acordo com o magmatismo e metamorfismo determinados para a região, respectivamente, considerando que esta unidade está posicionada a frente do arco magmático. No entanto, as idades maiores que 630 Ma foram observadas em cristais com textura de sobreposição homogênea, o que pode indicar proveniência mais antiga (pulsos anteriores) ou parecem receber influência de processos fluídicos, do período pré colisional.

Figura 26 – Resultados de geocronologia U-Pb obtido para o biotita gnaisse bandado milonítico (amostra THE-12A), do Grupo São Fidélis.

Legenda: (a) Diagrama concórdia U-Pb (b) Histograma para idades U-Pb (Ma) vs. probabilidade relativa apresentando as idades do Neoproterozoico do Biotita gnaisse Bandado Milonítico (THE-12A) do grupo São Fidélis. Fonte: A autora, 2018.

4.4.1.3 Idades U-Pb obtidas em grãos de zircão detríticos no granada-biotita gnaisse do Grupo São Fidélis da Unidade Inferior

Amostra THE-21A

O Granada biotita gnaisse é milonítico, de cor cinza clara, granulação fina a média e textura variando de porfiroblástica a granoblástica. Apresenta porfiroblastos/porfiroclastos médios a grossos (0,2 a 0,7 cm) de granada e feldspatos. Os minerais constituintes são: microclina, plagioclásio, quartzo, biotita, granada, hornblenda, sillimanita, mineral opaco, zircão e apatita; muscovita, sericita e carbonato são fases secundárias. A mostra foi coletada nas proximidades da cidade São Sebastião do Alto-RJ, rodovia RJ-116.

Predominam nesta amostra grãos de zircão equidimensioais a esféricos e cristais prismáticos curtos, com extremidades arredondadas. As imagens de catodoluminescência mostram núcleos detríticos com zonamento magmático e finas bordas de sobrecrescimento (CORFU *et al.*, 2003). Alguns cristais apresentam textura homogênea (de alta e baixa luminescência) tomando parte ou toda superfície do cristal. (Figura 27).

Figura 27 – Imagens de catodoluminescência de grãos de zircão representativos do granada biotita gnaisse (THE-21) pertencentes a Unidade Inferior do Grupo São Fidélis.

Fonte: A autora, 2018.

Os dados isotópicos U-Pb de zircão para Granda biotita gnaisse (Apêndice A) de alto grau metamórfico plotam sobre, ou bem próximas, à curva da concórdia (Figura 28A). Os resultados distribuídos no histograma (Figura 28B) apontam idades 207 Pb/ 206 Pb concordantes do Arqueano, ca. 2985 Ma a 2598 Ma e evidencia ampla contribuição e idades do Paleoproterozoico (73%), em intervalo entre ca. 2494 Ma a 1692 Ma. Idades 206 Pb/ 238 U do Criogeniano entre ca. 823 e 628 Ma obtidas em spots localizados nas extreminadades dos grãos, em geral, com texturas de reabsorção. Além disso, uma idade concórdia ediacarana associada ao metamorfismo foi obtida, através de sobrecrescimento de cristais, em 587 ± 10 Ma (Figura 28A).

Figura 28 – Resultados de geocronologia U-Pb obtido para o biotita gnaisse da Unidade Superior do Grupo São Fidélis (amostra THE-21).

Legenda: (a) Diagrama concórdia e (b) histograma para idades U-Pb (Ma) vs. probabilidade relativa do biotita gnaisse da Unidade Superior do Grupo São Fidélis, amostra THE-21. Fonte: A Autora (2018).

4.4.2 Resultados Lu-Hf

4.4.2.1 Assinatura Lu-Hf em grãos de zircão detrítico do Grupo São Fidélis, Unidade Superior

Amostra IG-1028

A análise Lu-Hf realizada na amostra IG-1028 (Apêndice C), caracterizada por cristais de zircão equidimensionais e prismáticos curtos, com texturas secundárias, associadas a processos metamórficos; dispõe de dados U-Pb com predominância de idades do Mesoproterozoico e Paleoproterozoico (item 4.1.2.1).

Os grãos do Mesoproterozoico, de idades ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ entre 1469 Ma e 1012 Ma, apontaram valores de ϵ Hf_(t) de +11,80 e +1,46 e idades Hf-T_{DM} entre 1848 Ma e 1176 Ma, sugerindo contribuição de fontes juvenis, com retrabalhamento meso-paleoproterozoico; enquanto um grão de idade ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ em 1501 Ma, possui ϵ Hf_(t) negativo e apontou idades Hf-T_{DM} em 2321 Ma. Os cristais de idades ${}^{206}\text{Pb}/{}^{238}\text{U}$ do Neoproterozoico predominam valores de ϵ Hf_(t) negativos a fortemente negativos. (Figura 29).

Figura 29 – Diagrama Idade (Ma) *vs.* Epsilon Hf_(t) para cristais de zircão da amostra quartzítica IG-1028, da Unidade Superior do Grupo São Fidélis.

Amostra THE-12A

A amostra THE-12A (biotita gnaisse bandado milonítico) é majoritariamente composta por grãos de zircão prismáticos, com zonamento fino nas terminações dos cristais, nas quais foram alcançadas idades isotópicas U-Pb mais jovens em comparação as suas porções centrais. A maioria dos domínios possuem fraca luminescência (de cor cinza) (item 5.1.2.2).

As idades U-Pb obtidas nos grãos de zircão detrítico da unidade milonítica são restritas ao Neoproterozoico. Dezoito cristais foram selecionados para a determinação da

composição isotópica de Hf, dos quais um grupo possui idades criogenianas entre 673 Ma e 630 Ma, com valores de ϵ Hf_(t) variando entre -5,38 e +7,98, e idades Hf-T_{DM} entre 1263 Ma e 922 Ma. Cristais ediacaranos apresentam idades ²⁰⁶Pb/²³⁸U entre 626 Ma e 598 Ma, e as análises apontam valores de ϵ Hf_(t) variando entre -8,53 e +3,41, com idades Hf-T_{DM} entre 1519 Ma e 1126 Ma. (Apêndice C, Figura 30).

4.4.2.2 Assinatura Lu-Hf em grãos de zircão detrítico do Grupo São Fidélis Unidade Inferior

Amostra THE-21

Dezenove grãos da amostra do Granada biotita gnaisse milonítico foram selecionadas para análises do sistema Lu-Hf (Apêndice C, item 4.1.2.3, Figura 31). Esta amostra apresenta dados U-Pb com idades 207 Pb/ 206 Pb do Paleoproterozoico em maior proporção e apontam dados de de Lu-Hf para valores positivos de ϵ Hf_(t) entre + 0,26 e + 10,56 (2169-1451 Ma), com exceção de um grão que apresentou ϵ Hf_(t) – 4,16 (1896 Ma). Os grãos de idades do Arqueano possuem valores ϵ Hf_(t) de -2,60 (2785 Ma), +1,62 (2911 Ma) e +7,17 (2598 Ma). O cristal de idade 206 Pb/ 238 U de 890 Ma possui valor ϵ Hf_(t) -14,54.

4.4.2.3 Assinatura Lu-Hf em grãos de zircão do Neoproterozoico do Grupo São Fidélis (Unidade Superior)

Com o objetivo de separar grãos metamórficos daqueles oriundos de fontes de arcos magmáticos juvenis, foram realizadas análises Lu-Hf combinadas aos dados obtidos pelo método U-Pb, através dos mesmos grãos de idades do Neoproterozoico, das amostras quartzíticas e de uma amostra metapelítica, as mesmas que compõe o artigo de LOBATO et. al. (2015) e os novos dados de idades U-Pb (itens 4.1.2.1 e 4.1.2.2). Os spots foram obtidos nos mesmos domínios em que foram realizadas as análises U-Pb. Os resultados estão expostos na tabela do Apêndice C e no diagrama ϵ Hf_(t) (Figura 32). As análises dos cristais de zircão usados na compilação de idades do Neoproterozoico das rochas metassedimentares foram obtidas através de grãos neoformados e feições de sobrecrescimento, bem como em grãos com zonamento tipicamente ígneo.

Figura 32 - Diagrama Idade (Ma) *vs*. Epsilon Hf_(t) para cristais de zircão do Neoproterozoico, pertencentes às amostras quartzíticas (Qtzt) e pelítica (Paragnaisse) da Unidade São Fidélis Superior.

Fonte: A autora, 2018.

Os grãos de zircão detríticos das amostras quartzíticas com idades $^{206}Pb/^{238}U$ do Toniano entre 998 Ma e 859 Ma apresentam valores de $\epsilon Hf_{(t)}$ negativo entre -18.3 e -5.0, e apresentam idades Hf-T_{DM} entre ca. 2079 Ma a 1719 Ma. Este conjunto possui os mais elevados valores de ϵ Hf_(t) próximos ao campo positivo.

As idades ${}^{206}\text{Pb}/{}^{238}\text{U}$ entre 775 Ma e 631 Ma apresentam variação de $\epsilon Hf_{(t)}$ entre -53.0 a -5.12, com maior concentração de $\epsilon Hf_{(t)}$ entre -15.9 e -11.2, as idades Hf-T_{DM} do criogeniano estão entre 3229 Ma e 1420 Ma. Os grãos de zircão com idades ${}_{206}\text{Pb}/{}_{238}\text{U}$ do Ediacarano, assim como idades mais jovens representam a maior proporção dos dados obtidos. As idades entre 525 Ma e 616 Ma denotam uma ampla distribuição determinada por um intervalo com valores muito negativos de $\epsilon Hf_{(t)}$, entre -11.2 e alcançam até -56.6, e idades Hf-T_{DM} entre 3265 Ma e 1567 Ma.

A rocha metapelítica obteve dados com menor dispensão, de valores negativos de ϵ Hf_(t) entre -8.7 e -17.7 e idades Hf-T_{DM} entre 1792 Ma e 1549 Ma.

O diagrama (Figura 32) apresenta idades do Neoproterozoico de grãos de zircão de rochas metassedimentares, predominantemente concentrados em valores negativos com uma moderada aglutinação em valores muito negativos. Para os grãos com idades inferiores a 620 Ma pode-se sugerir uma refusão de fontes velhas (retrabalhamento ou origem na crosta) com ou sem alguma contribuição de magma juvenil, o que já era esperado para o terreno tectônico em questão. Neste caso, as análises foram subdivididas em idades associadas ao metamorfismo (HEILBRON e MACHADO, 2003); um conjunto de idades provenientes do Arco magmático Rio Negro (HEILBRON e MACHADO, 2003; TUPINAMBÁ *et al.*, 2012); e as idades antigas apontam contribuição do arco mais antigo (Serra da Prata, PEIXOTO e HEILBRON, 2010; PEIXOTO *et al.*, 2016; 2017)

5 RESULTADOS E DISCUSSÕES (PARTE II): PROVENIÊNCIA DO GRUPO RAPOSOS (EQUIVALENTE DISTAL DA SEQUÊNCIA ANDRELÂNDIA) NO DOMÍNIO JUIZ DE FORA/TERRENO OCIDENTAL DA FAIXA RIBEIRA CENTRAL

5.1 Introdução

Estudos de proveniência do Grupo Andrelândia na Faixa Ribeira Central e na Zona de Interferência com a Faixa Brasília vem sendo produzidos nos últimos anos, focados em sua região proximal, nos domínios estruturais autóctones e alóctones proximais (TROUW *et al.*, 2000; VALERIANO *et al.*, 2004; VALLADARES *et al.*, 2004; 2008; CAMPOS NETO *et al.*, 2004; 2007; SANTOS, 2011; CAMPOS NETO, 2011; BELÉM *et al.*, 2011; WESTIN e CAMPOS NETO, 2013; WESTIN *et al.*, 2016; FRUGIS *et al.*, 2018). Nestes domínios, com grau metamórfico até a fácies anfibolito superior, a superposição metamórfica brasiliana sobre os núcleos de cristais de zircão detríticos ainda é bem clara, com *tips* metamórficos sobrecrescendo os núcleos detríticos e em geral com baixas razões Th/U.

Por outro lado, estes estudos são mais raros no equivalente distal do Grupo Andrelândia, caracterizado como Unidade (ou Grupo) Raposos no último mapa geológico do Estado do Rio de Janeiro (HEILBRON *et al.*, 2016). O Grupo Raposos constitui a cobertura metassedimentar do Domínio Juiz de Fora do Terreno Ocidental (HEILBRON *et al.*, 2004, 2016, 2017) (Figura 33). Esta sucessão metassedimentar compreende gnaisses pelíticos e semi-pelíticos com associações quartzíticas, rochas calcissilicáticas e anfibolitos . Em função da intensa atuação da Orogênese Brasiliana, neste setor da Faixa Ribeira (núcleo orogênico), estas unidades metassedimentares estão interdigitadas tectonicamente com rochas ortogranulíticas do Complexo Juiz de Fora, representante do embasamento da Bacia Andrelândia. O metamorfismo, por sua vez, atinge fácies granulito, com evidências de etapas de mais alta pressão na região de Andrelândia (ca. 12-16 Kbar e T=700-800 °C, COELHO *et al.*, 2017; CAMPOS NETO *et al.*, 2011) e de mais alta temperatura (700-800 °C e 7-9 Kbar) com paragêneses composta por ortopiroxênio + granada + silimanita + K-feldspato a partir de Bom Jardim de Minas e em todos o Estado do Rio de Janeiro (HEILBRON, 1997; DUARTE,

Figura 33 - Integração dos mapas geológicos dos estados do Rio de Janeiro e trecho do sul de Minas Gerais, produzidos pelo Grupo Tektos/UERJ.

Fonte: A autora, 2018.

1998; HEILBRON et al., 2000, 2008; TROUW et al., 2013, BENTO DOS SANTOS et al., 2015). Este segmento de mais alta temperatura está acompanhado de intensa migmatização por leucossomas esverdeados com ortopiroxênio e por vezes granada, que coalescem para formar corpos de charnockitóides intrusivos com dimensões batolíticas. Idades U-Pb obtidas indicam valores de ca. 635 Ma para a etapa de alta pressão e valores entre ca. 620 Ma e 570 Ma para as etapas de mais alta temperatura e granitóides cedo, sin e tardi colisionais, neste setor da Faixa Ribeira (HEILBRON *et al.*, 2017).

Em regiões de maior metamorfismo, a distinção entre cristais de zircão metamórficos de mais alta temperatura e núcleos detríticos não é mais tão simples, uma vez que nem a razões Th/U, tampouco as assinaturas geoquímicas do zircão, auxiliam nesta distinção (RUBATO *et al.*, 2002).

Com vistas a contribuir com esta temática, este capítulo da tese está focado na análise de rochas metassedimentares que afloram no Domínio Juiz de Fora, unidade tectônica superior do Terreno Ocidental, na região centro-norte do estado do Rio de Janeiro e áreas limítrofes na região sul do estado de Minas Gerais. A pesquisa está baseada em geocronologia isotópica U-Pb e Lu-Hf, assim como análise de elementos-traços em grãos detríticos de zircão.

5.2 Geologia local e amostragem

Nove lentes quartzíticas distribuídas nas unidades metassedimentares do Grupo Raposos foram selecionadas para estudo de proveniência e caracterização do metamorfismo regional de fácies granulito, por meio de análises U-Pb em zircão, utilizando tanto os métodos LA-ICP-MS quanto o SHRIMP. Amostras representativas foram escolhidas para a aplicação da metodologia Lu-Hf e análise de elementos-traço em zircão.

A amostragem foi distribuída em três zonas estruturais distintas: *i*) a NW do contato com o Terreno Paraíba do Sul, representando escamas frontais basais e superiores do sistema de empurrão; *ii*) na região de intenso redobramento D_3 associado a zonas de cisalhamento subverticais destrais que deformam a foliação milonítica anterior (S₂); *iii*) escamas de empurrão situadas entre o Terreno Paraíba do Sul e o Terreno Oriental. Para melhor compressão da situação estrutural da amostragem é importante observar o mapa tectônico e as seções geológicas nas Figuras 33, 34 e 35. As rochas supracrustais do Grupo Raposos formam faixas alongadas de direção NE-SW. Sua composição varia de psamítica a pelítica. Na porção NW predominam lentes mais espessas de paragnaisses bandados ricos em biotita, sobrepostos por intercalação tectônica de paragnaisses com granada e sillimanita muito deformados e rochas do embasamento (Complexo Juiz de Fora - CJF). Na porção central da área, situada entre as Zonas de Cisalhamento de Varre-Sai e Paraíba do Sul, as lentes metassedimentares do Grupo Raposos são ainda mais deformadas e intensamente imbricadas juntamente com as rochas ortogranulitícas, ambas exibindo fortes texturas miloníticas e leucossomas esverdeados com ortopiroxênio. Na porção Sul, entre os Terrenos Paraíba do Sul e Oriental, predominam as rochas ortogranulitícas do Complexo Juiz de Fora muito migmatíticas, com muitas lentes leucossomáticas de rochas charnockitóides com ortopiroxênio e por vezes granada.

Para esta tese foram amostradas lentes quartzíticas englobadas nos dois litotipos do Grupo Raposos no Domínio Juiz de Fora: *i*) granada biotita gnaisses muito aluminosos, com intercalações em todas as escalas de granada sillimanita biotita gnaisse, sillimanita gnaisses xistosos, quartzitos, anfibolitos e rochas calcissilicáticas; e, *ii*) biotita gnaisse bandado migmatítico, com abundantes intercalações decamétricas a centimétricas de quartzito, além de rochas calcissilicáticas, rochas meta-ultramáficas e gonditos.

Em termos de localização estrutural, as amostras foram coletas nas seguintes zonas: a) Zona NW com diversas escamas tectônicas frontais do Sistema de Empurrão do Domínio Juiz de Fora. Nestas escamas predominam rochas metassedimentares sobre os ortogranulitos, sendo que esta interdigitação tectônica aumenta para o topo, próximo ao contato com o Terreno Paraíba do Sul. Na base predominam biotita paragnaisses bandados com quartzitos mais puros e grossos, enquanto que no topo predominam sillimanita granada biotita gnaisses, localmente com ortopiroxênio, com intercalações de quarztitos mais impuros; b) Zona central, entre as Zonas de Cisalhamento D_3 de Miracema, Varre Sai e Paraíba do Sul. Nesta região as rochas ortogranulíticas do Complexo Juiz de Fora predominam sobre as rochas metassedimentares do Grupo Raposos. O litotipo predominante é o (ortopiroxênio) (sillimanita) granada biotita gnaisse migmatítico, contendo leucossomas esverdeados, ortopiroxênio e granada, com abundantes intercalações decamétricas a centimétricas de quartzito, além de rochas calcissilicáticas, rochas meta-ultramáficas e gonditos; c) Zona SE, entre os Terrenos Paraíba do Sul e Oriental, onde voltam a predominar as escamas de metassedimentos sobre os ortogranulitos. Neste setor, tanto os paragnaisses ricos em sillimanita e granada, como biotita gnaisses bandados são litotipos frequentes, associados a lentes quartzíticas decamétricos a centimétricas de quartzitos feldspáticos a puros. Estas unidades do Grupo Raposos são muito migmatíticas neste setor, próximo ao contato basal tanto com terrenos de que ensejam as rochas de arcos magmático da faixa.

As três zonas estão discriminadas no mapa da Figura 34, na Tabela 3, e nos perfis da Figura 35. A Tabela 3 lista as amostras analisadas, sua situação estrutural e metodologias analíticas empregadas.

Figura 34 – Mapa geológico simplificado do segmento norte da Faixa Ribeira, no limite dos estados de Minas Gerais e Rio de Janeiro.

Legenda: As estrelas indicam as amostras selecionadas para estudo geocronológico e as elipses os setores. Abreviaturas: DAut - Domínio Autóctone; DAnd - Domínio Andrelândia; DJF - Domínio Juiz de Fora; TPS - Terreno Paraíba do Sul; TOR - Terreno Oriental. Legenda: 1) Falha; 2) Zona de cisalhamento do Paraíba do Sul (Além Paraíba); 3) Limite dos domínios e terrenos tectônicos (empurrões principais); 4) Empurrão subordinado. Unidades lito-estratigráficas: 5) Granitos neoproterozoicos a ordovicianos sin, tardi e pós-colisionais; Terreno Oriental: 6) Arco magmático Serra da Bolivia; 7) Metassedimentos de alto grau; 8) Metassedimentos de ante-arco; 9) Arcos magmáticos Rio Negro e Serra da Prata; 10) Metassedimento ricos em rochas carbonáticas (Grupo Italva); 11) Metassedimentos de alto grau (Grupo São Fidélis); Terreno Ocidental: 12-13) Ortognaisses, metabasitos e granitóides do Complexo Mantiqueira; 14) Metassedimentos de margem passiva proximal (Grupo Andrelândia); 15) Ortogranulitos do Complexo Juiz de Fora; 16) Metassedimentos de margem passiva distal (Grupo Andrelândia); Terreno Paraíba do Sul: 17) Ortognaisses do Complexo Quirino; 18) Metassedimentos ricos em rochas carbonáticas (Grupo Paraíba do Sul).

Fonte: Heilbron et al., 2017.

Figura 35 - Perfis transversais a estruturação da Faixa Ribeira Central: a) Zona Central; b) Zonas NW e SE.

Fonte: Heilbron et al., 2017.

Tabela 3 – Divisão dos litotipos e posição estrutural adotados neste trabalho para o Grupo Andrelândia distal na Faixa Ribeira Central, no Domínio Juiz de Fora, e suas respectivas amostras para estudo geocronológico U-Pb.

Grupo	Localização estrutural e Litotipos	Amostra/Metodologia
	Zona estrutural NW	
Grupo Raposos equivalente distal do Grupo Andrelândia	Biotita gnaisse bandado, sillimanita granada biotita gnaisse, quartzitos, rochas calcissilicáticas, gonditos e rochas anfibolíticas	ARG-03/ LA-ICP-MS
		ARG-04/ LA-ICP-MS
		SRJ-JE-159B/ LA-ICP-MS
		BP-JE-15A/ LA-ICP-MS
	Zona Central entre as zonas de Cisalhamento D ₃ Predomínio (opx) sillimanita granada biotita gnaisses, quartzitos, rochas calcisslicáticas, gonditos	IT-M-07/SHRIMP MI-BR-37/SHRIMP
	Zona SE entre os Terrenos Paraíba do Sul e Oriental	
	Sillimanita granada bitotita ganisses e biotita gnaisses bandados, migmatíticos, com lentes de quartzitos, e rochs calcissilicáticas e rochas meta- ultramáficas	IV-M-06/SHRIMP
		SP-BR-01/LA-ICP-MS
		THE-17/ LA-ICP-MS

Fonte: A autora, 2018.

Constitui a região frontal dos empurrões do Domínio Juiz de Fora sobre o Domínio Andrelândia e nela foram selecionadas para o estudo geocronológico U-Pb amostras de: a) quartzitos puros recristalizados associados aos paragnaisses miloníticos (ARG-03 e ARG-04), próximo ao contato com o Terreno Paraíba do Sul, nas proximidades do munícipio de Argirita-MG; b) de quartzitos (BP-JE-15 e SRJ-JE-159B) intercalados no biotita gnaisse bandado na base do Domínio Juiz de Fora (SRJ-JE-159B). (Figuras 33, 34 e 35; Tabela 3)

5.2.1.1 Quartzitos miloníticos recristalizados intercalados no Sillimanita-granada-biotita gnaisse (amostras ARG-03 e ARG-04)

Essas lentes quartzíticas estão localizadas nos municípios de Argirita e Maripá de Minas (MG) (Figuras 33, 34 e 35). Constituem bancos de quartzito muito recristalizados com forte foliação milonítica, encontrados em espessuras centimétricas a decamétricas, intercalados nos paragnaisses. São bem puros, compostos basicamente por quartzo, além de proporções acessórias de feldspato, biotita, mica branca e ilmenita. As porções menos deformadas apresentam granulometria grossa a média. São muito fraturados e por vezes apresentam alguma percolação de material ferruginoso. (Figuras 36A e 36B) A foliação é marcada pela orientação dos grãos de quartzo alongados, com forte recristalização estática formando agregados poligonais, juntamente com os minerais micáceos (Figura 36C). A lineação mineral marcante é definida por cristais alongados de quartzo e feldspato. Em sessão delgada se alternam níveis ricos em quartzo com alto grau de recristalização, formando agregados poligonais, com níveis mais impuros, de granulometria fina a média, com fitas de quartzo exibindo ora forte extinção ondulante, ora textura típicas para recristalização estática, formando um arranjo poligonal nos limites dos cristais maiores (Figura 36D).

Além da deformação e recristalização dinâmica e estática, localmente os grãos de quartzo apresentam um padrão de fraturamento interno (Figuras 36E e 36F). Biotita e muscovita em menor quantidade, ocorrem como palhetas definindo a foliação milonítica. Os feldspatos (plagioclásios e K-feldspato) são alongados e muitas vezes estão saussuritizados. Como minerais acessórios foram observados minerais opacos e zircão. Nos concentrados

selecionados para geocronologia foi possível observar ainda a presença de apatita, ilmenita, monazita e rutilo, além de zircão.

Figura 36 – Quartzitos miloníticos recristalizados da Escamas Tectônicas Frontais do Grupo Raposos na Zona Estrutural NW.

Legenda: (A) e (B) Amostra de mão e afloramento do quartzito fraturado. Fotomicrografias: (C) recristalização estática com arranjo poligonal; (D) microbrecha), (E) e (F) faturamento interno nos cristais. Fonte: A autora, 2018.

5.2.1.2 Quartzitos Impuros (BP-JE-15 e SRJ-JE-159B) intercalados no biotita gnaisse bandado e migmatítico

Estes quartzitos estão intercalados em biotita gnaisses bandados que sustentam a linha de serra na região de Conservatória-RJ (BP-JE-15) e Santa Isabel do Rio Preto (SRJ-JE-159B) (Figuras 33, 34 e 35). Ocorrem como lentes decamétricas a centimétricas no biotita gnaisse bandado (Figura 37). Os contatos são claramente gradacionais com os gnaisses encaixantes. Estas lentes são muito bandadas, com variações de quartzito desde puros a feldspáticos, evidenciando acamamento sedimentar paralelo a foliação milonítica. Podem conter níveis centimétricos de gnaisses e rochas calcissilicáticas. Além de quartzo, podem

Figura 37 - Grupo Raposos (Megassequência Andrelândia distal) no Domínio Juiz de Fora, Zona NW.

Legenda: Afloramentos de (A,B e C) quartzito na região de Conservatória-RJ e, (D) biotita gnaisse bandado milonítico encaixante dos quartzitos, aos arredores de Santa Isabel-MG. Fonte: A autora, 2018.

conter níveis centimétricos de gnaisses e rochas calcissilicáticas. Além de quartzo, ocorrem mica branca, sillimanita, turmalina, opacos e zircão. Localmente gradam para rochas calcissilicáticas ou gonditos. Possuem marcante foliação milonítica, com texturas que exibem variados graus de recristalização dinâmica e estática. Por vezes, uma clivagem espaçada definida por um arranjo planar de fraturas com alto ângulo com o acamamento sedimentar paralelo e a foliação milonítica foi observada nestes afloramentos, especialmente na Serra de Conservatória.

5.2.2 Zona Central

Deste domínio estrutural central, localizado na porção NE da área alvo (Figuras 33, 34 e 35) entre várias zonas de cisalhamento D₃, predominam as intercalações de rochas granulíticas do CJF sobre os paragnaisses do Grupo Raposos. Deste setor foram selecionadas duas amostras de quartzitos (MI-BR-37 e IT-M-07), coletadas nas proximidades das cidades de Miracema e Itaperuna, NW do estado do RJ (Figura 33, Tabela 3), próximo aos contatos com o Domínio Cambuci do Terreno Oriental. Estes quartzitos estão associados aos paragnaisses migmatíticos com granada, sillimanita e localmente ortopiroxênio. As texturas migmatíticas são caraterizadas pela abundância de leucossomas e até corpos mapeáveis de granada leucocharnockito, com cores esverdeadas.

Foram amostrados quartzitos feldspáticos de granulação grossa (MI-BR-37 e IT-M-07) intercalados no granada-biotita gnaisse bandado. Ocorrem como intercalações centimétricas a métricas de lentes quartzo-feldspáticas, muito intemperizadas, encaixadas no granada-biotita- gnaisse bandado de textura milonítica (Figuras 38A-38C).

Os quartzitos feldspáticos apresentam granulação fina a média, textura granoblástica nas bandas mais puras e texturas foliadas a miloníticas nas bandas mais impuras. Tal como nas amostras anteriores, texturas miloníticas com fitas de quartzo, forte extinção ondulante e sub-grãos, assim com arranjos poligonais indicativos de recristalização estática são encontrados nos paragnaisses (Figura 38D). Além de quartzo, plagioclásio, microclina, biotita, sillimanita, foram identificados zircão, ilmenita, monazita, apatita como minerais acessórios. Os feldspatos estão saussuritizados. Nos afloramentos de quartzitos amostrados, ocorrem intercalações centimétricas a métricas de biotita gnaisses ricos em quartzo e de sillimanita gnaisse xistoso.

Figura 38 – Litotipos comuns dos gnaisses encaixantes das lentes quartzíticas do Grupo Raposos, no domínio estrutural central.

Legenda: (A) e (B) (Opx)-sillimanita-granada biotita gnaisses migmatíticos nas proximidades de Miracema-RJ, encaixante do quartzito MI-BR-37 e (C) Opx-granada charnockito, nas proximidades de Itaperuna-RJ, nas vizinhanças do local de coleta da amostra IT-M-07. (D) Fotomicrografia da lente de quartzito feldspático (MI-BR-37). Fonte: A autora, 2018.

5.2.3 Zona SE, entre os terrenos Paraíba do Sul e Oriental

Nesta região estrutural foram coletadas três amostras de quartzito impuros (IV-M-06, SP-BR-01 e THE-17; Figuras 33, 34 e 35). As lentes de quartzito impuro possuem espessuras decamétricas a métricas e estão intercaladas no (granada) - biotita gnaisse bandado e migmatítico, localmente com sillimanita. Estão distribuídas ao longo de uma faixa alongada de direção NE-SW, entre os dos distritos de Carmo e Italva, no NW do estado do Rio de Janeiro. (Figura 39).

Estes quartzitos são muito bandados, e alternam níveis impuros feldspáticos, níveis de gnaisse rico em biotita e níveis de quartzito puro com granulometria grossa. Localmente

níveis com sillimanita são encontrados. Além de quartzo, ocorre feldspato, biotita, mica branca, sillimanita e minerais opacos (ilmenita). Nos concentrados minerais, os acessórios observados são ilmenita, monazita, zircão, apatita e rutilo. São muito foliados e apresentam texturas miloníticas, com fitas de quartzo estiradas, apresentando ora forte extinção ondulante, ora texturas com sub-grãos, ou mesmo já um mosaico poligonal com alta taxa de recristalização estática.

Legenda:(A) biotita gnaisse bandado; (B) detalhe da sua textura milonítica; (C) rocha meta-ultramáfica próximo ao ponto THE-17; (D) quartzito impuros intercalados com gnaisses bandados, ponto THE-17. Fonte: A autora, 2018.

5.3 Resultados Isotópicos

5.3.1 Análises U-Pb

5.3.1.1 Zona NW

Amostra BP-JE-15A (Quartzito impuro)

A amostra apresenta cristais de zircão predominantemente equidimensionais, arredondados e prismáticos curtos (2:1 e 3:1); prismas longos e finos ocorrem em menor proporção. Em geral, apresentam terminações arredondadas, assim como sobrecrescimento metamórfico com domínios de baixa luminescência. Em alguns cristais observou-se vestígios da estrutura primária no núcleo, mesmo havendo zonas metamórficas com reabsorção e dissolução. (Figura 40).

Figura 40 – Imagens de catodoluminescência de grãos de zircão representativos da amostra quartzítica BP-JE-15A.

Fonte: A autora, 2018.

As idades de zircão detrítico do quartzito impuro apontam para fontes dominantemente do Paleoproterozoico (80%) com pico de idades ²⁰⁷Pb/²⁰⁶Pb em ca. 2125 Ma, além de contribuições subordinadas do Arqueano e do Neoproterozoico com idades ²⁰⁶Pb/²³⁸U em 975 Ma, 861 Ma, 827 Ma e 709 e 691 Ma (Figura 41A, Apêndice A). Os resultados apontam idades discordantes com episódios de perda de Pb (Figura 41B).

O grão z47 apresenta a idade mais jovem de contribuição, com idade ²⁰⁶Pb/²³⁸U de 691 Ma com sinais de sobrecrescimento do Ediacarano (562 Ma). Portanto, esta idade poderia ser interpretada como o limite superior para a sedimentação desta unidade. Entretanto, observando-se cuidadosamente a imagem de CL deste grão (Figura 40), verifica-se a ocorrência de texturas secundárias poderiam sugerir algum re-equilíbrio metamórfico ou mesmo perda parcial de Pb durante este evento. Sendo assim, este dado deve ser usado com cautela para o limite máximo de sedimentação.

Figura 41 – Resultados de geocronolologia UPb em zircão detrítico da amostra quartzítica BP-JE-15A, pertencente ao Grupo Raposos (Sequência Andrelândia Distal) no Domínio Juiz de Fora.

Legenda: (A) Histograma de idades e (B) diagrama concórdia U-Pb para a amostra quartzítica BP-JE-15A. Fonte: A autora, 2018.

Amostra SRJ-JE-159B (Quartzito impuro)

Os cristais de zircão desta amostra de quartzito impuro variam de equidimensionais a prismáticos (2:1 e 3:1), com predominância de terminações arredondadas e piramidais. Os cristais apresentam coloração rosada e amarela e são comuns a ocorrência tanto de sobrecrescimentos metamórficos como texturas indicativas de reabsorção. Alguns cristais

também apresentam núcleos com texturas primárias preservadas, parcialmente apagadas pelas texturas metamórficas. (Figura 42).

A distribuição de idades ²⁰⁷Pb/²⁰⁶Pb da amostra SRJ-JE-159B é predominante do Paleoproterozoico (62%), com idades entre 2210 Ma e 1823 Ma, com pico ca. 2048 Ma. Verifica-se também fonte arqueana com idades entre 3279 Ma e 2514 Ma (Figura 43A, Apêndice A). As idades ²⁰⁶Pb/²³⁸U do Neoproterozoico variam entre 949 Ma e 652 Ma e foram obtidas através de análises realizadas em porções centrais dos grãos. Entretanto, o cristal de zircão

Figura 42 – Imagens de catodoluminescência de grãos de zircão representativos da amostra quartzítica SRJ-JE-159B, pertencente ao Grupo Raposos, intercalada em biotita gnaisse bandado, no segmento basal do Zona NW.

Fonte: A autora, 2018.

Figura 43 – Resultados de geocronologia U-Pb em zircão detrítico da amostra quartzítica SRJ-JE-159B, pertencente ao Grupo Raposos (Sequência Andrelândia Distal) no Domínio Juiz de Fora, Zona NW.

Legenda: (A) Histograma e (B) diagrama concórdia U-Pb para a amostra quartzítica SRJ-JE-159B. Fonte: A autora, 2018.

com idade de 652 Ma parece também apresentar sinais de reabsorção e/ou recristalização metamórfica. Esta amostra apresenta claramente episódios de perda de Pb, resultado de eventos tectono-metamórficos estabelecidos para a área (Figura 43B). Portanto, o grão mais jovem tem a idade de ca. 713 Ma (z69), que poderia ser tomada como o limite máximo de sedimentação para esta lente de quartzito.

Amostra ARG-03 (Quartzito milonítico)

Os cristais de zircão observados para esta amostra apresentam coloração amarela, são translúcidos e exibem hábito prismático curto (2:1), com predomínio de grãos equidimensionais (1:1). A montagem incluiu grãos de zircão de todas as morfologias, embora predominem grãos límpidos e equidimensionais. Muitos grãos desta montagem exibem claros halos de sobrecrescimento metamórfico. Em imagens de CL observa-se o predomínio de grãos com texturas primárias obliteradas, expondo domínios de alta e/ou baixa luminescência gerando texturas homogêneas, assim como texturas de reabsorção convolutas apagando os vestígios do zonamento primário dos zircões e raros grãos com texturas do tipo soccer ball. (Figura 44).

Figura 44 – Imagens de catodoluminescência de grãos de zircão representativos da amostra ARG-03, lente quartzítica pertencente ao Grupo Raposos, intercalada em biotita gnaisse bandado, no segmento basal do Zona NW.

Fonte: A autora, 2018.

Os resultados (idades ²⁰⁷Pb/²⁰⁶Pb) indicaram que a moda de grãos de zircão detríticos da lente quartzítica de alta deformação é paleoproterozoica, constituindo cerca de 59% dos grãos da amostra, com dois picos ao redor de 2180 Ma e 2060 Ma. Foram ainda alcançadas idades do Arqueano no intervalo entre 3233 Ma a 2570 Ma (Figura 45 e Apêndice A).

Figura 45 – Histograma para idades U-Pb detríticas (Ma) vs. probabilidade relativa da amostra ARG-03, lente quartzítica pertencente ao Grupo Raposos (Sequência Andrelândia Distal), Domínio Juiz de Fora, Zona NW.

Fonte: A autora, 2018.

Figura 46 – Diagramas concórdia U-Pb, exibem idades do Neoproterozoíco obtidas em cristais de zircão das lentes quartzíticas miloníticas, pertencentes ao Grupo Raposos.

Fonte: A autora, 2018.

Esta amostra apresenta cristais de zircão com hábito prismático curto (2:1), equidimensionais com ou sem sobrecrescimento, grãos arredondados com coloração predominantemente amarela. De modo geral, exibem textura de recristalização (Figura 47). Os resultados (Apêndice A) indicam o predomínio de idades ²⁰⁷Pb/²⁰⁶Pb do Paleoproterozóico (46% da amostra), entre 2293 Ma a 1703 Ma, com máximos em torno de 2136 Ma e 2009 Ma. As idades do Arqueano representam 24% da população de grãos detríticos, no intervalo entre 3378 Ma a 2590 Ma (Figura 48A). Nesta amostra não foram encontrados cristais com idades concordantes do Mesoproterozoico.

O conjunto de idades ²⁰⁶Pb/²³⁸U ediacaranas entre 629 Ma e 568 Ma (Figura 48B), relacionadas ao metamorfismo, foram obtidas em regiões do cristal com textura secundária, sobreposta em porções de sobrecrescimento e núcleos herdados, indicam alta e baixa luminescência acompanhando texturas primárias. Neste conjunto ocorrem poucos grãos neoformados que apresentam zonamento interno (Figura 47).

Figura 47 – Imagens de catodoluminescência de grãos de zircão representativos da amostra quartzítica ARG-03, no segmento basal da Zona NW.

Foi alcançada uma idade concórdia em 612 Ma (Figura 49A) que retrata o metamorfismo precoce ou fase inicial do metamorfismo e metamorfismo estabelecido para área em 580 Ma (Figura 49B). As idades 206Pb/208U mais velhas do Neoproterozoico (661

Fonte: A autora, 2018.

Ma e 664 Ma) foram adquiridas por meio de spots realizados em bordas de grãos com texturas também homogêneas, de alta luminescência. Em virtude destas texturas muito perturbadas pelo metamorfismo, mesmo os grãos com idades próximas a 660 Ma (grãos 3B e 4B, Figura 47) que talvez pudessem ser considerados como proveniência, podem não representar valores com significado geológico e, portanto, não representariam fontes reais do Neoproterozoico.

Figura 48 – Resultados de geocronologia U-Pb detrítico para a amostra quartzítica ARG-04, pertencente ao Grupo Raposos (Sequência Andrelândia Distal) no Domínio Juiz de Fora, Setor NW.

Legenda: (A) Histograma de idades U-Pb detríticas e, (B) diagrama concórdia U-Pb para a amostra quartzítica ARG-04. Notar a clara perda episódica de Pb para o Evento Metamórfico Brasiliano (b). Fonte: A autora, 2018.

Figura 49 – Diagramas concórdia U-Pb para a amostra quartzítica ARG-04, do Grupo Raposos, Zona NW.

Legenda: (A) idade concórdia para idades metamórficas obtidas em sobrecrescimento dos cristais; (B) idade intercepto apontando o metamorfismo estabelecido para área. Fonte: A autora, 2018.

5.3.1.2 Zona Central

Amostra IT-M-07 (Quartzito feldspático)

Estes resultados foram obtidos utilizando a metodologia SHRIMP, nos laboratórios da Universidade de Camberra, na Austrália (vide item 1.5). Os grãos de zircão desta amostra são límpidos, incolores, prismáticos com proporções entre 2:1 e 3:1 e cristais equidimensionais. As imagens de CL indicam que a maior parte dos grãos é dominada por um zonamento em setores largos, típicos para zircões metamórficos de alta temperatura.

Como resultado (Figura 50, Apêndice B), obteve-se poucas idades de núcleos detríticos variando entre o Arqueano e Paleoproterozoico, ca. 2,6 Ga, 2,4 Ga 1,7 Ga. A amostra apresenta maior número de grãos com idades do Neoproterozoico. As idades ²⁰⁶Pb/²³⁸U concordantes situaram-se entre 675 Ma e 513 Ma e foram obtidas, em sua grande maioria, nas bordas de sobrecrescimento dos cristais.

Amostra MI-BR-37 (Quartzito feldspático)

Esta amostra também foi analisada utilizando-se da metodologia SHRIMP, no laboratório da ANU, em Camberra, na Austrália. Os cristais de zircão desta amostra são incolores, formam prismas curtos a equidimensionais, límpidos de inclusões, e apresentam características bastante uniformes.

A rocha quartzito-feldspática inserida em terreno de alto grau metamórfico, exibe análises com resultados restritos ao Neoproterozoico (Apêndice B, Figura 51), as idades concordantes ²⁰⁶Pb/²³⁸U variam entre 589 Ma a 503 Ma. Estas idades estão associadas ao evento tectono-metamórfico estabelecido para o Domínio Juiz de Fora, com gradiente de média pressão, com T estimada em ca. 700°C.

Figura 50 – Diagramas U-Pb para a amostra quartzítica MI-BR-37, pertencente ao Grupo Raposos, Zona Central.

Legenda: a) diagrama concórdia para todas as idades obtidas; b) histograma com idades que apresentam discordância até 15%. Fonte: A autora, 2018.

Figura 51 – Diagrama concórdia U-Pb (b) para a amostra quartzítica MI-BR-37, pertencente ao Grupo Raposos, Zona Central.

Legenda: A amostra apresenta concentração de idades exclusiva do Neoproterozoico. Fonte: A autora, 2018.

5.3.1.3 Zona SE

Amostra IV-M-06 (Quartzito impuro)

A grande maioria das idades 207Pb/206Pb obtidas nos núcleos de grãos de zircão (alcançando 64%) forneceu idades concordantes do Paleoproterozoico (Apêndice B, Figura 52A). Por outro lado, tal como as amostras anteriores, esta amostra apresenta perda episódica de Pb com zircões com alto grau de discordância apontando para o metamorfismo Neoproterozoico (Figura 52B). Destes resultados, a maioria apresentou baixas razões Th/U. Os cálculos de idades de intercepto superior desta discórdia, obtida por uma grande quantidade de spots realizadas em núcleos de grãos detríticos resultou em um valor de 2190 \pm 37 Ma (Figura 52B).

Figura 52 – Resultados de geocronologia U-Pb em zircão detrítico da amostra IV-M-6 oriunda da lente quartzítica pertencente ao Grupo Raposos do Domínio Juiz de Fora, Zona SE.

Legenda: (A) Histogramas para idades U-Pb (Ma) vs. probabilidade relativa; e (B) diagrama concórdia da amostra IV-M-6 oriunda da lente quartzítica pertencente ao Grupo Raposos do Domínio Juiz de Fora, Zona SE.

Fonte: A autora, 2018.

A distribuição das idades para esta amostra está concentrada em maior parte no Paleoproterozóico, com idades 207 Pb/ 206 Pb exibindo pico em ca. 2052 Ma, e subordinada contribuição do Arqueano (Apêndice B, Figura 53A). Apresenta característica semelhante à amostra IV-M-06 em relação ao processo de perda de Pb (Figura 53B). Foi calculada uma idade concordante em 571 ± 8 Ma, de spots realizados em finas bordas de sobrecrescimento, juntamente com os dados obtidos em grãos zonados com baixa razão Th/U, indicam claramente fase metamórfica (Figura 53C).

Figura 53 – Histogramas para idades U-Pb (Ma) *vs*. probabilidade relativa e; diagrama concórdia (b e c) da amostra IV-M-6 oriunda da lente quartzítica, pertencente ao Grupo Raposos do Domínio Juiz de Fora, Zona SE.

Fonte: A autora, 2018.

Os cristais de zircão observados possuem pouca variação nas formas, prevalecendo os prismáticos e equidimensionais, incolores e de coloração amarela tendendo a ter cor mais intensa nas frações mais altas. Em imagens de CL (Figura 54), apresentam uniformidade em relação às texturas e morfologia, exibem-se em formas prismáticas frequentemente com halos de crescimento concêntricos, muitas vezes as porções centrais são ausentes desta feição; sendo comum a presença de textura convoluta. A maioria dos cristais apresenta sobrecrescimento, além de zonas homogêneas nesta feição.

As análises foram realizadas em regiões centrais de grãos, que possuem, em geral, textura convoluta, duas gerações de sobrecrescimento a partir do núcleo, bem como domínios de textura homogênea nas extremidades dos cristais (Figura 54).

Figura 54 – Imagens de catodoluminescência de grãos de zircão representativos da amostra quartzítica THE-17, pertencente ao Grupo Raposos, intercalada em biotita gnaisse bandado, no segmento basal do Zona SE.

Fonte: A autora, 2018.

Esta amostra (Apêndice A, Figura 55), é majoritariamente composta por grãos do Neoproterozoico, correspondendo 91% das análises, com idades entre 889 Ma a 513 Ma. Contribuição máxima estabelecida para idades ²⁰⁶Pb/²³⁸U concordantes ficaram em 889 Ma,

733 Ma e 644 Ma. As demais idades ficaram dispersas no intervalo de idades ²⁰⁷Pb/²⁰⁶Pb entre 2627 Ma a 1027 Ma.

Figura 55 – Resultados de geocronologia em zircão detrítico da lente quartzítica (THE-17) do Grupo Andrelândia no Domínio Juiz de Fora, Zona SE.

Legenda: (A) Histograma das idades U-Pb e (B) diagrama concórdia para a amostra THE-17 do Grupo Andrelândia no Domínio Juiz de Fora, Zona SE. Fonte: A autora, 2018.

As idades concordantes do Neoproterozoico foram diferenciadas em três clusters, dos quais foram determinadas idades concordantes em 606 ± 6 Ma, 578 ± 7 Ma e 553 ± 6 Ma (Figuras 56A-C), que poderiam representar estágios do metamorfismo regional M₁. É interessante comentar sobre as texturas e morfologia destes três clusters de idades. A mais antiga é representada por grãos com zonamento concêntrico e mais altas razões Th/U compatíveis com metamorfismo de fácies granulito. Já os clusters mais jovens (578 Ma e 553 Ma) foram obtidos em spots localizados em zonas de recristalização, bem como em grãos neoformados de crescimento oscilatório bem marcado.

Ainda em relação às idades do Neoproterozoico, foram obtidos dois spots concordantes com idades 733 Ma e 889 Ma (4F e 4I, Figura 56), localizados na região central dos grãos, que apesar de exibirem zonamento concêntrico magmático, também exibem texturas de recristalização e zonamento convoluto. Portanto, tal como as amostras anteriores, estas idades podem ser interpretadas como limite máximo de deposição, mas ainda com cautela, em função das texturas indicativas de superposição metamórfica de alta temperatura.

Figura 56 – Diagramas concórdia das idades U-Pb (LA-ICP-MS) do Neoproterozoico, obtidas em grãos de zircão extraídos em lente quartzítica (THE-17) do Grupo Raposos no Domínio Juiz de Fora, Setor SE.

Fonte: A autora, 2018.

5.3.1.4 Razão Th/U

A maior parte dos núcleos de zircão detrítico oriundos de rochas quartzíticas das escamas de empurrão inferiores do Setor NW, apresentou altas razões Th/U (Figuras 57A e 57B), tal como esperado pela literatura. Entretanto, os sobrecrescimento (*tips*) e grãos com texturas de recristalização, incluindo domínios de baixa luminescência observados em CL, também apresentaram altos valores da razão Th/U, não sendo possível utilizar este parâmetro para separar grãos primários (ígneos) dos grãos metamórficos de alto grau.

Os cristais metamórficos do Brasiliano e os domínios de sobrecrescimento possuem variações das razões Th/U entre 0,01 a 1,43 para as amostras dos setores NW e SE (Figura

57C), enquanto que para o Setor Central (Figura 57D) os valores desta razão variam de 0,1 até 2,0. As baixas razões Th/U obtidas em grãos ou sobrecrescimento com idades do Neoproterozoico (metamorfismo) estão associadas a lentes quartzíticas com intensa recristalização (ARG-03, ARG-04 e Setor SE).

Figura 57 – Gáficos binários para as razões Th/U vs. idade U-Pb (Ma) das amostras quartzíticas oriundas do Grupo Raposos, Domínio Juiz de Fora.

Fonte: A autora, 2018.

Os resultados obtidos por SHRIMP são mais precisos em relação aos obtidos por LA-ICP-MS, isso acontece pela capacidade que a sonda iônica tem em alcançar maior precisão analítica. As análises realizadas por SHRIMP para as amostras IT-M-06 e SP-BR-01 (Setor
SE) parecem ter sido mais precisas quanto a associação de razões Th/U mais baixas para as idades metamórficas, embora as análises medidas para as amostras IT-M-7 e MI-BR-37 (Setor Central) que têm predominância de idades do Neoproterozoico, associadas a tips e a grãos com zonamento bem marcado, não apresentam valores da razão Th/U inferiores a 0,1.

5.3.2 Resultados Lu-Hf

Com o objetivo de estimar mais precisamente as fontes detríticas dos quartzitos do Grupo Raposos na área de estudo, foram selecionadas algumas amostras para análises de Lu-Hf. Estas análises aconteceram no Laboratório da Universidade de Notre Dame, nos EUA, sob a supervisão do Prof. Dr. Anthonio Simonetti. Maiores detalhes sobre o método foram apresentados na seção 1.5.4. As amostras escolhidas para este aprofundamento foram: a) Arg-03, b) SRJ-JE-159B, c) BP-JE-15A e d) THE-17).

Figura 58 – Gráficos das razões isotópicas de Hf obtidas em cristais de zircão das amostras quartzíticas pertencentes ao Grupo Raposos (Sequência Andrelândia Distal) do Domínio Juiz de Fora.

Legenda: (A) Histograma de distribuição dos valores das razões ${}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)}$; b) Distribuição Idade (Ma) *vs.* razão ${}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)}$. Fonte: A autora, 2018.

As razões isotópicas de Hf obtidas para os cristais de zircão das amostras do Grupo Raposos apontam composição homogênea em relação aos grãos individuais e as diferentes amostras, apresentando valores da razão 176 Hf/ 177 Hf_(t) medida entre 0,280761 e 0,282395 (Figura 58A). A proporção dos valores da razão 176 Hf/ 177 Hf_(t) versus as idades dos cristais estudados apresentam: *i*) valores próximos a 0,2810 para os grãos arqueanos; *ii*) concentração

de idades do Paleoproterozoico com intervalo de razão ${}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)}$ entre 0,28120 e 0,28180; *iii*) as idades do Neoproterozoico de razões mais altas, concentradas entre 0,28180 e 0,28240. (Figura 58B).

Para a amostra quartzítica ARG-03 (Apêndice C, Figura 59A) foram selecionados os seguintes grupos, com seus respectivos resultados para a metodologia Lu-Hf:

a) Quatro grãos com idades entre 3233 Ma e 2862 Ma apontam para uma assinatura juvenil, com valores de ϵ Hf_(t) entre +0,01 a +6,9, e somente um grão de idade arqueana em 2603 Ma forneceu uma assinatura mais crustal, com valor ϵ Hf_(t) de -4,3. Este conjunto forneceu idades Hf-T_{DM} entre 3163 Ma e 3038 Ma.

b) As nove análises em cristais do Paleoproterozóico, com valores entre ca. 2383 Ma e 2046 Ma, forneceram valores de ϵ Hf_(t) entre -8,4 até +4,0, com idades Hf-T_{DM} de 2993 Ma até 2307 Ma, refletem tanto assinaturas de fontes juvenis, como indicam retrabalhamento crustal para muitos grão analisados.

c) Todos os grãos de zircão com idade do Neoproterozoico estudados, representadas por duas idades do Criogeniano em 755 Ma e 656 Ma e uma idade Ediacarana de 634 Ma, exibem assinaturas de retrabalhamento crustal, com valores de ϵ Hf_(t), respectivamente de, - 41,9, - 53,8 e – 29,8, com idades Hf-T_{DM} de 2,8 Ga, 3,2 Ga e 2,3 Ga.

Para a amostra SRJ-JE-159B (Figura 59B), os dois cristais do Paleoproterozóico com idades em 2044 Ma e 1938 Ma apontaram valores de ϵ Hf_(t) de +8,3 e -9,8, e respectivas idades Hf-T_{DM} de 2081Ma e 2685 Ma. O único grão de idade do Arqueano de ca. 2601 Ma, forneceu uma assinatura de contribuição fracamente juvenil, com valor de ϵ Hf_(t) de -1,13 e idade Hf-T_{DM} de 2921 Ma. Seis cristais com idades do Neoproterozoico entre 949 Ma e 568 Ma apontaram idades francamente crustais, com valores de ϵ Hf_(t) entre -17,9 e -5,0, e idades Hf-T_{DM} entre ca 2263 Ma e 1356 Ma.

A mesma sistemática para comparar diferentes faixas de idade de zircões foi aplicada na amostra de quartzito BP-JE-15A. Os resultados obtidos foram os seguintes (Figura 59C):

a) A análise correspondente ao cristal de idade arqueana de 3130 Ma, resultou em um valor ϵ Hf_(t) de -0,05 juvenil e idade Hf-T_{DM} 3333 Ma;

b) As dez análises de cristais com idades do Paleoproterozóico exibiram valores de ϵ Hf_(t) entre -19,4 e +10,52 (idades 2188-1723 Ma), possuem idades

 $Hf-T_{DM}$ de 2845 Ma a 2068 Ma, indicando uma variedade de fontes juvenis e crustais neste intervalo;

c) Para o Intervalo do Neoproterozoico, foram analisados sete cristais com idades no Ediacarano, entre 612 Ma e 551 Ma. Os valores obtidos indicam assinatura crustal com valores de ϵ Hf_(t) variando entre -50,5 e -9,7, e idades Hf-T_{DM} entre 3043 Ma a 1513 Ma. Este resultado é compatível com a interpretação de que estes cristais de zircão representem o intervalo do metamorfismo de alto grau destas rochas quartzíticas.

Para a amostra de quartzito THE-17 (Figura 59D), localizada na zona sudeste, entre os Terrenos Paraíba do Sul e Oriental foram obtidos os seguintes resultados:

> a) Os grãos de zircão com idades do Paleoproterozóico, com idades de ca. 2126 Ma e 1825 Ma, forneceram assinaturas juvenis, com valores positivos ϵ Hf_(t) de +5,8 e +0,6, e idades Hf-T_{DM} de 2246 Ma e 2190 Ma, respectivamente;

> b) Dois cristais de zircão com idades Mesoproterozóicas de ca.1194 Ma e 1027 Ma possuem ϵ Hf_(t) -2,9 e 3,6, com idades Hf-T_{DM} de 1784 Ma e 1391 Ma, sugerindo ainda algum tipo de contribuição crustal;

c) Um zircão do Toniano ca. 889 Ma apresentou valor de ϵ Hf_(t) de -2.56 e idade Hf-T_{DM} de 1507 Ma, duas idades do Criogeniano de ca. 649 Ma e 658 Ma com valores de ϵ Hf_(t) -16,5 e -4,8 e idades Hf-T_{DM} 1849 Ma e 1395 Ma, apontando fontes com residência cristal. Um zircão com idade de ca. 733 Ma apresentou indicações de alguma fonte de contribuição mantélica com valor de ϵ Hf_(t) em +1,5 e idade Hf-T_{DM} de 1216 Ma, talvez um indicativo de magmatismo sin-deposional na Bacia Andrelândia-Raposos.

d) Oito grãos de zircão do Ediacarano com idades entre ca. 631 Ma e 543 Ma possuem assinaturas de retrabalhamento crustal com valores de ϵ Hf_(t) de -16 a - 1,6 e idades Hf-T_{DM} entre 2514 Ma e 1197 Ma. Neste intervalo, somente para um zircão de ca 625 Ma foi obtido valor de ϵ Hf_(t) positivo de +13,3 e idade Hf-T_{DM} de 1182 Ma, fato que merece ser investigado com maior detalhe no futuro.

Figura 59 – Diagrama Idade (Ma) vs. $\epsilon Hf_{(t)}$ para cristais de zircão de amostras do Grupo Raposos, no Domínio Juiz de Fora.

Em função da problemática encontrada nesta área de alto grau metamórfico, com intervalo de ca. 635-565 Ma já detectados anteriormente tanto por dados U-Pb como por granitos pré- a tardi-colisionais, foram escolhidas duas lentes de quartzito milonítico, com alto grau de recristalização dinâmica e estática para a realização de estudos da assinatura de elementos traços em cristais individuais de zircão, as amostras ARG-03 e ARG-04 (Tabela 4).

Foram selecionados cristais de zircão que frequentemente apresentavam áreas recristalizadas, caracterizadas por superfícies homogêneas de baixa luminescência. Nestas amostras, as regiões com textura evidentes de sobrecrescimento metamórfico exibem zonamento oscilatório, em alguns casos recobertos por zonas de recristalização homogêneas de alta luminescência (Figuras 44 e 47).

Segundo Rubatto (2002), a composição dos elementos-traço em zircão varia significativamente de acordo com o processo de formação (cristalização vs. recristalização) e fluido/fusão envolvidos. Entretanto grãos formados durante o metamorfismo de alto grau, em equilíbrio com a fusão parcial, tem composições semelhantes ao zircão magmático diferenciando-se pela baixa razão Th/U. Este é exatamente o caso observado nas amostras estudadas, onde para grãos crescidos no metamorfismo Neoproterozoico, não foi detectada nenhuma variação significativa no padrão dos elementos terras raras quando comparados aos núcleos detríticos mais antigos. Para a amostra ARG-03, tanto os núcleos como os sobrecrescimentos metamórficos apresentam empobrecimento em elementos terras raras leves, enriquecimento de elementos terras raras pesados, anomalias positivas de Ce e anomalias negativas de Eu, indicando crescimento em equilíbrio com a fusão, tal como apontado anteriormente.

Entretanto, em novos grãos totalmente reequilibrados no metamorfismo, com texturas homogêneas de baixa luminescência, como é o caso do *spot* ARG-03-1(5C), observou-se um padrão horizontal de elementos terras raras leves, não se verificando as anomalias de Ce e Eu anteriormente mencionadas (Figura 60 e Tabela 5).

Amostra/Grão		_	~			~	_		~ -						_			
	Nb	La	Ce	Pr	Nd	Sm	Eu	Tb	Gd	Dy	Но	Er	Tm	Yb	Lu	Pb	Th	U
ARG-03-1	11.11	0.02	12.41	0.08	1.17	2.59	0.09	4.49	16.03	49.09	17.59	74.62	15.05	135.42	25.45	59.90	290.34	591.26
ARG-03-2	11.24	< 0.019	9.88	0.17	3.59	6.91	0.52	9.73	36.19	113.75	42.83	185.14	36.19	329.88	63.80	9.49	53.46	194.39
ARG-03-3	11.67	8.31	33.44	2.09	10.53	4.21	0.35	5.69	21.30	65.36	23.75	102.09	19.75	184.60	34.69	19.65	93.23	117.42
ARG-03-4	11.33	0.02	5.87	0.03	0.37	0.91	0.25	2.94	9.32	39.51	16.89	85.27	20.41	221.66	48.96	13.48	64.50	284.11
ARG-03-5	9.55	1.19	10.98	1.07	6.27	2.23	0.54	2.37	9.83	29.05	10.39	47.04	10.29	95.09	19.55		81.46	121.27
ARG-03-6	13.84	0.05	30.04	0.08	1.13	2.91	0.35	5.22	18.88	59.00	21.48	94.33	19.58	183.42	34.92	48.39	256.61	430.95
ARG-03-7	10.99	< 0.0154	3.60	0.02	0.73	1.65	0.16	2.93	10.30	32.18	12.08	53.41	10.92	102.98	20.51	6.08	27.08	68.75
ARG-03-8	10.32	< 0.0120	5.22	0.02	0.28	0.99	0.24	2.20	7.76	30.05	13.24	66.20	15.17	158.08	32.51	1.62	28.93	86.70
ARG-04-1	9.62	< 0.0187	4.40	0.03	0.28	0.42	0.16	1.17	3.86	16.06	7.23	37.60	9.54	111.08	26.88	24.54	108.83	347.71
ARG-04-2	10.26	0.24	4.20	0.05	0.36	0.81	0.20	3.43	10.60	56.06	28.43	178.10	53.97	696.63	161.82	3.75	27.17	927.48
ARG-04-3	12.98	0.02	13.23	0.07	1.06	2.13	0.23	3.52	12.71	42.10	15.56	72.00	15.31	150.50	28.39	10.43	39.24	79.04
ARG-04-4	10.85	< 0.0128	4.05	< 0.0126	0.20	0.64	0.57	2.74	8.53	35.37	13.07	53.03	9.40	76.53	12.12	0.51	7.20	208.94
ARG-04-5	19.20	2.19	9.44	0.14	1.49	3.31	0.70	7.23	26.31	88.49	34.21	156.37	32.46	302.31	59.96	23.49	80.33	298.16
ARG-04-6	16.25	< 0.0151	5.68	0.03	0.52	1.01	0.35	3.13	11.00	43.78	19.74	111.59	29.45	351.19	79.05	5.87	33.59	352.37
ARG-04-7	10.81	0.81	4.11	0.19	0.79	0.78	0.22	1.81	5.73	27.74	11.88	58.68	13.44	127.84	24.05	1.65	4.25	137.05

Tabela 4 – Abundâncias de elementos principais (wt%) e traços (ppm) de zircão das amostras de quartzito milonítico das amostras ARG-03 e ARG-04.

Fonte: A Autora, 2018.

Figura 60 – Padrões de ETR para cristais de zircão das rochas metassedimentares pertencentes ao Grupo Raposos (Sequência Andrelândia Distal) do Domínio Juiz de Fora, normalizados por Condrito.

Legenda: Linhas preenchidas referem-se a análises realizadas em núcleos de grãos e linhas tracejadas em locais de sobrecrescimento. Fonte: A autora, 2018.

Análise	Idade (Ma)	Th/U	Local do spot/características
ARG-03-2(1A)	693	0.28	Núcleo
ARG-03-3(3E)	2179	0.79	Núcleo
ARG-03-5(1G)	565	0.67	Núcleo
ARG-03-7(1D)	2191	0.39	Núcleo
ARG-03-1(5C)	755	0.49	Região central (baixa luminescência-preto)
ARG-03-6(8C)	2383	0.60	Núcleo (baixa luminescência-cinza escuro)
ARG-03-4(4E)	684	0.23	Sobrecrescimento (geração1)
ARG-03-8(2D)	587	0.33	Sobrecrescimento (alta luminescencia)
ARG-04-1(7A)	2614	0.31	Núcleo (baixa luminescência-preto)
ARG-04-5(1G)	2590	0.27	Núcleo
ARG-04-3(6A)	2649	0.50	Núcleo
ARG-04-2(7B)	661	0.03	Sobrecrescimento
ARG-04-4(7A)	629	0.03	Sobrecrescimento
ARG-04-6(3B)	664	0.10	Sobrecrescimento
ARG-04-7(3C)	642	0.03	Sobrecrescimento

Tabela 5 – Localização das análises elementos terras raras nos cristais de zircão das amostras ARG-3 e ARG-04.

Fonte: A autora, 2018.

A análise dos outros elementos traços, principalmente U, Th e Hf se mostrou interessante para a separação entre os núcleos ígneos detríticos, bordas de sobrecrescimento metamórfico de alta luminescência e zircões recristalizados com texturas homogêneas de baixa luminescência. Agrupamento de análises associadas as particularidades dos grãos apontam que aqueles caracterizados por texturas recristalizadas, de baixa luminescência (obliterada), apresentaram maior abundância de U (acima de 300 ppm) e Th (acima de 100 ppm) quando comparados às análises realizadas em sobrecrescimento metamórfico e em núcleos dos grãos (Figura 61 e Tabela 6). Os altos valores de Hf (Figura 61A) são característicos dos resultados obtidos em áreas de sobrecrescimento, que expõem zonamento oscilatório e comumente controladas por alta luminescência, além de estarem associados aos menores valores de Th. Valores elevados Hf, assim como U, Y, e P foram observados por Rubatto (2002) na regiões de sobrecrescrescimento metamórfico em zircão de alto grau. Proposta semelhante foi apresentada anteriormente por Honkin e Black (2000) com resultados obtidos em áreas recristalizadas de grãos com protólitos ígneo, e previamente observada por Pan (1997), que identificou altos valores de Hf em zircão metamórfico, em borda de sobrecrescimento recristalizadas e núcleos ígneos, relativamente.

Figura 61 – Diagrama de elementos-traço para diferentes áreas dos cristais de zircão de duas amostras de quartzitos recristalizados (ARG-03 e ARG-04) da Escama Tectônica Inferior, pertencentes ao Grupo Raposos (Sequência Andrelândia Distal) do Domínio Juiz de Fora.

Fonte: A autora, 2018.

5.4 Discussão

5.4.1 <u>Caracterização da ambientação tectônica e da Proveniência da Bacia Andrelândia distal</u> representada pelo Grupo Raposos no Segmento Central da Faixa Ribeira

A porção distal da Bacia Andrelândia (Grupo Raposos) no Domínio Juiz de Fora vem sendo entendida como uma bacia de margem passiva, à exceção da unidade do biotita xisto biotita plagioclásio gnaisse (A5, seção 4.2.1.1) encontrado na região de Andrelândia, onde cristais de zircão detríticos neoproteozoicos foram associados por diversos autores à contribuição de áreas-fonte de magmatismo de arco juvenil na Faixa Brasília Sul (CAMPOS NETO *et al.*, 2011; WESTIN *et al.*, 2016; BELÉM *et al.*, 2011; FRUGIS *et al.*, 2018).

Os resultados para a porção distal do Grupo Andrelândia no Domínio Juiz de Fora, representado pelo Grupo Raposos são bem mais complexos e claramente muito perturbados pela superposição do metamorfismo de fácies granulito, que ocorreu no domínio de sistema de Nappes Andrelândia, carcterizado por Coelho *et al.* (2016) por temperaturas oscilando entre 700°C e 800 °C, vestígios de mais alta pressão ca. 12-16 Kb (no caminho progressivo). Pressões foram estimadas para o Domínio Juiz de Fora em ca. 6-7 Kbar para descompressão (DUARTE, 1998).

Os dados existentes na literatura referentes a porção proximal e mesmo nas *nappes* do Domínio Alóctone II e Domínio Andrelândia (Domínio III) indicam proveniência do Cráton São Francisco, com máximo no Paleoproterozóico, além de idades do Mesoproterozoico (Espinhaço) e do Arqueano. Grãos de zircão detríticos ao redor de ca. 0,9 Ga, além de idades Hf-T_{DM} Sm-Nd ao redor de ca. 1,0 Ga (HEILBRON *et al.*, 1989 e RIBEIRO *et al.*, 1995) parecem marcar o início da abertura desta bacia (fase rifte). Estes trabalhos já apontavam para uma contribuição do Neoproterozoico da unidade de plagioclásio xisto gnaisse (A5), o que foi atribuído a inversão da bacia para um regime ativo, com contribuição do arco Socorro-Guaxupé (CAMPOS NETO *et al.*, 2011).

As fases iniciais de metamorfismo acompanham a subducção continental entre 643 a 613 Ma (idades em retroeclogitos, por COELHO *et al.*, 2016; TROUW *et al.*, 2000); CAMPOS NETO *et al.*, 2011). Cabe ainda ressaltar, que nas porções distais da bacia Andrelândia, vêm sendo identificados episódios de magmatismo sin-bacinal em ca. 766 Ma (idade obtida por OLIVEIRA, 2017) o que significa a introdução de mais uma provável área fonte para a esta sequência.

Os resultados de idades U-Pb obtidos neste trabalho (Figura 62), mostram que as idades de proveniência do Grupo Raposos indicam robusta contribuição de grãos com idades do Paleoproterozoico, com maior evidência entre 2,2 Ga e 2,1 Ga, recorrentes fontes do Arqueana e discreta contribição do Mesoproterozoico. Idades de máxima contribuição para os conjuntos de rochas analisadas, apontam fontes do Neoproterozoico (Figura 62).

As amostras situadas na Zona Central (IT-M-07 e MI-BR-37), na região mais deformada, localizada entre as Zonas de Cisalhamento Miracema, Varre Sai e Paraíba do Sul, no estado do Rio de Janeiro, apresentam resultados das idades ²⁰⁶Pb/²³⁸U concentradas quase que exclusivamente no Neoproterozoico, com raros registros das fontes originais, de idades ²⁰⁷Pb/²⁰⁶Pb em torno de 2.6 Ga, 2.4 Ga e 1.7 Ga, sempre referentes a fontes do embasamento cratônico.

Figura 62 – Histogramas para idades U-Pb (Ma) integradas das lentes quartzíticas do Grupo Raposos (Grupo Andrelândia Distal) do Domínio Juiz de Fora.

Fonte: A autora. 2018.

Os novos dados desta pesquisa reforçam a importância dos processos metamórficos de alta temperatura (acima de 700 °C) no re-equilíbrio de antigos grãos, bem como na possibilidade de crescimento de novos grãos. Apesar de ressaltada uma certa precaução em virtude da ocorrência de texturas sugestivas para perturbação metamórficas, foram identificadas populações de ca. 879 Ma, 733 Ma e 679 Ma, que poderiam representar fontes Neoproterozoicas, como por exemplo magmatismo intra-bacinal. Na região do Setor NW, foi descrita a ocorrência de rochas metabásicas com assinatura intraplaca intrusivas no Grupo Raposos e no embasamento (Complexo Juiz de Fora) por Oliveira (2017). Estes dados de rochas toleiíticas intraplaca forneceram uma idade U-Pb ca. 766 Ma com superposição metamórfica em 612 Ma.

Estes dados em conjunto sugerem que as unidades da bacia Andrelândia, incluindo sua porção distal devem ter se depositado no Toniano-Criogeniano, em semelhança ao que vem sendo proposto para o Grupo Macaúbas na Faixa Araçuaí e para unidades correlatas no lado Africano (West Congo belt), segundo dados de Alkmim *et al.* (2017), Pedrosa Soares e Alkmim (2011). De acordo com estes autores, foram detectados os seguintes episódios de magmatismo associados a reativações tectônicas ocorridas durante a evolução da bacia até abertura oceânica franca: a) ca 1000-850 Ma com magmatismo bimodal incluindo diques

básicos e granitos alcalinos; b) ca. 750-670Ma incluindo magmatismo alcalino e vulcânicas básicas; c) ca. 660 Ma idade de ofiolitos reportados na região de Ribeirão da Folha.

Os dados Lu-Hf aplicados às populações derivadas do embasamento Arqueno e Paleoproterozoico, se distribuíram nos intervalos de tempo entre ca. 3233 Ma e 2601 Ma, e entre ca. 2383 Ma e 1723 Ma, respectivamente. Para estes intervalos predominam valores de ϵ Hf_(t) positivos (+0,01 a +20) a fracamente negativos, indicando contribuição juvenil, sobre um grupo que apresentou valores negativos (até -19,38) indicando maior contribuição crustal. Estes dados sugerem que as rochas do Complexo Juiz de Fora devem ter sido predominantes na contribuição detrítica destas rochas. Entretanto, a ocorrência de valores negativos é mais compatível com a assinatura do Complexo Mantiqueira, sugerindo que pelo menos em parte, esta unidade também atuou como área fonte para o Grupo Raposos.

Já os cristais com idades do Neoproterozoico apresentam, predominantemente, assinatura crustal, com valores de ϵ Hf_(t) negativos a fortemente negativos, sendo que apenas dois grão de idade ca. 733 Ma e 625 Ma da amostra THE-17 apresentaram valores ligeiramente positivos para ϵ Hf_(t) em +1,55 e +0,14, respectivamente, podendo ser indicativo de algum magmatismo sin-bacinal. As razões Th/U variam muito, não sendo possível separar os grãos metamórficos daqueles de fontes primárias, utilizando este critério, tal como esperado para áreas de metamorfismo de fácies granulito (VAVRA *et al.*, 1999).

5.4.2 Detalhamento dos Zircões Metamórficos e Evolução do Metamorfismo Brasiliano

Os resultados obtidos nesta pesquisa para a porção distal da bacia Andrelândia, são bem complexos e atestam alta intensidade de recristalização e ou crescimento por fluídos e líquidos magmáticos intersticiais durante o metamorfismo de fácies granulito. Em primeiro lugar, cabe destacar que mesmo as escamas basais do sistema de empurrão do Domínio Juiz de Fora já apresentam muitos cristais de zircão neoformados, especialmente nas suas porções ultramiloníticas (ARG-03 e ARG-04), amplamente documentados nas imagens de catodoluminescência obtidas. Apesar disto, foi possível ainda reconhecer a assinatura de grãos de zircão detríticos do Paleoproterozoico e Arqueano, com contribuição muito subordinada do Mesoproterozoico, tipicamente São Franciscanas. Além disto, poucos grãos de zircão Neoproterozoicos com idades entre 963 Ma e 693 Ma foram encontrados nas amostras analisadas, podendo indicar contribuição magmática sin-deposional, tal como vem sendo proposto ultimamente, com dados de diques máficos entre 1,0 e 0,9 Ga, bem como de metabasitos de ca. 766 Ma, que vem sendo descobertos para este segmento distal da bacia (OLIVEIRA, 2017).

Tomando como base as idades do Neoproterozoico obtidas para o subgrupo relacionado às amostras quartzíticas miloníticas (ARG-03 e ARG-04) foram subdivididas em três grupos:

a) Idades ²⁰⁶Pb/²³⁸U concordantes obtidas em regiões centrais de grãos em: 755 Ma, 693 Ma (ARG-03), podem ser candidatas a fontes de metabasitos, magmatismo ácido e/ou arcos magmáticos). Tendo em vista os dados obtidos até o presente achamos provável que a hipótese de fontes magmáticas sinbacinais seja mais plausível, em função dos valores e $\varepsilon Hf_{(t)}$ negativos obtidos; b) Idades ²⁰⁶Pb/²³⁸U concordantes entre 645 Ma e 622 Ma, em grãos com texturas extremamente complexas, sugerindo processos metamórficos. A interpretação para estas idades poderia registar as etapas progressivas do metamorfismo regional e, portanto, contemporâneas ao processo de subducção na placa inferior. Idades semelhantes para o metamorfismo progressivo foram obtidas por Coelho et al. (2016) para retro-eclogitos da região de Andrelândia. Esta interpretação, entretanto, deve ser contraposta a outras existentes, de que este intervalo de idades seria crono-correlato ao desenvolvimento do Arco Magmático Socorro-Guaxupé, e, portanto, estes cristais de zircão poderiam indicar contribuição da margem ativa da placa superior. (BELÉM et al., 2011, CAMPOS NETO et al., 2004, 2011, 2007; SANTOS, 2011; FRUGIS et al., 2017);

c) Idades ${}^{206}\text{Pb}/{}^{238}\text{U}$ concordantes entre ca. 622 e 565 Ma, obtidas predominantemente em tips e ou sobre texturas de recristalização corroboram a etapa do ápice térmico e descompressão M₁, já proposta anteriormente.

Outro aspecto importante que resulta deste estudo mais regional é o claro aumento de temperatura (acima de 700 °C e atingindo 800 °C) e recristalização associadas às zonas de cisalhamento Varre Sai e Paraíba do Sul no topo Domínio Juiz de Fora (Setor Central). Nesta região ocorreu claro predomínio de idades no Neoproterozoico, mostrando o aumento nas condições de metamorfismo para o topo da pilha tectônica (Figura 63), indubitavelmente com amplo predomínio de idades referentes ao metamorfismo.

Figura 63 – Estratigrafia do Grupo Raposos no Domínio Juiz de Fora do Terreno Oriental.

TOC-AD Fonte: A autora , 2018.

Com base nas idades obtidas e nos dados da literatura a seguinte evolução metamórfica é proposta (Figura 64):

a) ca. 640-620 Ma: Caminho progressivo M_1 , detectado na placa inferior (alta a média P), principalmente nas escamas tectônicas do Domínio Andrelãndia *b*) ca.620-580 Ma ápice térmico do metamorfismo M_1 detectado em todas as escamas da placa inferior, bem como na placa superior (Terreno Paraíba do Sul-Embú)

c) ca. 580-565 Ma descompressão do metamorfismo M_1 , detectado em todos os terrenos

d) ca. 535-510 Ma: metamorfismo M₂, associado a colagem do Terreno Cabo Frio.

Figura 64 – Imagens de CL apresentando texturas primárias e secundárias de cristais de zircão de alto grau metamórfico extraídos de lentes quartzíticas do Grupo Raposos.

5.4.3 <u>Imagens de CL vs. Composição dos Zircões: O que funcionou para as rochas</u> metamórficas de alto grau da área de estudo

A aplicação do estudo detalhado das imagens de CL nos grãos de zircões das rochas metassedimentares abordados nesta pesquisa, revelaram a ocorrência de domínios recristalizados, zonamentos complexos, texturas de reabsorção, texturas homogêneas de alta e baixa luminescência, paralelas ou discordantes das texturas primárias, para os cristais das amostras estudadas. Este aspecto foi atribuído às condições metamórficas de alto grau e a intensa deformação do Domínio Juiz de Fora. As características texturais observadas nos cristais analisados, principalmente naqueles mais jovens que ca. 640 Ma no Grupo Raposos são favoráveis à sua interpretação como oriundos de processos de recristalização metamórfica em condição de temperatura de fácies granulito.

Fonte: A autora, 2018.

O imageamento por CL revelou feições internas muito complexas, mesmo quando ainda é possível observar feições primárias. Os processos metamórficos geraram texturas secundárias, que de modo parcial ou total obliteraram suas texturas primárias. Dentre os principais padrões texturais secundários destaca-se o desenvolvimento de zonas externas (sobrescimento), reentrâncias que migram da borda para o núcleo dos grãos (textura convoluta), zonações tipicamente magmáticas interrompidas por domínios de textura homogênea e cobertura total da superfície do grão indicando processo de homogeneização total.

Com vistas a caracterizar estes cristais de zircão metamórficos, foram obtidas análises de elementos traços e teores de Hf, U e Th nos Laboratórios de Notre Dame, nos EUA. Como resultado as respostas das assinaturas geoquímicas dos cristais selecionados, foi observado que o comportamento dos cristais sob condição de alto metamorfismo são bem semelhantes aos resultados de estudos prévios para cristais em ambientes de de alto grau metamórfico desenvolvidos em ambientes orogenéticos, com texturas secundárias e idades obliteradas.

6 RESULTADOS E DISCUSSÕES (PARTE III): PROVENIÊNCIA DAS ROCHAS METASSEDIMENTARES DOS GRUPOS PARAÍBA DO SUL E BOM JESUS DE ITABAPOANA

6.1 Introdução

Este capítulo reporta o estudo de proveniência, baseado em geocronologia isotópica U-Pb e Lu-Hf através de grãos de zircão de rochas quartziticas e paragnaisses pertencentes ao Gupo Paraíba do Sul (Terreno Paraíba do Sul) e ao Grupo Bom Jesus de Itabapoana (Domínio Cambuci/Terreno Oriental).

No Sistema orogênico das faixas Ribeira e Araçuaí (HEILBRON *et al.*, 2004, 2008; PEDROSA-SOARES et al., 2008), apesar de muitos trabalhos relacionados ao estudo de proveniência das unidades proximais ao CSF, como os grupos Andrelândia e Macaúbas, são relativamente mais escassos os dados relacionados aos domínios internos destas faixas, notadamente das unidades supracrustais associadas ao desenvolvimento dos arcos cordilheiranos Rio Doce, Serra da Bolívia e Marceleza correlatos ao Arco Socorro. Estas unidades são representas pelos grupos Rio Doce, Bom Jesus do Itabapoana, Paraíba do Sul e Embú, que apesar de estarem fisicamente desmembradas pela intensa atividade Brasiliana, guardam relações de associação com os ortognaisses tonalíticos a granodioríticos com assinatura de arco magmático cordilheirano.

Por outro lado, as unidades metassedimentares situadas na posição de retro-arco, como o Grupo São Fidélis (SCHMITT *et al.*, 2008; VALLADARES *et al.*, 2008; LOBATO *et al.*, 2015; FERNANDES *et al.*, 2015) e o Grupo Nova Venécia (NOCE *et al.*, 2004; PEDROSA-SOARES *et al.*, 2008; GRADIN *et. al.*, 2014) vem tendo várias contribuições importantes.

6.2 Gologia local e amostragem

O litotipo principal do Grupo Paraíba do Sul (GPS) na região estudada compreende (sillimanita)-granada-biotita gnaisse, muito micáceo e xistoso que passa gradualmente para granada-biotita gnaisse rico em porfiroblastos arredondados de feldspato. Além de quartzo,

plagioclásio, microclina, biotita, mica branca, granada e sillimanita, localmente porfiroblastos e cordierita podem ser encontrados em alguns afloramentos. Destaque também para ocorrência frequente de turmalina preta, além de monazita, zircão, apatita e minerais opacos. O GPS possui intercalações lenticulares de diversas espessuras de rochas calcissilicáticas, mármores dolomíticos; lentes de anfibolitos, gonditos e muito subordinadamente de quartzitos, que possuem espessuras decimétricas a métricas, e são, em geral, de granulometria fina a média e impuros.

Figura 65 – Mapa geológico simplificado do segmento norte da Faixa Ribeira, no limite dos estados de Minas Gerais e Rio de Janeiro.

Legenda: DAut - Domínio Autóctone; DAnd - Domínio Andrelândia; DJF - Domínio Juiz de Fora; TPS -Terreno Paraíba do Sul; TOR - Terreno Oriental. Legenda: 1) Falha; 2) Zona de cisalhamento do Paraíba do Sul (Além Paraíba); 3) Limite dos domínios e terrenos tectônicos (empurrões principais); 4) Empurrão subordinado. Unidades lito-estratigráficas: 5) Granitos neoproterozóicos a ordovicianos sin, tardi e póscolisionais; Terreno Oriental: 6) Arco magmático Serra da Bolivia; 7) Metassedimentos de alto grau; 8) Metassedimentos de ante-arco; 9) Arcos magmáticos Rio Negro e Serra da Prata; 10) Metassedimento ricos em rochas carbonáticas (Grupo Italva); 11) Metassedimentos de alto grau (Grupo São Fidélis); Terreno Ocidental: 12-13) Ortognaisses, metabasitos e granitóides do Complexo Mantiqueira; 14) Metassedimentos de margem passiva proximal (Grupo Andrelândia); 15) Ortogranulitos do Complexo Juiz de Fora; 16) Metassedimentos de margem passiva distal (Grupo Andrelândia); Terreno Paraíba do Sul: 17) Ortognaisses do Complexo Quirino; 18) Metassedimentos ricos em rochas carbonáticas (Grupo Paraíba do Sul).

Fonte: Modificado de Heilbron et al. (2017).

Foram selecionadas para o GPS (Figura 65) duas amostras de lentes quartzíticas (Ap-TUP-28 e SD-ML-01), localizadas, respectivamente, nas proximidades das cidades de Angustura-MG e Santo Antônio do Aventureiro-MG, e uma amostra do granada sillimanita biotita gnaisse (SA-ML-28, Figura 66A e B) coletada a SW do distrito de Anta-RJ na rodovia que liga Três Rios a Sapucaia. O gnaisse apresenta granada, sillimanita e cordiertita, além de primas centimétricos de turmalina preta. Ao microscópio verifica-se forte foliação com fitas de quartzo (Figuras 66C e 66D).

Já para Grupo Bom Jesus do Itabapoana, foi coletada somente uma amostra, nas proximidades na cidade de Itaperuna-RJ (Figura 65). Esta unidade, na área estudada é constituída por (ortopiroxênio)-granada-biotita gnaisse, com intercalações de sillimanitagranada-biotita gnaisse, biotita gnaisse, anfibolito, rocha calcissilicática, gonditos, rocha metaultramáfica e mármores predominantemente dolomíticos. A amostra selecionada foi

Figura 66 - Sillimanita-granada-biotita gnaisse com cordierita, Grupo Paraíba do Sul (SA-ML-28).

Legenda: (A) e (B) Foliação bem-marcada e leucossomas; (C) e (D) Fotomicrografia apresentando a forte recristalização dos grãos de quartzo. Fonte: A autora, 2018.

coletada a leste de Itaperuna-RJ, em corte de estrada na BR-356, consiste no litotipo principal representado pelo (Opx)-granada-gnaisse migmatítico (THE-03; Figura 67). Neste afloramento, o paragnaisse exibe conspícua foliação milonítica, além da presença de porções leucossomáticas estiradas, mais ainda bordejadas por porções melanossomáticas.

Figura 67 – Fotos de afloramento do granada-biotita gnaisse, pertencente ao Grupo Bom Jesus de Itabapuana.

Fonte: A autora, 2018.

6.3 Resuldados das Idades U-Pb e Lu-Hf em grãos de zircão

6.3.1 Grupo Paraíba so Sul

Amostra SD-ML-01 (Quartzito)

As populações de zircão da lente rocha quartzítica são predominantemente equidimensionais e prismáticos curtos. Através de imagens de CL apresentam muitas texturas de recristalização, associadas ao alto-grau metamórfico. Por vezes, exibem texturas homogêneas parcial ou completamente substituindo texturas magmáticas; com zonamento concêntrico relativamente fraco; além de claras texturas de sobrecrescimento a partir de núcleos esféricos (Figura 68).

Figura 68 – Imagens de catodoluminescência de grãos de zircão representativos da amostra quartzítica SD-ML-01, Grupo Paraíba do Sul.

Os resultados apresentados no Apêndice A e na Figura 69A, indicam as seguintes populações de zircões: grãos oriundos do Arqueano, com idades ²⁰⁶Pb/²⁰⁷Pb entre 2970 Ma e 2560 Ma; uma moda concentrada no Paleoproterozoico, com pico de idade ca. 2185 Ma, além

Fonte: A autora, 2018.

da ausência de idades do Mesoproterozoico; e idades ²⁰⁶Pb/²³⁸U em ca. 921 Ma, 897 Ma e 669 Ma. Quatro grãos de zircão, com texturas de recristalização homogêneas de cor escura (z19, z21 e z23) e uma borda de crescimento (z47B), definem uma idade de metamorfismo em 573 \pm 32 Ma (Figura 69B). Demonstra altas razões Th/U para grãos do Paleoproterozoico e Arqueano além de razões Th/U baixas, $\leq 0,1$ para os cristais com idades do Neoproterozoico.

Figura 69 – Resultados de Geocronologia U-Pb em zircão detrítico de rochas metassedimentares quartzíticas do Grupo Paraíba do Sul (SD-ML-01).

Legenda: (A) Diagrama de idades U-Pb (Ma) vs. probabilidade relativa e (B) diagrama concórdia para cristais de zircão de rochas metassedimentares quartzíticas do Grupo Paraíba do Sul. Fonte: A Autora (2018).

A sistemática de Hf para esta amostra de quartzito SD-ML-01 (Figura 70, Apêndice C) contemplou as diferentes populações de idades obtidas anteriormente. Dez grãos de zircão com idades no Paleoproterozoico entre ca. 2482 Ma e 1998 Ma, forneceram idades Hf TDM

entre 3036 Ma e 2090 Ma, εHf_(t) entre -15,39 e -0,04 indicando assinatura crustal e valores ¹⁷⁶Hf/¹⁷⁷Hf_(t) entre 0.280996 e 0.281715; enquanto um único cristal com idade de 1748 Ma (idade Hf-T_{DM} de 2090 Ma) apresentou valor de εHf_(t) positivo (+1,59) e valor da razão ¹⁷⁶Hf/¹⁷⁷Hf_(t) de 0.281715. Já os grãos de zircão com idades Arqueanas, entre ca. 3196 Ma e 2582 Ma, apontam para valores de Hf-T_{DM} entre 3458 Ma e 3019 Ma, com assinaturas crustais representadas por valores de εHf_(t) entre -1,99 e -11,10, e razão ¹⁷⁶Hf/¹⁷⁷Hf_(t) entre 0.280663 e 0.281004. Dois cristais do Neoproterozoico possuem assinatura crustal, o zircão de idade toniana (ca. 921 Ma) possui valor εHf_(t) em -18,26, e o cristal de idade Ediacarana (559 Ma) apresenta valor de εHf_(t) de -26,67. Os valores de ¹⁷⁶Hf/¹⁷⁷Hf_(t) obtidos foram de 0.281486 e 0.281679, respectivamente.

Figura 70 – Diagrama Idade (Ma) vs. $\epsilon Hf_{(t)}$ para cristais de zircão da lente quartzítica SD-ML-01, do Grupo Paraíba do Sul.

Fonte: A autora, 2018.

Amostra AP-TUP-28 (Quartzito)

Os zircões mostram em sua maioria núcleos com texturas magmáticas bem preservadas, além de bordas de sobrecrescimento metamórfico e raros grãos com zonamento irregular. A análise obtida para esta amostra apresentou as populações de zircões detríticos: a) intervalo Arqueano com idades ²⁰⁷Pb/²⁰⁶Pb com idades entre 3220 Ma e 2611 Ma (4 medidas); e b) maior moda no Paleoproterozóico com máxima em 2154 Ma, consistindo em 66% das análises selecionadas. Tal como na amostra anterior, há ausência de idades do

Mesoproterozóico (Figura 71A). Idades metamórficas, oriundas de análises realizadas em bordas de sobrecrescimento no cristal, forneceram idades concordantes (calculadas) de 604 ± 7 Ma e 574 ± 6 Ma (Figura 72B), representando o episódio metamórfico M₁ descrito por Machado *et al.* (1993). Estes cristais metamórficos possuem majoritariamente razões Th/U \leq 0.1.

Figura 71 – Resultados de Geocronologia U-Pb em zircão detrítico de Granada-Sillimanita gnaisse (AS-ML-28) do Grupo Paraíba do Sul (SD-ML-01).

Legenda: (A) Diagramas de idades U-Pb (Ma) *vs*. probabilidade relativa e (B) diagrama concórdia (b) para cristais de zircão de rochas metassedimentares quartzíticas do Grupo Paraíba do Sul.

Fonte: A autora, 2018.

O granada biotita sillimanita gnaisse apresenta cristais de zircão prismáticos curtos a alongados e grãos equidimensionais (2:1) a (1:1), de coloração rosa, límpidos ou com textura interna turva. Em geral, os cristais de zircão estudados exibem zonamento concêntrico típicos de texturas magmáticas. Outros exibem texturas controladas por alta luminescência como as bordas de sobrecrescimento, alguns com domínios homogêneos que recobrem todo o grão; e poucos revelam texturas de recristalização parcial (Figura 72).

Figura 72 – Imagens de catodoluminescência de grãos de zircão representativos das amostras paraderivadas do granada sillimanita gnaisse (SA-ML-28) do Grupo Paraíba do Sul.

Fonte: A autora, 2018.

Esta amostra forneceu idades concentradas exclusivamente no Neoproterozóico (Tabela 3). Os *spots* foram realizados em áreas de núcleos e sobrecrescimento e foram obtidos grupos de idades concordantes em ca. 694 Ma, 651 Ma, 627 Ma e 591 Ma (Figura 73A). Para esta amostra de paragnaisse foram consideradas cristais metamórficos com idades ²⁰⁶Pb/²³⁸U entre 609 e 577 Ma, bem como idades mais velhas obtidos em sobrecrescimento incluindo texturas de recristalização (683 Ma, 685 Ma e 640 Ma). A maior parte das análises apresentam razão Th/U superior a 0.1, incluindo todas as idades obtidas em locais de sobrecrescimento nas bordas do mineral (Figura 73B). Os processos de recristalização observados nos cristais poderim indicar relação com fluídos associados ao estágio précolisional orogênico.

Figura 73 – Diagramas concórdia para idades U-Pb da amostra SA-ML-28 (Granada sillimanita gnaisse).

Fonte: A autora, 2018.

Os resultados de Lu-Hf (Figura 74, Apêndice C) obtidos para quinze grãos de zircão referentes a amostra SA-ML-28 que apresentam idades ${}^{206}Pb/{}^{238}U$ entre 695 Ma e 574 Ma, apontam para idades Hf-T_{DM} do Mesoproterozoico entre 1557 Ma e 1226 Ma, valores de ϵ Hf_(t) entre -10,93 até -0,38 indicativos de assinatura crustal, e valores de 176 Hf/ 177 Hf_(t) entre 0.282112 e 0.282355.

Figura 74 – Diagrama Idade (Ma) vs. $\epsilon H f_{(t)}$ para a amostra SA-ML-28 (Garanada sillimanita gnaisse) pertencentes ao Grupo paraíba do Sul.

Fonte: A autora, 2018.

6.3.2 Grupo Bom Jesus de Itabapuana

Amostra THE-03

Esta amostra foi a única selecionada para análise e consiste em (sillimanita)-opxgranada gnaisses, migmatíticos, com textura milonítica. Os grãos de zircão têm hábitos prismáticos predominantemente curtos (3:1) e (2:1), com faces arredondados, e poucos são equidimensionais. Prevalecem cristais com núcleo herdado; os zonamentos tendem a ocorrer em porções mais internas, sempre acompanhados de sobreimpressão, conferindo ao cristal tons claros ou escuros através de uma textura homogênea que é comum na superfície da maioria dos grãos (Figura 75).

Figura 75 – Imagens de catodoluminescência de grãos de zircão representativos da amostra oriunda do (Opx)-granada-gnaisse migmatítico (THE-03), do Grupo Bom Jesus de Itababoana.

Fonte: A autora, 2018.

Os resultados U-Pb (Apêndices A) alcançados para esta amostra se concentram predominantemente no Neoproterozoico, com intervalos de idades 206 Pb/ 238 U em ca. 719-915 Ma, ca. 640-699 Ma, ca. 615- 638 Ma e ca. 553 - 609 Ma. As idades de metamorfismo foram limitadas pela idade obtida em 617 Ma (17b, Figura 75). O histograma mostra uma moda em ca. 627 Ma, desta forma corrobora com a idade obtida por Heilbron e Machado (2003) de 623 \pm 5 Ma em gnaisse pelítico atribuída a alguma contribuição do arco ou refrente a colocação antecipada deste arco, podendo até ser associada ao metamorfismo. A amostra apresenta rara contribuição de idades 207 Pb/ 206 Pb do Mesoproterozóico em ca. 1490 Ma e 2190 Ma (Figura

76A). Idade de intercepto inferior calculada em 563 \pm 15 Ma representando o metamorfismo (Figura 76B), metade das idades obtidas em sobrecrescimento metamórfico e 3 idades referentes a regiões centrais dos grãos, apresentam razões Th/U inferiores a 0,1, a maior parte das análises caracterizam-se por altas razões Th/U (Figura 76C).

Figura 76 – Resultados de geocronologia UPb em zircão detrítico para a amostra THE-03 - (Opx)-granadagnaisse migmatítico do Grupo Bom Jesus do Itabapoana.

Legenda: (A) Histograma de idades U-Pb (Ma) *vs.* probabilidade relativa, (B) Diagrama concordia e (C) gráfico Th/U *vs* idades (Ma) para a amostra THE-03 - (Opx)-granada-gnaisse migmatítico. Fonte: A autora, 2018.

Idades isotópicas de Lu-Hf (Apêndice C, Figura 77) para a amostra THE-03 revelam idades crustais para todas os grãos do Neoproterozoico (907-553 Ma), com valores de ϵ Hf_(t) entre -13.5 e -1.4 e idades Hf-T_{DM} entre 1692 Ma e 1280 Ma, com razões ¹⁷⁶Hf/¹⁷⁷Hf_(t) entre 0.282009 e 0.282332. Duas idades mais velhas obtidas em ca. 2190 Ma e 1490 Ma

apresentaram assinatura mantélica, com ϵ Hf_(t) +8,8 e +9.4, as razões ¹⁷⁶Hf/¹⁷⁷Hf_(t) de 0.281630 e 0.282152, respectivamente.

Figura 77 – Diagrama Idade (Ma) vs. ϵ Hf_(t) para a amostra THE-03 - (Opx)-granada-gnaisse migmatítico, do Grupo Bom Jesus de Itabapoana.

Fonte: A autora, 2018.

6.4 Discussões (ambiente tectonico, prováveis fontes, metamorfismo/intrusivsas)

6.4.1 Grupo Paraíba do Sul

Para o Grupo Paraíba do Sul foram realizadas análises U-Pb em grãos de zircão detríticos em lentes quartzíticas (SD-ML-01 e AP-TUP-28) que apresentaram idades 207Pb/206Pb predominantemente do Paleoproterozoico, com contribuições subordinadas do Arqueano, além disto foram obtidas idades ²⁰⁶Pb/²³⁸U com porcentagem de concordância entre 90 e 110% de fontes de idade do Neoproterozoico em 921 Ma, 897 Ma 639 Ma, idades de metamorfismo e/ou fontes entre 601 Ma e 628 Ma e metamorfismo em 580-552 Ma. Os dados obtidos para o paragnaisse (SA-ML-28) demonstram idades ²⁰⁶Pb/²³⁸U restritas ao Neoproterozoico, subdivididas em: 723-683 Ma, 670-637 Ma, 631-600 Ma e 577-598 Ma. Idades do Neoproterozoico foram alcançadas, neste conjunto de rochas, através de grãos que apresentam textura de recristalização e sobrecrescimento. No caso da amostra referente ao granada-sillimanita gnaisse (SA-ML-28) coletada próximo a zona milonítica, obteve-se

apenas idades restritas ao Neoproterozoico, onde a maioria dos grãos apresentam-se prismáticos com texturas de recristalização e altas razões Th/U.

Os dados obtidos para o Grupo Paraíba do Sul, corroboram a hipótese acima mencionada de que esta unidade poderia representar uma sequência de margem ativa deste terreno. As idades U-Pb obtidas, com valores entre ca. 685 e 620 Ma, com textura recristalizada possuem valores compatíveis com o desenvolvimento de arcos magmáticos cordilheiranos nas Faixas Ribeira e Araçuaí, tal como reportado para os Arcos Serra Bolívia/Marceleza, Rio Doce e Socorro (HEILBRON et al., 2013; GONÇALVES et al., 2014; TEDESCHI et al., 2016; CORRALES, 2015). Além deste intervalo Neoproterozóico, a presença de grãos de zircão detríticos com idades do Paleoproterozóico ao Arqueano, apontam para contribuição de unidades do embasamento deste terreno (Complexo Quirino, MACHADO et al., 1996; VALLADARES et al., 2000 e ortognaisses do Embú, TROUW et al., 2013). Como as rochas estudadas estão em fácies anfibolito, foram ainda identificados claros tips (pontas) de sobrescimento metamórfico e grãos prismáticos curtos (2:1 a 1:1) com idades entre 620 e 577 Ma, compatóveis com o metamorfismo regional M1 descrito ns literatura. Neste caso, devido a sua posição em relação ao arco Serra da Bolívia-Marceleza, esta unidade poderia ser considerada como depositada em bacias de margem ativa (fore arc a intra-arco), e bacia fore arc, e, portanto, correlacionável aos metassedimetnos do Grupo Bom Jesus de Itabapoana, no Domínio Cambuci. O fato do metamorfismo apresentar características de pressão mais baixa, com cordierita, também corrobora esta hipótese de regime termobarométrico compatível com ambientes de arco magmático.

6.4.2 Grupo Bom Jesus de Itabapoana

O GBJI é representado neste trabalho pela unidade (sillimanita)-opx-granada gnaisses, migmatíticos, com textura milonítica. Os dados geocronológicos obtidos por U-Pb e Lu-Hf em zircão com características de sobrecrescimento, alta luminescência e aspecto de homogeneização na textura, apontam idades de contribuição subordinadas mais velhas e do Neoproterozoico, com predomínio de assinatura crustal. Desta forma, os resultados adquiridos para a amostra do paragnaisse de alto grau metamórfico, podem apresentar relações com o desenvolvimento do arco cordilheirano desenvolvido entre 650-590 Ma (Arco Serra da Bolívia, HEILBRON *et al.*, 2013), que intrudem as sucessões metassedimentares.

CONSIDERAÇÕES FINAIS

A presente tese objetivou o entendimento da proveniência, em diferentes terrenos tecto-estratigráficos na Faixa Ribeira Central, por determinações geocronológicas U-Pb (LA-ICP-MS e SHRIMP) e Lu-Hf (LA-ICP-MS) para amostras de paragnaisses e lentes quartzíticas. Desta forma, foi possível correlacionar as associações de rochas metassedimentares nos domínios ou setores da faixa móvel, baseadas nos mapeamentos realizados pelo Grupo TEKTOS/UERJ e Projeto Sul de Minas. Estas metodologias foram aplicadas para o estudo de proveniência dos grupos São Fidélis, Raposos, Bom Jesus de Itabapoana e Paraíba do Sul, que representam sedimentação neoproterozoica relacionada a ambientes de margem passiva e fases de bacias orogênicas relacionadas a processos de subducção.

O quadro atual dos estudos de proveniência para as sucessões metassedimentares neoproterozoicas, apresentados neste trabalho, assim como dados prévios, apontam ampla contribuição para as unidades metassedimentares dos diferentes domínios, inclusive contribuição dos arcos magmáticos desenvolvidos no Neoproterozoico (Figura 78). Os eventos metamórficos de alto grau ocorridos no Brasiliano também foram registrados e estão relacionados à processos de colagem entre os terrenos, que convergiram em sentido ao Cráton São Francisco.

Idades de zircão detríticos do Grupo São Fidélis foram apresentados por Valladares *et al.* (2008), obtidas em lentes quartzíticas e por Schmitt *et al.* (2004) e Fernandes *et al.* (2015) em paragnaisses. Estes dados foram incorporados ao histograma da Figura 78A juntamente com os dados obtidos nesta pesquisa (LOBATO *et al.*, 2015). O padrão de idades detríticas para o Grupo São Fidélis indica contribuições arqueanas e volumosas contribuições do Paleo-Mesoproterozoico, com maior evidência de idades em intervalos entre 2,1 Ga e 1,7 Ga e 1,5-1,0 Ga, e expressiva contribuição em 0,9 Ga. Contribuições do Neoproterozoico entre ca. 0,8 Ga e 613 Ma, além de idades relacionadas ao metamorfismo.

A Figura 78B retrata os dados de proveniência demonstrado neste trabalho (Capítulo 6) e também os dados não publicados de Viana (2008) para o Grupo Paraíba do Sul, por meio de grãos extraídos de lentes quartzíticas e uma unidade de paragnaisse. Os resultados apontam contribuição detrítica com moda principal em torno de 2,1-2,0 Ga e ausência de idades mesoproterozoicas. Neste trabalho foram obtidas idades entre ca. 685 e 620 Ma compatíveis com o desenvolvimento de arcos magmáticos, e idades mais jovens do metamorfismo.

Legenda: (A) Grupo São Fidélis do Domínio Costeiro/Terreno Oriental; (B) Grupo Paraíba do Sul/Terreno Paraíba do Sul; (C) Grupo Bom Jesus de Itabapoana do Domínio Cambuci/Terreno Oriental; (D) Grupo Raposos (Grupo Andrelândia distal) do Domínio Juiz de Fora/Terreno Oriental. Fonte: A autora, 2018.

O Grupo Bom Jesus de Itabapoana, que ainda necessita de maior volume de dados, está representado neste estudo por análise obtidas em grãos de zircão paragnaisse. Os resultados apontam idades de contribuição concentradas no Neoproterozoico, assim como idades relacionadas ao metamorfismo Brasiliano, (Figura 78C). As rochas metassedimentares deste grupo são correlacionadas a sedimentação de bacia ante arco desenvolvida no Neoproterozoico.

O estudo de proveniência para Grupo Raposos (porção distal do Grupo Andrelândia) alcançadas por Vallades *et al.* (2008), por meio de grãos de zircão extraídos de lentes quartzíticas, mostra um padrão de idades de cristalização no Proterozóico e arqueano; idades intermediárias entre o Proterozóico (1,8-2,2 Ga) e o metamorfismo Brasiliano. Os novos dados detectaram semelhança na distribuição das idades, porém retratam contribuição ca. 0,9-0,6 Ga (Figura 78D).

A comparação entre o padrão de distribuição de idades para as rochas metassedimentares das associações dos terrenos Oriental e Paraíba do Sul demonstra maior dispersão das idades do Mesoproterozoico e Neoproterozoico para as amostras do Grupo São Fidélis. As supracrustais dos terrenos Ocidental (Grupo Raposos) e Paraíba do Sul, que apresentam associações de ambasamento documentadas, apontam marcante contribuição do Paleoproterozoico em 2,1-2,2 Ga.

O Grupo São Fidélis no Segmento Central da Faixa Ribeira

O Grupo São Fidélis é caracterizado por uma unidade basal compreendendo gnaisses kinzigíticos relativamente homogêneos, sobreposta por gnaisses pelíticos bandados com freqüentes intercalações de lentes e camadas de quartzito de espessuras decimétrias a métricas, lentes calciossilicáticas e raramente lentes anfibolíticas.

Os resultados U-Pb, apresentados no Capítulo 5, indicam fontes arquenas com idades entre ca. 3,3 Ga e 2,5 Ga, robustas contribuições do Paleoproterozoico e do Mesoproterozoico, que estariam associadas as idades de granitóides presentes nos crátons São Francisco e Congo. As contribuições do Riaciano-Orosiriano entre 2,2 Ga e 2,0 Ga sugerem evento registrados no CSF, correspondente ao desenvolvimento de arcos magmáticos, na margem de paleoplaca arqueana e intra-oceânico (complexos Mantiqueira e Juiz de Fora, NOCE *et al.*, 2007;

HEILBRON *et al.*, 2010); e as idades em torno de 1,9 Ga são atribuídas aos ortognaisses do embasamento do Terreno Cabo Frio.

Contribuições detríticas do final do Paleoproterozoico e do Mesoproterozoico, de ca. 1,7 Ga e 1,5 Ga, com assinatura juvenil, estariam relacionados aos episódios anorogênicos extensivos no CSF (PEDROSA-SOARES E ALKMIM, 2011). Cristais com idades entre 1,5 Ga e 1,0 Ga, são comuns nos terrenos correspondentes do lado africano. As idades do Neoproterozoico obtidas em grãos de zircão detríticos em ca. 900 Ma de alta razão Th/U apontam magmatismo extensional no CSF.

Esta associação metassedimentar apresenta característica marcante da contribuição de grãos de zircão com idades entre 898-823 Ma e 794-620 Ma relacionados aos arcos magmáticos juvenis neoproterozoicos do Terreno Oriental, Serra da Prata (PEIXOTO e HEILBRON, 2010; PEIXOTO *et al.*, 2017) e Rio Negro (TUPINAMBÁ *et al.*, 2000, 2012; HEILBRON e MACHADO, 2003).

O Grupo Raposos (equivalente distal do Grupo Andrelândia)

Grupo Raposos constitui uma sucessão metassedimentar que compreende gnaisses pelíticos e semi-pelíticos de alto grau metamórfico, com associações quartzíticas, rochas calcissilicáticas e anfibolitos (Tabela 7).

Nas porções NW e SE (entre o TPS e Terreno Oriental) o Grupo Raposos apresenta fontes arqueanas, com idades obtidas entre 3378 Ma e 2514 Ma, e paleoproterozoicas, com intervalo de idades entre 2445 Ma e 1624 Ma. No entanto, no Setor Central as contribuições de idades mais velhas são restritas. As áreas-fontes para estes intervalos, com assinatura juvenis e crustais, estariam associadas ao complexo Juiz de Fora e Mantiqueira a paleoplacas arqueanas (Tabela 8).

Contribuições do Neoproterozoico entre 975 Ma e 652 Ma poderiam estar associadas às fases de episódios de magmatismo sin-bacinal de assinatura juvenil, associados a diques máficos de metabasitos no segmento distal da bacia. Os demais dados do Neoproterozoico apresentam retrabalhamento crustal (Tabela 8).

Tabela 7 – Litotipos do Grupo Raposos em diferentes porções.

Localização estrutural	Litotipos				
Zona estrutural NW	Biotita gnaisse bandado, sillimanita granada biotita gnaisse, quartzitos, rochas calcissilicáticas, gonditos e rochas anfibolíticas				
Zona Central entre as zonas de Cisalhamento D3	Predomínio (opx) sillimanita granada biotita gnaisses, quartzitos, rochas calcisslicáticas, gonditos				
Zona SE entre os Terrenos Paraíba do Sul e Oriental	Sillimanita granada bitotita ganisses e biotita gnaisses bandados, migmatíticos, com lentes de quartzitos, e rochas calcissilicáticas e rochas meta-ultramáficas				
Easter A sectors 2010					

Fonte: A autora, 2018.

Localização estrutural	U-Pb (Ma)							
Zona estrutural NW	3378-2514	2492-1624	1576 e 1413 (2 cristais)	975-652				
Zona Central entre as zonas de Cisalhamento D ₃	2644 e 2604 (2 cristais)	2446 e 2420 (2 cristais)	1702 e 1699 (2 cristais)					
Zona SE entre os Terrenos Paraíba do Sul e Oriental	3009-2549	2418-1825	1027 e 1197 (2 cristais)	889-658				

Tabela 8 – Síntese das análises U-Pb obtidas para os cristais de detríticos do Grupo Raposos.

Fonte: A autora, 2018.

As idades entre 640 e 510 são referentes ao metamorfismo de alto grau com idades de cristalização e recristalização, com a seguinte evolução metamórfica: a) ca. 640-620 Ma, caminho progressivo M_1 ; b) ca.620-580 Ma, ápice térmico do metamorfismo M_1 ; c) ca. 580-565 Ma, descompressão do metamorfismo M_1 e; d) ca. 535-510 Ma, metamorfismo M_2 .

Aspectos texturais secundários observados em cristais metamórficos por meio de imagens de CL revelaram o desenvolvimento de zonas externas (sobrescimento), reentrâncias que migram da borda para o núcleo dos grãos (textura convoluta), zonações tipicamente magmáticas interrompidas por domínios de textura homogênea e cobertura total da superfície do grão indicando processo de homogeneização total. Este aspecto foi atribuído às condições metamórficas de alto grau e a intensa deformação do Grupo Raposos no Domínio Juiz de Fora. As características texturais observadas nos cristais analisados, principalmente naqueles
mais jovens que ca. 640 Ma são favoráveis à sua interpretação como oriundos de processos de recristalização metamórfica em condição de temperatura de fácies granulito.

Os Grupos Paraíba do Sul e Bom Jesus de Itabapoana no Segmento Central da Faixa Ribeira

O Grupo Paraíba do Sul compreende gnaisses bandados (metapsamitos), xistos aluminosos (metapelitos) contendo muitas lentes de mármores dolomíticos, rochas calcissilicáticas e gonditos e raras lentes rochas quartzíticas.

Os dados apontam contribuição do Arqueano, com idades entre 3220 Ma e 2560 Ma, e fontes paleoproterozoicas com moda principal em 2,1 Ga. A sequência metassedimentar siliciclástica que compõem o Grupo Paraíba do Sul apresenta contribuição relacionada ao próprio embasamento Paleoproterozóico- Arqueano (Complexo Quirino, MACHADO *et al.*, 1996; VALLADARES *et al.*, 2000) e idades mais jovens do Neoproterozoicio obtidas em grãos com textura de recritalização compatíveis com o desenvolvimento de arcos magmáticos cordilheiranos nas Faixas Ribeira e Araçuaí (HEILBRON *et al.*, 2013; GONÇALVES *et al.*, 2014; TEDESCHI *et al.*, 2016).

O Grupo Bom Jesus de Itabapoana caracteriza-se por uma sequência metavulcanosedimentares invadidas por diversas gerações de rochas granitoides (623- 574 Ma, HEILBRON *et al.*, 2013). Os resultados U-Pb alcançados para a amostra de paragnaisse apresentam populações, de assinatura crustal, que se concentram no Neoproterozoico, em intervalos de idades ²⁰⁶Pb/²³⁸U em ca. 553-609 Ma, ca. 615-638 Ma, ca. 640-699 Ma e ca. 728-778 Ma.

REFERÊNCIAS

ALMEIDA F.F.M. DE, HASUI Y., BRITO-NEVES B.B DE, FUCK R. A. Brazilian Structural Provinces: an introduction. Earth-Sci. Rev. (78), 17, p 1-29. 1981

ALMEIDA F.F.M. O Cráton do São Francisco. Revista Brasileira de Geociências. 7: p 349-364, 1977.

ALMEIDA, J.C.H.; TUPINAMBÁ M.; HEILBRON, M.; TROUW, R. Geometric and kinematic analysis at the Central Tectonic Boundary of the Ribeira belt, Southeastern Brazil, In: CONGRESSO BRASILEIRO DE GEOLOGIA, v. 39. Anais...Belo Horizonte: SBG, 1998.

ANDERSEN, T., ANDERSSON, U.B., GRAHAM, S., ÅBERG, G. & SIMONSEN, S.L. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon Journal of the Geological Society. V. 166; p. 233-247; 2009

BATISTA J.J. Caracterização dos processos geológico-evolutivos pré-cambrianos na região de São Fidélis, norte do Estado do Rio de Janeiro. Tese de Doutoramento, Instituto de Geociências, Universidade de São Paulo, 123 pp., 1984.

BATISTA J.J.. Processos geológico-evolutivos da porção setentrional do Cinturão Ribeira e na área estável adjacente. In: SBG, Congr. Bras. Geol., 34, Anais, v.2, p. 722-727; 1986.

BEA, F.; MONTERO, P.; ORTEGA, M. A LA-ICP-MS evaluation of Zirconreservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist, 44, p. 693-714, 2006.

BELÉM, J., PEDROSA-SOARES, A. C., NOCE C.M., SILVA L.C., ARMSTRONG R., FLECK A., GRADIM C., QUEIROGA G. Bacia Percursora versus bacias orogênicas: exemplos do Grupo Andrelândia com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas. Geonomos, 19(2): p. 224-243, 2011.

BELOUSOVA, E. A.; WALTERS, S.; GRIFFIN, W. L.; O'REILLY, S. Y.; FISHER, N.I. Zircon trace-element compositions as indicators of source rock type. Contributions to Mineralogy and Petrology, 143, 602-622; 2002.

BENTO DOS SANTOS, T. M.; GAETA, C.; FONSECA, P. F. Diachronic collision, slab break-off and long-term high thermal flux in the Brasiliano–Pan-African orogeny: Implications for the geodynamic evolution of the Mantiqueira Province. Precambrian Research, v.260, 2015.

BOUVIER, A., VERVOORT, J.D. & PATCHETT, P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57.

BRITO NEVES, B.B., CAMPOS NETO, M.C., FUCK, R.A. From Rodinia to western Gondwana: an approach to the Brasiliano-pan African cycle and orogenic collage. Episodes 22, 155 e 166, 1999. BUHN, B.; PIMENTEL, M. M.; MATTEINI, M.; DANTAS, E. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Anais da Academia Brasileira de Ciências, v. 81, p. 99-114, 2009.

CAMPOS NETO, M. C.; BASEI, M. A. S.; JANASI, V. A.; MORAIS, R. Orogen migration and tectonic setting of the Andrelândia Nappe system: An Ediacaran western Gondwana collage, south of São Francisco craton. Journal of South American Earth Sciences, v. 32, p. 393-406, 2011.

CAMPOS NETO, M. C.; Caby, R. Lower crust extrusion and terrane accretion in the Neoproterozoic nappes of southeast Brazil. Tectonics 19 (4), 669-687; 2000

CAMPOS NETO, M. C.; Caby, R. Neoproterozoic high-pressure metamorphism and tectonic constraint from the nappe system south of the São Francisco Craton, southeast Brazil. Precambrian Research 97, 3-26; 1999.

CAMPOS NETO, M.C. Orogenic systems from southwestern Gondwana:an approach to Brasiliano-Pan African Cycle and orogenic collage inSoutheastern Brazil. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A., Cam-pos, D.A. (Eds.), Tectonic Evolution of South America. Rio de Janeiro, p. 335–365, 2000.

CAMPOS NETO, M.C., CIOFFI, C.R., MORAES, R., MOTTA, R.G., SIGA JR., O., Basei, M.A.S., 2010. Structural and metamorphic control on the exhumation of high-P granulites: the Carvalhos Klippe example, from the oriental Andrelândia Nappe System, southern portion of the Brasília Orogen, Brazil. Precambr. Res. 180, 125–142; 2010.

CAMPOS NETO, M.C., JANASI, V.A.J., BASEI, M.A.S., SIGA JR., O., 2007. Sistema de Nappes Andrelândia, setor oriental: litoestratigrafia e posição estratigráfica. Revista Brasileira de Geociências 37, 47–60; 2007.

CAMPOS NETO, M.C.; BASEI, M.A.S., VLACH, S.R.F.; CABY, R., SZABÓ, G.A.J.; Vasconcelos, P. Migração de orógenos e superposição de orogêneses: um esboço da colagem Brasiliana no sul do Cráton do São Francisco, SE e Brasil. Revista do Instituto de Geociências e USP. Geologia USP Série Científica 4 (1), 13 e 40, 2004.

CHEMALE JR, F.; KAWASHITA, K.; DUSSIN, I; ÁVILA, J.N.; JUSTINO, D.; BERTOTTI, A. U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration. An. Acad. Bras. Ciências, 84 no.2 Rio de Janeiro, 2012.

COELHO, M.B.; TROUW, R.A.J.; CARLOS E. GANADE, C.E.; RODRIGO VINAGRE, R.; MENDES, J.C.; SATO, K. Constraining timing and P-T conditions of continental collision and lateoverprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System, 2017.

COMPSTON, W., WILLIAMS, I.S. & MEYER, C.E. U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J. Geophys. Res. B89, 525-534;1984.

CORDANI, U.G.; COUTINHO, J.M.V.; NEUTMAN, A.P. Geochronological constraints on the evaluation of Embu Complex, São Paulo, Brazil. Journal of South Sciences, 14: p. 903-910, 2002.

CORFU, F., HANCHAR, J.M., HOSKIN, P.W.O., KINNY, P. Atlas of zircon textures. Rev. Mineral. Geochem. 53 (1), p. 469-500, 2003.

CORRALES, F.F.P. Geologia e Geocronologia do Complexo Marceleza: Vestígios de um arco magmático cordilheirano no Terreno Paraíba do Sul, no limite entre os Estados do Rio de Janeiro e Minas Gerais. Master Thesis. Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil, p. 147; 2015.

DUARTE, B.D. Evolução tectônica dos ortognaisses dos complexos Juiz de Fora e Mantiqueira na região de Juiz de Fora, MG: Geologia, Petrologia e Geoquímica. Tese de Doutorado, Universidade de São Paulo, São Paulo, Brasil, 1998.

DUARTE, B.P.; VALENTE, S.C.; HEILBRON, M.; CAMPOS NETO, M.C. Petrogenesis of the Orthogneisses of the Mantiqueira Complex, Central Ribeira Belt, SE Brazil: An Archaean to Palaeoproterozoic Basement Unit Reworked During the Pan-African Orogeny. Gondwana Research, 7 (2), p. 437-450, 2004.

EBERT H. 1957. A Tectônica do sul do Estado de Minas Gerais e regiões adjacentes. Rio de Janeiro, DNPM/DGM, p. 97-107 (Relatório Anual do Diretor). 1957.

EIRADO, L. G.; HEILBRO, M.; ALMEIDA, J. C.H. Os terrenos tectônicos da Faixa Ribeira na Serra da Bocaina e na Baía da Ilha Grande, sudeste do Brasil. Revista Brasileira de Geociências 36, 426-436; 2006.

FERNANDES, G.L. F.; SCHMITT, R. S.; BONGIOLO, E. M.; BASEI, M.A.S; MENDES, J.C. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (Se Brazil): U-Pb and Lu-Hf provenance data. Precambrian Research, v. 266, p. 337–360, 2015.

FRASER, G., E LLIS, D. & E GGINS, S. Zirconium abundance in granulite-facies minerals, with implications for ment data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newslett, 21, p. 115-144, 1997.

FRUGIS, G. L.; CAMPOS NETO, M. C.; LIMA, R. B. Eastern Paranapanema and southern São Francisco orogenic margins: Records of enduring Neoproterozoic oceanic convergence and collision in the southern Brasília Orogen. Precambrian Research, Amsterdam, Elsevier BV, v. 308, p. 35-57; 2018.

GEISLER, T., SCHALTEGGER, U., TOMASCHEK, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, p. 43-50, 2007.

GIFFIN, W.L., PEARSON, N.J., BELOUSOVA, E., JACKSON, S.E., VAN ACHTERBERGH, E., O'Reilly, S.Y. & Shee, S.R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147.

GIUSTINA, M. E. S. D. Geologia e significado tectônico das rochas máficas de alto grau metamórfico da Faixa Brasília. Tese de doutorado (Instituto de Geociências). Universidade de Brasília, 2010.

GRIMES, C.B.; WOODEN J.L.; CHEADLE M.J.; JOHN, B.E. "Fingerprinting" tectonomagmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol 170:1– 26, 2015.

HARLEY, S.L.; KELLY, N.M; MÖLLLER, A. Zircon behavior and the termal histories of mountain chains. Elements 3(1), p. 25-30, 2007.

HEILBRON M.; GONÇALVES, M. L; TEIXEIRA, W.; TROUW, R. A. J.; KAWASHITA, K.; PADILHA, A. V. Geocronologia da área entre Lavras, São João dei Rei, Lima Duarte e Caxambu. An. Acad. Bros. Ciências., 61 (2): 177-199, 1989.

HEILBRON M.; SOARES, A.C.P.; CAMPOS N.; SILVA, L.C.; TROUW, R.; JANASI, V. Província Mantiqueira. In: MANTESSO-NETO, Virgino; BARTORELLI, Andrea; CARNEIRO, Celso Dal Ré; BRITO NEVES, Benjamin Bley de. (Org.). Geologia do Continente Sul Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo: Beca Produções Culturais, v. I, p. 203-234, 2004a.

HEILBRON, M. Evolução tectono-metamórfica da seção Bom Jesus de Minas-MG – Barra do piraí-RJ, setor central da Faixa Ribeira. Tese de Doutoramento. IG/USP. 268 p. 1993.

HEILBRON, M., VALERIANO, C., TASSINARI, C., ALMEIDA, J.C.H., TUPINAMB A, M., SIGA JUNIOR, O., TROUW, R. Correlation of neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B., De Wit, M.J. (Eds.), West Gondwana Pre-cenozoic Correlations across the South Atlantic Region, vol. 294. The Geological Society of London, London, pp. 211 e 237, 2008.

HEILBRON, M., VALERIANO, C.M., VALLADARES, C.S., MACHADO, N. A orogênese Brasiliana no segmento central da Faixa Ribeira, Brasil. Rev. Bras. Geoc. 25 (4), 249–266, 1995.

HEILBRON, M.; DUARTE, B.; VALERIANO, C.; SIMONETTI, A.; MACHADO, N.; NOGUEIRA, J. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U Pb geochronology: implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research, v. 178, p. 136-148, 2010.

HEILBRON, M.; MACHADO, N., 2003. Timing of terrane accretion in the Neoproterozoic– Eopaleozoic Ribeira orogen (SE Brazil). Precambrian Research v. 125, p. 87–112, 2003b.

HEILBRON, M.; MACHADO, N.; SIMONETTI A.; DUARTE, B.P. A. Paleoproterozoic Orogen Reworked within the Neoproterozoic-Eopaleozoic Ribeira belt, Southern Brazil. In: SOUTH AMERICAN SYMPOSIUM ON ISOTOPE GEOLOGY, 4.,2003, Salvador. Short Papers... v. 1, p. 186-189, 2003a.

HEILBRON, M.; MOHRIAK W.; VALERIANO C.M.; MILANI, E.; ALMEIDA.J.C.H.; TUPINAMBÁ, M. From collision to extension: the roots of the southeastern continental margin of Brazil. In: MOHRIAK, W.V.; TALWANI., M.(Ed.). Atlantic rifts and continental margins. Washington: American Geophyssical Union. (Geophysical Monograph 115) p.1-31, 2000.

HEILBRON, M.; PEIXOTO, C.; TUPINAMBÁ, M.; ALMEIDA, J.C.H. Mapa geológico da Folha santo Antônio de Pádua (RJ). SF 23-X-D-VI. Escala 1:100.000. CPRM Serviço Geológico do Brasil. UERJ. 2009.

HEILBRON, M.; RIBEIRO, A.; VALERIANO, C. M.; PACIULLO, F.V.; ALMEIDA, J.C.H.; TROUW, R.J.A.; TUPINAMBÁ, M.; EIRADO SILVA, L.G. The São Francisco Craton and Its Margins, 2016. In: MONICA HEILBRON; UMBERTO G. CORDANI, FERNADO F. ALKIMIM (Eds.), São Francisco Craton, Eastern Brazil. Springer International Publishing Switzerland, p. 277-302, 2017.

HEILBRON, M.; TUPINAMBÁ, M.; VALERIANO, C.M.; MACHADO, N.; ARMSTRONG, R.; EIRADO, L. G.; SEIBEL, S.M.; SIMONETTI A. The Serra da Bolívia complex: The record of a new Neoproterozoic arc-related unit at Ribeira belt. Precambrian Research 238:158–175, 2013.

HOSKIN, P.W. e BLACK, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18 p. 423-439, 2000.

HOSKIN, P.W. e SCHALTEGGER U. The composition of zircon and Igneous and Metamorphic Petrogeneis. Reviews in Mineraloogy and Geochemistry, 18, p. 423-439, 2000.

HOSKIN, P.W. e Trevor R. Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator; Geology, v. 28; no. 7; p. 627–630; 2000

IUPAC Commission on Atomic Weights and Isotopic Abundances report in 'Isotopic Compositions of the Elements, Pure Appl. Chem., 1998, 70(1), 217; 1997.

JACKSON, S.E., PEARSON, N.J., GRIFFIN, W.L., BELOUSOVA, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology.Chemical Geology 211, 47–69.

JANASI, V. A. Petrogênese de granitos crustais na Nappe de Empurrão Socorro Guaxupé (SP-MG): uma contribuição da geoquímica elemental e isotópica. 304 f. Tese (Livre-Docência) – Instituto de Geociências, Universidade de São Paulo, São Paulo-SP; 1999.

JANASI, V. A.; CAMPOS NETO, M. C.; VASCONCELLOS, A. C.; VAN SCHMUS, W. R.; GARCIA, M. G. M. Geochemical and isotopic (Nd, Sr) nevidences for a Neoproterozoic Juvenile component in metasediments for allochtonous terranes in the Southern Brasilia Belt, Brazil. In: INTERNATIONAL GEOLOGICAL CONGRESS, 31., Rio de Janeiro. Abstracts Volume. Rio de Janeiro: CPRM, 2000.

KUHN, A., STUWE, K., TROUW, R.A.J. Metamorphic evolution of the Ribeira Belt: evidence from outcrops in the Rio de Janeiro area, Brazil. J. Petrol. 43, 2303-2323, 2004.

LOBATO, M.; HEILBRON, M.; TORÓS, B.; RAGATKY, D.;DANTAS, E. Provenance of the Neoproterozoic high-grade metasedimentary rocks of the arc-related Oriental Terrane of the Ribeira belt: Implications for Gondwana amalgamation. South Americans Earth Sciences, v. 63 p. 260-278, 2015.

LOBATO, MARCELA DE CARVALHO. Proveniência sedimentar do Grupo São Fidélis, terreno oriental da Faixa Ribeira, com base em dados U-Pb. Marcela de Carvalho Lobato, Dissertação de Mestrado – FGEOL - UERJ – 2013.

LUDWIG, K.R. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkelet Geochronology Center Special Publication. 3, p. 70, 2003.

LUDWIG, K.R. User's manual for Isoplot 3.70: a geochronological toolkit for Microsoft Excel. Berkelet Geochronology Center Special Publication 4, p. 76, 2008.

MACHADO, H.T.; VALLADARES, C.S.; VALERIAN C.M.; MEDEIROS, S. R.; DUARTE, B. P. Orthogneisses from the Quirino Complex, Central Ribeira belt, SE Brazil: Sr and Sm-Nd isotopic data. VII SSAGI - South American Symposium on Isotope Geology Brasília, 25th-28th July 2010. MACHADO, N., GAUTHIER, G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochim. Cosmochim. Acta 60, 5063–5073, 1996.

MACHADO, N., VALLADARES, C.S., HEILBRON, M., VALERIANO, C.M. U–Pb Geochronology of Central Ribeira belt. Precambrian Research, v 79, 347–361. 1996.

MARQUES, RODSON DE ABREU. Litogeoquímica, geocronologia (U-Pb) e geologia isotópica (Sr-Nd) dos granitoides do Domínio Cambuci (Faixa Ribeira) na região limítrofe entre os Estados do Rio de Janeiro e Espírito Santo

Beatriz Paschoal Duarte. Rodson de Abreu Marques, Tese de Doutorado - FGEOL - UERJ - 2015.

HEILBRON, M.; PEDROSA-SOARES, A. C.; CAMPOS NETO, M. C.; JANASI, V. Brasiliano Orogens in Southeast and South Brazil Article in Journal of the Virtual Explorer 17 January with 64 Reads 2004b.

NETO, C. C. A.; VALERIANO, C. M.; PASSARELLI, C. R.; HEILBRON, M.; LOBATO, M. Monazite ID-TIMS U-Pb geochronology in the LAGIR laboratory, Rio de Janeiro State University: protocols and first applications to the assembly of Gondwana supercontinent in SE-Brazil. Anais da Academia Brasileira de Ciências (Impresso), v. 86, p. 171-186, 2014.

NOCE, C. M.; PEDROSA-SOARES A.C.; PIUZANA, D.; ARMSTRONG, R.; LAUX J.H.; CAMPOS, C. M.; MEDEIROS, S. R. Ages of sedimentation of the kinzigitic complex and of a late orogenic thermal episode in the Araçuaí Orogen, northern Epírito Santo state, Brazil: zircon and monazite u-pb shrimp and idtims data. Revista Brasileira de Geociências 34(4), p. 587-592, 2004.

NOCE, C.M.; PEDROSA-SOARES, A.C.; SILVA, L.C.; ARMSTRONG, R.; Piuzana, D. Evolution of polycyclic basement complexes in the Arac, ua'1 Orogen, based on U–Pb SHRIMP data: Implications for Brazil–Africa links in Paleoproterozoic time. Precambrian Research 159 60–78; 2007.

NOCE, C.M.; PEDROSA-SOARES, A. C.; SILVA, L.C.; ALKMIM, F.F. O embasamento arqueano e paleoproterozoico do Orógeno Araçuaí. GEONOMOS 15(1): 17 - 23, 2007.

OLIVEIRA, C., S. Caracterização geoquímica, isotópica e idade U-Pb da Supersuíte Barreiro, Domínio Juiz de Fora, Faixa Ribeira, MG. Dissertação de mestrado (Programa de Pós-Graduaçãao em Análise de Bacias e Faixas Móveis). Universidade do Estado do, Rio de Janeiro, 2017.

OLIVEIRA, F. V.; 09009, I. L.; PIVATO NETO, L. A.; SANTOS, R. V.; PIMENTEL, M. M. Automation of LA-MC-ICPMS U-Pb data entry in in-house Excel spreedsheat using Visual Basic for Application (VBA). In: 9th South American Symposium on Isotope Geology, Saão Paulo- SP – Anais São Paulo- SP: 2014.

PACIULLO, F.V.P. A sequência deposicional Andrelândia. Tese de Doutorado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, p. 245, 1997.

PACIULLO, F.V.P.; RIBEIRO, A.; ANDREIS, R.R.; TROUW, R.A.J. The Andrelhdia Basin, a Neoproterozoic intra-plate continental margin, southern Brasilia belt. Rev. Brasil. Geocih., v. 30, p. 200-202, 2000.

PEDROSA-SOARES A.C., DE CAMPOS C., NOCE C.M., SILVA L.C., NOVO T., RONCATO J., MEDEIROS S., CASTAÑEDA C., QUEIROGA G., DANTAS E., DUSSIN I., ALKMIM F.F. Late Neoproterozoic–Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Spec. Publ. Geol. Soc. London, 350, p. 25-51. 2011.

PEIXOTO C. A.; HEILBRON, M.; RAGATKY, D.; ARMSTRONG, R; DANTAS, E.; VALERIANO, C. M; SIMONETTI, A. Tectonic evolution of the Juvenile Tonian Serra da Prata magmatic arc in the Ribeira belt, SE Brazil: Implications for early west Gondwana malgamation. Precambrian Research 302 (2017) 221–254.

PEIXOTO, C. A.; HEILBRON M.; RAGATKY, D.; ARMSTRONG, R.; DANTAS, E.; VALERIANO C. M.; SIMONETTI, A. Tectonic evolution of the Juvenile Tonian Serra da Prata magmatic arc in the Ribeira belt, SE Brazil: Implications for early west Gondwana amalgamation. Precambrian Research 302, 221–254. 2017.

PEIXOTO, C. A.; HEILBRON, M., 2010. Geologia da Klippe Italva na Região Entre Cantagalo e Itaocara, Nordeste do Estado do Rio de Janeiro. Rev. de Geociências. UNESP 3 (29), 277e 289.

PEIXOTO, C. Geologia e geocronologia U-PB (LA-ICP-MS) do Domínio Italva na região entre Cantagalo e Itaocara, nordeste do Estado do Rio de Janeiro. Dissertação de mestrado (Programa de Pós-Graduaçãao em Análise de Bacias e Faixas Móveis). Universidade do Estado do, Rio de Janeiro, 2010.

PEIXOTO, C.; HEILBRON, M.; RAGATKY D., ARMSTRONG R.; DANTAS E.; VALERIANO, C.; SIMONETTI, A. O Arco Toniano da Faixa Ribeira e suas implicações na almagamação do Gondwana Ocidental. 48° Congresso Brasileiro de Geologia, Porto Alegre, 2016.

PIDGEON, R.T. Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110, v. 463-472, 1992.

PIDGEON, R.T.; NEMCHIN, A.A.; HITCHEN, G.J. Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib Mineral Petrol 132, p. 288-299, 1998.

PIUZANA, D. Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on U-Pb SHRIMP data: Implications for Brazil-Africa links in Paleoproterozoic time. Precambrian Research 159 (2007) 60–78; 2007.

REIS A.P. & MANSUR K. L. Sinopse Geológica do Estado do Rio de Janeiro. Mapa Geológico 1:400.000. Niterói, DRM/RJ, 60 pp., 1995.

RIBEIRO, A., PACIULLO, F., ANDREIS, R., TROUW, R. AND HEILBRON, M. Evolução policiclica proterozóica no sul do cráton de São Francisco: análise da região de São JoãO del Rei e Andrelândia, MG. In: Congress0 Brasileiro de Geologia, 36, Natal, 1990. Anais ... SOC. Bras. Geol., v. 6, p. 2605-2614, 1990.

RIBEIRO, A.; TROUW, R. A. J. ANDREIS, R. R.; PACIULLO, F.V.P.; VALENÇA, J. G. evolução das bacias Proterozóicas e o termo-tectonismo Brasiliano na margem sul do Cráton do São Francisco. Revista Brasileira de Geociências, v. 25, n.4, p. 245-248, 1995.

ROGERS, J.J.W. History of Continents in the Past Three Billion Years. J. of Geology, Chicago, v.104, p. 91-107. 1996.

ROSIER, G.F. Pesquisas geológicas na parte oriental do Estado do Rio de Janeiro e na parte vizinha de Minas Gerais. Rio de Janeiro, DGM/DNPM, bol. 222, 40 p., 1965.

RUBATTO, 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy & Geochemistry. Vol. 83, 2017.

RUBATTO, D. Zircon trace elemento geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, v. 123-138, 2002.

RUBATTO, D., BARNHOORN, A., GREGORY, C. Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy)', American Mineralogist, vol. 98, pp. 1519-1529, 2008.

RUBATTO, D., WILLIAMS, I.S., BUICK, I.S., 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology 140, 458–468.

RUBATTO, D.; GEBAUER, D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. Cathodoluminescence in Geosciences; p.373-400; 2000.

RUBATTO, D.; HERMANN J. Zircon behavior in deeply subducted rocks. Elements, 3, 31–35, 2007.

RUBATTO, D.; HERMANN J. Zircon formation during fluid circulation in eclogites (Monviso, western Alps): Implications for Zr and Hf budget in subductation zones. Geochimics et Cosmochimica Act, 67, p. 2173-2187, 2003.

SANTOS, P.S. Geocronologia, área fonte e ambiente tectônico da Unidade Santo Antônio, Megassequência Andrelândia. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Instituto de Geociências, Programa de Pós-graduação em Geologia, 70 p. 2011.

SCHALTEGGER U., FANNING C.M., GÜNTHER D., MAURIN J.C., SCHULMANN K., GEBAUER, D. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology 134, v. 186-201, 1999.

SCHMITT, R.S. The Búzios Orogeny—a cambrian-ordovician tectonometamorphic event in the Ribeira Belt—southeastern Brazil. Ph.D. Thesis. Federal University of Rio de Janeiro, University of Kansas, 273 pp., 2001.

SCHMITT, R.S.; TROUW, R.A.J.; VAN SCHMUS, W.R.; PASSCHIER, C.W. Cambrian orogeny in the Ribeira Belt (SE Brazil) and correlations within West Gondwana: ties that bind underwater. Geol. Soc. London Spec. Publ. 294, (p. 279–296) 2008.

SCHMITT, R.S.; TROUW, R.A.J; SCHMUS, W.R.V.; PIMENTEL, M.M. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, v. 133, p. 29–61, 2004.

SILVA W.G., BATISTA J.J., THOMPSON R. Texto explicativo da Folha Geológica Cambuci. Niterói, DRM/RJ, 1978.

SIMONETTI, A.; HEAMAN, L.M.; CHACKO, T. Use of discrete-dynode secondary electron multiplierswith Faradays—a 'reduced volume' approach for in-situ U–Pb dating of accessory minerals within petrographic thin section by LA-MC-ICP-MS. Goldschmidt Laser Ablation Short Course Volume 40, 241–264. 2008.

SIMONETTI, A.; NEAL, C.R., 2010. In-situ chemical, U–Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth and Planetary Science Letters 295, 251–261.

SÖDERLUND, U., PATCHETT, J.P., VERVOORT, J.D.; ISACHSEN, C.E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311–324.

STERN, R. A. High resolution SIMS determination of radiogenic trace isotope ratios in minerals. In: CABRI, L. J.; VAUGHAN, D. J. (Eds) Modern approaches to ore and environmental mineralogy. Ottawa: Mineralogical Association of Canada, 1998. p.241-268. (Canada Short Course Series, Mineralogical Association of Canada, v. 27. 1998.

TAVARES H.; MACHADO, H.T.; VALLADARES, C.S.; VALERIANO, C.M.; MEDEIROS, S.R.; DUARTE, B. P. Orthogneisses from the Quirino Complex, Central Ribeira belt, SE Brazil: Sr and Sm-Nd isotopic data. VII SSAGI South American Symposium on Isotope Geology Brasília, 2010.

TEIXEIRA, W.; ÁVILA, C.A, DUSSIN, I.A; NETO, A.V.C.; BONGIOLO, E.M; SANTOS, J.O A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny: Zircon U–Pb–Hf and geochemical evidences. Precambrian Research 256, 148-169; 2015.

TEDESCHI, M.; NOVO, T.; PEDROSA-SOARES, A.; DUSSIN, I.; TASSINARI, C.; SILVA, L.C; GONÇALVES, L.; ALKMIM, F.; LANA, C.; FIGUEIREDO, C.; DANTAS, E.; MEDEIROS, S.; DE CAMPOS, C.; CORRALESH, F.; HEILBRON, M. The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil). Journal of South American Earth Sciences 68, 167-186, 2016.

TROUW R.A.J., HEILBRON M., RIBEIRO A., PACIULLO F.V.P., VALERIANO C.M., ALMEIDA J.C.H., TUPINAMBÁ M., ANDREIS R.R. The Central Segment of the Ribeira Belt. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.), Tectonic Evolution of South America, Rio de Janeiro, 31st International Geological Congress, p. 287-310. 2000.

TRUW, R.A.J.; PETERNEL, A.; RIBEIRO A.; HEILBRON, M.; VINAGRE, R.; DUFFLES, P; TROUW, C.C; FONTAINHA, M.; KUSSAMA, H.H. A new interpretation for the interference zone between the Southern Brasília Belt and central Ribeira Belt, SE Brazil J. S. Am. Earth Sci., 48 (2013), pp.43-57, 2013.

TUPINAMBÁ M., HEILBRON M., DUARTE B.P., SILVA L.G.E., NOGUEIRA J.R., VALLADADRES C.S., ALMEIDA J.C.H., EIRALDO L.G., MEDEIROS S.R., ALMEIDA C.G., MIRANDA A.W.A., RAGATKY D. Geologia da Faixa Ribeira Setentrional: estado da arte e conexões com a Faixa Araçuaí. Geonomos, v. 15, p. 67-79, 2007.

TUPINAMBÁ, M.; HEILBRON, M.; VALERIANO, C.; PORTO JR., R., DIOS, F.B.; MACHADO, N.; SILVA L.G.E.; Almeida, J.C.H. Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): Implications for Western Gondwana amalgamation. Gondwana Research v. 21, p. 422–438, 2012.

TUPINAMBÁ, M.; TEIXEIRA, W.; HEILBRON, M. Neoproterozoic western Gondwana assembly and subduction-related plutonism: the role of the Rio Negro Complex in the Ribeira Belt, southeastern Brazil. Revista Brasileira de Geociências, v 30, p. 7-11. 2000.

VALERIANO, C. M.; MACHADO, N.; SIMONETTI, A.; VALLADARES, C. S.; SEERE, H. J.; SIMÕES, L.S. A. U–Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research, v. 130, p. 27-55, 2004.

VALERIANO, C.M., TUPINAMBA, M., SIMONETTI, A., HEILBRON, M., ALMEIDA, J.C.H., EIRADO, L.G., 2011. U–Pb LA-MC-ICPMS geochronology of Cambro-Ordovician postcollisional granites of the Ribeira belt, southeast Brazil: terminal Brasiliano magmatism in central Gondwana supercontinent. J. S. Am. Earth Sci. 32, 415–428. 2011.

Valladades, C., Souza, S., Ragatky, D. The Quirino Complex: a Transamazonian Magmatic Arc (?) of the Central Segment of the Brasiliano/Pan-African Ribeira Belt, SE Brazil. Revista Universidade Rural, Série Ciências Exatas e da Terra, 21(1): 49-62; 2002.

VALLADARES, C.S., DUARTE, B., HEILBRON, M., RAGATKY, D. Tectonomagmatic evolution of the western terrane and the Paraíba do Sul klippe of the Neoproterozoic Ribeira Orogenic belt, southeastern Brazil. Revista Brasileira de Geociências 30 (1), 1–6; 2000.

VALLADARES, C.S.; HEILBRON, M.; GAUTHIER, G. Ages of detrital zircon from siliciclastic successions southern of the São Francisco Craton, Brazil: implications for the evolution of Proterozoic basins. Gondwana Research, v. 7, n. 4, p. 913–921, 2004.

VALLADARES, C.S.; MACHADO, N.; HEILBRON M.; DUARTE, B. P.; GAUTHIER, G. Sedimentary provenance in the central Ribeira belt based on laser-ablation ICPMS207Pb/206Pb zircon ages. Gondwana Research, v. 13, p. 516–526, 2008.

Van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W., 2001. Data reduction software for LA-ICP-MS. In Laser ablation-ICPMS in the earth science. In: Sylvester, P. (Ed.). Mineralogical Association of Canada 29, 239–243.

VAVRA G, SCHMID R.; GEBAUER, D. Internal morphology, habit and U-Th-Pb icroanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, P.380-404, 1999.

VAVRA, G.; GEBAUER, D.; SCHMID, R., COMPSTON, W. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122, P. 337-358, 1996.

VERMEESCH, P. On the visualization of detrital age distributions. Chemical Geology Geology, v. 312–313 (2012) 190–194.

VIANA, S. Evolução Geológica do Terreno Paraíba do Sul, Orógeno Ribeira, Sudeste do Brasil, com base em estudos Litogeoquímicos e de Geocronologia U - Pb (LA-ICPMS). Tese de Doutorado, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil, p. 230, 2008.

WESTIN, A. T. Depósitos orogênicos e bacias extensional: o embasamento metassedimentar e a cobertura de margem passive no Orógeno Brasília Meridional. Tese de Doutorado, Universidade de São Paulo, São Paulo, Brasil, 2015.

WESTIN, A.; CAMPOS NETO, M. C. Provenance and tectonic setting of the external nappe of the Southern Brasília Orogen. Journal of South American Earth Sciences, v. 48, p. 220-239. 2013.

WESTIN, A.; CAMPOS NETO, M. C.; HAWKESWORTH, C. J.; CAWOOD, P. A.; DHUIME, B.; DELAVAULT, H. A paleoproterozoic intra-arc basin associated with a juvenile source in the Southern Brasilia Orogen: Application of U-Pb and Hf-Nd isotopic.Precambrian Research, v. 276, p. 178-193, 2016.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., Spiegel, W.. 3 natural zircon standards for U-Th-Pb, Lu-Hf, traceelement and REE analyses. Geostandards Newsletter 19, 1–23, 1995.

WILLIAMS, I. S. U-Th-Pb Geochronology by Ion Micropobe. In: McKIBBEN, M. A.; SHANKS III, W..; RIDLEY, W. I. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Society of Economic Geologists, v. 7, p. 1-35, 1998.

APÊNDICE A – . Tabelas de dados U-Pb de análises realizadas em espectrômetro de massa (LA-MC-ICP-MS) em grãos de zircão, no LG-IG-UnB, no MULTILAB-UERJ e ND

Tabela de instrumen	to e amostras realiz	zadas no LG-IG-UnB	
	Amostra	Rocha	Domínio /Terreno Tecnônico
	SM-MB-05	Quartzito feldspático	
	SM-MB-07	Quartzito puro	
Thermo Finningan	SM-MB-09	Quartzito feldspático	Containe (Oniontal
Neptune. Laser do tipo Nd-YAG,	SM-MB-15	Quartzito feldspático	Costeiro/Orientai
modelo Arf NewWave (213).	SM-MB-02	Granada-biotita gnaisse	
	THE-12A	Granada-biotita gn.aisse	
	THE-03	(Opx)-granada-biotita gnaisse	Cambuci/Oriental
	SD-ML-01	Quartzito	Paraíba do Sul

Tabela A.1 -Relação de laboratórios, instrumentação e amostras analizadas.

Tabela de instrumento e amostras realizadas no MULTILAB-UERJ

	Amostra	Rocha	Domínio /Terreno Tecnônico
	SM-MB-02	Granada-biotita gnaisse	Costaire/Orientel
ICP-MS modelo Thermo Finningan	THE-21A	Granada-biotita gnaisse	Costerro/Orientar
Neptune. Laser	ARG-03	Quartzito milonítico	
G2 Excimer	ARG-04	Quartzito milonítico	Juiz de Fora/Ocidental
	THE-17	Quartzito impuro	
	SA-ML-28	Granada-sillimanita gnaisse	Paraíba do Sul

Tabela de instrumento e amostras realizadas na UND

	Amostra	Rocha	Domínio /Terreno Tecnônico
Attom. Laser	SRJ-JE-159B	Granada-biotita gnaisse	Juiz de Fora/
UP193 nm Arf excimer	BP-JE-15A	Granada-biotita gnaisse	Ocidental
	IG-1028	Quartzito	Costeito/Oriental

Fonte: A autora, 2018.

						Razões i	isotópica	S					Idades	(Ma)			0/
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	/0 C
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z01</u>	0.02041	<u>1.23</u>	82469.7	<u>1.9367</u>	<u>1.9</u>	<u>0.1921</u>	<u>1.4</u>	<u>0.70</u>	<u>0.073</u>	<u>1.3</u>	<u>1017</u>	<u>27</u>	<u>1094</u>	<u>13</u>	<u>1133</u>	<u>14</u>	<u>104</u>
<u>Z02</u>	0.02624	0.22	<u>61314.6</u>	<u>3.3013</u>	<u>2.4</u>	0.2683	<u>1.9</u>	<u>0.79</u>	0.089	<u>1.4</u>	<u>1409</u>	<u>28</u>	<u>1481</u>	<u>19</u>	<u>1532</u>	<u>26</u>	<u>103</u>
<u>Z03</u>	<u>0.01781</u>	<u>0.58</u>	<u>82057.7</u>	7.6994	<u>1.5</u>	<u>0.4195</u>	<u>1.1</u>	<u>0.71</u>	<u>0.133</u>	<u>1.0</u>	<u>2139</u>	<u>18</u>	<u>2197</u>	<u>13</u>	<u>2258</u>	<u>20</u>	<u>103</u>
<u>Z04</u>	<u>0.00548</u>	<u>0.49</u>	<u>293196.2</u>	<u>3.1805</u>	<u>1.2</u>	<u>0.2701</u>	<u>0.8</u>	<u>0.68</u>	<u>0.085</u>	<u>1.0</u>	<u>1324</u>	<u>18</u>	<u>1452</u>	<u>10</u>	<u>1541</u>	<u>11</u>	<u>106</u>
<u>Z05</u>	<u>0.00720</u>	<u>0.07</u>	<u>234918.1</u>	<u>1.7809</u>	<u>1.2</u>	<u>0.1848</u>	<u>0.9</u>	<u>0.73</u>	0.07	<u>0.8</u>	<u>925</u>	<u>16</u>	<u>1039</u>	<u>8</u>	<u>1093</u>	<u>9</u>	<u>105</u>
Z06	0.01658	1.32	92480.4	5.1776	1.1	0.3458	0.8	0.70	0.109	0.8	1776	14	1849	10	1914	14	104
Z07	0.00812	1.16	185631.7	5.5350	1.2	0.3724	1.0	0.78	0.108	0.7	1762	14	1906	11	2041	17	107
Z08	0.07402	0.71	23195.2	1.4560	4.4	0.1575	1.4	0.54	0.067	4.2	839	88	912	27	943	13	103
Z09	0.01746	0.38	95223.5	2.3748	1.2	0.2131	0.9	0.74	0.081	0.8	1217	15	1235	9	1245	10	101
<u>Z10</u>	<u>0.02544</u>	<u>0.51</u>	<u>58753.3</u>	<u>6.7962</u>	<u>1.6</u>	<u>0.3855</u>	<u>1.3</u>	<u>0.77</u>	0.128	<u>1.0</u>	<u>2069</u>	<u>18</u>	<u>2085</u>	<u>14</u>	<u>2102</u>	<u>23</u>	<u>101</u>
<u>Z11</u>	<u>0.01016</u>	0.41	145372.2	7.6438	<u>1.3</u>	0.4042	<u>1.1</u>	<u>0.78</u>	0.137	<u>0.8</u>	<u>2191</u>	<u>14</u>	<u>2190</u>	<u>12</u>	<u>2189</u>	<u>19</u>	<u>100</u>
<u>Z12</u>	0.02782	0.37	52967.4	<u>7.6575</u>	<u>2.5</u>	<u>0.4075</u>	<u>1.5</u>	<u>0.79</u>	<u>0.136</u>	<u>2.0</u>	<u>2181</u>	<u>35</u>	<u>2192</u>	<u>22</u>	<u>2203</u>	<u>27</u>	<u>101</u>
<u>Z13</u>	<u>0.01572</u>	<u>1.05</u>	108817.4	<u>1.6638</u>	<u>1.6</u>	<u>0.1639</u>	<u>1.3</u>	<u>0.80</u>	0.074	<u>1.0</u>	<u>1031</u>	<u>20</u>	<u>995</u>	<u>10</u>	<u>978</u>	<u>12</u>	<u>98</u>
<u>Z14B</u>	<u>0.01525</u>	<u>0.01</u>	<u>116483.6</u>	<u>0.7910</u>	<u>1.2</u>	<u>0.0964</u>	<u>0.9</u>	<u>0.76</u>	<u>0.059</u>	<u>0.8</u>	<u>585</u>	<u>16</u>	<u>592</u>	<u>5</u>	<u>593</u>	<u>5</u>	<u>100</u>
<u>Z14N</u>	0.03471	<u>0.68</u>	46662.4	<u>3.4864</u>	<u>1.9</u>	0.2572	<u>1.4</u>	<u>0.70</u>	<u>0.098</u>	<u>1.3</u>	<u>1592</u>	<u>25</u>	<u>1524</u>	<u>15</u>	<u>1476</u>	<u>18</u>	<u>97</u>
<u>Z15N</u>	<u>0.01056</u>	<u>0.34</u>	<u>141111.5</u>	<u>7.2925</u>	<u>2.3</u>	<u>0.3903</u>	<u>1.3</u>	<u>0.77</u>	<u>0.136</u>	<u>2.0</u>	<u>2171</u>	<u>34</u>	<u>2148</u>	<u>21</u>	<u>2124</u>	<u>24</u>	<u>99</u>
<u>Z16B</u>	<u>0.01249</u>	<u>0.01</u>	<u>142511.9</u>	<u>0.7493</u>	<u>1.4</u>	<u>0.0927</u>	<u>1.1</u>	<u>0.82</u>	0.059	<u>0.7</u>	<u>553</u>	<u>16</u>	<u>568</u>	<u>6</u>	<u>571</u>	<u>6</u>	<u>101</u>
<u>Z16N</u>	<u>0.01394</u>	<u>0.72</u>	<u>111340.3</u>	<u>5.1293</u>	<u>1.5</u>	<u>0.3263</u>	<u>1.3</u>	<u>0.84</u>	0.114	<u>0.8</u>	<u>1864</u>	<u>14</u>	<u>1841</u>	<u>13</u>	<u>1820</u>	<u>20</u>	<u>99</u>
<u>Z17</u>	<u>0.00154</u>	<u>0.28</u>	<u>988336.7</u>	<u>6.1992</u>	<u>0.9</u>	<u>0.3618</u>	<u>0.8</u>	<u>0.82</u>	0.124	<u>0.5</u>	<u>2018</u>	<u>9</u>	2004	<u>8</u>	<u>1991</u>	<u>13</u>	<u>99</u>
<u>Z18</u>	<u>0.01159</u>	<u>0.26</u>	136782.7	<u>4.7524</u>	<u>2.2</u>	0.292	<u>1.8</u>	<u>0.93</u>	<u>0.118</u>	<u>1.3</u>	<u>1927</u>	<u>23</u>	<u>1777</u>	<u>19</u>	<u>1651</u>	<u>27</u>	<u>93</u>
<u>Z19</u>	0.00540	<u>0.30</u>	<u>300338.4</u>	<u>3.2878</u>	<u>1.3</u>	0.2562	<u>1.2</u>	<u>0.93</u>	0.093	<u>0.5</u>	<u>1489</u>	<u>9</u>	<u>1478</u>	<u>10</u>	<u>1471</u>	<u>16</u>	<u>99</u>
<u>Z20</u>	0.00609	0.29	237336.9	8.0229	<u>1.4</u>	0.4358	<u>1.3</u>	<u>0.91</u>	<u>0.134</u>	<u>0.6</u>	<u>2145</u>	<u>10</u>	<u>2234</u>	<u>13</u>	<u>2332</u>	<u>26</u>	<u>104</u>
<u>Z21</u>	0.01257	0.45	126353.2	3.7633	<u>1.7</u>	0.2899	<u>1.3</u>	0.74	0.094	<u>1.1</u>	<u>1511</u>	22	1585	<u>14</u>	1641	<u>19</u>	<u>104</u>
<u>Z22</u>	0.00710	0.37	225645.1	3.5158	<u>1.3</u>	0.2753	0.9	0.82	0.093	<u>1.0</u>	1480	<u>18</u>	<u>1531</u>	<u>11</u>	1568	<u>13</u>	<u>102</u>
<u>Z23</u>	0.00613	0.67	249438.0	5.8793	<u>1.6</u>	0.3509	1.4	0.87	0.122	0.8	1979	<u>13</u>	1958	<u>14</u>	1939	<u>23</u>	<u>99</u>
<u>Z24</u>	0.02247	0.31	65685.4	8.0983	2	0.4048	1.6	0.79	0.145	1.2	2289	21	2242	<u>18</u>	2191	<u>29</u>	<u>98</u>

Tabela A.2 - Amostra SM-MB-05 - Quartzito feldspático do Grupo São Fidélis (Domínio Costeiro) - LG-IG-UnB.

				Razões isotópicas Idades (Ma)									9/				
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	70
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z25</u>	0.00611	0.71	250029.4	<u>5.7854</u>	<u>1.8</u>	0.3523	<u>1.3</u>	<u>0.87</u>	0.119	<u>1.2</u>	<u>1943</u>	<u>22</u>	<u>1944</u>	<u>16</u>	<u>1946</u>	<u>22</u>	<u>100</u>
<u>Z26</u>	<u>0.04316</u>	<u>1.74</u>	39624.7	<u>1.5914</u>	<u>2.7</u>	0.1643	<u>2.1</u>	<u>0.80</u>	0.07	<u>1.6</u>	<u>936</u>	<u>33</u>	<u>967</u>	<u>17</u>	<u>981</u>	<u>19</u>	<u>101</u>
<u>Z27B</u>	0.00394	0.05	447860.2	<u>0.9566</u>	<u>1.4</u>	0.1094	<u>1.3</u>	<u>0.89</u>	0.063	<u>0.6</u>	<u>723</u>	<u>14</u>	<u>682</u>	<u>7</u>	<u>669</u>	<u>8</u>	<u>98</u>
<u>Z27N</u>	0.00288	0.32	<u>577489.7</u>	<u>2.3000</u>	<u>1.3</u>	<u>0.2139</u>	<u>1.1</u>	<u>0.88</u>	<u>0.078</u>	<u>0.6</u>	<u>1147</u>	<u>12</u>	<u>1212</u>	<u>9</u>	<u>1249</u>	<u>13</u>	<u>103</u>
<u>Z28</u>	<u>0.00264</u>	<u>0.46</u>	<u>600858.3</u>	<u>3.7720</u>	<u>1.3</u>	<u>0.2912</u>	<u>1.1</u>	<u>0.90</u>	<u>0.094</u>	<u>0.8</u>	<u>1507</u>	<u>15</u>	<u>1587</u>	<u>11</u>	<u>1647</u>	<u>16</u>	<u>104</u>
<u>Z29</u>	<u>0.03350</u>	<u>0.38</u>	43790.7	<u>9.3544</u>	<u>2.3</u>	<u>0.4141</u>	<u>2.0</u>	<u>0.89</u>	<u>0.164</u>	<u>1.0</u>	<u>2496</u>	<u>18</u>	<u>2373</u>	<u>21</u>	2234	<u>38</u>	<u>94</u>
<u>Z30</u>	<u>0.01666</u>	0.42	<u>98020.1</u>	<u>2.8934</u>	<u>1.4</u>	<u>0.2434</u>	<u>1.2</u>	<u>0.83</u>	<u>0.086</u>	<u>0.8</u>	<u>1343</u>	<u>15</u>	<u>1380</u>	<u>11</u>	1405	<u>15</u>	<u>102</u>
<u>Z31</u>	0.22589	0.41	7603.4	<u>1.9866</u>	<u>9.1</u>	<u>0.1569</u>	<u>6.8</u>	<u>0.75</u>	<u>0.092</u>	<u>6.1</u>	<u>1464</u>	<u>115</u>	<u>1111</u>	<u>62</u>	<u>940</u>	<u>60</u>	<u>85</u>
<u>Z32</u>	<u>0.01273</u>	<u>0.78</u>	<u>103316.5</u>	<u>14.8449</u>	<u>1.9</u>	<u>0.5702</u>	<u>1.3</u>	<u>0.86</u>	<u>0.189</u>	<u>1.4</u>	<u>2732</u>	<u>23</u>	<u>2805</u>	<u>18</u>	<u>2909</u>	<u>32</u>	<u>104</u>
<u>Z33</u>	<u>0.00622</u>	<u>0.54</u>	255767.8	4.5674	<u>4.4</u>	<u>0.2881</u>	<u>4.3</u>	<u>0.98</u>	<u>0.115</u>	<u>0.9</u>	<u>1880</u>	<u>16</u>	<u>1743</u>	<u>37</u>	<u>1632</u>	<u>62</u>	<u>94</u>
<u>Z34</u>	<u>0.02488</u>	0.29	66522.6	<u>2.4701</u>	<u>1.6</u>	0.2207	<u>1.3</u>	<u>0.79</u>	<u>0.081</u>	<u>1.0</u>	1226	<u>19</u>	<u>1263</u>	<u>12</u>	1286	<u>15</u>	<u>102</u>
<u>Z35</u>	<u>0.00492</u>	<u>0.68</u>	<u>305139.8</u>	<u>6.5766</u>	<u>1.5</u>	<u>0.3803</u>	<u>1.3</u>	<u>0.89</u>	<u>0.125</u>	<u>0.6</u>	<u>2035</u>	<u>11</u>	<u>2056</u>	<u>13</u>	<u>2078</u>	<u>23</u>	<u>101</u>
<u>Z36</u>	0.02791	0.65	54226.4	<u>5.4387</u>	<u>2.8</u>	<u>0.3665</u>	<u>1.7</u>	<u>0.82</u>	0.108	<u>2.2</u>	<u>1760</u>	<u>40</u>	<u>1891</u>	<u>24</u>	<u>2013</u>	<u>29</u>	<u>106</u>
<u>Z37</u>	0.01106	0.30	<u>151232.8</u>	<u>2.1590</u>	<u>1</u>	0.2023	<u>0.8</u>	<u>0.80</u>	0.077	<u>0.5</u>	<u>1132</u>	<u>11</u>	<u>1168</u>	<u>7</u>	<u>1188</u>	<u>9</u>	<u>102</u>
<u>Z38</u>	0.00832	0.62	<u>162777.8</u>	<u>13.4535</u>	<u>1.1</u>	<u>0.53</u>	<u>0.9</u>	<u>0.86</u>	0.184	<u>0.5</u>	<u>2690</u>	<u>9</u>	2712	<u>10</u>	<u>2742</u>	<u>21</u>	<u>101</u>
<u>Z39</u>	0.02436	0.49	70848.7	1.3624	<u>3.1</u>	<u>0.1482</u>	<u>2.9</u>	<u>0.93</u>	0.067	<u>1.1</u>	<u>828</u>	<u>24</u>	<u>873</u>	<u>18</u>	<u>891</u>	<u>24</u>	<u>102</u>
<u>Z40</u>	<u>0.38184</u>	0.17	4586.7	<u>1.1425</u>	<u>5.2</u>	0.1216	<u>2.6</u>	<u>0.75</u>	0.068	<u>4.5</u>	<u>872</u>	<u>90</u>	<u>774</u>	<u>28</u>	<u>740</u>	<u>18</u>	<u>96</u>
<u>Z41</u>	<u>0.03101</u>	0.70	<u>56301.9</u>	<u>1.1151</u>	<u>3.5</u>	0.1277	<u>3.3</u>	<u>0.93</u>	0.063	<u>1.3</u>	<u>719</u>	<u>27</u>	<u>761</u>	<u>19</u>	<u>775</u>	<u>24</u>	<u>102</u>
<u>Z42</u>	<u>0.01374</u>	0.34	<u>129129.6</u>	0.8251	<u>1.5</u>	<u>0.0991</u>	<u>1.1</u>	<u>0.73</u>	0.06	<u>1.0</u>	<u>618</u>	<u>21</u>	<u>611</u>	<u>7</u>	<u>609</u>	<u>6</u>	<u>100</u>
<u>Z43</u>	0.10157	0.37	15738.4	4.0477	<u>3.6</u>	0.2791	<u>3.3</u>	<u>0.93</u>	0.105	<u>1.3</u>	1718	25	1644	<u>29</u>	1587	<u>47</u>	<u>97</u>
<u>Z44</u>	0.04740	0.37	35606.8	1.8674	<u>5.6</u>	0.1875	4.2	0.91	0.072	<u>3.7</u>	<u>993</u>	74	1070	<u>37</u>	1108	<u>43</u>	<u>104</u>
<u>Z45</u>	0.03089	0.71	50561.0	4.7441	<u>2.2</u>	0.3166	<u>1.6</u>	0.71	0.109	<u>1.5</u>	1778	<u>28</u>	1775	<u>18</u>	1773	<u>24</u>	<u>100</u>
<u>Z46</u>	0.00650	0.41	226212.1	7.7166	1.2	0.4103	<u>1.0</u>	0.87	0.136	0.6	2182	<u>10</u>	2199	<u>11</u>	2216	<u>19</u>	<u>101</u>
<u>Z47</u>	0.00215	0.46	641707.4	10.9743	1.2	0.5022	0.8	0.83	0.158	0.8	2440	<u>14</u>	2521	<u>11</u>	2623	<u>18</u>	<u>104</u>
<u>Z48</u>	0.00324	1.07	462506.1	6.4419	1.2	0.3829	1.1	0.87	0.122	0.6	1986	10	2038	11	2090	19	<u>103</u>
<u>Z49</u>	0.04185	1.73	42402.1	0.7866	2.6	0.0984	2.3	0.88	0.058	1.2	<u>530</u>	27	589	11	605	13	<u>103</u>
<u>Z49B</u>	0.00856	0.01	206926.4	0.8259	<u>1.1</u>	0.1021	0.9	0.80	0.059	0.6	<u>555</u>	<u>13</u>	<u>611</u>	<u>5</u>	627	<u>5</u>	<u>103</u>

						Razões	isotópica	s					Idades	(Ma)			0/
Número do	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	D.	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%0
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z50</u>	0.00566	0.05	<u>304081.0</u>	<u>1.4969</u>	<u>1.1</u>	0.1528	<u>0.8</u>	<u>0.75</u>	0.071	0.8	<u>958</u>	<u>17</u>	<u>929</u>	<u>7</u>	<u>917</u>	<u>7</u>	<u>99</u>
<u>Z51</u>	0.02144	<u>0.13</u>	77292.5	<u>3.8537</u>	<u>3.8</u>	0.2191	<u>1.4</u>	<u>0.37</u>	0.128	<u>3.6</u>	<u>2065</u>	<u>63</u>	1604	<u>31</u>	1277	<u>17</u>	<u>80</u>
<u>Z52</u>	0.00325	0.29	507702.0	2.4548	<u>1.2</u>	0.2245	<u>0.9</u>	<u>0.72</u>	0.079	0.8	<u>1180</u>	<u>15</u>	1259	<u>8</u>	<u>1306</u>	<u>10</u>	<u>104</u>
<u>Z53</u>	0.01200	<u>0.31</u>	<u>122857.6</u>	<u>7.3991</u>	<u>2</u>	0.4065	<u>1.5</u>	<u>0.75</u>	0.132	<u>1.3</u>	<u>2125</u>	<u>23</u>	<u>2161</u>	<u>18</u>	<u>2199</u>	<u>28</u>	<u>102</u>
<u>Z54</u>	0.02242	<u>0.34</u>	<u>75217.1</u>	2.0706	<u>2.6</u>	<u>0.1892</u>	<u>1.7</u>	0.82	<u>0.079</u>	<u>1.9</u>	<u>1181</u>	<u>38</u>	<u>1139</u>	<u>18</u>	<u>1117</u>	<u>18</u>	<u>98</u>
<u>Z55</u>	0.00892	<u>0.58</u>	<u>168962.8</u>	<u>6.7694</u>	<u>1.3</u>	0.3724	<u>1.1</u>	<u>0.78</u>	<u>0.132</u>	0.8	<u>2123</u>	<u>14</u>	<u>2082</u>	<u>12</u>	2041	<u>19</u>	<u>98</u>
<u>Z56</u>	0.05222	<u>0.46</u>	28138.2	7.5737	<u>3.3</u>	<u>0.4115</u>	<u>2.4</u>	<u>0.72</u>	<u>0.133</u>	<u>2.3</u>	<u>2144</u>	<u>40</u>	<u>2182</u>	<u>30</u>	<u>2222</u>	<u>45</u>	<u>102</u>
<u>Z57</u>	0.00957	<u>0.67</u>	122394.2	26.6127	<u>1.4</u>	<u>0.7181</u>	<u>1.2</u>	<u>0.83</u>	0.269	0.8	<u>3299</u>	<u>12</u>	<u>3369</u>	<u>14</u>	<u>3489</u>	<u>32</u>	<u>104</u>
<u>Z58</u>	<u>0.00866</u>	<u>0.42</u>	<u>178041.6</u>	6.2561	<u>1.7</u>	<u>0.3371</u>	<u>1.2</u>	0.87	<u>0.135</u>	<u>1.1</u>	<u>2159</u>	<u>19</u>	<u>2012</u>	<u>14</u>	<u>1873</u>	<u>20</u>	<u>93</u>
Z59	0.04023	0.09	44145.4	0.8814	1.8	0.097	1.3	0.76	0.066	1.1	803	24	642	8	597	8	93
Z60	0.01395	0.03	127065.2	0.9102	1.3	0.0998	1.0	0.73	0.066	0.9	810	18	657	6	613	6	93
Z61	0.12370	0.35	13914.7	1.5908	3.8	0.1531	2.8	0.74	0.075	2.5	1078	51	967	24	918	24	95
Z62	0.02803	0.12	62132.7	1.3204	4.4	0.1325	3.6	0.82	0.072	2.5	994	51	855	25	802	27	94
Z63	0.06081	0.28	28132.5	1.6245	3.5	0.1639	2.7	0.76	0.072	2.3	983	47	980	22	978	24	100
Z64	0.01582	0.00	112808.5	0.7252	1.7	0.0881	1.3	0.80	0.06	1.0	593	21	554	7	544	7	98
Z65	0.00338	0.12	431908.1	9.1520	2	0.4208	1.4	0.72	0.158	1.3	2432	23	2353	18	2264	27	96
Z66	0.00511	0.20	315777.1	4.3776	1.1	0.2627	0.9	0.83	0.121	0.6	1969	10	1708	9	1504	12	88
Z67	0.01648	0.50	103083.7	1.7854	1.2	0.1757	1.1	0.89	0.074	0.5	1033	11	1040	8	1044	11	100
Z68	0.03423	0.50	49314.3	2.0834	1.9	0.1873	1.3	0.70	0.081	1.3	1214	26	1143	13	1107	14	97
Z69	0.03791	0.38	40504.9	5.6406	2.2	0.3439	1.8	0.79	0.119	1.4	1941	24	1922	19	1905	29	99
Z70	0.03270	0.21	52627.1	1.6470	4.3	0.1533	3.3	0.76	0.078	2.8	1144	56	988	27	920	28	93
Z71	0.06210	0.27	26460.9	2.8515	3.8	0.233	2.9	0.77	0.089	2.4	1399	46	1369	28	1350	35	99
Z72	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
Z73	0.06225	0.29	24320.3	6.8416	3.9	0.366	3.2	0.81	0.136	2.3	2171	40	2091	35	2011	55	96
Z74	0.08431	0.35	20337.0	1.6302	4	0.1599	2.9	0.72	0.074	2.7	1039	55	982	25	956	26	97
Z75	0.01508	0.00	117761.8	0.7941	1.9	0.0971	1.8	0.92	0.059	0.8	579	17	593	9	597	10	101
Z76	0.05683	0.28	25722.9	7.6234	2.8	0.4194	2.0	0.72	0.132	1.9	2122	34	2188	25	2258	38	103

						Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Dha	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	70 Cama
~ <i>F</i> ~ .				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z77	0.03408	0.24	43657.2	7.0840	2.8	0.3929	2.1	0.74	0.131	1.8	2108	32	2122	25	2136	38	101
Z78	0.01900	0.14	85353.6	3.4638	4.2	0.255	3.6	0.85	0.099	2.2	1596	41	1519	33	1464	47	96
Z79	0.01074	0.08	159164.0	1.6059	1.8	0.1644	1.5	0.82	0.071	1.0	952	21	972	12	981	14	101
Z80	0.08877	0.50	19920.5	0.9552	3.5	0.1048	2.8	0.80	0.066	2.1	810	43	681	17	643	17	94
Z81	0.01372	0.01	115575.3	4.4829	1.7	0.2917	1.4	0.80	0.111	1.0	1823	18	1728	14	1650	20	96
Z82	0.01348	0.18	112050.9	6.2740	1.2	0.37	1.1	0.88	0.123	0.6	2000	10	2015	11	2029	19	101
Z83	0.01255	0.19	130005.1	3.7445	1.6	0.2454	1.2	0.75	0.111	1.0	1811	19	1581	13	1414	15	89
Z84	0.02177	0.03	77936.4	1.8924	1.7	0.178	1.4	0.81	0.077	1.0	1124	19	1078	11	1056	13	98
Z85	0.07013	0.26	24395.0	1.7272	2.3	0.1638	1.8	0.77	0.076	1.4	1107	29	1019	15	978	16	96
Z86	0.01143	0.01	154128.2	0.9475	2.2	0.1113	1.9	0.86	0.062	1.1	665	24	677	11	680	12	101
Z87	0.02429	0.22	66146.3	3.5607	1.7	0.2709	1.4	0.83	0.095	0.9	1535	17	1541	13	1545	19	100
Z88	0.05691	0.30	29521.7	2.2278	2.9	0.1954	1.9	0.66	0.083	2.1	1262	42	1190	20	1151	20	97
Z89	0.13870	0.52	11768.6	3.0597	1.8	0.2443	1.4	0.73	0.091	1.2	1443	24	1423	14	1409	17	99
Z90	0.02283	0.26	71865.0	2.8664	0.9	0.2356	0.6	0.68	0.088	0.6	1388	12	1373	7	1364	8	99
Z91	0.02122	0.25	79226.7	2.1540	1.3	0.1943	0.9	0.68	0.08	0.9	1206	18	1166	9	1145	10	98
Z92	0.12839	0.26	13085.3	2.2085	5.2	0.1954	3.6	0.70	0.082	3.7	1245	72	1184	36	1151	38	97
Z93	0.01525	0.53	100617.2	5.8502	1.3	0.3453	1.2	0.87	0.123	0.6	1998	11	1954	11	1912	19	98
Z94	0.02436	0.12	69917.1	1.7330	1.1	0.1713	0.9	0.83	0.073	0.6	1024	11	1021	7	1019	8	100
Z95	0.00938	0.26	179828.6	1.9605	0.8	0.1893	0.7	0.81	0.075	0.4	1071	9	1102	5	1118	7	101
Z96	0.02084	0.25	71819.8	7.0266	1.1	0.3839	0.9	0.82	0.133	0.6	2135	11	2115	10	2094	16	99

						Razões	isotópica	5					Idades	(Ma)			0/
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Ы	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%o
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z01</u>	0.0302	<u>0.64</u>	<u>52017.9</u>	4.8031	<u>3.1</u>	<u>0.3093</u>	<u>2.1</u>	<u>0.68</u>	<u>0.1126</u>	<u>2.24</u>	<u>1842</u>	<u>40</u>	1785	<u>26</u>	<u>1737</u>	<u>32</u>	<u>97</u>
<u>Z02</u>	<u>0.0366</u>	0.24	<u>76333.7</u>	<u>1.6686</u>	2.7	<u>0.1413</u>	<u>1.9</u>	<u>0.71</u>	0.0857	<u>1.89</u>	<u>1331</u>	<u>37</u>	<u>997</u>	<u>17</u>	<u>852</u>	<u>15</u>	<u>85</u>
<u>Z03</u>	0.0238	0.07	<u>74875.5</u>	0.8847	<u>2.4</u>	0.0906	<u>1.7</u>	<u>0.68</u>	0.0708	<u>1.74</u>	<u>952</u>	<u>36</u>	<u>643</u>	<u>11</u>	<u>559</u>	<u>9</u>	<u>87</u>
<u>Z04</u>	0.0076	0.17	<u>214801.9</u>	3.2102	<u>3.4</u>	0.2481	<u>2.2</u>	<u>0.77</u>	<u>0.0939</u>	<u>2.61</u>	<u>1505</u>	<u>49</u>	1460	<u>26</u>	1428	<u>28</u>	<u>98</u>
<u>Z05</u>	0.8728	0.52	2091.6	<u>0.3965</u>	<u>38.3</u>	0.0455	<u>37.9</u>	1.00	<u>0.0631</u>	<u>2.63</u>	<u>713</u>	<u>55</u>	<u>339</u>	105	287	<u>106</u>	<u>85</u>
<u>Z06</u>	0.0079	0.18	<u>328440.2</u>	<u>1.6353</u>	<u>2.5</u>	<u>0.1581</u>	<u>1.8</u>	<u>0.73</u>	<u>0.0750</u>	1.68	<u>1069</u>	<u>34</u>	<u>984</u>	15	<u>946</u>	<u>16</u>	<u>96</u>
<u>Z07</u>	0.0460	<u>0.81</u>	<u>34470.3</u>	4.6788	<u>2.6</u>	0.2937	<u>1.9</u>	<u>0.73</u>	<u>0.1156</u>	1.81	<u>1889</u>	<u>33</u>	1763	<u>22</u>	1660	<u>28</u>	<u>94</u>
<u>Z08</u>	0.0022	0.41	<u>671384.4</u>	7.2488	<u>5.0</u>	0.3925	<u>3.7</u>	0.87	<u>0.1340</u>	<u>3.42</u>	<u>2150</u>	<u>60</u>	<u>2143</u>	<u>45</u>	<u>2134</u>	<u>67</u>	<u>100</u>
<u>Z09</u>	0.0129	0.44	<u>126795.1</u>	<u>2.8909</u>	2.7	0.2450	<u>1.9</u>	<u>0.69</u>	<u>0.0856</u>	<u>1.96</u>	<u>1329</u>	<u>38</u>	<u>1380</u>	<u>20</u>	<u>1413</u>	<u>24</u>	<u>102</u>
<u>Z10</u>	<u>0.3746</u>	<u>1.25</u>	4258.4	<u>1.9927</u>	<u>3.7</u>	<u>0.1324</u>	<u>2.9</u>	<u>0.78</u>	<u>0.1092</u>	<u>2.32</u>	<u>1786</u>	<u>42</u>	<u>1113</u>	<u>25</u>	<u>801</u>	<u>22</u>	<u>72</u>
<u>Z11</u>	0.0072	0.27	238034.0	<u>1.5773</u>	2.2	0.1562	1.5	0.70	0.0732	1.53	1020	<u>31</u>	<u>961</u>	<u>14</u>	<u>936</u>	<u>13</u>	<u>97</u>
<u>Z12</u>	<u>0.0163</u>	<u>0.86</u>	<u>102770.6</u>	<u>2.2818</u>	<u>2.0</u>	0.2052	<u>1.4</u>	<u>0.70</u>	<u>0.0806</u>	<u>1.38</u>	<u>1213</u>	<u>27</u>	1207	<u>14</u>	1203	<u>15</u>	<u>100</u>
<u>Z13n</u>	0.0177	0.42	<u>80189.0</u>	4.3367	<u>3.5</u>	0.2541	<u>3.2</u>	<u>0.92</u>	<u>0.1238</u>	1.37	<u>2012</u>	<u>24</u>	<u>1700</u>	<u>28</u>	1460	<u>41</u>	<u>86</u>
<u>Z13b</u>	0.0119	<u>0.32</u>	<u>137577.6</u>	<u>3.7754</u>	<u>2.2</u>	0.2338	<u>2.0</u>	<u>0.89</u>	<u>0.1171</u>	1.01	<u>1913</u>	<u>18</u>	<u>1588</u>	<u>18</u>	1354	<u>24</u>	<u>85</u>
<u>Z14</u>	0.0234	0.17	<u>75611.2</u>	<u>0.9155</u>	<u>3.4</u>	0.1023	<u>2.8</u>	<u>0.93</u>	<u>0.0649</u>	<u>2.06</u>	<u>770</u>	<u>43</u>	<u>660</u>	<u>17</u>	<u>628</u>	<u>17</u>	<u>95</u>
<u>Z15</u>	0.0063	<u>1.31</u>	270758.4	1.6041	<u>1.1</u>	<u>0.1661</u>	<u>0.8</u>	<u>0.69</u>	<u>0.0700</u>	<u>0.78</u>	<u>929</u>	<u>16</u>	<u>972</u>	<u>7</u>	<u>991</u>	<u>7</u>	<u>102</u>
<u>Z16</u>	0.0063	0.27	<u>180363.3</u>	<u>2.9712</u>	<u>1.1</u>	0.2336	<u>0.9</u>	<u>0.77</u>	<u>0.0923</u>	<u>0.69</u>	<u>1473</u>	<u>13</u>	<u>1400</u>	<u>8</u>	<u>1353</u>	<u>11</u>	<u>97</u>
<u>Z17</u>	0.0038	<u>0.32</u>	<u>413517.6</u>	4.9213	<u>2.0</u>	<u>0.3008</u>	<u>1.9</u>	<u>0.93</u>	<u>0.1187</u>	<u>0.75</u>	<u>1936</u>	<u>13</u>	<u>1806</u>	<u>17</u>	<u>1695</u>	<u>28</u>	<u>94</u>
<u>Z18</u>	0.0066	<u>0.87</u>	<u>257682.6</u>	<u>1.6170</u>	<u>1.1</u>	<u>0.1644</u>	<u>0.8</u>	<u>0.75</u>	<u>0.0713</u>	0.82	<u>967</u>	<u>17</u>	<u>977</u>	<u>7</u>	<u>981</u>	<u>7</u>	<u>100</u>
<u>Z19</u>	0.0054	<u>0.39</u>	<u>287879.0</u>	<u>5.2329</u>	<u>1.6</u>	<u>0.3339</u>	<u>1.4</u>	<u>0.86</u>	<u>0.1137</u>	<u>0.81</u>	<u>1859</u>	<u>15</u>	<u>1858</u>	<u>14</u>	<u>1857</u>	<u>23</u>	<u>100</u>
<u>Z20</u>	0.0436	0.47	27795.7	4.3735	<u>3.1</u>	0.3037	<u>2.4</u>	0.79	0.1044	1.86	1705	<u>34</u>	1707	<u>25</u>	1710	<u>36</u>	<u>100</u>
<u>Z21</u>	0.0089	0.38	182020.1	4.0894	<u>3.5</u>	0.2627	<u>3.4</u>	0.97	0.1129	0.91	1846	<u>16</u>	1652	28	1504	<u>45</u>	<u>91</u>
<u>Z22</u>	0.0023	<u>0.93</u>	610841.7	12.7352	<u>1.3</u>	0.4956	<u>1.0</u>	<u>0.76</u>	0.1864	0.79	<u>2710</u>	<u>13</u>	2660	<u>12</u>	<u>2595</u>	21	<u>98</u>
<u>Z23</u>	0.0203	0.05	68827.4	0.7936	<u>1.3</u>	0.0973	0.9	0.65	0.0592	0.97	<u>574</u>	21	<u>593</u>	<u>6</u>	<u>598</u>	<u>5</u>	<u>101</u>
<u>Z24</u>	0.0133	0.37	137433.9	0.3562	<u>14.1</u>	0.0500	13.7	0.97	0.0517	3.43	271	<u>79</u>	309	<u>38</u>	315	<u>42</u>	102
<u>Z25</u>	0.0643	0.36	27471.4	0.8695	5.3	0.1070	2.3	0.69	0.0590	4.76	566	104	<u>635</u>	25	<u>655</u>	14	<u>103</u>

Tabela A.3 – Amostra SM-MB-07 - Quartzito puro do Grupo São Fidélis (Domínio Costeiro) - LG-IG-UnB.

						Razões i	isotópica	s					Idades	(Ma)			0 /
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z26</u>	0.0447	<u>0.59</u>	<u>37087.6</u>	<u>2.3752</u>	<u>2.8</u>	0.2194	<u>2.1</u>	<u>0.75</u>	0.0785	<u>1.80</u>	<u>1160</u>	<u>36</u>	<u>1235</u>	<u>20</u>	<u>1279</u>	<u>24</u>	<u>104</u>
<u>Z27</u>	0.0134	<u>0.07</u>	138027.0	1.2272	<u>2.0</u>	0.1262	<u>1.7</u>	<u>0.83</u>	0.0705	<u>1.12</u>	<u>944</u>	<u>23</u>	<u>813</u>	<u>11</u>	<u>766</u>	<u>12</u>	<u>94</u>
<u>Z28</u>	0.0164	<u>0.43</u>	105722.6	1.3424	<u>2.9</u>	<u>0.1425</u>	<u>2.6</u>	0.88	<u>0.0683</u>	<u>1.37</u>	<u>878</u>	<u>28</u>	<u>864</u>	<u>17</u>	<u>859</u>	<u>21</u>	<u>99</u>
<u>Z29</u>	0.0054	0.22	<u>316009.7</u>	<u>2.0142</u>	<u>5.9</u>	<u>0.1710</u>	<u>5.5</u>	<u>0.98</u>	<u>0.0854</u>	2.01	<u>1325</u>	<u>39</u>	<u>1120</u>	<u>40</u>	<u>1018</u>	<u>52</u>	<u>91</u>
<u>Z30n</u>	<u>0.0135</u>	<u>0.40</u>	<u>130308.7</u>	1.2567	<u>3.9</u>	<u>0.1194</u>	<u>3.4</u>	<u>0.89</u>	<u>0.0763</u>	<u>1.74</u>	<u>1104</u>	<u>35</u>	<u>826</u>	<u>22</u>	<u>727</u>	<u>24</u>	<u>88</u>
<u>Z30b</u>	0.0243	<u>0.28</u>	172003.4	<u>0.6110</u>	<u>5.2</u>	<u>0.0675</u>	<u>4.9</u>	<u>0.94</u>	0.0657	<u>1.79</u>	<u>796</u>	<u>37</u>	<u>484</u>	<u>20</u>	<u>421</u>	<u>20</u>	<u>87</u>
<u>Z28</u>	<u>0.0164</u>	<u>0.43</u>	105722.6	<u>1.3424</u>	<u>2.9</u>	<u>0.1425</u>	<u>2.6</u>	<u>0.88</u>	0.0683	<u>1.37</u>	<u>878</u>	<u>28</u>	<u>864</u>	<u>17</u>	<u>859</u>	<u>21</u>	<u>99</u>
<u>Z29</u>	0.0054	0.22	316009.7	2.0142	<u>5.9</u>	0.1710	<u>5.5</u>	0.98	0.0854	2.01	1325	39	1120	<u>40</u>	1018	<u>52</u>	<u>91</u>
<u>Z31</u>	0.0076	0.48	211026.6	3.2669	<u>1.7</u>	0.2693	<u>1.4</u>	0.84	0.0880	0.89	1382	17	1473	<u>13</u>	1537	<u>19</u>	<u>104</u>
<u>Z32</u>	0.0059	0.25	331954.7	1.9721	<u>1.1</u>	0.1947	<u>0.9</u>	0.78	0.0735	0.70	1027	14	1106	<u>8</u>	1147	<u>10</u>	<u>104</u>
<u>Z33</u>	0.0132	<u>0.44</u>	<u>114757.2</u>	<u>6.3161</u>	<u>2.2</u>	<u>0.3658</u>	<u>2.1</u>	<u>0.92</u>	0.1252	<u>0.87</u>	<u>2032</u>	<u>15</u>	<u>2021</u>	<u>20</u>	<u>2010</u>	<u>36</u>	<u>99</u>
<u>Z34</u>	0.0558	0.40	<u>38042.5</u>	<u>1.8594</u>	<u>3.2</u>	<u>0.1768</u>	2.5	<u>0.76</u>	<u>0.0763</u>	<u>2.06</u>	1103	<u>41</u>	1067	<u>21</u>	1049	<u>24</u>	<u>98</u>
<u>Z35</u>	0.0026	0.47	<u>613228.3</u>	3.0346	<u>4.9</u>	0.2519	4.6	0.94	0.0874	1.72	1368	<u>33</u>	1416	<u>38</u>	1448	<u>60</u>	<u>102</u>
<u>Z36</u>	0.0430	0.87	<u>39710.0</u>	1.6116	<u>5.3</u>	0.1674	1.8	0.58	0.0698	5.00	<u>923</u>	103	<u>975</u>	<u>33</u>	<u>998</u>	17	<u>102</u>
<u>Z37</u>	0.0808	0.62	<u>20328.0</u>	<u>2.7958</u>	<u>3.7</u>	0.2335	2.0	0.54	0.0868	3.09	1357	<u>60</u>	1354	<u>28</u>	1353	25	<u>100</u>
<u>Z38</u>	0.0210	<u>0.38</u>	247595.6	<u>1.4098</u>	<u>2.2</u>	<u>0.1310</u>	<u>1.3</u>	<u>0.61</u>	0.0780	1.69	<u>1148</u>	<u>34</u>	<u>893</u>	<u>13</u>	<u>794</u>	10	<u>89</u>
<u>Z39</u>	0.0105	<u>0.26</u>	<u>161565.6</u>	<u>2.5332</u>	<u>2.6</u>	0.1734	2.1	0.80	<u>0.1060</u>	1.53	<u>1731</u>	<u>28</u>	1282	<u>19</u>	<u>1031</u>	<u>20</u>	<u>80</u>
<u>Z40</u>	0.0143	0.21	117896.7	<u>3.7051</u>	4.3	<u>0.1876</u>	<u>3.1</u>	0.89	0.1432	2.95	2266	<u>51</u>	1572	<u>34</u>	1109	<u>31</u>	<u>70</u>
<u>Z41</u>	0.0093	<u>0.81</u>	<u>184713.2</u>	1.6261	2.1	<u>0.1639</u>	1.6	0.75	0.0720	1.38	<u>985</u>	28	<u>980</u>	<u>13</u>	<u>978</u>	<u>15</u>	<u>100</u>
<u>Z42</u>	0.0151	<u>0.51</u>	164600.7	2.1729	<u>1.8</u>	0.2014	<u>1.6</u>	<u>0.88</u>	0.0783	<u>0.82</u>	<u>1154</u>	<u>16</u>	<u>1172</u>	<u>12</u>	<u>1183</u>	17	<u>101</u>
<u>Z43</u>	0.0119	1.02	113052.4	15.3753	<u>3.5</u>	0.5429	<u>2.9</u>	<u>0.83</u>	0.2054	<u>1.96</u>	<u>2870</u>	<u>32</u>	<u>2839</u>	<u>34</u>	<u>2796</u>	<u>67</u>	<u>98</u>
<u>Z44</u>	0.0060	<u>0.34</u>	285417.0	1.6915	4.6	0.1642	<u>4.4</u>	<u>0.95</u>	0.0747	<u>1.48</u>	1060	<u>30</u>	1005	<u>29</u>	<u>980</u>	<u>40</u>	<u>98</u>
<u>Z45</u>	0.0040	0.45	740277.2	6.0072	2.6	0.3538	2.5	0.96	0.1231	0.70	2002	12	1977	22	<u>1953</u>	<u>41</u>	<u>99</u>
<u>Z46</u>	0.3587	0.06	5027.4	0.7147	<u>2.0</u>	0.0689	<u>1.7</u>	0.85	0.0752	1.02	1075	20	<u>548</u>	8	429	<u>7</u>	<u>78</u>
<u>Z57</u>	0.4352	0.15	4088.8	0.7560	2.2	0.0932	<u>1.2</u>	0.55	0.0589	1.83	<u>562</u>	40	<u>572</u>	<u>10</u>	<u>574</u>	<u>7</u>	<u>100</u>
<u>Z58n</u>	0.0041	0.05	668341.0	0.5350	25.3	0.0700	24.6	0.97	0.0555	<u>5.98</u>	<u>431</u>	133	435	<u>90</u>	<u>436</u>	104	<u>100</u>
<u>Z58b</u>	0.0715	0.04	24839.7	0.7551	1.7	0.0961	1.4	0.77	0.0570	1.11	<u>491</u>	24	<u>571</u>	8	591	8	<u>104</u>

						Razões i	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	ы	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%0
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z59n</u>	0.0022	<u>0.03</u>	<u>806950.6</u>	0.7277	<u>1.8</u>	0.0932	<u>0.9</u>	<u>0.67</u>	0.0566	<u>1.55</u>	<u>477</u>	<u>34</u>	<u>555</u>	8	<u>574</u>	<u>5</u>	<u>103</u>
<u>Z59b</u>	0.0028	<u>0.03</u>	<u>639249.6</u>	0.6906	<u>1.2</u>	0.0864	<u>0.9</u>	<u>0.79</u>	0.0580	<u>0.69</u>	<u>529</u>	<u>15</u>	<u>533</u>	<u>5</u>	<u>534</u>	<u>5</u>	<u>100</u>
<u>Z49b</u>	0.0028	<u>0.03</u>	454211.7	0.6927	<u>1.1</u>	0.0868	<u>0.9</u>	<u>0.79</u>	<u>0.0579</u>	<u>0.65</u>	<u>525</u>	<u>14</u>	<u>534</u>	<u>5</u>	<u>537</u>	<u>5</u>	<u>100</u>
<u>Z60</u>	0.0469	<u>0.43</u>	<u>32993.0</u>	<u>6.5770</u>	<u>3.6</u>	0.3320	<u>2.4</u>	<u>0.67</u>	0.1437	<u>2.66</u>	<u>2272</u>	<u>46</u>	<u>2056</u>	<u>32</u>	<u>1848</u>	<u>39</u>	<u>90</u>
<u>Z47b</u>	0.0097	<u>0.04</u>	<u>184651.0</u>	0.7174	<u>3.3</u>	<u>0.0826</u>	<u>1.9</u>	<u>0.79</u>	<u>0.0630</u>	<u>2.71</u>	<u>707</u>	<u>58</u>	<u>549</u>	<u>14</u>	<u>512</u>	<u>9</u>	<u>93</u>
<u>Z61</u>	0.0029	<u>0.15</u>	<u>517366.3</u>	<u>8.8997</u>	<u>1.2</u>	<u>0.3589</u>	<u>0.9</u>	<u>0.78</u>	<u>0.1798</u>	<u>0.69</u>	<u>2651</u>	<u>11</u>	<u>2328</u>	<u>11</u>	<u>1977</u>	<u>16</u>	<u>85</u>
Z62	0.0093	0.2823	161747.2	6.65486	1.4	0.3756	1.2	0.84	0.1285	0.74	2078	13	2067	12	2056	21	99
Z63	0.0829	0.2972	19948.4	2.81288	3.4	0.2216	2.5	0.72	0.0921	2.38	1469	45	1359	26	1290	29	95
Z64	0.0055	0.1549	317010.4	1.99672	5.5	0.1464	5.3	0.96	0.0989	1.54	1604	29	1114	37	881	44	79
Z65	0.0069	0.1411	236292.4	3.04818	0.9	0.2454	0.7	0.72	0.0901	0.60	1427	12	1420	7	1415	9	100
Z66	0.0452	0.1199	37143.1	2.19118	2.0	0.1947	1.7	0.87	0.0816	0.96	1236	19	1178	14	1147	18	97
Z67	0.0174	0.1558	96575.7	2.19157	1.0	0.1979	0.7	0.65	0.0803	0.75	1205	15	1178	7	1164	8	99
Z68	0.0070	0.4224	219427.4	5.71932	0.9	0.3481	0.7	0.77	0.1191	0.52	1944	9	1934	7	1926	12	100
Z69	0.0069	0.0389	257277.9	0.77201	1.0	0.0954	0.7	0.68	0.0587	0.66	557	14	581	4	587	4	101
Z70	0.0277	0.3246	61395.0	1.89494	4.1	0.1748	3.8	0.92	0.0786	1.59	1163	32	1079	27	1038	36	96
Z71	0.0395	0.1363	43191.6	1.70299	1.6	0.1668	1.1	0.67	0.0741	1.13	1043	23	1010	10	994	10	98
Z72	0.0926	0.2544	18026.6	2.44011	3.2	0.2065	2.3	0.71	0.0857	2.28	1331	44	1255	23	1210	26	96
Z73	0.0058	0.3312	290284.4	2.25467	1.1	0.2027	0.7	0.64	0.0807	0.80	1214	16	1198	8	1190	8	99
Z74	0.0094	0.4686	168060.0	4.46003	1.2	0.3018	0.8	0.66	0.1072	0.83	1752	15	1724	10	1700	12	99
Z75	0.0122	0.3435	140004.0	1.71385	1.1	0.1682	0.8	0.63	0.0739	0.83	1039	17	1014	7	1002	7	99
Z76	0.0140	0.2961	113100.3	4.40666	1.6	0.2910	1.3	0.79	0.1098	0.96	1796	17	1714	13	1647	18	96
Z77	0.0295	0.3908	57466.9	1.83195	1.5	0.1799	1.0	0.66	0.0739	1.07	1038	22	1057	10	1066	10	101
Z78	0.0110	0.2273	142447.1	6.32062	1.8	0.3139	1.7	0.90	0.1460	0.79	2300	14	2021	16	1760	26	87
Z79	0.0140	0.2400	116552.1	4.34744	2.8	0.2495	2.6	0.94	0.1264	0.91	2048	16	1702	23	1436	34	84
Z80	0.0382	0.4548	39620.0	6.62407	2.0	0.3664	1.5	0.74	0.1311	1.30	2113	23	2063	17	2013	25	98
Z81	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
Z82	0.0306	0.6310	57800.8	0.90136	1.6	0.1043	1.1	0.72	0.0626	1.07	696	23	652	8	640	7	98

						Razões i	isotópicas	5					Idades	(Ma)			0/
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%0
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z83	0.0395	0.1470	41125.5	4.03415	2.0	0.2516	1.5	0.71	0.1163	1.42	1900	25	1641	17	1447	19	88
Z84	0.0199	0.2682	67414.3	########	1.8	0.5423	1.3	0.73	0.2237	1.19	3008	19	2919	17	2793	30	96
Z85	0.0265	0.0246	65850.0	1.44617	1.4	0.1263	0.9	0.64	0.0831	1.01	1271	20	908	8	767	7	84
Z86	0.0152	0.3993	103178.8	4.70704	1.1	0.3068	0.9	0.75	0.1113	0.70	1820	13	1768	9	1725	13	98
Z87	0.0041	0.0194	435453.7	0.67693	0.8	0.0848	0.6	0.72	0.0579	0.54	526	12	525	3	525	3	100
Z88	0.0120	0.0753	148745.9	0.75615	1.0	0.0922	0.7	0.63	0.0595	0.72	585	16	572	4	568	4	99
Z89	0.0149	0.4240	100102.7	7.20691	1.2	0.3840	0.8	0.65	0.1361	0.88	2179	15	2137	11	2095	15	98
Z90	0.0072	0.2040	217490.8	5.12177	1.1	0.3150	0.9	0.74	0.1179	0.73	1925	13	1840	10	1765	13	96
Z91	0.0202	0.0337	85755.7	1.45338	2.7	0.1408	2.2	0.83	0.0748	1.48	1064	30	911	16	849	18	93
Z92	0.0052	0.1995	265446.4	########	1.0	0.5129	0.7	0.70	0.1850	0.65	2698	11	2686	9	2669	15	99
Z93	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
Z94	0.1340	0.1620	12811.1	1.61738	7.3	0.1584	5.0	0.68	0.0741	5.31	1043	107	977	46	948	44	97
Z95	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
Z96	0.0239	0.5048	66495.8	4.13978	1.4	0.2896	1.0	0.71	0.1037	0.95	1691	17	1662	11	1640	15	99
Z97	0.0270	0.4512	63879.2	1.46922	1.4	0.1495	1.0	0.70	0.0713	0.96	965	20	918	8	898	8	98
z98	0.0393	0.1058	39085.5	6.17817	2.1	0.3413	1.6	0.75	0.1313	1.39	2115	24	2001	19	1893	26	95
z99	0.0350	0.3575	42798.7	7.12264	2.4	0.3815	1.7	0.71	0.1354	1.69	2169	30	2127	22	2083	31	98
z100	0.0541	0.3807	30318.2	2.82622	2.3	0.2363	1.6	0.68	0.0868	1.69	1355	33	1363	17	1367	20	100
z101	0.0069	0.1977	236602.9	3.17666	1.2	0.2442	0.9	0.68	0.0944	0.88	1515	17	1452	10	1408	11	97
z102	0.0015	0.0949	1054600.8	4.17793	1.3	0.2659	1.1	0.79	0.1140	0.80	1864	15	1670	11	1520	15	91
z103	0.0163	0.2940	96780.3	4.46454	1.4	0.2969	1.0	0.73	0.1090	0.93	1784	17	1724	11	1676	15	97
z104	0.0113	0.2036	149072.3	1.98954	1.2	0.1852	0.9	0.74	0.0779	0.81	1145	16	1112	8	1095	9	98
z105	0.0787	0.2257	21495.1	1.98886	4.8	0.1824	3.7	0.76	0.0791	3.12	1174	62	1112	32	1080	36	97
z106	0.0156	1.1398	91127.4	#######	1.4	0.4589	1.0	0.75	0.1985	0.88	2813	14	2647	13	2435	21	92
z107	0.0045	0.0439	398994.0	0.73816	1.6	0.0914	1.2	0.73	0.0586	1.05	551	23	561	7	564	6	100
z108	0.0175	0.1464	96178.9	2.25122	2.1	0.1928	1.8	0.84	0.0847	1.11	1309	22	1197	15	1136	18	95
z109	0.0198	0.0732	89396.8	0.91114	1.9	0.1000	1.2	0.60	0.0661	1.47	810	31	658	9	614	7	93

						Razões	isotópica	5					Idades	(Ma)			9/
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	70
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z110	0.0121	0.4515	130100.9	5.11843	1.0	0.3076	0.7	0.65	0.1207	0.68	1966	12	1839	8	1729	10	94
z111	0.0073	0.1709	213671.8	5.52098	1.1	0.3187	0.8	0.76	0.1257	0.67	2038	12	1904	9	1783	13	94
z112	0.0102	0.3360	165846.7	1.87317	1.5	0.1787	1.1	0.72	0.0760	1.00	1096	20	1072	10	1060	11	99
z113	0.0061	0.1573	247543.2	7.05613	1.1	0.3708	0.8	0.68	0.1380	0.76	2202	13	2119	10	2033	13	96
z114	0.0305	0.2580	55147.1	2.09814	1.7	0.1945	1.1	0.65	0.0783	1.29	1153	26	1148	12	1145	12	100

Tabela A.4 – Amostra SM-MB-09- Quartzito felspático do Grupo São Fidélis (Domínio Costeiro) - LG-IG-UnB.

						Razões	isotópicas	5					Idades ((Ma)			0/
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Conc
1				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>z01</u>	0.0415	<u>0.63</u>	<u>41362.6</u>	<u>1.5491</u>	<u>2.47</u>	<u>0.1562</u>	<u>1.85</u>	<u>0.74</u>	<u>0.0719</u>	<u>1.64</u>	<u>984</u>	<u>33</u>	<u>950</u>	<u>15</u>	<u>935</u>	<u>16</u>	<u>98</u>
<u>z02</u>	0.0707	0.27	<u>23254.0</u>	<u>3.0020</u>	<u>2.96</u>	<u>0.2317</u>	<u>2.20</u>	<u>0.74</u>	<u>0.0940</u>	<u>1.98</u>	<u>1508</u>	<u>37</u>	<u>1408</u>	<u>23</u>	<u>1343</u>	<u>27</u>	<u>95</u>
<u>z03</u>	0.0043	1.22	333469.0	<u>9.0534</u>	<u>1.05</u>	<u>0.4333</u>	<u>0.88</u>	0.82	<u>0.1515</u>	<u>0.58</u>	2363	<u>10</u>	<u>2343</u>	<u>10</u>	2321	<u>17</u>	<u>99</u>
<u>z04n</u>	0.1154	<u>0.31</u>	12945.0	<u>6.4766</u>	10.74	<u>0.3862</u>	<u>5.42</u>	<u>0.76</u>	<u>0.1216</u>	<u>9.27</u>	<u>1980</u>	<u>165</u>	<u>2043</u>	<u>94</u>	<u>2105</u>	<u>97</u>	<u>103</u>
<u>z04b</u>	0.0060	0.02	<u>294924.9</u>	<u>0.8078</u>	<u>0.91</u>	<u>0.0984</u>	<u>0.77</u>	<u>0.82</u>	<u>0.0596</u>	<u>0.49</u>	<u>588</u>	<u>11</u>	<u>601</u>	<u>4</u>	<u>605</u>	<u>4</u>	<u>101</u>
<u>z05n</u>	0.0150	<u>0.72</u>	102857.5	<u>5.5753</u>	<u>1.28</u>	<u>0.3354</u>	<u>1.07</u>	<u>0.83</u>	0.1205	<u>0.70</u>	<u>1964</u>	<u>13</u>	<u>1912</u>	<u>11</u>	<u>1865</u>	<u>17</u>	<u>98</u>
<u>z05b</u>	<u>0.0513</u>	<u>0.08</u>	34592.7	<u>0.8555</u>	<u>1.06</u>	0.0987	<u>0.84</u>	<u>0.77</u>	0.0629	0.65	<u>704</u>	<u>14</u>	<u>628</u>	<u>5</u>	<u>607</u>	<u>5</u>	<u>97</u>
<u>z06</u>	0.0122	<u>0.42</u>	<u>136923.9</u>	<u>2.1659</u>	<u>1.43</u>	0.2049	<u>0.95</u>	<u>0.82</u>	<u>0.0767</u>	1.07	<u>1113</u>	<u>21</u>	<u>1170</u>	<u>10</u>	<u>1201</u>	<u>10</u>	<u>103</u>
<u>z07</u>	0.0029	0.25	<u>583312.3</u>	<u>1.7597</u>	<u>0.91</u>	<u>0.1754</u>	<u>0.80</u>	<u>0.86</u>	<u>0.0728</u>	<u>0.43</u>	<u>1007</u>	<u>9</u>	<u>1031</u>	<u>6</u>	<u>1042</u>	<u>8</u>	<u>101</u>
<u>z08</u>	0.0108	<u>0.25</u>	119280.7	<u>16.5985</u>	<u>1.26</u>	<u>0.5998</u>	<u>0.96</u>	<u>0.74</u>	0.2007	0.82	<u>2832</u>	<u>13</u>	<u>2912</u>	<u>12</u>	<u>3029</u>	<u>23</u>	<u>104</u>
<u>z09</u>	0.0116	0.49	132631.5	5.2916	1.28	0.3398	1.10	0.85	0.1129	<u>0.66</u>	1847	<u>12</u>	1868	<u>11</u>	1886	<u>18</u>	<u>101</u>
<u>z10</u>	0.0420	0.57	40204.4	1.8556	4.83	0.1875	2.15	0.70	0.0718	4.32	<u>979</u>	<u>88</u>	1065	<u>32</u>	1108	<u>22</u>	<u>104</u>
<u>z11n</u>	0.5401	0.23	3226.9	1.0898	120.44	0.1302	28.67	0.24	0.0607	<u>116.9</u> <u>4</u>	<u>629</u>	1492	748	495	789	211	<u>105</u>

						Razões	isotópicas	5					Idades (Ma)			
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>z12b</u>	0.0255	0.03	<u>69986.0</u>	0.7661	1.69	0.0881	1.36	0.80	0.0631	1.00	711	21	<u>577</u>	<u>7</u>	<u>544</u>	7	<u>94</u>
<u>z12</u>	0.0747	<u>0.63</u>	22602.8	<u>1.8759</u>	<u>3.88</u>	<u>0.1871</u>	<u>2.81</u>	<u>0.72</u>	0.0727	<u>2.67</u>	1007	<u>54</u>	<u>1073</u>	<u>26</u>	<u>1105</u>	<u>29</u>	<u>103</u>
<u>z13</u>	<u>0.0081</u>	<u>0.54</u>	<u>189158.4</u>	<u>5.6544</u>	<u>1.73</u>	<u>0.3489</u>	<u>1.24</u>	<u>0.83</u>	<u>0.1175</u>	<u>1.21</u>	<u>1919</u>	<u>22</u>	<u>1924</u>	<u>15</u>	<u>1929</u>	<u>21</u>	<u>100</u>
<u>z13b</u>	0.0067	0.03	264081.0	0.7781	2.14	0.0976	<u>1.71</u>	<u>0.79</u>	<u>0.0578</u>	<u>1.29</u>	<u>522</u>	<u>28</u>	<u>584</u>	<u>10</u>	<u>600</u>	<u>10</u>	<u>103</u>
<u>z14</u>	<u>0.0169</u>	0.57	<u>93866.6</u>	<u>3.8091</u>	<u>2.01</u>	<u>0.2890</u>	<u>1.44</u>	<u>0.71</u>	<u>0.0956</u>	<u>1.40</u>	<u>1540</u>	<u>26</u>	<u>1595</u>	<u>16</u>	<u>1637</u>	<u>21</u>	<u>103</u>
<u>z16</u>	0.0106	<u>1.19</u>	<u>144109.0</u>	<u>5.0764</u>	<u>2.47</u>	<u>0.3445</u>	<u>1.63</u>	<u>0.83</u>	<u>0.1069</u>	<u>1.86</u>	<u>1747</u>	<u>34</u>	<u>1832</u>	<u>21</u>	<u>1908</u>	<u>27</u>	<u>104</u>
<u>z17</u>	<u>0.0194</u>	<u>0.47</u>	<u>83855.5</u>	3.2312	<u>1.69</u>	<u>0.2467</u>	<u>1.24</u>	<u>0.72</u>	<u>0.0950</u>	<u>1.15</u>	<u>1528</u>	<u>22</u>	<u>1465</u>	<u>13</u>	<u>1421</u>	<u>16</u>	<u>97</u>
<u>z18</u>	<u>0.0104</u>	<u>0.56</u>	<u>155856.9</u>	<u>3.1303</u>	<u>1.05</u>	<u>0.2619</u>	<u>0.80</u>	<u>0.73</u>	<u>0.0867</u>	<u>0.68</u>	<u>1354</u>	<u>13</u>	<u>1440</u>	<u>8</u>	<u>1499</u>	<u>11</u>	<u>104</u>
<u>z19n</u>	<u>0.0274</u>	<u>0.48</u>	<u>59364.8</u>	<u>2.8381</u>	<u>1.42</u>	<u>0.2491</u>	<u>1.07</u>	<u>0.74</u>	<u>0.0826</u>	<u>0.94</u>	<u>1261</u>	<u>18</u>	<u>1366</u>	<u>11</u>	<u>1434</u>	<u>14</u>	<u>105</u>
<u>z19b</u>	0.0058	0.10	284143.4	2.4516	<u>1.20</u>	0.2190	<u>0.88</u>	<u>0.83</u>	<u>0.0812</u>	<u>0.82</u>	1226	<u>16</u>	1258	<u>9</u>	<u>1276</u>	<u>10</u>	<u>101</u>
<u>z20n</u>	<u>0.1492</u>	<u>1.74</u>	<u>11300.8</u>	2.0755	<u>8.15</u>	<u>0.1896</u>	<u>5.67</u>	<u>0.70</u>	<u>0.0794</u>	<u>5.85</u>	<u>1182</u>	<u>116</u>	<u>1141</u>	<u>56</u>	<u>1119</u>	<u>58</u>	<u>98</u>
<u>z20b</u>	0.0071	0.01	<u>248583.0</u>	0.9015	<u>0.97</u>	0.1107	<u>0.79</u>	<u>0.79</u>	<u>0.0590</u>	0.57	<u>569</u>	<u>12</u>	<u>653</u>	<u>5</u>	<u>677</u>	<u>5</u>	<u>104</u>
<u>z21</u>	0.0414	0.27	41280.7	<u>1.7410</u>	<u>4.32</u>	<u>0.1636</u>	<u>2.96</u>	<u>0.68</u>	<u>0.0772</u>	<u>3.14</u>	<u>1126</u>	<u>63</u>	<u>1024</u>	<u>28</u>	<u>977</u>	<u>27</u>	<u>95</u>
<u>z22</u>	<u>0.0035</u>	<u>0.13</u>	<u>485784.2</u>	<u>1.9323</u>	<u>3.34</u>	<u>0.1824</u>	<u>2.63</u>	<u>0.92</u>	<u>0.0768</u>	<u>2.07</u>	<u>1117</u>	<u>41</u>	<u>1092</u>	<u>22</u>	<u>1080</u>	<u>26</u>	<u>99</u>
<u>z23</u>	<u>0.4563</u>	2.10	<u>3759.4</u>	<u>2.3798</u>	<u>22.78</u>	<u>0.1584</u>	<u>15.95</u>	<u>0.70</u>	<u>0.1089</u>	<u>16.19</u>	<u>1782</u>	<u>269</u>	<u>1237</u>	<u>151</u>	<u>948</u>	<u>140</u>	<u>77</u>
<u>z24</u>	<u>0.0146</u>	0.22	<u>115275.8</u>	<u>2.0950</u>	<u>1.36</u>	<u>0.1889</u>	<u>1.11</u>	<u>0.80</u>	<u>0.0804</u>	<u>0.78</u>	1208	<u>15</u>	<u>1147</u>	<u>9</u>	<u>1115</u>	<u>11</u>	<u>97</u>
<u>z25</u>	<u>0.0043</u>	0.52	<u>361697.4</u>	4.5714	<u>1.32</u>	<u>0.3075</u>	<u>1.11</u>	<u>0.83</u>	<u>0.1078</u>	<u>0.72</u>	<u>1763</u>	<u>13</u>	<u>1744</u>	<u>11</u>	<u>1729</u>	<u>17</u>	<u>99</u>
<u>z27</u>	0.0132	0.57	<u>114414.3</u>	<u>6.8572</u>	<u>1.72</u>	0.3661	<u>1.43</u>	0.82	<u>0.1358</u>	<u>0.96</u>	<u>2175</u>	<u>17</u>	<u>2093</u>	<u>15</u>	<u>2011</u>	<u>25</u>	<u>96</u>
<u>z28</u>	<u>0.0181</u>	<u>0.48</u>	82269.7	<u>7.3148</u>	<u>1.39</u>	<u>0.3883</u>	<u>1.07</u>	<u>0.75</u>	<u>0.1366</u>	<u>0.89</u>	<u>2185</u>	<u>15</u>	<u>2151</u>	<u>12</u>	<u>2115</u>	<u>19</u>	<u>98</u>
<u>z29</u>	0.0047	<u>1.00</u>	<u>328834.8</u>	<u>4.6818</u>	<u>1.47</u>	<u>0.3184</u>	<u>1.12</u>	<u>0.75</u>	<u>0.1066</u>	<u>0.95</u>	<u>1743</u>	<u>17</u>	<u>1764</u>	<u>12</u>	<u>1782</u>	<u>17</u>	<u>101</u>
<u>z30</u>	<u>0.0166</u>	0.23	102796.6	<u>1.6938</u>	<u>1.59</u>	<u>0.1708</u>	<u>0.90</u>	<u>0.75</u>	<u>0.0719</u>	<u>1.31</u>	<u>984</u>	<u>27</u>	<u>1006</u>	<u>10</u>	<u>1016</u>	<u>8</u>	<u>101</u>
<u>z31n</u>	<u>0.0128</u>	<u>0.94</u>	<u>121703.7</u>	<u>5.3920</u>	<u>2.15</u>	<u>0.3244</u>	<u>1.84</u>	<u>0.86</u>	<u>0.1205</u>	<u>1.10</u>	<u>1964</u>	<u>20</u>	<u>1884</u>	<u>18</u>	<u>1811</u>	<u>29</u>	<u>96</u>
<u>z31b</u>	<u>0.0137</u>	<u>0.94</u>	<u>112303.9</u>	<u>5.5501</u>	<u>1.96</u>	<u>0.3440</u>	<u>1.62</u>	<u>0.83</u>	<u>0.1170</u>	<u>1.09</u>	<u>1911</u>	<u>20</u>	<u>1908</u>	<u>17</u>	<u>1906</u>	<u>27</u>	<u>100</u>
<u>z32n</u>	<u>0.0189</u>	<u>0.78</u>	<u>78538.3</u>	7.0607	<u>2.49</u>	<u>0.3940</u>	<u>1.74</u>	<u>0.86</u>	<u>0.1300</u>	<u>1.78</u>	<u>2098</u>	<u>31</u>	<u>2119</u>	<u>22</u>	<u>2141</u>	<u>32</u>	<u>101</u>
<u>z32b</u>	0.1418	0.00	12428.1	0.9422	1.50	0.1109	1.22	0.81	0.0616	0.86	660	<u>18</u>	<u>674</u>	7	<u>678</u>	8	<u>101</u>

						Razões	isotópicas	5					Idades (Ma)			
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Cama
SF ST				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>z33</u>	0.1723	0.52	<u>9737.5</u>	1.9398	7.60	0.1977	<u>5.38</u>	0.71	0.0712	<u>5.37</u>	962	110	1095	<u>51</u>	1163	<u>57</u>	<u>106</u>
<u>z34</u>	0.0111	<u>2.43</u>	109602.6	20.4938	<u>1.57</u>	0.6683	1.27	0.80	<u>0.2224</u>	<u>0.92</u>	<u>2998</u>	<u>15</u>	<u>3115</u>	<u>15</u>	<u>3299</u>	<u>33</u>	<u>106</u>
<u>z34b</u>	0.0066	<u>0.02</u>	<u>267855.1</u>	0.8201	<u>1.22</u>	0.1003	1.02	<u>0.83</u>	<u>0.0593</u>	<u>0.67</u>	<u>579</u>	<u>14</u>	<u>608</u>	<u>6</u>	<u>616</u>	<u>6</u>	<u>101</u>
<u>z35n</u>	0.0165	<u>1.72</u>	<u>93233.2</u>	<u>5.6734</u>	<u>1.36</u>	0.3451	<u>1.11</u>	<u>0.80</u>	0.1192	<u>0.80</u>	<u>1945</u>	<u>14</u>	<u>1927</u>	<u>12</u>	<u>1911</u>	<u>18</u>	<u>99</u>
<u>z35b</u>	0.0052	<u>0.01</u>	340548.6	0.8642	<u>0.97</u>	<u>0.1058</u>	<u>0.81</u>	<u>0.82</u>	0.0592	<u>0.53</u>	<u>576</u>	<u>12</u>	<u>632</u>	<u>5</u>	<u>648</u>	<u>5</u>	<u>103</u>
<u>z36b</u>	0.0047	<u>0.01</u>	<u>373262.2</u>	<u>0.9150</u>	<u>1.18</u>	<u>0.1060</u>	<u>0.79</u>	<u>0.79</u>	<u>0.0626</u>	<u>0.87</u>	<u>695</u>	<u>19</u>	<u>660</u>	<u>6</u>	<u>650</u>	<u>5</u>	<u>98</u>
<u>z37</u>	<u>0.0795</u>	<u>0.32</u>	20573.2	<u>2.6538</u>	<u>3.53</u>	0.2402	<u>2.81</u>	<u>0.79</u>	<u>0.0801</u>	<u>2.14</u>	<u>1200</u>	<u>42</u>	<u>1316</u>	<u>26</u>	<u>1388</u>	<u>35</u>	<u>105</u>
<u>z38</u>	0.0407	<u>0.65</u>	<u>36357.7</u>	7.3817	<u>2.51</u>	<u>0.4011</u>	<u>2.02</u>	<u>0.80</u>	<u>0.1335</u>	<u>1.49</u>	<u>2144</u>	<u>26</u>	<u>2159</u>	<u>22</u>	<u>2174</u>	<u>37</u>	<u>101</u>
<u>z39</u>	0.0071	<u>0.19</u>	<u>235239.5</u>	<u>2.4767</u>	<u>5.16</u>	0.2027	<u>4.68</u>	<u>0.97</u>	<u>0.0886</u>	<u>2.17</u>	<u>1396</u>	<u>42</u>	<u>1265</u>	<u>37</u>	<u>1190</u>	<u>51</u>	<u>94</u>
<u>z40</u>	0.0041	0.20	<u>384905.3</u>	<u>5.1848</u>	<u>1.36</u>	<u>0.3176</u>	<u>1.02</u>	<u>0.73</u>	<u>0.1184</u>	<u>0.91</u>	<u>1932</u>	<u>16</u>	<u>1850</u>	<u>12</u>	<u>1778</u>	<u>16</u>	<u>96</u>
<u>z41</u>	0.0124	<u>0.09</u>	<u>136166.2</u>	<u>1.8172</u>	<u>2.03</u>	<u>0.1812</u>	<u>1.69</u>	<u>0.83</u>	0.0727	<u>1.12</u>	1006	<u>23</u>	<u>1052</u>	<u>13</u>	<u>1074</u>	<u>17</u>	<u>102</u>
<u>z42</u>	0.0568	<u>1.79</u>	<u>29901.3</u>	<u>1.9160</u>	<u>2.66</u>	0.1764	<u>1.93</u>	<u>0.72</u>	0.0788	<u>1.83</u>	<u>1166</u>	<u>36</u>	<u>1087</u>	<u>18</u>	<u>1047</u>	<u>19</u>	<u>96</u>
<u>z43</u>	0.0003	<u>0.01</u>	<u>5057596.2</u>	7.1356	<u>1.66</u>	<u>0.3907</u>	<u>1.01</u>	<u>0.77</u>	0.1325	<u>1.31</u>	<u>2131</u>	<u>23</u>	<u>2128</u>	<u>15</u>	<u>2126</u>	<u>18</u>	<u>100</u>
<u>z43b</u>	0.0084	<u>0.01</u>	<u>208987.1</u>	<u>0.9335</u>	<u>1.35</u>	<u>0.1144</u>	<u>1.13</u>	<u>0.83</u>	0.0592	<u>0.73</u>	<u>573</u>	<u>16</u>	<u>669</u>	<u>7</u>	<u>698</u>	<u>8</u>	<u>104</u>
<u>z44</u>	<u>0.0910</u>	<u>0.41</u>	<u>18137.6</u>	<u>3.0475</u>	<u>4.22</u>	<u>0.2248</u>	<u>3.25</u>	<u>0.77</u>	<u>0.0983</u>	<u>2.70</u>	<u>1593</u>	<u>50</u>	<u>1420</u>	<u>32</u>	<u>1307</u>	<u>38</u>	<u>92</u>
<u>z44b</u>	0.0096	<u>0.10</u>	183406.3	<u>0.8461</u>	<u>1.32</u>	<u>0.1052</u>	<u>1.14</u>	<u>0.85</u>	0.0583	0.67	<u>542</u>	<u>15</u>	<u>623</u>	<u>6</u>	<u>645</u>	<u>7</u>	<u>104</u>
<u>z45</u>	0.0081	<u>0.52</u>	<u>190109.5</u>	<u>5.1795</u>	<u>4.55</u>	<u>0.3443</u>	<u>3.20</u>	<u>0.88</u>	<u>0.1091</u>	<u>3.24</u>	<u>1785</u>	<u>59</u>	<u>1849</u>	<u>39</u>	<u>1907</u>	<u>53</u>	<u>103</u>
<u>z46</u>	<u>0.1235</u>	0.89	<u>15842.0</u>	<u>-0.7649</u>	<u>62.96</u>	<u>0.0884</u>	<u>62.88</u>	<u>1.00</u>	0.0627	<u>3.18</u>	<u>700</u>	<u>68</u>	<u>-1470</u>	<u>-</u> 080	<u>-597</u>	<u>-</u> 393	<u>41</u>
<u>z47</u>	0.0144	0.44	<u>118836.2</u>	1.7042	2.38	0.1607	1.70	0.71	0.0769	1.66	1119	<u>33</u>	1010	15	<u>961</u>	<u>15</u>	<u>95</u>
<u>z48</u>	0.0057	0.67	<u>268270.3</u>	5.5332	<u>2.13</u>	0.3631	1.97	<u>0.93</u>	<u>0.1105</u>	0.80	1808	<u>15</u>	1906	18	1997	<u>34</u>	<u>105</u>
<u>z49</u>	0.0986	2.38	17556.7	1.5909	<u>9.13</u>	0.1438	<u>5.16</u>	0.81	0.0802	7.53	1203	148	<u>967</u>	<u>57</u>	866	<u>42</u>	<u>90</u>
<u>z42b</u>	0.0419	0.11	41659.1	1.0104	<u>5.61</u>	<u>0.1286</u>	<u>2.76</u>	<u>0.49</u>	0.0570	<u>4.88</u>	<u>491</u>	108	709	<u>29</u>	780	<u>20</u>	<u>110</u>
<u>z50</u>	0.0605	<u>0.38</u>	26791.7	3.0482	<u>3.11</u>	0.2555	2.41	0.77	<u>0.0865</u>	<u>1.97</u>	1350	<u>38</u>	1420	24	1467	<u>32</u>	<u>103</u>
<u>z51</u>	0.0248	<u>0.38</u>	<u>65308.2</u>	3.2252	<u>1.90</u>	0.2572	1.48	0.77	<u>0.0909</u>	<u>1.19</u>	1445	<u>23</u>	1463	<u>15</u>	1475	<u>20</u>	<u>101</u>
<u>z52</u>	0.0134	0.27	123612.5	2.4869	<u>1.83</u>	0.2240	1.23	<u>0.83</u>	0.0805	<u>1.35</u>	1210	<u>27</u>	1268	<u>13</u>	1303	<u>14</u>	<u>103</u>

						Razões	isotópicas						Idades ((Ma)			
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>z53</u>	0.0164	0.35	104574.3	1.7851	1.66	0.1642	1.48	0.88	<u>0.0789</u>	0.77	1169	<u>15</u>	1040	<u>11</u>	<u>980</u>	13	<u>94</u>
<u>z54</u>	<u>0.0156</u>	0.21	<u>106808.6</u>	<u>2.3579</u>	<u>1.78</u>	<u>0.2127</u>	<u>1.40</u>	<u>0.78</u>	<u>0.0804</u>	<u>1.10</u>	<u>1207</u>	<u>22</u>	<u>1230</u>	<u>13</u>	<u>1243</u>	<u>16</u>	<u>101</u>
<u>z56</u>	<u>0.0635</u>	<u>0.48</u>	<u>27122.2</u>	<u>1.5399</u>	4.25	<u>0.1528</u>	<u>1.98</u>	<u>0.71</u>	<u>0.0731</u>	<u>3.76</u>	<u>1017</u>	<u>76</u>	<u>946</u>	<u>26</u>	<u>916</u>	<u>17</u>	<u>97</u>
<u>z57</u>	0.0048	0.01	366778.3	<u>0.8430</u>	<u>1.25</u>	0.1028	<u>1.03</u>	0.81	0.0595	0.72	<u>584</u>	<u>16</u>	<u>621</u>	<u>6</u>	<u>631</u>	<u>6</u>	<u>102</u>
<u>z58</u>	<u>0.0440</u>	<u>0.59</u>	<u>37352.6</u>	<u>2.9639</u>	<u>1.94</u>	<u>0.2342</u>	<u>1.33</u>	<u>0.67</u>	<u>0.0918</u>	1.42	1463	<u>27</u>	<u>1398</u>	<u>15</u>	<u>1357</u>	<u>16</u>	<u>97</u>
<u>z59</u>	<u>0.0371</u>	<u>0.52</u>	<u>45144.5</u>	<u>2.1885</u>	<u>2.50</u>	0.2020	<u>1.86</u>	<u>0.74</u>	<u>0.0786</u>	1.67	<u>1161</u>	<u>33</u>	<u>1177</u>	<u>17</u>	<u>1186</u>	<u>20</u>	<u>101</u>
Z60	0.0088	0.16	192072.3	1.9707	1.00	0.18	0.8448	0.82	0.0790	0.54	1173	11	1106	7	1072	8	97
Z61	0.0103	0.55	128190.6	20.3739	0.95	0.57	0.7914	0.81	0.2606	0.53	3250	8	3109	9	2896	18	93
Z62	0.0213	0.02	82786.4	1.1570	1.44	0.11	1.0278	0.70	0.0747	1.01	1059	20	781	8	687	7	88
Z63	0.0076	0.20	219769.2	2.1887	1.30	0.20	0.9111	0.68	0.0806	0.92	1212	18	1177	9	1159	10	98
Z64	0.0051	0.12	334961.0	1.7190	0.75	0.17	0.6164	0.78	0.0732	0.42	1021	9	1016	5	1013	6	100
Z65	0.0422	0.32	38945.8	2.7940	1.43	0.23	1.0510	0.72	0.0878	0.97	1377	19	1354	11	1339	13	99
Z66	0.0211	0.83	76469.25	4.9333	1.06	0.26	0.7187	0.64	0.1371	0.78	2191	14	1808	9	1495	10	83
Z67	0.0193	0.32	79504.36	5.7706	1.05	0.35	0.7062	0.63	0.1212	0.78	1973	14	1942	9	1913	12	98
Z68	0.0218	0.60	76131.19	2.3613	1.23	0.21	0.9431	0.75	0.0806	0.79	1211	15	1231	9	1242	11	101
Z69	0.0850	0.99	17892.77	6.0570	3.46	0.36	2.5111	0.72	0.1223	2.39	1990	42	1984	30	1978	43	100
Z70	0.0192	0.48	82115.11	4.5476	1.04	0.31	0.6994	0.63	0.1081	0.77	1767	14	1740	9	1717	11	99
Z71	0.0145	0.26	111779.49	3.3390	1.05	0.26	0.8553	0.80	0.0944	0.61	1516	11	1490	8	1472	11	99
Z72	0.0069	0.44	215098.69	7.3110	0.83	0.39	0.6648	0.77	0.1356	0.49	2172	9	2150	7	2127	12	99
Z73	0.1467	0.32	10539.65	5.5184	4.39	0.33	3.1303	0.71	0.1204	3.08	1962	55	1903	38	1850	50	97
Z74	0.0352	0.19	45295.31	3.7888	1.64	0.28	1.2037	0.72	0.0977	1.11	1581	21	1590	13	1598	17	100
Z75	0.0667	0.27	24693.87	2.8188	2.23	0.23	1.5825	0.70	0.0890	1.57	1405	30	1361	17	1332	19	98
Z76	0.0265	0.23	61994.44	2.8309	1.23	0.23	0.9755	0.78	0.0874	0.75	1370	15	1364	9	1360	12	100
Z77	0.0193	0.26	85693.59	2.6458	1.04	0.22	0.7364	0.67	0.0859	0.73	1335	14	1313	8	1300	9	99
Z78	0.0129	0.36	121528.65	5.1867	1.22	0.31	1.0216	0.83	0.1195	0.67	1949	12	1850	10	1764	16	95

						Razões	isotópicas	:					Idades ((Ma)			0 (
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Cono
				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z79	0.0062	0.20	258794.39	3.8924	0.92	0.27	0.7960	0.84	0.1041	0.47	1698	9	1612	7	1547	11	96
Z81	0.0850	0.28	19094.99	3.8878	3.77	0.25	2.8251	0.75	0.1112	2.50	1818	45	1611	30	1457	37	90
Z82	0.1020	0.28	16248.83	2.3981	3.75	0.22	2.6566	0.71	0.0795	2.65	1185	52	1242	27	1275	31	103
Z83	0.0728	0.31	23166.83	2.0816	2.01	0.19	1.3970	0.69	0.0796	1.44	1188	28	1143	14	1119	14	98
Z84	0.0399	0.49	43572.53	1.3907	3.37	0.14	3.0328	0.90	0.0740	1.48	1042	30	885	20	824	23	93
Z85	0.0231	0.16	73202.20	2.0091	1.04	0.18	0.8715	0.82	0.0797	0.57	1190	11	1119	7	1082	9	97
Z86	0.0514	0.05	34685.13	0.7598	1.06	0.09	0.9238	0.85	0.0616	0.53	659	11	574	5	553	5	96
Z87	0.0375	0.81	41332.95	5.3868	2.03	0.33	1.4250	0.69	0.1193	1.45	1946	26	1883	17	1826	23	97
Z88	0.0140	0.44	122123.49	1.6944	0.92	0.16	0.6230	0.62	0.0753	0.68	1075	14	1006	6	975	6	97
Z89	0.0340	0.32	50328.12	1.6522	1.16	0.16	0.8199	0.68	0.0741	0.82	1043	17	990	7	967	7	98
Z90	0.0545	0.56	25745.07	12.2848	1.75	0.48	1.2718	0.72	0.1862	1.20	2709	20	2626	16	2521	27	96
Z91N	0.0061	0.72	258452.40	5.1923	0.97	0.31	0.7587	0.76	0.1197	0.60	1951	11	1851	8	1764	12	95
Z91B	1.2075	0.03	1480.47	0.6878	1.49	0.08	1.0385	0.73	0.0595	1.07	585	23	531	6	519	5	98
Z92	0.0489	0.44	32529.71	4.4617	1.11	0.29	0.8592	0.75	0.1128	0.70	1846	13	1724	9	1625	12	94
Z93	0.0835	0.36	18402.35	6.3256	1.78	0.34	1.3506	0.75	0.1341	1.15	2152	20	2022	16	1897	22	94
Z94	0.1901	0.91	8929.91	2.0850	5.48	0.18	3.8958	0.71	0.0852	3.86	1319	75	1144	38	1054	38	92
Z96N	0.0045	0.19	337418.52	6.0847	3.52	0.36	2.3806	0.67	0.1238	2.60	2011	46	1988	31	1966	40	99
Z97	0.0297	0.03	56157.85	2.5594	1.81	0.21	1.2674	0.69	0.0896	1.30	1418	25	1289	13	1213	14	94
Z98	0.0458	0.31	34180.06	5.6226	2.16	0.31	1.5902	0.73	0.1296	1.47	2092	26	1920	19	1764	25	92
Z99	0.0129	0.27	123003.61	4.5873	1.02	0.29	0.8890	0.86	0.1166	0.49	1905	9	1747	8	1618	13	93
Z100	0.0456	0.27	33191.35	6.9040	2.66	0.37	1.9042	0.71	0.1367	1.85	2186	32	2099	24	2011	33	96

						Razões	isotópica	s					Idades	(Ma)			9/
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Dha	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	70 Cana
-F				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z008</u>	0.0085	<u>0.944</u>	<u>183849.3</u>	4.612	<u>1.18</u>	<u>0.311</u>	<u>1.01</u>	0.843	<u>0.107</u>	<u>0.61</u>	<u>1757</u>	<u>11</u>	<u>1751</u>	<u>10</u>	<u>1746</u>	<u>15</u>	<u>100</u>
<u>Z009</u>	0.0382	0.760	<u>34895.2</u>	<u>11.099</u>	<u>2.91</u>	<u>0.447</u>	<u>2.05</u>	<u>0.700</u>	<u>0.180</u>	2.07	2652	<u>34</u>	<u>2531</u>	<u>27</u>	2383	<u>41</u>	<u>94</u>
<u>Z010</u>	0.0246	<u>0.397</u>	<u>68510.9</u>	2.240	<u>1.86</u>	<u>0.193</u>	<u>1.50</u>	0.802	0.084	<u>1.09</u>	<u>1297</u>	<u>21</u>	<u>1194</u>	<u>13</u>	<u>1137</u>	<u>16</u>	<u>95</u>
<u>Z011</u>	0.0235	1.777	<u>66574.2</u>	4.822	<u>2.66</u>	<u>0.317</u>	<u>1.44</u>	<u>0.769</u>	<u>0.110</u>	<u>2.23</u>	<u>1805</u>	<u>41</u>	<u>1789</u>	<u>22</u>	<u>1775</u>	<u>22</u>	<u>99</u>
<u>Z012</u>	0.0140	<u>0.578</u>	<u>105046.1</u>	<u>9.660</u>	<u>1.55</u>	0.406	<u>1.32</u>	<u>0.843</u>	<u>0.173</u>	<u>0.82</u>	<u>2585</u>	<u>14</u>	<u>2403</u>	<u>14</u>	<u>2195</u>	<u>24</u>	<u>91</u>
<u>Z013</u>	0.0041	0.320	269410.5	<u>6.061</u>	<u>1.83</u>	<u>0.370</u>	<u>1.70</u>	<u>0.928</u>	<u>0.119</u>	<u>0.68</u>	<u>1937</u>	<u>12</u>	<u>1985</u>	<u>16</u>	<u>2031</u>	<u>30</u>	<u>102</u>
<u>Z014</u>	<u>0.0062</u>	<u>1.935</u>	<u>216284.3</u>	<u>15.315</u>	<u>1.43</u>	<u>0.553</u>	<u>1.26</u>	0.880	0.201	<u>0.66</u>	<u>2834</u>	<u>11</u>	<u>2835</u>	<u>14</u>	<u>2836</u>	<u>29</u>	<u>100</u>
<u>Z015</u>	<u>0.0055</u>	0.631	<u>274518.5</u>	<u>6.619</u>	<u>1.07</u>	0.374	<u>0.96</u>	<u>0.878</u>	<u>0.128</u>	<u>0.49</u>	<u>2075</u>	<u>9</u>	<u>2062</u>	<u>9</u>	<u>2049</u>	<u>17</u>	<u>99</u>
<u>Z016</u>	<u>0.0119</u>	0.094	<u>118877.8</u>	<u>2.225</u>	<u>1.89</u>	<u>0.191</u>	<u>1.64</u>	<u>0.866</u>	<u>0.084</u>	<u>0.93</u>	<u>1300</u>	<u>18</u>	<u>1189</u>	<u>13</u>	<u>1129</u>	<u>17</u>	<u>95</u>
<u>Z017n</u>	<u>0.0072</u>	0.648	<u>235880.6</u>	1.601	<u>1.09</u>	<u>0.165</u>	<u>0.92</u>	<u>0.835</u>	0.071	<u>0.58</u>	<u>944</u>	<u>12</u>	<u>971</u>	<u>7</u>	<u>983</u>	<u>8</u>	<u>101</u>
<u>Z017b</u>	0.0078	0.203	228727.3	0.781	2.08	0.096	<u>1.66</u>	0.920	0.059	<u>1.25</u>	<u>557</u>	<u>27</u>	<u>586</u>	<u>9</u>	<u>593</u>	<u>9</u>	<u>101</u>
<u>Z018</u>	<u>0.0105</u>	0.163	<u>167184.2</u>	<u>1.319</u>	4.24	0.126	4.06	<u>0.958</u>	<u>0.076</u>	<u>1.22</u>	<u>1095</u>	<u>24</u>	<u>854</u>	<u>24</u>	<u>765</u>	<u>29</u>	<u>90</u>
<u>Z019</u>	0.0036	0.437	2044037.3	7.055	<u>1.76</u>	0.309	<u>1.60</u>	<u>0.906</u>	<u>0.166</u>	<u>0.73</u>	<u>2514</u>	<u>12</u>	<u>2118</u>	<u>16</u>	<u>1736</u>	<u>24</u>	<u>82</u>
<u>Z020</u>	0.0043	0.417	<u>385709.8</u>	<u>2.950</u>	<u>1.74</u>	0.211	<u>1.51</u>	<u>0.863</u>	<u>0.101</u>	<u>0.87</u>	<u>1649</u>	<u>16</u>	<u>1395</u>	<u>13</u>	<u>1235</u>	<u>17</u>	<u>89</u>
<u>Z021</u>	0.0048	0.229	<u>355543.6</u>	1.628	1.07	<u>0.162</u>	<u>0.87</u>	<u>0.872</u>	<u>0.073</u>	<u>0.63</u>	<u>1005</u>	<u>13</u>	<u>981</u>	<u>7</u>	<u>971</u>	<u>8</u>	<u>99</u>
<u>z022</u>	0.0027	0.512	607482.2	<u>3.474</u>	<u>1.26</u>	0.229	<u>1.05</u>	0.827	<u>0.110</u>	<u>0.68</u>	<u>1799</u>	<u>12</u>	<u>1521</u>	<u>10</u>	<u>1330</u>	<u>13</u>	<u>87</u>
<u>z023n</u>	<u>0.0066</u>	<u>0.956</u>	<u>156459.4</u>	<u>6.819</u>	<u>1.04</u>	<u>0.389</u>	<u>0.85</u>	<u>0.796</u>	0.127	<u>0.60</u>	2057	<u>11</u>	<u>2088</u>	<u>9</u>	<u>2120</u>	<u>15</u>	<u>102</u>
<u>z023b</u>	<u>0.0082</u>	<u>0.006</u>	216024.7	<u>0.815</u>	<u>1.23</u>	<u>0.101</u>	<u>1.07</u>	<u>0.859</u>	<u>0.058</u>	<u>0.61</u>	<u>547</u>	<u>13</u>	<u>605</u>	<u>6</u>	<u>621</u>	<u>6</u>	<u>103</u>
<u>z024</u>	<u>0.0338</u>	<u>0.601</u>	<u>50899.3</u>	<u>1.540</u>	<u>3.07</u>	<u>0.155</u>	<u>1.36</u>	<u>0.683</u>	<u>0.072</u>	<u>2.75</u>	<u>983</u>	<u>56</u>	<u>947</u>	<u>19</u>	<u>931</u>	<u>12</u>	<u>98</u>
<u>z025</u>	0.0275	<u>0.865</u>	57485.0	5.060	<u>1.77</u>	0.296	<u>1.42</u>	0.797	<u>0.124</u>	<u>1.05</u>	<u>2014</u>	<u>19</u>	<u>1829</u>	<u>15</u>	<u>1672</u>	<u>21</u>	<u>91</u>
<u>z026</u>	<u>0.2423</u>	0.177	<u>6011.5</u>	<u>1.437</u>	<u>16.50</u>	<u>0.119</u>	<u>11.83</u>	<u>0.717</u>	0.088	<u>11.51</u>	<u>1381</u>	<u>221</u>	<u>905</u>	<u>99</u>	<u>722</u>	<u>81</u>	<u>80</u>
<u>z027</u>	<u>0.0191</u>	0.072	94682.8	0.462	<u>9.56</u>	0.062	<u>9.31</u>	<u>0.973</u>	0.054	<u>2.19</u>	<u>383</u>	<u>49</u>	<u>386</u>	<u>31</u>	<u>386</u>	<u>35</u>	<u>100</u>
<u>z028</u>	0.0115	0.244	<u>147338.5</u>	2.009	<u>3.38</u>	0.181	<u>1.40</u>	<u>0.653</u>	0.081	<u>3.08</u>	<u>1209</u>	<u>61</u>	<u>1119</u>	<u>23</u>	1072	<u>14</u>	<u>96</u>
<u>z029b</u>	0.0189	0.014	93877.4	0.794	1.31	0.097	0.92	0.678	0.059	0.94	<u>573</u>	20	<u>594</u>	<u>6</u>	<u>599</u>	<u>5</u>	<u>101</u>
<u>z030</u>	0.0245	0.910	132327.7	13.184	<u>3.37</u>	0.511	<u>2.50</u>	<u>0.739</u>	0.187	2.26	<u>2716</u>	<u>37</u>	2693	<u>32</u>	2662	<u>55</u>	<u>99</u>
<u>z031n</u>	0.3672	0.381	4652.2	2.541	24.60	0.166	13.30	0.541	0.111	20.69	1814	376	1284	179	<u>991</u>	122	77

Tabela A.5 – Amostra SM-MB-15 – Quartzito feldspático do Grupo São Fidélis (Domínio Costeiro) - LG-IG-UnB.

						Razões	isotópica	s				Idades (Ma)					A /
Número do	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>z031b</u>	0.1941	0.327	<u>8816.4</u>	1.664	<u>14.38</u>	0.164	<u>6.81</u>	<u>0.731</u>	0.074	12.67	1035	<u>256</u>	<u>995</u>	<u>91</u>	<u>976</u>	<u>62</u>	<u>98</u>
<u>z032</u>	0.0839	0.534	20607.4	1.616	5.66	0.144	4.13	0.729	0.081	3.87	1229	76	<u>976</u>	<u>35</u>	868	<u>34</u>	<u>89</u>
<u>z033</u>	0.0324	0.255	33520.4	3.964	<u>3.30</u>	0.235	<u>2.85</u>	<u>0.861</u>	0.123	1.67	<u>1994</u>	<u>30</u>	1627	<u>27</u>	1358	<u>35</u>	<u>84</u>
<u>z034</u>	0.0063	0.531	233076.8	10.778	<u>1.09</u>	0.411	<u>0.90</u>	0.804	<u>0.190</u>	<u>0.62</u>	<u>2744</u>	<u>10</u>	<u>2504</u>	<u>10</u>	<u>2219</u>	<u>17</u>	<u>89</u>
<u>z035</u>	0.0109	0.117	<u>167188.8</u>	<u>0.580</u>	20.21	0.050	<u>14.21</u>	<u>0.892</u>	<u>0.084</u>	<u>14.38</u>	<u>1285</u>	<u>280</u>	<u>465</u>	<u>75</u>	<u>316</u>	<u>44</u>	<u>68</u>
<u>z036</u>	<u>0.0019</u>	0.206	774331.3	<u>6.300</u>	<u>1.82</u>	0.372	<u>0.97</u>	<u>0.510</u>	<u>0.123</u>	1.54	<u>1995</u>	<u>27</u>	<u>2018</u>	<u>16</u>	<u>2041</u>	<u>17</u>	<u>101</u>
<u>z037</u>	0.0344	0.629	43676.3	<u>1.714</u>	<u>1.96</u>	0.162	<u>1.52</u>	0.773	0.077	1.23	<u>1114</u>	<u>24</u>	1014	<u>13</u>	<u>968</u>	<u>14</u>	<u>95</u>
<u>z038n</u>	0.0224	0.471	<u>68404.5</u>	6.213	1.72	0.348	1.36	0.784	0.130	1.05	2093	<u>18</u>	2006	<u>15</u>	1923	<u>23</u>	<u>96</u>
<u>z038b</u>	0.0081	0.007	<u>385829.3</u>	0.777	1.25	0.097	<u>1.08</u>	0.857	0.058	<u>0.62</u>	<u>545</u>	<u>14</u>	<u>584</u>	<u>6</u>	594	<u>6</u>	<u>102</u>
<u>z039</u>	0.0181	0.008	<u>98227.0</u>	0.731	1.54	0.091	<u>1.07</u>	0.680	0.058	<u>1.11</u>	<u>546</u>	<u>24</u>	<u>557</u>	<u>7</u>	560	<u>6</u>	<u>101</u>
<u>z040</u>	0.0072	0.302	208620.7	8.882	<u>1.98</u>	0.374	<u>1.04</u>	<u>0.733</u>	<u>0.172</u>	1.69	<u>2578</u>	<u>28</u>	<u>2326</u>	<u>18</u>	<u>2050</u>	<u>18</u>	<u>88</u>
<u>z041b</u>	0.0078	0.324	<u>219884.3</u>	<u>1.956</u>	<u>1.91</u>	0.165	1.77	0.927	0.086	0.71	<u>1343</u>	14	1101	<u>13</u>	<u>982</u>	<u>16</u>	<u>89</u>
<u>z041n</u>	0.0132	0.351	253840.9	2.763	2.74	0.237	2.31	0.842	0.084	1.47	1304	<u>29</u>	1346	<u>20</u>	1372	<u>29</u>	<u>102</u>
<u>z042b</u>	0.0238	0.827	66715.9	4.392	<u>1.98</u>	0.291	1.51	0.755	0.109	1.28	1790	<u>23</u>	1711	<u>16</u>	1647	22	<u>96</u>
<u>z042n</u>	0.0176	0.228	<u>96630.1</u>	2.051	3.07	0.174	2.55	0.940	0.085	1.70	1325	<u>33</u>	1133	21	1035	24	<u>91</u>
<u>z043</u>	0.0693	0.771	24846.8	<u>1.573</u>	4.29	<u>0.153</u>	<u>3.23</u>	0.752	0.075	2.82	1061	<u>57</u>	<u>960</u>	27	<u>916</u>	<u>28</u>	<u>95</u>
<u>z044b</u>	0.0078	0.014	<u>539384.7</u>	<u>0.803</u>	<u>1.19</u>	<u>0.099</u>	<u>0.98</u>	0.805	0.059	<u>0.68</u>	<u>554</u>	<u>15</u>	<u>599</u>	<u>5</u>	<u>611</u>	<u>6</u>	<u>102</u>
<u>z045</u>	0.0275	0.082	<u>65399.9</u>	0.608	4.04	0.077	<u>3.72</u>	0.921	0.057	1.57	<u>508</u>	<u>34</u>	482	<u>15</u>	477	17	<u>99</u>
<u>z046</u>	0.0241	0.222	73522.3	1.034	2.57	0.105	2.14	0.831	0.072	1.42	<u>974</u>	<u>29</u>	721	<u>13</u>	<u>642</u>	<u>13</u>	<u>89</u>
<u>z047n</u>	0.0176	0.031	92322.9	<u>0.839</u>	2.15	0.094	<u>1.11</u>	<u>0.498</u>	0.065	1.85	760	<u>39</u>	<u>619</u>	<u>10</u>	<u>581</u>	<u>6</u>	<u>94</u>
<u>z047b</u>	0.0132	0.016	<u>134419.1</u>	0.845	1.16	0.104	<u>0.90</u>	<u>0.750</u>	<u>0.059</u>	<u>0.74</u>	<u>570</u>	<u>16</u>	<u>622</u>	<u>5</u>	<u>636</u>	<u>5</u>	<u>102</u>
<u>z048</u>	0.0869	0.542	18218.3	4.908	5.84	0.294	<u>3.22</u>	0.792	0.121	4.88	<u>1969</u>	<u>87</u>	1804	<u>49</u>	1664	<u>47</u>	<u>92</u>
<u>z049</u>	0.0130	0.280	133741.2	<u>1.371</u>	1.67	0.142	1.46	0.869	0.070	0.81	<u>929</u>	<u>17</u>	876	<u>10</u>	<u>856</u>	<u>12</u>	<u>98</u>
<u>z050</u>	0.0067	0.147	192766.0	2.312	1.27	0.210	<u>1.11</u>	0.866	0.080	0.62	<u>1191</u>	<u>12</u>	1216	<u>9</u>	1230	<u>12</u>	<u>101</u>
<u>z051</u>	1.7072	0.550	<u>949.3</u>	7.359	4.15	0.256	2.54	0.608	0.208	3.29	2891	<u>53</u>	2156	<u>37</u>	1471	<u>33</u>	<u>68</u>
<u>z052</u>	0.0060	0.141	279595.7	1.909	<u>1.17</u>	0.186	0.94	0.852	0.074	0.70	1054	<u>14</u>	1084	8	1099	<u>9</u>	<u>101</u>
<u>z053</u>	0.0362	0.435	46814.2	2.028	2.12	0.182	1.61	0.756	0.081	1.37	1215	27	1125	14	1079	16	<u>96</u>

						Razões	isotópica	s					Idades	(Ma)			0/
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%o
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>z054</u>	0.0274	0.176	103285.7	8.780	<u>2.39</u>	0.327	<u>1.89</u>	<u>0.784</u>	<u>0.195</u>	<u>1.47</u>	<u>2785</u>	<u>24</u>	<u>2315</u>	<u>22</u>	<u>1821</u>	<u>30</u>	<u>79</u>
<u>z055</u>	0.0100	0.266	158449.2	<u>6.392</u>	<u>2.23</u>	0.289	2.07	0.927	0.160	<u>0.83</u>	<u>2459</u>	<u>14</u>	2031	<u>20</u>	<u>1637</u>	<u>30</u>	<u>81</u>
<u>z056</u>	0.0166	0.537	<u>93956.6</u>	4.723	1.92	0.320	<u>1.02</u>	0.730	0.107	<u>1.62</u>	<u>1752</u>	<u>30</u>	<u>1771</u>	<u>16</u>	<u>1788</u>	<u>16</u>	<u>101</u>
<u>z058b</u>	0.0084	0.003	<u>213946.3</u>	0.637	<u>4.54</u>	0.073	<u>4.45</u>	<u>0.978</u>	<u>0.063</u>	<u>0.94</u>	<u>714</u>	<u>20</u>	<u>500</u>	<u>18</u>	<u>455</u>	<u>20</u>	<u>91</u>
<u>z061</u>	0.0054	<u>0.434</u>	<u>192462.3</u>	2.226	<u>10.32</u>	<u>0.178</u>	<u>10.29</u>	<u>0.997</u>	0.091	<u>0.83</u>	<u>1440</u>	<u>16</u>	<u>1189</u>	<u>72</u>	<u>1056</u>	<u>100</u>	<u>89</u>
<u>z062n</u>	<u>0.0234</u>	0.332	<u>84024.5</u>	-0.957	<u>4.91</u>	<u>-0.101</u>	<u>4.76</u>	<u>0.970</u>	<u>0.069</u>	<u>1.20</u>	<u>894</u>	<u>25</u>	<u>-3188</u>	<u>-</u> 101	<u>-685</u>	<u>-34</u>	<u>21</u>
<u>z062b</u>	0.0052	0.007	352124.4	0.521	<u>3.35</u>	0.058	<u>3.20</u>	<u>0.974</u>	<u>0.066</u>	<u>1.00</u>	<u>794</u>	<u>21</u>	<u>426</u>	<u>12</u>	<u>361</u>	<u>11</u>	<u>85</u>
<u>z063</u>	0.0725	0.032	24104.6	<u>1.114</u>	<u>4.51</u>	0.127	<u>4.36</u>	<u>0.966</u>	<u>0.064</u>	<u>1.17</u>	<u>728</u>	<u>25</u>	<u>760</u>	<u>24</u>	<u>771</u>	<u>32</u>	<u>101</u>
<u>z064</u>	<u>0.0166</u>	0.192	<u>388014.4</u>	<u>-0.573</u>	<u>4.39</u>	<u>-0.068</u>	<u>3.85</u>	<u>0.874</u>	<u>0.061</u>	<u>2.13</u>	<u>645</u>	<u>46</u>	<u>-863</u>	<u>-60</u>	<u>-453</u>	<u>-18</u>	<u>53</u>
<u>z066</u>	0.0672	0.415	89813.0	2.402	13.14	0.128	13.06	<u>0.994</u>	<u>0.136</u>	<u>1.42</u>	<u>2179</u>	<u>25</u>	<u>1243</u>	<u>94</u>	<u>776</u>	<u>95</u>	<u>62</u>
Z067	0.0073	0.552	192624.4	12.572	0.93	0.476	0.74	0.770	0.191	0.56	2755	9	2648	9	2511	15	95
Z068	0.0062	0.252	257705.5	4.491	1.07	0.268	0.93	0.859	0.122	0.52	1981	9	1729	9	1529	13	88
Z069	0.0290	0.255	51987.3	6.901	1.54	0.374	1.19	0.760	0.134	0.98	2150	17	2099	14	2047	21	98
Z070	0.0066	0.041	259332.3	1.575	0.82	0.157	0.67	0.790	0.073	0.46	1010	9	960	5	939	6	98
Z071	0.0062	0.006	286020.4	0.738	0.83	0.090	0.68	0.787	0.059	0.47	573	10	561	4	558	4	99
Z072	0.0035	0.279	456708.6	4.743	0.72	0.283	0.57	0.736	0.122	0.44	1982	8	1775	6	1604	8	90
Z073	0.0126	0.186	131869.9	2.438	1.05	0.212	0.77	0.697	0.083	0.72	1277	14	1254	8	1240	9	99
Z074	0.0619	0.543	27478.3	1.817	2.06	0.175	1.46	0.701	0.075	1.45	1079	29	1051	13	1038	14	99
Z075	0.1191	0.254	14274.3	1.752	2.95	0.175	2.05	0.691	0.073	2.12	1008	43	1028	19	1037	20	101
z076n	0.0372	0.230	45861.4	1.694	1.76	0.167	1.29	0.722	0.074	1.20	1036	24	1006	11	993	12	99
Z076b	0.0187	0.003	94899.1	0.772	1.01	0.095	0.76	0.725	0.059	0.66	562	14	581	4	586	4	101
Z077	0.0081	0.418	185047.7	6.753	2.08	0.385	1.44	0.684	0.127	1.50	2060	26	2080	18	2100	26	101
Z078n	0.0390	0.300	39324.9	6.365	1.87	0.347	1.41	0.745	0.133	1.23	2137	21	2027	16	1921	23	95
Z078b	0.0280	0.003	63406.3	0.815	1.53	0.099	1.18	0.756	0.060	0.98	595	21	605	7	608	7	100
Z079	0.0207	0.271	72122.7	6.992	1.75	0.384	1.19	0.667	0.132	1.28	2126	22	2110	16	2094	21	99
Z080	0.0195	0.386	78916.8	6.021	1.25	0.340	0.92	0.721	0.129	0.84	2079	15	1979	11	1885	15	95
Z081	0.1077	0.126	15852.5	2.631	3.36	0.168	2.99	0.888	0.114	1.54	1861	28	1309	25	999	28	76

						Razões	isotópica	s					Idades	(Ma)			0/
Número do	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z082	0.0136	0.104	118617.6	3.385	1.31	0.262	1.04	0.785	0.094	0.79	1501	15	1501	10	1501	14	100
Z083	0.0097	0.270	164717.0	4.157	0.91	0.287	0.69	0.723	0.105	0.59	1716	11	1666	7	1626	10	98
Z085	0.0086	0.002	206882.3	0.764	1.04	0.094	0.83	0.778	0.059	0.62	559	14	576	5	580	5	101
Z086	0.0487	0.448	35198.5	1.622	1.60	0.161	1.22	0.752	0.073	1.03	1015	21	979	10	963	11	98
Z089	0.0366	0.261	38013.0	12.412	1.72	0.493	1.34	0.771	0.183	1.07	2677	18	2636	16	2583	28	98
Z091	0.0909	0.194	16159.2	7.726	4.16	0.412	2.97	0.713	0.136	2.91	2176	51	2200	37	2225	56	101
Z092	0.0376	0.294	39571.1	7.174	2.06	0.392	1.47	0.708	0.133	1.43	2136	25	2133	18	2130	27	100
Z093	0.0159	0.276	96990.1	5.693	1.06	0.338	0.87	0.804	0.122	0.60	1988	11	1930	9	1877	14	97
Z094	0.0101	0.161	157234.6	4.906	1.07	0.289	0.93	0.860	0.123	0.52	2000	9	1803	9	1638	13	91
Z096	0.0050	0.310	278379.4	12.941	0.85	0.482	0.65	0.723	0.195	0.54	2782	9	2675	8	2536	14	95
Z097n	0.0268	0.269	57886.0	5.926	1.06	0.327	0.88	0.810	0.132	0.59	2120	10	1965	9	1822	14	93
Z097b	0.0021	0.004	840098.0	0.752	1.02	0.092	0.73	0.681	0.059	0.71	584	16	570	4	566	4	99
Z098	0.0027	0.139	555708.5	6.097	0.95	0.356	0.72	0.733	0.124	0.61	2016	11	1990	8	1965	12	99
Z099n	0.0059	0.617	222884.2	18.184	1.07	0.560	0.88	0.802	0.235	0.61	3089	10	3000	10	2868	20	96
Z099b	0.0134	0.004	133128.0	0.791	1.03	0.094	0.75	0.690	0.061	0.71	645	15	592	5	578	4	98
Z100	0.0597	0.444	26438.2	4.585	2.11	0.301	1.59	0.748	0.110	1.38	1807	25	1747	18	1697	24	97
Z101	0.0132	0.406	129801.8	1.699	1.04	0.167	0.78	0.723	0.074	0.69	1040	14	1008	7	994	7	99
Z102	0.0202	0.260	74247.4	6.997	1.38	0.381	1.03	0.734	0.133	0.91	2140	16	2111	12	2081	18	99
Z105	0.0580	0.188	29402.4	2.007	3.09	0.168	2.32	0.748	0.086	2.04	1347	39	1118	21	1004	22	90
Z106	0.0071	0.418	219832.2	5.548	0.91	0.321	0.78	0.828	0.125	0.48	2035	9	1908	8	1794	12	94
Z107	0.0147	0.006	121033.4	0.762	1.19	0.093	0.91	0.745	0.060	0.77	593	17	575	5	571	5	99
Z109	0.0206	0.410	75203.9	5.227	1.26	0.327	0.96	0.750	0.116	0.81	1896	14	1857	11	1822	15	98
Z111	0.0097	0.104	155423.9	6.748	1.02	0.370	0.83	0.794	0.132	0.59	2127	10	2079	9	2031	15	98
Z112	0.0259	0.176	62530.7	3.189	2.60	0.261	2.09	0.800	0.089	1.55	1399	30	1455	20	1493	28	103
Z115	0.0360	0.299	46140.8	2.533	2.34	0.214	1.78	0.755	0.086	1.52	1339	29	1282	17	1248	20	97
Z116	0.0521	0.330	32936.9	1.575	1.53	0.158	1.12	0.715	0.072	1.05	991	21	961	10	947	10	99
Z117	0.0175	0.182	92783.0	3.376	1.09	0.256	0.80	0.701	0.096	0.75	1538	14	1499	9	1471	10	98

						Razões	isotópica	S					Idades	(Ma)			0/
Número do	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	70
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z118	0.0124	0.278	134855.2	2.441	1.26	0.202	0.97	0.754	0.088	0.80	1373	15	1255	9	1187	11	95
Z119	0.0584	0.302	29253.9	1.659	2.94	0.166	2.14	0.726	0.073	2.01	1002	41	993	19	989	20	100
Z120	0.1478	0.196	11548.6	1.921	5.82	0.167	4.15	0.713	0.083	4.07	1274	79	1088	39	998	38	92
Z121	0.0273	0.005	65019.6	0.796	1.34	0.097	1.00	0.729	0.059	0.89	574	19	594	6	600	6	101
Z122	0.0296	0.309	56103.8	2.634	1.22	0.218	0.92	0.736	0.088	0.80	1376	15	1310	9	1270	11	97
Z123	0.0122	0.477	140371.2	1.608	1.47	0.161	1.19	0.800	0.073	0.86	1001	18	973	9	961	11	99
z124	0.0427	0.435	37849.2	3.491	1.84	0.262	1.37	0.736	0.097	1.23	1562	23	1525	15	1499	18	98

Tabela A.6 – Amostra SM-MB-02 - Granada-biotita gnaisse do Grupo São Fidélis (Domínio Costeiro) - LG-IG-UnB.

						Razões	isotópica	s					Idades	(Ma)			0 /
Número do <i>spot</i>	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Dha	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Conc
-				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	conc.
<u>Z-1</u>	0.0008	<u>0.56</u>	<u>138213</u>	<u>0.6991</u>	<u>2.47</u>	<u>0.0886</u>	<u>2.03</u>	<u>0.82</u>	<u>0.0572</u>	<u>1.42</u>	<u>500</u>	<u>7</u>	<u>538</u>	<u>13</u>	<u>547</u>	<u>11</u>	<u>109</u>
<u>Z-2</u>	0.0014	<u>0.48</u>	<u>59713</u>	<u>0.7199</u>	<u>4.95</u>	<u>0.0898</u>	4.22	<u>0.85</u>	<u>0.0581</u>	<u>2.58</u>	<u>534</u>	<u>14</u>	<u>551</u>	<u>27</u>	<u>555</u>	<u>23</u>	<u>104</u>
<u>Z-3</u>	0.0007	0.13	190788	0.6822	3.82	0.0863	3.52	0.92	0.0573	<u>1.49</u>	503	7	528	20	534	<u>19</u>	<u>106</u>
<u>Z-6</u>	0.0076	<u>1.58</u>	<u>27834</u>	<u>0.9359</u>	4.14	<u>0.1087</u>	<u>2.20</u>	<u>0.53</u>	0.0624	<u>3.51</u>	<u>689</u>	<u>24</u>	<u>671</u>	<u>28</u>	<u>665</u>	<u>15</u>	7
<u>Z-9</u>	0.0005	<u>0.26</u>	<u>175761</u>	<u>0.9270</u>	<u>3.04</u>	<u>0.1087</u>	<u>2.15</u>	<u>0.71</u>	<u>0.0619</u>	<u>2.15</u>	<u>670</u>	<u>14</u>	<u>666</u>	<u>20</u>	<u>665</u>	<u>14</u>	<u>99</u>
<u>Z-11</u>	0.0003	<u>0.28</u>	<u>584773</u>	<u>0.8253</u>	<u>2.31</u>	<u>0.0995</u>	<u>1.71</u>	<u>0.74</u>	0.0602	<u>1.55</u>	<u>610</u>	<u>9</u>	<u>611</u>	<u>14</u>	<u>611</u>	<u>10</u>	<u>100</u>
<u>Z-12</u>	0.0017	<u>1.06</u>	<u>54890</u>	<u>0.9179</u>	<u>7.23</u>	<u>0.1081</u>	<u>3.19</u>	<u>0.44</u>	<u>0.0616</u>	<u>6.48</u>	<u>660</u>	<u>43</u>	<u>661</u>	<u>48</u>	<u>662</u>	<u>21</u>	<u>100</u>
<u>Z-13</u>	0.0033	<u>0.76</u>	20156	0.8870	7.43	0.1050	<u>6.34</u>	<u>0.85</u>	<u>0.0613</u>	<u>3.87</u>	<u>648</u>	<u>25</u>	<u>645</u>	<u>48</u>	<u>644</u>	<u>41</u>	<u>99</u>
<u>Z-14</u>	0.0001	0.08	424313	0.7712	1.85	0.0943	<u>1.11</u>	0.60	0.0593	<u>1.48</u>	<u>580</u>	<u>9</u>	580	<u>11</u>	581	<u>6</u>	100
<u>Z-15</u>	0.0002	<u>0.10</u>	309240	0.7535	<u>1.94</u>	0.0927	<u>0.99</u>	0.51	<u>0.0590</u>	<u>1.66</u>	<u>566</u>	<u>9</u>	<u>570</u>	<u>11</u>	<u>571</u>	<u>6</u>	<u>101</u>
<u>Z-16</u>	0.0025	0.33	474914	0.9322	5.97	0.1089	4.64	0.78	0.0621	<u>3.75</u>	<u>676</u>	25	<u>669</u>	40	667	31	<u>99</u>

						Razões	isotópica	5					Idades	(Ma)			<u> </u>
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	~	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Care
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
<u>Z-17N</u>	0.0005	0.07	#######	0.8796	1.80	0.1043	1.12	0.63	0.0612	1.40	645	<u>9</u>	<u>641</u>	12	<u>640</u>	7	<u>99</u>
<u>Z-17B</u>	0.0003	0.10	#######	0.8627	<u>1.77</u>	<u>0.1035</u>	1.31	<u>0.74</u>	<u>0.0605</u>	<u>1.18</u>	<u>621</u>	<u>7</u>	<u>632</u>	<u>11</u>	<u>635</u>	<u>8</u>	<u>102</u>
<u>Z-18N</u>	0.0026	0.40	#######	0.8922	<u>6.66</u>	<u>0.1058</u>	<u>4.56</u>	<u>0.68</u>	<u>0.0612</u>	<u>4.85</u>	<u>645</u>	<u>31</u>	<u>648</u>	<u>43</u>	<u>648</u>	<u>30</u>	<u>100</u>
<u>Z-18B</u>	0.0001	0.08	#######	<u>0.8186</u>	<u>1.71</u>	0.0991	<u>1.15</u>	<u>0.67</u>	<u>0.0599</u>	<u>1.27</u>	<u>601</u>	<u>8</u>	<u>607</u>	<u>10</u>	<u>609</u>	<u>7</u>	<u>101</u>
<u>Z-19</u>	<u>0.0036</u>	<u>1.21</u>	<u>10365</u>	<u>1.1412</u>	<u>2.50</u>	<u>0.1272</u>	<u>1.57</u>	<u>0.63</u>	<u>0.0650</u>	<u>1.94</u>	<u>776</u>	<u>15</u>	<u>773</u>	<u>19</u>	<u>772</u>	<u>12</u>	<u>100</u>
<u>Z-20</u>	0.0035	<u>0.30</u>	<u>8824</u>	<u>1.0633</u>	<u>3.66</u>	<u>0.1208</u>	<u>2.78</u>	<u>0.76</u>	<u>0.0638</u>	<u>2.38</u>	<u>737</u>	<u>17</u>	<u>735</u>	<u>27</u>	<u>735</u>	<u>20</u>	<u>100</u>
<u>Z-21</u>	0.0007	<u>0.32</u>	<u>27611</u>	<u>0.9734</u>	<u>2.91</u>	<u>0.1129</u>	<u>1.55</u>	<u>0.53</u>	<u>0.0625</u>	<u>2.47</u>	<u>692</u>	<u>17</u>	<u>690</u>	<u>20</u>	<u>690</u>	<u>11</u>	<u>100</u>
z23b	0.0233	0.55	76022	0.8099	1.13	0.0985	0.81	0.69	0.0596	0.78	590	17	602	5	606	5	103
z23n	0.0175	0.45	101668	0.8095	1.12	0.0970	0.82	0.71	0.0605	0.76	622	16	602	5	597	5	96
z24	0.0143	0.40	124369	0.8100	1.48	0.0969	0.81	0.74	0.0606	1.24	626	27	602	7	596	5	95
z25	0.0606	0.30	29321	0.8034	1.70	0.0952	1.19	0.69	0.0612	1.21	646	26	599	8	586	7	91
z26b	0.0075	0.05	236973	0.7708	0.72	0.0909	0.57	0.74	0.0615	0.44	656	9	580	3	561	3	86
z26n	0.0251	0.15	70930	0.7730	0.73	0.0930	0.59	0.77	0.0603	0.42	613	9	581	3	573	3	94
z27b	1.8625	0.12	945	1.2788	1.44	0.1124	1.18	0.80	0.0825	0.84	1258	16	836	8	687	8	55
z27n	0.0224	0.28	79177	0.8225	1.35	0.0968	0.85	0.81	0.0616	1.06	661	23	609	6	596	5	90
z28	0.0132	0.13	134676	0.7852	0.70	0.0956	0.61	0.84	0.0596	0.34	588	7	588	3	588	3	100
z29	0.0153	0.11	115945	0.7986	1.09	0.0967	0.96	0.87	0.0599	0.51	600	11	596	5	595	5	99
z30	0.0039	0.15	455617	0.7679	0.85	0.0937	0.62	0.81	0.0595	0.59	584	13	579	4	577	3	99
z31	0.2494	0.62	7119	0.8692	1.24	0.0975	0.81	0.62	0.0647	0.94	764	20	635	6	599	5	78
z32b	0.0045	0.07	392428	0.8008	0.59	0.0973	0.50	0.78	0.0597	0.31	592	7	597	3	599	3	101
z32n	0.0199	0.24	89318	0.7589	1.26	0.0925	1.03	0.80	0.0595	0.73	585	16	573	6	570	6	97
z33b	0.8213	0.05	2120	1.3978	0.84	0.1325	0.72	0.83	0.0765	0.43	1108	9	888	5	802	5	72
z33n	0.0098	0.44	181393	0.8421	1.02	0.1014	0.69	0.82	0.0602	0.76	612	16	620	5	623	4	102
z34b	0.1537	0.12	11493	0.9066	0.73	0.1062	0.64	0.83	0.0619	0.37	672	8	655	4	651	4	97
z34n	0.2208	0.38	8013	0.9069	0.76	0.1037	0.64	0.81	0.0634	0.41	723	9	655	4	636	4	88

						Razões	isotópica	5					A /				
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	D.	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Corre
				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z35b	0.0828	0.04	21172	1.0262	0.83	0.1209	0.69	0.80	0.0616	0.46	659	10	717	4	736	5	112
z35n	0.0095	0.21	185057	0.8729	0.89	0.1059	0.64	0.82	0.0598	0.62	595	13	637	4	649	4	109
z36	0.0353	0.58	50500	0.7722	1.72	0.0907	1.28	0.73	0.0618	1.16	666	25	581	8	560	7	84
z37	0.0358	0.46	49684	0.7779	1.48	0.0926	1.12	0.74	0.0609	0.97	636	21	584	7	571	6	90
z38	0.0152	0.18	116963	0.8017	1.30	0.0966	0.74	0.76	0.0602	1.07	609	23	598	6	595	4	98
z39	0.0359	0.62	49475	0.7854	1.38	0.0942	1.06	0.76	0.0605	0.88	620	19	589	6	581	6	94
z40b	0.0029	0.02	608289	0.7790	0.61	0.0966	0.49	0.74	0.0585	0.35	549	8	585	3	594	3	108
z40n	0.1435	0.13	12335	0.8922	0.91	0.1023	0.76	0.82	0.0632	0.49	716	10	648	4	628	5	88
z41	0.0071	0.28	249945	0.7439	0.86	0.0916	0.53	0.69	0.0589	0.68	563	15	565	4	565	3	100
z42	0.0695	0.06	25598	0.7620	1.88	0.0950	1.48	0.78	0.0582	1.16	537	25	575	8	585	8	109
z43b	0.0367	0.10	48501	0.8159	1.16	0.0927	0.59	0.67	0.0638	1.00	736	21	606	5	571	3	78
z43n	0.0539	0.14	31287	2.8765	0.99	0.1889	0.89	0.88	0.1104	0.44	1807	8	1376	7	1115	9	62
z44b	0.6307	0.13	2818	0.8836	0.90	0.0952	0.71	0.75	0.0673	0.56	848	12	643	4	586	4	69
z44n		0.19	5940	2.0844	1.83	0.1471	1.73	0.94	0.1028	0.60	1675	11	1144	13	885	14	53
z45	-9.0000	0.04	55315	0.8318	0.87	0.1021	0.67	0.73	0.0591	0.55	570	12	615	4	627	4	110
z46	0.1103	0.11	16100	0.7870	0.97	0.0965	0.74	0.85	0.0592	0.63	573	14	589	4	594	4	104

Fonte: A autora, 2018.

						Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Ы	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z01n	0.006	0.036	289263.4	0.7678	1.17	0.0931	1.01	0.85	0.060	0.597	597	13	578	5	574	6	99
z02	0.025	0.471	71899.4	0.8417	1.25	0.0987	1.01	0.79	0.062	0.747	670	16	620	6	607	6	98
z03	0.005	0.234	346209.2	0.8523	0.69	0.1021	0.62	0.88	0.061	0.298	623	6	626	3	627	4	100
z05	0.012	0.044	148041.8	0.8027	0.84	0.0979	0.73	0.84	0.059	0.420	583	9	598	4	602	4	101
z06b	0.030	0.031	59874.0	0.8299	1.00	0.0985	0.86	0.84	0.061	0.514	643	11	614	5	605	5	99
z07	0.011	0.101	154298.6	0.8301	1.12	0.0997	0.88	0.77	0.060	0.684	617	15	614	5	613	5	100
z08	0.406	0.339	4354.2	0.8882	4.41	0.1030	2.49	0.58	0.063	3.637	693	76	645	21	632	15	98
z09	0.016	0.380	110518.8	0.8927	0.91	0.1056	0.76	0.81	0.061	0.497	651	11	648	4	647	5	100
z10n	0.946	0.233	1864.3	0.9679	2.27	0.1087	1.49	0.69	0.065	1.702	760	35	687	11	665	9	97
z10b	0.350	0.046	5058.1	0.9008	0.88	0.1016	0.68	0.73	0.064	0.562	753	12	652	4	624	4	96
z11	0.025	0.456	71296.9	0.8692	0.95	0.1008	0.80	0.82	0.063	0.517	692	11	635	4	619	5	97
z12	0.583	0.113	3053.9	0.7388	0.94	0.0933	0.70	0.73	0.057	0.627	507	14	562	4	575	4	102
z13	0.024	0.219	74974.1	0.8687	1.50	0.0965	0.97	0.63	0.065	1.140	783	24	635	7	594	6	94
z15	0.016	0.237	113516.6	0.8934	0.99	0.0941	0.85	0.85	0.069	0.497	895	10	648	5	580	5	89
z14	0.160	0.477	11076.3	0.9675	5.49	0.1009	3.78	0.69	0.070	3.980	914	82	687	27	620	22	90
z15n	0.008	0.259	225332.9	0.8696	0.75	0.1027	0.65	0.84	0.061	0.370	653	8	635	4	630	4	99
z15b	0.008	0.034	210703.7	0.8233	0.89	0.0979	0.70	0.75	0.061	0.554	638	12	610	4	602	4	99
z16	0.004	0.350	486775.6	0.8649	0.69	0.1021	0.52	0.68	0.061	0.452	654	10	633	3	627	3	99
z17	0.008	0.396	225978.1	0.8773	0.85	0.1042	0.58	0.62	0.061	0.623	641	13	640	4	639	4	100
z18	0.310	0.084	5714.5	0.8596	0.93	0.0996	0.65	0.66	0.063	0.663	695	14	630	4	612	4	97
z19	0.295	0.268	6018.4	0.9461	0.95	0.0984	0.86	0.89	0.070	0.412	920	8	676	5	605	5	89
z20n	0.249	0.373	7100.8	0.8735	0.84	0.1019	0.59	0.64	0.062	0.600	680	13	637	4	626	4	98
z20b	1.184	0.070	1502.8	0.7919	1.41	0.0917	0.80	0.59	0.063	1.157	697	24	592	6	565	4	95
z21n	0.013	0.348	134888.6	0.8862	0.73	0.1055	0.66	0.89	0.061	0.300	637	6	644	3	647	4	100
z21b	0.007	0.046	240068.8	0.8094	0.71	0.0979	0.63	0.86	0.060	0.329	603	7	602	3	602	4	100
z22	0.015	0.248	115943.7	0.8582	0.71	0.1011	0.59	0.80	0.062	0.383	658	8	629	3	621	4	99

Tabela A.7 – Amostra THE-12A - Granada-biotita gnaisse do Grupo Andrelândia (Domínio Andrelândia) - LG-IG-UnB.

						0/											
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	ы	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	%]	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z23	0.021	0.227	85410.3	0.8465	0.77	0.1021	0.63	0.76	0.060	0.457	609	10	623	4	626	4	101
z24n	0.053	0.313	33782.2	0.8511	0.85	0.0991	0.71	0.81	0.062	0.470	683	10	625	4	609	4	97
z24b	0.004	0.018	438041.6	0.7972	0.76	0.0970	0.70	0.91	0.060	0.283	590	6	595	3	597	4	100
z25	0.113	0.474	15653.5	0.7975	5.16	0.0974	3.89	0.75	0.059	3.388	581	74	595	23	599	22	101
z27	0.003	0.543	534563.9	0.9049	0.64	0.1080	0.51	0.71	0.061	0.394	630	8	654	3	661	3	101
z28	0.290	0.160	6093.7	0.8888	0.99	0.1056	0.68	0.64	0.061	0.718	641	15	646	5	647	4	100
z30	0.019	0.269	91325.4	0.9024	1.00	0.1075	0.90	0.89	0.061	0.427	635	9	653	5	658	6	101
z31n	0.006	0.331	312660.8	0.9098	0.78	0.1086	0.64	0.77	0.061	0.456	632	10	657	4	664	4	101
z31b	0.031	0.064	57637.0	0.8208	0.85	0.1007	0.69	0.78	0.059	0.498	572	11	608	4	618	4	102
z32	0.013	0.343	134541.1	0.9176	0.75	0.1081	0.60	0.76	0.062	0.443	660	9	661	4	661	4	100
z33n	0.205	0.599	8626.5	0.9835	1.36	0.1048	1.15	0.83	0.068	0.736	871	15	695	7	642	7	92
z33b	0.353	0.069	5016.3	0.8934	0.77	0.1025	0.60	0.74	0.063	0.475	715	10	648	4	629	4	97
z34n	0.189	0.289	9499.1	0.6668	1.88	0.0769	1.82	0.96	0.063	0.491	705	10	519	8	478	8	92
z35n	0.017	0.111	106512.2	0.8611	1.22	0.1027	0.84	0.66	0.061	0.886	633	19	631	6	630	5	100
z35b	0.221	0.080	8032.8	0.8382	1.20	0.1003	0.87	0.71	0.061	0.817	625	18	618	6	616	5	100
z36	0.005	0.116	374211.9	0.8371	1.54	0.1021	0.95	0.59	0.059	1.213	584	26	618	7	627	6	101
z38	0.009	0.370	200725.0	0.7837	1.02	0.0947	0.78	0.74	0.060	0.658	603	14	588	5	584	4	99
z39b	0.014	0.046	128528.9	0.7946	0.81	0.0958	0.66	0.78	0.060	0.471	610	10	594	4	590	4	99
z40	0.009	0.236	207954.8	0.7964	0.82	0.0960	0.69	0.81	0.060	0.443	608	10	595	4	591	4	99
z41n	0.005	0.031	388096.9	0.9203	0.93	0.1100	0.75	0.78	0.061	0.547	627	12	662	5	673	5	102
z41b	0.025	0.114	71014.2	0.8746	0.88	0.1042	0.71	0.77	0.061	0.519	634	11	638	4	639	4	100
z42n	0.107	0.769	16974.3	0.5408	2.39	0.0634	2.26	0.94	0.062	0.787	669	17	439	9	396	9	90
z43n	0.003	0.051	524633.3	0.8545	0.72	0.1026	0.58	0.76	0.060	0.421	618	9	627	3	630	3	100
z43b	0.017	0.109	107057.5	0.8289	0.82	0.1007	0.60	0.68	0.060	0.554	592	12	613	4	619	4	101
z44n	0.155	0.290	11460.3	0.8157	2.19	0.0942	1.91	0.87	0.063	1.065	701	23	606	10	581	11	96
z44b	0.003	0.044	610350.2	0.8286	0.96	0.1018	0.68	0.67	0.059	0.673	569	15	613	4	625	4	102
z45n	0.075	0.168	23860.7	0.6798	1.91	0.0816	1.77	0.93	0.060	0.705	618	15	527	8	506	9	96

						Razões	isotópica	s					0/				
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Ы	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%o
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z45b	0.011	0.076	163551.8	0.8570	1.04	0.1025	0.89	0.84	0.061	0.536	627	12	628	5	629	5	100
z46	0.070	0.410	25190.2	0.8396	2.23	0.1023	1.65	0.74	0.060	1.490	586	32	619	10	628	10	101
z47	0.001	0.091	1367155.3	0.8832	0.87	0.1068	0.77	0.87	0.060	0.397	602	9	643	4	654	5	102
z48	0.033	0.229	53870.3	0.8649	1.15	0.1031	0.96	0.83	0.061	0.622	633	13	633	5	633	6	100
z49	0.039	0.432	45367.1	0.9269	1.07	0.1096	0.91	0.83	0.061	0.565	651	12	666	5	671	6	101
z50n	0.045	0.532	38922.2	0.9106	1.39	0.1049	0.99	0.69	0.063	0.976	706	21	657	7	643	6	98
z50b	0.117	0.288	15076.0	0.9096	0.94	0.1065	0.77	0.79	0.062	0.546	672	12	657	5	652	5	99
z51n	0.890	0.241	1993.9	0.8218	1.66	0.0972	1.26	0.78	0.061	1.086	650	23	609	8	598	7	98
z51b	0.005	0.022	387980.8	0.9111	1.41	0.1098	1.30	0.92	0.060	0.554	610	12	658	7	672	8	102
z52	0.032	0.051	54873.7	0.9122	0.99	0.1095	0.91	0.91	0.060	0.388	619	8	658	5	670	6	102
z53	0.040	0.657	44234.2	0.8671	2.17	0.1012	1.77	0.81	0.062	1.252	678	27	634	10	622	10	98
z54	0.975	0.232	1808.1	0.8534	1.35	0.1101	0.98	0.75	0.056	0.934	462	21	626	6	673	6	107
z55	0.092	0.046	19156.9	0.9149	0.83	0.1085	0.69	0.81	0.061	0.453	#	#	660	4	664	4	101
z56	0.073	0.502	24307.4	0.8536	2.76	0.1019	1.97	0.71	0.061	1.926	630	41	627	13	626	12	100
z57	0.022	0.055	79749.5	0.8552	1.28	0.1038	1.00	0.76	0.060	0.811	595	18	628	6	636	6	101

Fonte: A autora, 2018.

Tabela A.8 – Amostra THE-03 - (Opx)-granada-biotita gnaisse do Grupo Bom Jesus de Itabapoana (Domínio Cambuci) - LG-IG-UnB.

Número do spot								0/									
	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/ 1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Conc	
				²³⁵ U	[%]	²³⁸ U	[%]	KII0	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z01n	0.005	0.043	335905.3	0.807	0.900	0.097	0.570	0.564	0.060	0.697	611	15	601	4	599	3	100
Z01b	0.007	0.102	271927.3	0.841	0.717	0.099	0.553	0.707	0.062	0.457	661	10	620	3	609	3	98
Z02n	0.018	0.100	97239.8	0.897	0.982	0.105	0.629	0.586	0.062	0.755	679	16	650	5	642	4	99
Z02b	0.039	0.258	45489.9	0.839	1.293	0.098	0.836	0.618	0.062	0.986	671	21	619	6	605	5	98
						Razões	isotópica	5					Idades	(Ma)			
-------------------	-------	-------	--------------------------------------	--------------------	-------	--------------------	-----------	-------	--------------------	-------	--------------------	-----	--------------------	------	--------------------	-----	-------
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z03	0.014	0.664	126803.9	0.866	1.195	0.102	0.836	0.672	0.061	0.854	654	18	634	6	628	5	99
Z04	0.025	0.213	66943.9	3.023	1.322	0.235	0.968	0.713	0.093	0.901	1490	17	1413	10	1363	12	96
Z05	0.017	0.509	106114.6	0.858	1.240	0.102	0.731	0.550	0.061	1.002	647	22	629	6	624	4	99
Z06	0.049	0.372	33501.0	3.906	2.088	0.241	1.568	0.744	0.118	1.380	1919	25	1615	17	1392	20	86
Z07	0.036	0.046	49441.2	0.997	1.546	0.114	1.156	0.735	0.064	1.026	726	22	702	8	695	8	99
Z08n	0.023	0.281	76478.9	0.757	0.991	0.091	0.842	0.832	0.061	0.523	624	11	572	4	559	5	98
Z08b	0.010	0.332	180326.9	0.768	0.834	0.092	0.621	0.694	0.060	0.556	611	12	578	4	570	3	99
Z09b	0.017	0.274	103581.5	1.581	1.462	0.153	1.223	0.829	0.075	0.800	1072	16	963	9	915	10	95
Z10n	0.029	0.216	61420.7	0.748	1.365	0.090	1.141	0.826	0.061	0.749	625	16	567	6	553	6	97
Z10b	0.021	0.246	84227.8	0.748	1.612	0.090	1.220	0.746	0.060	1.054	607	23	567	7	557	7	98
Z11n	0.095	0.193	18507.2	0.934	0.822	0.110	0.716	0.848	0.061	0.404	654	9	670	4	675	5	101
Z11b	2.038	0.032	867.4	0.897	0.847	0.103	0.623	0.763	0.063	0.573	719	12	650	4	630	4	97
Z12n	0.011	0.257	165122.5	0.886	1.014	0.104	0.729	0.683	0.062	0.705	664	15	644	5	638	4	99
Z12b	0.104	0.068	16951.3	0.859	1.191	0.103	0.769	0.611	0.061	0.910	629	20	630	6	630	5	100
Z13n	0.004	0.468	409243.5	0.928	0.776	0.108	0.693	0.872	0.062	0.350	674	7	666	4	664	4	100
Z13b	0.008	0.225	227346.4	0.788	0.797	0.096	0.709	0.869	0.060	0.364	594	8	590	4	589	4	100
Z14b	0.334	0.256	5286.1	0.959	0.750	0.108	0.515	0.600	0.064	0.545	758	11	683	4	660	3	97
Z15n	0.011	0.169	151252.6	1.436	0.896	0.137	0.744	0.805	0.076	0.498	1100	10	904	5	826	6	91
Z15b	0.018	0.017	99511.7	0.807	1.740	0.093	1.424	0.812	0.063	0.999	710	21	601	8	572	8	95
Z16	0.003	0.045	648139.0	0.841	1.147	0.098	0.841	0.708	0.062	0.780	674	17	620	5	605	5	98
Z17n	0.017	0.365	105193.2	0.948	0.790	0.109	0.627	0.750	0.063	0.481	703	10	677	4	669	4	99
Z17b	0.013	0.058	140428.9	0.825	1.024	0.100	0.765	0.716	0.060	0.681	591	15	611	5	617	4	101
Z18n	0.003	0.137	538698.8	0.846	0.723	0.102	0.565	0.724	0.060	0.450	610	10	623	3	626	3	101
Z18b	0.027	0.011	64569.3	0.922	1.573	0.108	0.912	0.555	0.062	1.282	665	27	663	8	663	6	100
Z19n	0.143	0.111	12274.4	1.095	0.697	0.122	0.589	0.802	0.065	0.373	781	8	751	4	741	4	99

						Razões	isotópicas	5					Idades	(Ma)			
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	D.	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Como
				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z19m	0.018	0.220	97713.7	1.137	0.863	0.128	0.748	0.846	0.064	0.431	750	9	771	5	778	5	101
Z19b	0.065	0.212	27128.9	0.950	1.296	0.106	1.022	0.774	0.065	0.797	769	17	678	6	651	6	96
Z20n	0.157	0.123	11227.0	0.890	1.360	0.105	0.755	0.519	0.062	1.131	658	24	647	7	643	5	100
Z20b	0.008	0.125	216501.5	0.878	1.194	0.103	0.742	0.583	0.062	0.936	669	20	640	6	632	4	99
Z21n	0.002	0.289	632474.8	7.218	1.071	0.382	0.792	0.711	0.137	0.721	2190	13	2139	10	2086	14	98
Z21b	0.004	0.012	487502.0	0.870	0.964	0.104	0.651	0.626	0.061	0.712	630	15	636	5	637	4	100
Z22n	0.017	0.490	102710.1	1.128	1.549	0.118	1.192	0.758	0.069	0.989	911	20	767	8	719	8	94
Z23	0.015	0.277	116833.4	0.888	0.841	0.102	0.664	0.750	0.063	0.517	707	11	645	4	628	4	97
Z24n	0.061	0.013	29250.1	0.869	1.057	0.103	0.574	0.476	0.061	0.888	641	19	635	5	634	3	100
Z24b	0.033	0.093	54367.1	0.870	1.458	0.104	1.184	0.802	0.060	0.851	619	18	635	7	640	7	101
Z26	0.015	0.334	122868.0	0.752	1.075	0.091	0.962	0.885	0.060	0.480	611	10	570	5	559	5	98
Z27	0.037	0.178	47827.2	0.859	1.707	0.101	1.329	0.769	0.062	1.072	662	23	629	8	620	8	99
Z28	0.147	0.322	12115.6	0.819	0.783	0.096	0.617	0.741	0.062	0.483	677	10	608	4	589	3	97
Z25	0.014	0.503	125785.9	1.105	1.019	0.124	0.795	0.754	0.064	0.637	755	13	756	5	756	6	100
Z29	0.066	0.461	26296.9	1.667	4.682	0.151	3.406	0.726	0.080	3.213	1197	63	996	30	907	29	91
Z30	0.077	0.445	23108.9	0.854	1.876	0.100	1.477	0.780	0.062	1.156	664	25	627	9	616	9	98
Z31	0.010	0.227	172907.1	0.930	0.874	0.109	0.726	0.804	0.062	0.486	660	10	667	4	670	5	100
Z32	0.040	0.601	43519.8	1.054	3.586	0.114	2.464	0.684	0.067	2.606	832	54	731	19	699	16	96
Z34	0.009	0.156	185199.1	1.060	0.972	0.120	0.711	0.694	0.064	0.663	740	14	734	5	731	5	100
Z35	0.143	0.189	12372.8	0.937	1.162	0.106	0.969	0.820	0.064	0.641	740	14	671	6	651	6	97
Z36	0.029	0.221	60618.3	0.749	2.623	0.091	1.858	0.703	0.059	1.852	583	40	567	11	564	10	99
Z37	0.021	0.444	84976.4	0.870	1.288	0.101	0.895	0.671	0.062	0.927	681	20	636	6	623	5	98
Z38	0.026	0.329	69223.2	0.865	1.423	0.102	0.990	0.677	0.062	1.022	666	22	633	7	623	6	99
Z39	0.009	0.212	186540.5	0.896	1.009	0.106	0.705	0.659	0.062	0.721	660	15	650	5	647	4	100
Z40	0.019	0.423	91378.0	0.927	1.103	0.109	0.864	0.762	0.062	0.686	671	15	666	5	665	5	100

						Razões	isotópica	s					Idades	(Ma)			A /
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Corre
-F				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
Z41	0.025	0.220	71680.4	0.948	1.664	0.109	1.084	0.635	0.063	1.262	711	27	677	8	666	7	98
Z43	0.027	0.198	66161.2	0.838	1.167	0.098	0.831	0.685	0.062	0.819	676	18	618	5	602	5	97
Z44	0.018	0.172	98475.2	0.824	1.058	0.099	0.779	0.706	0.061	0.716	627	15	610	5	606	5	99
Z45	0.015	0.183	120748.8	1.018	1.231	0.120	0.920	0.727	0.062	0.818	666	18	713	6	728	6	102
Z46	0.032	0.018	55295.0	0.874	1.630	0.107	1.327	0.806	0.059	0.946	577	21	638	8	655	8	103
Z47	0.046	0.179	38689.4	0.860	1.872	0.101	1.202	0.629	0.062	1.436	659	31	630	9	622	7	99
Z48	0.008	0.094	233293.2	0.964	0.907	0.114	0.683	0.713	0.062	0.597	657	13	686	5	694	4	101
Z49	0.296	0.044	6010.2	0.839	1.343	0.095	0.782	0.549	0.064	1.091	733	23	618	6	588	4	95
Z50	0.068	0.479	25560.6	1.152	1.376	0.128	0.910	0.638	0.065	1.032	780	22	778	7	778	7	100
Z51	0.013	0.044	135917.6	0.821	1.062	0.100	0.748	0.669	0.059	0.754	585	16	608	5	615	4	101
Z52n	1.460	0.268	1213.4	0.874	3.974	0.100	1.672	0.473	0.063	3.605	712	75	638	19	617	10	97
Z52b	0.001	0.015	1348269.1	0.902	0.883	0.109	0.601	0.621	0.060	0.647	608	14	653	4	666	4	102
Z53	0.033	0.183	53739.3	0.963	1.443	0.114	1.311	0.904	0.061	0.603	645	13	685	7	697	9	102
Z54	0.011	0.281	165875.9	0.897	0.867	0.107	0.692	0.765	0.061	0.521	631	11	650	4	656	4	101
Z55	0.041	0.211	43173.3	0.825	1.668	0.097	1.182	0.696	0.061	1.177	654	25	611	8	599	7	98
Z56	0.021	0.195	84145.6	0.875	1.070	0.104	0.813	0.734	0.061	0.695	639	15	638	5	638	5	100
Z57	0.013	0.558	137996.8	0.894	0.857	0.106	0.708	0.797	0.061	0.483	650	10	648	4	648	4	100
Z58	0.008	0.249	227887.6	0.903	0.693	0.106	0.513	0.659	0.062	0.465	#	#	653	3	648	3	99

						Razões	isotópica	s					Idades	(Ma)			
Número do snot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
SP 01				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z02	0.0546	0.063	29215.1	5.190	1.35	0.283	1.27	0.941	0.133	0.45	2139	8	1851	11	1605	18	87
z03	0.0089	0.351	166997.1	7.286	1.24	0.387	1.10	0.876	0.137	0.58	2185	10	2147	11	2108	20	98
z04	0.0063	0.254	228608.7	11.278	1.01	0.448	0.87	0.844	0.183	0.52	2676	9	2546	9	2387	17	94
z05	0.0141	0.209	107819.9	6.696	1.03	0.359	0.86	0.821	0.135	0.56	2169	10	2072	9	1976	15	95
z06	0.0090	0.205	179094.8	5.469	1.21	0.274	0.94	0.765	0.145	0.75	2284	13	1896	10	1562	13	82
z07	0.0048	0.345	276357.8	17.189	1.06	0.571	0.88	0.809	0.219	0.60	2970	10	2945	10	2910	21	99
z08n	0.0149	0.301	100818.1	7.118	1.48	0.377	1.09	0.722	0.137	1.00	2189	17	2126	13	2062	19	97
z08b	0.0304	0.068	58338.0	0.870	1.10	0.101	0.89	0.789	0.062	0.65	681	14	636	5	623	5	98
z10	0.5883	0.113	3028.7	0.765	1.65	0.091	1.20	0.742	0.061	1.13	649	24	577	7	559	6	97
z11	0.0504	0.500	29548.1	7.575	1.92	0.392	1.43	0.735	0.140	1.29	2229	22	2182	17	2133	26	98
z12	0.0543	0.023	32600.9	0.869	2.02	0.103	1.45	0.709	0.061	1.41	639	30	635	10	634	9	100
z13	0.0169	0.385	85667.6	9.663	1.59	0.431	1.23	0.761	0.162	1.01	2482	17	2403	15	2312	24	96
z14	0.0173	0.310	90399.0	4.637	1.39	0.314	1.18	0.838	0.107	0.74	1748	14	1756	12	1763	18	100
z15	0.0041	0.163	411042.2	2.674	1.09	0.190	0.94	0.846	0.102	0.56	1658	10	1321	8	1124	10	85
z16b	0.0324	0.012	54566.9	0.858	1.59	0.102	1.16	0.716	0.061	1.09	634	23	629	7	628	7	100
z16n	0.0288	0.293	52409.6	7.078	1.73	0.371	1.27	0.727	0.138	1.16	2206	20	2121	15	2035	22	96
z17	0.0164	0.353	91240.7	7.215	1.39	0.383	1.15	0.819	0.137	0.78	2184	13	2138	12	2092	21	98
z19	0.0268	0.041	66055.0	0.890	1.94	0.101	1.67	0.858	0.064	0.99	734	21	646	9	621	10	96
z20	0.0130	0.336	114169.0	7.603	1.25	0.396	1.01	0.793	0.139	0.74	2218	13	2185	11	2150	18	98
z21	0.1357	0.089	13039.1	0.926	1.61	0.104	1.33	0.821	0.064	0.90	754	19	665	8	639	8	96
z22	0.0051	0.394	298247.9	5.903	1.06	0.349	0.91	0.842	0.123	0.55	1998	10	1962	9	1928	15	98
z23	0.2867	0.192	6002.2	1.728	1.36	0.154	1.18	0.857	0.082	0.68	1235	13	1019	9	921	10	90
z24	0.0222	0.543	67608.3	6.833	2.94	0.377	2.08	0.705	0.132	2.07	2119	36	2090	26	2061	37	99
z25n	0.0102	0.049	130973.6	19.243	1.93	0.554	1.66	0.858	0.252	0.98	3196	15	3054	19	2843	38	93

Tabela A.9 – Amostra SD-ML-01 - Quartzito do Complexo Paraíba do Sul (Terreno Paraíba do sul) - LG-IG-UnB.

						Razões	isotópica	s					Idades	(Ma)			
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	%
- F - F				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z25b	0.0788	0.001	22385.8	0.911	2.54	0.109	1.73	0.676	0.060	1.86	617	40	657	12	669	11	102
z26	0.0217	0.175	66137.3	10.477	2.33	0.446	1.97	0.843	0.170	1.24	2560	21	2478	22	2379	39	96
z27	0.0340	0.291	45563.6	5.920	2.09	0.329	1.72	0.815	0.131	1.20	2107	21	1964	18	1831	27	93
z29	0.0258	0.388	57699.0	7.062	2.09	0.393	1.71	0.816	0.130	1.19	2100	21	2119	19	2139	31	101
z30	0.0424	0.340	31418.9	11.479	4.02	0.553	2.80	0.694	0.151	2.89	2352	49	2563	38	2838	64	111
z31	0.1331	0.037	13176.6	1.555	4.30	0.120	3.02	0.699	0.094	3.07	1505	58	952	27	731	21	77
z32	0.0220	0.431	68697.3	6.364	1.79	0.366	1.32	0.732	0.126	1.20	2043	21	2027	16	2012	23	99
z33	0.0463	0.243	36835.5	2.146	1.33	0.171	1.10	0.816	0.091	0.75	1452	14	1164	9	1015	10	87
z35	2.3014	0.049	782.2	0.700	1.50	0.070	1.16	0.828	0.072	0.95	990	19	539	6	438	5	81
z36n	0.0078	0.432	196275.1	6.578	1.30	0.355	1.02	0.763	0.134	0.82	2155	14	2056	11	1959	17	95
z37	0.5309	0.095	3247.8	1.678	1.39	0.149	1.17	0.846	0.082	0.75	1234	15	1000	9	897	10	90
z38	0.2879	0.440	5793.7	3.076	1.06	0.208	0.89	0.822	0.107	0.58	1754	11	1427	8	1218	10	85
z40	0.0033	0.868	417175.7	13.030	1.06	0.509	0.88	0.808	0.186	0.60	2704	10	2682	10	2652	19	99
z41	0.0166	0.300	95419.0	5.464	2.61	0.293	2.35	0.897	0.135	1.15	2166	20	1895	22	1658	34	87
z43	0.9726	0.116	1831.7	0.992	4.25	0.090	2.83	0.699	0.080	3.17	1187	61	700	21	558	15	80
z44	0.0123	0.180	118978.0	7.336	1.57	0.414	1.28	0.805	0.128	0.92	2077	16	2153	14	2234	24	104
z46	0.0120	0.223	128247.6	5.792	1.24	0.339	0.96	0.759	0.124	0.78	2015	14	1945	11	1881	16	97
z47n	0.0256	0.602	59282.0	6.129	1.80	0.364	1.39	0.763	0.122	1.15	1986	20	1994	16	2002	24	100
z47b	0.0250	0.063	71421.5	0.710	1.35	0.089	1.10	0.806	0.058	0.78	516	17	545	6	552	6	101
z48	0.0037	0.273	414084.9	5.621	4.47	0.328	3.98	0.889	0.124	2.05	2016	36	1919	39	1831	63	95
z49	0.0655	0.688	21916.6	9.818	4.70	0.447	3.42	0.726	0.159	3.23	2447	55	2418	43	2384	68	99
z50	0.0252	0.478	55744.1	11.410	3.04	0.480	2.06	0.672	0.173	2.24	2582	37	2557	28	2526	43	99
z51n	0.0235	0.274	63908.1	6.952	1.54	0.375	1.06	0.673	0.134	1.12	2155	19	2105	14	2055	19	98
z51b	0.0172	0.219	87667.7	6.894	1.65	0.375	1.32	0.797	0.133	0.98	2144	17	2098	15	2052	23	98
z52	0.1448	0.082	11859.3	1.883	1.13	0.157	0.97	0.850	0.087	0.57	1364	11	1075	8	938	9	87

						Razões	isotópica	s					Idades	(Ma)			<i></i>
Número do spot	f 206	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	% Cone
				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²⁰⁶ Pb	abs	²³⁵ U	abs	²³⁸ U	abs	Conc.
z53	0.0190	0.412	78045.9	7.712	1.33	0.401	1.04	0.766	0.139	0.83	2220	14	2198	12	2174	19	99
z54	0.2020	0.077	8666.1	1.508	1.85	0.123	0.90	0.460	0.089	1.62	1396	31	934	11	750	6	80
z55	1.2266	0.416	1277.5	7.955	3.11	0.308	2.61	0.846	0.188	1.70	2721	28	2226	28	1729	39	78
z56	0.0221	0.212	67281.3	7.406	1.57	0.393	1.13	0.705	0.137	1.09	2185	19	2162	14	2137	21	99

Tabela A.10 – Amostra SM-MB-02 - Granada-biotita gnaisse do Grupo São Fidélis (Domínio Costeiro) – MULTILAB.

								Razões	isotópicas	S					Idades	(Ma)			0/
Número do snot	f 206	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%0
spor		pp	pp	PP····		²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 A	0.0015	55	107	215	0.50	2.6375	7.15	0.2243	6.99	0.98	0.0853	1.52	1305	91	1311	94	1322	20	99
002 A	0.0078	29	115	121	0.95	2.0282	4.41	0.1840	3.57	0.81	0.0799	2.58	1089	39	1125	50	1195	31	91
003 A	0.0014	33	59	130	0.46	2.7498	6.58	0.2301	6.44	0.98	0.0867	1.36	1335	86	1342	88	1353	18	99
004 A	0.0015	64	47	278	0.17	2.6032	3.38	0.2168	3.07	0.91	0.0871	1.42	1265	39	1302	44	1362	19	93
005 A	0.0024	80	150	265	0.57	5.3409	4.29	0.3387	3.89	0.91	0.1143	1.82	1881	73	1875	81	1870	34	101
006 A	0.0032	62	124	250	0.50	2.8389	4.55	0.2312	3.58	0.79	0.0890	2.81	1341	48	1366	62	1405	39	95
007 A	0.0014	47	106	111	0.96	5.1222	2.37	0.3232	2.13	0.90	0.1150	1.05	1805	38	1840	44	1879	20	96
008 A	0.0025	86	75	396	0.19	2.8803	6.21	0.2451	1.46	0.24	0.0852	6.04	1413	21	1377	86	1321	80	107
009 A	0.0018	40	99	160	0.62	2.9854	3.44	0.2459	3.16	0.92	0.0880	1.36	1417	45	1404	48	1383	19	102
001 C	0.0391	17	71	74	0.95	2.2107	18.90	0.1855	17.73	0.94	0.0864	6.54	1097	194	1184	224	1348	88	81
002 C	0.0281	14	33	78	0.43	1.8530	19.56	0.1650	18.33	0.94	0.0814	6.81	985	181	1064	208	1232	84	80
003 C	0.0218	14	26	74	0.35	2.6562	11.45	0.2138	8.96	0.78	0.0901	7.13	1249	112	1316	151	1428	102	87
004 C	0.0099	57	87	153	0.56	5.5656	14.72	0.3156	14.45	0.98	0.1279	2.78	1768	256	1911	281	2069	57	85
005 C	0.0081	56	97	154	0.63	5.2649	13.36	0.2947	12.94	0.97	0.1296	3.32	1665	215	1863	249	2092	70	80
006 C	0.0138	38	107	119	0.90	5.3531	7.75	0.3486	7.25	0.94	0.1114	2.72	1928	140	1877	145	1822	49	106

								Razões	isotópica	s					Idades	(Ma)			A /
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spoi		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
007 C	0.0082	75	165	87	1.91	14.5380	9.81	0.5319	9.72	0.99	0.1982	1.30	2750	267	2785	273	2812	37	98
008 C	0.0104	48	264	196	1.35	2.3051	13.89	0.1909	13.25	0.95	0.0876	4.18	1126	149	1214	169	1373	57	82
009 C	0.0195	27	74	77	0.96	4.3197	14.71	0.2787	14.27	0.97	0.1124	3.56	1585	226	1697	250	1839	66	86
001 D	0.0070	79	144	219	0.66	5.2642	6.76	0.3388	6.49	0.96	0.1127	1.88	1881	122	1863	126	1843	35	102
002 D	0.0113	32	70	118	0.59	3.4478	6.80	0.2680	2.93	0.43	0.0933	6.14	1531	45	1515	103	1494	92	102
003 D	0.0165	56	94	213	0.44	2.5380	6.74	0.2210	6.09	0.90	0.0833	2.89	1287	78	1283	86	1276	37	101
004 D	0.0093	60	37	197	0.19	3.8467	5.62	0.2928	5.01	0.89	0.0953	2.55	1656	83	1603	90	1533	39	108
005 D	0.0087	31	38	146	0.26	2.2552	13.31	0.1984	12.64	0.95	0.0825	4.18	1167	147	1198	160	1256	53	93
006 D	0.0219	15	30	75	0.40	1.8705	14.82	0.1695	13.78	0.93	0.0800	5.46	1009	139	1071	159	1198	65	84
007 D	0.0108	44	120	178	0.67	2.2023	4.92	0.2008	3.61	0.73	0.0796	3.35	1179	43	1182	58	1186	40	99
008 D	0.0034	91	152	236	0.65	4.6160	3.36	0.2956	2.47	0.74	0.1133	2.27	1669	41	1752	59	1853	42	90
009 D	0.0124	38	49	166	0.30	2.3284	6.27	0.2141	5.29	0.84	0.0789	3.37	1251	66	1221	77	1169	39	107
001 E	0.0046	45	84	59	1.43	12.2603	3.73	0.4759	3.57	0.96	0.1868	1.09	2509	90	2625	98	2715	29	92
002 E	0.0014	76	153	339	0.45	2.0015	3.70	0.1865	3.11	0.84	0.0779	2.00	1102	34	1116	41	1143	23	96
003 E	0.0058	35	95	84	1.13	4.7342	3.36	0.3055	2.75	0.82	0.1124	1.93	1718	47	1773	60	1839	35	93
004 E	0.0043	137	37	566	0.06	2.7409	3.07	0.2224	2.32	0.76	0.0894	2.00	1295	30	1340	41	1412	28	92
005 E	0.0021	63	165	149	1.10	4.2647	2.66	0.2871	2.09	0.78	0.1077	1.65	1627	34	1687	45	1761	29	92
006 E	0.0020	66	104	150	0.70	5.5943	1.54	0.3258	1.00	0.65	0.1245	1.17	1818	18	1915	30	2022	24	90
007 E	0.0024	40	22	122	0.18	3.5566	4.70	0.2618	4.36	0.93	0.0985	1.75	1499	65	1540	72	1596	28	94
008 E	0.0009	92	73	255	0.28	4.3213	6.16	0.2913	5.99	0.97	0.1076	1.44	1648	99	1697	104	1759	25	94
009 E	0.0027	46	1	424	0.00	0.8098	5.88	0.0966	5.10	0.87	0.0608	2.92	595	30	602	35	631	18	94
001 F	0.0031	65	52	204	0.25	3.4883	5.70	0.2731	4.14	0.73	0.0926	3.91	1556	64	1525	87	1481	58	105
002 F	0.0023	97	170	489	0.35	1.8798	6.50	0.1803	4.38	0.67	0.0756	4.80	1069	47	1074	70	1085	52	99
003 F	0.0020	105	268	409	0.66	2.1746	6.47	0.2003	4.67	0.72	0.0787	4.49	1177	55	1173	76	1166	52	101
004 F	0.0052	391	465	716	0.65	12.4058	6.17	0.4685	5.86	0.95	0.1921	1.91	2477	145	2636	163	2760	53	90
005 F	0.0064	67	22	120	0.18	12.2101	4.79	0.4906	3.89	0.81	0.1805	2.80	2573	100	2621	126	2657	74	97
006 F	0.0048	58	379	199	1.90	2.0048	7.63	0.1949	5.80	0.76	0.0746	4.96	1148	67	1117	85	1058	53	108
007 F	0.0107	127	131	1068	0.12	1.7023	14.73	0.1727	5.76	0.39	0.0715	13.56	1027	59	1009	149	972	132	106

								Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Pb ppm	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70
spor		PP	ppm	PP····		²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
008 F	0.0040	40	60	149	0.41	2.5627	6.97	0.2242	5.37	0.77	0.0829	4.45	1304	70	1290	90	1267	56	103
009 F	0.0010	164	191	472	0.40	3.3075	6.31	0.2532	5.10	0.81	0.0947	3.71	1455	74	1483	93	1523	56	96
001 G	0.0068	142	147	665	0.22	3.0325	20.02	0.2891	15.95	0.80	0.0761	12.09	1637	261	1416	283	1097	133	149
002 G	0.0066	319	326	1548	0.21	1.9051	13.18	0.1814	11.67	0.89	0.0762	6.13	1075	125	1083	143	1100	67	98
003 G	0.0034	228	512	806	0.64	2.5726	9.39	0.2433	7.39	0.79	0.0767	5.79	1404	104	1293	121	1113	64	126
004 G	0.0032	269	341	731	0.47	4.3466	9.22	0.3360	7.95	0.86	0.0938	4.67	1868	149	1702	157	1504	70	124
005 G	0.0171	67	46	215	0.21	3.2544	15.08	0.2675	13.45	0.89	0.0882	6.81	1528	206	1470	222	1388	95	110
006 G	0.0018	393	654	1166	0.56	2.8315	10.97	0.2479	9.86	0.90	0.0828	4.82	1428	141	1364	150	1265	61	113
007 G	0.0059	347	528	933	0.57	4.1280	12.70	0.3195	11.63	0.92	0.0937	5.11	1787	208	1660	211	1502	77	119
008 G	0.0026	188	151	667	0.23	2.3919	8.52	0.2216	6.77	0.79	0.0783	5.18	1290	87	1240	106	1154	60	112
009 G	0.0058	354	285	951	0.30	4.8055	11.95	0.3107	11.00	0.92	0.1122	4.68	1744	192	1786	213	1835	86	95

Fonte: A Autora (2018).

Tabela A.11 – Amostra THE-21A - Granada-biotita gnaisse do Grupo São Fidélis (Domínio Costeiro) – MULTILAB.

								Razões	isotópica	s					Idades	(Ma)			0/
Número do Snot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	<i>7</i> 0
Бры		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 A	0.0021	55	58	159	0.36	3.4249	16.88	0.2260	16.19	0.96	0.1099	4.79	1314	213	1510	255	1798	86	73
002 A	0.0013	102	134	288	0.46	5.1786	5.15	0.3348	3.66	0.71	0.1122	3.63	1861	68	1849	95	1835	67	101
003 A	0.0005	249	524	682	0.77	4.7022	5.38	0.3212	3.67	0.68	0.1062	3.93	1796	66	1768	95	1735	68	104
004 A	0.0012	75	78	188	0.42	5.9715	6.20	0.3656	5.31	0.86	0.1185	3.21	2009	107	1972	122	1933	62	104
005 A	0.0015	96	196	309	0.64	3.4408	5.91	0.2735	4.08	0.69	0.0912	4.27	1559	64	1514	89	1451	62	107
006 A	0.0010	132	164	378	0.43	4.1406	7.02	0.2803	5.94	0.85	0.1071	3.75	1593	95	1662	117	1751	66	91
007 A	0.0010	130	223	332	0.67	5.0123	5.08	0.3365	3.65	0.72	0.1080	3.53	1870	68	1821	93	1767	62	106
008 A	0.0007	150	141	332	0.42	6.2407	4.35	0.3598	3.10	0.71	0.1258	3.05	1981	61	2010	87	2040	62	97
009 A	0.0004	261	268	721	0.37	4.4861	5.72	0.3011	4.53	0.79	0.1081	3.49	1697	77	1728	99	1767	62	96

								Razões	isotópica	s					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
Зры		ppm	ppm	ррш		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 B	0.0009	74	71	170	0.42	6.2588	4.30	0.3611	4.15	0.96	0.1257	1.13	1987	82	2013	87	2039	23	97
002 B	0.0005	181	141	285	0.49	13.8233	3.17	0.5141	3.13	0.99	0.1950	0.50	2674	84	2738	87	2785	14	96
003 B	0.0003	185	245	482	0.51	4.7558	1.92	0.3156	1.64	0.86	0.1093	0.99	1768	29	1777	34	1788	18	99
004 B	0.0015	85	167	756	0.22	0.8773	3.92	0.1042	3.25	0.83	0.0611	2.18	639	21	640	25	642	14	100
005 B	0.0009	91	105	232	0.45	5.7412	3.06	0.3507	2.93	0.96	0.1187	0.88	1938	57	1938	59	1937	17	100
006 B	0.0072	31	54	68	0.79	9.5201	4.78	0.4664	1.02	0.21	0.1480	4.67	2468	25	2389	114	2323	108	106
007 B	0.0013	52	69	119	0.58	6.3143	2.07	0.3771	1.89	0.91	0.1214	0.84	2063	39	2020	42	1977	17	104
008 B	0.0006	92	89	160	0.56	10.2144	1.49	0.4525	1.28	0.86	0.1637	0.77	2406	31	2454	37	2494	19	96
009 B	0.0016	39	62	88	0.71	6.2363	5.99	0.3750	5.88	0.98	0.1206	1.14	2053	121	2010	120	1965	23	104
001 C	0.0017	46	126	102	1.24	5.6139	2.24	0.3410	1.99	0.89	0.1194	1.02	1891	38	1918	43	1947	20	97
002 C	0.0012	47	34	130	0.26	5.7007	2.75	0.3465	2.49	0.91	0.1193	1.17	1918	48	1931	53	1946	23	99
003 C	0.0012	54	81	161	0.51	4.2750	3.61	0.2941	3.43	0.95	0.1054	1.13	1662	57	1689	61	1722	19	97
004 C	0.0019	52	63	143	0.44	4.8717	2.23	0.3204	2.02	0.91	0.1103	0.93	1792	36	1797	40	1804	17	99
005 C	0.0013	69	100	190	0.53	4.8185	3.33	0.3228	2.65	0.80	0.1083	2.02	1803	48	1788	60	1770	36	102
006 C	0.0007	115	103	331	0.31	4.7248	2.43	0.3136	2.28	0.94	0.1093	0.84	1758	40	1772	43	1787	15	98
007 C	0.0010	100	212	346	0.61	4.0219	5.58	0.2677	1.04	0.19	0.1089	5.48	1529	16	1639	91	1782	98	86
008 C	0.0010	113	602	171	3.51	6.0220	1.82	0.3542	1.54	0.85	0.1233	0.96	1955	30	1979	36	2005	19	98
009 C	0.0023	28	58	103	0.57	2.6189	3.36	0.2165	2.96	0.88	0.0877	1.59	1264	37	1306	44	1376	22	92
001 D	0.0012	34	29	56	0.51	11.7797	3.92	0.4907	3.82	0.98	0.1741	0.86	2574	98	2587	101	2598	22	99
002 D	0.0026	39	78	85	0.92	6.5652	4.67	0.3793	4.49	0.96	0.1255	1.30	2073	93	2055	96	2036	26	102
003 D	0.0025	22	28	54	0.51	6.0644	3.43	0.3702	3.12	0.91	0.1188	1.44	2030	63	1985	68	1939	28	105
004 D	0.0982	35	27	603	0.05	1.6249	24.16	0.0752	7.62	0.32	0.1568	22.93	467	36	980	237	2421	555	19
005 D	0.0020	42	66	90	0.73	7.5363	3.92	0.4062	3.82	0.98	0.1346	0.86	2198	84	2177	85	2158	19	102
006 D	0.0013	59	160	147	1.09	4.7603	3.68	0.3221	3.51	0.95	0.1072	1.11	1800	63	1778	65	1752	19	103
007 D	0.0009	49	42	155	0.27	4.7094	5.52	0.3292	4.96	0.90	0.1037	2.44	1835	91	1769	98	1692	41	108
008 D	0.0011	74	56	109	0.51	16.3313	3.43	0.5839	3.38	0.99	0.2029	0.59	2965	100	2896	99	2849	17	104
009 D	0.0075	12	24	27	0.90	6.7865	5.82	0.3817	5.60	0.96	0.1289	1.57	2084	117	2084	121	2084	33	100
001 E	0.0024	27	59	62	0.94	5.6937	3.44	0.3377	2.97	0.86	0.1223	1.74	1876	56	1930	66	1990	35	94

								Razões	isotópica	s					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
Бры		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
002 E	0.0016	46	42	105	0.40	6.7143	3.14	0.3598	2.79	0.89	0.1354	1.44	1981	55	2075	65	2169	31	91
003 E	0.0029	47	71	111	0.64	5.9220	3.02	0.3548	2.58	0.85	0.1210	1.57	1958	50	1964	59	1972	31	99
004 E	0.0013	64	72	200	0.36	4.2582	2.77	0.2883	2.24	0.81	0.1071	1.64	1633	36	1685	47	1751	29	93
005 E	0.0009	132	74	1383	0.05	0.8697	6.61	0.1044	6.02	0.91	0.0604	2.73	640	39	635	42	619	17	103
006 E	0.0013	53	127	132	0.96	4.8379	2.54	0.3197	1.95	0.77	0.1098	1.64	1788	35	1792	46	1795	29	100
007 E	0.0016	32	73	86	0.85	4.6885	2.74	0.3002	2.16	0.79	0.1133	1.68	1692	37	1765	48	1853	31	91
008 E	0.0030	33	48	90	0.54	5.1713	4.18	0.3205	3.71	0.89	0.1170	1.94	1792	66	1848	77	1911	37	94
009 E	0.0050	9	1	80	0.01	0.9336	6.65	0.1114	5.68	0.85	0.0608	3.46	681	39	670	45	631	22	108
001 F	0.0012	46	49	67	0.74	13.1873	2.84	0.4928	2.62	0.92	0.1941	1.10	2583	68	2693	77	2777	31	93
002 F	0.0024	52	37	166	0.22	5.8348	3.80	0.3611	2.98	0.78	0.1172	2.35	1987	59	1952	74	1914	45	104
003 F	0.0017	144	90	1383	0.07	0.8965	5.76	0.1057	4.93	0.86	0.0615	2.98	648	32	650	37	657	20	99
004 F	0.0110	74	371	374	0.99	2.6508	5.60	0.1950	4.89	0.87	0.0986	2.73	1148	56	1315	74	1598	44	72
005 F	0.0011	52	43	138	0.31	6.1913	2.57	0.3465	2.12	0.83	0.1296	1.44	1918	41	2003	51	2093	30	92
006 F	0.0022	34	17	335	0.05	0.7989	6.46	0.0953	5.76	0.89	0.0608	2.93	587	34	596	39	633	19	93
007 F	0.0015	38	39	224	0.17	3.3581	5.27	0.2519	4.23	0.80	0.0967	3.15	1448	61	1495	79	1561	49	93
008 F	0.0004	151	129	242	0.53	12.5752	3.89	0.4712	3.30	0.85	0.1936	2.06	2489	82	2648	103	2773	57	90
009 F	0.0030	22	28	54	0.51	6.0222	3.95	0.3640	3.08	0.78	0.1200	2.48	2001	62	1979	78	1956	48	102
001 G	0.0009	90	111	234	0.48	5.0406	3.41	0.3067	3.24	0.95	0.1192	1.07	1725	56	1826	62	1944	21	89
002 G	0.0011	63	127	159	0.80	5.1111	4.32	0.3144	4.16	0.96	0.1179	1.14	1762	73	1838	79	1925	22	92
003 G	0.0016	29	34	97	0.35	4.0865	3.66	0.2795	2.77	0.76	0.1060	2.40	1589	44	1652	61	1733	42	92
004 G	0.0015	91	79	914	0.09	0.8632	5.61	0.1024	5.38	0.96	0.0611	1.58	628	34	632	35	644	10	98
005 G	0.0006	88	111	236	0.47	4.9369	2.55	0.3086	2.43	0.95	0.1160	0.76	1734	42	1809	46	1896	14	91
006 G	0.1302	72	122	1466	0.08	0.9409	6.63	0.0309	5.16	0.78	0.2206	4.17	196	10	673	45	2985	124	7
007 G	0.0166	22	30	65	0.46	8.2286	1.78	0.4257	1.28	0.72	0.1402	1.24	2286	29	2256	40	2230	28	103
008 G	0.0012	49	56	133	0.42	5.2882	1.62	0.3306	1.27	0.78	0.1160	1.00	1841	23	1867	30	1896	19	97
009 G	0.0029	26	23	188	0.12	1.2698	4.79	0.1361	4.07	0.85	0.0677	2.53	823	33	832	40	858	22	96
001 H	0.0003	167	185	240	0.77	15.4805	1.60	0.5506	0.98	0.61	0.2039	1.26	2828	28	2845	46	2858	36	99
002 H	0.0038	18	33	42	0.79	5.5356	2.33	0.3240	2.00	0.86	0.1239	1.20	1809	36	1906	44	2013	24	90

								Razões	isotópica	s					Idades	(Ma)			0/
Número do Snot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Spor		ppm	ppm	Ppm		²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
003 H	0.0018	53	102	126	0.81	5.2926	2.07	0.3330	1.77	0.85	0.1153	1.09	1853	33	1868	39	1884	20	98
004 H	0.0025	34	68	93	0.73	4.6483	2.62	0.3088	2.20	0.84	0.1092	1.43	1735	38	1758	46	1786	25	97
005 H	0.0008	83	67	792	0.08	0.7714	3.11	0.0940	2.37	0.76	0.0595	2.01	579	14	581	18	586	12	99
006 H	0.0013	30	32	68	0.48	6.5944	4.39	0.3565	4.21	0.96	0.1342	1.27	1965	83	2059	90	2153	27	91
007 H	0.0020	71	96	232	0.41	5.5405	4.48	0.3261	4.32	0.96	0.1232	1.18	1819	79	1907	85	2004	24	91
008 H	0.0015	125	86	1180	0.07	0.9071	4.19	0.1076	2.34	0.56	0.0611	3.48	659	15	656	27	644	22	102
009 H	0.0005	130	149	169	0.88	16.2584	1.55	0.5598	1.38	0.89	0.2107	0.70	2866	39	2892	45	2911	20	98
001 I	0.0005	85	92	233	0.40	5.2268	2.04	0.3267	1.83	0.90	0.1160	0.91	1823	33	1857	38	1896	17	96
002 I	0.0030	15	56	69	0.81	1.9487	3.18	0.1480	2.28	0.72	0.0955	2.22	890	20	1098	35	1538	34	58
003 I	0.0005	111	42	1104	0.04	0.8801	2.96	0.1059	2.45	0.83	0.0603	1.66	649	16	641	19	614	10	106
004 I	0.0032	12	22	32	0.68	5.4304	4.70	0.3335	4.16	0.89	0.1181	2.19	1855	77	1890	89	1928	42	96
005 I	0.0009	102	56	992	0.06	0.8100	5.63	0.0980	5.46	0.97	0.0600	1.35	602	33	602	34	603	8	100
006 I	0.0015	31	22	97	0.23	5.0955	6.56	0.3205	6.00	0.91	0.1153	2.65	1792	107	1835	120	1885	50	95
007 I	0.0010	121	532	251	2.12	4.5885	1.36	0.3098	1.04	0.76	0.1074	0.88	1740	18	1747	24	1756	16	99
008 I	0.0022	41	80	347	0.23	0.9780	4.19	0.1149	3.78	0.90	0.0617	1.81	701	26	693	29	665	12	105
009 I	0.0012	24	19	53	0.35	7.1694	3.11	0.3841	2.87	0.92	0.1354	1.19	2095	60	2133	66	2169	26	97

Fonte: A Autora (2018).

Tabela A.12 – Amostra ARG-03 - Quartzito milonítico do Grupo Raposos (Domínio Juiz de Fora) – MULTILAB.

								Razões	isotópica	s					Idades	(Ma)			0/
Número do spot	f 206	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Rho	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70 Conc.
						²³⁵ U	[%]	²³⁸ U	[%]	-	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	cone
001 A	0.1234	7	47	61	0.77	0.9549	4.80	0.1134	4.01	0.83	0.0611	2.64	693	28	681	33	641	17	108
002 A	0.0077	15	12	137	0.09	0.8823	3.73	0.1033	2.73	0.73	0.0619	2.54	634	17	642	24	672	17	94
003 A	0.0069	13	12	121	0.10	0.8874	4.39	0.1072	3.77	0.86	0.0600	2.26	656	25	645	28	605	14	108
004 A	0.0037	84	15	192	0.08	20.4597	12.06	0.6116	5.49	0.46	0.2426	10.73	3076	169	3113	375	3137	337	98
005 A	0.0009	85	155	194	0.80	6.5238	2.60	0.3610	2.44	0.94	0.1311	0.90	1987	48	2049	53	2112	19	94

								Razões	isotópica	S					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
006 A	0.0057	11	13	113	0.12	0.8218	3.74	0.0992	2.67	0.71	0.0601	2.62	610	16	609	23	606	16	101
007 A	0.0006	133	173	322	0.54	6.0435	5.37	0.3432	5.34	0.99	0.1277	0.61	1902	102	1982	106	2067	13	92
008 A	0.0014	85	81	235	0.35	7.3724	8.35	0.3435	8.01	0.96	0.1556	2.33	1904	153	2158	180	2409	56	79
009 A	0.0048	14	7	140	0.05	0.8071	3.20	0.0979	2.27	0.71	0.0598	2.26	602	14	601	19	597	13	101
001 B	0.0105	27	24	137	0.18	3.5488	13.91	0.2652	4.21	0.30	0.0970	13.26	1517	64	1538	214	1568	208	97
002 B	0.0004	169	64	636	0.10	6.4717	7.28	0.2688	7.26	1.00	0.1746	0.53	1535	111	2042	149	2603	14	59
003 B	0.0007	166	109	465	0.23	7.0892	3.28	0.3312	3.02	0.92	0.1552	1.28	1844	56	2123	70	2404	31	77
004 B	0.6240	10	3	14	0.22	25.0117	8.52	0.2762	8.46	0.99	0.6567	1.04	1572	133	3309	282	4639	48	34
005 B	0.0015	43	64	106	0.61	5.8689	1.73	0.3313	1.55	0.89	0.1285	0.78	1844	29	1957	34	2077	16	89
006 B	0.0010	116	27	596	0.05	3.5121	1.92	0.2548	1.02	0.53	0.1000	1.62	1463	15	1530	29	1624	26	90
007 B	0.0013	175	227	410	0.55	19.2874	2.40	0.6502	1.49	0.62	0.2152	1.88	3229	48	3056	73	2945	55	110
008 B	0.0021	38	56	118	0.47	5.8485	4.27	0.3360	4.15	0.97	0.1262	1.00	1867	78	1954	83	2046	20	91
009 B	0.0046	69	25	318	0.08	4.9941	4.82	0.3081	3.78	0.79	0.1176	2.98	1731	66	1818	88	1919	57	90
001 C	0.0229	26	36	95	0.38	5.3155	37.64	0.3912	8.64	0.23	0.0985	36.63	2129	184	1871	704	1597	585	133
002 C	0.0004	157	130	327	0.40	10.6288	4.50	0.4385	4.47	0.99	0.1758	0.59	2344	105	2491	112	2614	15	90
003 C	0.0005	213	32	602	0.05	15.7043	2.63	0.5153	2.23	0.85	0.2210	1.40	2679	60	2859	75	2988	42	90
004 C	0.0019	64	87	140	0.62	7.7113	4.50	0.4125	4.41	0.98	0.1356	0.88	2226	98	2198	99	2171	19	103
005 C	0.0016	70	49	439	0.11	1.0817	3.53	0.1242	1.80	0.51	0.0631	3.04	755	14	744	26	713	22	106
006 C	0.0005	166	98	358	0.27	10.3513	2.26	0.4385	2.15	0.95	0.1712	0.70	2344	50	2467	56	2570	18	91
007 C	0.0007	176	329	458	0.72	5.7713	2.46	0.3408	2.18	0.89	0.1228	1.14	1890	41	1942	48	1998	23	95
008 C	0.0004	208	360	485	0.74	7.6858	0.95	0.3636	0.60	0.63	0.1533	0.74	1999	12	2195	21	2383	18	84
009 C	0.0060	20	30	44	0.69	7.4077	4.97	0.3959	4.80	0.97	0.1357	1.28	2150	103	2162	107	2173	28	99
001 D	0.0054	22	16	50	0.32	7.9595	3.77	0.4210	3.46	0.92	0.1371	1.50	2265	78	2226	84	2191	33	103
002 D	0.0068	10	24	97	0.25	0.7830	4.61	0.0953	3.50	0.76	0.0596	3.00	587	21	587	27	589	18	100
003 D	0.0525	2	19	20	0.96	0.8489	4.34	0.1014	3.33	0.77	0.0607	2.77	622	21	624	27	630	17	99
004 D	0.0048	24	31	51	0.61	8.1763	3.16	0.4339	2.69	0.85	0.1367	1.66	2323	62	2251	71	2186	36	106
005 D	0.0110	6	8	64	0.12	0.8744	4.64	0.1041	2.98	0.64	0.0609	3.56	638	19	638	30	636	23	100
006 D	0.0051	20	4	147	0.03	2.0921	10.55	0.1580	7.62	0.72	0.0961	7.29	946	72	1146	121	1549	113	61

								Razões	isotópica	s					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ррш		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
007 D	0.0156	8	2	16	0.13	15.1073	3.06	0.5284	2.77	0.91	0.2074	1.29	2735	76	2822	86	2885	37	95
008D	0.0299	6	10	15	0.69	5.6463	5.16	0.2979	4.89	0.95	0.1375	1.67	1681	82	1923	99	2195	37	77
009 D	0.0788	1	5	7	0.63	2.3101	14.55	0.1846	13.29	0.91	0.0908	5.93	1092	145	1215	177	1442	86	76
001 E	0.0179	6	37	57	0.65	0.7273	4.87	0.0916	3.29	0.67	0.0576	3.60	565	19	555	27	515	19	110
002 E	0.0007	213	146	284	0.52	22.5396	3.16	0.6342	2.92	0.92	0.2578	1.21	3166	92	3207	101	3233	39	98
003 E	0.0034	30	51	58	0.87	7.5806	4.54	0.4037	4.38	0.96	0.1362	1.19	2186	96	2183	99	2179	26	100
004 E	0.0034	31	21	271	0.08	0.9401	3.63	0.1120	3.04	0.84	0.0609	1.98	684	21	673	24	635	13	108
005 E	0.0067	13	24	125	0.19	0.7810	4.46	0.0959	3.22	0.72	0.0590	3.08	591	19	586	26	569	18	104
006 E	0.0010	97	15	164	0.09	14.5172	3.21	0.5164	3.11	0.97	0.2039	0.80	2684	83	2784	89	2858	23	94
007 E	0.0043	39	7	69	0.11	13.8709	1.74	0.4908	1.52	0.88	0.2050	0.84	2574	39	2741	48	2866	24	90
008 E	0.0008	126	254	220	1.15	14.9340	1.31	0.5297	1.17	0.89	0.2045	0.59	2740	32	2811	37	2862	17	96
009 E	0.0031	96	166	330	0.50	7.0888	3.36	0.3861	2.80	0.83	0.1332	1.87	2105	59	2123	71	2140	40	98
001 F	0.0040	12	16	132	0.12	0.7840	3.43	0.0961	1.96	0.57	0.0592	2.81	591	12	588	20	574	16	103
002 F	0.0033	43	92	149	0.62	5.7827	3.73	0.3336	3.22	0.86	0.1257	1.88	1856	60	1944	72	2039	38	91
003 F	0.0108	6	18	61	0.30	0.7692	4.45	0.0975	1.32	0.30	0.0572	4.25	600	8	579	26	500	21	120
004 F	0.0039	26	27	68	0.40	6.0398	4.56	0.3462	4.48	0.98	0.1265	0.87	1917	86	1982	90	2050	18	93
005 F	0.0127	7	8	55	0.15	2.6427	4.68	0.2108	3.38	0.72	0.0909	3.23	1233	42	1313	61	1445	47	85
006 F	0.0109	5	5	37	0.14	2.3971	5.80	0.1620	5.65	0.97	0.1073	1.30	968	55	1242	72	1755	23	55
007 F	0.0036	25	16	72	0.23	7.7584	4.08	0.3921	3.92	0.96	0.1435	1.14	2133	84	2203	90	2270	26	94
008 F	0.0022	26	28	62	0.45	6.9133	1.27	0.3683	0.33	0.26	0.1361	1.23	2021	7	2100	27	2179	27	93
009 F	0.0011	93	94	177	0.53	11.7864	3.93	0.4894	1.83	0.47	0.1747	3.48	2568	47	2588	102	2603	91	99
001 G	0.0118	11	131	92	1.43	0.7528	4.79	0.0916	3.30	0.69	0.0596	3.48	565	19	570	27	589	21	96
002 G	0.0129	14	26	149	0.18	0.8083	3.78	0.0985	2.47	0.65	0.0595	2.86	606	15	602	23	585	17	104
003 G	0.0006	127	148	329	0.45	6.4711	3.84	0.3697	3.67	0.96	0.1270	1.12	2028	74	2042	78	2056	23	99
004 G	0.0009	143	131	455	0.29	5.9786	4.73	0.3497	4.61	0.97	0.1240	1.09	1933	89	1973	93	2015	22	96
005 G	0.0040	26	40	76	0.53	5.6730	3.57	0.3144	3.05	0.85	0.1309	1.85	1762	54	1927	69	2110	39	84
006 G	0.0039	34	85	65	1.32	7.2358	3.67	0.3815	3.33	0.91	0.1376	1.53	2083	69	2141	78	2197	34	95
007 G	0.0176	5	51	41	1.24	0.7640	4.70	0.0959	2.74	0.58	0.0578	3.82	590	16	576	27	522	20	113

									Razões	isotópica	s					Idades	(Ma)			0/
Ni	imero do <i>spot</i>	f 206	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	Dha	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70 Carra
	spor		pp	ppm	PP		²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
008	3 G	0.0018	54	69	121	0.57	7.4476	3.54	0.3977	3.34	0.94	0.1358	1.17	2159	72	2167	77	2174	25	99
009	9 G	0.1688	76	118	347	0.34	5.4399	5.92	0.3318	5.89	0.99	0.1189	0.66	1847	109	1891	112	1940	13	95

Tabela A.13 – Amostra ARG-04 - Quartzito milonítico do Grupo Raposos - Unidade Inferior (Domínio Juiz de Fora) – MULTILAB.

								Razões	isotópica	s					Idades	(Ma)			0/
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	ы	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
spor		ppm	ppin	PPm		²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 A	0.0035	28	65	52	1.26	7.2785	3.99	0.3848	3.86	0.97	0.1372	1.04	2099	81	2146	86	2192	23	96
002 A	0.0039	28	13	102	0.13	5.5383	14.76	0.3302	14.29	0.97	0.1217	3.69	1839	263	1907	281	1981	73	93
003 A	0.0014	82	260	179	1.46	5.7334	2.59	0.3406	2.10	0.81	0.1221	1.51	1890	40	1936	50	1987	30	95
004 A	0.0009	61	74	110	0.67	13.2744	4.88	0.5223	3.35	0.69	0.1843	3.55	2709	91	2699	132	2692	96	101
005 A	0.0008	166	90	227	0.39	17.8071	2.57	0.5581	2.48	0.96	0.2314	0.68	2859	71	2979	77	3062	21	93
006 A	0.0020	34	37	63	0.58	11.7775	8.38	0.4756	8.36	1.00	0.1796	0.58	2508	210	2587	217	2649	15	95
007 A	0.0100	14	6	140	0.04	0.8447	3.86	0.1025	3.27	0.85	0.0598	2.05	629	21	622	24	595	12	106
008 A	0.0032	29	77	62	1.24	7.9466	2.57	0.3426	2.36	0.92	0.1682	1.03	1899	45	2225	57	2540	26	75
009 A	0.0035	17	27	170	0.16	0.7775	3.04	0.0954	1.96	0.65	0.0591	2.32	587	12	584	18	572	13	103
001 B	0.0006	382	683	837	0.82	6.1756	2.83	0.3603	2.47	0.87	0.1243	1.38	1983	49	2001	57	2019	28	98
002 B	0.0010	205	347	435	0.80	6.6793	2.02	0.3580	1.57	0.78	0.1353	1.28	1973	31	2070	42	2168	28	91
003 B	0.0043	42	53	376	0.14	0.9076	5.32	0.1086	4.60	0.86	0.0606	2.68	664	31	656	35	626	17	106
004 B	0.0091	18	14	172	0.08	0.8677	6.31	0.1048	4.96	0.79	0.0600	3.91	643	32	634	40	604	24	106
005 B	0.0010	131	199	325	0.61	6.5329	3.91	0.3604	3.63	0.93	0.1315	1.45	1984	72	2050	80	2118	31	94
006 B	0.0006	274	207	501	0.41	11.0383	1.80	0.4552	1.44	0.80	0.1759	1.08	2418	35	2526	46	2614	28	93
007 B	0.0102	33	102	318	0.32	0.9033	5.43	0.1080	4.69	0.86	0.0607	2.75	661	31	654	36	628	17	105
008 B	0.0006	248	132	286	0.46	25.9049	2.79	0.6648	2.72	0.97	0.2826	0.64	3286	89	3343	93	3378	22	97
009 B	0.0007	217	237	421	0.56	8.5760	2.45	0.4276	2.09	0.85	0.1454	1.27	2295	48	2294	56	2293	29	100

								Razões	isotópica	s					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 C	0.0008	443	1258	1108	1.14	5.5280	3.26	0.3304	2.86	0.88	0.1213	1.56	1840	53	1905	62	1976	31	93
002 C	0.0101	46	55	106	0.52	6.6285	4.58	0.3769	3.67	0.80	0.1276	2.73	2062	76	2063	94	2065	56	100
003 C	0.0561	4	2	45	0.04	0.9451	16.36	0.1047	7.70	0.47	0.0654	14.43	642	49	676	111	789	114	81
004 C	0.0430	9	93	76	1.22	0.8719	9.75	0.1013	6.21	0.64	0.0624	7.52	622	39	637	62	689	52	90
005 C	0.0010	202	482	445	1.08	6.0349	2.80	0.3296	2.35	0.84	0.1328	1.53	1836	43	1981	55	2135	33	86
006 C	0.0090	21	149	152	0.97	0.7606	7.52	0.0933	6.43	0.85	0.0591	3.90	575	37	574	43	572	22	100
007 C	0.0078	20	134	177	0.76	0.8184	7.68	0.0994	6.23	0.81	0.0597	4.49	611	38	607	47	593	27	103
008 C	0.0036	77	116	145	0.80	7.4640	4.41	0.3969	4.05	0.92	0.1364	1.75	2155	87	2169	96	2182	38	99
009 C	0.0005	464	269	1249	0.22	5.5729	3.02	0.3364	2.32	0.77	0.1202	1.93	1869	43	1912	58	1958	38	95
001 D	0.0013	164	333	324	1.03	7.0249	3.61	0.3844	3.25	0.90	0.1325	1.58	2097	68	2115	76	2132	34	98
002 D	0.0016	98	208	247	0.84	5.7750	2.74	0.3240	2.53	0.92	0.1293	1.05	1809	46	1943	53	2088	22	87
003 D	0.0074	17	6	145	0.04	0.8129	4.79	0.0982	3.87	0.81	0.0600	2.83	604	23	604	29	605	17	100
004 D	0.0009	209	488	567	0.86	4.9945	2.97	0.2804	2.76	0.93	0.1292	1.11	1593	44	1818	54	2087	23	76
005 D	0.0022	81	336	186	1.81	5.1868	3.75	0.3134	3.50	0.94	0.1200	1.32	1757	62	1850	69	1957	26	90
006 D	0.0072	47	108	148	0.73	5.7937	5.99	0.3268	5.80	0.97	0.1286	1.52	1823	106	1945	117	2078	32	88
007 D	0.0181	15	18	27	0.68	15.6177	7.26	0.5584	7.17	0.99	0.2028	1.15	2860	205	2854	207	2849	33	100
008 D	0.0127	16	37	157	0.23	0.7690	4.57	0.0933	3.44	0.75	0.0598	3.01	575	20	579	26	595	18	97
009 D	0.0551	5	42	40	1.04	0.7900	5.30	0.0974	3.85	0.73	0.0589	3.65	599	23	591	31	562	20	107
001 E	0.0014	186	139	446	0.31	6.6796	2.36	0.3628	2.03	0.86	0.1335	1.19	1995	41	2070	49	2145	26	93
002 E	0.0674	3	17	27	0.63	0.8336	15.53	0.0965	8.55	0.55	0.0627	12.96	594	51	616	96	697	90	85
003 E	0.0252	7	51	70	0.73	0.7507	4.96	0.0921	2.95	0.59	0.0591	3.99	568	17	569	28	572	23	99
004 E	0.0022	79	105	155	0.68	12.9677	3.57	0.5123	3.32	0.93	0.1836	1.30	2667	89	2677	96	2685	35	99
005 E	0.0064	29	36	78	0.46	8.1850	4.15	0.3639	3.72	0.90	0.1631	1.83	2001	74	2252	93	2488	46	80
006 E	0.0023	92	213	219	0.97	6.5637	2.68	0.3594	2.40	0.90	0.1325	1.18	1979	48	2054	55	2131	25	93
007 E	0.0053	49	19	102	0.19	15.1662	4.33	0.5311	4.13	0.95	0.2071	1.33	2746	113	2826	122	2883	38	95
008 E	0.0052	36	26	75	0.34	13.1949	4.27	0.4956	4.14	0.97	0.1931	1.07	2595	107	2694	115	2769	30	94
009 E	0.0051	19	113	170	0.67	0.7501	4.44	0.0931	3.17	0.71	0.0584	3.11	574	18	568	25	546	17	105
001 F	0.0294	11	51	48	1.07	3.6831	10.66	0.2398	10.16	0.95	0.1114	3.21	1386	141	1568	167	1822	58	76

								Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	ы	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
002 F	0.0042	42	32	141	0.22	5.0307	1.67	0.2984	1.15	0.68	0.1223	1.22	1683	19	1825	31	1990	24	85
003 F	0.0158	11	24	33	0.72	6.2530	6.35	0.3673	6.20	0.98	0.1235	1.37	2017	125	2012	128	2007	27	100
004 F	0.0837	3	18	28	0.64	0.8765	6.26	0.1093	5.13	0.82	0.0581	3.59	669	34	639	40	535	19	125
005 F	0.0309	6	18	15	1.25	7.8743	16.32	0.4340	15.71	0.96	0.1316	4.44	2324	365	2217	362	2119	94	110
006 F	0.0406	4	36	37	0.95	0.7637	13.92	0.1000	10.11	0.73	0.0554	9.57	614	62	576	80	429	41	143
007 F	0.0010	157	221	288	0.77	11.4254	4.55	0.4708	4.48	0.99	0.1760	0.78	2487	112	2559	116	2616	20	95
008 F	0.0029	43	80	129	0.62	4.9272	3.22	0.2868	3.06	0.95	0.1246	1.00	1626	50	1807	58	2023	20	80
009 F	0.0127	11	125	88	1.42	0.8015	3.32	0.0992	2.40	0.72	0.0586	2.29	609	15	598	20	553	13	110
001 G	0.0006	195	204	338	0.60	11.5095	1.68	0.4817	1.50	0.89	0.1733	0.76	2535	38	2565	43	2590	20	98
002 G	0.0119	10	27	100	0.27	0.7929	4.26	0.0961	3.18	0.75	0.0598	2.83	592	19	593	25	597	17	99
003 G	0.0018	63	161	145	1.11	5.8179	2.76	0.3400	2.43	0.88	0.1241	1.30	1887	46	1949	54	2016	26	94
004 G	0.0013	144	420	444	0.95	4.1419	4.11	0.2879	3.64	0.89	0.1044	1.91	1631	59	1663	68	1703	33	96
005 G	0.0017	103	88	269	0.33	7.3865	3.72	0.3839	3.55	0.95	0.1395	1.11	2095	74	2159	80	2221	25	94
006 G	0.0065	21	33	64	0.52	6.4332	4.24	0.3597	4.13	0.97	0.1297	0.95	1981	82	2037	86	2094	20	95
007 G	0.0099	13	19	71	0.27	3.8551	8.78	0.2357	8.61	0.98	0.1186	1.73	1364	117	1604	141	1936	34	70
008 G	0.0880	2	4	12	0.34	2.0192	14.51	0.1296	12.86	0.89	0.1130	6.73	786	101	1122	163	1848	124	43
009 G	0.0172	5	8	19	0.43	3.6905	13.03	0.2010	12.73	0.98	0.1331	2.76	1181	150	1569	204	2140	59	55

Tabela A.14 – Amostra THE-17 - Quartzito impuro do Grupo Raposos (Domínio Juiz de Fora) – MULTILAB.

								Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Pb ppm	Th		Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 A	0.0017	27.48	55.58	266.2	0.21	0.7680	2.84	0.0942	1.84	0.65	0.0591	2.16	580	11	579	16	572	12	101
002 A	0.0018	23.89	113.8	202	0.56	0.7901	3.91	0.0964	3.34	0.85	0.0594	2.03	593	20	591	23	583	12	102
003 A	0.0006	74.57	41.16	808.6	0.05	0.8015	2.72	0.0976	2.17	0.80	0.0595	1.65	601	13	598	16	587	10	102

								Razões	isotópica	S					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spoi		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
004 A	0.0042	19.4	94.89	166.1	0.57	0.7344	4.76	0.0896	4.33	0.91	0.0594	1.98	553	24	559	27	583	12	95
005 A	0.0043	45.02	378.6	527	0.72	0.5508	4.52	0.0670	4.10	0.91	0.0596	1.92	418	17	446	20	589	11	71
006 A	0.0009	67.05	58.29	686.6	0.08	0.8234	2.91	0.0999	2.33	0.80	0.0597	1.74	614	14	610	18	594	10	103
007 A	0.0014	48.15	86.4	482.6	0.18	0.7621	2.92	0.0924	2.36	0.81	0.0598	1.71	570	13	575	17	596	10	96
008 A	0.0028	23.4	102.4	218	0.47	0.7673	5.99	0.0945	5.60	0.93	0.0589	2.13	582	33	578	35	564	12	103
009 A	0.0037	24.99	107	233	0.46	0.7357	4.67	0.0907	3.80	0.81	0.0588	2.71	560	21	560	26	561	15	100
001 B	0.0154	14.60	76.15	134.71	0.57	0.7837	9.12	0.0956	7.05	0.77	0.0595	5.79	589	41	588	54	584	34	101
002 B	0.0035	39.37	114.22	402.57	0.28	0.8198	8.69	0.0991	7.78	0.90	0.0600	3.88	609	47	608	53	603	23	101
003 B	0.0015	80.50	198.88	810.16	0.25	0.7600	7.34	0.0918	6.43	0.88	0.0600	3.53	566	36	574	42	605	21	94
004 B	0.0036	33.58	52.83	359.06	0.15	0.8353	10.14	0.1005	9.38	0.93	0.0603	3.85	617	58	617	63	613	24	101
005 B	0.0020	67.50	179.98	634.76	0.28	0.7932	7.60	0.0953	6.73	0.89	0.0603	3.53	587	40	593	45	616	22	95
006 B	0.0034	37.32	192.28	348.70	0.55	0.7877	7.81	0.0950	6.75	0.86	0.0601	3.93	585	39	590	46	607	24	96
007 B	0.0037	51.37	959.07	680.34	1.41	0.6249	15.61	0.0727	15.11	0.97	0.0623	3.92	452	68	493	77	686	27	66
008 B	0.0051	27.23	153.17	252.94	0.61	0.9054	11.60	0.1059	9.61	0.83	0.0620	6.51	649	62	655	76	674	44	96
009 B	0.0015	70.69	70.55	712.07	0.10	0.7912	8.00	0.0952	7.12	0.89	0.06	3.64	586	42	592	47	614	22	96
001 C	0.0023	105.1	155.9	159.5	0.98	12.6488	3.34	0.5178	3.07	0.92	0.1772	1.33	2690	83	2654	89	2627	35	102
002 C	0.0051	31.61	83.71	317.2	0.26	0.7752	7.07	0.0949	6.16	0.87	0.0592	3.47	584	36	583	41	576	20	101
003 C	0.0082	41.25	121.5	193.1	0.63	2.2987	4.72	0.2087	3.67	0.78	0.0799	2.96	1222	45	1212	57	1194	35	102
004 C	0.0026	92.69	90.29	979.1	0.09	0.7827	8.18	0.0963	7.50	0.92	0.0589	3.25	593	44	587	48	565	18	105
005 C	0.0116	31.04	105.5	323.2	0.33	0.7782	6.87	0.0963	6.03	0.88	0.0586	3.28	593	36	584	40	553	18	107
006 C	0.0039	36.74	172.3	333.5	0.52	0.7471	7.73	0.0929	6.74	0.87	0.0583	3.78	573	39	567	44	541	20	106
007 C	0.0076	36.76	240.7	327	0.74	0.7697	7.05	0.0957	6.09	0.86	0.0584	3.55	589	36	580	41	543	19	108
008 C	0.0021	107.4	95.78	220.5	0.43	10.9857	5.56	0.4711	5.33	0.96	0.1691	1.57	2489	133	2522	140	2549	40	98
009 C	0.0079	21.44	80.02	180.6	0.44	0.8762	7.23	0.1067	5.78	0.80	0.0595	4.34	654	38	639	46	587	25	111
001 D	0.0056	9.112	41.23	94.35	0.44	0.8459	8.32	0.1007	8.02	0.96	0.0609	2.20	618	50	622	52	637	14	97
002 D	0.0082	8.443	83.23	116.2	0.72	0.9025	6.51	0.1074	6.04	0.93	0.0609	2.42	658	40	653	43	637	15	103
003 D	0.0027	25	21	278	0.08	0.8239	3.36	0.1005	2.76	0.82	0.0594	1.93	618	17	610	21	583	11	106
004 D	0.0148	10	37	106	0.35	0.8333	5.11	0.1007	2.32	0.45	0.0600	4.56	619	14	615	31	604	28	102

								Razões	isotópica	s					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
005 D	0.0031	34	58	123	0.47	5.5171	4.30	0.3587	3.95	0.92	0.1116	1.70	1976	78	1903	82	1825	31	108
006 D	0.0032	20	32	212	0.15	0.8688	6.38	0.1072	6.16	0.97	0.0588	1.67	656	40	635	41	560	9	117
007 D	0.0032	30	33	324	0.10	0.8932	5.40	0.1094	5.05	0.93	0.0592	1.92	669	34	648	35	575	11	116
008 D	0.0120	7	54	121	0.45	0.5405	6.49	0.0649	5.61	0.86	0.0604	3.26	405	23	439	28	619	20	65
009 D	0.0163	5	35	71	0.50	0.6767	14.56	0.0780	13.32	0.92	0.0630	5.87	484	64	525	76	707	41	68
001 E	0.0006	163	196	361	0.54	6.7203	2.59	0.3689	2.28	0.88	0.1321	1.24	2024	46	2075	54	2126	26	95
002 E	0.0044	14	89	134	0.67	0.7399	5.68	0.0900	4.96	0.87	0.0596	2.76	556	28	562	32	590	16	94
003 E	0.0011	69	75	734	0.10	0.7246	5.95	0.0874	5.41	0.91	0.0601	2.49	540	29	553	33	607	15	89
004 E	0.0023	62	456	616	0.74	0.8015	5.40	0.0958	4.77	0.88	0.0607	2.52	590	28	598	32	627	16	94
005 E	0.0040	66	1459	988	1.48	0.5881	7.98	0.0674	7.13	0.89	0.0633	3.60	420	30	470	37	718	26	59
006 E	0.0010	53	83	576	0.14	0.6930	6.32	0.0844	5.81	0.92	0.0596	2.50	522	30	535	34	588	15	89
007 E	0.0021	46	173	465	0.37	0.7414	6.90	0.0903	6.33	0.92	0.0596	2.73	557	35	563	39	588	16	95
008 E	0.0043	136	116	1461	0.08	0.7146	5.76	0.0867	5.23	0.91	0.0598	2.41	536	28	547	32	596	14	90
009 E	0.0030	31	118	324	0.36	0.7246	5.96	0.0882	5.29	0.89	0.0596	2.76	545	29	553	33	589	16	92
001 F	0.0019	116	483	936	0.52	0.7358	7.97	0.0903	6.91	0.87	0.0591	3.98	558	39	560	45	570	23	98
002 F	0.0052	70	384	558	0.69	0.8163	7.54	0.0978	6.36	0.84	0.0605	4.04	602	38	606	46	622	25	97
003 F	0.0025	116	533	986	0.54	0.7641	7.81	0.0930	6.70	0.86	0.0596	4.02	573	38	576	45	588	24	97
004 F	0.0061	67	233	461	0.50	1.0474	7.50	0.1205	6.35	0.85	0.0630	3.98	733	47	728	55	710	28	103
005 F	0.0031	83	250	604	0.41	0.8589	7.38	0.1008	6.23	0.85	0.0618	3.94	619	39	630	46	668	26	93
006 F	0.0093	90	268	681	0.39	0.9875	10.06	0.1071	7.47	0.74	0.0669	6.74	656	49	697	70	834	56	79
007 F	0.0015	136	253	1064	0.24	0.7205	9.97	0.0879	9.14	0.92	0.0595	3.99	543	50	551	55	585	23	93
008 F	0.0019	350	913	3347	0.27	0.7749	7.79	0.0936	6.72	0.86	0.0601	3.94	577	39	583	45	606	24	95
009 F	0.0015	127	149	1172	0.13	0.7410	7.98	0.0913	6.90	0.86	0.0589	4.02	563	39	563	45	563	23	100
001 G	0.0024	59	261	557	0.47	0.7166	5.57	0.0874	4.76	0.85	0.0595	2.90	540	26	549	31	584	17	93
002 G	0.0029	58	291	500	0.58	0.7280	6.21	0.0888	5.49	0.88	0.0595	2.91	548	30	555	35	584	17	94
003 G	0.0033	40	138	380	0.36	0.7016	6.85	0.0861	6.17	0.90	0.0591	2.98	533	33	540	37	570	17	93
004 G	0.0048	35	156	308	0.51	0.7414	5.36	0.0906	4.31	0.80	0.0594	3.19	559	24	563	30	581	19	96
005 G	0.0024	43	170	388	0.44	0.7839	5.59	0.0957	4.63	0.83	0.0594	3.13	589	27	588	33	581	18	101

								Razões	isotópica	S					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
006 G	0.0045	31	223	315	0.71	0.8594	4.67	0.0998	3.74	0.80	0.0625	2.79	613	23	630	29	690	19	89
007 G	0.0016	43	96	419	0.23	0.7393	4.87	0.0911	3.79	0.78	0.0588	3.05	562	21	562	27	561	17	100
008 G	0.0024	46	183	392	0.47	0.8170	6.25	0.0996	5.57	0.89	0.0595	2.85	612	34	606	38	585	17	105
009 G	0.0015	71	239	656	0.36	0.8034	5.34	0.0984	4.50	0.84	0.0592	2.87	605	27	599	32	575	17	105
001 H	0.0023	84	783	755	1.04	0.8759	7.22	0.1023	7.02	0.97	0.0621	1.69	628	44	639	46	678	11	93
002 H	0.0023	26	109	223	0.49	0.7901	4.14	0.0961	3.41	0.82	0.0596	2.34	591	20	591	24	591	14	100
003 H	0.0009	62	478	504	0.95	0.7850	6.52	0.0946	6.23	0.96	0.0602	1.90	583	36	588	38	609	12	96
004 H	0.0007	64	93	614	0.15	0.7769	3.34	0.0937	2.80	0.84	0.0601	1.82	578	16	584	19	608	11	95
005 H	0.0014	61	128	602	0.21	0.7698	3.03	0.0921	2.31	0.76	0.0606	1.96	568	13	580	18	625	12	91
006 H	0.0003	64	69	598	0.11	0.8196	4.13	0.0991	3.57	0.86	0.0600	2.08	609	22	608	25	603	13	101
007 H	0.0010	52	236	462	0.51	0.8476	4.48	0.1017	4.03	0.90	0.0604	1.96	625	25	623	28	619	12	101
008 H	0.0015	28	129	244	0.53	0.7675	5.21	0.0943	4.63	0.89	0.0590	2.39	581	27	578	30	568	14	102
009 H	0.0008	36	52	358	0.14	0.7569	4.38	0.0928	3.81	0.87	0.0592	2.16	572	22	572	25	573	12	100
001 I	0.0024	39	196	360	0.54	0.7300	6.63	0.0885	6.35	0.96	0.0598	1.91	547	35	557	37	598	11	91
002 I	0.0022	35	194	344	0.56	0.7286	4.04	0.0889	3.25	0.80	0.0594	2.40	549	18	556	22	583	14	94
003 I	0.0057	28	115	279	0.41	0.7291	4.57	0.0888	3.80	0.83	0.0596	2.53	548	21	556	25	588	15	93
004 I	0.0027	47	113	318	0.35	1.4702	6.57	0.1479	6.33	0.96	0.0721	1.76	889	56	918	60	989	17	90
005 I	0.0021	98	512	520	0.99	1.7510	5.22	0.1729	4.96	0.95	0.0735	1.64	1028	51	1028	54	1027	17	100
006 I	0.0055	34	281	368	0.76	0.8179	5.86	0.0963	5.50	0.94	0.0616	2.04	593	33	607	36	659	13	90
007 I	0.0121	19	108	201	0.54	0.7606	3.53	0.0924	2.95	0.84	0.0597	1.93	570	17	574	20	593	11	96
008 I	0.0060	21	112	198	0.56	0.7259	5.40	0.0887	4.43	0.82	0.0593	3.09	548	24	554	30	580	18	95
009 I	0.0033	32	181	296	0.61	0.7961	3.29	0.0974	2.45	0.75	0.0593	2.19	599	15	595	20	577	13	104
001 J	0.0032	20	81	173	0.47	0.7318	6.10	0.0888	5.78	0.95	0.0598	1.94	548	32	558	34	596	12	92
002 J	0.0006	75	66	238	0.28	5.9528	4.94	0.3487	4.58	0.93	0.1238	1.85	1929	88	1969	97	2012	37	96
003 J	0.0013	46	26	472	0.05	0.7694	3.21	0.0939	2.60	0.81	0.0594	1.88	579	15	579	19	582	11	99
004 J	0.0015	27	68	272	0.25	0.7595	4.42	0.0932	3.93	0.89	0.0591	2.01	574	23	574	25	571	11	101
005 J	0.0019	26	50	270	0.19	0.7583	3.56	0.0927	2.86	0.80	0.0593	2.12	571	16	573	20	579	12	99
006 J	0.0019	31	58	339	0.17	0.8190	5.88	0.0996	5.41	0.92	0.0596	2.30	612	33	607	36	590	14	104

									Razões	isotópica	s					Idades	(Ma)			0/
N	úmero do snot	f 206	Pb ppm	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70
	spor		ppm	Ppm	ppin		²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
00)7 J	0.0024	24	100	236	0.42	0.7693	3.78	0.0944	3.12	0.83	0.0591	2.13	582	18	579	22	571	12	102
00)8 J	0.0015	32	104	309	0.34	0.7730	3.62	0.0944	3.01	0.83	0.0594	2.02	581	17	581	21	582	12	100
00)9 J	0.0017	33	95	332	0.28	0.7393	3.03	0.0910	2.27	0.75	0.0589	2.00	561	13	562	17	564	11	100

								Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI É	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70
spor		ppm	ppm	PPm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
001 A	0.0114	9	23	90	0.25	0.7956	4.99	0.0966	4.24	0.85	0.0597	2.63	595	25	594	30	594	16	100
002 A	0.0017	30	24	304	0.08	0.7902	3.09	0.0954	2.18	0.70	0.0600	2.20	588	13	591	18	605	13	97
003 A	0.0149	8	78	68	1.15	0.7632	5.24	0.0965	1.88	0.36	0.0574	4.89	594	11	576	30	506	25	117
004 A	0.0013	58	148	543	0.27	0.8721	3.47	0.1028	2.50	0.72	0.0615	2.40	631	16	637	22	658	16	96
005 A	0.0023	87	62	763	0.08	0.8732	2.39	0.1016	1.59	0.67	0.0623	1.78	624	10	637	15	686	12	91
006 A	0.0013	61	176	578	0.30	0.8600	6.09	0.1013	5.65	0.93	0.0616	2.28	622	35	630	38	659	15	94
007 A	0.0068	18	35	181	0.20	0.7538	6.19	0.0937	3.50	0.57	0.0583	5.11	577	20	570	35	543	28	106
008 A	0.0015	49	294	401	0.73	0.8546	3.50	0.1016	2.56	0.73	0.0610	2.39	624	16	627	22	639	15	98
009 A	0.0014	37	73	365	0.20	0.8730	4.78	0.1044	4.26	0.89	0.0606	2.18	640	27	637	30	626	14	102
001 B	0.0080	120	341	1013	0.34	1.0118	4.17	0.1138	1.87	0.45	0.0645	3.73	695	13	710	30	758	28	92
002 B	0.0347	4	32	32	1.00	0.7289	8.32	0.0931	4.60	0.55	0.0568	6.93	574	26	556	46	484	34	118
003 B	0.0011	120	200	1148	0.17	0.8111	3.76	0.0976	3.05	0.81	0.0603	2.20	600	18	603	23	614	14	98
004 B	0.0040	32	216	280	0.77	0.7586	3.51	0.0939	2.26	0.64	0.0586	2.69	578	13	573	20	553	15	105
005 B	0.0025	200	195	1758	0.11	1.0226	4.54	0.1186	3.92	0.86	0.0625	2.30	723	28	715	33	692	16	104
006 B	0.0278	11	57	96	0.60	1.0241	4.05	0.1055	2.31	0.57	0.0704	3.32	647	15	716	29	940	31	69
007 B	0.0014	58	584	420	1.39	0.8442	5.21	0.1018	4.72	0.91	0.0601	2.20	625	30	621	32	608	13	103
008 B	0.0265	5	32	43	0.74	0.7514	6.61	0.0974	3.57	0.54	0.0559	5.56	599	21	569	38	450	25	133

Tabela A.15 – Amostra SA-ML-28 - Granada-sillimanita gnaisse do Grupo Paraíba do Sul – MULTILAB.

								Razões	isotópica	s					Idades	(Ma)			
Número do	f 206	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho ^e	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
009 B	0.0143	6	28	51	0.55	0.7805	8.62	0.0976	2.97	0.34	0.0580	8.10	600	18	586	51	530	43	113
001 C	0.0280	3	17	28	0.61	0.7982	8.10	0.0962	2.24	0.28	0.0602	7.78	592	13	596	48	611	48	97
002 C	0.0022	62	657	443	1.48	0.8242	3.97	0.0991	2.80	0.71	0.0603	2.81	609	17	610	24	616	17	99
003 C	0.0050	17	42	151	0.28	0.7926	12.30	0.0971	12.02	0.98	0.0592	2.59	598	72	593	73	574	15	104
004 C	0.0011	51	76	474	0.16	0.8104	3.22	0.0979	2.35	0.73	0.0601	2.21	602	14	603	19	605	13	99
005 C	0.0031	25	101	228	0.44	0.7767	4.36	0.0938	3.42	0.78	0.0600	2.71	578	20	584	25	605	16	96
006 C	0.0068	27	28	246	0.12	0.8849	4.22	0.1019	1.43	0.34	0.0630	3.98	626	9	644	27	707	28	89
007 C	0.0045	18	64	159	0.40	0.8217	3.63	0.1009	2.69	0.74	0.0591	2.44	620	17	609	22	570	14	109
008 C	0.0029	33	130	305	0.43	0.7784	3.15	0.0940	2.00	0.63	0.0601	2.44	579	12	585	18	605	15	96
009 C	0.0006	208	803	1535	0.52	0.9113	3.92	0.1086	3.42	0.87	0.0609	1.92	664	23	658	26	635	12	105
001 D	0.0154	5	22	39	0.57	0.8701	5.80	0.1042	4.22	0.73	0.0606	3.98	639	27	636	37	624	25	102
002 D	0.0030	94	121	1055	0.11	0.9638	6.22	0.1122	5.67	0.91	0.0623	2.56	685	39	685	43	685	18	100
003 D	0.0026	44	201	418	0.48	0.8750	5.00	0.1039	4.39	0.88	0.0611	2.39	637	28	638	32	643	15	99
004 D	0.0331	4	18	31	0.58	0.7716	12.92	0.0990	6.45	0.50	0.0565	11.19	608	39	581	75	474	53	128
005 D	0.0028	34	62	349	0.18	0.8237	4.96	0.0990	4.22	0.85	0.0603	2.60	609	26	610	30	615	16	99
006 D	0.0025	48	125	522	0.24	0.9146	6.33	0.1088	5.97	0.94	0.0610	2.11	666	40	660	42	638	13	104
007 D	0.0132	8	63	72	0.87	0.7882	5.51	0.0966	2.57	0.47	0.0592	4.87	595	15	590	32	573	28	104
008 D	0.0157	6	36	48	0.74	0.8061	6.93	0.1015	2.59	0.37	0.0576	6.43	623	16	600	42	514	33	121
009 D	0.0032	49	679	394	1.73	0.8849	5.27	0.1007	3.91	0.74	0.0637	3.53	619	24	644	34	733	26	84
001 E	0.0027	50	131	455	0.29	0.8241	4.96	0.0980	4.44	0.90	0.0610	2.21	602	27	610	30	640	14	94
002 E	0.0078	12	37	104	0.35	1.0180	6.29	0.1213	5.42	0.86	0.0609	3.19	738	40	713	45	634	20	116
003 E	0.0532	3	17	26	0.67	0.9017	18.72	0.1102	6.38	0.34	0.0594	17.59	674	43	653	122	580	102	116
004 E	0.0073	21	29	219	0.13	0.9563	6.86	0.1135	6.12	0.89	0.0611	3.11	693	42	681	47	644	20	108
005 E	0.0282	6	10	61	0.16	0.9753	5.96	0.1117	3.39	0.57	0.0633	4.90	683	23	691	41	720	35	95
006 E	0.0015	96	41	1258	0.03	0.9003	6.13	0.1077	5.85	0.95	0.0606	1.82	659	39	652	40	626	11	105
007 E	0.0039	27	13	315	0.04	0.9212	7.06	0.1096	6.73	0.95	0.0610	2.15	670	45	663	47	638	14	105
008 E	0.0191	9	23	89	0.26	0.8983	3.34	0.1060	1.81	0.54	0.0614	2.81	650	12	651	22	655	18	99
009 E	0.0039	15	22	152	0.14	0.8085	5.86	0.0983	5.46	0.93	0.0597	2.14	604	33	602	35	591	13	102

								Razões	isotópica	5					Idades	(Ma)			0/
Número do	f 206ª	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
15A-1	•			•	1.16	4.9920	0.31	0.3112	0.02	0.06	0.1181	0.00	1745	96	1813	53	1925	19	95
15A-2					0.39	9.9900	0.61	0.4433	0.03	0.05	0.1636	0.00	2365	120	2432	58	2492	27	95
15A-3					0.32	0.9100	0.06	0.0968	0.01	0.10	0.0689	0.00	595	35	656	30	890	37	96
15A-4					0.58	6.9700	0.43	0.3791	0.02	0.05	0.1372	0.00	2072	110	2107	55	2191	28	95
15A-5					0.44	7.3240	0.45	0.3985	0.03	0.06	0.1345	0.00	2162	110	2151	55	2157	28	95
15A-6					0.14	1.3800	0.14	0.1168	0.01	0.07	0.0822	0.00	709	53	847	57	1213	67	96
15A-7					0.67	5.3200	0.33	0.3104	0.02	0.06	0.1256	0.00	1742	95	1869	53	2036	28	95
15A-8					0.21	0.7506	0.05	0.0895	0.01	0.12	0.0614	0.00	552	33	568	27	650	35	95
15A-9					0.50	0.7170	0.04	0.0892	0.01	0.13	0.0589	0.00	551	33	549	26	563	35	94
15A-10					0.71	6.8380	0.42	0.3756	0.02	0.05	0.1326	0.00	2055	110	2090	55	2132	28	95
15A-11					0.70	6.6390	0.41	0.3568	0.02	0.05	0.1354	0.00	1966	110	2063	55	2168	28	95
15A-12					0.46	0.7537	0.05	0.0922	0.01	0.12	0.0595	0.00	568	34	570	27	585	35	94
15A-13					0.63	6.9280	0.42	0.3761	0.02	0.05	0.1339	0.00	2058	110	2101	54	2148	28	95
15A-14					0.39	6.3100	0.42	0.3451	0.02	0.05	0.1323	0.00	1906	110	2005	65	2128	29	95
15A-15					0.20	0.7557	0.05	0.0925	0.01	0.12	0.0593	0.00	571	34	571	27	576	35	94
15A-16					0.31	18.6020	1.10	0.5575	0.03	0.03	0.2416	0.00	2856	140	3021	59	3130	25	96
15A-17					1.01	5.6020	0.34	0.3352	0.02	0.06	0.1214	0.00	1863	100	1915	54	1975	28	95
15A-18					0.15	1.8200	0.14	0.1372	0.01	0.07	0.0948	0.00	827	52	1033	49	1503	46	97
15A-19					0.06	0.9200	0.06	0.1005	0.01	0.10	0.0660	0.00	617	37	659	32	799	40	95
15A-20					0.52	5.6100	0.34	0.3269	0.02	0.06	0.1245	0.00	1823	98	1917	53	2021	28	95
15A-21					0.35	0.7453	0.05	0.0920	0.01	0.13	0.0588	0.00	567	34	565	26	559	34	94
15A-22					0.23	6.3400	0.40	0.3362	0.02	0.05	0.1365	0.00	1868	100	2019	51	2178	36	95
15A-23					0.47	10.5100	0.74	0.3900	0.03	0.04	0.1962	0.00	2110	130	2448	80	2793	29	95
15A-24					0.40	2.6400	0.33	0.1660	0.02	0.05	0.1020	0.00	975	85	1175	87	1564	85	95
15A-25					0.37	6.4700	0.43	0.3557	0.02	0.05	0.1321	0.00	1956	110	2027	66	2125	29	95
15A-26					0.33	6.7600	0.46	0.3510	0.02	0.05	0.1398	0.00	1931	120	2068	67	2223	28	95
15A-27					0.25	4.5800	0.31	0.2550	0.02	0.06	0.1310	0.00	1458	92	1728	61	2111	28	96

Tabela A.16 – Amostra BP-JE-15A – Quartzito impuro do Grupo Raposos (Domínio Juiz de Fora) -UND.

									Razões	isotópicas	5					Idades	(Ma)			0/
Número do	f 206ª	Pb	T	Ch Draw	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%0
spoi		ppm	հե	pm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
15A-28						0.21	15.0800	0.91	0.5181	0.03	0.04	0.2120	0.00	2691	140	2820	58	2920	26	95
15A-29						0.16	7.2100	0.72	0.3250	0.03	0.04	0.1473	0.01	1780	130	1982	120	2250	100	94
15A-30						0.26	2.3400	0.26	0.1437	0.01	0.04	0.1087	0.01	861	61	1140	77	1670	110	96
15A-31						0.12	5.9300	0.40	0.3311	0.02	0.06	0.1304	0.00	1838	110	1952	58	2101	29	95
15A-33						0.90	0.7749	0.05	0.0947	0.01	0.12	0.0596	0.00	584	34	582	27	588	35	94
15A-34						0.51	6.4600	0.43	0.3581	0.02	0.05	0.1310	0.00	1968	110	2028	61	2110	28	95
15A-35						0.51	0.7482	0.05	0.0926	0.01	0.13	0.0590	0.00	571	34	567	26	564	35	94
15A-36						0.41	4.0700	0.42	0.2480	0.02	0.05	0.1089	0.00	1400	110	1499	92	1723	64	94
15A-37						0.96	0.7627	0.05	0.0905	0.01	0.12	0.0615	0.00	558	33	575	27	652	37	95
15A-38						0.32	0.7621	0.05	0.0940	0.01	0.13	0.0590	0.00	579	34	575	27	567	35	94
15A-39						0.14	4.5500	0.38	0.2720	0.02	0.06	0.1178	0.00	1533	110	1677	77	1910	40	94
15A-42						0.23	3.9900	0.38	0.2330	0.02	0.05	0.1185	0.00	1334	100	1549	82	1917	43	95
15A-43						0.38	7.7220	0.47	0.4002	0.03	0.05	0.1400	0.00	2169	110	2197	56	2227	27	95
15A-44						0.18	0.7731	0.05	0.0919	0.01	0.12	0.0614	0.00	567	34	582	28	650	36	95
15A-45						0.33	5.7030	0.36	0.3210	0.02	0.06	0.1296	0.00	1794	99	1928	51	2092	28	95
15A-46						0.18	0.7276	0.04	0.0881	0.01	0.12	0.0604	0.00	544	32	555	26	612	35	95
15A-47						0.09	1.1560	0.08	0.1133	0.01	0.09	0.0733	0.00	691	43	772	39	1009	44	96
15A-48						0.28	0.7735	0.05	0.0911	0.01	0.12	0.0623	0.00	562	34	581	27	684	39	95
15A-49						0.34	6.2820	0.38	0.3467	0.02	0.06	0.1318	0.00	1919	100	2016	53	2121	28	95
15A-50						0.34	4.4130	0.28	0.2573	0.02	0.06	0.1251	0.00	1474	84	1710	52	2029	28	96
15A-51						0.27	4.7920	0.29	0.2937	0.02	0.06	0.1192	0.00	1660	90	1783	51	1943	29	95
15A-52						0.29	3.0930	0.19	0.2035	0.01	0.07	0.1106	0.00	1194	67	1430	46	1809	29	96
15A-53						0.73	6.3410	0.39	0.3377	0.02	0.05	0.1371	0.00	1875	100	2023	53	2188	29	95
15A-54						0.27	0.9800	0.07	0.0996	0.01	0.09	0.0706	0.00	612	37	686	36	927	55	96
15A-55						0.34	6.2400	0.39	0.3460	0.02	0.06	0.1315	0.00	1914	100	2008	55	2117	28	95
15A-57						0.52	5.0900	0.35	0.2690	0.02	0.05	0.1371	0.00	1532	91	1820	58	2188	29	96
15A-58						1.04	5.3980	0.33	0.3273	0.02	0.06	0.1203	0.00	1825	98	1884	52	1960	29	95
15A-59						0.18	0.7502	0.05	0.0915	0.01	0.12	0.0599	0.00	564	33	568	26	599	35	94

								Razões	isotópica	s					Idades	(Ma)			0/
Número do snot	f 206ª	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	70
spor		pp	ppm	PP···		²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
15A-60					0.39	6.0470	0.37	0.3534	0.02	0.06	0.1247	0.00	1951	100	1982	53	2024	28	95

								Razões	isotópica	s					Idades	(Ma)			0/.
Número do snot	f 206 ^a	Pb ppm	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DL	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	/0 C
spor		PP····	ppm	pp		²³⁵ U	[%]	²³⁸ U	[%]	Kno	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
159B-58					0.89	6.5830	0.16	0.3853	0.01	0.07	0.1261	0.00	2101	50	2057	21	2044	7	98
159B-59					0.84	6.2000	0.15	0.3657	0.01	0.07	0.1268	0.00	2009	49	2005	21	2053	7	98
159B-61					0.18	1.1580	0.05	0.1109	0.00	0.07	0.0759	0.00	677	22	776	24	1077	40	98
159B-63					0.40	19.9300	0.50	0.5669	0.02	0.04	0.2642	0.00	2895	73	3086	24	3271	9	98
159B-65					0.07	0.8719	0.02	0.1064	0.00	0.14	0.0608	0.00	652	19	637	12	631	10	97
159B-66					0.33	6.3200	0.18	0.3672	0.01	0.06	0.1298	0.00	2015	50	2016	25	2093	12	98
159B-69					0.34	0.9290	0.03	0.1171	0.00	0.16	0.0598	0.00	713	23	668	14	596	10	96
159B-74					0.56	4.3800	0.24	0.2600	0.01	0.05	0.1188	0.00	1475	70	1656	55	1938	25	96
159B-75					0.15	5.3680	0.15	0.2888	0.01	0.06	0.1337	0.00	1634	47	1877	25	2146	15	98
159B-77					0.27	0.8245	0.02	0.0994	0.00	0.14	0.0604	0.00	611	18	610	12	615	19	97
159B-78					0.52	10.9700	0.30	0.4575	0.01	0.05	0.1746	0.00	2428	61	2520	25	2601	14	98
159B-79					0.34	7.2500	0.34	0.3050	0.01	0.04	0.1663	0.00	1700	67	2080	49	2514	25	97
159B-80					0.51	11.1400	0.31	0.3373	0.01	0.03	0.2403	0.00	1873	50	2535	26	3121	14	98
159B-81					0.11	1.6160	0.06	0.1312	0.00	0.08	0.0893	0.00	794	26	975	23	1409	22	98
159B-82					0.41	0.7741	0.02	0.0919	0.00	0.13	0.0611	0.00	567	16	582	12	642	18	98
159B-83					0.36	0.4410	0.02	0.0458	0.00	0.12	0.0701	0.00	288	13	369	12	929	20	99
159B-84					0.49	12.3000	0.37	0.4649	0.02	0.04	0.1912	0.00	2460	65	2624	28	2751	15	98
159B-85					0.21	0.8196	0.02	0.0979	0.00	0.14	0.0601	0.00	602	17	608	12	607	19	97
159B-86					0.37	7.7240	0.21	0.4002	0.01	0.06	0.1387	0.00	2171	54	2199	24	2210	14	98

Tabela A.17 – Amostra SRJ-JE-159B - Quartzito impuro do Grupo Raposos (Domínio Juiz de Fora) – UND.

								Razões	isotópica	s					Idades	(Ma)			0/
Número do	f 206 ^a	Pb	Th	U	Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	D.	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	% 70
spor		ppm	ppm	ppm		²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
159B-87					0.79	4.2600	0.20	0.2625	0.01	0.06	0.1141	0.00	1495	59	1650	45	1859	29	97
159B-88					0.54	6.5820	0.18	0.3661	0.01	0.06	0.1287	0.00	2012	51	2057	24	2079	14	98
159B-89					0.30	0.7651	0.02	0.0907	0.00	0.13	0.0600	0.00	560	17	577	12	603	18	97
159B-90					0.20	0.8530	0.04	0.0956	0.00	0.10	0.0638	0.00	589	22	623	20	724	30	97
159B-91					0.12	3.3400	0.23	0.1977	0.01	0.05	0.1139	0.00	1153	60	1419	60	1823	53	97
159B-92					0.40	0.8550	0.04	0.0920	0.00	0.09	0.0654	0.00	567	21	621	20	778	28	97
159B-93					0.42	6.5500	0.20	0.3445	0.01	0.06	0.1351	0.00	1905	57	2047	29	2165	14	97
159B-94					0.34	6.5200	0.29	0.3540	0.02	0.05	0.1298	0.00	1944	77	2038	47	2089	24	96
159B-96					0.85	5.8550	0.16	0.3336	0.01	0.07	0.1251	0.00	1855	52	1953	25	2029	15	97
159B-97					0.41	7.7700	0.30	0.3036	0.01	0.04	0.1816	0.00	1700	62	2184	40	2666	16	98
159B-98					0.39	0.7708	0.02	0.0921	0.00	0.14	0.0595	0.00	568	17	580	12	583	18	97
159B-99					0.20	5.1700	0.29	0.2920	0.02	0.05	0.1182	0.00	1628	80	1741	71	1884	49	96
159B-100					0.35	5.5100	0.31	0.3110	0.02	0.05	0.1188	0.00	1721	83	1793	71	1881	56	96
159B-103					0.31	0.4900	0.02	0.0531	0.00	0.12	0.0667	0.00	333	17	400	15	822	23	98
159B-104					0.26	0.7314	0.02	0.0869	0.00	0.14	0.0596	0.00	537	16	557	12	587	18	97
159B-105					0.11	2.2800	0.24	0.1620	0.01	0.05	0.0886	0.00	949	69	1073	73	1298	76	95
159B-106					0.38	5.6200	0.22	0.3081	0.01	0.05	0.1306	0.00	1725	62	1910	36	2104	16	97
159B-107					0.44	2.4560	0.08	0.1795	0.01	0.07	0.0980	0.00	1064	32	1254	23	1576	28	98
159B-108					0.55	5.0700	0.25	0.2960	0.01	0.06	0.1216	0.00	1659	70	1808	48	1976	24	96
159B-111					0.39	0.7343	0.02	0.0823	0.00	0.12	0.0637	0.00	510	15	559	12	721	31	98
159B-112					0.28	0.7697	0.02	0.0922	0.00	0.13	0.0605	0.00	568	17	580	12	621	18	97
159B-113					0.42	3.7120	0.11	0.1977	0.01	0.06	0.1355	0.00	1164	33	1574	23	2169	15	98
159B-114					0.20	2.4600	0.20	0.1776	0.01	0.06	0.0931	0.00	1046	59	1188	67	1413	82	96
159B-115					0.38	0.7625	0.02	0.0922	0.00	0.13	0.0597	0.00	568	17	575	12	592	19	97

						Razões	isotópicas	5					Idades	(Ma)			0/
Número do			Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s		²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%0
spor				²³⁵ U	[%]	²³⁸ U	[%]	Rho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
IG-1			0.34	3.788	0.02	0.30	0.0015	0.079	0.0966	0.000	1692	69	1590	43	1558	4	96
IG-2			0.28	2.495	0.10	0.24	0.011	0.110	0.0826	0.000	1374	56	1269	29	1259	4	96
IG-3			0.46	2.769	0.11	0.24	0.0095	0.086	0.0885	0.000	1385	49	1347	30	1393	4	96
IG-4			0.21	3.567	0.15	0.30	0.013	0.087	0.0936	0.000	1681	66	1541	33	1498	5	96
IG-5			0.31	1.691	0.07	0.17	0.0066	0.099	0.0730	0.000	1016	36	1005	25	1012	4	96
IG-6			0.09	0.988	0.05	0.12	0.0048	0.094	0.0666	0.000	743	42	693	37	825	13	95
IG-7			0.25	0.947	0.04	0.11	0.0066	0.150	0.0739	0.000	649	38	674	23	1038	10	96
IG-8			0.15	1.515	0.06	0.15	0.0064	0.100	0.0736	0.000	920	36	935	26	1028	8	96
IG-9			0.23	4.028	0.17	0.29	0.011	0.065	0.1084	0.000	1623	55	1638	34	1771	7	97
IG-10			0.01	0.843	0.03	0.10	0.0042	0.124	0.0617	0.000	629	25	621	19	665	4	96
IG-12			0.81	1.517	0.06	0.17	0.0065	0.102	0.0704	0.000	984	36	937	26	940	4	96
IG-13			0.46	1.7706	0.07	0.17	0.0067	0.094	0.0752	0.000	1035	37	1035	27	1073	7	97
IG-14			0.17	1.8023	0.07	0.17	0.0064	0.089	0.0779	0.000	1002	36	1046	26	1144	4	97
IG-23			1.50	5.778	0.23	0.36	0.015	0.065	0.1227	0.000	1982	70	1942	36	1995	4	96
IG-24			0.55	2.433	0.02	0.16	0.0012	0.057	0.1109	0.000	956	41	1252	39	1814	8	98
IG-26			0.18	1.98	0.05	0.16	0.004	0.077	0.0990	0.001	970	47	1106	41	1603	19	97
IG-27			0.36	3.403	0.14	0.28	0.011	0.079	0.0959	0.000	1602	57	1505	31	1544	5	96
IG-27			0.02	0.9709	0.04	0.12	0.0076	0.190	0.0729	0.001	747	43	689	20	1009	16	96
IG-28			1.09	4.847	0.19	0.31	0.012	0.063	0.1183	0.000	1724	58	1793	34	1930	2	97
IG-28			2.00	5.035	0.20	0.32	0.012	0.060	0.1182	0.000	1783	61	1825	34	1928	5	97
IG-22			1.54	1.594	0.07	0.14	0.0059	0.084	0.0826	0.001	868	33	966	27	1251	24	97
IG-32			0.12	2.113	0.06	0.18	0.0053	0.091	0.0892	0.001	1053	29	1150	19	1399	21	98
IG-33			0.56	4.609	0.11	0.29	0.0082	0.075	0.1167	0.001	1641	41	1750	20	1905	8	98
IG-34			0.18	2.39	0.12	0.18	0.0073	0.061	0.0947	0.002	1063	40	1213	40	1501	39	97
IG-35			0.02	0.794	0.02	0.09	0.0025	0.132	0.0665	0.000	545	15	593	11	821	12	98
IG-36			0.23	1.623	0.05	0.16	0.0052	0.096	0.0757	0.000	938	29	976	22	1084	12	97
IG-37			0.38	2.482	0.07	0.22	0.007	0.108	0.0832	0.000	1305	36	1266	19	1272	10	97

Tabela A.18 – Amostra IG-1028- Quartzito do Grupo São Fidélis (Domínio Costeiro) – UND.

						Razões	isotópicas	5					Idades	(Ma)			0/
Número do			Th/U	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	DI	²⁰⁷ Pb/	1 s	²⁰⁶ Pb/	1 s	²⁰⁷ Pb/	1 s	²⁰⁷ Pb/	1 s	%
spor				²³⁵ U	[%]	²³⁸ U	[%]	Kho	²⁰⁶ Pb	[%]	²³⁸ U	abs	²³⁵ U	abs	²⁰⁶ Pb	abs	Conc.
IG-38		•	0.94	4.871	0.12	0.32	0.009	0.075	0.1104	0.000	1795	44	1797	20	1805	8	98
IG-41			0.53	3.359	0.08	0.26	0.0071	0.089	0.0953	0.000	1469	37	1495	19	1532	8	98
IG-43			1.63	1.88	0.05	0.18	0.005	0.111	0.0758	0.000	1068	27	1074	16	1088	8	98
IG-44			0.63	0.857	0.02	0.10	0.0028	0.140	0.0624	0.000	611	16	628	11	687	12	98
IG-46			0.48	12.911	0.31	0.49	0.013	0.042	0.1930	0.001	2554	60	2673	22	2767	7	98
IG-47			0.73	2.289	0.06	0.21	0.0057	0.104	0.0809	0.000	1203	31	1209	17	1219	9	97
IG-48			0.42	1.6841	0.04	0.17	0.0046	0.115	0.0738	0.000	989	25	1002	15	1036	9	98
IG-49			0.27	1.972	0.05	0.18	0.005	0.104	0.0807	0.000	1056	27	1106	16	1213	8	98
IG-50			1.59	1.305	0.04	0.13	0.0042	0.111	0.0742	0.000	777	24	847	17	1046	11	98
IG-51			0.32	3.089	0.08	0.24	0.0074	0.090	0.0927	0.000	1406	38	1428	20	1480	8	97
IG-52			0.39	1.626	0.04	0.16	0.0047	0.118	0.0722	0.000	983	26	980	15	991	9	97
IG-116			1.28	1.832	0.05	0.17	0.0053	0.106	0.0759	0.001	1036	29	1056	18	1090	17	97
IG-117			0.26	8.938	0.25	0.27	0.0083	0.033	0.2407	0.003	1536	42	2329	26	3121	17	99
IG-119			0.02	0.3011	0.01	0.01	0.0003 2	0.035	0.2541	0.003	55	2.1	267	7.1	3209	18	100
IG-120			0.21	0.746	0.02	0.08	0.0028	0.117	0.0691	0.001	488	17	565	13	901	18	98
IG-121			1.14	1.967	0.10	0.16	0.005	0.052	0.0877	0.003	964	28	1085	26	1325	54	98
IG-122			0.61	4.016	0.11	0.27	0.0084	0.076	0.1061	0.001	1564	43	1637	22	1732	16	98
IG-124			1.13	1.825	0.06	0.15	0.005	0.086	0.0868	0.001	912	28	1055	19	1344	28	98
IG-125			0.04	0.85	0.03	0.08	0.0029	0.097	0.0754	0.001	497	17	621	16	1079	25	98
IG-126			0.37	2.91	0.08	0.23	0.0072	0.089	0.0921	0.001	1325	38	1384	21	1469	18	97
IG-127			0.39	3.707	0.11	0.18	0.0057	0.052	0.1457	0.002	1086	31	1570	23	2291	20	99

APÊNDICE B – Tabelas de dados U-Pb para análises realizadas por SHRIMP em grãos de zircão na Universidade Nacional Australiana

Tabela B.1 - Relação das amostras analisadas por SHRIMP na Universidade Nacional Australiana.

Amostra	Rocha	Domínio /Terreno Tecnônico
IT-M-7	Quartzito feldspático	
MI-BR-37	Quartzito feldspático	luiz de Fore/Ocidentel
IV-M-06	Quartzito impuro	Juiz de Fora/Ocidental
SP-BR-01	Quartzito impuro	
AP-TUP-28	Quartzito impuro	Paraíba do Sul

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb* / ²³⁸ U ^a	±%	err corr
1.1	5.62	566	59	0.11	48	574.5	± 6.4	658	±150	13	0.0615	6.9	0.791	7	0.0932	1.2	.166
2.1	0.71	83	103	1.28	6.77	581	± 9.9	570	±120	-2	0.0591	5.4	0.768	5.7	0.0943	1.8	.316
3.1	0.46	83	92	1.15	6.72	580.5	± 8	562	± 74	-3	0.0589	3.4	0.765	3.7	0.0942	1.4	.391
4.1	0.46	121	217	1.86	9.76	577.4	± 6.8	523	± 60	-10	0.0578	2.7	0.747	3	0.0937	1.2	.409
5.1	0.91	86	75	0.90	6.18	513	± 6.8	490	±120	-5	0.057	5.2	0.651	5.4	0.0828	1.4	.255
6.1	0.55	95	151	1.65	6.78	512.3	± 6.7	461	± 89	-11	0.0562	4	0.641	4.3	0.0827	1.4	.320
7.1	0.56	80	92	1.18	6.11	544.7	± 7.1	576	± 89	5	0.0592	4.1	0.72	4.3	0.0882	1.4	.315
8.1	0.28	471	70	0.15	38.5	584.3	± 6	528	± 28	-11	0.05795	1.3	0.758	1.7	0.0949	1.1	.646
9.1	0.91	73	81	1.15	6.4	624.9	$\pm \ 8.8$	603	± 98	-4	0.06	4.5	0.842	4.8	0.1018	1.5	.309
10.1	0.11	77	32	0.44	28.9	2334	±25	3186	± 19	27	0.2501	1.2	15.05	1.8	0.4364	1.3	.734
11.1	1.03	63	72	1.19	5.15	583.3	± 7.9	630	±130	7	0.0607	6.2	0.793	6.3	0.0947	1.4	.224
12.1	0.35	86	115	1.38	7.18	592.7	± 7.5	613	± 59	3	0.0603	2.7	0.8	3	0.0963	1.3	.439
13.1	0.11	115	59	0.54	31.6	1790	± 18	2310	± 12	23	0.1469	0.69	6.483	1.4	0.32	1.2	.861
14.1	0.84	71	78	1.14	5.86	589.6	± 7.8	658	± 100	10	0.0615	4.7	0.813	4.9	0.0958	1.4	.281
15.1	1.45	55	51	0.96	4.61	594.9	± 8.5	575	±150	-3	0.0592	6.8	0.789	6.9	0.0967	1.5	.214
16.1	0.18	98	145	1.54	8.33	608.5	± 7.4	639	± 41	5	0.061	1.9	0.832	2.3	0.099	1.3	.556
17.1	0.79	69	70	1.06	5.6	578.4	± 7.7	666	±120	13	0.0618	5.8	0.799	6	0.0939	1.4	.232
18.1	0.60	1569	250	0.16	120	548.3	± 5.5	589	± 24	7	0.0596	1.1	0.73	1.5	0.08878	1	.692
19.1	0.95	121	199	1.69	9.92	580.5	\pm 8.1	520	± 95	-12	0.0578	4.3	0.75	4.6	0.0942	1.5	.320
20.1	1.28	96	158	1.69	8.15	597.7	± 8	549	±130	-9	0.0585	6	0.784	6.2	0.0972	1.4	.227
21.1	0.20	525	127	0.25	46.8	635.3	± 6.6	619	± 22	-3	0.06042	1	0.863	1.5	0.1036	1.1	.723
22.1	0.04	73	51	0.71	32.6	2691	±29	2643.6	± 9.1	-2	0.179	0.55	12.79	1.4	0.5182	1.3	.921
23.1	0.49	72	98	1.40	6.22	613	±13	560	±78	-9	0.0588	3.6	0.809	4.2	0.0998	2.1	.516
24.1	0.86	34	58	1.78	8.75	1684	±25	1702	± 60	1	0.1043	3.3	4.29	3.7	0.2984	1.7	.453
25.1	0.07	157	112	0.74	68.9	2661	±25	3244.4	± 5.4	18	0.25961	0.34	18.3	1.2	0.5111	1.2	.959
26.1	0.21	78	77	1.03	6.5	596.2	± 7.4	627	± 41	5	0.0607	1.9	0.81	2.3	0.0969	1.3	.561
27.1	0.07	174	108	0.64	68.5	2429	±23	2420	± 14	0	0.1566	0.82	9.88	1.4	0.4577	1.1	.805
28.1	0.15	398	49	0.13	37.8	675.2	± 7.2	693	± 24	3	0.06256	1.1	0.952	1.6	0.1104	1.1	.701

Tabela B.2 – Amostra IT-M-7 – Quartzito feldspático do Grupo Raposos (Domínio Juiz de Fora).

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
29.1	0.21	81	91	1.16	6.92	610.5	± 7.7	594	± 43	-3	0.0597	2	0.818	2.4	0.0993	1.3	.548
30.1	0.20	97	122	1.30	8.19	602.6	± 7.7	635	± 42	5	0.0609	1.9	0.822	2.4	0.098	1.3	.568
31.1	0.05	60	34	0.58	26.3	2648	±29	2604	± 11	-2	0.1747	0.63	12.24	1.5	0.508	1.4	.906
32.1	0.83	79	105	1.36	6.63	592.6	± 7.6	497	± 96	-19	0.0571	4.4	0.759	4.6	0.0963	1.3	.293
33.1	0.14	119	202	1.75	9.96	598.2	± 7	613	± 63	2	0.0603	2.9	0.808	3.2	0.0972	1.2	.387
34.1	0.10	130	42	0.33	34.6	1738	± 18	2255	± 14	23	0.1423	0.83	6.072	1.5	0.3095	1.2	.822
35.1	0.13	203	191	0.98	50.1	1630	±16	2015	± 35	19	0.124	2	4.92	2.3	0.2877	1.1	.502
36.1	0.44	78	83	1.09	6.53	593.1	± 7.6	616	± 86	4	0.0603	4	0.802	4.2	0.0964	1.3	.319
37.1	0.19	116	49	0.44	30.9	1738	±19	2312	± 41	25	0.1471	2.4	6.28	2.7	0.3095	1.2	.458
38.1	0.12	343	39	0.12	62.6	1241	±12	2248	± 45	45	0.1417	2.6	4.15	2.8	0.2124	1.1	.391
39.1	0.04	570	189	0.34	50.5	632.1	± 6.6	625	± 18	-1	0.0606	0.83	0.861	1.4	0.103	1.1	.797
40.1	1.08	74	81	1.12	6.13	584.2	± 7.9	556	±120	-5	0.0587	5.4	0.768	5.5	0.0949	1.4	.254
41.1	0.44	532	55	0.11	45.9	614.1	± 7.1	615	± 31	0	0.06033	1.4	0.831	1.9	0.0999	1.2	.647
42.1	0.45	73	82	1.16	6.04	589.7	± 8.3	581	± 76	-1	0.0594	3.5	0.784	3.8	0.0958	1.5	.387
43.1	0.21	176	75	0.44	32.1	1240	±40	1785	± 35	31	0.1091	1.9	3.19	4	0.2121	3.6	.882
44.1	0.83	89	109	1.27	6.6	531.3	± 7.2	436	±140	-22	0.0556	6.5	0.658	6.7	0.0859	1.4	.211
45.1	0.13	151	92	0.63	26	1175	±13	1750	± 17	33	0.10707	0.92	2.953	1.5	0.2	1.2	.797
46.1	0.49	71	86	1.24	5.27	530.2	± 7.3	567	± 81	7	0.059	3.7	0.697	4	0.0857	1.4	.357
47.1	0.12	63	95	1.56	16.9	1754	±22	1699	± 28	-3	0.1041	1.5	4.49	2.1	0.3128	1.4	.683
49.1		113	86	0.79	44.9	2452	±26	2446.3	± 9.2	0	0.15912	0.54	10.16	1.4	0.4629	1.3	.918
50.1	0.25	104	144	1.43	8.57	587.5	± 7	588	± 81	0	0.0596	3.7	0.784	3.9	0.0954	1.2	.317

^a Common Pb corrected using measured ²⁰⁴Pb; Errors are 1-sigma; Pb_c and Pb* indicate the common and radiogenic portions, respectively; Error in Standard calibration was 0.34% (not included in above errors but required when comparing data from different mounts); Fonte: A autora, 2018.

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb* / ²³⁸ U ^a	±%	err corr
1.1	0.18	692	319	0.48	54	560.1	±6.4	563	± 23	1	0.05889	1.1	0.737	1.6	0.0908	1.2	.741
2.1	1.20	78	91	1.21	6.47	589.1	± 8.2	570	±120	-3	0.0591	5.5	0.78	5.7	0.0957	1.5	.254
3.1	0.27	50	71	1.45	4.06	576.7	± 8.5	544	± 81	-6	0.0584	3.7	0.753	4	0.0936	1.5	.387
4.1	0.60	67	85	1.31	5.45	576	±8.2	521	±110	-11	0.0578	4.8	0.745	5.1	0.0935	1.5	.293
5.1	0.43	50	62	1.28	4.02	576.4	±8.7	510	±100	-13	0.0575	4.7	0.741	4.9	0.0935	1.6	.320
6.1	0.14	312	114	0.38	24	552.1	±6.5	534	± 28	-3	0.0581	1.3	0.716	1.8	0.0894	1.2	.693
7.1	0.25	282	104	0.38	21.5	545.8	±6.5	576	± 48	5	0.0593	2.2	0.722	2.5	0.0884	1.2	.490
8.1	0.05	292	102	0.36	23.4	573.5	±6.9	530	± 25	-8	0.05799	1.2	0.744	1.7	0.093	1.3	.738
9.1	0.38	91	144	1.64	7.72	606.5	± 8	744	± 72	18	0.0641	3.4	0.871	3.7	0.0986	1.4	.376
10.1	0.60	46	69	1.54	3.74	575	±9	566	± 140	-2	0.059	6.6	0.759	6.8	0.0933	1.6	.242
11.1	0.13	199	209	1.08	16.3	586.3	±7.1	536	± 39	-9	0.0582	1.8	0.763	2.2	0.0952	1.3	.581
12.1	0.49	63	107	1.75	5.16	580.4	± 8.8	563	± 83	-3	0.0589	3.8	0.765	4.1	0.0942	1.6	.385
14.1	0.80	85	115	1.40	7.01	587	± 8.5	493	± 110	-19	0.057	5.2	0.75	5.4	0.0953	1.5	.280
15.1	0.23	333	140	0.44	26.3	565.6	±6.6	553	± 30	-2	0.05861	1.4	0.741	1.8	0.0917	1.2	.666
16.1	0.09	335	80	0.25	26.6	569.4	±6.6	558	± 26	-2	0.05876	1.2	0.748	1.7	0.0923	1.2	.710
17.1	0.22	252	76	0.31	20.4	578.6	±6.9	524	± 35	-10	0.05785	1.6	0.749	2	0.0939	1.2	.619
17.2	1.82	41	45	1.13	2.73	473.2	±9	540	±220	12	0.0583	9.9	0.612	10	0.0762	2	.194
18.1	0.93	78	77	1.02	6.22	570.7	±7.9	570	±120	0	0.0591	5.4	0.754	5.5	0.0926	1.5	.262
19.1	0.27	165	95	0.60	13	566.1	±7.1	576	± 65	2	0.0592	3	0.75	3.3	0.0918	1.3	.401
20.1	1.20	119	228	1.99	9.26	554.2	±7.7	600	± 93	8	0.0599	4.3	0.741	4.6	0.0898	1.4	.317
21.1	0.12	164	42	0.26	11.4	503	±6.3	559	± 38	10	0.0588	1.7	0.658	2.2	0.0812	1.3	.600
22.1	0.61	73	112	1.59	5.49	538.8	±7.6	593	± 84	9	0.0597	3.9	0.718	4.1	0.0872	1.5	.352
23.1	0.69	52	89	1.77	4.16	571.1	±9.2	666	±100	14	0.0618	4.8	0.789	5.1	0.0926	1.7	.328
25.1	0.86	41	49	1.22	3.24	561	± 8.9	558	± 110	-1	0.0588	5.1	0.737	5.4	0.0909	1.6	.305
26.1	0.12	390	157	0.42	30	552.3	±6.4	565	± 21	2	0.05894	0.98	0.727	1.6	0.0895	1.2	.778
27.1	1.26	53	77	1.50	4.12	552.3	± 8.4	473	±150	-17	0.0565	6.9	0.697	7.1	0.0895	1.6	.223
28.1	0.24	366	77	0.22	29.1	567.9	±6.6	528	± 29	-8	0.05797	1.3	0.736	1.8	0.0921	1.2	.671
29.1	0.23	316	92	0.30	24	545.2	±6.4	572	±28	5	0.05915	1.3	0.72	1.8	0.0883	1.2	.689

Tabela B.3 – Amostra MI-BR-37- Quartzito feldspático do Grupo Raposos (Domínio Juiz de Fora).

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ррт ²⁰⁶ Рb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb* / ²³⁸ U ^a	±%	err corr
30.1	1.48	60	100	1.73	4.72	560.1	± 8.9	572	±150	2	0.0591	6.9	0.74	7	0.0908	1.7	.235
31.1	0.34	301	82	0.28	22.3	530.4	±6.4	542	± 38	2	0.0583	1.7	0.69	2.1	0.0858	1.3	.591
32.2	0.39	67	55	0.86	4.51	486.4	±7.2	577	± 67	16	0.0593	3.1	0.64	3.5	0.0784	1.5	.447
33.1	0.22	360	97	0.28	26.6	531	±6.2	582	± 31	9	0.05941	1.4	0.703	1.9	0.0859	1.2	.647
34.1	0.85	44	61	1.45	3.54	577.4	± 8.9	582	±120	1	0.0594	5.5	0.768	5.8	0.0937	1.6	.281
34.2	0.24	299	146	0.50	23.8	569.2	±6.7	578	± 33	2	0.05929	1.5	0.755	2	0.0923	1.2	.627
35.1	0.31	251	218	0.90	20.4	579.6	±6.9	573	± 40	-1	0.0592	1.8	0.767	2.2	0.0941	1.2	.563
36.1	1.05	95	129	1.40	7.14	534.1	±7.3	473	±120	-13	0.0565	5.3	0.673	5.5	0.0864	1.4	.260
37.1	0.17	340	117	0.36	27.2	573.6	±6.7	531	± 30	-8	0.05803	1.4	0.745	1.8	0.0931	1.2	.671
38.1	0.23	385	115	0.31	29.6	551.9	±6.4	533	± 36	-4	0.05808	1.6	0.716	2	0.0894	1.2	.595
39.1	0.20	402	142	0.36	30.5	544.8	±6.4	559	± 33	3	0.05877	1.5	0.715	1.9	0.0882	1.2	.625
40.1	0.13	483	128	0.27	38.4	570.3	±6.6	551	± 27	-4	0.05857	1.2	0.747	1.7	0.0925	1.2	.703
41.1	0.44	99	59	0.61	7.62	551.1	±7.3	526	± 65	-5	0.0579	3	0.713	3.3	0.0893	1.4	.420
42.1	0.79	68	93	1.42	5.51	575.9	± 8.1	408	±110	-41	0.0549	4.7	0.707	4.9	0.0934	1.5	.300
43.1	0.17	357	92	0.27	26.7	536.5	±6.3	561	± 28	4	0.05885	1.3	0.704	1.8	0.0868	1.2	.694
44.1	0.68	82	127	1.59	6.37	551.8	±7.7	504	±100	-9	0.0573	4.6	0.706	4.8	0.0894	1.4	.299
45.1	0.21	342	99	0.30	25.8	541.5	±6.4	543	± 30	0	0.05835	1.4	0.705	1.8	0.0876	1.2	.666
46.1	1.15	43	64	1.52	3.53	578	±9.1	525	±130	-10	0.0579	5.7	0.749	6	0.0938	1.7	.277
47.1	1.58	35	41	1.20	2.87	572.7	±9.7	557	±170	-3	0.0587	7.9	0.752	8.1	0.0929	1.8	.220

^a Common Pb corrected using measured ²⁰⁴Pb; Errors are 1-sigma; Pb_c and Pb* indicate the common and radiogenic portions, respectively; Error in Standard calibration was 0.34% (not included in above errors but required when comparing data from different mounts); Fonte: A autora, 2018.

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb* / ²³⁸ U ^a	±%	err corr
1.1	0.00	71	30	0.43	25.9	2272	±27	2273	±61	0	0.1438	3.5	8.38	3.8	0.4226	1.4	.366
2.1	0.03	111	12	0.11	22.9	1390	± 17	1847	±21	25	0.1129	1.2	3.746	1.8	0.2406	1.4	.760
3.1	0.00	151	127	0.87	49.5	2088	±25	2105	± 11	1	0.13054	0.62	6.89	1.5	0.3826	1.4	.916
4.1		382	38	0.10	42.6	787.3	± 8.6	1340	± 18	41	0.08609	0.94	1.542	1.5	0.1299	1.2	.776
5.1	0.15	350	17	0.05	32.6	663.1	± 7.2	1017	±29	35	0.0731	1.4	1.092	1.8	0.1083	1.1	.622
6.1	0.39	210	7	0.03	16.8	570.5	± 6.8	529	±60	-8	0.058	2.7	0.74	3	0.0925	1.3	.417
7.1	0.12	90	60	0.70	21.9	1613	±22	1951	±44	17	0.1197	2.5	4.69	2.9	0.2842	1.5	.529
8.1	0.06	390	7	0.02	30.4	559.3	± 6.1	536	±37	-4	0.05817	1.7	0.727	2.1	0.0906	1.1	.555
8.2	0.17	68	48	0.73	19.2	1823	±23	2074	±21	12	0.1282	1.2	5.78	1.9	0.3268	1.5	.775
9.1	0.18	628	17	0.03	46.6	532.8	± 5.7	498	±29	-7	0.05717	1.3	0.679	1.7	0.08615	1.1	.640
10.1	0.07	407	16	0.04	38.6	675.9	± 7.5	830	±21	19	0.06675	0.98	1.017	1.5	0.1105	1.2	.764
11.1	0.12	141	106	0.78	44.9	2034	±22	2031	±22	0	0.1252	1.2	6.4	1.8	0.3709	1.3	.713
12.1	0.03	504	47	0.10	53.2	746.2	± 7.8	1240	±15	40	0.08176	0.79	1.383	1.4	0.1227	1.1	.816
13.1	0.17	122	58	0.49	34.5	1828	±22	2063	±16	11	0.1274	0.93	5.759	1.7	0.3278	1.4	.826
14.1	0.16	111	46	0.42	37.8	2146	±24	2073	± 18	-4	0.1281	1	6.98	1.6	0.3951	1.3	.789
15.1	0.09	127	58	0.47	39.5	1987	±23	2066	±15	4	0.1277	0.84	6.35	1.6	0.361	1.3	.849
16.1		235	346	1.52	65.1	1801	± 18	2073	± 10	13	0.12816	0.59	5.696	1.3	0.3223	1.2	.893
17.1		366	89	0.25	101	1793	± 18	2010.8	± 8.7	11	0.12373	0.49	5.47	1.2	0.3206	1.1	.918
18.1		220	329	1.54	17.1	556.7	± 6.6	678	±32	18	0.06211	1.5	0.772	2	0.0902	1.2	.629
19.1	0.08	664	28	0.04	52.8	570.2	± 5.9	554	±24	-3	0.05865	1.1	0.748	1.5	0.0925	1.1	.703
20.1	0.10	324	170	0.54	98.4	1946	±19	2021	±13	4	0.12448	0.71	6.049	1.4	0.3524	1.2	.854
21.1	0.01	721	332	0.48	184	1678	±16	2016	±14	17	0.12411	0.8	5.089	1.3	0.2974	1.1	.800
22.1	0.10	74	52	0.73	17.9	1608	±21	1963	±22	18	0.1205	1.3	4.707	1.9	0.2834	1.4	.754
23.1	0.14	103	88	0.88	31.7	1978	±23	2050	±26	3	0.1265	1.4	6.26	2	0.3592	1.3	.680
24.1	0.02	165	93	0.58	52.3	2024	±21	2053	±12	1	0.12674	0.67	6.447	1.4	0.3689	1.2	.874
25.1	0.04	407	162	0.41	88.8	1457	±15	1775	± 10	18	0.10854	0.57	3.796	1.3	0.2537	1.1	.894
26.1	0.02	192	163	0.88	66.4	2180	±22	2159	±11	-1	0.13465	0.6	7.47	1.3	0.4024	1.2	.893
27.1		34	13	0.38	9.87	1876	±34	1999	±36	6	0.1229	2	5.73	2.9	0.3378	2.1	.724

Tabela B.4 – Amostra SP-BR-01 – Quartzito impuro do Grupo Raposos (Domínio Juiz de Fora).

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
28.1	0.01	328	107	0.34	118	2260	±22	2418	± 18	7	0.1565	1.1	9.06	1.6	0.42	1.2	.738
29.1	0.07	552	22	0.04	45.7	592.6	± 6.3	580	±29	-2	0.05934	1.3	0.788	1.7	0.0963	1.1	.640
30.1	0.09	121	67	0.57	41.1	2141	±25	2126	±15	-1	0.1321	0.85	7.18	1.6	0.394	1.4	.853
31.1		49	21	0.44	6.58	939	±17	1634	±42	43	0.1005	2.3	2.174	3	0.1568	1.9	.645
32.1	0.04	329	679	2.13	106	2056	±20	2635.5	± 7.5	22	0.17813	0.45	9.23	1.2	0.3758	1.1	.929
33.1	0.16	68	28	0.42	23.5	2178	±30	2219	±44	2	0.1393	2.5	7.72	3	0.402	1.6	.533
34.1	0.12	143	57	0.41	41.6	1880	±20	2125	±14	12	0.132	0.81	6.161	1.5	0.3385	1.2	.839
35.1	0.23	628	142	0.23	104	1135	±11	1782	±12	36	0.10894	0.66	2.891	1.3	0.1925	1.1	.859
36.1	0.12	59	35	0.61	18.7	2037	±45	2174	±22	6	0.1358	1.3	6.96	2.9	0.3716	2.6	.897
37.1	0.17	182	28	0.16	25.7	980	±12	1713	±31	43	0.1049	1.7	2.377	2.1	0.1642	1.4	.630
38.1	0.11	590	22	0.04	48.4	586.9	± 6.2	576	±26	-2	0.05923	1.2	0.778	1.6	0.0953	1.1	.676
39.1	0.18	109	90	0.86	29.8	1782	±21	2044	±19	13	0.1261	1.1	5.533	1.7	0.3183	1.3	.769
40.1		162	23	0.15	22.3	961	±11	1444	±27	33	0.0909	1.4	2.014	1.9	0.1607	1.3	.665
41.1	0.18	334	48	0.15	44.2	922.9	± 9.9	1610	±35	43	0.0993	1.9	2.107	2.2	0.1539	1.2	.526
42.1	0.09	268	95	0.37	78.7	1891	±19	1989	±12	5	0.12219	0.68	5.744	1.3	0.3409	1.2	.863
43.1	0.15	418	8	0.02	34.4	589.5	± 6.4	588	±48	0	0.0596	2.2	0.787	2.5	0.0958	1.1	.460
44.1	0.04	446	145	0.34	75.5	1159	±12	1664	±22	30	0.1022	1.2	2.774	1.6	0.1969	1.1	.680
45.1	0.07	105	33	0.33	33.3	2030	±23	2017	±67	-1	0.1241	3.8	6.34	4	0.3701	1.3	.330
46.1	0.00	211	87	0.43	58.8	1808	±19	2040	±12	11	0.12578	0.65	5.616	1.4	0.3238	1.2	.876
47.1	0.03	81	27	0.34	37.7	2784	±31	2928	±11	5	0.2129	0.66	15.86	1.5	0.5401	1.4	.902
48.1	0.19	153	94	0.64	41.1	1754	±19	2057	±16	15	0.127	0.91	5.476	1.5	0.3127	1.2	.804
49.1	0.00	116	55	0.49	39.1	2133	±25	2111	±18	-1	0.131	1	7.08	1.7	0.3921	1.4	.811
50.1	0.04	184	14	0.08	81.3	2680	±27	3009	±13	11	0.2239	0.83	15.92	1.5	0.5155	1.2	.832
51.1	0.18	65	24	0.38	16.5	1660	±24	2153	±42	23	0.1342	2.4	5.43	2.9	0.2938	1.6	.561
52.1	0.04	728	9	0.01	60.1	591.8	± 6.1	590	±19	0	0.05963	0.87	0.79	1.4	0.0961	1.1	.781
53.1	0.10	204	87	0.44	60.5	1909	±21	1991	±13	4	0.12236	0.71	5.814	1.4	0.3446	1.3	.870
54.1	0.06	217	85	0.40	62	1847	±20	2428	±11	24	0.1574	0.65	7.2	1.4	0.3318	1.2	.886
55.1	0.07	223	107	0.49	59.7	1745	±19	2041	±12	14	0.12588	0.69	5.397	1.4	0.311	1.2	.874
56.1	0.00	128	55	0.45	34.3	1751	±21	2104	±14	17	0.1305	0.81	5.613	1.6	0.312	1.4	.859

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
57.1	0.03	432	91	0.22	69.7	1109	±12	1692	±16	34	0.10374	0.89	2.684	1.5	0.1876	1.2	.792
58.1	0.40	81	63	0.80	23.6	1882	±24	2111	±25	11	0.131	1.4	6.12	2	0.339	1.4	.706
59.1	0.27	90	22	0.25	19.6	1451	±20	2035	±26	29	0.1254	1.5	4.365	2.1	0.2524	1.5	.724
60.1	0.20	177	126	0.74	35	1331	±15	2056	±17	35	0.1269	0.96	4.014	1.6	0.2294	1.2	.791

^a Common Pb corrected using measured ²⁰⁴Pb; Errors are 1-sigma; Pb_c and Pb* indicate the common and radiogenic portions, respectively; Error in Standard calibration was 0.34% (not included in above errors but required when comparing data from different mounts); Fonte: A autora, 2018.

					-												
Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
1.1	0.08	163	193	1.22	47.3	1871	±21	2040.4	±10	8	0.12582	0.56	5.841	1.4	0.3367	1.3	.915
2.1	0.30	70	21	0.31	21.3	1956	±26	2085	±24	6	0.1291	1.4	6.31	2.1	0.3545	1.5	.745
3.1	0.09	179	83	0.48	51.4	1860	±21	2075.4	± 9.7	10	0.12834	0.55	5.919	1.4	0.3345	1.3	.918
4.1	0.22	113	90	0.82	31.2	1796	±21	1997	±15	10	0.1228	0.83	5.438	1.6	0.3212	1.3	.849
5.1	0.22	150	115	0.79	44.8	1924	±21	2048	±12	6	0.12639	0.69	6.062	1.4	0.3479	1.3	.877
6.1	0.37	167	71	0.44	24.5	1013	±12	1756	±25	42	0.1074	1.4	2.52	1.9	0.1702	1.3	.689
7.1	0.12	189	67	0.36	46.7	1630	± 18	2049	±13	20	0.12646	0.73	5.017	1.5	0.2877	1.3	.868
8.1	0.02	214	110	0.53	66	1981	±21	2108.8	± 7.4	6	0.13081	0.42	6.487	1.3	0.3597	1.2	.945
9.1	0.07	110	54	0.51	32.7	1912	±32	2126	±11	10	0.13212	0.65	6.29	2.1	0.3452	1.9	.948
10.1	0.10	85	33	0.40	13.4	1086	±14	1771	±27	39	0.1083	1.5	2.741	2	0.1835	1.4	.698
11.1	0.05	247	141	0.59	56.5	1523	± 18	2394	±21	36	0.1543	1.2	5.67	1.8	0.2665	1.3	.727
12.1	0.12	153	37	0.25	28.2	1251	± 18	1971	±22	37	0.121	1.2	3.573	2	0.2142	1.6	.791
13.1	0.18	116	113	1.01	27.6	1570	±19	2128	±16	26	0.1323	0.93	5.029	1.6	0.2757	1.3	.822
14.1	0.17	107	46	0.44	22.3	1404	±17	1685	±20	17	0.1034	1.1	3.468	1.7	0.2433	1.3	.767
15.1	0.32	69	21	0.31	19.6	1833	±22	2054	±22	11	0.1268	1.2	5.75	1.9	0.3289	1.4	.745

Tabela B.5 – Amostra IV-M-06 -Quartzito impruro do Grupo Raposos (Domínio Juiz de Fora).

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
16.1	0.12	145	142	1.01	33.6	1540	±36	2121	±13	27	0.13171	0.72	4.9	2.7	0.2699	2.6	.965
17.1	0.27	71	15	0.22	19.7	1796	±32	2044	±27	12	0.1261	1.5	5.59	2.5	0.3214	2	.797
17.2	0.56	964	33	0.03	79.1	585	± 6.6	555	±28	-5	0.05868	1.3	0.769	1.7	0.095	1.2	.683
18.1	0.17	316	10	0.03	25.4	574.5	± 6.7	570	±36	-1	0.05908	1.7	0.759	2.1	0.0932	1.2	.596
19.1	0.09	104	35	0.35	31.7	1963	±21	2073	±11	5	0.12815	0.64	6.291	1.4	0.356	1.2	.890
20.1	0.15	101	83	0.85	28.6	1840	±19	2074	±14	11	0.1283	0.79	5.843	1.4	0.3304	1.2	.835
21.1	0.50	55	35	0.66	18.6	2127	±26	2205	±30	4	0.1383	1.7	7.45	2.2	0.3908	1.4	.640
22.1	0.33	105	5	0.05	8.39	573	± 7	576	±75	1	0.0592	3.4	0.759	3.7	0.093	1.3	.347
23.1	1.00	13	4	0.29	3.65	1844	±32	2099	±78	12	0.1301	4.5	5.94	4.9	0.3311	2	.408
24.1	0.26	247	8	0.03	18.3	530.7	± 6	564	±32	6	0.05892	1.5	0.697	1.9	0.0858	1.2	.626
25.1	0.11	208	131	0.65	40.4	1310	±14	1916	±24	32	0.1174	1.3	3.646	1.8	0.2253	1.1	.650
26.1	0.11	143	52	0.38	57.8	2489	±25	2562	±17	3	0.1704	1	11.08	1.6	0.4713	1.2	.752
27.1	0.57	118	13	0.11	9.5	574.5	± 6.8	703	±67	18	0.0628	3.2	0.808	3.4	0.0932	1.2	.366
28.1	0.29	217	9	0.04	17.4	574.5	± 6.3	552	±38	-4	0.0586	1.7	0.753	2.1	0.0932	1.1	.548
29.1	0.10	220	114	0.54	61.5	1819	±20	2090	± 8.9	13	0.12942	0.5	5.817	1.4	0.326	1.3	.930
30.1	0.14	84	41	0.50	27.8	2097	±22	2203	±26	5	0.1381	1.5	7.32	1.9	0.3845	1.2	.624
31.1	0.45	77	8	0.11	9.66	881	±11	1591	±64	45	0.0983	3.4	1.983	3.7	0.1464	1.3	.351
32.1	0.20	187	120	0.67	45.7	1615	±16	2003	±17	19	0.1232	0.96	4.834	1.5	0.2846	1.1	.766
33.1	0.18	647	6	0.01	51	565.4	± 6.6	526	±24	-8	0.05789	1.1	0.732	1.6	0.0917	1.2	.749
34.1	0.16	145	40	0.28	28.7	1331	±14	1919	±16	31	0.1175	0.88	3.715	1.5	0.2293	1.2	.806
35.1	0.19	155	348	2.31	48.4	1990	±20	2011	±12	1	0.12378	0.68	6.173	1.3	0.3617	1.1	.858
36.1	0.07	128	127	1.02	41.1	2039	±21	2158	±11	6	0.13457	0.62	6.904	1.3	0.3721	1.2	.889
37.1	0.20	124	50	0.42	32.6	1723	±18	2071	± 18	17	0.128	1	5.408	1.6	0.3064	1.2	.749
38.1	0.30	227	7	0.03	16.1	511	± 5.7	554	±48	8	0.0586	2.2	0.667	2.5	0.08249	1.2	.462
38.2	0.52	73	61	0.87	20.1	1791	±45	2030	±22	12	0.1251	1.2	5.53	3.1	0.3203	2.8	.916
39.1	0.19	467	18	0.04	38.4	588.7	± 6.1	563	±26	-5	0.05889	1.2	0.776	1.6	0.0956	1.1	.678
39.2	0.24	179	69	0.40	41.1	1523	±16	1914	±15	20	0.1172	0.86	4.306	1.5	0.2665	1.2	.807
40.1	0.12	100	40	0.42	35.7	2246	±22	2182	±11	-3	0.13641	0.65	7.84	1.4	0.4167	1.2	.876
41.1	0.24	305	4	0.01	24.7	580.8	± 6.2	578	±35	-1	0.05929	1.6	0.771	1.9	0.0943	1.1	.568
Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ррт ²⁰⁶ Рb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
------------	-------------------------	----------	-----------	---	---------------------------	---	-----------	--	-------	---------------------------	--	------	---	-----	---	-----	-------------
42.1	0.11	74	37	0.51	23.8	2046	±23	2134	±16	4	0.1327	0.93	6.83	1.6	0.3735	1.3	.818
43.1	0.21	63	53	0.86	20.6	2078	±24	2192	±16	5	0.1372	0.93	7.19	1.7	0.3803	1.4	.827
44.1	0.18	224	115	0.53	43.1	1299	±13	1941	±12	33	0.11895	0.67	3.661	1.3	0.2232	1.1	.855
45.1	0.22	59	31	0.55	20	2159	±24	2191	±19	1	0.1371	1.1	7.52	1.7	0.3977	1.3	.771
46.1	0.15	109	47	0.45	29.5	1762	±19	2082	±23	15	0.1289	1.3	5.583	1.8	0.3143	1.2	.685
47.1	0.04	1063	7	0.01	86.9	586.2	± 5.9	614	±13	4	0.06028	0.61	0.7912	1.2	0.0952	1	.864
48.1	0.41	311	26	0.09	36.9	831.9	± 8.5	1368	±21	39	0.08734	1.1	1.659	1.6	0.1378	1.1	.704
49.1	0.12	183	9	0.05	15.4	603.7	± 6.7	604	±32	0	0.06002	1.5	0.812	1.9	0.0982	1.2	.615
50.1	0.19	172	64	0.39	39.3	1520	±16	1985	±25	23	0.122	1.4	4.471	1.8	0.2659	1.2	.641
51.1	0.12	312	43	0.14	41.4	925.6	± 9.6	1580	±50	41	0.0977	2.7	2.079	2.9	0.1544	1.1	.388
52.1	0.26	35	22	0.64	11.1	2016	±25	2234	±24	10	0.1405	1.4	7.12	2	0.3672	1.5	.729
53.1	0.00	72	40	0.58	26	2279	±24	2171	±12	-5	0.13557	0.69	7.93	1.4	0.424	1.2	.876
54.1	0.02	186	59	0.33	60.5	2068	±20	2086	±14	1	0.1291	0.81	6.736	1.4	0.3783	1.1	.818
55.1	0.00	96	52	0.56	31.9	2115	±25	2115	±11	0	0.13128	0.63	7.03	1.5	0.3883	1.4	.909
56.1	0.34	32	13	0.42	11.2	2220	±30	2189	±28	-1	0.137	1.6	7.77	2.3	0.4112	1.6	.710
57.1		145	1	0.01	12.6	618.9	± 9	637	±37	3	0.0609	1.7	0.847	2.3	0.1008	1.5	.666
58.1	0.12	132	82	0.64	40.7	1967	±20	2116	±11	7	0.13138	0.65	6.464	1.4	0.3569	1.2	.881
59.1	0.31	44	23	0.55	14.8	2109	±25	2136	±23	1	0.1328	1.3	7.09	1.9	0.387	1.4	.724
60.1	0.04	264	89	0.35	81.1	1973	±19	2053.9	± 7.7	4	0.12679	0.44	6.26	1.2	0.3581	1.1	.929

^a Common Pb corrected using measured ²⁰⁴Pb; Errors are 1-sigma; Pb_c and Pb* indicate the common and radiogenic portions, respectively; Error in Standard calibration was 0.34% (not included in above errors but required when comparing data from different mounts); Fonte: A autora, 2018.

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
1.1r		292	35	0.12	23.6	579.9	± 6.8	577	±19	-1	0.05926	0.85	0.769	1.5	0.0941	1.2	.822
1.2	0.03	124	123	1.02	63.7	3012	±31	3068	±21	2	0.2323	1.3	19.08	1.8	0.5956	1.3	.708
2.1r		275	27	0.10	22	574.4	± 6.8	602	±20	5	0.05994	0.94	0.77	1.6	0.0932	1.2	.796
2.2	0.02	689	348	0.52	232	2136	±22	2153.5	\pm 7.4	1	0.13419	0.42	7.268	1.3	0.3928	1.2	.943
3.1r	0.05	270	40	0.15	21.4	569.7	± 6.8	602	±21	5	0.05996	0.98	0.764	1.6	0.0924	1.2	.786
4.1r	0.00	785	43	0.06	67.3	613.3	± 6.9	596	± 10	-3	0.05978	0.47	0.823	1.3	0.0998	1.2	.929
5.1r	0.00	342	29	0.09	28.8	601.9	± 7	580	±15	-4	0.05935	0.71	0.801	1.4	0.0979	1.2	.864
5.2	0.01	130	49	0.39	46.7	2259	±42	2117	± 18	-7	0.1314	1	7.61	2.4	0.4197	2.2	.903
6.1r	0.04	773	34	0.05	65.7	608.2	± 6.9	634	±12	4	0.06086	0.55	0.83	1.3	0.0989	1.2	.907
7.1r		493	32	0.07	41.4	602.5	± 7	582	±20	-4	0.05939	0.93	0.802	1.5	0.098	1.2	.791
7.2	0.02	342	116	0.35	95.7	1817	± 18	1987.7	± 7.9	9	0.12214	0.44	5.482	1.2	0.3255	1.1	.932
8.1	0.04	423	83	0.20	92.9	1466	±16	1959	±15	25	0.12016	0.82	4.232	1.5	0.2554	1.2	.829
9.1	0.04	263	32	0.13	22.4	609.1	± 7.2	607	±22	0	0.0601	1	0.821	1.6	0.0991	1.2	.776
10.1r	0.16	219	117	0.55	17.4	568.8	± 6.8	578	±29	2	0.0593	1.3	0.754	1.8	0.0922	1.3	.686
11.1	0.06	387	236	0.63	113	1886	±20	2377.8	± 5.1	21	0.15282	0.3	7.163	1.2	0.3399	1.2	.970
12.1	0.09	893	202	0.23	121	944	±11	1486	±16	36	0.09289	0.87	2.02	1.5	0.1577	1.2	.810
13.1		618	542	0.91	194	2004	±20	2000.8	± 4.4	0	0.12304	0.25	6.187	1.2	0.3647	1.2	.978
14.1		319	221	0.72	171	3121	±30	3219.7	± 3.7	3	0.25559	0.24	21.95	1.2	0.6227	1.2	.981
15.1	0.01	392	263	0.69	115	1895	±20	1975.5	± 5.5	4	0.12131	0.31	5.714	1.2	0.3416	1.2	.968
16.1	0.07	73	35	0.50	23.8	2069	±24	2201	±12	6	0.13791	0.71	7.2	1.5	0.3785	1.3	.885
17.1	0.00	487	623	1.32	143	1901	±19	2147.4	± 4.8	11	0.13372	0.27	6.323	1.2	0.3429	1.2	.974
18.1	0.03	240	111	0.48	72.4	1941	±20	2158	±13	10	0.13451	0.73	6.515	1.4	0.3513	1.2	.858
19.1	0.20	47	44	0.97	13	1805	±25	2012	±26	10	0.1238	1.5	5.52	2.1	0.3232	1.6	.732
20.1	0.01	339	144	0.44	121	2233	±23	2854.5	± 5.8	22	0.2035	0.35	11.62	1.3	0.414	1.2	.960
21.1	0.09	247	411	1.72	73.4	1917	±21	2003.8	± 8.5	4	0.12325	0.48	5.886	1.3	0.3464	1.2	.934
22.1	0.07	252	152	0.62	50.5	1353	±15	2293	±14	41	0.1455	0.8	4.686	1.5	0.2336	1.3	.846
23.1	0.01	311	125	0.41	101	2062	±22	2116.7	± 8.2	3	0.1314	0.47	6.827	1.3	0.3768	1.2	.934
24.1	0.27	61	43	0.74	19.2	2018	±25	2155	±19	6	0.1343	1.1	6.81	1.8	0.3677	1.4	.796

Tabela B.6 – Amostra AP-TUP-28 -Grupo Paraíba do Sul.

Grain.Spot	% ²⁰⁶ Pbc	ppm U	ppm Th	²³² Th / ²³⁸ U	ppm ²⁰⁶ Pb*	²⁰⁶ Pb / ²³⁸ U Age ^a	±	²⁰⁷ Pb / ²⁰⁶ Pb Age ^a	±	% Dis- cor- dant	²⁰⁷ Pb [*] / ²⁰⁶ Pb ^{* a}	±%	²⁰⁷ Pb [*] / ²³⁵ U ^a	±%	²⁰⁶ Pb [*] / ²³⁸ U ^a	±%	err corr
25.1	0.06	186	118	0.65	57.4	1978	±21	2154.1	± 7.8	8	0.13423	0.45	6.647	1.3	0.3592	1.3	.942
26.1	0.02	407	142	0.36	123	1941	±20	2102.4	± 5.8	8	0.13033	0.33	6.315	1.3	0.3514	1.2	.965
27.1	0.01	262	126	0.50	85.4	2073	±22	2128.4	± 6.6	3	0.13227	0.38	6.917	1.3	0.3793	1.2	.956
28.1		119	54	0.47	38.1	2047	±33	2171	±17	6	0.1355	0.96	6.98	2.1	0.3737	1.9	.891
29.1		623	112	0.19	298	2852	±25	3099.8	± 4.3	8	0.23698	0.27	18.18	1.1	0.5564	1.1	.970
30.1	0.08	109	87	0.82	39.9	2280	±23	2185	± 10	-4	0.13662	0.6	7.99	1.4	0.4243	1.2	.897
31.1	0.16	46	48	1.08	15	2063	±25	2147	± 18	4	0.1337	1	6.95	1.8	0.3771	1.4	.814
32.1	0.02	201	142	0.73	67.5	2126	±20	2165.6	± 7.4	2	0.13512	0.43	7.28	1.2	0.3908	1.1	.935
33.1	0.02	72	115	1.65	22.4	1992	±22	1961	±13	-2	0.12031	0.75	6.007	1.5	0.3621	1.3	.864
34.1		170	98	0.60	55.7	2083	±20	2176.6	± 7.9	4	0.13598	0.45	7.153	1.2	0.3815	1.2	.931
35.1	0.02	239	198	0.86	99.6	2553	±27	2611	±14	2	0.1756	0.86	11.76	1.6	0.4859	1.3	.835
36.1	0.04	203	62	0.32	58.9	1874	±18	1989.1	± 9.2	6	0.12224	0.52	5.686	1.2	0.3374	1.1	.910
37.1	0.02	119	57	0.50	39.3	2096	±22	2154	±19	3	0.1342	1.1	7.11	1.6	0.3843	1.2	.748
38.1	0.03	152	89	0.60	46.6	1962	±30	2127	±22	8	0.1322	1.2	6.48	2.2	0.3557	1.8	.819
39.1		358	120	0.35	147	2519	±23	2445.9	± 4.8	-3	0.15908	0.28	10.49	1.1	0.4782	1.1	.968
40.1	0.00	159	76	0.49	55.1	2179	±24	2187.7	± 7.8	0	0.13685	0.45	7.59	1.4	0.4021	1.3	.945

^a Common Pb corrected using measured ²⁰⁴Pb; Errors are 1-sigma; Pb_c and Pb* indicate the common and radiogenic portions, respectively; Error in Standard calibration was 0.34% (not included in above errors but required when comparing data from different mounts); Fonte: A Autora (2018).

APÊNDICE C – Tabelas de dados Lu-Hf para análises realizadas em espectrômentro de massa (LA-MC-ICP-MS) em grãos de zircão

Tabela de instrumento e amost	ras realizadas no MU	JLTILAB-UERJ	
	Amostra	Rocha	Domínio /Terreno Tectônico
	SM-MB-02	Granada-biotita gnaisse	
Finningan Neptune acoplado	SM-MB-05	Quartzito feldspático	
ao Excimer Laser 195 μm (Photon – Machines Inc.	SM-MB-07	Quartzito puro	Costeiro/Oriental
Modelo ATLEX SI).	SM-MB-09	Quartzito feldspático	
	SM-MB-15	Quartzito feldspático	
Tabela de instrumento e amost	ras realizadas na UN	D	
_	Amostra	Rocha	Domínio /Terreno Tectônico
	IG-1028	Quartzito	
	THE-21A	Granada-biotita gnaisse	Costeiro/Oriental
	THE-12A	Granada-biotita gnaisse	
ICP-MS Modelo Nu Attom	ARG-03	Quartzito milonítico	
acoplado ao laser UP193	SRJ-JE-159B	Granada-biotita gnaisse	luiz de Fore/Osidentel
(New Wave Research)	BP-JE-15A	Granada-biotita gnaisse	Juiz de Fora/Ocidentai
	THE-17	Quartzito impuro	
	THE-03	(Opx)-granada-biotita gnaisse	Cambuci/Oriental
	SA-ML-28	Granada-sillimanita gnaisse	Domého do Sul
	SD-ML-01	Quartzito	Paraioa do Sul

Tabela C.1 -	- Relação	de amostras	analizadas,	instrumentos	e labora	tórios	utilizados.
			,				

Fonte: A Autora (2018).

Tabela C.2 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra SM-MB-02.

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	Т _{DM} (Ma)
Z01	547	0.281976	0.000023	0.000213	0.281974	-16.51	1740
Z02	555	0.281937	0.000026	0.000184	0.281935	-17.72	1792
Z03	534	0.282130	0.000031	0.001769	0.282112	-11.89	1596
Z06	665	0.282008	0.000028	0.000328	0.282004	-12.78	1701
Z09	665	0.282056	0.000027	0.000675	0.282047	-11.26	1652
Z11	611	0.281997	0.000030	0.000776	0.281988	-14.56	1736
Z12	662	0.282130	0.000023	0.000613	0.282122	-8.68	1549
Z13	644	0.281963	0.000020	0.000217	0.281960	-14.82	1758
Z14	581	0.281981	0.000022	0.000294	0.281978	-15.61	1737
Z15	571	0.282051	0.000028	0.001239	0.282038	-13.71	1683

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	εHf _(t)	Т _{DM} (Ма)
Z75	597	0.281789	0.000061	0.000992	0.281778	-22.33	2031
Z41	775	0.282026	0.000089	0.006166	0.281936	-12.72	1972
Z59	597	0.282127	0.000052	0.003289	0.282090	-11.27	1668
Z80	643	0.282012	0.000039	0.000893	0.282001	-13.39	1721

Tabela C.3 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra SM-MB-05.

Tabela C.4 - Análises de composição isotópicas de Hf para os grãos de zircão da amostra SM-MB-07.

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	Т _{DM} (Ma)
z14	628	0.281931	0.000045	0.000956	0.281920	-16.59	1834
z15	991	0.281934	0.000039	0.001178	0.281912	-8.72	1842
z23	598	0.281691	0.000037	0.000571	0.281684	-25.61	2141
z25	655	0.281343	0.000036	0.000383	0.281338	-36.60	2595
z27	766	0.281928	0.000043	0.001059	0.281912	-13.77	1845
z28	859	0.281733	0.000046	0.000470	0.281725	-18.31	2079
z32	1027	0.281990	0.000027	0.000827	0.281974	-5.69	1748
z36	998	0.282048	0.000053	0.001968	0.282011	-5.02	1719
z47b	512	0.282119	0.000027	0.000950	0.282110	-12.49	1577
z69	587	0.281227	0.000047	0.000763	0.281219	-42.34	2775
z82	640	0.282260	0.000046	0.001958	0.282236	-5.12	1420
z87	525	0.281981	0.000024	0.000339	0.281978	-16.87	1739
z88	568	0.281559	0.000032	0.000557	0.281553	-30.92	2317
z97	898	0.281963	0.000037	0.000358	0.281957	-9.19	1763
z107	564	0.282119	0.000042	0.000689	0.282111	-11.26	1567
z109	614	0.281658	0.000031	0.001179	0.281644	-26.69	2220

Fonte: A Autora (2018).

Tabela C.5 - Análises de composição isotópicas de Hf para os grãos de zircão da amostra SM-MB-09

	Idade U-Pb	¹⁷⁶ Hf		¹⁷⁶ Lu	¹⁷⁶ Hf		T _{DM}
Amostra	(Ma)	/ ¹⁷⁷ Hf	±2SE	/ ¹⁷⁷ Hf	$/^{177}\mathbf{Hf}_{(t)}$	εHf _(t)	(Ma)
z07	1007	0.280429	0.00004	0.000764	0.280415	-61.41	3832
z34b	616	0.281277	0.00004	0.001123	0.281264	-40.10	2734
z35b	648	0.281540	0.00005	0.001277	0.281524	-30.17	2388
z36b	650	0.281956	0.00005	0.000745	0.281947	-15.15	1791
z57	631	0.280901	0.00004	0.000994	0.280889	-53.04	3229
z64	1021	0.282294	0.00005	0.002158	0.282253	4.05	1379
z86	553	0.281859	0.00005	0.000843	0.281850	-20.75	1928
z91b	519	0.281340	0.00006	0.000665	0.281334	-39.79	2617

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	T _{DM} (Ga)
z45	477	0.282033	0.000029	0.000829	0.282025	-16.26	1690
z38b	594	0.281920	0.000042	0.000668	0.281912	-17.63	1836
z39	557	0.280838	0.000031	0.000427	0.280834	-56.65	3265
z23b	621	0.281970	0.000023	0.000505	0.281964	-15.21	1762
z85	580	0.281944	0.000027	0.000771	0.281936	-17.11	1808
z17b	593	0.281958	0.000050	0.003802	0.281915	-17.55	1942
z76b	586	0.281824	0.000036	0.001214	0.281811	-21.40	1994
z44b	611	0.281863	0.000028	0.001051	0.281851	-19.41	1932
z29b	599	0.281853	0.000025	0.000996	0.281842	-20.01	1943
z47b	636	0.281949	0.000035	0.001319	0.281933	-15.94	1827
z58b	455	0.281827	0.000031	0.001314	0.281816	-24.16	1996
z71	588	0.281914	0.000038	0.001477	0.281898	-18.28	1884
z121	600	0.281971	0.000030	0.000978	0.281960	-15.80	1781
z97b	566	0.281856	0.000065	0.001327	0.281842	-20.75	1956
z107	571	0.281914	0.000034	0.000956	0.281903	-18.47	1859
z78b	608	0.281970	0.000030	0.000385	0.281965	-15.44	1756
z17	983	0.282061	0.000050	0.003870	0.281990	-6.13	1792
z47n	581	0.281383	0.000042	0.001726	0.281364	-37.35	2632

Tabela C.6 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra SM-MB-15.

Tabela C.7 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra IG-1028.

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	T _{DM} (Ma)
IG1028-Z03	1393	0.281976	0.000021	0.000634	0.281959	2.11	1759
IG1028-Z13	1073	0.282400	0.000025	0.000500	0.282390	10.09	1176
IG1028-Z10	629	0.282195	0.000021	0.000702	0.282187	-7.13	1463
IG1028-Z32	1399	0.282247	0.000022	0.000684	0.282229	11.80	1392
IG1028-Z05	1012	0.282358	0.000025	0.001356	0.282333	6.68	1260
IG1028-Z37	1272	0.282212	0.000021	0.000665	0.282196	7.74	1439
IG1028-Z34	1501	0.281552	0.000020	0.000462	0.281539	-10.32	2321
IG1028-Z126	1469	0.281907	0.000022	0.000536	0.281892	1.46	1848
IG1028-z22	868	0.281909	0.000024	0.000577	0.281899	-11.93	1847
IG1028-Z120	488	0.281622	0.000022	0.000402	0.281618	-30.42	2225
IG1028-Z48	989	0.282226	0.000022	0.000610	0.282215	1.98	1417
IG1028-Z47	1219	0.282147	0.000023	0.000819	0.282128	4.14	1533

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	Т _{DM} (Ma)
THE-21-01(9I)	2169	0,281632	0,0000187	0,000613	0,2816064	7.46	2223
THE-21-02(2I)	890	0,281819	0,0000192	0,0004113	0,2818118	-14.54	1961
THE-21-03(1I)	1896	0,281474	0,0000172	0,0004694	0,2814572	-4.17	2426
THE-21-04(7I)	1756	0,28202	0,00002	0,0017119	0,2819627	10.56	1748
THE-21-05(9H)	2911	0,280995	0,0000194	0,000728	0,2809541	1.62	3082
THE-21-06(3H)	1884	0,281811	0,0000226	0,0010321	0,2817744	6.83	2002
THE-21-07(6H)	2153	0,281561	0,0000211	0,000551	0,2815387	4.69	2314
THE-21-08(2B)	2785	0,280933	0,0000216	0,0002782	0,2809185	-2.61	3128
THE-21-09(5A)	1451	0,281928	0,0000178	0,0005435	0,2819128	1.80	1820
THE-21-10(7B)	1977	0,281778	0,0000232	0,0007185	0,2817513	8.17	2031
THE-21-11(1D)	2598	0,281334	0,0000225	0,0003402	0,281317	7.17	2604
THE-21-12(5D)	2158	0,281643	0,0000224	0,0006559	0,281616	7.56	2210
THE-21-13(9C)	1376	0,281933	0,0000234	0,0005363	0,2819192	0.31	1812
THE-21-14(8D)	2084	0,281525	0,0000208	0,0016613	0,2814595	0.26	2431
THE-21-15(6E)	1795	0,281692	0,0000186	0,0005963	0,2816712	1.12	2142
THE-21-16(4C)	1804	0,28182	0,0000247	0,000754	0,2817938	5.67	1977
THE-21-17(6C)	1787	0,281763	0,0000186	0,0005843	0,2817429	3.48	2045
THE-21-18(7A)	1767	0,281754	0,000019	0,0005817	0,2817344	2.70	2057
THE-21-19(6A)	1751	0,281728	0,0000234	0,0010473	0,2816932	0.89	2117

Tabela C.8 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra THE-21.

Tabela C.9 – Análises de com	posição isotó	picas de Hf p	bara os grãos de zircão	da amostra THE-12A.
	1 3		6	

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	T _{DM} (Ga)
THE-12A-01(Z07)	613	0,282444	0,000016	0,001115	0,282431	1,17	1133
THE-12A-02(Z10N)	665	0,282391	0,000013	0,001340	0,282374	0,31	1215
THE-12A-03(Z14)	620	0,282236	0,000017	0,001108	0,282223	-6,04	1422
THE-12A-04(Z31N)	664	0,282635	0,000017	0,003524	0,282591	7,98	925
THE-12A-05(Z32)	661	0,282553	0,000014	0,002440	0,282523	5,49	1017
THE-12A-06(Z35N)	630	0,282441	0,000013	0,001570	0,282422	1,23	1152
THE-12A-07(Z47)	653	0,282362	0,000012	0,001055	0,282349	-0,85	1246
THE-12A-08(Z50)	643	0,282607	0,000018	0,003187	0,282569	6,71	958
THE-12A-09(Z51)	598	0,282211	0,000014	0,000823	0,282202	-7,30	1446
THE-12A-10(Z52)	670	0,28245	0,000012	0,001969	0,282425	2,24	1151
THE-12A-11(Z53)	622	0,282164	0,000014	0,001058	0,282152	-8,53	1519
THE-12A-12(Z57)	636	0,282364	0,000016	0,001434	0,282347	-1,31	1255
THE-12A-13(Z54)	673	0,282228	0,000015	0,001550	0,282208	-5,38	922
THE-12A-14(Z55)	664	0,282371	0,000014	0,001961	0,282347	-0,68	1263
THE-12A-15(Z56)	626	0,282315	0,000017	0,000714	0,282307	-2,95	1299
THE-12A-16(Z43)	630	0,282617	0,000013	0,002331	0,282589	7,14	0,92
THE-12A-17(Z11)	619	0,282314	0,000016	0,000723	0,282305	-3,16	1301
THE-12A-18(Z20N)	626	0,282562	0,000017	0,006414	0,282486	3,41	1126

Fonte: A Autora (2018).

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	T _{DM} (Ma)
ARG-03-01(008C)	2383	0,281048	0,000016	0,000494	0,281026	-8,19	2993
ARG-03-02(005C)	755	0,281127	0,000014	0,000280	0,281123	-41,98	2874
ARG-03-03(001D)	2191	0,281379	0,000015	0,000271	0,281368	-0,50	2540
ARG-03-04(008G)	2175	0,281542	0,000015	0,000882	0,281505	4,01	2360
ARG-03-05(003E)	2179	0,281312	0,000017	0,000451	0,281293	-3,43	2641
ARG-03-06(008E)	2862	0,280975	0,000014	0,000621	0,280941	0,01	3100
ARG-03-07(009E)	2140	0,281418	0,000016	0,000751	0,281388	-0,98	2518
ARG-03-08(005A)	2112	0,281568	0,000014	0,000573	0,281545	3,94	2307
ARG-03-09(004A)	3137	0,281036	0,000014	0,001565	0,280941	6,52	3094
ARG-03-10(003A)	656	0,280852	0,000013	0,000249	0,280849	-53,90	3232
ARG-03-11(007B)	2945	0,281033	0,000016	0,001156	0,280967	2,90	3065
ARG-03-12(006G)	2197	0,281421	0,000015	0,000580	0,281397	0,66	2504
ARG-03-13(005G)	2110	0,281246	0,000015	0,000505	0,281226	-7,43	2732
ARG-03-14(009F)	2603	0,281015	0,000015	0,000510	0,280990	-4,34	3038
ARG-03-15(008B)	2046	0,281263	0,000017	0,000583	0,281240	-8,40	2715
ARG-03-16(002A)	634	0,281553	0,000017	0,000821	0,281543	-29,80	2341
ARG-03-17(002E)	3233	0,280894	0,000023	0,000077	0,280889	6,95	3163

Tabela C.10 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra ARG-03.

Tabela C.11 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra SRJ-JE-159B.

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	T _{DM} (Ga)
159B-02(Z69)	713	0,281605	0,000020	0,000681	0,281595	-26,19	2,26
159B-03(Z74)	1938	0,281313	0,000022	0,001130	0,281271	-9,80	2,69
159B-04(Z105)	949	0,281692	0,000022	0,000888	0,281677	-18,00	2,16
159B-05(Z65)	652	0,282098	0,000015	0,000908	0,282087	-10,15	1,60
159B-07(Z78)	2601	0,281134	0,000016	0,001056	0,281081	-1,13	2,92
159B-08(Z58)	2044	0,281753	0,000019	0,001005	0,281714	8,37	2,08
159B-11(Z90)	589	0,282284	0,000014	0,001298	0,282270	-5,09	1,36
159B-13(Z98)	568	0,282109	0,000015	0,000934	0,282099	-11,61	1,59
159B-14(Z112)	568	0,282302	0,000018	0,001856	0,282283	-5,10	1,36

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf(t)	$\epsilon H f_{(t)}$	T _{DM} (Ma)
15A-01(Z55)	2117	0,281734	0,000029	0,000299	0,281722	10,36	2068
15A-02(Z54)	612	0,281992	0,000034	0,000487	0,281987	-14,60	1730
15A-03(Z53)	2188	0,281709	0,000026	0,000703	0,281680	10,52	2123
15A-07(Z37)	558	0,28101	0,000018	0,000496	0,281005	-50,55	3044
15A-08(Z36)	1723	0,281152	0,000026	0,000338	0,281141	-19,38	2845
15A-09(Z35)	571	0,2819	0,000015	0,000826	0,281891	-18,89	1871
15A-10(Z34)	2110	0,281328	0,000025	0,001368	0,281273	-5,77	2683
15A-11(Z15)	571	0,281963	0,000016	0,000531	0,281957	-16,57	1772
15A-12(Z16)	3130	0,280803	0,000021	0,000693	0,280761	-0,05	3333
15A-13(Z25)	2125	0,28153	0,000026	0,000895	0,281494	2,45	2376
15A-14(Z31)	2101	0,281538	0,000023	0,000319	0,281525	3,00	2331
15A-15(17)	1975	0,281192	0,000029	0,000980	0,281155	-13,07	2838
15A-16(Z10)	2132	0,281666	0,000019	0,000791	0,281634	7,59	2187
15A-17(Z09)	551	0,281792	0,000027	0,000836	0,281784	-23,15	2018
15A-18(Z11)	2168	0,281711	0,000022	0,000656	0,281684	10,19	2119
15A-19(Z14)	2128	0,28135	0,000025	0,000525	0,281328	-3,37	2595
15A-20(Z12)	568	0,282161	0,000020	0,000792	0,282152	-9,71	1513

Tabela C.12 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra BP-JE-15A.

Tabela C.13 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra THE-17.

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	Т _{DM} (Ма)
THE-17-01(002A)	593	0,281437	0,000020	0,001076	0,281425	-34,91	2514
THE-17-02(005B)	587	0.281925	0.000016	0.001096	0.281913	-17.78	1851
THE-17-03(008B)	649	0.281919	0.000021	0.000912	0.281908	-16.56	1849
THE-17-05(003C)	1194	0.281958	0.000021	0.000660	0.281943	-2.99	1784
THE-17-07(003B)	566	0.282297	0.000015	0.000100	0.282296	-4.69	1304
THE-17-08(005I)	1027	0,282264	0,000026	0,001324	0,282238	3,67	1391
THE-17-09(007H)	625	0,282406	0,000021	0,000994	0,282395	0,14	1182
THE-17-10(004I)	889	0,282161	0,000017	0,000645	0,282150	-2,56	1507
THE-17-11(004F)	733	0,282376	0,000018	0,000747	0,282366	1,55	1216
THE-17-12(007F)	543	0,28221	0,000019	0,000656	0,282203	-8,47	1441
THE-17-13(009F)	563	0,282277	0,000016	0,000625	0,282271	-5,64	1348
THE-17-14(005D)	1825	0,281673	0,000019	0,001027	0,281638	0,61	2191
THE-17-15(004D)	619	0,282262	0,000019	0,001269	0,282247	-5,21	1392
THE-17-16(002D)	658	0,282236	0,000023	0,000375	0,282231	-4,90	1395
THE-17-17(001D)	618	0,282336	0,000018	0,000948	0,282325	-2,49	1278
THE-17-18(001E)	2126	0,281616	0,000019	0,000662	0,281589	5,86	2247
THE-17-20(009A)	560	0,282398	0,0000197	0,001100	0,282386	-1,62	1197

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	Т _{DM} (Ma)
The-03-01_z10n	553	0.282348	0.000016	0.001478	0.282332	-3.69	1280
The-03-02_z11	675	0.282189	0.000016	0.000531	0.282183	-6.24	1464
The-03-03_z12	638	0.282109	0.000016	0.000178	0.282106	-9.77	1560
The-03-04_z13	664	0.282099	0.000016	0.000160	0.282097	-9.53	1573
The-03-05_z02	642	0.282104	0.000016	0.000008	0.282104	-9.77	1559
The-03-06_z29	907	0.282066	0.000017	0.000476	0.282058	-5.42	1629
The-03-07_z08	559	0.282145	0.000015	0.000591	0.282138	-10.42	1528
The-03-08_z25	756	0.282298	0.000021	0.002104	0.282268	-1.38	1371
The-03-09_z32	699	0.282243	0.000017	0.000521	0.282236	-3.81	1391
The-03-10_z31	670	0.282114	0.000015	0.000056	0.282113	-8.82	1548
The-03-11_z03	628	0.282111	0.000019	0.000161	0.282109	-9.90	1556
The-03-12_z04	1490	0.282156	0.000016	0.000146	0.282152	9.39	1496
The-03-13_z52	617	0.282144	0.000021	0.000128	0.282143	-8.97	1510
The-03-14_z23	628	0.282011	0.000018	0.000201	0.282009	-13.46	1692
The-03-15_z22	719	0.282121	0.000022	0.001015	0.282107	-7.93	1577
The-03-16_z21	2190	0.281652	0.000023	0.000523	0.281630	8.81	2191
The-03-17_z53	697	0.282156	0.000020	0.000433	0.282150	-6.90	1506
The-03-18_z19	778	0.282143	0.000019	0.001270	0.282124	-5.99	1557
The-03-19_z17	669	0.282118	0.000021	0.000145	0.282116	-8.73	1546

Tabela C.14 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra THE-03.

Tabela C.15 – Análises de com	posição isotó	picas de Hf pa	ara os grãos de zircão	da amostra SA-ML-28.
	1 5	1 1	0	

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf(t)	εHf _(t)	Т _{DM} (Ма)
SA-ML-28-1(7E)	670	0.282352	0.000018	0.000512	0.282345	-0.58	1242
SA-ML-28-2(5E)	683	0.282351	0.000019	0.000738	0.282342	-0.43	1250
SA-ML-28-3(4C)	602	0.282271	0.000018	0.000530	0.282265	-4.98	1354
SA-ML-28-4(7C)	620	0.282239	0.000020	0.000392	0.282235	-5.65	1392
SA-ML-28-5(2D)	685	0.282259	0.000018	0.000852	0.282248	-3.69	1381
SA-ML-28-6(9C)	664	0.282359	0.000020	0.000349	0.282355	-0.38	1226
SA-ML-28-7(4B)	578	0.282248	0.000017	0.000425	0.282244	-6.26	1380
SA-ML-28-8(8A)	624	0.282219	0.000019	0.001158	0.282206	-6.58	1447
SA-ML-28-9(1B)	695	0.282224	0.000016	0.000990	0.282211	-4.80	1434
SA-ML-28-10(7A)	577	0.282116	0.000018	0.000360	0.282112	-10.93	1557
SA-ML-28-11(6A)	626	0.282181	0.000017	0.001108	0.282168	-7.94	1498
SA-ML-28-12(2B)	574	0.282229	0.000020	0.000014	0.282229	-6.88	1392
SA-ML-28-13(2A)	588	0.282193	0.000016	0.000551	0.282187	-8.06	1461
SA-ML-28-14(6C)	626	0.282285	0.000016	0.000333	0.282281	-3.95	1327
SA-ML-28-15(3D)	637	0.282179	0.000015	0.001505	0.282160	-7.88	1517

Amostra	Idade U-Pb (Ma)	¹⁷⁶ Hf / ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu / ¹⁷⁷ Hf	¹⁷⁶ Hf / ¹⁷⁷ Hf _(t)	$\epsilon H f_{(t)}$	Т _{DM} (Ma)
SD-ML-01-1(z49)	2447	0,281151	0,0000181	0,00081	0,2811132	-3,596	2880
SD-ML-01-2(z24)	2119	0,281015	0,0000186	0,0004824	0,2809959	-15,39	3036
SD-ML-01-3(z25n)	3196	0,280672	0,0000401	0,0001356	0,2806632	-1,992	3458
SD-ML-01-5(z29)	2100	0,281209	0,0000176	0,0004386	0,2811912	-8,894	2777
SD-ML-01-6(z50)	2582	0,28085	0,0000162	0,0007488	0,2808134	-11,1	3276
SD-ML-01-7(z53)	2220	0,28131	0,000019	0,0006106	0,281284	-2,813	2654
SD-ML-01-9(z40)	2704	0,281033	0,0000176	0,000568	0,2810039	-1,47	3019
SD-ML-01-11(z11)	2229	0,281101	0,0000204	0,0002713	0,281089	-9,534	2908
SD-ML-01-12(z13)	2482	0,281017	0,0000224	0,0004415	0,2809956	-6,964	3031
SD-ML-01-13(z14)	1748	0,28176	0,0000181	0,0013487	0,2817152	1,5901	2090
SD-ML-01-14(z17)	2184	0,281285	0,0000174	0,0006049	0,2812594	-4,521	2688
SD-ML-01-15(z03)	2185	0,281392	0,0000163	0,0010889	0,2813471	-1,383	2575
SD-ML-01-16(z22)	1998	0,281186	0,0000177	0,001266	0,2811376	-13,16	2868
SD-ML-01-17(z23)	1235	0,28151	0,0000159	0,0009885	0,2814864	-18,26	2410
SD-ML-01-18(z10)	559	0,281701	0,0000223	0,0020962	0,2816792	-26,67	2214
SD-ML-01-19(z07)	2970	0,280766	0,0000148	0,0005817	0,2807328	-4,857	3373
SD-ML-01-20(z08)	2189	0,281399	0,0000186	0,0003916	0,2813822	-0,043	2522

Tabela C.16 – Análises de composição isotópicas de Hf para os grãos de zircão da amostra SD-ML-01.