

Figura 3.3: Xisto intercalado com gnaisse no Complexo Embu, adjacente a Zona de Cisalhamento de Cubatão. Estação de pesquisa GL-13.

Legenda: A - Afloramento de gnaisse migmatítico muito alterado e intercalado com nível xistoso; B - Quartzito; C - Bandamento gnáissico definido por bandas leucocráticos graníticas e bandas com biotita e hornblenda; D - Veio pegmatítico turmalinífero deformado, paralelo à foliação milonítica. Fonte: O autor, 2015.

Na pedreira da Sociedade Extrativista Dolomia, próximo à cidade de São Luis do Paraitinga, ocorre granada-biotita gnaisse migmatítico, com granulação grossa (Figura 3.4-A), intercalado com níveis de anfibolito e de mármore dolomítico. Os leucossomas e melanossomas equivalem-se em espessura e quantidade, impondo a estrutura migmatítica (Figura 3.4-B). O anfibolito possui granulação fina e coloração esverdeada. Níveis migmatíticos do gnaisse também estão presentes no anfibolito (Figuras 3.4-C; 3.4-D; 3-4-E e 3.4-F). Granito leucocrático e rico em feldspato está alternado com níveis de mármore dolomítico e de anfibolito, formando leucossomas nestes litotipos.

В 1 cm С D Qtz Mic 0,60 mm 0,40 mm

Figura 3.4: Amostras do Complexo Embu na pedreira da Sociedade Extrativista Dolomia (Estação de pesquisa 98-1-D).

Legenda: A - Granada-biotita gnaisse migmatítico; B - Detalhe da estrutura migmatítica no gnaisse; C - Testemunho de sondagem com níveis migmatíticos no gnaisse e no anfibolito; D - Detalhe do testemunho mostrando a estrutura migmatítica; Fotomicrografias: E - Nível de melanossoma; F - Nível de leucossoma. Mic – Microclina; Bt – Biotita; Qtz – Quartzo. Figuras E e F: Nicóis cruzados.

Fonte: O autor, 2015.

A estimativa visual dos minerais presentes nas rochas paraderivadas do Complexo Embu e localizadas fora da ZCC é exibida na Tabela 3.2.

Amostra	Litotipo	Qz	Kfs	PI	Bt	Hn	Gr	Mu	Ор
GL-88G	Gnaisse porfiroblástico	25	25	5	25	12	3		5
GL-88H	Granada gnaisse	35		20	20		15		10
GL-201B	Gnaisse bandado xistoso	35	20	5	30		5		5
GL-200F	Biotita xisto/gnaisse	30	15	10	40				5
MS-74-B	Gnaisse migmatítico	58	15	5	20				2
SB-L-03-B	Gnaisse rico em quartzo	80	1	1	15				3
SB-L-22-B	Gnaisse rico em quartzo	80		4	10				1
SB-L-22-E	Gnaisse rico em quartzo	75		5	9				1
SB-L-22-D	Gnaisse rico em quartzo	80		5	10				5
SB-L-22-C	Gnaisse migmatítico	40	2	35	18				5
SB-LG-18-B	Biotita gnaisse	50	17	3	25				5
SB-LG-19-B	Biotita gnaisse	15	55	8	20				2
GL-69	Biotita gnaisse	12	50	15	18				5
MS-64-B	Gnaisse migmatítico	35	40	4	10			10	1
10-10-P	Granada biotita gnaisse	30		5	54		10		1
10-10-W	Biotita gnaisse migmatítico	35		35	29				1
10-10-I	Granada biotita gnaisse	30		5	53		10		2
10-10-Y	Biotita gnaisse	32		35	32				1
98-1-A	Granada biotita gnaisse	43		29	18		8		2
98-1-H	Granada biotita gnaisse	40		31	21		6		2

 Tabela 3.2:
 Estimativa visual (em porcentagem) dos minerais presentes nas amostras paraderivadas analisadas quimicamente do Complexo Embu, fora da ZCC.

Legenda: Qz: quartzo; Kfs: K-feldspato; Pl: Plagioclásio; Bt: Biotita; Hn: Hornblenda; Gr: Granada; Mu: Muscovita; Op: opacos.

Fonte: O autor, 2015.

3.1.2 Rochas ortoderivadas

• Batólito Lagoinha

As rochas ortoderivadas do Terreno Embu correspondem a ortognaisse, granito gnaisse e leucognaisse milonítico. Este último corresponde ao embasamento e é denominado de Complexo Rio Capivari (FERNANDES, 1991). O ortognaisse, denominado de Batólito Lagoinha (LAG; Figura 3.5-A), corresponde a granitóide peraluminoso constituído por biotita granito porfirítico a inequigranular. Em alguns afloramentos ocorre uma deformação diferenciada, onde o ortognaisse varia de indeformado a ultramilonítico (Figura 3.5-B), com pórfiroclastos de feldspato se destacando na matriz (Figuras 3.5-C e 3.5-D). Em mapa, seus limites exibem um formato alongado com eixo principal na direção SW-NE, abrangendo a cidade de Lagoinha (Anexo B).

Figura 3.5: Ortognaisse Lagoinha (Estação de pesquisa MS-42).

Legenda: A - Afloramento no leito do Rio Paraitinga, próximo à localidade do Porto; B -Ortognaisse variando de indeformado a ultramilonítico; C - Pórfiros de feldspato sem indicador cinemático; D – Amostra do ortognaisse com destaque para o pórfiro de feldspato (Fdp).

Fonte: O autor, 2015.

Microscopicamente, possui textura inequigranular com cristais de quartzo, plagioclásio e k-feldspato (microclina) anédricos. A biotita está levemente orientada. Há inclusões de quartzo e biotita nos cristais maiores de plagioclásio, além de seritização. O plagioclásio está sendo substituído por quartzo. Em alguns cristais maiores de quartzo nota-se uma extinção ondulante, típico de minerais submetidos à deformação (Figuras 3.6-A e 3.6-B).

Figura 3.6: Fotomicrografias do Ortognaisse Lagoinha (Estação de pesquisa MS-42).

Legenda: Cristais de biotita levemente orientadas em uma matriz com textura inequigranular. A - Nícóis cruzados; B - Nicóis paralelos. Fdp - feldspato; Bt – biotita; Qtz – quartzo; Plg – plagioclásio. Fonte: O autor, 2015.

<u>Complexo Rio Capivari</u>

A infraestrutura paleoproterozóica do Terreno Embu, representada pelo Complexo Rio Capivari (Figura 3.7-A), é composta por ortognaisses migmatíticos a granitos tonalíticos, com intercalações e enclaves de anfibolito (Figura 3.7-B) e de rocha calcissilicática. Possui textura hipidiomórfica equigranular, matriz quarto-feldspática com granulometria média, e destaque para os porfiroclastos de feldspato com até 3 cm (Figura 3.7-C) em afloramentos miloníticos, com indicador cinemático sinistral (Figura 3.7-D). Turmalina e biotita exibem cristais finos, abundantes, e estão disseminadas na matriz.

Figura 3.7: Complexo Rio Capivari (Estação de pesquisa MS-25).

Legenda: A - Afloramento no leito do Rio Jacuzinho; B - Enclave de anfibolito (Anf); C -Ortognaisse migmatítico com porfiroclastos de feldspato (Fdp); D – Detalhe da textura milonítica com porfiroclasto de feldspato (Fdp) com indicador cinemático sinistral. Fonte: O autor, 2015.

Microscopicamente observa-se que os cristais de quartzo na matriz são anédricos e seus contatos com o plagioclásio são irregulares. A biotita está disseminada e orientada (Figura 3.8-A). Concentrados de biotita contornam os megacristais de microclina (Figura 3.8-B). O K-feldspato está sericitizado, com extinção ondulante, além de possuir inclusões de quartzo e borda de reação, com o quartzo substituindo a microclina.

Figura 3.8: Fotomicrografia do ortognaisse do Complexo Rio Capivari (Estação de pesquisa MS-25).

Legenda: A - Cristais de quartzo anédricos e biotita orientada; B - Concentrados de biotita contornando megacristal de microclina. Nicóis cruzados. Mic: microclina; Qtz: quartzo; Bt – biotita; Plg – plagioclásio.
Fonte: O autor, 2015.

• <u>Pegmatitos e aplitos</u>

Outros corpos intrusivos, menos expressivos, são encontrados de forma discordante nas rochas paraderivadas do Complexo Embu. Granito com matriz fina, exibindo fenocristais eudrais de feldspato e bandamento suave, cortam aleatoriamente os afloramentos (Figura 3.9-A). Veios de pegmatito com dimensões de até 50 centímetros de espessura intrudem os litotipos do Terreno Embu e contém cristais bem formados de turmalina com até 5 cm de comprimento (Figura 3.9-B).

Figura 3.9: Pequenos corpos graníticos intrusivos no Complexo Embu (Estação de pesquisa GL-73).

Legenda: A - Detalhe do contato do granito com o filito; B - Cristais de turmalina (Tur) orientados no granito fino. Fonte: O autor, 2015.

<u>Anfibolitos</u>

Os anfibolitos possuem granulação fina, coloração esverdeada e contato gradacional com o gnaisse (Figuras 3.10-A e 3.10-C). Assim como no gnaisse, níveis migmatíticos também são encontrados no anfibolito (Figura 3.10-B). E, próximo ao contato com o granito gnaisse, o anfibolito exibe lentes (leucossomas) do granito.

Figura 3.10: Anfibolito no Complexo Embu (Estação de pesquisa 98-1-M).

Legenda: A - Amostra de testemunho com níveis migmatíticos. B e C: Fotomicrografias do anfibolito. Hnb – Hornblenda; Bt – Biotita; Qtz – Quartzo; Plg - Plagiocásio. Figuras B e C: Nicóis cruzados. Fonte: O autor, 2015.

3.2 Unidades litológicas do Terreno Ocidental

3.2.1 Megassequência Andrelândia

A Megassequência Andrelândia (MSA) é constituída por biotita gnaisse com granulometria fina, cor avermelhada (Figura 3.11-A) e foliação milonítica, onde se destacam porfiroclastos de feldspato (Figuras 3.11-C e 3.11-D). Níveis quartzíticos centimétricos (Figura 3.11-B) e boudins de calcissilicáticas (Figura 3.11-E) ocorrem associados ao biotita gnaisse. Em diversos afloramentos observa-se a gradação de um gnaisse quartzoso até formar níveis de quartzito. Veios de quartzo centimétricos, com cristais de turmalina preta, cortam aleatoriamente (Figura 3.11-F). Sillimanita ocorre disseminada em poucos afloramentos.