

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO CENTRO DE CIÊNCIAS E TECNOLOGIA FACULDADE DE GEOLOGIA

Sérgio Goulart Oreiro

INTERPRETAÇÃO SÍSMICA DOS EVENTOS MAGMÁTICOS PÓS-APTIANOS NO ALTO DE CABO FRIO, SUDESTE DO BRASIL, GÊNESE E RELAÇÃO COM OS LINEAMENTOS PRÉ- SAL

> Rio de Janeiro 2006

Sérgio Goulart Oreiro

INTERPRETAÇÃO SÍSMICA DOS EVENTOS MAGMÁTICOS PÓS-APTIANOS NO ALTO DE CABO FRIO, SUDESTE DO BRASIL, GÊNESE E RELAÇÃO COM OS LINEAMENTOS PRÉ- SAL

Dissertação apresentada como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis da Universidade do Estado do Rio de Janeiro.

Orientador: Prof. Dr. Antônio Thomaz Filho

CATALOGAÇÃO NA FONTE UERJ/REDE SIRIUS/CTC/C

٦

O66	Oreiro, Sérgio Goulart. Interpretação sísmica dos eventos magmáticos pós-aptianos no alto de Cabo Frio, sudeste do Brasil, gênese e relação com os lineamentos pré-sal / Sérgio Goulart Oreiro. – 2006. 160 f. : il.
	Orientador : Antônio Thomaz Filho. Tese (doutorado) – Universidade do Estado do Rio de Janeiro, Faculdade de Geologia.
	1. Magmatismo – Cabo Frio (RJ) – Teses. 2. Bacias sedimentares – Cabo Frio (RJ) – Teses. I. Thomaz Filho, Antônio. II. Universidade do Estado do Rio de Janeiro. Faculdade de Geologia. III. Título.
	CDU550.42 (815.3)

Sérgio Goulart Oreiro

INTERPRETAÇÃO SÍSMICA DOS EVENTOS MAGMÁTICOS PÓS-APTIANOS NO ALTO DE CABO FRIO, SUDESTE DO BRASIL, GÊNESE E RELAÇÃO COM OS LINEAMENTOS PRÉ- SAL

Dissertação apresentada como requisito parcial para obtenção do título de Doutor, ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis da Universidade do Estado do Rio de Janeiro.

Aprovado em: 15 de dezembro de 2006

Banca Examinadora:

Prof. Dr. Antonio Thomaz Filho (Orientador) Faculdade de Geologia da UERJ

Prof^a. Dr^a. Mônica Heilbron Faculdade de Geologia da UERJ

Prof^a. Dr^a. Marta Mantovani Faculdade de Geologia da USP

Prof. Dr. Luis Otávio Aguiar Oliveira Petrobras

Prof. Dr. Jorge Carlos Della Fávera Faculdade de Geologia da UERJ

> Rio de Janeiro 2006

Dedico esta tese a meus pais, Fernando Lema Oreiro *(n memoriam)* e Wanda Goulart Oreiro, pela educação que me deram, pautada pela ética e respeito ao próximo.

AGRADECIMENTOS

Agradecimentos sinceros são devidos à PETROBRAS, especialmente a Paulo Manuel Mendes de Mendonça, pela aprovação deste projeto de pesquisa; a Mário Carminatti, pela presença serena e constante nos momentos de maior dificuldade; e a Edmundo Júlio Jung Marques, por ter sugerido ao Dr. Peter Szatmari que me co-orientasse.

Igualmente fundamental foi o apoio de todos os meus colegas do E&P-EXP, pelas inúmeras e valiosas discussões técnicas. Sou especialmente grato a José Alberto Bucheb, pelo grande incentivo para que eu me decidisse a começar esta empreitada e pelo apoio incondicional durante a mesma; a José Antônio Cupertino e Peter Szatmari, pela co-orientação sempre sábia; a Claudemir Severiano de Vasconcelos, pelas frutíferas discussões sobre a dinâmica do interior da Terra; a João Alberto Bach de Oliveira, Osni de Paula e Benedito Souza Gomes, pelos esclarecimentos sobre métodos potenciais; a Élvio de Matos Bulhões, pelas explicações sobre detalhes da Técnica VA, por ele desenvolvida; a Jorge Carlos Della Fávera, pela leitura crítica e incentivo entusiástico, incentivo esse compartilhado por Luis Otávio Aguiar Oliveira, Luis Antônio Pierantoni Gamboa e Lemuel de Paula; a Roberto Salvador Francisco D'Ávila, pelos conselhos e apoio técnico e psicológico, assim como Raul Dias Damasceno e André Luís Romanelli Rosa; a Ana Lúcia Novaes de Araújo e Lílian Souza da Silveira, pelo auxílio na descrição de lâminas petrográficas; e aos desenhistas do EXP/NA/Desenho Técnico, pelo auxílio na elaboração de algumas das ilustrações.

Sou grato também à Dona Cida e ao Roberto, respectivamente esposa e filho de Peter Szatmari, pela acolhida em sua casa nas muitas vezes em que lá estive para mostrar o andamento de meu trabalho ao Prof. Peter.

No campo acadêmico, gostaria de salientar o bom relacionamento que sempre tive com meus colegas de pós-graduação da UERJ, bem como com todos os membros do corpo docente, sem exceções. Especial gratidão é devida ao Prof. Antônio Thomaz Filho, por sua orientação, boa vontade e valiosas discussões técnicas. Importante também foi o apoio dado por Edna Santuchi e, mais recentemente, por Diogo Ferreira. Sou grato também ao Prof.

Sérgio Valente, da UFRRJ, a Daniela Machado, pelo auxílio na descrição de lâminas petrográficas e a Juan Yañes, pela revisão do *resumen*.

Por fim, gostaria de expressar minha profunda gratidão à Faculdade de Geologia da UERJ e desejar que ela continue aprimorando-se para preparar, como já vem fazendo há muitos anos, profissionais de geociências capacitados para atender às necessidades da economia brasileira e ao progresso de nosso país.

Ó mal que não é mal que docemente me oprime!

Simon Goulart (1543-1628)

Ó mal que não é mal que docemente me oprime! Temor solitário, ó dor vivificante! Suspiro risonho, corada palidez! Coração abatido, sem nenhuma aflição!

Afecções que se fazem mestras E que tornam meu espírito vencedor! Razão conciliada, ó infelicidade afortunada Que me abatendo todo, de súbito me regenera

Ó vida morta! Ó morte tão viva! Que agora, no porto temido e desejado, Transforma minha vida em morte, minha morte em vida! Prende, solta-me, retorna mais para me tirar Deste combate que me fez suspirar, Transforma-me em companheiro dos Anjos.

Simon Goulart (Senlis, 1543 - Genebra, 1628) foi um teólogo e humanista francês.

RESUMO

A plataforma continental da área de Cabo Frio, localizada no extremo SW da Bacia de Campos e extremo NW da Bacia de Santos, possui distintas feições em sua evolução tectono -sedimentar quando comparada com outras áreas das referidas bacias. Entre essas feições, destaca-se a presença de falhas antitéticas no embasamento e nas seções sedimentares sinrifte e pós-rifte, além de eventos magmáticos marcantes no Neocretácio e Eoterciário, com clímax no Eoceno Médio. O presente trabalho mostra perspectiva histórica da percepção humana dos fenômenos uma as primeiras míticas magmáticos, desde teorias e teológicas da antiguidade, até o atual debate entre os que adotam ou não o modelo de plumas mantélicas. Tais informações são necessárias para um melhor entendimento das conclusões aqui apresentadas. A base de dados do presente estudo consiste de análises detalhadas de dados de sísmica, de satélite, de métodos potenciais (magnéticos e gravimétricos) e de poços. Amostras de diques básicos na península de Arraial do Cabo, situada na porção continental mais próxima do limite entre as Bacias de Santos e de Campos, foram coletadas para estudos geocronológicos. O estudo integrado de todos esses dados confirmou o resultado de pesquisas anteriores, as quais identificaram dois eventos magmáticos principais, um no Santoniano/Campaniano (~ 83 Ma) e outro no Eoceno Médio (~ 50 Ma). Há também evidências, em seções sísmicas, de edifícios vulcânicos formados durante 0 Albiano. o Maastrichtiano e o Paleoceno. As análises de dados de sísmica de relexão e de perfis de poços, na área de estudo, revelaram uma série de feições diagnósticas para eventos magmáticos, incluindo a distinção entre eventos intrusivos dos extrusivos, bem como de intercalações entre os mesmos e seqüências sedimentares epiclásticas. Eventos magmáticos extrusivos podem ser identificados, nas seções sísmicas, como sismofácies caóticas com topos bem definidos e bases mal definidas. Tais sismofácies são interpretadas como o resultado da intercalação de derrames submarinos de lavas com epiclásticos e vulcanoclásticos, juntamente com feições sedimentos de escorregamentos e soleiras rasas. A presença de cones bem delimitados também constitui evidência de magmatismo extrusivo. Diques e derrames de lava são reconhecidos por fortes reflexões positivas com terminações

laterais abruptas. Diques mais espessos de diabásio originam zonas com fracas reflexões, delimitadas acima e abaixo por fortes reflexões. Os critérios apresentados nessa tese podem ser aplicados a quaisquer contextos em que haja eventos magmáticos intercalados com seqüências sedimentares. Α assinatura sísmica de eventos não- magmáticos é também mostrada; tais eventos correspondem a diferentes feições geológicas que podem ser interpretados por geofísicos e geólogos como sendo de origem magmática. Entre tais eventos, os mais importantes são os evaporitos, os mounds turbidíticos, os vulcões de lama originados por escape de gás e depósitos carbonáticos. Serão apresentadas algumas interpretações para a gênese do magmatismo pós-Aptiano na área em epígrafe, interpretações essas que não levam em conta o modelo clássico de plumas mantélicas. O mapeamento dos principais diques alimentadores, em seções sísmicas 2D e 3D, revelou que tais diques têm uma orientação preferencial SE-NW, coincidente com o alinhamento da Zona de deformações Cruzeiro do Sul, a qual inclui os Montes Submarinos Jean Charcot e as construções vulcânicas no Alto de Cabo Frio e suas cercanias. Tal observação é coerente com as características das falhas de rejeito direcional, preexistentes e reativadas nas áreas continentais próximas, e com a orientação do componente transtensional das mesmas. Além disso, comprova-se que os maiores volumes de rochas magmáticas, intercaladas na seção sedimentar, estão localizados nas áreas de interseção entre duas zonas de falhas com direção SE- NW (falhas de rejeito direcional) e SW-NE (falhas normais). O mesmo acontece com os corpos alcalinos do alinhamento Poços de Caldas-Cabo Frio.

Palavras-chave: Magmatismo. Plumas. Alto de Cabo Frio.

ABSTRACT

The continental shelf of the Cabo Frio Area, at the southern part of the Campos Basin, shows unique features in its tectono-sedimentary evolution when compared to other areas of the Campos and Santos basins. The preserce of a regular pattern of antithetic faults in the basement and in the synrift and the post-rift sedimentary sections, along with important magmatic events in the Late Cretaceous and Early Tertiary sequences (whose climax took place in the earli er portion of the Middle Eocene) are some of these features. This work presents a historical perspective of the human perception of the magmatic events, from the ancient mythic and theologic theories to the current debate between plumers and non-plumers. These informations are needed to allow a better understanding of the conclusions of the present thesis. The present study was based on the analyses of seismic, satellite, magnetic, gravimetric and well data, as well as rock samples collected in dikes cropping out at the Arraial do Cabo Peninsula, the nearest onshore position at the boundary between the offshore Santos and Campos Basins. This thesis has confirmed the results of previous research that had identified two major magmatic pulses, one in the late Cretaceous and the other in the Early Tertiary (~83 and 50 My, respectively). There is also seismic evidence for volcanic edifices formed during the Albian, Maastrichtian and Paleocene times. The analyses of seismic reflection and well log data, in the working area, points to a set of diagnostic features that can lead to the identification of magmatic events and the distinction of intrusive from extrusive rocks, as well as their intercalations with epiclastic sedimentary sequences. Extrusive magmatic events can be recognized in seismic reflection data as chaotic seismofacies with well defined tops and poorly defined bases; these seismofacies are interpreted as a result of interbedding submarine lava flows and epiclastic and volcaniclastic sediments, along with slumps and shallow intrusions (sills). The presence of well shaped conic edifices also points to extrusive magmatism. Dikes and lava flows are recognized by strong positive reflections with abrupt lateral ends. Thicker dolerite sills may be recognized by reflection free zones with strong reflections in their tops and bases.

The criteria proposed by this thesis may be used to identify and classify magmatic events in any context where they are associated with sedimentary sequences. The thesis also shows the seismic signatures of nonmagmatic events, which comprise a different range of geologic features that may induce the geophysicists and geologists to interpret them as magmatic events. these features, evaporites, turbiditic mounds, mud volcanoes Among originated by gas escape, slump seismofacies and carbonate deposits are the most important ones. Some alternative interpretations to explain the genesis of this magmatism are presented, which do not take into account the classic model of mantle plumes. The mapping of the main feeder dikes, in 2D and 3D reflection seismic sections, has revealed that they have a predominant SE-NW direction, coincident with the alignment of the Cruzeiro do Sul Deformation Zone, which includes the Jean Charcot submarine mounds and the volcanic mounds on and around the Cabo Frio High. This observation is coherent with the characteristics of the preexisting and reactivated strike-slip faults on land and the orientation of their transtensional component. Moreover, it is shown that the largest volumes of magmatic rocks, intercalated in the sedimentary section, are located at areas of intersections between fault zones trending SE-NW (strike -slip faults) and SW-NE (normal faults), as are the onshore alkaline bodies of the Poços de Caldas - Cabo Frio alignment.

Keywords: Magmatism. Plumes. Cabo Frio High.

RESUMEN

La plataforma continental de la Área de Cabo Frio, situada en la parte meridional de la Cuenca de Campos y septentrional de la Cuenca de Santos, demuestra características únicas en su evolución tectono sedimentaria con respecto a otras áreas de esas cuencas. La presencia de un padrón regular de fallas antitéticas en las secciones sedimentarias de la postrifte, junto con eventos magmáticos importantes em el Neocretáaceo y el Eoterciario, cuyo clímax ocurrió en la parte inferior del Eoceno Medio, son algunas de esas características. Este trabajo presenta una perspectiva histórica del entendimiento humano de los eventos magmáticos, desde las teorías míticas y teológicas antiguas hasta la discusión actual entre los que reapaldan la teoria de las plumas y de los que la rechazan. Esas informaciones son necesarias para permitir una mejor comprensión de las conclusiones de esa tesis. El actual estudio fue fundamentado en los análisis de datos sísmicos, de satélites, magnéticos, gravimétricos y también de muestras colectadas en los diques que afloran en la península de Arraial do Cabo, que es la posición terrestre más cercana del límite entre las cuencas de Santos y Campos. Esa tesis ha confirmado los resultados de estudios anteriores que han identificado dos pulsos magmáticos principales, uno en el Neocretaceo y el otro en el Neoteciario (~83 y 50 Ma, respectivamente). Hay también evidencias sísmicas de edificios volcánicos formados durante el Albiano, el Maastrichtiano y el Paleoceno. Los análisis de registros sísmicos de reflexión y de los datos de registro, en la área de trabajo, revelan un conjunto de características que pueden conducir a la identificación de eventos magmáticos y a la distinción de ocas extrusivas e intrusivas, así como sus intercalaciones con secuencias sedimentarias epiclasticas. Los eventos magmáticos extrusivos se pueden reconocer en datos sísmicos de reflexión como las sismofacies caóticas con sus capas bien definidas y bases mal definidas; esas sismofacies se interpretan como resultado de flujos submarinos de lava intercalados con sedimentos epiclásticos y volcanoclásticos, junto con las intrusiones rasas (sills). La presencia de cones vulcânicos bien formados también señala al magmatismo

extrusivo. Los diques y los flujos de lava son reconocidos por reflexiones positivas fuertes con las terminaciones laterales bruscas. Sills más espesos de doleritos se pueden reconocer por zonas con débiles reflexiones em su interior y fuerte s reflexiones en sus capas y bases. Los criterios propuestos por esta tesis se pueden utilizar para identificar y clasificar eventos magmáticos en cualquier contexto donde tales eventos se sedimentarias. También se demuestra las asocian con secuencias características sísmicas de eventos no - magmáticos, que abarcan una diversa gama de las características geológicas que pueden conducir a los geofísicos y geólogos a interpretarlos como eventos magmáticos. Entre esas características, los evaporitos, los mounds turbidíticos, los volcanes de lama originados por el escape de gas, sismofacies de deslices y los depósitos de carbonato son los más importantes. Algunas interpretaciones alternativas para explicar la génesis de ese magmatismo serán presentadas, las cuales no consideran el modelo clásico de las plumas del manto. Las secciones sísmicas de reflexión 2D y 3D han revelado que los principales diques alimentadores del magmatismo tienen una dirección predominante de SE-NW, coincidente con la alineación de la Zona de Deformación Crucero del Sur, la cual incluye los mounds submarinos de Jean Charcot y los mounds volcánicos en el Alto de Cabo Frio y sus proximidades. Tal observación es coherente con las características de fallas de desplazamiento horizontal en el continente, preexistentes y reactivadas, asi como la orientación de sus componentes transtensionales. Por otra parte, se demuestra que los volúmenes más grandes de rocas magmáticas, intercaladas en la sección sedimentaria, están situados en las áreas de intersección entre las dos zonas de fallas con las direcciones SE-NW (fallas de desplazamiento horizontal) y SW-NE (fallas normales), al igual que los cuerpos alcalinos terrestres de la alineación Poços de Caldas - Cabo Frio.

Palabra-llave: Magmatismo. Plumas. Alto de Cabo Frio

LISTA DE ILUSTRAÇÕES

Figura 1	Mapa de localização da área de estudo	04
Figura 2	Esquema representativo da direção de uma frente de ondas	09
Figura 3	Formulário da técnica VA	2
Figura 4	Comparação entre as cartas estratigráficas das bacias de	4
	Santos e Campos	16
Figura 5	Mapa combinado de anomalias magnéticas da Área	17
Figura 6	Mapa mostrando a localização das GPV	20
Figura 7	Seção sísmica mostrando a ocorrência de Seaward dipping	
	Reflectors (SDR)	22
Figura 8	Seção sísmica em detalhe com amarração do perfil litológico	25
Figura 9	Mapa de isópacas do pacote evaporítico da Bacia de Santos	26
Figura 10	Diferença entre a evolução das bacias de Santos e Campos,	
	nas cercanias do Alto de Cabo Frio	29
Figura 11	Mapa regional da área estudada	30
Figura 12	Formato atual da Ilha de Santorini	32
Figura 13	Foto de um experimento sobre correntes de convecção	38
Figura 14	Imagem simplificada da deriva continental	38
Figura 15	Diagrama ilustrativo do hotspot do Havaí	40
Figura 16	Mecanismo de formação das plumas	41
Figura 17	Comparação gráfica entre o número de publicações contendo	
	plumas em seus títulos e aquelas que criticam o modelo	42
Figura 18	O paradigma das plumas e sua contestação	48
Figura 19	Reconstrução paleogeográfica do Gondwana	54
Figura 20	Mapa regional da Cadeia do Imperador-Havaí	55

Figura 21	Mapa paleomagnético do Oceano Pacífico	57
Figura 22	Evolução tectônica da Islândia nos últimos 15 Ma	59
Figura 23	Diagrama esquemático do conceito de sistema vulcânico de Gudmundsson (1995)	60
Figura 24	Mapa de localização do Arquipélago das Canárias	62
Figura 25	Estrutura crustal e mantélica abaixo das Ilhas Canárias	63
Figura 26	Composição de um edifício vulcânico típico do Arquipélago das Canárias	64
Figura 27	Mapa de localização da Cadeia de Vitória-Trindade	65
Figura 28	Sumário da interpretação de Thompson <i>et al.</i> (1998)	67
Figura 29	Resumo da história geológica da Pluma de Trindade	69
Figura 30	Seção sísmica em profundidade na Bacia de V ϕ ring	71
Tabela 1	Datações Ar/Ar de basaltos toleíticos de Arraial do Cabo	74
Figura 31	Seção sísmica no extremo NW da Bacia de Santos (Tec VA)	75
Figura 32	Mesma seção da fig. anterior, com processamento normal	76
Figura 33	Mapa de localização das Figuras 34 e 35	78
Figura 34	Seção sísmica 2D no extremo sul da Bacia de Campos (em prof.)	79
Figura 35	Seção geológica baseada na interpretação da fig. 34	80
Figura 36	Taxas de preenchimento sedimentar do poço C	82
Figura 37	Mapa regional da Falha de Transferência de Volta Redonda	84
Figura 38	Mapa de anomalias gravimétricas residuais das bacias de Campos e de Santos	85
Figura 39	Mapa de estimativas 3D de profundidade da Moho	86

Figura 40	Seção sísmica no norte da Bacia de Santos	87
Figura 41	Comparação entre o magmatismo submarino do Havaí e o da Área de Cabo Frio	89
Figura 42	Mapas de amplitudes RMS extraídas do Topo do Cretáceo	90
Figura 43	Seção sísmica strike ao longo da Área de Estudo	91
Figura 44	Foto de um dique máfico no extremo SW da Ilha de Cabo Frio	92
Figura 45	Seção sísmica 3D no norte da Bacia de Santos	93
Figura 46	Mapa estrutural combinado com o de amplitudes RMS	94
Figura 47	Mapa estrutural de um sistema vulcânico do Santoniano	95
Figura 48	Bloco diagrama tridimensional na parte sul da Bacia de Campos	96
Figura 49	Seção sísmica mostrando uma estrutura Vitória Régia	97
Figura 50	Seção sísmica mostrando a assinatura sísmica da seção magmática na área	98
Figura 51	Mesma seção da fig. anterior, processada com a Tec VA	99
Figura 52	Exemplo de um enxame de diques típico da Islandia	100
Figura 53	Seção sísmica 3D na parte sul da Bacia de Santos	102
Figura 54	Seção sísmica situada no extremo SW da Bacia de Santos	103
Figura 55	Seção sísmica mostrando um edifício vulcânico albiano	104
Figura 56	Seção sísmica ilustrando a dificuldade de se distinguir entre feições magmáticas e halocinéticas	105
Figura 57	Seção sísmica na parte sul da Bacia de Santos	106
Figura 58	Seção sísmica mostrando um dique preenchendo plano de falha que corta a seção evaporítica	107
Figura 59	Seção sísmica mostrando um vulcão de lama no Mioceno	109

Figura 60	Seção sísmica na parte central da Bacia de Campos	110
Figura 61	Seção sísmica sobre um diápiro	111
Figura 62	Modelagem gravimétrica da seção símica da fig. anterior	112
Figura 63	ldem, fig. 62	113
Figura 64	Mapa das anomalias magnéticas na área das figs. 61, 62 e 63	114
Figura 65	Mapa de amplitudes RMS da isócrona entre o topo do Cretáceo e parte do Campaniano Superior	116
Figura 66	Time slice no extremo NW da Bacia de Santos	117
Figura 67	Mapa de localização da área de estudo em relação ao mapa topográfico global	118
Figura 68	Mapa de amplitudes RMS da isócrona do Santoniano	119
Figura 69	A Mapa estrutural do topo da seção vulcânica do Eoterciário	120
Figura 69	B e C Seções sísmicas representativas da área	121
Figura 69	DeE Idem Figura anterior	121
Figura 70	Modelagem 3D do mapa estrutural sísmico da seção magmática da base do Terciário	122
Figura 71	Modelagens gravimétricas da profundidade de Moho	123
Figura 72	Seção sísmica 2D mostrando a área do 3D interpretado	124
Figura 73	Seção sísmica mostrando as progradações do Cretáceo Superior da Bacia de Santos	126
Figura 74	Seção sísmica na porção SW do Alto de Cabo Frio	127
Figura 75	A Mapa de isócrona dos evaporitos	128
Figuras 75	B,C e D Mapa de amplitudes RMS da isócrona dos evaporitos	
	e seção sísmica representativa	128

Mapa de isócronas da seção pré-sal	130
Foto de afloramento de dique básico em Arraial do Cabo	131
Mosaico SRTM de parte da região SE do Brasil	132
Detalhe da fig. 78, mostrando os maciços alcalinos de Itatiaia	
e Passa Quatro	133
Diagrama mostrando a evolução da rede de material fundido	
durante o fraturamento hidráulico	136
Evolução esquemática de um sistema vulcânico	137
Mapa geológico de parte da Área de Cabo Frio	140
Imagem de gravimetria e interpretação de Fairhead e Wilson (2005)	141
	Mapa de isócronas da seção pré-sal Foto de afloramento de dique básico em Arraial do Cabo Mosaico <i>SRTM</i> de parte da região SE do Brasil Detalhe da fig. 78, mostrando os maciços alcalinos de Itatiaia e Passa Quatro Diagrama mostrando a evolução da rede de material fundido durante o fraturamento hidráulico Evolução esquemática de um sistema vulcânico Mapa geológico de parte da Área de Cabo Frio Imagem de gravimetria e interpretação de Fairhead e Wilson (2005)

SUMÁRIO

I. INTRODUÇÃO	
I.1 Localização da Área de Estudo	04
II. OBJETIVO DA PESQUISA	06
III DADOS UTILIZADOS E METODOLOGIA	07
III.1 Interpretação sísmica	07
III.2 Técnicas geofísicas essenciais para o desenvolvimento do tema	08
III.3 Métodos potenciais	12
IV. EVOLUÇÃO ESTRUTURAL E ESTRATIGRÁFICA DAS BACIAS DE CAMPOS, SANTOS E DO ALTO DE CABO FRIO	15
IV.1 Fase rifte	15
IV.2 Fase transicional	23
IV.3 Fase drifte	26
V. UMA BREVE HISTÓRIA DO MAGMATISMO E A TEORIA DA	
TECTÔNICA DE PLACAS: MECANISMOS E CONTROVÉRSIAS	31
V.1. Introdução e objetivos	31
V.2 Os primórdios	31
V.3 A erupção do Vesúvio	33
V.4. O debate entre Netunistas e Plutonistas	34
V.5 A teoria da Tectônica de Placas	35
V.5.1 Primórdios do conceito de deriva continental	35

V.5.2 Tectônica de Placas e deriva continental	36		
V.5.3 Hotspots e o mecanismo das Plumas Mantélicas	39		
V.5.4 O debate entre os adeptos da teoria das plumas e seus adversários	42		
VI. SUPERCONTINENTES E PROCESSOS DE RUPTURA	52		
VII. ALGUMAS ÁREAS DE INTERESSE	55		
VII.1 Introdução	55		
VII.2 O Arquipélago do Havaí	55		
VII.3 A Islândia	57		
VII.4 As Ilhas Canárias	61		
VII.5 A Cadeia de Vitória-Trindade e o Arquipélago de Abrolhos	65		
VII.6 A margem Vulcânica da Noruega e o Mar do Norte	69		
VIII IDADES DO MAGMATISMO E PEQUENA COMPILAÇÃO, DE			
DE TRABALHOS PRÉVIOS SOBRE A ÁREA DE ESTUDO	72		
IX. MODELO VULCANO-SEDIMENTAR PARA A ÁREA DE ESTUDO	77		
X. CARACTERÍSTICAS DO MAGMATISMO PÓS-APTIANO NA			
X.1. Feições estruturais importantes	83 83		
X.2. Expressão sísmica dos eventos magmáticos na área de Estudo	88		
XI. INDICADORES PARA A DISTINÇÃO ENTRE EVENTOS MAGMÁTICOS			
E NÃO MAGMÁTICOS NA ÁREA DE ESTUDO	101		
XI.1 Introdução	101		

	XI.2	Possível magmatismo eocênico no sul da Bacia de Santos	101
	XI.3	Sismofácies de sal e carbonatos em áreas onde ocorreu magmatismo ativo	105
	XI.4	Vulcões de lama e feições de escape de gás	108
	XI.5	Diápiros: origem magmática ou halocinética?	110
	XI.6	Conclusões	114
XII.	MODE APTIA	LO GENETICO PROPOSTO PARA O MAGMATISMO PÓS- NO DA ÁREA DE ESTUDO	116
XIII.	CONC	LUSÕES	142

144

IXV. REFERÊNCIAS BIBLIOGRÁFICAS