Cristais de olivina de diversos tamanhos são observados. Três grupos com composições distintas foram analisados: macrofenocristais (Fo_{81,6}), fenocristais (Fo₇₈) e matriz (Fo_{70,1}).

		Fenocrist	ais de olivina	
	Pequeno ^a	Médio ^b	Grande ^c	Variação observada ^d
SiO ₂	37,93	39,15	40,5	(42,18-37,43)
FeO	26,42	20,12	17,15	(28,08-15,18)
MnO	0,49	0,31	0,2	(0,59-0,13)
MgO	34,83	40,13	42,61	(44,64-33,09)
CaO	0,40	0,26	0,21	(0,46-0,16)
NiO	0,02	0,10	0,13	(0,37-0,00)
Total	100,09	100,07	100,8	
$\mathbf{Mg}^{\#}$	70,1	78,0	81,6	
Fo	70,1	78,0	81,5	
Fa	29,9	22,0	18,5	

Tabela 13- Composições representativas (wt.%) para olivinas do Monte Jaseur, Oceano Atlântico Sul. Monte submarino Jaseur

^aComposições médias para 11 pontos de análises tomados de um típico cristal pequeno de olivina.

^b Composições médias para 19 pontos de análises tomados de um típico cristal médio de olivina.

^c Composições médias para 27 pontos de análises tomados de um típico cristal grande de olivina.

^d Variação composicional de diversos pontos de fenocristais de olivina.

Observação: a nomenclatura utilizada para agrupar os tamanhos dos cristais é comparativa entre os grupos observados, sendo separados em pequenos, médios e grandes. Fonte: O autor, 2016.

4.1.5 Monte Montague

Os fenocristais médios ($Fo_{81,1}$) e grandes ($Fo_{79,7}$) de olivina possuem uma composição parecida. Os cristais da matriz apresentam uma composição de menor teor de Mg ($Fo_{77,9}$).

		Monte submar	ino Montague	
		Fenocristais	s de olivina	
	Pequeno ^a	Médio ^b	Grande ^c	Variação observada ^d
SiO ₂	38,75	38,98	38,03	(41,24-35,54)
FeO	20,44	18,00	19,14	(21,69-15,95)
MnO	0,34	0,24	0,28	(0,49-0,14)
MgO	40,44	43,27	42,14	(45,43-39,22)
CaO	0,31	0,24	0,25	(0,42-0,15)
NiO	0,12	0,09	0,07	(0,22-0,05)
Total	100,40	100,82	99,91	
$\mathbf{Mg}^{\#}$	77,9	81,1	79,7	
Fo	77,9	81,1	79,7	
Fa	22,1	18,9	20,3	

Tabela 14 - Composições representativas ((wt.%) para	olivinas do	Monte	Montague,	Oceano	Atlân-
tico Sul.						

^a Composições médias para 8 pontos de análises tomados de um típico cristal pequeno de olivina.

^b Composições médias para 22 pontos de análises tomados de um típico cristal médio de olivina.

^c Composições médias para 8 pontos de análises tomados de um típico cristal grande de olivina.

^d Variação composicional de diversos pontos de fenocristais de olivina.

Observação: a nomenclatura utilizada para agrupar os tamanhos dos cristais é comparativa entre os grupos observados, sendo separados em pequenos, médios e grandes. Fonte: O autor, 2016.

4.1.6 Martin Vaz

A tabela 15 mostra a composição química dos minerais presentes nos derrames ankaramíticos (MVA-03, MVA-04 e MVA-09) e nas intrusivas fonolíticas (MVA-05 e MVA-08) da ilha principal de Martin Vaz. A figura 31 apresenta as amostras analisadas no diagrama de classificação dos piroxênios.

		Kae	rsutita (MVA	A-03, MVA-0	5)							Nosea	na (MVA-0	5, MVA-	08)				
SiO ₂	38,87	39,12	39,25	39,75	38,77	38,29	37,88	38,56	40,49	38,2	41,37	41,17	41,14	41,7	41,17	41,67	34,37	42,26	41,47
TiO ₂	4,98	6,56	5,44	5,45	5,9	6,43	6,16	6,34											
Al ₂ O ₃	13,94	12,18	11,92	12,1	13,01	12,15	12,66	13,2	29,79	28,54	29,88	29,68	30,07	29,9	30,36	30,5	25,92	30,34	29,81
FeO	10,57	10,11	10,5	10,62	10,45	10	11,23	10,27	0,24	0,28	0,34	0,34	0,37	0,31	0,33	0,3	0,28	0,25	0,26
MnO	0,21	0,11	0,13	0,17	0,12	0,1	0,09	0,14											
MgO	13,15	13,56	13,92	13,67	13,09	13,53	11,92	13,02											
CaO	11,44	11,75	11,93	11,63	11,51	12,54	11,89	11,84	0,08	0,21	0,09	0,17	0,38	0,13	0,07	0,05	0	0,39	0,57
Na ₂ O	3,23	3,01	3,21	3,45	3,38	3,57	3,63	3,08	22,46	21,64	22,91	22,66	22,63	21,38	22,4	21,33	18,98	19,67	22,17
K ₂ O	1,79	1,73	1,73	1,67	1,82	1,73	1,73	1,79	0,37	0,43	0,4	0,38	0,42	0,36	0,35	0,37	0,4	0,33	0,48
$H_2O^{\left(T\right)}$	1,26	1,26	1,26	1,26	1,26	1,26	1,26	1,26											
SO ₃									6,32	10,55	5,6	5,49	5,51	5,55	5,51	5,43	19,38	5,97	5,43
Total	99,44	99,39	99,29	99,76	99,32	99,6	98,45	99,5	99,74	99,85	100,58	99,89	100,52	99,33	100,19	99,64	99,33	99,2	100,2

Tabela 15 – Composição química dos minerais presentes nos derrames ankaramíticos e nas intrusivas fonolíticas da ilha principal de Martin Vaz, Atlântico Sul. (Continua)

H₂O(T): Valores somados da literatura (Deer, Howie & Zussman, 1966) PARA H₂O+, H₂O-, F;

Classificação baseada em Deer, Howie & Zussman (1966);

		Á	lcali-Felds	pato (Sani	dina - MV	/ A-03, M	(VA-08)								C	Ca-Perov	skita (MVA	A-09)			
SiO ₂	65,22	63,45	62,19	61,76	64,87	64,14	66,12	63,87	65,65	62,03	65,61	L.D.	L.D.	0,12	2,71	L.D.	7,73	L.D.	2,58	0,95	L.D.
MgO												0,23	0,24	0,31	1,12	0,22	3,09	0,1	1,44	0,5	0,12
CaO	0,02	0	0,04	0,03	0,03	0,16	0,09	0,12	0,03	0,13	0,01	39,43	39,85	39,04	37	37,2	37,27	38,52	38,74	38,71	39,78
K ₂ O	12,57	11,79	11,03	11,22	13,49	13,63	10,39	10,84	11,75	8,97	11,54										
Na ₂ O	2,91	3,02	2,94	2,69	2,35	2,02	3,81	4,21	3,54	5,41	3,85	0,63	0,63	0,69	0,82	0,64	0,67	0,53	0,68	0,69	0,5
Al ₂ O ₃	18,41	18,9	19,18	19,16	18,21	16,84	18,51	19,17	17,96	21,54	18,07	0,26	0,39	0,23	0,36	0,16	0,76	0,21	0,4	0,33	0,43
FeO	0,43	0,49	0,52	0,64	0,77	2,08	0,81	0,72	0,86	1,2	0,89	1,11	1,31	1,15	1,23	1,12	1,86	1,07	1,43	1,19	1,15
TiO ₂												54,97	55,24	54,79	53,09	56,9	46,9	56,61	50,36	53,84	55,29
BaO	0,5	2,38	3,88	4,07	0,36	0,18	1,12	0,92	0,1	0,02	0,07										
La ₂ O ₃												0,84	1,13	1,06	1,03	1,07	0,94	0,9	1,03	0,95	0,95
Ce ₂ O ₃												2,64	2,44	2,55	2,48	2,34	2,29	2,58	2,46	2,19	2,14
Total	100,05	100,03	99,77	99,58	100,08	99,05	100,84	99,85	99,88	99,3	100,05	99,81	100,98	99,94	99,84	99,6	101,51	100,32	99,12	99,37	100,07

Ab	26	26,7	84,93	26,68	20,89	18,26	35,63	36,92	31,38	47,53	33,65
Na	0,09	0,09	0,16	0,19	0,16	0,79	0,44	0,58	0,13	0,65	0,06
Or	73,92	73,21	14,92	73,13	78,95	80,95	63,92	62,51	68,49	51,82	66,29

Classificação baseada em Deer, Howie & Zussman (1966);

F	enocristai	s de clino	opiroxêni	o (core - N	(IVA-09) ¹ ·	Nefelinit	0	F	enocristai	s de clino	piroxêni	o (rim - N	IVA-09)1	- Nefelinit	0		Clinopiro	oxênios da	matriz (M	IVA-09)1 -	Nefelinito)
SiO ₂	50,91	48,09	49,47	49,81	51,31	50,26	49,7	50,38	50,13	48,69	46,67	50,81	49,6	48,88	45,59	45,33	47,43	46,49	48,08	51,26	50,43	49,9
MgO	9,3	9,58	9,05	9,55	8,75	9,32	9,14	15,1	15,11	13,7	13,95	15,31	14,97	13,89	12,71	12,71	13,46	12,78	13,36	14,98	15,13	15,63
Al ₂ O ₃	4,49	4,23	4,67	4,45	3,95	4,54	4,77	3,95	4,27	5,73	6,62	3,79	4,12	5,43	7,69	7,72	5,82	7,98	6,31	4,38	4,51	4,36
Na ₂ O	1,83	1,74	1,85	1,9	2,22	1,73	2,03	0,47	0,58	0,85	0,55	0,51	0,33	0,69	0,63	0,67	0,7	0,75	0,61	0,48	0,51	0,41
FeO	12,63	12,11	12,76	12,82	14,11	13	12,65	4,87	4,96	5,49	5,33	4,81	4,76	6,11	6,11	6,28	6,08	6,87	6,2	4,89	0,04	4,92
TiO ₂	0,74	1,09	0,87	0,95	0,72	0,83	1,06	1,69	1,87	2,15	2,62	1,67	1,83	2,15	3,38	2,98	2,07	3	2,64	1,71	1,9	1,84
MnO	0,48	0,49	0,57	0,51	0,53	0,57	0,58	0,06	0,08	0,09	0,1	0,09	0,12	0,15	0,06	0,06	0,1	0,1	0,11	0,1	0,05	0,08
CaO	19,92	19,94	19,89	20,27	19,33	20,28	19,49	22,51	22,7	22,12	22,2	22,76	22,6	22,7	22,77	22,83	23,04	21,87	23,02	22,98	22,9	22,87
Cr_2O_3	0	0	0	0,07	0	0	0,02	0,26	0,34	0,6	0,58	0,42	0,36	0,44	0,59	0,6	0,29	0,56	0,49	0,35	0,44	0,35
Total	100,28	97,26	99,11	100,32	100,94	100,52	99,43	99,29	100,03	99,42	98,62	100,18	98,7	100,43	99,54	99,17	98,99	100,41	100,83	101,14	100,89	100,35
$\mathbf{Mg}^{\#}$	56,8	58,5	55,8	57	52,5	56,1	56,3	84,7	84,4	81,6	82,3	85	84,9	80,2	78,7	78,3	79,8	76,8	79,3	84,5	99,9	85
Wo	46,6	46,7	46,9	46,5	45,5	46,7	46,3	47,6	47,7	48,6	48,5	47,6	47,9	48,5	50,3	50,3	49,5	48,6	49,6	48,2	47,8	47,2
En	30,3	31,2	29,7	30,5	28,6	29,9	30,2	44,4	44,2	41,9	42,4	44,5	44,2	41,3	39	39	40	39	40	44	44	45
Fs	23,1	22,1	23,5	23	25,9	23,4	23,4	8	8,1	9,4	9,1	7,9	7,9	10,2	10,5	10,8	10,2	11,9	10,4	8	8,2	7,9
Al_{IV}	0,132	0,117	0,1	0,107	0,062	0,097	0,101	0,132	0,151	0,186	0,242	0,131	0,147	0,19	0,287	0,288	0,213	0,271	0,223	0,134	0,155	0,164
$\mathbf{AL}_{\mathbf{VI}}$	0,066	0,078	0,111	0,092	0,114	0,106	0,114	0,041	0,035	0,065	0,051	0,033	0,035	0,047	0,053	0,056	0,046	0,079	0,052	0,054	0,039	0,025

	Clinop	piroxênios da	a matriz (M	VA-09) ² - N	efelinito				Clin	opiroxêni	ios da m	atriz (M	VA-09) ³ -	Nefelinit	0	
SiO ₂	50,11	50,22	47,54	49,19	51,95	49470	49,48	54,7	53,17	54,24	48,46	47,76	54,98	54,88	54,44	
MgO	14,33	14,68	15,49	14,82	15,48	14,83	14,54	16,26	15,35	15,8	14,2	13,63	16,41	16,15	16,48	
Al ₂ O ₃	3,6	4,14	4,98	4,53	3,09	4,48	5,28	0,87	2,94	1,84	5,08	6,32	0,94	1,18	1,39	
Na ₂ O	0,48	0,43	0,88	0,62	0,43	0,57	0,62	0,42	0,73	0,58	0,57	0,54	0,53	0,62	0,46	
FeO	5,16	5,01	5,51	5,11	5,01	5,32	5,46	4,45	5,28	4,58	6,01	6,6	4,45	4,63	4,65	

TiO ₂	2,34	2,1	2,38	2,68	1,9	2,6	2,3	0,88	1,92	1,44	2,6	2,93	1,14	1,23	1,47
MnO	0,06	0,09	0,1	0,06	0,11	0,12	0,1	0,07	0,12	0,13	0,11	0,11	0,05	0,14	0,11
CaO	23,67	23,07	18,28	22,97	23,03	23,03	22,08	23,13	22,44	22,93	22,51	22,43	22,85	22,57	23,53
Cr_2O_3	0,09	0,09	0,06	0,03	0,05	0,07	-0,05	0	0,08	0	0	0	0	0,02	0
Total	99,84	99,83	95,21	100,01	101,05	100,5	99,8	100,78	102,01	101,53	99,53	100,3	101,32	101,41	102,53
$\mathbf{Mg}^{\#}$	83,2	83,9	83,4	83,8	84,6	83,2	82,6	86,7	83,8	86	80,8	78,6	86,8	86,1	86,3
Wo	49,7	48,7	41,4	48,3	47,5	48,2	47,4	47	46,8	47,3	47,9	48,2	46,5	46,4	47
En	42	43	49	43	44	43	43	46	44,6	45,3	42,1	40,7	46,5	46,2	45,8
Fs	8,5	8,2	9,7	8,4	8,1	8,7	9,1	7	8,6	7,4	10	11,1	7	7,4	7,2
Al _{IV}	0,141	0,143	0,143	0,017	0,108	0,176	0,17	0,017	0,086	0,046	0,019	0,227	0,019	0,018	0,053
Alvi	0,016	0,037	0,037	0,057	0,025	0,018	0,06	0,02	0,039	0,033	0,032	0,05	0,021	0,022	0,006

		Fen	ocristais de o	clinopiroxê	nio (MVA	-03) - Ne	felinito							Fenocris	tais de cl	inopirox	cênio (M	VA-08) -	Fonolito		
SiO ₂	47,12	49,75*	50,77*	50,77*	50,08*	49,47	50,54	49,95	50,45	50,61	50,49*	48,58	48,76	49,45	46,78	44,8	48,78	45,95	49,02	46,33	48,88
MgO	7,47	7,51	7,73	7,88	7,69	9,7	8,83	8,56	8,76	9,65	7,22	10,71	10,65	10,58	10,35	11,13	10,24	11,46	7,68	10,06	9,04
Al ₂ O ₃	4,86	2,68	2,24	2,21	2,47	3,52	2,5	2,82	2,55	2,51	2,41	4,12	4,32	3,43	5,41	7,4	3,51	6,79	3,16	6,02	3,65
Na ₂ O	1,94	2,82	3,09	3	2,82	1,74	2,33	2,22	2,41	1,64	3,31	1,01	1,16	1,42	1,12	0,76	1,23	0,76	2,37	1,32	1,9
FeO	15,27	16,56	16,3	16,05	15,74	12,79	14,68	15,25	14,64	13,34	16,55	11,61	11,16	11,52	11,28	9,15	11,98	8,74	15,87	11,26	14,13
TiO ₂	2,18	0,92	0,57	0,61	0,68	0,98	0,62	0,81	0,65	0,68	0,75	1,48	1,36	1,14	2	3,46	1,47	3,01	1,11	2,53	1,21
MnO	0,03	0	0	0	0,01	0	0	0,01	0,01	0	0,01	0,02	0	0	0	0	0	0	0,01	0,01	0,01
CaO	20,56	18,84	18,79	18,95	19,36	21,34	20,5	20,5	20,44	21,5	18,15	22,63	22,62	22,35	22,47	23,11	22,16	23,13	19,67	22,53	21,16
Cr_2O_3	0,02	0	0,01	0,01	0	0,03	0	0,02	0,01	0	0,02	0	0	0,02	0,01	0	0,03	0,02	0,03	0,02	0,02
NiO	0,03	0,01	0	0	0	0	0,02	0	0,04	0,01	0	0,03	0	0,01	0,03	0	0,01	0,01	0	0,04	0,01
ZnO	0,03	0,1	0,04	0,08	0,07	0,01	0	0,02	0,03	0	0,08	0	0	0,06	0,03	0	0	0,02	0	0,06	0
Total	99,5	99,18	99,54	99,55	98,91	99,58	100,01	100,15	99,98	99,94	98,98	100,2	100,02	99,96	99,46	99,81	99,41	99,88	98,91	100,17	99,99
$\mathbf{Mg}^{\#}$	46,6	44,7	45,8	46,7	46,5	57,5	51,7	50	51,6	56,3	43,7	62,2	63	62,1	62	68,4	60,4	70	46,3	61,4	53,3
Wo	48,15	44,88	44,71	44,9	45,96	47,77	46,53	46,47	46,59	47,55	44,4	48,67	49,14	48,66	49,34	50,64	48,55	50,49	46,23	49,88	47,47
En	24,33	24,89	25,61	25,97	25,39	30,2	27,9	27	27,8	29,69	24,57	32,06	32,18	32,04	31,62	33,93	31,22	34,8	25,313	30,98	28,21
Fs	27,53	30,22	29,68	29,13	28,65	22,03	25,57	26,53	25,61	22,76	31,03	19,27	18,68	19,29	19,04	15,43	20,23	14,71	28,64	19,14	24,32

* aegerina	-augita																				
AL _{VI}	0,059	0,067	0,072	0,07	0,069	0,057	0,056	0,052	0,057	0,049	0,083	0,035	0,048	0,021	0,042	0,037	0,032	0,044	0,063	0,042	0,047
Al _{IV}	0,016	0,057	0,03	0,032	0,044	0,102	0,057	0,076	0,059	0,064	0,028	0,15	0,145	0,134	0,202	0,295	0,127	0,259	0,083	0,229	0,118

		Olivina	- Forsterita	(MVA-04)	- Nefelinit	to					Titanit	ta (MVA-	03, MVA	-08) - No	efelinito		
SiO ₂	39,18	39,01	39,48	38,88	39,44	39,24	39,99	39,01	SiO ₂	30,05	30,28	30,05	30,17	30,14	30,06	29,81	30,06
MgO	42,58	41,63	43,33	41,51	42,45	42,42	46,11	42,07	Al ₂ O ₃	3,14	3,02	3,2	2,68	2,56	1,96	2,01	4,37
Al ₂ O ₃	0,03	0	0	0,03	0	0	0,01	0,01	CaO	27,2	27,25	27,06	27	27,64	27,7	27,04	27,28
FeO	17,19	17,39	16,3	17,41	17,12	17,39	13,09	16,63	TiO ₂	35,49	36,1	34,66	36,42	37,4	37,03	36,56	36,89
CaO	0	0,7	0,4	0,62	0,57	0,65	0,31	0,72	FeO	1,7	2,02	1,75	1,59	1,29	1,27	1,24	1,41
MnO	0,34	0,34	0,2	0,35	0,32	0,34	0,16	0,31	Total	97,58	98,66	96,72	97,86	99,03	98,03	96,65	100,01
Cr_2O_3	0,01	0	0,01	0	0	0,02	0,01	0									
NiO	0,03	0,02	0	0	0	0,02	0,06	0,04									
Total	99,35	99,08	99,72	98,8	99,89	100,07	99,74	98,8									
$\mathbf{Mg}^{\#}$	81,5	81	82,6	80,9	81,5	81,3	86,3	81,8									
Fo	81,2	81,3	80,7	82,4	81,3	81	86,1	81,6									
Fa	18,8	18,7	19,3	17,6	18,7	19	13,9	19,4									

Classificação baseada em Deer, Howie & Zussman (1966);

Legenda: Cálculos dos *end members* a partir das planilhas Excel® extraídas de <u>http://www.gabbrosoft.org/spreadsheets.html</u>. A classificação de anfibólios foi baseada na classificação de Morimoto et al., (1988) e confirmadas através dos cálculos das planilhas Excel® extraídas de <u>http://www.open.ac.uk/earth-research/tindle/AGT/AGT Home 2010/Microprobe-2.html</u>; Giles Droop (*Manchester University*) e Julie Selway (*Ontario Geological Survey*).

Fonte: O autor, 2016.

As olivinas, tanto dos derrames nefeliníticos dos montes submarinos de Columbia, Davis, Dogaressa, Jaseur e Montague, quanto do *plateau* nefelinítico da ilha principal de Martin Vaz, apresentam valores muito variados do *end member* forsterita (Fo_{68,2-87,2}). Maior abundância de outros minerais máficos nas amostras diminui composicionalmente o número de magnésio e ferro, cristalizando olivinas com menor Mg[#]. Os nefelinitos dos montes submarinos apresentam porcentagens baixas a altas de NiO (0,02-0,34 wt.%) e porcentagens baixas a moderadas de CaO (0,15-0,49 wt. %). O derrame máfico de Martin Vaz apresenta valores muito baixos de NiO (0,02-0,06 wt.%) e valores muito altos de CaO (0,31-0,72 wt.%) (figuras 32 e 33). A abundância de NiO em olivinas aponta correlação positiva de Fo ao contrário do comportamento do CaO (figuras 32-37). Segundo a classificação química das olivinas (tabela 16) presente em Deer, Howie e Zussman (1966), aquelas das amostras dos montes submarinos e de Martin Vaz (tabela 17) são incluídas na série da olivina (crisólita). A tabela 16 apresenta os valores normalizados da análise em porcentagem em peso, cátions e átomos por fórmula e o cálculos dos *end members*. O cálculo se encontra no anexo D (cálculo da fórmula química da olivina).

wie	e Zussiliali (1900).			1
Análise Norn	nalizada				
				end	mol
óxidos	wt %	cátions	átomos	member	%*
SiO ₂	39,87	Si	1,005	Te	0,24
TiO ₂	0,03	Ti	0,001	Fo	85,48
Al_2O_3	0,00	Al	0,000	Fa	13,95
Cr_2O_3	0,00	Cr	0,000	Ca-Ol	0,34
Fe ₂ O ₃	0,00	Fe ³	0,000		
FeO	14,20	Fe^2	0,278	soma	100,00
MnO	0,22	Mn	0,005		
MgO	45,38	Mg	1,705		
CaO	0,25	Ca	0,007		
		tot. cat.	3,000		
total	99,95	tot. oxy.	4,005		

Tabela 16 – Análise normalizada da composição da olivina (crisólita) presente em Deer, Howie e Zussman (1966).

Legenda: *End members % são baseados somente nas razões de Mn (Te), Mg (Fo), Fe-total (Fa), e Ca.

Análise Normalizada													
				end	mol								
óxidos	wt %	cátions	átomos	member	%*								
SiO ₂	39,18	Si	1,002	Te	0,37								
TiO ₂	0,00	Ti	0,000	Fo	81,23								
Al_2O_3	0,03	Al	0,001	Fa	18,40								
Cr_2O_3	0,01	Cr	0,000	Ca-Ol	0,00								
Fe ₂ O ₃	0,00	Fe ³	0,000										
FeO	17,19	Fe^2	0,368	soma	100,00								
MnO	0,34	Mn	0,007										
MgO	42,58	Mg	1,623										
CaO	0,00	Ca	0,000										
		tot. cat.	3,000										
total	99,32	tot. oxy.	4,002										

Tabela 17 – Análise normalizada da média das olivinas presentes nos montes submarinos e no derrame máfico da ilha de Martin Vaz.

Nota:**End members* % são baseados somente nas razões de Mn (Te), Mg (Fo), Fe-total (Fa), e Ca. Fonte: O autor, 2016.

Os resultados da química mineral nos fenocristais de clinopiroxênio (diopsídio, salita e augita – figuras 29 e 31) presentes nas amostras dos montes submarinos e de Martin Vaz indicam que eles são zonados e apresentam teores variados de Al₂O₃, TiO₂, FeO e MgO. A Tabela ilustra a diferença composicional dos clinopiroxênios destes dois grupos de amostras.

	Monte	Submar	ino (Col	umbia)	Martin Vaz							
	Clino	piroxênios	- melanefe	elinito	Cpx – nefelinito Cpx - fon							
	Fenocr	istais ^a	Ma	atriz ^b	Fenocr	istais ^c	Matriz ^d					
Óxido (wt. %)	Borda	Núcleo	Borda Núcleo		Borda	Núcleo						
MgO	14,01	11,04	11,23	14,28	15,01	15,01 9,42		9,45				
Al ₂ O ₃	8,54	15,23	9,99	5,52	5,23	4,56	5,45	4,50				
TiO ₂	2,72	5,35	3,43	1,53	2,05	1,02	2,75	1,75				
FeO	8.57	7.34	8,31	6,45	5,15	13,75	6,45	12,45				

Tabela 18 – Valor médio para as composições químicas de clinopiroxênios.

^{a,b} Composições medias para 20 pontos de análises de bordas e núcleos de fenocristais e matriz.

^e Composições medias para 10 pontos de análises de bordas e núcleos de fenocristais e matriz.

Legenda: Do monte submarino de Columbia e da ilha principal de Martin Vaz, Atlântico Sul, Brasil. Fonte: O autor, 2016.

^c Composições medias para 13 pontos de análises de bordas e núcleos de fenocristais e matriz.

^d Composições medias para 22 pontos de análises de bordas e núcleos de fenocristais e matriz.

Figura 32 - Variação de forsterita (Fo, mol %) com a concentração de CaO e NiO (wt.%) em olivinas das rochas extrusivas nefeliníticas dos montes submarinos da Cadeia Vitória-Trindade e da ilha principal de Martin Vaz, Atlântico Sul, Brasil.

Legenda: Os pontos representam análises em diversos fenocristais: Monte Columbia – 40 análises; Banco de Dogaressa: 79 análises; Monte Jaseur: 57 análises; Monte Montague: 38 análises; Martin Vaz: 43 análises; O campo representa análises de olivinas em xenólitos ultramáficos (dunito, werlito, olivina clinopiroxenitos) do vulção Mauna Kea, Havaí a fim de comparações (FODOR & GALAR, 1997). Descrição dos pontos analisados encontra-se na tabela 15.

Figura 33 - Variação de forsterita (Fo, mol %) com a concentração de CaO e NiO (wt.%) em olivinas do derrame nefelinítico da ilha principal de Martin Vaz, Atlântico Sul, Brasil.

Legenda: Os pontos representam análises em diversos cristais totalizando 43 análises (17 nos fenocristais e 26 nos cristais presentes na matriz).

Figura 34 - Variação de forsterita (Fo, mol %) com a concentração de CaO e NiO (wt.%) em olivinas do derrame nefelinítico do Monte Columbia, Atlântico Sul, Brasil.

Legenda: Os pontos representam análises em cristais de variados tamanhos, totalizando 40 análises (9 nos fenocristais grandes; 11 nos fenocristais médios; 8 nos fenocristais pequenos a médios; 4 nos fenocristais pequenos).

Figura 35 - Variação de forsterita (Fo, mol %) com a concentração de CaO e NiO (wt.%) em olivinas do derrame nefelinítico do Banco de Dogaressa, Atlântico Sul, Brasil.

Legenda: Os pontos representam análises em cristais de variados tamanhos, totalizando 79 análises (21 nos fenocristais grandes; 26 nos fenocristais médios; 32 nos fenocristais pequenos). Fonte: O autor, 2016.

Figura 36 - Variação de forsterita (Fo, mol %) com a concentração de CaO e NiO (wt.%) em olivinas do derrame nefelinítico do Monte Jaseur, Atlântico Sul, Brasil.

Legenda: Os pontos representam análises em cristais de variados tamanhos, totalizando 57 análises (27 nos fenocristais grandes; 19 nos fenocristais médios; 8 nos fenocristais pequenos). Fonte: O autor, 2016.]

Figura 37 - Variação de forsterita (Fo, mol %) com a concentração de CaO e NiO (wt.%) em olivinas do derrame nefelinítico do Monte Montague, Atlântico Sul, Brasil.

Legenda: Os pontos representam análises em cristais de variados tamanhos, totalizando 38 análises (8 nos fenocristais grandes; 22 nos fenocristais médios; 8 nos fenocristais pequenos). Fonte: O autor, 2016.

A abundância de NiO em olivinas do derrame nefelinítico da ilha principal de Martin Vaz (figura 33) plotados contra valores molar do componente forsterita apresenta uma correlação positiva, onde valores mais altos de $Fo_{(86-90)}$ apresentam valores mais altos de NiO (0,25-0,50 wt.%) e valores mais baixos de $Fo_{(76-85)}$ apresentam valores mais baixos de NiO (<0,25 wt.%).

O monte Columbia (figura 34) apresenta grupos composicionais de valores de Fo bem marcados de acordo com o tamanho dos fenocristais: cristais grandes apresentam valor de NiO variando entre 0,1-0,18 wt.%e de Fo_{-80} . Cristais pequenos e médios com NiO entre 0,1-0,35 wt.%e Fo_{85-88} . A abundância da CaO varia de 0,2-0,4 wt.%para o amplo range em %mol de Fo.

O monte Dogaressa (figura 35) apresenta valores de Fo distintos entre os diferentes tamanhos de fenocristais (pequenos: Fo_{80-87} ; médios: Fo_{73-87} ; grandes: Fo_{77-84}) e um range similar entres eles de NiO (0,05-0,3 wt.%). O teor de CaO varia consideravelmente (0,1-0,6 wt.%).

O monte Jaseur (figura 36) apresenta valores mais baixos de NiO nos fenocristais pequenos (0,01-0,1ppm) e Fo₆₈₋₇₄ enquanto apresenta valores mais altos de NiO nos fenocristais médios Fo₇₃₋₈₄ (NiO – 0,05-0,3 wt.%) e fenocristais grandes Fo₇₅₋₈₅ (NiO – 0,01-0,35 wt.%). CaO *versus* Fo apresenta uma correlação negativa onde os fenocristais menores apresentam o maior teor (~0,4 wt.%) comparado com os fenocristais maiores (0,2 wt.%) e médios (~0,3 wt.%).

Os fenocristais pequenos do monte Montague (figura 37) apresentam valores mais baixos de Fo₇₇₋₇₉ comparados com os fenocristais médios e grandes Fo₇₇₋₈₄ e um range similar de NiO (0,05-0,25 wt.%). CaO *vs*. Fo apresenta uma correlação negativa onde os fenocristais médios e grandes (Fo₇₇₋₈₄) apresentam valores pouco mais baixos de CaO (~0,2-0,25 wt.%) em relação aos fenocristais pequenos (0,3-0,4 wt.%).

Os clinopiroxênios presentes em Martin Vaz apresentam teores mais baixos de Al₂O₃ e TiO₂ nos bordas (Wo₄₈En₃₇Fs₁₅), ~5,23 e ~2,05 wt.% e no núcleo (Wo₄₆En₃₀Fs₂₄), ~4,56 e ~1,02 wt.% respectivamente em comparação com o clinopiroxênio do monte Columbia. Valores mais altos de FeO (~13,75 wt.%) são encontrados nos núcleos verdes dos clinopiroxênios presentes nos fenocristais (Wo₄₆En₃₀Fs₂₄). Os clinopiroxênios presentes na matriz também são zonados e apresentam valores maiores de MgO na borda ~15,01 wt.% (Wo₄₈En₃₇Fs₁₅) comparado com os clinopiroxênios do monte Columbia; e no núcleo (Wo₄₆En₃₀Fs₂₄) valores menores (~9,42 wt.%). Os clinopiroxênios (Wo₄₈En₃₁Fs₂₁) dos fonolitos apresentam os menores valores de MgO (9,45 wt.%), Al₂O₃ (4,50 wt.%) e TiO₂ (1,75 wt.%), similar aos valores presentes nos núcleos dos clinopiroxênios contidos nos fenocristais do derrame nefelinítico de Martin Vaz e no núcleo dos clinopiroxênios da matriz do monte Columbia. Importante ressaltar o teor de TiO₂ presente no Monte Columbia ser consideravelmente mais alto que o presente em Martin Vaz; ou seja, aonde houve cristalização prévia de titanita, a exemplo do que ocorreu em Martin Vaz, acarretou diminuição do Ti disponível no líquido. Tal observação pode ser indicativa da diferença de f_{O2} para a cristalização dos magmas.

A figura 38 mostra a relação entre o número de magnésio e alguns óxidos maiores comparados com os valores de álcali basaltos havaianos.

Figura 38 – Número de Mg [100 x massa atômica Mg/(Mg+Fe)] em clinopiroxênios plotados versus óxidos maiores (wt. %) para amostras dos montes submarinos e de Martin Vaz.

Legenda: Os pontos representam análises pontuais em diversos clinopiroxênios dos fenocristais e da matriz contendo núcleo e borda conforme indicado na legenda da figura. Descrição dos pontos analisados encontra-se na tabela 15.

Os núcleos verdes dos clinopiroxênios presentes tanto no Monte Columbia quanto no derrame nefelinítico de Martin Vaz apresentam valores baixos de $Mg^{\#}$ (~55-70) e de TiO₂ (<2,0 wt.%). Em contrapartida apresenta valores mais altos de Na₂O (>1,0 wt.%) comparados com as bordas dos mesmos clinopiroxênios. Valores de Al₂O₃ variam entre (1,0-10 wt.%) (figura 38). Os gráficos de Al₂O₃ e TiO₂ da figura 38 indicam que quando o magnésio atingiu ca. 75%, ocorreu alguma mudança nas condições de cristalização, como variação de pressão, fugacidade de oxigênio ou outros, que provocou tais inversões na correlação de Al e Ti por Mg.

Figura 39 – Variação entre os componentes molecular Enstatita (En), Ferrossilita (Fs) e Wollastonita (Wo) em clinopiroxênios do monte submarino de Columbia e do derrame nefelinítico e a intrusiva fonolítica da ilha principal de Martin Vaz, Atlântico Sul, Brasil.

Legenda: Descrição dos pontos analisados encontra-se na tabela 15. Fonte: O autor, 2016.

A figura 39 mostra os componentes enstatita (En), ferrossilita (Fs) e wollastonita (Wo). Os clinopiroxênios presentes no derrame nefelinítico de Martin Vaz apresentam valores distintos do componente Fs, apresentam núcleos verdes mais ricos em Fe (Fs >20 %mol; Mg[#] ~55) e levemente mais baixos em Wo (~45% mol) em relação às bordas e aos clinopiroxênios presentes na matriz (Fs: 7-13%mol; Wo: ~50%mol; Mg[#] 89). Os clinopiroxênios presentes nos fonolitos apresentam grande variação do componente Fs (15-30%mol) e do componente Wo (45-50% mol). Os clinopiroxênios presentes no Monte Columbia apresentam uma sutil variação entre os núcleos dos fenocristais e da matriz (Fs: 15-20%mol) e as bordas dos fenocristais e da matriz (10-13%mol).

Figura 40 - Plot de proporções atômicas de número de magnésio versus Al⁴/Al⁶ e de Al⁴ versus Al⁶, onde Mg[#]

Legenda: Símbolos representam diferenças entre fenocristais de clinopiroxênio e cristais da matriz distinguindo borda de núcleo. Ts representa a molécula de Ca-Tschermak (Ts; CaAl₂SiO₆) que reflete ambientes de alta pressão de cristalização e temperatura. A letra a representa o limite superior do campo de cristalização de clinopiroxênios de baixa pressão em rochas ígneas (AOKI & KUSHIRO, 1968). Fonte: O autor, 2016.

AI (4)

A figura 40 mostra a relação do número de magnésio $(Mg^{\#})$ versus razão $Al^4/Al^6 e Al^4$ versus Al^6 que pode indicar baixa pressão de cristalização $(Al^4/Al^6 > 3,5;$ FODOR et al., 1995). Os núcleos $(Mg^{\#} \sim 55)$ dos clinopiroxênios presentes nas amostras de nefelinito de Martin Vaz foram gerados em pressões mais altas daquelas referentes as bordas $(Mg^{\#} \sim 85)$. Os clinopiroxênios presentes na matriz $(Mg^{\#} 80-90)$, possuem um amplo range de Al^4/Al^6 , sugerindo uma cristalização em ambiente de pressão variada à medida que o magma avança em direção a superfície.

4.2 Cálculo normativo (CIPW)

Outro uso dos valores em % em peso dos óxidos é para o cálculo normativo, um método bastante aplicado com a finalidade de caracterizar quimicamente as rochas ígneas. Seu cálculo baseia-se na composição química de rocha total e a partir dela, calculam-se um total de trinta e quatro minerais normativos que não necessariamente estão presentes na rocha. Foi utilizada a tabela com os cálculos no excel® da CIPW4 norm Hollacher (Union College University, Nova York, Estados Unidos (HOLLOCHER, 2015; *http://minerva.union.edu/hollochk/c_petrology/index.htm*) e o software *GCDkit 4.0* (*Geochemical Data Toolkit*) para calcular os minerais normativos além de outros parâmetros petrogenéticos. Os minerais normativos são apresentados para as amostras da ilha principal de Martin Vaz (tabela 19) e para as amostras dos montes submarinos (tabela 20).

	MVA-01	MVA-02	MVA-06	MVA-08	MVA- 05A	MVA- 05B	MVA-03	MVA-04	MVA-07	MVA- 09A	MVA- 09B	MVA- 10	MVA- 11	MVA- 12	MVA- 13	MVA- 14
	Neck fonolítico				Dique Fa	Dique Fonolítico Melanefelinito										
Minerais normativos							Norma (wt.%)									
Quartzo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Plagioclásio	15,79	10,6	26,7	15,61	23,81	16,14	3,49	7,77	4,98	8,06	7,27	26,25	4,72	18,26	18,63	4,52
Ortoclásio	35,04	32,68	22,69	37,7	28,01	30,38	0	0	0	0	0	3,49	0	4,61	5,67	0
Nefelina	29,71	25,7	21,91	28,33	19,39	19,17	18,24	13,29	14,44	13,89	14,3	8,38	17,19	14,78	15,69	15,26
Leucita	0	0	0	0	0	0	7,51	5,79	6,86	6,26	6,86	0	8,43	0	0	6,95
Kalsilita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corindon	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Diopsídio	6,59	19,21	14,02	6,64	9,72	15,18	26,1	26,55	24,3	26,43	24,96	23,85	24,37	30,92	27,01	26,86
Hiperstênio	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wollastonita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Olivina	1,82	0,84	0,61	1,77	4,63	3,62	24,68	25,99	28,19	24,5	25,08	18,5	25,13	12,74	12,2	24,88
Larnita	0	0	0	0	0	0	6,79	5,87	6,7	7,31	8,07	0	6,44	0	0	5,61
Acmita (aegerina)	1,74	0	0	0,33	0	0	0	0	0	0	0	0	0	0	0	0
K ₂ SiO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Na_2SiO_3	2,46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rutilo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ilmenita	0,76	2,07	0,99	0,95	2,85	3	6,48	6	5,64	6,17	6,27	8,41	6,31	9,17	8,43	5,81
Magnetita	0	1,41	1,06	0,63	1,39	1,59	3,16	3,13	3,12	3,09	3,12	3,38	3,04	3,44	3,06	3,1
Hematita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apatita	0,19	0,81	0,49	0,32	1,37	1,81	3,08	2,85	2,99	2,55	2,92	3,92	2,32	3,59	1,95	2,25
Zircão	0,28	0,24	0,3	0,21	0,18	0,19	0,09	0,07	0,07	0,06	0,09	0,09	0,06	0,09	0,07	0,06
Perovskita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cromita	0,01	0,01	0	0,01	0,01	0,03	0,16	0,21	0,22	0,16	0,16	0,09	0,13	0,13	0,06	0,19
Titanita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	94,39	93,57	88,77	92,5	91,36	91,11	99,78	97,52	97,51	98,48	99,1	96,36	98,14	97,73	92,77	95,49

Tabela 19 - Valores obtidos dos minerais normativos com o uso da norma CIPW para as amostras de Martin Vaz (Continua).

(continua)

	MVA-01	MVA-02	MVA-06	MVA-08	MVA- 05A	MVA- 05B	MVA-03	MVA-04	MVA-07	MVA- 09A	MVA- 09B	MVA- 10	MVA- 11	MVA- 12	MVA- 13	MVA- 14
	Neck fonolítico				Dique F	onolítico	Melanefelinito									
Minerais normativos							Norma (wt.%)									
Densidade (g/cm ³)	2,41	2,42	2,43	2,42	2,51	2,49	2,77	2,78	2,77	2,79	2,76	2,78	2,78	2,77	2,78	2,76
$\text{Log} f_{(O2)}$	-8,3	-8,1	-8,2	-8,1	-7,9	-7,8	-5,5	-5,4	-5,7	-5,6	-5,7	-5,8	-5,6	-5,8	-5,7	-5,8

Tabela 19 - Valores obtidos dos minerais normativos com o uso da norma CIPW para as amostras de Martin Vaz (Conclusão.)

Legenda: Outros parâmetros petrogenéticos, valores em % peso, calculados a partir da planilha Excel® NORM4 *spreadsheet* (Hollocher, 2015. Disponível em:< http://minerva.union.edu/hollochk/c_petrology/index.htm>, Acesso em:). Log f_{02} foi calculado com o software PETROLOG v. 3.1.1.3 (DANYUSHEVSKY ; PLE-CHOV, 2011).

		CO	DOGARESSA DAVIS					JASEUR		MONTAGUE		UE			
			Melanefelinito					Tef	rito		Melanefelinito				
	TRIM-01A	TRIM-01C	TRIM-01D	TRIM- 01E	TRIM-03.A	TRIM- 03B	TRIM- 04A	TRIM- 04B	TRIM- 04C	TRIM- 04D	TRIM- 05A	TRIM- 05B	TRIM- 08A	TRIM- 08B	TRIM- 08C
Minerais normativos					Norma (wt.%)										
Quartzo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Plagioclásio	27,3	26,8	28,7	27,36	5,72	5,95	38,97	38,4	39,9	38,5	12,7	12,7	12,21	11,95	11,8
Ortoclásio	0	0	1,95	0	0	0	17,2	17,7	17,1	17,3	4,25	4,67	3,13	2,95	2,78
Nefelina	5,68	5,5	4,68	5,23	15	15,3	5,84	5,83	5,77	6	16,2	16,7	15,81	15,29	15,1
Leucita	3,99	3,48	1,67	3,29	10,9	11,3	0	0	0	0	0	0	0	0	0
Kalsilita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corindon	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Diopsídio	20,6	21,3	17,6	22,08	30,2	31,4	13,85	14,5	14	14	30,9	30,6	31,76	31,69	31,9
Hiperstênio	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wollastonita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Olivina	22	20,8	20,9	21,16	20,5	18,8	8,87	9,05	8,45	9,25	17	18,5	19,24	19,88	19,7
Larnita	0,76	2,09	0	2,86	1,59	1,36	0	0	0	0	0	0	0	0	0
Acmita (aegerina)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K_2SiO_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ SiO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rutilo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ilmenita	6,06	6,48	6,32	6,7	9,1	9,33	6,86	6,88	6,95	6,82	9,76	10,1	10,37	10,31	10,3
Magnetita	2,96	3,04	3,02	3,13	3,25	3,2	2,49	2,58	2,35	2,55	3,31	3,45	3,55	3,57	3,52
Hematita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apatita	3,54	2,36	6,02	2,04	1,62	1,65	2,46	2,53	2,46	2,53	1,37	1,44	1,39	1,34	1,39
Zircão	0,06	0,06	0,04	0,06	0,04	0,04	0,07	0,09	0,09	0,09	0,04	0,04	0,04	0,04	0,04
Perovskita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cromita	0,12	0,1	0,12	0,12	0,1	0,1	0	0	0	0	0,09	0,09	0,09	0,09	0,09
Titanita	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	93,1	92,1	91	94,03	98,1	98,3	96,61	97,6	97,1	96,9	95,6	98,3	97,59	97,11	96,6

Tabela 20 - Valores obtidos dos minerais normativos com o uso da norma CIPW para as amostras dos montes submarinos (Continua).

(continua)

		COI	DOGARESSA DAVIS				JAS	EUR	MONTAGUE						
			Melanefelinito			Tefrito					Melanefelinito				
				TRIM-		TRIM-	TRIM-	TRIM-	TRIM-	TRIM-	TRIM-	TRIM-	TRIM-	TRIM-	TRIM-
	TRIM-01A	TRIM-01C	TRIM-01D	01E	TRIM-03.A	03B	04A	04B	04C	04D	05A	05B	08A	08B	08C
Minerais normativos					Norma (wt.	%)									
Densidade (g/cm ³)	2,78	2,79	2,78	2,77	2,76	2,77	2,67	2,66	2,66	2,67	2,77	2,78	2,78	2,79	2,78
$\operatorname{Log} f_{(O2)}$	-6,1	-6,2	-6,1	-6,1	-6,2	-6,3	-8,3	-8,2	-8,3	-8,1	0,11	0,1	0,1	0,1	0,1

Observação: O valor total refere-se à soma em porcentagem em peso (wt.%) de todos os minerais normativos presentes em cada amostra. Os valores dentro do erro aproximado deveriam ser os mesmos dos valores em porcentagem em peso (wt.%) do somatório dos óxidos (elementos maiores) da litogeoquímica referente a cada amostra. Sete minerais normativos utilizados na planilha de cálculos foram omitidos nesta tabela por apresentarem valores nulos e sem significância para os dados (halita, pirita, fluorita, anidrita, calcita, thenardita (Na₂SO₄) e natrita (Na₂CO₃)). O modelo usado para olivina é Ford et al., 1983.

Fracionamento de olivina é 100.00 % com exceção do Monte Davis: fracionamento de clinopiroxênio e plagioclásio (50:50).

 Fe_2O_3 no melt é calculado usando o buffer QFM de fugacidade de oxigênio $f_{(O2)}$.

 f_{O2} é calculado seguindo o modelo de Borisov e Shapkin, 1990.

Pressão Inicial = 30 kbar (3GPa).

Legenda: e outros parâmetros petrogenéticos, valores em % peso, calculados a partir da planilha Excel® NORM4 *spreadsheet* (Hollocher, http://minerva.union.edu/hollochk/c_petrology/index.htm, 2015). Log f₀₂ foi calculado com o software PETROLOG v. 3.1.1.3 (DANYUSHEVSKY & PLECHOV, 2011).