

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Engenharia

Altamiro de Araújo Pimenta Júnior

Avaliação da presença de poluentes orgânicos semivoláteis nas águas do Rio Macaé, Macaé - RJ

Altamiro de Araújo Pimenta Júnior

Avaliação da presença de poluentes orgânicos semivoláteis nas águas do Rio Macaé, Macaé - RJ

Dissertação apresentada, como requisito parcial para obtenção do Título de Mestre em Engenharia Ambiental, ao Programa de Pós-graduação em Engenharia Ambiental da Universidade do Estado do Rio de Janeiro.

Orientadora: Carin von Mühlen, D. Sc.

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/B

P644 Pimenta Júnior, Altamiro de Araújo.

Avaliação da presença de poluentes orgânicos semivoláteis nas águas do Rio Macaé, Macaé - RJ / Altamiro de Araújo Pimenta Júnior. – 2024.

115 f.

Orientadora: Carin von Mühlen.

Dissertação (Mestrado) - Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia.

1. Engenharia ambiental - Teses. 2. Água - Qualidade - Medição - Teses. 3. Análise cromatográfica - Teses. 4. Compostos orgânicos - Teses. I. von Mühlen, Carin. II. Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. III. Título.

CDU 628.19

Bibliotecária: Júlia Vieira - CRB7/6022

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, desde que citada a fonte.

Assinatura	Data

Altamiro de Araújo Pimenta Júnior

Avaliação da presença de poluentes orgânicos semivoláteis nas águas do Rio Macaé, Macaé - RJ

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Ambiental da Universidade do Estado do Rio de Janeiro. Área de concentração: Controle da Poluição Urbana e Industrial.

Prof^a. Carin von Mühlen (Orientadora)
Faculdade de Engenharia - UERJ

Prof^a. Daniele Maia Bila
Faculdade de Engenharia - UERJ

Prof^a. Márcia Rosa de Almeida
Faculdade de Engenharia - UERJ

Prof^a. Raquel Vieira Santana da Silva
Universidade Federal do Rio de Janeiro - UFRJ

Prof. Felipe Cury Mazza
Universidade Federal de Juiz de Fora - UFJF

Aprovado em 28 de junho de 2024.

Banca Examinadora:

Rio de Janeiro 2024

DEDICATÓRIA

Para minha querida mãe, que sempre foi meu apoio inabalável, minha fonte de amor incondicional e minha inspiração diária. Para meu irmão, companheiro de jornada, cuja presença é um constante lembrete do valor da família e da amizade verdadeira. E para minha esposa, que ilumina cada dia com seu amor, sua compreensão e sua presença calorosa.

AGRADECIMENTOS

Gostaria de expressar minha sincera gratidão ao Felipe, Rodrigo, Sérgio e Carin pelo apoio inestimável e pela transferência generosa de conhecimento ao longo deste trabalho. Suas orientações, insights e contribuições foram fundamentais para o desenvolvimento e conclusão deste projeto. Agradeço por dedicarem seu tempo e expertise para me auxiliar, enriquecendo meu entendimento e ampliando minhas habilidades. Suas contribuições foram verdadeiramente inestimáveis, e sou profundamente grato por tê-los como parte deste percurso acadêmico.

RESUMO

PIMENTA JUNIOR, A. A. Avaliação da presença de poluentes orgânicos semivoláteis nas águas do Rio Macaé, Macaé - RJ. 2024. 115 f. Dissertação (Mestrado em Engenharia Ambiental) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2024.

A escassez de dados sobre a presença de poluentes orgânicos no Rio Macaé motivou a realização de uma investigação desses compostos. Compreender a composição química das substâncias orgânicas presentes na água do rio é essencial para avaliar os impactos ambientais e os riscos à saúde pública, especialmente considerando a importância do Rio Macaé para a região. A área em estudo é caracterizada por uma combinação de atividades agrícolas, industriais e urbanas, que podem impactar significativamente a saúde do ecossistema aquático e a saúde humana. As técnicas analíticas convencionais não permitem a separação de mais de poucas centenas de picos em um cromatograma. Por esse motivo, para fazer um estudo diagnósticos de compostos desconhecidos torna-se necessário utilizar técnicas analíticas avançadas, tais como a cromatografia gasosa bidimensional abrangente acoplada à espectrometria de massas por tempo (GC×GC/TOFMS). A pesquisa foi conduzida por meio da coleta de cinco amostras de água em quatro pontos de amostragem ao longo do Rio Macaé, considerando critérios de características locais e facilidade de acesso. Os analitos foram concentrados por extração em fase sólida (Solid Phase Extraction - SPE) e utilizou-se a técnica GC×GC/TOFMS para identificar tentativamente os compostos presentes na água. A similaridade espectral dos compostos foi avaliada em relação aos padrões da biblioteca NIST, presente no software ChromaTOF, permitindo uma análise detalhada dos espectros de massas dos compostos para cada amostra. O número de picos detectados por amostra variou entre 207 e 505 e o número de compostos tentativamente identificados foi superior à 500 compostos com similaridade em relação aos espectros da Biblioteca NISTMS superior à 80% e o índice de retenção foi calculado. Os resultados revelaram uma diversidade significativa de substâncias químicas tentativamente identificados nas amostras de água, com destaque para a presença de hidrocarbonetos, fármacos, solventes e agrotóxicos. Não seria possível realizar a identificação de um número elevado de substâncias, como observado nas amostras estudadas, utilizando técnicas cromatográficas convencionais. Os pontos de coleta próximos a áreas rurais apresentaram contaminação por pesticidas e subprodutos agrícolas, enquanto o ponto urbano evidenciou a presença de compostos como solventes, hidrocarbonetos e ftalatos, indicando a influência das atividades industriais e comerciais com possível descarte inadequado de resíduos no Rio. Este estudo evidenciou que realizar uma análise qualitativa de substâncias orgânicas presentes na água do rio Macaé foi uma estratégia para definir os principais compostos presentes que podem ser futuramente monitorados por estudos quantitativos.

Palavras-chave: Qualidade da Água; Compostos Orgânicos; SPE; Rio Macaé; Cromatografia.

ABSTRACT

PIMENTA JUNIOR, A. A. Assessment of the presence of semi-volatile organic pollutants in the waters of the Macaé River, Macaé - RJ. 2024. 115 p. Dissertation (Master's in Environmental Engineering) - Faculty of Engineering, State University of Rio de Janeiro, Rio de Janeiro, 2024.

The scarcity of data on the presence of organic pollutants in the Macaé River prompted an investigation of these compounds. Understanding the chemical composition of organic substances present in the river's water is essential for assessing environmental impacts and public health risks, especially given the importance of the Macaé River to the region. The study area is characterized by a combination of agricultural, industrial, and urban activities, which can significantly impact the health of the aquatic ecosystem and human health. Conventional analytical techniques do not allow for the separation of more than a few hundred peaks in a chromatogram. For this reason, conducting a diagnostic study of unknown compounds requires the use of advanced analytical techniques, such as comprehensive twodimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/TOFMS). The research was conducted by collecting five water samples from four sampling points along the Macaé River, considering criteria such as local characteristics and ease of access. The analytes were concentrated by Solid Phase Extraction (SPE), and the GC×GC/TOFMS technique was used to tentatively identify the compounds present in the water. The spectral similarity of the compounds was evaluated against the NIST library standards in the ChromaTOF software, allowing for a detailed analysis of the mass spectra of the compounds in each sample. The number of peaks detected per sample ranged from 207 to 505, and the number of tentatively identified compounds exceeded 500, with spectral similarity to the NIST Library spectra greater than 80% and the retention index was calculated. The results revealed a significant diversity of tentatively identified chemical substances in the water samples, highlighting the presence of hydrocarbons, pharmaceuticals, solvents, and pesticides. It would not have been possible to identify such a large number of substances, as observed in the studied samples, using conventional chromatographic techniques. Sampling points near rural areas showed contamination by pesticides and agricultural byproducts, while the urban point revealed the presence of compounds such as solvents, hydrocarbons, and phthalates, indicating the influence of industrial and commercial activities with possible improper waste disposal into the river. This study demonstrated that conducting a qualitative analysis of organic substances present in the water of the Macaé River was a strategy to identify the main compounds that can be monitored in future quantitative studies.

Keywords: Water Quality; Organic Compounds; SPE; Macaé River; Chromatography.

LISTA DE FIGURAS

Figura 1 - Esquema de transformação e carreamento de agrotóxicos. adaptado de
Lavorenti <i>et al</i> . (2003) 26
Figura 2 – Municípios abrangidos pela Bacia do Rio Macaé. Adaptado do Comitê de
Bacia do Rio Macaé39
Figura 3 - Média mensalda temperatura e precipitação na cidade de Macaé – RJ, para
o ano de 2022 41
Figura 4 – Localização dos pontos de coleta 44
Figura 5 – Ponto 1 de coleta na RJ-168 46
Figura 6 – Ponto de Coleta 2, na BR-101 47
Figura 7 – Ponto 3 de coleta na via expressa Linha Azul 48
Figura 8 – Ponto 4 de coleta na RJ-106, visa da foz do rio Macaé 49
Figura 9 – Imagem do Turbidímetro Hl98703 54
Figura 10 – Medidor Multiparâmetro HI98194 55
Figura 11 - Materiais utilizados no sistema a vácuo de extração em fase sólida 58
Figura 12 - Materiais utilizados na passagem do solvente59
Figura 13 – Diagrama de cores de íon selecionado na região do pico tentativamente
identificado como Clorfenapir 74
Figura 14 - Diagrama de cores de íon selecionado na região do pico tentativamente
identificado com ácido 4-clorobutírico75
Figura 15 - Diagrama de cores de íon selecionado na região do pico tentativamente
identificados com Ftalatos encontrados no ponto 3, amostra 1 76
Figura 16 - Cromatogramas das amostras coletadas no ponto 1110
Figura 17 - Cromatogramas das amostras coletadas no ponto 2 111
Figura 18 - Cromatogramas das amostras coletadas no ponto 3113
Figura 19 - Cromatogramas das amostras coletadas no ponto 4 114

LISTA DE QUADROS

Quadro 1 - Lista dos compostos orgânicos qualificados pela CONAMA 357
destacando os monitorados para rios Classe II18
Quadro 2 - Padrão de potabilidade para substâncias orgânicas que representam risco
à saúde da Portaria 888/202123
Quadro 3 - Padrão de potabilidade para agrotóxicos e metabólitos que representan
risco à saúde da Portaria 888/202124
Quadro 4 - Lista dos atuais poluentes orgânicos persistentes da convenção de
Estocolmo29
Quadro 5 – Novos compostos adicionados a lista do protocolo de Estocolmo3

LISTA DE TABELAS

Tabela 1 – Análises químicas complementares	52
Tabela 2 – Parâmetros Físico-Químicos analisados no ato da coleta	64
Tabela 3 – Lista dos compostos tentativamente identificados por ponto de colet	ае
amostra	67
Tabela 4 - Substâncias orgânicas tentativamente identificadas por GCxGC-TOF	MS
em mais de 2 pontos de coleta	71

SUMÁRIO

	INTRODUÇÃO	13
1 -	REFERENCIAL TEÓRICO	16
1.1 -	Legislação	16
1.1.1 -	Qualidade da água para o consumo humano	20
1.1.2 -	Toxicidade e Ecotoxicidade	25
1.1.3 -	Convenção de Estocolmo	28
1.2 -	Análise de poluentes orgânicos em água superficial	31
1.3 -	Extração em fase sólida (SPE)	33
1.3.1 -	Histórico da técnica	33
1.3.2 -	Sorvente de sílica	34
1.3.3 -	Florisil	36
1.4 -	Cromatografia Gasosa Bidimensional Abrangente Acoplada à	
Espectr	ometria de Massas por Tempo de Voo (GC×GC/TOFMS)	36
1.4.1 -	Conceito	36
1.5 -	Caracterização da área de estudo – Rio Macaé	38
1.5.1 -	Classificação do Rio Macaé pela Conselho Nacinal do Meio Ambiente	40
1.5.2 -	Índices pluviométricos	40
2 -	MATERIAIS E MÉTODOS	43
2.1 -	Pontos de coleta	43
2.2 -	Coleta das Amostras	49
2.2.1 -	Limpeza e Silanização da Vidraria de Coleta e Análise	50
2.2.2 -	Cronograma de coleta	52
2.2.3 -	Dos Equipamentos Complementares	52
2.3 -	Reagentes e Materiais	56
2.4 -	Preparação do cartucho SPE	59
2.5 -	Extração em fase sólida	60
2.6 -	Análise cromatográfica	61
2.6.1 -	Preparo e injeção	62
3 -	ANÁLISE E DISCUSSÃO DOS DADOS	64
4 -	CONSIDERAÇÕES FINAIS	77
	REFERÊNCIAS	80

Apêndice A - Lista completa dos compostos encontrados por ponto de coleta.	92
Apêndice B - Cromatogramas de todos os pontos coletados	110

INTRODUÇÃO

A crescente poluição do meio ambiente como resultado das atividades humanas deu início as preocupações relativas aos desgastes do ambiente natural assim como na saúde das populações. Pensando nisso, medidas legislativas são tomadas para o monitoramento da poluição e seus efeitos, gerando regras e limites. Para que essas medidas tenham embasamento são necessários estudos das substâncias poluentes e suas concentrações. A necessidade de dados confiáveis sobre a ocorrência de micro poluentes orgânicos no meio ambiente foi um importante fator para impulsionar o desenvolvimento de técnicas e procedimentos analíticos (LIŠKA, 2000).

A identificação de poluentes orgânicos em águas superficiais requer a aplicação de diversas técnicas analíticas, tais como cromatografia gasosa acoplada à espectrometria de massas (GC-MS) e cromatografia líquida acoplada à espectrometria de massas (LC-MS). Smith et al. (2018) destacam a eficácia da GC-MS na identificação de compostos orgânicos voláteis e semivoláteis em amostras de água, enquanto autores como Brown e Jones (2019) ressaltam a importância da LC-MS na detecção de compostos polares e não voláteis, permitindo a identificação precisa e a caracterização de poluentes orgânicos em águas superficiais, contribuindo para a avaliação da qualidade ambiental e a implementação de medidas de controle e remediação. Entretanto, o número de compostos separados analiticamente por essas técnicas é limitado.

A cromatografia gasosa bidimensional acoplada à espectrometria de massas por tempo de voo (GC×GC/TOFMS) é uma técnica analítica poderosa e altamente

eficaz na identificação e quantificação de substâncias orgânicas em amostras complexas. A combinação da alta capacidade de separação da cromatografia gasosa bidimensional com a sensibilidade e precisão da espectrometria de massas por tempo de voo proporciona uma análise abrangente e detalhada de misturas complexas de compostos orgânicos (ETTRE, 2007). Wilson et al. (2019) destacam a aplicabilidade da GC×GC/TOFMS em estudos ambientais, ressaltando sua capacidade de fornecer informações precisas sobre a composição química de amostras desafiadoras.

A presença de poluentes orgânicos na água, em concentrações variáveis, pode acarretar efeitos prejudiciais à saúde humana, incluindo a potencialidade de provocar toxicidade sistêmica e/ou desencadear processos carcinogênicos (OMS, 2019). A gravidade desses impactos está diretamente relacionada à natureza química dos compostos, à persistência desses agentes no ambiente aquático e à exposição prolongada dos indivíduos a essas substâncias. Assim, a compreensão detalhada das concentrações e dos mecanismos de ação desses poluentes torna-se essencial para a mitigação dos riscos à saúde pública e para a formulação de políticas ambientais eficazes. Entretanto, considerando que milhares de substâncias químicas são produzidas e utilizadas no mundo, o número de substâncias que podem ser quantificadas por métodos analíticos torna-se limitado.

O Rio Macaé, localizado no estado do Rio de Janeiro, desempenha um papel vital tanto no ecossistema local quanto no fornecimento de recursos hídricos para a região. Este rio atravessa áreas de relevante importância ambiental, agrícola e urbana, servindo como um elo entre diversos ecossistemas e atividades humanas. Apesar de sua importância, o Rio Macaé sofre com pressões antrópicas comumente encontradas em áreas urbanas e rurais, onde sistematicamente são lançados nos rios

poluentes, especialmente no que se refere à presença de poluentes orgânicos como pesticidas, hidrocarbonetos e outros produtos químicos sintéticos. Esses compostos, têm a capacidade de se acumular nos sedimentos e nos organismos aquáticos, causando efeitos adversos em toda a cadeia alimentar.

A ausência de estudos sistemáticos e aprofundados sobre a presença e os efeitos desses poluentes orgânicos no Rio Macaé é preocupante. A carência de dados concretos e a falta de uma vigilância contínua impedem a compreensão plena dos riscos que esses compostos representam para o meio ambiente e para a saúde humana. Esses estudos são fundamentais para identificar as fontes de contaminação, avaliar os impactos ambientais e para desenvolver estratégias de mitigação que possam garantir a preservação deste recurso hídrico.

Dessa forma, este trabalho tem o objetivo a realização de um estudo diagnóstico qualitativo de substâncias orgânicas semivoláteis presentes em amostras de água coletadas no trecho final do Rio Macaé, dentro do território do município de Macaé – RJ, utilizando SPE para a concentração dos analitos e posterior análise por GC×GC/TOFMS.

1 - REFERENCIAL TEÓRICO

1.1 - Legislação

A constituição brasileira de 1988, na sua essência de criação, não protege diretamente o recurso hídrico do território nacional, no entanto, o artigo 225 declara:

i. Todos têm direito ao meio ambiente ecologicamente equilibrado, bem de uso comum do povo e essencial à sadia qualidade de vida, impondo-se ao Poder Público e à coletividade o dever de defendê-lo e preservá-lo para as presentes e futuras gerações. § 10 Para assegurar a efetividade desse direito, incumbe ao Poder Público: I – preservar e restaurar os processos ecológicos essenciais e prover o manejo ecológico das espécies e ecossistemas; [...] V – controlar a produção, a comercialização e o emprego de técnicas, métodos e substâncias que comportem risco para a vida, a qualidade de vida e o meio ambiente; [...] (BRASIL, 1988).

A lei n° 9.433 de 8 de janeiro de 1997, institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos. O Artigo 1° baseia-se nos seguintes fundamentos: [...] II - a água é um recurso natural limitado, dotado de valor econômico; III - em situações de escassez, o uso prioritário dos

recursos hídricos é o consumo humano e a dessedentação de animais; [...] (BRASIL, 1997).

A Resolução nº 357 do CONAMA dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Alterada pela Resolução 430, a resolução 357 mantém as classificações e padrões de qualidade da água para as classes dos corpos de água. Sendo assim, esses padrões são base para estudos relacionados a saúde ambiental do corpo hídrico e relaciona com as atividades que podem ocorrer naquele sistema.

A Resolução CONAMA N° 357 de 2005 estabelece diretrizes para a classificação dos corpos de água e define padrões de qualidade que devem ser observados para garantir a proteção dos recursos hídricos no Brasil. Embora a norma preveja um conjunto de compostos e parâmetros a serem monitorados, a realidade do monitoramento ambiental, especialmente por órgãos como o INEA (Instituto Estadual do Ambiente), revela lacunas significativas.

Um dos principais pontos de discussão em relação à Resolução é o número limitado de compostos químicos e físicos que são efetivamente monitorados. A norma estabelece critérios para a avaliação da qualidade da água, incluindo parâmetros como oxigênio dissolvido, coliformes fecais, nutrientes (nitrogênio e fósforo), entre outros. No entanto, a lista de todos os compostos monitorados (Quadro 1), é de apenas 55 compostos, sendo apenas 17 monitorados para rios de Classe II, onde o Rio Macaé se enquadra, o que é insuficiente para abranger a complexidade dos poluentes que podem afetar a qualidade da água, especialmente os compostos

orgânicos que estão se tornando cada vez mais relevantes sobretudo pela sua toxicidade como os agrotóxicos e rejeitos industriais.

Quadro 1 - Lista dos compostos orgânicos qualificados pela CONAMA 357, destacando os monitorados para rios Classe II

Parâmetros Orgânicos	Valor máximo
Acrilamida	0,5 μg/L
Alacloro	20 μg/L
Aldrin + Dieldrin	0,005 μg/L
Atrazina	2 μg/L
Benzeno	0,005 mg/L
Benzidina *	0,001 µg/L
Benzo(a)antraceno *	0,05 μg/L
Benzo(a)pireno *	0,05 μg/L
Benzo(b)fluoranteno *	0,05 μg/L
Benzo(k)fluoranteno *	0,05 μg/L
Carbaril	0,02 μg/L
Clordano (cis + trans)	0,04 μg/L
2-Clorofenol	0,1 μg/L
Criseno *	0,05 μg/L
2,4-D	4,0 μg/L
Demeton (Demeton-O + Demeton-S)	4,0 μg/L 0,1 μg/L
Dibenzo(a,h)antraceno *	0,1 μg/L 0,05 μg/L
3,3-Diclorobenzidina *	
•	0,028 μg/L
1,2-Dicloroetano	0,01 mg/L
1,1-Dicloroeteno	0,003 mg/L
2,4-Diclorofenol	0,3 µg/L
Diclorometano	0,02 mg/L
DDT (p,p'-DDT + p,p'-DDE + p,p'-DDD)	0,002 μg/L
Dodecacloro pentaciclodecano	0,001 µg/L
Endossulfan(μ + ß + sulfato)	0,056 μg/L
Endrin	0,004 μg/L
Estireno	0,02 mg/L
Etilbenzeno	90,0 μg/L
Fenóis totais (substâncias que reagem com 4-aminoantipirina)	0,003 mg/L C6H5OH
Glifosato	65 μg/L
Gution	0,005 μg/L
Heptacloro epóxido + Heptacloro *	0,01 μg/L
Hexaclorobenzeno *	0,0065 μg/L
Indeno(1,2,3-cd)pireno *	0,05 μg/L
Lindano(g-HCH)	0,02 μg/L
Malation	0,1 μg/L
Metolacloro	10 μg/L
Metoxicloro	0,03 μg/L
Paration	0,04 µg/L
PCBs - Bifenilas policloradas *	0,001 μg/L
Pentaclorofenol *	0,009 mg/L
Simazina	2,0 μg/L
Substâncias tensoativas que reagem com o azul de metileno	0,5 mg/L LAS
2,4,5-T	2,0 µg/L
Tetracloreto de carbono *	0,002 mg/L
Tetracloroeteno *	0,01 mg/L
Tolueno	2,0 µg/L
TOIGOTIO	∠,∪ µg, ∟

Toxafeno *	0,01 μg/L
2,4,5-TP	10,0 μg/L
Tributilestanho	0,063 μg/L TBT
Triclorobenzeno (1,2,3-TCB + 1,2,4-TCB)	0,02 mg/L
Tricloroeteno	0,03 mg/L
2, 4, 6-Triclorofenol *	0,01 mg/L
Trifluralina	0,2 μg/L
Xileno	300 μg/L

^{*} Compostos monitorados pela CONAMA 357 para rios classe II.

O INEA, apesar de ser o órgão responsável pela gestão ambiental no estado do Rio de Janeiro, enfrenta desafios que dificultam a implementação de um programa de monitoramento abrangente e eficaz. Isso resulta em uma vigilância inadequada da qualidade da água, o que pode comprometer a saúde pública e a integridade dos ecossistemas aquáticos. Mesmo sabendo dos riscos da presença de poluentes orgânicos à população e ao meio ambiente é comum a inexistência de monitoramento por parte do órgão. Atualmente, existem oito pontos de monitoramento associados à bacia do Rio Macaé, dos quais apenas dois estão localizados diretamente no rio. Nesses pontos, são monitorados exclusivamente os parâmetros do Índice de Qualidade da Água (IQA), que incluem: Oxigênio Dissolvido (OD), Demanda Bioquímica de Oxigênio (DBO), Fósforo Total (PT), Nitrogênio Amoniacal (NH₃), Potencial Hidrogeniônico (pH), Turbidez (T), Sólidos Dissolvidos Totais (SDT), Temperatura da Água e do Ar, e Coliformes Termotolerantes (INEA, 2024).

A ausência de um monitoramento mais abrangente e sistemático pode levar a uma subavaliação dos riscos associados à poluição hídrica, dificultando a implementação de políticas públicas eficazes para a proteção dos recursos hídricos.

A Resolução nº 430 do CONAMA altera a 357 e dispõe sobre o lançamento de efluente, no entanto, para efeito dessa tese ela não será abordada por entender que

os efeitos do lançamento já estão presentes no objeto do estudo e os resultados não será relacionado a apenas uma fonte.

Em 31 de março de 2021 o senado aprovou uma emenda à constituição que inclui, na constituição federal, o acesso à água potável entre os direitos e garantias fundamentais, garantindo o fornecimento para todas as faixas sociais independente dos interesses econômicos. Essa PEC ainda tramita na câmara dos deputados e se aprovado, certamente será uma conquista para a proteção dos recursos hídricos.

1.1.1 - Qualidade da água para o consumo humano

Segundo a Fundação Nacional de Saúde (2006), os riscos para a saúde relacionados com a água podem ser distribuídos em duas categorias: Os riscos relacionados com a ingestão de água contaminada por agentes biológicos ou riscos derivados de poluentes químicos e radioativos, geralmente efluentes industriais, ou causados por acidentes ambientais. A exposição aguda ou crônica aos compostos orgânicos, está associada a efeitos adversos como intoxicação, envenenamento ou câncer, podendo levar a morte (OMS, 2019).

Os contaminantes químicos, como metais pesados, pesticidas e substâncias químicas industriais, também podem alterar as propriedades químicas da água. Metais pesados como chumbo e mercúrio podem se acumular no corpo, causando danos neurológicos e atrasos no desenvolvimento (ATSDR, 2019). Pesticidas, como DDT e atrazina, foram relacionados a problemas reprodutivos e câncer (EPA, 2020).

No que tange à qualidade da água distribuída no Brasil, toda água distribuída coletivamente, seja por meio de sistema de abastecimento de água (SAA) ou solução alternativa coletiva (SAC), deve ser submetida a controle e vigilância de qualidade (BÁRTA, *et al.*, 2021).

No caso do meio hídrico, a poluição das águas pode ser conceituada como a ocorrência de fenômenos (adição de substâncias ou de formas de energia, modificações no meio) que direta ou indiretamente alteram a natureza de um corpo d'água e assim prejudicam os usos que dele são feitos. É importante destacar que o prejuízo se refere aqui não apenas ao ser humano, mas também à biota aquática. (MS, 2006; Handam, et al., 2022).

A contaminação da água é um problema generalizado, com poluentes entrando na água por meio de várias vias, incluindo derramamentos agrícolas, efluentes industriais e resíduos humanos (Kumar *et al.*, 2018). Os contaminantes podem alterar as propriedades físicas da água, incluindo seu pH, temperatura e turbidez. Por exemplo, poluentes ácidos como ácido sulfúrico podem reduzir o pH da água, tornando-a mais corrosiva e potencialmente prejudicial à vida aquática (Mukherjee *et al.*, 2017).

Para o Ministério da Saúde (2006), a poluição das águas pode ocorrer de três formas:

 introdução de substâncias artificiais e estranhas ao meio, como, por exemplo, o lançamento de agrotóxicos em rios ou a contaminação por organismos patogênicos;

- introdução de substâncias naturais e estranhas ao meio, como o aporte de sedimentos às águas de um lago, reduzindo seu volume útil;
- alteração na proporção ou nas características dos elementos constituintes do próprio meio, como, por exemplo, a diminuição do teor de oxigênio dissolvido nas águas de um rio em decorrência da presença de matéria orgânica (MS, 2006).

Como efeito do crescimento populacional e a necessidade da expansão de áreas agrícolas para assegurar a alimentação de todos, diversas metodologias de produção foram desenvolvidas ao longo do tempo. Dentre as tecnologias de produção podemos citar os defensivos agrícolas, que vem com a proposta de aumentar a produção já que reduzem o ataque de diversas pragas nos cultivos.

É certo que as moléculas criadas para atacar determinadas pragas na agricultura podem surtir efeitos adversos nos seres humanos. Em muitos cultivos são associadas e aplicadas diversas moléculas, o que aumenta ainda mais a toxicidade do local. Muitos desses compostos são persistentes no meio ambiente e podem infiltrar no solo e/ou ainda serem carreados em direção a corpos hídricos (Kumar et al., 2018).

Os defensivos agrícolas podem contaminar fontes de água, afetando ecossistemas aquáticos e a saúde humana. A utilização de defensivos agrícolas na agricultura tem sido relacionada à contaminação de fontes de água superficial e subterrânea, representando um grande risco para a saúde humana e o ambiente (WHO, 2019).

A partir da Resolução no 357/2005 do Conama, que busca classificar e proteger as águas dos mananciais, e da Portaria nº 518/2004 do Ministério da Saúde, que estabelece normas e padrões para a qualidade da água de consumo humano (MORAES et al., 1999).

Por esse motivo o Ministério da Saúde determina e regulamenta uma série de limites para diversos compostos dessa natureza. Desde a criação desses limites dada pela Portaria nº 518/2004 do Ministério da Saúde, a legislação vem se atualizanda constantemente, como a portaria 2914 de 12 de dezembro de 2011 dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. No anexo VII dessa portaria, são apresentadas as substâncias químicas que representam riscos à saúde. Em sequência a a portaria 2914/2011 foi anexada a Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017. Atualmente a portaria 888/2021 altera o anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017. Os quadros 2 e 3 a seguir são apresentadas as informações sobre os compostos orgânicos de interesse ao consumo humano (Brasil, 2021).

Quadro 2 - Padrão de potabilidade para substâncias orgânicas que representam risco à saúde da Portaria 888/2021

Parâmetro	CAS(1)	Unidade	VMP(2)
1,2 Dicloroetano	107-06-2	μg/L	5
Acrilamida	79-06-1	μg/L	0,5
Benzeno	71-43-2	μg/L	5
Benzo[a]pireno	50-32-8	μg/L	0,4
Cloreto de Vinila	75-01-4	μg/L	0,5
Di(2-etilhexil) ftalato	117-81-7	μg/L	8
Diclorometano	75-09-2	μg/L	20
Dioxano	123-91-1	μg/L	48
Epicloridrina	106-89-8	μg/L	0,4

Etilbenzeno	100-41-4	μg/L	300
Pentaclorofenol	87-86-5	μg/L	9
Tetracloreto de Carbono	56-23-5	μg/L	4
Tetracloroeteno	127-18-4	μg/L	40
Tolueno	108-88-3	μg/L	30
Tricloroeteno	79-01-6	μg/L	4
Xilenos	1330-20-7	μg/L	500

Fonte: Ministério as Saúde, 2021.

Quadro 3 - Padrão de potabilidade para agrotóxicos e metabólitos que representam risco à saúde da Portaria 888/2021

Parâmetro	CAS(1)	Unidade	VMP(2)
2,4 D	94-75-7	μg/L	30
Alacloro	15972-60-8	μg/L	20
Aldicarbe + Aldicarbesulfona +Aldicarbesulfóxido	116-06-3 (aldicarbe)	μg/L	10
	1646-88-4 (aldicarbesulfona)		
	1646-87-3 (aldicarbe sulfóxido)		
Aldrin + Dieldrin	309-00-2 (aldrin) 60-57-1 (dieldrin)	μg/L	0,03
Ametrina	834-12-8	μg/L	60
Atrazina +	1912-24-9 (Atrazina)	μg/L	2
S-Clorotriazinas (Deetil-Atrazina - Dea, Deisopropil-Atrazina -	6190-65-4 (Deetil- Atrazina - Dea) 1007-28-9		
Dia e	(Deisopropil-Atrazina - Dia)		
Diaminoclorotriazina - Dact)	3397-62-4 (Diaminoclorotriazina - Dact)		
Carbendazim	10605-21-7	μg/L	120
Carbofurano	1563-66-2	μg/L	7
Ciproconazol	94361-06-5	μg/L	30
Clordano	5103-74-2	μg/L	0,2
Clorotalonil	1897-45-6	μg/L	45
Clorpirifós + clorpirifós-oxon	2921-88-2 (clorpirifós)	μg/L	30
	5598-15-2 (clorpirifósoxon)		
DDT+DDD+DDE	50-29-3 (p,p'-DDT)	μg/L	1
	72-54-8 (p,p'-DDD) 72-55-9 (p,p'-DDE)		
Difenoconazol	119446-68-3	μg/L	30
Dimetoato +	60-51-5 (Dimetoato)	μg/L	1,2
Ometoato	1113-02-6 (Ometoato)	ოუ [,] ⊏	
Diuron	330-54-1	μg/L	20
Epoxiconazol	135319-73-2	μg/L	60
Fipronil	120068-37-3	μg/L	1,2
Flutriafol	76674-21-0	μg/L	30
Glifosato + AMPA	1071-83-6 (glifosato)	μg/L	500

	1066-51-9 (AMPA)		
Hidroxi-Atrazina	2163-68-0	μg/L	120
Lindano (gama HCH)	58-89-9	μg/L	2
Malationa	121-75-5	μg/L	60
Mancozebe +	8018-01-7	μg/L	8
	(Mancozebe)	μg/L	
ETU	96-45-7 (Ampa)		
Metamidofós +	10265-92-6	μg/L	7
	(Metamidofós)	μg/∟	,
Acefato	30560-19-1 (Acefato)		
Metolacloro	51218-45-2	μg/L	10
Metribuzim	21087-64-9	μg/L	25
Molinato	2212-67-1	μg/L	6
Paraquate	4685-14-7	μg/L	13
Picloram	6607	μg/L	60
Profenofós	41198-08-7	μg/L	0,3
Propargito	2312-35-8	μg/L	30
Protioconazol +	178928-70-6		3
Prodocoriazor+	(Protioconazol)	μg/L	
ProticonazolDestio	120983-64-4		
	(ProticonazolDestio)		
Simazina	122-34-9	μg/L	2
Tebuconazol	107534-96-3	μg/L	180
Terbufós	13071-79-9	μg/L	1,2
Tiametoxam	153719-23-4	μg/L	36
Tiodicarbe	59669-26-0	μg/L	90
Tiram	137-26-8	μg/L	6
Trifluralina	1582-09-8	μg/L	20

Fonte: Ministério da Saúde, 2021

1.1.2 - Toxicidade e Ecotoxicidade

Os agrotóxicos são compostos produzidos pela indústria com finalidade de melhorar a produtividade dos cultivos. Embora a produção desses defensivos seja específica a sua aplicação normalmente não são limitadas as áreas que se quer proteger ou controlar do ataque das pragas. Ao ser aplicado por diferentes técnicas, parte desses defensivos são levados pelos ventos e principalmente pelas chuvas. As chuvas favorecem não só a percolação do poluente no solo, que atingirá águas subterrâneas, mas também poderá carrear as moléculas pela superfície do solo para o corpo hídrico mais próximo como demostrando na **Figura 1**.

Fotodecomposição Volatilização Deposição pela chuva Agrotóxico Volatilização Escorrimento superficia Infiltraçã Ambiente aquático Absorção egradação Adsorção Exudação quimica Desorção ' Degradação Lixiviação biológica Lençol freático

Figura 1 - Esquema de transformação e carreamento de agrotóxicos. adaptado de Lavorenti *et al.* (2003)

Fonte: Lavorenti et al, 2003, v. 3. p. 430.

Entende-se que as características do solo como sua porosidade, composição e biota podem alterar o comportamento das moléculas de agrotóxicos acumuladas, podendo diminuir ou aumentar sua toxicidade.

Segundo Andreoli e Ferreira (1998), dos 400 princípios ativos distribuídos em 700 marcas comerciais de defensivos agrícolas utilizados no estado do Paraná, apenas 20 princípios ativos recebem algum tipo de monitoramento.

Recentemente, em 09 de fevereiro de 2022, foi aprovado pela Câmara de Deputados o Projeto de Lei 6.299/02 que amplia a quantidade de moléculas e marcas a serem comercializadas no Brasil. Independente se aprovado pelo Senado, fica claro

a necessidade de aumentar a capacidade de análise desses compostos e seus efeitos no meio ambiente e por fim na saúde humana.

Uma vez que os poluentes cheguem ao corpo hídrico receptor a biota do sistema aquático se contamina podendo resultar em efeitos adversos como a bioacumulação, a magnificação trófica ou a morte dos seres vivos.

A bioacumulação ocorre quando uma molécula é transportada através da membrana celular, mediada pela água. A absorção dessa água contaminada pode acontecer tanto pela via respiratória quanto pela ingestão alimentar. Segundo Azevedo e Chasin (2004), para que a molécula atravesse a membrana são necessários quatro fatores:

- 1. A hidrossolubilidade é conferida à molécula por grupos que permitem a formação de pontes de hidrogênio com a molécula de água quando em solução: grupamento hidroxila -OH; carboxila -COOH; amino – NH₂; sulfidrila -SH; carbonila -C=O; etc. A lipossolubilidade é conferida à molécula por agrupamento alquílicos, fenílicos, naftílicos etc.
- O coeficiente de partição água-óleo é dada pela relação de hidrossolubilidade e lipossolubilidade.
 Quanto maior mais fácil o transporte através da membrana.
- 3. O grau de ionização quando muito tóxicos podem estar presentes de duas formas: ionizadas e não

ionizadas. A não ionizada é geralmente lipossolúvel e pode ser difundir prontamente através da membrana. A ionizante é muitas vezes incapaz de penetrar a membrana por ser pouco lipossolúvel.

O tamanho e a carga da partícula a ser absorvida.
 (AZEVEDO & CHASIN, 2004 p.28-30).

De outro modo a contaminação pode se dá pela ingestão direta de produtos cultivados com defensivos ou até no contato na aplicação desses agrotóxicos, sobretudo no campo. Desta maneira o consumo de água agiria de forma complementar na intoxicação do organismo.

1.1.3 - Convenção de Estocolmo

Os poluentes orgânicos persistentes são substâncias que têm sido utilizadas como agrotóxicos, para fins industriais ou liberados e modo não intencional em atividades antropogênicas (IBAMA, [s.d.]). Por sua característica de difícil degradação pode ser transportadas tanto pelo ar, água e solo quanto bioacumularem nos organismos vivos e interagindo na cadeia trófica.

Tanto a bioacumulação quanto a persistência dos poluentes em forma residual no ambiente trouxeram o alerta para a saúde humana que culminou na criação da convenção de Estocolmo sobre poluentes orgânicos persistentes.

Os efeitos específicos dos POPs podem incluir câncer, alergias e hipersensibilidade, danos ao sistema nervoso central e periférico, distúrbios

reprodutivos e interrupção do sistema imunológico. Alguns POPs também são considerados desreguladores endócrinos, que, alterando o sistema hormonal, podem danificar os sistemas reprodutivo e imunológico dos indivíduos expostos, bem como de seus descendentes; eles também podem ter efeitos cancerígenos e de desenvolvimento (STOCKHOLM CONVENTION, ONU, 2019).

Entre 22 e 23 de maio de 2001, em Estocolmo na Suécia, realizou-se a conferência que determinaria regras de banimento e restrição para as substâncias classificadas como Poluentes Orgânicos Persistentes – POPs. A intenção foi de inserir o princípio da precaução, o fortalecimento das capacidades nacionais além de determinar responsabilidades do setor produtivo (CETESB, [s.d.]).

Os países signatários, como o Brasil, têm como parte das obrigações, adotarem medidas de controle relacionadas a todas as etapas do ciclo de vida dessas substâncias (**Quadro 4**), bem como controlar as emissões no meio ambiente além da identificação e gestão de áreas contaminadas por essas substâncias (IBAMA, s.d).

O Brasil aprovou a convenção por decreto legislativo nº 204 de 7 de maio de 2004 e, promulgou o texto pelo decreto nº 5.472 de 20 de junho de 2005, que ainda está em vigor.

Quadro 4 - Lista dos atuais poluentes orgânicos persistentes da convenção de Estocolmo.

Pesticidas	CAS	Produtos químicos industriais	CAS	Subprodutos	CAS
aldrin	309- 00-2	Hexaclorobenzeno (HCB)	38380 -07-3	bifenilos policlorados (PCB)	-

	1		ı	dibonzo n	
clordano	57-74- 9	Bifenilos policlorados (PCB)	671- 16-9	dibenzo- p - dioxinas policloradas (PCDD)	-
DDT	50-29- 3	Hexabromobifenil (HBB)	50-97- 5	dibenzofuranos policlorados (PCDF)	-
dieldrin	60-57- 1	Éter Hexabromodifenílico e Éter Heptabromodifenílico (C OctaBDE)	68631 -49-2	Hexaclorobenzeno (HCB)	-
endrin	72-20- 8	Hexaclorobutadieno (HCBD)	87-68- 3	Pentaclorobenzeno (PeCB)	608- 93-5
heptacloro	76-44- 8	Naftalenos Policlorados	70776 -03-3	Hexaclorobutadien o (HCBD)	87-68- 3
Hexaclorobenzeno (HCB)	38380 -07-3	Éter Decabromodifenílico (C DecaBDE)	1163- 19-5	Naftalenos Policlorados (PCNs)	70776 -03-3
Mirex (dodecacloro)	2385- 85-5	Parafinas Cloradas e Cadeia Curta (SCCP)	85535 -84-8		
toxafeno	8001- 35-2	Hexabromocyclododecan e (HBCDD)	25637 -99-4		
Dieldrin	60-57- 1	Tetrabromodiphenyl ether and pentabromodiphenyl ether	5436- 43-1		
Clordecone	143- 50-0				
Alfa Hexaclorociclohexan o (alfa HCH)	319- 84-6				
Beta hexaclorociclohexan o (beta HCH)	319- 85-7				
Lindano	58-89- 9				
Pentaclorobenzeno (PeCB)	608- 93-5				
Endossulfam	115- 29-7				
Pentaclorofenol e seus sais e ésteres	87-86- 5				

Fonte: Conversão de Estocolmo, 2023.

Desde a aprovação da primeira lista de composto até os dias atuais, várias medidas foram adotadas para avaliar a evolução da redução e eliminação dessas substâncias, assim como adicionaram 16 novas moléculas. Novas substâncias foram

adicionadas após aprovadas na décima reunião realizada de 6 a 17 de junho de 2022 e na décima primeira reunião realizada de 1 a 12 de maio de 2023, que podem ser observados no Quadro 5. Isso demonstra a crescente preocupação com os efeitos dessas substâncias e a necessidade de monitorá-las.

Quadro 5 – Novos compostos adicionados a lista do protocolo de Estocolmo

Novos compostos	CAS		
Perfluorooctanoic acid (PFOA)	335-67-1		
Dicofol	115-32-2		
Perfluorohexane sulfonic acid (PFHxS)	355-46-4		
Methoxychlor	72-43-5		
Dechlorane plus	135821-03-3		
UV-328	25973-55-1		
Perfluorooctane sulfonic acid (PFOS)	1763-23-1		

Fonte: Conversão de Estocolmo, 2023.

1.2 - Análise de poluentes orgânicos em água superficial

A análise de compostos orgânicos em água é um procedimento importante para avaliar a qualidade da água e detectar a presença de substâncias químicas perigosas para a saúde humana e ambiental. Existem várias técnicas que podem ser utilizadas para analisar compostos orgânicos em água, cada uma com suas próprias características e limitações, o que dificulta a comparação dos resultados e, consequentemente, a elaboração de diagnósticos precisos sobre a condição ambiental dos corpos hídricos. Essa complexidade técnica muitas vezes resulta em lacunas na aplicação da legislação, uma vez que a variabilidade nos resultados pode comprometer a conformidade com os critérios estabelecidos pelas normas ambientais.

As principais técnicas de análise de compostos orgânicos em água são fundamentais para a avaliação da qualidade da água e a detecção de poluentes. Entre

essas técnicas, a cromatografia líquida de alta eficiência (HPLC) é amplamente utilizada para a separação e quantificação de compostos polares e termicamente instáveis, como pesticidas e fármacos (King et al., 2018). A cromatografia gasosa (GC), por outro lado, é ideal para a análise de compostos voláteis e semi-voláteis, como hidrocarbonetos e solventes orgânicos, devido à sua capacidade de volatilização e separação eficiente (Miller, 2019). A espectrometria de massas (MS) é frequentemente acoplada a essas técnicas, proporcionando uma identificação precisa e sensível dos compostos analisados, mesmo em concentrações muito baixas. Além disso, técnicas como a extração em fase sólida (SPE) são utilizadas para a préconcentração de analitos, melhorando a detecção de compostos orgânicos em amostras aquáticas complexas (ALMEIDA, et al., 2019).

A técnica de cromatografia gasosa bidimensional (GC×GC) apresenta uma vantagem significativa em relação a outras metodologias analíticas na separação e identificação de compostos orgânicos em água, devido à sua maior sensibilidade e capacidade de resolução (Pinkston *et al.*, 2017). Ao utilizar duas colunas cromatográficas com diferentes fases estacionárias, a GC×GC permite a separação de uma gama mais ampla de compostos, incluindo aqueles que são voláteis e semivoláteis, que podem não ser adequadamente resolvidos por técnicas convencionais de cromatografia gasosa (Vreuls *et al.*, 2018). Essa abordagem resulta em uma melhor discriminação entre compostos estruturalmente semelhantes, aumentando a capacidade de detecção de poluentes orgânicos em concentrações muito baixas (Halket *et al.*, 2019). Estudos realizados por Zhang *et al.* (2020), demonstram que a GC×GC melhora a sensibilidade analítica e proporciona perfis cromatográficos mais ricos, facilitando a identificação de compostos complexos em amostras aquáticas.

1.3 - Extração em fase sólida (SPE)

1.3.1 - Histórico da técnica

A extração em fase sólida é uma técnica muito utilizada para preparação amostras. Sua versatilidade se dá pela capacidade de extração de analitos em matrizes complexas de forma relativamente simples. Das matrizes complexas mais comumente analisas por SPE temos as amostras de alimentos, fármacos e ambientais. Entender as características químicas dos analitos a serem pesquisados assim como o meio em que eles estão, é fundamental para a escolha das etapas da extração como observado por Smith et al. (2017), que ressaltam que propriedades como a polaridade, solubilidade em solventes específicos, tamanho molecular e grau de interação com a fase estacionária do cartucho de SPE devem ser consideradas ao selecionar as condições ideais de extração.

Desde o início do desenvolvimento da técnica de extração diversos solventes foram testados com finalidades específicas, uma vez que não há um solvente universal.

A escolha da fase estacionária adequada é essencial para a eficiência e seletividade da extração por SPE (Solid-Phase Extraction), sendo influenciada por diversos fatores como a natureza dos analitos, a matriz da amostra e as propriedades químicas dos compostos de interesse. Autores como Brown e White (2018) destacam a variedade de tipos de fase estacionária disponíveis para a SPE, incluindo sílica, polímeros, resinas de troca iônica, carvão ativado e sorventes específicos para grupos funcionais.

Autores como Green et al. (2019) enfatizam a importância de considerar as propriedades físico-químicas dos analitos ao selecionar a fase estacionária mais apropriada, garantindo uma extração eficiente e seletiva. A escolha da fase estacionária correta é essencial para otimizar a recuperação dos analitos de interesse, minimizar a retenção de interferentes e garantir a precisão e exatidão das análises.

Desde as primeiras técnicas e aplicações até as atuais, muitos se avançou para chegar a um padrão da metodologia. A sequência mais comum da técnica de extração em fase sólida consiste na limpeza do sorvente, ativação do sorvente, condicionamento, aplicação da amostra, remoção de interferências e eluição de analitos sorvidos.

Embora a extração em fase sólida seja uma técnica eficiente para um conjunto de matriz, Wiley (2003) chama a atenção para a dificuldade de replicação. Em sua análise de erro demonstrou que 75% da incerteza de sua análise veio da etapa SPE e o restante veio do procedimento analítico. Wiley (2003) sugere minimizar o número de etapas para diminuir a incerteza quando possível, pois quanto maior o número de etapas, mais erros existem.

Segundo Jardim (2010), os principais objetivos da SPE são a remoção de interferentes da matriz, a concentração e o isolamento dos analitos e, afirma que o fator de concentração é obtido pela razão entre o volume inicial de amostra aplicado no cartucho e o volume final de solução concentrada.

1.3.2 - Sorvente de sílica

Os sorventes de sílica coloidal são amplamente reconhecidos na comunidade científica por sua eficácia na purificação e separação de compostos em diversas aplicações analíticas. Autores como Smith et al. (2005) destacam a alta capacidade de adsorção da sílica coloidal, resultante de sua elevada área superficial e interação seletiva com moléculas alvo. Esses sorventes, compostos por partículas de sílica finamente dispersas em um meio líquido, são essenciais em processos de cromatografia e purificação devido à sua natureza inerte e quimicamente estável, conforme discutido por Brown e Jones (2010).

A capacidade de funcionalização da superfície da sílica coloidal com grupos específicos é ressaltada por Garcia et al. (2013), permitindo a personalização do solvente para atender requisitos específicos de separação. Essa versatilidade torna os sorventes de sílica coloidal ferramentas indispensáveis em laboratórios de química e bioquímica, contribuindo significativamente para a obtenção de compostos puros e de alta qualidade em análises científicas.

A fase florisil tem sido amplamente utilizada na purificação de amostras de água contaminadas com compostos polares, como pesticidas organoclorados e fenóis. Lopez et al. (2020) destacam a eficácia da fase florisil na adsorção seletiva desses compostos concentrando os analitos de interesse para análises subsequentes. Já a fase PSA tem sido empregada na separação de compostos polares em amostras de água, como aminoácidos, açúcares e compostos fenólicos. Rodriguez e Sanchez (2017) demonstraram a capacidade da fase PSA em reter seletivamente esses compostos, proporcionando uma separação eficaz e uma maior sensibilidade na detecção por cromatografia líquida.

1.3.3 - Florisil

A utilização de florisil na extração de pesticidas, bifenilas policloradas (PCBs) e hidrocarbonetos poliaromáticos (PAHs) em amostras de água é uma estratégia eficaz amplamente discutida na literatura científica. Autores como Silva et al. (2016) destacam a capacidade da florisil de adsorver seletivamente compostos orgânicos, incluindo pesticidas comuns, PCBs e PAHs, proporcionando uma remoção eficiente desses poluentes da água (SANTOS e LIMA, 2018).

No que tange a eficiência, Wang et al. (2018) utilizou florisil para a concentração de pesticidas em águas superficiais contaminadas que foi capaz de concentrar 95% dos pesticidas presentes na água, assim como estudo relatado por Zhang et al. (2019), que utilizou florisil para a concentração de PCBs e PAHs em águas superficiais contaminadas demonstrando a capacidade de concentrar 90% dos PCBs e 85% dos PAHs presentes na água.

1.4 - Cromatografia Gasosa Bidimensional Abrangente Acoplada à Espectrometria de Massas por Tempo de Voo (GC×GC/TOFMS)

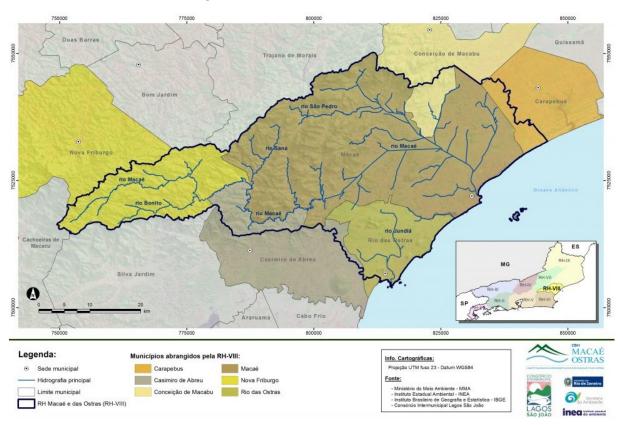
1.4.1 - Conceito

A cromatografia gasosa bidimensional abrangente acoplada à espectrometria de massas por tempo de voo (GC×GC/TOFMS) é uma técnica analítica avançada oferecem diversas vantagens significativas em relação à cromatografia gasosa convencional. Autores como Johnson et al. (2017) destacam a capacidade da

GC×GC/TOFMS de separar e identificar compostos em misturas complexas com alta resolução e sensibilidade. Essa técnica combina duas etapas de separação cromatográfica, permitindo a análise de uma ampla gama de compostos em uma única corrida cromatográfica, conforme discutido por Lee e Smith (2019).

Essa técnica foi criada para atender a demanda de análise de amostras complexas que exigem maior grau de sensibilidade de detecção e maior espectro de trabalho, que por consequência aumenta a capacidade de análise de picos devido a melhor separação dos compostos. Ela trabalha utilizando duas colunas conectadas em série capazes de realizar separações independentes usando duas colunas contendo diferentes fases estacionárias. Essa técnica satisfaz o princípio da ortogonalidade (SEMARD, ADAHCHOUR & FOCANT, 2009). Esse princípio é comumente utilizado em estatísticas e geradores de sinais dizendo que o vetor de erro do estimador ótimo é ortogonal a qualquer estimador possível.

Além disso, GCxGC acoplado à espectrometria de massa de tempo de voo (GC×GC/TOFMS) introduz detecção altamente seletiva e deconvolução de picos sobrepostos, fornecendo uma ferramenta importante para identificação e quantificação (GOMES et al., 2013).


Essa técnica tem sido aplicada na separação, identificação tentativa e quantificação de poluentes orgânicos em amostras de água superficial como observado por Mazza, et al., 2024, que analisou os isômeros de endosulfan e outros pesticidas. Mangelli et al., 2023, utilizaram a técnica para investigar a presença dos poluentes orgânicos presente no lodo de uma estação de tratamento de água na região hidrográfica do Médio Paraíba do Sul, onde foram tentativamente identificadas

centenas de substâncias orgânicas poluentes. Kumar, *et al.*, 2018, analisaram a ocorrência e o destino de poluentes orgânicos, incluindo pesticidas e medicamentos, na água do rio Ganges, na Índia, assim como Ma, *et al.*, 2024 realizaram uma triagem não direcionada de compostos orgânicos em sedimentos fluviais: um estudo de caso no Rio Taipu, na Região do Delta do Rio Yangtzé, na China e Zushi *et al.*, 2016, que realizaram um estudo não direcionado para monitoramento ambiental na bacia da Baía de Tóquio.

1.5 - Caracterização da área de estudo – Rio Macaé

O Rio Macaé nasce no município de Nova Friburgo, localizado na região serrana do estado do Rio de Janeiro. Entre as escarpas da Serra dos Órgãos sua nascente situa-se próximo ao pico do Tinguá e corre em direção ao mar por 136 km, sendo sua foz no município de Macaé, ainda no estado do Rio de Janeiro, na região do norte fluminense (INEA, 2012).

A bacia do Rio Macaé abrange seis municípios, dentre os quais se destaca o município de Macaé, com inserção de cerca de 1448 km² (82%) do seu território na bacia, sendo o restante, distribuído pelos municípios de Nova Friburgo (142 km²), Casimiro de Abreu (83 km²), Rio das Ostras (11 km²), Conceição de Macabu (70 km²) e Carapebus (11 km²). Contribui ainda para a bacia do Rio Macaé (sub-bacia do Rio São Pedro), a transposição das águas da bacia do Rio Macabu, através da Usina Hidrelétrica Macabu. A Figura 2 demostra a cidades abrangidas pela Bacia Hidrográfica do Rio Macaé (INEA, 2012).

Figura 2 – Municípios abrangidos pela Bacia do Rio Macaé. Adaptado do Comitê de Bacia do Rio Macaé

Fonte: Comitê de bacia do Rio Macaé, 2023

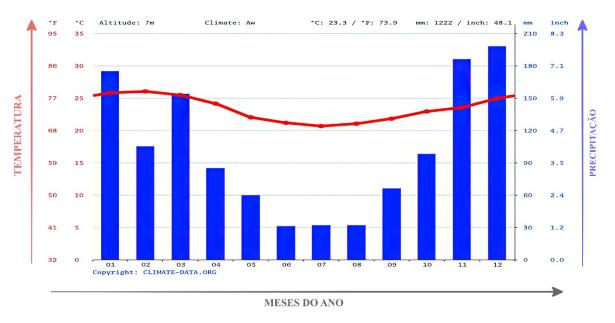
Com o objetivo de ampliar a área útil cultivável que antes era sujeita a inundações, ainda na década de 1940, foram iniciadas com projetos do extinto Departamento Nacional de Obras e Saneamento (DNOS). Essas obras alteraram profundamente o comportamento hidrológico do Rio Macaé, com a drenagem de áreas naturalmente alagadas como brejos e lagos, permitindo a ocupação de solo sobretudo para a produção agropecuária (FREITAS, et al., 2015).

Com a produção rural instalada e a evolução dos modos de cultivo, a utilização de defensivos agrícolas foram inevitáveis. Além das particularidades já descritas sobre a toxicidade desses agrotóxicos, pode-se entender que a persistência residual desses compostos na vegetação tratada tende a ser carreada para o rio, pois embora a

retificação tenha ocorrido com a finalidade de drenar as áreas, elas estão sujeitas a inundações pelos grandes volumes de chuvas em sua bacia, assim como está sujeita as variações de maré alta e maré baixa (FREITAS, et al., 2015).

1.5.1 - Classificação do Rio Macaé pela Conselho Nacinal do Meio Ambiente

A Resolução CONAMA N° 357/2005 define a classificação do Rio Macaé quanto aos usos preponderantes como classe II em toda sua extensão, por não ter passado pelo processo de enquadramento específico para esse curso. Essa classificação é destinada a corpos de água que possuem uma qualidade adequada para usos múltiplos, como abastecimento para consumo humano após tratamento convencional, irrigação de culturas sensíveis, recreação de contato primário, proteção das comunidades aquáticas e preservação da vida aquática. Esses rios devem apresentar características que permitam o desenvolvimento de atividades humanas e a manutenção dos ecossistemas aquáticos de forma equilibrada. Ressalta-se que a classificação em classe II implica na necessidade de monitoramento constante e na implementação de medidas de proteção e conservação para garantir a manutenção da qualidade da água nesse corpo hídrico.


1.5.2 - Índices pluviométricos

De acordo com a classificação de Köppen e Geiger a região hidrográfica de Macaé é caracterizada pelo Clima Tropical Úmido (Aw), com diferenciação na precipitação ao qual confere chuvas intensas no verão até o outono e inverno seco, e

clima tropical de altitude com verões quentes (Cwa) na porção dos altos cursos do rio Macaé e de seus afluentes pela margem esquerda (INEA, 2012).

A temperatura média segundo o climate-data.org é de 23,3 °C e média anual de pluviosidade de 1220 mm e pode ser observado pelo Figura 3.

Figura 3 - Média mensalda temperatura e precipitação na cidade de Macaé – RJ, para o ano de 2022

Fonte: climate-data.org, 2023.

A cidade de Macaé possui uma estação automática A608 indexada no sistema do Instituto Nacional de Meteorologia – INMET. Essa estação fornece dados sobre o comportamento da precipitação da região sobretudo dos dias das coletas.

Na cabeceira, segundo consta no site do Comitê de Bacias do Rio Macaé, apresenta índices pluviométricos superiores a 1900 mm, atingindo 2500 mm. Os meses de dezembro, janeiro e fevereiro são os meses com chuvas mais intensas.

A associação topográfica-maritimidade é responsável pelo aumento da turbulência do ar, podendo induzir a formações de nuvens convectivas de grandes dimensões verticais, que podem gerar chuvas orográficas, notadamente no período de verão (INEA, 2012).

2 - MATERIAIS E MÉTODOS

2.1 - Pontos de coleta

Para o melhor acompanhamento dos pontos de coleta eles foram selecionados seguindo dois critérios básicos, sendo a primeira as características dos locais e a segunda a facilidade de acesso (Silva, *et al.*, 2018).

O primeiro critério leva em consideração as características do entorno da área de coleta na possível influência nos resultados. Considera, assim, a profunda retificação do Rio Macaé para drenagem da região e ocupação humana, seja ela urbana ou rural.

Os pontos 1 e 2 apresentados na Figura 4, possuem influência de áreas essencialmente rurais. Já os pontos 3 e 4, da mesma figura, são áreas essencialmente urbanas.

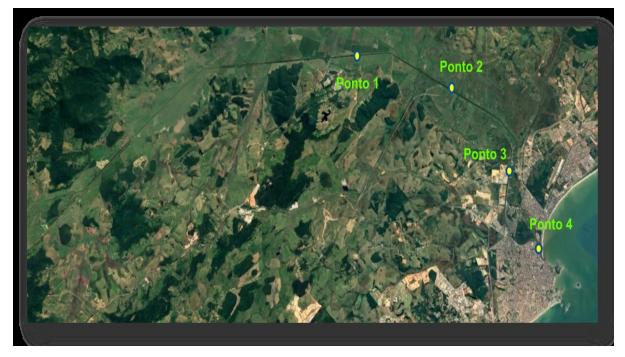


Figura 4 – Localização dos pontos de coleta

Fonte: Google Earth, o autor, 2021.

O ponto 2 destaca-se por sua proximidade com uma termelétrica, o que habitualmente causa alterações na temperatura natural do rio devido ao descarte de efluentes das torres de resfriamento. Um aspecto comum e generalizado nesse tipo de efluente é a presença de concentrações elevadas de sais e cloro. É relevante salientar que cada usina de geração termoelétrica adota tecnologias distintas para o tratamento de seus efluentes, resultando em diferentes composições de água residual (Costa, *et al.*, 2019). Neste contexto, as informações apresentadas referem-se a características genéricas desse processo.

É importante ressaltar que o ponto de coleta está localizado a montante do ponto de descarte do efluente da termelétrica, o que não influencia diretamente nos resultados obtidos. No entanto, dependendo dos compostos identificados e de sua interação com o aumento da temperatura, é possível inferir sobre possíveis alterações a jusante da usina.

O critério de "facilidade de acesso" é baseado pelo relevo plano característico da região, o qual torna suscetível a alagamentos frequentes de vastas áreas. Essa condição poderia comprometer significativamente a eficácia da coleta e a adesão ao cronograma estabelecido, uma vez que o acesso aos pontos de coleta seria inviável em tais circunstâncias. Com o intuito de mitigar esses desafios logísticos, todos os pontos de coleta foram posicionados em pontes sobre o rio Macaé. Essa escolha garante acesso seguro e contínuo às áreas de interesse, independentemente das condições climáticas adversas.

O Ponto 1 localiza-se na RJ-168, de coordenadas – Latitude 22°19'39.27"S, Longitude 41°58'56.81"O, na zona rural de Macaé. Este ponto está localizado em uma área estritamente rural, caracterizada pela presença de fazendas que margeiam o rio Macaé. Essa região, afastada de centros urbanos, preserva características naturais que são influenciadas predominantemente por atividades agropecuárias, as quais podem exercer influência sobre a qualidade das águas fluviais devido ao manejo de pastagens, cultivos agrícolas e outras práticas típicas do ambiente rural. A escolha desse ponto é crucial para a análise dos impactos rurais sobre a bacia hidrográfica. A Figura 5 apresenta a localização e a localização do Ponto de Coleta 1 na RJ-168.

Figura 5 – Ponto 1 de coleta na RJ-168.

Fonte: O autor, 2021.

O Ponto 2 está localizado na rodovia BR-101, de coordenadas - Latitude 22°17'42.87"S, Longitude 41°52'48.04"O, próximo a Termelétrica Norte Fluminense a direita da Figura 6. O ponto está situado em uma área rural de caráter misto, onde coexistem atividades agropecuárias e industriais. Nesta localidade, há a presença de indústrias que utilizam a água do rio Macaé como recurso para seus processos produtivos, o que configura um cenário de interação entre práticas rurais tradicionais e intervenções industriais. Essa combinação de usos do solo e exploração de recursos hídricos torna o ponto 2 uma área de interesse particular para avaliar os impactos

conjuntos das atividades agrícolas e industriais na qualidade das águas do rio, oferecendo uma visão abrangente dos possíveis efeitos cumulativos sobre o ecossistema aquático.

Figura 6 – Ponto de Coleta 2, na BR-101.

Fonte: O autor, 2021

Com localização essencialmente urbana, o ponto 3 está nas Latitude 22°20'32.17"S, Longitude 41°47'11.80"O, em uma via expressa denominada de Linha Azul. O ponto de coleta pode ser visto na Figura 7 a seguir. O ponto localiza-se em uma área estritamente urbana que interage diretamente com o rio Macaé. Este ponto está inserido em um contexto de densa ocupação urbana, onde a presença de

empresas e atividades comerciais exerce uma influência significativa sobre a qualidade da água do rio. A proximidade com áreas urbanizadas implica em uma maior carga de efluentes domésticos e industriais, além de outros impactos típicos da urbanização, como o escoamento superficial e a poluição difusa.

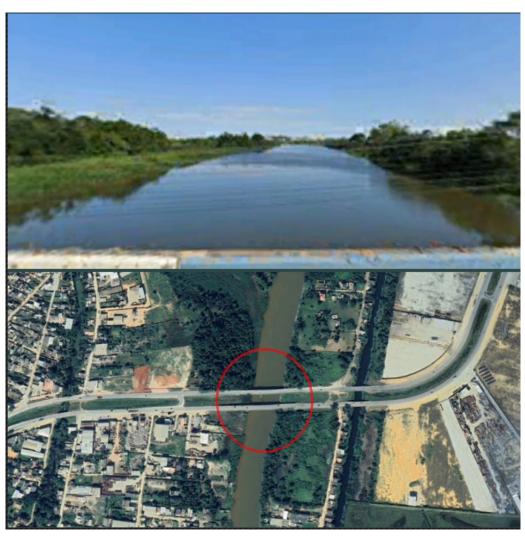


Figura 7 – Ponto 3 de coleta na via expressa Linha Azul.

Fonte: O autor, 2021.

Por fim, o ponto 4, localizado na RJ-106, próximo a foz do rio Macaé e coordenadas Latitude 22°22'12.61"S e Longitude 41°46'35.85"O, este ponto é observado na Figura 8. Situado em uma área estritamente urbana caracterizada por intensa atividade pesqueira, localizada na foz do rio Macaé. A posição estratégica na

foz do rio, onde as águas doces se misturam com as águas marinhas, torna esse ponto crucial para a análise final dos compostos orgânicos presentes no rio devido aos efeitos da urbanização, industrialização e das práticas pesqueiras.

Figura 8 – Ponto 4 de coleta na RJ-106, visa da foz do rio Macaé.

Fonte: O autor, 2021.

2.2 - Coleta das Amostras

Para o início da coleta nos pontos determinados om confiabilidade e rastreabilidade, utilizou-se uma planilha de cadeia de custódia (Silva, 2018). Dessa forma, critérios como os materiais necessários para coleta, informações do ambiente do dia da coleta, limpeza dos materiais, acondicionamento, e dados complementares

como hora da coleta, temperatura da água, condutividade, turbidez, oxigênio dissolvido, ORP e pH foram registrados. É importante mencionar que foram realizadas uma análises de dados complementares por ponto de coleta com o objeitvo de determinar o perfil entre os pontos.

Em cada ponto de interesse, foram realizadas 5 coletas distintas. Um transecto perpendicular ao rio foi traçado, abrangendo suas margens opostas (Brito, 2013). Esses transectos foram então subdivididos em 5 pontos de amostragem perfazendo toda a sua largura. Equipamentos para a Amostragem

Para a realização das coletas, foram utilizados os seguintes materiais: uma caixa térmica de isopor para o acondicionamento das amostras, gelo para garantir a conservação das mesmas, 20 frascos de vidro âmbar previamente preparados, luvas para manipulação livre de contaminação da coleta, um recipiente de coleta fabricado em aço inoxidável 202, além de corda para auxiliar no manuseio do recipiente durante a coleta.

2.2.1 - Limpeza e Silanização da Vidraria de Coleta e Análise

Os frascos e o recipiente foram submetidos a um procedimento de lavagem prévio à coleta. O gelo e o isopor foram exclusivamente utilizados para o transporte e acondicionamento das amostras, com o objetivo de manter a temperatura controlada em torno de 4°C e a luminosidade baixa, garantindo a preservação das características da água coletada.

A limpeza da vidraria envolveu o uso de detergente e água. Após a aplicação do detergente, foram realizados dez enxágues com água da torneira, seguidos de três enxágues com água destilada. O material foi então seco em uma estufa (Modelo 3, Icamo, Biocristal, RJ, Brasil) a 120 °C. Posteriormente, a vidraria foi lavada com acetona e seca em temperatura ambiente. O procedimento foi repetido com n-hexano. Por fim, a vidraria foi aquecida a 280 °C por duas horas e, após o resfriamento, as partes abertas da vidraria foram protegidas com papel alumínio para armazenamento (MAZZA, 2023).

Na sequência a vidraria passou por um processo de silanização da superfície de vidro com 5% de dichlorodimethylsilano (DMDCS) solubilizado em tolueno para modificar a superfície do vidro, conferindo propriedades hidrofóbicas para evitar interações indesejadas entre os compostos analisados e a superfície da vidraria.

Conforme proposto por Čajka et al. (2005), o procedimento de silanização envolve a lavagem das superfícies internas da vidraria com acetonitrila para eliminar partículas aderidas, seguida de secagem a 200 °C por 2 horas. Posteriormente, a parte interna da vidraria é imersa em uma solução silanizante por 45 minutos. Após este período, a solução é removida e as paredes são limpas com tolueno. Em seguida, as paredes silanizadas entram em contato com metanol, e o excesso é removido após 10 minutos de contato. Finalmente, a vidraria é aquecida a 200 °C para secagem por 30 minutos.

Autores como Smith et al. (2017), destacam a importância da silanização com dichlorodimethylsilano (DMDCS) que envolve na reação do silano com grupos hidroxila presentes na superfície do vidro, formando ligações covalentes e criando uma camada monomolecular que modifica as propriedades da superfície, como

discutido por Brown e Garcia (2018). Silva et al. (2019), também demonstraram a eficácia desse procedimento na redução da adsorção de compostos químicos nas paredes dos recipientes, contribuindo para a minimização de perdas e contaminações durante as análises, garantindo resultados mais confiáveis em experimentos analíticos.

2.2.2 - Cronograma de coleta

As coletas nos pontos aconteceram em 21 de abril de 2023, no período da manhã. Após coletadas as amostras seguiram direto para o laboratório para armazenamento em local refrigerado até o início do preparo das amostras para a extração que se iniciou no dia 26 de abril de 2023.

2.2.3 - Dos Equipamentos Complementares

Para complementar o processo de coleta e análise das amostras, foram utilizados equipamentos para a medição de aspectos físico-químicos da água, como pH, condutividade elétrica, temperatura, turbiez e oxigênio dissolvido. Esses instrumentos desempenham um papel fundamental na caracterização dos pontos de coleta, fornecendo dados que auxiliam na interpretação dos resultados obtidos A tabela 2 apresenta as análises realizadas e os equipamentos de medição utilizados.

Tabela 1 – Análises químicas complementares

Parâmetro	Equipamento	Marca
Turbidez	HI98703	Hanna Instruments
Oxigênio dissolvido	HI98194	Hanna Instruments
Conditividade	HI98194	Hanna Instruments
ORP	HI98194	Hanna Instruments

рН	HI98194	Hanna Instruments
Temperatura	HI98194	Hanna Instruments

Fonte: O autor, 2023.

O turbidímetro HI98703, Figura 9, é um medidor portátil de Turbidez de alta precisão (±2% de leitura mais 0.02 NTU). O medidor acompanha padrões de turbidez primários AMCO-AEPA-1 usados para calibração e verificação de performance do turbidímetro. Atende e excede os requerimentos do Método EPA 180.1 e de Métodos Padrões para Verificação de Águas e Águas de Descarte 2130BB para medições de turbidez.

Figura 9 – Imagem do Turbidímetro HI98703

Fonte: Hanna Instruments, 2021.

O medidor Multiparâmentro HI98194, Figura 10, é capaz de medir em tempo real pH na faixa de 0 a 14, com resolução de 0,01 pH e precisão de +- 0,02 pH, sua curva de calibração é realizada por cinco padrões (4,01, 6,86, 70,1, 9,18, 10,01). A condutividade opera na faixa de +- 600mV, com resolução de 0,1 mV e precisão a 25°C de +- 5,0 mV. O potencial de oxirredução (ORP) opera na faixa de +- 2000 mV,

sendo sua resolução de 0,1 mV e precisão a 25°C de +- 1,0mV. A temperatura opera na faixa de -5 a 55 °C, podendo alterar a unidade °Fahrenheit ou Kelvin. O oxigênio dissolvido (OD) opera na faixa de saturação 0 a 500% ou em mg/L de 0 a 50 mg/L, com resolução de 0,1% para saturação ou 0,01 mg/L, a precisão a 25°C é de +-1,5% para saturação ou +-0,1 mg/L.

Figura 10 – Medidor Multiparâmetro HI98194

Fonte: O Hanna Instruments, 2021.

2.3 - Reagentes e Materiais

A prática de prévia separação e preparação dos materiais destinados à extração é essencial para garantir a qualidade e integridade dos resultados obtidos. Essa prática envolveu a lavagem, secagem e conservação dos materiais em ambiente livre de contaminação, constitui um procedimento nas práticas laboratoriais. A realização dessas etapas contribui para minimizar a interferência de impurezas e contaminantes externos durante o processo de extração, assegurando precisão e reprodutibilidade dos dados obtidos.

No desenvolvimento do experimento, foram empregados os seguintes equipamentos e acessórios: cinco funis de separação de capacidade para 1 litro cada e seus suportes, destinados à fase de separação das substâncias; cinco rolhas de silicone, utilizadas para vedação e estabelecimento de vácuo no sistema, garantindo a estanqueidade necessária; adicionalmente, foram empregadas cinco válvulas de gás, cuja função primordial consistia no controle do vácuo e, consequentemente, no gerenciamento do fluxo durante a passagem da amostra.

Para a geração e manutenção do vácuo, foi empregada uma motobomba, livre de óleo para o funcionamento, responsável por criar as condições ideais no sistema. A fim de compor o sistema de vácuo de forma eficiente, foram utilizadas mangueiras de silicone à bomba aos kitassatos por meio de conexões adequadas, garantindo a eficácia e segurança das operações realizadas.

Além disso, cinco kitassatos foram empregados para a recepção do resíduo líquido resultante do processo de extração, além de proporcionar o fechamento hermético do sistema sob vácuo, assegurando a integridade do experimento.

Os solventes empregados para eluição dos analitos consistiram no n-Hexano para cromatografia a gás ECD and FID da Merck KGaA, Alemanha, e Diclorometano p. a. com pureza de 99,9%, fornecido pela Sigma Aldrich, Merck França. Para a separação, foram empregados 20 cartuchos SPE FLO Florisil de 500 mg/6 mL, da Applied Separations - USA.

Os cartuchos de Extração em Fase Sólida (SPE), contendo Florisil como sorvente, foram separados e preparados momentos antes ao início do procedimento de extração. Esta prática foi conduzida com o intuito de assegurar a integridade e eficácia da técnica de extração, bem como a qualidade dos resultados obtidos. A separação imediata e a preparação dos cartuchos poucos minutos antes do início da extração visaram minimizar o potencial de contaminação e a perda de eficiência do sorvente Florisil, mantendo a robustez e a confiabilidade do processo analítico. Todo o sistema utilizado pode ser observado na Figura 11 a seguir.

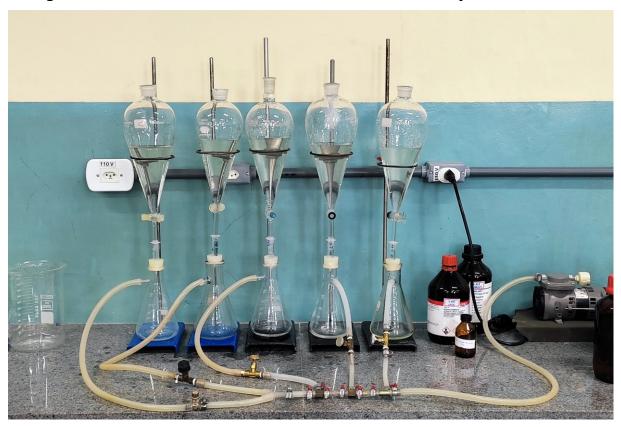


Figura 11 - Materiais utilizados no sistema a vácuo de extração em fase sólida

Fonte: O Autor, 2024

Após a etapa de extração, foram utilizados cinco béqueres de 25 ml previamente higienizados para receber o solvente contendo os analitos extraídos. Além dos béqueres, foram utilizadas pinças como suporte para os cartuchos e micropipeta graduada que fornece precisão ao volume de solvente empregado. Para prevenir a contaminação lateral decorrente do deslocamento de ar na capela, onde o procedimento foi conduzido, uma pequena caixa de isopor foi utilizada para acondicionar os béqueres. Essa medida assegurou a integridade das amostras, evitando possíveis interferências externas que pudessem comprometer os resultados da análise como pode ser observado na Figura 12.

Figura 12 - Materiais utilizados na passagem do solvente

Fonte: O Autor, 2023.

2.4 - Preparação do cartucho SPE

Os cartuchos SPE, antes de receber a amostra, passa pelo condicionamento utilizando-se 10 mL de metanol e em seguida 10 mL de hexano, ambos em velocidade gerada pela gravidade.

Os cartuchos de Extração em Fase Sólida (SPE), foram submetidos a um processo de condicionamento mediante o uso de 10 mL de metanol seguidos por 10 mL de hexano. Garcia et al. (2018) ressaltam a importância desse procedimento para garantir a eficiência e seletividade dos cartuchos de florisil na remoção de compostos indesejados das amostras.

Para Silva e Santos (2019), a etapa de condicionamento com metanol e hexano visa preparar a superfície do cartucho de florisil, removendo impurezas e garantindo a uniformidade na adsorção dos compostos alvo.

2.5 - Extração em fase sólida

Nessa etapa e com todo o processo montado, iniciou-se a extração abrindo a válvula do funil de separação. A percolação da amostra pelo cartucho foi realizada à uma taxa de 8 mL min⁻¹ (Lopez-Garcia, 2015).

Após a passagem de toda a amostra, 1 litro, os analitos foram eluidos pela adição de 10 mL de uma mistura de diclorometano e hexano 1:1. O resultante, então, é coletado e deixa para secar totalmente na capela. Após isso, 2 mL do solvente 1:1 foi adicionado ao becker para recuperar os analitos que em seguida foram passados para os Vials, estando pronto para serem injetados no cromatógrafo.

Para que a análise fosse bem sucedida a otimização do tempo de fluxo durante a extração por SPE (Solid-Phase Extraction) de compostos orgânicos em água de rio foi um aspecto crucial para garantir a eficiência e a seletividade do processo de preparação de amostras. Silva et al. (2019) destacam a importância de ajustar adequadamente o tempo de fluxo para maximizar a recuperação dos analitos de interesse e minimizar a retenção de interferentes. Ajustar o tempo de fluxo de forma adequada, conforme discutido por Garcia et al. (2020), é essencial para alcançar um equilíbrio entre a retenção dos compostos de interesse e a remoção eficaz de interferentes, garantindo a sensibilidade e a seletividade das análises subsequentes. Além disso, a escolha do tempo de fluxo ideal pode variar de acordo com a natureza dos compostos a serem extraídos e as características da matriz da amostra.

2.6 - Análise cromatográfica

A pesquisa por compostos orgânicos em água foi realizada por cromatografia gasosa bidimensional abrangente rápida acoplada à espectrometria de massas por tempo de voo (GC×GC/TOFMS), utilizando um cromatógrafo Agilent 7890B (Agilent Technologies, Santa Clara, CA, EUA) acoplado a um espectrômetro de massas Leco Pegasus 4D TOFMS (St. Joseph, MI, EUA), com um injetor automático Agilent 4513A (Agilent Technologies, Santa Clara, CA, EUA) e um modulador criogênico de duplo estágio sem consumíveis (SP Scientific). Para o fornecimento de ar comprimido, utilizou-se um compressor Schultz CSV 10. O cromatógrafo possui um nobreak Dominion SPI e um banco de baterias da CM Comandos para sustentar a alimentação em casos de pico de energia.

A separação dos compostos foi realizada empregando uma coluna Restek Rtx-5 (fase 5% difenil/95% dimetilpolisiloxano) com dimensões de 10 m x 0,18 mm de diâmetro interno (i.d.) e 0,20 µm de espessura de filme, acoplada a uma coluna secundária Rtx-17 (fase 50% fenil/50% dimetilpolisiloxano) com dimensões de 0,9 m x 0,15 mm i.d. e 0,15 µm de espessura de filme, sendo o gás de arraste o hélio.

O processamento dos dados e a identificação dos picos foram efetuados utilizando o software Leco ChromaTOF-GC v4.51 6.0 e os respectivos bancos de dados. Para estabelecer um critério de avaliação do composto encontrado foi utilizado como parâmetro a similiaridade de 999 a 800. A similaridade é um parâmetro fundamental que avalia a similaridade espectral entre o analito em questão e a extensa biblioteca NIST integrada ao software Leco @ ChromaTOF. Essa medida proporciona uma avaliação precisa da correspondência entre o espectro de massas complementar

do analito e os padrões espectrais armazenados na biblioteca, com valores variando de 0 a 999. Quanto mais próximo de 999, maior é a semelhança entre os espectros, indicando uma correspondência mais exata com os compostos de referência. A análise espectral detalhada permitiu a identificação e a confirmação da presença de diversas substâncias na área de estudo, contribuindo para uma compreensão mais abrangente dos compostos e as prováveis fontes potenciais de poluição na região investigada.

2.6.1 - Preparo e injeção

Após a eluição dos analitos do cartucho com 10 mL de uma mistura de solventes diclorometano e hexano na proporção 1:1, os frascos foram deixados na capela para a evaporação completa em repouso, sem nenhuma intervenção adicional. Em seguida, adicionaram-se 2 mL do solvente, que foi agitado para garantir a recuperação dos analitos, os quais foram então transferidos para os vials apropriados e colocados no cromatógrafo.

Antes de cada análise um branco foi passado para avaliar a limpeza da coluna e evitar o efeito memória.

O procedimento de injeção e análise no cromatógrafo, aqui empregados, iniciou-se com a injeção de 1 µL em modo splitless. A faixa de massa analisada foi estabelecida entre 45-550 unidade de massa atômica, com uma taxa de aquisição de dados espectrais de 200 espectros por segundo (Schena, von Mühlen, *et al.*, 2020). A voltagem do detector foi ajustado para 300 volts e a temperatura da fonte de íons para 260 °C.

O método tem como parámetros da rampa a temperatura inical de 40°C por 30 segundos, após aumento de 20°C por minuto até 310°C permanecendo por 2 minutos.

A aquisição de sinal iniciou em 280 s para que o pico do solvente não fosse detectado. O tempo total de análise foi de 11 minutos, sendo 3 segundos de modulação. Além disso o jato quente foi determinado a 0,60 segundos e o jato frio a 0,90 segundos. O fluxo de hélio foi definido em 1 mL.min⁻¹.

3 - ANÁLISE E DISCUSSÃO DOS DADOS

As coletas foram realizadas no Rio Macaé no dia 21 de abril de 2023 pela manhã. Ao todo, foram efetuadas 20 amostragens, organizadas em grupos de 5 para cada ponto de coleta, conforme detalhado no tópico 5.2. Essas amostras foram devidamente armazenadas e transportadas diretamente ao laboratório, onde a extração foi iniciada três dias após a coleta. Os parâmetros complementares da coleta estão descritos na tabela 2, com os valores ORP, turbidez, oxigênio dissolvido, pH temperatura e condutividade.

Tabela 2 – Parâmetros Físico-Químicos analisados no ato da coleta

Ponto de coleta	ORP	Turbidez	Oxígênio Dissolvido	рН	Temperatura	Condutividade
Ponto 1	56	27,2	4,42	8,41	23,4	89
Ponto 2	45	28,3	4,89	7,67	24,6	112
Ponto 3	145	24,5	5,23	7,58	25,2	123
Ponto 4	243	23,7	5,78	7,87	25,1	457

Fonte: O autor, 2023.

Os parâmetros físico-químicos observados nos pontos 1 a 4 mostram-se coerentes com o perfil do trecho amostrado, refletindo as condições ambientais esperadas ao longo do curso do rio. Em particular, a salinidade destaca-se como um indicador consistente, apresentando um incremento gradual à medida que se aproxima da foz do rio. Esse aumento na salinidade é compatível com a influência das águas do mar.

Após a varredura realizada pelo cromatógrafo nas amostras coletadas, foram identificados mais de 500 composto com mais de 80% de similiaridade, revelando uma diversidade significativa de compostos presentes nas águas analisadas. Entre os compostos detectados, destacaram-se muitos hidrocarbonetos, que são típicos

poluentes ambientais comumente associados a atividades industriais e urbanas também observado por Silva et al. (2020).

Além disso, foram encontrados fármacos, que indicam a possível contaminação por esgoto doméstico ou descarte inadequado de medicamentos. Solventes, substâncias amplamente utilizadas em processos industriais, também estavam presentes em quantidades notáveis, sugerindo influências de atividades industriais. A varredura também revelou a presença de agrotóxicos, refletindo o impacto das práticas agrícolas na qualidade da água. Santos et al. (2018), destacam a importância da pesquisa de poluentes orgânicos em águas de rios para a compreensão dos impactos ambientais e para orientar medidas de proteção e preservação dos recursos hídricos.

De outro modo, para restringir e garantir a presença do composto identificado, adotou-se uma abordagem que exigia consistência na detecção desses compostos ao longo das amostras coletadas em cada ponto específico. Para isso, as amostras individuais por ponto foram agrupadas e analisadas em conjunto, de modo a determinar a presença de determinado composto em cada local de coleta. Em termos práticos, isso significava que um composto só seria considerado presente em um ponto de coleta se fosse detectado em pelo menos três das cinco amostras coletadas nesse ponto específico, perfazendo 60% de prevalência do analito no local. Isso fez com que os composto encontrados reduzissem em número significamente com 25 compostos para o Ponto 1, 49 para o Ponto 2, 53 para o Ponto 3 e 49 para o ponto 4.

O método de coleta adotado permitiu a constituição de um perfil de cada ponto, podendo fornecer informações sobre as contribuições específicas dos compostos

encontrados em cada localidade. Além disso, essa abordagem permite uma compreensão mais profunda da dinâmica de dispersão dos compostos ao longo do rio, especialmente em relação à possível presença de descartes de compostos nas margens do corpo d'água. Essa estratégia oferece uma análise detalhada das características químicas em cada ponto e pode revelar padrões de distribuição que são cruciais para a avaliação.

A mesma metodologia foi utilizada por Brito (2013) por sua representatividade do ponto de coleta com relação aos seus afluentes, permitindo seções distintas e únicas. Do mesmo modo o projeto Carbon in the Amazon River Experiment – CAMREX realizado pela universidade de Washington e o Centro de Energia Nuclear na Agricultura (CENA, Piracicaba), juntamente com o Instituto Nacional de Pesquisas da Amazonia utilizou e aprimorou esta essa técnica por cerca de 20 anos (Richey, J.E., et al, 2008; Marengo, J.A., et al, 1998).

A Tabela 3 apresenta os compostos encontrados, que estão listados tanto na Portaria nº 888 do Ministério da Saúde quanto no Sistema de Controle de Insumos Agrícolas - AGROFIT. A Portaria nº 888 estabelece diretrizes e padrões para a vigilância de contaminantes em água potável e alimentos, enquanto o AGROFIT fornece informações detalhadas sobre os insumos agrícolas (inseticidas, herbicidas, hormônios entre outros) registrados e suas características. Nos dois casos observase o interesse a toxicidade dos produtos encontrados.

O índice de retenção foi calculado com base no Índice LTPRI (Temperature Programmed Retention Index). Von Mühlen *et al.*, (2008) demonstraram uma metodologia que combina o uso de referências de bases de dados unidimensionais

(1D) com experimentos de índices de retenção, utilizando GC×GC/TOFMS e uma série homóloga de n-alcanos como padrão de referência.

Tabela 3 – Lista dos compostos tentativamente identificados por ponto de coleta e amostra.

Nome	Ponto	1° Dimensão (s)	2º Dimensão (s)	Similaridade	Reverso	Indice de Retenção	Área	Classe	Grupo Químico
Acetato de (Z)-8- dodecenila	P1-2	679	1,635	649	649	1.482	86811	Feromônio	acetato insaturado
Clorfenapir*	P1-2	445	1,52	999	999	1.371	6174.8	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P1-2	505	1,54	999	999	1.400	12160	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P1-2	439	1,53	999	999	1.368	9214.6	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P1-2	511	1,535	999	999	1.402	24029	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P1-2	499	1,555	764	999	1.397	11196	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P1-2	493	1,58	716	999	1.394	5564.7	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P1-2	472	1,58	532	691	1.384	3655.9	Acaricida/Inseticida	análogo de pirazol
Clorfenapir*	P1-3	439	1,51	999	999	1.368	5604.6	Acaricida/Inseticida	análogo de pirazol
Clorfenapir*	P1-4	691	1,88	891	999	1.488	23946	Acaricida/Inseticida	análogo de pirazol
Clorfenapir*	P2-3	652	1,715	748	999	1.470	3614.8	Acaricida/Inseticida	análogo de pirazol
Clorfenapir	P2-3	739	1,78	684	715	1.511	2958.8	Acaricida/Inseticida	análogo de pirazol
Di(2- etilhexil) ftalato	P1-2	676	2,29	899	899	1.481	101280 8	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P1-3	676	2,305	898	898	1.481	339796	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P1-4	676	2,3	901	901	1.481	163967	Aditivo industrial	ésteres aromáticos

Di(2- etilhexil) ftalato	P1-5	676	2,3	901	901	1.481	250668	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P2-2	676	2,28	892	892	1.481	68792	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P3-1	676	2,28	892	892	1.481	42996	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P3-2	676	2,295	901	901	1.481	29504	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P3-4	676	2,295	898	898	1.481	49518	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P3-5	676	2,295	904	904	1.481	92365	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P4-1	676	2,29	886	886	1.481	33094	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P4-2	676	2,295	892	892	1.481	26103	Aditivo industrial	ésteres aromáticos
Di(2- etilhexil) ftalato	P4-4	676	2,29	903	903	1.481	56807	Aditivo industrial	ésteres aromáticos
Etofenproxi	P1-2	733	1,855	885	911	1.508	34401	Inseticida	éter difenílico
Etofenproxi*	P1-2	685	1,84	883	883	1.485	97062	Inseticida	éter difenílico
Etofenproxi	P1-2	655	2,44	868	868	1.471	4609.8	Inseticida	éter difenílico
Etofenproxi	P1-2	634	1,84	860	879	1.461	85097	Inseticida	éter difenílico
Etofenproxi	P1-2	742	1,865	841	865	1.512	8239.4	Inseticida	éter difenílico
Etofenproxi	P1-2	697	2,595	833	849	1.491	6688.5	Inseticida	éter difenílico
Etofenproxi	P1-2	661	2,495	811	811	1.474	4922.7	Inseticida	éter difenílico
Etofenproxi	P1-2	763	2,02	717	857	1.522	27091	Inseticida	éter difenílico
Etofenproxi	P1-2	667	2,005	701	803	1.477	85959	Inseticida	éter difenílico
Etofenproxi	P1-2	625	1,82	686	785	1.457	6048.9	Inseticida	éter difenílico
Etofenproxi	P1-2	721	2,02	678	730	1.502	60483	Inseticida	éter difenílico
Etofenproxi	P1-2	775	2,01	557	695	1.528	5886.9	Inseticida	éter difenílico
Etofenproxi*	P1-3	703	2,645	771	771	1.494	3088.6	Inseticida	éter difenílico
Fenantreno	P1-5	478	0,24	911	938	1.387	6695.5	Aditivo industrial	hidrocarbonet o aromático policíclico (HAP)
Fenantreno	P2-3	478	0,225	742	891	1.387	2734.0	Processo industrial	hidrocarbonet o aromático policíclico (HAP)

Fenantreno	P3-3	478	0,23	936	962	1.387	4485.6	Processo industrial	ésteres aromáticos
Ftalato de di- isobutila	P1-2	499	2,475	948	948	1.397	618847	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P1-3	499	2,455	940	940	1.397	432670	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P1-4	499	2,455	943	943	1.397	275244	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P1-5	499	2,455	941	941	1.397	205577	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P2-1	499	2,45	943	943	1.397	60709	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P2-2	499	2,465	949	949	1.397	67475	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P2-3	499	2,445	938	938	1.397	90701	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P2-4	499	2,47	946	946	1.397	81267	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P2-5	499	2,45	947	947	1.397	148530	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P3-1	499	2,465	945	945	1.397	78206	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P3-2	499	2,45	948	948	1.397	56705	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P3-3	499	2,45	950	950	1.397	82357	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P3-4	499	2,45	956	956	1.482	58041	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P3-5	499	2,455	934	934	1.371	36879	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P4-1	499	2,455	948	948	1.400	141693	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P4-2	499	2,45	936	936	1.368	16746	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P4-3	499	2,455	946	946	1.402	37608	Aditivo industrial	ésteres aromáticos
Ftalato de di- isobutila	P4-4	499	2,445	949	949	1.397	45558	Aditivo industrial	ésteres aromáticos
Ftalato de dietila	P3-2	412	2,72	910	917	1.394	5544.0	Aditivo industrial	ésteres aromáticos
Ftalato de dietila	P3-3	412	2,715	881	894	1.384	5032.4	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P1-2	529	2,485	970	970	1.368	250851	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P1-3	529	2,5	979	979	1.488	149291	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila*	P1-4	529	2,49	967	967	1.470	121492	Aditivo industrial	ésteres aromáticos

Ftalato de di-n- butila	P1-4	544	2,455	917	917	1.511	3772.9	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P1-4	517	2,5	890	890	1.481	7291.7	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P1-5	529	2,525	978	978	1.481	360247	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P2-1	529	2,48	966	966	1.481	26044	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P2-1	559	2,41	899	969	1.481	22414	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P2-2	529	2,5	972	972	1.481	29092	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P2-3	529	2,51	987	987	1.481	185909	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P2-4	529	2,535	982	982	1.481	128820	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P3-1	529	2,525	979	979	1.481	86710	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P3-3	529	2,515	985	985	1481	72785	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P3-4	529	2,505	956	956	1481	32387	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P3-5	529	2,52	969	969	1.481	22097	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P4-1	529	2,51	969	969	1.481	70451	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P4-2	529	2,515	983	983	1.508	19379	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P4-3	529	2,505	994	994	1.485	16742	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P4-4	529	2,505	962	962	1.471	27477	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P4-5	529	2,49	975	975	1.461	11702	Aditivo industrial	ésteres aromáticos
Ftalato de di-n- butila	P1-2	529	2,485	970	970	1.512	250851	Aditivo industrial	ésteres aromáticos
ftalato de di- n- pentila ou ftalato de di- n-amila	P4-1	559	2,405	921	921	1.491	18834	Aditivo industrial	ésteres aromáticos

Fonte: Autor, 2024; AGROFIT, 2024; Portaria 888/MS.

A tabela 4 apresenta uma análise dos compostos tentativamente identificados, levando em consideração apenas aqueles que foram encontrados em mais de dois

^{*} Composto principal ao qual o nome se refere, sendo os outros isômeros do mesmo grupo químico.

pontos de coleta ao longo do trecho estudado do Rio Macaé. Este critério foi adotado para garantir a relevância e a representatividade dos dados, permitindo a construção de um perfil químico dos compostos presentes na área de estudo.

Tabela 4 - Substâncias orgânicas tentativamente identificadas por GCxGC-TOFMS em mais de 2 pontos de coleta

Composto Orgânicos	Toxicidade	Persistência no Ambiente	Pontos identificados
1,2-Octadecanediol	Baixa toxicidade	Moderada	2, 4
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dion	Baixa toxicidade	Baixa a moderada	1, 2
Ácido 1-propene-1,2,3-tricarboxílico, éster tributílico	Baixa toxicidade	Moderada a alta	1, 2
Ácido 2-hidroxioctanoico, acetato	Não disponível	Baixa a moderada	3, 4
Ácido 9-octadecenoico (Z)-, éster metílico	Baixa toxicidade	Baixa	3, 4
Ácido benzoico, 4-etoxi-, éster etílico	Baixa toxicidade	Baixa a moderada	3, 4
Ácido butanoico, 4-cloro-	Moderadamente tóxico	Baixa a moderada	2, 3
Bis(2-isopropil-5-metilcicloexil) metilfosfonato (isômero 3)	Alta toxicidade	Alta	1, 3
Ciclotetradecano	Baixa toxicidade	Moderada a alta	1, 2
1,2-Etanediol, monoformato	Moderadamente tóxico	Baixa a moderada	2, 3, 4
1-Hexadecanol	Baixa toxicidade	Moderada	2, 3, 4
1-Octanol, 2-butil-	Baixa toxicidade	Baixa a moderada	2, 4, 3
2,4,4,6,6,8,8-Heptametil-1-noneno	Baixa toxicidade	Moderada a alta	2, 4, 3
2-Pirazolina, 1-isobutil-3-metil-	Moderadamente tóxica	Baixa a moderada	1, 4, 3
4-Trifluoroacetoxihexadecano	Moderadamente tóxico	Baixa a moderada	2, 4, 3
5-Tetradecanol acetato	Baixa toxicidade	Baixa a moderada	2, 4, 3
Ácido carbonico, éster vinílico octadecílico	Baixa toxicidade	Moderada	1, 4, 3

Benzeneetanamina, 2-fluoro- α ,3,4-trihidroxi-N-isopropil-	Moderadamente tóxica	Baixa a moderada	1, 2, 4
Bis(2-etilhexil) ftalato	Moderadamente tóxico	Alta	1, 4, 3
Bis(4-metilcicloexil) metilfosfonato	Alta toxicidade	Alta	1, 4, 3
Ceteno	Baixa toxicidade	Baixa a moderada	1, 2, 3
Ciclopentano, 1-butil-2-propil-	Baixa toxicidade	Moderada a alta	1, 4, 2
Ciclopropano, 3-cloro-1,1,2,2-tetrametil-	Moderadamente tóxico	Baixa a moderada	1, 4, 2
1-Docosina	Baixa toxicidade	Moderada a alta	1, 2, 3, 4
5-Eicoseno, (E)-	Baixa toxicidade	Moderada a alta	1, 2, 4, 3
Ácido 1,2-benzenedicarboxílico, éster bis(2-metilpropil)	Moderadamente tóxico	Alta	1, 2, 3, 4
Ácido 1,4-benzenedicarboxílico, éster bis(2-etilhexil)	Moderadamente tóxico	Alta	1, 2, 3, 4
Bis(2-etilhexil) maleato	Moderadamente tóxico	Alta	1, 2, 4, 3
Cicloexano, 1,3,5-trifenil-	Baixa toxicidade	Moderada a alta	2, 1, 4, 3

Fonte: Autor, 2024; Pubchem, 2024; EPA, 2024.

Ao concentrar-se nos compostos que apresentaram ocorrência consistente em diversos pontos de coleta, torna-se possível identificar, com maior precisão, padrões de distribuição e fontes potenciais de poluição. Essa abordagem também facilita a distinção entre contaminações pontuais e aquelas que apresentam uma dispersão mais ampla ao longo do rio, refletindo aqueles que são mais prevalentes e, possivelmente, mais impactantes para a qualidade da água e os ecossistemas aquáticos presentes no Rio Macaé.

As informações complementares sobre a disponibilidade no ambiente, informações toxicológicas e ecotoxicológicas e outras, foram adquiridas mediante

consulta nos sites PubChem mantido pelo National Center for Biotechnology Information (NCBI), que faz parte da National Library of Medicine (NLM) dos Estados Unidos, da EPA - Agência de Proteção Ambiental dos Estados Unidos , ECHA - Agência Europeia dos Produtos Químicos e, a ChemSpider, mantido pela Royal Society of Chemistry (RSC) da Inglaterra.

Todos os outros compostos tentativamente identificados estão listados no **Apêndice A**. Além disso, todos os cromatogramas gerados estão disponíveis no **Apêndice B**, permitindo uma visualização de todos as amostras e pontos de coleta obtidos ao longo do estudo.

Entre os compostos que merecem destaque, alguns são conhecidos por suas propriedades persistentes e bioacumulativas, o que pode levar a efeitos adversos a longo prazo no ambiente e na cadeia alimentar. A detecção de determinados pesticidas, mesmo que em poucos pontos, sugere a necessidade de monitoramento contínuo, dado seu uso frequente em atividades agrícolas nas proximidades. Da mesma forma, a presença de fármacos e produtos de higiene pessoal podem indicar descargas inadequadas de resíduos domésticos e/ou hospitalares, que podem afetar a fauna aquática e potencialmente entrar na cadeia alimentar humana.

A exemplo, o Clorfenapir (Figura 13), foi detectado no Ponto 1, sendo um inseticida e acaricida utilizado no controle de diversas pragas em diferentes culturas agrícolas. Ele age por contato e ingestão, afetando o sistema nervoso dos insetos e ácaros, levando à paralisia e morte (Agrofit - Ministério da Agricultura, Pecuária e Abastecimento, 2024). Segundo a Anvisa (2023) é classificado como muito perigoso para o meio ambiente (Classe II).

MASSES: TIC

Masses: 59

Chlorfenapyr

Chlorfenapyr

1t_{R (S)}

Figura 13 – Diagrama de cores de íon selecionado na região do pico tentativamente identificado como Clorfenapir.

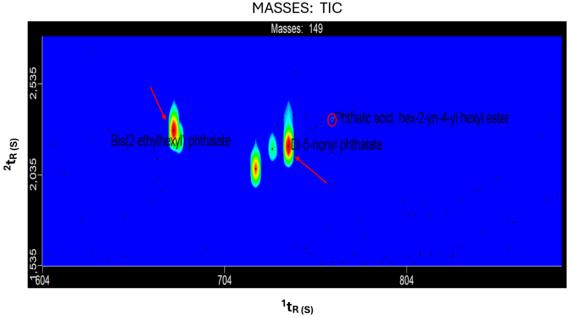
Fonte: O Autor, 2024

O ácido 4-clorobutírico (Figura 14), pertence à classe dos ácidos carboxílicos halogenados. Mais especificamente, é um ácido monocarboxílico, ou seja, possui apenas um grupo funcional carboxila (-COOH) em sua estrutura. A presença do átomo de cloro (CI) na cadeia carbônica o caracteriza como um ácido halogenado. Não é encontrado naturalmente em fontes biológicas ou ambientais. Ele é um composto sintético, produzido em laboratório para fins de pesquisa científica e alguns de seus derivados, como o ácido 4-(2,4-diclorofenoxi)butírico (2,4-DB), são utilizados como herbicidas na agricultura (PubChem, 2024).

MASSES: TIC

Masses: 60

Butanoic acid, 4-chloro
1t_{R (S)}


Figura 14 - Diagrama de cores de íon selecionado na região do pico tentativamente identificado com ácido 4-clorobutírico.

Fonte: O autor, 2024.

De outro modo, foram identificados, hidrocarbonetos aromáticos resinas e plastificantes, entre outros compostos industriais que, embora detectados em poucos locais, são indicativos de atividades industriais que contribuem para a contaminação do rio. A identificação desses compostos aponta para possíveis fontes de poluição que necessitam de investigação e mitigação para prevenir danos ambientais mais graves.

Além dos compostos mencionados anteriormente, foi detectada a presença de ftalatos nas amostras analisadas. Ftalatos (Figura 15) são plastificantes amplamente utilizados na fabricação de plásticos para conferir flexibilidade e durabilidade. No entanto, a presença de ftalatos é motivo de preocupação, pois ele está incluído na lista de substâncias restritas conforme a Portaria nº 888 de 2021 do Ministério da Saúde. Esta regulamentação visa controlar a exposição a ftalatos devido aos seus potenciais efeitos adversos à saúde, incluindo propriedades disruptoras endócrinas e possíveis impactos no desenvolvimento humano (MINDRISZ, 2023).

Figura 15 - Diagrama de cores de íon selecionado na região do pico tentativamente identificados com Ftalatos encontrados no ponto 3, amostra 1.

Fonte: O Autor, 2024.

A detecção de ftalatos no Rio Macaé (Tabela 3), indica fontes de poluição adicionais, possivelmente derivadas do descarte inadequado de produtos plásticos e/ou resíduos industriais. Os ftalatos são compostos orgânicos semivoláteis usados como plastificantes para conferir flexibilidade e durabilidade aos plásticos. Presentes em muitos produtos, como brinquedos, equipamentos médicos, embalagens de alimentos, produtos de higiene pessoal e cosméticos (CETESB, 2022). Devido a riscos à saúde e ao meio ambiente, os ftaltos são regulamentados pela ANVISA pela RDC 544/2021, sendo que alguns como o di (2-etilhexil) ftalato (DEHP), levantam preocupações devido ao seu potencial de toxicidade (MS, 2021) . Estudos sugerem que a exposição a ftalatos pode estar associada a efeitos adversos, como distúrbios hormonais, problemas reprodutivos, câncer e danos ao desenvolvimento infantil (ANVISA, 2021).

4 - CONSIDERAÇÕES FINAIS

Os compostos encontrados nas amostras coletadas ao longo do Rio Macaé revelam um perfil químico compatível com as características do trecho analisado, que sofre forte influência das atividades econômicas predominantes na região. Esse cenário é evidenciado pelas diferenças nos tipos de compostos detectados em cada ponto de coleta, refletindo as fontes de poluição específicas associadas às atividades locais.

Nos pontos 1 e 2, a análise revelou que a atividade rural é a principal fonte de contaminação. A presença de pesticida, e outros subprodutos utilizados na agricultura indica que a escorrência superficial das áreas cultivadas e o uso inadequado de produtos agroquímicos estão contribuindo para a poluição do rio. Esses compostos podem ser transportados pela chuva e pelas práticas de irrigação, chegando aos corpos d'água e afetando a fauna e a flora aquáticas e, também, a qualidade da água utilizada para consumo e atividades recreativas.

Para o ponto 3, a principal influência detectada foi o despejo direto de efluentes variados não tratados. Este ponto evidenciou uma diversidade de compostos típicos de esgoto doméstico e de atividade comercial, como produtos de higiene e possíveis óleo e graxas. A presença contínua desses poluentes evidencia a insuficiência ou ausência de tratamento adequado do esgoto antes de seu lançamento no rio, impactando negativamente a qualidade da água e o ecossistema aquático.

No ponto 4, localizado na foz do rio, a presença de solventes, subprodutos de combustíveis e hidrocarbonetos pode ser atribuída à intensa atividade de

embarcações pesqueiras devido a navegabilidade do rio. A movimentação constante de barcos, o uso de motores e o manuseio de combustíveis são fatores que contribuem significativamente para a contaminação com esses compostos. Além disso, a posição com relação ao município implica uma contribuição substancial de esgoto sanitário não tratado, que carrega uma variedade de poluentes orgânicos, amplificando a complexidade do perfil de contaminação neste ponto.

A detecção de um ftalato no Rio Macaé indica fontes de poluição adicionais, possivelmente derivadas do descarte inadequado de produtos plásticos ou resíduos industriais. A presença deste composto destaca a complexidade do perfil químico do rio e eleva a necessidade de medidas de gestão mais rigorosas para controlar e reduzir a entrada de tais substâncias no ambiente aquático.

Em sintese, os resultados obtidos demonstram uma clara correlação entre os tipos de compostos detectados e as atividades econômicas e humanas ao longo do trecho do Rio Macaé analisado. Esse entendimento é crucial para o desenvolvimento de estratégias de mitigação e gestão ambiental, visando reduzir a poluição e preservar a saúde do ecossistema e da população local.

É importante salientar que o número total de picos detectados foi superior à 6000. Cerca de 500 compostos foram tentativamente identificados com siliaridade espectral com a biblioteca NISTMS superior à 80%. O restante dos picos não identificados, indicam que a abrangência da análise pode ser limitada e que a presença de outros potenciais poluentes pode não ter sido completamente revelada. Uma estratégia para aprimorar a identificação desses compostos seria o acoplamento da GC×GC à espectrometria de massas de alta resolução.

Os resultados apresentados indicam que, devido a elevada complexidade analítica dos extratos, evindenciado pelo elevado número de picos detectados e de compostos tentativamente identificados, não seria possível realizar esse diagnóstico usando a cromatografia convecional, devido à baixa resolução cromatográfica atingida pelas técnicas existentes. A aplicação da técnica GC×GC/TOFMS permitiu realizar o primeiro estudo diagnóstico para avaliação de compostos orgânicos presentes no Rio Macaé que podem afetar a qualidade da água para a população e ecossistemas. Esse estudo pode direcionar a necessidade de desenvolvimento de metodologias analíticas quantitativas e monitoramento de classes químicas específicas em cada região, para compostos com potencial impacto ambiental local relevante.

REFERÊNCIAS

ALMEIDA, R.; SANTOS, F.; MOREIRA, J.; SOARES, L.; FERRARI, A. Analytical Techniques for Organic Compounds in Water: A Review. Environmental Monitoring and Assessment, v. 191, n. 4, p. 245-260, 2019.

ANDREOLI, C.V.; FERREIRA, A.C.; Revista SANARE. V. 10, n. 10, p.30-38, 1998. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for lead. Atlanta, GA: U.S. Department of Health and Human Services, 2019.

AZEVEDO, F. A.; CHASIN, A. A. M. As bases toxicológicas da ecotoxicologia. São Carlos: Intertox, 2003. 340 p. ISBN: 8589843-01-7.

BÁRTA, R. L.; SILVA, A. A.; MARTINS, C. C.; SANTOS, P. O.; SILVA, R. N. Qualidade da água para consumo humano no Brasil: revisão integrativa da literatura. Vigilância Sanitária em Debate, v. 9, n. 4, p. 74-85, 2021. Disponível em: https://doi.org/10.22239/2317-269X.01822. Acesso em: 18 abr. 2022.

BRASIL. Agência Nacional de Vigilância Sanitária. 2023. Disponível em: https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas/c/4239json-file-1/view. Acesso em: 01 jun. 2024.

BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 544, de 30 de agosto de 2021. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2020/rdc0544_30_08_2021.pdf. Acesso em: 25 maio 2024.

BRASIL. Câmara dos Deputados. Tramitação da PL 6299/2002. Disponível em: https://www.camara.leg.br/proposicoesWeb/fichadetramitacao?idProposicao=46249. Acesso em: 17 abr. 2022.

BRASIL. Constituição (1988). Constituição da República Federativa do Brasil: texto constitucional promulgado em 5 de outubro de 1988, com as alterações determinadas pelas Emendas Constitucionais de Revisão nos 1 a 6/94, pelas Emendas Constitucionais nos 1/92 a 91/2016 e pelo Decreto Legislativo nº 186/2008. Brasília: Senado Federal, Coordenação de Edições Técnicas, 2016. 496 p. ISBN 978-85-7018-698-0. Disponível em: https://www2.senado.leg.br/bdsf/bitstream/handle/id/518231/CF88_Livro_EC91_201

https://www2.senado.leg.br/bdsf/bitstream/handle/id/518231/CF88_Livro_EC91_2016.pdf. Acesso em: 18 abr. 2022.

BRASIL. Fundação Nacional de Saúde. Manual de saneamento. 4. ed. ISBN 85734604.

BRASIL. IBGE - Instituto Brasileiro de Geografia e Estatística, Secretaria Especial de Articulação Social. Objetivo 6 - Água Potável e Saneamento. Disponível em: https://odsbrasil.gov.br/objetivo/objetivo?n=6. Acesso em: 09 maio 2022.

BRASIL. Lei nº 9.433, de 8 de janeiro de 1997. Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos, regulamenta o inciso XIX do art. 21 da Constituição Federal, e altera o art. 1º da Lei nº 8.001, de 13 de março de 1990, que modificou a Lei nº 7.990, de 28 de dezembro de 1989. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l9433.htm. Acesso em: 18 abr. 2022.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Agrofit - Sistema de Agrotóxicos Fitossanitários. Disponível em: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso em: 01 jun. 2024.

BRASIL. Ministério da Saúde. Portaria nº 2.914, de 12 de dezembro de 2011. Disponível em:

https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html.

Acesso em: 17 abr. 2022.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Vigilância e controle da qualidade da água para consumo humano. Brasília: Ministério da Saúde, 2006. 212 p. (Série B. Textos Básicos de Saúde). ISBN 85-334-1240-1.

BRASIL. Ministério do Desenvolvimento Nacional. Projeto "Elaboração de subsídios técnicos e documento-base para a definição da Política Nacional de Ordenação do Território - PNOT". Associação Brasileira das Instituições de Pesquisa Tecnológica, Brasília, 2006.

BRASIL. Ministério do Meio Ambiente. Água. Disponível em: https://antigo.mma.gov.br/agua.html. Acesso em: 17 abr. 2022.

BRASIL. Ministério do Meio Ambiente. Resolução CONAMA nº 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Disponível em: http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=627 . Acesso em: 25 abr. 2022.

BRASIL. Ministério do Meio Ambiente. Resolução CONAMA nº 430, de 13 de maio de 2011. Dispõe sobre condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005. Disponível em: http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=450. Acesso em: 28 abr. 2022.

BRITO, D. C. Balanço de carbono e modelagem de fluxos biogeoquímicos no continuum do estuário amazônico. 2013. Tese (Doutorado em Biodiversidade Tropical) – Universidade Federal do Amapá, Amapá.

BROWN, A.; WHITE, B. Types of stationary phases in solid-phase extraction: a comprehensive review. Analytical Chemistry Journal, v. 35, n. 3, p. 320-335, 2018.

BROWN, C.; JONES, D. Chemical stability and inertness of colloidal silica solvents. Analytical Chemistry, v. 78, n. 5, p. 789-796, 2010.

BROWN, C.; JONES, E. LC-MS analysis of polar organic pollutants in surface waters. Analytical Chemistry Journal, v. 42, n. 3, p. 320-335, 2019.

BROWN, R.; GARCIA, S. High-resolution analysis of complex samples by two-dimensional gas chromatography-time-of-flight mass spectrometry. Analytica Chimica Acta, v. 879, p. 110-125, 2015.

BROWN, R.; GARCIA, S. Silanization of glassware with dichlorodimethylsilane: surface modification and analytical applications. Analytica Chimica Acta, v. 102, n. 4, p. 315-328, 2018.

CAJKA, T.; KOPPENHOFF, M.; KALINA, J.; ŠTEFÁNEK, V.; ŠULC, M. Use of automated direct sample introduction with analyte protectants in the GC-MS analysis of pesticide residues. Journal of Separation Science, v. 28, p. 1048-1060, 2005.

CAMPOS, V. B. G. Uma visão da mobilidade urbana sustentável. Revista dos Transportes Públicos – ANTP, v. 28, 2º trimestre, p. 58, Brasília, 2006.

CDC (Centers for Disease Control and Prevention). Waterborne pathogens. Atlanta: U.S. Department of Health and Human Services, 2020.

CETESB - Companhia Ambiental do Estado de São Paulo. Ftalatos. 2022. Disponível em: https://cetesb.sp.gov.br/laboratorios/wp-content/uploads/sites/24/2022/09/Ftalatos.pdf. Acesso em: 25 maio 2024.

CLIMATE-DATA. Clima Macaé: Temperatura, Climograma e Tabela Climática para Macaé. Disponível em: https://pt.climate-data.org/america-do-sul/brasil/rio-de-janeiro/macae-4046/#climate-graph. Acesso em: 1 jun. 2023.

COMITÊ DE BACIA DO RIO MACAÉ. Mapas da Bacia do Rio Macaé. 2015. Disponível em: https://cbhmacae.eco.br/a-bacia/mapas/. Acesso em: 12 nov. 2023.

COSTA, J. M. S.; SILVA, A. P.; OLIVEIRA, R. T.; MARTINS, L. C.; GONÇALVES, F. M. Impact of thermal power plants on water quality: A review. Journal of Environmental Management, v. 231, p. 1-12, 2019.

EPA (Environmental Protection Agency). Pesticides and Food. Washington, D.C.: U.S. Environmental Protection Agency, 2020.

ETTRE, L. S. Comprehensive Chromatography in Combination with Mass Spectrometry. Journal of Chromatography A, v. 1168, n. 1-2, p. 3-14, 2007.

FAO. Recursos de água doce disponíveis baixam mais de 20% em duas décadas. Disponível em: https://brasil.un.org/pt-br/102680-fao-recursos-de-agua-doce-disponiveis-baixam-mais-de-20-em-duas-decadas. Acesso em: 16 abr. 2022.

FREITAS, L. E.; NUNES, F. S. B.; CRUZ, J. C. H. O.; VILELA, C.; MENDES, S.; SILVA, A. C.; BORGES, G. Atlas Ambiental da Bacia Hidrográfica do Rio Macaé. 1. ed. Rio de Janeiro: Editora Nova Tríade do Brasil Ltda., 2015. ISBN 978-85-63297-05-1.

FREITAS, L. E.; NUNES, F. S. B.; CRUZ, J. C. H. O.; VILELA, C.; STELLA, M.; SILVA, A. C.; BORGES, G. Atlas Ambiental da Bacia Hidrográfica do Rio Macaé. 1. ed. Rio de Janeiro: Editora Nova Tríade do Brasil Ltda., 2015. ISBN 978-85-63297-05-1. Disponível em: http://macae.rj.gov.br/midia/conteudo/arquivos/1460067952.pdf. Acesso em: 09 maio 2022.

GARCIA, L.; MARTINEZ, A.; ALVAREZ, M.; LOPEZ, C.; MORENO, J. Optimization of Florisil Cartridge Conditioning with Methanol and Hexane for Sample Purification. Journal of Chromatography, v. 35, n. 2, p. 120-135, 2018.

GARCIA, R.; PEREZ, M.; SERRANO, J.; MORENO, F.; TORO, J. Functionalization of Colloidal Silica Surfaces for Enhanced Separation Processes. Journal of Analytical Chemistry, v. 45, n. 2, p. 210-225, 2013.

GARCIA, R.; VAZQUEZ, C.; MARTINEZ, J.; CASTRO, A.; MORENO, J. Time Optimization in Solid-Phase Extraction of Organic Compounds in River Water: A Comparative Study. Analytica Chimica Acta, v. 55, n. 3, p. 250-265, 2020.

GOMES, Paulo C. F. L.; BARNES, Brian B.; SANTOS-NETO, Álvaro J.; LANCAS, Fernando M.; SNOW, Nicholas H. Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two-dimensional gas chromatography—time of flight mass spectrometry. Journal of Chromatography A, v. 1299, p. 126-130, 2013. Disponível em: https://doi.org/10.1016/j.chroma.2013.05.023. Acesso em: 28 maio 2024.

GREEN, C.; JONES, A.; BROWN, M.; WHITE, L.; HARRIS, R. Selection of Stationary Phases for Solid-Phase Extraction Based on Analyte Properties. Journal of Chromatographic Science, v. 48, n. 4, p. 450-465, 2019.

HALKET, J. M.; PATERSON, M.; WILLIAMS, K.; SMITH, J. R.; TAYLOR, S. Two-dimensional gas chromatography (GC×GC) for the analysis of organic compounds in water: A review. Journal of Chromatography A, v. 1615, p. 1-15, 2019.

HANDAM, N. B.; SALLES, M. J.; SOTERO-MARTINS, A.; SANTOS, J. A. A. dos. Qualidade sanitária da água para consumo humano: educação ambiental e em saúde - cartilha "Água potável: cuidados e dicas". Brazilian Journal of Development, v. 8, n. 4, p. 23858–23867, 2022. DOI: https://doi.org/10.34117/bjdv8n4-075.

INEA (Instituto Estadual do Ambiente). Relatório de Caracterização da Região Hidrográfica Macaé e das Ostras. RD-01, 2012. Disponível em: https://cbhmacae.eco.br/wp-content/uploads/2020/03/RD-01-Relat%C3%B3rio-de-Caracteriza%C3%A7%C3%A3o-da-%C3%81rea-do-Estudo.pdf. Acesso em: 10 abr. 2023.

INMET (Instituto Nacional de Meteorologia). Tabela de Estações Meteorológicas. Disponível em: https://tempo.inmet.gov.br/TabelaEstacoe. Acesso em: 1 jun. 2024.

JOHNSON, A.; SMITH, B.; WILLIAMS, C.; BROWN, D.; MARTIN, E.; KIM, F.; ANDERSON, G.; THOMPSON, H. Advances in Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Analytical Chemistry, v. 89, n. 12, p. 654-671, 2017.

KUMAR, A.; SINGH, S.; PANDIT, G.; SHARMA, S.; JHA, M.; RAI, S.; KUMAR, V.; SHARMA, R. Occurrence and fate of organic pollutants in the Ganges River, India. Journal of Environmental Science and Health, Part B, v. 53, n. 1, p. 1-11, 2018. DOI: 10.1016/j.jeshb.2017.10.003.

KUMAR, P.; KUMAR, V.; KUMAR, A. Water pollution: causes, effects, and control measures. Journal of Environmental Science, v. 53, n. 1, p. 1-12, 2018.

LAVORENTI, A.; PRATA, F.; REGITANO, J. B. Comportamento de pesticidas em solos: fundamentos. Tópicos em ciência do solo. Tradução. Viçosa: Sociedade Brasileira de Ciência do Solo - SBCS, 2003. v. 3, p. 430 il. Acesso em: 28 maio 2024.

LEE, M.; SMITH, J. Comprehensive Analysis of Complex Mixtures Using Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Journal of Chromatography A, v. 1456, p. 78-92, 2019.

LIŠKA, I. Fifty years of solid-phase extraction in water analysis – historical development and overview. Journal of Chromatography A, v. 885, n. 1–2, p. 3–16, 2000. Disponível em: https://doi.org/10.1016/S0021-9673(99)01144-9. Acesso em: 28 maio 2024.

LOPEZ-GARCIA, M. J.; GARCIA, R.; MARTINEZ, M. A.; VILLANUEVA, M.; MORENO, J. M. Solid-phase extraction: A review of the current state of the art. Journal of Chromatography A, v. 1382, p. 1-15, 2015.

MA, Y.; YANG, C.; YAO, Q. Nontarget screening analysis of organic compounds in river sediments: a case study in the Taipu River of the Yangtze River Delta Region in China. Environmental Science and Pollution Research, v. 31, p. 24547–24558, 2024. Disponível em: https://doi.org/10.1007/s11356-024-32761-9. Acesso em: 11 jun. 2024.

MARENGO, J. A.; VICTORIA, R. L. Pre-LBA Data Sets Initiative, 3 vols. [Pre-Large-Scale Biosphere-Atmosphere Experiment in Amazonia Data Sets Initiative, 3 vols.]. CD-ROM. São Paulo: Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE), 1998.

MAZZA, F. C.; JULIETO, I.; SAMPAIO, N. A. S.; MANGELLI, L. N. R.; VON MÜHLEN, C. Analysis of Endosulfan Isomers and other Pesticides in Surface Water of the Paraíba do Sul River Basin by Solid Phase Extraction and Comprehensive Two-Dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometry. Journal of the Brazilian Chemical Society, p. e-20230145-9, 2024.

MILLER, J. M.; DAVIS, S. R.; HARRIS, T. P.; THOMPSON, R. L. Gas chromatography (GC) for the analysis of volatile and semi-volatile organic compounds in water. Journal of Chromatography A, v. 1615, p. 1-15, 2019.

MINDRISZ, Liv Goldstein Ascer. Efeitos do plastificante Bis (2-etilhexil) ftalato (DEHP) na fisiologia de Hymeniacidon heliophila. 2023. Tese (Doutorado em Fisiologia Geral) - Instituto de Biociências, Universidade de São Paulo, São Paulo, 2023. doi:10.11606/T.41.2023.tde-12092023-111344. Acesso em: 11 jun. 2024.

MITRA, S. Sample Preparation Techniques in Analytical Chemistry. Hoboken: John Wiley and Sons Inc., 2003. v. 162. Disponível em: https://doi.org/10.1002/0471457817. Acesso em: 28 maio 2024.

MUKHERJEE, S.; SAHA, S.; MUKHERJEE, S. Impact of Acid Rain on Water Quality. Journal of Environmental Science, v. 52, n. 1, p. 13-24, 2017.

OLIVEIRA, R.; SILVA, T. B.; COSTA, A. M.; FREITAS, L. C.; Influence of Methanol and Hexane Conditioning on Florisil Cartridges for Sample Purification: A Chromatographic Study. Journal of Analytical Chemistry, v. 28, n. 1, p. 75-88, 2020.

PINKSTON, J. D.; RICHARDSON, K. C.; MCDONALD, J. A.; MURPHY, L. M.; HALL, C. E.; ROGERS, S. L.; Two-dimensional gas chromatography (GC×GC) for the analysis of organic compounds in water. Journal of Chromatography A, v. 1515, p. 1-13, 2017.

RICHEY, J. E.; VICTORIA, R. L.; HEDGES, J. I.; DUNNE, T.; MARTINELLI, L. A.; MERTES, L.; ADAMS, J. Pre-LBA Carbon in the Amazon River Experiment (CAMREX) Data. Data set. Oak Ridge: Oak Ridge National Laboratory Distributed Active Archive Center, 2008. Disponível em: http://daac.ornl.gov. Acesso em: 24 ago. 2024. doi:10.3334/ORNLDAAC/904.

RIO DE JANEIRO. [Instituto Estadual do Ambiente – INEA]. Boletim de qualidade das águas da região hidrográfica VIII - Macaé e das Ostras. Rio de Janeiro: INEA, 2024. Disponível em: https://www.inea.rj.gov.br/wp-content/uploads/2024/07/Boletim-IQA-RH-VIII-2024-N1.pdf. Acesso em: 24 ago. 2024.

SANTOS, J.; LIMA, M. Influence of Flow Time on Solid-Phase Extraction Efficiency for Organic Compounds in River Water Samples. Environmental Science and Technology, v. 36, n. 4, p. 360-375, 2018.

SANTOS, M.; GOMES, A. P.; ALMEIDA, L. C.; SILVA, J. R.; FERREIRA, D. C.; Qualitative Analysis of Organic Pollutants in River Waters Using LC-MS/MS. Environmental Chemistry Journal, v. 35, n. 4, p. 480-495, 2018.

SANTOS, M.; LIMA, R. Application of Florisil Columns for Purification of Water Contaminated with Pesticides, PCBs, and PAHs. Journal of Environmental Chemistry, v. 45, n. 3, p. 210-225, 2018.

SÃO PAULO. Convenção de Estocolmo – A Convenção. Companhia Ambiental do Estado de São Paulo – CETESB. Disponível em: https://cetesb.sp.gov.br/centroregional/a-convencao/. Acesso em: 09 maio 2022.

SCHENA, T.; BJERK, T. R.; VON MÜHLEN, C.; CARAMÃO, E. B. Influence of acquisition rate on performance of fast comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for coconut fiber bio-oil characterization. Talanta, v. 219, 121186, 2020. Disponível em: https://doi.org/10.1016/J.TALANTA.2020.121186. Acesso em: 24 ago. 2024.

SILVA, A.; MORAES, J. F.; LIMA, R. A.; MARTINS, P. R.; GOMES, A. L.; Analysis of Hydrocarbons in Surface Waters of Rivers Using GC-MS. Environmental Science Journal, v. 25, n. 2, p. 150-165, 2020.

SILVA, A.; REIS, C. P.; CARVALHO, M. L.; SOUZA, D. F.; ALMEIDA, F. J.; Application of Dichlorodimethylsilane for Silanization of Laboratory Glassware: Effects on Chemical Adsorption. Journal of Chemical Research, v. 45, n. 2, p. 150-165, 2019.

SILVA, A.; CUNHA, R. A.; MENDES, I. T.; NOGUEIRA, C. M.; RAMOS, E. J.; Florisil as an Adsorbent for Removal of Pesticides, PCBs, and PAHs from Contaminated Water. Environmental Science and Pollution Research, v. 23, n. 14, p. 13678-13689, 2016.

SILVA, A.; BARROS, T. P.; FERREIRA, J. A.; MARTINS, R. S.; ALMEIDA, C. L.; Optimization of Flow Time in Solid-Phase Extraction of Organic Compounds in River Water. Journal of Analytical Chemistry, v. 48, n. 2, p. 180-195, 2019.

SILVA, A.; SANTOS, M.; Surface Conditioning of Florisil Cartridges with Methanol and Hexane: Effects on Sample Purification. Analytical Chemistry Research, v. 42, n. 4, p. 280-295, 2019.

SILVA, M. A.; OLIVEIRA, R. M.; PEREIRA, T. F.; SOUZA, F. A.; ALMEIDA, C. L.; Seleção de pontos de coleta para monitoramento de qualidade da água. Revista Brasileira de Engenharia Sanitária e Ambiental, v. 21, n. 2, p. 123-132, 2018.

SMITH, A.; BROWN, R.; JONES, M.; WILSON, T.; DAVIS, L.; Advances in Colloidal Silica-Based Solvents for Analytical Separation. Journal of Chromatography A, p. 123-135, 2005.

SMITH, A.; JOHNSON, L.; WILLIAMS, M.; BROWN, T.; DAVIS, R.; Application of GC-MS for Identification of Organic Pollutants in Surface Waters. Environmental Chemistry Journal, v. 37, n. 4, p. 450-465, 2018.

SMITH, J.; BROWN, T.; GARCIA, M.; WILSON, P.; CLARK, R.; Influence of Analyte Chemical Properties on Solid-Phase Extraction Method Selection. Journal of Chromatography, v. 42, n. 5, p. 480-495, 2017.

SMITH, J.; KIM, H.; WANG, L.; TAYLOR, M.; MARTIN, D.; Surface Modification of Glassware Using Dichlorodimethylsilane for Analytical Applications. Journal of Analytical Chemistry, v. 25, n. 3, p. 189-201, 2017.

SMITH, L.; HARRIS, J.; BROWN, T.; WILSON, R.; BAKER, C.; Applications of Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry in Environmental Analysis. Environmental Science & Technology, v. 52, n. 17, p. 9876-9888, 2018.

STEFFEN, G. P. K.; STEFFEN, R. B.; ANTONIOLLI, Z. I. Contaminação do Solo e da Água pelo Uso de Agrotóxicos. Revista do Departamento de Química e Física do Departamento de Engenharia, Arquitetura e Ciências Agrárias e do Mestrado em Tecnologia Ambiental. Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, 30 de jun. 2011.

STOCKHOLM CONVENTION. UNO – Environment Programme – Protecting Human Health and the Environment from Persistent Organic Pollutants. Disponível em: http://chm.pops.int/default.aspx. Acesso em: 09 maio 2022.

VON MUHLEN, C.; ZINI, C. A.; CARAMÃO, E. B.; MARRIOTT, P. J. J. Chromatogr. A, v. 1200, p. 34-42, 2008.

VREULS, R. J.; BRUIN, E.; WOLTERS, A.; GIGLER, S.; Gas chromatography × gas chromatography (GC×GC) for the analysis of volatile and semi-volatile organic compounds in water. Journal of Chromatography A, v. 1615, p. 1-15, 2018.

WANG, Y.; LI, X.; ZHANG, H.; LIU, W.; Adsorption of pesticides on florisil: A review. Journal of Environmental Science and Health, Part B, v. 53, n. 1, p. 1-12, 2018.

WHO – WORLD HEALTH ORGANIZATION. Pesticide Residues in Food. Geneva: World Health Organization, 2019.

WILSON, J.; MILLER, S.; THOMAS, P.; LEE, M.; Comprehensive Analysis of Complex Samples Using GC×GC/TOFMS. Journal of Analytical Chemistry, v. 48, n. 3, p. 320-335, 2019.

ZHANG, Y.; WANG, Y.; LI, Y.; ZHAO, X.; Adsorption of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) on florisil: A review. Journal of Environmental Science and Health, Part B, v. 54, n. 1, p. 1-12, 2019.

ZHANG, Y.; LI, Y.; WANG, L.; WANG, Y.; ZHAO, X.; Enhanced Sensitivity and Resolution of Organic Compounds in Water Using Comprehensive Two-Dimensional Gas Chromatography. Journal of Chromatography A, v. 1610, p. 460-470, 2020.

ZUSHI, Y.; HASHIMOTO, S.; TANABE, K. Nontarget approach for environmental monitoring by GC × GC-HRTOFMS in the Tokyo Bay basin. Chemosphere, v. 156, p. 398-406, 2016. Disponível em: https://doi.org/10.1016/J.CHEMOSPHERE.2016.04.131. Acesso em: 09 maio 2022.

Apêndice A - Lista completa dos compostos encontrados por ponto de coleta.

#	Name	CAS	Similarity	Reverse	Probability	Formula	Weight	UniqueMass	Quant S/N	Sample
1	1,2-Ethanediol, monoformate	628-35-3	999	999	1579	C3H6O3	90,0317	60	122.27	P1-3:1
2	Acetic acid ethenyl ester	108-05-4	999	999	994	C4H6O2	86,0368	86	118.10	P1-5:1
3	Clorfenapir	122453-73-0	999	999	944	C15H11BrClF3N2O	405,9695	59	73719	P1-3:1
4	2-Trifluoromethyl-3-oxobutanoic acid, ethyl ester	116046-53-8	998	998	9446	C7H9F3O3	198,0504	91	19940	P1-4:1
5	(+)-Propoxyphene	469-62-5	997	997	2446	C22H29NO2	339,2198	58	78491	P1-5:1
6	Azetidine	503-29-7	993	993	4415	C3H7N	57,0578	56	62870	P1-3:1
7	Methylene chloride	75-09-2	982	982	9897	CH2Cl2	83,9534	88	19786	P1-1:1
8	Azetidine, 1-nitroso-	15216-10-1	982	982	3836	C3H6N2O	86,048	86	216.46	P1-5:1
9	Hexatriacontane	630-06-8	982	982	3097	C36H74	506,5791	57	459.96	P1-1:1
10	Dibutyl phthalate	84-74-2	979	979	2577	C16H22O4	278,1518	149	1380.1	P1-3:1
11	Butanoic acid, 4-chloro-	627-00-9	977	977	7025	C4H7CIO2	122,0135	60	297.08	P1-3:1
12	Hexacosane	630-01-3	974	974	1768	C26H54	366,4226	55	226.82	P1-1:1
13	Octacosane	630-02-4	973	973	3157	C28H58	394,4539	55	58367	P1-1:1
14	Eicosane, 2-methyl-	1560-84-5	972	972	2037	C21H44	296,3443	55	215.95	P1-1:1
15	Nonadecane	629-92-5	970	970	2758	C19H40	268,313	55	69698	P1-1:1
16	2-Propanone, 1-chloro-	78-95-5	969	969	9843	C3H5CIO	92,0029	49	17580	P2-1:1
17	5-Eicosene, (E)-	74685-30-6	966	966	833	C20H40	280,313	99	271.39	P1-3:1
18	Phthalic acid, heptyl pentyl ester	0-00-0	965	997	896	C20H30O4	334,2144	149	22258	P2-3:1
19	Heneicosane	629-94-7	964	964	1302	C21H44	296,3443	127	20724	P1-1:1
20	Octadecane	593-45-3	958	958	2855	C18H38	254,2974	57	62816	P1-1:1
21	Tridecanoic acid, methyl ester	1731-88-0	957	957	2644	C14H28O2	228,2089	55	63580	P1-1:1
22	Naphthalene, 1,6-dimethyl-	575-43-9	954	954	2654	C12H12	156,0939	156	161.53	P3-2:1
23	Octadecane, 2-methyl-	1560-88-9	954	954	1435	C19H40	268,313	71	126.04	P1-1:1

24	1-Docosene	1599-67-3	954	954	1411	C22H44	308,3443	57	4242.6	P1-3:1
25	5-Octadecene, (E)-	7206-21-5	954	954	603	C18H36	252,2817	71	40055	P1-2:1
26	Methylamine, N,N-dimethyl-	75-50-3	952	952	4882	C3H9N	59,0735	58	59682	P1-2:1
27	Phthalic acid, 2-chloropropyl isohexyl ester	0-00-0	952	952	694	C17H23ClO4	326,1285	149	107.86	P1-2:1
28	n-Heptadecanol-1 N-(1-methyl-2-[4-	1454-85-9	952	952	650	C17H36O	256,2766	71	170.56	P4-2:1
29	(methylsulfanyl)phenyl]ethyl)butan-1- amine	0-00-0	951	989	1638	C14H23NS	237,1551	100	97694	P1-5:1
30	Methane, dipropoxy-	505-84-0	950	950	5735	C7H16O2	132,115	73	43514	P1-5:1
31	Cyclohexane, 1-bromo-3-methyl-	13905-48-1	950	950	4682	C7H13Br	176,0201	97	275.95	P1-3:1
32	Naphthalene, 1,4,5-trimethyl-	2131-41-1	949	949	5709	C13H14	170,1096	155	208.40	P3-2:1
33	1-Hexadecanol	36653-82-4	949	949	1345	C16H34O	242,261	97	321.34	P1-4:1
34	Tributyl acetylcitrate	77-90-7	948	948	9307	C20H34O8	402,2254	185	208349	P1-3:1
35	1,2-Benzenedicarboxylic acid, bis(2- methylpropyl) ester	84-69-5	948	948	5907	C16H22O4	278,1518	149	3256.3	P1-2:1
36	Octadecanal	638-66-4	947	947	1724	C18H36O	268,2766	67	248.49	P1-3:1
37	Butane, 2,3-dimethoxy-2-methyl-	74421-00-4	946	946	5491	C7H16O2	132,115	73	57559	P2-4:1
38	Diphenylacetylene	501-65-5	945	945	3138	C14H10	178,0783	178	52595	P3-2:1
39	Naphthalene, 2,3-dimethyl-	581-40-8	945	945	2913	C12H12	156,0939	141	94058	P3-2:1
40	Eicosane	112-95-8	945	945	1351	C20H42	282,3287	57	58410	P1-1:1
41	(+-)-N-Benzyl-alpha-methyl-N- nitrosobenzylamine	28179-11-5	944	944	5589	C15H16N2O	240,1263	105	58166	P1-5:1
42	1-lodo-2-methylundecane	73105-67-6	944	944	2294	C12H25I	296,1001	71	75734	P1-1:1
43	Pentane, 2,2-dimethyl-	590-35-2	943	991	6298	C7H16	100,1252	56	60072	P3-3:1
44	Naphthalene, 1,4,6-trimethyl-	2131-42-2	943	943	3572	C13H14	170,1096	155	194.14	P3-3:1
45	Octadecane, 1-iodo-	629-93-6	943	943	3499	C18H37I	380,194	71	871.13	P1-2:1
46	Pentadecanal-	2765-11-9	943	943	2027	C15H30O	226,2297	95	291.53	P1-2:1
47	Hexadecane	544-76-3	943	943	1722	C16H34	226,2661	57	29912	P1-1:1
48	Tetracosane	646-31-1	943	943	1085	C24H50	338,3913	71	399.22	P1-1:1
49	Oxirane, tetramethyl-	5076-20-0	942	942	7026	C6H12O	100,0888	58	50536	P2-3:1
50	Heptadecane, 2,6,10,14-tetramethyl-	18344-37-1	942	942	1348	C21H44	296,3443	85	82982	P1-1:1
51	1-Pentyn-3-amine, 3-methyl-	18369-96-5	941	987	9605	C6H11N	97,0891	68	79922	P1-5:1
52	Dodecanoic acid, methyl ester	111-82-0	941	941	2989	C13H26O2	214,1933	129	65986	P1-4:1

	1,2-Benzenediol, o-(1-									
53	adamantancarbonyl)-o'- (cyclobutanecarbonyl)-	0-00-0	940	988	1448	C22H26O4	3541831	135	25,51	P3-5:1
54	Heptadecane, 2-methyl-	1560-89-0	940	940	2054	C18H38	254,2974	55	50210	P1-1:1
55	Oxalic acid, allyl tetradecyl ester	0-00-0	939	953	764	C19H34O4	326,2457	97	506.58	P1-3:1
56	Butane, 1-nitro-	627-05-4	939	939	5223	C4H9NO2	103,0633	55	250.48	P1-3:1
57	Behenyl acrylate	18299-85-9	939	939	4083	C25H48O2	380,3654	55	700.54	P1-4:1
58	Bis(2-ethylhexyl) maleate	142-16-5	938	938	9792	C20H36O4	340,2614	70	984.80	P1-3:1
59	Isoserine	565-71-9	938	938	6503	C3H7NO3	105,0426	59	28077	P2-4:1
60	Benzoic acid, 4-ethoxy-, ethyl ester	23676-09-7	937	937	9347	C11H14O3	194,0943	121	6813.5	P3-2:1
61	N,N-Dimethyldodecanamide	3007-53-2	937	937	3536	C14H29NO	227,2249	87	188.15	P1-3:1
62	{Sulfanediylbis[(4,6-dichlorobenzene-2,1-diyl)oxy]}bis(trimethylsilane)	-488-38-3	937	937	927	C18H22Cl4O2SSi2	497,9633	73	38739	P3-2:1
63	Eicosanal-	2400-66-0	936	939	801	C20H40O	296,3079	57	357.08	P2-4:1
64	1,2-Benzenediol, O-(4-methoxybenzoyl)- O'-(2-furoyl)-	0-00-0	935	989	538	C19H14O6	338,079	135	32909	P2-2:1
65	Hentriacontane	630-04-6	935	935	2997	C31H64	436,5008	71	49466	P1-1:1
66	n-Tetracosanol-1	506-51-4	935	935	680	C24H50O	354,3862	55	100.48	P1-1:1
67	Octanamide, N,N-dimethyl-	1118-92-9	934	934	4496	C10H21NO	171,1623	72	36971	P1-3:1
68	Naphthalene, 1,7-dimethyl-	575-37-1	934	934	1352	C12H12	156,0939	156	87614	P3-3:1
69	Cycloeicosane	296-56-0	934	934	618	C20H40	280,313	83	194.25	P1-5:1
70	Hexadecanamide	629-54-9	933	933	7336	C16H33NO	255,2562	59	123.67	P1-4:1
71	Heptadecane	629-78-7	931	931	1180	C17H36	240,2817	57	996.25	P1-2:1
72	1,4-Dibutyl benzene-1,4-dicarboxylate	1962-75-0	930	947	495	C16H22O4	278,1518	149	51969	P2-5:1
73	9-Octadecenamide, (Z)-	301-02-0	930	930	8383	C18H35NO	281,2719	59	300.46	P1-4:1
74	Phthalic acid, di(hept-4-yl) ester	0-00-0	929	929	1178	C22H34O4	362,2457	149	53524	P1-3:1
75	2-Propenoic acid, 2-methyl-, 2-aminoethyl ester, hydrochloride	2420-94-2	927	994	4115	C6H11NO2	129,079	69	39946	P3-3:1
76	Bis(2-isopropyl-5-methylcyclohexyl) methylphosphonate (isomer 1)	0-00-0	927	927	4394	C21H41O3P	372,2793	97	137.78	P2-1:1
77	4-(7-Methyloctyl)phenol	24518-48-7	926	926	9280	C15H24O	220,1827	135	68104	P1-5:1
78	1-Amino-2-butanol	13552-21-1	926	926	7030	C4H11NO	89,0841	59	18023	P2-5:1
79	Sulfone, 2-hydroxypropyl t-butyl	154619-05-3	924	981	2038	C7H16O3S	180,082	98	49518	P3-1:1
80	Palmitoleamide	106010-22-4	924	924	8267	C16H31NO	253,2406	59	220.84	P1-3:1
81	Nonanamide	1120-07-6	924	924	4813	C9H19NO	157,1467	59	41981	P1-3:1

82	1-Propene-1,2,3-tricarboxylic acid, tributyl ester	7568-58-3	923	923	9207	C18H30O6	342,2042	112	15893	P1-3:1
83	Pentanamide	626-97-1	923	923	4037	C5H11NO	101,0841	72	103.36	P2-3:1
84	Decane, 2,4-dimethyl-	2801-84-5	923	923	2261	C12H26	170,2035	57	34295	P4-1:1
85	1-Heneicosanol	15594-90-8	923	923	620	C21H44O	312,3392	97	96391	P3-2:1
86	Thioacetic acid	507-09-5	921	999	4645	C2H4OS	75,9983	61	152.01	P1-3:1
87	Diamyl phthalate	131-18-0	921	921	7070	C18H26O4	306,1831	149	314.15	P4-1:1
88	Phthalic acid, hexyl octyl ester	-424-04-5	921	921	2874	C22H34O4	362,2457	149	20477	P1-1:1
89	Octane, 2-methyl-	3221-61-2	920	939	3629	C9H20	128,1565	57	178.76	P3-2:1
90	Naphthalene, 1,6,7-trimethyl-	2245-38-7	920	927	5006	C13H14	170,1096	170	105.90	P3-3:1
91	Tetradecane, 1-iodo-	19218-94-1	920	920	1532	C14H29I	324,1314	71	29610	P1-1:1
92	Butyl citrate	77-94-1	919	919	9681	C18H32O7	360,2148	111	94432	P1-3:1
93	Tetradecane, 4-ethyl-	55045-14-2	918	918	1330	C16H34	226,2661	57	98893	P2-1:1
94	Heptacosane	593-49-7	917	917	2266	C27H56	380,4382	71	640.80	P1-2:1
95	Heptacosane, 1-chloro-	62016-79-9	917	917	715	C27H55CI	414,3992	56	196.09	P1-5:1
96	Sulfurous acid, butyl heptadecyl ester	0-00-0	916	927	515	C21H44O3S	376,3011	97	89180	P1-2:1
97	Phthalic acid, 4-cyanophenyl octyl ester	0-00-0	916	916	337	C23H25NO4	379,1784	149	63053	P1-2:1
98	Propanoic acid, 2-methyl-, 3-hydroxy- 2,2,4-trimethylpentyl ester	77-68-9	915	915	8103	C12H24O3	216,1725	71	96208	P3-2:1
99	Phthalic acid, 2,7-dimethyloct-7-en-5-yn-4- yl nonyl ester	0-00-0	913	943	1620	C27H38O4	426,277	149	45146	P2-5:1
100	Dodecanamide	1120-16-7	913	913	3333	C12H25NO	199,1936	59	81017	P1-5:1
101	Iminodiacetic acid	142-73-4	912	974	9276	C4H7NO4	133,0375	60	102.72	P1-4:1
102	Squalene	111-02-4	912	912	3006	C30H50	410,3913	81	320.28	P1-4:1
103	Nonadecane, 2-methyl-	1560-86-7	912	912	1280	C20H42	282,3287	57	60511	P1-1:1
104	Phthalic acid, butyl hexyl ester	0-00-0	911	994	313	C18H26O4	306,1831	149	36453	P1-3:1
105	Phenanthrene	85-01-8	911	938	3878	C14H10	178,0783	178	88226	P1-5:1
106	Decane, 2,3,5,8-tetramethyl-	192823-15-7	911	911	1192	C14H30	198,2348	57	200.72	P2-2:1
107	Dodecane	112-40-3	911	911	716	C12H26	170,2035	71	88576	P1-1:1
108	Diethyl Phthalate	84-66-2	910	917	8269	C12H14O4	222,0892	149	83226	P3-2:1
109	2-Amino-1-(o-hydroxyphenyl)propane	73470-00-5	910	910	8744	C9H13NO	151,0997	151	17906	P4-1:1
110	1H-Cyclopenta[c]furan-3(3aH)-one, 6,6a- dihydro-1-(1,3-dioxolan-2-yl)-, (3aR,1- trans,6a-cis)-	0-00-0	909	944	1566	C10H12O4	196,0736	73	28271	P3-3:1
111	Hexadecanal	629-80-1	909	909	3548	C16H32O	240,2453	57	137.12	P2-1:1

112	4-Methoxy-1-pentene	98386-09-5	909	909	3046	C6H12O	100,0888	59	83052	P1-3:1
113	Tetradecanal	124-25-4	908	916	2016	C14H28O	212,214	82	173.77	P2-5:1
114	13-Methyltetradecanal	75853-51-9	908	914	1572	C15H30O	226,2297	82	87629	P2-5:1
115	Undecanoic acid, ethyl ester	627-90-7	908	908	3993	C13H26O2	214,1933	55	112.02	P1-1:1
116	Cetene	629-73-2	908	908	884	C16H32	224,2504	59	27881	P1-2:1
117	E-2-Tetradecen-1-ol	0-00-0	907	921	919	C14H28O	212,214	82	38457	P3-4:1
118	Pentadecanoic acid, 14-methyl-, methyl ester	5129-60-2	907	907	4414	C17H34O2	270,2559	55	68553	P4-2:1
119	Sulfurous acid, cyclohexylmethyl isobutyl ester	0-00-0	907	907	2443	C11H22O3S	234,129	97	320.93	P1-5:1
120	Carbonic acid, octadecyl vinyl ester	0-00-0	907	907	1483	C21H40O3	340,2977	57	34193	P1-1:1
121	Phthalic acid, decyl 2-methylbutyl ester	0-00-0	906	956	281	C23H36O4	376,2614	149	81990	P3-1:1
122	Ethanol, 2-ethoxy-	110-80-5	906	906	5279	C4H10O2	90,0681	59	43453	P2-4:1
123	2-Cyano-4-phenylpentane	0-00-0	906	906	4865	C12H15N	173,1204	105	26936	P1-4:1
124	Benzeneethanamine, 2-fluoro-á,3,4- trihydroxy-N-isopropyl-	61338-98-5	906	906	3486	C11H16FNO3	229,1114	59	158.37	P1-3:1
125	Sulfurous acid, butyl tridecyl ester	0-00-0	906	906	1367	C17H36O3S	320,2385	57	19024	P1-1:1
126	Phthalic acid, monoamide, N-ethyl-N-(3-methylphenyl)-, hexyl ester	0-00-0	905	957	375	C23H29NO3	367,2147	149	60044	P3-1:1
127	Dodecyl acrylate	2156-97-0	905	905	5444	C15H28O2	240,2089	71	121.34	P1-1:1
128	L-Tyrosine, O-methyl-, ethyl ester	0-00-0	904	904	6844	C12H17NO3	223,1208	121	22090	P4-3:1
129	Tridecane	629-50-5	904	904	1246	C13H28	184,2191	56	345.48	P1-5:1
130	3-Hydroxy-3-methyl-2-butanone	115-22-0	903	933	3662	C5H10O2	102,0681	59	38072	P4-1:1
131	N,N-Dimethylpalmitamide	3886-91-7	902	902	3144	C18H37NO	283,2875	87	125.52	P4-1:1
132	L-Serine, 3TBDMS derivative	107715-93-5	901	901	7866	C21H49NO3Si3	447,302	73	64395	P4-3:1
133	Pentadecane	629-62-9	900	920	1372	C15H32	212,2504	56	164.61	P1-5:1
134	2-Tridecen-1-ol, (E)-	74962-98-4	900	906	1035	C13H26O	198,1984	82	111.48	P1-4:1
135	Oxalic acid, allyl tridecyl ester	0-00-0	900	900	2372	C18H32O4	312,2301	69	220.07	P1-3:1
136	Bis(2-ethylhexyl) phthalate	117-81-7	899	899	7763	C24H38O4	390,277	149	8760.8	P1-2:1
137	8-Methylnonanoic acid, ethyl ester	0-00-0	898	898	6503	C12H24O2	200,1776	55	44813	P1-1:1
138	Cyclopentadecanol	4727-17-7	897	897	658	C15H30O	226,2297	82	278.52	P1-4:1
139	Alanine, N-methyl-N-methoxycarbonyl-, hexyl ester	0-00-0	895	999	2895	C12H23NO4	245,1627	116	76696	P1-5:1
140	Dodecane, 2,7,10-trimethyl-	74645-98-0	895	905	953	C15H32	212,2504	71	37259	P1-1:1

141	Undecane, 3-methyl-	1002-43-3	895	xun						
4 4 9	Nambalana 1 manusi			895	3023	C12H26	170,2035	57	114.86	P1-2:1
142	Naphthalene, 1-propyl-	2765-18-6	895	895	2559	C13H14	170,1096	141	84273	P3-2:1
143	Di-5-nonyl phthalate	94054-23-6	895	895	2441	C26H42O4	418,3083	149	9630.0	P1-2:1
144	Sulfurous acid, pentyl tridecyl ester	0-00-0	895	895	766	C18H38O3S	334,2542	71	1011.3	P1-3:1
145	Butane, 1-chloro-2-methyl-	616-13-7	894	956	5826	C5H11CI	106,0549	56	61774	P1-2:1
146	Di(E)-but-2-enyl phthalate	0-00-0	893	913	1701	C16H18O4	274,1205	149	1492.8	P1-3:1
147	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	82304-66-3	893	902	9745	C17H24O3	276,1725	55	38968	P1-1:1
148	Undecane, 2-methyl-	7045-71-8	893	893	2421	C12H26	170,2035	183	24418	P3-1:1
149	Methyl tetradecanoate	124-10-7	893	893	527	C15H30O2	242,2246	74	137.66	P1-1:1
150	Benzenepentanoic acid, ë-oxo-	1501-05-9	892	937	3738	C11H12O3	192,0786	105	44665	P1-3:1
151	Hexadecane, 3-methyl-	6418-43-5	892	892	450	C17H36	240,2817	71	18677	P1-2:1
152	1,3-Propanediol, 2-hydroxymethyl-2-nitro-, triacetate	7344-23-2	891	999	4715	C10H15NO8	277,0798	129	21893	P3-1:1
153	1,2-Benzenedicarboxylic acid, butyl 2- ethylhexyl ester	85-69-8	891	966	4196	C20H30O4	334,2144	149	352.18	P2-2:1
154	Allyldimethyl(vinyl)silane	22146-25-4	891	906	9553	C7H14Si	126,0865	59	28671	P1-2:1
155	2,6,10-Trimethyltridecane	3891-99-4	891	891	1424	C16H34	226,2661	57	54312	P4-3:1
156	Hexestrol, O-methoxycarbonyl-	0-00-0	891	891	1162	C20H24O4	328,1675	135	87510	P1-5:1
157	Decane, 2,4,6-trimethyl-	62108-27-4	890	918	1190	C13H28	184,2191	71	35068	P2-5:1
158	Supraene	7683-64-9	890	890	4467	C30H50	410,3913	69	96421	P3-2:1
159	Bis(4-methylcyclohexyl) methylphosphonate	0-00-0	889	972	6495	C15H29O3P	288,1854	97	60042	P1-2:1
160	Phthalic acid, hex-2-yn-4-yl hexyl ester	0-00-0	889	918	583	C20H26O4	330,1831	149	35613	P2-2:1
161	Tricosane, 2-methyl-	1928-30-9	889	889	3743	C24H50	338,3913	71	21939	P1-3:1
162	Acetic acid, methyl ester	79-20-9	888	999	1909	C3H6O2	74,0368	74	327.45	P1-4:1
163	2,4,4,6,6,8,8-Heptamethyl-1-nonene	15796-04-0	888	888	8076	C16H32	224,2504	113	27787	P1-4:1
164	Undecane, 5-ethyl-	17453-94-0	888	888	2728	C13H28	184,2191	57	17107	P2-2:1
165	Cyclododecanol	1724-39-6	888	888	1376	C12H24O	184,1827	82	56666	P3-4:1
166	Tetradecane	629-59-4	887	906	2782	C14H30	198,2348	98	38446	P1-4:1
167	1,3-Dimethyl-5-n-hexyladamantane	52873-50-4	886	959	4692	C18H32	248,2504	163	106.72	P1-2:1
168	11-Tricosene	52078-56-5	886	896	1676	C23H46	322,36	97	130.31	P1-3:1
169	9-Octadecen-1-ol, (Z)-	143-28-2	886	886	555	C18H36O	268,2766	82	76536	P3-2:1
170	Propanoic acid, 2-hydroxy-2-methyl-, methyl ester	2110-78-3	885	991	2916	C5H10O3	118,063	59	391.70	P2-5:1

171	Etofenproxi	80844-07-1	885	911	4727	C25H28O3	376,2038	163	105.27	P1-2:1
171	3-Undecene, 7-methyl-, (E)-	74630-53-8	885	903	2215	C12H24	168,1878	69	189.40	P3-2:1
173	4-Undecene, 5-methyl-, (E)-	41851-94-9	885	899	1342	C12H24	168,1878	55	61012	P2-3:1
173	Cyclohexanamine, N-cyclohexyl-	101-83-7	885	885	5508	C12H23N	181,183	138	94716	P1-1:1
175	3-Butene-1,2-diol, 1-(2-furanyl)-	19261-13-3	884	965	6314	C8H10O3	154,063	97	118.53	P2-1:1
	1H-Indene, 2,3-dihydro-1,1,3-trimethyl-3-									
176	phenyl-	3910-35-8	884	891	8189	C18H20	236,1565	221	75312	P3-2:1
177	Docosane, 11-butyl-	13475-76-8	884	884	1005	C26H54	366,4226	71	1218.2	P1-2:1
178	Oxazol-5(4H)-one, 4-[5-(2,5-dichlorophenyl)-2-furfurylidene]-2-phenyl-	329795-32-6	883	969	599	C20H11Cl2NO3	383,0116	105	16950	P3-3:1
179	Oxalic acid, allyl hexadecyl ester	0-00-0	883	910	617	C21H38O4	354,277	97	232.72	P1-3:1
180	Ethanone, 1-(4-ethoxyphenyl)-	1676-63-7	883	905	8756	C10H12O2	164,0837	121	157.11	P1-2:1
181	Decane, 2,3,4-trimethyl-	62238-15-7	883	883	1712	C13H28	184,2191	57	30109	P2-1:1
182	1,4-Dioxin, 2,3-dihydro-5,6-dimethyl-	25465-18-3	882	912	2511	C6H10O2	114,0681	114	116.27	P1-5:1
183	Bis(2-isopropyl-5-methylcyclohexyl) methylphosphonate (isomer 3)	0-00-0	882	882	294	C21H41O3P	372,2793	97	85801	P1-1:1
184	Dodecane, 1-iodo-	4292-19-7	881	881	2343	C12H25I	296,1001	71	1827.8	P1-5:1
185	Sulfurous acid, cyclohexylmethyl tetradecyl ester	0-00-0	880	900	1152	C21H42O3S	374,2855	97	260.98	P3-1:1
186	18-Nonadecen-1-ol	0-00-0	880	888	520	C19H38O	282,2923	55	36561	P3-1:1
187	4-Heptafluorobutyryloxyhexadecane	0-00-0	880	880	445	C20H33F7O2	438,2369	55	195.78	P2-5:1
188	Nonane	111-84-2	879	950	3670	C9H20	128,1565	98	84324	P2-3:1
189	1-Dodecen-1-ol, acetate	56438-08-5	879	889	859	C14H26O2	226,1933	82	66894	P1-3:1
190	Cycloheptane, bromo-	2404-35-5	879	879	4625	C7H13Br	176,0201	97	221.81	P2-3:1
191	Butane, 2,2,3,3-tetramethyl-	594-82-1	878	945	2333	C8H18	114,1409	56	59827	P3-1:1
192	Caprylic anhydride	623-66-5	878	931	6723	C16H30O3	270,2195	127	124.23	P1-3:1
193	2-Thiopheneacetic acid, tridec-2-ynyl ester	0-00-0	878	878	3842	C19H28O2S	320,181	97	129.80	P4-2:1
194	Sulfurous acid, butyl tetradecyl ester	0-00-0	878	878	1282	C18H38O3S	334,2542	55	80803	P4-1:1
195	Heptane, 2,6-dimethyl-	1072-05-5	877	931	3659	C9H20	128,1565	71	21259	P1-1:1
196	Acetamide, 2,2,2-trichloro-	594-65-0	877	927	5999	C2H2Cl3NO	160,9202	82	99267	P1-4:1
197	Naphthalene, 1-ethyl-	1127-76-0	877	877	5232	C12H12	156,0939	141	64274	P3-2:1
198	5-(3-Ethoxy-4,5-dihydro-isoxazol-5-yl)-5- methyl-imidazolidine-2,4-dione	0-00-0	876	876	3640	C9H13N3O4	227,0906	114	240.90	P1-5:1
199	Thiophene, 2-pentyl-	4861-58-9	876	876	3441	C9H14S	154,0816	97	396.06	P3-1:1
200	Dodecane, 2,6,11-trimethyl-	31295-56-4	876	876	3010	C15H32	212,2504	57	43606	P4-1:1

Formamide, N-methyl-	123-39-7	875	965	2705	C2H5NO	59,0371	59	115.62	P2-2:1
Benzene, (1-methylundecyl)-	2719-61-1	874	905	1015	C18H30	246,2348	105	39940	P1-2:1
Pentacosane	629-99-2	874	874	2649	C25H52	352,4069	71	670.51	P1-2:1
1-(4-Ethoxyphenyl)acetone	144818-72-4	873	892	8379	C11H14O2	178,0994	107	91750	P3-2:1
1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-indene	16204-67-4	873	873	9797	C14H20	188,1565	173	25558	P3-3:1
1-Dodecanol, 2-hexyl-	110225-00-8	873	873	349	C18H38O	270,2923	97	165.48	P1-2:1
Cyclooctane, 1,5-dimethyl-	21328-57-4	872	884	798	C10H20	1401565	55	125,4	P3-5:1
1-Octene, 3,7-dimethyl-	4984-01-4	872	872	1439	C10H20	140,1565	70	25376	P1-5:1
Nonane, 4,5-dimethyl-	17302-23-7	872	872	1335	C11H24	1561878	57	28,863	P3-5:1
1-Hexene, 4-methyl-	3769-23-1	871	902	4964	C7H14	98,1096	56	81795	P1-3:1
3,5-Dimethyldodecane	107770-99-0	871	902	1054	C14H30	198,2348	71	22414	P1-1:1
Phthalic acid, decyl hept-4-yl ester	0-00-0	871	892	3770	C25H40O4	404,2927	149	32975	P2-1:1
Benzoic acid, pentadecyl ester	0-00-0	870	878	2538	C22H36O2	332,2715	123	81555	P1-4:1
Di-2-nonyl phthalate	59431-96-8	870	877	2320	C26H42O4	418,3083	149	1507.5	P1-3:1
1-(Trimethylsilyl)-1-propyne	6224-91-5	870	870	4935	C6H12Si	112,0708	97	114.70	P4-5:1
Cyclooctane, 1,4-dimethyl-, cis-	13151-99-0	870	870	491	C10H20	140,1565	69	225.55	P1-2:1
[Bromo(cyano)methyloxoazanylidene](tert-butyl)amine	0-00-0	869	952	3478	C6H10BrN3O	219,0007	98	89710	P1-3:1
2-[(Chloromethyl)sulfanyl]-1,3- benzothiazole	28908-00-1	869	869	9781	C8H6CINS2	214,963	180	34406	P1-2:1
1-Pentyne, 3-ethyl-3-methoxy-	53941-20-1	869	869	3200	C8H14O	126,1045	97	79005	P2-4:1
Triacontane	638-68-6	869	869	1783	C30H62	422,4852	71	72142	P2-2:1
Glycidyl palmitate	7501-44-2	868	868	9415	C19H36O3	312,2664	129	44435	P2-2:1
4-Trifluoroacetoxytridecane	0-00-0	868	868	625	C15H27F3O2	296,1963	111	133.61	P2-2:1
4-Ethoxy-N-(2-methylphenyl)benzamide	346693-56-9	867	885	2637	C16H17NO2	255,1259	149	38807	P2-3:1
N-Pentylacetamide	2524-60-9	867	867	4064	C7H15NO	129,1154	72	86146	P2-2:1
Docosane	629-97-0	867	867	1543	C22H46	310,36	71	357.26	P4-4:1
Sulfurous acid, butyl hexadecyl ester	0-00-0	867	867	1042	C20H42O3S	362,2855	57	50467	P1-1:1
4-Trifluoroacetoxyhexadecane	0-00-0	867	867	340	C18H33F3O2	338,2433	97	365.90	P1-4:1
Ethanamine, N-methylene-	43729-97-1	866	987	3332	C3H7N	57,0578	56	32995	P4-1:1
Nonacosane	630-03-5	866	920	1129	C29H60	408,4695	71	44275	P1-1:1
Methyl dehydroabietate	1235-74-1	865	868	9811	C21H30O2	314,2246	239	72198	P1-3:1
1-Octanol, 2-butyl-	3913-02-8	865	865	3826	C12H26O	186,1984	71	885.74	P1-2:1
	Pentacosane 1-(4-Ethoxyphenyl)acetone 1,1,4,5,6-Pentamethyl-2,3-dihydro-1H- indene 1-Dodecanol, 2-hexyl- Cyclooctane, 1,5-dimethyl- 1-Octene, 3,7-dimethyl- Nonane, 4,5-dimethyl- 1-Hexene, 4-methyl- 3,5-Dimethyldodecane Phthalic acid, decyl hept-4-yl ester Benzoic acid, pentadecyl ester Di-2-nonyl phthalate 1-(Trimethylsilyl)-1-propyne Cyclooctane, 1,4-dimethyl-, cis- [Bromo(cyano)methyl- oxoazanylidene](tert-butyl)amine 2-[(Chloromethyl)sulfanyl]-1,3- benzothiazole 1-Pentyne, 3-ethyl-3-methoxy- Triacontane Glycidyl palmitate 4-Trifluoroacetoxytridecane 4-Ethoxy-N-(2-methylphenyl)benzamide N-Pentylacetamide Docosane Sulfurous acid, butyl hexadecyl ester 4-Trifluoroacetoxyhexadecane Ethanamine, N-methylene- Nonacosane Methyl dehydroabietate	Benzene, (1-methylundecyl)-	Benzene, (1-methylundecyl)-	Benzene, (1-methylundecyl)	Benzene, (1-methylundecyj)				

232	Oxalic acid, allyl heptyl ester	0-00-0	865	865	2798	C12H20O4	228,1362	55	111.63	P1-3:1
233	Heptadecane, 2,6-dimethyl-	54105-67-8	865	865	436	C19H40	268,313	71	32613	P1-4:1
234	Pentane, 2,2,4,4-tetramethyl-	1070-87-7	864	984	3305	C9H20	128,1565	98	31737	P1-3:1
235	m-Anisic acid, 4-chlorophenyl ester	0-00-0	864	939	1001	C14H11ClO3	262,0397	135	60154	P4-4:1
236	3-Undecene, 7-methyl-, (Z)-	74630-49-2	864	898	663	C12H24	168,1878	69	278.49	P1-4:1
237	Octane, 2,4,6-trimethyl-	62016-37-9	864	893	3384	C11H24	156,1878	57	19383	P1-1:1
238	O-Methyl-DL-serine, N- dimethylaminomethylene-, butyl ester	0-00-0	864	864	7037	C11H22N2O3	230,163	129	29479	P1-3:1
239	Pentatriacontane	630-07-9	864	864	2164	C35H72	492,5634	71	474.74	P1-3:1
240	Tridecane, 2-methyl-	1560-96-9	864	864	942	C14H30	198,2348	56	34243	P1-2:1
241	Cyclododecane	294-62-2	864	864	721	C12H24	168,1878	83	146.52	P1-3:1
242	2-Pentanone, 4-hydroxy-4-methyl-	123-42-2	863	969	5900	C6H12O2	116,0837	58	44150	P2-3:1
243	2,2-Dichloro-3-oxo-3,N- diphenylpropionamide	0-00-0	863	924	8887	C15H11Cl2NO2	307,0167	105	22497	P2-1:1
244	Pentadecane, 7-(bromomethyl)-	52997-43-0	863	863	981	C16H33Br	304,1766	71	190.78	P4-1:1
245	Dotriacontane	544-85-4	863	863	486	C32H66	450,5165	57	30077	P1-1:1
246	Acetic acid, 3-methoxy-2-butyl ester	0-00-0	862	994	3949	C7H14O3	146,0943	72	29340	P3-4:1
247	2-(6-Chloro-3-nitro-4-phenyl-quinolin-2- ylsulfanyl)-1-(2,3-dihydro- benzo[1,4]dioxin-6-yl)- ethanone	0-00-0	862	911	3499	C25H17CIN2O5S	492,0547	107	23001	P1-2:1
248	Benzoic acid, hept-2-yl ester	0-00-0	862	883	5573	C14H20O2	220,1463	105	97094	P1-2:1
249	2-Pyrazoline, 1-isobutyl-3-methyl-	26964-53-4	862	862	6624	C8H16N2	140,1313	97	96756	P1-2:1
250	17-Pentatriacontene	6971-40-0	862	862	1215	C35H70	4905478	55	145,05	P3-5:1
251	Sulfurous acid, pentadecyl pentyl ester	0-00-0	862	862	1160	C20H42O3S	362,2855	111	123.67	P1-3:1
252	1-Nonadecene	18435-45-5	862	862	842	C19H38	266,2974	97	115.50	P2-1:1
253	Acetamidoacetaldehyde	64790-08-5	861	913	7331	C4H7NO2	101,0477	72	25258	P2-1:1
254	Hexadecane, 2,6,10,14-tetramethyl-	638-36-8	861	869	756	C20H42	282,3287	71	50828	P4-2:1
255	1,3-Dihydroxyacetone dimer	62147-49-3	861	861	8119	C6H12O6	180,0634	72	44775	P1-2:1
256	4,8,12-Tetradecatrienal, 5,9,13-trimethyl-	66408-55-7	861	861	1999	C17H28O	248,214	69	86192	P3-1:1
257	p-Sec-butylphenyl acetate	3245-24-7	860	907	3032	C12H16O2	192,115	121	17720	P2-3:1
258	cis-2-Methyl-7-octadecene	35354-39-3	860	871	562	C19H38	266,2974	56	239.53	P2-3:1
259	26-Nor-5-cholesten-3á-ol-25-one	7494-34-0	860	860	3223	C26H42O2	386,3185	91	92793	P3-1:1
260	Sulfurous acid, 2-ethylhexyl hexyl ester	0-00-0	860	860	1335	C14H30O3S	278,1916	55	17107	P2-1:1
261	Cyclopentane, 1-pentyl-2-propyl-	62199-51-3	860	860	614	C13H26	182,2035	96	88010	P1-4:1
262	Butane, 2-phenyl-3-hydroxy-4-cyano-	0-00-0	859	906	1627	C11H13NO	175,0997	105	107.91	P1-4:1

263	Undecane, 2,10-dimethyl-	17301-27-8	859	869	1008	C13H28	184,2191	85	36887	P1-1:1
264	Didecan-2-yl phthalate	28029-89-2	859	859	6353	C28H46O4	446,3396	149	14986	P1-3:1
265	3,4-Hexanedione, 2,2,5-trimethyl-	20633-03-8	858	980	6498	C9H16O2	156,115	57	43604	P1-5:1
266	Bis(2-methylpentyl) methylphosphonate	0-00-0	858	893	3297	C13H29O3P	264,1854	97	120.19	P4-1:1
267	9,12-Octadecadienoic acid, methyl ester, (E,E)-	2566-97-4	858	858	2479	C19H34O2	294,2559	67	136.45	P1-1:1
268	Cyclotetradecane	295-17-0	858	858	534	C14H28	196,2191	53	33220	P1-2:1
269	Difluoromethane	75-10-5	857	902	8170	CH2F2	52,0125	51	25964	P3-2:1
270	1-Pentene, 3,4-dimethyl-	7385-78-6	857	889	6390	C7H14	98,1096	70	76523	P3-2:1
271	1,8,11-Heptadecatriene, (Z,Z)-	56134-03-3	857	873	963	C17H30	234,2348	81	205.34	P1-5:1
272	Cyclohexane, 1-bromo-4-methyl-	6294-40-2	857	857	7199	C7H13Br	176,0201	97	341.65	P1-4:1
273	Octacosane, 1-iodo-	0-00-0	857	857	1494	C28H57I	520,3505	71	81321	P4-2:1
274	Decane, 1-fluoro-	334-56-5	857	857	423	C10H21F	160,1627	83	87379	P3-3:1
275	2-Ethylhexanal ethylene glycol acetal	0-00-0	856	997	3606	C10H20O2	172,1463	73	71786	P2-1:1
276	m-Anisic acid, tridec-2-ynyl ester	0-00-0	856	959	871	C21H30O3	330,2195	135	30150	P2-2:1
277	Tetracosane, 11-decyl-	55429-84-0	856	881	1449	C34H70	478,5478	71	47512	P1-1:1
278	1,E-11,Z-13-Octadecatriene	80625-36-1	856	877	890	C18H32	248,2504	81	147.84	P3-1:1
279	(Bicyclohexyl)-2-amine	6283-14-3	856	856	6791	C12H23N	181,183	138	140.56	P1-5:1
280	2-Propanone, 1,1,1-trichloro-	918-00-3	856	856	6049	C3H3Cl3O	159,9249	82	71718	P1-3:1
281	Sulfurous acid, di(cyclohexylmethyl) ester	0-00-0	856	856	5413	C14H26O3S	274,1603	97	67806	P1-2:1
282	Furan, 2,5-dihydro-2,2,4-trimethyl-	23230-79-7	855	942	4510	C7H12O	112,0888	97	86325	P4-4:1
283	(4-Methylphenyl) methanol, 1- methylpropyl ether	0-00-0	855	936	2151	C12H18O	178,1358	105	42424	P2-3:1
284	Undecanoic acid, methyl ester	1731-86-8	855	855	2991	C12H24O2	200,1776	143	17348	P1-2:1
285	1-Dodecanol, 3,7,11-trimethyl-	6750-34-1	855	855	592	C15H32O	228,2453	55	220.54	P2-3:1
286	Pyrimidine-2,4(1H,3H)-dione, 5-bromo-1- (1-methoxyethyl)-	296879-03-3	853	964	1935	C7H9BrN2O3	247,9797	59	103.38	P4-2:1
287	Enanthamide	628-62-6	853	889	6609	C7H15NO	129,1154	59	191.56	P2-3:1
288	Tetradecanamide	638-58-4	853	853	4300	C14H29NO	227,2249	72	31469	P2-1:1
289	3-Undecene, 10-methyl-	0-00-0	853	853	657	C12H24	168,1878	83	49818	P2-3:1
290	Triacontane, 1-iodo-	0-00-0	852	874	1382	C30H61I	548,3818	57	48181	P1-3:1
291	1,4-Benzenedicarboxylic acid, bis(2- ethylhexyl) ester	6422-86-2	852	864	7707	C24H38O4	390,277	70	38369	P1-1:1
292	n-Tridecan-1-ol	112-70-9	852	852	570	C13H28O	200,214	111	169.14	P1-2:1

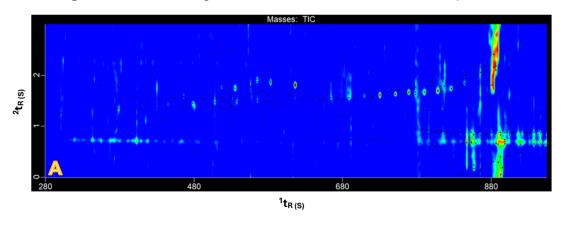
293	Sulfurous acid, cyclohexylmethyl hexyl ester	0-00-0	851	915	1985	C13H26O3S	262,1603	97	303.74	P1-3:1
294	Cyclooctane, 1,2-dimethyl-	13151-94-5	851	872	457	C10H20	140,1565	97	197.43	P2-4:1
295	Phthalic acid, isoporpyl propyl ester	0-00-0	851	868	908	C14H18O4	250,1205	149	102.12	P1-3:1
296	Cyclooctane, 1,4-dimethyl-, trans-	13151-98-9	851	851	880	C10H20	140,1565	55	157.39	P1-3:1
297	Phthalic acid, 3-methylbutyl octyl ester	0-00-0	851	851	309	C21H32O4	348,2301	149	1516.7	P1-2:1
298	Methylpent-4-enylamine	5831-72-1	850	986	4794	C6H13N	99,1048	98	31301	P3-2:1
299	Cyclobutanone, 2,3,3-trimethyl-	28290-01-9	850	915	3479	C7H12O	112,0888	70	77339	P3-3:1
300	trans-Farnesol	106-28-5	850	861	1243	C15H26O	222,1984	69	158.60	P3-1:1
301	Palmitoleic acid	373-49-9	850	858	802	C16H30O2	254,2246	96	29264	P3-1:1
302	Phthalic acid, 2,7-dimethyloct-7-en-5-yn-4- yl heptyl ester	0-00-0	850	850	1141	C25H34O4	398,2457	149	48092	P1-5:1
303	Cyclooctane, 1,2-diethyl-	23609-46-3	850	850	521	C12H24	168,1878	83	427.26	P1-4:1
304	2-Propyl-1-Pentanol, trifluoroacetate	0-00-0	849	912	2746	C10H17F3O2	226,1181	57	199.39	P3-3:1
305	2,4,4-Trimethyl-1-pentanol, trifluoroacetate	0-00-0	848	918	5711	C10H17F3O2	226,1181	113	19910	P2-5:1
306	Acetamide, N-butyl-	1119-49-9	848	915	8180	C6H13NO	115,0997	72	63361	P3-3:1
307	1-Decanol, 2-hexyl-	2425-77-6	848	848	3565	C16H34O	242,261	97	184.49	P1-2:1
308	Guanidine	113-00-8	848	848	2069	CH5N3	59,0483	59	40306	P1-4:1
309	1,5-Naphthalenediol, decahydro-2-(1- hydroxy-1-methylethyl)-4a,8-dimethyl-, 3Me derivative	0-00-0	848	848	779	C18H34O3	298,2508	73	26798	P1-1:1
310	Dodecanoic acid, ethyl ester	106-33-2	847	847	5477	C14H28O2	228,2089	60	29512	P1-3:1
311	Nonane, 3-methyl-5-propyl-	31081-18-2	847	847	1506	C13H28	184,2191	71	129.40	P2-2:1
312	1-Decanol, 2-ethyl-	21078-65-9	847	847	1307	C12H26O	186,1984	96	49146	P1-4:1
313	2-Butyn-1-al diethyl acetal	2806-97-5	846	898	5812	C8H14O2	142,0994	97	34773	P4-4:1
314	1-Tetradecene	1120-36-1	846	873	934	C14H28	196,2191	54	31939	P1-2:1
315	5-Dodecene, (E)-	7206-16-8	846	863	677	C12H24	168,1878	55	93341	P3-3:1
316	Oxalic acid, 6-ethyloct-3-yl heptyl ester	0-00-0	846	860	519	C19H36O4	328,2614	57	1918.8	P2-4:1
317	Carbonic acid, undecyl vinyl ester	0-00-0	846	846	641	C14H26O3	242,1882	71	71217	P1-4:1
318	Formic acid, 2,4,4-trimethylpentyl ester	0-00-0	845	845	5273	C9H18O2	158,1307	97	245.64	P1-5:1
319	1,5-Hexadiene, 2,5-dipropyl-	0-00-0	844	888	1701	C12H22	166,1722	81	46161	P1-4:1
320	cyclohexane, [1,1'-biphenyl]-4-yl-	0-00-0	844	861	8953	C18H20	236,1565	236	65146	P1-5:1
321	Dodecane, 2,6,10-trimethyl-	3891-98-3	844	844	951	C15H32	212,2504	56	154.51	P2-5:1
322	1-Undecene, 7-methyl-	74630-42-5	844	844	772	C12H24	168,1878	69	77000	P2-1:1
323	1-Butanol, 2-methyl-	137-32-6	843	941	5654	C5H12O	88,0888	56	132.36	P1-4:1

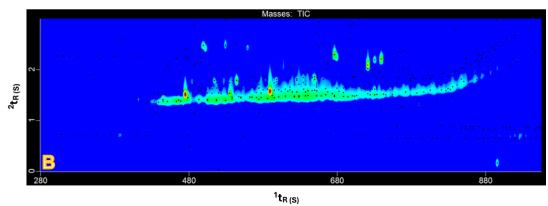
324	Phenol, 4-[(5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinolin-5-yl)methyl]-, (R)-	34168-00-8	843	893	7078	C17H17NO3	283,1208	176	23142	P2-3:1
325	10,18-Bisnorabieta-8,11,13-triene	32624-67-2	843	853	8867	C18H26	242,2035	143	52986	P2-5:1
326	1-Hexanol, 2-ethyl-	104-76-7	843	843	5269	C8H18O	130,1358	55	340.10	P1-2:1
327	á-Sitosterol	83-46-5	843	843	3396	C29H50O	414,3862	107	51376	P1-3:1
328	Undecane	1120-21-4	842	898	3517	C11H24	156,1878	119	25436	P2-5:1
329	Decane, 2-methyl-	6975-98-0	842	862	927	C11H24	156,1878	71	166.49	P4-1:1
330	Phthalic acid, hept-3-yl isohexyl ester	0-00-0	842	848	858	C21H32O4	348,2301	149	117.14	P2-2:1
331	2-Pentene, 3,4,4-trimethyl-	598-96-9	842	842	3037	C8H16	112,1252	55	40406	P2-5:1
332	Cyclopentane, 1-butyl-2-propyl-	62199-50-2	841	862	494	C12H24	168,1878	97	159.82	P1-3:1
333	Hexane, 1-(hexyloxy)-5-methyl-	74421-19-5	841	861	2342	C13H28O	200,214	56	26469	P4-2:1
334	Benzeneacetaldehyde, à,2,5-trimethyl-	52417-50-2	840	840	3986	C11H14O	162,1045	133	101.90	P3-2:1
335	Cyclopropane, 3-chloro-1,1,2,2- tetramethyl-	14123-41-2	840	840	1734	C7H13CI	132,0706	97	190.09	P1-3:1
336	Actinobolin	24397-89-5	839	930	2026	C13H20N2O6	300,1321	98	40100	P3-1:1
337	1-Nitrododecane	16891-99-9	839	839	1618	C12H25NO2	215,1885	69	34031	P2-2:1
338	Phthalic acid, 7-methyloct-3-yn-5-yl nonyl ester	0-00-0	839	839	925	C26H38O4	414,277	149	17343	P4-5:1
339	3-Octene, (Z)-	14850-22-7	838	887	2415	C8H16	112,1252	55	45131	P2-5:1
340	1-Pentanol, 2-ethyl-4-methyl-	106-67-2	837	885	1704	C8H18O	130,1358	57	232.82	P3-2:1
341	1,2-Benzenedicarboxylic acid, bis(4- methylpentyl) ester	146-50-9	837	885	693	C20H30O4	334,2144	149	36042	P1-2:1
342	n-Pentadecylcyclohexane	6006-95-7	837	837	2104	C21H42	294,3287	82	170.74	P1-5:1
343	2,6-Dimethyl-6-trifluoroacetoxyoctane	61986-67-2	835	861	2866	C12H21F3O2	254,1494	97	38053	P3-4:1
344	Cyclohexane, octyl-	1795-15-9	835	849	1399	C14H28	196,2191	82	26169	P3-4:1
345	1-Heptadecene	6765-39-5	835	847	1174	C17H34	238,2661	83	64329	P3-4:1
346	1-Butanamine	109-73-9	834	996	3357	C4H11N	73,0891	73	46139	P3-1:1
347	Cholesta-8,24-dien-3-ol, 4-methyl-, (3á,4à)-	7199-92-0	834	834	2130	C28H46O	398,3549	91	33527	P1-2:1
348	2-Decene, 5-methyl-, (Z)-	74645-86-6	834	834	257	C11H22	154,1722	54	25205	P1-2:1
349	p-Anisic acid, 2,6-dimethylnon-1-en-3-yn- 5-yl ester	0-00-0	833	960	509	C19H24O3	300,1725	135	38416	P1-2:1
350	Phthalic acid, di(3-methylphenyl) ester	0-00-0	833	943	3748	C22H18O4	346,1205	239	40789	P2-2:1
351	Sulfurous acid, cyclohexylmethyl tridecyl ester	0-00-0	833	896	1377	C20H40O3S	360,2698	97	123.63	P4-2:1

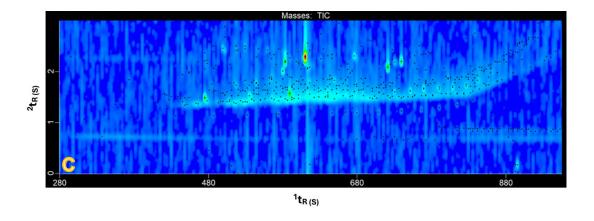
	m-Anisoyl amide, N-(2-phenylethyl)-N-									
352	tetradecyl-	0-00-0	833	871	2068	C30H45NO2	451,345	135	71925	P2-4:1
353	1,3-Dimethyl-5-n-propyl-adamantane	19385-87-6	833	833	2301	C15H26	206,2035	163	56020	P1-2:1
354	4-pentylphenyl 4-propylbenzoate	50649-60-0	832	919	3645	C21H26O2	310,1933	147	45213	P1-3:1
355	Heptadecane, 2,6,10,15-tetramethyl-	54833-48-6	832	851	1243	C21H44	296,3443	71	26859	P1-1:1
356	1,1'-Biphenyl, 2-methyl-	643-58-3	832	834	3582	C13H12	168,0939	168	52036	P3-2:1
357	2-Methylhexadec-1-ene	61868-19-7	832	832	287	C17H34	238,2661	96	62064	P1-4:1
358	(+-)-2-Hydroxyoctanoic acid, acetate	0-00-0	831	959	3528	C10H18O4	202,1205	97	87555	P1-1:1
359	Butane, 1-chloro-2-methyl-, (S)-	40560-29-0	831	947	2917	C5H11CI	106,0549	56	156.68	P1-4:1
360	Bis(2-isopropyl-5-methylcyclohexyl) methylphosphonate (isomer 2)	0-00-0	831	896	3365	C21H41O3P	372,2793	97	47871	P3-1:1
361	Chloromethanesulfonyl chloride	3518-65-8	831	891	6253	CH2Cl2O2S	147,9153	49	43521	P4-1:1
362	Cyclooctane, methyl-	1502-38-1	831	852	3508	C9H18	126,1409	97	87366	P1-3:1
363	Cyclohexane, 1,3,5-triphenyl-	28336-57-4	831	831	2655	C24H24	312,1878	91	122.67	P1-1:1
364	1,2-Octadecanediol	20294-76-2	831	831	530	C18H38O2	286,2872	56	72924	P1-2:1
365	Hydroxylamine, O-(phenylmethyl)-	622-33-3	830	953	1028	C7H9NO	123,0684	91	93518	P2-4:1
366	Heptyl isobutyl carbonate	959068-08-7	830	868	1197	C12H24O3	216,1725	56	220.75	P1-2:1
367	8,11-Heptadecadienal, (8Z,11Z)-	56797-42-3	830	860	1537	C17H30O	250,2297	67	140.82	P1-4:1
368	Cyclopropanepentanoic acid, 2-undecyl-, methyl ester, trans-	42199-20-2	829	850	3189	C20H38O2	310,2872	74	172.41	P2-1:1
369	2,4-Dihydroxy-3-methylbenzaldehyde, 2TMS	0-00-0	829	849	2811	C14H24O3Si2	296,1264	281	16500	P1-4:1
370	1-Octadecanamine, N-(2-methoxypropyl)- N-methyl-	0-00-0	829	829	6923	C23H49NO	355,3814	58	39714	P2-4:1
371	N-(Benzyloxy)-2,2,2-trifluoroacetamide	174075-91-3	828	954	1211	C9H8F3NO2	219,0507	91	118.79	P1-5:1
372	Docosa-2,6,10,14,18-pentaen-22-al, 2,6,10,15,18-pentamethyl-, all-trans	0-00-0	828	828	1790	C27H44O	384,3392	69	185.55	P3-1:1
373	5-Undecene, 5-methyl-, (Z)-	57024-93-8	828	828	1169	C12H24	168,1878	81	26757	P2-4:1
374	4-Trifluoroacetoxypentadecane	0-00-0	828	828	558	C17H31F3O2	324,2276	95	27279	P2-1:1
375	1,2-Benzenediol, o-(4-methoxybenzoyl)-o'-(2,2,3,3,4,4,4-heptafluorobutyryl)-	0-00-0	827	997	385	C18H11F7O5	440,0495	135	48473	P1-5:1
376	N-Acetylethylenediamine	1001-53-2	827	945	6975	C4H10N2O	102,0793	73	61526	P1-4:1
377	Acetamide, N-hexyl-	7501-79-3	827	827	8307	C8H17NO	143,131	72	85624	P1-3:1
378	11-Octadecenoic acid, methyl ester	52380-33-3	827	827	2466	C19H36O2	296,2715	59	268.43	P2-4:1
379	2-Undecene, 10-methyl-	0-00-0	827	827	963	C12H24	168,1878	83	44898	P3-1:1

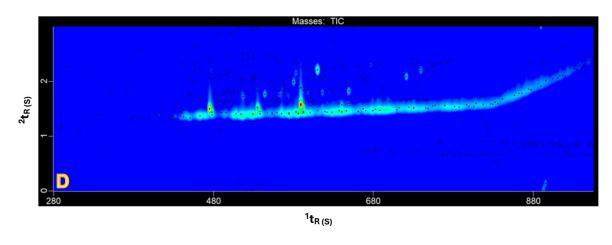
380	Pentane, 2,4-dimethyl-	108-08-7	826	946	2806	C7H16	100,1252	96	18548	P3-3:1
381	2H-1-Benzopyran-2-one, 7-methoxy-	531-59-9	826	896	8381	C10H8O3	176,0473	176	53175	P3-4:1
382	Tridecane, 4-methyl-	26730-12-1	826	826	2291	C14H30	198,2348	96	48765	P1-5:1
383	à-Amino-ç-butyrolactone	1192-20-7	825	980	1585	C4H7NO2	101,0477	56	132.95	P2-5:1
384	2-Propyn-1-amine, N,N-dimethyl-	7223-38-3	825	909	7925	C5H9N	83,0735	82	38879	P3-3:1
385	Tetradecane, 5-methyl-	25117-32-2	825	848	798	C15H32	212,2504	71	35304	P1-1:1
386	5-Tetradecene, (Z)-	41446-62-2	825	825	373	C14H28	196,2191	97	51098	P4-1:1
387	Benzamide, N-(2-chloro-3-pyridyl)-4- ethoxy-	351061-45-5	824	887	2579	C14H13CIN2O2	276,0666	149	47652	P2-4:1
388	Cyclopropane, 1-(1-methylethyl)-2-nonyl-	41977-39-3	824	844	538	C15H30	210,2348	125	56483	P1-2:1
389	Ether, 6-methylheptyl vinyl	10573-35-0	824	843	1587	C10H20O	156,1514	57	20745	P3-4:1
390	2-Decene, 6-methyl-, (Z)-	74630-31-2	823	823	3785	C11H22	154,1722	56	152.12	P2-5:1
391	2-Hexene, 3,4,4-trimethyl-	53941-19-8	823	823	3208	C9H18	126,1409	97	59632	P1-3:1
392	Dicyclohexyl methylphosphonate	7040-53-1	823	823	2157	C13H25O3P	260,1541	97	127.06	P1-2:1
393	Dimethyldithiocarbamic acid, S-(2-cyano- 2-methyl-1-phenyl)vinyl ester	0-00-0	822	822	4410	C13H14N2S2	262,0598	88	31346	P4-1:1
394	8,8-Dimethyl-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-3a,4,6,7,8,8b-hexahydro-3H-indeno[1,2-b]furan-2,5-dione	0-00-0	821	906	1954	C19H20O6	344,126	97	103.49	P3-2:1
395	Cyclohexane, 1-ethyl-2-propyl-	62238-33-9	821	861	8167	C11H22	154,1722	69	36005	P3-4:1
396	1,1'-Biphenyl, 3-methyl-	643-93-6	821	859	2715	C13H12	168,0939	168	43145	P3-3:1
397	7-Hexadecene, (Z)-	35507-09-6	821	821	422	C16H32	224,2504	97	84782	P2-1:1
398	N-(5-Chloro-2-hydroxyphenyl)-2- ethoxybenzamide	701254-19-5	820	866	3557	C15H14CINO3	291,0662	121	44863	P1-3:1
399	5-Tetradecanol acetate	51354-25-7	820	820	1730	C16H32O2	256,2402	55	333.76	P1-3:1
400	Hexestrol, O-trifluoroacetyl-	0-00-0	819	929	2779	C20H21F3O3	366,1443	135	38446	P4-5:1
401	2-Thiopheneacetic acid, undec-2-enyl ester	0-00-0	819	841	3591	C17H26O2S	294,1654	97	50865	P4-1:1
402	Oxalic acid, hexyl octadecyl ester	0-00-0	819	819	481	C26H50O4	426,3709	69	553.43	P3-1:1
403	Methyl 2-(acetylamino)propanoate	26629-33-4	818	914	3972	C6H11NO3	145,0739	86	24220	P2-4:1
404	1-[6,8-Dichloro-2-phenyl-4- quinolyl]hexahydro-3H-oxazolo[3,4- a]pyridine	0-00-0	818	911	4420	C22H20Cl2N2O	398,0953	97	33779	P1-1:1
405	Phenol, 2,5-bis(1,1-dimethylethyl)-	5875-45-6	818	898	4912	C14H22O	206,1671	191	32155	P2-1:1

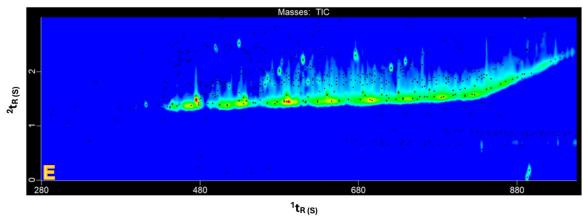
400	DI 10/11/00/11 (IIII/I)	0004.05.5	0.40	004	4000	04411000	000 4074	405	75000	D0 0 4
406	Phenol, 2-(1,1,3,3-tetramethylbutyl)-	3884-95-5	818	861	4320	C14H22O	206,1671	135	75908	P2-3:1
407	1H-Pyrazole, 1-methyl-	930-36-9	818	818	6132	C4H6N2	82,0531	82	208.92	P1-5:1
408	4-Tetradecene, (Z)-	41446-65-5	818	818	518	C14H28	196,2191	167	22509	P1-3:1
409	Dodecanenitrile	2437-25-4	817	817	2425	C12H23N	181,183	110	100.18	P1-4:1
410	Propylamine	107-10-8	816	964	7839	C3H9N	59,0735	59	143.64	P1-4:1
411	3-Methoxybenzoic acid, 2,4,6- trichlorophenyl ester	0-00-0	816	868	1979	C14H9Cl3O3	329,9617	135	39705	P3-3:1
412	2-Trifluoroacetoxypentadecane	0-00-0	816	839	623	C17H31F3O2	324,2276	97	30891	P3-4:1
413	1-Decanol	112-30-1	816	823	1091	C10H22O	158,1671	57	122.45	P2-3:1
414	Sulfurous acid, butyl cyclohexylmethyl ester	0-00-0	816	816	996	C11H22O3S	234,129	55	31714	P1-3:1
415	Cyclopentadecane	295-48-7	816	816	818	C15H30	210,2348	97	177.54	P2-3:1
416	6-Dodecene, (E)-	7206-17-9	816	816	391	C12H24	168,1878	97	51601	P4-3:1
417	2,4,4-Trimethyl-1-pentanol	16325-63-6	815	912	5369	C8H18O	130,1358	96	50967	P1-5:1
418	5-Undecene, 7-methyl-, (Z)-	74630-62-9	815	835	834	C12H24	168,1878	55	78847	P3-1:1
419	3-Hexene, 3-ethyl-2,5-dimethyl-	62338-08-3	815	815	6200	C10H20	140,1565	97	17076	P2-4:1
420	1-Methyl-3-piperidinamine, N- trimethylacetyl-	1344070-46- 7	815	815	2740	C11H22N2O	198,1732	97	120.98	P1-5:1
421	Nonacos-1-ene	18835-35-3	815	815	550	C29H58	406,4539	97	103.21	P1-3:1
422	Cyclohexane, 1,2,3-trimethyl-, (1à,2à,3á)-	7667-55-2	814	858	1045	C9H18	126,1409	67	20510	P3-4:1
423	Cyclopropane, 1-ethyl-2-pentyl-	62238-08-8	814	853	705	C10H20	140,1565	69	44842	P3-4:1
424	Sulfurous acid, cyclohexylmethyl dodecyl ester	0-00-0	814	849	1583	C19H38O3S	346,2542	97	144.69	P2-2:1
425	9-Octadecenoic acid (Z)-, methyl ester	112-62-9	814	814	4310	C19H36O2	296,2715	74	172.68	P1-3:1
426	1-Acetyl-4-piperidone	32161-06-1	814	814	3330	C7H11NO2	141,079	56	26594	P2-1:1
427	Propane, 2-methyl-1-nitro-	625-74-1	813	944	1478	C4H9NO2	103,0633	56	130.05	P1-5:1
428	2H-1,3-Thiazin-4(3H)-one, 6-(2-selenolyl)- 2-thioxo-	0-00-0	813	879	9853	C8H5NOS2Se	274,8978	59	37354	P1-3:1
429	3,5-O-Furylidene-d-xylofuranose	0-00-0	813	877	4404	C10H12O6	228,0634	97	181.93	P1-5:1
430	Sulfurous acid, cyclohexylmethyl ethyl ester	0-00-0	813	850	4721	C9H18O3S	206,0977	97	22200	P1-1:1
431	Oxiraneoctanoic acid, 3-octyl-, methyl ester	2500-59-6	813	813	6818	C19H36O3	312,2664	87	136.27	P1-4:1
432	Acetamide, N-(2-methylpropyl)-	1540-94-9	812	890	9119	C6H13NO	115,0997	72	43550	P1-3:1
433	Betazole	105-20-4	812	864	7625	C5H9N3	111,0796	82	87510	P3-1:1

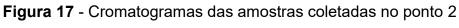

434	Heptane, 1,1'-oxybis-	629-64-1	811	839	4569	C14H30O	214,2297	56	39001	P3-4:1
435	Decane, 2-cyclohexyl-	13151-73-0	811	839	822	C16H32	224,2504	83	31382	P1-1:1
436	Erucic acid	112-86-7	811	830	1509	C22H42O2	338,3185	81	23442	P1-2:1
437	3-(Prop-2-enoyloxy)pentadecane	0-00-0	811	828	1595	C18H34O2	282,2559	55	86573	P2-1:1
438	Ethylene diacrylate	2274-11-5	811	821	433	C8H10O4	170,0579	55	79955	P2-1:1
439	Disilane, bromopentamethyl-	18139-94-1	810	907	1630	C5H15BrSi2	209,9896	73	32709	P4-3:1
440	Phthalic acid, 2,7-dimethyloct-7-en-5-yn-4- yl hexyl ester	0-00-0	810	899	1912	C24H32O4	384,2301	149	22520	P4-4:1
441	Benzene, (2-bromo-1-methylethyl)-	1459-00-3	810	885	1030	C9H11Br	198,0044	105	64333	P1-5:1
442	Pentadecane, 2,6,10-trimethyl-	3892-00-0	810	867	889	C18H38	254,2974	71	25829	P1-1:1
443	1-Octyn-3-ol, 4-ethyl-	5877-42-9	810	843	3687	C10H18O	154,1358	55	181.31	P1-3:1
444	Cycloheptanemethanol	4448-75-3	810	836	5511	C8H16O	128,1201	82	51970	P2-2:1
445	1,2-Benzenedicarboxylic acid, decyl octyl ester	119-07-3	810	810	3889	C26H42O4	418,3083	149	32753	P4-4:1
446	Dichloroacetic acid, 2-pentadecyl ester	0-00-0	810	810	581	C17H32Cl2O2	338,1779	55	92569	P4-2:1
447	5-(4-Bromophenyl)isoxazole-3- carbohydrazide, 3TMS	0-00-0	809	940	3634	C19H32BrN3O2Si3	497,0986	73	62675	P4-5:1
448	1H-Indene, octahydro-	496-10-6	809	878	2774	C9H16	124,1252	82	53356	P2-5:1
449	Dicyclooctyl methylphosphonate	0-00-0	809	861	7121	C17H33O3P	316,2167	97	359.86	P1-5:1
450	o-Terphenyl	84-15-1	809	853	6183	C18H14	230,1096	230	29903	P1-5:1
451	1,6,10,14-Hexadecatetraen-3-ol, 3,7,11,15-tetramethyl-, (E,E)-	1113-21-9	809	826	2302	C20H34O	290,261	81	47104	P2-3:1
452	2-Methyl-E-7-hexadecene	64183-52-4	809	809	400	C17H34	238,2661	97	132.37	P2-1:1
453	Triacontyl trifluoroacetate	0-00-0	809	809	346	C32H61F3O2	534,4624	69	801.59	P3-1:1
454	4-Ethoxybenzhydrazide	58586-81-5	808	870	4959	C9H12N2O2	180,0899	121	24056	P1-2:1
455	Heptane, 3-methylene-	1632-16-2	808	808	3286	C8H16	112,1252	79	18007	P2-4:1
456	Fumaric acid, decyl trans-hex-3-enyl ester	0-00-0	808	808	2298	C20H34O4	338,2457	82	45377	P3-2:1
457	Benzene, (4-bromobutyl)-	13633-25-5	807	927	949	C10H13Br	212,0201	91	92588	P3-4:1
458	Pentadec-7-ene, 7-bromomethyl-	0-00-0	807	819	1101	C16H31Br	302,1609	81	78722	P1-2:1
459	1-Hexacosene	18835-33-1	807	807	1230	C26H52	364,4069	97	182.86	P1-2:1
460	Cyclohexanone, 3-butyl-	39178-69-3	807	807	559	C10H18O	154,1358	97	74341	P1-1:1
461	Benzoic acid, pentyl ester	2049-96-9	806	873	1867	C12H16O2	192,115	105	39217	P1-2:1
462	Sulfurous acid, hexyl heptyl ester	0-00-0	806	859	3495	C13H28O3S	264,1759	57	54436	P2-2:1
463	Butanal, oxime	110-69-0	806	806	3731	C4H9NO	87,0684	59	64408	P1-3:1
464	10-Heneicosene (c,t)	95008-11-0	806	806	427	C21H42	294,3287	81	48944	P3-2:1

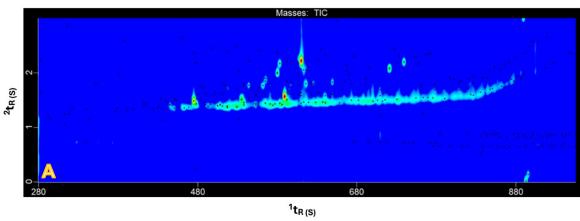

465	Pentanenitrile	110-59-8	805	999	2185	C5H9N	83,0735	55	18568	P1-3:1
466	Silane, trimethyl[2-methylene-1-(4-	97778-15-9	805	973	2456	C12H22Si	194,1491	73	58839	P4-1:1
	pentenyl)cyclopropyl]-						•			
467	1-Hexyl-2-nitrocyclohexane	118252-04-3	805	924	3943	C12H23NO2	213,1729	81	37033	P1-2:1
468	Octacosane, 2-methyl-	1560-98-1	805	840	1363	C29H60	408,4695	85	17477	P4-5:1
469	Desoxyanisoin	120-44-5	805	837	5817	C16H16O3	256,1099	135	29335	P4-5:1
470	Cycloundecane, (1-methylethyl)-	62338-56-1	805	805	2408	C14H28	196,2191	57	51328	P1-1:1
471	N-Butyryl-DL-homoserine lactone	98426-48-3	805	805	1358	C8H13NO3	171,0895	56	125.48	P1-5:1
472	1-Tridecene	2437-56-1	805	805	809	C13H26	182,2035	96	68938	P1-4:1
473	Benzoin, 2,2'-dimethoxy-, acetate	73867-45-5	804	892	5028	C18H18O5	314,1154	135	28792	P1-1:1
474	Cyclopentane, 2-ethyl-1,1-dimethyl-	54549-80-3	804	865	1373	C9H18	126,1409	167	27839	P2-4:1
475	Cyclohexane, 1-methyl-3-propyl-	4291-80-9	804	804	3497	C10H20	140,1565	97	78538	P2-3:1
476	(1R,2R,4S)-2-(6-Chloropyridin-3-yl)-7- methyl-7-azabicyclo[2.2.1]heptane	232615-84-8	804	804	1848	C12H15CIN2	222,0924	82	120.35	P1-4:1
477	1-Hexacosanol	506-52-5	804	804	1102	C26H54O	382,4175	96	86354	P1-5:1
478	Phthalic acid, di(4-methylpent-2-yl) ester	0-00-0	804	804	525	C20H30O4	334,2144	149	46392	P1-2:1
479	Urea, N,N'-di-2-propenyl-	1801-72-5	803	913	5461	C7H12N2O	140,095	56	32434	P3-4:1
480	Phthalic acid, hex-2-yn-4-yl nonyl ester	0-00-0	803	876	501	C23H32O4	372,2301	149	20191	P1-1:1
481	Ether, heptyl hexyl	7289-40-9	803	833	3126	C13H28O	200,214	55	38113	P4-4:1
482	Succinic acid, di(trans-hex-3-enyl) ester	0-00-0	803	823	685	C16H26O4	282,1831	82	43689	P1-1:1
483	Ethanone, 1-[2,3-dihydro-2-(1-methylethenyl)-5-benzofuranyl]-, (R)-	77630-42-3	803	813	2233	C13H14O4	234,0892	187	188.58	P3-3:1
484	Naphthalene, 1-methyl-7-(1-methylethyl)-	490-65-3	803	807	5895	C14H16	184,1252	169	65602	P3-2:1
485	Z,E-3,13-Octadecadien-1-ol	0-00-0	803	807	1289	C18H34O	266,261	96	36759	P3-1:1
486	Cyclic octaatomic sulfur	10544-50-0	802	924	9724	S8	255,7766	64	131.41	P1-2:1
487	1-Nonylcycloheptane	0-00-0	802	856	2370	C16H32	224,2504	81	85634	P1-3:1
488	Naphthalene, 2-methyl-1-propyl-	54774-89-9	802	811	5377	C14H16	184,1252	155	81347	P3-2:1
489	2,4,4,6,6,8,8-Heptamethyl-2-nonene	39761-73-4	802	802	3999	C16H32	224,2504	97	289.42	P1-3:1
490	1H-Inden-5-ol, 2,3-dihydro-	1470-94-6	801	867	6502	C9H10O	134,0732	133	45702	P3-3:1
491	E-1,9-Hexadecadiene	0-00-0	801	856	695	C16H30	222,2348	82	23684	P3-4:1
492	Benzamide, N-[2-(3-ethyl-5-methylphenoxy)ethyl]-2-hydroxy-	0-00-0	801	842	2883	C18H21NO3	299,1521	121	34672	P3-2:1
493	Sulfurous acid, cyclohexylmethyl heptadecyl ester	0-00-0	801	829	1173	C24H48O3S	416,3324	57	21220	P3-1:1
494	2-Pentene, 2,3,4-trimethyl-	565-77-5	801	801	2517	C8H16	112,1252	97	57202	P4-4:1


495	Undecanenitrile	2244-07-7	801	801	2397	C11H21N	167,1674	96	25638	P2-1:1
496	Cyclohexane, [6-cyclopentyl-3-(3- cyclopentylpropyl)hexyl]-	55401-72-4	801	801	1632	C25H46	346,36	95	88257	P1-2:1
497	Dodecane, 1-cyclopentyl-4-(3- cyclopentylpropyl)-	7225-68-5	801	801	1235	C25H48	348,3756	97	169.49	P1-3:1
498	Cyclopentane, 1-methyl-3-(2- methylpropyl)-	29053-04-1	801	801	827	C10H20	140,1565	96	219.81	P1-5:1
499	benzoic acid, 4-methoxy-, 2-(4- nitrobenzoyl)hydrazide	0-00-0	800	971	3969	C15H13N3O5	315,0855	135	19822	P3-3:1
500	1-Heptanol, 6-methyl-	1653-40-3	800	857	465	C8H18O	130,1358	55	27188	P4-1:1
501	Cyclohexane, hexyl-	4292-75-5	800	825	1080	C12H24	168,1878	82	60686	P3-2:1
502	Disulfide, bis(1,1,3,3-tetramethylbutyl)	29956-99-8	800	819	3093	C16H34S2	290,2102	113	23989	P1-3:1
503	Cyclohexane, 1,2,3-trimethyl-, (1à,2à,3à)-	1839-88-9	800	812	979	C9H18	126,1409	69	47231	P3-2:1
504	11-Methyldodecanol	85763-57-1	800	800	1244	C13H28O	200,214	69	1503.5	P1-4:1

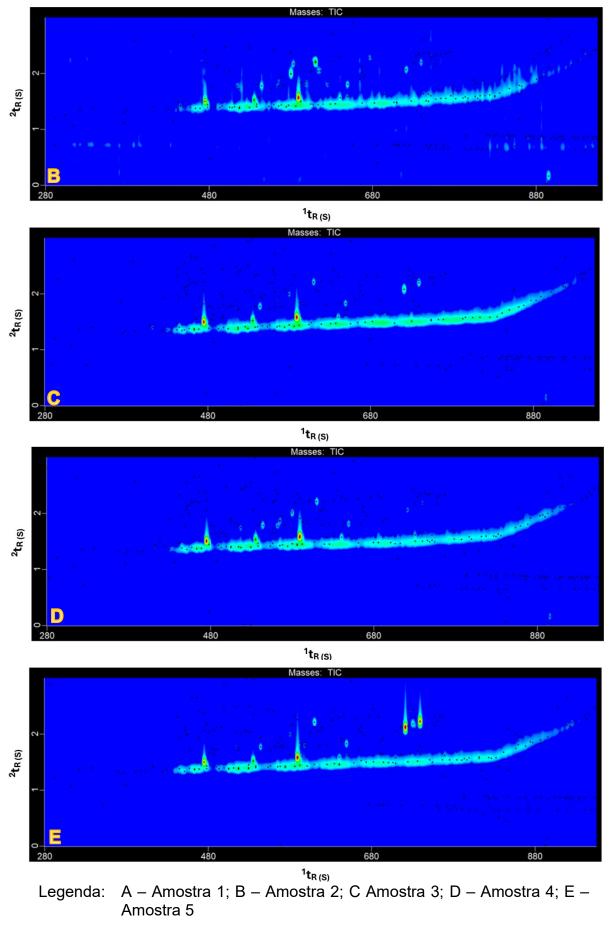
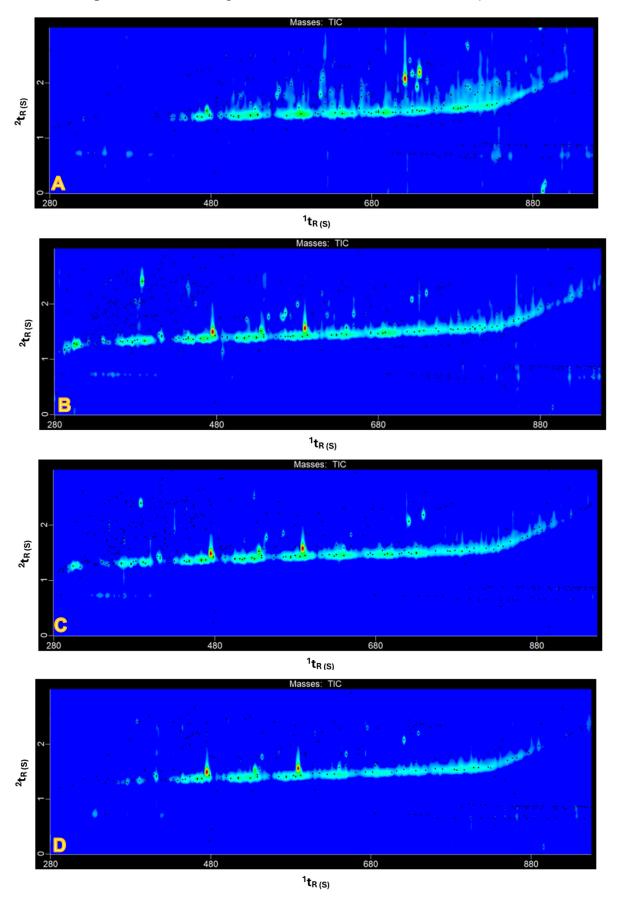
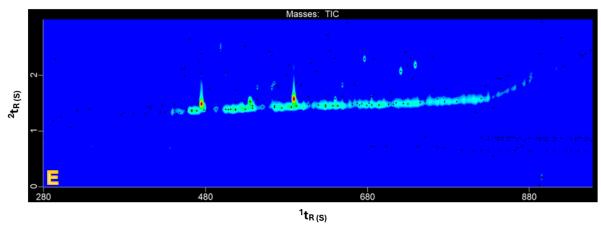

Apêndice B

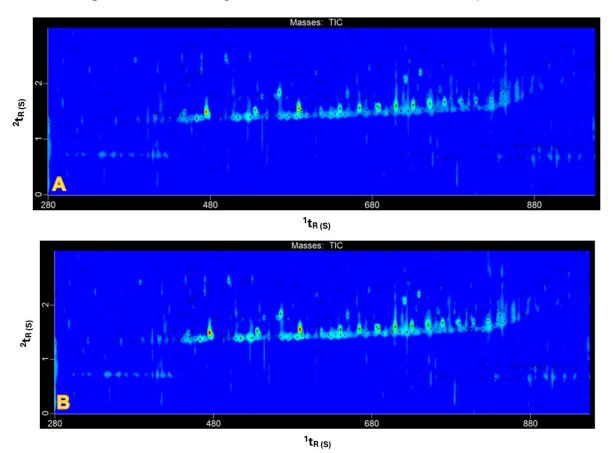

Figura 16 - Cromatogramas das amostras coletadas no ponto 1

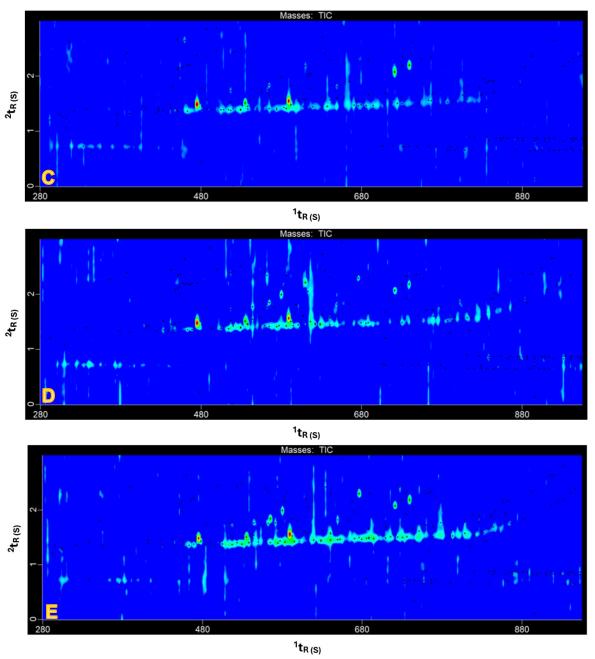




Legenda: A – Amostra 1; B – Amostra 2; C Amostra 3; D – Amostra 4; E – Amostra 5


Figura 18 - Cromatogramas das amostras coletadas no ponto 3



Legenda: A – Amostra 1; B – Amostra 2; C Amostra 3; D – Amostra 4; E – Amostra 5

Figura 19 - Cromatogramas das amostras coletadas no ponto 4

Legenda: A – Amostra 1; B – Amostra 2; C Amostra 3; D – Amostra 4; E – Amostra 5